
Environment and Tools

Environment and Tools

Microsoft® MASM
Assembly-Language Development System
Version 6.1

For MS-DOS ® and Windows ™ Operating Systems

Microsoft Corporation

Infonnation in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any fonn or by any means, electronic or mechanical, for any purpose, without the
express written pennission of Microsoft Corporation.

©1992 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, XENIX, CodeView, and QuickC are registered trademarks and Windows
and Windows NT are trademarks of Microsoft Corporation in the USA and other countries.

U.S. Patent No. 4955066

IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.
UNIX is a registered trademark of American Telephone and Telegraph Company.
BRIEF is a registered trademark of SDC Software Partners II L.P.
Printed in the United States of America.

Document No. DB35751-1292

Contents iii

Contents Overview

Introduction .. x x i

Part 1 The Programmer's WorkBench
Chapter 1 Introducing the Programmer's WorkBench. 3
Chapter 2 Quick Start. 7
Chapter 3 Managing Multimodule Programs . 35
Chapter 4 User Interface Details. 57
Chapter 5 Advanced PWB Techniques 77
Chapter 6 Customizing PWB. .. 109
Chapter 7 Programmer's WorkBench Reference 131

Part 2 The CodeView Debugger
Chapter 8 Getting Started with Code View 293
Chapter 9 The Code View Environment. 319
Chapter 10 Special Topics .. 351
Chapter 11 Using Expressions in CodeView 375
Chapter 12 CodeView Reference 393

Part 3 Compiling and Linking
Chapter 13 Linking Object Files with LINK 457
Chapter 14 Creating Module-Definition Files . 491
Chapter 15 Using EXEHDR .. 513

Part 4 Utilities
Chapter 16 Managing Projects with NMAKE . 527
Chapter 17 Managing Libraries with LIB 581
Chapter 18 Creating Help Files with HELPMAKE 593
Chapter 19 Browser Utilities .. 615
Chapter 20 Using Other Utilities 631

Part 5 Using Help
Chapter 21 Using Help ... 663

Appendixes
Appendix A Error Messages . 685
Appendix B Regular Expressions . 845

iv Contents

Glossary. .. 857

Index ... 873

Contents

Contents v

Introduction .. xxi
Scope and Organization of This Book xxii

Microsoft Support Services. .. xxiii
Support Services Within the United States. .. xxiii

Support Services Worldwide. .. xxvi
Document Conventions. .. xxxiii

Part 1 The Programmer's WorkBench

Chapter 1 Introducing the Programmer's WorkBench. .. 3
What's in Part 1 .. 4
Using the Tutorial . 4

Conventions in the Tutorial. 5

Chapter 2 Quick Start .. 7
The PWB Environment. 7

The Microsoft Advisor. 8

Entering Text . 9
Saving a File. .. 10

Indenting Text with PWB .. 11
Opening an Existing File. .. 14
Copying, Pasting, and Deleting Text. .. 16

Single-Module Builds .. 18
Setting Build Options .. 18
Setting Other Options . 21

Building the Program. 22
Fixing Build Errors . 23

Running the Program. 25
Debugging the Program. 26

Using Code View to Isolate an Error. 26

Working Through a Program to Debug it. 29
Examining Memory in the Memory Window 33

Where to Go from Here. 34

Chapter 3 Managing Multimodule Programs .. 35
Multimodule Program Example . 35

vi Contents

Opening the Project ... 36
Contents of a Project .. 38

Dependencies in a Project .. 39
Building a Multimodule Program 40

Running the Program .. 40
Project Maintenance ... 41

U sing Existing Projects .. 42
Adding and Deleting a Project File 44

Changing Assembler and Linker Options. 46
Changing Options for Individual Modules . 49

The Program Build Process .. 51
Extending a PWB Project .. 52

Using a Non-PWB Makefile .. 55
Where to Go from Here ... 56

Chapter 4 User Interface Details. 57
Starting PWB ... 57

From the Command Line ... 57
Using the Windows Operating System Program Manager. 58

Using the Windows Operating System File Manager 59
The PWB Screen .. 59

PWB Menus .. 64
File .. 64

Edit .. 64
Search .. 65

Project .. 66
Run .. 66

Options ... 67
Browse ... 68

Window ... 69
Help " 70

Executing Commands .. 70
Choosing Menu Commands .. 70

Shortcut Keys. 71
Buttons ... 72
Dialog Boxes . 72

Chapter 5 Advanced PWB Techniques. 77
Searching with PWB ... 77

Searching by Visual Inspection 78

Contents vii

Using the Find Command .. 79
Using Regular Expressions ... 82
Using the Source Browser .. 88
Advanced Browser Database Information . 93

Executing Functions and Macros . 96

Executing Functions and Macros by Name 98
Writing PWB Macros .. 98

When Is a Macro Useful? . 99

Recording Macros . 99
Flow Control Statements. .. 102
User Input Statements .. 104

Chapter 6 Customizing PWB. .. 109
Changing Key Assignments .. 109

Changing Settings . 112
Customizing Colors. 114

Adding Commands to the Run Menu . 115
How PWB Handles Tabs . 118

PWB Configuration ... 120
Autoloading Extensions. .. 121
The TOOLS.INI File ... 122
TOOLS.INI Statement Syntax 124

Environment Variables ... 127
Current Status File CURRENT.STS 128
Project Status Files. 129

Chapter 7 Programmer's WorkBench Reference. .. 131
PWB Command Line. .. 131
PWB Menus and Keys .. 132

PWB Default Key Assignments 135
Note on Available Keys ... 139

PWB Functions . 140
Cursor-Movement Commands 144

Predefined PWB Macros ... 207

PWB Switches ... 244
Extension Switches .. 246
Filename-Parts Syntax .. 247
Boolean Switch Syntax ... 248

Browser Switches .. 286
Help Switches ... 287

viii Contents

Part 2 The CodeView Debugger

Chapter 8 Getting Started with CodeView 293
Preparing Programs for Debugging 293

General Programming Considerations 294

Compiling and Linking .. 295

Debugging Strategies .. 297
Identifying the Bug ... 297

Locating the Bug .. 298

Setting up Code View .. 299

Code View Files ... 300
Configuring CodeView with TOOLS.INI 301

Code View TOOLS.INI Entries 302

Memory Management and Code View 308

The Code View Command Line .. 308

Leaving Code View ... 309

Command-Line Options ... 310

The CURRENT.STS State File .. 316

Chapter 9 The CodeView Environment 319
The Code View Display . 319

The Menu Bar ... 320

The Window Area ... 320

The Status Bar .. 321
CodeView Windows .. 321

How to Use CodeView Windows 321

The Source Windows ... 324

The Watch Window .. 324
The Command Window ... 326

The Local Window ... 328

The Register Window .. 329

The 8087 Window ... 330
The Memory Windows .. 330

The Help Window ... 332

Code View Menus ... 332

The File Menu .. 332

The Edit Menu .. 334

The Search Menu .. 335

The Run Menu .. 336

The Data Menu .. 338

Contents ix

The Options Menu ... 342
The Calls Menu . 346
The Windows Menu. 347
The Help Menu . 349

Chapter 10 Special Topics 351
Debugging in the Windows Operating System . 351

Comparing CVW with CV . 351
Preparing to Run CVW ... 352

Starting a Debugging Session 353
CVW Commands .. 357
CVW Debugging Techniques. 360

Debugging P-Code ... 363

Requirements ... 364

Preparing Programs. 365
P-Code Debugging Techniques. 365
P-Code Debugging Limitations. 367

Remote Debugging . 367

Requirements. 368
Remote Monitor Command-Line Syntax 370
Starting a Remote Debugging Session 371

Chapter 11 Using Expressions in CodeView .. 375
Common Elements .. 375

Line Numbers ... 376

Registers ... 377
Addresses. 378

Address Ranges ... 379
Choosing an Expression Evaluator 380
Using the C and C++ Expression Evaluators 381

Additional Operators ... 381

Unsupported Operators . 381
Restrictions and Special Considerations 382
The Context Operator .. 382

Numeric Constants ... 384
String Literals ... 385
Symbol Fonnats ... 385

Using C++ Expressions .. 386

Access Control .. 386
Ambiguous References ... 386

x Contents

Inheritance ... 386
Constructors, Destructors, and Conversions 387
Overloading .. 388
Operator Functions ... 388

Debugging Assembly Language 389
Memory Operators ... 389
Register Indirection .. 390
Register Indirection with Displacement 391
Address of a Variable .. 391
PTR Operator ... 391
Strings ... 392
Array and Structure Elements 392

Chapter 12 CodeView Reference 393
Code View Command Overview 398
Code View Command Reference 400

Part 3 Compiling and Linking

Chapter 13 Linking Object Files with LINK. 457
New Features .. 457
Overview ... 458
LINK Output Files .. 459
LINK Syntax and Input .. 460

The objfiles Field .. 461
The exefile Field ... ,462
The mapfile Field .. 463
The libraries Field ... 463
The deffile Field ... 466
Examples .. 467

Running LINK ... 468
Specifying Input with LINK Prompts 469
Specifying Input in a Response File 469

LINK Options ... 471
Specifying Options ... 471
The IALIGN Option .. 472
The /BATCH Option ... 472
The ICO Option ... 473
The ICPARM Option ... 473
The /DOSSEG Option .. 474

Contents xi

The /DSALLOC Option .. 475
The /DYNAMIC Option .. 475

The /EXEPACK Option .. 475
The /FARCALL Option ... 476
The /HELP Option ... 477

The /HIGH Option ... 477
The /INFO Option ... 477
The /LINE Option ... 478

The /MAP Option .. 478
The /NOD Option ... 479
The /NOE Option .. 479
The /NOF ARC ALL Option .. 479

The /NOGROUP Option .. 480
The /NOI Option .. 480

The /NOLOGO Option ... 480
The /NONULLS Option .. 480
The /Nap ACKC Option .. 481

The /Nap ACKF Option .. 481

The IOLDOVERLA Y Option 481
The IONERROR Option .. 481

The IOV Option ... 482
The /P ACKC Option ... 482

The /p ACKD Option ... 483
The /p ACKF Option ... 484
The /pAUSE Option ... 484

The /pCODE Option ... 485

The /PM Option ... 485
The IQ Option .. 485
The Ir Option . 486

The ISEG Option .. 486
The 1ST ACK Option ... 487
The rrINY Option ... 487
The /W Option .. 488

The /? Option ... 488
Setting Options with the LINK Environment Variable 488

Setting the LINK Environment Variable 488
Behavior of the LINK Environment Variable 489

Clearing the LINK Environment Variable 489

xii Contents

LINK Temporary Files .. 489

LINK Exit Codes ... 490

Chapter 14 Creating Module-Definition Files 491
New Features .. 491

MS-DOS Programs .. 491

Statements .. 492
Overlays ... 492

Overview ... 492
Module Statements .. 493

Syntax Rules .. 494
The NAME Statement ... 495
The LIBRARY Statement .. 496
The DESCRIPTION Statement. 496
The STUB Statement .. 497

The APPLOADER Statement ... 498
The EXETYPE Statement. ... 498
The PROTMODE Statement. ... 499

The REALMODE Statement ... 500
The STACKSIZE Statement .. 500
The HEAPSIZE Statement ... 500

The CODE Statement ... 501
The DATA Statement ... 501

The SEGMENTS Statement .. 502
CODE, DATA, and SEGMENTS Attributes 503

The OLD Statement ... 505
The EXPORTS Statement .. 505

The IMPORTS Statement .. 506
The FUNCTIONS Statement ... 508

The INCLUDE Statement .. 510
Reserved Words .. 510

Chapter 15 Using EXEHDR .. 513
Running EXEHDR ... 513

The EXEHDR Command Line 513
EXEHDR Options ... 514

Executable-File Format. ... 515
EXEHDR Output: MS-DOS Executable File 516

EXEHDR Output: Segmented-Executable File 518
DLL Header Differences .. 519

Part 4 Utilities

Contents xiii

Segment Table .. 520
Exports Table. 520

EXEHDR Output: Verbose Output . 521
MS-DOS Header Information 521

New .EXE Header Information 521
Tables ... 523

Relocations ... 523

Chapter 16 Managing Projects with NMAKE. .. 527
New Features .. 527
Overview ... 528

Running NMAKE .. 529
Command-Line Options ... 529
NMAKE Command File .. 533

The TOOLS.INI File ... 534
Contents of a Makefile .. 535

Using Special Characters as Literals 535
Wildcards .. 536

Comments .. 536
Long Filenames . 537

Description Blocks ... 537
Dependency Line .. 538

Targets .. 538
Dependents ... 542

Commands. 543
Command Syntax. 543
Command Modifiers . 544

Exit Codes from Commands . 545
Filename-Parts Syntax .. 546
Inline Files . 547

Macros ... 550
User-Defined Macros .. 551

Using Macros ... 554
Special Macros .. 554
Substitution Within Macros .. 560

Substitution Within Predefined Macros 561
Environment-Variable Macros 561
Inherited Macros .. 563

xiv Contents

Precedence Among Macro Definitions 563

Inference Rules .. 563
Inference Rule Syntax .. 564
Inference Rule Search Paths 565

User-Defined Inference Rules 566
Predefined Inference Rules .. 567

Inferred Dependents .. 569
Precedence Among Inference Rules 570

Directives ... 570
Dot Directives .. 570

Preprocessing Directives .. 572
Sequence ofNMAKE Operations 576

A Sample NMAKE Makefile ... 578

NMAKE Exit Codes .. 580

Chapter 17 Managing Libraries with LIB 581
Overview ... 581
Running LIB ... 582

The LIB Command Line .. 582
LIB Command Prompts ... 582
The LIB Response File .. 583

Specifying LIB Fields ... 583

The Library File ... 584
LIB Options .. 584
LIB Commands .. 586
The Cross-reference Listing .. 590

The Output Library .. 590
Examples '. , .. 591

LIB Exit Codes .. 592

Chapter 18 Creating Help Files with HELPMAKE . 593
Overview ... 594
Running HELPMAKE ... 595

Encoding ... 595

Decoding ... 597
Getting Help .. 598
Other Options ... 599

Source File Formats ... 599
Elements of a Help Source File. 600

Defining a Topic ... 600

Contents xv

Creating Links to Other Topics 601

Fonnatting Topic Text .. 604
Dot and Colon Commands ... 605

Other Help Text Fonnats .. 609
Rich Text Fonnat .. 609

Minimally Fonnatted ASCII 612
Context Prefixes . 613

Chapter 19 Browser Utilities. .. 615
Overview of Database Building 616

Preparing to Build a Database 616
How BSCMAKE Builds a Database 616

Methods for Increasing Efficiency . 617

BSCMAKE ... 618
System Requirements for BSCMAKE 618
The BSCMAKE Command Line 619
BSCMAKE Options ... 620
Using a Response File . 622

BSCMAKE Exit Codes. 623
SBRP ACK .. 623

Overview of SBRP ACK .. 624
The SBRP ACK Command Line 624

SBRP ACK Exit Codes ... 626
CREF .. 626

Using CREF. 626
Difference from Previous Releases. 629

Chapter 20 Using Other Utilities. 631
CVPACK ... 631

Overview of CVP ACK ... 632

The CVPACK Command Line 632
CVP ACK Exit Codes .. 633

H2INC ... 633
Basic H2INC Operation .. 634

H2INC Syntax and Options. 635
Converting Data and Data Structures 638
Converting Function Prototypes . 648
Summary of H2INC-Recognized Keywords and Pragmas 651

IMPLm .. 652

About Import Libraries ... 652

xvi Contents

Part 5 Using Help

Appendixes

The IMPLIB Command Line 653
Options .. 653

RM, UNDEL, and EXP .. 654
Overview of the Backup Utilities 654

The RM Utility .. 654

The UNDEL Utility .. 655
The EXP Utility ... 656

WX/WXServer .. 657
Running WX/WXServer .. 657

Chapter 21 Using Help. 663
Structure of the Microsoft Advisor. 663

Navigating Through the Microsoft Advisor 664
Using the Help Menu ... 665
Using the Mouse and the Fl Key 666

Using H yperlinks . 666
Using Help Windows and Dialog Boxes 667
Accessing Different Types of Information . 669
U sing Different Help Screens 672

U sing Help in PWB ... 673
Opening a Help File. 673
Global Search ... 674

Using QuickHelp . 675

Using the /Help Option . 676
Using the QH Command .. 676

Managing Help Files .. 679
Managing Many Help Files .. 680

Appendix A Error Messages. 685
E;rror Message Lists ... 685
BSCMAKE Error Messages .. 688

Code View C/C++ Expression Evaluator Errors 692
Code View Error Messages ... 700

CVP ACK Error Messages ... 716
EXEHDR Error Messages ... 720
Math Coprocessor Error Messages , 722

Contents xvii

H2INC Error Messages .. 724
HELPMAKE Error Messages .. 761
IMPLIB Error Messages ... 767
LIB Error Messages . 769
LINK Error Messages ... 775
ML Error Messages ... 798
NMAKE Error Messages. 828
PWB Error Messages ~ . 840
SBRPACK Error Messages .. 842

Appendix B Regular Expressions. .. 845
Regular-Expression Summaries 845
UNIX Regular-Expression Syntax 848
Tagged Regular Expressions. 850

Tagged Expressions in Build:Message 852
Justifying Tagged Expressions .. 852
Predefined Regular Expressions 853
Non-UNIX Regular-Expression Syntax 854

Non-UNIX Matching Method 855

Glossary. .. 857

Index . .. 873

xviii Contents

Figures and Tables

Figures
Figure 2.1 PWB Display ... 8
Figure 3.1 The SHOW Project. 36
Figure 3.2 The PWB Build Process 51
Figure 4.1 User Interface Elements. 60
Figure 4.2 Window Elements ... 61
Figure 4.3 Status Bar Elements 62
Figure 4.4 PWB Menu Elements 63
Figure 4.5 Dialog Box Elements 73
Figure 4.6 Key Box and Check Box 74
Figure 5.1 Regular Expression Example 83
Figure 5.2 Complex Regular Expression Example. 84
Figure 6.1 How PWB Displays Tabs . 119
Figure 7.1 Arranged Windows 213
Figure 7.2 Vertical Tiling ... 278
Figure 7.3 Horizontal Tiling .. 278
Figure 9.1 CodeView Display 320
Figure 15.1 Format for a Segmented-Executable File 516
Figure 16.1 NMAKE Description Block. 537
Figure 21.1 Microsoft Advisor Global Contents Screen 664

Tables
Table 7.1 File Menu and Keys 132
Table 7.2 Edit Menu and Keys 133
Table 7.3 Search Menu and Keys . 133
Table 7.4 Project Menu and Keys . 134
Table 7.5 Run Menu and Keys 134
Table 7.6 Browse Menu and Keys 134
Table 7.7 Window Menu and Keys. 135
Table 7.8 Help Menu and Keys. 135
Table 7.9 PWB Default Key Assignments 136
Table 7.10 PWB Functions . 140
Table 7.11 Cursor-Movement Commands 145
Table 7.12 PWB Macros ... 208
Table 7.13 PWB Color Names 252
Table 7.14 PWB Color Values 254

Contents xix

Table 8.1 Code View TOOLS.INI Entries 302
Table 8.2 CodeView Command-Line Options 310
Table 9.1 Moving Around with the Keyboard . 323
Table 11.1 Registers ... 377
Table 12.1 Register Names ... 395
Table 12.2 Code View Command Summary 398
Table 14.1 Module Statements 493
Table 16.1 Predefined Inference Rules 567
Table 16.2 Binary Operators for Preprocessing 574
Table 18.1 Fonnatting Attributes 605
Table 18.2 Dot and Colon Commands 606
Table 18.3 RTF Fonnatting Codes 610
Table 18.4 Microsoft Product Context Prefixes 613
Table 18.5 Standard h. Contexts 614
Table A.1 Error Codes Listed by Utility 686
Table A.2 Error Codes Listed by Error Code Range 687
Table B.1 UNIX Regular-Expression Summary 845
Table B.2 UNIX Predefined Expressions 846
Table B.3 CodeView Regular Expressions 847
Table B.4 Non-UNIX Regular-Expression Summary 847
Table B.5 Non-UNIX Predefined Expressions 848
Table B.6 UNIX Regular-Expression Syntax 848
Table B.7 Predefined Regular Expressions and Definitions 853
Table B.8 Non-UNIX Regular Expression Syntax 854

xxi

Introduction

Microsoft ® Macro Assembler (MASM) includes a full set of development tools -
editor, compiler, linker, debugger, and browser - for writing, compiling, and
debugging your programs. You can work within the Microsoft Programmer's
WorkBench (PWB) integrated environment, or you can use the tools separately to
develop your programs.

Environment and Tools describes the following development tools:

• The Programmer's WorkBench (PWB). PWB is a comprehensive tool for
application development. Within its environment is everything you need to
create, build, browse, and debug your programs. Its macro language gives you
control over not only editing but also build operations and other PWB functions.

• The Microsoft ® Code View ™ debugger. This is a diagnostic tool for finding
errors in your programs. Two versions of Code View are described: one for
MS-DOS ® and one for Microsoft Windows TM. Each CodeView version has
specialized commands for its operating environment, as well as other commands
for examining code and data, setting breakpoints, and controlling your
program's execution.

• LINK, the Microsoft Segmented-Executable Linker. The linker combines object
files and libraries into an executable file, either an application or a dynamic-link
library (DLL).

• EXEHDR, the Microsoft EXE File Header Utility. EXEHDR displays and
modifies the contents of an executable-file header.

• NMAKE, the Microsoft Program Maintenance Utility. NMAKE simplifies
project maintenance. Once you specify which project files depend on others, you
can use NMAKE to automatically execute the commands that will update your
project when any file has changed.

• LIB, the Microsoft Library Manager. LIB creates and maintains standard
libraries. With LIB, you can create a library file and add, delete, and replace
modules.

xxii Environment and Tools

• HELPMAKE, the Microsoft Help File Maintenance Utility. HELPMAKE
creates and maintains Help files. You can use HELPMAKE to create a Help file
or to customize the Microsoft Help files.

• BSCMAKE, the Microsoft Browser Database Maintenance Utility, and
SBRP ACK, the Microsoft Browse Information Compactor. BSCMAKE creates
browser files for use with the PWB Source Browser. SBRP ACK compresses the
files that are used by BSCMAKE.

Environment and Tools also describes these special-purpose utilities:

• H2INC, the Microsoft C Header Translation Utility. H2INC translates C header
files into MASM-compatible include files.

• CVPACK, the Microsoft Debugging Information Compactor. CVPACK
compresses the size of debugging information in an executable file.

• IMPLIB, the Microsoft Import Library Manager. IMPLIB creates an import
library that resolves external references from a Windows-based application to a
DLL.

• RM, the Microsoft File Removal Utility; UNDEL, the Microsoft File Undelete
Utility; and EXP, the Microsoft File Expunge Utility. These utilities manage,
delete, and recover backup files.

Scope and Organization of This Book
This book has five parts and five appendixes to give you complete information
about PWB, CodeView, and the utilities included with MASM.

Part 1 is a brief PWB tutorial and comprehensive reference. The first three chapters
introduce PWB and provide a tutorial that describes the features of the integrated
environment and how to use them. Chapters 4, 5, and 6 contain detailed information
on the interface, advanced PWB techniques, and customization. Chapter 7 contains
a complete reference to PWB 's default keys and all functions, predefined macros,
and switches.

Part 2 provides full information on the Microsoft Code View debugger. Chapter 8
tells how to prepare programs for debugging, how to start CodeView, and how to
customize CodeView's interface and memory usage. Chapter 9 describes the
environment, including the Code View menu commands and the format and use of
each CodeView window. Chapter 10 explains how to use expressions, including the
C and C++ expression evaluators. Chapter 11 describes techniques for debugging
Windows-based programs. Chapter 12 contains a complete reference to CodeView
commands.

The chapters in Parts 3 and 4 describe the utilities. These chapters are principally
for command-line users. Even if you're using PWB, however, you may find the

Introduction xxiii

detailed infonnation in Parts 3 and 4 helpful for a better understanding of how each
tool contributes to the program development process.

Part 3 provides infonnation about compiling and linking your program. LINK
command-line syntax and options are covered in Chapter 13. The contents and use
of module-definition files are explained in Chapter 14. Chapter 15 describes how to
use EXEHDR to examine the file header of a program.

Part 4 presents the other utilities. NMAKE, the utility for automating project
management, is described in Chapter 16. Chapter 17 covers LIB, used in managing
standard libraries. Procedures for using HELPMAKE to create and maintain Help
files are in Chapter 18. The tools for creating a browser database are discussed in
Chapter 19. Finally, Chapter 20 describes how to use the following special-purpose
utilities: H2INC, CVPACK, IMPLIB, RM, UNDEL, and EXP.

Part 5 presents the Microsoft Advisor Help system and the QuickHelp program. It
describes the structure of the Help files, how to navigate through the Help system,
and how to manage Help files.

The appendixes provide supplementary infonnation. Appendix A describes error
messages. Appendix B describes regular expressions for use in PWB and
CodeView.

Microsoft Support Services
Microsoft offers a variety of no-charge and fee-based support options to help you
get the most from your Microsoft product. For an explanation of these options,
please see one of the following sections:

• If you are in the United States, see "Support Services Within the United States."

• If you are outside the United States, see "Support Services Worldwide."

Support Services Within the United States
If you have a question about Microsoft Macro Assembler (MASM), one of the
following resources may help you fmd an answer:

• The index in the product documentation and other printed product
documentation.

• Context-sensitive online Help available from the Help menu.

xxiv Environment and Tools

• The README files that come with your product disks. These files provide
general information that became available after the books in the product
package were published.

• Electronic options such as CompuServe forums or bulletin board systems, if
available.

If you cannot find the information you need, you can obtain product support through
several methods. In addition, you can locate training and consultation services in
your area.

For information about Microsoft incremental fee-based support service options, call
Microsoft Inside Sales at (800) 227-4679, Monday through Friday, between 6:30
a.m. and 5 :30 p.m. Pacific time.

Note Microsoft's support services are subject to Microsoft's prices, terms, and
conditions in place in each country at the time the services are used.

Microsoft Forums on CompuServe
Microsoft Product Support Services are available on several CompuServe forums.
For an introductory CompuServe membership kit specifically for Microsoft users,
dial (800) 848-8199 and ask for operator 230. If you are already a CompuServe
member, type go mi eros oft at any! prompt.

Microsoft Product Support Services
You can reach Microsoft Product Support Services Monday through Friday
between 6:00 a.m. and 6:00 p.m. Pacific time.

• For assistance with Microsoft MASM, dial (206) 646-5109.

When you call, you should be at your computer with Microsoft MASM running and
the product documentation at hand. Have your file open and be prepared to give the
following information:

• The version of Microsoft MASM you are using.

• The type of hardware you are using, including network hardware, if applicable.

• The operating system you are using.

• The exact wording of any messages that appeared on your screen.

• A description of what happened and what you were trying to do when the
problem occurred.

• A description of how you tried to solve the problem.

Microsoft Product Support for the Deaf and
Hard-of-Hearing

Introduction xxv

Microsoft Product Support Services are available for the deaf and hard-of-hearing
Monday through Friday between 6:00 a.m. and 6:00 p.m. Pacific time.

Using a special TDD{IT modem, dial (206) 635-4948.

Product Training and Consultation Services
Within the United States, Microsoft offers the following services for training and
consultation:

Authorized Training Centers
Microsoft Authorized Training Centers offer several services for Microsoft product
users. These include:

• Customized training for users and trainers.

• Training material development.

• Consulting services.

For information about the training center nearest you, call Microsoft Consumer
Sales at (800) 426-9400 Monday through Friday between 6:30 a.m. and 5:30 p.m.
Pacific time.

Consultant Referral Service
Microsoft's Consultant Relations Program can refer you to an independent
consultant in your area. These consultants are skilled in:

• Macro development and translation.

• Database development.

• Custom interface design.

For information about the consultants in your area, call the Microsoft Consultant
Relations Program at (800) 227-4679, extension 56042, Monday through Friday
between 6:30 a.m. and 5:30 p.m. Pacific time.

xxvi Environment and Tools

Support Services Worldwide
If you are outside the United States and have a question about Microsoft MASM,
Microsoft offers a variety of no-charge and fee-based support options. To solve
your problem, you can:

• Consult the index in the product documentation and other printed product
documentation.

• Check context-sensitive online Help available from the Help menu.

• Check the README files that come with your product disks. These files
provide general information that became available after the books in the product
package were published.

• Consult electronic options such as CompuServe forums or bulletin board
systems, if available.

If you cannot find a solution, you can receive information on how to obtain product
support by contacting the Microsoft subsidiary office that serves your country.

Note Microsoft's support services are subject to Microsoft's prices, terms, and
conditions in place in each country at the time the services are used.

Calling a Microsoft Subsidiary Office
When you call, you should be at your computer with Microsoft MASM running and
the product documentation at hand. Have your file open and be prepared to give the
following information:

• The version of Microsoft MASM you are using.

• The type of hardware you are using, including network hardware, if applicable.

• The operating system you are using.

• The exact wording of any messages that appeared on your screen.

• A description of what happened and what you were trying to do when the
problem occurred.

• A description of how you tried to solve the problem.

Area

Argentina

Australia

Austria

Baltic States

Belgium

Bermuda

Bolivia

Introduction xxvii

Microsoft subsidiary offices and the countries they serve are listed below.

Telephone Numbers

Microsoft de Argentina S.A.
Phone: (54) (I) 814-0356
Fax: (54) (1) 814-0372

Microsoft Pty. Ltd.
Phone: (61)(02)870-2200
Fax: (02) 805-1108
Bulletin Board Service: (612) 870-2348
Technical Support: (61) (02) 870-2131
Sales Information Centre: (02) 870-2100

Microsoft Ges.m.b.H.
Phone: 0222 - 68 76 07
Fax: 0222 - 68 162710
Information: 060 - 89 - 247 11 101

Prices, updates, etc.: 060 - 89 - 3176 1199
CompuServe: msce (Microsoft Central Europe)
Technical support:

Windows, Windows for Workgroups, Microsoft Mail: 0660 - 65 - 10
Microsoft Excel for Windows, Microsoft Excel for OS/2, PowerPoint for

Windows: 0660 - 65 - 11
Word for MS-DOS, Windows Write: 0660 65 - 12
Word for Windows, Word for OS/2: 0660 - 65 - 13
Works for MS-DOS, Works for Windows, Publisher, WorksCalc,

WorksText: 0660 - 65 - 14
C PDS, FORTRAN PDS, Pascal, Macro Assembler PDS, QuickC, QuickC for

Windows, QuickPascal, QuickAssembler, Profiler: 0660 - 65 - 15
COBOL PDS, Basic PDS, QuickBASIC, Visual Basic: 0660 - 65 - 16
MS-DOS: 0660 - 65 - 17
Macintosh Software: 0660 - 65 - 18
Project for Windows, Project for MS-DOS, Multiplan, Mouse, Flight Simulator,

Paintbrush, Chart: 0660 - 67 - 38
FoxPro: 0660 - 67 - 61

See Germany

Microsoft NV
Phone: 02-7322590
Fax: 02-7351609
Technical Support Bulletin Board Service: 02-7350045 (1200/2400/9600 baud, 8 bits, no
parity, 1 stop bit, ANSI terminal emulation)
(Dutch speaking) Technical Support: 02-5133274
(English speaking) Technical Support: 02-5023432
(French speaking) Technical Support: 02-5132268
Technical Support Fax: (31) 2503-24304

See Venezuela

See Argentina

xxviii Environment and Tools

Area Telephone Numbers

Brazil Microsoft Infonnatica Ltda.
Phone: (55) (11) 530-4455
Fax: (55) (11) 240-2205
Technical Support Phone: (55) (11) 533-2922
Technical Support Fax: (55) (11) 241-1157
Technical Support Bulletin Board Service: (55) (11) 543-9257

Canada Microsoft Canada Inc.
Phone: 1 (416)568-0434
Fax: 1 (416) 568-4689
Technical Support Phone: 1 (416) 568-3503
Technical Support Facsimile: 1 (416) 568-4689
Technical Support Bulletin Board Service: 1 (416) 507-3022

Caribbean See Venezuela
Countries

Central America

Chile

Colombia

Denmark

Ecuador

England

Finland

France

See Venezuela

See Argentina

See Venezuela

Microsoft Denmark AS
Phone: (45) (44) 8901 00
Fax: (45) (44) 68 55 10

See Venezuela

Microsoft Limited
Phone: (44) (734) 270000
Fax: (44) (734) 270002
Upgrades: (44) (81) 893-8000
Technical Support:

Main Line (All Products): (44) (734) 271000
Windows Direct Support Line: (44) (734) 271001
Database Direct Support Line: (44) (734) 271126
MS-DOS 5 Warranty Support: (44) (734) 271900
MS-DOS 5 Fee Support Line: (44) (891) 315500
OnLine Service Assistance: (44) (734) 270374
Bulletin Board Service: (44) (734) 270065 (2400 Baud)
Fax Infonnation Service: (44) (734) 270080

Microsoft OY
Phone: (358) (0) 525 501
Fax: (358) (0) 522 955

Microsoft France
Phone: (33) (1) 69-86-46-46
Telex: MSPARIS 604322F
Fax: (33) (1) 64-46-06-60
Technical Support Phone: (33) (1) 69-86-10-20
Technical Support Fax: (33) (1) 69-28-00-28

Area

French Polynesia

Gennany

Hong Kong

Ireland

Israel

Italy

Telephone Numbers

See France

Microsoft GmbH
Phone: 089 - 3176-0
Telex: (17) 89 83 28 MS GMBH D
Fax: 089 - 3176-1000
Infonnation: 0130 - 5099

Prices, updates, etc.: 089 - 3176 1199

Introduction xxix

Bulletin board, device drivers, tech notes: BTX: microsoft# or *610808000#
CompuServe: msce (Microsoft Central Europe)
Technical support:

Windows, Windows for Workgroups, Microsoft Mail: 089 - 3176 - 1110
Microsoft Excel for Windows, Microsoft Excel for OS/2, PowerPoint for

Windows: 089 - 3176 - 1120
Word for MS-DOS, Windows Write: 089 - 3176 - 1130
Word for Windows, Word for OS/2: 089 - 3176 - 1131
Works for MS-DOS, Works for Windows, Publisher, WorksCalc,

WorksText: 089 - 3176 - 1140
C PDS, FORTRAN PDS, Pascal, Macro Assembler PDS, QuickC, QuickC for

Windows, QuickPascal, QuickAssembler, Profiler: 089 - 3176 - 1150
COBOL PDS, Basic PDS, QuickBASIC, Visual Basic: 089 - 3176 - 1151
MS-DOS: 089 - 3176 - 1152
Macintosh Software: 089 - 3176 - 1160
Project for Windows, Project for MS-DOS, Multiplan, Mouse, Flight Simulator,

Paintbrush, Chart: 089 - 3176 - 1170
FoxPro: 089 - 3176 - 1180

Microsoft Hong Kong Limited
Technical Support: (852) 804-4222

See England

Microsoft Israel Ltd.
Phone: 972-3-752-7915
Fax: 972-3-752-7919

Microsoft SpA
Phone: (39) (2) 269121
Telex: 340321 I
Fax: (39) (2) 21072020
Technical Support:

Microsoft Excel for Windows, Project for Windows, Works for
Windows: (39) (2) 26901361

Word, Works for MS-DOS: (39) (2) 26901362
Windows, PowerPoint, Publisher, Windows for Workgroups,

Works: (39) (2) 26901363
Basic, COBOL, Visual Basic, MS-DOS-based, Fox Products: (39) (2) 26901364
C, FORTRAN, Pascal, Macro Assembler (MASM), and SDKs: (39) (2) 26901354
LAN Manager, SQL Server, Microsoft Mail, Microsoft Mail

Gateways: (39) (2) 26901356

xxx Environment and Tools

Area Telephone Numbers

Japan Microsoft Company Ltd.
Phone: (81)(3)3363-1200
Fax: (81) (3) 3363-1281
Technical Support:

MS-DOS-based Applications: (81) (3) 3363-0160
Windows-based Applications: (81) (3) 3363-5040
Language Products (Microsoft C, Macro Assembler [MASM],

QuickC): (81) (3) 3363-7610
Language Products (Basic, FORTRAN, Visual Basic, Quick

Basic): (81) (3) 3363-0170
All Products Technical Support Fax: (81) (3) 3363-9901

Korea Microsoft CH

Liechtenstein

Luxemburg

Mexico

Netherlands

New Zealand

N orthem Ireland

Phone: (82) (2) 552-9505
Fax: (82) (2) 555-1724
Technical Support: (82) (2) 563-9230

See Switzerland (German speaking)

Microsoft NV
Phone: (32) 2-7322590
Fax: (32) 2-7351609
Technical Support Bulletin Board Service: (31) 2503-34221 (1200/2400/9600 baud,

8 bits, No parity, 1 stop bit, ANSI terminal emulation)
(Dutch speaking) Technical Support: (31) 2503-77877
(English speaking) Technical Support: (31) 2503-77853
(French speaking) Technical Support: (32) 2-5132268
Technical Support Fax: (31) 2503-24304

Microsoft Mexico, S.A. de C.V.
Phone: (52) (5) 325-0910
Fax: (52) (5) 280-0198
Technical Support: (52) (5) 325-0912
Sales: (52) (5) 325-0911

Microsoft B V
Phone: 02503-13181
Fax: 02503-37761
Technical Support Bulletin Board Service: 02503-34221 (1200/2400/9600 baud, 8 bits,

No parity, 1 stop bit, ANSI terminal emulation)
(Dutch speaking) Technical Support: 02503-77877
(English speaking) Technical Support: 02503-77853
Technical Support Fax: 02503-24304

Technology Link Centre
Phone: 64 (9) 358-3724
Fax: 64 (9) 358-3726
Technical Support Applications: 64 (9) 357-5575

See England

Area Telephone Numbers

Norway Microsoft Norway AS
Phone: (47) (2) 95 0665
Fax: (47) (2) 95 0664
Technical Support: (47) (2) 183500

Papua New Guinea See Australia

Paraguay See Argentina

Peru See Venezuela

Portugal MSFT, Lda.
Phone: (351) 14412205
Fax: (351) 1 4412101

Puerto Rico See Venezuela

Republic of China Microsoft Taiwan Corp.
Phone: (886) (2) 504-3122
Fax: (886) (2) 504-3121

Republic of Ireland See England

Scotland See England

Spain Microsoft Iberica SRL
Phone: (34) (1) 804-0000
Fax: (34) (1) 803-8310
Technical Support: (34) (1) 803-9960

Sweden Microsoft AB
Phone: (46) (8) 752 56 00
Fax: (46) (8) 75051 58
Technical Support:

Applications: (46) (8) 752 68 50
Development and Network products: (46) (8) 752 60 50
MS-DOS: (46) (071) 21 05 15 (SEK 4.55/min)

Sales Support: (46) (8) 752 56 30
Bulletin Board Service: (46) (8) 7504742
Fax Information Service: (46) (8) 752 29 00

Introduction xxxi

xxxii Environment and Tools

Area Telephone Numbers

Switzerland (Gennan speaking)
Microsoft AG

Uruguay

Venezuela

Wales

Venezuela

Phone: 01 - 83961 11
Fax: 01 - 831 0869
Infomation: 0049 - 89 - 247 11 101
Prices, updates, etc.: 0049 - 89 - 31761199
CompuServe: msce (Microsoft Central Europe)
Technical support:

Windows, Windows for Workgroups, Microsoft Mail: 01 - 342 - 4085
Microsoft Excel for Windows, Microsoft Excel for OS/2, PowerPoint for

Windows: 01 - 342 - 4082
Word for MS-DOS, Windows Write: 01 - 342 - 4083
Word for Windows, Word for OS/2: 01 - 342 - 4087
Works for MS-DOS, Works for Windows, Publisher, WorksCalc,

WorksText: 01 - 342 - 4084
C PDS, FORTRAN PDS, Pascal, Macro Assembler PDS, QuickC, QuickC for

Windows, QuickPascal, QuickAssembler, Profiler: 01 - 342 - 4036
COBOL PDS, Basic PDS, QuickBASIC, Visual Basic: 01 - 342 - 4086
MS-DOS: 01 - 342 - 2152
Macintosh Software: 01 - 342 - 4081
Project for Windows, Project for MS-DOS, Multiplan, Mouse, Flight Simulator,

Paintbrush, Chart: 01 - 342 - 0322
FoxPro: 01 /342 - 4121

(French speaking)
Microsoft SA, office Nyon
Phone: 022 - 363 68 11
Fax: 022 - 363 69 11
Technical support: 022 - 738 96 88

See Argentina

Corporation MS 90 de Venezuela S.A.
Phone: 0058.2.914739
Fax: 0058.2.923835

See England

Phone: 0058.2.914739
Fax: 0058.2.923835

Introduction xxxiii

Document Conventions
This book uses the following typographic conventions:

Examples

README. TXT, COPY,
LINK,ICO

printf, IMPORT

expression

[option]

{choice} I cllOice2}

CL ONE.C TWO.C

Repeating elements ...

wh il e (
{

FI, ALT+A

Description

Uppercase (capital) letters indicate filenames, MS-DOS
commands, and the commands to run the tools.
Uppercase is also used for command-line options, unless
the option must be lowercase.

Bold letters indicate keywords, library functions,
reserved words, and Code View commands. Keywords
are required unless enclosed in double brackets as
explained below.

Words in italic are placeholders for information that you
must supply (for example, a function argument).

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice between two
or more items. You must choose one of the items unless
all the items are also enclosed in double square brackets.

This font is used for program examples, user input,
program output, and error messages within the text.

Three horizontal dots following an item indicate that
more items having the same form may follow.

Three vertical dots following a line of code indicate that
part of the example program has intentionally been
omitted.

Small capital letters indicate the names of keys and key
sequences, such as ENTER and CTRL+C. A plus (+)
indicates a combination of keys. For example, CTRL+E
means to hold down the CTRL key while pressing the
Ekey.

The cursor-movement keys on the numeric keypad are
called ARROW keys. Individual ARROW keys are referred
to by the direction of the arrow on the top of the key
(LEFT, RIGHT, UP, DOWN). Other keys are referred to by
the name on the top of the key (PGUP, PGDN).

xxxiv Environment and Tools

Examples

Arg Meta Delete
(ALT+A ALT+A SHIFT+DEL)

"defined term"

dynamic-link library (DLL)

Description

A bold series of names followed by a series of keys
indicates a sequence of PWB functions that you can use
in a macro definition, type in a dialog box, or execute
directly by pressing the sequence of keys. In this book,
these keys are the default keys for the corresponding
functions. Some functions are not assigned to a key, and
the word "Unassigned" appears in the place of a key. In
PWB Help, the current key that is assigned to the
function is shown.

Quotation marks usually indicate a new term defined in
the text.

Acronyms are usually spelled out the first time they are
used.

PAR T 1

The Programmer's
WorkBench

Chapter 1 Introducing the Programmer's WorkBench 3
Chapter 2 Quick Start. 7
Chapter 3 Managing Multimodule Programs . 35
Chapter 4 User Interface Details. 57
Chapter 5 Advanced PWB Techniques. 77
Chapter 6 Customizing PWB , 109
Chapter 7 Programmer's WorkBench Reference 131

CHAPTER 1

Introducing the Programmer's
WorkBench

3

The Microsoft Programmer's WorkBench (PWB) is a powerful tool for application
development. PWB combines the following features:

• A full-featured programmer's text editor.

• An extensible "build engine" which allows you to assemble and link your
programs using the PWB environment. The build engine can be extended to
support any programming tool.

• Error-message browsing. Once a build completes, you can step through the build
messages, fixing errors in your source programs.

• A Source Browser. When working with large systems, it is often difficult to
remember where program symbols are accessed and defined. The Source
Browser maintains a database that allows you to go quickly to where a given
variable, function, type, class, or macro is defined or referenced.

• An extensible Help system. The Microsoft Advisor Help system provides a
complete reference on using PWB and MASM. You can also write new Help
files and seamlessly integrate them into the Help system to document your own
library routines or naming conventions.

• A macro language that can control editing functions, program builds, and other
PWB operations.

For increased flexibility, you can write extensions to PWB. These extensions can
perform tasks that are inconvenient in the PWB macro language. For example, you
can write extensions to perform file translations, source-code formatting, text
justification, and so on. As with the macro language, PWB extensions have full
access to most PWB capabilities. For information about how to write PWB
extensions, see the Microsoft Advisor Help system (choose "PWB Extensions"
from the main Help table of contents).

PWB comes with extensions for C/C++, Basic, and Fortran, in addition to assembly
language, to facilitate mixed-language programming. To install one of these

4 Environment and Tools

extensions, simply rename its corresponding .XXT file to a .MXT file in the \BIN
subdirectory where you installed MASM, as described in Getting Started. Also,
because an increasing number of programmers are using C++, the PWB Browser
extension supports classes.

What's in Part 1
This part of the book introduces you to the fundamentals of PWB. Chapter 2,
"Quick Start," shows you how to use the PWB editor and build a simple single
module program from PWB. Chapter 3, "Managing Multimodule Programs,"
expands upon the information you learned in Chapter 2. It teaches you how to build
a more complicated program that consists of several modules. You should be able to
work through these two chapters in less than three hours.

As you work through these chapters, you may want to refer to Chapter 4, "User
Interface Details," which explains options for starting PWB, briefly describes all of
the menu commands, and summarizes how menus and dialog boxes work. The user
interface information is presented in one chapter for easy access.

Chapter 5, "Advanced PWB Techniques," shows how to use the PWB search
facilities (including searching with regular expressions), how to use the Source
Browser, how to execute functions and macros, and how to write PWB macros.

Chapter 6, "Customizing PWB," describes how to redefine key assignments,
change PWB settings, add commands to the PWB menu, and use the TOOLS.INI
initialization file to store startup and configuration information for PWB.

Chapter 7, "PWB Reference," contains an alphabetical reference to PWB menus,
keys, functions, predefined macros, and switches. It contains the essential
information you need to know to take the greatest advantage of PWB 's richly
customizable environment.

Using the Tutorial
You probably want to get right to work with MASM. The tutorial chapters 2 and 3
can help you become productive very quickly. To get the most out of this material,
here are a few recommendations:

• Follow the steps presented in the tutorial. It is always tempting to explore the
system and find out more about the product through independent research.
However, just as programming requires an orderly sequence of steps, some
aspects of PWB also require sequenced actions.

• If you complete a step and something seems wrong-for example, if your screen
doesn't match what is in the book-back up and try to find out what's wrong.
Troubleshooting tips will help you take corrective actions.

Chapter 1 Introducing the Programmer's Workbench 5

• When working through this tutorial, consider how you might use these
techniques in your own work. PWB is like a full tool chest. You probably won't
learn (or even want to learn) all of PWB' s capabilities right away. But as time
goes on, you'll have uses for many of the tools you don't use immediately.

Conventions in the Tutorial
Procedures described in the course of the tutorial are introduced with headings
designated by a triangular symbol. A list of the steps making up the procedure then
follows. For example:

~ To open a file:

1. From the File menu, choose Open.

PWB displays the Open File dialog box.

2. In the File List list box, select the file that you want to open.

3. Choose OK.

In procedures, the heading gives you a capsule summary of what the steps will
accomplish. Each numbered step is an action you take to complete the procedure.
Some steps are followed by an explanation, an illustration, or both.

CHAPTER 2

Quick Start

This chapter gets you started with PWB. You'llieam the basics by building and
debugging a C-callable routine that generates a 2-byte pseudo-random number.

7

Some of the source code that you will be using is included with the sample
programs shipped with MASM 6.1. If you chose not to install the sample code when
you set up MASM, run SETUP to install it (see Getting Started for more
information).

To start PWB in the Windows operating system for this tutorial, double-click the
PWB icon in the MASM group.

In MS-DOS, type

PWB

at the prompt.

~ To leave PWB at any time:

• From the File menu, choose Exit, or press ALT+F4.

The PWB Environment
If this is the first time you have used PWB, you see the menu bar, the status bar,
and an empty desktop (assuming a standard installation). If you have used PWB
before, it opens the file you last worked with.

PWB uses a windowed environment to present information, get information from
you, and allow you to edit programs. The environment has the following
components:

• An editor for writing and revising programs

• A "build engine"-the part ofPWB that helps you assemble, link, and execute
your programs from within the environment

8 Environment and Tools

• A source-code browser

• Commands for program execution and debugging

• The Microsoft Advisor Help system

The browser and the Help system are dynamically loaded extensions to the PWB
platform. Microsoft languages and the utilities are also supported in PWB by
extensions. Other extensions are available, such as the Microsoft Source Profiler.
PWB presents all of these components through menus and dialog boxes.

The following figure shows some parts of the PWB interface.

File Edit Search Project Run Options Browse '!umtml Help

1=[1]====== Untitled.881

Figure 2.1 PWB Display

Build Results
Search Results
Print Results
Record
CI ipboard
Browser Output
Help

Hew
Close Ctrl+F4
Close All
Moue Ctrl+F7
Size Ctrl+F8

Restore Ctrl+FS
MiniMize Ctrl+F9
MaxiMize Ctrl+F18

Cascade FS
Tile Shift+FS
Arrange Alt+FS

PWB Windows ~

Untitled.881 Alt+l
Untitled.88Z Alt+Z

P H 88881.881

Chapter 4, "User Interface Details," contains a thorough description of these
elements and the rest of the PWB environment. Refer to this chapter when you need
specific information about an unfamiliar interface element.

The Microsoft Advisor
PWB makes programming easier by providing the Microsoft Advisor Help system,
which contains comprehensive information about:

• PWB editing functions

• PWB advanced features

• PWB menus and dialog boxes

Chapter 2 QuickStart 9

• Code View debugger

• Intel80x86 assembly language

• MASM 6.1 assembler options

• Microsoft utilities (such as NMAKE, LINK, and so on)

The Advisor provides context-sensitive Help and general Help. Context-sensitive
Help provides information about the menu, dialog box, or language element at the
cursor. To see context-sensitive Help, you can simply point to an item on the screen
and press either the right mouse button or the FI key. PWB displays a Help window
showing the requested information. You can also get context-sensitive Help and
more general Help by using the Help menu.

To answer questions of a less specific nature, you can access the Contents screen by
choosing Contents from the Help menu or by pressing SHIFT +FI. From the Advisor
contents, you can access Help on any other subject in the database.

~ To get started using the Microsoft Advisor:

• From the Help menu, choose the Help on Help command.

Help on Help teaches you how to use the Microsoft Advisor Help system. For more
information on using Help, see Chapter 21.

~ To close the Help window:

Entering Text

• Click the upper-left comer of the Help window (the Close box), press ESC,

choose Close from the File menu, or press CTRL+F4.

Note Click the Close box, choose Close from the File menu, or press CTRL+F4 to
close any open window in PWB.

The following sections explain basic editing procedures. If you're already familiar
with these, you can skip to "Opening an Existing File" on page 14.

In this section, you 'Illeam basic PWB procedures by entering a simple C-callable
assembly-language routine.

~ To start a new file:

1. Move the mouse cursor ("point") to the File menu on the menu bar and click the
left button, or press ALT+F from the keyboard.

PWB opens the File menu.

2. Point to the New command and click the left button, or press N to choose New.

10 Environment and Tools

Saving a File

PWB opens a window with the title Unti tl ed. 001.

Pressing the ALT key from the keyboard changes focus to the menu bar, and
pressing the highlighted key in a menu name opens that menu. Similarly, within a
menu, pressing a key highlighted in one of the commands causes that command to
be carried out. Using the keyboard, you can also easily move to the beginning of a
file by typing CTRL+HOME, or to the end of a file by typing CTRL+END.

Starting with your cursor in the upper-left comer of the edit window, type the
following comment line:

; C-CALLABLE PSEUDO-RANDOM NUMBER GENERATOR ROUTINE

Your screen should appear as follows:

Untitled.HHi
; C-CALLABLE PSEUDO-RANDOM NUMBER GENERATOR ROUTINE

1
I::::::m:m:m:m:::::::m:::m:::::::::::::::::::::::m:::m:::::::::::::m:::::::::m:::m:::m:m:m:::::::::::::::::::::::::::::::::::m:::m:::::::::::::::m:::::::::m:::::m:::::::::m:m:::::::m:m:::::::::::::::::::m::::~~

Genera I He 1 > <F i =He I > <A 1 t =Menu > MP CN HHHH 1. HS

Now that you've started entering your program, save your work before proceeding.

~ To save a file:

• From the File menu, choose Save, or press SHIff +F2.

PWB displays the Save As dialog box.

Chapter 2 QuickStart 11

Ir::F~il:--e--:tf~a-l'1'Ie~:~[;;I;m;U;;';m;;.";;:;;!:f;I.-. -... ~~~~ . ~~ . -.. -.-.. -. -.. -. -.. -. -.. -. -.. -.. -. -.. -. -.. -. -.. -. ...,]1

D:\MASM\SAMPLES\PWBTUTOR

File List: Drives I Dirs:

[-A-]
[-B-]
[-C-]
[-D-]

< OK > <Cancel) < Help >

This dialog box has several options that you use to pass infonnation to PWB. PWB
indicates the active option -in this case, the File Name text box-by highlighting
the area in which you can enter text. For more information about dialog boxes, see
Chapter 4, "User Interface Details."

Because you have not yet saved the file, it still has the name Un tit 1 e d . 001. Type
ON EO F • ASM in the File Name text box. Then click OK or press ENTER to save the
file (if you want, you can first select the directory where the file will be saved,
using the Drives / Dirs list box).

Note Now that you have named your file, choosing Save from the File menu does
not bring up a dialog box. Your file is immediately saved to disk.

Indenting Text with PWB
Most assembly-language programmers fonnat their code in several text columns
(for example, a label column, an instruction column, a parameter column, and a
comment column). You can create these columns differently in PWB than in other
text editors. In PWB, you can move the cursor ("point") to any position on the
screen and start typing text. PWB will take care of inserting whatever new lines,
spaces, or tabs are necessary to place the text in the position you are typing. By
setting options, you can detennine whether PWB will use spaces or tab characters
to create the necessary white space (see "How PWB Handles Tabs" on page 118).

12 Environment and Tools

Type the following comment lines to document the routine:

unsigned int OneOf (unsigned int range)

Routine uses a linear congruential method to calculate
a pseudo-random number, treats the number as a fraction
between 0 and 1, multiplies it times the range,
truncates the result to an integer, and returns it.

Al gorithm: a[iJ = ((a[i-1J * b) + 1) mod m
where b = 4961 and m = 2A 16

OneOf PROC NEAR C PUBLIC USES bx dx, range:WORO
OneOf ENOP

When you enter assembly-language code, you will often be adding a line indented
to the same column as the line above. PWB saves you time by automatically
indenting new lines when you press the ENTER key.

• If there is no line or a blank line immediately below the new line, PWB matches
the indentation of the line above it.

• If there is a line immediately below the new line, PWB matches the indentation
of the line below it.

You'll now type some text after the line containing the PROC NEAR directive.

~ To insert space for a new line using a mouse:

1. Position the cursor anywhere past the end of the line containing PROC NEAR.
Precise positioning of the cursor is not critical because (by default) PWB trims
trailing spaces from the end of your lines.

2. Click the left mouse button.

3. Press ENTER to make a new line.

If you are in overtype mode, change to insert mode by pressing the INS key.
Otherwise, pressing ENTER simply moves the cursor to the beginning of the next
line. PWB displays the letter 0 on the status bar and shows the cursor as an
underscore to signal that you are in overtype mode.

~ To insert the new line using the keyboard:

1. Move the cursor to the line containing the PROC NEAR directive by pressing
the UP ARROW key.

2. Press END to move the cursor to the end of the line.

3. Press ENTER to make a new line.

Chapter 2 QuickStart 13

Now type the following lines, using the TAB key to indent and space the
instructions:

mov ax, 4961
mul rndPrev
inc ax
mov rndPrev,

mov bx, range
mul bx
mov ax, dx

ax

Load the constant into AX and multiply
it by the previous value in the series
add one to the product
and save it, mod 2A 16

Now load the range argument,
multiply it times the new number,
and return the high 16 bits

Your program now looks like this:

File Edit Search Project Run Options Browse Window Help
1~~IIIi~~~~~~~~~~~~~·~:tfi.'lInllt~llft:~~IIJ"~~IDi~ii~~iI=======-II~

unsigned int OneOr (unsigned int range) t

Routine uses a linear congruential Method to calculate
a pseudo-randoM nUMber, treats the nUMber as a fraction
between a and 1, Multiplies it tiMes the range,
truncates the result to an integer, and returns it.

AlgorithM: a[il = ((a[i-11 * b) + 1) Mod I'll

where b = 4961 and I'll = ZA 16

~neOf PROC NEAR C PUBLIC USES bx dx, range:WORD
MOU ax, 4961 ; Load the constant into AX and Multiply
Mul rndPreu it by the preuious ualue in the series
inc ax add one to the product
MOU rndPreu, ax and saue it, Mod ZA 16

,

Now that you have finished entering the code for the routine, save the file. From the
File menu, choose Save, or press SHIff +F2. Because you have already named and
saved the file once before, PWB simply saves it, without bringing up the Save As
dialog box.

Note You can tum on automatic file saving by setting the Autosave switch to yes
with the Editor Settings command on the Options menu. When Autosave is turned
on, PWB automatically saves your file before executing certain commands such as
running your program or switching to another file. For example, if you run a
program that is not yet stabilized, PWB ensures that your file is stored safely in
case you have to reboot.

14 Environment and Tools

Opening an Existing File
The remainder of this chapter uses a different file, RND.ASM, which you can now
open in PWB. This file contains code to let you test the routine you just entered. It
has several errors you will correct as you follow the tutorial.

~ To open RND.ASM:

1. From the File menu, choose Open (press ALT+F, 0).

PWB displays the Open File dialog box.

1.------------- Open File ----------,1
File Nallte: [1:1: --... -..... -..... -... 1

D:\I1ASI1

File List:

[1 Pseudof i Ie
[Xl New Window

Drives I Dirs:

BIN
HELP
INCLUDE
INIT

(OK > (Cancel> (Help >

~
I

PWB uses * . * as the default filename in the File Name text box. This causes
PWB to display all files in the current directory in the File List box. If you know
the name of the file you want to open, you can replace the * . * by typing the
filename into the File Name text box.

2. If you are not in the directory or drive where the sample programs are located,
press TAB twice to move to the Drives/Dirs box, or click inside it. The example
file, RND.ASM, is located in the \sAMPLES\PWBTUTOR subdirectory of
your main MASM directory, if you accepted the default directory suggested by
SETUP.

The current directory is shown directly beneath the File Name text box.
Subdirectories of the current directory are listed in the Drives/Dir box, followed
by the available disk drives. Although the box is only large enough to display
five entries at a time, you can scroll through the subdirectories or drives to find
the one you want by using the DOWN ARROW or PAGE DOWN key, or by using the
scroll bar to the right of the box.

A directory entry consisting of two periods (..) indicates the "parent directory"
of the one you are currently in. Selecting the .. directory causes you to move
one level up your directory tree to the directory immediately above the current

Chapter 2 QuickStart 15

directory. For example, if you are in the directory, C:\MASM\SAMPLES, then
the .. directory would be C:\MASM. Using the •• entry helps you walk one
step at a time along directory "paths."

You'll notice that the cursor is a blinking underline. That means that although
you have selected the list box, you haven't yet chosen an item.

3. Use the arrow keys to move to the \sAMPLES\PWBTUTOR subdirectory of
your main MASM directory.

As you press the arrow keys, you'll notice that the cursor changes to a bar that
highlights the whole selection. This is called the "selection cursor." The text of
the selected item also appears in the File Name box.

4. When you have highlighted the drive or directory you want, press ENTER to
move there. Using the mouse, you can simply double-click on a directory or
drive entry to move to it, without having to go through an intermediate selection
step.

5. Use the TAB key or mouse to move to the File List box.

6. Use the arrow keys to move to RND. ASM, or click on it with the left mouse
button.

7. When you have highlighted RND. ASM, press ENTER or choose the OK button to
accept your selection and open the file. Just as with the directory or drive
entries, you can simply double-click on the filename to open it, bypassing the
selection step.

PWB opens RND.ASM for editing.

This source file contains a C-callable routine designed to generate
unsigned pseudo-randoM nUMbers between B and any nUMber up to 65.535
(up to 16 bits long). It takes an argUMent specifying the upper end
of the desired range. The rest of the file contains code used to
test the routine by writing its output to the standard output device .

. LIST

PAGE 55.132
TITLE RandOM nUMber routine: OneOf(range). with test code
.MODEL SMall. c
.DOSSEG
.186

PROTO range:UORD
PROTO
PROTO
PROTO

16 Environment and Tools

Copying, Pasting, and Deleting Text
The RND.ASM code contains a placeholder routine named One Of, which returns O.
You can now delete it and replace it with the random number routine that you
created in the previous section of this tutorial.

You have already typed in and saved the OneOf routine in a different file. Rather
than type it over again, you can copy and paste it using PWB's clipboard (a
temporary storage place for text). To do this, open the Window menu and choose
the ONEOF. ASM window (if you no longer have it open, you will need to go back to
the directory in which you saved it and open it using the Open command on the File
menu).

Next, to copy the routine most conveniently, you will change the way text is
selected. Three selection modes are available on the Edit menu:

• Stream mode-by default, the editor starts in stream selection mode, which
allows selection to begin at any point, and selects all characters in a stream
between the beginning and end positions of the cursor.

• Line mode-selects complete lines of text, starting with the entire line on which
the cursor begins, and ending with the entire line on which it ends.

• Box mode-allows you to select a rectangular section of text, one comer of
which is the starting position of the cursor, and the opposite comer of which is
the ending position of the cursor.

The currently active selection mode is marked with a dot on the Edit menu. Clicking
on a mode selects it. You can also change modes while selecting text. Just select
text by clicking the left mouse button and dragging the mouse. Then, without
releasing the left mouse button, press the right mouse button to toggle among the
selection modes.

In this case, line selection mode is the most convenient.

~ To change the selection mode:

• From the Edit menu, choose Line Mode.

Next, place the cursor on the top line of text for the routine:

unsigned int OneOf (unsigned int range)

~ To select lines of text using the keyboard:

• Press SHIFf+DOWN ARROW until the cursor is on the line containing ENDP.

Chapter 2 QuickStart 17

~ To select lines of text using the mouse:

• Hold down the left mouse button and drag the cursor to the line containing
ENDP.

~ To copy and paste the text that has been selected:

1. From the Edit menu, choose Copy. This action places the section of text that has
been selected into the clipboard. You can also invoke the copy command using
the shortcut key combination CTRL+INS.

2. From the Window menu, choose the RND. ASM window.

3. Go to the place where you want to insert the routine (line 51). Press ALT+A, type
51, then press CTRL+M to jump to line 51.

This sequence of keystrokes is pronounced "Arg 51 Mark." The PWB function
Arg begins an argument (51) that is passed to the Mark function. When you
pass a number to Mark, PWB moves the cursor to that line.

You can also do this from the menu by typing the line number in the Goto Mark
dialog box from the Search menu.

The cursor is at the beginning of line 51, exactly where you want to insert the
new routine.

4. From the Edit menu, choose Paste, or use the SHIff +INS shortcut keystroke to
paste the contents of the clipboard into that location.

~ To delete the old placeholder routine:

1. Use the PAGE DOWN key and arrow keys or mouse to move to the first line of the
placeholder routine, just below the ENDP line of the inserted routine.

2. Select the six lines of the old routine, using SHIff +DOWN ARROW or by selecting
with the mouse.

3. From the Edit menu, choose Delete, or press DEL.

The selected section is deleted.

Important If you select an area of text and then type something or otherwise insert
text, PWB replaces the selected text (deletes it and substitutes what you are typing
or inserting), without saving it on the clipboard. You can recover the text by
choosing Undo at once from the Edit menu. In the example above, if you had
selected the six lines of old routine before pasting in the new routine, those lines
would have been deleted and replaced by the paste operation.

You have inserted the new routine into RND.ASM. Save the file by choosing Save
from the File menu.

18 Environment and Tools

Single-Module Builds
The next step is to assemble and link the RND program to see if it works.
Assembling and linking the source files is called "building the project." It results in
an executable file. A project build can also:

• Create and update the browser database.

• Create a Windows-based dynamic-link library (DLL).

• Build a library of routines.

Setting Build Options
Before you build a program, you must tell PWB what kind of file to create by using
the commands on the Options menu. Use the commands from the Options menu to
specify:

• The run-time support for your program. This is important for mixed-language
program development, where you have some source files in assembler and some
in another language. With Basic, for example, the run-time support must be
Basic's run-time support.

The run-time support you choose determines the run-time libraries that are used
and the types of target environments that can be supported.

• Project template. The template describes in detail how PWB is to build a project
for a specific type of file (.EXE, .COM, .DLL, .LIB) and the operating
environment for the target file (MS-DOS, the Windows operating system, and
so on).

• Either a debug or release build. Debug options normally specify the inclusion of
Code View debugging information, where release options do not. You may want
to generate a different listing file for a debug build than for a release build, or
you may not want any listing file for one type of build or the other.

• A build directory. PWB builds your object and executable files in your current
directory unless you specify otherwise. (This option is reserved for projects that
use explicit project files, which are described in Chapter 3.)

~ To set the project template for RND.ASM:

1. From the Options menu, choose Set Project Template from the Project
Templates cascaded menu.

Chapter 2 QuickStart 19

EnvironMent Variables ...
Hey AssignMents .. .
Editor Settings .. .
Colors ...

.------------------, i ld Options ...
Set Project Tenplate ... p •• maw
r-------------~

CustoMize Project TeMplate... Ie Options ...
Save CustOM Project TeMplate ... iI
ReMove CustoM Project TeMplates... Opti~ns .. .

• OptlOns .. .
I .. - iew Options ...

Language Options ~

Note that the actual order of the menu items may differ from the illustration
because PWB 's extensions can be loaded in any order.

2. PWB displays the Set Project Template dialog box.

Ir---------- Set Project TeMplate ------------,1
RuntiMe Support:

Hone

Project TeMplates with RuntiMe Support for: None

Generic Options
DOS EXE
DOS Overlaid EXE
DOS p-code EXE
DOS COM

Current RuntiMe Support:
Current Project TeMplate:

None
Generic Options

< OK > <Cancel> < Help >

This dialog box typically has the entries None and Assembl er in the Runtime
Support list box. If you have installed other languages, their names appear as
well.

Since the RND program does not require run-time support, leave None selected.

3. Move to the Project Templates list box by clicking in the box, pressing the TAB

key the appropriate number of times, or by pressing ALT + T.

4. Select DOS EX E.

5. Choose the OK button to set the new project template.

20 Environment and Tools

~ To set the build options for RND.ASM:

1. From the Options menu, choose Build Options.

PWB displays the Build Options dialog box.

Build Options

I () Use Deb •• Options I
(.) Use Release Options

[] Build Directory: [- -- -]

(OJ(> (Cancel> < Help >

2. Tum on Use Debug Options by choosing the Option button or by pressing
ALT+D.

This option tells PWB that you are building a debugging version of the program.
PWB uses debug options when you build or rebuild until you use the Build
Options dialog box to choose Use Release Options.

3. Choose the OK button.

4. From the Options menu, choose Languages Options, then choose MASM
options from the secondary menu.

PWB displays the Macro Assembler Global Options dialog box.

5. Choose Set Debug Options.

PWB displays the Macro Assembler Debug Options dialog box.

In the Debug Information box, Code View should already be selected, indicating
that the assembler will generate the information that Code View needs to
correlate assembled code with source code.

6. Select Generate Listing File and Include Instruction Timings. This causes the
assembler to create a listing file showing you exactly how it assembled your
program, and to include in the listing how many clock cycles each instruction
will take to execute.

7. Choose the OK button twice.

PWB saves all the options that you specify. You don't have to respecify them each
time you work on your project.

The following illustration shows the three sets of options that PWB maintains for
each project. Global options are used for every build. Debug options are used when
Use Debug Options is turned on in the Build Options dialog box. Release options
are used when Use Release Options is turned on.

21

Options Menu

Project Options
----;1 Language Opt; ons

---~I Li nk Opt; ons

Global Debug Release
Options Options Options

Use Use
Debug Selected Rele
Options ~ Build I+- Opti

ase -1 Bui 1 d Opt; ons
ons .

Options

I Current Build Options I

You can set assembler and linker options for both types of builds (debug and
release) by using the Language Options commands and the LINK Options
command. The Build Options command then determines which type of build, using
which set of options, is actually performed when you assemble a file or rebuild the
project.

Global options, on the other hand, typically include settings for warning level,
memory model, and language variant. These are options that do not change between
debug and release versions of a project.

Setting Other Options
The Options menu also contains commands that allow you to describe the desired
project build more completely. You don't need to change most of these options to
build RND.ASM because the default values supplied by the template will work
well.

The Options menu contains the following commands:

• MASM Options in the Language Options cascaded menu. These commands let
you specify assembler options specific to debug and release builds, and general
options common to both types of builds. Using the MASM Global Options
dialog box, you can specify memory model, warning level, and so on.

If you have more languages installed, their Compiler Options commands also
appear in the Languages Options cascaded menu.

22 Environment and Tools

• LINK Options. This command parallels the Compiler Options commands. You
can specify options specific to debug or release builds and general options
common to both debug and release builds.

Use LINK Options to specify items such as stack size and additional libraries.
You can also select different libraries for debug and release builds. This is
handy if you have special libraries for debugging and fast libraries for release
builds.

• NMAKE Options. This command lets you specify NMAKE command-line
options for all builds. This option is particularly useful if you have an existing
makefile that was not created by PWB or if you have modified your PWB
project makefile. For more information about these subjects, see "Using a Non
PWB Makefile" on page 55.

• Code View Options. This command allows you to set options for the Code View
debugger.

Building the Program
Now that you've set your options, you can build the program. Note that the sample
program contains intentional errors that you will correct.

~ To start the project build:

1. From the Project menu, choose Build.

PWB tells you that your build options have changed and asks if you want to
Rebuild All.

2. Choose Yes to rebuild your entire project.

After the build is completed, PWB displays the following dialog box:

Build Operation COMplete

Rebui ld all

7 Errors/Warnings

<View Results> <Run PrograM> <Debug PrograM> <Cancel> < Help >

You can choose one of several actions in this dialog box:

• View the complete results of the build by opening the Build Results window.

• Run the program if building in MS-DOS. You can run an MS-DOS program
right away if the build succeeds. If the build fails, you should fix the errors
before you attempt to run the program.

Chapter 2 QuickStart 23

To run a successfully built Windows-based program, you must be running under
the Windows operating system, and have started the WXServer program before
you start PWB.

• Debug the program if building in MS-DOS. If the build succeeds but you
already know the program is not producing the intended results, you can debug
your MS-DOS program using CodeView.

To debug a Windows-based program, you should be running under the Windows
operating system, and already have the WXServer running when you start PWB
or Code View.

• Get Help by choosing the Help button or by pressing Fl (as in every PWB
dialog box).

• Cancel the dialog box. This returns you to normal editing.

Choose View Results to close the dialog box (press ENTER). PWB displays the
results of the build so that you can review the build messages or step through them
to view the location of each error. The next section describes how to do this.

Fixing Build Errors
For each build, PWB keeps a complete list of build errors and messages in the
Build Results window. The RND.ASM program that you just built contains several
errors that you'll identify and fix in this section.

If you want to examine build errors in a specific order, you can do so in the Build
Results window by placing the cursor on whatever error you wish to examine, and
selecting Goto Error from the Project menu. PWB opens a window onto the
appropriate source file and places the cursor on the line at which that error was
recognized. When you are finished with each error, selecting the Build Results
window from the Window menu will return you to the Build Results window.

In many cases, however, you will want to work through the errors one after another.
This is the easiest method for fixing the build errors in RND.ASM.

~ To fix errors one after another:

1. From the Project menu, choose Next Error, or press SHIFT+F3.

PWB positions the cursor on the location of the first error or warning in your
program. In this case, a comma is missing after the 10 at the end of the first line
of the ban r 2 data declaration.

24 Environment and Tools

BYTE 13. le
" (Be nUMbers in each series)"

Ibanr2 EQU SIZEOF banr2

BYTE 13. le. 13. le.
"Please enter a range (e - 65.535): "

IproMpt EQU SIZEOF proMpt

isrng BYTE 13. le.
"Is:1234567B the correct range? If so. press 'Y': "

lisrng EQU SIZEOF isrng

BYTE 13. le.
"Press "Esc" to quit. any other key to continue ". 13. le

EQU SIZEOF again

error (Be nUMbers in each series)
II ~ i : j 1 :: : 1 ~ 1 j l ~ l ~ l . : j l ill: .

2. Correct the first error by inserting a comma immediately after the 10.

3. From the Project menu, choose Next Error, or press SHIFf+F3.

PWB moves the cursor to the location of the second error. Here, "E s c" in the
string on the line below the cursor is enclosed in double quotes, and the string
itself is also enclosed in double quotes. As a result, the assembler interprets the
first set of quotes around Esc as the end of the string, and then does not
recognize Esc as a valid instruction or directive. This can be fixed by
substituting a pair of single quotes for the pair of double quotes either around
the string or around Esc.

4. Fix the error by changing the double quotes (" n) around Es c to single quotes
(' ').

Because of this error, the data symbol again was not defined during the first
assembly pass, which also meant that the constant lagain could not be
evaluated. As a result, two more errors were generated, which can now be
ignored.

5. From the Project menu, choose Next Error, or press SHIFf+F3.

PWB positions the cursor on the location of the third error, a simple
typographical error where the mov instruction was spelled "mob."

6. Correct the third error by replacing the "b" in mob with a "v."

Now that all the build errors in RND.ASM have been corrected, save the file by
choosing Save from the File menu or by pressing SHIff +F2.

Chapter 2 QuickStart 25

Running the Program
The next step is to build and run the program.

~ To run the program:

1. From the Run menu, choose Execute (be sure that you have saved RND.ASM
first).

PWB detects that you've changed the source and displays a dialog box with the
following options:

Dependent rile (s) ha ue changed!

Do you want to Build/Rebuild current target?

<Bu i ld Target> <Rebuild All> <Run PrograM> <Cancel> < Help >

2. Choose Build Target to build the program.

When the build completes, PWB displays the following dialog box:

Build Operation COMplete

Build all

B Errors/Warnings

<View Results> <Run PrograM} <Debug PrograM> <Cancel> < Help>

3. Choose Run Program to run the finished program.

When you run it, the RND program will start by asking you to supply a range value
between 1 and 65,535. Type 1234 and press ENTER. The program will then ask you
to confirm that 1,234 is indeed the correct range. When you type y, the program is
supposed to display a list of random numbers within that range. Instead, however,
the program restarts when you type y. Something is wrong.

To get out of the program and back to PWB, press CTRL+C (in the case of this
particular program, you can also use the ESC key to exit when the program asks for
confirmation of a range value). Before blanking your program's output, PWB will
display the message, "Strike any key to continue ... " so that you can examine the
final state of the screen.

The following sections describe the process of debugging using the Microsoft
CodeView debugger. If you're already familiar with CodeView, skip to Chapter 3,
"Managing a Multimodule Program."

26 Environment and Tools

Debugging the Program
PWB integrates several Microsoft tools to produce a complete development
environment. Among those tools are NMAKE, a program maintenance utility, and
Code View, a symbolic debugger. Whenever you build programs using PWB, PWB
in tum invokes NMAKE to manage the build process. In the same way, PWB can
serve as a gateway to Code View when you need to debug a program you have built.

Earlier, you chose Use Debug Options in the Build Options dialog box. A debug
build typically includes the assembler options that generate Code View information.
Therefore, the program is ready to debug with the CodeView debugger.

Using CodeView to Isolate an Error
In addition to the typographical errors that you just corrected, RND.ASM contains
a logical error which will prevent it from running properly. You can use CodeView
to isolate this error.

~ To start Code View:

• From the Run menu, choose Debug.

If anything in your program is out of date, PWB asks if you want to build or
rebuild the current target. If you modified the source file in any way, PWB
considers it out of date relative to the executable file that you built earlier. If this
happens, build the program and choose Debug from the Run menu.

Code View now starts, displaying three windows on its main debugging screen.

File Edit Search Run Data Options Calls Windows Help

• [3]

72: OneOf ENDP
73:
74: .STARTUP

source1 CS:IP RND.ASM

76: ; Seed the randolll nUlllber generator with a "randolll" value

H
t

77: call seedr

~ : ; D is, I a~o!st Ba~~~r B!~~e ; DOS funct ion; Ur i te to file or de. i ce I
81: 1110 V bx, 1 ; Handle = Standard Output iii
82: 1110 V cx, lbanr ; NUlllber of bytes to write !

:iiiiiiiiii:iii:mii:m:i:iii:iii:m:i:i:i:i:m:m:i:i:i:i:i:mii:m:m:iiiim:m:i:i:iii:iii:mii:m:!:i:i:m:!:!:m:!:!i!:i:m:i:i:m:!:i:!:i:i:i:i:m:!:!:!:!:!:!:i:!ii:i:!:mii!i:i:i:i:!:i:!:!:!i!:!:m:m:!niiii!i!!!i:i:m:mii:i:m:!!!i!:!m:ii!m!i:!:!:!mi:!!!mi4!J

}

<F8=Trace} <F10=Step} <F5=Go} <F3=Sl Flllt} DEC

Chapter 2 QuickStart 27

The first thing to do is set up the Code View screen so that it best suits your way of
working. When you leave CodeView, your setup will be saved in CURRENT.STS.
The next time you use CodeView, that setup will be restored when the program
starts.

The right screen layout depends a lot on your work style, and on the project you are
working on. In this case, many of Code View's more advanced features will not be
necessary, so we will set up a simple screen.

By default, three windows are initially displayed: "locals," "sourcel," and
"command." Close the locals window, since it will not be needed in debugging
RND, open a register window and a memory window, and arrange the windows in
the screen.

CD 2B FF 9F BB 9A FB FE 1D FB 96 B2 2FAX = BBBB
2A 97 B3 2F 2A 6B BB 12 22 C1 2B B1 B1 BX = BBBB
B1 BB B1 B1 FF FF FF FF FF FF FF FF FF CX = BBBB

l!i~!!!!!!!!!!==!~~;r!~~!!!!!!!!~!!!~1 DX = BBBB r; [31 source1 CS: IP RttD. ASM l t SP = B4ee
74: .STARTUP t BP = BBeB
75: SI = BBBB
7BB:8828 B8D237 NOV' AX, 37D2

37BB:8B2B BEDB MOV DS,AX
37BB:8B2D BCD3 MOV BX,SS
37BB:BB2F 2BD8 SUB BX,AX
37BB:8B31 C1E3B4 SHL BX,B4
37BB:8B34 BEDB MOV SS,AX
37BB:8B36 83E3 ADD SP,BX
76: ; Seed the randol'll nUMber generator with a "randol'll" value
77 : ca 11 seedr

DI = BBeB
DS = 37AB
ES = 37AB
SS = 37E6
CS = 37BB
IP = BB2B

! :LU: :~B:L
in!l iHj;j;j;j;j ;;;:;:;: ;:;:' '.: ::: ~.::::::: ::': ::: :~;~: ~:~;~;~;:~: ~:~: ~;;.:.::::::: ::: :::::: ::::: ::::: ::::::::: ::::: ::::: :::: ::::::::: ::: ::::: :::::::: :::: :::::::::::::::: :~;~;;;~~;;~ ;~;~;;i;i~~;i~;~;;;;; ;;~:.:.:.:.: ,', ','.',' . ,. . l~!l!}+ JJ Z NAP 0 N C

>

<FB=Trace> <F18=Step> <F5=Go> <F3=S1 FMt> <Sh+F3=M1 FMt> DEC

~ To close a window using the mouse:

• Click the upper left comer of the window.

~ To close a window using the keyboard:

• Use the F6 key to move into the window that you want to close. Choose Close
from the Windows menu, or press CTRL+F4.

~ To open the Register and Memory windows:

1. From the Windows menu, choose Register, or press ALT+7.

The Register window displays the contents of the processor's registers, either in
"Native" (8086) mode, or in "32-bit" (80386-80486) mode.

28 Environment and Tools

2. At the bottom of the Options menu, click Native if it is not already selected.

3. Choose Memory 1 from the Windows menu, or press ALT+FS.

Memory windows display the contents of a specified block of memory, so that
you can watch changes as your program runs.

~ To move and size a window using the mouse:

1. To move a window, place the cursor on its top line, not in a comer. Then drag
the window to a new location.

2. To size a window, move the cursor to the lower right comer of the window.
Then drag the comer to change the window's size.

~ To move and size a window using the keyboard:

1. Using the F6 key, shift focus to the window you want to size.

2. Choose Move or Size from the Windows menu.

3. Use the arrow keys to move or size the window.

4. Press ENTER when you are finished.

When you have positioned and sized the windows to your satisfaction, set the
source window to show both your source text and the actual instructions assembled
by MASM, and set the memory window to stay fully up to date as the program
executes.

~ To display mixed source and assembler output:

1. From the Options menu, choose Sourcel Window.

Code View displays the Sourcel Window Options dialog box.

2. In the Display box, choose Mixed Source and Assembly.

3. Choose OK.

~ To set the Memory! window to be updated frequently:

1. From the Options menu, choose Memory 1 Window.

Code View displays the Memory 1 Window Options dialog box.

2. Select the "Re-evaluate expression always (live)" check box.

3. Choose the OK button.

Working Through a Program to Debug it
CodeView has placed you at the program's starting point. The registers are as they
would be at that point, and the memory window shows whatever the DS register is

Chapter 2 QuickStart 29

pointing to. The instructions that appear at the top of the source window have been
created by the .STARTUP directive, as you can see if you scroll up a few lines.

Code View provides various ways to control and examine the execution of a
program. The "Step" command (F1O key) executes the next instruction in the
program, and if that instruction is a call, executes the entire called code up through
the return. "Trace" (F8 key), on the other hand, jumps to the called code and traces
through it too, one instruction at a time. You can also run the program up to a given
point, or set breakpoints at several points. With RND, we will only need to use a
few of the possible debugging tools.

~ To Step through the program:

• Use the F10 key to step through the fIrst couple of instructions of the .STARTUP
code.

You will notice that as each instruction is executed, Code View briefly displays the
program output screen, and updates the Register window to show changes in the
registers. As the DS register is loaded, the Memory window displays the data
segment of the RND program.

Stepping is a slow way to move through the program. In many cases, as with RND,
you will want to move quickly to the point where the program failed, to see what
the matter was. In RND, everything seemed to be working correctly until you
entered y to confmn the range.

~ To run a program up to a given place:

1. Scroll through the code to the comment line:

Read in a character from the keyboard

Three lines below the comment is a cmp instruction.

2. Place the cursor on the line containing the cmp instruction, either by using the
arrow keys or the mouse.

30 Environment and Tools

File Edit Search Run Data Options Calls Windows Help
,I l

7D2:aaaa 75 FB 61 C9 C3 aa 6A BA aD aA aD aA 52 AX = a179
7D2:a0aD 61 6E 64 6F 6D 20 4E 75 6D 62 65 72 2a BX = aaal
7D2:a01A 47 65 6E 65 72 61 74 6F 72 2a 53 61 6D CX = aa33

~~!!!!~!!!!!==!~~~~~r!!!~!!!!~~~~1 DX = aa79 .. [3] sourcel CS: IP RliD.ASM .u SP = a54a
123: t BP = aaaa
124: ; Read in a character froM the ke!Jboard ::i SI = aa9C
125: MOU ah. 1 ; DOS function: Read charad DI = aaaa
37BB :aaBB B4al MOV AH.al ,', DS = 37D2
126: int a21h issue DOS function interd ES = 37AB

~~~~ : aaBA CD21 CMP a I. I~~ 21 ; Is th is an • Esc' ke!Jstroklii ~~ ~ ~~~~ 
IP = aaBC 

12B: jz quit ; - if so. quit FL = 3212 

~~~~:aaBE 7457and al.J~DFh aaE~ Change lower-case charactl V UP EI PL 
i:;:;:;:;:;:;:;"':i:i:i:i:i:i;i"Tiiiiiiiiiiiiiiiii(':;:;:;}i;:;iit":iiiii:::i:;:;:;iii;:;:;:;:;:;:;:;:;:;:;:;:;:;:;=-'iiii!r'iii;iiiiiiiii"iiiiiiii:mm::mmmmmimiimmmiimiiiiiiiimmiiiimi:iimii:m:H·t!l Z AC PO liC

>
Vla17 Error: s!Jntax error

>

<FB=Trace> <Fla=Step> <F5=Go> <F3=Sl FMt> <Sh+F3=Ml FMt> DEC

3. Press the F7 key, or by clicking on that line with the right mouse button.

Code View procedes to execute the program up to (but not including) that line.
The display switches to the output screen where the program shows its
introductory message, then requests a range value.

~ To work through the RND program and find the bug:

1. Type in a range value smaller than 65,535 and press ENTER.

The program redisplays the range value and asks for confirmation.

2. Press y.

Code View returns you to the source window in the debugging screen.

The succeeding instructions are designed to recognize an ESC or a y, and are
presumably failing in some way, causing the program to start from the
beginning.

3. Using the FlO key, step through the various cmp instructions.

You will find that the code works as expected, recognizes the y, and proceeds.

4. Go on to the next the next jump or branch.

The next possible branch in program execution occurs at the call to OneOf.
Although this seems unlikely to be causing the program to start over, it is the
next thing to test.

5. Position the cursor on the call instruction, and press either F7 or the right mouse
button to execute the program up to that call.

Chapter 2 QuickStart 31

So far, so good: the program continues to run as expected.

6. Now press FlO to execute the call itself.

:BBE4 BD BA 33 34 35 BD BA BB BB BB BB BB BB
:BBFl BB BB BB BB BB BB BB BB BB BB BB BB BB
:BBFE BB BB BB BB BB BB BB BB BB BB BB BB BB
:BIBB BB BB BB BB BB BB BB BB BB BB BB BB BB

=[3]====== sourcel es: IP RND.ASM =======
37BF:BBAA BFEDBB MOV DI,BBED
141:
142: prtNu",: push si ; Use the OneOf routine to
37BF:BBAD 56 PUSH SI

AX = 1:1159
BX = BABB
ex = BB33
DX = BBE4
SP = B53E
BP = BEmB
SI = 3B39
DI = BBED
DS = 37D6

143: call OneOf ; nu",ber in the ES = 37AF
....... m SS = 37D6 7BF:BBAE EB5FFF CALL BBIB

144: add sp,2
37BF:BBBl B3C4B2 ADD
145: push di
37BF:BBB4 57 PUSH DI
146: push ax
37BF:BBB5 5B PUSH AX
147:

/lO'1j;t-~+<>,.,> <F5=Go> <F3=Sl F",t> <Sh+F3=Ml F",t)

es = 37BF
IP = BBAE
FL = 32B2

The program now erroneously starts over. We now know that the problem must
be located in the OneOf routine.

7. Press CTRL+C, then ENTER to get out of the program.

8. Choose Restart from the Run menu to return to the beginning of the program.

9. As you did before, scroll down to where OneOf is called and execute the
program up to just before the call.

10. This time, use F8 to trace through the call.

You will notice that Code View now shifts into the called routine, allowing you
to step through the OneOf code instruction by instruction.

11. Step or trace through the OneOf routine, using FlO or F8, and look for the
problem.

You will discover a simple error of omission: the routine has no ret instruction
at the end. As a result, execution continues into the succeeding code, which
happens to be the .STARTUP code.

Having found the problem, you can leave CodeView and return to PWB.

12. From the File menu, select Exit.

Code View closes, saving your settings for next session.

Chapter 2 QuickStart 33

Now, you can step through cycles of a formatting loop and watch the buffer change.

~ To step through a formatting loop in RND.EXE:

1. In the source window, scroll to the instruction dec b 1 around line 150, which
completes a formatting cycle for a random number.

2. Press F7 or click in that line with the right mouse button.

If you know for sure that dec b 1 is on line 150, you can move to the Command
window and type 9 @150 followed by the ENTER key. This instructs CodeView
to execute the program up through line 150 in the source file.

= 271E
BX = 8A86
CX = 8833

~~!!!!!!!!!!!=!=!~~~~il!!!!!!!!!!!!~1 DX = 88E4 ~ SP = 8548
dec

7BB:88BF FECB DEC
151: jnz prttfuM
37BB:88Cl 75EA JtfZ
152:
153: push bx
37BB:88C3 53 PUSH
154: MOV ah, 848h
37BB:88C4 B448 NOV
155: MOV

37BB:88C6 BB8188

"" "111"·""111

BP = 8888
m ••••••••• :::11 SI = 3839

DI = 8185
DS = 37D2
ES = 37AB

; If it's tiMe to print a 1· SS = 37D2
BX CS = 37BB

; DOS function: Write to fi: IP = 88BF
AH,48 FL = 3216

3. While watching the memory window, press F7 again, or click the dec b 1
instruction again with the right mouse button.

As the loop executes again, you can see the memory area change to reflect the
new value being formatted into InBuf.

~ To switch from Code View back to PWB:

• Choose Exit from the Code View File menu.

Where to Go from Here
Now that you've created, built, and debugged a simple program, you've begun to
discover the power of PWB. Chapter 3, "Managing Multimodule Programs,"
describes how to create and manage projects with more than one source file.

CHAPTER 3

Managing Multimodule Programs

This chapter expands on the work you did in Chapter 2 and explains how to build
and maintain multimodule programs using PWB's integrated project-management
facilities. PWB offers an efficient way to manage complex projects. You organize
and build your project entirely within PWB, using convenient menus and dialog
boxes instead of makefiles or batch files.

35

PWB stores the information needed to build and manage your program in two files,
the project make file and the project status file. These are called the "project." When
you open the project, PWB automatically configures itself to build your program.
To move from one project to another, you close one project and open another.

Multimodule Program Example
In this chapter, you '11 learn to set up a multimodule project in PWB by building
SHOW.EXE, a three-module program. The SHOW program displays text files on
character-based screens with MS-DOS.

The following modules make up SHOW.EXE:

Module

SHOW.ASM

PAGER.ASM

SHOWUTIL.ASM

Function

Program driver; contains .STARTUP entry point, and calls all
other procedures.

Contains procedures for paging through a file and writing text to
the screen buffer

Contains miscellaneous procedures.

The program also contains a common header file SHOW.INC in addition to these
three source modules. Figure 3.1 shows the components of SHOW and how they
combine to build the executable file.

36 Environment and Tools

SHOW.ASM
tSHOW.INC
+OOS.lNC
tBIOS.INC

SHOWUTIL.ASM
tSHOW.lNC

SHOWUTIL.OBJ

SHOW.EXE

Figure 3.1 The SHOW Project

PAGER.ASM
+SHOW.lNC

PAGER.OBJ

To build SHOW.EXE, you need to assemble the three source files and link them
together, having specified the assembler and link options that will produce the kind
of file you are trying to make. All this build information is stored in the SHOW
project make and status files.

Opening the Project
Start by opening the SHOW project. (If you have not started PWB, do so now.)

~ To create a project:

1. From the Project menu, choose New Project.

PWB displays the New Project dialog box.

New Project
Project Nallte: [D:\HASH\SAHPLES\SHOU\show·····]

Current Runtillte Support: None
Current Project Telltplate: DOS EXE

<Set Project Telltplate ... >

< Om > <Cancel> < Help >

2. Type s how in the Project Name text box.

3. Choose Set Project Template.

PWB displays the Set Project Template dialog box.

4. Select the following options:

Chapter 3 Managing Multimodule Programs 37

• Runtime Support: Non e.

• Project Template: DOS EXE.

At this point, the Set Project Template dialog box should appear as follows:

1..--------- Set Project TeMplate -----------,1
RuntiMe Support:

None I Asseohler

Project TeMplates with RuntiMe Support for: None

Generic Options
DOS EXE
DOS Overlaid EXE
DOS p-code EXE
DOS COI1

Current RuntiMe Support: None
Current Project TeMplate: DOS EXE

< Ol(=> <Cancel> < Help>

This initial specification tells PWB what kind of executable file you intend to
build, and is saved as part of the project.

5. Choose OK to return to the New Project dialog box.

In this case, a project makefile, SHOW.MAK, already exists. Since PWB would
ordinarily create and save a new makefile at this point, you are now asked
whether you want to overwrite the existing file.

;--- File exists. Rewrite? -

D:\I1ASI1\SAI1PLES\SHOlJ\show.Mak

< Yes > < No > < Help >

6. Choose Yes to overwrite the existing file.

PWB saves the new SHOW.MAK and returns to the New Project dialog box.

7. Choose OK.

PWB now displays the Edit Project dialog box so that you can add files to your
new project.

The next section describes the types of files that can be added to the project. The
tutorial then continues by listing the example files to add to the list.

38 Environment and Tools

Contents of a Project
A project file list can contain the following files:

• Source code files (.ASM).

• Object files (.OBJ) in special cases.

• Library files (.LIB) for libraries that change.

• Module-definition files (.DEF) for DLLs.

• Resource-assembler source files (.RC) for Microsoft Windows-based programs.

These file types are all that are needed to create most MS-DOS and Windows
based applications. Include files, such as SHOW.INC, need not be listed because
PWB automatically adds them when it scans your source files for dependencies.

When you select assembler run-time support with a Windows-based project
template in the Set Project Template dialog box, PWB automatically specifies
standard library files such as LIBW.LIB. Therefore, you need not add standard
library files to the project list.

~ To add the SHOW files to your project:

1. Choose the files you want to add to the project from the File List box. In this
case, you'll add SHOW.ASM, PAGER.ASM, and SHOWUTIL.ASM. These
files are located in the \MASM\SAMPLES\sHOW directory. If you installed
Microsoft MASM 6.1 in a directory other than MASM, adjust the path
accordingl y.

1..---------- Edit Project ----------,1
File Nane: [SHOUUTIL.ASM·]

File List: D:\MASM\SAMPLES\SHOU

PAGER.ASM
SHOU.ASM
SHOU. INC
SHOU.MAl(

SHOUUTIL . ASM

I::m:::::::m:::m:::::::m:::::::::::::m:::m:::m:::::m:::::::::::::::m:::::::::::m:::m:::::::::::m::::::::::m:::::::::::::::~

Project: D:\MASM\SAMPLES\SHOU\show.nak

SHOU.ASM
PAGER.ASM
SHOUUTIL.ASM

Drives I Dirs:

[-A-]
[-B-1
[-C-]

< Add I Delete)
< To Top of List)
< Clear List)
< Add All)

[X] Set Include Dependencies [] Ignore S~sten Include Files

<SaveiList) <Cancel) < Help)

Chapter 3 Managing Multimodule Programs 39

You can scroll the File List box by clicking the scroll bars or by pressing the
arrow keys.

2. For each file, select it and choose Add / Delete to add the file to the Project list
box. Or, you can double-click a file to add or remove it from the list. To add all
three files at once, you can type * . AS M in the File Name field, press ENTER, and
then choose Add All.

3. Choose Save List when you have added all three files.

PWB uses the rules in the project template along with the list of files that you
just specified to scan the sources for include dependencies and to create the
project makefile. This process is described in the next section.

Now your project completely describes what you want to build (the project
template), the component source files, and the commands used to build the project.

Dependencies in a Project
When you save the project, PWB generates a makefile from the project template,
files, and options you specified. This file also contains a list of instructions that are
interpreted by NMAKE. In addition, PWB generates the project status file, which
saves the project template, the editor state, and the build environment for the
project. For more information on the project status file, see "Project Status Files"
on page 129.

When you build the project, NMAKE examines the build rules in the project
makefile. These are rules that specify targets (such as an object or an executable
file) and the commands required to build them. For example, a rule for making an
.OBI file from an .ASM file can be expressed as follows:

.asm.obj:
ML Ie $<

To reduce the amount of time builds take, NMAKE assembles or links only the
targets that are out-of-date with respect to their corresponding source file. This
process is simple if there is a one-to-one correspondence between sources and
targets. However, many programs use the INCLUDE directive to include files
containing common equates, macros, and other program text. The object files must
be made dependent not only on the source file but also on the files that are used by
the source file.

You don't need to add include (.INC) files to your project. When you save the
project, PWB scans your source files looking for INCLUDE directives and builds
dependencies on these files. NMAKE will thereafter recompile a source file if you
change a file that it includes.

40 Environment and Tools

Building a Multimodule Program
Now that the project files are complete, you can build the program in the same way
you built the single-module program.

~ To build a multimodule program:

1. You are starting a new project, so you should use debug options for the initial
builds. Choose the Use Debug Options button in the Build Options dialog box.

2. From the Project menu, choose Build.

PWB displays a dialog box to inform you that build information has changed
because you altered the build options.

3. Choose Yes to rebuild your entire project.

As the program is built, PWB shows status messages about the progress of the
build. When the build completes, a dialog box displays a summary of any errors
encountered during the build process.

Note The Next Error command on the Project menu works the same for a
multimodule build as for a single-module build. Because errors in a multimodule
build can occur in different files, PWB automatically switches to the file that
contains the error.

In some cases, you will want to force a complete rebuild of your project by
choosing Rebuild All from the Project menu. The difference between Build and
Rebuild All is that Build compiles and links only out-of-date targets and Rebuild
All compiles all targets, regardless of whether they are current.

Running the Program
Now that your program is built, you can test it from PWB.

~ To run SHOW:

1. From the Run menu, choose Program Arguments.

2. Type the name of a text file to pass to the SHOW program. The SHOW.ASM
source file is a good file to use.

3. Choose OK to set the program arguments. PWB saves the arguments so that you
can run or debug the program many times with the same command line.

4. From the Run menu, choose Execute.

SHOW will display the first screen of text in the file you passed to it. You can use
the arrow keys and PAGE UP and PAGE DOWN to move around in the text file.

Chapter 3 Managing Multimodule Programs 41

Press Q and then any key to return to PWB.

You have successfully created a multimodule project, built the program, and run it,
all from within the Programmer's WorkBench. You can now leave PWB.

~ To leave PWB:

• From the File menu, choose Exit or press ALT+F4.

PWB saves your project and returns to the operating-system prompt. If you
started PWB from within the Windows operating system, you will return to the
Windows operating system.

Creating a PWB project is an important first step. However, most of the time you
will be maintaining projects. The next section provides an overview of project
maintenance. The tutorial then continues with the SHOW project.

Project Maintenance
Once you have created a project, you may have to change it to reflect the changes in
your project organization. You can:

• Add new file-inclusion directives to your source files.

• Add new source, object, or library files.

• Delete obsolete files.

• Move modules within the list.

• Change assembler and linker options.

• Change options for individual modules.

When you add a new INCLUDE directive to a source file, you add a new
dependency between files. For the most accurate builds, you need to regenerate
include dependencies for the project.

~ To regenerate include dependencies:

1. From the Project menu, choose Edit Project.

2. Select the Set Include Dependencies check box.

3. Choose Save List.

PWB regenerates the include dependencies for the entire project and rewrites the
project makefile.

~ To add new files to an existing project:

1. From the Project menu, choose Edit Project.

2. For each file that you want to add to the project:

42 Environment and Tools

• Select the file from the File List box, or type the name of the file in the File
Name text box.

• Choose the Add / Delete button to add the file.

3. Choose Save List to rewrite the project makefile, set up the dependencies, and
add the commands for the new files.

~ To delete files from a project:

1. From the Project menu, choose Edit Project.

2. For each file that you want to remove from the project:

• Select the file from the File List box, or type the name of the file in the File
Name text box.

• Choose the Add / Delete button to remove the file from the list.

3. Choose Save List.

With most programming languages, you won't need to move modules within a
project. However, some languages or custom projects require files to be in a
specific order. If you're programming in Basic, for example, you must place the
main module of your program at the top of the list. Unlike other languages, Basic
does not define an explicit name where execution begins. Entry to a Basic program
is defined by the first file in the list.

~ To move a file to the top of the project file list:

1. From the Project menu, choose Edit Project.

2. Select the file you want to move to the top of the list.

3. Choose the To Top of List button.

Using Existing Projects
You'll now make modifications to the SHOW project that you just created. During
a PWB session, the project you open remains open unless you explicitly chang~ it.
If you have not already started PWB, you should do so now. In the Windows
operating system, double-click the PWB icon in the MASM program group.

If you are not compiling from within the Windows operating system, you can start
PWB and open the SHOW project from the operating-system command line by
typing the command:

PWB /PP SHOW

If the SHOW project is the last project you had open in PWB, type the following
command:

PWB /PL

Chapter 3 Managing Multimodule Programs 43

You can set up PWB to reopen the last project automatically at startup by choosing
Editor Settings from the Options menu, and then by setting the Boolean switch
Lastproject to Yes.

If you have already started PWB, open the project now.

~ To open the project from within PWB:

1. From the Project menu, choose Open Project.

2. Choose SHOW.MAK from the File List box or type s how in the Project Name
text box.

1.------------- Open Project -----------,1
Project liall'le: [SHOU .MA](· ..]

D:\MASM\SAMPLES\SHOU

File List:

[] Use as a lion-PUB Makefile
[X] Restore Uindow La~out

3. Choose OK.

Drives I Dirs:

[-A-]

[-B-]
[-C-]
[-D-]

< 0](> <Cancel> < Help >

When you open the project, PWB restores the project's environment, including:

• The window layout with the window style, size, and position for each window.

• The file history-a list of open files for each window and the last cursor position
in each file.

• The last find string.

• The last replace string.

• The options that you used for the last find or find-and-replace operation, such as
regular expressions. See "Using Regular Expressions" on page 82 for more
information about regular expressions.

• The project template (for example, DOS EXE) and any customizations you have
made to the template such as changing the build type or an assembler or linker
option.

• The command-line arguments for your program.

44 Environment and Tools

Note PWB can save all environment variables, including PATH, INCLUDE, LIB,
and HELPFILES, depending on how the envcursave and envprojsave switches are
set. For more information, see "Environment Variables" on page 127.

Also, if you turn the restore layout switch off, PWB does not restore the window
layout, the find strings and options, or the file history of a project. Instead, PWB
keeps the current editor state when opening a project.

Adding and Deleting a Project File
As you develop a project, you will occasionally add new modules. The following
example presents the steps needed to add a library file to the SHOW project. Note
that this procedure is only an example, and in fact, SHOW does not use or require
any library support.

~ To add a file to your project:

1. From the Project menu, choose Edit Project.

The file and directory navigation lists in this dialog box work in exactly the
same way as those in the Open File dialog box.

2. Choose the parent directory symbol (..) in the Drives / Dirs list box to move up
the directory tree to the SAMPLES directory.

3. Choose the parent directory symbol (..) again to move up the directory tree to
the MASM directory.

4. Choose the LIB directory in the Drives / Dirs list box to move down the tree into
the LIB directory.

Chapter 3 Managing Multimodule Programs 45

1.------------ Edit Project --------..,1
File liallle: [LIBW.LIB··]

File List: D:\HASH\LIB

APPEIiTRY.ASH HIiOCRTDW.LIB
DLLEIiTRY.ASH SIiOCRTDW.LIB
LIBW.LIB

Project: D:\HASH\SAHPLES\SHOW\SHOW.HAK

SHOW.ASH
PAGER.ASH
SHOWUTIL .ASH

Drives I Dirs:

..
[-A-]
[-B-]

[-C-]

< Add ~ Delete)
< To Top of List)
< Clear List)
< Add All)

[X] Set Include Dependencies [] Ignore S~stelll Include Files

<Save List) <Cancel) < Help)

Notice that the directory displayed after the label F i 1 eLi s t reflects the
directory change.

S. Make sure the File Name text box contains * . * or * . LIB.

6. Select LIBW.LIB in the File List box.

7. Choose the Add / Delete button to add the file to the project.

LIBW.LIB is being used here as an example of how to add a file to your project.
In practice, because it is a system library that will not change, there is no reason
to add it. However, if you have a library of your own that is being used by your
project, you would add it to the project in this way.

8. Since LIBW.LIB is not a source file and cannot have include dependencies, you
can clear the Set Include Dependencies check box. If this check box is selected,
PWB regenerates the dependencies for all the files in the project.

9. Choose Save List.

LIBW.LIB is now part of the project. Since SHOW is not a program designed to
run under Microsoft Windows, you should now delete this library from the project
again.

~ To delete a file from your project:

1. From the Project menu, choose Edit Project.

2. In the Edit Project dialog box, you can either select LIBW.LIB in the Project list
box and then select Add / Delete, or simply double-click on LIBW.Lffi in the
Project list box to delete it.

46 Environment and Tools

Changing Assembler and Linker Options
Up to this point, you have used PWB's default build options for all the examples.
These options are sufficient for most cases, but in special cases, you will want to
adjust them.

When you are debugging a program, you should choose the debug build type. When
producing a debug build, the assembler and linker include a good deal of extra
information in the program for Code View to use in debugging. When you are ready
to use the program, choose the release build type, so that the extra debugging
information is no longer incorporated into the program.

~ To specify whether a build should be for release or debug:

1. From the Options menu, choose Build Options.

2. Choose Use Debug Options or Use Release Options in the Build Options dialog
box.

3. Choose OK.

When you specify a release build, PWB does not change your debug options. For
more information on global options, debug options, and release options, see
"Setting Build Options" on page 18.

~ To change assembler options:

1. From the Language Options cascaded menu on the Options menu, choose
MASM Options.

The Macro Assembler Global Options dialog box contains a number of options
that are common to both the release and debug builds.

Macro AsseMbler Global Options
Case Sensitivity - Warn Level -

(.) Preserve Case of NaMes in Object File () Level 8
() Preserve Case of All User Ident if iers () Level 1
() Map All Identifiers to Uppercase (.) Level 2

() Level 3

[X] Warnings Treated as Errors
[] Tiny MeMory Model
[] MASM 5.1 COMpatibility
[] EMulator Fixups for Floating Point

Defines [..]
Include Paths [..]
Additional Options [..]
< Set Debug Options ... > < Show Debug Options ... >
< Set Release Options ... > < Show Release Options ... >

< OK > <Cancel> < Help>

Chapter 3 Managing Multimodule Programs 47

At the bottom of the dialog box are buttons that set options that are specific to
the current type of build (debug or release), and that show the assembler flags
corresponding to those options. Default settings were determined when you
chose the project template.

Note You can choose the Set Debug Options button to view and set the options
for debug builds. However, this does not change the type of build that is
performed when you build the project. To set the type of build, choose Build
Options from the Options menu.

2. Choose Set Debug Options.

PWB displays a dialog box in which you can specify debug options.

Macro AsseMbler Debug Options
Listing r- Debug InforMation -

[] Generate Listing File () None
() Line NUMbers Only

[] Generate First-Pass Listing (.) CodeView
[] List Generated Instructions
[] List False Conditionals
[X] Generate S~r.lbol Table [] Make All Sy~bols Public
[] Include All Source Lines
[] Include Instruction TiMings

Defines [...]
Additional Options [...]
< Show Options ...)

< 0]() <Cancel) < Help)

If you had chosen Set Release Options, PWB would have displayed the same
dialog box, so that you could select options for release builds.

3. Choose OK to return to the Macro Assembler Global Options dialog box.

4. Choose OK to save the new assembly options and return to the main PWB
screen.

~ To change the linker options:

1. From the Options menu, choose LINK Options.

PWB displays the LINK Options dialog box.

48 Environment and Tools

LINJ(Options

,...---------- Global Options -----------,
] Stack Size [.......] bytes
] No Default Library Search (Additional Global Options ... >

Additional Global Libraries [....................................]

Global Options: INOI IBATCH

(.) Debug Options () Release Options

[X] CodelJiew
[] IncreMental Link (Additional Debug Options ... >

Additional Debug Libraries
Debug Options : ICO IFAR

[....................................]

(OJ(> (Cancel> (Help >

2. Choose Additional Global Options to review and select additional global link
options.

PWB displays the Additional Global Link Options dialog box.

Additional Global LINJ(Options

[X] No Ignore Case
[] No Extended Dictionary in Library

Additional Global Options [/BATCH··]

(OJ(> (Cancel> < Help>

3. Choose OK when you are finished to return to the LINK Options dialog box.

4. Choose Additional Debug Options to review and select additional debug link
options.

PWB displays the Additional Debug Options dialog box.

Chapter 3 Managing Multimodule Programs 49

Additional Debug Options

[] Pack Executable File - Map File -
[X] Translate IntrasegMent Far Calls (0) None

() Standard
[] Pack Code SegMents LiMit: [......] () Full
[] Pack Data SegMents LiMit: [......]
[X] ReMoue Unreferenced Functions

[] Generate Ouerla~s: LiMit of Interouerla~ Calls [......]

Additional Debug Options [..]

< OJ(> <Cancel) < Help >

5. Choose OK when you are finished to return to the LINK Options dialog box.

6. Choose OK to close the LINK Options dialog box and use any new options you
might have set.

You are now ready to build your project with any new options you have selected.

~ To build a modified project:

• From the Project menu, choose Rebuild All.

Changing Options for Individual Modules
Most of the modules in a program can generally be built using the same options.
However, you may occasionally want to modify the options for a single module.

The example that follows shows how to customize your project to change the
assembler options for PAGER.ASM only. To do this, you manually edit the
instructions in the project makefile for compiling P AGER.ASM.

~ To open SHOW.MAK for editing:

1. If the SHOW project is open, choose Close Project from the Project menu.

This step is important because you cannot edit a PWB makefile for a project that
is currently open.

2. Choose the Open command from the File menu and open the SHOW.MAK file
in the editor.

~ To customize the assembly of P AGER.ASM:

1. Find the rule for compiling P AGER.ASM:

50 Environment and Tools

PAGER.obj : PAGER.ASM show. inc
!IF $(DEBUG)

$(ASM) Ie $(AFLAGS_G) $(AFLAGS_D) IFoPAGER.obj PAGER.ASM
!ELSE

$(ASM) Ie $(AFLAGS_G) $(AFLAGS_R) IFoPAGER.obj PAGER.ASM
!ENDIF

This rule contains a conditional statement with two commands. The first
command is for debug builds, and the second command is for release builds.
You can edit either one of these commands, or both. They contain the following
macros defined earlier in the makefile:

Macro

ASM

AFLAGS_G

AFLAGS_D

AFLAGS_R

Definition

The name of the MASM assembler

Global options for assembly

Debug options for assembly

Release options for assembly

As an example, suppose that PAGER.ASM contained data structures which you
want to pack on 32-bit boundaries for the release build only. The / Z p4 flag tells
the ML program to pack data structures on 4-byte boundaries.

2. Edit the release build command as follows.

$(ASM) Ie $(AFLAGS_G) $(AFLAGS_R) IZp4 IFoSHOWUTIL.obj SHOWUTIL.ASM

Because it is hard to be sure what options the flags macros will invoke, the new
option should be placed after them, so that it will supersede any instructions
they may contain.

Note that both the assembler options, such as / Zp, and NMAKE macros, such
as AFLAGS_G, are case sensitive and must appear exactly as shown.

Warning After this modification, PWB still recognizes this makefile as a PWB
makefile. However, if you make changes beyond adding options to individual
command lines, PWB may no longer recognize the file as a PWB makefile. If this
happens, you can delete the makefile and re-create it, or you can use it as a non
PWB makefile. For more information on using non-PWB makefiles, see "Using a
Non-PWB Makefile" on page 55.

You could save your changes to the makefile by choosing Save from the File menu,
then reopen the project and rebuild SHOW with the custom option you just
installed. Because PAGER.ASM does not contain any data declarations, however,
the new options have no real purpose or effect.

Chapter 3 Managing Multimodule Programs 51

The Program Build Process

(

This section explains the correspondence between projects and makefiles.
Normally, the build process is automatic, but you may encounter situations that
require customized build options. Read this section to learn how the utilities work
with PWB. The following diagram illustrates the PWB build process.

PWB

~ -- 1 MASM Extension .- -I
1

1
1 I~ - - __ I

1 1 Project Template
1
I - - - - - - - Utilities Extension

1 1+ - - --
1 1

1
1 1

~ -------- -------- - - - _
~ -- Browse Extension

t -----------
I

I
Run Debug (Run Execute (Project Build

I
PROJEC1STS arguments PROJECIMAK I I Environment I Build Results I

I
CodeView Project.EXE NMAKE

I Source I
t· I Copy Files I

I Compiler I
I I

I Object II Browse Information I
1 1

~I TMAKE.I

I Project.EXE II Browser Database I
I

Figure 3.2 The PWB Build Process

- 1

52 Environment and Tools

When you save your project by choosing the Save button in the Edit Project dialog
box, PWB uses the list of files along with the rules in the selected project template
to scan for dependencies and write the project makefile.

When you choose the Build or Rebuild All command from the Project menu, PWB
releases as much memory as possible and passes the makefile to NMAKE, which
builds the project.

NMAKE stops at the end of the first build step that produces an error (as opposed
to a warning) or at the end of a successful build. In either case, NMAKE returns the
results of the build to PWB along with a log of any errors and warnings. For more
information about NMAKE, see Chapter 16, "Managing Projects with NMAKE."

PWB saves the output of the build for you to view in the Build Results window
or to step through when you choose the Next Error (SHIFf+F3), Previous Error
(SHIFf+F4), and Goto Error commands on the Project menu. You can run the
program, set program arguments, and debug the program by choosing commands in
the Run menu.

If you have turned on the generation of browser information, PWB builds the
browser database when you build the program. Once you have a browser database,
you can use the commands in the Browse menu to navigate your program's source
files and examine the structure of your program. For more information, see "Using
the Source Browser" on page 88.

Extending a PWB Project
Makefiles that are not written by PWB often contain utility targets that are not used
in the process of building the project itself. These targets are used to clean
up intermediate files, perform backups, process documentation, or automate other
tasks related to the project. You can extend a PWB makefile to perform these kinds
of tasks by adding new rules. These additional rules must be placed in a special
section of the project makefile.

In the following example you will add a section that creates a file with information
about the project. This file has the same base name as the project and the extension
.LST. It lists the files in the project and the major options used for the build. This
example section can be used with any assembly-language PWB project.

Use the SHOW project to see how to add a custom section. If you have been
following the tutorial, you have already made one custom edit to the SHOW.MAK
file.

Chapter 3 Managing Multimodule Programs 53

~ To add a custom section to the PWB makefile:

1. If the project is open, choose Close Project from the Project menu.

This step is crucial because PWB disables modification of the project makefile
until the project is closed or a different project is opened. (This restriction does
not apply to non-PWB project makefiles.)

2. From the File menu, choose the Open command and open the SHOW.MAK file
in the editor.

3. Press CTRL+END to move the cursor to the end of the makefile.

4. Type the following new comment line exactly as shown:

« User_supplied_information »

You must put the number sign (#) in column one and type the contents of the line
exactly as shown, including capitalization. Failing to type this line accurately
will make the project unrecognizable to PWB or will cause PWB to change your
custom build information in unexpected ways.

You can copy this line from Help rather than typing it in, if you wish. Press
ALT+A, type US I, press Fl, and then copy the line. Move back to the make file,
and paste the line in at the end.

NMAKE requires space between rules. Therefore, you should separate this line
from the lines above it by one blank line. Similarly, you should leave at least
one line between the separator and your custom build rules. For more
information about NMAKE and the syntax of makefiles, see Chapter 16,
"Managing Projects with NMAKE."

This comment line is used by PWB as a separator. Anything above this
comment is regarded as belonging to PWB, and you should not edit the
information there. The exception is to add options to individual command lines,
as described in "Changing Options for Individual Modules" on page 49.
Anything in the makefile after the separator is your information, and PWB
ignores it. NMAKE, however, processes the entire file.

Now that you have a separator to show PWB where your custom information starts,
you can add the custom information. The separator and custom section is included
in the following text, and can also be found in the EXTRA.TXT file in the
SAMPLES directory:

54 Environment and Tools

« User_supplied_information »

Example 'user section' for PWB project makefiles,
used in the PWB Tutorial.
II

II

NOTE: This is not a standalone makefile.
Append this file to makefiles created by PWB.

This user section adds a new target to build a project
listing that shows the build type, options, and a list
of files in the project.
II

! I FNDEF PROJ
!ERROR Not a standalone makefile.
!ENDIF
!IF $(DEBUG)
BUILD_TYPE = debug
!ELSE
BUILD_TYPE release
!ENDIF

Project files and information-list target

$(PROJ).bld : $(PROJFILE)

@echo «$(PROJ).bld : Project Build Information
Build Type: $(BUILD_TYPE)
Program Arguments: $(RUNFLAGS)
P roj ect Fil es

$(FILES: =A

)

Assembler Options
Global: $(AFLAGS_G)
Debug: $(AFLAGS_D)
Release: $(AFLAGS_R)

Link Options
Global: $(LFLAGS_G)
Debug: $(LFLAGS_D)
Release: $(LFLAGS_R)

«KEEP

The custom section of a PWB makefile can use any of the infonnation defined by
PWB. This example takes advantage of many macros defined by PWB. For
example, the PROJFILE macro, which contains the name of the project makefile, is
used as the dependent of the listing file so that the listing is rebuilt whenever the
project makefile changes.

In addition, this custom section uses many features of NMAKE, including macros,
macro substitution, preprocessing directives, and inline files. For more information

Chapter 3 Managing Multimodule Programs 55

about NMAKE and makefiles, see Chapter 16, "Managing Projects with
NMAKE."

~ To rebuild using the custom options:

1. Choose Open Project from the Project menu and reopen the SHOW project.

2. From the Project menu, choose Build Target.

3. Type the name of the new target SHOW. B LD in the Target text box, and then
choose OK.

PWB informs you that the build options have changed and asks if you want to
rebuild everything.

4. Choose Yes to confirm that you want to rebuild everything.

The project information file that is created shows the project name, indicates
whether the build is a debug or release build, lists the files in the project, and lists
the assembler and linker options used for the build.

Using a Non-PWB Makefile
PWB makefiles are highly structured and stylized makefiles that are generated from
the rules in the project template and a list of files that you supply. Many projects
have existing makefiles that PWB can't read because they do not have this stylized
structure. These makefiles are called non-PWB or "foreign" makefiles.

You can still take advantage of many ofPWB's project features with non-PWB
makefiles. The features that cannot be used are shown as unavailable menu items.
Note that a PWB makefile is not required to use the Source Browser-all you need
to have is a browser database. For information on building a browser database, see
"Building Databases for Non-PWB Projects" on page 94.

~ To use a non-PWB make file:

1. From the Project menu, choose Open Project.

2. Select the non-PWB make file to open.

3. Select the Use as a Non-PWB Makefile check box.

The Open Project dialog box appears.

4. Choose OK.

Note A PWB make file cannot be edited or modified when it is the open project.
However, PWB does not disable modification of non-PWB makefiles. You can edit
a non-PWB makefile, even when it belongs to the currently open project.

56 Environment and Tools

You can now use the Build, Rebuild All, and Build Target commands from the
Project menu. The Build and Rebuild All commands work as they do with a PWB
makefile by building the fIrst target. However, the Language Options commands
and the LINK Options command on the Options menu are unavailable. You set
these kinds of options by editing the makefIle.

When you close a non-PWB project, PWB saves the environment, window layout,
and fIle history just as it does for a PWB project.

Where to Go from Here
This concludes the PWB tutorial section of this manual. If you wish, you can leave
PWB by choosing Exit from the File menu (or by pressing ALT+P4).

Chapter 4, "User Interface Details," explains how to start PWB, describes the
elements of the user interface, and gives you an overview of the menus.

Chapter 5, "Advanced PWB Techniques," explains search techniques (including
regular-expression searching), describes how to use the browser, and shows how to
write PWB macros.

Chapter 6, "Customizing PWB ," describes how to change the behavior of PWB to
suit your needs.

Chapter 7, "PWB Reference," contains an alphabetical reference to PWB menus,
keys, functions, predefIned macros, and switches.

57

CHAPTER 4

User Interface Details

This chapter summarizes the PWB user interface. It contains:

• General information on starting PWB.

• Instructions on how to use elements of the PWB screen.

• A description of the indicators on the status bar.

• A summary of every PWB menu command.

• Instructions on how to use menus and dialog boxes.

Starting PWB
You can start PWB in either of the following ways:

• From the the Windows operating system Program Manager

• From the operating-system command line

From the Command Line
~ To start PWB from the command line:

• At the operating-system prompt, type:

PWB [[opti ons]] [[fi 1 ename]]

PWB starts with its default startup sequence.

For a complete list of PWB options and their meanings, see "PWB Command Line"
on page 131. Sometimes, you will want to modify the default startup sequence. The
following procedures are examples of how you can start PWB to accommodate
different circumstances.

58 Environment and Tools

~ To start PWB with an existing PWB project:

• Type PWB /PP project.mak

PWB opens the specified project and the files that you were working on with the
project.

~ To start PWB with the project you used in your last session:

• Type PWB /PL

As with the previous option, the /PL option opens aproject and arranges your
screen as it was when you left PWB.

~ To start PWB quickly for editing a file such as CONFIG.SYS:

• Type P W B / D A S / teo NFl G • S Y S

This command suppresses autoloading of extensions and status files (IDAS).
It also tells PWB not to remember CON FIG. S Y S for the next PWB session
(It CONFIG.SYS).

Using the Windows Operating System Program Manager
Microsoft Windows offers features that can enhance program development,
particularly if you plan to develop Windows-based applications. You can edit and
build your application in an MS-DOS session and then immediately run it under the
Windows operating system. See Getting Started for a full description of how to set
up Windows operating system icons for MASM in the Windows Program Manager.

To start PWB with Windows, double-click the PWB icon.

You can add a Program Item to the Program Manager for each project you are
working on. Use the PIP editor to open PWB.PIF, and then choose Save As on the
File menu to create a .PIF file with the same base name as your project. Next, use
the Optional Parameters text box to specify the /PF or /pP options and the name of
the project makefile.

To run PWB in a window by default, you can change "Display Usage" in the PIF
file to "Windowed" and (optionally) "Execution" to "Background." Then, choose
Project Templates on the Options menu. In the Build Rule edit field of the
Customize Project Templates dialog box, type: macro WXFLAGS "/w" and select
Set Build Rule. Choose OK.

Chapter 4 User Interface Details 59

Using the Windows Operating System File Manager
When programming, you are often concentrating on which file or project you want
to work on and would prefer that the computer provide the right tool for the job.
With the Windows File Manager, you can associate certain types of files with the
commands that operate on those files. Therefore, when you double-click the
filename in the File Manager, the right tool starts with the correct command-line
options.

You can associate project makefiles (.MAK files) with the PWB .PIF file. Double
clicking a project makefile then starts PWB and opens that project, source files and
all.

~ To associate PWB with .MAK files:

1. Select any file in the File Manager with the extension .MAK.

2. From the File menu, choose Associate.

3. Type the command PWB. PI F in the dialog box. (Make sure that your PWB.PIF
file specifies a question mark (?) in the Optional Parameters text box.)

Now when you double-click a project makefile, the File Manager automatically
starts PWB, and PWB opens that project.

Note Be sure you have set your PATH, INIT, and TMP environment variables
prior to starting the Windows operating system so PWB can find all its files.

ThePWB Screen
Figure 4.1 shows the PWB display. The table which follows it describes each of the
user interface elements.

60 Environment and Tools

Menu Window Desktop

File Edit Search Project Run Options Browse Window Help

Am
<F1=He <A indow> MP OCtt ~.OOl

Icon Scroll bars

Figure 4.1 User Interface Elements

Name

Menu bar

Menu

Desktop

Icon

Window

Scroll bars

Status bar

Description

Lists available menus.

Lists PWB commands.

Background area.

Displays a window in compact form.

Contains source code; displays Help, browser results, build results, or
error messages.

Change position in file or list.

Shows command buttons for the mouse and shortcut keys;
summarizes commands and file and keyboard status.

Figure 4.2 shows a PWB window. The table which follows it describes each of a
window's elements.

Chapter 4 User Interface Details 61

Close box Move bar Minimize box
I Window number I Window title I Maximize/Restore box

RI.BIiIiIiIl~m~-~, IQ~Qmlililililillll~tf- Scroll up arrow

r- Page up area

f- Scroll box

jlr- Page down area
!::

: ~1

Ir- Scroll down arrow

Window border Size area

Figure 4.2 Window Elements

Name

Window border

Close box

Window number

Window title

Minimize box

Maximize/Restore box

Scroll up arrow

Page up area

Scroll box

Page down area

Scroll down arrow

Size area

Move bar

Description

Moves window. Drag to move the window.

Closes the window. Click to close the window.

Identifies window. Press ALT+number to move to that
window.

Indicates window contents, a filename, or pseudofile title.

Shrinks window to an icon. Click to minimize the window.

Enlarges window to maximum size or restores window to its
original size.

Scrolls up by lines. Click to scroll up.

Scrolls up by pages. Click to page up.

Indicates relative position in the file. Drag to change
position.

Scrolls down by pages. Click to page down.

Scrolls down by lines. Click to scroll down.

Sizes window. Drag to size the window.

Moves window. Drag to move the window.

62 Environment and Tools

Figure 4.3 shows the PWB status bar. The table which follows it describes each of
the status bar's elements.

/r-________ ----L.I_M_es_s_a_ge_A_r_ea ____ --.., ~s ~ation

<F1=Help> <Alt=Menu> <F6=Window> TRLMPAX octt ~. 001

'~--------~--------~/

I Command buttons '!column
I Line and Noise

Figure 4.3 Status·Bar Elements

Name

Message area

Status

Description

Shows command buttons for the mouse and shortcut keys,
and summarizes commands. >

Indicates current file, editor, and keyboard status, as
described in the following table.

Location

Command buttons

Shows the location of the cursor in the file.

Show common commands and shortcut keys. Click the
button or press the key to execute the command.

Line

Column

Indicates the line at the cursor. When scanning a file during
a search or when loading a file, PWB displays the current
line in the line indicator as specified by the Noise switch.

Indicates the column at the cursor.

The status area of the status bar displays one of the following letters to indicate the
corresponding status.

Letter

T

R

L

M

P

A

X

o
C

N

Description

File is temporary and is not recorded in the PWB status file.

File is no-edit (read-only); modification is disabled.

Line endings in the file are linefeed characters only.

File is modified.

File is a pseudofile.

Meta prefix (F9) is active.

Macro recording is turned on.

Overtype mode is enabled. In insert mode, no indicator appears.

CAPS LOCK is on.

NUM LOCK is on.

Chapter 4 User Interface Details 63

Figure 4.4 shows the Window menu with the PWB Windows cascaded menu pulled
down. The table which follows it describes each element of a menu.

Selection cursor

Cascaded menu

Access key

-
-

1

.. : , '-

~ ~arch Resu Its
~ lri nt Resu Its
I'~cord

_~ I ipboard
I-~~Ip
~!ser Output

New - - Menu
Close Ctrl+F4
Close All --- Menu command
I1lve Ctrl+F7
Size Ctrl+FB

Restore Ctrl+FS I- Shortcut key
Minimize Ctrl+F9
I'1dximize Ctr I +F10

Cascade FS
Tile Shift+FS
Arrange Alt+FS

'l~J: , ...

Figure 4.4 PWB Menu Elements

Name

Menu

Menu command

Shortcut key

Cascaded menu

Access key

Selection cursor

Description

Displays a list of commands.

Executes the command. When the command is dimmed, it is
unavailable.

Executes the command directly and bypasses the use of the
menu. Press the key to execute the command.

Lists a group of related commands. The command for a
cascaded menu has a small right arrow after the command.
To open a cascaded menu, click the command or move the
selection cursor to the command and press the RIGHT
ARROW key. To close an open cascaded menu, press the
LEFf ARROW key.

Executes the command. Press the highlighted letter key to
execute the command.

Indicates the selected command. Press the UP ARROW and
DOWN ARROW keys to move the selection cursor. Press
ENTER to execute the command.

64 Environment and Tools

PWB Menus

File

Edit

PWB commands are organized into menus; the menu names appear along the menu
bar at the top of the screen. When a menu or command is selected, PWB displays a
brief description of the selected menu on the status bar. To get more information
about a menu or command, point the mouse cursor to the name and click the right
mouse button, or highlight the name by using the arrow keys and then press Fl.

The File menu provides commands to open, close, and save files. You can switch to
any open PWB file or find a specific file on your disk. You can also print a
selection, a file, or a list of files.

Command

New

Open

Find

Merge

Next

Save

Save As

Save All

Close

Print

DOS Shell

All Files

Exit

Description

Start a new file

Open an existing file

Locate a file or list of files on disk

Merge one or more files into the current file

Open the next file in the list of files specified on the command line

Save the current file

Save the current file with a different name

Save all modified files

Close the current file

Print a selection, the current file, or a list of files

Temporarily exit to the operating system

List all open files in PWB

LeavePWB

The Edit menu provides commands to manipulate text, set the selection mode, and
record macros.

Command

Undo

Redo

Repeat

Cut

Description

Reverse the effect of your recent edit

Reverse the effect of the last Undo

Repeat the last edit

Delete selected text and copy it to the clipboard

Search

Command

Copy

Paste

Delete

Set Anchor

Select To Anchor

Stream Mode

Box Mode

Line Mode

Read Only

Set Record

Record On

Chapter 4 User Interface Details 65

Description

Copy selected text to the clipboard

Insert text from the clipboard

Delete selected text without copying it to the clipboard

Save the current cursor position

Select text from the anchor to the cursor

Set stream selection mode

Set box selection mode

Set line selection mode

Toggle the PWB no-edit state (to prevent accidental modification
or to allow modification)

Define a macro name and its shortcut key

Record commands for a macro

The Search menu provides commands to perform single-file and multifile text and
regular-expression searches. You can do single-file and multifile find-and-replace
operations. You can defme and jump to marks or go to specific lines.

Command

Find

Replace

Log

Next Match

Previous Match

Goto Match

Goto Mark

Define Mark

Set Mark File

Description

Search for an occurrence of a text string or pattern

Search for a string or pattern and replace it with another

Turn multifile searching on and off

Move to the next match

Move to the previous match

Go to the match at the cursor in the Search Results window

Move to a mark or line number

Set a mark at the cursor

Open or create a mark file

66 Environment and Tools

Project

Run

The Project menu provides commands to open and create projects, build a project or
selected targets in the project, and determine the location of build errors and
messages.

Command

Compile File

Build

Rebuild All

Build Target

New Project

Open Project

Edit Project

Close Project

Next Error

Previous Error

Goto Error

Description

Compile or assemble the current source file

Build the project

Build all files in the project (even those that have not been modified)

Build specific targets in the project

Create a new project

Open an existing project

Change the list of files in the project

Remove the current project from memory without changing its
contents

Move to the next error

Move to the previous error

Move to the error at the cursor in the Build Results window

The Run menu provides commands to set arguments for the project's program, run
and debug the program, run operating-system commands, and add or run custom
Run menu commands.

Command

Execute

Program Arguments

Debug

Run DOS Command

Customize Run Menu

Description

Run the current program

Specify commands passed to your program for Execute or
Debug

Run Code View for the current program

Perform any single DOS task without exiting PWB

Add commands to the Run menu

The custom commands that you add to the Run menu appear after the Customize
Run Menu command.

Options

Chapter 4 User Interface Details 67

The Options menu provides commands to set environment variables for use within
PWB, customize the look and behavior of PWB, and assign keys to commands. For
projects, you can set the build type, customize the project template, and set
assembler and utility options.

Command

Environment Variables

Key Assignments

Editor Settings

Colors

Build Options

Project Templates

Language Options

Description

View and modify environment variables

Assign keys that invoke functions and macros

Change the setting of any PWB switch

Change screen colors

Specify whether the program is built as a debug or
release version; specify a build directory

Cascaded menu of commands for project templates

Cascaded menu of compiler options commands

The Project Templates cascaded menu provides the following commands to manage
project templates:

Command

Set Project Template

Customize Project Template

Save Custom Project
Template

Remove Custom Project
Template

Description

Changes the run-time support and project template

Modify the current project template

Save the current template as anew, custom template

Delete custom project templates

The Language Options cascaded menu provides the following commands for setting
assembler and compiler options for any other languages that may be installed:

Command Description

MASM Options Set assembler options

Note Additional languages, such as Basic and FORTRAN, are listed when their
PWB extensions are loaded. To load the Basic extension, rename
PWBBASIC.XXT in the BIN subdirectory to PWBBASIC.MXT. For FORTRAN,
do the same for PWBFORT.XXT.

68 Environment and Tools

Browse

The following commands appear when the utilities extension (PWBUTILS) is
loaded:

Command

LINK Options

NMAKE Options

Code View Options

Description

Set linker options for your project

Set options for NMAKE when it builds the project

Set options for CodeView when debugging the project

The following command appears when the browser extension (PWBROWSE) is
loaded:

Command Description

Browse Options Define the way the Source Browser database is built

The Browse menu provides the commands for the PWB Source Browser. You can
select a browser database. You can jump to specific definitions or symbols in your
project and view complex relationships among program symbols. You can also
view your program as an outline, function-call tree, or, if you are using Microsoft
C++, you can even view it as a class-inheritance tree.

Command

Open Custom

Goto Definition

Goto Reference

View Relationship

List References

Call Tree (Fwd/Rev)

Function Hierarchy

Module Outline

Which Reference?

Class Tree (Fwd/Rev)

Class Hierarchy

Next

Previous

Match Case

Description

Open a custom browser database, open the project database,
or save the current database

Locate the definition of any symbol in your source code

Locate the references to any name in the browser database

Query the browser database

Display a list of functions that call each function and show
the use of each variable, type, macro, or class

View which functions call other functions

Display a program outline

Display an outline of program modules

Display a list of possible references for the ambiguous
reference at the cursor

View the class-inheritance tree (for the C++ language)

View the hierarchy of classes (for the C++ language)

Find the next definition or reference

Find the previous definition or reference

Define whether or not browse queries are case sensitive

Window

Chapter 4 User Interface Details 69

The Window menu provides commands to manipulate and navigate windows in
PWB.

Command

New

Close

Close All

Move

Size

Restore

Minimize

Maximize

Cascade

Tile

Arrange

PWB Windows

PWB Window

Build Results

Search Results

Print Results

Record

Clipboard

Help

Browser Output

1 window}

5 windowS

All Windows

Description

Duplicate the active window

Close the active window

Close all windows

Start window-moving mode for the active window

Start window-sizing mode for the active window

Restore a minimized or maximized window to normal size

Shrink the active window to an icon

Enlarge windows to maximum size

Arrange windows to show all their titles

Arrange windows so that none overlap

Organize windows in a useful configuration for viewing Help,
source code, and Build Results

Cascaded menu that lists the following special PWB windows:

Description

View the results of builds

View the results of logged searches

View the results of print operations

View, edit, save recorded macros

View the PWB clipboard

Access the Help system

View the results of browser queries

Move to window n

View a list of all open windows

The All Windows command does not appear until the full list of open windows is
too long to fit on the menu.

70 Environment and Tools

Help
The Help menu contains commands to access the Microsoft Advisor Help system.
You can see the index or table of contents for the system, get context-sensitive
Help, and perform global plain-text searches in the Help.

Command

Index

Contents

Topic

Help on Help

Next

Global Search

Search Results

About

Description

Display a list of available indexes

Display a table of contents for each component of the Help
system

Display Help about the item or keyword at the cursor

Display information on how to use Help

Display the next Help screen that has the same name as the topic
you last viewed

Search all open Help files for a string or regular expression

View the results of the last global Help search

Display the PWB copyright and version number

Executing Commands
PWB commands appear in menus and as "buttons." You can execute these
commands in two ways:

• With a Microsoft Mouse or any fully compatible pointing device

You perform mouse operations by "clicking" -moving the mouse cursor to the
specified item and briefly pressing the left mouse button. "Double-click" by
pressing the left button twice, quickly. Always use the left mouse button unless
specifically instructed otherwise.

• With the keyboard

Choosing Menu Commands
~ To choose a menu command with the mouse:

1. Click the menu name to open the menu.

2. Click the command.

~ To choose a menu command from the keyboard:

1. Press the ALT key to activate the menu bar.

2. Press the highlighted character in the menu name (such as F for File).

Chapter 4 User Interface Details 71

An alternative is:

1. Press the ALT key to activate the menu bar.

2. Use the RIGHT ARROW and LEFf ARROW keys to select a menu.

3. Press ENTER to open the menu.

4. Press the highlighted character in the command name (such as S for Save in the
File menu), or use the UP ARROW and DOWN ARROW keys to select the command
and then press ENTER.

There are several ways to close an open menu without executing a command.

~ To close a menu without executing a command:

• Do one of the following procedures:

• Click outside of the menu.

• Press ESC.

• Press ALT twice.

When a menu command is dimmed (rather than black), it is unavailable. For
example, when no windows are open, the Close command on the File menu is
unavailable. If a command you want to use is unavailable, you must perform some
other action or complete a pending action before you can invoke that command.

Shortcut Keys
Some commands are followed by the names of keys or key combinations. Press the
shortcut key to execute the command immediately. You don't have to go through
the menu. For example, press SHIff +F2 to execute the Save command, which saves
the current file.

All menu commands with shortcut keys and many other menu commands invoke
predefined PWB macros to carry out their action. You can change the key or add
new shortcut keys for these commands by assigning a key to the predefined macro.
For a complete list of predefined macros and their corresponding menu commands,
see "Predefined PWB Macros" on page 207. For more information on assigning
keys, see "Changing Key Assignments" on page 109.

Many PWB functions have been assigned to keys besides those listed on the menus.
Choose the Key Assignments command on the Options menu to view a list of
functions and macros and their assigned keys.

72 Environment and Tools

Buttons

Dialog Boxes

You can often execute commands by using buttons or boxes, which are areas of the
screen that perform an action when you click them or select them from the
keyboard. For example, the rectangle at the upper-left comer of a window is the
"close box." Clicking this box with the mouse closes the window.

A command name surrounded by angle brackets « » appearing on the status bar
or in a dialog box is a button. The following buttons are on the status bar when you
first start PWB:

<General Help> <Fl=Help> <Alt=Menu>

The General Help button brings up a screen that explains how to use the Help
system. The other two buttons remind you of PWB functions: Fl summons Help,
and ALT activates the menu bar. Clicking one of these buttons with the mouse
performs the same function as pressing the key.

When you have opened more than one window, PWB displays the following
buttons:

<Fl=Help> <Alt=Menu> <F6=Window>

Click the Window button or press F6 to move to the next window.

When a menu is selected or a dialog box is displayed, an informative message
appears on the status bar. While PWB displays this message, no buttons are
available and clicking the status bar does nothing.

When a men~ command is followed by an ellipsis (.••), PWB needs more
information before executing the command. You enter this information in a dialog
box that appears when you choose the command.

Dialog boxes can contain any of the items in Figure 4.5.

Chapter 4 User Interface Details 73

Combo box Text box Option buttons

Editor Settings
~itch: [...]

Switch lWner: Sitch 'I!Pe
- ~[PWB .. ul (.) ~olean

() rreric
() ~xt

Switch ~ist:

askexit:no ~
askrtn:yes I

roo-- r- autoload:yes
:111 autosave:yes

beep:yes m1
case:no !

I

~!t Switch~ <Sale ... > <S!itch Help>

< OK > <Cancel> < Ielp >

List box Command button

Figure 4.5 Dialog Box Elements

Option Button
A button that you select from a list of mutually exclusive choices. Click the one
you want, press its highlighted letter, or use the arrow keys to move among the
choices.

Text Box
An area in which you can type text. You can move the cursor within the text box
by clicking the location with the mouse or by pressing the LEFT' ARROW and
RIGHT ARROW keys. You can toggle between insert and overtype mode by
pressing the INS key. To select text for deletion, click and drag the mouse over
the text or press SHIFf plus an arrow key. Press DEL to delete the text, or type
new text to replace the highlighted text.

List Box
A box displaying a list of information (such as the contents of the current disk
directory). If the number of items exceeds the visible area, click the scroll bar to
move through the list or press PGUP, PGDN, or the arrow keys. You can move to
the next item in the list that starts with a particular letter by typing that letter.

Combo Box
The combination of a text box and a drop-down list box. You can type the name
of an item in the text box or you can select it from the list.

74 Environment and Tools

To open the list, click the highlighted arrow, or press ALT+DOWN ARROW or
AL T +VP ARROW. You can then click the item or press the arrow keys to select the
item you want. You can also press the first letter of an item to select it. When
you have selected an item, click the highlighted arrow or press ALT+DOWN

ARROW or ALT +UP ARROW to close the list.

Command Button
A button within angle brackets « » that invokes a command. Choose the OK
button to accept the current options, or choose the Cancel button to exit the
dialog box without changing the current options. Choose the Help button to see
Help on the dialog box.

If one of the command buttons in a dialog box is highlighted, press ENTER to
execute that command. You can also click a command button to execute that
command. If a button contains an ellipsis (...), it indicates that another dialog
box will appear when you choose it.

CheckBox
An on/off switch. If the box is empty, the option is turned off. If it contains the
letter X, the option is turned on. Click the box with the mouse, or press the
SPACEBAR or the UP ARROW and DOWN ARROW keys to toggle a check box on
and off.

Key Box
A pair of braces ({ }) that allows you to enter a key by pressing the key. The key
box is always followed by a text box where you can type the name of the key.

When the cursor is in the key box (between the braces), most keys lose their
usual meaning, including ESC, FI, and the dialog box access keys. The key you
press is interpreted as the key to be specified. Only TAB, SHIFT+TAB, ENTER, and
NUMENTER retain their usual meaning. To specify one of these keys, type the
name in the text box.

Key box

Set !'Ii cro Record
~rre: [nmnm~···]

ty Ass i gnrrent: { }[....................]

[X] !lear First

~ OK B <Cancel> < lelp >

Check box

Figure 4.6 Key Box and Check Box

Chapter 4 User Interface Details 75

Clicking a dialog-box item either selects it (a text box, for example) or toggles its
value (a check box or option button). You can also move among items with the TAB

and SHIFf + TAB keys.

Dialog boxes usually contain access keys, identified by highlighted letters. Pressing
an access key is equivalent to clicking that item with the mouse or moving to it by
pressing TAB or SHIFT+TAB, and then pressing ENTER. Although some access keys
are uppercase and others lowercase, dialog boxes are not case sensitive. Therefore,
you can type either an uppercase or a lowercase character.

Note When the cursor is in a text box, access keys are interpreted as text. You
must press ALT along with the highlighted letter. Pressing ALT is also required in list
boxes because typing a letter by itself moves the cursor to the next item that starts
with that letter.

77

CHAPTER 5

Advanced PWB Techniques

This chapter introduces you to some of the powerful features in the Programmer's
WorkBench. It is not an exhaustive discussion of all the ways to use PWB.
However, it can provide a starting point for you to begin your own investigation of
PWB using the information in the Microsoft Advisor and in Chapter 7,
"Programmer's WorkBench Reference."

This chapter contains:

• Find and search-and-replace techniques, including marks and regular
expressions.

• How to use the PWB Source Browser.

• How to execute PWB functions and macros.

• An overview of PWB macros, macro recording, and the macro language.

Searching with PWB
PWB offers the following ways to search your files for information:

• Visually inspecting code, moving with the cursor or the PGUP and PGDN keys.
This method is most effective either when you are familiarizing yourself with
some old code or after you have switched from Code View back to PWB and
want to examine the local impact of a proposed change.

• Searching with text strings. When you have a specific string in mind (for
example, Fi 1 eName), you can find, in sequence, all the references to the name
in your file.

• Searching with regular expressions. Regular expressions describe patterns of
text. This is useful when you have a number of similarly named program
symbols and you'd like to see them all in succession.

For example, Windows API (application programming interface) names are
made up of multiple words; the start of each new word is shown as a capital

78 Environment and Tools

letter (for example, GetTextMetrics). With this in mind, you might search for a
string optionally starting with spaces and the letters "GetText" followed by any
uppercase letter. This is expressed with a regular expression such as
*GetText [A - ZJ, which means zero or more spaces (using the * operator after
a space), followed by GetText, followed by any uppercase letter (using a
character class).

• Searching multiple files with text strings or regular expressions. A multifile
search is called a "logged search." Instead of finding one match, PWB finds all
matches in one operation. You can then browse the results of the search.

• Using the Source Browser. The Source Browser enables you to perform faster
and more sophisticated searches than plain text searches because it maintains a
complete database of relationships between program symbols. For example, to
find all occurrences of F i 1 eN a me in your entire program (regardless of the
number of files in the program), you can use the View References command
from the Browse menu.

The Source Browser has many more capabilities than just finding symbols. It
can also produce call trees and perform sophisticated queries on the use-and
definition relationships among functions, variables, and classes in your program.

These searching techniques are discussed in detail in the following sections.

Searching by Visual Inspection
If you think you're close to the text you want to see, don't try a fancy search-use
the PGUP or PGON key. It's often faster. One trick you can use to speed up this
method of searching is to leave a trail in the form of marks (names associated with
file locations).

Using Marks
PWB lets you set named marks at any location in your file by using the Define
Mark command from the Search menu or by using the Mark function. You can
access these locations by name using the Goto Mark command or the Mark
function.

For example, if you are writing code and want to leave certain sections until later,
or if you are revising an existing program and don't fully understand all the
algorithms, you might leave a mark at each location in the code you want to come
back to. That way, you can work on some sections of the program first, and then
come back to the marked areas after further research.

To save marks between PWB sessions, create a mark file using the Set Mark File
command from the Search menu.

Chapter 5 Advanced PWB Techniques 79

Using the Find Command
The Find command on the Search menu allows you to search a file using text strings
and regular expressions. Searching forward uses the Psearch function (assigned to
the F3 key), while searching backwards uses the Msearch function (assigned to the
F4 key).

Find can help you locate any string of text in any file you specify. PWB usually
searches the file you are currently editing. However, it can also search a list of files.
This is particularly useful for finding all occurrences of a string in an entire project.
The function used is called Mgrep.

The results of a multifile search are logged, that is, put into the Search Results
window. To see the logged results of a search, choose Search Results from the
PWB Windows cascaded menu. There are two ways to use the information that
PWB puts into Search Results:

• You can look at the matches in sequence by choosing Next Match and Previous
Match from the Search menu.

• You can go directly to a specific match by moving the cursor to the match listed
in the Search Results window and choosing Goto Match from the Search menu.
PWB then jumps to the location of the match.

The Match commands on the Search menu work with the Search Results window in
exactly the same way that the Project menu's Next Error, Previous Error, and Goto
Error commands work with the Build Results window. These Project menu
commands are described in "Fixing Build Errors" on page 23.

To illustrate the logged-search technique, suppose you want to locate all instances
of a software interrupt instruction in the SHOW project's source files.

~ To search all the source files in this project:

1. From the Search menu, choose Find.

PWB brings up the Find dialog box.

2. Tum on Log Search check box.

3. Type i nt in lowercase.

4. Select the Match Case check box to exclude uppercase or mixed-case
occurrences of the word.

80 Environment and Tools

5. Choose the Files button.

PWB brings up the Search In Selected Files dialog box.

Search in Selected Files
File Hallie: [1:IEml ...]

File List: D:\I1ASI1\SAI1PLES\SHOW

PAGER.ASI1
SHOW.ASI1
SHOWUTIL.ASI1

File(s) Selected:

Drives I Dirs:

[-A-]
[-B-]
[-C-]
[-D-]
[-E-]

<Add I Delete>

<Clear List>

<Add Pattern>

< OK > <Cancel> < Help >

6. Type SHOW* • ASM in the File Name text box.

+

~
J.
I

This wildcard specifies all filenames beginning with SHOW and having the. ASM
extension.

7. Choose the Add Pattern button to add the wildcard to the file list.

8. In the "Drives / Dirs" window, select the SAMPLES\sHOW subdirectory under
the main MASM directory.

9. Return to the File Name text box by clicking the box or by pressing ALT+F.

10. Type $ INC L U 0 E : do S • inc (with the environment variable, "INCLUDE," all in
caps). Preceding an environment variable name with a dollar sign causes the
contents of that variable to be inserted into the search string. The INCLUDE
variable normally contains the path to the directory where general-purpose
include files are kept.

11. Press ENTER to add DOS.INC to the file list, or click Add / Delete.

12. Choose OK to start the search.

When PWB finishes the search, it displays the Log Search Complete dialog box.

Chapter 5 Advanced PWB Techniques 81

Log Search Co~plete

Search for "int"

2B occurrences found

<View Results> <Cancel> < Help >

From this dialog box you can:

• Choose View Results to open the Search Results window.

• Choose Cancel to close the dialog box.

Choose Cancel now (you will open the Search Results window later).

~ To go to the first match:

• From the Search menu, choose Next Match.

You can step sequentially through all occurrences of the string using the Next
Match command. Choose Previous Match to move to the previous occurrence of the
string. When you reach the end of Search Results, PWB displays the following
message:

End of Search Results

Sometimes, you cannot focus the search narrowly enough to make a sequential scan
of Search Results profitable. In this example, you wanted only instances of the
software interrupt instruction, but PWB found many more occurrences of iot. In
these cases, you can examine the results of the search and skip the matches that
aren't relevant.

~ To view the Search Results:

• To see all matches from the search, open the Search Results window. You can
do this by choosing Search Results from the PWB Windows cascaded menu on
the Window menu.

82 Environment and Tools

In the Search Results window, PWB displays the file, line, and column where the
string was located. It also shows as much of the matching line as will fit in the
window.

File Edit Search Project Run Options Browse Window Help
[1]== Search Results ==

+++ PWB [D:\MASM\SAMPLES\SHOW] Search int
:\MASM\SAMPLES\SHOW\PAGER.ASM 58 49: ADDR stLine, Far
:\MASM\SAMPLES\SHOW\PAGER.ASM 74 49: es: :si, ; Far :::
: \MASM\SAMPLES\SHOW\PAGER . ASM lB8 35: ; * that on ly occur at a few key po i nts :1:
:\MASM\SAMPLES\SHOW\PAGER.ASM 174 29: ;* ParaMs: fpBuffer - Far pointer to Iim
: \MASM\SAMPLES\SHOW\PAGER . ASM 275 17: ; * Input: BX po i nts to start of Ii ne :::
:\MASM\SAMPLES\SHOWWAGER.ASM 276 17: ;* DI points to current positiom
: \MASM\SAMPLES\SHOW\PAGER . ASM 323 9: i nt lBh ,!,

: \MASM\SAMPLES\SHOW\PAGER . ASM 331 9: i nt lBh ~~h sp ,.I :!l :!: ••. : •.. :! :\MASM\SAMPLES\SHOW\SHOW.ASM 87 59: MOU
:\MASM\SAMPLES\SHOW\SHOW.ASM lB2 9: int
: \MASM\SAMPLES\SHOW\SHOW . ASM 116 59: MO U CX, BFFFFJ}
:\MASM\SAMPLES\SHOW\SHOW.ASM 177 45: MOU si, OFFSET f iFiles .FHaMe:1:
:\MASM\SAMPLES\SHOW\SHOW.ASM 188 49: MOU si, OFFSET f iFiles .FHaMe:::
:\MASM\SAMPLES\SHOW\SHOW.ASM 189 49: MOU di, OFFSET stFile[FILE pm
: \MASM\SAMPLES\SHOW\SHOW . ASM 234 31: ; Open f ile and read contents into buf Fe:::
: \MASM\SAMPLES\SHOW\SHOW . ASM 337 63: repne scasb 1.:!:.:;1.:!
:\MASM\SAMPLES\SHOW\SHOW.ASM 339 52: shl di, 1
:\MASM\SAMPLES\SHOW\SHOWUTIL.ASM 18 19: ;* Return: Hear pointer to position om
:\MASM\SAMPLES\SHOW\SHOWUTIL.ASM 193 36: ;* BinToStr - Conuerts an unsigned il
:\MASM\SAMPLES\SHOW\SHOWUTIL.ASM 198 2B: ;* pch - Pointer to charactel

I::m::m:::f+
iI

<General Help} <Fl=Help} <Alt=Menu} R MP H BBBB1.BBl

For example, if the instruction you were looking for is the Interrupt 10h in
PAG E RR. ASM, .you can jump directly to that location.

~ To jump directly to a match:

1. Put the cursor on the match.

2. From the Search menu, choose Goto Match.

PWB opens the correct file if it is not already open and positions the cursor on
the text you located.

You can use multifile searching regardless of whether the files that you want to
search are open in PWB.

Using Regular Expressions
The PWB searching capabilities that you have used so far are useful when you
know the exact text you are looking for. Sometimes, however, you have only part of
the information that you want to match (for example, the beginning or end of the
string), or you want to find a wider range of information. In such cases, you can use
regular expressions.

Chapter 5 Advanced PWB Techniques 83

Regular expressions are a notation for specifying patterns of text, as opposed to
exact strings of characters. The notation uses literal characters and metacharacters.
Every character that does not have special meaning in the regular-expression syntax
is a literal character and matches an occurrence of that character. For example,
letters and numbers are literal characters. A metacharacter is an operator or
delimiter in the regular-expression syntax. For example, the backslash (\) and the
asterisk (*) are metacharacters.

PWB supports two syntaxes for regular expressions: UNIX and non-UNIX. Each
syntax has its own set of metacharacters. The UNIX metacharacters are
. \ [J *+"$. The non-UNIX metacharacters are? \ [J*+" $@#C) {}. Because it uses
fewer metacharacters, the UNIX form is a little more verbose. However, it is more
familiar to programmers who have experience with UNIX tools such as awk and
grep. This book uses the UNIX syntax, but any expression that can be written with
this syntax can also be written with the non-UNIX syntax.

The regular-expression syntax used by PWB depends on the setting of the Unixre
switch (this is a Boolean switch, and UNIX is the default). You can change the
Unixre switch by using the Editor Settings dialog box on the Options Menu.

Note PWB switches that take regular expressions always use UNIX syntax. They
are independent from the Unixre switch.

Finding Text
In the multifile searching example, you learned how to locate every occurrence of
int in the SHOW project. In a large project, finding every int would yield too many
matches. To narrow the search, you can use a regular expression.

For this example, let's say you want to match any int instruction. You can specify
this with a regular expression. The expression below matches text that:

• Begins with the keyword int

• Is followed by white space

• Is followed by one or more hex digits (characters between 0 and 9 or between A
and F)

The syntax for this regular expression is shown in Figure 5.1.

int\:b[0-1A-Fa-f]+ rx' 31 J
Figure 5.1 Regular Expression Example

84 Environment and Tools

It illustrates the following important features of regular expressions:

1. Regular expressions can contain literal text. In this example, i ntis literal text
and is matched exactly.

2. Regular expressions can contain predefined regular expressions. Here, \: b is
shorthand for a pattern that matches one or more spaces or tabs (that is, white
space). For a complete list of predefined regular expressions, see Appendix B.

3. You can use classes of characters in regular expressions. A class matches any
one character in the class. For example, the class [0 - 9 a - f] is the class of
characters that contains the digits between 0 and 9 and the lowercase letters
between A and F. The dash (-) defines a range of characters in a class.

4. The plus sign (+) after the class instructs PWB to look for one or more
occurrences of any of the characters in the class. This is the key to regular
expressions. You don't have to know exactly what the interrupt number is; all
you have to do is describe what kind of characters make it up.

The pattern i n t \ : b [0 - 9 A - F] matches strings such as

int
int

21h
3Ah

Print 25 lines ...

; DOS function interrupt

Figure 5.2 shows a more detailed way to write an expression that matches only an
int 20h or an int 2Ih.

"["; \t]*\:bint[\t]+0*2[0-1][hH]

JyrrTll T :r
Figure 5.2 Complex Regular Expression Example

This expression is more precise than most searches require, but it is useful as an
illustration of how to write a complex regular expression.

You can interpret this expression as follows:

1. Start at beginning of the line, which is specified by a caret (") at the beginning
of the regular expression. Using an initial caret is particularly helpful in a
situation like this if your file uses space characters rather than tabs. Otherwise,
when you begin your search criteria with \: b, the search will return one match
for every space character preceding the matching text. For example, if your
instruction column is indented eight spaces, searching for \: bmov\: b will
return eight copies of every mov instruction, one for each of the preceding space
characters. Including the inital caret, however, will result in only one match per
line.

Chapter 5 Advanced PWB Techniques 85

2. Skip any label on the line, without matching a comment line. The [1\; \ t]
indicates a class made up of any characters that are not a semicolon, a space or
a tab character. Within brackets, a caret (") at the beginning of the class
indicates an "inverse class," that is, one including all characters except the
specified ones. Following the class is an asterisk, indicating that zero or more
such characters may be present. In general, optional items are specified using
the asterisk (*) operator, which indicates that zero or more of the preceding
character should be matched. For example, the expression" *" means "match
zero or more spaces."

3. Skip white space. The predefined UNIX regular expression "\ : b" is equivalent
to "[\ t] +", which requires that there be at least one space or tab.

4. Look for the "; nt" instruction as literal text.

5. Skip white space. The expression" [\ t] +" is equivalent to "\ : b", and
requires that there be one or more space or tab.

6. Skip optional "0" digits.

7 . Look for a "2" digit as literal text.

8. Look for either a "0" digit or a "I" digit.

9. Look for an uppercase or lowercase" h" character.

This expression is so exact that it may take longer to write than the time it saves.
The key to using regular expressions effectively is determining the minimal
characteristics that make the text qualify as a match.

~ To find all int 20h and int 2Ih instructions:

1. From the Search menu, choose Find.

2. In the Find Text box, type 1\ \ : b; n t \ : b 2 [01] .

3. Select the Regular Expression check box.

4. Choose the Files button.

5. Add the pattern * . ASM and the file $ I NC LU 0 E: ~OS. I NC to the file list.

6. Choose OK to start the search.

When the search is complete, choose View Results. You can see in the Search
Results window that PWB matched only the int 20h and int 21h instructions.

Replacing Text
You can use regular expressions when changing text to achieve some extremely
powerful results. A regular expression replacement can be a simple one-to-one
replacement, or it can use "tagged" expressions. A tagged expression marks part of
the matched text so that you can copy it into the replacement text.

86 Environment and Tools

For example, you can manipulate lists of files easily using regular expressions. This
exercise shows how to get a clean list of files that is stripped of the size and time
stamp information.

~ To get a clean list of .ASM files in the current directory:

1. From the File menu, choose New.

This gives you a new file for the directory listing.

2. Execute the function sequence Arg Arg ! d i r *. ASM Paste.

The default key sequence for this command is to press ALT+A twice, type! d i r
* . as m, then press SHIff +INS.

Arg Arg introduces a text argument to the Paste function with an Arg count of
two. The exclamation point (!) designates the text argument to be run as an
operating-system command. Without the exclamation point, the text is the name
of a file to be merged. If only one Arg is used, PWB inserts the text argument.

PWB runs the DIR command and captures the output. When the DIR command
is complete, PWB prompts you to press a key. When you press a key, PWB then
inserts the results of the command at the cursor. For more information about this
and other forms of the Paste function, see "Paste" in Chapter 7, "Programmer's
WorkBench Reference."

3. From the Search menu, choose Replace.

4. In the Find Text box, type \ : b \ : z \: z - . * $

This pattern means:

• White space followed by

• A number followed by

• Exactly one space followed by

• A number followed by

• A dash (-) followed by

• Any sequence of characters, then

• End of the line

This string must be tied to the end of the line to prevent the search from finding
anything too close to the beginning of the line.

5. Make sure there are no characters in the Replace Text text box.

6. Choose Replace All.

PWB prompts you to verify that you want to replace text with an empty string.

7. Choose OK to confirm that you want to perform the empty replacement.

Chapter 5 Advanced PWB Techniques 87

All the file-size, date, and time-stamp infonnation is removed. Because you did not
reuse any of the original text in the replacement, this is a simple regular expression
replacement.

Choose Close from the File menu to discard the text you created in the previous
exercise.

A more complicated task is backing up the .ASM files to a directory called LAST,
which is assumed to be a subdirectory of the current directory. A batch file makes
this easier. You can create such a batch file using regular expressions.

~ To create a batch file that copies the .ASM files to a subdirectory:

1. Create a list of .ASM files in the current directory as described in the previous
example, but do not remove the file sizes, dates, and times.

2. Delete the heading printed by the DIR command.

3. From the Search menu, choose Replace.

4. In the Find Texttext box, type 1\ \ ([1\]+\) []+\ ([1\]+\). *
5. This expression finds a string that starts at the beginning of the line (1\). Placing

parts of the expression inside the delimiters \ (and \) is called "tagging."

The first tagged expression (\ ([1\] + \)) matches one or more characters that
are not spaces. A leading caret in a class means "not."

The pattern then matches one or more spaces ([] +), followed by the second
tagged expression which matches one or more characters that are not spaces.

The remainder of the line is matched by the wildcard (.), which matches any
character, and the repeat operator (*). Matching the rest of the line is important
because that is how this pattern removes everything after the filename. It
discards these portions of the matched text.

6. In the Replace Text text box, type CO PY \ 1. \ 2 • \ \ LAST

7. Select Replace All and choose OK to begin the find-and-replace operation.

PWB transfonns each directory entry into a command to copy the file to the LAST
subdirectory .

88 Environment and Tools

Search Project Run Options Browse Window Help

opy PAGER.ASH .\last
opy SHOW.ASH .\last
opy SHOWUTIL.ASH .\last

3 file(s) 33473 bytes
1BB782B8 bytes free

3 occurrences replaced

< OK > < Help >

!
I::m:m:m:::m:m:::::::::::m:::m:::::::::::::::m:::::m:::m:m::m::m:::m:::::::::::::::::::::::::::::::::::::::m::::::m:::::::m:::::::::::::::::m::m:::::::::::::::::::m::m::::m:m:m:::::m:::::::::::m:::m::::m::m:mm::m:m::::::::::::::::~J

1=Help Enter Esc=Cancel Tab=Hext Field HP H BBBB1.BB1

The word COpy is inserted literally. The text matched in the first tagged expression
(the base name) replaces the expression \ 1. The period is inserted literally. The text
matched by the second tagged expression (the filename extension) replaces the
expression \2. The space is inserted literally. The text. \ \ LAST is inserted as
• \ LAST. Be sure to use two backslashes to indicate a literal backslash; otherwise,
PWB expects a reference to a tagged expression such as \ 1 and displays an error
message.

You'll notice that the last two lines of the file are not useful in your batch file. They
are the remnants of the summary statistics produced by the DIR command. Delete
these two lines and you have a finished batch file.

Using the Source Browser
Another search technique is "browsing." Browsing uses information generated by
the compiler to help you find pieces of code quickly. This section introduces you to
some of the capabilities of the Source Browser. The browser is a handy tool for
moving about in projects, large and small.

In addition to navigating through your program, you can use the browser to explore
the relationships between parts of the project. The browser database contains full
information about where each symbol is defined and used and about the
relationships among modules, constants, macros, variables, functions, and classes.
Note that the browser files can be very large.

Chapter 5 Advanced PWB Techniques 89

Creating a Browser Database
Before you can use the PWB Source Browser, you must build a browser database.
PWB helps you maintain this database automatically as a part of a normal project
build.

~ To build a browser database:

1. Open the SHOW project using the Open Project command from the Project
menu (this project is located in the SAMPLES\sHOW subdirectory of your
main MASM directory).

2. From the Options menu, choose Browse Options.

PWB displays the Browse Options dialog box.

Browse Options

[Xl Generate Wrowse Information

[I E>elode ;;"ro Expanded SYMbols
[1 Exclude ~ stem Include Files
[1 Include referenced Symbols
[Xl ~ck .SBR files

~ditional Options [---------------------------------------1

< Exc lude ~iles. .. >

~ OK ~ <Cancel> < lelp >

3. Select the Generate Browse Information check box.

4. Choose OK.

The browser changes the project make file to build the project. It adds compiler
options for creating browser information (.SBR files). It includes a BSCMAKE
command which combines the .SBR files and creates a browser database (a
.BSC file).

5. From the Project menu, choose Rebuild All.

Rebuilding the entire project ensures that the database contains up-to-date
information for all files in your program.

When the build completes, the following new files are on your disk:

• SHOW.BSC, the browser database

• SHOWUTIL.SBR, a zero-length "placeholder" for the SHOWUTIL module.

• P AGER.SBR, a placeholder for PAGER.

• SHOW.SBR, a placeholder for SHOW.

90 Environment and Tools

After adding each .SBR file's contribution to the database, BSCMAKE truncates it
and leaves the empty .SBR file on disk to provide an up-to-date target for later
builds. Leaving these files on the disk ensures that a browser database is not rebuilt
unless it is out of date with respect to its source files.

A PWB project is not required to create a browser database (although it is
convenient). For information on how to build a browser database for non-PWB
projects, see "Building Databases for Non-PWB Projects" on page 94.

Finding Symbol Definitions
When you are working on a program, it's easy to forget where a particular variable,
constant, or function is defined. You can use the Find command to locate
occurrences of a symbol, but that offers little information about which one is the
definition. To make such searches easier, you can choose Goto Definition from the
Browse menu to jump directly to the definition of any symbol in your program.

The following procedure uses the SHOW project to demonstrate how powerful the
browser can be.

~ To investigate the GetNamePos procedure:

1. From the Window menu, choose Close All.

2. Open SHOW.ASM.

3. Go to line 174 (from the Search menu, choose Goto Mark, type 174, and press
ENTER).

4. Move the cursor to the GetNamePos procedure.

S. From the Browse menu, choose Goto Definition.

PWB displays the Goto Definition dialog box.

I~Na-M-e-:-:: [-;$;;-!;;;I.;;;:_ m;;,;------_-_-__ -_-__ -_-_ -_~~~~ _~~~~~~~~~~ _-__ -_-__ -_-__ -_-_ -__ -_ -__ -_-__ -_-__ -_-__ -_-__ -_-_]-.1

File:

NaMes

GetNaMePos
GetVid
GoBack
GoForeward
graphchk
hFileIn
HOMeJ(ey
i
iMode
iPage
IsEGA

Defined in:

t SHOWUTIL.ASM (2B)
jl~l

I11I

~m

i
!I!I

< OJ(} <Cancel} < Help }

Chapter 5 Advanced PWB Techniques 91

Notice that GetNamePos is highlighted and the defining file's name is displayed
in the list box to the right. More than one defining file is listed if a name is
defined in several scopes.

6. Choose OK.

PWB opens SHOWUTIL.ASM and shows the definition of GetNamePos.

Showing the Call Tree
Often when analyzing an existing program's flow, or when looking for
opportunities for optimization, it's useful to refer to a "call tree." A call tree is a
view of your program that provides, for each function, a list of other functions
called.

~ To generate a call tree of SHOW:

1. From the Browse menu, choose Call Tree.

PWB displays the Display Tree dialog box.

1.----------- Display Tree
Na/l\e: [..]

Modules:

PAGER.ASM
SHOIJ.ASM
SHOIJUTIL.ASM

[] Reverse Tree

t ,
Ill!
m~

ill,
Hll
:::1
::::

~1 ~j
l
J

Functions:

hackward
CellFill
exit
fi llspc
FillTah
forward
IsEGA
/l\ovechar
next line
noega
notah

< OK } <Cancel} < Help }

2. Choose SHOW.ASM from the Modules list box.

Notice that the Functions list box changes to show only the functions in
SHOW.ASM.

3. Choose OK to see the call tree.

Three kinds of annotations appear in the call tree:

?
A symbol followed by a question mark is used by your program but not defined
in any of the program files in the browse database. These are often library
functions.

92 Environment and Tools

[n]
The number n between square brackets shows symbols that are used more than
once. In the preceding example, GetNamePos is listed (under SHOW.ASM) as:

GetNamePos[3]

This means that there are three references to Get N arne Po s in S HOW .

.. . (ellipsis)
The ellipsis means that the full information for the function appears elsewhere in
the call tree.

Finding Unreferenced Symbols
As you write, rewrite and maintain a program, you will occasionally remove
function calls or references to global variables, leaving unused code or data space
in your program. Since the browser database contains information about where
every function and variable is referenced, you can easily identify ones that are not
used. This section shows how to use the Source Browser to find and remove the
extra code and data.

The system include files define many more functions than most programs use.
Therefore, unreferenced functions in your program are easiest to find when using a
browser database that does not contain the system include files. This example
begins by building a browser database for SHOW that does not contain information
defined by system include files.

~ To build the SHOW browser database:

1. From the Options menu, choose Browse Options.

PWB displays the Browse Options dialog box.

2. In the Browse Options dialog box, select the Generate Browse Information, the
Exclude System Include Files, and the Include Unreferenced Symbols check
boxes.

3. Choose OK.

Now that the browse options are set, rebuild the project and browser database by
choosing Rebuild All from the Project menu. With the updated browser database,
you can obtain a list of references for functions and variables.

~ To get a list of references for function and variables:

1. From the Browse menu, choose List References.

PWB displays the List References dialog box.

- List References ----,

Show only: [X] tnctions
[X] ~riables
[] /lJpes
[] ,acros
[] !lasses

~ OM ~ <Cancel> < ~lp >

Chapter 5 Advanced PWB Techniques 93

2. Select the Functions, Variables and Macros options, and then choose OK.

PWB opens the Browser Output window and creates the list of references. Each
name is followed by a colon and a list of functions that refer to the name.

~ To find an unreferenced symbol:

• Search for the regular expression : $ (colon, dollar sign).

This pattern specifies a colon at the end of the line. It finds names that are
followed by an empty list of references.

In the list of references created above for SHOW, a search for this expression will
find no matches, since there are no unreferenced symbols.To fmd all unreferenced
items with one search, you can perform a logged search and add only <browse>
(the Browser Output pseudofile) to the file list. This is especially useful for large
projects.

~ To go to the definition of an unreferenced symbol in the source:

1. Place the cursor on the symbol in question. From the Browse menu, choose Goto
Definition.

PWB automatically selects the definition of the symbol under the cursor.
However, if the symbol begins with "@" or "?" or other punctuation characters,
the non alphabetic character is not automatically recognized as part of the
symbol name. To include it, mark the entire name before choosing Goto
Definition.

2. Choose OK.

PWB jumps to the definition of the selected symbol in the appropriate source file,
where you can remove the unused function, macro or variable.

Advanced Browser Database Information
In the previous sections, you learned the basics of building a browser database and
some useful applications of the Source Browser. In this section, you will find
information on what goes into a browser database and how to estimate the disk

94 Environment and Tools

requirements to build one. You will also learn how to build a database for non
PWB projects and how to build a single database for related projects.

Estimating .SBR and .BSC File Size
When you build a browser database, you first create an .SBR file for each source
file in the project. Each of these files contains the following information:

• The name of the source file and the files it includes.

• Every symbol defined in the source file and the files it includes.

These symbols are the names of all functions, types (including the names of all
classes, structures, and enumerations and their members), macros (including
symbols in the expanded macro), and variables in the file. These symbols also
include all parameters and local variables for the functions.

• The location of all symbol definitions in the files.

• The location of all references to every symbol in the files.

• Linkage information.

This is a tremendous amount of information about your program and can therefore
occupy a large quantity of disk space. The benefit is that the Source Browser
provides fast, sophisticated access to this database of knowledge about your
program.

For assembler source files, the .SBR file may be between a quarter and a half the
size of the preprocessed source file (that is, the source file with comments removed,
all files included, and all macros expanded).

You might assume that the resulting browser database (.BSC file) is approximately
the sum of all the .SBR files. However, the browser database is the union of the
information in the component .SBR files. This means that the .BSC file is usually
not very large. Much of the information in the .SBR files is defined in include files,
which are common to many modules in the project. The union of the .SBR files is
relatively small because most of the include-file information is duplicated in each
.SBR file.

Even for C or C++ programs, which tend to create much larger .BSC files, a good
sized program will seldom require a .BSC file larger than SOOK.

Building Databases for Non-PWB Projects
The simplest way to build a browser database for non-PWB projects is to build the
browser database separately from the project. You can use a makefile or a batch
file for this purpose. The process requires only two steps:

1. Create an .SBR file for each module. The simplest way to do this is to run the
compiler with the options to produce an .SBR file and no other files. For
example, the ML command line:

Chapter 5 Advanced PWB Techniques 95

ML IZs IW0 IFr *.asm

specifies that the compiler processes all .ASM files in the current directory,
checks syntax only (lZs) and issues no warnings (lW0). Therefore, no object
files are produced. However, browser information (.SBR files) are generated
(IF r).

2. Combine the .SBR files into a browser database.

The syntax for this command is:

BSCMAKE options /oproject.BSC * .sbr

For complete information on BSCMAKE options and syntax, see Chapter 19.

The process of creating a browser database changes little between projects.
Therefore, you could use a batch file for many projects similar to the following
example:

ECHO OFF
REM Require at least one command-line option
IF %1.==. GOTO USAGE

REM Compile to generate only .SBR files
ML IZs IW0 IFr *.asm

REM Build the browser database
BSCMAKE %2 %3 %4 %5 %6 %7 %8 lo%l.BSC *.sbr
GOTO END

:USAGE
REM Print instructions
ECHO -Usage: %0 project [option] ...
ECHO - project Base name of browser database
ECHO - [option] ... List of BSCMAKE options
:END

This batch file assumes that all the project sources are in the current directory. It
requires that you specify the name of the browser database and allows BSCMAKE
options. You may want to change this file to specify different BSCMAKE or
assembler options.

If your project's sources are distributed across several directories, you must write a
custom batch file or makefile to build the database. For more information on the
BSCMAKE utility, see Chapter 19.

~ To use a custom browser database in PWB:

1. From the Browse menu, choose Open Custom.

2. Choose the Use Custom Database button.

96 Environment and Tools

3. Select your custom browser database and choose OK.

If you want to save this database name permanently, choose Save Current
Database.

4. Choose OK.

The PWB Source Browser opens your custom database.

You can now browse your non-PWB project.

If you are using a makefile to build your project, you can choose Open Project from
the Project menu and open it as a non-PWB project makefile. If the project makefile
has the same base name as the browser database and resides in the same directory,
PWB automatically opens the database when you open the project. For more
information on using a non-PWB makefile for a project in PWB, see "Using a Non
PWB Makefile" on page 55.

Building Combined Databases
If you have two or more closely related projects, you can combine the browser
databases for the projects. For example, if two large programs differ only in one or
two modules so that most of the sources are shared between the two projects, it can
be useful to browse both projects with a single browser database.

~ To build a combined browser database:

1. Generate the .SBR files for both projects.

2. Pass all of the .SBR files to BSCMAKE to build the combined database.

The resulting database is the inclusive-OR of the information in the two projects.

Executing Functions and Macros
The menus and dialog boxes in PWB provide access to almost everything you need
to do to develop your projects. You can edit, search, and browse your source files.
You can build, run, and debug your project, and you can view Help for the entire
system. However, the visible display provides access to only part of the capabilities
available in PWB. Behind the menu commands lie functions with many more
options than you can access from the menus. Many functions and macros are not
assigned to keys by default.

The sophisticated PWB user learns how to use the functions and predefined macros
to perform the precisely correct action. Each function has several fOTITIS that are
invoked with the combinations of the Arg and Meta prefixes. These two functions
are used to introduce arguments and modify the action of PWB functions.

Chapter 5 Advanced PWB Techniques 97

Arg (ALT+A)

The fundamental function in PWB. You use Arg to begin selecting text,
introduce text and numeric function arguments, or modify the action of functions
by increasing the Arg count.

To pass a text argument to a function, for example, press AL T +A, and then type
the text. The text you type doesn't go into your file. The Text Argument dialog
box appears when you type the first letter of the text.

.----------- Text Argurrent ----------01
Arg[l1

[Arob idextrous· ...]

<Cancel> < ~lp >

You can then edit the text. PWB displays the current argument count and Meta
state in the dialog box.

Notice that there is no OK button in this dialog box. Instead of choosing OK,
press the key for the function you want to execute with this argument. Choose
the Cancel button if you do not want to execute a function.

Meta (F9)
Modifies the action of a function in different ways from the various argument
types. It generally toggles an aspect of the function's action.

For example, the text-deletion functions usually move the deleted text to the
clipboard. However, when modified with Meta, they clear the text without
changing the clipboard.

The combination of Arg and Meta greatly increases the number of variations
available to each function. For example, the Psearch function can perfonn different
search operations depending on how it is executed. Psearch can:

• Repeat the previous search (Psearch).

• Search for text (Arg text Psearch).

• Perfonn a case-sensitive text search (Arg Meta text Psearch).

• Search for a regular expression (Arg Arg text Psearch).

• Search for a case-sensitive regular expression (Arg Arg Meta text Psearch).

Because you can reassign keys to your preference, the PWB documentation cannot
assume that a specific key executes a given function or macro. Therefore, the PWB
documentation gives a sequence of functions or macros by name, followed by the
same sequence of actions by key name. In this book, the key is the default key. In
PWB Help, the displayed key is the one currently assigned to that function. When
no key is assigned, PWB displays una s s i 9 ned.

98 Environment and Tools

For example, to insert the definition of a macro at the cursor, you pass the name of
the macro to the Tell function and modify Tell's action with the Meta prefix. This
sequence of actions is expressed as follows:

• Execute the function sequence Arg Meta macroname Tell
(ALT+A F9 macroname CTRL+T).

If the Tell function is assigned to a different key, Help displays that key in place of
CTRL+T.

Chapter 7, "Programmer's WorkBench Reference," contains complete descriptions
of all forms of each function in PWB.

Executing Functions and Macros by Name
The most frequently used functions and macros are assigned to certain keys by
default. For example, the Paste function is assigned to SHIFT +ENTER, Linsert is
assigned to CTRL+N, and so on. Sometimes, however, you want to use a function or
macro that is not assigned to a key. You can always assign a key by using the Key
Assignments command or by using the Assign function. However, that is a lot of
trouble for something you need only once. PWB allows you to execute a function or
macro by name, rather than by pressing a key.

~ To execute a function or macro by name:

• Perform the function sequence Argfunction Execute (ALT+Afunction F7).

In other words, press ALT+A (execute the Arg function), type the name of the
function or macro, and then press F7 (invoke the Execute function).

The argument to Execute doesn't have to be a single function or macro name. It can
be a list of functions and macros. The argument is really a temporary, nameless
macro. This means that you can do anything in an argument to Execute that you
can do in a macro. PWB follows the rules for macro syntax and execution. You can
define labels, test function results, and loop.

Warning When executed from a macro, PWB functions that display a yes-or-no
prompt assume a "Yes" response. To restore the prompt, use the macro prompt
directive «). For more information, see "Macro Prompt Directives" in PWB Help.

Writing PWB Macros
The Programmer's WorkBench, like other editors designed for programmers,
provides a macro language so that you can customize and extend the editor or
automate common tasks. You can create macros in one of the following ways:

Chapter 5 Advanced PWB Techniques 99

• By recording actions you perfonn. The recording mechanism allows you to
perfonn a procedure once, while PWB is recording. After you've recorded it,
you can execute the macro to repeat the recorded procedure.

• By manually writing macros. This technique is less automatic but does allow
you to write more powerful macros.

These two techniques are not mutually exclusive. You can start by recording a
macro that approaches the steps you want to perfonn, then edit it to expand its
functionality or handle different situations.

When Is a Macro Useful?
Macros are useful for automating procedures you perfonn frequently. You may also
write macros that automate tedious one-time tasks.

Of course, not every task is a good candidate for automation. It might take longer to
write the macro than to do the task by hand. If you don't expect to perfonn a task
often, don't automate it. Also, automated editing procedures introduce an element of
risk. You might not foresee situations that your macro can encounter. Incorrect
macros can sometimes be destructive.

A little experience with macros and some careful testing will enable you to create a
good set of macros for your own use.

Recording Macros
Recording actions you perfonn with the mouse or at the keyboard can be a powerful
way to write a macro. You tum on recording and perfonn the actions that you want
the macro to execute. You can concentrate on the task that you want to automate,
instead of concentrating on the syntax of the macro language.

For example, if you occasionally reverse characters when you type quickly, a macro
to transpose them is useful. Before recording a macro to transpose characters, you
should think about what you are going to do while recording the macro. To
transpose characters, you will select the character at the cursor, cut it onto the
clipboard, move over one character, and then paste the character you cut.

~ To record a macro that transposes characters:

1. From the Edit menu, choose Set Record.

PWB brings up the Set Macro Record dialog box.

100 Environment and Tools

Set Macro Record
lktrre : [MtI! MtiI ~]

ty Ass ignrrent: { }[....................]

[X] !lear First

~ OJ(m <Cancel> < I;elp >

2. In the Name text box, type Transpose.

3. Click the mouse in the key box (between the braces { }), or press TAB until the
cursor is in the key box.

4. Press CTRL+SHIFT + T (for transpose).

PWB automatically fills in the name of the key you pressed.

Set Macro Record
lktrre: [Transpose·]

ty Assignrrent: { }[Shift+Ctrl+T··]

[X] !lear First

~ OJ(m <Cancel> < I;elp >

5. Press TAB to leave the key box, and then choose OK.

PWB closes the Set Macro Record dialog box. When you tum on macro
recording, PWB records a macro called Transpose and associates it with
SHIFT +CTRL+ T.

Important The Set Macro Record command does not start the macro recorder. It
only specifies the name and key association for the macro you are going to
record.

6. From the Edit menu, choose Record On.

When you choose Record On, the macro recorder starts. To indicate that the
macro recorder is running, PWB displays the letter X on the status bar. Notice
that the Project, Options, and Help menus are unavailable while PWB is
recording a macro.

7. Select the character at the cursor by holding down the SHIFT key and pressing
the RIGHT ARROW key.

8. Press SHIFT+DEL to cut the character onto the clipboard.

9. Press the RIGHT ARROW key to move the cursor to the new location for the
character.

Chapter 5 Advanced PWB Techniques 101

10. Press SHIff +INS to paste the character from the clipboard back into the text.

11. From the Edit menu, choose Record On to stop the macro recorder.

Press SHIFf+CTRL+T to switch the character at the cursor with the character to the
right. You can now use the new macro and key assignment for the rest of the PWB
session.

~ To edit the macro:

• From the Window menu, choose Record from the PWB Windows cascaded
menu.

PWB opens the Record window .

• 1 • II I I,,· II . I

• [2] Record
Transpose:= select right delete right paste cancel

The Record window shows the definition of the T ran s po s e macro that you just
recorded. You can edit the definition to change the way the macro works. For
example, you decide that the macro should reverse the character at the cursor with
the character to the left, instead of the character to the right.

~ To redefine the macro:

1. Change the macro to read as follows:

Transpose:=select left delete left paste

2. Move the cursor to the macro definition.

102 Environment and Tools

3. Press ALT+=, the default key for the Assign function.

Assigning the macro replaces the previous definition of T ran s po s e with the
new definition.

4. Return to the file you were originally viewing.

Up to this point, the macro exists only in memory. To use your recorded macro for
subsequent PWB sessions, you must save the definition of the macro to disk.

~ To save the macro:

1. If the Record window is not open, choose Record from the PWB Windows
cascaded menu.

PWB opens the Record window.

2. From the File menu, choose Save.

PWB inserts the macro definition and the key assignment into your TOOLS.INI
file for future sessions. When you leave PWB, you are prompted to save
TOOLS.INI. Your changes are not permanent until you actually save
TOOLS.INI.

Flow Control Statements
Recorded macros have the inherent limitation of playing back one fixed sequence of
commands. Often you need a macro to execute repeatedly until some condition is
satisfied. This requires that you use flow control statements to govern the actions
your macro takes.

All editor functions return a true or false value. The macro flow control operators
that use these values are:

Operator

+>label

->label

=>label

:>label

Meaning

Branch to label if last function yields TRUE

Branch to label if last function yields FALSE

Branch unconditionally to label

Define label

These rudimentary operators are not as sophisticated as a high-level language's IF
statement or FOR loop. They are more like an assembly language's conditional
jump instruction. However, they provide the essential capabilities needed for
writing loops and other conditional constructs.

Flow Control Example
If you frequently perform multiple-window editing, a macro that restores the display
to a single window can be helpful. Such a macro requires the following logic:

Chapter 5 Advanced PWB Techniques 103

1. Switch to the next window.

2. If the switch is not successful (meaning that only one window is present), end
the macro.

3. If the switch is successful (another window is present), close that window and
go back to step one.

This macro will be called CloseWindows and assigned to SHIFT+CTRL+W.

~ To create the Close Windows macro:

1. From the File menu, choose All Files.

PWB displays the All Files dialog box.

Notice that your TOOLS.INI file is in the list of open files, even though you did
not explicitly open it. PWB opens TOOLS.INI to load its configuration
information (unless when you specify /DT on the PWB command line).

2. Select TOOLS.INI file in the list of open files.

3. Choose OK.

PWB opens a window and displays your TOOLS.INI file.

4. Find the section of TOOLS.INI that begins with [pwb]. This is the section
where PWB keeps its startup configuration information.

5. In the PWB section, type the following two new lines:

CloseWindows:= :)Loop Openfile -) Meta Window Window =)Loop
CloseWindows: SHIFT+CTRL+W

If you want these definitions to take effect immediately, select both lines and
press ALT += to execute the Assign function. You can also assign the definitions
one at a time.

6. Choose Save from the File menu to make this macro and key assignment part of
your TOOLS.INI file.

The next time you start PWB, the CloseWindows macro is defined and assigned
to the SHIFT+CTRL+W key.

The first line you typed uses the := operator to associate the macro definition with
the name "Close Windows." After the operator is the list of functions and macro
operators that specify what the macro is to do. The second line is a separate
statement that uses the : operator to assign the macro to the SHIFT +CTRL+ W key.

The Close Windows macro works as follows:

1. L 0 0 p defines a label called L 0 0 p. There cannot be a space between the : >
operator and the label name.

104 Environment and Tools

2. Openfi 1 e switches to the window under the active window.

3. The - > operator examines the return value from the Openfile function. If the
function returns false because there is no other window, the - > operator exits
the macro.

4. The phrase Meta Wi ndow closes the active window.

5. Wi ndow returns to the window you started from.

6. Loop unconditionally transfers control back to the Loop label and starts the
sequence again.

When this macro is defined, you can press SHIFf+CTRL+W whenever you want to
close all windows except the active window.

User Input Statements
PWB macros can prompt for input. This helps you write more general macros. For
example, you might keep a history of the changes you make to a file at the top in a
format similar to the following:

11** Revision History **
1115-Nov-1991:IAD:Add return value for DoPrint
1131-0ct-1991:IAD:lmplement printing primitives

To facilitate entering the revision history in reverse chronological order and to
make it easy to keep track of where you were in the source file, you can write a
macro to perform the following steps:

1. Set a mark at the cursor for future reference.

2. Insert a revision history header at the beginning of the file if one is not present.

3. Insert the current date.

4. Prompt for initials and insert them just below the header.

5. Prompt for comments and insert them after the initials.

6. Return to the saved position in the file.

Note that while this macro is executing, you can choose the Cancel button in the
dialog boxes that prompt for initials and comments. The macro must handle these
cases and gracefully back out of the changes to the file.

~ To enter this macro in TOOLS.INI:

1. Open TOOLS.INI for editing.

2. Type the following macros and key assignment in the [pwb] section of
TOOLS.INI:

Chapter 5 Advanced PWB Techniques 105

LineComment:-"//
RevHead:= "** Revision History **"
RevComment:= \

Arg Arg "Sta rt" Ma rk \
Begfile Arg RevHead Psearch +)Found \
Linsert LineComment RevHead \

:)Found \
Down Linsert Begline LineComment Curdate " (" \
Arg "Initials" Prompt -)Ouit Paste Endline ")" \
Arg "Comment" Prompt -)Ouit Paste =)End \

:)Ouit Meta Ldelete \
:)End Arg "Start" Mark
RevComment:Ctrl+H

There are at least two spaces before the backslash at the end of each line. The
backslashes are line-continuation characters. They allow you to write a macro
that is more than one line long. In this case, line continuations format the macro
in a readable way. To further assist in readability, you can indent the parts of the
macro which define the actual keystrokes, as in the preceding example.

3. Choose Save from the File menu to save your changes.

4. To reinitialize PWB, execute the Initialize function by pressing SHIFf+F8.

PWB discards all of its current settings and rereads the PWB section of
TOOLS.INI. The same effect can be achieved by quitting and restarting PWB.

The following discussion analyzes the workings of the definitions you added to
TOOLS.INI. It repeats one or two lines from the text you typed and describes how
each line works. You may want to refer to the full definition as you follow along.

The first two lines

LineComment:="//"
RevHead:= "** Revision History **"

define two utility macros that are used by the main RevComment macro. They
define strings that are used several times in RevComment.

The third line

RevComment:= \

declares the name of the macro. The succeeding lines define the action of the
RevComment macro.

106 Environment and Tools

The first line of the definition

Arg Arg "Start" Mark \

sets a mark named "Start" at the cursor so that the macro can restore the cursor
position after inserting the comments at the beginning of the file.

The next line

Begfile Arg RevHead Psearch +>Found \

moves to the beginning of the file (Begfile), then searches forward for the revision
history header. If the header is found, PWB branches to the F 0 U n d label; otherwise,
it executes the next line.

Linsert LineComment RevHead \

If the macro is here, the header was not located in the file. The Linsert function
creates a new line, and PWB types the revision-history header. The macro
continues with the line:

:>Found \

This line defines the F 0 U n d label. At this point in the macro, the cursor is on the
line with the header. The next lines insert the new revision information, starting
with the following line:

Down Linsert Begline LineComment Curdate "(" \

PWB moves the cursor down one line (Down), inserts a new line (Linsert), moves
to the beginning of the line (Begline), and calls the LineComment macro to
designate the line as a comment. PWB then types the current date (Curdate) and an
open parenthesis.

The macro prompts for initials:

Arg "Initials" Prompt ->Quit Paste Endline ")" \

The macro uses the Prompt function to get your initials. If you choose the Cancel
button, the function returns false, so the macro branches to the label Qui t. If you
choose the OK button, the text you typed in the dialog box is passed to the Paste
function, which inserts the text. The macro moves the cursor to the end of the line
(Endline) and types a closing parenthesis.

The code on this line explicitly handles the case when you cancel the prompt (the
false condition). The phrase - > Qui t causes PWB to skip to the label Qui t when
Prompt returns false.

If you use the Prompt function and you do not handle the false condition, a null
argument (a text string with zero length) is passed to the next function. Therefore, a

Chapter 5 Advanced PWB Techniques 107

phrase like A r 9 " Que?" Pro m p t Pas t e pastes either the input or nothing,
depending on whether you choose the OK or Cancel button. Passing a null
argument to Paste is harmless, but some functions require an argument. In these
cases, you can use the - > operator to terminate the macro.

The RevComment macro uses an explicit label so that it can end the macro without
an error when you choose the Cancel button. The next line of the macro is almost
the same as the previous line in the macro.

Arg "Comment" Prompt ->Ouit Paste =>End \

On this line, if the paste is carried out, an unconditional branch is taken to the label
End and passes over the Quit branch, which is defined on the next line.

:>Quit Meta Ldelete \

The Quit branch is taken when you cancel a prompt. The macro has to clean up the
text already inserted by the macro. The Meta Ldelete function deletes the
incomplete line that would have been the revision-history entry. The next line
defines the last step of the macro.

:>End Arg "Start" Mark

The End label defines the entry point for the common cleanup code. This line
restores the cursor to the initial position when you invoked the macro. Because this
line does not end in a line-continuation character (\), it is the end of the
RevComment macro.

The last line that you typed is not part of the RevComment macro. It is a separate
TOOLS.INI entry.

RevComment:Ctrl+H

This line assigns the CTRL+H key to the RevComment macro.

You can polish this macro by adding A r 9 " S tar t" Met a Mar k to the end of the
macro. This phrase deletes the mark. A better alternative is to use the Savecur and
Restcur functions instead of named marks. However, this example uses named
marks to illustrate how to use them in a macro.

CHAPTER 6

Customizing PWB

PWB is a completely customizable development environment. You can modify
PWB in the following ways:

• Changing mapping of keystrokes to actions.

• Changing default behavior of PWB (for example, how tabs are handled or if
PWB automatically saves files).

• Changing the colors of parts of the PWB display.

• Adding new commands to the Run menu.

• Programming new editor actions (macros).

109

Instructions on how to write macros are in "Writing PWB Macros" on page 98.

In addition to the customizations that you can make by using the commands in the
Options menu, you can also customize PWB by editing the TOOLS.INI file.

Note Another category of customization that is not covered in this book is how to
write PWB extensions. An extension is a dynamically loaded module that can
access PWB' s internal functions. Extensions can do much more than macros. To
learn more about writing PWB extensions, see the Microsoft Advisor Help system
(choose "PWB Extensions" from the main Help table of contents).

Changing Key Assignments
PWB maps actions (functions and macros) to keys. You can assign any of these
actions to keys other than the default keys.

For example, Exit is a PWB function. Its default key assignment is F8. A BRIEF
user may prefer to use ALT+X to leave the editor.

~ To make AL T +X execute the Exit function:

1. From the Options menu, choose Key Assignments.

110 Environment and Tools

PWB displays the Key Assignments dialog box.

1..------------](ey Assignrrents -----------,
iacro/Function Narre: [exit···]

New ~y: { }[...................] Assigned To:

Macro/Function ~ist:

emacsnewl
endfi Ie
endl ine
environrrent
execute
exit
graphic
horre
initialize

mJssign~ <Enassign>

t

I

:Jtrrent](eys:

U~ssigned](eys:

Alt .. !
Alt .. "
Alt .. 11

<Sa!e ... > <imction Help>

< 0](> <Cancel> < ~Ip >

2. Select Exit in the Macro/Function List box, or type ex i t in the Macro/Function
N arne text box.

3. Move the cursor to the New Key box between the braces (n) by clicking
between the braces or by pressing ALT+K.

4. Press ALT+X.

PWB types A L T + X in the text box after the braces and displays the name of the
macro or function that ALT+X is currently assigned to. With the default settings,
you can see that ALT+X is assigned to the Unassigned function. Pressing a key
in the key box is a quick way to find out the name of the function assigned to the
key.

Note When the cursor is in the key box (between the braces), most keys lose their
usual meaning, including ESC, Fl, and the dialog box access keys. The key you press
is interpreted as the key to be assigned. Only TAB, SHIFT+TAB, ENTER, and
NUMENTER retain their usual meaning. To assign one of these keys, type the name
of the key in the text box.

5. Press TAB to move the cursor out of the key box.

6. Choose Assign.

PWB assigns Exit to the ALT+X key. Note that Exit is still assigned to the F8

key. Functions can be assigned to many keys.

7. Choose OK.

Chapter 6 Customizing PWB 111

Important To change a key, you must choose the Assign button. The OK button
dismisses only the dialog box. It does not perform any other action. This design
allows you to assign many keys in one session with the dialog box.

The change remains in effect for the duration of the session.

~ To make a permanent key assignment:

1. From the Options menu, choose Key Assignments.

2. Choose Save.

PWB displays the Save Key Assignments dialog box, which lists all of the
unsaved assignments that you have made during the PWB session by using the
Key Assignments dialog box.

3. Delete any settings that you do not want to save.

4. Choose OK.

PWB writes your new settings into the [P W B] section of TOOLS.lNI for
subsequent sessions. When you exit PWB, you are prompted to save TOOLS.lNI.
Your changes are not permanent until you actually save the file to disk.

If you already know the function name, you can make a quick assignment for the
current session by using the Assign function instead of going through the Key
Assignments dialog box.

~ To assign a key using the Assign function:

• Execute the function sequence:

Argfunction:key Assign (ALT+Afunction: key ALT+=).

For example, to assign Exit to ALT+X:

1. Press ALT+A to execute Arg.

2. Type exit:ALT+X

3. Press ALT+= to execute Assign.

The assignment is in effect for the rest of the PWB session.

The key assignments you make by using the Assign function are not listed in the
Save Key Assignments dialog box.

To discover the name of the function or macro that is currently assigned to a key,
use the Key Assignments dialog box (as previously described) or use the Tell
function.

112 Environment and Tools

~ To find a current key assignment using Tell:

1. Press CTRL+T to execute Tell.

PWB displays the prompt:

Press a key to tell about

2. Press the key you want to find out about.

If you press FlO, PWB displays the function assigned to the FlO key (Openfile).

-Tell-

openf i Ie :F18

The Tell function has many other uses in addition to displaying key assignments.
For more information on Tell, see page 202.

Changing Settings
When you first use PWB, you don't have to specify the tab stops, whether the editor
starts in insert or overtype mode, and so on. These settings (called "switches") are
all covered by defaults. PWB's default behavior can be extensively customized by
changing the values of PWB switches.

Switches fall into three categories:

• Boolean switches. True/false or on/off switches that can also be specified as
yes/no or 0/1. An example of a Boolean switch is Autosave, which governs
whether PWB saves a file when you switch to a different one.

• Numeric switches. An example of a numeric switch is Undocount, which
determines the maximum number of editing actions you can undo.

• Text switches. Examples of a text switch are Markfile, the name of the file in
which to store marks, Tabstops, a list of tab-stop intervals, and Readonly, the
operating-system command for PWB to run when saving a read-only file.

~ To change the setting for Tabstops:

1. From the Options menu, choose Editor Settings.

PWB displays the Editor Settings dialog box.

2. Tabstops is a text switch (not a numeric switch as you might expect), so select
the Text option button.

Chapter 6 Customizing PWB 113

3. Select Tabstops in the Switch List box.

PWB shows the current setting for Tabstops in the Switch text box at the top of
the dialog box.

4. Move to the Switch text box by clicking in the box or by pressing ALT+S.

PWB selects only the switch value, instead of the entire text.

5. Type the new setting:

3 4 7 8

This setting defines a tab stop at columns 4,8, 15, and every eight columns
thereafter. At this point, the Editor Settings dialog box should look like:

Editor Settings
~itch: [tabstops:3 'I 7 B···]

I mIB············ .Switch .~er: ul Switch 11Pe
() ~olean
() rreric
(.) IJ!xt

Switch ~ist:

fastfunc:up on t
,','

markfile: ;H~

printcrJXl:
::.,

: :~;

readonly: Il!!
IIi1!t.;mtB
word: [a-zA-Z8-9_$] + l

I

~!t Switch; <Sa!e ... > <S!itch Help>

< OK > <Cancel> < ;telp >

6. Choose the Set Switch button to change the setting of the Tabstops switch.

7. Choose OK.

114 Environment and Tools

Important To change a setting you must choose the Set Switch button. The OK
button only dismisses the dialog box. It does not perform any other action. This
design allows you to set many switches in one session with the dialog box.

The new tab stops you set are used for the current session. If you want to use this
setting permanently, you must choose the Save button in the Editor Settings dialog
box. This changes your TOOLS.INI file in the same way as for key assignments.

You can make temporary switch assignments for the current session by using the
Assign function. You do this in the same way as for a key assignment by typing
Arg switch: value Assign (ALT+A switch:value ALT+=).

You may be curious about the Switch Owner box that you did not use in this
example. The Switch Owner is either PWB or a PWB extension such as
PWBHELP (the extension that provides the Microsoft Advisor in PWB). Type or
select a switch owner to set switches for that extension. Each extension has its own
section in TOOLS.INI.

Note When you choose Set Switch, most switch settings take effect immediately.
However, changes to the Height switch do not take effect until you choose OK.

Customizing Colors
You can change the color of almost any item in the PWB interface. For a table
showing the names and meanings of PWB 's color settings, see page 252 in Chapter
7, the "Programmer's WorkBench Reference."

Some displays show a brilliant green for the left and right triangular symbols
surrounding buttons in Help.

~ To change the light green to light cyan:

1. From the Options menu, choose Colors.

PWB displays the Colors dialog box.

;&:1lor:

desktop
pwbwi ndowtext
pwbwindowborder
rressage
location
helpnorm
helpbold
helpitalic
helpunderline
he lpwarning

Example: P.ttn

t

Chapter 6 Customizing PWB 115

Colors
~reground: Ulackground:

Black t Black t
Blue I 1;1111-
Green ~ ~n Green Hll

Uwl. ::::
Cyan i~ll

j ~1~
Red l ~ f~ Red ~ljl

:In
Magenta :::: Magenta ::::

:: ~l ::H
Brown illl Brown m~
White l White l

[] Bright F~e [] Bright B~k

~t Color~ <Sa!e ... >

< OK > <Cancel> < ;Ielp >

2. Select Helpitalic in the Color list box.

3. Select Cyan in the Foreground list box.

4. Choose Set Color.

To verify your change, press Fl. The green symbols in help are now light cyan blue.
While you are viewing Help, you can find out what parts of PWB the rest of the
color names determine. To leave Help, choose the Cancel button or press ESC. PWB
returns you to the Colors dialog box.

The Bright Fore and Bright Back check boxes detennine if the given color is the
usual version of the color or the bright version of the color. Bright black, for
example, is usually a dark gray color.

If you want to save your new colors for subsequent sessions, choose the Save
button. PWB displays the Save Colors dialog box where you can delete
modifications that you don't want to save. When you choose OK in the Save Colors
dialog box, PWB modifies TOOLS.INI to record your changes.

Adding Commands to the Run Menu
You can add up to six commands to the Run menu to integrate your own utilities
into PWB. A command is the name of any executable (.EXE or .COM) file, batch
(.BAT) file, or built-in operating-system command such as DIR or COPY.

Suppose you use an outline processor to keep project notes. You can start the
outline processor from PWB' s Run menu.

116 Environment and Tools

~ To add a command to the Run menu:

1. From the Run menu, choose Customize Run Menu.

2. Choose the Add button.

PWB displays the Add Custom Run Menu Item dialog box for you to describe
your custom menu item:

.------- Add Custom Run r-k!nu Item -----...,1
ienu Text: [Project -Notes···]

t-th Narre: [..]

ljrgurrents: [..]

~tput File Narre: [...................................]

[Initial Directory: [..................................]

Help !ine: [..]

[] Use ~ialog Box for Argurrents and Output File

[X] Prompt Before Weturning [] Execute in Background

Shortcut Hey: (.) lime () Alt+~[..]

B OJ< m <Cancel> < ~lp >

3. Type P raj ect ----Notes ••• in the Menu Text box.

The tilde (----) before the letter N indicates the highlighted access letter for the
menu command. The ellipsis (...) uses the standard convention to indicate that
the command will require more information before it is completed. An ellipsis is
commonly associated with a dialog box command but can be used in this context
as well.

4. Specify the full path to the outlining program, OUTLINE.EXE, in the Path
Name text box. (The program name OUTLINE.EXE is for example purposes
only. Substitute the name of your own outliner or other program in its place.)

5. Specify the arguments you want to pass to the outliner in the Arguments text
box: % I dpfF . log.

This example illustrates a powerful feature of PWB: its ability to extract parts
of the filename to form a new name for customized menu items. The
specification % I dpfF extracts the drive (d), path (p), and base name (f) of the
current file. Anything after F is added to the end of the name.

For example, if the current file is C:~OURCE\COUNT.ASM, the argument
that PWB passes to the program is C:~OURCE\COUNT.LOG.

Chapter 6 Customizing PWB 117

6. In the Help Line text box, type the explanatory message that appears on the
status bar when you browse this menu item:

Run the OUTLINE program

7. Choose OK to confmn your entries.

PWB adds the command to your Run menu and modifies TOOLS.INI to save the
new item. You can now access your outline processor directly from the Run menu.

I

Execute:
Program ~gurrents ...
Debug:

~n DOS Corrmand ...
I iustomize Run Menu ...

Note You can add other text processing or word processing programs to the Run
menu. If you change the current file using another program, PWB prompts you to
update the file or to ignore the changes made by the other program.

118 Environment and Tools

How PWB Handles Tabs
The following functions and switches control how PWB handles tabs:

Name Type Description

Realtabs Switch Determines if PWB preserves tabs on modified lines

Entab Switch The white space translation method

Tabalign Switch The alignment of the cursor within a tab field

Filetab Switch The width of a tab field

Tabdisp Switch The fill-character for displaying tab fields

Tab Function Moves the cursor to the next tab stop

Backtab Function Moves the cursor to the previous tab stop

Tabstops Switch Tab positions for Tab and Backtab

For detailed information on each function and switch, see Help or Chapter 7,
"Programmer's WorkBench Reference." For instructions on how to set a switch see
"Changing Settings" on page 112. For instructions on how to assign a function to a
key, see "Changing Key Assignments" on page 109.

To understand how PWB handles tabs, you need to know only a few facts:

• The Tab (TAB) and Backtab (SHIFf+TAB) cursor-movement functions and the
Tabstops switch have nothing to do with tab characters. They affect cursor
movement, rather than the handling of tab characters, and are not discussed
further here. For more information on these items, see Chapter 7,
"Programmer's WorkBench Reference."

• PWB never changes any line in your file unless you explicitly modify it (lines
longer than PWB 's limit of 250 characters are the exception).

Some text editors translate white space (that is, entab or detab) when they read
and write the file. PWB does not translate white space when it reads or writes a
file. This is to be compatible with source-code control systems that would detect
the translated lines as changed lines.

• PWB translates white space according to the Entab switch only when you
modify a line.

• Tabalign has an effect only when Realtabs is set to yes.

• A "tab break" occurs every Filetab columns.

• When PWB displays a tab in the file, it fills from the tab character to the next
tab break with the Tabdisp character.

Figure 6.1 illustrates how PWB displays tabs.

Chapter 6 Customizing PWB 119

8 16 24 32 (Filetab: 8)

xxxxxxxx xxxxxxxxxxxxxxxx

l
'

Text I Text

Tab field, shown as Tabdisp:46

Physical tab character

/

Figure 6.1 How PWB Displays Tabs

• When translating white space, PWB preserves the exact spacing of text as it is
displayed on screen.

To set the width of displayed tabs, change the setting of the Filetab switch.

To tell PWB to translate white space on lines that you modify, set the Realtabs
switch to no and the Entab switch to a nonzero value, according to the translation
method that you want to use. The Entab switch takes one of the following values:

Entab

o
1

2

Translation Method

Translate white space to space characters

Translate white space outside of quotation-mark pairs to tabs

Translate white space to tabs

To preserve white space exactly as you type it, set the Realtabs switch to yes and
the Entab switch to 0.

When Realtabs is yes, the Tabalign switch comes into effect. When Tabalign is
set to yes, PWB automatically repositions the cursor onto the physical tab character
in the file, similar to the way a word processor positions the cursor. When
Tabalign is set to no, PWB allows the cursor to be anywhere in the tab field.

If you want the TAB key to type a tab character, assign the TAB key to the Graphic
function. Note that when a dialog box is displayed, the TAB key always moves to
the next option. You can always use the following method to type a tab character,
whether you are in a dialog box or an editing window.

~ To type a literal tab character in your text or in a dialog box:

1. Execute the Quote function (press CTRL+P).

2. Press TAB.

Examples
The following example sets up tabs so that they act the same as in other Microsoft
editors, such as QuickC or Word:

120 Environment and Tools

realtabs:yes
tabalign:yes
graphic:tab
trailspace:yes
entab:0

The Trailspace switch is needed so that the TAB key will have an effect on
otherwise blank lines.

To save your file so that it does not include any actual tab characters (ASCII 9), use
the following settings:

realtabs:no
entab:0
tabstops:3

The Tabstops value determines the number of spaces inserted for each press of the
tab key.

Another example of a common tab configuration is one in which the TAB key inserts
a tab in insert mode but moves over text to the next tab stop when the editor is in
overtype mode.

First, use the following tab settings:

realtabs:yes
tabalign:yes

Then insert the following macro into the PWB section of your TOOLS.lNI:

:Insert mode and overtype mode tabbing
TabIO:= Insertmode +>over Insertmode "\t" => \

:>over Insertmode Tab
TabIO:TAB

For more information on PWB macros see "Writing PWB Macros" on page 98.

PWB Configuration
PWB keeps track of three kinds of information between sessions in these three files:

File

TOOLS.INI

CURRENT.STS

project.STS

Information Saved

Configuration and customizations, such as key assignments,
colors, and macro definitions

The editing environment used most recently

The editing and building environment for a project

TOOLS.INI is described in the next section: "The TOOLS.INI File." For more
information about CURRENT.STS, see "Current Status File CURRENT.STS" on

Chapter 6 Customizing PWB 121

page 128, and for more information about the project.STS files, see "Project Status
Files" on page 129.

When you start PWB, it reads the TOOLS.INI file, loads PWB extensions, and
reads the CURRENT.STS or project status file in the following order:

1. PWB reads the [PWB] section of TOOLS.INI (except when PWB is started
using the /D or /DT command-line options). For more information on tagged
sections, see "TOOLS.INI Section Tags."

If the [P W B] section contains Load switches, PWB loads the specified
extension when each switch is encountered. When PWB loads an extension, it
also reads the extension's tagged section of TOOLS.INI, if any. For example,
when the Help extension is loaded, PWB reads the [PWB - PWBH E LP] section of
TOOLS.INI.

2. PWB autoloads extensions (except when the /D or /DA option is used to start
PWB).

The automatic loading of PWB extensions is described in the next section,
"Autoloading Extensions."

3. PWB reads the TOOLS.INI operating-system tagged section (except when /D or
/DT is used).

4. PWB reads the CURRENT.STS status file (except when' /D or /DS is used to
start PWB).

5. PWB reads the TOOLS.INI tagged section for the file extension of the current
file (except when /D or /DT is used to start PWB).

6. PWB runs the Autostart macro if it is defined in TOOLS.INI (except when /D
or /DT is used).

Autoloading Extensions
PWB automatically loads extensions if they follow a specific naming convention
and reside in a certain directory. For extensions that follow the convention, it is not
necessary to put load statements in TOOLS.INI.

PWB searches the directory where the PWB executable file is located for filenames
with the following pattern:

PWB*.MXT

PWB loads as many extensions with names of this form as it finds. When PWB
loads an extension, it also loads the extension's tagged section of TOOLS.INI.

To suppress extension autoloading, use the /DA option on the PWB command line.

122 Environment and Tools

Important Do not rename editor extensions. PWB and some extensions may
assume the predefined filename.

The TOOLS.lNI File
PWB, like other Microsoft tools, stores information in a file called TOOLS.INI.
This file retains information about how you want PWB to work under various
circumstances. PWB expects to find this file in the directory specified by your INIT
environment variable.

TOOLS.INI is a text file. You can edit it using PWB or any other text editor. PWB
also can store information directly to TOOLS.INI when, for example, you choose
the Save Colors button in the Colors dialog box. PWB modifies this file when you
save a recorded macro, a changed switch, a new key assignment, a custom browser
database, or a custom project template.

TOOLS.lNI Section Tags
The TOOLS.INI file is divided into sections, separated by "tags." These tags are
specified in the form:

[tagname]

The tagname is the base name of an executable file, such as NMAKE, CVW, or
PWB. The tag defines the start of a TOOLS.INI section that contains settings for
the indicated tool.

PWB extends this simple syntax to enable you to take different action depending on
the operating system or the current file's extension. The extended syntax is:

[PWB-modifier]

The modifier can be the base name of a PWB extension, an operating system's
identifier, or a filename extension for files that you edit.

Operating-System Tags
The following table lists the operating-system tags for various operating
environments. If you are running the Windows operating system, use the tag for the
version of MS-DOS that you are running.

Tag

[PWB-4.0]

[PWB-5.0]

Operating Environment

MS-DOS versions 4.0 and 4.01

MS-DOS version 5.0

Be sure to use the correct version number for your operating system.

Chapter 6 Customizing PWB 123

Filename-Extension Tags
The operating-system tags are read only once at startup. PWB reads the filename
extension tagged sections each time you switch to a file with that extension. For
example, suppose that you want the tab stops for MASM files to be every eight
columns, and every five columns for text files.

~ To set tab options based on filename extension:

1. Open your TOOLS.INI file in an editing window.

2. Create a MASM section by typing the tag:

[PWB-.ASM PWB-.INC]

3. Create a text file section by typing the tag:

[PWB-. TXT]

4. Put the appropriate Tabstops, Entab, and Realtabs switches in each section.
The lines that begin with a semicolon are comments.

[PWB-.ASM PWB-.INC
; Set the tab stops for MASM to 8
tabs tops : 8
; Translate white space to tabs
entab 1
rea 1 tabs : no

[PWB-. TXT]
; Set the tab stops for text files to 5
tabs tops : 5
; Translate white space to spaces
entab 0
rea 1 tabs : no

Depending on whether the current file is a MASM (.ASM or .INC) file or a text
(.TXT) file, the tab stops are set at 8 or 5 columns, respectively.

PWB reads multiple sections and applies the appropriate settings. You can use this
to your advantage by storing all your general settings in the [P W B] section and
storing differences in separate tagged sections.

Filename-extension tagged sections are useful for the kinds of files you edit most
frequently. However, it's impossible to define settings for every conceivable
extension. To handle this case, PWB provides a special extension (..) that means
"all extensions not defined elsewhere in TOOLS.INI."

For example, to set tab stops to 5 for all files except MASM files, modify the
preceding example to use the [PWB - ••] tag in place of [PWB - • TXT].

124 Environment and Tools

Note
When you choose the Save button in the Key Assignments, Editor Settings, and
Colors dialog boxes, and when you save a recorded macro or custom Run menu
command, PWB saves the setting in the main section. If the setting is for a PWB
extension, it is saved in that extension's tagged section. PWB never modifies or
writes settings in a filename-extension or operating-system section.

Named Tags
You can define tagged sections of TOOLS.INI that you load manually. Use
manually loaded sections to make special key assignments, to load complex or
rarely used macros, or to use a special PWB configuration under a particular
circumstance.

The syntax for a manually-loaded section tag is:

[PWB-name]

Where name is the name of the tagged section. A single section of TOOLS.INI can
be given several tag names. These tags have the form:

[PWB-namel PWB-name2 ...]

When you want to use the settings defined in one of these named sections, pass the
name of the section to the Initialize function (SHIFf+FS).

~ To read a tagged section of TOOLS.INI:

• Execute Arg name Initialize (ALT+A name SHIFf+FS)

You can use this method to read any tagged section, including the automatically
loaded sections.

Note When you execute Initialize with no arguments, PWB clears all the current
settings before reading the [PWB] section, including settings that you have made for
specific PWB extensions. PWB does not reread the operating -system or other
additional sections of TOOLS.INI. To reread the main section without clearing
other settings that you want to remain in effect, label the main PWB section with
the tag [P W B P W B - m a in]. You can then use Arg m a i n Initialize to recover your
startup settings, instead of using Initialize with no arguments.

TOOLS.lNI Statement Syntax
Within each TOOLS.INI section you place a series of comments or statements.
Each statement is a macro definition, key assignment, or switch setting, and must be

Chapter 6 Customizing PWB 125

stated on a single logical line. Statements can be continued across lines by using
line-continuations.

General Macro Syntax
The general syntax for a macro definition is:

name := definition

PWB does not reserve any names. Therefore, be careful not to redefine a PWB
function. For more information about how to write macros, see "Writing PWB
Macros" on page 98.

General Key Syntax
The general syntax for a key assignment is:

name: key

The name is the name of a function or macro, and the key is the name of a key. To
see how to write a given key, use the Tell function as described in "Changing Key
Assignments" on page 109.

Note that certain keys have fixed meanings when the cursor is in a dialog box or in
the Help window. You can assign one of these keys to a function or macro, but the
fixed meaning is used in a dialog box or the Help window.

The following keys have fixed meanings:

Key

ESC

Fl

TAB

SHIFT+TAB

SPACEBAR

ENTER, SHIFT +ENTER,

NUMENTER,

SHIFT +NUMENTER

Dialog Box

Choose Cancel

See Help on the dialog box
(choose Help)

Move to the next option

Move to the previous option

Toggle the setting of the
current option

Choose the default action

Help Window

Close the Help window

See Help on the current item

Move to the next hyperlink

Move to the previous
hyperlink

Activate the current hyperlink

Activate the current hyperlink

126 Environment and Tools

Note The Windows operating system or a terminate-and-stay-resident (TSR)
program may override PWB's use of specific keys. PWB has no knowledge of keys
that are reserved by these external processes. PWB lists these keys as available
keys in the Key Assignments dialog box and allows you to assign functions to these
keys, but you may not be able to use them. See the documentation for your
operating environment to see what keys are reserved by the system.

General Switch Syntax
The general syntax for a switch setting is:

switch: value

The exact syntax for the switch value depends on the switch. See Chapter 7, "PWB
Reference," for more information about each switch.

Line Continuation
All statements in TOOLS.INI must be stated on a single logical line. A logical line
can be written on several physical lines by using the TOOLS.INI line-continuation
character, the backslash (\).

The backslash must be preceded by a space to be treated as a line-continuation
character. Precede the backslash by two spaces if you want the concatenated
statement to contain a space at that location. If the backs lash is preceded by a tab,
PWB treats the tab as if it were two spaces. The backslash should be the last
character on the line except for spaces or tabs.

The backslash in the following statement is not a line continuation.

Qreplace:CTRL+\

However, the backslash at the end of the first line below is a line continuation.

findtag:=Arg Arg "A\\[A\\]+\\]" Psearch ->nf \
Arg Setwindow => :>nf Arg "no tag" Message

In this example, the backslash is preceded by two spaces. The first space is included
to separate - > n f from A r 9 in the concatenated macro definition. The second space
identifies the backslash that follows it as the line-continuation character.

Comments
In the TOOLS.INI file, PWB treats the text that follows a semicolon (;) up to the
end of the line as a comment. To specify the beginning of a comment, you must
place the semicolon at the beginning of a line or following white space.

For example, the first semicolon in the following statement is part of a command,
and the second semicolon begins a comment.

Chapter 6 Customizing PWB 127

Printcmd:lister -t4 %s -c; ;Print using lister program

In the following example, the first semicolon is a key name, and the second
semicolon begins a comment.

Sinsert:CTRL+; ;Stream insertion: CTRL plus semicolon

Semicolons inside a quoted string do not begin a comment.

Environment Variables
The INIT environment variable tells PWB where to find the TOOLS.INI file and
where to store the CURRENT.STS file. In general, the INIT, TMP, LIB,
INCLUDE, HELPFILES, and PATH environment variables must all be properly
set for your development environment to work smoothly.

~ To set the INIT environment variable from the command line:

• Type SET I NIT =C : \ I NIT

The operating-system SET command sets the environment variable to contain the
string C : \ I NIT. This example presumes that you want to store your initialization
files in C:\INIT. You could use any other directory. Make sure that the INIT
environment variable lists a single directory. Multiple directories in INIT can cause
inconsistent behavior.

The following list outlines how the environment works:

• The environment is always inherited from the parent process. The parent is
the process that starts the current process. In MS-DOS, the parent is often
COMMAND.COM or the Windows operating system.

• Inheritance of environment variables is a one-way process. A child inherits from
its parent. You can make changes to the environment in a child (when you use
the Environment Variables command in PWB, for example), but they are not
passed back to the parent. This means that any changes to environment variables
that you make while shelled out are lost when you return to PWB.

• Each MS-DOS session under the Windows operating system inherits its
environment from the Windows operating system. Changes made to the
environment in one session do not affect any other session.

The best way to make sure your environment is set properly is to explicitly set it in
one of your startup files. These are:

• CONFIG.SYS

• AUTOEXEC.BAT

128 Environment and Tools

PWB can save the complete table of environment variables for each project. You
can then use the Environment Variables command from the Options menu to change
environment variables for individual projects.

If you prefer that PWB save the environment variables for all PWB sessions or use
the current operating-system environment when it starts up, change the Envcursave
and Envprojsave switches. For more information on these switches, see the
"Programmer's WorkBench Reference" on pages 259 and 260.

Current Status File CURRENT.STS
The first time you run PWB or CodeView, it creates a CURRENT.STS (current
status) file in your INIT directory. If there is no INIT directory, PWB and
CodeView create the file in the current directory.

CURRENT.STS keeps track of the following items for PWB:

• Open windows, including their size and position and the list of open files in each
window

• Screen height

• Window style

• Find string

• Replace string

• The options used in a find or find-and-replace operation, such as the use of
regular expressions

• Optionally, all environment variables

PWB and Code View share the current location and filename for the active window.
When you leave Code View after a debugging session and return to PWB, PWB
positions the cursor at the place where you stopped debugging. For more
information on the items that CodeView saves in CURRENT.STS, see "The
CURRENT.STS State File" on page 316.

The next time you run PWB, it reads CURRENT.STS and restores the editing
environment to what it was when you left PWB. For more information on how
PWB uses environment variables, see "Environment Variables" on page 127.

The status files are plain text files. You can load one into an editor and read it.
However, you might corrupt the file if you try to modify it. There is no need to
modify it because PWB keeps it updated for you. No harm occurs if you delete
CURRENT.STS. However, you will have to manually reopen the files you were
working on.

Chapter 6 Customizing PWB 129

Project Status Files
For each project, PWB creates a project status file. PWB stores this file in the
project directory and gives it the name project.STS, where project is the base name
of the project.

Project status files contain the same kind of information that CURRENT.STS
contains, except on a per-project basis. This scheme allows PWB to keep track of
your screen layout, file history, and environment variables for each project. The
project status files also contain the current project template, language and utility
options, build directory, and the program's run-time arguments.

The main difference between the two status files is that the CURRENT.STS file
supplies default status information-settings that PWB uses when you have not set
a project. PWB uses the project's status file when you open that project.

PWB can also save all environment variables, including PATH, INCLUDE, LIB,
and HELPFILES, depending on how the envcursave and envprojsave switches are
set. For more information, see "Environment Variables" on page 127.

Important While it is harmless to delete CURRENT.STS, you should not delete
project status files. They contain important information for building and updating
your project. If you delete a project status file, you may need to delete the project
makefile and start over.

131

CHAPTER 7

Programmer's WorkBench
Reference

PWB Command Line
Syntax

Options

PWB [options] [/t]files

Use the following case-insensitive options when starting PWB:

/D[SITIA] ...
Disables PWB loading the initialization files or PWB extensions as indicated by
the following letters:

Letter

S

T

A

Meaning

Disable reading the status file CURRENT.STS

Disable reading TOOLS.INI

Disable PWB extension autoload

The /D option alone disables loading all the PWB extension and initialization
files. See: Autoload.

Note If you start PWB with the /DT option, this means that PWB options you
change during the session cannot be saved.

/PP makefile
Opens the specified PWB project.

/PF makefile
Opens the specified non-PWB project (foreign makefile).

/PL
Resets the last project. Use this option to start PWB in the same state you last
left it. You can set this option as the default by setting the Lastproject switch to
yes.

132 Environment and Tools

IE command

i.R

Executes the given command or sequence of commands as a macro upon startup.

If command contains a space, command should be enclosed in double quotation
marks (n). A single command need not be quoted. If command uses literal
quotation marks, place a backslash (\) before each mark. To use a backslash,
precede it with another backslash.

PWB starts in no-edit mode. You cannot modify files in this mode. See: Noedit.

1M {mark / line}

PWB starts at the specified location. See: Mark.

[[IT] file] ...
Tells PWB to load the given files on startup. If you specify a single file, PWB
loads it. If you specify multiple files, PWB loads the first file; then when you
use File Next or the Exit function, PWB loads the next file in the list.

If a rr precedes a filename or wildcard, PWB loads each file as a temporary file.
PWB does not include temporary files in the list of files saved between sessions.

Note No other options can follow rr on the PWB command line. You must
specify rr for each file you want to be temporary.

PWB Menus and Keys
Many PWB menu commands activate PWB functions or predefined macros. The
menu commands that are attached to functions and macros are listed in the tables
that follow. To assign a shortcut key for one of these menu commands, use the Key
Assignments command on the Options menu and assign a key to the corresponding
function or macro. For details on using the Key Assignments dialog box, see
"Changing Key Assignments" on page 109.

Names beginning with an underscore (_pwb ...) are macros. Names without an
underscore are functions.

Table 7.1 File Menu and Keys

Menu Command Macro or Function Default Keys

New _pwbnewfile Unassigned

Close _pwbclosefile Unassigned

Next _pwbnextfile Unassigned

Save _pwbsavefile SHIFf+F2

Save All _pwbsaveall Unassigned

Chapter 7 Programmer's WorkBench Reference 133

Table 7.1 File Menu and Keys (continued)

Menu Command Macro or Function Default Keys

DOS Shell _pwbshell Unassigned

nfile _pwbfilen Unassigned

Exit _pwbquit ALT+F4

Table 7.2 Edit Menu and Keys

Menu Command Macro or Function Default Keys

Undo _pwbundo Unassigned

Redo _pwbredo Unassigned

Repeat _pwbrepeat Unassigned

Cut Delete SHIFT+DEL, SHIFT+NUM-

Copy Copy CTRL+INS, SHIFT +NUM*

Paste Paste SHIFT +INS, SHIFT +NUM+

Delete _pwbclear DEL

Set Anchor Savecur Unassigned

Select To Anchor Selcur Unassigned

Stream Mode _pwbstreammode Unassigned

Box Mode _pwbboxmode Unassigned

Line Mode _pwblinemode Unassigned

Record On _pwbrecord Unassigned

Table 7.3 Search Menu and Keys

Menu Command Macro or Function Default Keys

Log _pwblogsearch Unassigned

Next Match (Logging on) _pwbnextlogmatch SHIFT +CTRL+F3

Next Match (Logging oft) _pwbnextmatch Unassigned

Previous Match (Logging on) _pwbpreviouslogmatch SHIFT +CTRL+F4

Previous Match (Logging oft) _pwbpreviousmatch Unassigned

GotoMatch _pwbgotomatch Unassigned

134 Environment and Tools

Table 7.4 Project Menu and Keys

Menu Command Macro or Function Default Keys

Compile File _pwbcompile Unassigned

Build _pwbbuild Unassigned

Rebuild All _pwbrebuild Unassigned

Close _pwbcloseproject Unassigned

Next Error _pwbnextmsg SHIFf+F3

Previous Error _pwbprevmsg SHIFf+F4

Goto Error _pwbsetmsg Unassigned

Table 7.5 Run Menu and Keys

Menu Command Macro or Function Default Keys

command1 _pwbuserl [ALT+Fn]

command2 _pwbuser2 [ALT+Fn]

command3 _pwbuser3 [ALT+Fn]

command4 _pwbuser4 [ALT+Fn]

commandS _pwbuser5 [ALT+Fn]

command6 _pwbuser6 [ALT+Fn]

command7 _pwbuser7 [ALT+Fn]

command8 _pwbuser8 [ALT+Fn]

command9 _pwbuser9 [ALT+Fn]

Table 7.6 Browse Menu and Keys

Menu Command Macro or Function Default Keys

Goto Definition Pwbrowsegotodef Unassigned

Goto Reference Pwbrowsegotoref Unassigned

View Relationship Pwbrowseviewrel Unassigned

List References Pwbrowselistref Unassigned

Call Tree (Fwd/Rev) Pwbrowsecalltree Unassigned

Function Hierarchy Pwbrowsefuhier Unassigned

Module Outline Pwbrowseoutline Unassigned

Which Reference Pwbrowsewhref Unassigned

Class Tree (Fwd/Rev) Pwbrowsecltree Unassigned

Class Hierarchy Pwbrowseclhier Unassigned

Chapter 7 Programmer's WorkBench Reference 135

Table 7.6 Browse Menu and Keys (continued)

Menu Command

Next

Previous

Macro or Function

Pwbrowsenext

Pwbrowseprev

Table 7.7 Window Menu and Keys

Menu Command Macro or Function

New _pwbnewwindow

Close _pwbclose

Close All _pwbcloseall

Move _pwbmove

Size _pwbresize

Restore _pwbrestore

Minimize _pwbminimize

Maximize _pwbmaximize

Cascade _pwbcascade

Tile _pwbtile

Arrange _pwbarrange

nlite _pwbwindowll

Table 7.8 Help Menu and Keys

Menu Command Macro or Function

Index _pwbhelp_index

Contents _pwbhelp_contents

Topic _pwbhelp_context

Help on Help _pwbhelp ~eneral

Next _pwbhelp_again

Search Results _pwbhelp_searchres

PWB Default Key Assignments

Default Keys

CTRL+NUM+

CTRL+NUM-

Default Keys

Unassigned

CTRL+F4

Unassigned

CTRL+F7

CTRL+F8

CTRL+FS

CTRL+F9

CTRL+FIO

FS

SHIFT+FS

ALT+FS

ALT+1l

Default Keys

Unassigned

SHIFT+Fl

Fl

Unassigned

Unassigned

Unassigned

PWB 's default keys assignments are shown in table 7.9. In each position having the
text Una s s i 9 ned, you can assign a function or macro to that key without taking
away a default keystroke. You cannot assign keys for positions that are empty.

136 Environment and Tools

These can usually be expressed in a different way. For example, CTRL+{ is
expressed as SHIff +CTRL+[.

Table 7.9 PWB Default Key Assignments

Key Plain SHIff ALT CTRL CTRL+SHIFf

Graphic

$ Graphic

% Graphic

& Graphic

Graphic

* Graphic

+ Graphic

Graphic Unassigned

Graphic Unassigned Unassigned

Graphic Unassigned Unassigned

Graphic Unassigned Unassigned

0 Graphic Unassigned Unassigned

Graphic _pwbwindowl Unassigned

2 Graphic _pwbwindow2 Unassigned

3 Graphic _pwbwindow3 Unassigned

4 Graphic _pwbwindow4 Unassigned

5 Graphic _pwbwindow5 Unassigned

6 Graphic _pwbwindow6 Unassigned

7 Graphic _pwbwindow7 Unassigned

8 Graphic _pwbwindow8 Unassigned

9 Graphic _pwbwindow9 Unassigned

Graphic Unassigned Unassigned

Graphic Unassigned Unassigned

< Graphic Unassigned Unassigned

Graphic Assign Unassigned

> Graphic Unassigned Unassigned

@ Graphic Unassigned

A Graphic Graphic Arg Mword Unassigned

B Graphic Graphic (Browse menu) Unassigned Unassigned

C Graphic Graphic Unassigned Ppage Unassigned

D Graphic Graphic Unassigned Right Unassigned

Chapter 7 Programmer's WorkBench Reference 137

Table 7.9 PWB Default Key Assignments (continued)

Key Plain SHIff ALT CTRL CTRL+SHIFf

E Graphic Graphic (Edit menu) Up Unassigned

F Graphic Graphic (File menu) Pword Unassigned

G Graphic Graphic Unassigned Cdelete Unassigned

H Graphic Graphic (Help menu) Unassigned Unassigned

Graphic Graphic Unassigned Unassigned Unassigned

J Graphic Graphic Unassigned Sinsert Unassigned

K Graphic Graphic Unassigned Unassigned Unassigned

L Graphic Graphic Unassigned Replace Unassigned

M Graphic Graphic Unassigned Mark Unassigned

N Graphic Graphic Unassigned Linsert Unassigned

0 Graphic Graphic (Options menu) Lasttext Unassigned

p Graphic Graphic (Project menu) Quote Unassigned

Q Graphic Graphic Unassigned Unassigned Unassigned

R Graphic Graphic (Run menu) Mpage Record

S Graphic Graphic (Search menu) Left Sethelp

T Graphic Graphic Unassigned Tell Unassigned

U Graphic Graphic Unassigned Lastselect Unassigned

V Graphic Graphic Unassigned Insertmode Unassigned

W Graphic Graphic (Window menu) Mlines Unassigned

X Graphic Graphic Unassigned Down Unassigned

y Graphic Graphic Unassigned Ldelete Unassigned

Z Graphic Graphic Unassigned Plines Unassigned

Graphic Unassigned Pbal Unassigned

\ Graphic Unassigned Qreplace Unassigned

Graphic Unassigned Setwindow Unassigned
/\ Graphic Unassigned

Graphic Unassigned

Graphic Unassigned

Graphic Unassigned

Graphic Unassigned

Graphic Unassigned Unassigned

FI _pwbhelp- _pwbhelp- _pwbhelp_back Pwbhelpnext Unassigned
_context - contents

F2 Setfile _pwbsavefile Unassigned Unassigned Unassigned

138 Environment and Tools

Table 7.9 PWB Default Key Assignments (continued)

Key Plain SHIff ALT CTRL CTRL+SHIFf

F3 Psearch _pwbnextmsg Unassigned Compile _pwbnext-
logmatch

F4 Msearch _pwbprevmsg _pwbquit _pwbclose _pwbprevious-
logmatch

F5 _pwbcascade _pwbtile _pwbarrange _pwbrestore Unassigned

F6 Selwindow _pwb- Unassigned Win style Unassigned
prevwindow

F7 Execute Refresh Unassigned _pwbmove Unassigned

F8 Exit Initialize Unassigned _pwbresize Unassigned

F9 Meta Shell Unassigned _pwbminimize Unassigned

FIO Openfile Unassigned Unassigned _pwbmaximize Unassigned

Fll Unassigned Unassigned Unassigned Unassigned Unassigned

F12 Unassigned Unassigned Unassigned Unassigned Unassigned

F13 Unassigned Unassigned Unassigned Unassigned Unassigned

F14 Unassigned Unassigned Unassigned Unassigned Unassigned

F15 Unassigned Unassigned Unassigned Unassigned Unassigned

F16 Unassigned Unassigned Unassigned Unassigned Unassigned

LEFf Left Select Unassigned Mword Select

RIGHT Right Select Unassigned Pword Select

UP Up Select Unassigned Mlines Unassigned

DOWN Down Select Unassigned Plines Unassigned

INS Insertmode Paste Unassigned Copy Unassigned

DEL _pwbclear Delete Unassigned Unassigned Unassigned

HOME Begline Select Unassigned Begfile Select

END Endline Select Unassigned Endfile Select

ENTER Emacsnewl Newline Unassigned Unassigned Unassigned

BKSP Emacscdel Emacscdel Undo Unassigned Undo

ESC Cancel Unassigned Unassigned Unassigned Unassigned

GOTO Home Unassigned Unassigned Unassigned Unassigned

NUM* Graphic Copy Unassigned Unassigned Unassigned

NUM+ Graphic Paste Unassigned Pwbrowsenext Unassigned

NUM- Graphic Delete Unassigned Pwbrowseprev Unassigned

NUM/ Graphic Unassigned Unassigned Unassigned

NUM- Emacsnewl Newline Unassigned Unassigned Unassigned
ENTER

Chapter 7 Programmer's WorkBench Reference 139

Table 7.9 PWB Default Key Assignments (continued)

Key Plain SHIff ALT CTRL CTRL+SHIFf

PGUP Mpage Select Unassigned Unassigned Select

PGDN Ppage Select Unassigned Unassigned Select

TAB Tab Backtab Unassigned Unassigned Unassigned

Note on Available Keys
PWB allows you to assign functions and macros to almost any key combination.
However, some keys have a fixed meaning in certain circumstances or operating
environments. PWB lists these key as available keys in the Key Assignments dialog
box, and PWB allows you to assign a command to the key. However, when the
circumstance holds, or you are running PWB in a specific environment, certain keys
have a fixed meaning that overrides any assignment that you make.

Help Window
In the Help window, the following keys have a fixed meaning:

Key

ESC

TAB

SHIFf+TAB

ENTER

NUMENTER

Meaning

SHIFf +ENTER

SHIFf +NUMENTER

SPACE

Close the Help window

Move to next hyperlink

Move to previous hyperlink

Activate current hyperlink

Activate current hyperlink

Activate current hyperlink

Activate current hyperlink

Activate current hyperlink

Dialog Boxes
In dialog boxes, all keys have predetermined meanings. Your assignments have no
effect when a dialog box is displayed. In particular, note the following keys:

Key

ESC

ENTER

FI

TAB

SHIFf+TAB

Meaning

Choose Cancel

Choose the active command button

Choose Help

Move to the next option or command

Move to the previous option or command

140 Environment and Tools

Key

SPACE

CTRL+P

Meaning

Toggle active option

When used in a text box, inserts the next key as a literal value. Use this
key to type a literal tab character.

The Text Argument dialog box is an exception. All keys except ESC (Cancel) and Fl

(Help) have their assigned meaning.

Microsoft Windows
When running PWB with the Windows operating system, some keys are reserved
for use by Windows. You can override these reserved keys by setting options in a
PIF file.

Key

ALT+ESC

CTRL+ESC

ALT+TAB

ALT+SPACE

ALT+ENTER

PWB Functions

Default Meaning in the Windows operating system

Switch to the next window in the Windows operating system

Switch to the the Windows operating system Task Manager

Switch to the next application

Activate the current window's system menu

Shift application between full screen and window

PWB provides a rich variety of editing, searching, and project-management
capabilites in the form of functions. Most of PWB 's menus and dialogs call these
functions (or macros that use these functions) to perform their actions. You can
write your own macros that use these capabilities in ways that precisely suit your
needs. You can also execute every function directly, either by pressing a key or by
using the Execute function.

Table 7.10 summarizes PWB functions. Most functions can be executed in different
ways to perform related actions. Complete details are given in the A-to-Z reference
that follows the table.

Table 7.10 PWB Functions

Function Description Keys

Arg Begin a function argument ALT+A

Arrangewindow Arrange windows or icons Unassigned

Assign Define a macro or assign a key ALT+=

Backtab Move to previous tab stop SHIFT+TAB

Begfile Move to beginning of file CTRL+HOME

Begline Move to beginning of line HOME

Chapter 7 Programmer's WorkBench Reference 141

Table 7.10 PWB Functions (continued)

Function Description Keys

Cancel Cancel arguments or current operation ESC

Cancelsearch Cancel background search Unassigned

Cdelete Delete character CTRL+O

Clearmsg Clear Build Results Unassigned

Clearsearch Clear Search Results Unassigned

Closefile Close current file Unassigned

Compile Compile and build CTRL+F3

Copy Copy selection to the clipboard CTRL+INS,
SHIFT+NUM*

Curdate Today's date (dd-Mmm-yyyy) Unassigned

Curday Day of week (Tue) Unassigned

Curtime Current time (!zour:minute:second) Unassigned

Delete Delete selection SHIFT+DEL,
SHIFT+NUM-

Down Move down one line CTRL+X, DOWN

Emacscdel Delete character BKSP, SHIFT +BKSP

Emacsnewl Start a new line ENTER, NUMENTER

Endfile Move to end of file CTRL+END

Endline Move to end of line END

Environment Set or insert environment variable Unassigned

Execute Execute macros and functions by F7
name

Exit Advance to next file or leave PWB F8

Graphic Type character (many)

Home Move to window comer OOTO

Information (Obsolete)

Initialize Reinitialize SHIFT+F8

Insert Insert spaces or lines Unassigned

Insertmode Toggle insert/overtype mode CTRL+V, INS

Lastselect Recover last selection CTRL+U

Lasttext Recover last text argument CTRL+O

Ldelete Delete lines CTRL+Y

Left Move left CTRL+S,LEFT

Linsert Insert lines or indent line CTRL+N

Logsearch Toggle search logging Unassigned

142 Environment and Tools

Table 7.10 PWB Functions (continued)

Function Description Keys

Mark Set, clear, or go to a mark or line CTRL+M
number

Maximize Enlarge window to full size Unassigned

Menukey Activate menu ALT

Message Display a message or refresh the Unassigned
screen

Meta Modify the action of a function F9

Mgrep Search across files for text or pattern Unassigned

Minimize Shrink window to an icon Unassigned

Mlines Scroll down by lines CTRL+UP, CTRL+ W

Movewindow Move window Unassigned

Mpage Move up one page CTRL+R, PGUP

Mpara Move up one paragraph Unassigned

Mreplace Multifile replace with confirmation Unassigned

Mreplaceall Multifile replace Unassigned

Msearch Search backward for pattern or text F4

Mword Move back one word CTRL+A,CTRL+LEFT

Newfile Create a new pseudofile Unassigned

Newline Move to the next line SHIFT +ENTER,
SHIFT +NUMENTER

Nextmsg Go to build message location Unassigned

Nextsearch Go to search match location Unassigned

Noedit Toggle the no-edit restriction Unassigned

Openfile Open a new file FlO

Paste Insert file or text from clipboard SHIFT+INS,
SHIFT+NUM+

Pbal Balance paired characters CTRL+[

Plines Scroll up by lines CTRL+DOWN, CTRL+Z

Ppage Move down one page CTRL+C, PGDN

Ppara Move down one paragraph Unassigned

Print Print file or selection Unassigned

Project Set or clear project Unassigned

Prompt Request text argument Unassigned

Psearch Search forward for pattern or text F3

Pwbhelp Help topic lookup Unassigned

Chapter 7 Programmer's WorkBench Reference 143

Table 7.10 PWB Functions (continlled)

Function Description Keys

Pwbhelpnext Relative help topic lookup CTRL+Fl

Pwbhelpsearch Global full-text help search Unassigned

Pwbrowse 1 stdef Go to first definition Unassigned

Pwbrowse 1 stref Go to first reference Unassigned

Pwbrowsecalltree Browse Call Tree (FwdIRev) Unassigned

Pwbrowseclhier Browse Class Hierarchy Unassigned

Pwbrowsecltree Browse Class Tree (FwdIRev) Unassigned

Pwbrowsefuhier Browse Function Hierarchy Unassigned

Pwbrowsegotodef Browse Goto Definition Unassigned

Pwbrowsegotoref Browse Goto Reference Unassigned

Pwbrowselistref Browse List References Unassigned

Pwbrowsenext Browse Next CTRL+NUM+

Pwbrowseoutline Browse Module Outline Unassigned

Pwbrowsepop Go to previously browsed location Unassigned

Pwbrowseprev Browse Previous CTRL+NUM-

Pwbrowseviewrel Browse View Relationship Unassigned

Pwbrowsewhref Browse Which Reference? Unassigned

Pwbwindow Open a PWB window Unassigned

Pword Move forward one word CTRL+F, CTRL+RIGHT

Qreplace Replace with confinnation CTRL+\

Quote Insert literal key CTRL+P

Record Toggle macro recording SHIFT+CTRL+R

Refresh Reread or discard file SHIFT+F7

Repeat Repeat the last editing operation Unassigned

Replace Replace pattern or text CTRL+L

Resize Resize window Unassigned

Restcur Restore saved position Unassigned

Right Move right CTRL+D, RIGHT

Saveall Save all modified files Unassigned

Savecur Save cursor position Unassigned

Sdelete Delete streams Unassigned

Searchall Highlight occurrences of pattern or Unassigned
text

Selcur Select to saved position Unassigned

144 Environment and Tools

Table 7.10 PWB Functions (continued)

Function

Select

Selmode

Selwindow

Setfile

Sethelp

Setwindow

Shell

Sinsert

Tab

Tell

Unassigned

Undo

Up

Usercmd

Window

Winstyle

Description

Select text

Keys

SHIFf+PGUP,
SHIFf +CTRL+PGUP,
SHIFf +PGDN,
SHIFf +CTRL+PGDN,
SHIFf+END,
SHIFf +CTRL+END,
SHIFf+HOME,
SHIFf +CTRL+HOME,
SHIFf+LEFf,
SHIFf +CTRL+LEFf,
SHIFf+UP,
SHIFf+RIGHT,
SHIFf +CTRL+RIGHT,
SHIFf+DOWN

Change selection mode: box Unassigned

Move to window F6

Open or change files F2

Opens, closes, and lists help files SHIFf +CTRL+S

Adjust file in window CTRL+]

Start a shell or run a system command SHIFf+F9

Insert a stream of blanks or break line CTRL+J

Move to the next tab stop TAB

Show key assignment or macro CTRL+ T
definition

Remove a function assignment from a (All unassigned keys)
key

Undo and redo editing operations ALT+BKSP,
SHIFf +CTRL+BKSP

Move up CTRL+E, UP

Execute a custom Run menu Unassigned
command

Move to next or previous window

Add or remove scroll bars

Unassigned

CTRL+F6

Cursor-Movement Commands
PWB provides the following commands to navigate through text. In addition to the
commands in the PWB editor, the Source Browser provides powerful commands to
navigate through the source of your programs.

Chapter 7 Programmer's WorkBench Reference 145

Table 7.11 Cursor-Movement Commands

Cursor Movement Command Keys

Up one line Up UP

Down one line Down DOWN

Left one column Left LEFf

Right one column Right RIGHT

Upper-left comer of window Home HOME

Top of window Meta Up F9 UP

Bottom of window Meta Down F9 DOWN

Leftmost column in window Meta Left F9 LEFf

Rightmost column in window Meta Right F9 RIGHT

Lower-right comer of window Meta Home HOME

Up one window Mpage PGUP

Down one window Ppage PGDN

Column one Meta Begline F9HOME

One column past window width Meta Endline F9END

Back one word Mword CTRL+LEFf

Forward one word Pword CTRL+RIGHT

Beginning of line Begline HOME

End of line Endline END

Next paragraph Ppara Unassigned

Previous paragraph Mpara Unassigned

End of paragraph Meta Ppara F9 Unassigned

End of previous paragraph Meta Mpara F9 Unassigned

Beginning of file Begfile CTRL+HOME

End of file Endfile CTRL+END

To specific line number Arg number Mark ALT+A number CTRL+M

Position before last scroll Arg Mark ALT+A CTRL+M

Saved position Restcur Unassigned

Named mark Arg name Mark ALT+A name CTRL+M

Scroll window down one line Mlines CTRL+UP

Scroll window up one line Plines CTRL+DOWN

Scroll window so cursor at top Arg Plines ALT+A CTRL+DOWN

146 Environment and Tools

Arg
Key

Table 7.11 Cursor-Movement Commands (continued)

Cursor Movement

Scroll window so cursor at
bottom

Scroll window so cursor at
home

ALT+A

Arg

Command

Arg Mlines

Arg Setwindow

Keys

ALT+A CTRL+UP

ALT+A CTRL+]

Begin an argument to a function or begin a selection.

After you execute Arg, PWB displays Arg [1] on the status bar. Each time you
execute Arg, PWB increments the Arg count.

PWB functions perform variations of their action depending on the Arg count and
the "Meta state." You can use the Meta and Arg function prefixes in any order.
See: Meta.

~ To select text or create a function argument:

1. Execute Arg (ALT+A).

2. Execute a cursor-movement function.

Or hold down the SHIff key and click the left mouse button.

PWB creates a stream, box, or line selection based on the current selection mode. A
selection in each of these modes creates a function argument called "streamarg,"
"boxarg," or "linearg," respectively.

~ To create a text argument:

1. Execute Arg (ALT+A).

2. Type the text of the argument.

When you type the first character of the argument, PWB displays the Text
Argument dialog box where you can enter the textarg without modifying your file.
The Text Argument dialog box does not have an OK button; instead, you execute
the function to which you are passing the text argument. Choose Cancel to save the
text and do nothing.

Returns

See

Chapter 7 Programmer's WorkBench Reference 147

~ To "pick up" text from a window:

1. Select the text that you want to use in the Text Argument dialog box.

2. Execute Lasttext (CTRL+O).

PWB copies the selected text into the text argument dialog box.

~ To cancel an argument or selection:

• Execute Cancel (ESC).

The return value of Arg cannot be tested.

Cancel, Lastselect, Lasttext, Meta, Prompt

Arrangewindow
Key

Returns

Assign
Key

Unassigned

Arrangewindow
Cascades all unminimized windows on the desktop. Does not affect minimized
windows. See: _pwbcascade.

Arg Arrangewindow (ALT+A Unassigned)
Arranges all unminimized windows on the desktop. Does not affect minimized
windows. See: _pwbarrange.

Meta Arrangewindow (F9 Unassigned)
Tiles up to 16 unminimized windows. Does not affect minimized windows. See:

pwbtile.

Meta Arg Arrangewindow (F9 ALT+A Unassigned)
Arranges all icons (minimized windows) on the desktop.

True
False

ALT+=

Windows or icons arranged.
Nothing to arrange, or more than 16 windows open.

The Assign function assigns a function to a keystroke, defines a macro, or sets a
PWB switch. You can also assign keys and set switches by using the commands in

148 Environment and Tools

Returns

Example

Update

the Options menu. To see the current assignment for a key or the definition of a
macro, use Options Keys Assignments or the Tell function (CTRL+T). See: Tell.

Assign
Performs the assignment using the text on the current line. If the line ends with a
line continuation, PWB uses the next line, and so on for all continued lines.

Arg Assign (ALT+A ALT+=)

Same as Assign, except uses text starting from the cursor.

Arg textarg Assign (ALT+A textarg ALT+=)

Performs the assignment using the specified textarg.

Arg mark Assign (ALT+A mark ALT+=)

Performs the assignment using the text from the line at the cursor to the
specified mark. The mark argument can be either a line number or a previously
defined mark name. See: Mark.

Arg boxarg llinearg I streamarg Assign (ALT+A boxarg llinearg I streamarg
ALT+=)

Performs the assignment using the selected text. Ignores blank and comment
lines.

True
False

Assignment successful.
Assignment invalid.

~ To set the Tabstops switch to 8:

1. Execute Arg (ALT+A).

2. Type the following switch assignment:

tabstops:8

3. Execute Assign (ALT+=).

Assign
Arg Assign

With PWB l.x, Assign and Arg Assign do not recognize line continuations.
With PWB 2.00, they use all continued lines for the assignment.

Arg streamarg Assign
With PWB l.x, a streamarg is not allowed. With PWB 2.00, Assign accepts a
streamarg.

Arg? Assign
With PWB l.x, this form of the Assign function displays the current
assignments for all functions, switches, and macros in the "<ASSIGN>Current
Assignments and Switch Settings" pseudofile.

Backtab
Key

Returns

Update

See

Begfile
Key

Returns

See

Chapter 7 Programmer's WorkBench Reference 149

With PWB 2.00, the <ASSIGN> pseudofile does not exist; therefore, this fonn
of the Assign function is obsolete. If you use this command or execute a macro
that executes this command, PWB issues the error:

Missing':' in '?'

PWB is expecting an assignment or definition using the name? , which is a legal
macro name.

SHIFT+TAB

Backtab
Moves the cursor to the previous tab stop on the line.

True
False

Cursor moved.
Cursor is at left margin.

PWB 2.0 supports variable tab stops. PWB l.x supports only fixed-width tab stops.

Tab, Tabstops

CTRL+HOME

Begfile
Moves the cursor to the beginning of the file.

True
False

Endfile

Cursor moved.
Cursor not moved; the cursor is already at the beginning of the file.

150 Environment and Tools

8egline
Key

Returns

Example

Example

See

Cancel
Key

HOME

Begline
Places the cursor on the first nonblank character in the line.

Meta Begline (F9 HOME)

Places the cursor in the first character position of the line (column one).

True Cursor moved.
False Cursor not moved; the cursor is already at the destination.

The following macro moves the cursor to column one, then toggles between column
one and the first nonblank character of the line.

toggle_begline := Left ->x Meta :>x Begline

The result of the Left function is tested to determine if the cursor is already in
column one. If the cursor is in column one, PWB skips the Meta and executes
Begline to move to the first nonblank character. If the cursor is not in column one,
PWB executes Meta Begline to move there.

This macro mimics the behavior of the BRIEF HOME key:

bhome:= Meta Begline +> Home +> Begfile

The result of Meta Begline (go to column 1 on the line) is tested to determine if the
cursor moved. If the cursor moved, the test (+ » succeeds and the macro exits. If the
cursor did not move, the cursor is already in column 1, so the macro advances to the
home position with Home. If the cursor did not move going to the home position,
the macro advances to the beginning of the file with Begfile.

Left, Meta

ESC

Cancel
Cancels the current selection, argument, or operation. If a message appears on
the status bar, the Cancel function restores the original contents of the status
bar.

Returns

See

Chapter 7 Programmer's WorkBench Reference 151

If a dialog box or menu is open, Cancel closes the dialog box or menu and takes
no further action. If Help on a dialog box, menu, or message box is being
displayed, Cancel closes the Help dialog box.

Cancel always returns true.

Arg

Cancelsearch
Key

Returns

See

Cdelete
Key

Unassigned

Cancelsearch
Cancels a background search.

The Search Results window contains the partial results of the aborted search and
is not flushed. You can browse matches listed in the Search Results by using the
Next Match, Previous Match, and Goto Match commands from the Search menu
and by using the Nextsearch function (Unassigned).

Cancelsearch applies only to multithreaded environments.

True
False

Background search was canceled.
No background search in progress.

N extsearch, _pwbnextlogmatch, _pwbpreviouslogmatch, _pwbgotomatch

CTRL+G

Cdelete
Deletes the previous character, excluding line breaks. If the cursor is in column
1, Cdelete moves the cursor to the end of the previous line.

In insert mode, Cdelete deletes the previous character, reducing the line length
by 1.

In overtype mode, Cdelete deletes the previous character and replaces it with a
space character. If the cursor is beyond the end of the line, the cursor moves to
the immediate right of the last character on the line.

152 Environment and Tools

Returns

See

Clearmsg
Key

Returns

See

Ernacscdel is similar to Cdelete. However, in insert mode, Ernacscdel deletes
line breaks; in overtype mode beyond the end of the line, it does not
automatically move to the end of the line.

True
False

Cursor moved.
Cursor not moved.

Delete, Ernacscdel, Ldelete, Sdelete

Unassigned

Clearrnsg
Clears the contents of the Build Results window.

Arg Clearrnsg (ALT+A Unassigned)
Clears the current set of messages in the Build Results window.

True
False

Cleared a message set or the contents of Build Results.
The Build Results window is empty.

Nextrnsg, ywbnextrnsg, _pwbprevrnsg, _pwbsetrnsg

Clearsearch
Key

Returns

See

Unassigned

Clearsearch
Clears the contents of the Search Results window.

Arg Clearsearch (ALT +A Unassigned)
Clears the current set of matches in the Search Results window.

True
False

Cleared a match set or the contents of Search Results.
The Search Results window is empty.

Clearrnsg, Logsearch, ywbnextlogrnatch, _pwbpreviouslogrnatch,
ywbgotornatch

Closefile
Key

Returns

See

Compile
Key

Chapter 7 Programmer's WorkBench Reference 153

Unassigned

Closefile
Closes the file in the active window. If no files remain in the window's file
history, the window is also closed.

Arg Closefile (ALT+A Unassigned)
Closes the file named by the text at the cursor.

Arg linearg I boxarg I streamarg Closefile
(ALT+A linearg I boxarg I streamarg Unassigned)

Closes the file named by the selected text.

Arg textarg Closefile (ALT+A textarg Unassigned)
Closes the specified file.

True
False

The file was closed.
No file was closed.

Refresh, ywbclosefile

CTRL+F3

The Compile function compiles and builds targets in the project or runs external
commands, capturing the result of the operation in the Build Results window. Under
multithreaded environments the commands run in the background.

Arg Compile (ALT+A CTRL+F3)

Compiles the current file. This is equivalent to Project Compile File. Arg
Compile fails if no project is open. See: _pwbcompile.

Arg textarg Compile (ALT+A textarg CTRL+F3)

Builds the target specified by textarg. This is equivalent to Build Target
command on the Project menu. Arg textarg Compile fails if no project is open.

To build the current project, execute Arg a 11 Compile.

Arg Meta textarg Compile (ALT+A textarg F9 CTRL+F3)

Rebuilds the specified target and its dependents. See: ywbrebuild.

This command is equivalent to specifying the NMAKE fa option. Note that you
can also include NMAKE command-line macro definitions in the text you pass
to the Compile function.

154 Environment and Tools

Returns

Copy
Keys

Menu

Arg Meta Compile (ALT+A F9 CTRL+F3)

Aborts the background compile after prompting for confirmation. Also clears the
queue of pending background operations (if any).

Arg Arg textarg Compile (ALT+A ALT+A textarg CTRL+F3)

Runs the program or operating-system command specified by textarg. The
output is displayed in the Compile Results window.

Under multithreaded environments, the program runs in the background, and the
Compile Results window is updated as the program executes. Several programs
can be queued for background execution.

Do not use this command to execute an interactive program. The program is able
to change the display but may not receive input. To run an interactive program,
use the Shell function (SHIFT+F9).

True
False

Operation successfully initiated.
Operation not initiated.

CTRL+INS, SHIFT+NUM*

Edit menu, Copy command

Copy
Copies the current line to the clipboard.

Arg Copy (ALT+A CTRL+INS)

Copies text from the cursor to the end of the line. The text is copied to the
clipboard, but the line break is not included.

Arg boxarg I linearg I streamarg Copy
(ALT+A boxarg llinearg I streamarg CTRL+INS)

Copies the selected text to the clipboard.

Arg textarg Copy (ALT+A textarg CTRL+INS)

Copies the specified textarg to the clipboard.

Arg mark Copy (ALT+A mark CTRL+INS)

Copies the text from the cursor to the mark. The text is copied to the clipboard.
The mark argument can be either a line number or a previously defined mark.
See: Mark.

The text is copied as a boxarg or linearg depending on the relative positions of
the cursor and the mark. If the cursor and the mark are in the same column, the
text is copied as a linearg. If the cursor and the mark are in different columns,
the text is copied as a boxarg.

Returns

See

Curdate
Key

Returns

See

Curday
Key

Returns

See

Chapter 7 Programmer's WorkBench Reference 155

Arg number Copy (ALT+A number CTRL+INS)

Copies the specified number of lines to the clipboard, starting with the current
line. For example, Arg 5 Copy copies five lines to the clipboard.

Copy always returns true.

Delete, Ldelete, Sdelete, Paste

Unassigned

Curdate
Types the current date at the cursor in the format day-month-year, for example:
17-Apr-1999.

True
False

Date typed.
Typing the date would make the line too long.

Curday, Curfile, Curfilenam, Curfileext, Curtime

Unassigned

Curday
Types the three-letter abbreviation for the current day of the week, as follows:
Man Tue Wed Thu Fri Sat Sun.

True
False

Day typed.
Typing the day would make the line too long.

Curdate, Curfile, Curfilenam, Curfileext, Curtime

156 Environment and Tools

Curtime
Key

Returns

See

Delete
Keys

Menu

Returns

Unassigned

Curtime
Types the current time in the format hours:minutes:seconds, for example,
17:08:32.

True
False

Time typed.
Typing the time would make the line too long.

Curdate, Curday, Curfile, Curfilenam, Curfileext

SHIff +DEL, SHIff +NUM-

Edit menu, Cut command

Delete
Deletes the single character at the cursor, excluding line breaks. It does not copy
the deleted character onto the clipboard. Note that the Delete function can delete
more than one character, depending on the current selection mode.

Arg Delete (ALT+A SHIFf+DEL)

Deletes from the cursor to the end of the line. The deleted text is copied onto the
clipboard. In stream selection mode, the deletion includes the line break and
joins the current line to the next line.

Arg boxarg llinearg I streamarg Delete
(ALT+A boxarg llinearg I streamarg SHIFf+DEL)

Deletes the selected text. The text is copied on to the clipboard.

Meta ... Delete (F9 ... SHIFf +DEL)

As above but discards the deleted text. The contents of the clipboard are not
changed.

Delete always returns true.

Down
Keys

Returns

See

Emacscdel
Keys

Returns

See

Chapter 7 Programmer's WorkBench Reference 157

DOWN, CTRL+X

Down
Moves the cursor down one line. If a selection has been started, it is extended by
one line. If this movement results in the cursor moving out of the window, the
window is adjusted downward as specified by the Vscroll switch.

Meta Down (F9 DOWN)

Moves the cursor to the bottom of the window without changing the column
position.

True Cursor moved.
False Cursor did not move; the cursor is at the destination.

Up

BKSP, SHIFT+BKSP

Emacscdel
Deletes the previous character. If the cursor is in column 1, Emacscdel moves
the cursor to the end of the previous line.

In insert mode, Emacscdel deletes the previous character, reducing the length of
the line by 1. If the cursor is in column one, Emacscdel deletes the line break,
joining the current line to the previous line.

In overtype mode, Emacscdel deletes the previous character and replaces it with
a space character. If the cursor is in column 1, Emacscdel moves the cursor to
the end of the previous line and does not delete the line break.

Emacscdel is similar to Cdelete, but Cdelete never deletes line breaks; in
overtype mode beyond the end of the line, Cdelete automatically moves to the
end of the line.

True
False

Cursor moved.
Cursor not moved.

Cdelete, Delete, Ldelete, Sdelete

158 Environment and Tools

Emacsnewl
Keys

Returns

Update

See

Endfile
Key

Returns

See

Endline
Key

ENTER, NUMENTER

Emaesnewl
In insert mode, starts a new line. In overtype mode, moves the cursor to the
beginning of the next line. PWB automatically positions the cursor on the new
line, depending on the setting of the Softer switch.

Emaesnewl always returns True.

In PWB l.x, PWB performs special automatic indentation for C files. In PWB 2.00,
language-specific automatic indentation is handled by language extensions
if the feature is enabled. Otherwise, PWB uses its default indentation rules.

Newline, Softer, C_Softer

CTRL+END

Endfile
Places the cursor at the end of the file.

True
False

Begfile

END

Endline

Cursor moved.
Cursor did not move; the cursor is at the end of the file.

Moves the cursor to the immediate right of the last character on the line.

Meta Endline (F9 END)

Moves the cursor to the column that is one column past the active window
width.

Returns

See

True
False

Chapter 7 Programmer's WorkBench Reference 159

Cursor moved.
Cursor did not move; the cursor is at the destination.

Begline, Traildisp, Trailspace

Environment
Key Unassigned

Environment
Executes the current line as an environment-variable setting.

For example, if the current line contains the following text when you execute
Environment:

PATH=C:\UTIL;C:\OOS

PWB adds this setting to the current environment table. The effect is the same as
the operating-system SET command. PWB uses the new environment variable
for the rest of the session (including shells).

Depending on the settings of the Envcursave and Envprojsave switches,
PWB saves the environment table for PWB sessions and/or projects.
See: Envcursave, Envprojsave.

Arg textarg Environment (ALT+A textarg Unassigned)
Executes the argument as an environment-variable setting.

Arg linearg I boxarg Environment (ALT+A linearg I boxarg Unassigned)
Executes each selected line or line fragment as an environment-variable setting.

Meta Environment (F9 Unassigned)
Performs environment-variable substitutions for all variables on the current line,
replacing each variable with its value.

The syntax for an environment variable isINDEX: Environment variable,
specfying in PWB

$(ENV) I $ENV:

where ENV is the uppercase name of the environment variable.

Arg Meta Environment (ALT+A F9 Unassigned)
Performs environment-variable substitutions (described above) for the text from
the cursor to the end of the line.

Arg boxarg I linearg I streamarg Meta Environment
(ALT+A boxarg llinearg I streamarg F9 Unassigned)

Performs environment-variable substitutions for the selected text.

160 Environment and Tools

Returns

Update

Execute
Key

Returns

Exit
Key

True
False

Environment variable successfully set or substituted.
Syntax error or line too long.

Because the <ENVIRONMENT> pseudofile no longer exists, this form of the
Environment function is obsolete; it is replaced by the Environment command
on the Options menu.

F7

The Execute function executes PWB functions and macros by name. It allows you
to execute commands that are not assigned to a key or execute a sequence of
commands in one step.

The Execute function executes the commands by the same rules as macros.
Function prompts are suppressed, and you can use the macro flow-control and
macro prompt directives. You do not need to define a macro to use these features.

Arg Execute (ALT+A F7)

Executes the text from the cursor to the end of the line as a PWB macro.

Arg linearg I textarg Execute (ALT+A linearg I textarg F7)

Executes the specified text as a PWB macro.

True
False

Last executed function returned true.
Last executed function returned false.

F8

Exit
If you specified multiple files on the PWB command line, PWB advances to the
next file. Otherwise, PWB quits and returns control to the operating system.

If the Autosave switch is set to yes, the file is saved if it has been modified. If
Autosave is no and the file is modified, PWB prompts for con:fmnation to save
the file.

Returns

See

Graphic
Keys

Returns

See

Home
Key

Returns

See

Chapter 7 Programmer's WorkBench Reference 161

Meta Exit (F9 FS)

Perfonns like Exit with the Autosave switch set to no, independent of the
current setting of Autosave. If you have changed any files, PWB asks for
confinnation to save before exiting.

Arg Exit (ALT+A FS)

Like Exit, except PWB quits immediately without advancing to the next file (if
any).

Arg Meta Exit (ALT+A F9 F8)

Like Meta Exit, except PWB quits immediately without advancing to the next
file.

No return value.

ywbquit

Assigned to most alphanumeric and punctuation keys.

Graphic
Types the character corresponding to the key that you pressed.

True
False

The character is typed.
Typing the character would make the line too long.

Assign, Quote

GOTO (Numeric-keypad 5)

Home
Places the cursor in the upper-left comer of the window.

Meta Home (F9 GOTO)

Places the cursor in the lower-right comer of the window.

True
False

Cursor moved.
Cursor not moved; it is already at the destination.

Begline, Endline, Left, Right

162 Environment and Tools

Initialize
Key

Example

Example

Returns

Information
Update

SHIFf+FS

Initialize
Discards all current settings, including extension settings, then reads the
statements from the [PWB] section of TOOLS.INI.

Arg Initialize (ALT+A SHIFf+FS)

Reads the statements from a tagged section of TOOLS.INI. The tag name is
specified by the continuous string of nonblank characters starting at the cursor.

Arg textarg Initialize (ALT+A textarg SHIFf+FS)

Reads the statements from the TOOLS.INI tagged section specified by textarg.

The section tagged with

[PWB-name]

is initialized by the command

Arg name Initialize

To reload the main section of TOOLS.INI without clearing other settings that
you want to remain in effect, label the main section of TOOLS.INI with the tag:

[PWB PWB-main]

then use Arg m a ; n Initialize to recover your main settings instead of using
Initialize with no arguments.

True
False

(obsolete)

Initialized tagged section in TOOLS.INI.
Did not find tagged section in TOOLS.INI.

The PWB l.x Information function and its associated pseudofile
<INFORMATION-FILE> are obsolete; they do not exist in PWB 2.00.

Insert
Key

Returns

Example

See

Insertmode
Keys

Unassigned

Insert

Chapter 7 Programmer's WorkBench Reference 163

Inserts a single-space character at the cursor, independent of the insert/overtype
mode.

Arg Insert (ALT+A Unassigned)
Breaks the line at the cursor.

Arg boxarg I linearg I streamarg Insert
(ALT+A boxarg llinearg I streamarg Unassigned)

Inserts space characters into the selected area.

True
False

Spaces or line break inserted.
Insertion would make a line too long.

If paragraphs in your file consist of a sequence of lines beginning in the same
column and are separated from other paragraphs by at least one blank line, the
following macro indents a paragraph to the next tab stop:

para_indent:=_pwbboxmode Meta Mpara Down Begline Arg \
Meta Ppara Up Begline Tab Insert

This macro starts with the predefined PWB macro jlwbboxmode to set box
selection mode, then creates a box selection from the beginning of the paragraph to
the end, one tab stop wide. The Insert function inserts spaces in the selection.

Sinsert, Linsert

INS, CTRL+V

Insertmode
Toggles between insert mode and overtype mode. If overtype mode is on, the
letter 0 appears on the status bar. The cursor can also change shape, depending
on the Cursormode switch. See: Cursormode.

In insert mode, each character you type is inserted at the cursor. This insertion
shifts the remainder of the line one position to the right.

In overtype mode, the character you type replaces the character at the cursor.

164 Environment and Tools

Returns

Lastselect
Key

See

Lasttext
Key

Returns

True
False

CTRL+U

Lastselect

PWB is in insert mode.
PWB is in overtype mode.

Duplicates the last selection.

The Arg count and Meta state that were previously in effect are not
duplicated-only the selection. The new Arg count is one, and the Meta state is
the current Meta state. To use a higher Arg count, execute Arg (ALT+A). To
toggle the Meta state, execute Meta (F9).

The re-created selection uses the same pair of line:column coordinates as the
previous selection. Thus, different text can be selected if you have made
additions or deletions to the file since the last selection.

Arg, Lasttext, Meta

CTRL+O

Lasttext
Displays the last text argument in the Text Argument dialog box. You can edit
the text and then execute any PWB function that accepts a text argument, or you
can cancel the dialog box.

If you edit the text and then cancel the dialog box, PWB retains the modified
text. Thus, when you execute Lasttext again, the new text appears in the dialog
box.

Arg [Arg] ... [Meta] Lasttext (ALT+A [ALT+A] ... [F9] CTRL+o)

Displays the last text argument in the Text Argument dialog box with the
specified Arg count and Meta state.

Arg [Arg] ... linearg I boxarg I streamarg [Meta] Lasttext
(ALT+A [ALT+A] ... linearg I boxarg I streamarg [F9] CTRL+O)

Displays the first line of the selection in the Text Argument dialog box with the
specified Arg count and Meta state.

The return value of Lasttext cannot be tested.

Example

Example

See

Ldelete
Key

Chapter 7 Programmer's WorkBench Reference 165

The 0 pen Inc 1 u d e macro that follows opens an include file named in the next
#include directive. The macro demonstrates a technique using the Lasttext
function to pick up text from the file and modify it without modifying the file or the
clipboard.

Openlnclude:= \
Up Meta Begline Arg Arg "1\[\t]*/I[\t]*include" Psearch -> \
Arg Arg "[<>\"]" Psearch -> Right Savecur Psearch -> \
Selcur Lasttext Begline "$INCLUDE:" Openfile <n +> \
Lastselect Openfile <

In the fourth line, Lasttext pulls the selected filename into the Text Argument
dialog box. The text argument is modified to prepend $ INC L U DE: before passing
it to the Openfile function.

In some macro-programming situations, you don't want to use the text immediately.
Instead, you need to pick up some text, do some other processing, then use the text.
In this situation, use the phrase:

(make selection) Lasttext Cancel ...

This picks up the text, then cancels the Text Argument dialog box. The selected text
remains in the Lasttext buffer for later use. To reuse the text, call Lasttext again.

Arg, Lastselect, Meta, Prompt

CTRL+Y

Ldelete
Deletes the current line and copies it to the clipboard.

Arg Ldelete (ALT+A CTRL+Y)

Deletes text from the cursor to the end of the line and copies it to the clipboard.

Arg mark Ldelete (ALT+A mark CTRL+Y)

Deletes the text from the line at the cursor to the line specified by mark and
copies it to the clipboard. The mark cannot be a line number.

Arg number Ldelete (ALT+A number CTRL+Y)

Deletes the specified number of lines starting from the line at the cursor and
copies them to the clipboard.

166 Environment and Tools

Returns

See

Left
Keys

Returns

See

Linsert
Key

Arg boxarg llinearg Ldelete (ALT+A boxarg Ilinearg CTRL+Y)

Deletes the specified text and copies it to the clipboard. The argument is a
linearg or boxarg regardless of the current selection mode. The argument is a
linearg if the starting and ending points are in the same column.

Meta ... Ldelete (F9 ... CTRL+ Y)

As above but discards the deleted text. The clipboard is not changed.

Ldelete always returns true.

Cdelete, Delete, Emacscdel, Sdelete

LEFT, CTRL+S

Left
Moves the cursor one character to the left. If this movement results in the cursor
moving out of the window, the window is adjusted to the left as specified by the
Hscroll switch.

Meta Left (F9 LEFT)

Moves the cursor to the first column in the window.

True
False

Cursor moved.
Cursor not moved; the cursor is in column one.

Begline, Down, Endline, Home, Right, Up

CTRL+N

Linsert
Inserts one blank line above the current line.

Arg Linsert (ALT +A CTRL+N)

Inserts or deletes blanks at the beginning of a line to move the first nonblank
character to the cursor.

Arg boxarg llinearg Linsert (ALT+A boxarg llinearg CTRL+N)

Inserts blanks within the specified area.

Returns

See

Logsearch
Key

Returns

Mark
Key

Chapter 7 Programmer's WorkBench Reference 167

The argument is a linearg or boxarg regardless of the current selection mode.
The argument is a linearg if the starting and ending points are in the same
column.

Arg mark Linsert (ALT+A mark CTRL+N)

Like boxarg llinearg except the specified area is given by the cursor position
and the position of the specified mark. The mark argument must be a named
mark: it cannot be a line number. See: Mark.

Linsert always returns true.

Insert, Sinsert

Unassigned

Logsearch
Toggles the search-logging state.

The default search-logging mode when PWB starts up is determined by the
Enterlogmode switch.

True
False

CTRL+M

Search logging turned on.
Search logging turned off.

The Mark function moves the cursor to a mark or specific location, defines marks,
and deletes marks. Note that you cannot set a mark at specific text in a PWB
window such as Help; PWB marks only the window position.

If you want to save marks between sessions, assign a filename to the Markfile
switch or use the Set Mark File command on the Search menu.

Mark (CTRL+M)

Moves the cursor to the beginning of the file.

Arg Mark (ALT+A CTRL+M)

Restores the cursor to its location prior to the last window scroll. Use Arg
Mark to return to your previous location after a search or other large jump.

168 Environment and Tools

Returns

See

Maximize
Key

Returns

See

Arg number Mark (ALT+A number CTRL+M)

Moves the cursor to the beginning of the line specified by number in the current
file. Line numbering starts at 1.

Arg textarg Mark (ALT+A textarg CTRL+M)

Moves the cursor to the specified mark.

Arg Arg textarg Mark (ALT+A ALT+A textarg CTRL+M)

Defines a mark at the cursor position. The name of the mark is specified by
textarg.

Arg Arg textarg Meta Mark (ALT+A ALT+A textarg F9 CTRL+M)

Deletes the specified mark. This form of the Mark function always returns true.

True
False

Move, definition, or deletion successful.
Invalid argument or mark not found.

Markfile, Restcur, Savecur, Selcur

Unassigned

Maximize
Expands the window to its maximum size. If the window is already maximized,
the window is restored.

When the window is maximized and scroll bars are turned off by using the
Winstyle function, PWB turns off the window borders. This is the "clean
screen" look.

Meta Maximize (F9 Unassigned)
Restores the window to its original size.

True
False

Window is maximized.
Window is restored.

Minimize, Winstyle

Menukey
Key

Returns

Message
Key

Returns

Example

See

Chapter 7 Programmer's WorkBench Reference 169

ALT

Menukey
Activates the menu bar. Unlike other PWB functions, Menukey can be assigned
to only one key. It cannot be assigned to a combination of keys.

You cannot test the return value of Menukey.

Unassigned

Message
Clears the status bar.

Arg Message (ALT+A Unassigned)
Displays the text from the cursor to the end of the line on the status bar.

Arg textarg Message (ALT+A textarg Unassigned)
Displays textarg on the status bar.

Meta ... Message (F9 ... Unassigned)
As above and also repaints the screen.

Message always returns true.

The following macro is useful when writing new macros (the! is the macro name):

! := Meta Message

With this definition you can place an exclamation point in your macros wherever
you want a screen update. If you also want to display a status-bar message at the
time of the update, use the phrase:

... Arg "text o/message" ! ...

Prompt

170 Environment and Tools

Meta
Key

Returns

See

Mgrep
Key

F9

Meta
Modifies the action of the function it prefixes.

When the Meta state is turned on, the letter A (for "Alternate") appears in the
status bar. You can use the Meta and Arg function prefixes in any order.

True
False

Meta state turned on.
Meta state turned off.

Arg, Lasttext, Lastselect

Unassigned

The Mgrep function searches all the files listed in the Mgreplist macro. PWB
places all matches in the Search Results window. Under multithreaded
environments, PWB performs the search in the background.

To browse the list of matches, use ywbnextlogmatch (CTRL+SHIFf +F3),

ywbpreviouslogmatch (CTRL+SHIFT+F4), and the Nextsearch function
(Unassigned).

Mgrep (Unassigned)
Searches for the previously searched string or pattern.

Arg Mgrep (ALT +A Unassigned)
Searches for the string specified by the characters from the cursor to the first
blank character.

Arg textarg Mgrep (ALT+A textarg Unassigned)
Searches for textarg.

Arg Arg Mgrep (ALT+A ALT+A Unassigned)
Searches for the regular expression specified by the characters from the cursor
to the first blank character.

Arg Arg textarg Mgrep (ALT+A ALT+A textarg Unassigned)
Searches for the regular expression specified by textarg.

Meta ... Mgrep (F9 ... Unassigned)
As above except that the value of the Case switch is reversed for the search.

Returns

Update

Minimize
Key

Returns

See

Mlines
Keys

Chapter 7 Programmer's WorkBench Reference 171

True
With MS-DOS, indicates that a match was found. With multithreaded
environments, indicates that a background search was successfully initiated.

False
No matches, no search pattern specified, search pattern invalid, or search
terminated by CTRL+BREAK.

In PWB 2.00, search and build results and their browsing functions are separate.
A background build operation and a background search can be performed
simultaneously.

In PWB l.x, search and build results appear in the same window, and are browsed
with the same commands. A background build operation and a multifile search
cannot be performed at the same time in PWB l.x.

Unassigned

Minimize
Shrinks the active window to an icon (a minimized window). If the window is
already minimized, restores the window.

Arg Minimize (ALT+A Unassigned)
Minimizes all open windows.

Meta Minimize (F9 Unassigned)
Restores the window to its unminimized state.

True Window minimized: the window is an icon.
False Window restored: the window is not an icon.

Maximize

CTRL+UP, CTRL+W

lVIlines
Scrolls the window down as specified by the V scroll switch.

172 Environment and Tools

Returns

See

Arg Mlines (ALT+A CTRL+UP)

Scrolls the window so the line at the cursor moves to the bottom of the window.

Arg number Mlines (ALT+A number CTRL+UP)

Scrolls the window down by number lines.

True
False

Plines

Window scrolled.
Invalid argument.

Movewindow
Key

Returns

Unassigned

Movewindow
Enters window-moving mode. In window-moving mode, only the following
actions are available:

Action Key

Move up one row UP

Move down one row DOWN

Move left one column LEFT

Move right one column RIGHT

Accept the new position ENTER

Cancel the move ESC

Arg number Movewindow (ALT+A number Unassigned)
Moves the upper-left comer of the window to the screen row specified by
number.

Meta Arg number Movewindow (F9 ALT +A number Unassigned)
Moves the upper-left comer of the window to the screen column specified by
number.

True
False

Window moved.
Window not moved.

Mpage
Keys

Returns

See

Mpara
Key

Returns

See

Mreplace
Key

Chapter 7 Programmer's WorkBench Reference 173

PGUP,CTRL+R

Mpage
Moves the cursor backward in the file by one window.

True
False

Ppage

Unassigned

Mpara

Cursor moved.
Cursor not moved.

Moves the cursor to the beginning of the first line of the current paragraph. If the
cursor is already on the first line of the paragraph, it is moved to the begining of
the first line of the preceding paragraph.

Meta Mpara (F9 Unassigned)
Moves the cursor to the first blank line preceding the current paragraph.

True
False

Ppara

Unassigned

Mreplace

Cursor moved.
Cursor not moved; no more paragraphs in the file.

Performs a find-and-replace operation across mUltiple files, prompting for
the find-and-replacement strings and for confrrmation at each occurrence.
Mreplace searches all the files listed in the special macro Mgreplist.

Arg Arg Mreplace (ALT+A ALT+A Unassigned)
Performs the same action as Mreplace but uses regular expressions.

174 Environment and Tools

Returns

See

Mreplaceall
Key

Returns

See

Msearch
Key

Meta ... Mreplace (F9 ... Unassigned)
As above except reverses the sense of the Case switch for the operation.

True
False

At least one replacement made.
No replacements made or operation aborted.

Mgrep, Mreplaceall, Qreplace, Replace

Unassigned

Mreplaceall
Performs a find-and-replace operation across multiple files, prompting for the
find-and-replacement strings. Mreplaceall searches all the files listed in the
special macro Mgreplist.

Arg Arg Mreplaceall (ALT+A ALT+A Unassigned)
Performs the same action as Mreplaceall but uses regular expressions.

Meta ... Mreplaceall (F9 ... Unassigned)
As above except reverses the sense of the Case switch for the operation.

True
False

At least one replacement made.
No replacements made or operation aborted.

Mgrep, Mreplace, Qreplace, Replace

F4

Msearch
Searches backward for the previously searched string or pattern.

Arg Msearch (ALT+A F4)

Searches backward for the string specified by the text from the cursor to the first
blank character.

Arg textarg Msearch (ALT+A textarg F4)

Searches backward for the specified text.

Returns

See

Mword
Keys

Returns

See

Newfile
Key

Chapter 7 Programmer's WorkBench Reference 175

Arg Arg Msearch (ALT+A ALT+A F4)

Searches backward for the regular expression specified by the text from the
cursor to the first blank character.

Arg Arg textarg Msearch (ALT+A ALT+A textarg F4)

Searches backward for the regular expression defined by textarg.

Meta ... Msearch (F9 ... F4)

As above except reverses the sense of the Case switch for the search.

True
False

String found.
Invalid argument, or string not found.

Mgrep, Psearch

CTRL+LEFT,CTRL+A

Mword
Moves the cursor to the beginning of the current word, or if the cursor is not in a
word or at the beginning of the word, moves the cursor to the beginning of the
previous word. A word is defined by the Word switch.

Meta Pword (F9 CTRL+RIGHT)

Moves the cursor to the immediate right of the previous word.

True Cursor moved.
False Cursor not moved; there are no more words in the file.

Pword

Unassigned

The Newfile function creates a new pseudofile. If the Newwindow switch is set to
yes, it opens a new window for the file.

Newfile (Unassigned)
Creates a new untitled pseudofile. The new pseudofile is given a unique name of
the form:

<U ntitled.nnn> Untitled.nnn

176 Environment and Tools

Returns

Newline
Keys

Returns

Update

See

where nnn is a three-digit number starting with 001 at the beginning of each
PWB session. The window title shows Unti tl ed. 001. Use the pseudofile
name < U n tit 1 ed . 001> to refer to the file in a text argument or dialog box.

Arg Newfile (ALT+A Unassigned)
Creates a new pseudofile with the name specified by the text from the cursor to
the end of the line. The resulting full pseudofile name is:

"<Text on the line>Text on the line"

Arg textarg Newfile (ALT+A textarg Unassigned)
Creates a new pseudofile with the name specified by textarg. The resulting full
pseudofile name is:

" < textarg > textarg "

If you want to use a different short name and window title, use the full name
as an argument to the Setfile or Openfile functions. For example, Arg
"<temp>Tempora ry Fi 1 e" Openfile opens a pseudofile in a new window
that has the title Tempo ra ry Fi 1 e.

True
False

Successfully created the pseudofile.
Unable to create the pseudofile.

SHIff +ENTER, SHIff +NUMENTER

Newline
Moves the cursor to a new line.

If the Softer switch is set to yes, PWB automatically indents to an appropriate
position based on the type of file you are editing.

Meta Newline (F9 SHIFf+ENTER)

Moves the cursor to column 1 of the next line.

Newline always returns true.

In PWB 1.x, PWB performs special automatic indentation for C files. In PWB 2.00,
language-specific automatic indentation is handled by language extensions
if the feature is enabled. Otherwise, PWB uses its default indentation rules.

Emaesnewl

Nextmsg
Key

Returns

Update

See

Unassigned

Nextmsg

Chapter 7 Programmer's WorkBench Reference 177

Advances to next message in the Build Results window.

Arg number Nextmsg (ALT+A number Unassigned)
Moves to the nth message in the current set of messages, where n is specified by
number.

To move relative to the current message, use a signed number. For example,
when number is + 1, PWB moves to the next message, and when it is -1, PWB
moves to the previous message.

Arg Nextmsg (ALT +A Unassigned)
Moves to the next message in the current set of messages that does not refer to
the current file.

Meta Nextmsg (F9 Unassigned)
Advances to the next set of messages.

Arg Arg Nextmsg (ALT+A ALT+A Unassigned)
Sets the message at the cursor as the current message. This works only when the
cursor is on a message in the Build Results window.

True
False

Message found.
No more messages found.

In PWB l.x, Nextmsg also browses the results of searches. In PWB 2.00, search
results are browsed with the N extsearch function.

Meta Nextmsg
In PWB l.x, deletes the current set of messages and advances to the next set. In
PWB 2.00, Meta Nextmsg does not delete the set. To delete sets of messages in
PWB 2.00, use the Clearmsg function.

Meta Arg Arg Nextmsg
In PWB l.x, closes the Compile Results window. In PWB 2.00, it behaves like
Arg Arg Nextmsg.

Clearmsg

178 Environment and Tools

Nextsearch
Key

Update

See

Noedit
Key

Unassigned

Nextsearch
Advances to the next match in the Search Results window.

Arg number Nextsearch (ALT+A number Unassigned)
Moves to the nth match in the current set of matches, where n is specified by
number.

To move relative to the current match, use a signed number. For example, when
number is + I, PWB moves to the next match, and when it is I, PWB moves to
the previous match.

Arg Nextsearch (ALT+A Unassigned)
Moves to the next match in the current set of matches that does not refer to the
current file.

Meta Nextsearch (F9 Unassigned)
Advances to the next set of matches.

Arg Arg Nextsearch (ALT+A ALT+A Unassigned)
Sets the match at the cursor as the current match. This works only when the
cursor is on a match in the Search Results window.

In PWB l.x, the results of searches are browsed using the Nextmsg function.

Clearsearch

Unassigned

The Noedit function toggles the no-edit state of PWB or the current file. When
the no-edit state is turned on, PWB displays the letter R on the status bar and
disallows modification of the file.

Noedit
Toggles the no-edit state. If you started PWB with the IR (read-only) option,
Noedit removes the no-edit limitation.

Meta Noedit (F9 Unassigned)
Toggles the no-edit state for the current file. This form of the Noedit command
works only for disk files and has no effect on pseudofiles.

Returns

Openfile
Key

Returns

See

Paste
Keys

Menu

Chapter 7 Programmer's WorkBench Reference 179

If you have the Editreadonly switch set to no, PWB turns on the no-edit state
for files that are marked read-only on disk. This function toggles the no-edit
state for the file so that you can modify it.

True
False

File or PWB in no-edit state; modification disallowed.
File or PWB not in no-edit state; modification allowed.

FlO

The Openfile function opens a file in a new window, ignoring the Newwindow
switch.

Arg Openfile (ALT +A FlO)

Opens the file at the cursor in a new window. The name of the file is specified
by the text from the cursor to the first blank character.

Arg textarg Openfile (ALT+A textarg FlO)

Opens the specified file in a new window.

If the argument is a wildcard, PWB creates a pseudo file containing a list of files
that match the pattern. To open a file from this list, position the cursor at the
beginning of the name and use Arg Openfile or Arg Setfile.

True
False

File and window successfully opened.
No argument specified, or file did not exist and you did not create it.

Newfile, Setfile

SHIFT+INS, SHIFT+NUM+

Edit menu, Paste command

Paste (SHIFT+INS)

Copies the contents of the clipboard to the file at the cursor. The text is always
inserted independent of the insert/overtype mode.

If the clipboard contents were copied to the clipboard as a linearg, PWB inserts
the contents of the clipboard above the current line. Otherwise, the contents of
the clipboard are inserted at the cursor.

180 Environment and Tools

Returns

Example

Pbal
Key

Arg boxarg I linearg I streamarg Paste
(ALT+A boxarg Ilinearg I streamarg SHIFf+INS)

Replaces the selected text with the contents of the clipboard.

Arg Paste (ALT+A SHIFT+INS)

Copies the text from the cursor to the end of the line. The text is copied to the
clipboard and inserted at the cursor.

Arg textarg Paste (ALT+A textarg SHIFf+INS)

Copies textarg to the clipboard and inserts it at the cursor.

Arg Argfilename Paste (ALT+A ALT+Afilename SHIFf+INS)

Copies the contents of the file specified by textarg to the current file above the
current line.

Arg Arg !textarg Paste (ALT+A ALT+A !filename SHIFT+INS)

Runs textarg as an operating-system command, capturing the command's output
to standard output. The output is copied to the clipboard and inserted above the
current line.

You must enter the exclamation mark as shown.

True
False

Paste always returns true except for the following cases.
Tried Arg Argfilename Paste and file did not exist, or the pasted text
would make a line too long.

The following command copies a sorted copy of the file SAMPLE.TXT to the
current file: Arg Arg ! SORT <SAMPLE. TXT Paste (ALT+AALT+A ! SORT
<SAMPLE. TXT SHIFT+INS).

CTRL+[

PbaI
Scans backward through the file, balancing parentheses (()) and brackets ([D.
The first unmatched parenthesis or bracket is highlighted when found.

If an unbalanced parenthesis or bracket is found, it is highlighted and the
corresponding character is inserted at the cursor. If no unbalanced characters are
found, PWB displays a message box.

The search does not include the cursor position and looks for more opening
brackets or parentheses than closing ones.

Arg PbaI (ALT+A CTRL+O

Like PbaI except that it scans forward through the file and searches for right
brackets or parentheses lacking opening partners.

Update

Returns

See

Plines
Keys

Returns

See

Ppage
Keys

Chapter 7 Programmer's WorkBench Reference 181

Meta Pbal (F9 CTRL+O

Like Pbal but does not insert the unbalanced character. If no unbalanced
characters are found, moves to the matching character.

Arg Meta Pbal (AL T +A F9 CTRL+O

Like Arg Pbal but does not insert the character. If no unbalanced characters are
found, moves to the matching character.

In PWB l.x, the messages appear on the status bar. In PWB 2.00, they appear in a
message box.

True
False

Infodialog

Balance successful.
Invalid argument, or no unbalanced characters found.

CTRL+DOvrN,CTRL+Z

Plines
Scrolls the text up as specified by the V scroll switch.

Arg Plines (ALT +A CTRL+DOWN)

Scrolls the text such that the line at the cursor is moved to the top of the window.

Arg number Plines (ALT+A number CTRL+DOWN)

Scrolls the text up by number lines.

True
False

Mlines

Text scrolled.
Invalid argument.

PGDN, CTRL+C

Ppage
Moves the cursor forward in the file by one window.

182 Environment and Tools

Returns

See

Ppara
Key

Returns

See

Print
Key

True
False

Mpage

Unassigned

Ppara

Cursor moved.
Cursor not moved.

Moves the cursor to the beginning of the first line of the next paragraph.

Meta Ppara (F9 Unassigned)
Moves cursor to the beginning of the first blank line after the current paragraph.
If the cursor is not on a paragraph, moves the cursor to the first blank line after
the next paragraph.

True
False

Mpara

Unassigned

Cursor moved.
Cursor not moved; no more paragraphs in the file.

The Print function prints files or selections. If the Printcmd switch is set, PWB
uses the command line given in the switch. Otherwise, PWB copies the file or
selection to PRN. Under multithreaded environments, PWB runs the print command
in the background.

Print (Unassigned)
Prints the current file.

Arg textarg Print (ALT+A textarg Unassigned)
Prints all the files listed in textarg. Use a space to separate each name from the
preceding name. You can use environment variables to specify paths for the
files.

Arg boxarg I linearg I streamarg Print
(ALT+A boxarg llinearg I streamarg Unassigned)

Prints the selected text.

Returns

Update

Project
Key

Returns

See

Prompt
Key

Chapter 7 Programmer's WorkBench Reference 183

Arg Meta Print (ALT+A F9 Unassigned)
Cancels the current background print.

True
False

Print successfully submitted.
Could not start print job.

In PWB l.x there is no way to cancel a background print.

Unassigned

Project
Open the last project.

Arg Project (ALT+A Unassigned)
Open the project makefile at the cursor as a PWB project. The name of the
project is specified by the text from the cursor to the first blank character.

Arg textarg Project (ALT+A textarg Unassigned)
Open the project makefile specified by textarg as a PWB project.

Arg Arg Project (ALT+A ALT+A Unassigned)
Close the current project.

Arg Meta Project (ALT+A F9 Unassigned)
Open the project makefile at the cursor as a non-PWB project (foreign
makefile).

Arg textarg Meta Project (ALT+A textarg F9 Unassigned)
Open the project makefile specified by textarg as a non-PWB project.

True
False

A project is open.
A project is not open.

Lastproject

Unassigned

The Prompt function displays the Text Argument dialog box where you can enter a
text argument. You can use this function interactively, but because it is mainly

184 Environment and Tools

Returns

Example

See

Psearch
Key

useful in macros, it is not assigned to a key by default. You usually use Lasttext or
Arg to directly enter a text argument.

Prompt
Displays the Text Argument dialog box without a title. See: Lasttext

Arg Prompt (ALT+A Unassigned)
Uses the text of the current line from the cursor to the end of the line as the title.

Arg textarg Prompt (ALT+A textarg Unassigned)
Uses textarg as the title.

Arg boxarg llinearg I streamarg Prompt
(ALT+A boxarg llinearg I streamarg Unassigned)

Uses the selected text as the title. If the selection spans more than one line, the
title is the first line of the selected text.

True
False

Textarg entered; the user chose the OK button.
The dialog box was canceled.

With the following macro, PWB prompts for a Help topic:

QueryHelp := Arg "Help Topic to Find:" Prompt -> Pwbhelp
QueryHelp : Ctrl+Q

When you press CTRL+Q, PWB displays a dialog box with the string He 1 p Top i c
to Fin d: as the title and waits for a response. PWB passes your response to the
Pwbhelp function as if the command Arg textarg Pwbhelp had been executed.
If you cancel the dialog box, Prompt returns false and the macro conditional - >
terminates the macro without executing Pwbhelp.

Assign

F3

Psearch
Searches forward for the previously searched string or pattern.

Arg Psearch (ALT+A F3)

Searches forward in the file for the string specified by the text from the cursor to
the first blank character.

Arg textarg Psearch (ALT+A textarg F3)

Searches forward for the specified text.

Returns

Pwbhelp
Key

Returns

Chapter 7 Programmer's WorkBench Reference 185

Arg Arg Psearch (ALT+A ALT+A F3)

Searches forward in the file for the regular expression specified by the text from
the cursor to the first blank character.

Arg Arg textarg Psearch (ALT+A ALT+A textarg F3)

Searches forward for the regular expression defined by textarg.

Meta ... Psearch (F9 ... F3)

As above but reverses the value of the Case switch for one search.

True
False

Unassigned

Pwbhelp

String found.
Invalid argument, or string not found.

Displays the default Help topic.

Arg Pwbhelp (ALT+A Unassigned)
Displays Help on the topic at the cursor. Equivalent to the macro
.J1wbhelp_context (Fl).

Arg textarg Pwbhelp (ALT+A textarg Unassigned)
Displays Help on the specified text argument.

Arg streamarg Pwbhelp (ALT+A streamarg Unassigned)
Displays Help on the selected text. The selection cannot include more than one
line.

Meta Pwbhelp (F9 Unassigned)
Prompts for a key, then displays Help on the function or macro assigned to the
key you press.

If you press a key that is not assigned to a function or macro, PWB displays help
on the Unassigned function. If you press a key that PWB does not recognize,
the prompt remains displayed until you press a key that PWB recognizes.

True
False

Help topic found.
Help topic not found.

186 Environment and Tools

Pwbhelpnext
Key

Returns

CTRL+Fl

Pwbhelpnext
Displays the next physical topic in the current Help database.

Meta Pwbhelpnext (F9 CTRL+Fl)

Displays the previous Help topic on the backtrace list. This is the Help topic that
you previously viewed. Up to 20 Help topics are retained in the backtrace list.

Equivalent to the Back button on the Help screens and the macro
_pwbhelp_back (ALT+Fl).

Arg Pwbhelpnext (ALT+A CTRL+Fl)

Displays the next occurrence of the current Help topic within the Help system.

Equivalent to the macro _pwbhelp _again (Unassigned).

Use this command when the Help topic appears several times in the set of open
Help databases.

True
False

Help topic found.
Help topic not found.

Pwbhelpsearch
, Key Unassigned

The Pwbhelpsearch function performs a global search of the Help system. The
search is case insensitive unless you use the Meta form of Pwbhelpsearch, which
uses the setting of the Case switch to determine case sensitivity.

Pwbhelpsearch (Unassigned)
Displays the results of the last global Help search.

Equivalent to the predefined macro _pwbhelp _searchres (Unassigned).

Arg Pwbhelpsearch (ALT+A Unassigned)
Searches Help for the word at the cursor.

Arg textarg Pwbhelpsearch (ALT+A textarg Unassigned)
Searches Help for the selected text.

Arg Arg Pwbhelpsearch (ALT+A ALT+A Unassigned)
Searches Help using the regular expression at the cursor.

Arg Arg textarg Pwbhelpsearch (ALT+A ALT+A textarg Unassigned)
Searches Help for the selected regular expression.

Returns

Chapter 7 Programmer's WorkBench Reference 187

Meta ... Pwbhelpsearch (F9 ... Unassigned)
As above except the search is case sensitive if the Case switch is set to yes.

True
False

At least one match found.
No matches found, or search canceled.

Pwbrowse Functions
Most of the Pwbrowse ... functions provided by the PWBROWSE Source Browser
extension display one of the Source Browser's dialog boxes. The Source Browser
functions attached to Browse menu commands are listed in the following table.

Function Browse Menu Command Key

Pwbrowsecalltree Call Tree (Fwd/Rev) Unassigned

Pwbrowseclhier Class Hierarchy Unassigned

Pwbrowsecltree Class Tree (Fwd/Rev) Unassigned

Pwbrowsefuhier Function Hierarchy Unassigned

Pwbrowsegotodef Goto Definition Unassigned

Pwbrowsegotoref Goto Reference Unassigned

Pwbrowselistref List References Unassigned

Pwbrowsenext Next CTRL+NUM+

Pwbrowseoutline Module Outline Unassigned

Pwbrowseprev Previous CTRL+NUM-

Pwbrowseviewrel View Relationship Unassigned

Pwbrowsewhref Which Reference Unassigned

The browser functions in the following table do not correspond to a Browse menu
command.

Function Description Key

Pwbrowse 1 stdef Go to 1 st definition Unassigned

Pwbrowse 1 stref Go to I st reference Unassigned

Pwbrowsepop Go to previously browsed location Unassigned

188 Environment and Tools

Pwbwindow
Key

Returns

Pword
Keys

Returns

See

Unassigned

The Pwbwindow function opens PWB windows. If the specified window is already
open, PWB switches to that window.

Arg Pwbwindow (ALT+A Unassigned)
Opens the PWB window with the name at the cursor. The name is specified
by the text from the cursor to the first blank character.

Arg textarg Pwbwindow (ALT+A textarg Unassigned)
Opens the specified PWB window.

Arg Meta Pwbwindow (ALT+A F9 Unassigned)
Closes the PWB window specified by the name at the cursor.

Arg textarg Meta Pwbwindow (ALT+A textarg F9 Unassigned)
Closes the specified PWB window.

True
False

The specified window was opened.
The window could not be opened.

CTRL+RIGHT, CTRL+F

Pword
Moves the cursor to the beginning of the next word. A word is defined by the
Word switch.

Meta Pword (F9 CTRL+RIGHT)

Moves the cursor to the immediate right of the current word, or if the cursor is
not in a word, moves it to the right of the next word.

True Cursor moved.
False Cursor not moved; there are no more words in the file.

Mword

Qreplace
Key

Returns

See

Chapter 7 Programmer's WorkBench Reference 189

CTRL+\

The Qreplace function perfonns a find-and-replace operation on the current file,
prompting for find-and-replacement strings and confinnation at each occurrence.

Qreplace (CTRL+\)

Perfonns the replacement from the cursor to the end of the file, wrapping around
the end of the file if the Searchwrap switch is set to yes.

Arg boxarg llinearg I streamarg Qreplace
(ALT+A boxarg llinearg I streamarg CTRL+\)

Perfonns the replacement over the selected area.

Note that PWB does not adjust the selection at each replacement for changes in
the length of the text. For boxarg and streamarg, PWB may replace text that
was not included in the original selection or miss text included in the original
selection.

Arg mark Qreplace (ALT+A mark CTRL+\)

Perfonns the replacement on text from the cursor to the specified mark.
Replaces over text as if it were selected, according to the current selection mode.
The mark argument cannot be a line number. See: Mark.

Arg number Qreplace (ALT+A number CTRL+\)

Perfonns the replacement for the specified number of lines, starting with the line
at the cursor.

Arg Arg ... Qreplace (ALT+A ALT+A ... CTRL+\)

As above except using regular expressions.

Meta ... Qreplace (F9 ... CTRL+\)

As above except the sense of the Case switch is reversed for the operation.

True
False

At least one replacement was perfonned.
String not found, or invalid pattern.

Mreplace, Replace, Searchwrap

190 Environment and Tools

Quote
Key

Returns

Record
Key

CTRL+P

Quote
Reads one key from the keyboard and types it into the file or dialog box. In a
dialog box, the key is always CTRL+P, no matter what function or macro you
may have assigned to CTRL+P for the editor.

This is useful for typing a character (such as TAB or CTRL+L) whose keystroke is
assigned to a PWB function.

True
False

Quote always returns true except in the following case.
Character would make line too long.

SHIFT +CTRL+R

The Record function toggles macro recording. While a macro is being recorded,
PWB displays the letter X on the status bar, and a bullet appears next to the Record
On command from the Edit menu. If a menu command cannot be recorded, it is
disabled while recording.

When macro recording is stopped, PWB assigns the recorded commands to the
default macro name Playback. During the recording, PWB writes the name of each
command to the definition of Playback in the Record window, which can
be viewed as it is updated.

Macro recording in PWB does not record changes in cursor position accomplished
by clicking the mouse. Use the keyboard if you want to include cursor movements
in a macro.

Record (SHIFT +CTRL+R)
Toggles macro recording on and off.

Arg textarg Record (ALT+A textarg SHIFT+CTRL+R)

Turns on recording if it is off and assigns the name specified in the text
argument to the recorded macro. Turns off recording if it is turned on.

Meta Record (F9 SHIFT +CTRL+R)

Toggles macro recording. While recording, no editing commands are executed
until recording is turned off. Use this form of the function to record a macro
without modifying your file.

Returns

Update

Refresh
Key

Chapter 7 Programmer's WorkBench Reference 191

Arg Record (ALT+A SHIFf+CTRL+R)

Arg Arg textarg Record (ALT+A ALT+A textarg SHIFf+CTRL+R)

Arg Arg Meta Record (ALT+A ALT+A F9 SHIFf+CTRL+R)

As above but if the target macro already exists, the commands are appended to
the end of the macro.

True
False

Recording turned on.
Recording turned off.

In PWB 2.00, more menu commands can be recorded than with PWB l.x.

SHIFf+F7

Refresh
Prompts for confirmation and then rereads the file from disk, discarding its Undo
history and all modifications to the file since the file was last saved.

Returns

True

False

Condition

File reread.

Prompt canceled

Arg Refresh (ALT +A SHIff +F7)

Prompts for confirmation and then removes the file from the active window and
the window's file history. If the active window is the last window that has the
file in its history, the file is discarded from memory without saving changes, and
the file is closed.

Returns

True

False

Condition

File removed from the window.

Prompt canceled, or bad argument. The file is not removed from
the window.

192 Environment and Tools

Repeat
Key

Returns

Replace
Key

Unassigned

Repeat
Repeats the last editing action relative to the current cursor position. The
Repeat function considers the following types of operations to be editing
actions:

• Typing a contiguous stream of characters without entering a command or
moving the cursor

• Deleting text

• Pasting from the clipboard

Repeat does not repeat macros or cursor movements.

Arg number Repeat (ALT+A number Unassigned)
Performs the last action the number of times specified by number.

True
False

CTRL+L

Action repeated and returned true.
Action repeated and returned false, or no action to repeat.

The Replace function performs a find-and-replace operation on the current file,
prompting for find and replacement strings. Replace substitutes all matches of the
search pattern without prompting for confIrmation.

Replace (CTRL+L)

Performs the replacement from the cursor to the end of the file, wrapping around
the end of the fIle if the Searchwrap switch is on.

Arg boxarg llinearg I streamarg Replace
(ALT+A boxarg llinearg I streamarg CTRL+L)

Performs the replacement over the selected area.

Note that PWB does not adjust the selection at each replacement for changes in
the length of the text. For boxarg and streamarg, PWB may replace text that
was not included in the original selection or miss text included in the original
selection.

Returns

See

Example

Chapter 7 Programmer's WorkBench Reference 193

Arg mark Replace (ALT+A mark CTRL+L)

Performs the replacement on text from the cursor to the specified mark. It
searches the range of text as if it were selected, according to the current
selection mode. The mark argument cannot be a line number.

Arg number Replace (ALT+A number CTRL+L)

Performs the replacement over the specified number of lines, starting with the
current line.

Arg Arg ... Replace (ALT+A ALT+A ... CTRL+L)

As above except using regular expressions.

Meta ... Replace (F9 ... CTRL+L)

As above except the sense of the Case switch is reversed for the operation.

True
False

At least one replacement was performed.
String not found, or invalid pattern.

Qreplace, Searchwrap

To use the replace function in a macro, use the phrase:

... Replace "pattern" Newline "replacement" Newline +>found ...

Enter the replies to the prompts as you would when executing Replace
interactively. This example also shows where to place the conditional to test the
result of Replace.

You can specify special characters in the find-and-replacement strings by using
escape sequences similar to those in the C language. Note that backslashes in the
macro string must be doubled.

To restore the usual prompts, use the phrase:

... Repl ace <

To use an empty replacement text (replace with nothing), use the following phrase:

... Replace "pattern" Newline" " Cdelete Newline ...

If you find that you write many macros with empty replacements, the common
phrase can be placed in a macro, as follows:

nothing := " " Cdelete Newline

In addition, macro definitions can be more readable with the following definition:

with := Newline

With these definitions, you can write:

... Replace "pattern" with nothing

194 Environment and Tools

Resize
Key

See

Restcur
Key

Returns

See

Unassigned

Resize
Enters window-resizing mode. When in window-resizing mode, only the
following actions are available:

Action Key

Shrink one row UP

Expand one row DOWN

Shrink one column LEFf

Expand one column RIGHT

Accept the new size ENTER

Cancel the resize ESC

Arg number Resize (ALT+A number Unassigned)
Resizes the window to number rows high.

Arg number Meta Resize (ALT+A number F9 Unassigned)
Resizes the window to number columns wide.

Movewindow

Unassigned

Restcur
Moves the cursor to the last position saved with the Savecur function
(Unassigned, Set To Anchor command, Edit menu). Restcur always clears the
saved position.

True
False

Selcur

Position restored.
No saved position to restore.

Right
Keys

Returns

Example

See

Saveall
Key

Returns

Savecur
Key

Menu

Chapter 7 Programmer's WorkBench Reference 195

RIGHT, CTRL+D

Right
Moves the cursor one character to the right. If this action causes the cursor to
move out of the window, PWB adjusts the window to the right according to the
Hscroll switch.

Meta Right (F9 RIGHT)

Moves the cursor to the rightmost position in the window.

True
False

Cursor on text in the line.
Cursor past text on the line.

In a macro, the return value of the Right function can be used to test if the cursor is
on text in the line or past the end of the line.

The following macro tests the return value to simulate the Endline function:

MyEndline := Begline :>loop Right +>loop

Begline, Endfile, Endline, Home, Left

Unassigned

Saveall
Saves all modified disk files. Pseudofiles are not saved.

Saveall always returns true.

Unassigned

Edit menu, Set Anchor command

Savecur
Saves the cursor position (sets an anchor).

196 Environment and Tools

Returns

Sdelete
Key

Returns

Searchall
Key

To restore the cursor to the saved position, use the Restcur function
(Unassigned). To select text from the current position to the saved position, use
the Select To Anchor command from the Edit menu or the Se1cur function
(Unassigned).

Savecur always returns true.

Unassigned

Sdelete
Deletes the character at the cursor. Does not copy the character to the clipboard.

Arg Sdelete (ALT+A Unassigned)
Deletes text from the cursor to the end of the line, including the line break. The
deleted text is copied to the clipboard.

Arg streamarg I boxarg I linearg Sdelete
(ALT+A streamarg I boxarg llinearg Unassigned)

Deletes the selected stream of text from the starting point of the selection to the
cursor and copies it to the clipboard. Always deletes a stream, regardless of the
current selection mode.

Meta ... Sdelete (F9 ... Unassigned)
As above but discards the deleted text. The contents of the clipboard are
unchanged.

Sdelete always returns true.

Unassigned

Search all
Highlights all occurrences of the previously searched string or pattern. Moves
the cursor to the first occurrence in the file.

Arg Searchall (ALT+A Unassigned)
Highlights all occurrences of the string specified by the text from the cursor to
the first blank character.

Returns

Selcur
Key

Menu

Returns

Select
Keys

Chapter 7 Programmer's WorkBench Reference 197

Arg textarg Searchall (ALT+A textarg Unassigned)
Highlights all occurrences of textarg.

Arg Arg Searchall (ALT+A ALT+A Unassigned)
Highlights all occurrences of the regular expression defined by the characters
from the cursor to the first blank character.

Arg streamarg Searchall (ALT+A streamarg Unassigned)
Highlights all occurrences of streamarg.

Arg Arg textarg Searchall (ALT+A ALT+A textarg Unassigned)
Highlights all occurrences of a regular expression defined by textarg.

Meta ... Searchall (F9 ... Unassigned)
As above but reverses the value of the Case switch for one search.

True
False

Unassigned

String or pattern found.
No matches found.

Edit menu, Select To Anchor command

Selcur
Selects text from the cursor to the position saved using the Set Anchor command
from the Edit menu or the Savecur function (Unassigned). If no position has
been saved, Selcur selects text from the cursor to the beginning of the file.

Selcur always returns true.

SHIFT +PGUP, SHIFT +CTRL+PGUP, SHIFT +PGDN, SHIFT +CTRL+PGDN, SHIFT +END,

SHIFT+CTRL+END, SHIFT+HOME, SHIFT+CTRL+HOME, SHIFT+LEFT, SHIFT+CTRL+LEFT,

SHIFT +UP, SHIFT +RIGHT, SHIFT +CTRL+RIGHT, SHIFT +DOWN

Select
Causes a shifted key to take on the cursor-movement function associated with
the unshifted key and begins or extends a selection.

To see the key combinations currently assigned to this function, use the Key
Assignments command from the Options menu.

198 Environment and Tools

Selmode
Key

Returns

See

Selwindow
Key

Returns

Unassigned

Selmode
Advances the selection mode between stream, line, and box modes, starting with
the current mode.

True
False

New mode is stream mode.
New mode is box mode or line mode.

_pwbstreammode, _pwbboxmode, _pwblinemode

F6

Selwindow
Moves the focus to the next window.

Arg Selwindow (ALT +A F6)

Moves the focus to the next unminimized window. Minimized windows (icons)
are skipped.

Arg number Selwindow (ALT+A number F6)

Moves the focus to the specified window.

Meta Selwindow (F9 F6)

Moves the focus to the previous window.

Arg Meta Selwindow (ALT+A F9 F6)

Moves the focus to the previous unminimized window.

True
False

Focus moved to another window.
No other windows are open.

Setfile
Key

Returns

See

Chapter 7 Programmer's WorkBench Reference 199

F2

Setfile
Switches to the first file in the active window's file history. If there are no
files in the file history, PWB displays the message No a 1 t ern ate f i 1 e.
When the Autosave switch is set to yes, PWB saves the current file if it has
been modified.

Setfile does not honor the Newwindow switch. To open a new window when
you open a file, use Openfile.

Arg Setfile (ALT+A F2)

Switches to the filename that begins at the cursor and ends with the first blank
character.

Arg textarg Setfile (ALT+A textarg F2)

Switches to the file specified by textarg. If the file is not already open, PWB
opens it. You can use environment-variable specifiers in the argument.

If the argument is a drive or directory name, PWB changes the current drive or
directory to the specified one and displays a message to confirm the change. See:
Infodialog.

Arg !number Setfile (ALT+A !number F2)

If the argument has the form !number, PWB switches to the file with that
number in the file history. The number can be from 1 to 9, inclusive. See:
ywbfilen.

Arg wildcard Setfile (ALT+A wildcard F2)

If the argument is a wildcard, PWB creates a pseudofile containing a list of files
that match the pattern. To open a file from this list, position the cursor at the
beginning of the name and execute Arg Openfile (ALT+A FlO) or Arg Setfile
(ALT+A F2).

Meta ... Setfile (F9 ... F2)

As above but does not save the changes to the current file.

Arg Arg Setfile (ALT+A ALT+A F2)

Saves the current file.

Arg Arg textarg Setfile (ALT+A ALT+A textarg F2)

Saves the current file under the name specified by textarg.

True
False

Newfile

File opened successfully.
No alternate file, the specified file does not exist, and you did not wish
to create it; or the current file needs to be saved and cannot be saved.

200 Environment and Tools

Sethelp
Key

Returns

See

Setwindow
Key

Returns

SHIff +CTRL+S

The Sethelp function opens and closes single Help files. The Sethelp function can
also display the current list of open Help files. Sethelp affects only the current
PWB session.

Arg Sethelp (ALT+A SHIFf+CTRL+S)

Opens the Help file specified by the filename at the cursor.

Arg streamarg I textarg Sethelp (ALT+A streamarg I textarg SHIFf+CTRL+S)

Opens the Help file specified by the selected filename.

Meta ... Sethelp (F9 ALT+A SHIFf+CTRL+S)

As above except the specified Help file is closed.

Arg? Sethelp (ALT+A ? SHIFf+CTRL+S)
Lists all currently open Help files.

Help file opened or closed, or list of Help files displayed. True
False The specified file could not be opened or closed, or the list of files

could not be displayed.

Helpflles

CTRL+]

Setwindow
Redisplays the contents of the active window.

Meta Setwindow (F9 CTRL+])

Redisplays the current line.

Arg Setwindow (ALT+A CTRL+])

Adjusts the window so that the cursor position becomes the home position
(upper-left comer).

Setwindow always returns true.

Shell
Key

Returns

See

Sinsert
Key

Chapter 7 Programmer's WorkBench Reference 201

SHIFf+F9

Shell
Runs an operating-system command shell. To. return to PWB, type ex; t at the
operating-system prompt.

Warning Do not start terminate-and-stay-resident (TSR) programs in a shell.
This causes unpredictable results.

Arg Shell (ALT+A SHIFf+F9)

Runs the text from the cursor to the end of the line as a command to the shell,
and returns to PWB.

Arg boxarg llinearg Shell (ALT+A boxarg llinearg SHIFT+F9)

Runs each selected line as a separate command to the shell, and returns to PWB.

Arg textarg Shell (ALT+A textarg SHIFf+F9)

Runs textarg as a command to the shell, and returns to PWB.

Meta ... Shell (F9 ... SHIFf+F9)

Runs a shell, ignoring the Autosave switch. Modified files are not saved to disk,
but they are retained in PWB 's virtual memory.

True
False

Shell ran successfully.
Invalid argument, or error starting the operating-system command
processor.

Askrtn, Restart, Savescreen

CTRL+J

Sinsert
Inserts a space at the cursor.

Arg Sinsert (ALT+A CTRL+J)

Inserts a line break at the cursor, splitting the line.

202 Environment and Tools

Returns

Example

See

Tab
Key

Returns

Update

See

Tell
Key

Arg streamarg llinearg I boxarg Sinsert
(ALT+A streamarg llinearg I boxarg CTRL+J)

Inserts a stream of blanks between the starting point of the selection and the
cursor. The insertion is always a stream, regardless of the current selection
mode.

True
False

Spaces or line break inserted.
Insertion would make a line too long.

The following macro inserts a stream of spaces up to the next tab stop, regardless of
the current selection mode:

InsertTab := Arg Tab Sinsert

Insert, Linsert

TAB

Tab
Moves the cursor to the next tab stop. If there are no tab stops to the right of the
cursor, the cursor does not move. Tab stops are defined by the Tabstops switch.

True Cursor moved.
False Cursor not moved.

In PWB l.x, tab stops appear at fixed intervals. In PWB 2.00, tab stops can be at
variable or fixed intervals.

Backtab

CTRL+T

Tell
Displays the message Press a key to tell about and waits for a
keystroke. After you press a key or combination of keys, Tell brings up the Tell
dialog box showing the name of the key and its assigned function in TOOLS.INI
key-assignment format.

Returns

Update

Remarks

Chapter 7 Programmer's WorkBench Reference 203

The key-assignment fonnat is:

function: key

If the key is not assigned a function, Tell displays una s s i 9 ned for the function
name. See: Unassigned.

If you press a combination of keys, but Tell still shows the Press a key
prompt (when you press SCROLL LOCK, for example), PWB is unable to
recognize that combination of keys and you cannot use it as a key assignment.

Arg Tell (ALT+A CTRL+T)

Prompts for a key, then displays the name of the function or macro assigned to
the key in one of these fonnats:

function:key
macroname: =definition

Arg textarg Tell (ALT+A textarg CTRL+T)

Displays the definition of the macro named by textarg. If you specify a PWB
function, Tell displays:

function function

Meta ... Tell (F9 ... CTRL+ T)

As above except Tell types the result into the current file rather than displaying
it in a dialog box. This is how to discover the definition of any macro, including
PWB macros.

True
False

Assignment displayed or typed.
No assignment for the key or the specified name.

In PWB l.x, the prompt and results appear on the status bar; in PWB 2.00, the
prompt and results appear in dialog boxes.

Meta Tell is a convenient and reliable way of writing a key assignment when you
are configuring PWB.

For example, if you want to execute the Curdate function (type today's date) when
you press the CTRL, SHIFT, and D keys simultaneously, perfonn the following steps:

1. Go to an empty line in the [PWB] section of TOOLS.INI.

2. Execute Meta Tell (F9 CTRL+T).

Tell displays the message: Press a key to tell about.

3. Press the D, SHIFT, and CTRL keys simultaneously.

If you have not already assigned a function to this combination, Tell types:

unassigned:Shift+Ctrl+D

204 Environment and Tools

See

4. Select the word unass i gned and type curdate.

5. If you want the assignment to take effect immediately, move the cursor to the
line you've just entered and execute the Assign function (ALT+=).

You can use Meta Arg textarg Tell to recover the definition of a predefined PWB
macro or a macro that you have not saved or entered into a file.

ywbusern, Assign, Record

Unassigned
Keys

Returns

See

Undo
Keys

Returns

See

Assigned to all available keys.

Unassigned
Displays a message for keys that do not have a function assignment.

All unassigned keys are actually assigned the Unassigned function. Thus, to
remove a function assignment for a key, assign the Unassigned function to the
key. The Unassigned function is not useful in macros.

The Unassigned function always returns false.

Assign, Tell

ALT+BKSP, SHIFf+CTRL+BKSP

Undo
Reverses the last editing operation. The maximum number of times this can be
performed for each file is set by the Undocount switch.

Meta Undo (F9 ALT+BKSP)

Performs the operation previously reversed with Undo. This action is often
called "redo."

True
False

Operation undone or redone.
Nothing to undo or redo.

ywbundo, ywbredo, Repeat

Up
Keys

Returns

See

Usercmd
Key

Returns

See

Chapter 7 Programmer's WorkBench Reference 205

UP,CTRL+E

Up
Moves the cursor up one line. If a selection has been started, it is extended by
one line. If this movement results in the cursor moving out of the window, the
window is adjusted upward as specified by the Vscroll switch.

Meta Up (F9 up)
Moves the cursor to the top of the window without changing the column
position.

True
False

Down

Unassigned

Cursor moved.
Cursor not moved; the cursor is already at the destination.

The Usercmd function executes a custom command added to the Run menu by
using Customize command from the Run menu or setting the User switch.

Arg number Usercmd (ALT +A number Unassigned)
Executes the given custom Run menu command. The number can be in the range
1-9.

True
False

Command exists.
Command does not exist, or invalid argument.

ywbusern, Assign, Record

206 Environment and Tools

Window
Key

Update

See

Unassigned

Window
Switch to the next window.

Returns

True

False

Condition

Switched to next window.

No next window to switch to: zero or one window open.

Arg [Arg] Window (ALT+A [ALT+A] Unassigned)
Open a new window.

Returns

True

False

Condition

Opened a new window.

Window not opened.

Meta Window (F9 Unassigned)
Close the active window.

Returns

True

False

Condition

Window closed.

No open window to close.

Meta Arg Window (ALT+A F9 Unassigned)
Switch to the previous window.

Returns

True

False

Condition

Switched to previous window.

No previous window to switch to: zero or one window open.

In PWB l.x, Arg Window and Arg Arg Window split the window at the cursor.
In PWB 2.00, these forms of Window open a new window.

Selwin dow , Setwindow

Winstyle
Key

Default

Returns

Update

See

Chapter 7 Programmer's WorkBench Reference 207

CTRL+F6

Winstyle
Advances through the following series of window styles, starting from the
current style:

Horizontal Scroll Bar Vertical Scroll Bar

No

No

Yes

Yes

No

Yes

No

Yes

When the horizontal scroll bar is not shown, a mmdmized window does not
show its bottom border. Similarly, when the vertical scroll bar is not shown, a
maximized window does not show its left and right borders. PWB always
displays the title bar.

To get the "clean-screen" look, maximize the window and advance the window
style until the borders disappear.

Set the default window style with the Defwinstyle switch.

True
False

Changed window sty Ie.
No windows open.

The no-border state in PWB l.x is not available in PWB 2.00. In PWB 2.00, when
a window is maximized and no scroll bars are present, PWB displays the window
without borders.

Maximize

Predefined PWB Macros
PWB predefines a number of macros, most of which correspond to a command in
the PWB menus. You can defme a shortcut key for a menu command by assigning
the key to the corresponding macro. Note that some menu commands such as the'
Open command from the File menu do not correspond to a macro, and some macros
do not correspond to a menu command.

208 Environment and Tools

Table 7.12 PWB Macros

Macro Description Key

Curfile Current file's full path Unassigned

Curfileext Current file's extension Unassigned

Curfilenam Current file's name Unassigned

_pwbarrange Arrange command, Window menu ALT+FS

_pwbboxmode Box Mode command, Edit menu Unassigned

_pwbbuild Build command, Project menu Unassigned

_pwbcancelbuild Cancel Build command, Project menu Unassigned

_pwbcancelprint Cancel Print command, File menu Unassigned

_pwbcancelsearch Cancel Search command, Search menu Unassigned

_pwbcascade Cascade command, Window menu FS

_pwbc1ear Delete command, Edit menu DEL

_pwbc1ose Close command, Window menu CTRL+F4

_pwbc1oseall Close All command, Window menu Unassigned

_pwbc1osefile Close command, File menu Unassigned

_pwbc1oseproject Close command, Project menu Unassigned

_pwbcompile Compile command, Project menu Unassigned

_pwbfilen nIUe, File menu Unassigned

_pwbgotomatch Goto Match command, Search menu Unassigned

_pwbhelp_again Next command, Help menu Unassigned

_pwbhelp_back Previous Help topic ALT+Fl

_pwbhelp_contents Contents command, Help menu SHIFf+Fl

_pwbhelp_context Topic command, Help menu Fl

_pwbhelp~eneral Help on Help command, Help menu Unassigned

_pwbhelp_index Index command, Help menu Unassigned

_pwbhelpnl Display the message: Fl when Help
Online Help Not Loaded extension not

loaded

_pwbhelp_searchres Search Results command, Help menu Unassigned

_pwblinemode Line Mode command, Edit menu Unassigned

_pwblogsearch Log command, Search menu Unassigned

_pwbmaximize Maximize command, Window menu CTRL+FlO

_pwbminimize Minimize command, Window menu CTRL+F9

_pwbmove Move command, Window menu CTRL+F7

_pwbnewfile New command, File menu Unassigned

Chapter 7 Programmer's WorkBench Reference 209

Table 7.12 PWB Macros (continued)

Macro

_pwbnewwindow

_pwbnextfile

_pwbnextlogmatch

_pwbnextmatch

_pwbnextmsg

_pwbpreviouslogmatch

_pwbpreviousmatch

_pwbprevmsg

_pwbprevwindow

_pwbquit

_pwbrebuild

_pwbrecord

_pwbredo

_pwbrepeat

_pwbresize

_pwbrestore

_pwbsaveall

_pwbsavefile

_pwbsetmsg

_pwbshell

_pwbstreammode

_pwbtile

_pwbundo

_pwbusern

_pwbviewbuildresults

_pwbviewsearchresults

_pwbwindown

Description

New command, Window menu

Next command, File menu

Next Match command, Search menu

Next Match command, Search menu

Next Error command, Project menu

Previous Match command, Search menu

Previous Match command, Search menu

Previous Error command, Project menu

Move to previous window

Exit command, File menu

Rebuild All command, Project menu

Record command, Edit menu

Redo command, Edit menu

Repeat command, Edit menu

Resize command, Window menu

Restore command, Window menu

Save All command, File menu

Save command, File menu

Goto Error command, Project menu

DOS Shell command, File menu

Stream Mode command, Edit menu

Tile command, Window menu

Undo command, Edit menu

command n, Run menu

View build results button

View search results button

nfile, Window menu

Key

Unassigned

Unassigned

SHIff +CTRL+F3

Unassigned

SHIFf+F3

SHIff +CTRL+F4

Unassigned

SHIFf+F4

SHIFf+F6

ALT+F4

Unassigned

Unassigned

Unassigned

Unassigned

CTRL+F8

CTRL+F5

Unassigned

SHIFf+F2

Unassigned

Unassigned

Unassigned

SHIFf+F5

Unassigned

ALT+Fn

Unassigned

Unassigned

ALT+n

PWB continually redefines the following macros to reflect the current file's name:

Macro

CurfUe

Curfileext

Curfilenam

Description

Full path

File extension

File base name

210 Environment and Tools

Autostart
Key

Definition

Curfile
Key

Definition

Example

See

PWB uses the following special-purpose macros:

Macro

Autostart

Mgreplist

Playback

Restart

Description

Executed on startup while reading TOOLS.INI

List of files for logged searches, multifile replace, Mgrep, and
Mreplace

Default name of recorded macros

(Obsolete)

By default, these macros are undefined.

Unassigned

The special PWB macro Autostart is executed after PWB finishes all initialization
at startup. If used, it must be defined in the [PWB] section of TOOLS.IN!.

By default, Autostart is not defmed.

Unassigned

The Curfile macro types the full path of the current file. This macro is redefined
each time you switch to a new file.

curfile := "pathname"

The following macro copies the full path of the current file to the clipboard for later
use:

Path2clip := Arg Curfile Copy

Arg, Copy, Curdate, Curday, Curfilenam, Curfileext, Curtime

Curfileext
Key

Definition

Example

See

Curfilenam
Key

Definition

Example

See

Mgreplist
Key

Chapter 7 Programmer's WorkBench Reference 211

Unassigned

The Curfileext macro types the filename extension of the current file. This macro is
redefined each time you switch to a new file.

curfileext := "extension"

The following macro copies the base name plus the extension of the current file to
the clipboard for later use:

Filename2clip :~ Arg Curfilenam Curfileext Copy

Arg, Copy, Curdate, Curday, Curfile, Curfilenam, Curtime

Unassigned

The Curfilenam macro types the base name of the current file. This macro is
redefmed each time you switch to a new file.

curfilenam := "basename"

The following macro copies the base name of the current file to the clipboard for
later use:

Name2clip := Arg Curfilenam Copy

Arg, Copy, Curdate, Curday, Curfile, Curfileext, Curtime

Unassigned

The special PWB macro Mgreplist is used by the Find and Replace commands on
the Search menu, Mgrep, Mreplace, and Mreplaceall to specify the list of files to
search.

,- .

212 Environment and Tools

Definition

See

Restart
Key

Update

When you create a list of files to search using the Files button in either the Find or
Replace dialog box, PWB redefines the Mgreplist macro with the specified list of
files.

To see the current list of files, choose the Files button in the Replace dialog box.
You can change the list in this dialog box, and either choose OK to perform the
find-and-replace operation, or choose Cancel to cancel the replace and accept the
changes to Mgreplist.

You can also insert the definition of Mgreplist into the current file by using the
phrase: Arg Meta Mg rep 1 is t Tell (ALT+A F9 Mg rep 1 is t CTRL+T).

You can edit the macro, then redefine it by using the Assign function (ALT+=).

Mgreplist:= "list"

list

Space-separated list of filenames

The filenames can use the operating-system wildcards (* and ?), and can use
environment-variable specifiers. Note that backslashes (\) must be doubled in the
macro string.

Assign, Tell, Mgrep, Mreplace, Mreplaceall

Unassigned

In PWB l.x, the special PWB macro Restart is executed whenever PWB returns
from a shell, build, or other external operation.

In PWB 2.00, the Restart macro is never executed automatically and has no
special meaning; it is an ordinary macro.

_pwbarrange
Key

Menu

ALT+FS

Window menu, Arrange command

The ywbarrange macro arranges all unminimized windows on the desktop. The
following illustration shows a typical desktop after execution of ywbarrange:

Definition

See

Chapter 7 Programmer's WorkBench Reference 213

[5 J---He 1 p--------,

r-[3J-----Source c-----~
~[2J----Source B-----~ I[1]--Sou rce A

[4J---Build Results--------~

Figure 7.1 Arranged Windows

_pwbarrange:=cancel arg arrangewindow <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Arrangewindow

<

Arranges all unminimized windows on the desktop.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arrangewindow

_pwbboxmode
Key

Menu

Definition

Unassigned

Edit menu, Box Mode command

The ywbboxmode macro sets the selection mode to box selection mode.

_pwbboxmode:= :>more selmode ->more selmode

:>more
Defines the label mar e.

Selmode
Advances to the next selection mode.

214 Environment and Tools

See

_pwbbuild
Key

Menu

Definition

See

->more
Branches to the label more if Selmode returns false.

The Selmode function advances the selection mode from box, to stream, to line.
Selmode returns true when the mode is stream mode. The macro executes the
Selmode function until it returns true (sets stream mode), then advances the
selection mode once to set box selection mode.

Enterselmode, Selmode

Unassigned

Project menu, Build command

The ywbbuild macro builds the "all" target of the current PWB project. The "all"
pseudotarget in a PWB project lists all the targets in the project.

For non-PWB projects, ywbbuild builds the targets that were last specified
by using the Build Target command from the Project menu. PWB redefines
ywbbuild each time you use Build Target. If no target has been specified,
NMAKE builds the first target listed in the project makefile.

_pwbbuild := cancel arg "all" compile <

Cancel
Establishes a uniform "ground state" by cancelling any selection or argument.

Arg "all" Compile

<

Builds the a 11 pseudotarget in the current project.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arg, Cancel, Compile

_pwbcancelbuild
Key

Menu

Unassigned

Project menu, Cancel Build command

Definition

See

Chapter 7 Programmer's WorkBench Reference 215

The ywbcancelbuild macro terminates the current background build or compile
and flushes any queued build operations.

_pwbcancelbuild := cancel arg meta compile

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Meta Compile
Terminates the background build process.

Arg, Cancel, Compile, Meta ,

_pwbcancelprint
Key

Definition

See

Unassigned

The _pwbcancelprint macro terminates all background print operations.

_pwbcancelprint := cancel arg meta print

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Meta Print
Terminate background print operations.

Arg, Cancel, Meta, Print

_pwbcancelsearch
Key

Menu

Definition

Unassigned

Search menu, Cancel Search command

The _pwbcancelsearch macro cancels the current background search. PWB
performs logged searches in the background under multithreaded environments.

_pwbcancelsearch:= cancel cancelsearch <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

216 Environment and Tools

See

Cancelsearch

<

Cancels the current background search.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Cancelsearch, Logsearch

_pwbcascade
Key

Menu

Definition

See

_pwbclear
Key

Menu

F5

Window menu, Cascade command

The _pwbcascade macro arranges all unminimized windows in cascaded fashion so
that all of their titles are visible. Up to 16 unminimized windows can be cascaded.

_pwbcascade := cancel arrangewindow <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arrangewindow

<

Cascades all unminimized windows.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arrangewindow, Cancel

DEL

Edit menu, Delete command

The _pwbclear macro removes the selected text from the file. If there is no
selection, PWB removes the current line.

The selection or line is not copied to the clipboard. It can be recovered only by
using the Undo command from the Edit menu or Undo (ALT+BKSP).

Definition

See

_pwbclear := meta delete

Meta Delete

Chapter 7 Programmer's WorkBench Reference 217

Removes the selection or the current line from the file without modifying the
clipboard.

Delete, Meta

_pwbcloseall
Key

Menu

Definition

See

Unassigned

Window menu, Close All command

The _pwbcloseall macro closes all open windows.

_pwbcloseall := cancel arg arg meta window <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Arg Meta Window
Closes all windows.

<
Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arg, Cancel, Meta, Window

_pwbclosefile
Key

Menu

Definition

Unassigned

File menu, Close command

The ywbclosefile macro closes the current file. If no files remain in the window's
file history, the window is closed.

_pwbclosefile := cancel closefile <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

218 Environment and Tools

See

Closefile

<

Closes the current file.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Closefile

_pwbcloseproject
Key

Menu

Definition

See

Unassigned

Project menu, Close Project command

The _pwbcloseproject macro closes the current project.

_pwbcloseproject := cancel arg arg project <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Arg Project

<

Closes the current project.

Restores the function's prompt (if any). By default, function prompts are
suppressed within a macro.

Arg, Cancel, Project

_pwbcompile
Key

Menu

Definition

Unassigned

Project menu, Compile File command

The ywbcompile macro compiles the current file.

_pwbcompile := cancel arg compile <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

See

Chapter 7 Programmer's WorkBench Reference 219

Arg Compile
Compiles the current file.

<
Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arg, Cancel, Compile

_pwbgotomatch
Key

Menu

Definition

See

_pwbhelpnl

Definition

Unassigned

Search menu,· Goto Match command

The _pwbgotomatch macro sets the match listed at the current location in the
Search Results pseudofile as the current match and moves the cursor to the location
specified by that match.

_pwbgotomatch := cancel arg arg nextsearch <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Arg Nextsearch

<

Goes to the current match.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arg, Cancel, Nextsearch

The ywbhelpnl macro displays a message indicating the Help extension is not
loaded. The Help keys are assigned this macro until the Help extension is loaded.

_pwbhelpnl := cancel arg "OnLine Help Not Loaded" message

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

220 Environment and Tools

See

Key

Menu

Definition

See

Arg "OnLine Help Not Loaded" Message
Displays the message on the status bar.

Arg, Cancel, Load, Message

Unassigned

Help menu, Next command

The ywbhelp _again displays the next occurrence of the last topic for which you
requested Help. If no other occurrences of the topic are defined in the open files,
PWB redisplays the current topic.

The topic that PWB looks up when you use this command is displayed after the
Next command on the Help menu, as follows:

Next: topic key

topic Topic string used for the command.

key Current key assignment for ywbhelp_again (if any).

_pwbhelp _again:=cancel arg pwbhelp. pwbhelpnext <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg
Sets the Arg prefix for the Pwbhelpnext function.

Pwbhelp.
Specifies that the function is the PWBHELP extension function.

Pwbhelpnext

<

Displays the next occurrence of the previously requested topic.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Pwbhelpnext

Key

Definition

See

Chapter 7 Programmer's WorkBench Reference 221

ALT+Fl

The _pwbhelp _back macro displays the previously viewed Help topic. Up to 20
topics are kept in the Help backtrace list.

_pwbhelp_back:=cancel meta pwbhelp.pwbhelpnext <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Meta
Sets the meta prefix for the function.

Pwbhelp.
Specifies that the function is the PWBHELP extension function.

Pwbhelpnext

<

Displays the previously viewed Help topic.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Pwbhelpnext

_pwbhel p _contents
Key

Menu

Definition

SHIFT+Fl

Help menu, Contents command

The ywbhelp _contents macro opens the Help window and displays the top-level
contents of the Help system.

Within the Help system, most Help topics have a Contents button at the top of the
window. This button also takes you to the top-level contents.

_pwbhelp_contents:=cancel arg "advisor.hlp!h.contents" pwbhelp.pwbhelp <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "advisor.hlp!h.contents"
Defines a text argument with the topic name for the general table of contents.

222 Environment and Tools

See

Key

Menu

Definition

See

Pwbhelp.
Specifies that the function is the PWBHELP extension function.

Pwbhelp

<

Looks up the topic h. contents in the ADVISOR.HLP Help file.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Pwbhelp

FI

Help menu, Topic command

The Jlwbhelp_context macro looks up Help on the topic at the cursor, the current
selection, or the specified text argument.

_pwbhelp_context:=arg pwbhelp.pwbhelp <

Arg
Sets the Arg prefix for the Pwbhelp function.

Pwbhelp.
Specifies that the function is the PWBHELP extension function.

Pwbhelp

<

Displays Help on the topic at the cursor. When text is selected, displays Help on
the selected text. When you have entered an argument in the Text Argument
dialog box, displays Help on the topic specified by the text argument.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Pwbhelp

Key

Menu

Definition

See

Key

Menu

Definition

Chapter 7 Programmer's WorkBench Reference 223

Unassigned

Help menu, Help on Help command

The ywbhelp _general macro opens the Help window and displays information
about using the Help system.

_pwbhelp~eneral:=cancel arg "advisor.hlp!h.default" pwbhelp.pwbhelp <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "advisor.hlp !h.default"
Defines a text argument with the topic name for default Help.

Pwbhelp.
Specifies that the function is the PWBHELP extension function.

Pwbhelp

<

Looks up the topic "h. default" in the ADVISOR.HLP Help file.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Pwbhelp

Unassigned

Help menu, Index command

The ywbhelpJndex macro opens the Help window and displays the top-level
table of indexes in the Help system.

Within the Help system, most Help topics have an Index button at the top of the
window. This button also takes you to the top-level table of indexes.

_pwbhelp_index:=cancel arg "advisor.hlp!h.index" pwbhelp.pwbhelp <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "advisor.hlp!h.index"
Defmes a text argument with the topic name for the Help index.

224 Environment and Tools

See

Key

Menu

Definition

See

Pwbhelp.
Specifies that the function is the PWBHELP extension function.

Pwbhelp

<

Looks up the topic "h.index" in the ADVISOR.HLP Help file.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Pwbhelp

Unassigned

Help menu, Search Results command

The _pwbhelp _searchres macro opens the Help window and displays the list of
matches found during the last global Help search.

_pwbhelp_searchres:=cancel pwbhelp.pwbhelpsearch <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Pwbhelp.
Specifies that the function is the PWBHELP extension function.

Pwbhelpsearch

<

Opens the Help window and displays the results of the last global Help search.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Pwbhelpsearch

_pwblinemode
Key

Menu

Unassigned

Edit menu, Line Mode command

The Jlwblinemode macro sets the selection mode to line selection mode.

Definition

See

Chapter 7 Programmer's WorkBench Reference 225

_pwblinemode:= :>more selmode ->more selmode selmode

:>more
Defines the label rn 0 r e.

Selmode
Advances to the next selection mode.

->more
Branches to the label rno re if Selmode returns false.

The Selmode function advances the selection mode from box, to stream, to line.
Selmode returns true when the mode is stream mode. The macro executes the
Selmode function until it returns true (sets stream mode), then advances the
selection mode twice to set line selection mode.

Enterselmode, Selmode

_pwblogsearch
Key

Menu

Definition

See

Unassigned

Search menu, Log command

The ywblogsearch macro toggles search logging on and off.

When search logging is turned on, PWB displays a bullet next to the Log command
on the Search menu. The Next Match command executes the ywbnextlogmatch
macro, and the Previous Match command executes the ywbpreviollslogmatch
macro. When search logging is turned off, no bullet appears and the Next Match
and Previous Match commands execute ywbnextmatch and
ywbpreviollsmatch.

_pwblogsearch := cancellogsearch <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Logsearch

<

Toggles the logging of search results on and off.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Logsearch

226 Environment and Tools

_pwbmaximize
Key

Menu

Definition

See

CTRL+FlO

Window menu, Maximize command

The jlwbmaximize macro enlarges the active window to its largest possible size,
showing only the window, the menu bar, and the status bar on the PWB screen.

_pwbmaximize := cancel maximize <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Maximize

<

Enlarges the active window to full size.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Minimize

_pwbminimize
Key

Menu

Definition

See

CTRL+F9

Window menu, Minimize command

The jlwbminimize macro minimizes the active window, reducing the window to
an icon. To restore a window to its original size, double-click in the box or use the
Restore command (CTRL+F5) on the Window menu.

_pwbminimize:= cancel minimize <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Minimize

<

Shrinks the window to an icon.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Maximize, Minimize

_pwbmove
Key

Menu

Definition

See

Chapter 7 Programmer's WorkBench Reference 227

CTRL+F7

Window menu, Move command

The ywbmove macro starts window-moving mode for the active window. In
window-moving mode, you can only do the following:

Action Key

Move up one row UP

Move down one row DOWN

Move left one column LEFT

Move right one column RIGHT

Accept the new position ENTER

Cancel the move ESC

To move the window in larger increments, you can use a numeric argument with the
Movewindow function.

_pwbmove := cancel movewindow <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Movewindow

<

Starts window-moving mode.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arrangewindow, Cancel, Maximize, Minimize, Resize

_pwbnewfile
Key

Menu

Unassigned

File menu, New command

The ywhnewfile macro creates a new pseudofile.

228 Environment and Tools

Definition

See

New pseudofiles are given a unique name of the form:

<Untitled.nnn>Untitled.nnn

where <nnn> is a three-digit number starting with 001 at the beginning of each
PWB session. The window title shows Untitled.nnn. The file may be referred to
by the name <Untitled.nnn>.

When the Newwindow switch is set to yes, or the active window is a PWB
window, a new window is opened for the file. Otherwise, the file is opened in the
active window, and the previous file is placed in the window's file history.

_pwbnewfile := cancel newfile <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Newfile

<

Creates a new untitled pseudofile.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Setfile

_pwbnewwi ndow
Key

Menu

Definition

See

Unassigned

Window menu, New command

The j>wbnewwindow macro opens a new window, which shows the current file.
The new window has the complete file history as the original window.

_pwbnewwindow := cancel arg window

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

ArgWindow
Opens a new window on the current file

Arg, Cancel, Window

Chapter 7 Programmer's WorkBench Reference 229

_pwbnextfile
Key

Menu

Definition

See

Unassigned

File menu, Next command

The _pwbnextfile macro moves to the next file in the list of files specified on the
PWB command line. If no more files remain in the list, this macro ends the PWB
session.

When the Newwindow switch is set to yes, or the active window is a PWB
window, a new window is opened for the file. Otherwise, the file is opened in the
active window, and the previous file is placed in the window's file history.

_pwbnextfile := cancel exit <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Exit

<

Moves to the next file specified on the command line.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Exit, Askexit, Cancel, PWB Command Line

_pwbnextlogmatch
Key

Menu

Definition

SHIFf +CTRL+P3

Search menu, Next Match command

The ywbnextlogmatch macro advances the cursor to the next match listed in the
Search Results pseudo file.

The Next Match command on the Search menu executes this macro when search
logging is turned on. When search logging is turned off, Next Match executes the
ywbnextmatch macro.

_pwbnextlogmatch := cancel nextsearch <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

230 Environment and Tools

See

Nextsearch

<

Advances to the next match in Search Results.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Nextsearch

_pwbnextmatch
Key

Menu

Definition

See

Unassigned

Search menu, Next Match command

The _pwbnextmatch macro searches forward in the file using the last search
pattern and options. The search options are Match Case, Wrap Around, and
Regular Expression.

The Next Match command on the Search menu executes this macro when search
logging is turned off. When search logging is turned on, Next Match executes the
_pwbnextlogmatch macro.

_pwbnextmatch := cancel psearch <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Psearch

<

Searches forward in the file for the next occurrence of the last search string or
pattern.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Psearch

_pwbnextmsg
Key

Menu

SHIFf+F3

Project menu, Next Error command

Definition

See

Chapter 7 Programmer's WorkBench Reference 231

The ywbnextmsg macro moves the cursor to the next message in Build Results.

_pwbnextmsg := cancel nextmsg <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Nextmsg

<

Goes to the next message in Build Results.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Nextmsg

_pwbpreviouslog match
Key

Menu

Definition

See

SHIff +CTRL+F4

Search menu, Previous Match command

The ywbpreviouslogmatch macro moves the cursor to the previous match listed
in the Search Results pseudofile.

The Previous Match command on the Search menu executes this macro when search
logging is turned on. When search logging is turned off, Previous Match executes
the ywbpreviousmatch macro.

_pwbpreviouslogmatch := cancel arg "-1" nextsearch <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "-1" N extsearch

<

Moves to the previous match listed in Search Results.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arg, Cancel, Nextsearch

232 Environment and Tools

_pwbpreviousmatch
Key

Menu

Definition

See

Unassigned

Search menu, Previous Match command

The ywbpreviousmatch macro searches backward in the file, using the last
search pattern and options. The search options are Match Case, Wrap Around,
and Regular Expression.

The Previous Match command on the Search menu executes this macro when search
logging is turned off. When search logging is turned on, Previous Match executes
the _pwbpreviouslogmatch macro.

_pwbpreviousmatch := cancel msearch <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Msearch

<

Searches backward in the file for the last search string or pattern.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Msearch

_pwbprevmsg
Key

Menu

Definition

SHIFf+F4

Project menu, Previous Error command

The ywbprevmsg macro moves the cursor to the previous message in the Build
Results pseudofile.

_pwbprevmsg := cancel arg "-1" nextmsg <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "-1" Nextmsg
Goes to the previous message in Build Results.

See

<

Chapter 7 Programmer's WorkBench Reference 233

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arg, Cancel, Nextmsg

_pwbprevwindow
Key

Definition

See

_pwbquit
Key

Menu

Definition

SHIFf+F6

The jlwbprevwindow macro moves the focus to the previous window. That is,
PWB sets the previously active window as the active window. This action moves
among the open windows in the reverse order of Selwindow (F6).

_pwbprevwindow:=cancel meta selwindow <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Meta Selwindow

<

Moves the focus to the previous window.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Meta, Selwindow

ALT+F4

File menu, Exit command

The jlwbquit macro leaves PWB immediately. Any specified files on the PWB
command line that have not been opened are ignored.

_pwbquit := cancel arg exit <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Exit
Leaves PWB.

234 Environment and Tools

See

<
Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arg, Askexit, Cancel, Exit, Savescreen

_pwbrebuild
Key

Menu

Definition

See

Unassigned

Project menu, Rebuild All command

The ywbrebuild macro forces a rebuild of everything in the current project.

For non-PWB projects, ywbrebuild rebuilds the targets that were last specified by
using the Build Target command on the Project menu. PWB redefines
ywbrebuild each time you use Build Target. If no target has been specified,
NMAKE rebuilds the first target listed in the project makefile.

_pwbrebuild:= cancel arg meta "all" compile <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Meta "all" Compile
Rebuilds the all pseudotarget.

<
Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arg, Cancel, Compile, Meta

_pwbrecord
Key

Menu

Unassigned

Edit menu, Record On command

The ywbrecord macro toggles macro recording on and off. If you have not set the
recorded macro name and key, PWB displays the Set Macro Record dialog box so
you can set them. Execute ywbrecord again to start recording.

Definition

See

_pwbredo
Key

Menu

Definition

See

Chapter 7 Programmer's WorkBench Reference 235

_pwbrecord := cancel record <

Cancel
Establishes a unifonn "ground state" by canceling any selection or argument.

Record

<

Toggles macro recording on and off.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Record

Unassigned

Edit menu, Redo command

The ywhredo macro restores the last modification that was reversed using Edit
Undo or Undo (ALT+BKSP).

_pwbredo := cancel meta undo <

Cancel
Establishes a unifonn "ground state" by canceling any selection or argument.

Meta Undo

<

Restores the last "undone" modification.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Meta, Undo

_pwbrepeat
Key

Menu

Unassigned

Edit menu, Repeat command

The ywhrepeat macro repeats the last editing operation once.

236 Environment and Tools

Definition _pwbrepeat := cancel repeat <

Cancel

See

_pwbresize
Key

Menu

Definition

Establishes a unifonn "ground state" by canceling any selection or argument.

Repeat
Repeats the last operation one time.

<
Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Repeat

CTRL+F8

Window menu, Size command

The ywhresize macro starts window-sizing mode for the active window. When in
window-resizing mode, only the following actions are available:

Action Key

Shrink one row UP

Expand one row DOWN

Shrink one column LEFf

Expand one column RIGHT

Accept the new size ENTER

Cancel the resize ESC

To size the window in larger increments, you can use the numeric fonns of the
Resize function.

_pwbresize := cancel resize <

Cancel
Establishes a unifonn "ground state" by canceling any selection or argument.

Resize
Starts window-sizing mode.

See

<

Chapter 7 Programmer's WorkBench Reference 237

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arrangewindow, Cancel, Maximize, Minimize, Movewindow

_pwbrestore
Key

Menu

Definition

See

CTRL+F5

Window menu, Restore command

The _pwbrestore macro restores the active window to its size before it was
maximized or minimized.

_pwbrestore := cancel meta maximize

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Meta Maximize
Restores the window to its previous size.

Cancel, Maximize, Meta, Minimize

_pwbsaveall
Key

Menu

Definition

Unassigned

File menu, Save All command

The ywbsaveall macro saves all modified disk files. Modified pseudofiles are not
saved.

_pwbsaveall := cancel saveall <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Saveall
Writes all modified files to disk.

238 Environment and Tools

See

<
Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Saveall

_pwbsavefile
Key

Menu

Definition

See

SHIFf+F2

File menu, Save command

The ywbsavefile macro saves the current file to disk.

If the current file is a pseudofile (an untitled file), PWB displays the Save As dialog
box so you can give the file a more meaningful name.

_pwbsavefile := cancel arg arg setfile <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Arg SetfHe

<

Writes the current file to disk.

Restores the function's prompt (if any). By default, function prompts are
suppressed when a macro is running.

Arg, Cancel, Setfile

_pwbsetmsg
Key

Menu

See

Definition

Unassigned

Project menu, Goto Error command

The ywbsetmsg macro sets the message listed at the current location in the Build
Results pseudofile as the current message and moves the cursor to the location
specified by that message.

Nextmsg

_pwbsetmsg := cancel arg arg nextmsg <

See

_pwbshell
Key

Menu

Definition

See

Chapter 7 Programmer's WorkBench Reference 239

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Arg Nextmsg

<

Goes to the current message.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arg, Cancel, Nextmsg

Unassigned

File menu, DOS Shell command

The ywbshell macro temporarily leaves PWB, starting a new operating-system
shell. To return to PWB, type ex; t at the operating-system prompt.

_pwbshell := cancel shell <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Shell

<

Starts an operating-system shell.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Askrtn, Cancel, Savescreen, Shell

_pwbstreammode
Key

Menu

Definition

Unassigned

Edit menu, Stream Mode command

The ywbstreammode macro sets the selection mode to stream selection mode.

_pwbstreammode := :>more selmode ->more

240 Environment and Tools

See

Key

Menu

Definition

See

_pwbundo
Key

Menu

:>more
Defines the label m 0 r e.

Selmode
Advances to the next selection mode.

->more
Branches to the label m 0 r e if Selmode returns false.

The Selmode function advances the selection mode from box, to stream, to
line. SeImode returns true when the mode is stream mode. The macro executes
Selmode until it returns true (sets stream selection mode).

Enterselmode, SeImode

SHIFT+F5

Window menu, Tile command

The ywbtile macro tiles all unminimized windows on the desktop so that no
windows overlap and the desktop is completely covered. Up to 16 unminimized
windows can be tiled.

_pwbtile := cancel meta arrangewindow <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Meta Arrangewindow

<

Tiles all unminimized windows.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arrangewindow, Cancel, Meta

Unassigned

Edit menu, Undo command

Definition

See

_pwbusern

Menu

Definition

Chapter 7 Programmer's WorkBench Reference 241

The ywbundo macro reverses the last modification made to the current file. The
maximum number of modifications that can be undone for each file is determined
by the Undocount switch.

_pwbundo := cancel undo <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Undo
Reverses the last modification.

<
Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, ywbredo

Macro

_pwbuserl

_pwbuser2

_pwbuser3

ywbuser4

ywbuserS

_pwbuser6

ywbuser7

ywbuserS

ywbuser9

Run command

Description

Run custom Run menu command 1

Run custom Run menu command 9

command Title of custom Run menu item.

Key

[ALT+Fn]

[ALT+Fn]

[ALT+Fn]

[ALT+Fn]

[ALT+Fn]

[ALT+Fn]

[ALT+Fn]

[ALT+Fn]

[ALT+Fn]

The ywbusern macros execute custom commands in the Run menu.

To add a new command to the Run menu, use the Customize Run Menu command
or assign a value to the User switch.

_pwbusern := cancel arg "n" usercmd <

242 Environment and Tools

Example

See

Cancel
Establishes a uniform "ground state" canceling any selection or argument.

Arg "n" Usercmd

<

Executes custom run menu item number n.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

_pwbuserl := cancel arg "1" usercmd <

This macro executes custom Run menu command number 1.

Arg, Cancel, Usercmd

_pwbviewbu i Id resu Its
Key

Button

Definition

See

Unassigned

The View Results button in the Build Operation Complete dialog box.

The ywbviewbuildresults macro opens the Build Results window.

PWB executes this macro when you choose the View Results button in the Build
Operation Complete dialog box.

You can redefine this macro to change the behavior of the View Results button. For
example, if you want to move to the first message in the log and arrange windows,
add _pwbnextmsg _pwba rrangew; ndow to the end of the macro definition.

_pwbviewbuildresults:=cancel arg "<COMPILE>" pwbwindow

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "<COMPILE>" Pwbwindow
Opens the Build Results window.

Pwbwindow

Chapter 7 Programmer's WorkBench Reference 243

_pwbviewsearch resu Its
Key

Button

Definition

See

Unassigned

The View Results button in the Search Operation Complete dialog box.

The ywbviewSearchresults macro opens the Search Results window.

PWB executes this macro when you choose the View Results button in the Search
Operation Complete dialog box.

You can redefine this macro to change the behavior of the View Results button. For
example, if you want to move to the first location in the log and arrange windows,
add _pwbnextsea rch _pwba rrangewi ndow to the end of the macro defmition.

_pwbviewsearchresults:=cancel arg "<SEARCH>" pwbwindow

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "<SEARCH>" Pwbwindow
Opens the Search Results window.

Pwbwindow

_pwbwindown
Macro Description Key

ywbwindowl Switch to window 1 ALT+l

ywbwindow2 ALT+2

ywbwindow3 ALT+3

ywbwindow4 ALT+4

ywbwindowS ALT+5

ywbwindow6 ALT+6

ywbwindow7 ALT+7

ywbwindow8 ALT+8

ywbwindow9 Switch to window 9 ALT+9

244 Environment and Tools

Menu Window n file

Definition

Example

See

n Window number

file Current file in the window

The ywbwindown macros each set a specific numbered window as the active
window.

_pwbwindown := cancel arg "n" selwindow <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "n" Selwindow

<

Moves to window number n.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

_pwbwindow1 := cancel arg "1" selwindow <

This macro sets window number 1 as the active window.

Arg, Cancel, Selwin dow

PWB Switches
PWB provides the following switches to customize its behavior. You set switches
by adding entries to the TOOLS.INI file or by using the Editor Settings, Key
Assignments, and Colors commands on the Options menu.

Switch

Askexit

Askrtn

Autoload

Autosave

Backup

Beep

Build

Case

Color

Description

Prompt before leaving PWB

Prompt before returning from a shell

Load PWB extensions automatically

Save files when switching

File backup mode

Issue audible or visible alerts

Rules and definitions for the build process

Make letter case significant in searches

Color of interface elements

Switch

Cursonnode

Dblclick

Deflang

Defwinstyle

Editreadonly

Enablealtgr

Entab

Enterinsmode

Enterlogmode

Enterselmode

Envcursave

Envprojsave

Factor

Fastfunc

Filetab

Friction

Height

Hike

Hscroll

Infodialog

Keepmem

Lastproject

Load

Markfile

Mousemode

Msgdialog

Msgflush

Newwindow

Noise

Printcmd

Readonly

Realtabs

Restorelayout

Rmargin

Savescreen

Chapter 7 Programmer's WorkBench Reference 245

Description

Block or underline cursor state

Double-click threshold

Default language

Default window style

Allow editing of files marked read-only on disk

Enable the ALTGR key on non-US keyboards

Tab translation mode while editing

Enter PWB in insert mode

Enter PWB with search logging turned on

Enter PWB in specified selection mode

Save environment variables for PWB sessions

Save environment variables for projects

Auto-repeat factor

Functions for fast auto-repeat

Width of tab characters in the file

Delay between repetitions of fast functions

Height of the display

Window adjustment factor

Horizontal scrolling factor

Set of infonnation dialogs displayed

XMS/EMS memory kept during shell, build, and compile

Set the last project on startup

PWB extension to load

Name of the current mark file

Mouse configuration; disabled or swapped buttons

Display a dialog box for build results

Keep only one set of build results

Create a new window when opening a file

Line counting interval

Command for printing files

Command for saving disk read-only files

Preserve tab characters in the file

Restore the window layout when a project is set

Right margin for word wrap

Preserve the operating-system screen

246 Environment and Tools

Switch

Searchdialog

Searchflush

Searchwrap

Shortnames

Softcr

Tabalign

Tabdisp

Tabstops

Tilemode

Timersave

Tmpsav

Traildisp

Traillines

Traillinesdisp

Trailspace

Undelcount

Undocount

Unixre

User

Vscroll

Width

Word

Wordwrap

Extension Switches

Description

Display a dialog box for search results

Keep only one set of search results

Make searches wrap around the end of the file

Allow access to loaded files by base name

Perform automatic indenting

Align the cursor in tab fields

Character for displaying tab characters

Variable tab stops

Window tiling style

Timer interval for saving files

Number of files kept in file history

Character for displaying trailing spaces

Preserve trailing lines

Character for displaying trailing lines

Preserve trailing spaces

Maximum number of file backups

Maximum number of edits per file to undo

Use UNIX regular-expression syntax

Custom Run menu item

Vertical scrolling factor

Width of the display

Definition of a word

Wrap words as they are entered

The standard PWB extensions define additional switches to control their behavior.
You set these switches in tagged sections of TOOLS.INI specific to that extension.

PWB Extension

PWBROWSE.MXT

PWBMASM.MXT

PWB HELP. MXT

Description

Source Browser

Assembly Language

Microsoft Advisor Help

TOOLS.INI Section Tag

[PWB-PWBROWSE]

[PWB-PWBMASM]

[PWB-PWBHELP]

The PWBROWSE switches are described in "Browser Switches" on page 286. The
PWBHELP switches are described in "Help Switches" on page 287.

Chapter 7 Programmer's WorkBench Reference 247

Filename-Parts Syntax

Syntax

Syntax

Syntax

The filename-parts syntax is used by PWB to pass the name of the current file
to external programs or operating-system commands. You use this syntax in the
Printcmd, Readonly, and User switches.

%%
A literal percent sign (%).

%s
The fully qualified path of the current file. If the current file is a pseudofile, %s
specifies the name of a temporary disk file created for the external command to
operate on. The temporary file is destroyed before returning to PWB and is
never accessible to the editor.

%1 [d][p][f][e]F
Parts of the current filename. The parts of the name are drive, path, filename,
and extension. If the current file is a disk file named:

C:\SCRATCH\TEST.TXT

or the pseudofile:

"<COMPILDBuild Results"

the given syntax yields:

Syntax Disk File

%IF C:\SCRATCH\TEST.TXT

%ldF c:
%lpF \SCRATCH

%lfF TEST

%leF .TXT

%lpfF \sCRATCH\TEST

%s C:\SCRATCH\TEST.TXT

%% %

Pseudofile

<COMPILE>

<COMPILE>

<COMPILE>

C:\TMP\PWB00031.ROO

%

The title of a pseudofile cannot be specified with the filename-parts syntax, but
it is accessible to macros by using the Curfile predefined macro.

Warning The % IF syntax always specifies the name of the current file in the
active window. For some commands, such as the command specified in the
Readonly switch, this may not be the desired file. Use %s for the Readonly
switch.

248 Environment and Tools

See Printcmd, Readonly, User

Boolean Switch Syntax

Syntax 1

Syntax 2

Askexit
Type

Syntax

Default

See

You can use either one of the following syntaxes to set Boolean switches in PWB:

switch: IT yes I no I on I off 1110]

switch
The name of a PWB switch.

yes, on, 1
Enable the feature controlled by switch.

no, off, 0
Disable the feature controlled by switch.

ITno]switch :

switch
Enable the feature controlled by switch.

noswitch
Disable the feature controlled by switch.

Boolean

The Askexit switch determines if PWB prompts for confirmation before returning
to the operating system.

Askexit: { yes I no }

yes Prompt for confirmation before leaving PWB.

no Do not prompt before leaving PWB.

Askexitno

Exit

Askrtn
Type

Syntax

Default

See

Autoload
Type

Syntax

Chapter 7 Programmer's WorkBench Reference 249

Boolean

The Askrtn switch detennines if PWB prompts before returning to PWB after
running a shell or external command.

Askrtn: { yes I no }

yes

no

Prompt for confinnation before returning to PWB. This setting allows you to
review the contents of the operating-system screen before returning to the editor.

Do not prompt before returning to PWB.

Askrtn:yes

Shell

Boolean

The Autoload switch detennines if PWB automatically loads its extensions on
startup.

When the Autoload switch is yes, PWB automatically loads extensions whose
names begin with "PWB" and are found in the same directory as PWB.EXE. PWB
always loads extensions named in a Load switch.

If you disable automatic extension loading, you can load extensions as you need
them by assigning a value to the Load switch as follows:
Arg load: pwbextension Assign (ALT+A load :pwbextension ALT+=).

The pwbextension is the path of the extension's executable file. PWB automatically
assumes the filename extension .MXT. You can specify an environment-variable
path by using an environment-variable specifier.

Autoload: { yes I no }

yes
Automatically load PWB extensions on startup.

250 Environment and Tools

Default

Update

Autosave
Type

Syntax

Default

Update

See

no
Do not automatically load PWB extensions on startup. Load only those
extensions named in Load switches in TOOLS.INI.

Autoload:yes

PWB l.x extensions are not compatible with PWB 2.0. They are refused when
you request that they be loaded. Old extensions must be recompiled with the new
extension-support libraries and header files. In some cases, old extensions must also
be modified for use with PWB 2.00.

Updated Microsoft PWB l.x extensions not included with this product are avail
able by contacting Microsoft Product Support Services in the United States or your
local Microsoft subsidiary.

Boolean

The Autosave switch determines if PWB automatically saves the current file
without prompting whenever you move to another file, exit PWB, or execute an
external operation such as a shell, build, or compile.

When the Autosave switch is set to no, PWB maintains the contents of files in
memory for internal operations, and prompts to save modified files on exit or for
external operations such as a build. With this setting, PWB never saves a file unless
you explicitly save it.

Autosave: { yes I no }

yes Automatically save files.

no Do not automatically save files.

Autosave:no

In PWB l.x, the default value of Autosave is yes.

Shell, Timersave

Backup
Type

Syntax

Default

Beep
Type

Syntax

Default

Case
Type

Chapter 7 Programmer's WorkBench Reference 251

Text

The Backup switch detennines what happens to the old copy of a file before the
new version is saved to disk.

Backup:[undell bak]

(none)
No backup: PWB overtypes the file.

undel
PWB moves the old file to a hidden directory so you can retrieve it with the
UNDEL utility. The number of copies saved is specified by the Undelcount
switch.

bak
The extension of the previous version of the file is changed to .BAK.

Backup:bak

Boolean

The Beep switch detennines PWB' s alerting method. When set to yes, PWB issues
an audible sound. When no, PWB flashes the menu bar-a visual "beep."

Beep: { yes I no }

yes Generate an audible beep.

no Flash the menu bar.

Beep:yes

Boolean

The Case switch detennines if letter case is distinguished in searches.

252 Environment and Tools

Syntax

Default

See

Color
Type

Syntax

The search functions that use the Case switch have "meta" fonns that temporarily
reverse the sense of the Case switch.

The Unixre and Case switches have no effect on the syntax of regular expressions
used by the Build or Word switches. These switches always use case-sensitive
UNIX regular expressions.

Case: { yes I no }

yes
Case is significant in searches. Uppercase letters in search patterns do not match
lowercase letters in text.

no
Case is not significant in searches. Uppercase letters match lowercase letters.

Case:no

Meta, Mgrep, Mreplace, Msearch, Psearch, Replace.

Text

The Color switch specifies color of various parts of the PWB display.

Color:name value

name
Identifies the part of PWB affected by the color value.

value
Two hexadecimal digits specifying the foreground and background color of the
indicated item.

Color Names
PWB uses the following color names and default color values for the various parts
of the PWB display:

Table 7.13 PWB Color Names

Name Default Value Description

Alert 70 Message box

Background 07 (Not visible)

Border 07 Window borders

Chapter 7 Programmer's WorkBench Reference 253

Table 7.13 PWB Color Names (continued)

Name

Builderr

Buttondown

Desktop

Dialogaccel

Dialogaccelbor

Dialogbox

Disabled

Elevator

Enabled

Greyed

Helpbold*

Helpitalic*

Helpnorm*

Helpunderline*

Helpwarning*

Highlight

Hilitectrl

Info

Itemhilitesel

Listbox

Location

Menu

Menubox

Menuhilite

Menuhilitesel

Menuselected

Message

Pushbutton

Pwbwindowborder

Pwbwindowtext

Scratch

Scrollbar

Selection

Shadow

Default Value Description

40 Build message line in active window

07 Button while it is down

80 Desktop

7F Dialog box accelerator

7F Dialog box accelerator border

70 Dialog box

78 Disabled items in menus and dialogs

07 Scroll box

70 Available items in menus and dialogs

78 (Not visible)

8F Bold Help text

8A Italic Help text and the characters

87 Plain Help text

8C Emphasized Help text

70 Current hyperlink

IF Highlighted text; text found by searches

07 Highlighted control item

3F Special information

OF Highlighted character in selected item

70 List box within a dialog box

70 Location indicator in status bar

70 Menu bar

70 Menu

7F Highlighted character in menu

OF Highlighted character in selected menu

07 Selected menu

70 Message area of status bar

70 Button that is not pressed

07 PWB window borders

87 PWB window text

07 (Not visible)

70 Gray area and arrows in scroll bar

71 Current selection

08 Shadows

254 Environment and Tools

Table 7.13 PWB Color Names (continued)

Name

Status

Text

Default Value Description

7F Indicator area of status bar

17 Text in a window

* Defined by the Help extension. Define these settings in the [PWB-PWBHELP] section of
TOOLS.INI.

Color Values
Color values for the Color switch are two hexadecimal digits that specify the color
of the item. The first digit specifies the background color and the second digit
specifies the foreground color, according to the following table:

Table 7.14 PWB Color Values

Color Digit Color Digit

Black 0 Dark Gray 8

Blue 1 Bright Blue 9

Green 2 Bright Green A

Cyan 3 Bright Cyan B

Red 4 Bright Red C

Magenta 5 Bright Magenta D

Brown 6 Yellow E

White 7 Bright White F

For example, a setting of 3E displays a cyan background (3) and a yellow
foreground (E).

Note that only color displays support all the colors listed. If you have a
monochrome adapter or monochrome monitor, the only available colors are black
(0), white (7), and bright white (F). All other colors are displayed as white.

Cursormode
Type Numeric

The Cursormode switch determines the shape of the cursor when PWB is in insert
and overtype mode, according to the following table:

Default

See

Dblclick
Type

Default

See

Deflang
Type

Syntax

Cursormode Value

o

2

3

Cursonnode:2

Status Bar

Numeric

Chapter 7 Programmer's WorkBench Reference 255

Insert Mode Cursor

Underscore

Block

Block

Underscore

Overtype Mode Cursor

Underscore

Block

Underscore

Block

The Dblclick switch sets the double-click threshold for the mouse (the maximum
time between successive clicks of the mouse button). The units for the Dblclick
switch are 1/18 of a second.

Dblclick: 10

Mousemode

Text

The Deflang switch detennines the default file extension for file lists in PWB
dialog boxes.

Deflang:language

language

One of the following settings:

Setting

NONE
Asm

Basic

c

Extension

.*

.ASM

.BAS

.C

256 Environment and Tools

Setting Extension

C++ .CPP

CXX .CXX

COBOL .CBL

FORTRAN .FOR

LISP .LSP

Pascal .PAS

Default Deflang:NONE

Defwinstyle
Type

Default

See

Numeric

The Defwinstyle switch sets the default window style. The possible values for
Defwinstyle are:

Value Style

1 No scroll bars

3 Vertical scroll bar

5 Horizontal scroll bar

7 Both scroll bars

You can change the active window style by using the Winstyle function (CTRL+F6).

Defwinstyle:7

Maximize

Editreadonly
Type Boolean

The Editreadonly switch determines if PWB allows you to edit a file marked read
only on disk.

Syntax

Default

Enablealtgr
Type

Syntax

Default

Entab
Type

Chapter 7 Programmer's WorkBench Reference 257

Editreadonly: { yes I no }

yes

no

Allow modification of files that are marked read-only on disk. When PWB
attempts to save the modified file, PWB informs you that the file is marked read
only. It also prompts you to confirm that the command specified by the
Readonly switch is to be run. If you decline to run the command, PWB gives
you the opportunity to save the file with a different name.

Disallow modification of read-only files. For files that cannot be modified, PWB
displays the letter R on the status bar. You can reenable modification of a read
only file by using the Read Only command on the Edit menu or the Noedit
function.

Editreadonly:yes

Boolean

The Enablealtgr switch determines if PWB recognizes the ALTGR key (the right
ALT key) on international keyboards as ALTGR (Graphic Alt) or ALT.

When ALTGR is enabled, pressing ALTGR+key produces the corresponding
graphic character. ALTGR is never recognized as a key name for use in PWB
key assignments.

Enablealtgr: { yes I no }

yes Recognize the right ALT key as ALTGR.

no Recognize the right ALT key as ALT.

Enablealtgr:no

Numeric

The Entab switch controls how PWB converts white space on modified lines. PWB
converts white space only on the lines that you modify.

258 Environment and Tools

Default

See

When the Realtabs switch is set to yes, tab characters are converted. When set to
no, tab characters are not converted.

The Entab switch can have the following values:

Value

o

2

Meaning

Convert all white space to space (ASCII 32) characters.

Convert white space outside quoted strings to tabs.

A quoted string is any span of characters enclosed by a pair of single
quotation marks or a pair of double quotation marks. PWB does not recognize
escape sequences because they are language-specific.

For well-behaved conversions with this setting, make sure that you use a
numeric escape sequence to encode quotation marks in strings or character
literals.

Convert white space to tabs.

With settings 1 and 2, if the white space being considered for conversion to a tab
character occupies an entire tab field or ends at the boundary of a tab field, it is
convelted to a tab (ASCII 9) character. The width of a tab field is specified by the
Filetab switch.

In all conversions, PWB maintains the text alignment as it is displayed on screen.

Entab:l

Filetab, Realtabs, Tabalign

Enterinsmode
Type

Syntax

Default

Boolean

The Enterinsmode switch determines if PWB is to start in insert mode or overtype
mode. You can toggle the current mode by using the Insertmode function (INs).

When the current mode is overtype mode, the letter 0 appears on the status bar.
Depending on the setting of the Cursormode switch, the shape of the cursor
reflects the current mode.

Enterinsmode: { yes I no }

yes Start PWB in insert mode.

no Start PWB in overtype mode.

Enterinsmode:yes

Chapter 7 Programmer's WorkBench Reference 259

Enterlogmode
Type

Syntax

Default

Boolean

The Enterlogmode switch detennines if search logging is turned on or off when
PWB starts up. The current search-logging mode can be changed at any time using
the Log command on the Search menu or the Logsearch function (Unassigned).

Enterlogmode: { yes I no }

yes Start PWB with search logging on.

no Start PWB with search logging off.

Enterlogmode:no

Enterselmode
Type

Syntax

Default

See

Text

The Enterselmode switch detennines the selection mode when PWB starts up.

Enterselmode: { stream I box I line }

stream
Starts PWB in stream selection mode.

box
Starts PWB in box selection mode.

line
Starts PWB in line selection mode.

Enterselmode:stream

Selmode

Envcursave
Type Boolean

The Envcursave switch detennines if PWB saves and restores the current
environment table for PWB sessions.

260 Environment and Tools

Syntax

Default

Update

You can change environment variables by using the Environment command on the
Options menu or the Environment function (Unassigned).

If you always want to use the operating-system environment, set both Envcursave
and Envprojsave to no.

Envcursave: { yes I no }

yes

no

Save and restore environment variables for PWB sessions. Use this setting if
you want to use an environment that is specific to PWB. The PWB environment
overrides the operating-system environment.

Do not save environment variables between PWB sessions.

Envcursave:no

In PWB l.x, the INCLUDE, LIB, and HELPFILES environment variables were
always saved for PWB sessions and projects.

Envprojsave
Type

Syntax

Default

Update

Boolean

The Envprojsave switch determines if PWB saves and restores the environment
table for each project. A project's environment overrides both the PWB
environment and the external (operating-system) environment.

If you always want to use the operating-system environment table, set both
Envcursave and Envprojsave to no. You can change environment variables
by using the Environment command on the Options menu or the Environment
function (Unassigned).

Envprojsave: { yes I no }

yes

no

Save environment variables for the project. Use this setting if you want to set
project-specific environments.

Do not save environment variables for the project.

Envprojsave:yes

In PWB l.x, the INCLUDE, LIB, and HELPFILES environment variables were
always saved for PWB sessions and projects.

Factor
Type

Syntax

Default

Example

See

Chapter 7 Programmer's WorkBench Reference 261

Text

The Factor switch, together with the Friction switch, controls how quickly PWB
executes a fast function. A fast function is a PWB function whose action repeats as
rapidly as possible while you hold down the associated keystroke.

Factor: { %percent I -constant} [count]

percent
Percentage between 0 and 100 to reduce friction.

constant
Constant value between 0 and 65,535 to reduce friction.

count
Interval between reductions of friction.

PWB reduces friction by percent percent or constant every count repetition of a
keystroke, until friction is zero.

Factor:%50 10

If you hold down the RIGHT ARROW key with the settings:

Right :RIGHT
Fastfunc:Right
Friction:1000
Factor :%75 7

PWB moves the cursor at the current speed until it has moved seven characters to
the right. Then PWB changes the friction to 250 (75 percent reduction of the initial
friction of 1000). When the cursor has moved 14 characters, the friction changes to
188 (75 percent reduction of the friction of 250). The cursor moves faster the longer
you hold down the RIGHT ARROW key.

Fastfunc

262 Environment and Tools

Fastfunc
Type

Syntax

Default

Filetab
Type

Default

See

Text

The Fastfunc switch specifies functions whose action is rapidly repeated by PWB
as you hold down the associated key combination.

The Friction and Factor switches control the repeat speed and acceleration of fast
functions.

Fastfuncfunction {on I off}

function PWB function to repeat.

on Enable fast repeat for function.

off Disable fast repeat for function.

Fastfunc:Down on
Fastfunc:Left on
Fastfunc:Mlines on
Fastfunc:Mpage on
Fastfunc:Mpara on
Fastfunc:Mword on
Fastfunc:Plines on
Fastfunc:Ppage on
Fastfunc:Ppara on
Fastfunc:Pword on
Fastfunc:Right on
Fastfunc: Up on

Numeric

The Filetab switch determines the width of a tab field for displaying tab (ASCII 9)
characters in the file. The width of a tab field determines how white space is
translated when the Realtabs switch is set to no. The Filetab switch does not affect
the cursor-movement functions Tab (TAB) and Backtab (SHIFf+TAB).

Filetab:8

Entab, Realtabs, Tabdisp

Friction
Type

Default

See

Height
Type

Default

See

Chapter 7 Programmer's WorkBench Reference 263

Numeric

The Friction switch, together with the Factor switch, controls how quickly PWB
executes a fast function. A fast function is a PWB function whose action repeats
rapidly when you hold down the associated key.

The value of the Friction switch is a decimal number between ° and 65,535 and
specifies the delay between repetitions of a fast function. As the function is
repeated, the delay is reduced according to the setting of the Factor switch.

Friction:40

Factor, Fastfunc

Numeric

The Height switch determines the number of lines on the PWB screen. The Height
switch can have one of these values: 25,43,50, or 60. The last setting
of this switch is saved and restored across PWB sessions and for each project.

Height: first screen height

When you start PWB for the first time, PWB uses the current screen height.
Thereafter, PWB restores the previous setting until you explicitly assign a new
value to the Height switch.

Note that when you change the setting for Height in the Editor Settings dialog box,
the change does not take effect until you choose OK. Other switches takes effect
immediately when you choose Set Switch.

Assign

264 Environment and Tools

Hike
Type

Default

See

Hscroll
Type

Default

See

Infodialog
Type

Syntax

Numeric

The Hike switch determines the number of lines from the cursor to the top of the
window after you move the cursor out of the window by more than the number of
lines specified by the V scroll switch.

The minimum value is 1. When the window occupies less than the full screen, the
value is reduced in proportion to the window size.

Hike:4

Hscroll

Numeric

The Hscroll switch controls the number of columns that PWB scrolls the text left or
right when you move the cursor out of the window. When the window does not
occupy the full screen, the amount scrolled is in proportion to the window size.

Text is never scrolled in increments greater than the size of the window.

Hscroll:l0

Vscroll

Numeric

The Infodialog switch determines which information dialog boxes are displayed.

Infodialog:hh

hh
Two hexadecimal digits specifying a set of flags to indicate which information
dialog boxes should be displayed. When a bit is on (1), the corresponding dialog
box is displayed. When a bit is off (0), the corresponding dialog box is not
displayed.

Default

Keepmem
Type

Default

Lastproject
Type

Chapter 7 Programmer's WorkBench Reference 265

To set the value of Infodialog, add up the hexadecimal numbers listed in the table
below for the dialog boxes you want to display.

Value Information Dialog

01 n occurrences found
n occurrences replaced

02 End of Build Results
End of Search Results

04 ' pattern' not found

08 No unbalanced characters found

10 Changed directory to directory
Changed drive to drive

Infodialog:OF

The default value of Infodialog tells PWB to display all information dialog boxes
except for the "Changed ... " dialog boxes.

Numeric

The Keepmem switch specifies the amount of extended (XMS) memory or
expanded (EMS) memory kept by PWB during a shell, compile, build, or other
external command. Specify the value in units of kilobytes (1024 bytes).

A larger number means that shelling is faster and leaves less memory for tools
that use extended or expanded memory. A smaller number means that shelling is
slower and leaves more memory for tools. If the number you specify is not large
enough, PWB uses no extended or expanded memory.

Keepmem:2048

Boolean

The Lastproject switch determines if PWB automatically opens the last project
on startup. The /PN, /pP, /PL, and /PF command-line options override the setting of
the Lastproject switch.

266 Environment and Tools

Syntax Lastproject: { yes I no }

Default

See

Load
Type

Syntax

See

Markfile
Type

yes On startup, open the last project that was open.

no Do not open the last project on startup.

Lastprojectno

Project

Text

The Load switch specifies the filename of a PWB extension to load.
I

When this switch is assigned a value, PWB loads the specified extension. The
initialization specified in the extension is perfonned, and the functions and switches
defined by the extension become available in PWB.

The extension can be loaded during initialization of a TOOLS.INI section. You can
also interactively load an extension by using the Editor Settings command on the
Options menu or by using the Assign function to assign a value to the Load switch.

Load:[path]basename[.ext]

path
Can be a path or an environment-variable specifier.

basename
Base name of the extension executable file.

ext
Nonnally you do not specify a filename extension.

Autoload

Text

The Markfile switch specifies the name of the file PWB uses to save marks.

Syntax

Default

See

Update

Chapter 7 Programmer's WorkBench Reference 267

When no mark file is open, marks are kept in memory, and they are lost when
you exit PWB. When you open a mark file, marks in memory are saved in the mark
file, unless a mark file is already open. When a mark file is already open,
the marks in memory are saved in the open file.

To open a mark file, use the Set Mark File command on the Search menu or
assign a value to the Markfile switch by using the Editor Settings command on the
Options menu or the Assign function. To close a mark file without opening a new
one, assign an empty value to the Markfile switch. That is, use the setting:

Ma rkfil e:

To set a permanent mark file that is used for every PWB session, place a Markfile
definition in the [PWB] section of TOOLS.INI.

Markfile: filename

filename The name of the file containing mark definitions.

Markfile:

The Markfile switch has no default value and is initially undefined.

Assign, Mark

Mark File Format
A mark file is a text file containing mark definitions of the form:

markname filename line column

The mark markname is defined as the location given by line and column in the file
filename. The markname cannot contain spaces and cannot be a number.

With PWB l.x, when you open a mark file and no mark file is currently open, the
marks in memory are lost. With PWB 2.00, the marks are saved in the new mark
file.

Mousemode
Type Numeric

The Mousemode switch enables or disables the mouse and sets the actions of the
left and right mouse buttons.

268 Environment and Tools

Default

See

Msgdialog
Type

Syntax

Default

See

Msgflush
Type

Syntax

Default

See

Value Description

o The mouse is disabled and the mouse pointer is not visible.

1 Normal mouse control.

2 Exchanges the actions of the left and right mouse buttons.

Mousemode: 1

DblcIick

Boolean

The Msgdialog switch determines if PWB brings up a dialog box summarizing
build results or only beeps when a build is complete.

Msgdialog: { yes I no }

yes Display a dialog box summarizing build results when a build is complete.

no Beep when a build is complete.

Msgdialog:yes

Beep, Compile, Searchdialog

Boolean

The Msgflush switch determines if previous build results are retained in the Build
Results window or flushed when a new build is started.

Msgflush: { yes I no }

yes Flush previous build results when a new build is started.

no Save previous build results.

Msgflush:yes

Nextmsg, Searchflush

Chapter 7 Programmer's WorkBench Reference 269

Newwindow
Type

Syntax

Default

See

Boolean

The Newwindow switch detennines if certain PWB functions open a file in a new
window or in the active window. The Newwindow switch provides the default state
of the New Window check box in the Open File dialog box. This check box does
not change the value of the Newwindow switch.

When Newwindow is set to yes, PWB behaves like a Multiple Document Interface
(MDI) application. That is, when you open a new file, PWB opens a new window
for the file, except in certain situations as noted below.

When Newwindow is set to no, PWB behaves like PWB l.x. In this case, PWB
opens files into the active window, creating a file history for that window. This
mode is useful when working with large numbers of files.

Some functions use the Newwindow switch to detennine if a new window is
created when opening a file.

The following functions ignore the Newwindow switch, and either create a new
window or open the file into the active window:

Function

Mreplace

Openfile

Setfile

Nextmsg

Nextsearch

Creates a New Window

No

Yes

No

No

No

When the active window is a PWB window, PWB always creates a new window.
You cannot open a file into a PWB window.

Newwindow: { yes I no }

yes

no

Open a new window when a new file is opened. This setting makes PWB
behave like other MDI applications such as Microsoft Word 5.5 and Microsoft
Works.

Open files into the active window, adding the previous file to the window's file
history. This setting makes PWB behave like PWB l.x.

Newwindow:yes

Exit, Mark, Mreplace, Newfile, Nextmsg, Nextsearch, Openfile, Setfile

270 Environment and Tools

Noise
Type

Default

Printcmd
Type

Syntax

Default

See

Readonly
Type

Numeric

The Noise switch specifies the number of lines counted at a time as PWB traverses
a file while reading, writing, or searching. PWB displays the line counter on the
right side of the status bar, in the area which usually shows the current line.

Set Noise to 0 to tum off the display of scanned lines.

Noise:50

Text

The Printcmd switch specifies a program or operating system command that PWB
starts when you choose the Print command from the File menu or execute the Print
function (Unassigned).

Printcmd: command line

command _line An operating-system command line.

To pass the filename of the current file, specify %s in the command line. Specify
% % to pass a literal percent sign. You can extract parts of the full filename using a
special PWB syntax. See "Filename-Parts Syntax" on page 247.

Printcmd:COPY %s PRN

Print

Text

The Readonly switch specifies the operating-system command invoked when PWB
attempts to write to a read-only file.

When PWB attempts to overtype a file that is marked read-only on disk, PWB
informs you that the file is read-only. It also prompts you to confirm that the
command specified in the Readonly switch is to be run. If you decline to run

Syntax

Default

Example

See

Realtabs
Type

Syntax

Default

See

Chapter 7 Programmer's WorkBench Reference 271

the Readonly command, PWB gives you the opportunity to save the file with a
different name.

Readonly: IT command]

command Operating-system command line.

If no command is specified, PWB prompts you to enter a new filename to save the
file.

To pass the filename of the current file to the command, specify %s in the command
line. Specify % % to pass a literal percent sign. You can extract parts of the full
path using a special PWB syntax. See "Filename-Parts Syntax" on page 247.

Note that only %s is guaranteed to give the name of the read-only file. The %IF
syntax gives the current filename (the file displayed in the active window), even
when PWB is saving a different file.

Readonly:

The default value specifies that PWB should run no command and should prompt
for a different filename.

The Readonly switch setting

Readonly:Attrib -r %s

removes the read-only attribute from the file on disk so PWB can overtype it.

Editreadonly, Noedit

Boolean

The Realtabs switch determines if PWB preserves tab (ASCII 9) characters or
translates white space according to the Entab switch when'a line is modified.
Realtabs also determines if the Tabalign switch is in effect.

Realtabs: { yes I no }

yes Preserve tab characters when editing a line.

no Translate tab characters when editing a line.

Realtabs:yes

Entab, Filetab, Tabalign

272 Environment and Tools

Restorelayout
Type

Syntax

Default

See

Rmargin
Type

Default

Update

See

Boolean

The Restorelayout switch determines if PWB restores the saved window layout
and file history from the project status file when you open a project or retains the
active window layout and file history.

This switch provides the default state of the Restore Window Layout check box in
the Open Project dialog box.

Restorelayout: { yes I no }

yes

no

Restore a project's saved window layout and file history when the project is
opened.

Do not restore the project's windows and file history.

Restorelayout:yes

Project

Numeric

The Rmargin switch sets the right margin for word wrapping. It has an effect only
when word wrapping is turned on.

Rmargin:78

In PWB 1.x, Rmargin sets the beginning of a six-character "probation" zone
where typing a space wraps the line. After the zone, typing any character wraps the
current word. This behavior is similar to that of a typewriter. PWB 2.00 uses
a word-processor's style of wrapping.

To maintain the same margins as PWB l.x, increase your Rmargin settings by 6.

Softer, Wordwrap

Chapter 7 Programmer's WorkBench Reference 273

Savescreen
Type

Syntax

Default

Boolean

The Savescreen switch determines if PWB preserves the operating-system screen
image and video mode.

Savescreen: { yes I no }

yes

no

Save the operating-system screen when starting PWB, and restore it when
leaving PWB.

Do not preserve the operating-system screen. When you leave PWB, the
operating-system screen is blank, and the video mode is left in PWB's last video
mode.

Savescreen:yes

Searchdialog
Type

Syntax

Default

See

Boolean

The Searchdialog switch determines if PWB brings up a dialog box that
summarizes logged search results or only beeps when a logged search is complete.
The Search dialog switch has an effect only while logging search results.

Searchdialog: { yes I no }

yes

no

Display a dialog box summarizing search results when a logged search is
complete.

Beep when a logged search is complete.

Searchdialog:yes

Beep, Enterlogmode, Logsearch, Msgdialog

274 Environment and Tools

Searchflush
Type

Syntax

Default

See

Boolean

The Searchflush switch determines if previous logged search results are flushed or
retained when you start a new logged search.

This switch has an effect only when PWB performs a logged search.

Searchflush: { yes I no }

yes

no

Flush the previous search results from the Search Results window when a new
search is begun.

Preserve previous search results in the Search Results window.

Searchflush:yes

Logsearch, Mgrep

Searchwrap
Type

Syntax

Default

See

Boolean

The Searchwrap switch determines if search commands and replace commands
wrap around the ends of a file.

Searchwrap: { yes I no }

yes Searches wrap around the beginning and end of the file.

no Searches stop at the beginning and end of the file.

Searchwrap:no

Msearch, Psearch, Replace.

Chapter 7 Programmer's WorkBench Reference 275

Shortnames
Type

Syntax

Default

See

Softer
Type

Syntax

Default

Boolean

The Shortnames switch determines if currently loaded files can be accessed by
their short names (base name only).

Shortnames: { yes I no }

yes

no

You can switch to a file currently loaded into PWB by specifying only the base
name to the Setfile (F2) or Openfile (FlO) functions.

You must specify the extension as well as the base name to switch to a file.

Shortnames:yes

Openfile, Setfile

Boolean

The Softer switch controls indentation of new lines based on the format of
surrounding text when you execute the Emaesnewl (ENTER) and Newline
(SHIFf+ENTER) functions.

Softer: { yes I no }

yes

no

Indent new lines.

Do not indent new lines. After executing Emaesnewl or Newline, the cursor is
placed in column 1.

S oftcr: yes

276 Environment and Tools

Tabalign
Type

Syntax

Default

Tabdisp
Type

Default

See

Boolean

The Tabalign switch determines the positioning of the cursor when it enters a tab
field. A tab field is the area of the screen representing a tab character (ASCII 9) in
the file. The width of a tab field is specified by the Filetab switch.

The Tabalign switch takes effect only when the Realtabs switch is set to yes.

Tabalign: { yes I no }

yes

no

PWB aligns the cursor to the beginning of the tab field when the cursor enters
the tab field. The cursor is placed on the actual tab character in the file.

PWB does not align the cursor within the tab field.

You can place the cursor on any column in the tab field. When you type a
character at this position, PWB inserts enough leading blanks to ensure that the
character appears in the same column.

Tabalign:no

Numeric

The Tabdisp switch specifies the decimal ASCII code of the character used to
display tab (ASCII 9) characters in your file. If you specify 0 or 255, PWB uses the
space (ASCII 32) character.

It is sometimes useful to set Tabdisp to the code for a graphic character so that tabs
can be distinguished from spaces.

Tabdisp:32

The default value 32 specifies the ASCII space character.

Filetab, Realtabs, Traildisp, Traillinesdisp

Tabstops
Type

Syntax

Default

Update

Example

Example

Example

See

Chapter 7 Programmer's WorkBench Reference 277

Text

The Tabstops switch specifies variable tab stops used by the Tab and Backtab
functions. Tab moves the cursor to the next tab stop; Backtab moves the cursor
to the previous tab stop.

Note that the Tabstops switch has no effect on the handling of tab (ASCII 9)
characters in a file.

Tabstops: [tabwidth] ... repeat

tabwidth
The width of a tab stop. You can repeat tabwidth for as many tab stops as will
fit on a PWB line (250 characters).

repeat
The width of every tab stop after the explicitly listed tab stops.A value of 0 for
repeat specifies that there are no tab stops after the list of tabwidth settings.
When the cursor is past the last tab stop, the Tab function does nothing.

Tabstops:4

In PWB l.x, Tabstops is a numeric switch specifying a single value, equivalent to
the repeat value in PWB 2.0. The default PWB 2.00 Tabstops setting mimics the
default behavior of PWB l.x.

The Tabstops switch setting

Tabstops:4

sets a tab stop every four columns.

The setting

Tabstops:3 4 7 8

sets a tab stop at columns 4, 8, 15, and every eight columns thereafter.

The setting

Tabstops:3 4 7 25 25 0

sets a tab stop at columns 4,8, 15,40, and 65. When the cursor is past column 65,
the Tab function does nothing.

Backtab, Entab, Filetab, Reaitabs, Tab

278 Environment and Tools

Tilemode
Type

Default

See

Numeric

The Tilemode switch specifies the window tiling style. It can take one of the values
below:

Value Tiling Style

o The fIrst three windows are stacked one above the other.

The top two windows are tiled side-by-side.

When four or more windows are open, the tiling is the same in the two styles.

In stacked style (T; 1 emode: 0), the top windows are placed one above the other, as
shown in gray.

I
',',;·'··· ... ,·,··, ~"".":';'.:>":" .. ': ~"""';',";':' .. ta:"·,,,:, 1;":;1::: .· •. ··•·.· .•.. ;;3 · .: .•.............. :.. .../, .•.•

2 3 4

Figure 7.2 Vertical Tiling

In side-by-side style (T; 1 emode: 1), the top two windows are tiled next to each
other, as shown in Figure 7.3. This arrangement is good for comparing two files.

:~0;![:D!; :!i~!:<:". 1"""""1]" ~ Ea'

2 3 4

Figure 7.3 Horizontal Tiling

Tilemode:O

Arrangewindow

Timersave
Type

Default

See

Tmpsav
Type

Default

Traildisp
Type

Default

See

Chapter 7 Programmer's WorkBench Reference 279

Numeric

The Timersave switch sets the interval in seconds between automatic file saves.
The value must be in the range 0-65,535.

Set Timersave to 0 to tum off time-triggered autosave.

Timersave:O

Autosave

Numeric

The Tmpsav switch determines the maximum number of files kept in the file
history between sessions.

When Tmpsav is 0, PWB lets the file history grow without limit; all files loaded
into PWB appear in this list until you delete the CURRENT.STS file or change the
value of the Tmpsav switch.

Tmpsav:20

Numeric

The Traildisp switch specifies the decimal ASCII code for the character used to
display trailing spaces on a line. If you specify 0 or 255, PWB uses the space
(ASCII 32) character.

Traildisp:O

Traillines, Trailspace, Traillinesdisp

280 Environment and Tools

Traillines
Type

Syntax

Default

See

Boolean

The Traillines switch determines if PWB preserves or removes empty trailing lines
in a file when the file is written to disk.

You can make trailing lines visible by setting the Traillinesdisp switch to a value
other than 0 or 32.

Traillines: { yes I no }

yes Preserve trailing blank lines in the file.

no Remove trailing blank lines from the file.

Traillines :no

Traildisp, Trailspace

Traillinesdisp
Type

Default

See

Trailspace
Type

Numeric

The Traillinesdisp switch specifies the decimal ASCII code for the character
displayed in the first column of blank lines at the end of the file. If you specify
o or 255, PWB uses the space (ASCII 32) character.

Traillinesdisp: 32

Traillines, Traildisp, Trailspace

Boolean

The Trailspace switch determines if PWB preserves or removes trailing spaces
from modified lines.

You can make trailing spaces visible by setting the Traildisp switch to a value
other than 0 or 32.

Syntax

Default

See

Chapter 7 Programmer's WorkBench Reference 281

Trailspace: { yes I no }

yes Preserve trailing spaces on lines as they are changed.

no Remove trailing spaces from lines as they are changed.

Trailspace:no

Traillines, Traillinesdisp

Undelcount
Type

Default

Undocount
Type

Default

Unixre
Type

Numeric

The Undeicount switch determines the maximum number of backup copies of a
given file saved by PWB.

This switch is used only when the Backup switch is set to unde 1.

Undelcount:32767

Numeric

The Undocount switch sets the maximum number of edits per file that you can
reverse with Undo (ALT+BKSP).

Undocount:30

Boolean

The Unixre switch determines if PWB uses UNIX regular-expression syntax or
PWB 's non-UNIX regular-expression syntax for search-and-replace commands.

The Unixre and Case switches have no effect on the syntax of regular expressions
used by the Build and Word switches. These switches always use case-sensitive
UNIX regular-expression syntax.

282 Environment and Tools

Syntax Unixre: { yes I no }

Default

User
Type

Syntax

yes Use UNIX regular-expression syntax when searching.

no Use non-UNIX regular-expression syntax when searching.

Unixre:yes

Text

The User switch adds a custom menu item to the PWB Run menu.

User: title,path, [arg], [out], [dir], [help], [prompt], [ask], [back], [key]

If any argument to the User switch contains spaces, it must be enclosed in double
quotation marks.

title
Menu title for the program to be added. No other command can have the same
title. Prefix the character to be highlighted as the access key with a tilde (-) or
ampersand (&). If you do not specify an access key, the first letter of the title is
used.

path
Full path of the program. If the program is on the PATH environment variable,
you can specify just the filename of the program.

arg

out

dir

Command-line arguments for the program. To pass the name of the current file
to the program, specify %s in the command line. Default: no arguments.

Name of a file to store program output. If no file is specified and the program is
run in the foreground, the current file in PWB receives the output. Default: no
output file.

Current directory for the program. Default: PWB' s current directory.

help
Text that appears on the status bar when the menu item is selected. Default: no
help text.

prompt
Determines ifPWB prompts for command-line arguments. The value of arg is
the default response. Specify Y to prompt or any other character to run the
program without prompting for arguments. Default: no prompt.

Default

Example

See

Chapter 7 Programmer's WorkBench Reference 283

ask
Detennines if PWB is to prompt for a keystroke before returning to PWB.
Specify Y to prompt or any other character to return to PWB immediately after
running the program. Default: return without prompting.

back
Detennines if the program is run in the background under a multithreaded
environment. Specify Y to run the program in the background or any other
character to run it in the foreground. If you run the program in the background,
you must also specify output. Default: run the program in the foreground.

key
A single digit from 1 to 9, specifying a key from ALT +Fl to ALT +F9 as the
shortcut key for the command. Default: no shortcut key.

By default, no custom menu commands are defmed.

The User switch setting

User: "-Print", XPRINT, "/2 %5", LPTl" \
"Pri nt the current fil e with XPRINT", y, n, n, 8

specifies the following custom Run menu command:

Option

title

path

arg

out

dir

help

prompt

ask

back

key

Description

The menu title is Pri nt with the accelerator P.

The XPRINT program is expected to be on the PATH.

The default command line specifies the /2 option and the current filename.

The program output is redirected to the LPTI device.

The XPRINT program is run in the current directory.

The Help line is P r i n t the cur r e n t f i 1 e wit h X P R I NT.

PWB prompts for additional arguments.

PWB doesn't prompt before returning from XPRINT.

The XPRINT program is to run in the foreground.

AL T +FS runs the XPRINT program after prompting.

The backslash at the end of the first line of the definition is a TOOLS.INI line
continuation.

Printcmd, ywbusern, Usercmd

284 Environment and Tools

Vscroll
Type

Default

See

Width
Type

Default

See

Word
Type

Syntax

Numeric

The V scroll switch controls the number of lines scrolled up or down when you
move the cursor out of the window. When the window is smaller than the full
screen, the amount scrolled is in proportion to the window size.

The minimum value for V scroll is 1. Text is never scrolled in increments greater
than the size of the window.

The Mlines and Plines functions also scroll according to the value of the V scroll
switch.

Vscroll:l

Hscroll

Numeric

The Width switch controls the width of the display. Only an 80-column display is
supported.

Width:80

Height

Text

Word: "regular_expression"

"regular_expression"
A macro string specifying a UNIX -syntax regular expression that matches a
word.

The Word switch specifies a case-sensitive UNIX regular expression that matches
a word. The Unixre and Case switches are ignored.

Default

Examples

Chapter 7 Programmer's WorkBench Reference 285

The Word switch accepts a TOOLS.INI macro string. The string can use escape
sequences to represent nonprintable ASCII characters. Note that backslashes (\)
must be doubled within a macro string.

The Word switch is used by functions that operate on words: Mword, Pword,
Pwbhelp, right-clicking the mouse for Help, and double-clicking the mouse to
select a word.

Word: " [a-zA-ZO-9_$J+"

The default value mimics the behavior of PWB l.x.

The Word switch can be used to change the defmition of a word. The following
examples show some useful word defmitions.

The following setting works the same way as the default setting, except that Pword
and Mword stop at the end of a line:

Word:"\\{[a-zA-Z0-9_$]+\\!$\\}"

The default setting of the Word switch matches Microsoft CjC++ identifiers and
unsigned integers. To restrict the definition of a word to match the ANSI C standard
for identifiers, you would use the setting:

Word:"[a-zA-Z_][a-zA-Z0-9_]*"

Another useful setting is to define a word as a contiguous stream of nonspace
characters:

Word:"[J\ \t]+"

The following Word setting defines a word as an identifier or unsigned integer, a
stream of white space, a stream of other characters, or the beginning or end of the
line. This causes the word-movement functions to stop at each boundary, and allows
a double-click to select white space.

Word:"\\{[a-zA-Z0-9_$]+\\![]+\\![J\a-zA-Z0-9_$]+\\!$\\!J\\\}"

286 Environment and Tools

Wordwrap
Type

Syntax

Default

Update

Boolean

The Wordwrap switch detennines ifPWB perfonns automatic word wrap as you
enter text.

When word wrapping is turned on and you type a nonspace character past the
column specified by Rmargin, PWB brings the current word down to a new line. A
word is defined by the Word switch.

Wordwrap:{ yes I no }

yes Wrap words as you enter text.

no Do not wrap.

Wordwrap:no

See Rmargin

Browser Switches

Browcase
Type

The PWBBROWSE extension provides the following switches to control the
behavior of the Source Browser in PWB.

Numeric

The Browcase switch detennines the initial case sensitivity of the browser when
a database is opened. The browser consults this switch only when it opens the
database.

This switch must appear in the [PWB-PWBROWSE] tagged section of
TOOLS.IN!.

A dot appears next to the Match Case command on the Browse menu when the
browser matches case. Choose Match Case to turn case-sensitive browsing on and
off. Changing the current state does not affect the value of the Browcase switch.

Syntax

Default

Browdbase
Type

Syntax

Browcase:{ 01112 }

o

Chapter 7 Programmer's WorkBench Reference 287

Use the case sensitivity stored in the database by BSCMAKE. The default case
sensitivity matches the case sensitivity of the source language.

1
Match case for browse queries.

2
Ignore case for browse queries.

Browcase:O

Text

The Browdbase switch specifies the browser database to use. When this switch
is not set, or the setting is empty, the browser uses the database for the current
project (if any). You set this switch by using the Save Current Database command
in the Custom Database Management dialog box.

This switch must appear in the [PWB-PWBROWSE] tagged section of
TOOLS.INI.

Browdbase: database

database
The full filename of the browser database (.BSC file) to use. When database is
not specified, the browser uses the database for the open project.

Help Switches
The PWBHELP extension provides the following switches to control the behavior
of the Help system in PWB.

288 Environment and Tools

Color (Help Colors)
The PWBHELP extension defines the following Color switches to set the colors for
items displayed in the Help window. These switches must appear in the
[PWB-PWBHELP] tagged section of TOOLS.INI. When you choose OK in the
Save Colors dialog box, PWB automatically writes the new settings to the correctly
tagged section of TOOLS.INI.

Name Default Value Description

Color: Helpnonn 87 Plain Help text

Color: Helpbold 8F Bold Help text

Color: Helpitalic 8A Italic Help text and the characters

Color: Helpunderline 8C Emphasized Help text

Color: Helpwaming 70 Current hyperlink

For a complete description of the Color switch, see Color.

Helpautosize
Type

Syntax

Default

Update

Boolean

The Helpautosize switch determines if PWB displays the Help window according
to the size of the current topic or displays Help with its previous size and position.

This switch must appear in the [PWB-PWBHELP] tagged section of TOOLS.INI.

Helpautosize: { yes I no }

yes

no

When displaying a new topic, automatically resize the Help window to the size
of the topic.

Do not automatically resize the Help window. The Help window is displayed
with its previous size and position.

Helpautosize:no

In PWB 1.x, the Help window is always automatically resized. In PWB 2.00, the
Help window is not resized by default.

Helpfiles
Type

Syntax

I

Default

Helplist
Type

Syntax

Default

Chapter 7 Programmer's WorkBench Reference 289

Text

The Helpfiles switch lists Help files or directories containing Help files that PWB
should open in addition to the Help files listed in the HELPFILES environment
variable.

This switch must appear in the [PWB-PWBHELP] tagged section of TOOLS.IN!.

Helpfiles: [file][;tile] ...

file
. The filename of a Help file to open or the name of a directory. If a directory

name is used, all Help files in the directory are opened. Eachfile can contain
wildcards or environment-variable specifiers.

Helpfiles:

By default, PWB uses only the Help files in the current directory and those listed in
the HELPFILES environment variable.

Boolean

The Helplist switch determines if PWB searches every Help file when you request
Help or displays the first occurrence of the topic that it finds.

This switch must appear in the [PWB-PWBHELP] tagged section of TOOLS.IN!.

Helplist: { yes I no }

yes

no

Displays a list of Help files that contain the topic you requested Help on when
the topic is defined more than once.

Does not display a list of topics. PWB displays the first Help associated with the
requested topic. To see the other Help screens that define the topic, use the Next
command on the Help menu.

Helplist: yes

290 Environment and Tools

Helpwindow
(obsolete)

The PWB 1.x Helpwindow switch is obsolete and does not exist in PWB 2.00.
PWB 2.00 always displays Help in the Help window.

PAR T 2

The Code View Debugger

Chapter 8 Getting Started with Code View 293
Chapter 9 The Code View Environment. 319
Chapter 10 Special Topics ... 351
Chapter 11 Using Expressions in CodeView 375
Chapter 12 CodeView Reference 393

293

CHAPTER 8

Getting Started with CodeView

Microsoft Code View is a window-oriented debugging tool that helps you find and
correct errors in MASM and Microsoft CjC++ programs. With CodeView, you can
examine source-level code and the corresponding compiled code at the same time.
You can execute your code in increments and view and modify data in memory as
your program runs.

Your MASM 6.10 package includes CodeView for MS-DOS (CV.EXE) and
CodeView for Windows (CVW.EXE). The names "CodeView," "CodeView
debugger," and "the debugger" refer to both versions unless the discussion indicates
otherwise.

This chapter shows you how to:

• Write programs to make debugging easier.

• Fonnulate a debugging strategy.

• Compile and link your programs to include Microsoft Symbolic Debugging
Infonnation.

• Set up the files Code View needs.

• Configure Code View with TOOLS.IN!.

• Start Code View and load a program.

• Use the CodeView command-line options.

• Use or disable the CURRENT.STS state file.

Preparing Programs for Debugging
You can use Code View to debug any MS-DOS or Windows-based executable file
produced from MASM or Microsoft CjC++ source code. "Compiling" means
producing object code from source files. All references to compiling also apply to
assembling unless stated otherwise.

294 Environment and Tools

General Programming Considerations
This section describes programming practices that make debugging with Code View
easier and more efficient.

Multiple Statements on a Line
Code View treats each source-code line as a unit. For this reason, you cannot trace
and set a breakpoint on more than one statement per line. You can change from
Source display mode to Mixed or Assembly display mode (see "The Source
Windows" on page 324) and then set breakpoints at individual assembly
instructions. If a single statement is broken across mUltiple lines, you may be able
to set breakpoints on only the starting or ending line of the statement.

Macros and Inline Code
Microsoft C, C++, and MASM support macro expansion. Microsoft C and C++
also support inline code generation. These features pose a debugging problem
because a macro or an inlined function is expanded where it is used, and Code View
has no information about the source code. This means that you cannot trace or set
breakpoints in a macro or inlined function when debugging at the source level.

To work around this condition, you can:

• Manually expand the macro to its corresponding source code.

• Rewrite the macro as a function.

• Suppress inline code generation with the lObO compiler option.

You can often rewrite macros as inline functions, then selectively disable inlining
with a compiler option or pragma so that you can step and trace the routine.
Rewriting macros as inlined functions can have additional benefits such as
argument type checking. However, in some cases the best solution for debugging
macros or inline code is to use Assembly or Mixed display mode.

Segment Ordering and Naming
For assembly-language programs, you must declare your segments according to the
standard Microsoft high-level language format. MASM versions 5.10 and later
provide directives to specify the standard segment order and naming.

Programs that Alter the Environment
Programs that run under Code View can read the environment table, but they
cannot permanently change it. When you exit Code View, changes to the
environment are lost.

Chapter 8 Getting Started with CodeView 295

Programs that Access the Program Segment Prefix
Code View processes the command line in the program segment prefix (PSP) the
same way as the C/C++ run-time library does. Quotation marks are removed, and
exactly one space is left between command-line arguments. As a result, a program
that accesses the PSP directly cannot expect the command line to appear exactly
as typed.

Compiling and Linking
After you compile and link your program into a running executable file, you can
begin debugging with CodeView. To take full advantage of Code View, however,
you must compile and link with the options that generate Code View Symbolic
Debugging Information. This book refers to this infonnation as "Code View
information," "debugging information," or "symbolic infonnation."

The Code View information tells Code View about:

• All program symbols, including locals, globals, and publics

• Data types

• Line numbers

• Segments

• Modules

Without this information, you cannot refer to any source-level names, and you can
view the program only in Assembly display mode. When Code View loads a module
that does not contain symbolic information, Code View starts in Assembly mode and
displays the message:

CV0101 Warning: No symbolic information for PROGRAM.EXE

You get this message if you try to debug an executable file that you did not compile
and link with Code View options, if you use a compiler that does not generate
Code View information, or if you link your program with an old version of the
linker. If you retain an old linker version and it is first in your path, the proper
information may not be generated for CodeView.

You can specify Code View compiler and linker options from the command line, in a
makefile, or from within the Microsoft Programmer's Workbench (PWB). To
compile and link your program with Code View options from PWB, choose Build
Options from the Options menu, and tum on Use Debug Options. By default, all
project templates enable the generation of Code View infonnation for debug builds.

296 Environment and Tools

Assembler/Compiler Options
You can specify Code View options when you assemble a source file of a program
you want to debug. Specify the /Zi option on the command line or in a makefile to
instruct the assembler to include line-number and complete symbolic information in
the object file.

Symbolic information takes up a large amount of space in the executable file and in
memory while debugging. If you do not need full symbolic information in some
modules, compile those modules with the /Zd option. The /Zd option specifies that
only line numbers and public symbols are included in the object file. In such
modules you can view the source file and examine and modify global variables, but
type information and names with local scope are not available.

For modules that are assembled or compiled with the /Zd option, all names in that
module are displayed and can only be referred to using their "decorated name." The
decorated name is the form of the name in the object code produced by the
compiler. With full debugging information, Code View can translate between the
source form of the name and the decorated name.

Name decoration encodes additional information into a symbol's name by adding
prefixes and suffixes. For example, the C compiler prefixes the names of functions
that use the C calling convention with an underscore. You often see decorated
names for library routines in disassembly or output from the Examine Symbols (X)
command. For more information on decorated names, see "Symbol Formats" on
page 385.

All Microsoft high-level language compilers are optimizing compilers that may
rearrange and remove source code. As a result, optimizations destroy the
correspondence between source lines and generated machine code, which can make
debugging especially difficult. While you are debugging, you should disable
optimizations with the IOd compiler option. When you finish debugging, you can
compile a final version of your program with full optimizations.

Note The IOd option does not pertain to MASM.

Linker Options
When you are using Microsoft C/C++ or the Microsoft Assembler, you must use
the Microsoft Segmented Executable Linker (LINK) version 5.30 or later to
generate an executable file with Code View information. If you include debugging
options when you compile, the compiler automatically invokes the linker with the
appropriate options. In tum, LINK runs the CVPACK utility, which compresses the
symbolic information.

When compiling, you can specify the compile-only (lc) option to disable running
LINK. To include debugging information when you link the object modules

Examples

Chapter 8 Getting Started with CodeView 297

separately, specify the LINK ICO option. LINK automatically runs CVPACK when
you specify ICO.

If you link with the IEXEPACK option, you must execute the program's startup
code before setting breakpoints in the program. If you set breakpoints in a packed
executable file before the startup code has executed, Code View behavior is
unpredictable.

An executable file that includes debugging infonnation can be executed from the
command line like any other program. However, to minimize the size of the final
version of the program, compile and link without the Code View options.

The following command sequence assembles and links two files:

ML IC IZi MODl.ASM
ML IC IZd MOD2.ASM
LINK ICO MODl MOD2

This example produces the object file MOD1.0BJ, which contains line-number and
complete symbolic infonnation, and the object file MOD2.0BJ, containing only
line-number and public-symbol infonnation. The object files are then linked to
produce a smaller file than the file that is produced when both modules are
assembled with the /Zi option.

The following commands produce a mixed-language executable file:

CL lZi PROG.CPP
CL IZi 10d Ie IAL SUBl.C
ML IC IZi IMX SUB2.ASM
LINK ICO PROG SUBl SUB2

You can use CodeView to trace through C, C++, andMASM source files in the
same session.

Debugging Strategies
The process of debugging a program varies from programmer to programmer and
program to program. This section offers some guidelines for detecting bugs. If you
are familiar with symbolic, source-level debuggers, you can skip this section.

Identifying the Bug
If your program crashes or yields incorrect output, it has a bug. There are times,
however, when a program runs correctly with some input but produces incorrect
output or crashes with different input. You can assume a bug exists, but finding it
may be difficult.

298 Environment and Tools

Locating the Bug
You may not need to use Code View to find bugs in simple programs. For more
complex programs, however, using Code View can save you debugging time and
effort.

Setting Breakpoints
When you debug with Code View, you usually cycle between two activities:

• Running a small part of the program

• Stopping the program to check its status

You use breakpoints to switch between these tasks. Code View runs your program
until it reaches a breakpoint. At that time, Code View gives you control. You can
then enter Code View commands in the Command window or use the menus and
shortcut keys to proceed.

To find an error, try the following:

• Set breakpoints around the place you think the bug might be. Execute the
program with the Go command so that it runs at full speed until it reaches the
area that you suspect harbors the bug. You can then execute the program step by
step with the Program Step and Trace commands to see if there is a program
execution error.

• Set breakpoints when certain conditions become true. You can, for example, set
a breakpoint to check a range of memory starting at DS:OO, the base of your
program's data. If your program writes to memory using a null pointer, the
breakpoint is taken, and you can see what statement or variables within the
statement are in error.

Setting Watch Expressions
Watch expressions constantly display the values of variables in the Watch window.
By setting a Watch expression, you can see how a variable or an expression
changes as your program executes.

Try using watch expressions as follows:

• Set a Watch expression on an important variable. Then step through a part of the
program where you suspect there is a bug. When you see a variable in the
Watch window take on an unexpected value, you know that there is probably a
bug in the line you just executed.

Chapter 8 Getting Started with CodeView 299

• Explore Watch expressions. A bug can appear when your program builds
complex data structures. Both the Watch window and the Quick Watch dialog
box allow you to explore the data structure by expanding arrays and pointers.
Use this feature to make sure the program creates the data structure correctly.
As soon as you execute code that destroys the structure, you have probably
found a bug.

Arranging Your Display
Your display can be more effective if you arrange your windows so that they
display the information you need. You will need at least one Source window. You
can open a second Source window to see each assembly-language instruction.

You may also need one or more Memory windows to examine ranges of memory in
various formats. You may want to change values in memory. For example, a
program that does its own dynamic-memory allocation may need an initialized
block of memory. You can edit memory directly in the Memory window or fill the
block with zeros using the Memory Fill command. If a certain value is required for
a mathematical function, you can type over values displayed in the Memory window
or assign the value in the Command window. If you expect a value to appear at a
certain location and it does not, you can use the Memory Search command to find it.

Use the Register window to see the CPU registers and the Local and Watch
windows to keep track of changing variable values. Open the Calls menu to
examine your program's stack to see what routines have been called.

You can set up Code View's windows to display the information you want to see by
using keyboard commands or the commands in the Window menu. For example,
when you press SHIff +PS or choose Tile from the Windows menu, Code View
arranges all open windows to fill the entire window area. When the windows are
tiled, you can press ALT+PS or choose Arrange from the Windows menu. This
allows you to move your open windows with a mouse so that you can view several
or all of them at once.

Setting up CodeView
The MASM SETUP program installs all the necessary Code View files. Make sure
that all of the Code View executable files (.EXE and .DLL files) are in a directory
listed in the PATH environment variable.

In addition, SETUP creates TOOLS.PRE in the INIT directory that you specify
when you run SETUP. If you do not already have a TOOLS.INI file, rename
TOOLS.PRE as TOOLS.INI.

This file contains the recommended settings to run Code View for MS-DOS and
Code View for Windows. For more information on the entries in TOOLS.INI, see
"Configuring CodeView with TOOLS.INI" on page 301.

300 Environment and Tools

CodeView version 4.0 introduces a new, flexible architecture for the debugger.
CodeView is made up of a main executable program: CV.EXE (CodeView for MS
DOS) or CVW.EXE (CodeView for Windows) and a collection of dynamic-link
libraries (DLLs). Each DLL implements an aspect of the debugging process.

The following table summarizes CodeView's component DLLs:

TOOLS.INI Entry Component Required Example

Eval Expression evaluator Required CorC++

Model Additional nonnative Optional P-code
execution model

Native Native execution model Required MS-DOS or Windows

Symbolhandler Symbol handler Required MS-DOS or Windows

Transport Transport layer Required Local or remote

This architecture allows for the implementation of such improbable debugging
configurations as a Windows operating system-hosted debugger that debugs
interpreted Macintosh programs across a network. The existing CVW.EXE could
be used with new transport, symbol handling, and execution model DLLs. Instead
of creating completely different programs for each combination of host and target,
all that is needed is the appropriate set of DLLs.

CodeView Files
CodeView for Windows and CodeView for MS-DOS use several additional files.
One of these is the executable program file that you are debugging. Code View
requires one executable (.EXE) file to load for debugging.

program.EXE
An .EXE-format program to debug. Code View assumes the .EXE extension
when you specify the program to load for debugging.

source. ext
A program source file. Your program may consist of more than one source file.
When Code View needs to load a source file for a module at startup or when you
step into a new module, it searches directories in the following order:

1. The "compiled directory." This is the source-file path specified when you
invoke the compiler.

2. The directory where the program is located.

If Code View cannot find the source file in one of these directories, it prompts
you for a directory. You can enter a new directory or press' ENTER to indicate
that you do not want a source file to be loaded for the module. If you do not
specify a source file, you can debug only in Assembly mode.

CV.HLP
ADVISOR.HLP

Chapter 8 Getting Started with CodeView 301

Help files for Code View and the Microsoft Advisor. These two files are the
minimum set of files required to use Help during a Code View session. They
must be in a directory listed in the HELPFILES environment variable or in the
Helpfiles entry of TOOLS.IN!. Depending on what programming environment
you work in, you may also want to use the various programming language and p
code help files.

TOOLS.INI
Specifies paths for Code View .DLL files and other files that Code View uses.
The MASM SETUP program creates the file TOOLS.PRE in the directory
specified in your INIT environment variable.

If Code View cannot find the modules it needs in its own directory, it looks for
entries in TOOLS.INI that specify paths for the modules it needs. You can
include other settings for Code View in TOOLS.IN!.

TOOLHELP.DLL
System support .DLL for CVW.

Remote debugging requires additional files and a different configuration. The files
and configuration required for remote debugging are described in Chapter 10,
"Special Topics."

Configuring CodeView with TOOLS.lNI
You can configure Code View and other Microsoft tools including the Microsoft
Programmer's WorkBench (PWB) and NMAKE by specifying entries in the
TOOLS.INI file. You must have separate sections in TOOLS.INI for each tool.
TOOLS.INI sections begin with a "tag"-a line containing the base name of the
executable file enclosed in brackets ([D. The tag must appear in column one. The
CV and CVW section tags look like this:

[CV]
MS-DOS CodeView entries

[CVW]
Windows operating system CodeView entries

In the TOOLS.INI file, a line beginning with a semicolon (;) is a comment.

Code View looks for certain entries following the tag. Each entry may be preceded
by any number of spaces, but the entire entry must fit on one line. You may want to
indent each entry for readability.

302 Environment and Tools

CodeView TOOLS.lNI Entries

Syntax

Example

You may want to specify or change entries in TOOLS.INI to customize CodeView.
Table 8.1 summarizes the TOOLS.INI entries.

Table 8.1 Code View TOOLS.INI Entries

Entry

Autostart

Color

Cvdllpath

Eval

Helpbuffer

Helpfiles

Model

Native

Printfile

Statefileread

Symbol handler

Transport

Autostart

Description

Commands to execute on startup

Screen colors

Path to Code View .DLL files

Expression evaluator

Size of help buffer

List of help files

Additional execution model (such as p-code)

Native execution model

Default name for print command or file

Read or ignore CURRENT.STS state file

Symbol handler

Transport layer

The Autostart entry specifies a list of Command-window commands that
Code View executes on startup.

Autostart:command[;command] ...

command
A command for Code View to execute at startup. Separate mUltiple commands
with a semicolon (;).

The following entry automatically executes the program's run-time startup code. It
specifies that Code View always starts with the Screen Swap option off and the
Trace Speed option set to fast.

Autostart:OF-;TF;Gmain

Color
The Color entry is retained only for compatibility with previous versions of
Code View. You should set screen colors with the Colors command on the Options
menu.

Syntax

Syntax

Chapter 8 Getting Started with CodeView 303

Cvdllpath
The Cvdllpath entry specifies the default path for CodeView's dynamic-link
libraries (DLLs). CodeView searches this path when it cannot find its DLLs in
CodeView's directory or along the PATH environment variable. This entry is
recommended.

Cvdllpath:path

path
The path to the Code View .DLL files.

Eval
The Eval entry specifies an expression evaluator. The expression evaluator looks
up symbols, parses, and evaluates expressions that you enter as arguments to
Code View commands. If there is no Eval entry in TOOLS.INI, Code View loads the
C++ expression evaluator by default. Code View uses the specified expression
evaluator when you are debugging modules with source files ending in the specified
extensions.

Eval:[path\]EEhost evaluator.DLL extension ...

path
The path to the specified expression evaluator.

host
The host environment.

Specifier

DI

WO

evaluator

Operating Environment

MS-DOS

Windows

The source language expression evaluator.

Specifier

CAN

CXX

extension

Source Language

CorMASM

C, C++, or MASM

A source-file extension. CodeView uses the specified expression evaluator when
it loads a source file with the given extension. You can list any number of
extensions.

304 Environment and Tools

Example The following example loads both the C and C++ expression evaluators for the MS
DOS Code View:

Syntax

Eval :C:\C700\DLL\EEDICAN.DLL .C .ABC .ASM .H
Eval :C:\C700\DLL\EEDICXX.DLL .CPP .CXX .XYZ .HXX

With the entries in this example, when you trace into a module whose source file
has the extension. C, • ABC, or . ASM, CodeView uses the C expression evaluator.
When you trace into a source file with a . C X X, . C p P, or . X Y Z extension,
CodeView switches to the C++ expression evaluator.

Note The C++ expression evaluator is the only expression evaluator provided with
MASM 6.10. For most MASM, C, and C++ programs the C++ expression
evaluator is sufficient.

You can load expression evaluators after Code View has started by using the Load
command from the Run menu. You can override Code View's automatic choice of
expression evaluator by using the Language command on the Options menu or the
USE command in the Command window.

For more information about choosing an appropriate expression evaluator and how
to use expressions in Code View, see Chapter 11, "Using Expressions in
CodeView."

Helpbuffer
The Helpbuffer entry specifies the size of the buffer Code View uses to decompress
help files. You can set Helpbuffer to 0 to disable Help and maximize the amount of
memory available for debugging. Otherwise, specify a value between 1 and 256.

Helpbuffer:size

size
The number of kilobytes (K) of memory to use for decompressing help files. The
default help buffer size is 24K. Specify 0 to disable help.

The following table shows values you can specify and the actual size of the
buffer that is allocated:

Value Specified

1-24

25-128

129-256

Help Buffer Size

24K

128K

256K

The smallest buffer size is 24K, and the largest is 256K.

Syntax

Syntax

Example

Syntax

Chapter 8 Getting Started with CodeView 305

Helpfiles
The Helpfiles entry lists help files for Code View to load. These files are loaded
before any files listed in the HELPFILES environment variable.

Helpfiles:jile[;file] ...

file
A directory or help file. If you list a directory, Code View loads all files with the
.HLP extension in that directory. Separate multiple files or directories with a
semicolon (;).

Model
The Model entry specifies an additional execution model that Code View uses when
you are debugging nonnative code such as p-code. The execution model handles
tasks specific to the type of executable code that you are debugging.

Model: [path\]NMhost model.DLL

path
The path to the specified file.

host
The host environment must be one of the following:

Specifier

Dl

WO

model

Operating Environment

MS-DOS

Windows

A nonnative execution model. The p-code execution model (PCD) is required if
you plan to debug p-code.

Model :NMDIPCD.DLL

Native
The Native entry specifies the native execution model. This DLL handles tasks that
are specific to the machine and operating system on which you are running (the
host) and specific to the native code (the target).

Native: [path\]EMhost target.DLL

path
The path to the specified native execution model.

306 Environment and Tools

Syntax

Syntax

host
The host environment must be one of the following:

Specifier

Dl

WO

target

Operating Environment

MS-DOS

Windows

The target environment must be one of the following:

Specifier

Dl

WO

Printfile

Operating Environment

MS-DOS

Windows

The Printfile entry lists the default device name or filename used by the Print
command on the File menu. This can be a printer port (for example, LPTI or
COM2) or an output file. If Printfile is omitted, Code View prints to a file named
CODEVIEW.LST in the current directory. This entry is ignored by CVW, which
does not have the Print command.

Printfile:path

path
The path to the specified output file or the name of a device.

Statefileread
The Statefileread entry tells Code View to read or ignore the Code View state file
(CURRENT.STS) on startup. You can toggle this setting from the command line
using the (fSF (Toggle State File) option. These options have no effect on writing
CURRENT.STS. Code View always saves its state on exit.

Statefileread:[y I n]

y (yes)
Code View reads CURRENT.STS on startup.

n (no)
Code View ignores CURRENT.STS on startup.

Symbolhandler
The Symbolhandler entry specifies a symbol handler. The symbol handler
manages the Code View symbol and type information.

Syntax

Syntax

Chapter 8 Getting Started with CodeView 307

Symbolhandler: [path\] SHhost.DLL

path
The path to the symbol handler.

host
The host environment must be one of the following:

Specifier

Dl

WO

Transport

Operating Environment

MS-DOS

Windows

The Transport entry specifies a transport layer. A transport layer provides the data
link for communication between the host and target during debugging.

Transport:path\TLhost transport.DLL [COM { 112 }: [rate nn
path

The path to the specified transport layer.

host
The host environment must be one of the following:

Specifier

Dl

WO

transport

Operating Environment

MS-DOS

Windows

Specifies a transport layer.

Specifier

LOC

COM

Transport Layer

Local transport layer

Serial remote transport layer

The optional [COM { 112 }: [rate nn specifies a communications port and baud rate
for remote debugging. No space is allowed between COM and the port number (1
or 2). The default port is COM1. The <rate> can be any number from 50 through
9600. The default rate is 9600.

You specify the local transport layer (LaC) when the debugger and the program
you are debugging are running on the same machine. With the appropriate transport
layer, Code View can support remote debugging across serial lines or networks. For
more infonnation on remote debugging, see Chapter 10.

308 Environment and Tools

Example

The following example specifies the transport layer for debugging a program that is
running on the same machine.

Transport:C:\C700\DLL\TLW0LOC.DLL

Memory Management and CodeView
CodeView for MS-DOS (CV) requires at least 2 megabytes of memory. The
memory must be managed by a Virtual Control Program Interface (VCPI) server,
DOS Protected-Mode Interface (DPMI) server, or extended memory (XMS)
manager. These drivers manage memory at addresses above 1 megabyte on an
80286, 80386, or 80486 machine. Code View loads itself and the debugging
information for the program into high memory. In this way, CodeView uses only
approximately 17K of conventional MS-DOS memory.

Code View can use the following memory managers:

• A VCPI server such as EMM386.EXE or EMM386.SYS. With a VCPI server,
your program is also able to use EMS memory. To use this memory manager
you must have a command in your CONFIG.SYS file such as:

DEVICE=C:\DOS\EMM386.EXE ram

• A DPMI server such as 386max.

• An Extended Memory Standard (XMS) driver such as HIMEM.SYS. To use
this memory manager you must have a command in your CONFIG.SYS file
such as:

DEVICE=C:\DOS\HIMEM.SYS

For more information about using memory managers, see your memory manager's
documentation. When you make new entries in your CONFIG.SYS file, remember
to reboot your system so that your changes take effect.

The CodeView Command Line

Syntax

You can specify CV or CVW options when you start them from the command line.
You can also specify commands from within the Code View environment to modify
these startup arguments.

CV[W] [options] [program [arguments]]
CV[W] @file [program [arguments]]

W
Indicates the Windows operating system version of Code View.

Chapter 8 Getting Started with CodeView 309

options
One or more options. The Code View options are described in the "Command
Line Options" section on page 310.

program
Program to be debugged. Specifies the name of an executable file to be loaded
by the debugger. If you specify program as a filename with no extension,
Code View searches for a file with the extension .EXE. If you do not specify a
program, Code View starts up and displays the Load dialog box where you can
specify a program and its command-line arguments.

arguments
The program's command-line arguments. All remaining text on the CodeView
command line is passed to the program you are debugging as its command line.
If the program you are debugging does not accept command-line arguments, you
do not need to specify any. Once you've started debugging, you can change the
program's command-line arguments.

@file
File of command-line arguments. You can also specify arguments in a text file.
The file contains a list of arguments, one per line. An argument file lets you
specify a large number of arguments without exceeding the operating-system
limit on the length of a command line. This is especially useful when starting a
session that uses many DLLs.

After Code View loads its DLLs, processes the debugging information, and loads
the source file, the Code View display appears. If you do not specify a program to
debug or Code View cannot find all of its required DLLs, Code View prompts for the
necessary files.

After starting up, Code View is at the beginning of the program startup code, and
you are ready to start debugging. At this point, you can enter an execution
command (such as Trace or Program Step) to execute through the startup code to
the beginning of your program.

Leaving CodeView
To exit Code View at any time, choose the Exit command from the File menu. You
can also press ALT +F4, or type 0 (for "Quit") in the Command window.

At this point, you may want to skip ahead to the next chapter, "The CodeView
Environment" for information on Code View's menus and windows. The rest of this
chapter describes each command-line option in detail, then continues with a
description of how PWB and Code View use the CURRENT.STS file.

310 Environment and Tools

Command-Line Options

Option

cv and CVW accept some of the same options for debugging. Table 8.2
summarizes the CodeView command-line options.

Table 8.2 CodeView Command-Line Options

Option CV CVW Description

/2 Yes Yes Use two displays

/8 No Yes Use 8514 and VGA displays

/25, /43, /50 Yes Yes Set 25-line, 43-line, or 50-line mode

/B Yes Yes Use black-and-white display

/Ccommands Yes Yes Execute commands

IF Yes No Flip video pages

/G Yes Yes Control snow on CGA displays

/1[0 I 1] Yes Yes Trap NMIs and 8259 interrupts

/Ldll No Yes Load DLL or application symbols

1M Yes Yes Disable mouse

IN[O 11] Yes Yes Trap nonmaskable interrupts

/S Yes No Swap video buffers

/TSF Yes Yes Read or ignore state file

IX No Yes Set starting X coordinate (pixels)

/Y No Yex Set starting Y coordinate (pixels)

The remainder of this section describes each option in detail.

Use Two Displays (CV, CVW)
/2

The /2 option permits the use of two monitors. The program display appears on the
default monitor, while Code View displays on the secondary monitor. You must
have two monitors and two adapters to use the /2 option. The secondary display
must be a monochrome adapter.

If you are debugging a Windows-based application and have an IBM PS/2 with an
8514 primary display and a Video Graphics Adapter (VGA) secondary display, use
the /8 option.

Option

Options

Chapter 8 Getting Started with CodeView 311

Use 8514 and VGA Displays (CVW)
/8

If your system is an IBM PS/2, you can configure it with an 8514 as the primary
display and a VGA as the secondary display. To use this configuration, specify the
/8 (8514) option on the CVW command line.

If your VGA monitor is monochrome, it is recommended to use the /B (black-and
white) option. The 8514 serves as the Windows operating system screen and the
VGA as the debugging screen.

By default, the debugging screen operates in 50-line mode in this configuration. If
you specify the /8 option, you can specify /25 or /43 for 25-line or 43-line mode on
the debugging screen.

Warning Results are unpredictable if you attempt to run non-Windows-based
applications or the MS-DOS shell while you are running CVW with the /8 option.

Set Line-Display Mode (CV, CVW)
/25
/43
/50

If you have the appropriate display adapter and monitor, you can display 25, 43,
or 50 lines when you are running CV, and 25 or 50 lines when you are running
CVW. The mode you specify is saved in the CURRENT.STS file so that it is still in
effect the next time you run Code View.

CVW.EXE supports 25, 43 and 50 lines on VGA monitors. It does not support 50-
line mode on EGA monitors. If you specify a mode that is not supported by your
adapter and your monitor, Code View displays 25 lines.

To display 43 or 50 lines on a screen, you must use the OEM fonts supplied with
CodeView. There are two OEM files: OEM08.FON for 50-line mode, and
OEM10.FON for 43-line mode. To use these fonts, change the OEMFONTS.FON
entry in your SYSTEM.INI file. For example, to use 50-line mode, change:

OEMFONTS.FON=VGAOEM.FON

to:

OEMFONTS.FON=C:\MASM\BIN\OEM08.FON

312 Environment and Tools

Use Black-and-White Display (CV, CVW)
Option IB

Option

Examples

When you start Code View, it checks the kind of display adapter that is installed in
your computer. If the debugger detects a monochrome adapter, it displays in black
and white; if it finds a color adapter, it displays in color. The!B option tells
Code View to display in black and white even if it detects a color adapter.

If you use a monochrome display or laptop computer that simulates a color display,
you many want to disable color. These displays may be difficult to read with
CodeView's color display.

You can also customize Code View's colors by choosing the Colors command from
the Options menu. For more information, see "Colors" on page 345.

Execute Commands (CV, CVW)
ICcommands

You type commands in the Code View Command window . You can also specify
Command-window commands when you start Code View. The IC option allows you
to specify one or more Code View Command-window commands to be executed
upon startup. If you specify more than one command, you must separate each one
with a semicolon (;).

If the commands contain spaces or redirection symbols « or », enclose the entire
option in double quotation marks (n). Otherwise, the debugger interprets each
argument as a separate CodeView command-line argument rather than as a
Command-window command.

For complete information on Code View Command-window commands, see Chapter
12, "CodeView Reference."

The following example loads CV with CALCPR as the executable file and
/ p T ST. 0 A T as the program's command line:

cv /CGmain CALCPR /p TST.DAT

Upon startup, CV executes the high-level language startup code with the command
Grna in. Since no space is required between the command (G) and its argument
(rna in), there is no need to enclose the option in double quotation marks.

The next example loads CV with CALCPR as the executable file and /p TST. OAT
as the program's command line. It starts Code View with a long list of startup
commands.

Options

Chapter 8 Getting Started with CodeView 313

CV "/C VS &;G signal_lpd;MDA print_buffer L 20" CALCPR Ip TST.DAT

CodeView starts with the Source window displaying in Mixed mode (VS &). Then
it executes up to the function s i 9 n a 1_ 1 P d with the command G s i 9 n a 1_1 pd.
Next, it dumps 20 characters starting at the address of pri nt_buffer with the
command MDA pri nt_buffer L 20. Since some of the commands use spaces,
the entire /C option is enclosed in quotation marks.

In this example, the command directs CV to take Command-window input from the
file SCRIPT.TXT rather than from the keyboard:

CV "/C<SCRIPT.TXT" CALCPR TST.DAT

Although the option does not include any spaces, you must enclose it in quotation
marks so that the less-than symbol «) is read by Code View rather than by the
operating-system command processor.

Set Screen-Exchange Method (CV)
IF
/s

Code View allows you to move between the output screen, which contains your
program display output, and the Code View screen, which contains the debugging
display. In MS-DOS, CodeView can perform this screen exchange in two ways:
screen flipping or screen swapping. The IF (flipping) and /S (swapping) options
allow you to choose the method from the command line. These two methods are:

Flipping
Flipping is the default for a computer with a graphics adapter. Code View uses
the graphic adapter's video-display pages to store each screen of text. Flipping
is faster than swapping and uses less memory, but it cannot be used with a
monochrome adapter or to debug programs that use graphic video modes or the
video-display pages. Code View ignores the IF option if you have a monochrome
adapter.

Swapping
Swapping is the default for computers with monochrome adapters. It has none of
the limitations of flipping, but it is slower than flipping and requires more
memory. To swap screens, CodeView creates a buffer in memory and uses it
to store the screen that is not displayed. When you request the other screen,
Code View swaps the screen in the display buffer for the one in the storage
buffer. When you use screen swapping, the buffer is 16K bytes for all adapters.
The amount of memory Code View uses is increased by the size of the buffer.

314 Environment and Tools

Suppress Snow (CV, CVW)
Option IG

Options

Option

The IG option suppresses snow that can appear on some CGA displays. Use this
option if your Code View display is unreadable because of snow.

Specify Interrupt Trapping (CV, CVW)
11[011]
IN[O 11]

The /I option tells CV whether to handle nonmaskable-interrupt (NMI) and 8259-
interrupt trapping. The IN option controls only Code View's handling of NMIs and
does not affect ha.lldling of interrupts generated by the 8259 chip. The following
table summarizes the options and their effects:

Option

/10
/11,/1

/NO

/Nl, /N

Effect

Trap NMIs and 8259 interrupts

Do not trap NMIs or 8259 interrupts

Trap NMIs

Do not trap NMIs

You may need to force Code View to trap interrupts with /10 on computers that
Code View does not recognize as mM compatible. Using /10 enables the CTRL+C

and CTRL+BREAK interrupts on such computers.

Load Other Files (CVW)
ILdll
ILexe

To load symbolic information from a dynamic-link library (DLL) or from another
application, use the /L option when you start Code View. Specify /L for each DLL
or application that you want to debug.

When you place a module in a DLL, neither code nor debugging information for
that module is stored in an application executable (.EXE) file. Instead, the code and
symbols are stored in the library and are not linked to the main program until run
time. The same is true for symbols in another application running within Windows.
Thus, CVW needs to search the DLL or other application for symbolic information.
Because the debugger does not automatically know which libraries to look for, use
the /L option to preload the symbolic information.

Example

Option

Option

Option

Option

Chapter 8 Getting Started with CodeView 315

The following command starts Code View for Windows:

CVW ILPRIORITY.DLL ILCAPPARSE.DLL PRINTSYS

CVW is used to debug the program PRINTSYS.EXE. CVW loads symbolic
information for the dynamic-link libraries PRIORITY.DLL and CAPPARSE.DLL,
as well as the file PRINTSYS.EXE.

Disable Mouse (CV, CVW)
1M

If you have a mouse installed on your system, you can tell Code View to ignore it by
using the 1M option. You may need to use this option if you are debugging a
program that uses the mouse and there is a usage conflict between the program and
CodeView.

Nonmaskable-Interrupt Trapping (CV, CVW)
IN

For information on the IN option, see "Specify Interrupt Trapping" on page 314.

Set Screen Swapping (CV)
IS

The IS option sets the Code View screen-exchange method to swapping. For
complete information on Code View screen-exchange methods, see "Set Screen
Exchange Method" on page 313.

Toggle State-File Reading
ITSF

The Toggle State File (/TSF) option either reads or ignores CodeView's state file
and color files, depending on the Statefileread entry in the Code View sections of
TOOLS.INI. The /TSF option reverses the effect of the Statefileread entry. The
Statefileread entry is set to yes by default.

These options have no effect on writing the files. Code View always saves its state
on exit.

316 Environment and Tools

Options

The effect of different combinations of Statefileread and rrSF are summarized in
the following table:

/TSF Statefileread Code View Result

Specified y (or omitted) Do not read files

Specified n Read files

Not specified y (or omitted) Read files

Not specified n Do not read files

The state file is CURRENT.STS. The color files are CLRFILE.CV 4 for CV and
CLRFILE.CVW for CVW.

Set Startup X and Y Coordinates
IX,/Y

The window Code View uses within Windows cannot be moved or sized while
Windows is running. You can specify the position of the Code View window with
the IX and /Y options. In the Command Line field of the Program Item Properties
dialog box, enter

C:\MASM\BIN\CVW.EXE /X:X /Y:Y

where X and Y are the pixel coordinates for the upper lefthand comer of the
CodeView session window. (The location for your CVW.EXE file may be
different.) Note that this still does not allow the Code View window to be moved to
another location on the Program Manager workspace. For more infonnation on
specifying command-line options with Windows operating system applications, see
your Windows User's Guide.

The CURRENT.STS State File
CodeView and PWB save settings and state infonnation in the CURRENT.STS
file. The file contains infonnation about the current state of the two environments.
When you restart CodeView or PWB, they read CURRENT.STS and restore their
previous state. Code View uses additional files to save your most recent color
settings. These files are CLRFILE.CV4 for CV and CLRFILE.CVW for CVW.

Code View and PWB search for these files in the directory that the INIT
environment variable specifies. If no INIT environment variable exists, Code View
and PWB search the current directory. If no state file is found, new
CURRENT.STS and CLRFILE.CV4 or CLRFILE.CVW files are created in the
INIT directory or the current directory if no INIT variable is set.

Chapter 8 Getting Started with CodeView 317

Information about Code View stored in CURRENT.STS includes:

• Window layout

• Breakpoints

• Watch expressions

• Source, Local, and Memory display options

• Global Code View options such as case sensitivity, screen exchange method,
radix, and expression evaluator

You can set CodeView options in TOOLS.INI or on the command line and then
modify them during a session. They are saved in CURRENT.STS when you exit
CodeView. During each CodeView session, these features are set in the following
order:

1. From TOOLS.INI

2. From the Code View command line

3. From CURRENT.STS

4. During the debugging session

The following items are not saved between sessions:

• The current location (CS:IP).

• The expansion state of watch expressions.

All watch expressions and their format specifiers are restored, but they appear in
their contracted state.

• Absolute-address breakpoints.

Breakpoints set at an absolute segment:offset address are not saved. Code View
saves breakpoints only at specific line numbers or symbols.

• Memory window addresses.

Each memory window is restored with its display type and options, but
Code View does not save the starting address. Instead, Memory windows show
the start of the data segment (address DS:OO).

CHAPTER 9

The CodeView Environment

Code View provides a powerful environment in which to debug programs and
dynamic-link libraries (DLLs).lts rich set of commands helps you track program
execution and changing data values.

319

In Code View you can "point-and-click" your source code to start and stop
execution or modify bytes in memory. You can also use more traditional keyboard
commands. You can use function keys to execute common commands, such as
tracing and stepping through a program. When you quit Code View, it remembers
your breakpoints, window arrangement, watch expressions, and option settings.

This chapter describes the Code View display, shows you how to use the menu
commands, and how to interact with the different types of windows.

The CodeView Display
The Code View screen is divided into three parts:

a The menu bar across the top of the screen

• The window area between the menu bar and status bar

• The removable status bar across the bottom of the screen

Figure 9.1 shows a typical Code View screen with several open windows. The figure
shows selected elements of the display, which are described in the sections that
follow.

320 Environment and Tools

[1] local -------
[BP+fX:X:)4] +char *narre = 0x4500: 0x11C6 "extra. txt"
[BP-~] short nMax = 16112
[BP-fX:X:)4]+_iobuf near *File = 0x458B:0xe368
[BP-fXnJ] short InWard = (:)
constant short TRUE = 1

(InWard, nMax);

II Calculate and print the results.
intf ('\n\nFile statistics for %s\n\n", narre);

EFL = 00003202
[9] corrmand -------

1) E "{,COUNT .C,count .EXE} .56"
2) E "{,COUttTBUF.C,count.EXE} .16"
>

Figure 9.1 Code View Display

The Menu Bar
The menu bar displays the names of the Code View menus. To open a menu, use one
of the following methods:

• Click a menu title with the mouse.

• Press ALT plus the menu title's highlighted letter.

• Press and release ALT, use the arrow keys to select a menu, and then press
DOWN ARROW or ENTER to open it.

Each command in a menu has a highlighted letter. To choose that command, press
the highlighted letter. Many commands also list a shortcut key that you can press at
any time instead of opening a menu and choosing a command.

A command that does not apply to a particular situation is dimmed on the menu.
When you press the corresponding shortcut key, no action is performed.

The Window Area
Most of your debugging takes place in the window area, where you can open, close,
move, size, and overlap the various types of Code View windows. Although each

Chapter 9 The CodeView Environment 321

window serves a different function for debugging, the windows have a number of
common features. The Close, Maximize, Restore, and Minimize boxes work in the
same way as they do in PWB. The scroll bars also work the same as in PWB. For
information on the window border controls, see Chapter 4, "User Interface
Details."

Only one window can be active at a time. You always use the currently active
window, which appears with a highlighted border and a shadow on the screen. The
text cursor always appears in the active window.

The Status Bar
The status bar contains information about the active window. It usually includes a
row of buttons you can click to execute commands. You can also use the shortcut
keys shown on the buttons.

To remove the status bar and gain an extra line for the window area, choose Status
Bar from the Options menu, or type the OA- command in the Command window.
To restore the status bar, choose Status Bar from the Options menu, or type the
OA+ command in the Command window. For more information on this command,
see the "Options" command on page 422.

CodeView Windows
Code View windows organize and display information about your program. This
section describes each CodeView window, the information you can display, and
how you can change information and enter commands in the Command window. It
also explains how to move among the windows and manipulate them.

How to Use CodeView Windows
Each Code View window has a different function and operates independently of the
others. Only one window can be active at a time. Commands you choose from the
menus or by using shortcut keys affect the active window. The following list briefly
describes each window's function:

Source
Displays the source or assembly code for the program you are debugging. You
can open a second Source window to view an include file or any ASCII text file.

Command
Accepts debugging commands from the keyboard. Code View displays the
results, including error messages, in the Command window. When you enter a
command in a dialog box, Code View displays any resulting errors in a pop-up
window.

322 Environment and Tools

Watch
Displays the values of variables and expressions you select. You can modify the
value of watched variables, browse the contents of structures and arrays, and
follow pointers through memory.

Local
Lists the values of all variables local to the current scope. You can set Local
window options to show other scopes. You can modify the values of variables
displayed in the Local window.

Memory
Displays the contents of memory. You can open a second Memory window to
view a different section of memory. You can set Memory window options to
select the format and address of displayed memory. You can directly change the
displayed memory by typing in the Memory window.

Register
Displays the contents of the machine's registers and flags. You can directly edit
the values in the registers, and you can toggle flags with a single keystroke or
mouse click.

8087
Displays the registers of the hardware math coprocessor or the software
emulator.

Help
Displays the Microsoft Advisor Help system.

The first time you run Code View, it displays three windows. The Local window is
at the top, the Source window fills the middle of the screen, and the Command
window is at the bottom. The Local window is empty until you trace into the main
part of the program.

You can open or close any Code View window. However, at least one Source
window must remain open. When you exit CodeView, it records which windows
are open and how they are positioned, along with their display options. These
settings become the default the next time you run Code View.

To open a window, choose a window from the Windows menu. Some operations,
such as setting a watch expression or requesting help, open the appropriate window
automatically.

You can change how Code View displays information in the Source, Memory, and
Local windows. Choose the appropriate window options command from the Options
menu. When the cursor is in one of these windows, you can press CTRL+O to display
that window's options dialog box.

Code View automatically updates the windows as you debug your program. To
interact with a particular window (such as entering a command or modifying a

Chapter 9 The CodeView Environment 323

variable), you must select it. The selected window is the "active" window. The
active window is marked in the following ways:

• The window's frame is highlighted.

• The window casts a shadow over other windows.

• The cursor appears in the window.

• The horizontal and vertical scroll bars move to the window.

To make a window active, click anywhere in the window or in the window frame.
You can also press F6 or SHIFf +F6 to cycle through the open windows, making each
one active in tum. You can also choose a window from the Windows menu or press
ALT plus a window number. In addition, some CodeView commands make a certain
window active.

Moving Around in CodeView Windows
To move the cursor to a specific window location, click that location. You can also
use the keyboard to move the cursor as shown in Table 9.1.

Table 9.1 Moving Around with the Keyboard

Action

Move cursor up, down, left, and right

Move cursor left and right by words

Move cursor to beginning of line

Move cursor to end of line

Page up and down

Page left and right

Move cursor to beginning of window

Move cursor to end of window

Move to next window

Move to previous window

Restore window

Move window

Size window

Minimize window

Maximize window

Close window

Tile windows

Arrange windows

Keyboard

UP ARROW, DOWN ARROW, LEFf

ARROW, RIGHT ARROW

CTRL+LEFf,CTRL+RIGHT

HOME

END

PAGE UP, PAGE DOWN

CTRL+PAGE UP, CTRL+PAGE DOWN

CTRL+HOME

CTRL+END

F6

SHIFf+F6

CTRL+FS

CTRL+F7

CTRL+F8

CTRL+F9

CTRL+FlO

CTRL+F4

SHIFf+FS

ALT+FS

324 Environment and Tools

The Source Windows
The Source windows display the source code. You can open a second Source
window to view other source files, header files, the same source file at a different
location, or any ASCII text file. To open a Source window, use one of the following
methods:

• From the Windows menu, choose Source 1 or Source 2.

• In the Command window, type the View Source (VS) command.

• Press ALT+3 to open Source window 1.

• Press ALT +4 to open Source window 2.

You cannot edit source code in Code View, but you can temporarily modify the
machine code in memory using the Assemble (A) command. For more information
on the Assemble command, see page 400.

Source windows can display three different views of your program code in three
different modes:

• Source mode shows your source file with numbered lines.

• Assembly mode shows a disassembly of your program's machine code.

• Mixed mode shows each numbered source line followed by a disassembly of the
machine code for each line.

Note When you are debugging p-code while Native mode is off, CodeView
displays p-code instructions rather than disassembled machine instructions. See the
"Options" command on page 422. For more information on p-code, see "Debugging
P-code" on page 363.

Code View automatically switches to Assembly mode when you trace into routines
for which no source is available, such as library or system code. The debugger
switches back to the original display mode when you continue tracing into code for
which source code is available.

For more information on setting display modes, see the "View Source" command on
page 433. For detailed information about the Source window display options, see
page 343.

The Watch Window
The Watch window displays the value of program variables or the value of
expressions you specify in a high-level language. For each expression or variable,
you can change the format of the data that is displayed. You can expand aggregate
variables, such as structures and arrays, to show all the elements of an aggregate

Chapter 9 The CodeView Environment 325

and contract them to save space in the Watch window. You can follow chains of
pointers to display and help debug more complex structures, such as linked lists or
binary trees.

To open a Watch window, use one of the following methods:

• From the Windows menu, choose Watch.

• In the Command window, type the Add Watch (W?) command followed by the
variable or expression name.

• Press ALT+2.

To add expressions to the Watch window, use the Add Watch command from the
Data menu or the Quick Watch dialog box (SHIFI'+F9). You can also add watch
expressions using the Add Watch (W?) and Quick Watch (??) commands.

Note Do not edit a string in the Watch window.

To change the value of any variable displayed in the Watch window, move the
cursor to the value, delete the old value, and type the new value. To change the
format in which a variable is displayed or to specify a new format, move the cursor
to the end of the variable name and type a new format specifier.

To toggle between insert and overtype modes, press the INS key.

Using the Watch Window to View Multi-Level Arrays
You can use the watch window to view the changing values of a structure or array
as you step or trace through your program:

1. Open the Watch Window.

2. Add the structure whose elements you want to track to the Watch window with
the Add Watch command from the Data menu, or by using the Quick Watch
dialog box (SHIFI'+F9). The structure name will be added to the Watch Window.

3. Using the mouse, double-click anywhere on the structure name in the Watch
Window to expand it one level. Double-click again on any subsequent levels
until the structure is open to the level you want to watch.

4. Step or Trace through the code using F8 or FlO keys. The structure elements will
update with each step.

For information on expanding and contracting aggregate types and following
pointers, see the "Quick Watch" command on page 453. For detailed information
on specifying and using watch expressions, see the "Codeview Expression
Reference" on page 393 and Chapter 11, "Using Expressions in CodeView."

326 Environment and Tools

The Command Window
You type Code View commands in the Command window to execute code, set
breakpoints, and perform other debugging tasks. You can use the menus, mouse,
and keyboard for many debugging tasks, but you can use some Code View
commands only in the Command window.

When you first start the debugger, the Command window is active, and the cursor is
at the Code View prompt (». To return to the Command window after you make
another window active, click the command window, or press ALT+9.

Using the Command window is similar to using an operating-system prompt, except
that you can scroll back to view previous results and edit or reuse previous
commands or parts of commands.

How to Enter Commands and Arguments
You enter commands in the Command window at the Code View prompt when the
Command window is active. Type the command followed by any arguments and
press ENTER. Some commands, such as the Assemble (A) command, prompt for an
indefinite series of arguments until you enter an empty response. Code View may
display errors, warnings, or other messages in response to commands you enter in
the Command window.

If a Source window is active and the Command window is open, you can still type
Command-window commands. When you begin typing, the cursor moves to the
Command window and remains there until you press ENTER. The cursor returns to
the Source window, and Code View executes the command. If you have begun
typing but do not want to execute a command, press ESC to clear the text and place
the cursor at the prompt. After you press ESC, the Command window becomes
active.

Command Format
The format for Code View commands is as follows:

command [arguments] [;command2]

The command is the command name, and arguments are control options or ex
pressions that represent values or addresses to be used by the command. The first
argument can usually be placed immediately after command with no intervening
spaces. Arguments may be separated by spaces or commas, depending on the
command. For more information, see Chapter 12, "CodeView Reference."

To spe~ify additional commands on the same line, separate each command with a
semicolon (;).

Example

Example

Chapter 9 The CodeView Environment 327

Commands are always one, two, or three characters long. They are not case sen
sitive, so you can use any combination of uppercase and lowercase letters.
Arguments to commands may be case sensitive, depending on the command.

The following example shows three commands separated by semicolons:

MOB 100 L 10 ; G .178 ; MOB 100 L 10

The first command (M 0 B 100 L 10) dumps 10 bytes of memory starting at
address 100. The second command (G .178) executes the program up to line 178
in the current module. The third command is the same as the first and is used to see
if the executed code changed memory.

This example demonstrates the Comment (*) command:

U extract_velocity ;* Unassemble at this routine

The first command is the Unassemble (U) command, given the argument
extract_vel oci ty. The next command is the Comment command. Comment
commands are used throughout the Code View examples in this book.

How to Copy Text for Use with Commands
Copy and paste text instead of retyping.

Text that appears in any Code View window can be copied and used in a command.
For example, an address that is displayed in a Memory window or the Register
window can be copied and used in a breakpoint command.

~ To copy and use text:

1. Select the text with the mouse or the keyboard.

To select text with the mouse, move the mouse pointer to the beginning of the
desired text, hold down the left mouse button, and drag the mouse. When you
have selected the desired text, release the button.

To select text with the keyboard, move the cursor to the desired text, hold down
the SHIFf key, and move the cursor with the ARROW keys.

2. Choose the Copy command from the Edit menu or press CTRL+INS.

3. Move the cursor to the location where you want to use the text and choose the
Paste command from the Edit menu, or press SHIFf+INS.

4. Edit the command if desired, and press ENTER to execute the command.

Because all input to Code View windows is line oriented, you cannot copy more
than a single line. If you select more than a single line, the Copy command in the
Edit menu is unavailable, and CTRL+INS has no effect. However, you can still select

328 Environment and Tools

more than one line for use with the Print command on the File menu. For more
information about the Print command, see "Print" on page 333.

When editing a command, you can toggle between insert and overtype modes by
pressing the INS key.

How to Use the Command Buffer
Code View keeps the last several screens of commands and output in the Command
window. You can scroll the Command window to view the commands you entered
earlier in the session. This is particularly useful for viewing the output from
commands, such as Memory Dump (MD) or Examine Symbols (X), whose output
exceeds the size of the window.

The TAB key provides a convenient way to move among the previously entered
commands. Press TAB to move the cursor to the beginning of the next command, and
press SHIff + TAB to move to the beginning of the previous command. If the cursor is
at the beginning or the end of the command buffer, the cursor wraps around to the
other end. To return to the current command prompt, you can press CTRL+END or
press TAB repeatedly.

You can also reuse any command that appears in the Command window without
copying and pasting. Move the cursor to the command or press TAB, edit the
command if desired, and press ENTER to execute it. When you press ENTER,

Code View restores the original command, copies the new command to the current
prompt, and executes the command. If you make a mistake while editing a
command, press ESC to restore the line.

The Local Window
The Local window shows all local variables in the current scope. The Local
window is similar to the Watch window, except that the variables that are displayed
change as the local scope changes. A variable in the Local window is always shown
in its default type format. When you edit in the Local window, you can toggle
between insert and overtype modes by pressing the INS key.

You can expand and contract pointers, structures, and arrays the same way you do
in the Watch window. You can also change the values of the variables as in the
Watch window.

The keyboard shortcut to open or switch to the Local window is AL T + 1.

You can see the local variables of each active routine in the stack by selecting the
routine from the Calls menu. For more information on this feature, see "The Calls
Menu" on page 346.

Chapter 9 The CodeView Environment 329

By default, the Local window shows the addresses of the local variables on the left
side of the window . You can tum this address display on or off using the Options
(0) command. For more information on the Options command, see page 422.

The Register Window
The Register window displays the names and current values of the native CPU
registers and flags. When you are debugging p-code, it displays names and values
of the p-code registers and flags. You can change the value of any register or flag
directly in the Register window.

To open the Register window, choose Register from the Windows menu, press
ALT+7, or F2. You can also view and modify registers by using the Register (R)
command. For more information about the Register command, see page 426.

When a register value changes after a program step or trace, Code View highlights
the new value so you can see how your program uses the CPU registers. Depending
on the current instruction, the Register window also displays the effective address at
the bottom of the window. This display shows the location of an operand in physical
memory and its value.

If you are debugging on an 80386 or 80486 machine, you can view and modify the
32-bit registers. To tum on the 32-bit Registers option, choose the 386 command
from the Options menu or use the 03+ command. The 32-bit registers are available
if you are debugging on an 80386 or 80486 machine.

When you are debugging p-code, Code View displays the p-code registers: DS, SS,
CS, IP, SP, BP, PQ, TH, and TL.

If your program has taken an unexpected tum, you may be able to compensate for
the problem and continue debugging if you change the value of a register or a flag.
You can change a flag value before a dump or looping instruction to test a different
branch of code, for example. You can change the instruction pointer (CS:IP) to
jump to any code in your program or to execute code you have assembled elsewhere
in memory.

To change the value of any register, move the cursor to the register value you want
to change and overtype the old value with the new value. The cursor automatically
moves to the next register.

Although you cannot change the value of the flag register numerically in the
Register window, you can conveniently toggle the values of each flag using either
the mouse or the keyboard:

• To toggle a flag with the mouse, double-click the flag.

• To toggle a flag using the keyboard, move the cursor to the flag and press any
key except ENTER, TAB, or ESC. After toggling a flag, CodeView moves the
cursor to the next flag.

330 Environment and Tools

To restore the value of the last flag or register that you changed, choose Undo from
the Edit menu or press ALT +BACKSPACE. If you happen to lose the cursor
somewhere in the register window, press TAB. The TAB key moves the cursor to the
next register or flag that can be changed.

The 8087 Window
The 8087 window displays the current status of the math coprocessor's registers
and flags. If you are debugging a program that uses the software-emulated
coprocessor, the emulated registers are displayed. To open the 8087 window,
choose 8087 from the Windows menu or press ALT+8.

The display in the 8087 window is the same as the display produced by the 8087
(7) command, except that the window is continually updated to show the current
status of the math coprocessor. For more information about the display, see the
"8087" command on page 448.

If your program uses floating-point libraries provided by several Microsoft
languages, or if your program does not use floating-point arithmetic, the 8087
window and 8087 command display the message:

Floating point not loaded

Code View displays this message until at least one floating-point instruction has
been executed.

The Memory Windows
Memory windows display memory in a number of formats. Code View allows two
Memory windows to be open at the same time. You can open a Memory window in
several ways:

• From the Windows menu, choose Memory 1 or Memory 2.

• From the Options menu, choose Memory 1 Window when no Memory windows
are open.

• In the Command window, enter the View Memory (VM) command.

• At the keyboard, press ALT+5 or ALT+6.

By default, memory is displayed as bytes or as the last type specified by a Memory
Enter (ME), Memory Dump (MD), or View Memory (VM) command. The byte
display shows hexadecimal byte values followed by an ASCII representation of
those byte values. For values that are outside the range of printable ASCII
characters (decimal 32 to 127), Code View displays a period (.).

Chapter 9 The CodeView Environment 331

How to Change Memory Display Format
It is not always most convenient to view memory as byte values. If an area of
memory contains character strings or floating-point values, you might prefer to
view them in a directly readable form.

To change the display format of a Memory window, choose Memory 1 Window
or Memory2 Window from the Options menu. Code View displays a dialog box
where you can choose from a variety of display options. When the cursor is in a
Memory window, you can presss CTRL+O to display the corresponding Memory
Window Options dialog box. You can also set memory display options using the
View Memory (VM) command. For detailed information about the display options,
see "View Memory" on page 431.

To cycle through the display formats, click the <Sh+F3=Meml Fmt> or
<Sh+F3=Mem2 Fmt> buttons on the status bar, or press SHIFf+F3. Pressing
CTRL+SHIFf +F3 displays the cycle in reverse order.

When you first open the Memory window, it displays memory starting at address
DS:OO. To change the starting address, use one of the commands to set Memory
window options. You can specify the starting address or enter an expression to use
as the starting address.

You can also type over the segment:offset addresses shown in the left column of the
Memory window to change the displayed addresses. Move the cursor to an address
in the window, or repeatedly press TAB until the cursor is on an address, and type a
new address.

How to Change Memory Directly
To change the values in memory, overtype the value you want to change. To move
quickly from field to field in the Memory window, press TAB. You can change
memory by entering new values for the format that is displayed or by typing over
the raw bytes in the window. Code View ignores the input if you press a key that
does not make sense for the current format (for example, if you type the letter X in
anything but ASCII format).

To undo a change to memory, choose Undo from the Edit menu, or press
ALT+BACKSPACE.

How to View Memory at a Dynamic Address
Live expressions make it easy for you to watch a dynamic view of an array or
pointer in the Memory window. "Live" means that the starting address of memory
in the window changes to reflect the current value of an address expression.

To create a live expression, choose the Memory1 Window or Memory2 Window
command from the Options menu. In the Memory Window Options dialog box, type

332 Environment and Tools

in an address expression, then tum on the Re-evaluate Expression Always (Live)
option.

It is usually more convenient to view an item in the Watch window than in the
Memory window. However, some items are more easily viewed using live
expressions. For example, you can examine what is currently on top of the stack by
entering SS:SP as the live expression.

The Help Window
In Code View, you can request Help:

• From the Help menu.

• By pressing FI when the cursor is on the keyword, menu, or dialog box for
which you want Help.

• By clicking the right mouse button on a Help keyword.

• Using the Help (H) command.

• By choosing Help from the Windows menu. You can also press ALT+O for Help
on Code View windows.

The Microsoft Advisor Help window is displayed whenever you request Help for
Code View. For information about getting the most out of the Microsoft Advisor
Help system, see Chapter 21.

CodeView Menus
Many commands that you are likely to use frequently are in the Code View menus.
This section describes the menus and the commands or options in each menu. Not
all commands are available in both versions of the Code View debugger. When
applicable, the menu descriptions discuss command availability.

The File Menu
The File menu contains commands to load source files and other ASCII text files
into the Source window, print from the active window, start an operating-system
shell, and end the debugging session.

The following table summarizes the commands on the File menu. Commands
marked with an asterisk are not shown in the CVW File menu:

Command

Open Source

Open Module

Print*

DOS Shell*

Exit

Open Source

Chapter 9 The CodeView Environment 333

Purpose

Opens a source, include, or other text file

Opens a source file for a module in the program

Prints all or part of the active window

Goes to the operating-system prompt temporarily

Exits Code View

The Open Source command displays the Open Source File dialog box. You can
select the name of the source file, include file, or other text file to display in the
active Source window.

Open Module
The Open Module command displays the Open Module dialog box. This dialog box
provides an easy way to load the source file for any module in your program. The
dialog box lists the source files that make up the modules in the program you are
debugging. Only those modules that include line-number or full symbolic
information are listed.

Code View displays the source file you choose in the active Source window.

Print
In CodeView for MS-DOS only, the Print command displays the Print dialog box,
which offers several options to write information in the active window to a device
or a file. You can print text in the active window in the following ways:

• Window view, which prints text that currently appears in the active window

• Complete window contents, which prints the contents of the active window,
including what has scrolled out of the window

To print to a file, specify a filename in the dialog box. To append the printed text to
the end of the file, select Append. To overwrite a file that already exists, select
Overwrite. If you specify a device instead of a file, you can choose either Append
or Overwrite.

To print directly to a printer, specify the name of the printer port such as LPTI or
COM2. You must specify a filename or a device name. Code View reports an error
if you omit the name.

DOS Shell
In MS-DOS only, you can use the DOS Shell command to leave CodeView
temporarily and go to the operating-system prompt.

334 Environment and Tools

When you choose the Shell command, Code View starts a second copy of the
command processor specified by the COMSPEC environment variable. If there is
not enough memory to open a new shell, a message appears. Even if you do have
enough memory to start a command shell, you may not have enough memory to
execute large programs from the shell.

While in the shell, do not start any terminate-and-stay-resident (TSR) programs,
such as MSHERC.COM, and do not delete files you are working on during your
debugging session. Also, do not delete any files used by CodeView, such as the
CURRENT.STS file.

To return to CodeView, type exit at the operating-system prompt to close the shell.
For more information about starting a shell, see the "Shell Escape" command on
page 443.

Exit
The Exit command saves the current Code View environment and returns to the
program that called CodeView, such as COMMAND.COM, PWB, or another
editor. Code View saves the window arrangement, watch expressions, option
settings, and most breakpoints in the state file, CURRENT.STS. It saves current
color settings in CLRFILE.CV 4 if you are using CV and in CLRFILE.CVW if you
are using CVW.

When you start the debugger at a later time, Code View restores these settings. To
prevent Code View from restoring the information it stores in CURRENT.STS, start
the debugger with the {fSF option or use the Statefileread entry in your
TOOLS.INI file.

The Edit Menu
The Edit menu contains commands to undo changes to window's fields, copy
selected text to the clipboard, and paste the contents of the clipboard into a window.
For more details on editing in CodeView's windows, see "CodeView Windows" on
page 321.

The following table summarizes the commands on the Edit menu:

Command

Undo

Copy

Paste

Undo

Purpose

Reverses the last editing change

Copies the selected text to the clipboard

Inserts the contents of the clipboard at the cursor

The Undo command (ALT+BACKSPACE) reverses the last editing action.

Chapter 9 The CodeView Environment 335

Copy
The Copy command (CTRL+INS) copies selected text to the clipboard. Because input
to Code View is restricted to single lines, you can copy only a single line of text. If
you select more than a single line of text, the Copy command is disabled and
pressing CTRL+INS has no effect.

Paste
The Paste command (SHIFT+INS) inserts text from the clipboard at the cursor in the
Command window.

The Search Menu
The Search menu provides commands to find strings and regular expressions in
source files and to locate the definitions of labels and routines.

The following table summarizes the commands on the Search menu:

Command

Find

Selected Text

Repeat Last Find

Label/Function

Find

Purpose

Searches for a text string or pattern in the source file

Searches for the selected text in the source file

Repeats the last text search

Searches for a label or function definition in the program

The Find command displays the Find dialog box. In the Find What text box, type
the text or pattern you want to find. You can also select text in a window and then
choose Find. The text you selected is shown in the dialog box.

You can select options in the dialog box to modify the way Code View searches for
text. The following options are available:

Whole Word
Code View matches the text only when it occurs as a word by itself. For
example, when you search for the pattern p r i n t with the Whole Word option,
Code View fmds p r i n t (" e e e p "), but not err 0 r _p r i n t (" e e e p ") .

Match Case
Code View matches the text when each letter in the pattern has the same case
as the source file. For example, the pattern f ish matches f ish, but not F ish.

Regular Expression
Code View treats the text as a regular expression. Regular expressions provide
a powerful way to specify patterns that match several different sections of text.
For more information about regular expressions, see Appendix A.

336 Environment and Tools

To search for a regular expression in the active Source window using the Command
window, you can type the Search (/) command followed by the string. Code View
searches the file starting at the current position. Code View places the cursor on the
next occurrence of the search pattern. If the end of the file is reached without
finding a match, Code View wraps around and continues searching from the
beginning of the file.

Selected Text
The Selected Text command (CTRL+\) searches for the next occurrence of the
selected text in the Source window.

Repeat Last Find
The Repeat Last Find command (ALT+/) searches for the next occurrence of the
search pattern, including search options, you last specified.

Label/Function
The Label/Function command lets you search the program's symbolic information
for the definition of a label or routine. When you choose Label/Function, the Find
Label/Function dialog box appears. The currently selected text or the word at the
cursor comes up in the Label/Function Name text box. You can search for this
name or type in a different label or routine name.

When you choose OK, Code View searches the symbolic information in the program
for the name. When the label or routine name is found, Code View positions the
cursor at the name in the source file.

To view the current program location after searching, choose the first item in the
Calls menu or type the Current Location (.) command in the Command window.

The Run Menu
The Run menu consists of commands to restart the program, animate the program in
slow motion, change the program's arguments, load a new program, or configure
the modules Code View is using.

The following table summarizes the commands on the Run menu:

Command

Restart

Set Runtime
Arguments

Animate

Load

Purpose

Restarts the program

Changes the program's run-time arguments and restarts the
program

Executes the program in slow motion

Loads a new program to debug, sets run-time arguments, and
configures CodeView's modules

Chapter 9 The CodeView Environment 337

Restart
The Restart command resets execution to start at the beginning of the program.
After you issue the command, Code View:

• Initializes all program variables.

• Resets the pass counts for all breakpoints.

• Preserves existing breakpoints, watch expressions, and the program's command
line arguments.

You can use Restart any time after execution stops: at a breakpoint, while stepping
or tracing, or when your program ends. If your program redefines interrupts, Restart
may not work correctly because it does not execute any cleanup or exit-list code in
the program. If your program requires this code to be executed, let the program run
to the end before restarting, or use the Display Expression (?) command in the
Command window to call the cleanup routines. For more information on calling
program routines, see "Display Expression" on page 452.

Set Runtime Arguments
The Set Runtime Arguments command lets you change your program's command
line arguments. When you set new arguments, Code View restarts the program.

Animate
The Animate command executes your program in slow motion. Code View
highlights each statement in the Source window as your program executes. This
allows you to see the flow of execution. To stop animation, press any key.

You can set the animation speed with the Trace Speed command from the Options
menu or with the Trace Speed (T) Command-window command.

Load
The Load command displays the Load dialog box, which you can use to:

• Load executable (.EXE or .DLL) files.

• Change the program's command-line arguments.

• Specify different Code View components from those specified in TOOLS.INI,
such as a different expression evaluator or the p-code execution model.

338 Environment and Tools

Loading Programs or DLLs
To load program or DLL symbols into the debugger, type a filename in the File to
Debug text box, or use the mouse or keyboard to select a file from the File List box.
Use the Drives/Dirs list box to change to a different drive or directory.

Set Command-Line Arguments
Use the Arguments text box to change the command-line arguments to the program
you are debugging or to set entirely new arguments. Type the arguments to your
program as you would on the command line.

Configure CodeView Modules
CodeView uses a default setting for an execution model, transport layer, and
expression evaluator if any of these is not specified in TOOLS.INI. Choose the
Configure button to load different Code View DLLs. The Configure dialog box lists
the DLLs that Code View has loaded. Code View loads several DLLs that are
required to debug your programs. These DLLs include:

• Expression evaluators for various languages and environments.

• Execution models for various operating systems.

• Execution models for p-code.

• Transport layers.

To load new DLLs, choose the Change buttons on the right side of the dialog box.

The Data Menu
The Data menu provides commands to add and delete watch expressions and
breakpoints. Watch expressions allow you to observe how variables change as your
program executes and also to expand arrays and dereference pointers. Breakpoints
allow you to stop execution of your program to check the values of your variables,
determine execution flow, and change how your program executes.

For more information about watch expressions, see Chapter 11, "Using Expressions
in Code View" and the "Add Watch Expression" command on page 436.

The following table summarizes the commands on the Data menu:

Command

Add Watch

Delete Watch

Set Breakpoint

Edit Breakpoints

Quick Watch

Add Watch

Chapter 9 The CodeView Environment 339

Purpose

Adds an expression to the Watch window

Deletes an expression from the Watch window

Sets a breakpoint in the program

Modifies or removes existing breakpoints

Displays a quick view of a variable or expression

The Add Watch command (CTRL+W) displays the Add Watch dialog box, which
shows the selected text or the word at the cursor in the Expression text box. You
can enter a different expression or add a format specifier to the expression. When
you choose OK, the expression is added to the end of the Watch window.

Delete Watch
The Delete Watch command (CTRL+U) displays the Delete Watch dialog box, which
displays a list of the watch expressions in the Watch window. Select the expression
you want to delete from the list and choose OK. Choose the Clear All button to
remove all expressions from the Watch window.

You can also delete expressions directly from the Watch window. Use the mouse or
the cursor keys to move the cursor to the expression you want removed, and press
CTRL+Y.

Set Breakpoint
The Set Breakpoint command displays the Set Breakpoint dialog box, which allows
you to select from several kinds of breakpoints and set options for each type. The
following list describes the breakpoints you can set:

Break at Location
This is the simplest type of breakpoint. You specify an address or a line number
where you want execution to pause. To specify a line number, precede it with a
period (.); otherwise, Code View will interpret it as an address. When your
program's execution reaches the breakpoint location, your program stops
temporarily, and you can enter CodeView commands.

Break at Location if Expression is True
You specify a location and an expression. Whenever execution reaches that
location, Code View checks the expression. If the expression is true (nonzero),
the breakpoint is taken. Otherwise, execution continues.

340 Environment and Tools

Break at Location if Expression has Changed
You specify a location and an expression that represents a variable or any
portion of memory. To specify a range of memory, enter the length of the range
in the Length text box. Code View checks the variable or the range of memory
when execution reaches the breakpoint location. If the value of any byte has
changed since the last time Code View checked, the breakpoint is taken.
Otherwise, execution continues.

Break When Expression is True
This breakpoint is taken whenever the expression becomes true. Code View
evaluates the expression after every line or every instruction, instead of only
at a certain location. As a result, this type of breakpoint can greatly slow your
program's execution.

Break When Expression has Changed
Code View checks the variable or the range of memory as each line or each
instruction is executed. You can also specify a range with the Length text box.
This type of breakpoint can also slow your program's execution.

Each breakpoint is numbered, beginning with O. For each type of breakpoint, you
can set several options. If you try to use an option that does not apply to a certain
breakpoint, CodeView displays N/A in the edit box and ignores that option. The
options are:

Location
Specifies where Code View should evaluate the breakpoint.

Expression
Specifies an expression that causes a break when it becomes true or a location
that is to be watched for changes.

Length
Specifies a range of memory (starting at the address in the Expression text box)
to watch for changes.

Pass Count
Specifies the number of times to pass over the breakpoint when it otherwise
would be taken. For example, a pass count of 10 tells Code View to ignore the
breakpoint ten times.

Commands
Specifies a list of Command-window commands, separated by semicolons, that
are executed when the breakpoint is taken. If several breakpoints with
commands are taken, the commands are queued and executed in first-in, first-out
order.

Chapter 9 The CodeView Environment 341

As shortcuts, you can also set simple (break at location) breakpoints with the
following methods:

• Double-click the line in the Source window.

• Move the cursor to the breakpoint location in the Source window and press F9.

A line with a breakpoint is highlighted. In the Mixed and Assembly modes, an
assembly-language comment that displays the breakpoint number appears. For
example:

0047:0b30 57 push di :BK0

In this example, breakpoint number 0 is set at the address 0047:0B30.

You can also set breakpoints with the Breakpoint Set (BP) command. See the
"Breakpoint Set" command on page 405.

Edit Breakpoints
The Edit Breakpoints command displays the Edit Breakpoints dialog box, where
you can add, remove, change, enable, and disable breakpoints. Select a breakpoint
from the list of breakpoints, then choose one of the command buttons on the right
side of the dialog box.

The list of breakpoints in the Edit Breakpoints dialog box shows the current state of
each breakpoint in your program. For more information on the format of the
breakpoint list, see the "Breakpoint List" command on page 405.

The command buttons in the Edit Breakpoints dialog box are described in the
following table:

Button

Add

Remove

Modify

Enable

Disable

Clear All

Description

Adds a new breakpoint

Removes the selected breakpoint

Modifies the same breakpoint

Activates a disabled breakpoint

Disables an active breakpoint

Removes all breakpoints

If you choose the Modify button, Code View displays the Set Breakpoint dialog box
with the appropriate options set for the breakpoint you selected. You can then
modify the options and set the breakpoint just as you do with the Set Breakpoint
command.

342 Environment and Tools

When you disable a breakpoint by selecting the Disable button, Code View does not
evaluate the breakpoint. Program execution continues as if the breakpoint was
never set.

You may encounter several occasions where it is useful to disable a breakpoint.
Sometimes a certain breakpoint is not practical when you are debugging a routine
nested deeply in your program. You can re-enable the breakpoint later when you
really need it. Also, conditional breakpoints are evaluated at every program step
and can slow execution. You can disable some conditional breakpoints in areas of
your program where you're certain you won't need them.

Quick Watch
The Quick Watch command (SHIFT+F9) displays the Quick Watch dialog box,
which shows the variable at the cursor position or the selected expression. The
Quick Watch dialog box is similar to the Watch window. However, you mainly use
Quick Watch for a quick exploration of the current values in an array or a pointer
based data structure, rather than as a method to constantly display the values.

The Quick Watch dialog box automatically expands structures, arrays, and pointers
to their first level. You can expand or contract an element just as you can in the
Watch window. If the expanded item needs more lines than the Quick Watch dialog
box can display, you can scroll the view up and down.

Choose the Add Watch button to add a Quick Watch item to the Watch window.
Expanded items appear in the Watch window as they are displayed in the Quick
Watch dialog box.

For complete information on using the Quick Watch dialog box, see the "Quick
Watch" command on page 453.

The Options Menu
The Options menu contains commands to change the default behavior of Code View
commands and the display status of Code View windows. You can also set display
options with various Command-window commands. When the cursor is in one of
the Source, Memory, or Local windows, you can press CTRL+O to display the
window's Options dialog box.

For menu items that are toggles, a bullet appears to the left of the item when the
option is turned on. No bullet appears when it is turned off.

The following table summarizes the commands on the Options menu:

Command

Source 1 Window

Source2 Window

Memory 1 Window

Memory2 Window

Local Options

Trace Speed

Language

Horizontal Scrollbars

Vertical Scroll bars

Status Bar

Colors

Screen Swap

Case Sensitivity

32-Bit Registers

Native

Source Window

Chapter 9 The Code View Environment 343

Purpose

Sets Source window 1 display options

Sets Source window 2 display options

Sets Memory window 1 display options

Sets Memory window 2 display options

Sets Local window display options

Sets animation speed

Sets the expression evaluator

Toggles horizontal scroll bars on windows

Toggles vertical scroll bars on windows

Toggles the status bar display

Changes colors of Code View screen elements

Toggles screen exchange

Toggles case sensitivity of symbols

Toggles display of 32-bit registers

Toggles display of p-code or machine code instructions

The Source Window command displays the Source Window Options dialog box. In
this dialog box, you can set the source display mode and other options for the
current Source window. These options are as follows:

Option

Follow CS:IP thread of
control

Source

Mixed Source and
Assembly

Assembly

Tab Length

Show Machine Code

Show Symbolic Name

Description

Keeps the current program location visible in the active Source
window.

Displays the source code for the program.

Displays each source line followed by the disassembly of the
code generated for that line.

Displays a disassembly of the machine code in your program.

Sets the number of spaces to which tab characters expand in the
source file.

Shows the address and hexadecimal representation of the
machine code in Mixed and Assembly modes.

Shows the symbol name in assembly-language displays instead
of the numeric value of the symbol.

The Source Window Options dialog box also contains all the options available with
the VS (View Source) command. For infonnation on the VS command, see "VS
(View Source)" on page 433.

344 Environment and Tools

Memory Window
The Memory Window command displays the Memory Window Options dialog box,
where you can set the starting address and display format of the active Memory
window. For details, see "The Memory Windows" on page 330 and the "View
Memory" command on page 431.

Local Options
You can specify the scope of variables to be displayed in the Local window. When
you select Local Options from the Options menu, a dialog box appears in which you
can select any combination of lexical, function, module, executable, and global
scopes. You can also toggle the display of addresses in the Local window from the
Local Options dialog box. When you tum Show Addresses on, the BP-relative
address of each local variable is shown in the Local window. Otherwise, the Local
window shows only the names of the variables.

You can also use the Options (OL) command in the Command window to specify
the scope of variables to be displayed in the Local window. For information about
the Options command, see page 422.

Trace Speed
The Trace Speed command displays the Trace Speed dialog box, which presents a
list of three speeds from which you can select.

When you use the Animate command to run your program in slow motion,
Code View pauses execution between each step. The duration of the pause is set
with the Trace Speed command. Slow pauses for 1/2 second. Medium pauses for
1/4 second. Fast runs the program as fast as possible while still updating Code View
windows and evaluating breakpoints and watch expressions.

Language
The Language command displays the Language dialog box, which presents a list of
the expression evaluators that Code View has loaded, plus the Auto option.

In your TOOLS.INI file, you can configure Code View to load a number of different
expression evaluators. You can also load expression evaluators by choosing Load
from the Run menu. Only one expression evaluator can be active at a time.

The Auto setting is the default. It tells Code View to set the expression evaluator
automatically based on the extension of the source file you are debugging in the
current Source window. For more information on expression evaluators, see
"Configuring Code View with TOOLS.INI" on page 301.

For more information on using expression evaluators, see Chapter 11, "Using
Expressions in CodeView."

Chapter 9 The CodeView Environment 345

Horizontal Scroll bars
The Horizontal Scrollbars command toggles the horizontal scroll bars on and off.
When scroll bars are off, you can drag the bottom window frame, as well as the
size box, to resize the window.

Vertical Scrollbars
The Vertical Scrollbars command toggles the vertical scroll bars on and off. When
scroll bars are off, you can drag the right window frame, as well as the size box, to
resize the window.

Status Bar
The Status Bar command toggles the status bar on and off. When the status bar is
off, you gain an extra line of space for windows.

Colors
The Colors command displays a dialog box that lets you change the colors of
Code View screen elements. The Item list box displays all the elements of the
debugging screen. The Foreground and Background list boxes show the current
color settings for the highlighted element in the Item list box.

To change the color of a screen element, choose an element in the Item list box,
then choose foreground and background colors. When you are done, click the OK
button. Your new color settings take effect as soon as you exit the dialog box.

If you make a number of changes and want to go back to your previous color
settings, click the Reset button. You can then start changing colors again. To close
the dialog box without making any changes, click the Cancel button. To reset to the
standard Code View colors, click the Use Default button.

When you specify colors using the Colors command in Code View, the colors
are saved in CLRFILE.CVW if you are using CodeView for the Windows
Operating System and in CLRFILE.CV4 if you are using CodeView for DOS.
Code View saves these files in the directory specified by the INIT environment
variable or in the current directory if no INIT environment variable is set. These
settings become the new default colors.

Screen Swap
The Screen Swap command toggles screen exchange on or off. By default,
Code View switches to your program's output screen whenever you execute code in
the program. Code View uses either screen flipping or screen swapping, depending
on the command-line options you used to start the debugger. See "Set Screen
Exchange Method" on page 313.

346 Environment and Tools

If your program sends no output to the screen, you'll probably want to tum Screen
Swap off. This setting continuously displays CodeView's screen while your
program executes.

If Screen Swap is off and your program writes to the screen, a portion of the
CodeView display may be overwritten. If this happens, type the Refresh (@)
command in the Command window.

Case Sensitivity
The Case Sensitivity command toggles case sensitivity on or off. When Case
Sensitivity is on, CodeView treats symbol names as case sensitive (that is, a
lowercase letter is different from its corresponding uppercase letter). This option
affects only commands that deal with symbols in your program; it does not affect
the text-searching commands.

32·Bit Registers
The 32-Bit Registers command toggles 386 mode on and off. When 386 mode is on,
a bullet appears next to the command on the menu, and Code View displays the 32-
bit registers in the Register window. In this mode, Code View can also assemble
instructions that use 32-bit registers or memory operands.

Native
When you are debugging a program that uses p-code, you use the Native command
to toggle between p-code instructions and native machine instructions. With Native
mode on, CodeView displays your program's native CPU instructions. With Native
mode off, Code View displays the instructions in p-code.

For more information on debugging p-code, see page 363.

The Calls Menu
The Calls menu shows what routines have been called into your program during
debugging. Its contents change to reflect their current status. The current routine
is at the top of the menu; the routine that called it appears just below. Routines are
listed in the reverse order in which they were called. At the bottom of the list is
your program's main routine. In C, for example, main appears at the bottom. When
you are debugging a Windows-based application, winmain is at the bottom of the
list.

The Calls menu is empty until the program enters at least one routine that creates
a stack frame. Listed with each routine name are the arguments to each routine in
parentheses. The menu's width expands to accommodate the widest entry.
Arguments are shown in the current radix, except for pointers, which are always
shown in hexadecimal.

Chapter 9 The CodeView Environment 347

When you choose a routine from the Calls menu, Code View displays the source
code for that routine and updates the Local window to show the local variables in
that routine. The cursor moves to the return location to show the next line or
instruction that will be executed when control returns to that routine.

To step out of deeply nested code, choose a routine and then press F7.

Choosing a routine from the Calls menu does not affect program execution; it
provides you with a convenient way to view a routine's source code and local
variables. However, since the cursor is positioned at the return location, you can
press F7 to execute through the stack of nested calls to that line. This is especially
convenient when you find you've accidentally traced into a deeply nested set of
routines which you know to be bug-free. Rather than continue a tedious trace until
you work your way out of the stack of routines, you can choose a routine from the
Calls menu and press F7. Code View executes through the nested routines until
control returns to the point you chose.

A routine may not be visible in the Calls menu under the following circumstances:

• You have traced only startup or termination routines from the run-time library.

• Routine calls are nested so deeply that not all routines appear on the menu.

• The stack has been corrupted.

• Code View cannot trace through the stack frame because the BP register is
overwritten.

The Windows Menu
If you get lost among your windows, try the Arrange command.

The Windows menu contains commands that activate, open, close, tile, arrange, and
manipulate Code View windows. There is also a command to view your program's
output screen. A bullet appears to the left of the active window when you open this
menu.

All the windows are numbered. You can quickly open or switch to a window by
pressing ALT plus the window's number.

The following table summarizes the commands on the Windows menu and the
corresponding shortcut keys:

348 Environment and Tools

Command

Restore

Move

Size

Minimize

Maximize

Close

Tile

Arrange

Help

Local

Watch

Source 1

Source 2

Memory 1

Memory 2

Register

8087

Command

View Output

Shortcut
Key

CTRL+F5

CTRL+F7

CTRL+F8

CTRL+F9

CTRL+FlO

CTRL+F4

SHIFf+F5

ALT+F5

ALT+O

ALT+l

ALT+2

ALT+3

ALT+4

ALT+5

ALT+6

ALT+7

ALT+8

ALT+9

F4

Purpose

Restores the active window to its size and position before
it was maximized or minimized

Moves the active window using the keyboard

Sizes the active window using the keyboard

Shrinks the active window to an icon

Enlarges the active window to full screen

Closes the active window

Arranges all open windows to fill the entire window area

Arranges all open windows to an effective layout for
debugging

Opens or switches to the Help window

Opens or switches to the Local window

Opens or switches to the Watch window

Opens or switches to Source window 1

Opens or switches to Source window 2

Opens or switches to Memory window 1

Opens or switches to Memory window 2

Opens or switches to the Register window

Opens or switches to the 8087 window

Opens or switches to the Command window

Swaps the Code View screen for the program's output
screen

Source and Memory Windows
You can open as many as two Source and two Memory windows. At least one
Source window must be open at all times. To close a window, use the Close
command (CTRL+F4).

Help, Local, Watch, Register, 8087, and Command
Windows
Code View can display one of each of these windows. The Register window has an
additional shortcut key (F2) you can use to open or close it.

When you open the Help window, Code View displays the last Help screen you
viewed. If you have not yet viewed Help during the session, Code View displays the
top-level contents in the Microsoft Advisor.

Chapter 9 The CodeView Environment 349

View Output
To view your program's output screen, choose View Output or press ALT+F4.

Code View displays the output screen until you press a key.

The Help Menu
The Help menu contains commands to access the Microsoft Advisor Help system.
When you choose a Help command, Code View opens the Help window if it is not
already open and displays the appropriate part of the Microsoft Advisor.

When the Help window is open, you can browse through Help with mouse and
keyboard commands. All Microsoft environments provide the same mouse and
keyboard commands to access the Microsoft Advisor. For more information on
getting the most out of Help, see Chapter 21.

The following table summarizes the commands on the Help menu:

Command

Index

Contents

Topic

Help on Help

About

Index

Purpose

Displays the table of Microsoft Advisor indexes

Displays the Microsoft Advisor contents screen

Displays Help on the current word

Displays Help on using the Microsoft Advisor

Displays Code View copyright and version infonnation

The Index command displays a table of available indexes. Each part of the Help
system has its own index.

Contents
The Contents command (SHIFT+Fl) displays the contents for the entire Help system.
This screen lists the table of contents for each Help system component.

Topic
The Topic command (Fl) displays help on the word at the cursor or the selected
text. When you open the Help menu, Code View displays the topic in the menu.
When you choose the Topic command, Code View displays information on the
indicated topic in the Help window.

Help on Help
The Help on Help command displays information on the Microsoft Advisor itself. It
describes how the system is organized, how the mouse and keyboard commands are

350 Environment and Tools

used to browse through Help, and how to use the various kinds of buttons you
encounter.

About
The About command displays the Code View copyright and version information in a
dialog box.

351

CHAPTER 10

Special Topics

Debugging in the Windows Operating System
The Microsoft Code View for the Windows operating system debugger (CVW) is a
powerful tool for analyzing the behavior of Microsoft Windows-based programs.
With CVW, you can test the execution of your application and examine your
application's data. You can isolate problems quickly because you can display any
combination of variables-global or local-while you halt or trace your
application's execution.

Comparing CVW with CV
The CVW windows, menus, and commands are used in the same way as for CV.
See Chapter 9, "The CodeView Environment," for details on the format of
CodeView windows and how to use the windows and menus. Like the MS-DOS
Code View, CVW allows you to display and modify any program variable, section
of addressable memory, or processor register. However, CodeView for Windows
differs from CV in the following ways:

• Because the Windows operating system has a special use for the AL T +/ key
combination used by CV to repeat a search, CVW uses CTRL+R.

• CVW tracks your application's segments and data as the Windows operating
system moves them in memory. Thus, when you refer to an object by name,
CVW always supplies the correct address.

CVW also provides six additional Command-window commands for Windows
based program debugging, which are summarized in the following list:

Windows Display Global Heap (WDG)
Displays memory objects in the global heap.

Windows Display Local Heap (WDL)
Displays memory objects in the local heap.

352 Environment and Tools

Windows Dereference Local Handle (WLH)
Dereferences a local heap handle to a pointer.

Windows Dereference Global Handle (WGH)
Dereferences a global heap handle to a pointer.

Windows Display Modules (WDM)
Displays a list of the application and DLL modules currently loaded in the
Windows operating system.

Windows Kill Application (WKA)
Terminates the task that is currently executing by simulating a fatal error.

For details on using these commands, see "CVW Commands" on page 357.

The following CV features are not available in CVW.

• The Print command from the File menu.

• The DOS Shell command from the File menu and the corresponding Shell (!)
Command-window command.

• The Screen Swap command from the Options menu and the corresponding
Options (OF) Command-window command.

Preparing to Run CVW
Before beginning a CVW debugging session, you must ensure that your system is
configured correctly and the Windows-based application you are going to debug is
compiled and linked with the options that generate Code View debugging
information.

For information on setting up your system and configuring CodeView, see "Setting
up CodeView" on page 299. For information on preparing programs for use with
Code View, see "General Programming Considerations" on page 294 and
"Compiling and Linking" on page 295.

The SETUP program installed the two files in your MASM\BIN subdirectory:
CVW.EXE and CVW1.386. These two files must be in the current path. Also, in
order for Code View to run properly with the Windows operating system, the line:

device = drive:\MASM\BIN\CVW1.386

must appear under the [386 Enh] section of your SYSTEM.INI file, where drive is
the hard disk drive where MASM resides.

The window that Code View uses cannot be sized or moved as can other Windows
operating system applications. You can specify a different starting position for
Code View using the IX and IY command-line options. For information on the
CodeView command-line options, see page 310.

Chapter 10 Special Topics 353

If You Use the Windows Operating System Version 3.0
If the Windows operating system Version 3.0 is running in Standard Mode and
Code View is invoked with the IX option or with no parameters, Windows Version
3.0 will generate an error when Code View attempts to switch to protected mode.
This conflict only occurs with Windows Version 3.0 running in standard mode.
You can avoid this by configuring a PIF file.

For CodeView to run under Windows Version 3.0, create a PIF file using the PIF
Editor. In the Optional Parameters field, enter only a question mark (?). This
instructs Windows 3.0 to prompt for additional options when Code View is invoked.
When the PIF file is run, it will prompt for the command line. Specify the
appropriate parameter as listed below, followed by the name of the program to be
debugged.

Windows Mode Switch(es)

Real /D or none

Standard /D

386 enhanced /D (or IE if expanded memory is available)

Starting a Debugging Session
Like most Windows-based applications, CVW can be started in several ways. You
can double-click the CVW icon and respond to CVW's prompts for arguments, or
you can run CVW by using the Run command from the Program Manager File
menu.

To specify CVW options, choose the Run command from the Program Manager
File menu. The Windows operating system displays a dialog box where you can
enter the appropriate options for your debugging session. For specific information
on Code View command-line syntax and options, see "The Code View Command
Line" on page 308.

You can run CVW to perform the following tasks:

• Debug a single application

• Debug multiple instances of an application

• Debug multiple applications

• Debug dynamic-link libraries (DLLs)

This section describes the methods you use to perform these tasks and summarizes
the syntax of the CVW command line for each task.

Starting CVW for a Single Application
After you start CVW from Windows, Code View displays the Load dialog box.

354 Environment and Tools

~ To start debugging a single application:

1. Type the name of the application in the File to Debug text box. CVW assumes
the .EXE filename extension if you do not include an extension for the
application name. You can also pick the program that you want to debug by
choosing it from the Files List box.

2. If you want to specify command-line arguments, move the cursor to the
Arguments text box and type the program's command line.

3. Choose OK.

CVW loads the application and displays the source code for the application's
WinMain routine.

4. Set breakpoints in the code if you desire.

5. Use the Go (G) command (F5) to begin executing the application.

~ To avoid the startup dialog boxes:

1. Choose the Run command from the Windows File menu.

2. Type the application name and arguments on the CVW command line. Use the
following syntax to start debugging a single application:

CVW [options] appname[.EXE] [arguments]

3. Choose OK.

Starting CVW for Multiple Instances of an Application
The Windows operating system can run mUltiple instances of an application, which
can cause problems. For example, each instance of an application might corrupt the
other's data. To help you solve such problems, CVW allows you to debug multiple
instances of an application. The breakpoints you set in your application apply to all
of the instances. To determine which instance of the application has the focus in
CVW, examine the DS register.

~ To debug multiple instances of an application:

1. Start CVW as usual for one instance of your application.

2. Run additional instances of your application by choosing the Run command
from the Windows File menu.

You cannot specify the application name more than once on the CVW command
line. Any additional application names are passed as arguments to the first
application.

Chapter 10 Special Topics 355

Starting CVW for Multiple Applications
You can debug two or more applications at the same time, such as a dynamic data
exchange (DDE) client and server.

~ To debug several applications at the same time:

1. Start CVW as usual for a single application.

2. Choose Load from the Run menu and choose other applications that you also
want to debug.

3. Set breakpoints in either or both applications. You can use the Open Module
command from the CVW File menu to display the source code for the different
modules. If you know the module and the location or function name, you can use
the context operator ({ }) to directly set breakpoints in the other applications.

4. Use the Go (G) command (F5) to start running the first application.

S. Choose the Run command from the Windows File menu to start running the
second application.

You can also use the /L option on the CVW command line to load the symbols for
additional applications, as shown in this example:

CVW ILsecond.exe ILthird.exe first

The /L option and name of each additional application must precede the name of the
first application on the command line. You must specify the .EXE filename
extension for the additional applications. Repeat the /L option for each application
to be included in the debugging session.

Once CVW starts, choose the Run command from the Windows File menu to start
executing the additional applications.

Note Global symbols with the same name in several applications (such as
Win M a in) may not be distinguished. You can use the context operator to specify
the exact instance of a symbol.

Starting CVW for Dlls
You can debug one or more DLLs while debugging an application.

~ To debug a DLL at the same time as an application:

1. Start CVW as usual for the application.

2. Choose Load from the Run menu and type the name of the DLL.

356 Environment and Tools

3. Set breakpoints in the application or DLL. You can use the Open Module
command from the CVW File menu to display the source code for the different
modules.

4. Use the Go (G) command (FS) to continue executing the application.

You can also use the IL option on the CVW command line to specify the DLLs, as
shown in this example:

CVW ILappdll appname

The IL option must precede the name of the application. Repeat the IL option for
each DLL you want to debug.

Debugging the LibEntry DLL Initialization Routine
CVW allows you to debug the LibEntry initialization routine of a DLL. If your
application implicitly loads the library, however, a special technique is required to
debug the LibEntry routine.

An application implicitly loads a DLL if the library routines are imported in the
application's module-definition (.DEF) file or if your application imports library
routines through an import library when you link the application. An application
explicitly loads a DLL by calling the LoadLibrary routine.

If your application implicitly loads the DLL and you specify the application in the
Command Line dialog box, Windows automatically loads the DLL and executes the
Lib Entry routine when it loads the application. This gives you no opportunity to
debug the Lib Entry routine since it is executed when the application is loaded and
before CVW gains control.

To gain control before the LibEntry routine is executed, you must set a breakpoint
in the Lib Entry routine before the DLL is loaded.

~ To set this breakpoint:

1. In the CVW Load dialog box, provide the name of a "dummy" application that
does not load the library instead of the name of your application. The
CALC.EXE program is provided for this purpose.

2. Load the DLL by using the Load command from the Run menu.

3. Choose the Open Module command from the CVW File menu and select the
module containing the LibEntry routine.

4. Set at least one breakpoint in the LibEntry routine.

5. Use the Go (G) command (FS) to start the dummy application.

6. Run your application using the Run command from the Windows File menu.
CVW resumes control when the breakpoint in the LibEntry routine is taken.

Chapter 10 Special Topics 357

You can also specify the dummy application or DLL on the CVW command line.

~ To begin a DLL debugging session from the command line:

1. Type the command line:

cvw ILmydll winstub

2. After CVW starts, do steps 3 -6 in the previous procedure to begin debugging.

CVW Commands

Syntax

Format

CVW recognizes several commands for Windows-based program debugging in
addition to the Command-window commands recognized by CV. These commands
allow you to inspect objects in the global and local Windows heaps, list the
currently loaded modules, trace and set breakpoints on the occurrence of Windows
operating system messages, and tenninate the currently executing task.

Windows Display Global Heap
The Windows Display Global Heap (WDG) command lists the memory objects in
the Windows global heap.

WDG [ghandle]

If ghandle is specified, WDG displays the first five global memory objects that
start at the object specified by ghandle. The ghandle argument must be a valid
handle to an object allocated on the global heap. If ghandle is not specified, WDG
displays the entire global heap in the Command window.

Global memory objects are displayed in the order in which Windows manages
them, which is typically not in ascending handle order. The output fonnat is:

handle address size PDB locks type owner

Any field may not be present if that field is not defined for the block.

Field

handle

address

size

PDB

locks

type

owner

Description

Value of the global memory block handle.

Address of the global memory block.

Size of the block in bytes.

Block owner. If present, indicates that the task's Process Descriptor Block
is the owner of the block.

Count of locks on the block.

The memory-block type.

The block owner's module name.

358 Environment and Tools

Syntax

Format

Syntax

Windows Display Local Heap
The Windows Display Local Heap (WDL) command displays the entire heap of
local Windows operating system memory objects. This command's syntax takes no
arguments.

WDL

The output has the following format:

handle address size flags locks type heaptype blocktype

Any field may not be present if that field is not defined for the block.

Field

handle

address

size

flags

locks

type

heaptype

blocktype

Description

Value of the global memory block handle

Address of the block

Size of the block in bytes

The block's flags

Count of locks on the block

The type of the handle.

The type of heap where the block resides

The block's type

Windows Display Modules
The Windows Display Modules (WDM) command displays a list of all the DLL
and task modules that the Windows operating system has loaded. To see a list of
known modules, type the WDM command in the Command window.

WDM

Each entry in the list is displayed with the following format:

handle refcount module path

Field

handle

refcount

module

path

Description

The module handle

The number of times the module has been loaded

The name of the module

The path of the module's executable file

Watching Windows Operating System Messages
You can trace the occurrence of a Windows operating system message or an entire
class of Windows operating system messages by using the Breakpoint Set (BP)

Syntax

Chapter 10 Special Topics 359

command. You can stop at each message, or you can execute continuously and
display the messages in the Command window as they are received.

To trace a Windows operating system message or message class, set a breakpoint
using the following options:

BP winproc 1M {msgname/msgc/ass} [/D]]

winproc
Symbol name or address of a window function.

msgname
The name of a Windows operating system message, such as WM_PAINT. The
msgname is case sensitive.

msgc/ass

ID

A case-insensitive string of characters that identifies one or more classes of
messages to watch. Use the following characters to indicate the class of
Windows operating system message:

Class Type of Windows Message

m Mouse

w Window management

n Input

s System

Initialization

c Clipboard

d DDE

z Nonclient

When specified, CodeView displays the message in the command window, but
your program continues executing. The message is displayed similar to the
following example:

HWND:lc00 wParm:0000 lParm:000000 msg:000F WM_PAINT

For each matching message that is sent to the specified winproc, CVW lists the
hexadecimal values of the window handle (HWND), word parameter (wPa rm),
long parameter (1 P a rm), and message (ms g) arguments, along with the name of
the message.

You can also specify a pass count and commands to be executed when the
breakpoint is taken. For details on the full Breakpoint (BP) command syntax, see
"BP (Breakpoint Set)" on page 405. Note that you can also use the Breakpoint Set
command from the Data menu to set all types of breakpoints.

360 Environment and Tools

Syntax

Windows Kill Application
The Windows Kill Application (WKA) command terminates the currently
executing task by simulating a fatal error. Since a fatal error terminates the
application without performing any of the normal program exit processing, use
WKA with caution.

To terminate your application, type the following command in the Command
window:

WKA

As a result of the simulated fatal error, Windows displays an Unexpected
Application Error box. After you close the box, Windows may not release
subsequent mouse input messages from the system queue until you press a key.

If this happens, the mouse pointer moves on the Windows screen but Windows does
not respond to the mouse. After you press any key, Windows responds to the
queued mouse events.

The currently executing task is not necessarily your application, so you should use
the WKA command only when your application is the currently executing task.
You can be sure that your application is the currently executing task when CVW
shows the current location at a breakpoint in your application.

For more information on using the WKA command, see "Terminating Your
Program" on page 362.

CVW Debugging Techniques
Debugging Windows-based programs can be challenging. Objects move around in
memory. The thread of execution can be a twisting maze where it is difficult to
~ow what code is executing or to control what code in your program is executed.

This section describes the WLH and WGH commands that you use to examine
movable memory objects by their handles. It also describes ways to control your
application's execution, how to interrupt and resume debugging your application,
how to handle abnormal termination from fatal errors and general protection faults,
and how to resume debugging your application after a normal termination.

Dereferencing Memory Handles
In a Windows-based application, the LocalLock and GlobalLock routines are
used to lock memory handles so that they can dereference them into near or far
pointers.

In a debugging session, you may know the memory object's handle. However, you
may not know what near or far address the handle references unless you are
debugging in an area where the program has just completed a LocalLock or

Chapter 10 Special Topics 361

GlobalLock routine call. To get the near and far pointer addresses for unlocked
local and global handles, use the WLH and WGH commands.

For detailed information on the WLH and WGH commands, see "WLH (Windows
Dereference Local Handle),' on page 441 and "WGH (Windows Dereference
Global Handle),' on page 439.

Controlling Application Execution
In CVW, all of the Code View execution commands (Go, Program Step, Trace, and
Animate) can be used to control your application's execution. However, you should
keep these restrictions in mind while using CVW:

• Attempting to use the Program Step or Trace commands to execute Windows
operating system startup code in Assembly mode causes unpredictable results.
To step through your application in Assembly mode, first set a breakpoint at the
WinMain routine and begin stepping through the program only after the
breakpoint is taken.

• Directly calling a Windows-based application procedure or dialog routine in the
Watch window, in the Quick Watch dialog box, or with the Display Expression
(?) command can have unpredictable results.

The rest of this section describes techniques and special considerations for
controlling program execution in CVW.

Interrupting Your Program
There may be times when you want to halt your program immediately. You can
interrupt your program by pressing CTRL+ALT+SYSREQ. After you press
CTRL+ALT+SYSREQ, CVW gains control and displays code corresponding to the
current CS:IP location. You then have the opportunity to examine registers and
memory, set breakpoints and watch expressions, and modify variables. To resume
execution, use one of the Code View program execution commands.

You should take care when you interrupt execution. If you interrupt execution while
Windows operating system code or other system code is executing, attempting to
use the Program Step or Trace commands can produce unpredictable results. When
you interrupt execution, it is safest to set breakpoints in your code and then resume
continuous execution with the Go command, rather than using the Program Step,
Trace, or Animate commands.

For example, an infinite loop in your code presents a special problem. Since you
should avoid using the Program Step or Trace commands after interrupting your
application, you should try to locate the loop by setting breakpoints in places you
suspect are in the loop, then resume continuous execution. When one of these
breakpoints is taken, you can be sure that the currently executing code is your
application code.

362 Environment and Tools

Terminating Your Program
At times (such as when your application is executing an infinite loop), you may
have to terminate the application. The Windows Kill Application (WKA) command
terminates the currently executing task. Since this task is not necessarily your
application, you should use the WKA command only when your application is the
currently executing task.

If your application is the currently executing task and is executing a module
containing Code View information, the Source window highlights the current line or
instruction. However, if your application contains modules that are compiled
without Code View information, it is more difficult to determine whether the
assembly-language code displayed in the Source window belongs to your
application or to another task.

In this case, use the Windows Display Global Heap (WDG) command with the
value in the CS register as the argument. CVW displays a listing that indicates
whether the code segment belongs to your application.

If the current code is in your application, you can safely use the WKA command
without affecting other tasks. However, the WKA command does not perform all
the cleanup tasks associated with the normal termination of a Windows-based
application. For example, global objects created during program execution but not
destroyed before you terminated the program remain allocated in the system-wide
global heap. This reduces the amount of memory available during the rest of the
Windows operating system session. For this reason, you should use the WKA
command to terminate the application only if you cannot terminate it normally.

You should exercise caution when using the WKA command on an application that
loads a DLL. If you terminate the application before it frees the DLL, the DLL
remains loaded. If you rebuild the DLL and then run CVW again, the new version
of the DLL doesn't get loaded.

Note The WKA command simulates a fatal error in your application, causing the
Windows operating system to display an Unexpected Application Error message
box. After you close this message box, Windows may not release subsequent mouse
input messages from the system queue until you press a key.

If this happens, the mouse pointer moves on the Windows operating system screen,
but the Windows operating system does not respond to the mouse. After you press
any key, the Windows operating system responds to the queued mouse events.

Handling Abnormal Termination of the Application
Your application can terminate abnormally in one of two ways while you are
debugging it with CVW. It can cause a fatal exit, or it can cause a general
protection fault. In both cases, CVW gains control, giving you the opportunity to
examine the state of the system when your application terminated. CVW allows you

Chapter 10 Special Topics 363

to view registers, display the global and local heaps, display memory, and examine
your source code.

Handling a General Protection Fault
If the abnormal termination is caused by a general protection fault (GPF) while
executing your application code, CVW displays the line of code where the error
occurred. Also, the Command window displays the following message:

Trap 13 (0DH) -- General Protection Fault.

If the general protection fault occurred while executing the Windows operating
system code, the CVW Command window displays a stack trace that is useful for
finding the error in your source code.

Restarting a Debugging Session
You can terminate your application without leaving CVW. The Windows operating
system notifies CVW that it is terminating the application, and CVW displays the
following message:

Program terminated normally (0)

The value in parentheses is the return value of the WinMain routine. This value is
usually the wPm'am parameter of the WM_QUIT message, which in tum is the
value of the nExitCode parameter passed to the PostQuitMessage routine.

You can then use the Go command to continue the debugging session for additional
DLLs or applications. You can also restart the application by using the Restart
command on the Run menu.

Debugging P-Code
Although MASM does not support p-code, certain Microsoft compilers can
generate space-saving p-code instead of machine code. P-code cannot be run by the
processor itself because it is not native machine code. However, when you compile
a program into p-code, LINK and the Make P-Code (MPC) utility add an
interpreter to your program that reads and interprets p-code instructions.

The interpreter implements a "stack machine." The p-code instructions generally
assume operands on the stack rather than take explicit registers or addresses.
Because p-code instructions do not explicitly specify operands, they are extremely
small. The trade-off for compact code is reduced execution speed. You use p-code
when saving space is more important than speed.

Code View allows you to debug p-code in the same way you debug native code. At
the source level, debugging works the same way for p-code as it does for native
code. With Code View's p-code execution model, you can view p-code instructions

364 Environment and Tools

in Mixed and Assembly modes just as you view native machine instructions. The
Register window displays the p-code registers and the top eight entries of the p
code stack. If your program contains both p-code routines and native routines,
Code View automatically switches between p-code display and native display. You
can also force CodeView to stay in Native mode when you want to view the native
machine code of the p-code interpreter itself.

The rest of this section describes:

• How to configure Code View to use the p-code execution model.

• How to prepare p-code programs for debugging.

• Techniques for debugging p-code.

• Limitations while debugging p-code.

Requirements
To debug a program that contains p-code, make sure you set up Code View with the
p-code execution model. To do so, you will need a Model entry under the
CodeView tag in TOOLS.INI.

The p-code execution model gives Code View information about p-code instructions,
addressing modes, registers, and so forth, which you need to debug p-code. With
this execution model, you can debug p-code just as you can debug native machine
code. Without the p-code execution model, you cannot view the source lines for p
code routines, unassemble p-code instructions, or view the p-code registers or stack.
For information on the syntax of the Model entry, see page 305.

There is a dynamic-link library (DLL) for each p-code execution model, depending
on the operating environment. The following list shows the filenames of the DLLs
and the environment with which they run:

Filename

NMD IPCD.DLL

NMWOPCD.DLL

Description

Execution model for MS-DOS p-code

Execution model for the Windows operating system p-code

Specify the appropriate filename in the Model entry. For example, if you are
debugging a Windows-based application that contains p-code, add an entry to the
[CVW] section of TOOLS.INI such as:

Model :NMW0PCD.DLL

The exact syntax can vary, depending on your system configuration and other
settings in TOOLS.IN!.

Chapter 10 Special Topics 365

Preparing Programs
To debug an application that contains p-code, you must first successfully compile,
link, and run the MPC utility on the application. For information on how to build p
code applications and how to mix p-code with native machine code, see your high
level language documentation.

During compilation into p-code, the compiler saves space by using p-code quoting.
P-code quoting reduces program size by minimizing repeated sequences of
instructions. It replaces all but one of the sequences with a special quote instruction
which calls the retained sequence.

Quoting makes debugging difficult because each routine jumps to other routines that
contain the quoted instructions. When you compile a program for debugging,
specify the jOf - option to tum quoting off. When you build a release version of the
program, specify jOf to tum quoting back on so that the compiler can generate the
smallest possible code.

By default, the compiler sorts local variables by frequency of use. It arranges them
on the stack so that the program can access the most frequently used variables with
the shortest instructions. This optimization is called frame sorting.

Frame sorting can make debugging more difficult because local variables do not
appear on the stack in the order in which you declared them. You should tum off
frame sorting by specifying the jOv- option to the compiler. When you build a
release version, specify jOv to tum frame sorting on so that the compiler generates
the smallest possible code.

P-Code Debugging Techniques
Debugging p-code is like debugging native machine code. If you are examing your
program at the instruction level, you should be familiar with the machine's
operation. With p-code, this is the stack machine implemented by the p-code
interpreter.

For general information on the interpreter and p-code instructions, see your high
level language documentation. For information on the p-code instruction set, choose
the P-Code Help button from the Microsoft Advisor's top-level contents. Help is
available on each p-code instruction.

When you are debugging native code, you normally view two levels of execution:
source code and machine code. P-code introduces another level between the two.
You can debug at any of these levels by setting the right combination of Source,
Mixed, Assembly, and Native display modes.

The next section shows how to choose the different levels and describes what
happens when you trace between native and p-code.

366 Environment and Tools

The Native Command
The Native command from the Options menu toggles CodeView's display of native
machine code and p-code. When Native mode is turned on, a bullet appears to the
left of the command on the menu.

With Native mode turned on, CodeView displays native machine instructions in the
Source and Mixed display modes. The Register window and the Register command
show the native CPU registers.

With Native mode turned off, CodeView displays:

• Native machine instructions in those parts of your program that contain native
code.

• P-code instructions in those parts of your program that contain p-code.

Also, the Register window and the Register command show the native CPU
registers when debugging a native routine, and they display the p-code interpreter's
registers when debugging a p-code routine.

The distinction between Native mode on and off becomes important when you trace
from a native routine into a p-code routine or from a p-code routine to a native
routine. Generally, you tum Native mode off to view p-code instructions. Tum
Native mode on when you want to see the action of the p-code interpreter.

Tracing From Native Code to P-Code
With Native mode turned off, tracing into a p-code routine causes Code View to
display p-code instructions. You can animate, step, and trace each p-code
instruction in your program. You can also set breakpoints at individual p-code
instructions. When tracing p-code, the Register window displays the registers and
stack of the p-code machine.

With Native mode turned on, tracing into a p-code routine causes CodeView to
display the native machine code of the p-code interpreter. Because the p-code
interpreter is a library module that does not contain debugging information,
Code View switches to Assembly mode.

Tracing From P-Code to Native Code
With Native mode turned off, tracing from a p-code routine to a native routine
causes Code View to display native machine instructions. The Register window
displays native CPU registers.

With Native mode turned on, you don't trace from p-code to native code. You trace
out of the p-code interpreter and into your program's native code.

Chapter 10 Special Topics 367

Unassembling P-Code
You can use the View Source and Unassemble commands to display p-code
instructions in the Source window. With the View Source command, change to
Mixed or Assembly display mode. The Unassemble command automatically
displays p-code instructions when Native mode is turned off.

Code View can display p-code and native code in the Source window at the same
time. If you use the View Source or Unassemble commands in an area with both p
code and native code, Code View displays both types of instructions. This commonly
occurs when you view a routine with a native entry point as well as a p-code entry
point. The different sections of code are separated by the assembly-language Data
directive.

If you try to unassemble p-code with Native mode turned on, Code View interprets
p-code as native code and displays meaningless instructions.

P-Code Debugging Limitations
While Code View makes debugging p-code as similar to debugging native machine
code as possible, there are some limitations. The following list describes the
commands that you cannot use with p-code:

• You cannot assemble p-code instructions.

The Assemble command allows you to assemble instructions at any location in
your program, but it accepts only native machine mnemonics. It does not
recognize p-code mnemonics. If you accidentally overwrite p-code, use the
Restart command. The Restart command restores your progam' s code.

• You cannot call p-code functions.

With native code, you can use the Display Expression command to call any
function. However, the Display Expression command cannot call p-code
functions.

Remote Debugging
Microsoft Code View versions 4.00 and later support remote debugging. This allows
you to debug using two machines. Code View runs on your development machine
(the host), and the program you are debugging runs on another machine (the target).
You run a remote monitor program on the target machine to control the program
you are debugging. The monitor communicates with Code View through a serial

. connection.

Remote debugging isolates Code View from the program being debugged so that
errors in the program do not affect the debugger, and the debugger does not affect

368 Environment and Tools

the target system. If the program crashes the remote system, your development
system continues to run.

The remote monitor demands fewer system resources than the full debugger and has
fewer dependencies on the hardware and operating system. It does not use the
display, the keyboard, extended memory, or expanded memory. After starting and
loading the program to be debugged, it does not use the file system. Therefore, the
monitor has no effect on these resources that can change your program's behavior.

You can debug large programs or programs that destabilize the operating system.
You can also debug programs on older hardware or smaller systems such as laptops
that cannot support the full debugger. Some bugs that you cannot reproduce while
running under the full debugger appear under the remote monitor.

The process of debugging a program on a remote machine is almost the same as for
local debugging. The only difference is in how you start the session. The following
sections describe the hardware and files required for remote debugging and how to
configure the debugger components on the host and target machines. Also included
are the command-line syntax for the remote monitor and the steps you take to start a
remote debugging session.

Requirements
Remote debugging requires two computers. The host system must support the
Microsoft C/C++ development system. The target system needs only enough
resources to run the remote monitor and your program. You run the MS-DOS
CodeView on the host system, and you run either the MS-DOS remote monitor or
the Windows operating system remote monitor, according to the type of program
you are debugging.

You connect the host and target machines with a null-modem cable plugged into the
serial ports on the two machines. A null modem is a serial cable that connects the
transmitting line at each end to the receiving line at the opposite end. For
CodeView, you can tie all control lines to a TRUE signal. Note that such a cable
may not be suitable for use with other software. You cannot use an extension cable
with "straight-through" connections.

Any good computer store can assemble a null-modem cable for you with the correct
wiring and the appropriate connectors for your host and target machines.

CodeView's serial transport layers use interrupt-driven input and output, which is
supported in MS-DOS only with the COMl and COM2 ports. Therefore, your
machines must be connected using the COMl or COM2 ports. You can use
different ports on the two machines.

If you plan to debug with two machines, you must have the correct files in the
correct locations on the host and target. You can start a remote session with a

Chapter 10 Special Topics 369

TOOLS.INI file that configures Code View for local debugging. However, it is
recommended that you configure Code View for remote debugging in TOOLS.IN!.

MS-DOS Host Files
For remote debugging, you must have the Code View debugger CV.EXE and its
associated DLLs on the host machine. The SETUP program copies all the required
files when you install the development system.

You configure Code View for remote debugging by setting entries in the
TOOLS.INI configuration file. The settings for CodeView appear in the [[CV]]
tagged section of TOOLS.IN!. Your settings should specify the DLLs for remote
debugging. Most of the entries are the same for local and remote debugging. The
only differences are the Native and Transport entries.

The remote debugging configuration is described in the following table:

Entry

Symbolhandler

Eval

Model

Transport

Native

Value

SHDl.DLL

EED liang .DLL

NMD IPCD.DLL

TLD1 COM.DLL

EMDIDl.DLL
EMDIWO.DLL

Description

MS-DOS symbol handler.

Expression evaluator. You must load at least
one expression evaluator. Use EEDICAN.DLL
for C or MASM. Use EED 1 CXX.DLL for
C++, C, or MASM.

P-code execution model. To debug p-code, you
must load the p-code nonnative execution
model. Specify this entry only if you are
debugging p-code.

The serial transport layer. (For local
debugging, use TLDILOC.DLL.)

Execution model. The execution model that you
use depends on the target. Use EMDIDl.DLL
for MS-DOS targets or EMDIWO.DLL for
Windows operating system targets.

For more information on configuring Code View, see "Configuring Code View with
TOOLS.INI" on page 301.

You must have your program's executable file on both the host and target
machines. The program must have the same path on the host and target machines,
including drive letter and all directories. The filenames must be identical. For
Windows-based applications, you must also have your application's DLLs (if any).
The DLLs that you want to debug must also have the same path on the host and
target machines.

370 Environment and Tools

MS-DOS Target Files
For remote debugging of an MS-DOS program, you need the MS-DOS remote
monitor RCVCOM.EXE on the target machine along with your program's
executable file. The program must have the same path on the host and target
machines, including drive letter and all directories. The filenames must be identical.

You can set default parameters for the remote monitor in the [[RCVCOM]] section
of a TOOLS.INI file on the target machine. For more information, see "Remote
Monitor Settings in TOOLS.INI" on page 371.

Windows-Based Target Files
For remote debugging of a Windows-based application, you need the Windows
operating system remote monitor RCVWCOM.EXE and its support DLLs on the
target machine along with your application's executable files. The application and
DLL files that you are debugging must have the same path on the host and target
machines, including drive letter and all directories. The filenames must be identical.

The Windows operating system remote monitor (RCVWCOM.EXE) and its
support DLLs (TOOLHELP.DLL and DMWO.DLL) must be in a directory listed in
the PATH environment variable.

You can set default parameters for the remote monitor in the [[RCVWCOM]] section
of a TOOLS.INI file on the target machine. For more information, see "Remote
Monitor Settings in TOOLS.INI" on page 371.

Remote Monitor Command-Line Syntax
Syntax { RCVCOM I RCVWCOM } [/P port: [rate]]]] [/R]]

Option

RCVCOM

RCVWCOM

/P

port:

rate

Description

Remote monitor for MS-DOS.

Remote monitor for the Windows operating system.

Parameters. The specified settings override any settings made in
TOOLS.INI.

Communications port. Must be COMI: or COM2:. The default
setting is COMI:.

Bit rate. Specifies the rate at which to drive the port, up to 19,200 bits
per second (bps). To specify a rate, you must also specify a port.
There can be no space between port: and rate. You must specify the
same bit rate for the host and target.

The default rate is 9600 bits per second. The possible rates are 50, 75,
110,150,300,1200,1600,1800,2000,2400,3600,4800,7200,
9600, and 19,200 bps.

Example

Syntax

Option

/R

Chapter 10 Special Topics 371

Description

Resident. The monitor stays running when the host debugger exits.
When IR is not specified, the monitor terminates when the host
debugger exits.

To start the remote monitor for several MS-DOS debugging sessions that use the
COM2 port at 2400 bits per second, type the command:

RCVCOM IP COMl:2400 IR

Remote Monitor Settings in TOOLS.lNI
You can set default parameters for the MS-DOS and the Windows operating system
remote monitors in TOOLS.IN!. If you do not specify parameters on the command
line, the monitors look for TOOLS.INI in the directory specified by the INIT
environment variable. You must place the settings for the remote monitors in tagged
sections of TOOLS.IN!. Settings for RCVCOM appear in the [[RCVCOM]] tagged
section; settings for RCVWCOM appear in the [[RCVWCOM]] tagged section.

The remote monitors recognize a single Parameters entry. The syntax for this
entry is:

Parameters: [port:[rate]]

You specify the port and rate as for the jP command-line option. The command
line option overrides the TOOLS.INI settings.

Starting a Remote Debugging Session
After the Code View components are in their locations and properly configured, you
can begin a remote debugging session.

~ To start a remote debugging session:

1. Transfer your program and its DLLs to the target machine.

You can copy the files to a floppy disk, transfer them across a network, or
transfer them across the serial line using communications software or serial file
transfer software.

Make sure that the full path of the program on the target machine exactly
matches the full path of the program on your host machine. The directory
structures for your program's files on the host and target machines must also
match exactly. If the paths of the files do not match, the remote monitor is
unable to locate the program.

372 Environment and Tools

2. Start the remote monitor. If you are debugging a Windows-based application,
double-click the Windows operating system remote monitor icon or use the Run
command from the Program Manager File menu. For an MS-DOS program,
start the monitor from the command line.

The remote monitor starts and begins polling the communications port. It waits
for the host debugger to initiate the debugging session.

3. Start CodeView on the host machine. How you start CodeView depends on your
settings in TOOLS.INI.

If you have configured Code View for remote debugging in TOOLS.INI, you can
specify a program on the Code View command line or use the Load command on
the Run menu to load the program. You have already configured the transport
layer and execution model.

If you are running the host-machine's CodeView as a non-Windows-based
application, the application window must be full screen and exclusive in
foreground. You handle this through the application's .PIF file. For more
information on non-Windows-based application .PIP file settings, see your
Windows operating system User's Guide.

If you have configured Code View for local debugging, you can start a remote
session as described in the following section, "Starting Code View for a
Different Configuration."

Code View starts, loads your program, and initiates communication with the remote
monitor. You are now ready to debug.

Once the debugging session is started, you can use Code View just as you would for
a local debugging session. When you quit Code View, the remote monitor quits
(unless you specified IR when you started the monitor).

If your system has trouble maintaining the communications link between the host
and target machines, reduce the bit rate.

Starting CodeView for a Different Configuration
If you have CodeView configured for local debugging in TOOLS.INI, start
Code View without specifying a program on the command line. This allows you to
change CodeView's configuration before it loads your program. It is recommended
that you configure Code View for remote debugging.

~ To start a remote session from a local configuration:

1. Transfer your program and its DLLs to the target machine.

2. Start the remote monitor on the target machine.

3. On the host machine's command line, start CodeView with the following syntax:

CV IT options]

Chapter 10 Special Topics 373

Do not specify the program's filename or arguments.

Code View starts and displays the Load dialog box. Instead of specifying a
program and its arguments, you must first reconfigure Code View for remote
debugging.

4. Choose Configure Remote. Code View displays the Configure Remote dialog
box. Load the remote transport layer and target execution model, as follows:

a. Choose the TLDICOM.DLL transport layer.

Select the communications port and bit rate for the session. Make sure that
the bit rate is the same on the host and target machines.

b. Choose the execution model for the appropriate target:

• EMDIDl.DLL for debugging an MS-DOS program.

• EMD 1 WO.DLL for debugging a Window-based application.

c. Choose OK.

Code View returns to the Load dialog box.

5. Type the name of your program in the File to Debug text box, or select the name
in the Files List box. Type your program's command-line arguments in the
Arguments text box.

6. Choose OK.

Code View starts, and initiates the remote session.

375

CHAPTER 11

Using Expressipns in CodeView

The arguments to most Code View commands are expressions. A source-level
expression is a reference to a variable or a function call or one or more operations
involving constants, variables, addresses, or function calls. A physical location is a
register, a memory address or range, or a source-code line number that Code View
maps to an address.

To interpret expressions while maintaining its own programming language
independence, Code View uses dynamic-link libraries (DLLs) to look up symbols,
parse, and evaluate expressions. These DLLs are called "expression evaluators."
This release of Code View has two expression evaluators-one for source-level
expressions in Microsoft and ANSI C and the other that handles C++. If you do not
specify an expression evaluator, Code View uses the C++ expression evaluator by
default.

The C and C++ expression evaluators recognize most C operators and provide
additional debugging operators that are not part of the languages. The C++
expression evaluator places certain restrictions on C++ expressions. Although there
is no expression evaluator for the Microsoft Macro Assembler (MASM), the C and
C++ expression evaluators support operators that simulate essential assembly
language operations. You use one of these expression evaluators when debugging
MASMcode.

Common Elements
When debugging, you use a few common elements in arguments to Code View
commands that are independent of the source language or the current expression
evaluator. You often refer to line numbers in source files, and, less often, to lines in
text files. You also specify registers and addresses. Some Code View commands
such as Memory Fill (MF) accept address ranges.

This section presents the ways to specify line numbers, refer to objects in memory,
and use values stored in the processor registers. It also describes the syntax for
memory ranges.

376 Environment and Tools

Line Numbers

Syntax

Line numbers are useful for source-level debugging. In Source mode, you see a
program displayed with each line numbered consecutively. CodeView allows you to
use line numbers to specify the address of code generated for a line or to specify a
certain line in a text file.

[context] .linenumber
[context] @linenumber

The optional context is the context operator used to specify a certain file. When it is
omitted, Code View assumes that the line is in the current source file. The
linen umber specifies the line in the file (numbered starting at 1). Some commands,
such as the Breakpoint Set (BP) command, display an error message if the compiler
does not generate code for the specified line. For more information on the context
operator, see "The Context Operator" on page 382.

With most Code View commands, the two forms are interchangeable because
Code View automatically maps between source lines and code addresses. The
.linenumber form specifies a line offset from the beginning of a file. Use this form
with the View Source (VS) command to display any text file, including files that are
not source files for the program you are debugging. The @linenumber form
specifies the address of the beginning of the code generated by the compiler for the
specified line. Use this form with the Breakpoint Set (BP) command.

Examples
The following example uses the Go (G) command to execute the program from the
current location up to line 100. Since no file is indicated, CodeView assumes the
current source file.

>G @100

The following commands use the View Source (VS) command to display text files
at specific lines as follows: line 10 of the current file, line 301 of EXAMPLE.CPP,
and line 22 ofTESTFILE.TXT.

>VS .10
>VS {.EXAMPLE.CPP}.301
>VS {.TESTFILE.TXT}.22

Registers
Syntax

Chapter 11 Using Expressions in CodeView 377

[@]register

The register is the name of a CPU or p-code register. You can specify a register
name if you want to use the current value stored in the register. Registers are rarely
needed in source-level debugging. However, they are frequently used for lower
level debugging.

When you specify an identifier, CodeView first checks the program's symbol table
for the name. If the debugger does not find the name, it checks to see if the name is
a register. If you want the identifier to name a register regardless of any name in the
symbol table, use an at sign (@) before the register name.

For example, if your program has a symbol called AX, specify @AX to refer to the
AX register. You can avoid this conflict by making sure that your program does not
use register names as identifiers.

Table 11.1 lists the registers known to Code View. The p-code registers are
available when you are debugging p-code. The 32-bit registers are available on
80386 and 80486 machines when you tum the 386 option on.

Table 11.1 Registers

Register Type

8-bit high byte

8-bit low byte

16-bit general purpose

16-bit segment

16-bit pointer

16-bit index

16-bit high word*

16-bit low word*

Quoting*

32-bit general purpose t

32-bit pointer t

32-bit index t

* Available only when debugging p-code

t Available only when 386 option is turned on

Register Names

AH, BH, CH, DH

AL, BL, eL, DL

AX, BX, CX, DX

CS, DS, SS, ES

SP, BP, IP

SI, DI

TH

1L

PQ

EAX, EBX, ECX, EDX

ESP, EBP

ESI, EDI

378 Environment and Tools

Addresses
Syntax

Syntax

Syntax

[context] [symbol]

The context is the context operator and specifies the point at which to begin
searching for symbol. If context is omitted, the current location is used. The symbol
is a label, variable, or function name.

[context][@linenumber]

The linen umber is the number of a line in the specified file. If context is omitted,
Code View assumes the current file. Line numbers start at 1.

[segment:]offset

A full address is a segment and an offset, separated by a colon. The segment and
offset can be numeric expressions, symbols, or register names. A partial address has
only an offset; Code View assumes a default segment address, depending on the
command. Commands that refer to data (Memory Dump, Memory Enter, for
example) assume the value of the data segment (DS) register. Commands that refer
to code (such as Assemble, Breakpoint Set, and Go) assume the value of the code
segment (CS) register.

In source-level debugging, full segment:offset addresses are seldom necessary.
Occasionally they may be convenient for referring to addresses outside the
program, such as display memory.

Examples
In the following example, the Memory Dump Bytes (MOB) command dumps
memory starting at offset address 100. Since no segment is given, the data segment
(the default for Memory Dump commands) is assumed.

>MDB 100

In the following example, the MOB command dumps memory starting at the
address of the element array[[COUNT]].

>MDB array[[cQunt]]

In the following example, the Unassemble (U) command shows a disassembly of
memory starting at a point 10 bytes beyond the symbol 1 abe 1 .

>U label+10

In this example, the MOB command dumps memory at the address having the
segment value in the ES register and the offset address 200 in the current radix.

>MDB ES:200

Chapter 11 Using Expressions in CodeView 379

Address Ranges
Syntax

Syntax

start [end]]

A range is a pair of addresses that defines the boundary of a sequence of contiguous
memory locations. You can specify a range by giving the starting address and the
ending address. In this case, the range covers start to end, inclusively. If a
command takes a range but you do not supply a second address, Code View displays
enough data to fill the current size of the window.

start L length

You can also specify a range by giving its starting point and the number of objects
you want included in the range. This type of range is called a "length range." In a
length range, start is the address of the first object, L indicates that this is a length
range, and length specifies the number of objects in the range.

The size of the object is the size taken by the command. For example, the Memory
Dump Bytes (MDB) command dumps bytes, the Memory Dump Words (MDW)
command dumps words, the Unassemble (U) command unassembles instructions
(which can vary in size), and so on.

Examples
The following example dumps a range of memory starting at the b u f fer symbol.
Since the end of the range is not given, the default size is assumed (128 bytes for
the Memory Dump Bytes (MDB) command in this example).

>MDB buffer

The following example dumps a range of memory starting at b u f fer and ending at
buffer+20 (the point 20 bytes beyond buffer).

>MDB buffer buffer+20

The following example uses a length range to dump the same range of memory as in
the previous example.

>MDB buffer L 20

The following example uses the Memory Fill (MF) command to fill memory with
dollar sign ($) characters starting 30 bytes before rig h t_h a 1 f and continuing to
right_half.

>MF right_half-30 right_half '$'

380 Environment and Tools

Choosing an Expression Evaluator
Code View loads all the expression evaluators that you specify with Eval entries in
TOOLS.IN!. However, you need to load only one expression evaluator for most
debugging tasks. This section discusses how to choose the appropriate one for your
debugging environment.

If you place more than one Eval setting in TOOLS.lNI, Code View loads all the
expression evaluators. You can specify the active evaluator by using the Language
command on the Options menu or with the USE command. By default, Code View
automatically selects the appropriate expression evaluator based on the current
source file's extension. For more information on the Language command, see page
344. For details on the USE command, see page 430. For information on the Eval
entry and complete instructions for configuring CodeView, see "Setting Up
Code View" on page 299.

When you are debugging C or MASM source code, you can normally use either the
C or the C++ expression evaluator. C++ is mostly a superset of C at the expression
level, and both evaluators support operators for debugging MASM code. Therefore,
Code View loads the C++ expression evaluator by default when no other expression
evaluators are specified.

However, you might want to use only the C expression evaluator. If you are
debugging C or MASM source code, it is recommended that you specify only the C
expression evaluator. If your C program uses C++ keywords as variable, function,
or label names, you must use the C expression evaluator. C variable names that are
C++ keywords are not recognized as variables by the C++ expression evaluator.
The C++ expression evaluator requires more memory than the C evaluator.
Therefore, load only the C expression evaluator when running Code View in an
environment with limited memory.

You must use the C++ expression evaluator to debug C++ because the C evaluator
does not recognize C++ expressions or keywords and cannot translate the decorated
names produced by the C++ compiler. If you try to debug a C++ application with
the C expression evaluator, C++ expressions generate an error, and you must use
the decorated symbol names.

Chapter 11 Using Expressions in CodeView 381

Using the C and C++ Expression Evaluators
When you specify the C or C++ expression evaluator, you can use most Microsoft
or ANSI C and many Microsoft C++ expressions as arguments to Code View
commands.

Code View evaluates C and C++ expressions according to the same rules as the
compiler, including operator associativity and order of precedence. There are,
however, a few additional operators and some exceptions to the standard syntax.
See your high-level language documentation for descriptions of C and C++
expression syntax.

Additional Operators
Both expression evaluators support the following additional operators:

• The "context" operator ({ }) to specify the context of a symbol.

• The colon operator (:) to form addresses. The colon operator has the same
precedence as the multiplication, division, and remainder operators.

• The memory operators (BY, WO, and DW) to access memory. Each of the
memory operators has the same precedence, which is the lowest of any operator
recognized by the expression evaluators.

The colon and memory operators are used mostly to debug assembly-language code.
For information about the colon operator, see "Addresses" on page 378. The
memory operators are described in "Memory Operators" on page 389. For more
information about using the context operator, see "The Context Operator" on page
382.

Unsupported Operators
The comma operator (,) and the conditional (?:) operator are not supported by
the C and C++ expression evaluators. The C++ operators. * and ->* are also
unsupported.

The ampersand (&) is not supported as a bitwise AND operator. However, both
expression evaluators recognize the ampersand (&) as an address-of operator. The
C++ expression evaluator also recognizes the ampersand in type casts to create a
reference type. For example, (i n t &) cur I n d e x casts the cur I n d e x variable to
an int reference type.

382 Environment and Tools

Restrictions and Special Considerations
When you are debugging C and C++ programs, the following general restrictions
apply:

• When you use an expression as an argument to a Code View command that takes
multiple arguments, such as the Memory Fill (MF) command, the expression
cannot contain spaces. For example, &count+6 is allowed, but &count + 6 is
interpreted as three separate arguments. Some commands, such as the Display
Expression (?) command, permit spaces in expressions.

• Code View command names are not case sensitive, but C and C++ identifiers are
case sensitive unless you tum off case sensitivity with the commands on the
Options menu or the Options (0) command.

• You cannot call an intrinsic function or an inlined function in a Code View
expression unless it appears at least once as a normal function.

• Code View limits casts of pointer types to one level of indirection. For example,
(cha r *) sym is accepted, but (cha r **) sym is not. An expression such as
c h a r far * (far *) is also not supported.

• The C++ scope operator (::) has lower precedence in Code View expressions
than in the C++ language. In CodeView, its precedence falls between the base
(:» and postfix (++, -) operators and the unary operators (!, &, *, for
example). In C++, it has the highest precedence.

Code View imposes additional restrictions on C++ expressions. These restrictions
and other special considerations when debugging C++ are described in "Using C++
Expressions" on page 386.

The Context Operator
The context operator ({}) is unique to CodeView.1t is not part of the C or C++
languages. You use it to specify the exact context of an expression or line number
that appears in more than one place in your source code. For example, you might
use this operator to specify a symbol defined in an include file when the file is
included more than once or to specify a name in an outer scope that is otherwise
hidden by a local name.

When you use a symbol in a Code View expression, the C and C++ expression
evaluators search for that symbol in the following order:

1. Lexical scope outward. The expression evaluator searches for the symbol
starting with the current block (a series of statements enclosed in curly braces)
and continuing with the enclosing block. The current block is the code
containing the current location (CS:IP address).

2. Function scope. The expression evaluator searches Jor the symbol in the current
function.

Syntax

Chapter 11 Using Expressions in CodeView 383

3. Class scope. If debugging C++ and within the scope of a member function, the
expression evaluator searches symbols of that member function's class and all
its base classes. The C++ expression evaluator uses the normal dominance rules.

4. Current module. The expression evaluator searches all symbols in the current
module.

5. Global symbols. The expression evaluator searches all global symbols in the
program.

6. Other modules. The expression evaluator searches the global symbols in all
other modules in the program.

7. Public symbols in the program.

If the name is not found in any of these places, and the name is not the name of a
register, Code View displays an error message.

The context operator lets you specify the starting point of the search and bypass the
current location. Note that you cannot specify a block because a block has no name.
You cannot specify a class, but you can specify a member function of the class and
let the expression evaluator search outward.

{[function],[module],[dllexe]} [object]

function
The name of a function in the program.

module
The name of a source file. You must specify a source file if the function is
outside the current scope. If the file is not in the current directory, you must
specify the path.

dllexe
The path of a program's DLL or .EXE file.

object
A line number or symbol.

The context operator has the same precedence and associativity as the type-cast
operator. You can omitfunction, module, or dllexe, but you must specify all
leading commas. You can omit trailing commas. If a name contains a comma, you
must enclose the name in parentheses.

384 Environment and Tools

Example
The following example displays the value of the variable Po S, which is local to the
function rna ke_box, which is defined in the source file DRAWBOX. C. Assuming that
there is more than one source file called DRAWBOX. C, the third parameter specifies
that the source file containing the function rna ke_box is the one used by
DISPTXT.DLL.

? {make_box,C:\TREE1\DRAWBOX.C,C:\TREE2\DISPTXT.DLL}Pos

Numeric Constants
Numbers used in Code View commands represent integer constants. They are
expressed in octal, hexadecimal, or decimal radix; the default is the current radix.
The default input radix for the C expression evaluator is decimal. However, you can
use the Radix (N) command to specify a different radix, as explained on
page 444. Code View displays the current radix in the lower-right comer of the
status bar.

To override the current radix, you can use the C and C++ syntax for entering a
constant of a different radix. In addition, Code View supports the Ondigits syntax to
specify decimal numbers independently of the current radix.

The following table summarizes the syntax for different radixes:

Syntax

digits

Odigits

Ondigits

Oxdigits

Radix

Current radix

Octal (base 8)

Decimal (base 10)

Hexadecimal (base 16)

When hexadecimal is the current radix, it is possible to enter a value that could be
either a symbol or a hexadecimal number. Code View resolves the ambiguity by
first searching for a symbol with that name. If no symbol is found, the value is a
number. If you want to enter a number that is the same as a symbol in your
program, use the explicit hexadecimal format (Oxdigits).

For example, if the program contains a variable named abe and you enter abe,
Code View interprets the argument as the symbol. If you want to enter it as a
number, enter it as 0xa be.

Chapter 11 Using Expressions in CodeView 385

String Literals
Syntax "string"

Strings can be specified as expressions in the C format. You can use all ANSI C
escape sequences within strings. For example, double quotation marks within a
string are specified with the escape sequence \ " .

A string that you specify in a Code View command is volatile, and you cannot rely
on its existence for longer than the execution of the command. This means that you
can pass a string to a function, but you cannot assign a string to a character pointer
variable. For example, the command:

? pChar = "string"

is not valid. However, you can change a pointer to refer to a different string in your
program. Also, if the pointer addresses a section of memory large enough to
accommodate the string, you can use the Memory Enter (ME) command to fill the
memory with a new string.

Symbol Formats
For modules that are compiled with full Code View debugging information (/Zi), the
expression evaluators automatically translate the decorated names into source form.
You specify and view names as they appear in your source. Therefore, debugging is
easier when all modules in the program are compiled with full Code View
debugging information. For large programs, however, you may need to compile
some modules to include only line numbers and public symbols (/Zd).

Code View accepts and displays public symbol names as "decorated" names. The
decorated name is the form of the name in the object code produced by the
compiler. Public symbols are names in library routines or names in modules
compiled without CodeView information (that is, compiled with the /Zd option, or
compiled without any line or symbolic information and linked with the JCO option).

To get a listing of all names in their decorated and undecorated forms, specify the
LINK /MAP:FULL option.

Name decoration is the mechanism used to enforce type-safe linkage. This means
that only the names and references with precisely matching spelling, case, calling
convention, and type are linked together.

Names declared with the C calling convention (either implicitly or explicitly using
the _ cdecl keyword) begin with an underscore (_). For example, the function
rna in can be displayed as _rna in. Pascal names are converted to uppercase and
have no prefix. Names declared as _fastcall are converted to uppercase and begin
with an at sign (@).

386 Environment and Tools

For C++, the decorated name encodes the type of the symbol in addition to the
calling convention. This form of the name can be long and difficult to read. The
name begins with at least one question mark (?). For C++ functions, the decoration
includes the function's scope, the types of the function's parameters, and the
function's return type.

Using C++ Expressions
The C++ expression evaluator accepts almost all C++ expressions, with some
restrictions and some additions. This section describes these special considerations.

Access Control
You can examine any member of a class object including base classes and
embedded member objects. In CodeView, all members are available without regard
to access control (public, protected, or private visibility). For example, ifmyDate
has a private data member named month, you can examine it with the following
command:

>? myDate.month
3

Ambiguous References

Inheritance

If an expression makes an ambiguous reference to a member name, you must use
the class name to qualify it. For example, suppose that class C inherits from both
class A and class B, and that A and B define a member function named ex pan d. If
C t h i n 9 is an instance of class C, the following expression is ambiguous:

Cthing.expand()

The following expression resolves the ambiguity and uses B' s ex pan d function:

Cthing.B::expand()

The C++ expression evaluator applies normal dominance rules regarding member
names to resolve ambiguities.

When you display a class object that has virtual base classes, the members of the
virtual base class are displayed for each inheritance path, even though only one
instance of those members is stored. You can access members of an object through
a pointer to the object, and you can call virtual functions through a pointer.

Chapter 11 Using Expressions in CodeView 387

For example, when the Emp 1 oyee class defines a virtual function that is named
computePay, which is redefined in the class that inherits from Employee, you can
call computePay through a pointer to Emp 1 oyee and have the proper function
executed:

>? empPtr->computePay()

You can cast a pointer to a derived class object into a pointer to a base class object;
the reverse conversion is not permitted. For example, if the class Lis t is derived
from the class Colle c t ion, the cast (C 0 1 1 e c t ion *) p Lis t C u s tom e r is
valid, but the cast (Lis t *) pC 0 1 1 e etC 1 i en t s is illegal.

Constructors, Destructors, and Conversions
You can set a breakpoint on a class's constructor or a destructor (unless they
are inline functions). The breakpoint is taken whenever an object of that class is
created or destroyed. You can specify a breakpoint that halts execution so that
you can examine your program's status. You can also specify a breakpoint that
executes a command, such as displaying a message in the Command window or
incrementing a counter, and then continues execution. This technique is especially
useful for monitoring the creation and destruction of temporary objects created by
the compiler.

You cannot call a constructor or destructor for an object, either explicitly or
implicitly, by using an expression that calls for construction of a temporary object.
For example, the following illegal command explicitly calls a constructor and
results in an error message:

>? Date(2. 3. 1985)

You cannot call a conversion function if the destination of the conversion is a class
because such a conversion involves the construction of an object. For example,
suppose that my F rae t ion is an instance of the F rae t ion class, which defines the
conversion function operator Fi xedPoi nt. The following command results in
an error:

>? (FixedPoint)myFraction

However, you can call a conversion function if the destination of the conversion is a
built-in type. For example, suppose that the F rae t ion class defines a conversion
function named 0 per a tor flo at. The following command is legal:

>? (float)myFraction

You can also call functions that return an object or that declare local objects.

388 Environment and Tools

Overloading

You cannot call the new or delete operators. The command

? pDate = new Date(2,3,1985)

is illegal and Code View displays an error message.

You can call overloaded functions as long as there exists an exact match or a match
that does not require a conversion involving the construction of an object. For
example, if the cal c function takes a Fracti on object as a parameter, and the
F r act ion class defines a single-argument constructor that accepts an integer, the
following command results in an error:

>? calc(23)

Even though a legal conversion exists to convert the integer into the F r act ion
object that the cal c function expects, such a conversion involves the creation of an
object and is not supported.

Operator Functions
Operator functions for a class can be invoked implicitly or explicitly. For example,
suppose that my F r act ion and you r F r act ion are instances of a class that
defines operator+. You can display the sum of those two objects using expression
syntax:

>? myFraction + yourFraction

You can also use the functional notation to call an operator function:

>? myFraction.operator+(yourFraction)

If an operator function is defined as a friend, you can call it implicitly using the
same syntax as for a member function, or you can invoke it explicitly, as follows:

>? operator+(myFraction, yourFraction)

Note that operator functions, like ordinary functions, cannot be called with
arguments that require a conversion involving the construction of an object.

Chapter 11 Using Expressions in CodeView 389

Debugging Assembly Language
MASM versions 5.0 and later provide type and size infonnation for CodeView.
With this infonnation, Code View can correctly evaluate expressions derived from
assembly code (except for arrays, which require a different syntax, as discussed
later in this section).

Code View does not have an assembly-language expression evaluator. If you are
using Microsoft CjC++, you can use either the C or C++ expression evaluators for
debugging assembly language The C and C++ expression evaluators provide
special operators to simulate essential MASM operations.

You cannot always specify an expression in Code View exactly as it would appear
in assembly-language source code. You have to write an equivalent Code View
expression. This section describes the Code View equivalents for MASM
expressions.

Memory Operators

Syntax

A memory operator is a unary operator that returns the result of a direct memory
operation. The memory operators are BY, WO, and DW. The C and C++
expression evaluators add the memory operators to the operators in the C and C++
languages. The memory operators are used mainly to debug assembly-language
code.

{BY I WO I DW} address

The BY operator returns a short integer that contains the first byte at address. This
operator simulates BYTE PTR.

The WO operator returns a short integer that contains the value of the word (two
bytes) at address. This operator simulates the Microsoft Macro Assembler WORD
PTR operation. The DW operator returns a long integer that contains the value of
the first four bytes at address. This operator simulates DWORD PTR.

The examples that follow use the Display Expression (?) command, which is
described on page 452. The x fonnat specifier used in some of these examples
causes the result to be displayed in hexadecimal.

390 Environment and Tools

Examples
The following example displays the first byte at the address of the variable s urn.

>? BY sum
101

The following example displays the byte pointed to by the BP register with a
displacement of 6.

>? BY bp+6,x
0042

The following example displays the first word at the address of the variable
new_set.

>? WO new_set
13120

The following example displays the word pointed to by the stack pointer (the last
word pushed onto the stack). Because the stack pointer (SP) offset register is used
with no segment address, the stack segment (SS) register is assumed.

>? WO sp,x
2F38

The following example displays the doubleword at the address of s urn.

>? ow sum
l32120365

The following example displays the doubleword pointed to by the SI register.
Because the SI index register is used without specifying a segment address, the DS
register is assumed.

>? ow s;,x
3F880000

Register Indirection
The C expression evaluator does not recognize brackets ([]) to indicate a memory
location pointed to by a register. Instead, you use the BY, WO, and DW operators
to reference the corresponding byte, word, or doubleword values.

MASM Expression

BYTE PTR [bx]

WORD PTR [bp]

DWORD PTR [bp]

Code View Equivalent

BY bx

WO bp

OW bp

Chapter 11 Using Expressions in CodeView 391

Register Indirection with Displacement
To perform based, indexed, or based-indexed indirection with a displacement, use
the BY, WO, and DW operators with addition.

MASM Expression

BYTE PTR [di+6]

BYTE PTR Test[bx]

WORD PTR [si][bp+6]

DWORD PTR [bx][si]

Address of a Variable

Code View Equivalent

BY di+6

BY &Test+bx

WO si+bp+6

OW bx+si

Use the C address-of operator (&) instead of the MASM OFFSET operator.

MASM Expression Code View Equivalent

OFFSET Var &Var

PTR Operator
Use type casts or the BY, WO, and DW operators with the address-of operator (&)
to replace the assembly-language PTR operator.

MASM Expression Code View Equivalents

BYTE PTR Va r BY &Var
(unsigned char)&Var

WORD PTR Var WO &Var
*(unsigned *)&Var

DWORD PTR Var OW &Var
(unsigned long)&Var

392 Environment and Tools

Strings
Add the string format specifier • s after the variable name.

MASM Expression Code View Equivalent

String String,s

Because C strings end with a null (ASCII 0) character, CodeView displays all
characters from the first byte of the variable up to the next null byte in memory
when you request a string display. If you intend to debug an assembly-language
program, and you want to view strings in the Watch window or with the Display
Expression (?) command, you should delimit string variables with a null character.
You can also view null-terminated or unterminated strings in a Memory window or
with the Memory Dump ASCII (MDA) command.

Array and Structure Elements
Prefix an array name with the address-of operator (&) and add the desired offset.
The offset can be an expression, number, register name, or variable.

The following examples (using byte, word, and doubleword arrays) show how to do
this.

MASM Expression

Stri ng[12]

aWords [bx+di]

aOWords[bx+4]

Code View Equivalents

BY &String+12
*(&String+12)

WO &aWords+bx+di
(unsigned)(&aWords+bx+di)

OW &aOWords+bx+4
(unsigned long)(&aOWords+bx+4)

393

CHAPTER 12

Code View Reference

This chapter describes the Code View Command-window command format, explains
the common items in Code View expressions, and summarizes all Command
window commands in a convenient table. The final section describes each command
in detail. The nonalphabetic commands appear at the end of the chapter.

Command-Window Command Format
Syntax

Parameters

Remarks

command [arguments] [; command [arguments]]

command
A command name. The command is not case sensitive; any combination of
uppercase and lowercase letters can be used.

arguments
Expressions that represent values or addresses used by the command. Source
level expressions used as arguments mayor may not be case sensitive,
depending on the current expression evaluator. The first argument can be placed
immediately after command with no space separating the two fields.

If a command takes more than one argument, you must separate the arguments
with spaces.

Additional commands may be specified on the same line. A semicolon (;) must
separate each command from the next.

CodeView Expression Reference
When debugging, you use a few common elements in arguments to Code View
commands that are independent of the source language or the current expression
evaluator. You often refer to line numbers in source files and, less often, to lines in
text files. You also specify registers and addresses. Some Code View commands
such as Memory Fill (MF) accept address ranges.

394 Environment and Tools

This section presents the ways to specify line numbers, refer to objects in memory,
and use values stored in the processor registers. It also describes the syntax for
memory ranges. Moreover, the context operator, which you use to specify the point
at which to begin searching for a symbol, is summarized. For detailed information
on the context operator and Code View expressions, see Chapter 11.

Line Numbers
Syntax

Description

Examples

IT context]@linenumber
IT context] .linenumber

Line numbers are useful for source-level debugging. They correspond to the lines in
source-code files. In source mode, a program is displayed with each line numbered
sequentially. The CodeView debugger allows you to use these numbers to access
parts of a program.

The memory address of the code corresponding to a source-line number is specified
as:

@linenumber

The actual file line number is:

IT context] .linenumber

Code View assumes that the source line is in the current source file. To specify a
source line in a different file, you must specify the line's context using the context
operator:

{,file}@ linenumber

Code View displays an error message if file does not exist or no source line exists
for linen umber.

The following example uses the View Source (VS) command to display code
starting at source line 100. Since no file is indicated, the current source file is

_ assumed.

>VS @100

This next example uses VS to display source code starting at line 301 of the file
DEMO.C.

>VS {.demo.c}.301

Registers
Syntax

Chapter 12 CodeView Reference 395

[@]register

A register name represents the current value stored in the register. Table 12.1
summarizes the register names known to the Code View debugger.

Table 12.1 Register Names

Register Type

8-bit high byte

8-bit low byte

16-bit general purpose

16-bit segment

16-bit pointer

16-bit index

16-bit high word*

16-bit low word*

Quoting*

32-bit general purposet

32-bit pointert

32-bit indext

Register Names

AH, BH, CH, DH

AL, BL, CL, DL

AX, BX, CX, DX

CS, DS, SS, ES

SP, BP, IP

SI, DI

TH

1L

PQ

EAX, EBX, ECX, EDX

ESP,EBP

ESI, EDI

*Available only when debugging p-code

t Available only when 386 option is turned on

To force a symbol to represent a register, prefix the symbol with an at sign (@). For
example, to make AX represent a register rather than a variable, use @AX.

396 Environment and Tools

Addresses
Syntax

Description

IT context]@linenumber
IT context] IT segment:] offset
register: offset
IT contextllfunction
IT context] symbol

If only an offset is specified, the segment is detennined by the command in which
the address appears. Commands that refer to data (Memory Dump, Memory Enter)
use the segment in the DS register. Commands that refer to code (Assemble,
Breakpoint Set, Go, Unassemble, and View Source) use the segment in the CS
register.

The Display Expression (?) and Add Watch Expression (W?) commands interpret
numeric arguments as constants rather than as offsets. However, if you cast the
argument to a pointer, as in

W? (char *)0

the argument is treated as an offset from DS.

Address Ranges
Syntax

Description

start end
start L count

An address range is a pair of memory addresses that specify the higher and lower
boundaries of contiguous memory. You can specify a range in two ways:

• Give the starting and ending addresses:

start end

The range covers start to end, inclusively. If you don't supply an ending
address, Code View assumes the default range. Each command has its own
default range; the most common default range is 128 bytes.

• Give the starting address and the number of objects you want included in the
range:

start L count

Examples

Chapter 12 CodeView Reference 397

This type of range is called an "object range." The starting address is the
address of the first object in the list, and count specifies the number of objects in
the range. The way the size of an object is measured depends on the command.
For example, the Memory Dump Bytes (MDB) command has byte objects, the
Memory Dump Words (MDW) command has words, the Unassemble (U)
command has instructions, and so on.

This example dumps a range of memory starting at the symbol b u f fer. Since the
end of the range is not given, the default size (128 bytes for the Memory Dump
Bytes command) is assumed.

MOB buffer

The following example dumps 21 bytes starting at b u f fer and ending at
buffer+20 (the point 20 bytes beyond buffer).

MOB buffer buffer+20

The following example uses an object range to dump a range of memory. The L
indicates that the range is an object range, and 20 indicates the number of objects in
the range.

MOB buffer L 20

Here, each object has a size of 1 byte since that is the size of objects dumped by the
Memory Dump Bytes (MDB) command.

Context Operator ({})
Syntax

Parameters

{ [function] , [module] , [dllexe] } [object]

function
The name of a function or procedure in the program. Case is significant for case
sensitive languages.

module
The name of a source file. If the file is not in the current directory, you must
specify the path.

dllexe
The full path of a dynamic-link library (DLL) in the program or the program's
.EXE file.

object
A variable name, line number, or expression.

398 Environment and Tools

Description

Example

The context operator specifies the exact starting point to search for a symbol or
line. You apply it the same way as a type cast is applied in C. When you do not use
the context operator, the current context (CS:IP) is used.

You can omit/unction, module, or dll, but all leading commas must be given.
Trailing commas can be omitted. If a name contains a comma, the name must be
enclosed in parentheses.

For complete information on the context operator, see "The Context Operator" on
page 382.

This example displays the value of the variable Po S, which is local to the function
rna ke box defined in the source file BOXDRA W.C.

? {make_box,C:\PROJ\boxdraw.c}Pos

CodeView Command Overview
Table 12.2 summarizes the CodeView Command-window commands. The next
section describes each command in detail.

Table 12.2 Code View Command Summary

Command Name Description

A Assemble Inserts assembly-language instructions

BC Breakpoint Clear Clears one or more breakpoints

BD Breakpoint Disable Disables one or more breakpoints

BE Breakpoint Enable Enables one or more breakpoints

BL Breakpoint List Lists all breakpoints

BP Breakpoint Set Sets a breakpoint

E Animate Executes the program in slow motion

G Go Executes the program

H Help Provides Help information

I Port Input Reads a byte from a hardware port

K Stack Trace Displays active routines K command

L Restart Restarts the program

MC Memory Compare Compares two blocks of memory byte by byte

MD Memory Dump Displays sections of memory in the Command
window in various formats

ME Memory Enter Modifies memory

MF Memory Fill Fills a block of memory

Chapter 12 CodeView Reference 399

Table 12.2 CodeView Command Summary (colltinued)

Command Name Description

MM Memory Move Copies one block of memory to another

MS Memory Search Scans memory for specified byte values

N Radix Changes current radix for entering arguments
and displaying values

0 Options Views or sets options

0 Port Output Outputs a byte to a hardware port

P Program Step Executes the current line and steps over
functions

Q Quit Terminates Code View

R Register Displays the values of registers and flags and
optionally changes them

T Trace Executes the current line and traces into
functions

T Trace Speed Specifies speed for the Animate command

U Unassemble Displays assembly-language instructions

USE Use Language Specifies the active expression evaluator

VM View Memory Displays sections of memory in a Memory
window in various formats

VS View Source Displays source code in varying formats in a
Source window

W? Add Watch Sets an expression to be watched

WC Delete Watch Deletes one or more watch expressions

WDG Windows Display Displays memory objects in the global heap
Global Heap

WDL Windows Display Displays memory objects in the local heap
Local Heap

WDM Windows Display Displays a list of the applications and DLL
Modules modules known by Windows

WGH Windows Dereference Dereference a global handle
Global Handle

WKA Windows Kill Terminates the current task by simulating a fatal
Application error

WL List Watch Lists current watch expressions

WLH Windows Dereference Dereference a local handle
Local Handle

X Examine Symbols Displays the addresses and types of symbols

Shell Escape Runs an MS-DOS shell

400 Environment and Tools

Table 12.2 CodeView Command Summary (continued)

Command

"

*

7

<

>

=

?

??

@

Name

Pause

Tab Set

Comment

Current Location

Search

8087

Delay

Redirect Input

Redirect Output

Redirect Input and
Output

Display Expression

Quick Watch

Redraw

Screen Exchange

Description

Interrupts execution of redirected commands and
waits for keystroke

Sets number of spaces for each tab character

Displays explanatory text during redirection

Displays the current location

Searches for a regular expression in the source

Shows the values of the 8087 or emulator
registers and flags

Delays execution of redirected commands

Reads input from specified device

Sends output to specified device

Sends output and reads input from specified
device

Evaluates and displays expressions or symbols

Displays variables and data structures in a dialog
box

Redraws the screen

Exchanges the Code View and output screens

CodeView Command Reference
The rest of this chapter is an alphabetical reference to all Code View Command
window commands. Nonalphabetic commands such as the Pause (") command are
listed after the alphabetic reference.

A (Assemble)
Syntax

Parameter

A [address]]

address
Begins assembly at this address. If address is not given, assembly begins at the
current assembly address (see following).

Description

Entering
Instructions

Remarks

Chapter 12 CodeView Reference 401

The Assemble (A) command assembles 8086-family (8086/87/88,80186/286,
80287/387, and 80286/386/486 unprotected) instruction mnemonics and places the
resulting instruction code into memory at a specified address. The only 8086-family
mnemonics that cannot be assembled are 80386/486 protected-mode mnemonics. In
addition, the Code View debugger can assemble 80286 instructions that use the 32-
bit 386/486 registers.

If address is specified, the assembly starts at that address; otherwise, the current
assembly address is assumed.

The assembly address is normally the current address or the address pointed to by
CS:IP. However, when you use the Assemble command, the assembly address is set
to the address immediately following the last assembled instruction.

When you enter any command that executes code (Trace, Program Step, Go, or
Animate), the assembly address is reset to the current address.

Use the following procedure to assemble instructions:

1. Type the Assemble (A) command in the command window and press ENTER.

Code View displa~s the assembly address and waits for you to enter a new
instruction.

2. Type a mnemonic and press ENTER. Code View assembles the instruction into
memory and displays the next available address. If an instruction you enter
contains a syntax error, Code View displays the message:

A Syntax error

Then CodeView redisplays the current assembly address and waits for you to
enter a correct instruction. The caret (1\) in the message points to the first
character that Code View could not interpret.

3. Continue entering new instructions until you have assembled all the instructions
you want.

4. Press ENTER without entering any mnemonic to conclude assembly and return to
the Code View prompt.

Consider the following principles when you enter instruction mnemonics:

• The far-return mnemonic is RETF.

• String mnemonics must explicitly state the string size. For example, MOVSW
must be used to move word strings and MOVSB must be used to move byte
strings.

• Code View automatically assembles short, near, or far jumps and calls,
depending on byte displacement to the destination address. These may be
overridden with the NEAR or FAR prefix. The NEAR prefix can be abbreviated
to NE, but the FAR prefix cannot be abbreviated.

402 Environment and Tools

Example

• Code View cannot detennine whether some operands refer to a word memory
location or to a byte memory location. In these cases, the data type must be
explicitly stated with the prefix WORD PTR or BYTE PTR. Acceptable
abbreviations are WO and BY.

• Code View cannot detennine whether an operand refers to a memory location or
to an immediate operand. Code View uses the convention that operands enclosed
in brackets ([TI) refer to memory.

• Code View supports all fonns of indirect register instructions.

• All instruction-name synonyms are supported. If you assemble instructions and
then examine them with the Unassemble (U) command, Code View may show
synonymous instructions, rather than the ones you have assembled.

• Do not assemble and execute 8087/287 instructions if your system is not
equipped with a math coprocessor chip.

The effects of the Assemble command are temporar or. Any instructions that you
assemble are lost as soon as you exit the program.

The instructions you assemble are also lost when you restart the program with the
Restart command. The original code is reloaded, possibly writing over parts of
memory that you have changed.

This example places two new instructions in a program, replacing any instructions
already there.

>a 0x47:0xb3e
0001:0B3E mov aX,bx
0001:0B40 mov si ,0x9ce
0001:0043

You can modify a portion of code for testing, as in the example, but you cannot
save the modified program. You must modify your source code and recompile.

BC (Breakpoint Clear)
Syntax

Parameters

BC [list I start-end I *TI

list
List of breakpoints to be removed, with breakpoint numbers separated by
spaces. A number identifies each breakpoint. You can use the Breakpoint List
(BL) command to display currently set breakpoints and their numbers.

Description

Mouse and
Keyboard

Examples

Chapter 12 CodeView Reference 403

start-end
Range of breakpoints to clear. The command clears breakpoints numbered from
start to end, inclusive.

*
Removes all currently set breakpoints.

The Breakpoint Clear (BC) command permanently removes one or more previously
set breakpoints.

In addition to typing the BC command, you can clear breakpoints with the
following shortcuts:

• From the Data menu, choose Edit Breakpoints.

• Double-click the line containing the breakpoint.

a Using the keyboard, move to the line containing the breakpoint, and press F9.

The following example removes breakpoints 0, 4, and 8:

>BC 0 4 8

The following example removes all breakpoints:

>BC *

The following example removes breakpoints 4, 5, 6, and 7:

>BC 4-7

BO (Breakpoint Disable)
Syntax

Parameters

BD [list I start-end I *]

list
List of breakpoints to be disabled, with breakpoint numbers separated by spaces.
A number identifies each breakpoint. You can use the Breakpoint List (BL)
command to display currently set breakpoints and their numbers.

start-end

*

Range of breakpoints to disable. The command disables breakpoints numbered
from start to end, inclusive.

Disables all currently set breakpoints.

404 Environment and Tools

Description

Mouse and
Keyboard

Examples

The Breakpoint Disable (BD) command temporarily disables one or more existing
breakpoints. The breakpoints are not deleted; they can be restored at any time using
the Breakpoint Enable (BE) command.

A disabled breakpoint can be cleared using the Breakpoint Clear (Be) command.

In the Source window, enabled breakpoints are highlighted. However, the
highlighting disappears once the breakpoint is disabled.

As an alternative to typing the BD command, choose Edit Breakpoints from the
Data menu. There is no keyboard shortcut.

The following example temporarily disables breakpoints 0, 4, and 8:

>BD 0 4 8

The following example temporarily disables all breakpoints:

>BD *

The following example disables breakpoints 4,5,6, and 7:

>BD 4-7

BE (Breakpoint Enable)
Syntax

Parameters

Description

Mouse and
Keyboard

BE [list I start-end I *]

list
List of breakpoints to be enabled, with breakpoint numbers separated by spaces.
A number identifies each breakpoint. You can use the Breakpoint List (BL)
command to display currently set breakpoints and their numbers.

start-end

*

Range of breakpoints to enable. The command enables breakpoints numbered
from start to end, inclusive.

Enables all currently disabled breakpoints.

The Breakpoint Enable (BE) command enables breakpoints that have been
temporarily disabled with the Breakpoint Disable (BD) command.

In addition to typing the BE command, you can also enable breakpoints from the
Data menu by choosing Edit Breakpoints. There is no keyboard shortcut.

Examples

Chapter 12 CodeView Reference 405

The following example reenables breakpoints 0, 4, and 8:

>BE 0 4 8

The following example enables all disabled breakpoints:

>BE *

The following example enables breakpoints 4,5,6, and 7:

>BE 4-7

BL (Breakpoint List)
Syntax

Description

Mouse and
Keyboard

BL

The Breakpoint List eBL) command lists current information about all breakpoints.

For each breakpoint, the command displays the following:

• The breakpoint number.

• The breakpoint status, where "E" is for enabled, "D" is for disabled, and "V" is
for "virtual." A virtual breakpoint is a breakpoint set in an overlay or a DLL
that is not currently loaded. A virtual breakpoint may be enabled or disabled.

• The address, function, file, and line number where the breakpoint is set.

• The expression, pass count, and break commands, if set.

In addition to typing the BL command, you can also list breakpoints from the Data
menu by choosing Edit Breakpoints. There is no keyboard shortcut.

BP (Breakpoint Set)
Syntax

Parameters

BP [address] [[=expression [/Rrange]] I [?expression]] [!ppasscount]
[/C"commands"] [/Mmsgnamelmsgclass [/D]]

address
An expression giving the address at which to set the breakpoint. If omitted, sets
a breakpoint on the current line, unless =expression is also specified.

expression
Breaks program execution when the value of expression changes. If address is
given, the expression is checked for changes only at that address. The expression
is usually the name of a variable.

406 Environment and Tools

Description

IRrange
Watches all addresses in the given range for changes. The range is determined
by multiplying range with the size of expression.

? expression
Breaks program execution when expression becomes true (nonzero). If address
is given, the breakpoint expression is evaluated only at that address. You cannot
specify both =expression and? expression in the same breakpoint. Also, you
cannot have more than one local context in expression. If the expression
contains spaces, it must be enclosed in double quotation marks ("expression").

IPpasscount
Specifies the first time the breakpoint is to be taken. For example, if passcount
is 5, the breakpoint will be ignored the first four times it is encountered and
taken the fifth time. From that point on, the breakpoint is always taken until the
program is restarted.

IC"commands"
A list of command-window commands to be executed when the breakpoint is
encountered. The commands must be enclosed in double quotation marks (")
and separated by semicolons (;).

IMmsgname
(CVW only) Breaks program execution whenever the specified message is
received. When /D is also specified, the message received is displayed, but the
breakpoint is not taken.

IMmsgclass
(CVW only) Breaks program execution whenever a message belonging to one of
the specified classes is received. When /D is also specified, the message
received is displayed but the breakpoint is not taken. Can be one or more of the
following:

Message Class Type of Windows Message

m Mouse

w Window management

n Input

s System

Initialization

c Clipboard

d DDE

z Nonclient

The Breakpoint Set (BP) command creates a breakpoint at a specified address.
Whenever a breakpoint is encountered during program execution, the program halts
and waits for a new command.

Chapter 12 CodeView Reference 407

You can set breakpoints at source lines, functions, explicit addresses, or labels in
any module of a program. If no arguments are given, BP sets a breakpoint at the
current line.

Windows Breakpoints
In Code View for Windows (CVW), use of the 1M options requires that address be
the name or address of a window function ("winproc").

When the ID option is specified, CVW displays each message in the Command
window as it is sent to the application's window function. The message is displayed
in the following format:

HWND:wh wParm:wp IParm:lp msg:msgnum msgname

where wh is the window handle, wp is the message's word-sized parameter, lp is
the message's long-sized parameter, msgnum is is the message number, and
msgname is the name of the message. The following is a typical display:

HWND:lc00 wParm:0000 lParm:000000 msg:000F WM_PAINT

The Windows operating system breakpoints appear in the list of breakpoints and
may be enabled, disabled, and cleared with the usual Code View breakpoint
commands.

Breakpoint Options
For any breakpoint, you can also specify:

• A pass count to tell Code View how many times to pass over the breakpoint.

• Commands to be executed after the program reaches the breakpoint.

Breakpoints are numbered, beginning with the number O. Each new breakpoint is
assigned the next available number. Breakpoints remain in memory until you
explicitly delete them. Breakpoints are saved in the CURRENT.STS file when you
exit Code View and are restored the next time you debug the program.

Types of Breakpoints
You can set breakpoints to break execution when any of the following conditions
are true:

• The program reaches a given source line, function, label, or address.

• An expression becomes true (nonzero). The Code View expression evaluator
evaluates this type of expression based on the the currently visible function.

• The value of an expression or memory range changes. Code View references this
type of expression by memory location. As a result, the original value of the
expression is checked no matter which function is currently visible.

408 Environment and Tools

Mouse and
Keyboard

Examples

In addition to typing the BP command, you can also set a breakpoint with the
following shortcuts:

• From the Data menu, choose Set Breakpoint.

• Double-click a source line.

• Move the cursor to a source line, and press F9.

Command

BP @47

BP 0x23f0:3c84

BP =curr_sum

BP =myint IR8

BP @47 =int_array[[0JJ IR20

BP {.mymod}@47 ?myptr==0

BP stats IP10 IC"?counter+=l"

Action

Set a breakpoint at line 47 of the currently
executing module.

Set a breakpoint at address 23FO:3C84.

Halt execution whenever the value in cur r _s urn
changes.

Halt execution whenever a change occurs in the
range of eight integers that begins at myi nt. If
my i ntis a 2-byte value, the range is 16 bytes in
size.

Set a breakpoint at line 47 of the currently
executing module. The breakpoint will be taken at
that line if any 20 elements of the array
i nt_a rray changes. Since i nt_a rray is a 2-
byte value, the range is 40 bytes in size.

Set a breakpoint at line 47 of the module mymod.
The breakpoint is taken only if my p t r is zero.

Set a breakpoint at the address of the function
stats but ignore the breakpoint the first nine
times the function is executed. On the tenth and
later call to s tat s, stop execution, and use the
Display Expression (?) command to increment the
value of counter. If counter is set to 0 when
the breakpoint is set, co u n t e r can be used to
count the number of times the breakpoint is taken.

E (Animate)
Syntax

Description

E

The Animate (E) command traces through a program one step at a time, with a
user-selectable pause between each step, beginning at the current instruction. In the
Source mode, Code View pauses after each line of source text. In the Mixed or
Assembly-only mode, Code View pauses after each instruction. The Animate
command allows you to see how execution proceeds in your program.

Mouse and
Keyboard

G (GO)
Syntax

Parameters

Description

Mouse and
Keyboard

Chapter 12 CodeView Reference 409

You can set the time the command pauses with the Trace Speed (T) command or by
choosing Trace Speed from the Options menu.

To begin animating, you can also choose Animate from the Run menu. There is no
keyboard shortcut.

G [address]

address
Address at which to stop execution.

The Go (G) command starts execution at the current address. If address is given,
Code View executes the program until it reaches that address. If the specified
address is never reached, the program executes until it terminates. If no address is
given, CodeView executes the program until it terminates, until it reaches a
breakpoint, or until you interrupt execution.

When CodeView reaches the end of the program in MS-DOS, it displays a message
with the format:

Program terminated normally(numbe~

The number is the program's return value (also known as the "exit" or "errorlevel"
code). This is the value in the AX register at the time your program terminates. For
example, the C function call

exitCl) :

places 1 in the AX register and terminates the program.

In addition to typing the G command, you can start execution using the following
shortcuts:

• Click the <F5=Go> button in the status bar.

• Press F5.

To execute up to a certain location, you can use the following shortcuts:

• Click the right mouse button on the source line.

• Move the cursor to the source line and press F7.

410 Environment and Tools

Example The following example executes up to the label pani c_exi t in the main function.

H (Help)
Syntax

Parameter

Description

Mouse and
Keyboard

Because labels are always local to a procedure, you must specify the context
(procedure or function name) if the label is not in the current function.

>G {main}panic_exit

H [topic]

topic
Provides help on topic, which can be a command-window command. If no topic
is given, the table of contents is displayed.

The Help (H) command displays help information in a separate window. You can
get help on Code View commands, Code View error messages, and any other topic
within the Microsoft Advisor Help system.

In addition to typing the H command, you can get help using the following
shortcuts:

• With the right mouse button, click the keyword to display the corresponding
Help topic. This method works in all Code View windows except the Source,
Memory, and 8087 windows.

• Move the cursor to a topic and press Fl to display the corresponding Help topic.

• Choose one of the commands on the Help menu.

I (Port Input)
Syntax

Parameter

Description

1 port

port
A 16-bit port address.

The Port Input (I) command reads and displays a byte from a specified hardware
port. The specified port can be any 16-bit address. Code View displays the byte read
in the Command window.

Example

Chapter 12 CodeView Reference 411

This command is often used in conjunction with the Port Output (0) command. Use
this command to write and debug hardware-specific programs in Assembly mode.

Note This command may affect the status of the hardware using the port.

The following example reads the input port numbered 2F8 and displays the result,
E8. You can enter the port address using any radix, but the result is always
displayed in current radix.

>I 2F8 ;* hexadecimal radix assumedE8

K (Stack Trace)
Syntax

Description

Mouse and
Keyboard

K

The Stack Trace (K) command displays functions that have been called during
program execution, including their arguments in the Command window. It also
displays the address of the instruction that will be executed when control returns to
each function.

Output from the Stack Trace command gives you the following information:

a Functions listed in the reverse order in which they were called.

• Arguments to each function, listed in parentheses.

• The address or line number of the next instruction to be executed when control
returns to that function.

Thus, the current function is listed first, and the address of the next instruction to be
executed is the current CS:IP address. At the bottom is the main function of your
program and the address of the next instruction to be executed when execution
returns to the main function.

For each function, the command shows argument values in the current radix in
parentheses after the function name.

You can use the address displayed for each line of the stack trace as an argument to
the View Source (VS) or Unassemble (U) commands to see the code at the point
where each function is called.

In addition to typing the (K) command, you can use the Calls menu to see the stack
trace.

412 Environment and Tools

Remarks The term "stack trace" is used because as each function is called, its address and
arguments are stored on or pushed onto the program stack. Code View traces
through the program stack to find out which functions were called. With C
programs, the function main is always at the bottom of the stack.

Example

L (Restart)
Syntax

Parameter

Description

The Stack Trace (K) command does not display anything until the program
executes the beginning of the main function. The main function sets up the stack
trace through frame pointers (the BP register), which Code View uses to locate
parameters, local variables, and return addresses.

If the main module is written in assembly language, the program must execute at
least to the beginning of the first procedure called. In addition, your procedures
must follow the standard Microsoft calling conventions.

The following example shows the functions executed in a program so far, where
hexadecimal is the current radix under Code View:

>K
convert(0x3:0x17FC,1,2) address 1:ada
make_header(0x3:0x17FC) address 1:314
main(4,0x3:0x181E) address 1:c98
>

Here, convert is the currently executing function, at address ADA. It ispassed
three parameters: a pointer and two integers. When it returns control to
rna ke_header, the program is executing at address 314. When rna ke_header
returns, the program is executing at address C98.

L [arguments]

arguments
New arguments to the program. No o!her Code View commands may be
specified after the Restart command. They are interpreted as additional program
arguments.

The Restart (L) command resets execution to the beginning of the program and
optionally sets a new program command line.

Mouse and
Keyboard

Remarks

Chapter 12 CodeView Reference 413

After you issue the Restart command:

• The program's variables are reinitialized.

• The program's instructions are reset. Any modifications you may have made to
the code with the Assemble (A), Memory Enter (ME), Memory Fill (MF), or
View Memory (VM) commands are lost.

• Any existing breakpoints or watch statements are retained. The pass counts for
all breakpoints are reset.

Used alone, the Restart command keeps the previous command-line arguments
specified for your program. You can change the command-line arguments using the
Restart command followed by any new arguments to your program.

You can use Restart any time execution has stopped: at any kind of breakpoint,
while single-stepping, or when execution is complete.

In addition to typing the L command, you can also restart from the Run menu by
choosing Restart. To set a new command line and restart the program, choose Set
Runtime Arguments from the Run menu. There is no keyboard shortcut.

The Restart command does not reset system resources, such as open files or video
mode, and does not free allocated system objects. If the application redefines
interrupts, the system may no longer work correctly.

MC (Memory Compare)
Syntax

Parameters

Description

Me range address

range
Range of first block of memory.

address
Starting address of second block of memory.

The Memory Compare (Me) command compares the bytes in a given range of
memory with the corresponding bytes beginning at another address. If one or more
pairs of corresponding bytes do not match, the command displays each pair of
mismatched bytes.

You can enter arguments to the Memory Compare (Me) command in any radix,
but the output of the command is always in hexadecimal.

414 Environment and Tools

Examples The following example compares the block of memory from 100 to IFF with the
block from 300 to 3FF. CodeView reports that the third and ninth bytes differ in the
two ranges.

>MC 100 IFF 300 ;* hexadecimal radix assumed
004E:0102 0A 00 004E:0302
004E:0108 0A 01 004E:0308

>

The following example compares the 100 bytes starting at the address of
a rrl [[0]] with the 100 bytes starting at the address of a rr2 [[0]].

>MC arrl[[0]] L 100 arr2[[0]] ;* decimal radix assumed

>

Because Code View produced no output, the first 100 bytes of each array are
identical.

MD (Memory Dump)
Syntax

Parameters

MD[format] [addresslrange]

format
Specifies the format to dump data. The format can be one of the following:

Specifier Format

A ASCII characters

B Byte (hexadecimal)

C Code (instructions)

I Integer (2-byte decimal)

IU Integer unsigned (2-byte decimal)

IX Integer hex (2-byte hexadecimal)

L Long (4-byte decimal)

LU Long unsigned (4-byte decimal)

LX Long hex (4-byte hexadecimal)

R Real (4-byte float)

RL Real long (8-byte float)

RT Real ten-byte (lO-byte float)

If format is not given, the Memory Dump command defaults to the format last
used. If never used before, it defaults to an 8-bit dump.

Description

Examples

Chapter 12 CodeView Reference 415

address
Starting address of memory to be dumped. This can be any expression that
evaluates to an address. The amount of memory dumped depends on the format
specified. If address is omitted, the Memory Dump command defaults to the
byte immediately following the last byte in the previous dump command. If the
Memory Dump command was never used before, it defaults to DS:OOOO.

range
Range of memory to be dumped. Maximum range is 32K.

The Memory Dump (MD) command displays the contents of memory in the
command window, using the format you specify. This command can be used with
the Redirection commands to send the contents of memory to another device. Use
the View Memory (VM) command to display the contents of memory in a separate
window.

The Memory Dump Code (MDC) command is like the Unassemble (U) command,
except that MDC displays instructions in the Command window instead of the
active Source window. Although you normally specify a range with the L character,
you can also use the I character with MDC to specify a range of instructions rather
than bytes.

The following example displays 12 instructions starting from the address at line
number 32 in the source code:

>mdc .32 I 12

The following example displays the byte values in the range between DS:O and
DS:1B. The data segment is assumed when no segment is given. ASCII characters
are shown on the right.

>mdb 0x0 0x1b
0087:0000 00 00 00 00 00 00 00 00 40 53 20 52 75 6E MS Run
0087:000E 20 54 69 60 65 20 4C 69 62 72 61 72 79 20 -Time Library
>

416 Environment and Tools

The following example displays seven elements of fl oat_a rray as 4-byte real
values:

>mdr float_array[[0]]
0087:0056 OC 0F 49 40 +3.141593E+000
0087:005A A0 17 CE 3F +1.610096E+000
0087:005E 66 66 5B C2 -5.485000E+001
0087:0062 00 00 C0 3F +1.500000E+000
0087:0066 FF FF 1 F 41 +9.999999E+000
0087:006A 00 00 00 00 +0.000000E+000
0087:006E 00 00 00 00 +0.000000E+000
>

ME (Memory Enter)
Syntax

Parameters

MEtype address [list]

type
Specifies the type of the data to be entered into memory.

Specifier Type

A ASCII characters

B Byte (hexadecimal)

I Integer (2-byte decimal)

IV Integer unsigned (2-byte decimal)

IX Integer hex (2-byte hexadecimal)

L Long (4-byte decimal)

LV Long unsigned (4-byte decimal)

LX Long hex (4-byte hexadecimal)

R Real (4-byte float)

RL Real long (8-byte float)

RT Real ten-byte (lO-byte float)

If no type is given, the command defaults to the last type used by a Memory
Enter (ME), a Memory Dump (MD), or a View Memory (VM) command. If no
such commands were used, it defaults to byte-sized data.

address
Indicates where the data will be entered. If no segment is given in the address,
the data segment (DS) is assumed.

Description

Mouse and
Keyboard

list

Chapter 12 CodeView Reference 417

List of data to enter into memory at address. These expressions must evaluate to
data of the size specified by type. If list is not given, Code View prompts for new
values.

The Memory Enter (ME) command enters one or more byte values into memory at
a given address.

The command may include a list of expressions separated by spaces. The
expressions are evaluated and entered in the current radix. If an invalid value
appears in the list, Code View refuses to enter the invalid value and ignores
remaining values. If no list is given, Code View prompts for new values.

Because it can modify any part of your program's memory, the Memory Enter
command can change your program's instructions. The Assemble (A) command,
however, is better suited to that purpose.

There is no keyboard shortcut to enter items into memory. You can use the Memory
window, however, to alter items in memory.

Entering Values
If you do not give a list of expressions in a Memory Enter (ME) command,
Code View prompts for a new value at the address you specify by displaying the
address and its current value. At this point, you can do one of the following:

• Replace the value by typing a new value.

• Skip to the next value by pressing the SPACEBAR. Once you have skipped to the
next value, you can change its value or skip again. Code View will automatically
prompt with new addresses as necessary.

• Return to the preceding value by typing a backslash (\). When you return to the
preceding value, Code View starts a new display line and prompts with the
address and current value.

• Stop entering values and return to the command prompt by pressing ENTER.

418 Environment and Tools

Example The following example replaces the byte at DS:256 (DS:OlOO hexadecimal) with
66 (42 hexadecimal).

>MEB 256
3DA5:0100 41 A. 66
>

MF (Memory Fill)
Syntax

Parameters

Description

Examples

MF range list

range
Specifies the range of memory to be filled.

list
List of byte values used to fill range.

The Memory Fill (MF) command fills the addresses in the specified range with the
byte values specified in the argument list. You can enter byte values using any
radix.

The values in the list are repeated until the whole range is filled. Thus, if you
specify only one value, the entire range is filled with that same value. If the list has
more values than the number of bytes in the range, the command ignores any extra
values.

The Memory Fill command provides an efficient way to fill up a block of memory
with any values you specify. You can use it to initialize large data areas, such as
arrays or structures. Because it can modify any part of your program's memory, the
Memory Fill command can change your program's instructions. However, the
Assemble (A) command is better suited to that purpose.

The following example fills 255 (100 hexadecimal) bytes of memory starting at
DS:OlOO with the value 0; hexadecimal radix is assumed. This command could be
used to reinitialize the program's data without having to restart the program.

>MF 100 L 100 0
>

Chapter 12 CodeView Reference 419

This next example fills the 100 (64 hexadecimal) bytes starting at tab 1 e with the
following hexadecimal byte values: 42, 79, 74. These three values are repeated (42,
79, 74, 42, 79, 74,) until all 100 bytes are filled; hexadecimal radix is assumed.

>MF table L 64 42 79 74
>

MM (Memory Move)
Syntax

Parameters

Description

Examples

MM range address

range
Specifies the range of memory to copy.

address
Destination address to copy the range.

The Memory Move (MM) command copies all the values in one block of memory
directly to another block of memory of the same size. All data in the source block is
guaranteed to be copied completely over the destination block, even if the two
blocks overlap.

When the source is at a higher address than the destination, the Move Memory
command copies data starting at the source block's lowest address. When the
source is at a lower address, the Memory Move command copies data beginning at
the source block's highest address.

You use the Memory Move command to program in Assembly mode (to copy
function fragments, for example) or to copy large amounts of data.

In the following example, the block of memory to copy begins with the first element
of a r ray 1 and is a r ray _5 i z e bytes long. It is copied directly to a block of the
same size, beginning at the address of the first element of a r ray 2.

>MM arrayl[[0]] L array_size array2[[0]]
>

MS (Memory Search)
Syntax

Parameters

MS range list

range
The range of memory to search.

420 Environment and Tools

Description

Examples

N (Radix)
Syntax

Parameter

list
A list of byte values separated by spaces or commas or an ASCII string
delimited by quotation marks.

The Memory Search (MS) command scans a range of memory for specific byte
values. Use this command to test for the presence of certain values within a range of
data.

You can specify any number of byte values to the Memory Search command.
Unless the list is an ASCII string, each byte value must be separated by a space or a
comma.

If the list contains more than one byte value, the Memory Search command looks
for a series of bytes that precisely match the order and value of bytes in the list. If
the command finds such a series of bytes, it displays the beginning address of that
series.

The following example displays the address of each memory location containing the
string err or. The command searched the first 1,500 bytes at the address specified
by the variable b u f fer. Code View found the string at three addresses.

>MS buffer L 1500 "error"
2BBA:0404
2BBA:05E3
2BBA:0604
>

The following example displays the address of each memory location that contains
the byte value OA in the range DS:OI00 to DS:0200; hexadecimal is assumed to be
the default radix. Code View found the value at two addresses.

>MS OS:100 200 A ;* hexadecimal radix assumed
3CBA:0132
3CBA:01C2
>

N [radix]

radix
New radix while running CodeView. Can be 8 (octal), 10 (decimal), or 16
(hexadecimal). If omitted, the command displays the current radix.

Description

Remarks

Example

Chapter 12 CodeView Reference 421

The Radix (N) command changes the current radix for entering arguments and
displaying the values of expressions. The new radix number can be 8 (octal), 10
(decimal), or 16 (hexadecimal). Binary and other radixes are not allowed. With no
arguments, the command displays the current operating radix.

Note Changing the radix does not convert the I-value of displayed expressions,
only the r-value.

When you start up CodeView, the default radix is 10 (decimal), unless your main
program is written with the Microsoft Macro Assembler (MASM). In this case, the
default radix is 16 (hexadecimal).

The following conditions are not affected by the Radix command:

• The radix for entering a new radix is always decimal.

• Format specifiers given with the Display Expression (?) command override the
current radix.

• Addresses are always shown in hexadecimal.

• In Assembly mode, all values are shown in hexadecimal.

• The display radix for the Memory Dump (MD) and Breakpoint Set (BP)
commands is always hexadecimal if the size is bytes, words, or doublewords; it
is always decimal if the size is integers, unsigned integers, short reals, long
reals, or 10-byte reals.

• The input radix for the Memory Enter (ME) command's prompt is always
hexadecimal if the size is bytes, words, or doublewords; it is always decimal if
the size is integers, unsigned integers, short reals, long reals, or 10-byte reals.

• The current radix is used for all values given as part of a list, except real
numbers, which must be entered in decimal.

• The register display is always in hexadecimal.

The following example shows the decimal equivalents of the number 14 in octal and
in hexadecimal.

>N8
>7 14, i
12
>N16
>7 14, i
20

>

Here, the Display Expression (?) command uses the i format specifier, which prints
a number in decimal regardless of the current radix.

422 Environment and Tools

o (Options)
Syntax

Parameters

O[option[+I-]]
OL[scope]

option
Character indicating the option to be turned on or off.

Specifier Option

A Show Status Bar

B Bytes Coded

C Case Sense

F Flip/Swap

H Horizontal Scroll Bar

L Show Address

N Native Mode

S Symbols

3 386

V Vertical Scroll Bar

scope

+

For the OL command, you can specify a scope of variables to display in Local
window using one or more of the following:

Specifier Scope

L Lexical

F Function

M Module

E Executable

G Global

* All of the above

Turns option(s) on.

Turns option(s) off.

Description

Mouse and
Keyboard

Chapter 12 CodeView Reference 423

The Options (0) command allows you to view or set the state of the following
Code View options:

Letter Option Display

A Show Status Bar If on, the status bar appears at the bottom of the
screen. If off, the bottommost line becomes part of the
window area.

B Bytes Coded If on, instruction addresses and machine code are
displayed for assembly instructions.

C Case Sense If on, symbols are case-sensitive; if off, they are not.

F Flip/Swap If on, Code View flips the program and output screens
as the program executes. If off, no screen flipping is
performed.

H Horizontal Scroll Bar If on, windows have a horizontal scroll bar.

L Show Address If on, addresses relative to BP for all local variables
are displayed in the Local window.

N Native Mode If on, instructions are displayed in the native
processor format. If off, p-code instructions are
displayed.

S Symbols If on, symbols in assembly instructions appear in
symbolic form. If off, they appear as addresses.

3 386 If on, registers appear in wide 80386 format, and you
can assemble and execute instructions that reference
32-bit registers and memory.

V Vertical Scroll Bar If on, windows have a vertical scroll bar.

The Local window always displays variables local to the current routine. You can
specify a scope of additional variables to display in the Local window with OL
form of the Options command. Using OL with no options displays the current scope
setting for the Local window.

The 0 form of the command (all options) takes no arguments; it displays the state
of all options. The other forms of the command (OF, OB, OC, OS, OL, 03, OA,
ON, OH, and OV) can be used as follows:

• With no arguments. The state of the option is displayed.

• With the + or - argument. The + argument turns the option on; the - argument
turns the option off.

As an alternative to typing the 0 command, you can view and set options on the
Options menu.

424 Environment and Tools

Remarks Use the Options (0) command to set options when you first start CodeView. You
can set these options in the following ways:

Example

• Give one or more 0 commands with the /C option on the Code View command
line or include a similar command line in the Code View response file.

• Give one or more 0 commands as the Autostart entry in the TOOLS.INI file.

In the following example, the 0 command is used to display current option settings.
Then, the 03 and OF commands are used to display and set options for 386 mode
and for screen flip/swap mode. Finally, the OL command turns on symbol
addresses in the Local window and displays not only local variables but global
variables as well.

>0
Flip/Swap On
Bytes Coded On
Case Sense On
Show Symbol Address On
Symbols Off
Vertical scroll bar On
Horizontal scroll bar On
Status bar On
>03
386 Off
>03+
386 On
>OF
Flip/Swap On
>OF-
Flip/Swap Off
>OLG+

o (Port Output)
Syntax

Parameters

Description

o port byte

port
A 16-bit port address.

byte
Byte to send to port.

The Port Output (0) command sends a byte value to a hardware port. You use this
command to debug a program that interacts directly with hardware.

The Port Output command is often used with the Port Input (I) command.

Example

Chapter 12 CodeView Reference 425

In the following example, the byte value 4F hexadecimal is sent to output port 2F8.

>0 2F8 4F :* hexadecimal radix assumed

>

P (Program Step)
Syntax

Parameters

Description

Mouse and
Keyboard

Q (Quit)
Syntax

Description

Mouse and
Keyboard

P [count]]

count
Repeat stepping count times.

The Program Step (P) command executes the current line (in Source mode) or
instruction (in Mixed or Assembly mode), stepping over functions. To trace into
functions, use the Trace (T) command. If a value for count is specifed, Code View
steps through count lines or instructions. If not, only the current line or instruction
is executed.

In Source mode, if the current source line contains a function call, Code View
executes the entire function and is ready to execute the line after the call.

In Mixed or Assembly Mode, if the current instruction is CALL, INT, or REP,
Code View executes the entire procedure, interrupt, or repeated string sequence.

In addition to typing the P command, you can step through a program using the
following shortcuts:

• Click the < F 10= S t e p > button in the status bar to step once.

• Press F10 to step once.

Q

The Quit (Q) command terminates CodeView and returns control to the
environment from which CodeView was invoked: Programmer's WorkBench
(PWB), Windows, or the operating system.

Code View always saves state information on exit.

As an alternative to typing the Q command, choose Exit from the File menu. There
is no keyboard shortcut.

426 Environment and Tools

R (Register)
Syntax

Parameters

Description

Changing
Registers

R [register [[=] expression]]

register
Change the contents of the given register. If omitted, displays the values of all
registers and flags and the current machine instruction.

[=]expression
Assign the value of the expression to the specified register. The equal sign (=) is
optional; a space has the same effect.

The Register (R) command displays and changes the values in the CPU registers.
To display register contents without changing them, type the Register (R) command
without any arguments. This form of the command shows the current values of all
registers and flags. Flags are shown symbolically. It also shows the current
instruction at the address given by CS:IP.

If an operand of the instruction contains memory expressions or immediate data,
Code View evaluates the operand and indicates the value to the right of the
instruction. This value is referred to as the "effective address" and is also displayed
at the bottom of the Register window.

You can use the R command to change the values in CPU registers. Also, you can
change the bits in the flag register symbolically without having to compute a value
of the register.

Changing Register Values
To change the value in a register:

1. Type the command letter R followed by the name of a register. The register
name can be any of the following: AX, BX, CX, DX, CS, DS, SS, ES, SP, BP,
SI, DI, IP, or FL (for flags). If you have an 80386/486-based machine and the
386 option is turned on, the register name can be one of the 32-bit register
names: EAX, EBX, ECX, EDX, ESP, EBP, ESI, or EDI.

Note Code View allows you to load different execution models which may
specify a certain set of registers. For example, the valid registers in the p-code
model are DS, SS, CS, IP, SP, BP, PQ, TH, and TL.

2. Code View displays the current value of the register and prompts for a new value
with a colon (:).

• If you only want to examine the value, press ENTER.

• If you want to change the value, type an expression (in the current radix) for
the value and press ENTER.

Mouse and
Keyboard

Chapter 12 CodeView Reference 427

• As an alternative, you can use the Display Expression (?) command to
change the value in a register:

?register=expression

Changing Flag Values
To change a flag value:

1. Type the command letter R followed by the letters FL.

2. The command displays the value of each flag as a two-letter name. At the end of
the list of values, the command prompts for new flags with a dash (-).

3. Type the new values after the dash for the flags you wish to change, then press
ENTER.

• You can enter flag values in any order. If you do not enter a new value for a
flag, it remains unchanged.

• If you do not want to change any flags, press ENTER.

Note If you enter an illegal flag name, Code View displays an error message. The
flags preceding the error are changed; flags at and following the error are not
changed.

The flag values are:

Flag Set Symbol Clear Symbol

Overflow OV NV

Direction DN UP

Interrupt EI DI

Sign NG PL

Zero ZR NZ

Auxiliary carry AC NA

Parity PE PO

Carry CY NC

As an alternative to typing the R command, you can use the Register window to
display CPU values. To change CPU values with the Register window, type over
the old values.

428 Environment and Tools

Example In the following example, the R command displays the current registers and CPU
flags. Then the R command changes the value in the AX register.

T (Trace)
Syntax

Parameters

Description

Mouse and
Keyboard

>R
AX=0005 BX=299E CX=0000 OX=0000 SP=3800 BP=380E SI=0070 01=4001
OS=5067 ES=5067 SS=5067 CS=4684 1P=014F
NV UP E1 PL NZ NA PO NC
0047:014F 8B5E06
>R AX
AX 0005
: 3

>

T [count]

count

1 ea di ,[[BP+06]] ss:ff38=299E

Repeat tracing count times. If omitted, trace once.

The Trace (T) command executes the current line (in Source mode) or instruction
(in Assembly or Mixed mode), tracing into functions or assembly-language CALL
instructions. Use the Program Step (P) command to execute function calls without
tracing into them.

In Source mode, the Trace command traces into functions whose source code is
available and executes through those functions whose source is unavailable.

In Assembly or Mixed mode, Code View always traces into functions. If the current
instruction is CALL or INT, Code View executes the first instruction of the
procedure or interrupt. If the current instruction is REP, Code View executes one
iteration of the repeated string sequence.

Code View executes MS-DOS function calls without tracing into them. Code View
can trace through BIOS calls in Assembly or Mixed mode.

Since the Trace command uses the hardware trace mode of the 8086 family of
processors, you can also trace instructions stored in read-only memory (ROM).
However, the Program Step command does not work in ROM; in this case, it has
the same effect as the Go (G) command.

In addition to typing the T command, you can trace once with the following
shortcuts:

• Click the <F8=Trace> button in the status bar.

• Press F8.

Chapter 12 CodeView Reference 429

T (Trace Speed)
Syntax

Parameter

Description

Mouse and
Keyboard

T{SIMIF}

{SIMIF}
Specifies the trace speed for the Animate (E) command. You can specify the
following speeds:

Specifier

S

M

F

Speed

Slow 0/2 second between steps)

Medium (1/4 second between steps; default)

Fast (no wait between steps)

The Trace Speed command controls the speed at which Code View executes a
program with the Animate (E) command.

In addition to typing the TS, TM, or TF commands, you can also set the trace speed
from the Options menu. There is no keyboard shortcut.

U (Unassemble)
Syntax

Parameters

Description

U [context][address]

context
Any legal context operator.

address
Shows unassembled instructions starting at this address. If omitted, unassemble
at the current CS:IP address.

The Unassemble (U) command displays assembly-language code beginning at the
specified address in the active Source window. If you omit an address, the command
uses the current CS:IP address. The command changes the Source window to
Assembly mode.

Setting the Source window display mode to Assembly and giving the Unassemble
command with no arguments causes the code to scroll to the next page of assembly
language instructions.

Note If you specify an address that is within an instruction or within program data,
Code View will still attempt to disassemble and display instructions. Instructions
that Code View cannot disassemble are shown as ???

430 Environment and Tools

Mouse and
Keyboard

Example

As an alternative to typing the U command, you can display assembly-language
instructions using the following shortcuts:

• Click the <F3=Srcl Fmt> or <F3=Src2 Fmt> buttons until the active Source
window is in Assembly mode.

• Press F3 until the Source window is in Assembly mode.

• From the Options menu, choose Source Window. Then set the display mode to
Assembly.

Note that with these shortcuts, you cannot specify an address to start showing
unassembled instructions.

The following example sets the mode of the Source window to Assembly and
displays assembly-language instructions beginning at address Ox7:0xll.

>u 0x7: 0xll

>

USE (Use Language)
Syntax

Parameter

Description

Mouse and
Keyboard

Remarks

USE evaluator

evaluator
Selects the specified expression evaluator. If omitted, the command displays the
currently selected expression evaluator. You can specify AUTO for the
evaluator. With this setting, Code View selects the appropriate expression
evaluator based on the extension of the source file.

The USE command specifies which expression evaluator Code View is to use while
debugging.

As an alternative to typing the USE command, choose the Language command from
the Options menu. There is no keyboard shortcut.

When you switch expression evaluators, Code View displays expressions in the
Local and Watch windows with the nearest equivalent type in the new language. If
the new language does not have an equivalent type, the results are unpredictable.

Chapter 12 CodeView Reference 431

VM (View Memory)
Syntax

Parameters

VM[window]] [type]] [address]] [options]]

window
Specifies the memory window to display or change (lor 2). If a value for
window is omitted, the command defaults to the active Memory window or
Memory window 1 if no Memory windows are open.

type
Specifies the data-type format of the window's display.

Value Format

A ASCII characters

B Byte (hexadecimal)

I Integer (2-byte decimal)

IV Integer unsigned (2-byte decimal)

IX Integer hex (2-byte hexadecimal)

L Long (4-byte decimal)

LV Long unsigned (4-byte decimal)

LX Long hex (4-byte hexadecimal)

R Real (4-byte float)

RL Real long (8-byte float)

RT Real ten-byte (lO-byte float)

If format is omitted, the command defaults to the last type used by a View
Memory (VM) command or to byte-display format if the VM command was
never used.

address
Starting address of memory to display or any expression that evaluates to an
address. If address is omitted, the command defaults to the current address in
the active Memory window or DS:OO if no Memory windows are open.

options
Specifies how to display and update the Memory window's contents.

IR[+I-]]
Raw data display

Option

+

- (default)

Description

Code View displays formatted data along with the corresponding
bytes in hexadecimal format.

Code View displays only formatted data.

432 Environment and Tools

Description

Mouse and
Keyboard

/L[+I-]
Live expression

Option Description

+ Dynamic: Code View evaluates address at each step and adjusts
the Memory window accordingly.

- (default) Static: CodeView evaluates address only when the command is
entered.

1F[*llength]
Fixed-width data display

Option

* (default)

length

Description

CodeView displays as many items as will fit in the window.

Code View displays a fixed number of items on each line. Must be
in the range 1-125.

The View Memory (VM) command displays the contents of memory in a Memory
window using the type and format you specify. The Memory window is updated
whenever you execute a command. You can modify memory in the window directly
by typing over the displayed memory.

If you enter the VM command with no arguments and no Memory windows are
open, CodeView opens Memory window 1 in the default display format (variable
width byte display at a static address). If you enter the VM command with no
arguments and at least one Memory window is open, Code View displays the current
settings for the Memory windows in the Command window.

You can directly modify memory using the Memory window. Type over the values
displayed in the active Memory window.

To display the contents of memory in the Command window, use the Memory
Dump (MD) command.

In addition to typing the VM command, you can open and manipulate Memory
windows with the following shortcuts:

• To open a Memory window from the Windows menu, choose Memory 1 or
Memory 2.

• To set display format and enter expressions for a Memory window, choose
Memory Window from the Options menu.

You can cycle through the display formats with the following shortcuts:

• Click the <SH+F3=Meml Fmt> or <SH+F3=Mem2 Fmt> buttons in the status
bar.

• Press SHIFT +F3 to cycle forward.

Examples

Chapter 12 CodeView Reference 433

• Press CTRL+SHIFf +F3 to cycle backward.

• When the cursor is in the Memory window, press CTRL+O to display the
Memory Window Options dialog box.

The following example opens Memory window 2 and displays memory in integer
format plus the raw bytes that make up the integers, beginning at the address of the
variable my; nt.

>VM21 IR myint

The following example specifies ASCII format for the current Memory window.
The memory displayed begins at the string referred to by element; of the array
a r 9 v. The expression is live, so the display is updated as ; changes.

>VMA IL *argv[[i]]

VS (View Source)
Syntax

Parameters

VS[window] [format] [address] [/option[+1-]] ...

window
Specifies the Source window (lor 2) to open or make active.

format
Specifies the way to display source code as one of the following:

Specifier

+

&

address

Format

Display source lines from the source file

Display assembly-language instructions

Display both source lines and assembly-language instructions

Address or line number at which to start displaying source code. The address
must fall within the executable portion of your program.

434 Environment and Tools

Description

[/option[+1-]] ...
Zero or more source display options. The option can be any of the following
specifiers:

Specifier

a

b

c

s

Option

Address

When turned on (la[+]), displays the address of each instruction. When
turned off (la-), does not display addresses.

Bytes coded

When turned on (jb[+]), displays the hexadecimal form of the
instructions. When turned off (jb-), does not display the encoded bytes.

Case of disassembly

When turned on (lc[+]), displays instruction mnemonics and registers
in uppercase. When turned off (lc-), displays instruction mnemonics
and registers in lowercase.

Line-oriented display

When turned on (/1 [+]), displays mixed source and assembly in source
line order. When turned off (/1-), displays mixed source and assembly in
instruction-code order.

Symbols in disassembly

When turned on (Is [+]), symbols in instructions appear in symbolic
form. If turned off (ls-), they appear as addresses.

Track current location (CS:IP)

When turned on (It [+]), the Source window follows the thread of
execution (CS:IP). When turned off (It-), the Source window does not
automatically scroll to follow the current location.

Code View can display two Source windows at the same time. At least one source
window must always be open. You can type the VS 1 or VS 2 command to make
Source window 1 or 2 active. If the Source window you request is not open,
Code View opens it and makes it active.

The Source windows can show code in a number of display modes:

Source
CodeView displays the lines from your program's source files.

Assembly
Code View displays the assembly instructions that make up your program.

Mixed
Code View displays each line of your program's source file, followed by the
assembly instructions for that line. This ordering can be reversed by turning the
Line-Oriented Display option off (/1-).

Mouse and
Keyboard

Examples

Chapter 12 CodeView Reference 435

Source and Mixed modes are available only if the executable file contains
debugging information.

Note Programs that do not contain debugging information are always displayed in
Assembly mode.

In the Source and Mixed modes, tracing into a function for which no source lines
are available, such as a library function, switches the Source window to Assembly
mode. Once program execution returns to an area where source lines are available
again, Code View automatically switches back to Source or Mixed mode.

If you specify a line number or an address with the VS command, Code View draws
the Source window so that the source line corresponding to the given address
appears in the middle of the Source window. If the address is in another file,
Code View loads that file into the Source window. If you specify an address for
which there is no corresponding source text (in your program's data, for example),
Code View will respond with an error message.

You can scroll the contents of the active Source window down a page by typing the
VS command with no arguments. You can also use the Source window scroll bars.

To make a Source window active or to open a Source window:

• Click anywhere in an open Source window to make it active.

• Press ALT+3 or ALT+4 to activate or open Source window 1 or 2.

• From the Windows menu, choose Source 1 or Source 2.

To change the source display mode:

• Click the < F3=S rc 1 Fmt> or < F3=S rc2 Fmt> buttons in the status bar to
cycle through the three modes.

• Press F3 to cycle forward.

• Press CTRL+F3 to cycle backward.

• From the Options menu, choose Source Window to open the Source Window
Options dialog box. Under Display Mode, select one of the option buttons.

• When the cursor is in the Source window, press CTRL+O to display the Source
Window Options dialog box.

The following example opens Source window 2 in the mixed mode. The display will
start at the function toss token.

>VS 2 & toss_token

436 Environment and Tools

The next example changes the display fonnat in Source window 2 to source lines
only.

>VS 2 +

W? (Add Watch Expression)
Syntax

Parameters

Description

Mouse and
Keyboard

Examples

W? expression [, format]

expression
Expression to add to the Watch window.

format
A Code View fonnat specifier that indicates the fonnat in which expression is
displayed.

The Add Watch Expression (W?) command displays one or more specified values
in the Watch window. Watch expressions allow you to watch how a variable
changes as your program executes. CodeView updates the Watch window each time
the value of the watch expression changes during program execution.

The Watch window shows variables in the default fonnat for their types. To display
a watch expression in a different fonnat, type a comma after the expression,
followed by a Code View fonnat specifier. You can also cast the expression to the
fonnat you want to use.

Code View always evaluates watch expressions according to the current radix and
reevalutes watch expressions if the radix changes.

For relational expressions, the Watch window shows 0 if the expression is false and
1 if the expression is true.

As an alternative to typing the W? command, choose the Add Watch command
from the Data menu. There is no keyboard shortcut.

Command

W? n

W? high * 100

W? (char *) 0

Action

Display the value of the variable n in the Watch window.

Display the value of 100 times the variable hi g h in the Watch
window.

Display the byte at DS:O. Because 0 is explicitly cast to a pointer
type, Code View treats it as an offset rather than a constant.

Chapter 12 CodeView Reference 437

we (Delete Watch Expression)
Syntax

Parameters

Description

Mouse and
Keyboard

Examples

we numberl*

number
Deletes the watch expression with this number.

*
Deletes all watch expressions.

The Delete Watch Expression (We) command removes a watch expression from
the Watch window.

When you set a watch expression, Code View automatically assigns it a number,
starting with 0 for the first watch expression in the window. Use the List Watch
(WL) command to view the numbers of current watch statements.

In addition to typing the we command, you can use the following shortcuts to
delete watch expressions:

• From the Data menu, choose Delete Watch.

• Select the Watch window, move the cursor to the watch expression, and press
CTRL+Y.

The following example deletes watch expression 2 from the Watch window:

>WC 2

The following example deletes all watch expressions from the Watch window:

>WC *

WDG (Windows Display Global Heap)
Syntax

Parameter

WDG [ghandle]

ghandle
A handle to a global memory object. The WDG command displays the five
memory objects in the global heap, starting at the specified object. The ghandle
must be a valid handle to an object allocated on the global heap. If ghandle is
not specified, WDG displays the entire global heap. .

438 Environment and Tools

Description

Format

Global memory objects are displayed in the order in which Windows manages
them, which is typically not in ascending handle order. The output from the WDG
command has the following format:

handle address size PDB locks type owner

Any field may not be present if that field is not defined for the block.

Field

handle

address

size

PDB

locks

type

owner

Description

Value of the global memory block handle.

Address of the global memory block.

Size of the block in bytes.

Block owner. If present, indicates that that task's Process Descriptor Block
is the owner of the block.

Count of locks on the block.

The memory-block type.

The block owner's module name.

WDL (Windows Display Local Heap)
Syntax

Format

WDL

The output from the WDL command has the following format:

handle address size flags locks type heaptype blocktype

Any field may not be present if that field is not defined for the block.

Field Description

handle Value of the global memory block handle

address Address of the block

size Size of the block in bytes

flags The block's flags

locks Count of locks on the block

type The type of the handle

heaptype The type of heap the block resides in

blocktype The block's type

Chapter 12 CodeView Reference 439

WDM (Windows Display Modules)
Syntax

Description

Format

WDM

The WDM command displays a list of all DLL and application modules loaded by
Windows. Each line of the display has the following fonnat:

handle re/count module path

Field

handle

rejcolllzt

module

path

Description

The module handle

The number of times the module has been loaded

The name of the module

The path of the module's executable file

WGH (Windows Dereference Global Handle)
Syntax

Parameter

Description

WGH handle

handle
Global memory handle of memory object to convert.

To convert a global memory handle to a pointer, use the WGH command. WGH
converts a global memory handle into a near or a far pointer. Use WLH to convert
local memory handles.

The WDG and WDL commands convert the handle into a pointer and display the
value of the pointer in segment:offset fonnat. You can then use that value to access
the memory.

In a Windows-based program, the GlobalLock function is used to convert memory
handles into near or far pointers. You may know the handle of the memory object,
but you might not know what near or far address it refers to unless you are
debugging in an area where the program has just called GlobalLock.

You use the WGH command at any time to find out what the pointer addresses are
for global memory handles.

440 Environment and Tools

Example The following example is used to display a string in Window's global heap. First,
the following code sets up the string:

HANDLE hGlobalMem;
LPSTR lpstr;

hGlobalMem = GlobalAlloc(GMEM_MOVEABLE. 10L)
lpstr = GlobalLock(hGlobalMem);
lstrcpy(lpstr. "ABCDEF");
GlobalUnlock(hGlobalMem);

You can display the contents of the string with the following sequence of
commands:

>wgh hGlobalMem
0192:6E30
>? *(char far*) 0x0192:0x6E30.s

WKA (Windows Kill Application)
Syntax

Description

WKA

The Windows Kill Application (WKA) command terminates the current task by
simulating a fatal error.

There may be times when you want to halt your program immediately. You can
force an immediate interrupt of a CVW session by pressing CTRL+ALT+SYSREQ.

You then have the opportunity to change debugging options, such as setting
breakpoints and modifying variables. To resume continuous execution, press F5; to
single-step, press FlO.

You should take care when you interrupt the CVW session. For example, if you
interrupt the session while Windows-based code or other system code is executing,
using the Step or Trace functions produces unpredictable results. When you
interrupt the CVW session, it is usually safest to set breakpoints in your code and
then resume continuous execution rather than using Step or Trace.

If the current code is in your application, you can safely use the WKA command
without affecting other tasks. However, the WKA command does not perform all
the cleanup tasks associated with the normal termination of a Windows-based
application.

For example, global objects created during the execution of the program but not
destroyed before you terminated the program remain allocated in the global heap.
This reduces the amount of memory available during the rest of the Windows

Chapter 12 CodeView Reference 441

operating system session. For this reason, you should use the WKA command to
tenninate the application only if you cannot tenninate it nonnally.

For more infonnation on using the Windows Kill Application (WKA) command,
see Chapter 10.

WL (List Watch Expressions)
Syntax

Description

Mouse and
Keyboard

Example

WL

The List Watch Expressions (WL) command lists all currently set watch
expressions along with their numbers and values.

As an alternative to typing the WL command, you can use the Watch window to
view the current watch expressions.

The following example displays watch expressions and their values:

>WL
0) code 17
1) (float)letters/words 4.777778
2) lines==11 0
>

In the example, three watch expressions are set:

1. The variable code, which is 17.

2. The arithmetic expression 1 etters divided by words as a floating point
number, currently 4.777778

3. The conditional expression 1 i nes==ll, currently false (zero).

WLH (Windows Dereference Local Handle)
Syntax

Parameter

Description

WLHhandle

handle
Local memory handle of memory object to convert.

To convert a local memory handle to a pointer, use the Dereference Local Handle
(WLH) command. WLH converts a local memory handle into a near or a far
pointer. Use WGH to convert global memory handles.

442 Environment and Tools

Example

The WDG and WDL commands convert the handle into a pointer and display the
value of the pointer in segment:offset format. You can then use that value to access
the memory.

In a Windows-based program, the LocalLock function is used to convert memory
handles into near or far pointers. You may know the handle of the memory object,
but you might not know what near or far address it refers to unless you are
debugging in an area where the program has just called LocalLock.

You use the WLH command to find out at any time what the pointer addresses are
for local memory handles.

The following example uses WLH to refer to an array during a debugging session.
First, the following code sets up the array:

HANDLE hLocalMem;
int near * pnArray;
hLocalMem = LocalAlloc(LMEM_MOVEABLE. 100);
pnArray = LocalLock(hLocalMem);

/* load values into the array */

LocalUnlock(hLocalMem);

Now, after setting a breakpoint immediately after the call to LocalLock, the
following command displays the array location:

>mdw pnArray

Outside of this fragment, though, you cannot rely on the value of the p n A r ray
variable since the actual data in the memory object may move. Therefore, use the
following sequence to display the correct array location:

>wlh hLocalMem
0192:100A
>mdw 0192:100A

X (Examine Symbols)
Syntax Xscope [context][regex]

Parameters

Description

Examples

Chapter 12 CodeView Reference 443

scope
Specifies the scope in which to search for symbols. Can be one or more of the
following:

Specifier Scope

L Lexical

F Function

M Module

E Executable

p Public

G Global

* All of the above

context
Specifies context under which to search with the context operator.

regex
Specifies a Code View regular expression.

The Examine Symbols (X) command displays the names and addresses of symbols
and the names of modules defined within a program. You can specify the scope in
which to search and a regular expression against which to match symbols. You can
further specify a context using the context operator.

For more information on regular expressions, see Appendix B.

The following example shows all the symbols and their addresses in the current
lexical scope. The command uses the regular expression . * to match any symbol.

>XL • *

The following example displays all symbols and their addresses in the program that
start with s :

! (Shell Escape)
Syntax

Parameter

![[!]]command]

command
Executes the given program or operating-system command without leaving
CodeView. Use the second exclamation point to return to CodeView
immediately after completing command.

444 Environment and Tools

Description

Mouse and
Keyboard

Remarks

The Shell Escape (!) command (CV only) allows you to exit from the CodeView
debugger to an MS-DOS shell. You can execute MS-DOS commands or programs
from within the debugger, or you can exit from Code View to MS-DOS while
retaining your current debugging context.

If you want to exit to MS-DOS and execute several commands or programs, enter
the Shell Escape command with no arguments (!). After the MS-DOS screen
appears, you can run internal system commands or programs. When you are ready
to return to Code View, type the command exit (in any combination of uppercase
and lowercase letters). The debugging screen appears with the same status it had
when you left it.

If you want to execute a program or an internal system command from within
Code View, enter the Shell Escape command followed by the name of the command
or program you want to execute, as in:

!command

The output screen appears, and Code View executes the command or program.
When the output from the command or program is finished, the message

Press any key to continue ...

appears at the bottom of the screen. Press a key to make the debugging screen
reappear with the same status it had when you left it. To suppress this prompt and
return directly to Code View after the command is executed, use two exclamation
points (!!) for the Shell Escape command.

The Shell Escape command works by executing a second copy of
COMMAND. COM.

In addition to typing the ! command, you can also invoke a command shell from the
File menu.

Opening a shell requires a significant amount of free memory since the following
are all resident in memory:

• CodeView

• The debugging information

• The system's command processor

• The program being debugged

If your machine does not have enough memory, an error message appears. Even if
there is enough memory to start a new shell, there may not be enough memory left
to execute large programs from the shell.

Example

" (Pause)
Syntax

Description

Example

(Tab Set)
Syntax

Parameter

Description

Chapter 12 CodeView Reference 445

In order for you to use the Shell Escape commands, the executable file being
debugged must release unneeded memory. Programs created with Microsoft
compilers release memory during startup.

Side effects of commands executed while in a shell, such as a change in the working
directory, may not be seen when you return to Code View.

In the following example, the shell command DIR is executed with the argument
A : * . 0 B J. The directory listing will be followed by the prompt that asks you to
press any key:

!DIR A:*.OBJ

In the following example, the COPY command is executed and control returns to
CodeView. No prompt appears.

!!copy output.txt d:\backup

II

The Pause (") command interrupts the execution of commands from a redirected
file and waits for the user to press a key. Execution of the redirected commands
begins as soon as a key is pressed.

The following example is from a text file redirected to the Code View debugger. A
Comment (*) command is used to prompt the user to press a key. The Pause (")
command is then used to halt execution until the user responds.

* Press any key to continue

#number

number
Number of characters for new tab stops. The valid range for number is 1-19.

The Tab Set (#) command sets the width in spaces that the Code View debugger fills
for each tab character. The default tab is eight spaces. You can specify values in the
range 1-19.

446 Environment and Tools

You may want to set a smaller tab size if your source code has so many levels of
indentation that source lines extend beyond the edge of the screen.

This command has no effect if your source code contains no tab characters.

* (Comment)
Syntax

Description

Example

*comment

The Comment command is an asterisk (*) followed by text. The Code View
debugger echoes the text of the comment to the screen or other output device. Use
this command in combination with the redirection commands when you are:

• Saving a commented session.

• Writing a commented session that will be redirected to the debugger.

In the following example, the user is sending a copy of a Code View session to the
file OUTPUT.TXT. Comments are added to explain the purpose of the command.
The text file will contain commands, comments, and command output.

> T>OUTPUT.TXT
> * Dump first 20 bytes of screen buffer
> MOB 0xB800:0 L 20
B800:0000 54 17 6F 17 20 17 72 17 65 17 74 17 75 17 72 17
B800:0010 6E 17 20 17
> >CON

. (Current Location)
Syntax

Description The Current Location (.) command displays the source line or assembly-language
instruction corresponding to the current program location. It puts the current
program location in the center of the active Source window.

Use this command if you have scrolled the current source line or assembly
instruction out of the active Source window.

/ (Search)
Syntax

Parameter

Description

Chapter 12 CodeView Reference 447

The Current Location (.) command is equivalent to the command:

vs .

/ [regexp]

regexp
Searches for the first line containing this regular expression. If omitted, the
command searches for the next occurrence of the last regular expression given.

The Search (/) command searches for a regular expression in a source file.

"Regular expressions" are patterns of characters that may match one or many
different strings. The use of patterns to match more than one string is similar to the
MS-DOS method of using wild card characters in filenames.

Code View's regular expressions use a subset of the UNIX syntax supported by the
Programmer's WorkBench (PWB). For complete information on regular
expressions in PWB and Code View, see Appendix B.

When you enter the Search command with a regular expression, Code View
searches the source file for the first line containing the expression. If you do not
give a regular expression, Code View searches for the next occurrence of the last
regular expression specified.

Even if you do not understand regular expressions, you can still use the Search
command with plain text strings, since text strings are the simplest form of regular
expressions. For example, you can enter

>1 COUNT

to search for the word COUNT in the source file.

To find strings containing a special regular expression character (. \ A $ * [[]]), you
must precede the character with a backslash (\); this cancels their special meanings.
For example, use the command:

>1 x*y

to find the string x * y .

In Source windows, Code View starts searching at the current cursor position and
places the cursor at the line containing the regular expression. The search wraps to
the beginning of the file if necessary.

448 Environment and Tools

Mouse and
Keyboard

Remarks

7 (8087)
Syntax

Description

Example

Line 1

In addition to typing the / command, you can also search for regular expressions by
choosing Find from the Search menu.

When you search for the next occurrence of a regular expression, Code View
searches to the end of the file, then wraps around and begins again at the start of the
file. This search can have unexpected results if the expression occurs only once. For
example, when you give the command repeatedly, there is no activity on the screen.
Actually, CodeView is repeatedly wrapping around and finding the same expression
each time.

The Case Sensitivity command on the Options menu and the Options Case Sense
(OC) command affect regular expression searches.

If you want to find a label in your source code, you can also use the View Source
(VS) command.

7

The 8087 (7) command dumps the contents of the math processor registers. If you
do not have an 8087 or equivalent math processor chip, this command dumps the
contents of the software-emulated registers.

The following example shows and describes the output from the 7 command:

cControl 037F

cStatus 6004
Tag A1FF
Stack
cST(3) special
cST(2) special
cST(1) valid
cST(0) zero

(Closure=Projective Round=nearest. Precision=64-bit
IEM=0 PM=l UM=l OM=l ZM=l OM=l IM=l

cond=1000 top=4 PE=0 UE=0 OE=0 ZE=l OE=0 IE=0
instruction=59380 operand=59360 op-code=09EE
Exp Mantissa Value
7FFF 8000000000000000 = + Infinity
7FFF 0101010101010101 = + Not A Number
4000 C90FOAA22168C235 = +3.141592265110390E+000
0000 0000000000000000 = +0.000000000000000E+000

Here, the lowercase c that precedes several lines of the output indicates that the
coprocessor is in use. If this command had been used with an emulated coprocessor,
an e would precede the lines. The following is a line-by-line description of the
output from the 7 command:

This line shows the value in the control register, 037F. The rest of the line interprets
the bits represented by the number in the control register:

• The closure method, which can be projective or affine.

Line 2

Line 3

Line 4

Lines 5-9

Chapter 12 CodeView Reference 449

• The rounding method, which can be nea rest (even), down, up, or chop
(truncate to zero).

• The precision, which can be 64, 53, or 24 bits.

This line lists the status of the exception-mask bits, described in the following table:

Name Description

IEM Interrupt enable

PM Precision

UM Underflow

OM Overflow

ZM Zero divide

DM Denormalized operand

1M Invalid operation

This line lists the value in the status register (6004 hexadecimal), the condition code
(1000 binary), and the top of stack register (4 decimal). It then lists the exception
flags, described in the following table:

Flag Meaning

PE Precision

UE Underflow

OE Overflow

ZE Zero divide

DE Denormalized operand

IE Invalid operation

This line lists the 20-bit address of the tag register, the offset of the instruction, the
offset of the operand, and the offset of the op-code, all in hexadecimal. When using
software-emulated coprocessor routines, this line does not appear.

The rest of the output from the 8087 command lists the contents of the stack
register. In this example, S T (3) contains the value infinity, S T (2) contains a value
that cannot be interpreted as any number, ST (1) contains a real number, and
ST (0) contains zero.

450 Environment and Tools

: (Delay)
Syntax

Description

Example

The Delay (:) command interrupts execution of commands from a redirected file
and waits about half a second before continuing. You can put multiple Delay
commands on a single line to increase the length of delay. The delay is the same
length regardless of the processing speed of the computer.

In the following example, the Delay (:) command is used to slow execution of the
redirected file into Code View.

: :* That was a short delay ...
::::: :* That was a longer delay ...

< (Redirect CodeView Input)
Syntax

Parameter

Description

Example

<device

device
Device or file from which to read commands.

The Redirect Input «) command causes Code View to read all subsequent command
input from a file or device.

The following example redirects command input from the file INFILE. TXT to
CodeView. Use this method to run "scripts" of Code View commands that you have
prepared in advance.

> <INFILE.TXT

You can also start up Code View with redirected input by typing the following at the
operating-system prompt:

CV /C"<i nfil e. txt"

> (Redirect CodeView Output)
Syntax

Parameter

[T]>[>] device

device
Device or file to which to write output.

Description

Example

Chapter 12 CodeView Reference 451

The Redirect Output (» command causes Code View to write all subsequent
command output to a device, such as another terminal, a printer, or a file. The term
"output" includes not only output from commands but also the command characters
that are echoed as you type them.

The optional T indicates that the output should be echoed to the Code View screen.
If you do not give aT, CodeView echoes only commands that you enter. Use the T
option if you are redirecting output to a file to see output from the commands that
you are typing.

Note If you are redirecting output to another terminal, you may not want to see the
output on the Code View terminal.

If you specify an existing file, Code View truncates the file and then starts writing
output. To preserve the contents of the file, use a second greater-than symbol (»),
which appends output to the file.

In the following example, output is redirected to the device designated as COMl
(for example, a remote terminal). Enter this command when you are debugging a
graphics program and you want Code View commands to be displayed on a remote
terminal while the program display appears on the originating terminal.

> >COMI

In the following example, output is redirected to the file OUTFILE.TXT. Use this
command to keep a permanent record of a Code View session.

> T>OUTFILE.TXT

> >CON

Note The optional T is used so that the session is echoed to the Code View screen
as well as to the file. After redirecting some commands to a file, use the command
> CON to return output to the terminal.

452 Environment and Tools

= (Redirect CodeView Input and Output)
Syntax

Parameter

Description

=device

=device
Device to which to redirect input and output. Specify >CON for the Code View
Command window.

The Redirect Input and Output (=) command causes the Code View debugger to read
all subsequent command input from the device and write all subsequent output to
the device. You cannot redirect both input and output to a file.

To reset the input and output for Code View after you have entered one of the other
redirection commands, use the command:

>= con

? (Display Expression)
Syntax

Parameters

Description

? expression[,format]

expression
The expression to display. This can be any valid Code View expression.

,format
A Code View format specifier that indicates the format in which to display
expression.

The Display Expression (?) command displays the value of a Code View
expression. The simplest form of expression is a symbol representing a single
variable or function. An expression may also call functions that are part of the
executable file.

The Display Expression command can also set values. For example, with the C or
C++ expression evaluator, you can increment the variable n by using an assignment
expression:

? n=n+l

The command displays the value after incrementing n.

You can specify the format in which the values of expressions are displayed by the
Display Expression command. After the expression, type a comma, followed by a
Code View format specifier.

Example

Chapter 12 CodeView Reference 453

The following example displays the value stored in the variable amount, an
integer. This value is first displayed in the system radix (in this case, decimal), then
in hexadecimal, then in 4-byte hexadecimal, and then in octal.

>? amount
500
>? amount,x
0lf4
>? amount,lx
000001f4
>? amount,o
764

>

?? (Quick Watch)
Syntax

Parameter

Description

?? symbol

symbol
Displays the given variable, array, or structure in the Quick Watch dialog box.

The Quick Watch (??) command displays the value of any selected expression in
the Quick Watch dialog box. You can use Quick Watch to quickly check the value
of a variable or structure and expand or contract items in a structure.

Expanding/Contracting Items
The Quick Watch dialog box allows you to:

• Expand or contract nested structures and arrays.

• View variables, structures, or arrays addressed by pointers.

• Add any structure or array to the Watch window.

Expandable items appear with a plus sign (+) in the Quick Watch dialog box. Once
expanded, an item appears with a minus sign (-).

Expanding an item has the following effects:

Item

Nested structure

Pointer

Array

Action

Expands the structure so that the dialog box displays each
member of the nested structure.

Dereferences the pointer; that is, displays the data that the
pointer addresses.

Expands the array so that the dialog box displays each element
of the array.

454 Environment and Tools

Mouse and
Keyboard

@ (Redraw)
Syntax

Description

Contracting an item reverses the effects of expanding described above.

Note You can add any expression in the Quick Watch dialog box to the Watch
window by choosing the Add Watch button.

After opening the Quick Watch dialog, you can expand or contract an item using
the following methods:

• Double-click the left mouse button on the item.

• Select the item, then choose the Expand/Contract button at the bottom of the
dialog box.

• Use the arrow keys to select the item, and press ENTER.

@

The Redraw (@) command redraws the CodeView screen. Use this command if the
output of the program being debugged disturbs the Code View display.

\ (Screen Exchange)
Syntax

Description

\

The Screen Exchange (\) command allows you to switch temporarily from the
debugging screen to the output screen. The Code View debugger uses either screen
flipping or screen swapping to store the output and debugging screens.

To return to the CodeView screen, press any key.

PAR T 3

Compiling and Linking

Chapter 13 Linking Object Files with LINK 457
Chapter 14 Creating Module-Definition Files 491
Chapter 15 Using EXEHDR .. 513

457

CHAPTER 13

Linking Object Files with LINK

This chapter describes the Microsoft Segmented-Executable Linker (LINK) version
5.31. LINK combines compiled or assembled object files into an executable file.
This chapter explains LINK's input syntax and fields and tells how to use options to
control LINK.

LINK is distributed in the form ofLINK.EXE for MS-DOS. LINK is DOS
extended and uses extended memory if available.

When you link for debugging using the JCO option, LINK calls the CVP ACK
utility. CVP ACK version 4.00 must be available on the path. For more information,
see "CVP ACK" on page 631.

This version of LINK does not support the Microsoft Incremental Linker (ILINK).
The LINK options for incremental linking are no longer supported. If fINCR,
/p ADC, or /p ADD is specified, LINK issues a warning and ignores the option.

New Features
This version of LINK has several new or changed features. This section
summarizes changes in options. Changes in module-definition statements are
discussed in Chapter 14.

The following options are new or changed in LINK versions 5.30 and later. For
more information about each option, see "LINK Options," page 471.

/DOSS [EG]
The minimum unique abbreviation for /DOSSEG option has changed from /DO
to/DOSS.

/DY[NAMIC] [:number]
The new /DYNAMIC option lets you change the limit of interoverlay calls in an
overlaid MS-DOS program.

fINC[REMENTAL]
The fINCR option is no longer supported.

458 Environment and Tools

Overview

/lNF[ORMATION]
The /INFO option gives more detailed output. One new use is to get the number
of interoverlay calls needed to specify with the /DYNAMIC option.

/M[AP] [:maptype]
The /MAP option has been enhanced. You can get more or less detail in the map
file by specifying an optional qualifier.

/NOPACKC[ODE]
The minimum unique abbreviation for /NOPACKC has changed from /NOP to
/NOP ACKC to distinguish it from the new /NOP ACKF option.

/NOPACKF[UNCTIONS]
The new /NOP ACKF option keeps unreferenced packaged functions.

10L[DOVERLA Y]
The new 10LDOVERLA Y option links an overlaid MS-DOS program using the
Static Overlay Manager instead of the MOVE library. This option may not be
supported in future versions of LINK.

10N[ERROR]:N[OEXE]
The 10NERROR:NOEXE option prevents LINK from creating the program
output if an error occurs.

10V[ERLA YINTERRUPT]
The minimum unique abbreviation for this option has changed from 10 to 10V,
to distinguish it from the new 10LDOVERLA Y option.

/P ACKF[UNCTIONS]
The new /P ACKF option removes unreferenced packaged functions.

/PADC[ODE]
The /P ADC option is no longer supported.

/PADD[ATA]
The /P ADD option is no longer supported.

/PC [ODE]
The new /pC ODE option tells LINK to call MPC after linking.

/PM [TYPE]
The default for the /PM option has changed from NOVIO to PM.

Ir
The new Ir option tells the linker not to use extended memory.

LINK combines 80x86 object files into either an executable file or a dynamic-link
library (DLL). The object-file format is the Microsoft Relocatable Object-Module
Format (OMF), which is based on the Intel 8086 OMF. LINK uses library files in
Microsoft library format.

Chapter 13 Linking Object Files with LINK 459

LINK creates "relocatable" executable files and DLLs. The operating system can
load and execute relocatable files in any unused section of memory. LINK can
create MS-DOS executable files with up to 1 megabyte of code and data (or up to
16 megabytes when using overlays). It can create segmented-executable files with
up to 16 megabytes.

For more information on the OMF, the executable-file format, and the linking
process, see the MS-DOS Encyclopedia.

When the file (either executable or DLL) is created, you can examine the
information that LINK puts in the file's header by using the Microsoft EXE File
Header Utility (EXEHDR). For more information on EXEHDR, see Chapter 15.

The Microsoft Programmer's WorkBench (PWB) invokes LINK to create the final
executable file or DLL. Therefore, if you develop your software with PWB, you
might not need to read this chapter. However, the detailed explanations of LINK
options might be helpful when you use the LINK Options dialog box in PWB. This
information is also available in Help.

The compiler or assembler supplied with your language (CL with C, FL with
FORTRAN, ML with MASM) also invokes LINK. You can use most of the LINK
options described in this chapter with the compiler or assembler. The Microsoft
Advisor has more information about the compilers and assembler; select Help for
the appropriate language from the Command Line box of the Help Contents screen.

Note Unless otherwise noted, all references to "library" in this chapter refer to a
static library. This can be either a standard library created by the Microsoft Library
Manager (LIB) or an import library created by the Microsoft Import Library
Manager (IMPLIB), but not a DLL.

LINK Output Files
LINK can create executable files for MS-DOS or the Windows operating system.
The kind of file produced is determined by the way the source code is compiled and
the information supplied to LINK. LINK's output is either an executable file or a
DLL. For simplicity, this chapter sometimes refers to this output as the "program"
or "main output." LINK creates the appropriate file according to the following
rules:

• If a .DEF file is specified, LINK creates a segmented-executable file. The type
is determined by the EXETYPE and LIBRARY statements.

• If a .DEF file is not specified, LINK creates an MS-DOS program.

460 Environment and Tools

• If an overlay number is specifed in a SEGMENTS or FUNCTIONS statement,
LINK creates an overlaid MS-DOS program. This overrides a conflicting .DEF
file specification.

• If /DYNAMIC or IOLDOVERLA Y is specified, or if parentheses are used in
the objects field, LINK creates an overlaid MS-DOS program. This overrides a
conflicting .DEF file specification.

• If an object file or library module contains an export definition (an EXPDEF
record), LINK creates a segmented-executable file. This overrides an overlay
specification. The __ export keyword creates an EXPDEF record in a C
program. Microsoft C libraries for protect mode contain EXPDEF records, so
linking with a protect-mode default library creates a segmented-executable file.

• If an import library is specified, LINK creates a segmented-executable file.

LINK can also create a "map" file, which lists the segments in the executable file
and can list additional information. The /LINE and /MAP options control the
content of the map file.

Other options tell LINK to create other kinds of output files. LINK produces a
.COM file instead of an .EXE file when the /TINY option is specified. The
combination of ICO and /TINY puts debugging information into a .DBG file. A
Quick library results when the IQ option is specified. For more information on these
and other options, see "LINK Options" on page 471.

LINK Syntax and Input
The LINK command has the following syntax:

LINK objfiles[, [exefile] [, [mapfile][, [libraries][, [deffile]]]]] [;]

The LINK fields perform the following functions:

• The objfiles field is a list of the object files that are to be linked into an
executable file or DLL. It is the only required field.

• The exefile field lets you change the name of the output file from its default.

• The mapfile field creates a map file or gives the map file a name other than its
default name.

• The libraries field specifies additional (or replacement) libraries to search for
unresolved references.

• The deffile field gives the name of a module-definition (.DEF) file.

Fields are separated by commas. You can specify all the fields, or you can leave
one or more fields (including objfiles) blank; LINK then prompts you for the

Chapter 13 Linking Object Files with LINK 461

missing input. (For information on LINK prompts, see "Running LINK" on page
468.) To leave a field blank, enter only the field's trailing comma.

Options can be specified in any field. For descriptions of each of LINK's options,
see "LINK Options" on page 471.

The fields must be entered in the order shown, whether they contain input or are left
blank. Use a space or plus sign (+) to separate multiple filenames in the objfiles and
libraries fields. A semicolon (;) at the end of the LINK command line terminates
the command and suppresses prompting for any missing fields. LINK then assumes
the default values for the missing fields.

If your file appears in or is to be created in another directory or device, you must
supply the full path. Filenames are not case sensitive. If the filename contains a
space (supported on some installable file systems), enclose the name in single or
double quotation marks (' or ").

To interrupt LINK and return to the operating-system prompt, press CTRL+C at any
time. Under certain circumstances you may need to press ENTER after CTRL+C.

The next five sections explain how to use each of the LINK fields.

The objfiles Field
The objfiles field specifies one or more object files to be linked. At least one
filename must be entered. If you do not supply an extension, LINK assumes a
default .OBJ extension. If the filename has no extension, add a period (.) to the end
of its name.

If you name more than one object file, separate the names with a plus sign (+) or a
space. To extend objfiles to the following line, type a plus sign (+) as the last
character on the current line, then press ENTER, and continue. Do not split a name
across lines.

Note Using a special syntax for the objfiles field, you can assign the contents of
object files to specific overlays in an MS-DOS program. This syntax, described in
documentation for earlier versions of LINK, uses parentheses to place one or more
object files in an overlay. This syntax may not be supported in future versions of
LINK. For more information about overlays, see your high-level language reference
documentation.

How LINK Searches for Object Files
When it searches for object files, LINK looks in the following locations in the order
specified:

462 Environment and Tools

1. The directory specified for the file (if a path is included). If the file is not in that
directory, the search ends.

2. The current directory.

3. Any directories specified in the LIB environment variable.

If LINK cannot find an object file, and a floppy drive is associated with that object
file, LINK pauses and prompts you to insert a disk that contains the object file.

Load Libraries
If you specify a library in the objfiles field, it becomes a "load library." LINK
treats a load library like any other object file. It does not search for load libraries in
directories named in the libraries field. You must specify the library's filename
extension; otherwise, LINK assumes an .OBJ extension.

LINK puts every object module from a load library into the executable file,
regardless of whether a module resolves an external reference. The effect is the
same as if you had specified all the library's object-module names in the objfiles
field.

Specifying a load library can create an executable file or DLL that is larger than it
needs to be. (A library named in the libraries field adds only those modules
required to resolve external references.) However, loading an entire library can be
useful when:

• Repeatedly specifying the same group of object files.

• Debugging so you can call library routines that would not be included in the
release version of the program.

The exefile Field
The exefile field is used to specify a name for the main output file. If you do not
supply an extension, LINK assumes a default extension, either .EXE, .COM (when
using the rrINY option), .DLL (when using a module-definition file containing a
LIBRARY statement), or .QLB (when using the IQ option).

If you do not specify an exefile, LINK assigns a default name to the main output.
This name is the base name of the first file listed in the objfiles field (whether it is
an object file or a load library), plus the extension appropriate for the type of
executable file being created.

LINK creates the main file in the current directory unless you specify an explicit
path with the filename.

Chapter 13 Linking Object Files with LINK 463

The mapfile Field
The mapfile field is used to specify a filename for the map file or to suppress the
creation of a map file. A map file lists the segments in the executable file or DLL.

You can specify a path with the filename. The default extension is .MAP. Specify
NUL to suppress the creation of a map file. The default for the mapfile field is one of
the following:

• If this field is left blank on the command line or in a response file, LINK creates
a map file with the base name of the exefile (or the first object file if no exefile
is specified) and the extension .MAP. If the field contains a dot (.), the map file
is given the base name without an extension.

• When using LINK prompts, LINK assumes either the default described
previously (if an empty mapfile field is specified) or NUL. MA P, which
suppresses creation of a map file.

To add line numbers to the map file, use the /LINE option. To add public symbols
and other information, use the /MAP option. Both /LINE and /MAP force a map file
to be created unless NUL is explicitly specified in mapfile.

The libraries Field
You can specify one or more standard or import libraries (not DLLs) in the
libraries field. If you name more than one library, separate the names with a plus
sign (+) or a space. To extend libraries to the following line, type a plus sign (+) as
the last character on the current line, press ENTER, and continue. Do not split a
name across lines. If you specify the base name of a library without an extension,
LINK assumes a default .LIB extension.

If no library is specified, LINK searches only the default libraries named in the
object files to resolve unresolved references. If one or more libraries are specified,
LINK searches them in the order named before searching the default libraries.

You can tell LINK to search additional directories for specified or default libraries
by giving a drive name or path specification in the libraries field; end the
specification with a backslash (\). (If you don't include the backslash, LINK
assumes that the specification is for a library file instead of a directory.) LINK
looks for files ending in .LIB in these directories.

You can specify a total of 32 paths or libraries in the field. If you give more than 32
paths or libraries, LINK ignores the additional specifications without warning you.

464 Environment and Tools

Warning Library names must be unique. If multiple libraries are specified with the
same name but different paths, LINK searches only the first library and ignores
references in the other libraries.

You might need to specify library names to:

• Use a default library that has been renamed.

• Specify a library other than the default named in the object file (for example, a
library that handles floating-point arithmetic differently from the default
library).

• Search additional libraries.

• Find a library that is not in the current directory and not in a directory specified
by the LIB environment variable.

Default Libraries
Most high-level language compilers insert the names of the required language
libraries in the object files. (The Microsoft Macro Assembler does not support a
default library.) LINK searches for these default libraries automatically; you do not
need to specify them in the libraries field. The libraries must already exist with the
name specified in the object file. Default-library names usually refer to combined
libraries built and named during setup; consult your compiler documentation for
more information about default libraries.

To make LINK ignore the default libraries, use the /NOD option. This leaves
unresolved references in the object files. Therefore, you must use the libraries field
to specify the alternative libraries that LINK is to search.

Import Libraries
You can specify import libraries created by the IMPLIB utility anywhere you can
specify standard libraries. You can also use the LIB utility to combine import
libraries and standard libraries. These combined libraries can then be specified in
the libraries field. For more information on LIB, see Chapter 17. For information
on IMPLIB, see Chapter 20.

How LINK Resolves References
LINK searches static libraries to resolve external references. A static library is
either a standard library created by the LIB utility or an import library created by
the IMPLIB utility.

LINK searches object files and libraries for a definition of each external reference.
When LINK finds a needed definition in a module in a library, LINK adds the
entire module (but not necessarily all modules in the library) to the program.

Chapter 13 Linking Object Files with LINK 465

You provide a library to LINK in the following ways:

• Specify the name of a library in the libraries field.

• Specify the name of a library as a load library in the objects field. A load library
adds all its modules to the program. For more information, see "Load Libraries"
on page 462.

• Compile a program that uses the INCLUDELIB directive to specify the libraries
you want linked. For more information, see" Associating Libraries with
Modules" in Chapter 8 of the Programmer's Guide.

II Compile a program that uses definitions provided in a default library for that
compiler. The compiler places a library comment record in the object file. LINK
uses the library named in this record.

• Embed a library comment record in the object file by using the comment pragma
in a C program. This record precedes a record for a default library placed in the
object file by the compiler; therefore, LINK looks in this library before it
searches a default library named in the same object file.

LINK first looks for a definition in files specified in the objects field, then it looks
in libraries specified in the libraries field. The search order is the order in which the
files are specified in the fields. LINK then looks in libraries specified in comment
records in the object files, again in the specified order.

If LINK cannot find a needed definition, it issues an error message:

unresolved external

If a reference is defined in more than one library, LINK uses the first definition
it finds as it searches the libraries in order. A duplicate definition may not be a
problem if the later definition is in a module that is not linked into the program.
However, if the duplicate definition is in a module that contains another needed
definition, that module is linked into the program, and the duplicate definition
causes an error:

symbol defined more than once

Multiple definitions can also cause a problem if LINK is using extended
dictionaries in libraries. An extended dictionary is a summary of the definitions
contained in all modules of a library. LINK uses this summary to speed the process
of searching libraries. If LINK finds a previously resolved reference listed in an
extended dictionary, it assumes that a duplicate definition exists and issues an error
message:

symbol multiply defined, use INOE

If this error occurs, link your program using the /NOE option.

466 Environment and Tools

How LINK Searches for Library Files
When searching for a library, LINK looks in the following locations in this order:

1. The directory specified for the file, if a path is included. (The default libraries
named in object files by Microsoft compilers do not include path specifications.)

2. The current directory.

3. Any directories specified in the libraries field.

4. Any directories specified in the LIB environment variable.

If LINK cannot locate a library file, it prompts you to enter the location. The
/BATCH option disables this prompting.

Example
The following is a specification in the libraries field:

C:\TESTLIB\ NEWLIBV3 C:\MYLIBS\SPECIAL

LINK searches NEWLIBV3.LIB first for unresolved references. Since no directory
is specified for NEWLIBV3.LIB, LINK looks in the following locations in this
order:

1. The current directory

2. The C:\TESTLIB\ directory

3. The directories in the LIB environment variable

If LINK still cannot find NEWLIBV3.LIB, it prompts you with the message:

Enter new file spec:

Enter either a path to the library or a path and filename for another library.

If unresolved references remain after LINK searches NEWLIBV3.LIB, it then
searches the library C:\MYLIBS\sPECIAL.LIB. If LINK cannot find this library, it
prompts you as described previously for NEWLIBV3.LIB. If there are still
unresolved references, LINK searches the default libraries.

The deffile Field
Use the deffile field to specify a module-definition file. A module-definition file is
required for an overlaid MS-DOS program or a DLL. It is optional for a Windows
based application. If you specify a base name with no extension, LINK assumes a
.DEF extension. If the filename has no extension, put a period (.) at the end of the
name.

Examples

Chapter 13 Linking Object Files with LINK 467

By default, LINK assumes that a deffile needs to be specified. If you are linking
without a .DEF file, use a semicolon to tenninate the command line before the
deffile field (or accept the default NUL. DEF at the Defi ni ti ons Fi 1 e prompt).

How LINK Searches for Module-Definition Files
LINK searches for the module-definition file in the following order:

1. The directory specified for the file (if a path is included). If the file is not in that
directory, the search tenninates.

2. The current directory.

For infonnation on module-definition files, see Chapter 14.

The following examples illustrate various uses of the LINK command line.

Example 1
LINK FUN+TEXT+TABLE+CARE •• FUNLIST. FUNPROG.LIB;

This command line links the object files FUN.OBJ, TEXT.OBJ, TABLE.OBJ, and
CARE.OBJ. By default, the executable file is named FUN.EXE because the base
name of the first object file is FU N and no name is specified for the executable file.
The map file is named FUNLIST.MAP. LINK searches for unresolved external
references in the library FUNPROG.LIB before searching in the default libraries.
LINK does not prompt for a .DEF file because a semicolon appears before the
deffile field.

Example 2
LINK FUN ••

This command produces a map file named FUN.MAP because a comma appears as
a placeholder for the mapfile field on the command line.

Example 3
LINK FUN.
LINK FUN;

Neither of these commands produces a map file because commas do not appear as
placeholders for the mapfile field. The semicolon (;) ends the command line and
accepts all remaining defaults without prompting; the prompting default for the map
file is not to create one.

468 Environment and Tools

Example 4
LINK MAIN+GETDATA+PRINTIT •• GETPRINT. LST;

This command links the files MAIN.OBJ, GETDAT A.OBJ, and PRINTIT.OBJ.

No module-definition file is specified, so if the files are assembled Macro
Assembler files, LINK creates an MS-DOS real-mode application. If the files are
compiled high-level language files, LINK creates an MS-DOS file if the real-mode
default combined libraries are provided or a segmented-executable file if the
protect-mode libraries are provided. The map file GETPRINT.LST is created.

Example 5
LINK GETDATA+PRINTIT •••• GETPRINT.DEF

This command links GETDAT A.OBJ and PRINTIT.OBJ, using the information in
GETPRINT.DEF. LINK creates a map file named GETDATA.MAP.

Running LINK
The simplest use of LINK is to combine one or more object files with a run-time
library to create an executable file. You type LIN K at the command-line prompt,
followed by the names of the object files and a semicolon (;). LINK combines the
object files with any language libraries specified in the object files to create an
executable file. By default, the executable file takes the name of the first object file
in the list.

To interrupt LINK and return to the operating-system prompt, press CTRL+C at any
time. Under certain circumstances you may need to press ENTER after CTRL+C.

LINK has five input fields, all optional except one (the objfiles field). There are
several ways to supply the input fields LINK expects:

• Enter all the required input directly on the command line.

• Omit one or more of the input fields and respond when LINK prompts for the
missing fields.

• Put the input in a response file and enter the response-file name (preceded by @)
in place of the expected input.

These methods can be used in combination. The LINK command line is covered on
page 460. The following sections explain the other two methods.

Chapter 13 Linking Object Files with LINK 469

Specifying Input with LINK Prompts
If any field is missing from the LINK command line and the line does not end with
a semicolon, or if any of the supplied fields are invalid, LINK prompts you for the
missing or incorrect information. LINK displays one prompt at a time and waits
until you respond:

Object Modules [.OBJ]:
Run File [basename.EXE]:
List File [NUL.MAP]:
Libraries [.LIB]:
Definitions File [NUL.DEF]:

The LINK prompts correspond to the command-line fields described earlier in this
chapter. If you want LINK to prompt you for every input field, including objfiles,
type the command LIN K by itself.

Options can be entered anywhere in any field, before the semicolon if it is specified.

Defaults
The default values for each field are shown in brackets. Press ENTER to accept the
default, or type in the filename(s) you want. The basename is the base name of the
first object file you specified. To select the default responses for all the remaining
prompts and terminate prompting, type a semicolon (;) and press ENTER.

If you specify a filename without giving an extension, LINK adds the appropriate
default extension. To specify a filename that does not have an extension, type a
period (.) after the name.

Use a space or plus sign (+) to separate multiple filenames in the objfiles and
libraries fields. To extend a long objfiles or libraries response to a new line, type
a plus sign (+) as the last character on the current line and press ENTER. You can
continue entering your response when the same prompt appears on a new line. Do
not split a filename or a path across lines.

Specifying Input in a Response File
You can supply input to LINK in a response file. A response file is a text file
containing the input LINK expects on the command line or in response to prompts.
You can use response files to hold frequently used options or responses or to
overcome the 128-character limit on the length of an MS-DOS command line.

470 Environment and Tools

Usage
Specify the name of the response file in place of the expected command-line input
or in response to a prompt. Precede the name with an at sign (@), as in:

@responsefile

You must specify an extension if the response file has one; there is no default
extension. You can specify a path with the filename.

You can specify a response file in any field (either on the command line or after a
prompt) to supply input for one or more consecutive fields or all remaining fields.
Note that LINK assumes nothing about the contents of the response file; LINK
simply reads the fields from the file and applies them in order to the fields for which
it has no input. LINK ignores any fields in the response file or on the command line
after the five expected fields are satisfied or a semicolon (;) appears.

Example
The following command invokes LINK and supplies all input in a response file,
except the last input field:

LINK @input.txt, mydefs

Contents of the Response File
Each input field must appear on a separate line, or separated from other fields on
the same line by a comma. You can extend a field to the following line by adding a
plus sign (+) at the end of the current line. A blank field can be represented by
either a blank line or a comma.

Options can be entered anywhere in any field, before the semicolon if it is specified.

If a response file does not specify all the fields, LINK prompts you for the rest. Use
a semicolon (;) to suppress prompting and accept the default responses for all
remaining fields.

Example
FUN TEXT TABLE+
CARE
IMAP
FUNLIST
GRAF. LIB

If the preceding response file is named FUN. L N K, the command

LINK @FUN. LNK

Chapter 13 Linking Object Files with LINK 471

causes LINK to:

• Link the four object files FUN.OBI, TEXT.OBI, TABLE.OBI, and CARE.OBI
into an executable file named FUN.EXE. (Since options can be entered
anywhere in any field, /MAP is in the field that would otherwise be blank to
accept the .EXE executable-file extension.)

• Include public symbols and addresses in the map file.

• Make the name of the map file FUNLIST.MAP.

• Link any needed routines from the library file GRAF.LIB.

• Assume no module-definition file.

LINK Options
This section explains how to use options to control LINK's behavior and modify
LINK's output. It contains a brief introduction on how to specify options followed
by a description of each option.

Specifying Options
The following paragraphs discuss rules for using options.

Syntax
All options begin with a slash (I). (A dash, -, is not a valid option specifier for
LINK.) You can specify an option with its full name or an abbreviation, up to the
shortest sequence of characters that uniquely identifies the option (except for
/DOSSEG). The description for each option shows the minimum legal abbreviation
with the optional part enclosed in double brackets. No gaps or transpositions of
letters are allowed. For example,

/B[ATCH]

indicates that either /B or /BATCH can be used, as can /BA, /BAT, or /BATC.
Option names are not case sensitive (except for Ir), so you can also specify /batch
or /Batch. This chapter uses meaningful yet legal forms of the option names. If an
option is followed by a colon (:) and an argument, no spaces can appear before or
after the colon.

Usage
LINK options can appear on the command line, in response to a prompt, or as part
of a field in a response file. They can also be specified in the LINK environment
variable. (For more information, see "Setting Options with the LINK Environment
Variable" on page 488.) Options can appear in any field before the last input,
except as noted in the descriptions.

472 Environment and Tools

If an option appears more than once (for example, on the command line and in the
LINK variable), the effect is the same as if the option was given only once. If two
options conflict, the most recently specified option takes effect. This means that a
command-line option or one given in response to a prompt overrides one specified
in the LINK environment variable. For example, the command-line option
/SEG:512 cancels the effect of the environment-variable option /SEG:256.

Numeric Arguments
Some LINK options take numeric arguments. You can enter numbers either in
decimal format or in standard C-Ianguage notation.

The IALIGN Option
Option / A [LIGNMENT] :size

The /ALIGN option aligns segments in a segmented-executable file at the
boundaries specified by size. LINK ignores /ALIGN for MS-DOS programs.

The alignment size is in bytes and must be an integer power of two. LINK rounds
up to the next power of two if another value is specified. The default alignment is
512 bytes.

This option reduces the size of the file as it is stored on disk by reducing the size of
gaps between segments. It has no effect on the size of the file when loaded in
memory. The size of an executable file is limited to 64K times the alignment.

The IBATCH Option
Option /B[ATCH]

The /BATCH option suppresses prompting for libraries or object files that LINK
cannot find. By default, the linker prompts for a new path whenever it cannot find a
library it has been directed to use. It also prompts you if it cannot find an object file
that it expects to find on a floppy disk. When /BATCH is used, the linker generates
an error or warning message (if appropriate). The /BATCH option also suppresses
the LINK copyright message and echoed input from response files.

Using this option can cause unresolved external references. It is intended primarily
for users who use batch files or makefiles for linking many executable files with a
single command and who wish to prevent linker operation from halting.

Note This option does not suppress prompts for input fields. Use a semicolon (;) at
the end of the LINK input to suppress input prompting.

Chapter 13 Linking Object Files with LINK 473

The ICO Option
Option ICO[DEVIEW]]

The ICO option adds Microsoft Symbolic Debugging Infonnation to the executable
file. Debugging infonnation can be used with the Microsoft Code View debugger. If
the object files do not contain debugging infonnation (that is, if they were not
compiled or assembled using either /Zi or /Zd), this option places only public
symbols in the executable file.

You can run the resulting executable file outside Code View; the debugging data
in the file is ignored. However, it increases file size. You should link a separate
release version without the ICO option after the program has been debugged.

When ICO is used with the rrINY option, debugging infonnation is put in a
separate file with the same base name as the .COM file and with the .DBG
extension.

The ICO option is not compatible with the /EXEPACK option for MS-DOS
executable files.

The ICPARM Option
Option ICP[ARMAXALLOC]]:number

The ICPARM option sets the maximum number of 16-byte paragraphs needed by
the program when it is loaded into memory. MS-DOS uses this value to allocate
space for the program before loading it. This option is useful when you want to
execute another program from within your program and you need to reserve
memory for the program. The ICPARM option is valid only for MS-DOS programs.

LINK nonnally requests MS-DOS to set the maximum number of paragraphs to
65,535. Since this is more memory than MS-DOS can supply, MS-DOS always
denies the request and allocates the largest contiguous block of memory it can find.
If the ICP ARM option is used, MS-DOS allocates no more space than the option
specified. Any memory in excess of that required for the program loaded is free for
other programs.

The number can be any integer value in the range 1 to 65,535. If number is less
than the minimum number of paragraphs needed by the program, LINK ignores
your request and sets the maximum value equal to the minimum value. This
minimum is never less than the number of paragraphs of code and data in the
program. To free more memory for programs compiled in the medium and large
models, link with ICP ARM: 1. This leaves no space for the near heap.

474 Environment and Tools

Note You can change the maximum allocation after linking by using the EXEHDR
utility, which modifies the executable-file header. For more information on
EXEHDR, see Chapter 15.

The IDOSSEG Option
Option /DOSS [EG]

The /DOSSEG option forces segments to be ordered as follows:

1. All segments with a class name ending in CODE

2. All other segments outside DGROUP

3. DGROUP segments in the following order:

a. Any segments of class BEGDAT A. (This class name is reserved for
Microsoft use.)

b. Any segments not of class BEGDAT A, BSS, or STACK.

c. Segments of class BSS.

d. Segments of class STACK.

In addition, the /DOSSEG option defines the following two labels:

edata DGROUP BSS
end = DGROUP : STACK

The variables __ e d a t a and __ end have special meanings for Microsoft
compilers. It is recommended that you do not define program variables with these
names. Assembly-language programs can reference these variables but should not
change them.

The /DOSSEG option also inserts 16 null bytes at the beginning of the _TEXT
segment (if this segment is defined); unassigned pointers point to this area. This
behavior of the option is overridden by the /NONULLS option when both are used;
use /NONULLS to override the DOSSEG comment record commonly found in
standard Microsoft libraries.

This option is principally for use with assembly-language programs. When you link
high-level-language programs, a special object-module record in the Microsoft
language libraries automatically enables the /DOSSEG option. This option is also
enabled by assembly modules that use Microsoft Macro Assembler (MASM)
directive .DOSSEG.

Note The minimum abbreviation allowed for this option is /DOSS.

Chapter 13 Linking Object Files with LINK 475

The IDSALLOC Option
Option /DS[ALLOCATEI1

The /DSALLOC option tells LINK to load all data starting at the high end of the
data segment. At run time, the data segment (DS) register is set to the lowest data
segment address that contains program data.

By default, LINK loads all data starting at the low end of the data segment. At run
time, the DS register is set to the lowest possible address to allow the entire data
segment to be used.

The /DSALLOC option is most often used with the II-UGH option to take advantage
of unused memory within the data segment. These options are valid only for
assembly-language programs that create MS-DOS .EXE files.

The IDYNAMIC Option
Option /DY[NAMICI1 :number

The /DYNAMIC option changes the limit on the number of interoverlay calls in an
overlaid MS-DOS program. (For more information on overlays, see your high-level
language documentation.) The default limit is 256. The number is a decimal integer
from 1 to 10,922. Specify a higher number to raise the limit if LINK issues the
error too rna ny i nterove r1 ay ca 11 s. Lower the limit to create a smaller
table of interoverlay calls, saving space in your program.

To determine the most efficient number, run LINK using the /INFO option. The
displayed information contains the line

NUMBER OF INTEROVERLAY CALLS: requested number; generated calls

The number of interoverlay calls requested is the number set by /DYNAMIC or the
default of 256. The calls number reports the number of interoverlay calls actually
generated. For maximum efficiency, run LINK using /INFO, then relink using
/DYNAMIC: calls.

The IEXEP ACK option is ignored for overlaid programs.

The IEXEPACK Option
Option IE [XEPACKI1

The IEXEP ACK option directs LINK to remove sequences of repeated bytes
(usually null characters) and to optimize the load-time relocation table before
creating the executable file. (The load-time relocation table is a table of references
relative to the start of the program, each of which changes when the executable
image is loaded into memory and an actual address for the entry point is assigned.)

476 Environment and Tools

The /EXEP ACK option does not always produce a significant saving in disk space
and may sometimes actually increase file size. Programs that have a large number
of load-time relocations (about 500 or more) and long streams of repeated
characters are usually shorter if packed. LINK issues a warning if the packed file is
larger than the unpacked file. The time required to expand a packed file may cause
it to load more slowly than a file linked without this option.

You cannot debug packed MS-DOS files with Code View because the unpacker that
/EXEPACK appends to an MS-DOS program is incompatible with CodeView. In a
Windows-based program, the unpacker is in the loader, and there is no conflict with
CodeView.

The /EXEP ACK option is not compatible with the /HIGH or IQ option. LINK
ignores the /EXEP ACK option for overlaid programs.

The IFARCALL Option
Option /FIT ARCALL TRANS LA TION]

The /F ARCALL option directs the linker to optimize far calls to procedures that lie
in the same segment as the caller. This can result in slightly faster code; the gain in
speed is most apparent on 80286-based machines and later.

The /FARCALL option is on by default for overlaid MS-DOS programs and
programs created with the /TINY option. It is off by default for other programs. If
an environment variable (such as LINK or CL) includes /FARCALL, you can use
the /NOFARCALL option to override it.

A program that has mUltiple code segments may make a far call to a procedure in
the same segment. Since the segment address is the same (for both the code and the
procedure it calls), only a near call is necessary. Far calls appear in the relocation
table; a near call does not require a table entry. By converting far calls to near calls
in the same segment, the /F ARCALL option both reduces the size of the relocation
table and increases execution speed because only the offset needs to be loaded, not
a new segment. The /F ARCALL option has no effect on programs that make only
near calls since there are no far calls to convert.

When /F ARCALL is specified, the linker optimizes code by removing the
instruction call FAR 1 abe 1 and substituting the following sequence:

nap
push cs
call NEAR label

During execution, the called procedure still returns with a far-return instruction.
However, because both the code segment and the near address are on the stack, the

Chapter 13 Linking Object Files with LINK 477

far return is executed correctly. The nap (no-op) instruction is added so that exactly
5 bytes replace the 5-byte far-call instruction.

There is a small risk with the IFARCALL option. If LINK sees the far-call opcode
(9A hexadecimal) followed by a far pointer to the current segment, and that
segment has a class name ending in CODE, it interprets that as a far call. This
problem can occur when using __ based (__ segname ("_CODE")) in a C
program. If a program linked with IF ARCALL fails for no apparent reason, try
using /NOFARCALL.

Assembly-language programs are generally safe for use with the IFARCALL option
if they do not involve advanced system-level code, such as might be found in
operating systems or interrupt handlers. Object modules produced by Microsoft
high-level languages are safe from this problem because little immediate data is
stored in code segments.

The IHELP Option
Option /HE [LP]

The /HELP option calls the QuickHelp utility. If LINK cannot find the Help file
or QuickHelp, it displays a brief summary of LINK command-line syntax and
options. Do not give a filename when using the /HELP option.

The IHIGH Option
Option /HI[GH]

At load time, the executable file can be placed either as low or as high in memory
as possible. The /HIGH option causes MS-DOS to place the executable file as high
as possible in memory. Without the /HIGH option, MS-DOS places the executable
file as low as possible. This option is usually used with the /DSALLOC option.
These options are valid only for assembly-language programs that create MS-DOS
.EXE files.

The IINFO Option
Option II [NFORMATION]

The /INFO option displays to the standard output information about the linking
process, including the phase of linking, the object files being linked, and the library
modules used. This option is useful for determining the locations of the object files
and modules, the number of segments, and the order in which they are linked.

An important use of /INFO is to get the number of interoverlay calls generated. You
can then specify this number with the /DYNAMIC option.

478 Environment and Tools

The ILINE Option
Option /L[INENUMBERS]

The /LINE option adds the line numbers and associated addresses from source files
to the map file. The object file must contain line-number information for it to appear
in the map file. If the object file has no line-number information, the /LINE option
has no effect. (Use the /Zd or /Zi option with Microsoft compilers such as ML, FL,
and CL to add line numbers to the object file.) If you also want to add public
symbols or other information to the map file, use the /MAP option. For more
information on the map file, see the description of /MAP.

The /LINE option causes a map file to be created even if you did not explicitly tell
the linker to do so. LINK creates a map file when a filename is specified in the
mapfile field or when the default map-file name is accepted. (The /MAP option also
forces creation of a map file.) For more information, se,e the description of mapfile
on page 463.

By default, the map file is given the same base name as the executable file with the
extension .MAP. You can override the default name by specifying a new map-file
name in the mapfile field or in response to the Lis t F i 1 e prompt.

The IMAP Option
Option /M[AP] [: {map type }]

The /MAP option controls the information contained in the map file. The /MAP
option causes a map file to be created even if you did not explicitly tell the linker to
do so.

LINK creates a map file when a filename is specified in the mapfile field or when
the default map-file name is accepted. (The /LINE option also forces creation of a
map file.) For more information, see the description of mapfile on page 463.

A map file by default contains only a list of segments. A map file created with
/MAP contains public symbols sorted by name and by address, in addition to the
segments list. Symbols in C++ appear in the form of decorated names. To add or
omit information, specify /MAP followed by a colon (:) and a maptype qualifier:

A[DDRESS]
Omits the list of public symbols sorted by name.

F[ULL]
Adds information about each object file's contribution to a segment. Adds
undecorated names following the decorated names for C++ symbols in the
listings by name and by address.

If you also want to add line numbers to the map file, use the /LINE option.

Chapter 13 Linking Object Files with LINK 479

By default, the map file is given the same base name as the executable file with the
extension .MAP. You can override the default name by specifying a new map
filename in the mapfile field or in response to the Lis t Fi 1 e prompt.

Under some circumstances, adding symbols slows the linking process. If this is a
problem, do not use /MAP.

The INOD Option
Option /NOD [EFAULTLIBRARYSEARCH] [:libraryname]

The /NOD option tells LINK not to search default libraries named in object files.
Specify libraryname to tell LINK to exclude only libraryname from the search.
If you want LINK to ignore more than one library, specify /NOD once for each
library. To tell LINK to ignore all default libraries, specify /NOD without a
libraryname. For more infonnation, see "Default Libraries" on page 464.

High-level-language object files usually must be linked with a run-time library to
produce an executable file. Therefore, if you use the /NOD option, you must also
use the libraries field to specify an altemate library that resolves the external
references in the object files. If you compile a program using Microsoft C 7.0 or
later and you specify /NOD, you must also specify OLDNAMES.LIB.

The INOE Option
Option /NOE[XTDICTIONARY]

The /NOE option prevents the linker from searching extended dictionaries when
resolving references. An extended dictionary is a list of symbol locations in a
library created with LIB. The linker consults extended dictionaries to speed up
library searches. Using /NOE slows the linker.

When LINK uses extended dictionaries, it gives an error if a duplicate definition is
found. Use this option when you redefine a symbol and an error occurs. For more
infonnation, see "How LINK Resolves References" on page 464.

The INOFARCALL Option
Option /NOF[ARCALLTRANSLATION]

The /NOFARCALL option turns off far-call optimization (translation). Far-call
optimization is off by default. However, if an environment variable (such as LINK
or FL) includes the /FARCALL option, you can use /NOFARCALL to override
/FARCALL.

480 Environment and Tools

The INOGROUP Option
Option /NOG[ROUPASSOCIATIONI1

The /NOGROUP option ignores group associations when assigning addresses to
data and code items. It is provided primarily for compatibility with early versions of
LINK and Microsoft compilers. This option is valid only for assembly-language
programs that create MS-DOS programs.

The INOI Option
Option /NOI[GNORECASEI1

This option preserves case in identifiers. By default, LINK treats uppercase and
lowercase letters as equivalent. Thus ABC, Abc, and a be are considered the same
name. When you use the /NOI option, the linker distinguishes between uppercase
and lowercase and considers these identifiers to be three different names.

In most high-level languages, identifiers are not case sensitive, so this option has no
effect. However, case is significant in C. It's a good idea to use this option with C
programs to catch misnamed identifiers.

The INOLOGO Option
Option /NOL[OGOI1

The /NOLO GO option suppresses the copyright message displayed when LINK
starts. This option has no effect if not specified first on the command line or in the
LINK environment variable.

The INONULLS Option
Option /NON[ULLSDOSSEGI1

The /NONULLS option arranges segments in the same order they are arranged
by the /DOSSEG option. The only difference is that the /DOSSEG option inserts 16
null bytes at the beginning of the _TEXT segment (if it is defined), but /NONULLS
does not insert the extra bytes.

If both the /DOSSEG and /NONULLS options are given, the /NONULLS option
takes precedence. Therefore, you can use /NONULLS to override the DOSSEG
comment record found in run-time libraries. This option is for segmented
executable files.

Chapter 13 Linking Object Files with LINK 481

The INOPACKC Option
Option /NOPACKC[ODE]

This option turns off code-segment packing. Code-segment packing is on by default
for segmented-executable files and for MS-DOS programs created with overlays or
with the rrINY option. It is off by default for other MS-DOS programs. If an
environment variable (such as LINK or CL) includes the /pACKC option to tum on
code-segment packing, you can use /NOPACKC to override /p ACKC. For more
information on packing, see "The /p ACKC Option" on page 482.

Note The minimum unique abbreviation for /NOPACKC has changed from /NOP
to /NOPACKC.

The INOPACKF Option
Option /NOPACKF[UNCTIONS]

This option prevents the removal of unreferenced packaged functions. Removal of
such definitions (the /PACKF option) is usually on by default. Use /NOPACKF to
preserve these definitions. For example, you may want to keep unreferenced code in
a debugging version of your program. For more information on /p ACKF and
packaged functions, see page 484.

The IOLDOVERLA Y Option
Option /OL[DOVERLA Y]

This option links an overlaid MS-DOS program using the Static Overlay Manager
instead of the MOVE library. This option may not be supported in future versions
of LINK. For information about overlays, see your high-level language
documentation.

The IONERROR Option
Option /ON[ERROR] :N[OEXE]

The /ONERROR option tells LINK what to do if an error occurs. By default, if
certain errors occur, LINK writes an executable file to disk and overwrites any
existing file having the same name. The resulting executable file has the error bit
set in its header. Specify /ONERROR:NOEXE to prevent such a file from being
written to disk and preserve any existing file having the same name. The
/ONERROR option can be useful in makefiles.

482 Environment and Tools

The IOV Option
Option 10V[ERLA YINTERRUPT] :number

This option sets an interrupt number for passing control to overlays. By default, the
interrupt number used for passing control to overlays is 63 (3F hexadecimal). The
10V option allows you to select a different interrupt number. This option is valid
only when linking overlaid MS-DOS programs.

The number can be any number from 0 to 255, specified in decimal format or in
C-Ianguage notation. Numbers that conflict with MS-DOS interrupts can be used;
however, their use is not advised. You should use this option only when you want to
use overlays with a program that reserves interrupt 63 for some other purpose.

Note The minimum unique abbreviation for 10V has changed from 10 to 10V.

The IPACKC Option
Option /p ACKC[ODE] [:number]

The /p ACKC option turns on code-segment packing. Code-segment packing is on
by default for segmented executable files and for MS-DOS programs created with
overlays or with the /TINY option. It is off by default for other MS-DOS programs.
You can use the /NOP ACKC option to override /p ACKC.

The linker packs physical code segments by grouping neighboring logical code
segments that have the same attributes. Segments in the same group are assigned
the same segment address; offset addresses are adjusted accordingly. All items have
the same physical address whether or not the /p ACKC option is used. However,
/p ACKC changes the segment and offset addresses so that all items in a group share
the same segment.

The number specifies the maximum size of groups formed by /PACKC. The linker
stops adding segments to a group when it cannot add another segment without
exceeding number. It then starts a new group. The default segment size without
/pACKC (or when /pACKC is specified without number) is 65,500 bytes (64K-
36 bytes).

The /p ACKC option produces slightly faster and more compact code. It affects only
programs with multiple code segments.

Code-segment packing provides more opportunities for far-call optimization (which
is enabled with the /FARCALL option). The /FARCALL and /pACKC options
together produce faster and more compact code.

Object code created by Microsoft compilers can safely be linked with the /p ACKC
option. This option is unsafe only when used with assembly-language programs that

Chapter 13 Linking Object Files with LINK 483

make assumptions about the relative order of code segments. For example, the
following assembly code attempts to calculate the distance between CSEGI and
C S E G 2. This code produces incorrect results when used with /p ACKC because
/p ACKC causes the two segments to share the same segment address. Therefore,
the procedure would always return zero.

CSEGI SEGMENT PUBLIC 'CODE'

CSEGI ENDS

CSEG2 SEGMENT PARA PUBLIC 'CODE'
ASSUME cs:CSEG2

; Return the length of CSEGI in AX

codesize PROC NEAR
mov ax, CSEG2 Load para address
sub ax, CSEGI Load para address
mov ex, 4 Load count
s h 1 ax, cl Convert distance

to bytes
codesize ENDP

CSEG2 ENDS

of CSEGI
of CSEG2

from paragraphs

The /PACKD Option
Option /p ACKD[AT A] [:number]

The /p ACKD option turns on data-segment packing. The linker considers any
segment definition with a class name that does not end in CODE as a data segment.
Adjacent data-segment definitions are combined into the same physical segment.
The linker stops adding segments to a group when it cannot add another segment
without exceeding number bytes. It then starts a new group. The default segment
size without /pACKD (or when /pACKD is specified without number) is 65,536
bytes (64K).

The /p ACKD option produces slightly faster and more compact code. It affects only
programs with multiple data segments and is valid only for segmented-executable
files. It might be necessary to use the /p ACKD option to get around the limit of 254
physical data segments per executable file imposed by an operating system. Try
using /p ACKD if you get the following LINK error:

484 Environment and Tools

L1073 file-segment limit exceeded

This option may not be safe with other compilers that do not generate fixup records
for all far data references.

The /PACKF Option
Option /p ACKF[UNCTIONS]

The /pACKF option removes unreferenced "packaged functions." This behavior is
the default. However, if an environment variable (such as LINK or CL) includes the
/NOP ACKF option, you can use /p ACKF to override /NOP ACKF.

A packaged function is visible to the linker in the form of a COMDAT record.
Packaged functions are created when you use the /Gy option on the CL command
line (or, in PWB, when you choose Enable Function Level Linking in the
Additional Global Options dialog box, which is available from the C or C++
Compiler Options dialog boxes). Member functions in a C++ program are
automatically packaged.

If a packaged function is defined but not called, this option removes the function
definition from the executable file. /p ACKF is not recursive; LINK does not
remove any external definitions brought in by the unused packaged function. For
more information about packaged functions, see your C or C++ language
documentation.

The /PAUSE Option
Option /PAU[SE]

The /pAUSE option pauses the session before LINK writes the executable file or
DLL to disk. This option is supplied for compatibilty with machines that have two
floppy drives but no hard disk. It allows you to swap floppy disks before LINK
writes the executable file.

If you specify the /pAUSE option, LINK displays the following message before it
creates the main output:

About to generate .EXE file
Change diskette in drive letter and press <ENTER>

The letter is the current drive. LINK resumes processing when you press ENTER.

Do not remove a disk that contains either the map file or the temporary file. If
LINK creates a temporary file on the disk you plan to remove, end the LINK
session and rearrange your files so that the temporary file is on a disk that does not

Chapter 13 Linking Object Files with LINK 485

need to be removed. For more information on how LINK determines where to put
the temporary file, see "LINK Temporary Files" on page 489.

The fPCODE Option
Option /pC [ODE]

This option tells LINK to call the Make P-Code (MPC) utility after linking. MPC is
included with Microsoft C/C++ versions 7.0 and later. If you link a p-code program
using LINK instead of CL, you must use /pCODE to generate a valid executable
file. The /PC ODE option is not compatible with overlays.

The fPM Option
Option /PM[TYPE]:type

This option specifies the type of Windows-based application being generated. The
/PM option is equivalent to including a type specification in the NAME statement
in a module-definition file.

The type field can take one of the following values:

PM
The default. Windows-based application. The application uses the API provided
by the Windows operating system and must be executed within the Windows
operating system. This is equivalent to NAME WINDOW API.

VIO
Character-mode application to run in a text window in the Windows operating
system session. This is equivalent to NAME WINDOWCOMPAT.

NOVIO
Character-mode application that must run full screen within the Windows
operating system. This is equivalent to NAME NOTWINDOWCOMPAT.

The fQ Option
Option IQ[UICKLIBRARY]]

The IQ option directs the linker to produce a "Quick library" instead of an
executable file. A Quick library is similar to a standard library because both
contain routines that can be called by a program. However, a standard library is
linked with a program at link time; in contrast, a Quick library is linked with a
program at run time.

When IQ is specified, the exefile field refers to a Quick library instead of an
application. The default extension for this field is then .QLB instead of .EXE.

486 Environment and Tools

The Ir Option
Option

Quick libraries can be used only with programs created with Microsoft QuickBasic
or early versions of Microsoft QuickC. These programs have the special code that
loads a Quick library at run time.

Ir

Prevents LINK from using extended memory with MS-DOS. The Ir option must
appear first in the options field on the command line and cannot appear in a
response file or the LINK environment variable. LINK.EXE is extender-ready and
uses extended memory if it exists. This option forces LINK to use only conventional
memory. The option name is case sensitive.

For LINK to run in DOS-extended mode, sufficient extended memory must be
available. The memory must be provided by one of the following:

• An MS-DOS Protected-Mode Interface (DPMI) server, such as that provided in
an MS-DOS session within the Windows operating system operating in
enhanced mode

• A Yirtual Control Program Interface (YCPI) server, such as Microsoft's
EMM386.EXE

• An XMS driver, such as Microsoft's HIMEM.SYS

The ISEG Option
Option ISE[GMENTS] [:number]

The ISEG option sets the maximum number of program segments. The default
without ISEG or number is 128. You can specify number as any value from 1 to
16,384 in decimal format or C-Ianguage notation. However, the number of segment
definitions is constrained by available memory.

LINK must allocate some memory to keep track of information for each segment;
the larger the number you specify, the less free memory LINK has to run in. A
relatively low segment limit (such as the 128 default) reduces the chance that LINK
will run out of memory. For programs with fewer than 128 segments, you can
minimize LINK's memory requirements by setting number to reflect the actual
number of segments in the program. If a program has more than 128 segments,
however, you must set a higher value.

If the number of segments allocated is too high for the amount of memory available
while linking, LINK displays the error message:

L1054 requested segment limit too high

When this happens, try linking again after setting ISEG to a smaller number.

Chapter 13 Linking Object Files with LINK 487

The 1ST ACK Option
Option IST[ACK] :number

The 1ST ACK option lets you change the stack size from its default value of 2048
bytes. The number is any positive even value in decimal or C-Ianguage notation up
to 64K - 2 bytes. If an odd number is specified, LINK rounds up to the next even
value. Do not specify 1ST ACK for a DLL.

Programs that pass large arrays or structures by value or with deeply nested
subroutines may need additional stack space. In contrast, if your program uses the
stack very little, you might be able to save space by decreasing the stack size. If a
program fails with a stack-overflow message, try increasing the size of the stack.

Note You can also use the EXEHDR utility to change the default stack size by
modifying the executable-file header. For more information on EXEHDR, see
Chapter 15.

The ITINY Option
Option !T[INY]

The !TINY option produces a .COM file instead of an .EXE file. The default
extension of the output file is .COM. When the ICO option is used with /TINY,
debug information is put in a separate file with the same base name as the .COM
file and with the .DBG extension. LINK uses IF ARC ALL and /p ACKC when
!TINY is specified.

Not every program can be linked in the .COM format. The following restrictions
apply:

• The program must consist of only one physical segment. You can declare more
than one segment in assembly-language programs; however, the segments must
be in the same group.

• The code must not use far references.

• Segment addresses cannot be used as immediate data for instructions. For
example, you cannot use the following instruction:

mov ax, CODESEG

• Windows-based programs cannot be converted to a .COM format.

488 Environment and Tools

The IW Option
Option

The I? Option
Option

/W[ARNFIXUP]

The /W option issues the L4000 warning when LINK uses a displacement from the
beginning of a group in determining a fixup value. This option is provided because
early versions of the Windows-based linker (LINK4) performed fixups without this
displacement. This option is for linking segmented-executable files.

/?

The /? option displays a brief summary of LINK command-line syntax and options.

Setting Options with the LINK Environment Variable
You can use the LINK environment variable to set options that will be in effect
each time you link. (Microsoft compilers such as ML, FL, and CL also use the
options in the LINK environment variable.)

Setting the LINK Environment Variable
You set the LINK environment variable with the following operating-system
command:

SET LI N K=options

LINK expects to find options listed in the variable exactly as you would type them
in fields on the command line, in response to a prompt, or in a response file. It does
not accept values for LINK's input fields; filenames in the LINK variable cause an
error.

Example
SET LINK=/NOI ISEG:256 leo
LINK TEST;
LINK INDO PROG;

In the preceding example, the commands are specified at the system prompt. The
file TEST.OBJ is linked using the options INOI, ISEG: 256, and ICO. The file
PROG.OBJ is then linked with the option INDO, in addition to INOI, ISEG: 256,
and ICO.

Chapter 13 Linking Object Files with LINK 489

Behavior of the LINK Environment Variable
You can specify options in the LINK input fields and in the LINK environment
variable. LINK reads the options set in the LINK environment variable before it
reads options specified in LINK input fields. This priority has the following effects:

• The option LINK considers to be first is the first one in the LINK environment
variable, if set. The jNOLOGO option behaves differently depending on
whether or not it is first. However, the Ir option cannot be specified in the LINK
variable and must be specified first on the command line.

• An option specified multiple times with different values will get the last value
read by LINK. For example, if ISEG:512 is set in an input field, it overrides a
setting of ISEG:256 in the LINK variable.

• For some options, if an option appears in the LINK variable and a conflicting
option appears in an input field, the input-field option overrides the
environment-variable option. For example, the input-field option jNOPACKC
overrides the environment-variable option /p ACKC.

Clearing the LINK Environment Variable
You must reset the LINK environment variable to prevent LINK from using its
options. To clear the LINK variable, use the operating-system command:

SET LINK=

To see the current setting of the LINK variable, type SET at the operating-system
prompt.

LINK Temporary Files
LINK uses available memory during the linking session. If LINK runs out of
memory, it creates a disk file to hold intermediate files. LINK deletes this file when
it finishes.

When the linker creates a temporary disk file, you see the following message:

Tempora ry fi 1 e tempfile has been created.
Do not change diskette in drive, letter.

In the preceding message, tempfile is the name of the temporary file, and letter is
the drive containing the temporary file. (The second line appears only for a floppy
drive.)

490 Environment and Tools

After this message appears, do not remove the disk from the drive specified by
letter until the link session ends. If the disk is removed, the operation of LINK is
unpredictable, and you might see the following message:

Unexpected end-of-file on scratch file

If this happens, run LINK again.

Location of the Temporary File
If the TMP environment variable defines a temporary directory, LINK creates
temporary files there. If the TMP environment variable is undefined or the
temporary directory doesn't exist, LINK creates temporary files in the current
directory.

Name of the Temporary File
When running with MS-DOS version 3.0 or later, LINK asks the operating system
to create a temporary file with a unique name in the temporary-file directory.

With MS-DOS versions earlier than 3.0, LINK creates a temporary file named
VM.TMP. Do not use this name for your files. LINK generates an error message if
it encounters an existing file with this name.

LINK Exit Codes
LINK returns an exit code (also called return code or error code) that you can use
to control the operation of batch files or makefiles.

Code Meaning

o No error.

2 Program error. Commands or files given as input to the linker produced the
error.

4 System error. The linker:

• Ran out of space on output files.

• Was unable to reopen the temporary file.

• Experienced an internal error.

• Was interrupted by the user.

491

CHAPTER 14

Creating Module-Definition Files

This chapter describes the contents of a module-definition (.DEF) file. It begins
with a brief overview of the purpose of .DEF files. The rest of the chapter discusses
each statement in a module-definition file and describes syntax rules, arguments,
fields, attributes, and keywords for each statement.

The statements in this chapter are supported by the following utilities:

• Microsoft Segmented-Executable Linker (LINK) version 5.31

• Microsoft Import Library Manager (IMPLIB) version 1.40

New Features
The latest version of the linker and other utilities support the statements and
keywords described in this chapter. The following sections introduce features that
are new with these versions.

MS-DOS Programs
You can now use a module-definition file when you link an MS-DOS application.
LINK creates an MS-DOS executable file instead of a segmented-executable file if
the .DEF file contains any of the following:

• An EXETYPE statement that specifies the type DOS

• A SEGMENTS statement that specifies an overlay number

• A FUNCTIONS statement that specifies an overlay number

Other conditions also determine the type of executable file that LINK creates; for
details, see "LINK Output Files" on page 459. The only valid statements in a .DEF
file for an MS-DOS program are EXETYPE, SEGMENTS, FUNCTIONS, and
INCLUDE. All other statements are ignored.

492 Environment and Tools

Statements

Overlays

Overview

Following are the new statements and changes to existing statements described in
this chapter. For details on each statement, see the reference section of this chapter.

• The NAME statement's default apptype is now WINDOWAPI (formerly
NOTWINDOWCOMPAT).

• The EXETYPE statement's default is now WINDOWS.

• EXETYPE WINDOWS now assumes PROTMODE by default.

• The EXETYPE statement has a new type argument, DOS.

• The new SECTIONS and OBJECTS keywords are synonyms for the
SEGMENTS statement.

• The new INCLUDE statement inserts module statements from a separate text
file.

• The new FUNCTIONS statement specifies the order in which functions appear
in the executable file. It can also assign functions to a specific segment. In an
overlaid MS-DOS program, FUNCTIONS can specify the overlay in which
functions belong.

• The SEGMENTS statement accepts a new argument, OVL:number. This
argument specifies the overlay in which the segment belongs in an overlaid MS
DOS program.

A new overlay manager, the Microsoft Overlay Virtual Environment (MOVE),
replaces the Microsoft Static Overlay Manager. MOVE is supported by high-level
programming languages, such as Microsoft CjC++. For information on creating
overlaid MS-DOS programs using MOVE, refer to your high-level language
reference documentation.

A module-definition (.DEF) file is a text file that describes the name, attributes,
exports, imports, system requirements, and other characteristics of an application or
dynamic-link library (DLL). This file should be used for DLLs and overlaid DOS
programs. It is optional (but desirable) for other segmented executable files, such as

, Windows-based applications, and is usually not necessary for other MS-DOS
programs.

Chapter 14 Creating Module-Definition Files 493

You use module-definition files in the following two situations:

• You can specify a module-definition file in LINK's deffile field. The module
definition file gives the LINK utility the infonnation that is necessary for linking
the program. For specific infonnation on using a .DEF file when linking, see
page 466.

• You can use the Microsoft Import Library Manager utility (IMPLIB) to create
an import library from a module-definition file for a DLL (or from the DLL
created by a module-definition file). You then specify the import library in
LINK's libraries field when linking an application that uses functions and data
in the DLL. For infonnation on IMPLIB, see page 652.

Note The tenn "function" as used in this chapter refers to any routine for the
programming language being used: function, procedure, or subroutine.

Module Statements
A module-definition file contains one or more "module statements." Each module
statement defines an attribute of the executable file, such as its name, the attributes
of program segments, and the number and names of exported and imported
functions and data. Table 14.1 summarizes the purpose of the module statements
and shows the order in which they are discussed in this chapter.

Table 14.1 Module Statements

Statement

NAME

LIBRARY

DESCRIPTION

STUB

APPLOADER

EXETYPE

PROTMODE

REALMODE

STACKSIZE

HEAPSIZE

CODE

DATA

SEGMENTS

Purpose

Names the application (no library created)

Names the DLL (no application created)

Embeds text in the application or DLL

Adds an MS-DOS executable file to the beginning of the file

Replaces the default Windows operating system loader with a
custom loader

Identifies the target operating system

Specifies a protected-mode Windows-based program

Specifies a real-mode Windows-based program

Sets stack size in bytes

Sets local heap size in bytes

Sets default attributes for all code segments

Sets default attributes for all data segments

Sets attributes for specific segments

494 Environment and Tools

Syntax Rules

Table 14.1 Module Statements (continued)

Statement

OLD

EXPORTS

IMPORTS

FUNCTIONS

INCLUDE

Purpose

Preserves ordinals from a previous DLL

Defines exported functions

Defines imported functions

Specifies function order and location

Inserts a file containing module statements

The syntax rules in this section apply to all statements in a module-definition file.
Other rules specific to each statement are described in the sections that follow.

• Statement and attribute keywords are not case sensitive. User-specified
identifiers are case insensitive by default; however, they can be made case
sensitive by using LINK's (or IMPLIB 's) /NOI option.

• Use one or more spaces, tabs, or newline characters to separate a statement
keyword from its arguments and to separate statements from each other. A colon
(:) or equal sign (=) that designates an argument is surrounded by zero or more
spaces, tabs, or newline characters.

• A NAME or LIBRARY statement, if used, must precede all other statements.

• Most statements appear at most once in a file and accept one specification of
parameters and attributes. The specification follows the statement keyword on
the same or subsequent line(s). If the statement is repeated with a different
specification later in the file, the later statement overrides the earlier one.

• The INCLUDE statement can appear more than once in the file. Each statement
takes one filename specification.

• The SEGMENTS, EXPORTS, IMPORTS, and FUNCTIONS statements can
appear more than once in the file. Each statement can take multiple
specifications, which must be separated by one or more spaces, tabs, or newline
characters. The statement keyword must appear once before the first
specification and can be repeated before each additional specification.

• Comments in the file are designated by a semicolon (;) at the beginning of each
comment line. A comment cannot share a line with part or all of a statement, but
it can appear between lines of a multiline statement.

• Numeric arguments can be specified in decimal or in C-Ianguage notation.

• If a string argument matches a reserved word it must be enclosed in double
quotation marks ("). Reserved words are listed at the end of this chapter.

Example

Chapter 14 Creating Module-Definition Files 495

The following module-definition file gives a description for a DLL. This sample file
includes one comment and five statements.

; Sample module-definition file
LIBRARY FIRSTLIB WINDOWAPI
EXETYPE WINDOWS 3.0
CODE PRELOAD MOVABLE DISCARDABLE
DATA PRELOAD SINGLE
HEAPSIZE 1024

The NAME Statement

Syntax

Remarks

The NAME statement identifies the executable file as an application (rather than a
DLL). It can also specify the name and application type. If NAME is specified, the
LIBRARY statement cannot be used. If neither is used, the default is NAME, and
LINK creates an application. The NAME or LIBRARY statement must precede
all other statements.

NAME [appname] [apptype] [NEWFILES]

The arguments can appear in any order.

If appname is specified, it becomes the name of the application as it is known by
the operating system. This name can be any valid filename. If appname contains a
space (allowed under some install able file systems), begins with a nonalphabetic
character, or is a reserved word, enclose appname in double quotation marks. The
name cannot exceed 255 characters (not including the surrounding quotation
marks). If appname is not specified, the base name of the executable file becomes
the name of the application.

If apptype is specified, it defines the type of application. This information is kept in
the executable-file header. The apptype is one of the following keywords:

WINDOWAPI
The default. Creates a Windows-based application. The application uses the API
provided by the Windows operating system and must be executed within the the
Windows operating system. This is equivalent to the LINK option /pM:PM.

WINDOWCOMPAT
Creates a character-mode application to run in a text window within a Windows
operating system session. This is equivalent to the LINK option /pM:VIO.

NOTWINDOWCOMPAT
Creates a character-mode application that must run full screen and cannot run in
a text window within the Windows operating system. This is equivalent to the
LINK option /pM:NOVIO.

496 Environment and Tools

Example

The NEWFILES keyword sets a bit in the file header to notify the loader that the
application may be using an installable file system. The synonym LONGNAMES
is supported for compatibility.

The following example assigns the name cal end a r to an application that can run in
a text window within the Windows operating system:

NAME calendar WINDOWCOMPAT

The LIBRARY Statement

Syntax

Remarks

Example

The LIBRARY statement identifies the executable file as a DLL.1t can also
specify the .DLL filename. The LIBRARY or NAME statement must precede all
other statements. If LIBRARY is specified, the NAME statement cannot be used.
If neither is used, the default is NAME.

LIBRARY [libraryname] [PRIVATELIB]

The arguments can appear in any order.

If library name is specified, it becomes the base name of the .DLL file. This name
can be any valid filename. LINK assumes a .DLL extension whether or not an
extension is specified. If libraryname contains a space (allowed under some
installable file systems), begins with a nonalphabetic character, or is a reserved
word, enclose it in double quotation marks ("). The name cannot exceed 255
characters.

The libraryname filename overrides a name specified in LINK's exefile field.

Specify PRIV A TELIB to tell the Windows operating system that only one
application may use the DLL.

The following example assigns the name cal endar to the DLL being defined.

LIBRARY calendar

The DESCRIPTION Statement

Syntax

Remarks

The DESCRIPTION statement inserts specified text into the application or DLL.
This statement is useful for embedding source-control or copyright information into
a file.

DESCRIPTION 'text'

The text is a string of up to 255 characters enclosed in single or double quotation
marks (' or "). To include a literal quotation mark in the text, either specify two
consecutive quotation marks of the same type or enclose the text with the alternate

Example

Chapter 14 Creating Module-Definition Files 497

type of quotation mark. If a DESCRIPTION statement is not specified, the default
text is the name of the main output file as specified in LINK's exefile field.

You can view this string by using the EXEHDR utility. The string appears in the
Deseri pti on: field. For more information, see Chapter 15.

The DESCRIPTION statement is different from a comment. A comment is a line
that begins with a semicolon (;). LINK does not place comments into the program.

The following example inserts the text Tester's Version, Test "A",which
contains a literal single quotation mark and a pair of literal double quotation marks,
into the application or DLL:

DESCRIPTION "Tester's Version, Test ""A"""

The STUB Statement

Syntax

Remarks

Example

The STUB statement adds an MS-DOS executable file to the beginning of a
segmented executable file. The stub is invoked whenever the file is executed under
MS-DOS. Usually, the stub displays a message and terminates execution. However,
the program can be of any size and may perform other actions. The STUB
statement is optional; by default, LINK adds a standard stub that is appropriate for
the program's EXETYPE.

STUB {'filename' I NONE}

Thefilename specifies the MS-DOS executable file to be added. LINK searches for
filename first in the current directory and then in directories specified with the
PATH environment variable. If you specify a path with filename, LINK looks only
in that location. The filename must be enclosed in single or double quotation marks
(' or ").

The alternate specification NONE prevents LINK from adding a default stub. This
saves space in the application or DLL. However, the resulting file will hang the
system if loaded under MS-DOS.

The following example inserts the MS-DOS executable file STOPIT.EXE at the
beginning of the application or DLL:

STUB 'STOPIT.EXE'

The file STOPIT.EXE is executed when you attempt to run the application or DLL
under MS-DOS.

498 Environment and Tools

The APPLOADER Statement

Syntax

Remarks

Example

The APPLOADER statement tells the linker to replace the default Windows
operating system loader with a custom loader. Use APPLOADER when you want
your Windows-based program to be loaded by a different loader from the one the
Windows operating system calls automatically at load time. This statement applies
only to Windows-based programs.

APPLOADER [']loadername[']

The loadername is an identifier for an externally defined loader. The name is
optionally enclosed in single or double quotation marks (' or "). The identifier is an
external reference that must be resolved at link time in an object file or static
library. It is not case sensitive unless the /NOI option is used with the linker.

When APPLOADER appears in a module-definition file, LINK sets a bit in the
header of the executable file to tell the Windows operating system that a custom
loader is present. At load time, the Windows operating system loads only the first
segment of the program and transfers control to that segment.

At link time, LINK creates a new logical segment called LOADER _loadername
and makes it the first physical segment of the program. LINK places the
loadername function in this segment. Nothing else is contained in
LOADER _loadername; the /p ACKC option does not affect this segment.

The following statement replaces the default loader with a loader called
__ MSLANGLOAD, which is defined in the Microsoft FORTRAN run-time libraries:

APPLOADER MSLANGLOAD

Windows-based programs that use huge arrays will fail unless loaded by the custom
loader provided in the default FORTRAN libraries. This statement appears in the
default .DEF file used for FORTRAN QuickWin programs.

The EXETYPE Statement

Syntax

The EXETYPE statement specifies under which operating system the program is to
run. This statement provides an additional degree of protection against the
program's being run under an incorrect operating system.

EXETYPE [descriptor]

Note For an overlaid MS-DOS program, LINK assumes EXETYPE DOS; in that
case, this statement is not required. For infonnation on creating an overlaid
program, see your high-level language reference documentation.

Remarks

Example

Chapter 14 Creating Module-Definition Files 499

The descriptor sets the target operating system. EXETYPE sets bits in the header
that can be checked by operating systems. The descriptor argument is one of the
following keywords:

WINDOWS [version]
The default. Creates a Windows-based program. If a STUB statement is not
specified, WINDOWS changes the default message to one that is the same as is
provided in WINSTUB.EXE. The version is optional; for a description, see the
next section, "Windows-Based Programming."

DOS
Creates a nonsegmented executable file. For information on how LINK
determines the type of executable file, see "LINK Output Files" on page 459.

UNKNOWN
Creates a segmented executable file but sets no bits in the header.

Windows-Based Programming
The WINDOWS descriptor takes an optional version number. The Windows
operating system reads this number to determine the minimum version of the
Windows operating system needed to load the application or DLL. For example, if
3.0 is specified, the resulting application or DLL can run under the Windows
operating system versions 3.0 and later. If version is not specified, the default is
3.0. The syntax for version is:

l111mber[.[I111mber]]

where each number is a decimal integer.

In Windows-based programming, use the EXETYPE statement with a
REALMODE statement to specify a Windows-based application or DLL that runs
under either real- or protected-mode.

The following statement combination defines an application that runs under the
Windows operating system version 3.0 in any mode:

EXETYPE WINDOWS 3.0
REALMODE

The PROTMODE Statement
The PROTMODE statement specifies that the application or DLL runs only under
the Windows operating system in protected mode (either standard mode or 386
enhanced mode). PROTMODE lets LINK optimize to reduce both the size of the
file on disk and its loading time. PROTMODE is assumed by EXETYPE
WINDOWS. To define a program that runs under any Windows operating system

500 Environment and Tools

Syntax

mode, specify REALM ODE. Note that PROTMODE and REALM ODE are not
legal statements if you have set EXETYPE to DOS.

PROTMODE

The REALMODE Statement

Syntax

The REALM ODE statement specifies that the application runs under the Windows
operating system in either real mode or protected mode. By default, EXETYPE
WINDOWS assumes PROTMODE. PROTMODE and REALM ODE are not
legal statements if you have set EXETYPE to DOS.

REALMODE

The STACKSIZE Statement

Syntax

Remarks

Example

The ST ACKSIZE statement specifies the size of the stack in bytes. It performs the
same function as LINK's ISTACK option. If both of these are specified, the
ST ACKSIZE statement overrides the 1ST ACK option. Do not specify the
ST ACKSIZE statement for a DLL.

ST ACKSIZE number

The number must be a positive integer, in decimal or C-Ianguage notation, up to
64K (minus 2 bytes). If an odd number is specified, LINK rounds up to the next
even value.

The following example allocates 4096 bytes of stack space:

STACKSIZE 4096

The HEAPSIZE Statement

Syntax

Remarks

The HEAPSIZE statement defines the size of the application or DLL' s local heap
in bytes. This value affects the size of the default data segment (DGROUP). The
default without HEAPSIZE is that no local heap is created.

HEAPSIZE {bytes I MAXV AL}

The bytes argument is a positive integer in decimal or C-Ianguage notation. The
limit is MAXV AL; if bytes exceeds MAXV AL, the excess is not allocated.

MAXVAL is a keyword that sets the heap size to 64K minus the size ofDGROUP.

Chapter 14 Creating Module-Definition Files 501

Example The following example sets the local heap to 4000 bytes:

HEAPSIZE 4000

The CODE Statement

Syntax

Remarks

Example

The CODE statement defines the default attributes for all code segments within the
application or DLL. The SEGMENTS statement can override this default for one
or more specific segments.

CODE [attributes]

The attributes are one or more optional attributes: discard, executeonly, load,
movable, and shared. Each can appear once, in any order. These attributes are
described in "CODE, DATA, and SEGMENTS Attributes" on page 503.

The following example sets defaults for the program's code segments:

CODE PRELOAD MOVABLE DISCARDABLE

The DATA Statement

Syntax

Remarks

Example

The DATA statement defines the default attributes for all data segments within the
application or DLL. The SEGMENTS statement can override this default for one
or more specific segments.

DATA [attribute ...]

The attributes are one or more optional attributes: instance, load, movable,
readonly, and shared. Each can appear once, in any order. These attributes are
described in "CODE, DATA, and SEGMENTS Attributes" on page 503. By
default, all data segments have the following attributes:

SHARED LOADONCALL READWRITE FIXED

The following example defines the application's data segment so that it cannot be
shared by multiple copies of the program and it cannot be written to. By default, the
data segment can be read and written to, and a new DGROUP is created for each
instance of the application.

DATA NONSHARED READONLY

502 Environment and Tools

The SEGMENTS Statement

Syntax

Remarks

Example

The SEGMENTS statement defines the attributes of one or more individual
segments in the application or DLL. The attributes specified for a specific segment
override the defaults set in the CODE and DATA statements (except as noted).
The total number of segment definitions cannot exceed the number set using
LINK's /SEG option. (The default without /SEG is 128.)

The SEGMENTS keyword marks the beginning of a section of segment
definitions. Multiple definitions must be separated by one or more spaces, tabs, or
newline characters. The SEGMENTS statement must appear once before the first
definition (on the same or preceding line) and can be repeated before each
additional definition. SEGMENTS statements can appear more than once in the
file.

SEGMENTS
[']segmentname['] [CLASS 'classname'] [attributes]

or

[']segmentname['] [CLASS 'classname'] [OVL:overlaynumber]

Each segment definition begins with segmentname and is optionally enclosed in
single or double quotation marks (' or "). The quotation marks are required if
segmentname is a reserved word.

The CLASS keyword optionally specifies the class of the segment. Single or double
quotation marks (' or ") are required around classname. If you do not use the
CLASS argument, the linker assumes that the class is CODE.

The attributes field applies to segmented executable files. This field accepts one or
more optional attributes: discard, executeonly, load, movable, readonly, and
shared. Each can appear once, in any order. These attributes are described in the
next section, "CODE, DATA, and SEGMENTS Attributes." LINK ignores
attributes if OVL is specified.

The OVL keyword tells LINK to create an MS-DOS program that contains
overlays. If OVL is used, LINK assumes EXETYPE DOS. An alternate keyword
is OVERLAY. The overlaynumber specifies the overlay in which the segment is to
be placed. The value 0 represents the root, and positive decimal numbers through
65,535 represent overlays. By default, a segment is assigned to the root. For more
information on overlays, see your high-level language reference documentation.

The following example specifies segments named c s e 9 1, c s e 9 2, and d s e g. The
first segment is assigned the class mycode; the second is assigned CODE by
default. Each segment is given different attributes.

Chapter 14 Creating Module-Definition Files 503

SEGMENTS
csegl CLASS 'mycode'
cseg2 EXECUTEONLY PRELOAD
dseg CLASS 'data' LOADONCALL READONLY

CODE, DATA, and SEGMENTS Attributes
The following attributes apply to the CODE, DATA, and SEGMENTS statements
described previously. Refer to "Remarks" in each of the previous sections for the
attributes used by each statement. Most attributes are used by all three statements;
others are used as noted. Attributes can appear in any order.

Listed with each attribute are keywords that are legal values for that attribute. The
attributes and keywords are described, and the defaults are noted. If two segments
with different attributes are combined into the same group, LINK makes decisions
to resolve any conflicts and assumes a set of attributes.

discard
{DISCARDABLE I NONDISCARDABLE}

Used for CODE and SEGMENTS statements only. Determines whether a code
segment can be discarded from memory to fill a different memory request. If the
discarded segment is accessed later, it is reloaded from disk. The default is
NONDISCARDABLE.

executeonly
{EXECUTEONLYIEXECUTEREAD}

Used for CODE and SEGMENTS statements only. Determines whether a code
segment can be read as well as executed.

EXECUTEONL Y specifies that the segment can only be executed. The
keyword EXECUTE-ONLY is an alternate spelling.

EXECUTEREAD (the default) specifies that the segment is both executable
and readable. This attribute is necessary for a program to run under the
Microsoft Code View debugger.

instance
{NONE I SINGLE I MULTIPLE}

Used for the DATA statement only. Affects the sharing attributes of the default
data segment (DGROUP). This attribute interacts with the shared attribute.

NONE tells the loader not to allocate DGROUP. Use NONE when a DLL has
no data and uses an application's DGROUP.

SINGLE (the default for DLLs) specifies that one DGROUP is shared by all
instances of the DLL or application.

504 Environment and Tools

MULTIPLE (the default for applications) specifies that DGROUP is copied for
each instance of the DLL or application.

This attribute and the shared attribute interact for data segments. The shared
attribute has the keywords SHARED and NONSHARED. If DATA SHARED
is specified, LINK assumes SINGLE; if DATA NONSHARED is specified,
LINK assumes MULTIPLE. Similarly, OAT A SING LE forces SHARED, and
DATA MULTI PLE forces NONSHARED.

load
{PRELOAD I LOADONCALL}

Used for CODE, DATA, and SEGMENTS statements. Determines when a
segment is loaded.

PRELOAD specifies that the segment is loaded when the program starts.

LOADONCALL (the default) specifies that the segment is not loaded until
accessed and only if not already loaded.

movable
{MOVABLE I FIXED}

Used for CODE, DATA, and SEGMENTS statements. Determines whether a
segment can be moved in memory. This attribute is valid only for a Windows
based DLL or a real-mode Windows-based application. FIXED is the default.
An alternative spelling for MOVABLE is MOVEABLE.

readonly
{READONLY I READWRITE}

Used for DATA and SEGMENTS statements only. Determines access rights to
a data segment.

READONL Y specifies that the segment can only be read.

READWRITE (the default) specifies that the segment is both readable and
writeable.

shared
{SHARED I NONSHARED}

Used for real-mode Windows operating system sessions only. Determines
whether all instances of the program can share EXECUTEREAD and
READWRITE segments.

SHARED (the default for DLLs) specifies that one copy of the segment is
loaded and shared among all processes that access the application or DLL. This
attribute saves memory and can be used for code that is not self-modifying. An
alternate keyword is PURE.

NONSHARED (the default for applications) specifies that the segment must be
loaded separately for each process. An alternate keyword is IMPURE.

Chapter 14 Creating Module-Definition Files 505

This attribute and the instance attribute interact for data segments. The instance
attribute has the keywords NONE, SINGLE, and MULTIPLE. If DATA
SIN G LEis specified, LINK assumes SHARED; if DATA M U L TIP LEis
specified, LINK assumes NONSHARED. Similarly, OAT A SHARED forces
SINGLE, and DATA NONSHARED forces MULTIPLE.

The OLD Statement

Syntax

Remarks

The OLD statement directs the linker to search another DLL for export ordinals.
This statement preserves ordinal values used from older versions of a DLL. For
more information on ordinals, see the following sections on the EXPORTS and
IMPORTS statements.

Exported names in the current DLL that match exported names in the old DLL are
assigned ordinal values from the earlier DLL unless

• The name in the old module has no ordinal value assigned, or

• An ordinal value is explicitly assigned in the current DLL.

Only one DLL can be specified; ordinals can be preserved from only one DLL. If
an export in the DLL was specified with the NONAME attribute, the exported
name is not available and its ordinal cannot be preserved. The OLD statement has
no effect on applications.

OLD 'filename'

The filename specifies the DLL to be searched. It must be enclosed in single or
double quotation marks (' or tt).

The EXPORTS Statement
The EXPORTS statement defines the names and attributes of the functions and
data made available to other applications and DLLs. It also defines the names and
attributes of the functions that run with I/O privilege. By default, functions and data
are hidden from other programs at run time. A definition is required for each
function or data item being exported.

The EXPORTS keyword marks the beginning of a section of export defmitions.
Multiple definitions must be separated by one or more spaces, tabs, or newline
characters. The EXPORTS keyword must appear once before the first definition
(on the same or preceding line) and can be repeated before each additional
definition. EXPORTS statements can appear more than once in the file.

Some languages offer a way to export without using an EXPORTS statement. For
example, in C the __ export keyword makes a function available from a DLL.

506 Environment and Tools

Syntax EXPORTS

Remarks

Example

entryname[=internalname] [@ord[nametable]] [NODATA] [PRIVATE]

The entryname defines the function or data-item name as it is known to other
programs. If the function or data item is in a C++ module, the entryname must be
specified as a decorated name. For specific information on decorated names, see
your C++ language documentation.

The optional internalname defines the actual name of the exported function or data
item as it appears within the exporting program; by default, this name is the same as
entryname.

The optional ord field defines a function's ordinal position within the module
definition table as an integer from 1 to 65,535. If ord is specified, the function can
be called by either entryname or ord. The use of ord is faster and can save space.

The nametable is one of two optional keywords that determine what happens to
entryname. By default, with or without ord, the elltryname is placed in the
nonresident names table. If the ord number is followed by RESIDENTNAME, the
name is placed in the resident names table. If NONAME is specified after ord, the
entryname is discarded from the DLL being created, and the item is exported only
by ordinal.

The optional keyword NODATA specifies that there is no static data in the
function.

The optional keyword PRIV A TE tells IMPLIB to ignore the definition. PRIVATE
prevents entryname from being placed in the import library. The keyword has no
effect on LINK.

The following EXPORTS statement defines the three exported functions
Sampl eRead, Stri ngIn, and CharTest. The first two functions can be called
either by their exported names or by an ordinal number. In the application or DLL
where they are defined, these functions are named rea d 2 bin and s t r 1 ,
respectively.

EXPORTS
SampleRead = read2bin @8
Stringln strl @4 RESIDENTNAME
CharTest

The IMPORTS Statement
The IMPORTS statement defines the names and locations of functions and data
items to be imported (usually from a DLL) for use in the application or DLL. A
definition is required for each function or data item being imported. This statement
is an alternative to resolving references through an import library created by the

Syntax

Remarks

Example

Chapter 14 Creating Module-Definition Files 507

IMPLIB utility; functions and data items listed in an import library do not require
an IMPORTS definition.

The IMPORTS keyword marks the beginning of a section of import definitions.
Multiple definitions must be separated by one or more spaces, tabs, or newline
characters. The IMPORTS keyword must appear once before the first definition on
the same or preceding line and can be repeated before each additional definition.
IMPORTS statements can appear more than once in the file.

IMPORTS
[interlZalname=]modulename.entry

The interllalname specifies the function or data-item name as it is used in the
importing application or DLL. Thus, internalname appears in the source code of the
importing program, while the function may have a different name in the program
where it is defined. By default, internalname is the same as the entry name. An
internalname is required if entry is an ordinal value.

The modulename is the filename of the exporting application or DLL that contains
the function or data item.

The entry argument specifies the name or ordinal value of the function or data item
as defined in the modulenal1le application or DLL. If entry is an ordinal value,
interllalnal1le must be specified. (Ordinal values are set in an EXPORTS
statement.) If the function or data item is in a C++ module, entry must be specified
as a decorated name. For information on decorated names, see your C++ language
documentation.

Note A given symbol (function or data item) has a name for each of three different
contexts. The symbol has a name used by the exporting program (application or
DLL) where it is defined, a name used as an entry point between programs, and a
name used by the importing program where the symbol is used. If neither program
uses the optional interllalname argument, the symbol has the same name in all three
contexts. If either of the programs uses the illternalnal1le argument, the symbol may
have more than one distinct name.

The IMPORTS statement that follows defines three functions to be imported:
Sampl eRead, Sampl eWri te, and a function that has been assigned an ordinal
value of 1. The functions are found in the Samp 1 e, Samp 1 eA, and Read
applications or DLLs, respectively. The function from Read is referred to as
Re ad C h a r in the importing application or DLL. The original name of the function,

508 Environment and Tools

as it is defined in Read, mayor may not be known and is not included in the
IMPORTS statement.

IMPORTS
Sample.SampleRead
SampleA.SampleWrite

ReadChar = Read.1

The FUNCTIONS Statement

Syntax

Remarks

The FUNCTIONS statement places high-level language functions in a specified
physical order and also assigns them to segments or overlays. For more infonnation
on overlays, see your high-level language reference documentation.

FUNCTIONS[:{segmentname I overlaynumber}]
functionname

The FUNCTIONS keyword marks the beginning of a section of functions.
FUNCTIONS statements can appear more than once in the .DEF file.

FUNCTIONS can be followed by a colon (:) and a destination specifier, which is
either segmentname or overlaynumber.

The segmentname specifies a defined segment in which a function is to be placed.
The segmentname does not have to be previously defined in a SEGMENTS
statement. LINK assumes the segment definition, using the class CODE; a later
SEGMENTS statement can redefine the segment.

The overlaynumber specifies the overlay in which a function is to be placed. Valid
overlay numbers are from 0 through 65,535. The number 0 represents the root.

The functionname is the identifier for a "packaged function." A packaged function
is visible to the linker in the form of a COMDAT record. To compile a C function
as a packaged function, use the /Gy option on the CL command line (or, in [name of
IDE], choose Enable Function-Level Linking). Only packaged functions can be
specified in a FUNCTIONS statement. You can specify one or more function
names, separated by one or more spaces, tabs, or newline characters. If the function
is in a C++ module,functionname must be specified as a decorated name. For
specific information on decorated names, see your C++ language documentation.

Ordering Functions
You can use FUNCTIONS to specify a list of ordered functions. LINK places
ordered functions into a segment in the physical order that you specify before
unordered functions in the same segment. You can let LINK choose the segment, or
you can specify the segment. If LINK makes the decision, it places ordered
functions in segments called COMDAT_SEGn, where n is one of a sequence of

Chapter 14 Creating Module-Definition Files 509

numbers beginning with O. As LINK places ordered functions in these segments, it
creates a new segment when the current one reaches 64K (minus 36 bytes). You
can specify the destination segment in one of two ways:

• Specify the segment using "explicit allocation." In explicit allocation, a function
is assigned to a segment at compile time, either in the source code or when
compiling. In C source code, you can use the __ based keyword (or its
predecessor, the alloc _text pragma) to specify the segment where an individual
function is to reside. When compiling with the CL compiler, you can use the /NT
option to specify the segment where all functions in an object file are to reside.
A function not explicitly allocated to a segment is sometimes referred to as an
anonymous function.

• Specify the segment after the FUNCTIONS keyword. The segment must
already have been defined, either in a SEGMENTS statement or at compile
time. An explicitly allocated function cannot be placed in a different segment
from the one to which it was allocated.

LINK accumulates multiple specifications and treats them as one list of ordered
functions. If segments or overlays are specified, LINK accumulates the functions
with other functions that have the same destination.

The following statement places three functions in a specified order within the
segment called MySeg:

FUNCTIONS: MySeg
Fune!
Fune2
Fune3

Creating Overlays
You can use FUNCTIONS to place a packaged function in an overlay. By default,
a function is assigned to the root.

If a function is explicitly allocated (see the previous section), it can be placed in an
overlay only if its segment and any other functions in that segment are not also
assigned to an overlay. In this case, the FUNCTIONS statement implicitly assigns
the entire segment to the specified overlay. An explicitly allocated function cannot
be placed in a different overlay from the segment to which it is allocated.

For examples of how to use the FUNCTIONS statement to create overlays, see
your high-level language reference documentation.

510 Environment and Tools

The INCLUDE Statement

Syntax

Remarks

The INCLUDE statement inserts the contents of a specified text file where it is
specified in the .DEF file. The inserted file must contain module statements as they
would appear in the .DEF file in which they are being inserted.

INCLUDE [']filename[']

You can specify a path with the filename. Wildcards are not permitted. Iffilename
contains a space (allowed under some install able systems), begins with a
nonalphabetic character, or is a reserved word, enclose it in single or double
quotation marks (' or ").

Multiple INCLUDE statements can appear in a .DEF file; each specifies a single
insertion. INCLUDE statements can be nested up to 10 levels deep.

Reserved Words
The following words are reserved by the linker for use in module-definition files.
These names can be used as arguments in module-definition statements only if the
name is enclosed in double quotation marks (").

ALIAS EXPANDDOWN MIXED1632

APPLOADER EXPORTS MOVABLE

BASECLASS FIXED MOVEABLE

CODE FUNCTIONS MULTIPLE

CONFORMING HEAPSIZE NAME

CONSTANT HUGE NEWFILES

CONTIGUOUS IMPORTS NODATA

DATA IMPURE NO EXPAND DOWN

DESCRIPTION INCLUDE NOIOPL

DEV386 INITGLOBAL NONAME

DEVICE INITINSTANCE NONCONFORMING

DISCARDABLE INVALID NONDISCARDABLE

DOS IOPL NONE

DYNAMIC LIBRARY NONPERMANENT

EXECUTE-ONLY LOAD ON CALL NONSHARED

EXECUTEONLY LONGNAMES NOTWINDOWCOMP AT

EXECUTEREAD MACINTOSH NT

EXETYPE MAXVAL NULL

Chapter 14 Creating Module-Definition Files 511

OBJECTS READ ONLY SWAPPABLE

OLD READ WRITE TERMINSTANCE

OS2 REALMODE UNIX

OVERLAY RESIDENT UNKNOWN

OVL RESIDENTNAME VERSION

PERMANENT SECTIONS VIRTUAL

PHYSICAL SEGMENTS WINDOWAPI

POSIX SHARED WINDOWCOMPAT

PRELOAD SINGLE WINDOWS

PRIVATELIB STACKSIZE WINDOWS CHAR

PROTMODE STUB WINDOWSNT

PURE SUBSYSTEM

513

CHAPTER 15

Using EXEHDR

The Microsoft EXE File Header Utility (EXEHDR) version 3.00 displays the
contents of an executable-file header and can be used to alter some fields in the
header. You can display or alter headers of MS-DOS programs and segmented
executable files (applications or DLLs). Some header fields have a different
meaning in a Windows-based application file; see your Windows operating system
documentation for more information. Examples of EXEHDR usage include:

• Determining whether a file is an application or a dynamic-link library (DLL).

• Viewing the attributes set by the module-definition file.

• Viewing the number and size of code and data segments.

• Setting a new stack allocation.

Many of the header fields contain information that was set in the module-definition
file or as input options when the LINK utility created the file. This chapter assumes
you are familiar with LINK and module-definition files. For information about
LINK, see Chapter 13. For information about module-definition (.DEF) files, see
Chapter 14. Many of the terms and keywords used in this section are explained in
these chapters.

Running EXEHDR
This section describes the EXEHDR command line and the options available for
controlling EXEHDR.

The EXEHDR Command Line
To run EXEHDR, use the following command line:

514 Environment and Tools

EXEHDR [options] filenames

The options field specifies options used to modify EXEHDR output or change the
file header. Options are described in the next section.

The filenames field specifies one or more applications or DLLs. If you do not
provide an extension, EXEHDR assumes .EXE. You can specify a path with the
filename.

EXEHDR Options
Option names are not case sensitive and can be abbreviated to the shortest unique
name. This section uses meaningful yet legal forms of the option names. Specify
number arguments to options in decimal format or C-language notation. EXEHDR
has the following options:

/HEA[P] :number
Sets the heap allocation field to number bytes. This option is only for
segmented-executable files.

/HEL[P]
Calls the QuickHelp utility. If EXEHDR cannot locate the Help file or
QuickHelp, it displays a brief summary of EXEHDR command-line syntax.

/MA[X] :number
Sets the maximum memory allocation to number 16-byte paragraphs. The
memory allocation fields tell MS-DOS the maximum memory needed to load
and run the program. The number must equal or exceed the minimum allocation.
This option is equivalent to LINK's jCPARM option and applies only to MS
DOS programs.

/MI[N] :number
Sets the minimum memory allocation to number 16-byte paragraphs. See the
/MAX option for more information.

/NE[WFILES]
Sets a bit in the header to notify the loader that the program may be using an
installable file system.

/NO [LOGO]
Suppresses the EXEHDR copyright message.

IP[MTYPE]:type
Sets the type of application. The type is one of the keywords for either LINK's
/PM option or the NAME statement in a .DEF file. The keywords are PM (or
WINDOWAPI), VIO (or WINDOWCOMPAT), and NOVIO (or
NOTWINDOWCOMPAT).

Chapter 15 Using EXEHDR 515

IR[ESETERROR]
Clears the error bit in the header of a segmented-executable file. LINK sets the
error bit when it finds an unresolved reference or duplicate symbol definition.
The operating system does not load a program if this bit is set. EXEHDR
displays the message Err 0 r i n i mag e if it finds the error bit set. This option
allows you to run a program that contains LINK errors and is useful during
application development.

/S[TACK]:number
Sets the stack allocation to number bytes. The /STACK option is equivalent to
LINK's /STACK option.

N[ERBOSE]

/?

Provides more information about segmented-executable files. The additional
information includes the default flags in the segment table, all run-time
relocations, and additional fields from the header. For more information, see
"EXEHDR Output: Verbose Output" on page 521.

Displays a brief summary of EXEHDR command-line syntax.

Executable-File Format
MS-DOS applications have a simple format, which consists of a single header
followed by a relocation table and the load module. Segmented-executable files
have two headers. The first header, usually called the MS-DOS header, has a
simple format. The second header, sometimes called the new .EXE header, has a
more detailed format. Figure 15.1 shows the arrangement of the headers in a
segmented-executable file. When the executable file runs with MS-DOS, the
operating system uses the old header to load the file. Otherwise, the system ignores
the MS-DOS (or "old") header and uses the new header.

The listing generated by EXEHDR shows the contents of the file header and
information about each segment in the file. The type of listing generated reflects the
structure of the header for the kind of file being checked. (For more information
about the structure of MS-DOS applications and segmented-executable files, see
the MS-DOS Encyclopedia.)

516 Environment and Tools

OOh ----.

3Ch ----.

40h ----.

MS-DOS INIT CS:IP ----.
xxh ----.

,~

MS-DOS (or old) header

Offset to new .EXE header

MS-DOS Family-API library

Initial stub-loader code

New .EXE header

Segment table

Resource table

Resident names table

Module reference table

Imported names table

Entry table

Nonresident names table

Segment #1 data
Segment #1 relocations

Segment #n data
Segment #n relocations

~

'"

End of load file ----.1----------1
Run-time copy of stub loader

End of allocated memory ----.'--------------'

Figure 15.1 Format for a Segmented-Executable File

EXEHDR Output: MS·DOS Executable File

Header

The EXEHDR output for an MS-DOS executable file appears as follows:

.EXE size (bytes)
Packed .EXE file
Magic number:
Bytes on last page:
Pages in file:
Relocations:
Paragraphs in header:
Extra paragraphs needed:
Extra paragraphs wanted:
Initial stack location:
Word checksum:
Entry point:
Relocation table address:
Memory needed:

Chapter 15 Using EXEHDR 517

The meaning of each field is described in the following list:

.EXE size (bytes)
Gives the size of the file on disk.

Packed .EXE file
Is displayed only if the file is packed.

Magic number:
Tells the operating-system loader the format of the header.

Bytes on last page:
Tells the loader how much data exists in the last page on disk.

Pages in file:
Gives the number of whole 512-byte pages in the file on disk. If the program
contains overlays, this field shows the number of pages in the root.

Relocations:
Tells the loader the number of entries in the relocation table.

Paragraphs in header:
Gives the size of the header in 16-byte paragraphs. This represents the offset of
the load image within the file.

Extra paragraphs needed:
Tells the loader the required minimum number of paragraphs of memory in
addition to the image size. The image size is equal to By t e son 1 a s t p age
+ (Pages in file x 512).

Extra paragraphs wanted:
Tells the loader the number of paragraphs of memory above the size on disk
requested for loading the program. This value is set by LINK's jCPARM option.

Initial stack location:
Gives the address (SS:SP) of the MS-DOS program's stack.

518 Environment and Tools

Word checksum:
Confinns for the loader that the file is a valid executable file.

Entry point:
Gives the start address.

Relocation table address:
Gives the location of the table of relocation pointers as an offset from the
beginning of the file.

Memory needed:
Tells the loader the total memory needed to load the application. The value in
this field is equalto (Extra paragraphs needed x 16) + .EXE size
(bytes) .

EXEHDR Output: Segmented-Executable File
The first part of the EXEHDR output for a segmented-executable file appears as
follows:

Module:
Description:
Data:
Initial CS:IP:
Initial SS:SP:
Extra stack allocation:
DGROUP:

The meaning of each field is described in the following list:

Module:
Gives the name of the application as specified in the NAME statement of the
.DEF file used to create the file or the name assumed by default.

Description:
Gives the text of the DESCRIPTION statement of the .DEF file or the
description assumed by default.

Data:
Indicates the program's default data segment (DGROUP) type: SHARED,
NONSHARED, or NONE. This type can be specified in a .DEF file.

Initial CS:IP:
Gives the application's starting address.

Initial SS:SP:
Gives the value of the initial stack pointer, which gives the location of the initial
stack.

Extra stack allocation:
Gives the size in bytes of the stack, specified in hexadecimal.

Chapter 15 Using EXEHDR 519

DGROUP:
Gives the segment number of DGROUP in the program's object files. Segment
numbers start with the number 1.

At the end of the list of fields, EXEHDR displays any module flags that were set
for every segment in the module. For example, PROTMODE may appear.

The message Err 0 r i n i rna 9 e may appear at the end of the list of fields. If a
LINK error (such as "unresolved external") occurs when the file is created, LINK
sets the error bit in the header. This prevents the file from being loaded. You can
clear the error bit with the /RESET option, described on page 515.

Dll Header Differences
For a DLL, the output differs slightly and appears as

Library:
Description:
Data:
Initialization:
Initial CS:IP:
Initial SS:SP:
DGROUP:

The meaning of each field is described in the following list:

Library:
Gives the name of the library as specified in the LIBRARY statement in the
module-definition file (or the default name).

Description:
Data:

Same as for other segmented-executable files.

Initialization:
Gives the type of initalization as specified in the LIBRARY statement in the
module-definition file (or the default initialization).

Initial CS:IP:
Gives the address of the initialization routine. If the DLL has no initialization
routine, the start address is zero.

Initial SS:SP:
May be zero for a DLL.

DGROUP:
May not appear for a DLL.

520 Environment and Tools

Segment Table
After the header fields for a segmented-executable file, EXEHDR displays the
segment table. All values appear in hexadecimal except for the segment index
number. An example of this table is:

no. type address file mem flags
1 CODE 00000400 00efb 00efb
2 DATA 00001400 00031 0007d
3 DATA 00001600 0003c 00040 SHARED

The following list describes each heading in the segment table:

no.
Segment index number (in decimal), starting with 1.

type
Identification of the segment as a code or data segment.

address
A seek offset for the segment within the file.

fil e
Size in bytes of the segment in the file on disk.

mem
Size in bytes of the segment in memory. If me m is greater than f i 1 e, the
operating system pads the extra space with zero values at load time.

flags

Exports Table

Segment attributes. If the N option is not used, only nondefault attributes are
listed. Attributes that are meaningful only to the Windows operating system are
displayed in lowercase and in parentheses.

Following the segment table, EXEHDR displays a table of exports if they exist. An
example of this table is:

Exports:
ord seg offset name

1 3 0000 HELPWNDPROC exported
19 3 032e ICONWNDPROC exported
21 35 0000 PATHWNDPROC exported
5 30 0264 ANNOUPDATEDLG exported
8 33 0000 BOOKMARKDLG exported

The following list describes each heading in the Exports table:

Chapter 15 Using EXEHDR 521

ord
The ordinal number as specified in the @ordfield in an EXPORTS statement
in a module-definition file. If ord was not specified, this column entry is blank.

seg
The index of the segment where the exported name is defined.

offset
The offset in the segment where the exported name is defined.

name
The exported name of the routine plus all flags applied to the exported routine,
as specified in the EXPORTS statement in the module-definition file.

EXEHDR Output: Verbose Output
The N option provides more extensive information about a segmented-executable
file. The verbose output more closely reflects the file's header structure. (For an
illustration of this structure, see Figure 15.1 on page 516.)

MS-DOS Header Information
EXEHDR begins by displaying the MS-DOS fields described on page 517, with the
addition of two fields:

Reserved words:
Displays the contents of space in an MS-DOS header that is normally unused.

New .EXE header address:
Holds the starting location of the part of the header describing the segmented
executable file.

New .EXE Header Information
EXEHDR then displays the header fields for the segmented-executable file. In
addition to the default fields described on page 518, the verbose output includes
many other fields.

A field called Operating system: follows the Description: field. This field
tells the system under which the program is to run.

The following fields are then displayed:

522 Environment and Tools

Linker version:
32-bit Checksum:
Segment Table:
Resource Table:
Resident Names Table:
Module Reference Table:
Imported Names Table:
Entry Table:
Non-resident Names Table:
Movable entry points:
Segment sector size:
Heap allocation:
Application type:
Other module flags:

The meaning of each field is described in the following list:

Linker version:
Tells which version of LINK was used to create the segmented-executable file.

32-bit Checksum:
Confirms for the loader that the file is a valid executable file. (See the Wo r d
chec ks urn: field for MS-DOS executable files.)

Segment Table:
Resource Table:
Resident Names Table:
Module Reference Table:
Imported Names Table:
Entry Table:
Non-resident Names Table:

Describe various tables in the segmented-executable file. Each description gives
the table name, its address within the file, and its length in hexadecimal and in
decimal.

Movable entry points:
Gives the number of entries to segments that have the MOVABLE attribute.
This field is used only by the Windows operating system.

Segment sector size:
Gives the alignment set by the /ALIGN option or the default of 512. This field
equals the sector size on disk.

Heap allocation:
Gives the size of the heap. This field is displayed only if a HEAP SIZE
statement appeared in the module-definition file.

Tables

Relocations

Chapter 15 Using EXEHDR 523

Application type:
Gives the type as specified in the NAME statement of the module-definition file
used to create the file being examined, or as specified with LINK's /PM option,
or assumed by default. For a DLL, a 0 is always displayed.

Other module flags:
Gives other attributes of the file; if none, this field is not displayed.

At the end of the list of fields, EXEHDR displays any module flags that were set
for every segment in the module. For example, PROTMODE may appear.

Following the header fields, EXEHDR displays the segment table with complete
attributes, not just the nondefault attributes. Attributes that are meaningful only to
the Windows operating system are displayed in lowercase and in parentheses. In
addition to the attributes specified in the module-definition file (described in
"CODE, DATA, and SEGMENTS Attributes" on page 503) or assumed by default,
the verbose output includes the following two attributes:

• The r e 1 0 c s attribute is displayed for each segment that has address relocations.
Relocations occur in each segment that references objects in other segments or
makes dynamic-link references.

• The i te ra ted attribute is displayed for each segment that has iterated data.
Iterated data consist of a special code that packs repeated bytes.

EXEHDR then displays the Exports table if exports exist.

Following the tables, EXEHDR displays descriptions of relocations. Each has a
heading in the following form:

I type offset target
BASE eff4 seg I offset 0000
BASE f204 seg 2 offset 0000
OFFSET effl seg I offset e968
OFFSET 314e seg I offset 32ea
BASE c0fl seg 3 offset 0000
OFFSET d397 seg I offset cf70
PTR cd3e imp DOSCALLS.137
OFFSET bla8 seg I offset ae7c
PTR f57c imp KBDCALLS.13

The following list describes each heading:

524 Environment and Tools

number
The segment number, as given earlier in the segments table.

type
Relocation type, which gives the kind of address information requested.

offset
The location of the requested address change in the source segment.

target
The requested relocation address.

Each relocation table ends by stating the total number of relocations.

PAR T 4

Utilities

Chapter 16 Managing Projects with NMAKE 527
Chapter 17 Managing Libraries with LIB 581
Chapter 18 Creating Help Files with HELPMAKE 593
Chapter 19 Browser Utilities .. 615
Chapter 20 Using Other Utilities 631

CHAPTER 16

Managing Projects with NMAKE

This chapter describes the Microsoft Program Maintenance Utility (NMAKE)
version 1.20. NMAKE is a sophisticated command processor that saves time and
simplifies project management. Once you specify which project files depend on
others, NMAKE automatically builds your project without recompiling files that
haven't changed since the last build.

527

If you are using the Programmer's Workbench (PWB) to build your project, PWB
automatically creates a makefile and calls NMAKE to run the file. You may want
to read this chapter if you intend to build your program outside of PWB, if you want
to understand or modify a makefile created by PWB, or if you want to use a foreign
makefile in PWB.

NMAKE can swap itself to expanded memory, extended memory, or disk to leave
room for the commands it spawns. (For more information, see the description of the
1M option on page 531.)

New Features
NMAKE version 1.20 offers the following new features. For details of each feature,
see the reference part of this chapter.

• New options: /B, /K, 1M, N
• The !MESSAGE directive

• Two preprocessing operators: DEFINED, EXIST

II Three keywords for use with the !ELSE directive: IF, IFDEF, IFNDEF

• New directives: !ELSEIF, !ELSEIFDEF, !ELSEIFNDEF

• Addition of .CPP and .CXX to the .SUFFIXES list

• Predefined macros for C++ programs: CPP, CXX, CPPFLAGS, CXXFLAGS·

• Predefined inference rules for C++ programs

528 Environment and Tools

Overview
NMAKE works by looking at the "time stamp" of a file. A time stamp is the time
and date the file was last modified. Time stamps are assigned by most operating
systems in 2-second intervals. NMAKE compares the time stamps of a "target" file
and its "dependent" files. A target is usually a file you want to create, such as an
executable file, though it could be a label for a set of commands you wish to
execute. A dependent is usually a file from which a target is created, such as a
source file. A target is "out-of-date" if any of its dependents has a later time stamp
than the target or if the target does not exist. (For information on how the 2-second
interval affects your build, see the description of the IB option on page 530.)

Warning For NMAKE to work properly, the date and time setting on your system
must be consistent relative to previous settings. If you set the date and time each
time you start the system, be careful to set it accurately. If your system stores a
setting, be certain that the battery is working.

When you run NMAKE, it reads a "makefile" that you supply. A makefile
(sometimes called a description file) is a text file containing a set of instructions
that NMAKE uses to build your project. The instructions consist of description
blocks, macros, directives, and inference rules. Each description block typically
lists a target (or targets), the target's dependents, and the commands that build the
target. NMAKE compares the time stamp on the target file with the time stamp on
the dependent files. If the time stamp of any dependent is the same as or later than
the time stamp of the target, NMAKE updates the target by executing the
commands listed in the description block.

It is possible to run NMAKE without a makefile. In this case, NMAKE uses
predefined macros and inference rules along with instructions given on the
command line or in TOOLS.IN!. (For information on the TOOLS.INI file, see
page 534.)

NMAKE's main purpose is to help you build programs quickly and easily.
However, it is not limited to compiling and linking; NMAKE can run other types of
programs and can execute operating system commands. You can use NMAKE to
prepare backups, move files, and perform other project-management tasks that you
ordinarily do at the operating-system prompt.

This chapter uses the term "build," as in building a target, to mean evaluating the
time stamps of a target and its dependent and, if the target is out of date, executing
the commands associated with the target. The term "build" has this meaning
whether or not the commands actually create or change the target file.

Chapter 16 Managing Projects with NMAKE 529

Running NMAKE
You invoke NMAKE with the following syntax:

NMAKE [options] [macros] [targets]

The options field lists NMAKE options, which are described in the following
section, "Command-Line Options."

The macros field lists macro definitions, which allow you to change text in the
makefile. The syntax for macros is described in "User-Defined Macros" on
page 551.

The targets field lists targets to build. NMAKE builds only the targets listed on the
command line. If you don't specify a target, NMAKE builds only the first target in
the first dependency in the makefile. (Y ou can use a pseudotarget to tell NMAKE to
build more than one target. See "Pseudotargets" on page 540.)

NMAKE uses the following priorities to determine how to conduct the build:

1. If the IF option is used, NMAKE searches the current or specified directory for
the specified makefile. NMAKE halts and displays an error message if the file
does not exist.

2. If you do not use the IF option, NMAKE searches the current directory for a file
named MAKEFILE.

3. If MAKEFILE does not exist, NMAKE checks the command line for target files
and tries to build them using inference rules (either defined in TOOLS.INI or
predefined). This feature lets you use NMAKE without a make file as long as
NMAKE has an inference rule for the target.

4. If a makefile is not used and the command line does not specify a target,
NMAKE halts and displays an error message.

Example
The following command specifies an option (IS) and a macro definition
("program=sampl en) and tells NMAKE to build two targets (sort. exe and
sea rch. exe). The command does not specify a makefile, so NMAKE looks for
MAKEFILE or uses inference rules.

NMAKE /S "program=sample" sort.exe search.exe

For information on NMAKE macros, see page 550.

Command-Line Options
NMAKE accepts options for controlling the NMAKE session. Options are not case
sensitive and can be preceded by either a slash (/) or a dash (-).

530 Environment and Tools

You can specify some options in the makefile or in TOOLS.INI.

IA

IB

IC

ID

IE

Forces NMAKE to build all evaluated targets, even if the targets are not out-of
date with respect to their dependents. This option does not force NMAKE to
build unrelated targets.

Tells NMAKE to execute a dependency even if time stamps are equal. Most
operating systems assign time stamps with a resolution of 2 seconds. If your
commands execute quickly, NMAKE may conclude that a file is up to date
when in fact it is not. This option may result in some unnecessary build steps but
is recommended when running NMAKE on very fast systems.

Suppresses default NMAKE output, including nonfatal NMAKE error or
warning messages, time stamps, and the NMAKE copyright message. If both IC
and /K are specified, IC suppresses the warnings issued by /K.

Displays information during the NMAKE session. The information is
interspersed in NMAKE' s default output to the screen. NMAKE displays the
time stamp of each target and dependent evaluated in the build and issues a
message when a target does not exist. Dependents for a target precede the target
and are indented. The ID and /P options are useful for debugging a makefile.

To set or clear ID for part of a makefile, use the !CMDSWITCHES directive;
see "Preprocessing Directives" on page 572.

Causes environment variables to override macro definitions in the makefile. See
"Macros" on page 550.

IF filename
Specifies filename as the name of the makefile. Zero or more spaces or tabs
precede filename. If you supply a dash (-) instead of a filename, NMAKE gets
makefile input from the standard input device. (End keyboard input with either
F6 or CTRL+Z.) NMAKE accepts more than one makefile; use a separate IF
specification for each makefile input.

If you omit IF, NMAKE searches the current directory for a file called
MAKEFILE (with no extension) and uses it as the makefile. IfMAKEFILE
doesn't exist, NMAKE uses inference rules for the command-line targets.

/HELP
Calls the QuickHelp utility. If NMAKE cannot locate the Help file or
QuickHelp, it displays a brief summary of NMAKE command-line syntax.

II

/K

1M

/N

Chapter 16 Managing Projects with NMAKE 531

Ignores exit codes from all commands listed in the makefile. NMAKE processes
the whole makefile even if errors occur. To ignore exit codes for part of a
makefile, use the dash (-) command modifier or the .IGNORE directive; see
"Command Modifiers" on page 544 and "Dot Directives" on page 570. To set
or clear II for part of a makefile, use the !CMDSWITCHES directive; see
"Preprocessing Directives" on page 572. To ignore errors for unrelated parts of
the build, use the /K option; II overrides /K if both are specified.

Continues the build for unrelated parts of the dependency tree if a command
terminates with an error. By default, NMAKE halts if any command returns a
nonzero exit code. If this option is specified and a command returns a nonzero
exit code, NMAKE ceases to execute the block containing the command. It does
not attempt to build the targets that depend on the results of that command;
instead, it issues a warning and builds other targets. When /K is specified and
the build is not complete, NMAKE returns an exit code of 1. This differs from
the II option, which ignores exit codes entirely; II overrides /K if both are
specified. The IC option suppresses the warnings issued by /K.

Swaps NMAKE to disk to conserve extended or expanded memory under MS
DOS. By default, NMAKE leaves room for commands to be executed in low
memory by swapping itself to extended memory (if enough space exists there) or
to expanded memory (if there is not sufficient extended memory but there is
enough expanded memory) or to disk. The 1M option tells NMAKE to ignore
any extended or expanded memory and to swap only to disk.

Displays but does not execute the commands that would be executed by the
build. Preprocessing commands are executed. This option is useful for
debugging makefiles and checking which targets are out-of-date. To set or clear
/N for part of a makefile, use the !CMDSWITCHES directive; see
"Preprocessing Directives" on page 572.

/NOLO GO

/P

Suppresses the NMAKE copyright message.

Displays NMAKE information to the standard output device, including all
macro definitions, inference rules, target descriptions, and the .SUFFIXES list,
before running the NMAKE session. If /P is specified without a makefile or
command-line target, NMAKE displays the information and does not issue an
error. The /P and /D options are useful for debugging a makefile.

532 Environment and Tools

IQ

IR

IS

rr

N

Checks time stamps of targets that would be updated by the build but does not
run the build. NMAKE returns a zero exit code if the targets are up-to-date and
a nonzero exit code if any target is out-of-date. Only preprocessing commands
in the makefile are executed. This option is useful when running NMAKE from
a batch file.

Clears the .SUFFIXES list and ignores inference rules and macros that are
defmed in the TOOLS.INI file or that are predefined.

Suppresses the display of all executed commands. To suppress the display of
commands in part of a makefile, use the @ command modifier or the .SILENT
directive; see "Command Modifiers" on page 544 and "Dot Directives" on page
570. To set or clear IS for part of a makefile, use the !CMDSWITCHES
directive; see "Preprocessing Directives" on page 572.

Changes time stamps of command-line targets (or first target in the makefile if
no command-line targets are specified) to the current time and executes
preprocessing commands but does not run the build. Contents of target files are
not modified.

Causes all macros to be inherited when recursing. By default, only macros
defined on the command line and environment-variable macros are inherited
when NMAKE is called recursively. This option makes all macros available to
the recursively called NMAKE session. See "Inherited Macros" on page 563.

fXfilename

/?

Sends all NMAKE error output to filename, which can be a file or a device.
Zero or more spaces or tabs can precedefilename. If you supply a dash (-)
instead of a filename, NMAKE sends its error output to standard output. By
default, NMAKE sends errors to standard error. This option does not affect
output that is sent to standard error by commands in the makefile.

Displays a brief summary of NMAKE command-line syntax and exits to the
operating system.

Example
The following command line specifies two NMAKE options:

NMAKE IF sample.mak Ie targl targ2

The IF option tells NMAKE to read the makefile SAMPLE.MAK. The IC option
tells NMAKE not to display nonfatal error messages and warnings. The command
specifies two targets (ta rgl and ta rg2) to update.

Chapter 16 Managing Projects with NMAKE 533

NMAKE Command File
You can place a sequence of command-line arguments in a text file and pass the
file's name as a command-line argument to NMAKE. NMAKE opens the command
file and reads the arguments. You can use a command file to overcome the limit on
the length of a command line in the operating system (128 characters in MS-DOS).

To provide input to NMAKE with a command file, type

NMAKE @commandfile

The commandfile is the name of a text file containing the information NMAKE
expects on the command line. Precede the name of the command file with an at sign
(@). You can specify a path with the filename.

NMAKE treats the file as if it were a single set of arguments. It replaces each line
break with a space. Macro definitions that contain spaces must be enclosed in
quotation marks; see "Where to Define Macros" on page 552.

You can split input between the command line and a command file. Specify
@commandfile on the command line at the place where the file's information is
expected. Command-line input can precede and/or follow the command file. You
can specify more than one command file.

Example 1
If a file named UPDATE contains the line

/S "program = sample" sort.exe search.exe

you can start NMAKE with the command

NMAKE @update

The effect is the same as if you entered the following command line:

NMAKE /S "program = sample" sort.exe search.exe

Example 2
The following is another version of the UPDATE file:

/S "program \
= sample" sort.exe search.exe

The backslash (\) allows the macro definition to span two lines.

534 Environment and Tools

Example 3
If the command file called UPDATE contains the line

/S "program = sample" sort.exe

you can start NMAKE with the command

NMAKE @update search.exe

The TOOLS.lNI File
You can customize NMAKE by placing commonly used information in the
TOOLS.INI initialization file. Settings for NMAKE must follow a line that begins
with the tag [N MA K E]. The tag is not case sensitive. This section of the
initialization file can contain any makefile information. NMAKE uses this
information in every session, unless you run NMAKE with the /R option. NMAKE
looks for TOOLS.INI first in the current directory and then in the directory
specified by the INIT environment variable.

You can use the !CMDSWITCHES directive to specify command-line options in
TOOLS.INI. An option specified this way is in effect for every NMAKE session.
This serves the same purpose as does an environment variable, which is a feature
available in other utilities. For more information on !CMDSWITCHES, see page
572.

Macros and inference rules appearing in TOOLS.INI can be overridden. See
"Precedence Among Macro Definitions" on page 563 and "Precedence Among
Inference Rules" on page 570.

NMAKE reads information in TOOLS.INI before it reads makefile information.
Thus, for example, a description block appearing in TOOLS.INI acts as the first
description block in the makefile; this is true for every NMAKE session, unless /R
is specified.

To place a comment in TOOLS.INI, specify the comment on a separate line
beginning with a semicolon (;). You can also specify comments with a number sign
(#) as you can in a makefile; for more information, see "Comments" on page 536.

Example
The following is an example of text in a TOOLS.INI file:

Chapter 16 Managing Projects with NMAKE 535

[NMAKE]
; macros
AS = masm
AFLAGS = IFR ILA IML IMX IW2
; inference rule
.asm.obj:

$(AS) IZD ZI $(AFLAGS) $.asm

NMAKE reads and applies the lines following [N MA K E]. The example redefines
the macro AS to invoke the Microsoft Macro Assembler MASM.EXE utility.,
redefines the macro AFLAGS, and redefines the inference rule for making .OBJ
files from .ASM sources. These NMAKE features are explained throughout this
chapter.

Contents of a Makefile
An NMAKE makefile contains description blocks, macros, inference rules, and
directives. This section presents general information about writing makefiles. The
rest of the chapter describes each of the elements of makefiles in detail.

Using Special Characters as Literals
You may need to specify as a literal character one of the characters that NMAKE
uses for a special purpose. These characters are:

$ 1\ \ { } @ -

To use one of these characters without its special meaning, place a caret (1\) in front
of it. NMAKE ignores carets that precede characters other than the special
characters listed previously. A caret within a quoted string is treated as a literal
caret character.

You can also use a caret at the end of a line to insert a literal newline character in a
string or macro. The caret tells NMAKE to interpret the newline character as part
of the macro, not a line break. Note that this effect differs from using a backslash (\
) to continue a line in a macro definition. A newline character that follows a
backslash is replaced with a space. For more information, see "User-Defined
Macros" on page 551.

536 Environment and Tools

Wildcards

Comments

In a command, a percent symbol (%) can represent the beginning of a file specifier.
(See "Filename-Parts Syntax" on page 546.) NMAKE interprets %s as a filename,
and it interprets the character sequence of %1 followed by d, e, f, p, or F as part or
all of a filename or path. If you need to represent these characters literally in a
command, specify a double percent sign (% %) in place of a single one. In all other
situations, NMAKE interprets a single % literally. However, NMAKE always
interprets a double %% as a single %. Therefore, to represent a literal %%, you can
specify either three percent signs, %%%, or four percent signs, %%%%.

To use the dollar sign ($) as a literal character in a command, you must specify two
dollar signs ($$); this method can also be used in other situations where 1\$ also
works.

For information on literal characters in macro definitions, see "Special Characters
in Macros" on page 551.

You can use MS-DOS wildcards (* and ?) to specify target and dependent names.
NMAKE expands wildcards that appear on dependency lines. A wildcard specified
in a command is passed to the command; NMAKE does not expand it.

Example
In the following description block, the wildcard * is used twice:

project.exe : *.asm
ml *.asm IFeproject.exe

NMAKE expands the * . a s m in the dependency line and looks at all files having
the .ASM extension in the current directory. If any .ASM file is out-of-date, the ML
command expands the * . c and compiles and links all files.

To place a comment in a makefile, precede it with a number sign (#).If the entire
line is a comment, the # must appear at the beginning of the line. Otherwise, the #
follows the item being commented. NMAKE ignores all text from the number sign
to the next newline character.

Command lines cannot contain comments; this is true even for a command that is
specified on the same line as a dependency line or inference rule. This is because
NMAKE does not parse a command; instead, it passes the entire command to the
operating system. However, a comment can appear between lines in a commands
block. To change a command to a comment, insert a # at the beginning of the
command line.

You can use comments in the following situations:

Chapter 16 Managing Projects with NMAKE 537

Comment on line by itself

OPTIONS = IMAP # Comment on macro definition line

all.exe : one.obj two.obj # Comment on dependency line
link one.obj two.obj;

Comment in commands block
copy one.exe \release

Command turned into comment:
copy *.obj \objects

.obj.exe: # Comment in inference rule

To specify a literal #, precede it with a caret (1\), as in the following:

DEF = A#define #Macro representing a C preprocessing directive

Comments can also appear in a TOOLS.INI file. TOOLS.INI allows an additional
form of comment using a semicolon (;). See "The TOOLS.INI File" on page 534.

Long Filenames
You can use long filenames if they are supported by your file system. However, you
must enclose the name in double quotation marks, as in the following dependency
line:

all: "VeryLongFileName.exe"

Description Blocks
Description blocks form the heart of the makefile. The following is a typical
NMAKE description block:

I Targets I Dependents

/ , / ,
myapp.exe : myapp.obj another.obj myapp.def)--Dependencyline

1 ink my a p pan 0 the r. • NUL. my 1 i b. my a p p)- C d
copy myaoo. exe c: \proj ect omman s

Figure 16.1 NMAKE Description Block

The first line in a description block is the "dependency line." In this example, the
the dependency contains one "target" and three "dependents." The dependency is
followed by a commands block that lists one or more commands. The following
sections discuss dependencies, targets, and dependents. The contents of a commands
block are described in "Commands" on page 543.

538 Environment and Tools

Dependency Line

Targets

A description block begins with a "dependency line." A dependency line specifies
one or more "target" files and then lists zero or more "dependent" files. If a target
does not exist, or if its time stamp is earlier than that of any dependent, NMAKE
executes the commands block for that target. The following is an example of a
dependency line:

myapp.exe : myapp.obj another.obj myapp.def

This dependency line tells NMAKE to rebuild the MY APP .EXE target whenever
MYAPP.OBJ, ANOTHER.OBJ, or MYAPP.DEF has changed more recently than
MYAPP.EXE.

The dependency line must not be indented (it cannot start with a space or tab). The
first target must be specified at the beginning of the line. Targets are separated from
dependents by a single colon, except as described in "Using Targets in Multiple
Description Blocks" on page 539. The colon can be preceded or followed by zero or
more spaces or tabs. The entire dependency must appear on one line; however, you
can extend the line by placing a backslash (\) after a target or dependent and
continuing the dependency on the next line.

Before executing any commands, NMAKE moves through all dependencies and
applicable inference rules to build a "dependency tree" that specifies all the steps
required to fully update the target. NMAKE checks to see if dependents them
selves are targets in other dependency lists, if any dependents in those lists are
targets elsewhere, and so on. After it builds the dependency tree, NMAKE checks
time stamps. If it finds any dependents in the tree that are newer than the target,
NMAKE builds the target.

The targets section of the dependency line lists one or more target names. At least
one target must be specified. Separate multiple target names with one or more
spaces or tabs. You can specify a path with the filename. Targets are not case
sensitive. A target (including path) cannot exceed 256 characters.

If the name of the last target before the colon (:) is a single character, you must put
a space between the name and the colon; otherwise, NMAKE interprets the letter
colon combination as a drive specifier.

Usually a target is the name of a file to be built using the commands in the
description block. However, a target can be any valid filename, or it can be a
pseudotarget. (For more information, see "Pseudotargets" on page 540.)

NMAKE builds targets specified on the NMAKE command line. If a command-line
target is not specified, NMAKE builds the first target in the first dependency in the
makefile.

Chapter 16 Managing Projects with NMAKE 539

The example in the previous section tells NMAKE how to build a single target file
called MY APP.EXE if it is missing or out-of-date.

Using Targets in Multiple Description Blocks
A target can appear in only one description block when specified using the single
colon (:) syntax to separate the target from the dependent. To update a target using
more than one description block, specify two consecutive colons (::) between
targets and dependents. One use for this feature is for building a complex target that
contains components created with different commands.

Example
The following makefile updates a library:

target.lib :: one.asm two.asm three.asm
ML one.asm two.asm three.asm
LIB target -+one.obj -+two.obj -+three.obj;

target.lib :: fotir.c five.c
CL Ie four.c five.c
LIB target -+four.obj -+five.obj;

If any of the assembly-language files have changed more recently than the library,
NMAKE assembles the source files and updates the library. Similarly, if any of the
C-Ianguage files have changed, NMAKE compiles the C files and updates the
library.

Accumulating Targets in Dependencies
Dependency lines are cumulative when the same target appears more than once in a
single description block. For example,

bounce.exe : jump.obj
bounce.exe : up.obj

echo Building bounce.exe ...

is evaluated by NMAKE as

bounce.exe : jump.obj up.obj
echo Building bounce.exe ...

This evaluation has several effects. Since NMAKE builds the dependency tree
based on one target at a time, the lines can contain other targets, as in:

bounce.exe leap.exe : jump.obj
bounce.ex~ climb.exe : up.obj

echo Building bounce.exe ...

540 Environment and Tools

The preceding example is evaluated by NMAKE as

bounce.exe : jump.obj
leap.exe : jump.obj
bounce.exe : up.obj
climb.exe : up.obj ...

echo Building bounce.exe ...

NMAKE evaluates a dependency for each of the three targets as if each were
specified in a separate description block. If b a u nee. ex e or eli m b . ex e is out -of
date, NMAKE runs the given command. If 1 ea p. exe is out-of-date, the given
command does not apply, and NMAKE tries to use an inference rule.

If the same target is specified in two single-colon dependency lines in different
locations in the makefile, and if commands appear after only one of the lines,
NMAKE interprets the dependency lines as if they were adjacent or combined. This
can cause an unwanted side effect: NMAKE does not invoke an inference rule for
the dependency that has no commands (see "Inference Rules" on page 563). Rather,
it assumes that the dependencies belong to one description block and executes the
commands specified with the other dependency.

The following makefile is interpreted in the same way as the preceding examples:

bounce.exe : jump.obj
echo Building bounce.exe ...

bounce.exe : up.obj

This effect does not occur if the colons are doubled (::) after the duplicate targets.
A double-colon dependency with no commands block invokes an inference rule,
even if another double-colon dependency containing the same target is followed by
a commands block.

Pseudotargets
A "pseudotarget" is a target that doesn't specify a file but instead names a label for
use in executing a group of commands. NMAKE interprets the pseudotarget as a
file that does not exist and thus is always out-of-date. When NMAKE evaluates a
pseudotarget, it always executes its commands block. Be sure that the current
directory does not contain a file with a name that matches the pseudotarget.

A pseudotarget name must follow the syntax rules for filenames. Like a filename
target, a pseudotarget name is not case sensitive. HQwever, if the name does not
have an extension (that is, it does not contain a period), it can exceed the 8-
character limit for filenames and can be up to 256 characters long.

Chapter 16 Managing Projects with NMAKE 541

A pseudotarget can be listed as a dependent. A pseudotarget used this way must
appear as a target in another dependency; however, that dependency does not need
to have a commands block.

A pseudo target used as a target has an assumed time stamp that is the most recent
time stamp of all its dependents. If a pseudotarget has no dependents, the assumed
time stamp is the current time. NMAKE uses the assumed time stamp if the
pseudotarget appears as a dependent elsewhere in the makefile.

Pseudo targets are useful when you want NMAKE to build more than one target
automatically. NMAKE builds only those targets specified on the NMAKE
command line, or, when no command-line target is specified, it builds only the frrst
target in the first dependency in the makefile. To tell NMAKE to build multiple
targets without having to list them on the command line, write a description block
with a dependency containing a pseudotarget and list as its dependents the targets
you want to build. Either place this description block first in the makefile or specify
the pseudotarget on the NMAKE command line.

Example 1
In the following example, UP DA T E is a pseudotarget.

UPDATE: *.*
leapy $** a:\product

If UP DA T E is evaluated, NMAKE copies all files in the current directory to the
specified drive and directory.

Example 2
In the following makefile, the pseudotarget a 11 builds both PROJECT1.EXE and
PROJECT2.EXE if either a 11 or no target is specified on the command line. The
pseudo target set e n v changes the LIB environment variable before the .EXE files
are updated:

all : setenv project1.exe project2.exe

projectl.exe : projectl.obj
LINK project1;

project2.exe : project2.obj
LINK project2;

setenv :
set LIB=\project\lib

542 Environment and Tools

Dependents
The dependents section of the dependency line lists zero or more dependent names.
Usually a dependent is a file used to build the target. However, a depen-dent can be
any valid filename, or it can be a pseudotarget. You can specify a path with the
filename. Dependents are not case sensitive. Separate each dependent name with
one or more spaces or tabs. A single or double colon (: or ::) separates it from the
targets section.

Along with dependents you explicitly list in the dependency line, NMAKE
can assume an "inferred dependent." An inferred dependent is derived from an
inference rule. (For more information, see "Inference Rules" on page 563.)
NMAKE considers an inferred dependent to appear earlier in a dependents list than
explicit dependents. It builds inferred dependents into the dependency tree. It is
important to note that when an inferred dependent in a dependency is out-of-date
with respect to a target, NMAKE invokes the commands block associated with the
dependency, just as it does with an explicit dependent.

NMAKE uses the dependency tree to make sure that dependents themselves are
updated before it updates their targets. If a dependent file doesn't exist, NMAKE
looks for a way to build it; if it already exists, NMAKE looks for a way to make
sure it is up-to-date. If the dependent is listed as a target in another dependency, or
if it is implied as a target in an inference rule, NMAKE checks that the dependent is
up-to-date with respect to its own dependents; if the dependent file is out-of-date or
doesn't exist, NMAKE executes the commands block for that dependency.

The following example lists three dependents after MY APP.EXE:

myapp.exe : myapp.obj another.obj myapp.def

Specifying Search Paths for Dependents
You can specify the directories in which NMAKE should search for a dependent.
The syntax for a directory specification is:

{directory[;directory ...]}dependent

Enclose one or more directory names in braces ({ }). Separate multiple directories
with a semicolon (;). No spaces are allowed. You can use a macro to specify part or
all of a search path. NMAKE searches the current directory first, then the
directories in the order specified. A search path applies only to a single dependent.

Example
The following dependency line contains a directory specification:

forward.exe : {\src\alpha;d:\proj}pass.obj

Commands

Chapter 16 Managing Projects with NMAKE 543

The target FORWARD.EXE has one dependent, PASS.OBJ. The directory list
specifies two directories. NMAKE first searches for PASS.OBJ in the current
directory. IfPASS.OBJ isn't there, NMAKE searches the \SRC\ALPHA
directory, then the D:\ PROJ directory.

The commands section of a description block or inference rule lists the commands
that NMAKE must run if the dependency is out-of-date. You can specify any
command or program that can be executed from an MS-DOS command line (with a
few exceptions, such as PATH). Multiple commands can appear in a commands
block. Each appears on its own line (except as noted in the next section). If a
description block doesn't contain any commands, NMAKE looks for an inference
rule that matches the dependency. (See "Inference Rules" on page 563.) The
following example shows two commands following a dependency line:

myapp.exe : myapp.obj another.obj myapp.def
1 ink my a p pan 0 the r, , NUL, my 1 i b, my a p p
copy myapp.exe c:\project

NMAKE displays each command line before it executes it, unless you specify the
IS option, the .SILENT directive, the !CMDSWITCHES directive, or the @
modifier.

Command Syntax
A command line must begin with one or more spaces or tabs. NMAKE uses this
indentation to distinguish between a dependency line and a command line.

Blank lines cannot appear between the dependency line and the commands block.
However, a line containing only spaces or tabs can appear; this line is interpreted as
a null command, and no error occurs. Blank lines can appear between command
lines.

A long command can span several lines if each line ends with a backslash (\). A
backslash at the end of a line is interpreted as a space on the command line. For
example, the LINK command shown in previous examples in this chapter can be
expressed as:

link myapp\
an 0 the r, , NUL, my 1 i b, my a p p

NMAKE passes the continued lines to the operating system as one long command.
A command continued with a backslash must still be within the operating system's
limit on the length of a command line. If any other character, such as a space or tab,
follows the backslash, NMAKE interprets the backslash and the trailing characters
literally.

544 Environment and Tools

You can also place a single command at the end of a dependency line, whether or
not other commands follow in the indented commands block. Use a semicolon (;) to
separate the command from the rightmost dependent, as in:

projeet.obj : projeet.e projeet.h : el Ie projeet.e

Command Modifiers
Command modifiers provide extra control over the commands in a description
block. You can use more than one modifier for a single command. Specify a
command modifier preceding the command being modified, optionally separated by
spaces or tabs. Like a command, a modifier cannot appear at the beginning of a
line. It must be preceded by one or more spaces or tabs.

The following describes the three NMAKE command modifiers.

@command
Prevents NMAKE from displaying the command. Any results displayed by
commands are not suppressed. Spaces and tabs can appear before the command.
By default, NMAKE echoes all makefile commands that it executes. The IS
option suppresses display for the entire makefile; the .SILENT directive
suppresses display for part of the makefile.

-[number]command
Turns off error checking for the command. Spaces and tabs can appear before
the command. By default, NMAKE halts when any command returns an error in
the form of a nonzero exit code. This modifier tells NMAKE to ignore errors
from the specified command. If the dash is followed by a number, NMAKE
stops if the exit code returned by the command is greater than that number. No
spaces or tabs can appear between the dash and the number; they must appear
between the number and the command. (For more information on using this
number, see "Exit Codes from Commands" on page 545.) The II option turns off
error checking for the entire makefile; the .IGNORE directive turns off error
checking for part of the makefile.

!command
Executes the command for each dependent file if the command preceded by the
exclamation point uses the predefined macros $** or $? (See "Filename
Macros" on page 555.) Spaces and tabs can appear before the command. The
$** macro represents all dependent files in the dependency line. The $? macro
refers to all dependent files in the dependency line that have a later time stamp
than the target.

Chapter 16 Managing Projects with NMAKE 545

Example 1
In the following example, the at sign (@) suppresses display of the ECHO
command line:

sort.exe : sort.obj
@ECHO Now sorting ...

The output of the ECHO command is not suppressed.

Example 2
In the following description block, if the program sam p 1 e returns a nonzero exit
code, NMAKE does not halt; if so r t returns an exit code that is greater than 5,
NMAKE stops:

light.lst : light.txt
-sample light.txt
-5 sort light.txt

Example 3
The description block

print: one. txt two. txt three.txt
!print $** lptl:

generates the following commands:

print one. txt lptl:
print two. txt lptl:
print three.txt lptl:

Exit Codes from Commands
NMAKE stops execution if a command or program executed in the makefile
encounters an error and returns a nonzero exit code. The exit code is displayed in an
NMAKE error message.

You can control how NMAKE behaves when a nonzero exit code occurs by using
the II or IK option, the .IGNORE directive, the !CMDSWITCHES directive, or
the dash (-) command modifier.

Another way to use exit codes is during preprocessing. You can run a command or
program and test its exit code using the !IF preprocessing directive. For more
information, see "Executing a Program in Preprocessing" on page 575.

546 Environment and Tools

Filename-Parts Syntax
NMAKE provides a syntax that you can use in commands to represent components
of the name of the first dependent file. This file is generally the first file listed to the
right of the colon in a dependency line. However, if a dependent is implied from an
inference rule, NMAKE considers the inferred dependent to be the first dependent
file, ahead of any explicit dependents. If more than one inference rule applies, the
.SUFFIXES list determines which dependent is first. The filename components are
the file's drive, path, base name, and extension as you have specified it, not as it
exists on disk.

You can represent the complete filename with the following syntax:

%s

For example, if a description block contains

sample.exe : c:\project\sample.obj
LINK%s;

NMAKE interprets the command as

LINK c:\project\sample.obj;

You can represent parts of the complete filename with the following syntax:

%1 [parts]F

where parts can be zero or more of the following letters, in any order:

Letter Description

No letter Complete name

d Drive

p Path

f File base name

e File extension

U sing this syntax, you can represent the full filename specification by % I F or by
% I dpfeF, as well as by %s.

Example
The following description block uses filename-parts syntax:

sample.exe : c:\project\sample.obj
LINK %s, a:%\pfF.exe;

Inline Files

Chapter 16 Managing Projects with NMAKE 547

NMAKE interprets the first representation as the complete filename of the depen
dent. It interprets the second representation as a filename with the same path and
base name as the dependent but on the specified drive and with the specified
extension. It executes the following command:

LINK c:\project\sample.obj. a:\project\sample.exe;

Note For another way to represent components of a filename, see "Modifying
Filename Macros" on page 556.

NMAKE can create "inline files" in the commands section of a description block or
inference rule. An inline file is created on disk by NMAKE and contains text you
specify in the makefile. The name of the in line file can be used in commands in the
same way as any filename. NMAKE creates the inline file only when it executes
the command in which the file is created.

One way to use an inline file is as a response file for another utility such as LINK
or LIB. Response files avoid the operating system limit on the maximum length of a
command line and automate the specification of input to a utility. Inline files
eliminate the need to maintain a separate response file. They can also be used to
pass a list of commands to the operating system.

Specifying an Inline File
The syntax for specifying an inline file in a command is:

«[filename]]

Specify the double angle brackets «<) on the command line at the location where
you want a filename to appear. Because command lines must be indented, the angle
brackets cannot appear at the beginning of a line. The angle bracket syntax must be
specified literally; it cannot be represented by a macro expansion.

When NMAKE executes the description block, it replaces the inline file
specification with the name of the inline file being created. The effect is the same as
if a filename was literally specified in the commands section.

The filename supplies a name for the inline file. It must immediately follow the
angle brackets; no space is permitted. You can specify a path with the filename. No
extension is required or assumed. If a file by the same name already exists,
NMAKE overwrites it; such a file is deleted if the inline file is temporary.
(Temporary inline files are discussed in the next section.)

548 Environment and Tools

A name is optional; if you don't specify filename, NMAKE gives the inline file a
unique name. Iffilename is specified, NMAKE places the file in the directory
specified with the name or in the current directory if no path is specified. If
filename is not specified, NMAKE places the inline file in the directory specified
by the TMP environment variable or in the current directory if TMP is not defined.
You can reuse a previous inline filename; NMAKE overwrites the previous file.

Creating an Inline File
The instructions for creating the inline file begin on the first line after the
«[filename] specification. The syntax to create the inline file is:

«[filename]
inlinetext

«[KEEP I NOKEEP]

The set of angle brackets marking the end of the inline file must appear at the
beginning of a separate line in the makefile. All inlinetext before the delimiting
angle brackets is placed in the inline file. The text can contain macro expansions
and substitutions. Directives and comments are not permitted in an inline file;
NMAKE treats them as literal text. Spaces, tabs, and newline characters are treated
literally.

The inline file can be temporary or permanent. To retain the file after the end of the
NMAKE session, specify KEEP immediately after the closing set of angle
brackets. If you don't specify a preference, or if you specify NO KEEP (the
default), the file is temporary. KEEP and NOKEEP are not case sensitive. The
temporary file exists for the duration of the NMAKE session.

It is possible to specify KEEP for a file that you do not name; in this case, the
NMAKE-generated filename appears in the appropriate directory after the
NMAKE session.

Example
The following makefile uses a temporary inline file to clear the screen and then
display the contents of the current directory:

COMMANDS = cls A

dir
showdir :

«showdir.bat
$(COMMANDS)
«

Chapter 16 Managing Projects with NMAKE 549

In this example, the name of the inline file serves as the only command in the
description block. This command has the same effect as running a batch file named
SHOWDIR.BA T that contains the same commands as those listed in the macro
definition.

Reusing an Inline File
After an inline file is created, you can use it more than once. To reuse an inline file
in the command in which it is created, you must supply afilename for the file where
it is defined and first used. You can then reuse the name later in the same command.

You can also reuse an in line file in subsequent commands in the same description
block or elsewhere in the makefile. Be sure that the command that creates the inline
file executes before all commands that use the file. Regardless of whether you
specify KEEP or NOKEEP, NMAKE keeps the file for the duration of the
NMAKE session.

Example
The following makefile creates a temporary LIB response file named LIB.LRF:

OBJECTS = add.obj sub.obj mul.obj div.obj
math. lib : $(OBJECTS)

LIB math.lib @«lib.lrf
-+$(?: = &"
-+)

listing;
«

copy lib.lrf \projinfo\lib.lrf

The resulting response file tells LIB which library to use, the commands to execute,
and the name of the listing file to produce:

-+add.obj &
-+sub.obj &
-+mul.obj &
-+div.obj
listing;

The second command in the descripton block tells NMAKE to copy the response
file to another directory.

Using Multiple Inline Files
You can specify more than one inline file in a single command line. For each inline
specification, specify one or more lines of inline text followed by a closing line
containing the delimiter. Begin the second file's text on the line following the
delimiting line for the first file.

550 Environment and Tools

Macros

Example
The following example creates two inline files:

target.abc : depend.xyz
copy «file! + «file2 both. txt

I am the contents of file!.
«
I am the contents of file2.
«KEEP

This is equivalent to specifying

copy file! + file2 both. txt

to concatenate two files, where FILE! contains

I am the contents of file!.

and FILE2 contains

I am the contents of file2.

The KEEP keyword tells NMAKE not to delete FILE2. After the NMAKE
session, the files FILE2 and BOTH.TXT exist in the current directory.

Macros offer a convenient way to replace a particular string in the makefile with
another string. You can define your own macros or use predefined macros. Macros
are useful for a variety of tasks, such as:

• Creating a single makefile that works for several projects. You can define a
macro that replaces a dummy filename in the makefile with the specific filename
for a particular project.

• Controlling the options NMAKE passes to the compiler or linker. When you
specify options in a macro, you can change options throughout the makefile in a
single step.

• Specifying paths in an inference rule. (For an example, see Example 3 in "User
Defined Inference Rules" on page 567.)

This section describes user-defined macros, shows how to use a macro, and
discusses the macros that have special meaning for NMAKE. It ends by discussing
macro substitutions, inherited macros, and precedence rules.

Chapter 16 Managing Projects with NMAKE 551

User-Defined Macros
To define a macro, use the following syntax:

macroname=string

The macroname can be any combination of letters, digits, and the underscore (_)
character, up to 1024 characters. Macro names are case sensitive; NMAKE
interprets MyMa c ra and MYMAC RO as different macro names. The macroname can
contain a macro invocation. If macroname consists entirely of an invoked macro,
the macro being invoked cannot be null or undefined.

The string can be any sequence of zero or more characters up to 64K-25 (65,510
bytes). A string of zero characters is called a "null string." A string consisting only
of spaces, tabs, or both is also considered a null string.

Other syntax rules, such as the use of spaces, apply depending on where you specify
the macro; see "Where to Define Macros" on page 552. The string can contain a
macro invocation.

Example
The following specification defines a macro named 0 I R and assigns to it a string
that represents a directory.

DIR=c:\objects

Special Characters in Macros
Certain characters have special meaning within a macro definition. You use these
characters to perform specific tasks. If you want one of these characters to have a
literal meaning, you must specify it using a special syntax.

• To specify a comment with a macro definition, place a number sign (#) and the
comment after the definition, as in:

LINKCMD = link ICO # Prepare for debugging

NMAKE ignores the number sign and all characters up to the next newline
character. To specify a literal number sign in a macro, use a caret ("), as in "#.

• To extend a macro definition to a new line, end the line with a backslash (\).
The newline character that follows the backs lash is replaced with a space when
the macro is expanded, as in the following example:

LINKCMD = link myapp\
an 0 the r. . NUL. my 1 i b. my a p p

When this macro is expanded, a space separates my a p p and a nat her.

552 Environment and Tools

To specify a literal backslash at the end of the line, precede it with a caret (1\),
as in:

exepath = e:\binA\

You can also make a backslash literal by following it with a comment specifier
(#). NMAKE interprets a backslash as literal if it is followed by any other
character.

• To insert a literal newline character into a macro, end the line with a caret (1\).
The caret tells NMAKE to interpret the newline character as part of the macro,
not as a line break ending the macro definition. The following example defines a
macro composed of two operating-system commands separated by a newline
character:

CMDS ~ elsA
dir

For an illustration of how this macro can be used, see the first example under
"Inline Files" on page 548.

• To specify a literal dollar sign ($) in a macro definition, use two dollar signs
($$). NMAKE interprets a single dollar sign as the specifier for invoking a
macro; see "Using Macros" on page 554.

For information on how to handle other special characters literally, regardless of
whether they appear in a macro, see "Using Special Characters as Literals" on
page 535.

Where to Define Macros
You can define macros in the makefile, on the command line, in a command file, or
in TOOLS.INI. (For more information, see "Precedence Among Macro
Definitions" on page 563.) Each macro defined in the makefile or in TOOLS.INI
must appear on a separate line. The line cannot start with a space or tab.

When you define a macro in the makefile or in TOOLS.INI, NMAKE ignores any
spaces or tabs on either side of the equal sign. The string itself can contain
embedded spaces. You do not need to enclose string in quotation marks (if you do,
they become part of the string). The macro name being defined must appear at the
beginning of the line. Only one macro can be defined per line. For example, the
following macro definition can appear in a makefile or TOOLS.INI:

LINKCMD = LINK IMAP

Chapter 16 Managing Projects with NMAKE 553

Slightly different rules apply when you define a macro on the NMAKE command
line or in a command file. The command-line parser treats spaces and tabs as
argument delimiters. Therefore, spaces must not precede or follow the equal sign. If
string contains embedded spaces or tabs, either the string itself or the entire macro
must be enclosed in double quotation marks (II). For example, either form of the
following command-line macro is allowed:

NMAKE "LI NKCMD = LI NK IMAP"
NMAKE LINKCMD="LINK IMAP"

However, the following form of the same macro is not permitted. It contains spaces
that are not enclosed by quotation marks:

NMAKE LINKCMD = "LINK IMAP"

Null Macros and Undefined Macros
An undefined macro is not the same thing as a macro defined to be null. Both kinds
of macros expand to a null string. However, a macro defined to be null is still
considered to be defined when used with preprocessing directives such as !IFDEF.
A macro name can be "undefined" in a makefile by using the !UNDEF
preprocessing directive. (For information on !IFDEF and !UNDEF, see
"Preprocessing Directives" on page 572).

To define a macro to be null:

• In a makefile or TOOLS.INI, specify zero or more spaces between the equal
sign (=) and the end of the line, as in the following:

LINKOPTIONS =

• On the command line or in a command file, specify zero or more spaces
enclosed in double quotation marks (" "), or specify the entire null definition
enclosed in double quotation marks, as in either of the following:

LI NKOPTIONS=""
"LINKOPTIONS ="

To undefine a macro in a makefile or in TOOLS.INF, use the !UNDEF
preprocessing directive, as in:

!UNDEF LINKOPTIONS

554 Environment and Tools

Using Macros
To use a macro (defined or not), enclose its name in parentheses preceded by a
dollar sign ($), as follows:

$(macroname)

No spaces are allowed. For example, you can use the LI NKCMD macro defined as

LINKCMD = LINK Imap

by specifying

$(LINKCMD)

NMAKE replaces the specification $ (LI NKCMD) with LI NK Imap.

If the name you use as a macro has never been defined, or was previously defined
but is now undefined, NMAKE treats that name as a null string. No error occurs.

The parentheses are optional if macroname is a single character. For example, $ L
is equivalent to $ (L) . However, parentheses are recommended for consistency and
to avoid possible errors.

Example
The following makefile defines and uses three macros:

program = sample
L LINK
OPTI ONS =

$(program).exe : $(program).obj
$(L) $(OPTIONS) $(program).obj;

NMAKE interprets the description block as

sample.exe : sample.obj
LI NK sampl e. obj ;

NMAKE replaces every occurrence of $ (pro 9 ram) with sam p 1 e, every instance
of $ (L) with LIN K, and every instance of $ (a PT ION S) with a null string.

Special Macros
NMAKE provides several special macros to represent various filenames and
commands. One use for these macros is in the predefined inference rules. (For more
information, see "Predefined Inference Rules" on page 567.) Like user-defined
macro names, special macro names are case sensitive. For example, NMAKE
interprets C C and c c as different macro names.

Chapter 16 Managing Projects with NMAKE 555

The following sections describe the four categories of special macros. The file
name macros offer a convenient representation of filenames from a dependency line.
The recursion macros allow you to call NMAKE from within your makefile. The
command macros and options macros make it convenient for you to invoke the
Microsoft language compilers.

Filename Macros
NMAKE provides macros that are predefined to represent filenames. The filenames
are as you have specified them in the dependency line and not the full specification
of the filenames as they exist on disk. As with all one-character macros, these do
not need to be enclosed in parentheses. (The $$@ and $** macros are exceptions to
the parentheses rule for macros; they do not require parentheses even though they
contain two characters.)

$@
The current target's full name (path, base name, and extension), as currently
specified.

$$@

$*

The current target's full name (path, base name, and extension), as currently
specified. This macro is valid only for specifying a dependent in a dependency
line.

The current target's path and base name minus the file extension.

$**

$?

$<

All dependents of the current target.

All dependents that have a later time stamp than the current target.

The dependent file that has a later time stamp than the current target. You can
use this macro only in commands in inference rules.

Example 1
The following example uses the $? macro, which represents all dependents that
have changed more recently than the target. The! command modifier causes
NMAKE to execute a command once for each dependent in the list. As a result, the
LIB command is executed up to three times, each time replacing a module with a
newer version.

trig.lib : sin.obj cos.obj arctan.obj
!LIB trig.lib -+$?;

556 Environment and Tools

Example 2
In the next example, NMAKE updates a file in another directory by replacing it
with a file of the same name from the current directory. The $@ macro is used to
represent the current target's full name.

File in objects directory depends on version in current directory
OIR = c:\objects
$(OIR)\a.obj : a.obj

COpy a.obj $@

Modifying Filename Macros
You can append one of the modifiers in the following table to any of the filename
macros to extract part of a filename. If you add one of these modifiers to the macro,
you must enclose the macro name and the modifier in parentheses.

Modifier

D

B

F

R

Example 1

Resulting Filename Part

Drive plus directory

Base name

Base name plus extension

Drive plus directory plus base name

Assume that $@ represents the target C:\sOURCE\PROQ\SORT.OBJ. The
following table shows the effect of combining each modifier with $@:

Macro Reference

$(@D)

$(@F)

$(@B)

$(@R)

Value

C:\sOURCE\PROG

SORT.OB]

SORT

C:\sOURCE\PROG\sORT

If $@ has the value SORT.OBJ without a preceding directory, the value of $(@R)
is SORT, and the value of $(@D) is a period (.) to represent the current directory.

Example 2
The following example uses the F modifier to specify a file of the same name in the
current directory:

Files in objects directory depend on versions in current directory
OIR = c:\objects
$(OIR)\a.obj $(OIR)\b.obj $(OIR)\c.obj : $$(@F)

COpy $(@F) $@

Chapter 16 Managing Projects with NMAKE 557

Note For another way to represent components of a filename, see "Filename-Parts
Syntax" on page 546.

Recursion Macros
There are three macros that you can use when you want to call NMAKE recursively
from within a makefile. These macros can make recursion more efficient.

MAKE
Defined as the name which you specified to the operating system when you ran
NMAKE; this name is NMAKE unless you have renamed the NMAKE.EXE
utility file. Use this macro to call NMAKE recursively. The IN command-line
option to prevent execution of commands does not prevent this command from
executing. It is recommended that you do not redefine MAKE.

MAKEDIR
Defined as the current directory when NMAKE was called.

MAKEFLAGS
Defined as the NMAKE options currently in effect. This macro is passed
automatically when you call NMAKE recursively. However, specification of
this macro when invoking recursion is harmless; thus, you can use older
makefiles that specify this macro. You cannot redefine MAKEFLAGS. To
change the /D, /I, IN, and /S options within a makefile, use the preprocessing
directive !CMDSWITCHES. (See "Preprocessing Directives" on page 572.)
To add other options to the ones already in effect for NMAKE when recursing,
specify them as part of the recursion command.

Calling NMAKE Recursively
In a commands block, you can specify a call to NMAKE itself. Either invoke the
MAKE macro or specify NMAKE literally. The following NMAKE information is
available to the called NMAKE session during recursion:

• Environment-variable macros (see "Inherited Macros" on page 563). To cause
all macros to be inherited, specify the N option.

• The MAKEFLAGS macro. If .IGNORE (or !CMDSWITCHES +1) is set,
MAKEFLAGS contains an I when it is passed to the recursive call. Likewise,
if .SILENT (or !CMDSWITCHES +S) is set, MAKEFLAGS contains an S
when passed to the call.

• Macros specified on the command line for the recursive call.

• All information in TOOLS.IN!.

558 Environment and Tools

Inference rules defined in the makefile are not passed to the called NMAKE
session. Settings for .SUFFIXES and .PRECIOUS are also not inherited.
However, you can make .SUFFIXES, .PRECIOUS, and all inference rules
available to the recursive call either by specifying them in TOOLS.INI or by
placing them in a file that is specified in an !INCLUDE directive in the makefile
for each NMAKE session.

Example
The MAKE macro is useful for building different versions of a program. The
following makefile calls NMAKE recursively to build targets in the \ VERS 1 and
\ VERS2 directories.

all: versl vers2

versl
cd \versl
$(MAKE)
cd ..

vers2 :
cd \vers2
$(MAKE) IF vers2.mak
cd ..

If the dependency containing ve r s 1 as a target is executed, NMAKE performs the
commands to change to the \ VERS 1 directory and call itself recursively using the
MAKEFILE in that directory. If the dependency containing ve r s 2 as a target is
executed, NMAKE changes to the \ VERS2 directory and calls itself using the file
VERS2.MAK in that directory.

Command Macros
NMAKE predefines several macros to represent commands for Microsoft prod
ucts. You can use these macros as commands in either a description block or an
inference rule; they are automatically used in NMAKE' s predefined inference rules.
(See "Inference Rules" on page 563.) You can redefine these macros to represent
part or all of a command line, including options.

AS
Defined as m 1 , the command to run the Microsoft Macro Assembler

BC
Defined as be, the command to run the Microsoft Basic Compiler

CC
Defined as c 1 , the command to run the Microsoft C Compiler

COBOL
Defined as cob 0 1 , the command to run the Microsoft COBOL Compiler

Chapter 16 Managing Projects with NMAKE 559

CPP
Defined as c 1 , the command to run the Microsoft C++ Compiler

CXX
Defined as c 1 , the command to run the Microsoft C++ Compiler

FOR
Defined as fl, the command to run the Microsoft FORTRAN Compiler

PASCAL
Defined as p 1 , the command to run the Microsoft Pascal Compiler

RC
Defined as rc, the command to run the Microsoft Resource Compiler

Options Macros
The following macros represent options to be passed to the commands for invoking
the Microsoft language compilers. These macros are used automatically in the
predefined inference rules. (See "Predefined Inference Rules" on page 567.) By
default, these macros are undefined. You can define them to mean the options you
want to pass to the compilers, and you can use these macros in commands in
description blocks and inference rules. As with all macros, the options macros can
be used even if they are undefined; a macro that is undefined or defined to be a null
string generates a null string where it is used.

AFLAGS
Passes options to the Microsoft Macro Assembler

BFLAGS
Passes options to the Microsoft Basic Compiler

CFLAGS
Passes options to the Microsoft C Compiler

COBFLAGS
Passes options to the Microsoft COBOL Compiler

CPPFLAGS
Passes options to the Microsoft C++ Compiler

CXXFLAGS
Passes options to the Microsoft C++ Compiler

FFLAGS
Passes options to the Microsoft FORTRAN Compiler

PFLAGS
Passes options to the Microsoft Pascal Compiler

RFLAGS
Passes options to the Microsoft Resource Compiler

560 Environment and Tools

Substitution Within Macros
Just as macros allow you to substitute text in a makefile, you can also substitute
text within a macro itself. The substitution applies only to the current use of the
macro and does not modify the original macro definition. To substitute text within a
macro, use the following syntax:

$(macroname:stringl =string2)

Every occurrence of stringl is replaced by string2 in the macro macroname. Do
not put any spaces or tabs before the colon. Spaces that appear after the colon are
interpreted as part of the string in which they occur. If string2 is a null string, all
occurrences of stringl are deleted from the macroname macro.

Macro substitution is literal and case sensitive. This means that the case as well as
the characters in stringl must match the target string in the macro exactly, or the
substitution is not performed. This also means that string2 is substituted exactly as
it is specified. Because substitution is literal, the strings cannot contain macro
expansions.

Example 1
The following makefile illustrates macro substitution:

SOURCES = project.c one.c two.c

project.exe : $(SOURCES:.c=.obj)
LINK $**;

The predefined macro $** stands for the names of all the dependent files (See
"Filename Macros" on page 555.) When this makefile is run, NMAKE executes the
following command:

LINK project.obj one.obj two.obj;

The macro substitution does not alter the SOU R C E S macro definition; if it is used
again elsewhere in the makefile, SOURCES has its original value as it was defined.

Example 2
If the macro OBJS is defined as

OBJS = ONE.OBJ TWO.OBJ THREE.OBJ

Chapter 16 Managing Projects with NMAKE 561

you can replace each space in the defined value of OBJ S with a space, followed by
a plus sign, followed by a newline character, by using

$(OBJS: = +"
)

The caret (1\) tells NMAKE to treat the end of the line as a literal newline
character. The expanded macro after substitution is:

ONE.OBJ +
TWO.OBJ +
THREE.OBJ

This example is useful for creating response files.

Substitution Within Predefined Macros
You can also substitute text in any predefined macro (except $$@) using the same
syntax as for other macros.

The command in the following description block makes a substitution within the
predefined macro $@, which represents the full name of the current target. Note
that although $@ is a single-character macro, when it is used in a substitution, it
must be enclosed in parentheses.

target.abc : depend.xyz
echo $(@:targ=blank)

NMAKE substitutes b 1 an k for tar 9 in the target, resulting in the string
b 1 an k e t . abc. If dependent de pen d . xy z has a later time stamp than target
tar get. abc, then NMAKE executes the command

echo blanket.abc

Environment-Variable Macros
When NMAKE executes, it inherits macro definitions equivalent to every
environment variable that existed before the start of the NMAKE session. If a
variable such as LIB or INCLUDE has been set in the operating-system
environment, you can use its value as if you had specified an NMAKE macro with
the same name and value. The inherited macro names are converted to uppercase.
Inheritance occurs before preprocessing. The IE option causes macros inherited
from environment variables to override any macros with the same name in the
makefile.

562 Environment and Tools

You can redefine environment-variable macros the same way that you define or
redefine other macros. Changing a macro does not change the corresponding
environment variable; to change the variable, use a SET command. Also, using the
SET command to change an environment variable in an NMAKE session does not
change the corresponding macro; to change the macro, use a macro definition.

If an environment variable has not been set in the operating-system environment, it
cannot be set using a macro definition. However, you can use a SET command in
the NMAKE session to set the variable. The variable is then in effect for the rest of
the NMAKE session unless redefined or cleared by a later SET command. A SET
definition that appears in a makefile does not create a corresponding macro for that
variable name; if you want a macro for an environment variable that is created
during an NMAKE session, you must explicitly define the macro in addition to
setting the variable.

If an environment variable is defined as a string that would be syntactically
incorrect in a makefile, NMAKE does not create a macro from that variable. No
warning is generated.

Warning If an environment variable contains a dollar sign ($), NMAKE interprets
it as the beginning of a macro invocation. The resulting macro expansion can cause
unexpected behavior and possibly an error.

Example
The following makefile redefines the environment-variable macro called LI B:

LIB = c:\tools\lib

sample.exe : sample.obj
LINK sample;

No matter what value the environment variable LIB had before, it has the value
c : \ tools \ 1 i b when NMAKE executes the LINK command in this description
block. Redefining the inherited macro does not affect the original environment
variable; when NMAKE terminates, LIB still has its original value.

If LIB is not defined before the NMAKE session, the LIB macro definition in the
preceding example does not set a LIB environment variable for the LINK
command. To do this, use the following makefile:

sample.exe : sample.obj
SET LIB=c:\tools.lib
LINK sampl e;

Chapter 16 Managing Projects with NMAKE 563

Inherited Macros
When NMAKE is called recursively, the only macros that are inherited by the
called NMAKE are those defined on the command line or in environment variables.
Macros defined in the makefile are not inherited when NMAKE is called
recursively. There are several ways to pass macros to a recursive NMAKE session:

• Run NMAKE with the N option. This option causes all macros to be inherited
by the recursively called NMAKE. You can use this option on the NMAKE
command for the entire session, or you can specify it in a command for a
recursive NMAKE call to affect just the specified recursive session.

• Use the SET command before the recursive call to set an environment variable
before the called NMAKE session.

• Define a macro on the command line for the recursive call.

• Define a macro in the TOOLS.INI file. Each time NMAKE is recursively
called, it reads TOOLS.INL

Precedence Among Macro Definitions
If you define the same macro name in more than one place, NMAKE uses the
macro with the highest precedence. The precedence from highest to lowest is as
follows:

1. A macro defined on the command line

2. A macro defined in a makefile or include file

3. An inherited environment-variable macro

4. A macro defined in the TOOLS.INI file

5. A predefined macro, such as AS or CC

The IE option causes macros inherited from environment variables to override any
macros with the same name in the makefile. The !UNDEF directive in a makefile
overrides a macro defined on the command line.

Inference Rules
Inference rules are templates that define how a file with one extension is created
from a file with another extension. NMAKE uses inference rules to supply
commands for updating targets and to infer dependents for targets. In the
dependency tree, inference rules cause targets to have inferred dependents as well
as explicitly specified dependents; see "Inferred Dependents" on page 569. The
.SUFFIXES list determines priorities for applying inference rules; see "Dot
Directives" on page 570.

564 Environment and Tools

Inference rules provide a convenient shorthand for common operations. For
instance, you can use an inference rule to avoid repeating the same command in
several description blocks. You can define your own inference rules or use
predefined inference rules. Inference rules can be specified in the makefile or in
TOOLS.INI.

Inference rules can be used in the following situations:

• If NMAKE encounters a description block that has no commands, it checks the
.SUFFIXES list and the files in the current or specified directory and then
searches for an inference rule that matches the extensions of the target and an
existing dependent file with the highest possible .SUFFIXES priority.

• If a dependent file doesn't exist and is not listed as a target in another
description block, NMAKE looks for an inference rule that shows how to create
the missing dependent from another file with the same base name.

• If a target has no dependents and its description block has no commands,
NMAKE can use an inference rule to create the target.

• If a target is specified on the command line and there is no makefile (or no
mention of the target in the makefile), inference rules are used to build the
target.

If a target is used in more than one single-colon dependency, an inference rule
might not be applied as expected; see "Accumulating Targets in Dependencies" on
page 539.

Inference Rule Syntax
To define an inference rule, use the following syntax:

.Jrom ext. to ext:
commands

The first line lists two extensions: fromext represents the extension of a dependent
file, and toext represents the extension of a target file. Extensions are not case
sensitive. Macros can be invoked to represent from ext and toext; the macros are
expanded during preprocessing.

The period (.) precedingfromext must appear at the beginning of the line. The colon
(:) can be preceded by zero or more spaces or tabs; it can be followed only by
spaces or tabs, a semicolon (;) to specify a command, a number sign (#) to specify a
comment, or a newline character. No other spaces are allowed.

The rest of the inference rule gives the commands to be run if the dependency is
out-of-date. Use the same rules for commands in inference rules as in description
blocks. (See "Commands" on page 543.)

Chapter 16 Managing Projects with NMAKE 565

An inference rule can be used only when a target and dependent have the same base
name. You cannot use a rule to match multiple targets or dependents. For example,
you cannot define an inference rule that replaces several modules in a library
because all but one of the modules must have a different base name from the target
library.

Inference rules can exist only for dependents with extensions that are listed in the
.SUFFIXES directive. (For information on .SUFFIXES, see "Dot Directives" on
page 570.) If an out-of-date dependency does not have a commands block, and if
the .SUFFIXES list contains the extension of the dependent, NMAKE looks for an
inference rule matching the extensions of the target and of an existing file in the
current or specified directory. If more than one rule matches existing dependent
files, NMAKE uses the order of the .SUFFIXES list to determine which rule to
invoke. Priority in the list descends from left to right. NMAKE may invoke a rule
for an inferred dependent even if an explicit dependent is specified; for more
information, see "Inferred Dependents" on page 569.

Inference rules tell NMAKE how to build a target specified on the command line if
no makefile is provided or if the makefile does not have a dependency containing
the specified target. When a target is specified on the command line and NMAKE
cannot find a description block to run, it looks for an inference rule to tell it how to
build the target. You can run NMAKE without a makefile if the inference rules that
are predefined or defined in TOOLS.INI are all you need for your build.

Inference Rule Search Paths
The inference-rule syntax described previously tells NMAKE to look for the
specified files in the current directory. You can also specify directories to be
searched by NMAKE when it looks for files. An inference rule that specifies paths
has the following syntax:

{frompath} .[romext{topath} . to ext:
commands

No spaces are allowed. The Jrompath directory must match the directory specified
for the dependent file; similarly, topath must match the target's directory
specification. For NMAKE to apply an inference rule to a dependency, the paths in
the dependency line must match the paths specified in the inference rule exactly.
For example, if the current directory is called PROJ, the inference rule

{ .. \proj}. exe{ .. \proj}. obj:

does not apply to the dependency

projectl.exe : projectl.obj

566 Environment and Tools

If you use a path on one extension in the inference rule, you must use paths on both.
You can specify the current directory by either a period (.) or an empty pair of
braces ({}).

You can specify only one path for each extension in an inference rule. To specify
more than one path, you must create a separate inference rule for each path.

Macros can be invoked to representjrompath and topath; the macros are expanded
during preprocessing.

User-Defined Inference Rules
The following examples illustrate several ways to write inference rules.

Example 1
The following makefile contains an inference rule and a minimal description block:

.e.obj:
el Ie $<

sample.obj :

The inference rule tells NMAKE how to build a .OBJ file from a.C file. The
predefined macro $< represents the name of a dependent that has a later time stamp
than the target. The description block lists only a target, SAMPLE.OBJ; there is no
dependent or command. However, given the target's base name and extension, plus
the inference rule, NMAKE has enough information to build the target.

After checking to be sure that . c is one of the extensions in the .SUFFIXES list,
NMAKE looks for a file with the same base name as the target and with the .C
extension. If SAMPLE.C exists (and no files with higher-priority extensions exist),
NMAKE compares its time to that of SAMPLE.OBJ. If SAMPLE.C has changed
more recently, NMAKE compiles it using the CL command listed in the inference
rule:

el Ie sample.e

Example 2
The following inference rule compares a .C file in the current directory with the
corresponding .OBJ file in another directory:

{.}.e{e:\objeets}.obj:
el Ie $<;

The path for the .C file is represented by a period. A path for the dependent
extension is required because one is specified for the target extension.

Chapter 16 Managing Projects with NMAKE 567

This inference rule matches a dependency line containing the same combination of
paths, such as:

e:\objeets\test.obj : test.e

This rule does not match a dependency line such as:

test.obj : test.e

In this case, NMAKE uses the predefined inference rule for .c.obj when building
the target.

Example 3
The following inference rule uses macros to specify paths in an inference rule:

C_DIR = projlsre
OBJ_DIR = projlobj
{$(C_DIR)}.e{$(OBJ_DIR)}.obj:

el Ie $

If the macros are redefined, NMAKE uses the definition that is current at that point
during preprocessing. To reuse an inference rule with different macro definitions,
you must repeat the rule after the new definition:

C_DIR = projlsre
OBJ_DIR = projlobj
{$(C_DIR)}.e{$(OBJ_DIR)}.obj:

el Ie $<
C_DIR = proj2sre
OBJ_DIR = proj2obj
{$(C_DIR)}.e{$(OBJ_DIR)}.obj:

el Ie $<

Predefined Inference Rules
NMAKE provides predefined inference rules containing commands for creating
object, executable, and resource files. Table 16.1 describes the predefined inference
rules.

Table 16.1 Predefined Inference Rules

Rule Command Default Action

.asm.exe $(AS) $(AFLAGS) $* .asm ML$*.ASM

.asm.obj $(AS) $(AFLAGS) /c $*.asm ML/c$*.ASM

.c.exe $(CC) $(CFLAGS) $*.e CL$*.C

.c.obj $(CC) $(CFLAGS) /c $*.c CL/c $*.C

.cpp.exe $(CPP) $(CPPFLAGS) $*.cpp CL$*.CPP

568 Environment and Tools

Table 16.1 Predefined Inference Rules (continued)

Rule Command Default Action

.cpp.obj $(CPP) $(CPPFLAGS) Ic $* .cpp CL/c $*.CPP

.cxx.exe $(CXX) $(CXXFLAGS) $* .cxx CL$*.CXX

.cxx.obj $(CXX) $(CXXFLAGS) Ic $* .cxx CL/c $*.CXX

.bas.obj $(BC) $(BFLAGS) $* .bas; BC $*.BAS;

.cbl.exe $(COBOL) $(COBFLAGS) $* .cbl, $* .exe; COBOL $* .CBL, $* .EXE;

.cbl.obj $(COBOL) $(COBFLAGS) $*.cbl; COBOL $*.CBL;

.for.exe $(FOR) $(FFLAGS) $* .for FL$*.FOR

.for.obj $(FOR) Ic $(FFLAGS) $* .for FL/c $*.FOR

.pas.exe $(PASCAL) $(PFLAGS) $*.pas PL$*.PAS

.pas.obj $(PASCAL) Ic $(PFLAGS) $*.pas PL/c $*.PAS

.rc.res $(RC) $(RFLAGS) Ir $* ·'RC Ir $*

For example, assume you have the following makefile:

sample.exe :

This description block lists a target without any dependents or commands. NMAKE
looks at the target's extension (.EXE) and searches for an inference rule that
describes how to create an .EXE file. Table 16.1 shows that more than one
inference rule exists for building an .EXE file. NMAKE uses the order of the
extensions appearing in the .SUFFIXES list to determine which rule to invoke. It
then looks in the current or specified directory for a file that has the same base
name as the target sa mp 1 e and one of the extensions in the .SUFFIXES list; it
checks the extensions one by one until it finds a matching dependent file in the
directory.

For example, if a file called SAMPLE.ASM exists, NMAKE applies the
• as m • ex e inference rule. If both SAMPLE.C and SAMPLE.ASM exist, and if . c
appears before. asm in the .SUFFIXES list, NMAKE uses the. c. exe inference
rule to compile SAMPLE.C and links the resulting file SAMPLE.OBJ to create
SAMPLE.EXE.

Note By default, the options macros (AFLAGS, CFLAGS, and so on) are
undefined. As explained in "Using Macros" on page 554, this causes no problem;
NMAKE replaces an undefined macro with a null string. Because the predefined
options macros ~re included in the inference rules, you can define these macros and
have their assigned values passed automatically to the predefmed inference rules.

Chapter 16 Managing Projects with NMAKE 569

Inferred Dependents
NMAKE can assume an "inferred dependent" for a target if there is an applicable
inference rule. An inference rule is applicable if:

• The toext in the rule matches the extension of the target being evaluated.

• The from ext in the rule matches the extension of a file that has the same base
name as the target and that exists in the current or specified directory.

• The from ext is in the .SUFFIXES list.

• No otherfromext in a matching rule is listed in .SUFFIXES with a higher
priority.

• No explicitly specified dependent has a higher priority extension.

If an existing dependent matches an inference rule and has an extension with a
higher .SUFFIXES priority, NMAKE does not infer a dependent.

NMAKE does not necessarily execute the commands block in an inference rule for
an inferred dependent. If the target's description block contains commands,
NMAKE executes the description block's commands and not the commands in the
inference rule. The effect of an inferred dependent is illustrated in the following
example:

projeet.obj :
el IZi Ie projeet.e

If a makefile contains this description block and if the current directory contains a
file named PROJECT.C and no other files, NMAKE uses the predefined inference
rule for . c . 0 b j to infer the dependent pro j e ct. c. It does not execute the
predefined rule's command, c 1 / cpr 0 j e ct. c. Instead, it runs the command
specified in the makefile.

Inferred dependents can cause unexpected side effects. In the following examples,
assume that both PROJECT.ASM and PROJECT.C exist and that .SUFFIXES
contains the default setting. If the makefile contains

projeet.obj : projeet.e

NMAKE infers the dependent pro j e ct. a s m ahead of pro j e ct. c because
.SUFFIXES lists . as m before . c and because a rule for . as m • 0 b j exists. If
either PROJECT.ASM or PROJECT.C is out-of-date, NMAKE executes the
commands in the rule for . a sm. 0 b j .

However, if the dependency in the preceding example is followed by a commands
block, NMAKE executes those commands and not the commands in the inference
rule for the inferred dependent.

570 Environment and Tools

Another side effect occurs because NMAKE builds a target if it is out-of-date with
respect to any of its dependents, whether explicitly specified or inferred. For
example, if PROJECT.OBJ is up-to-date with respect to PROJECT.C but not with
respect to PROJECT.ASM, and if the makefile contains

projeet.obj : projeet.e
el IZi Ie projeet.e

NMAKE infers the dependent pro j e ct. as m and updates the target using the
command specified in this description block.

Precedence Among Inference Rules

Directives

If the same inference rule is defined in more than one place, NMAKE uses the rule
with the highest precedence. The precedence from highest to lowest is as follows:

1. An inference rule defined in the makefile. If more than one rule is defined, the
last rule applies.

2. An inference rule defined in the TOOLS.INI file. If more than one rule is
defined, the last rule applies.

3. A predefined inference rule.

User-defined inference rules always override predefined inference rules. NMAKE
uses a predefined inference rule only if no user-defined inference rule exists for a
given target and dependent.

If two inference rules match a target's extension and a dependent is not specified,
NMAKE uses the inference rule whose dependent's extension appears first in the
.SUFFIXES list.

NMAKE provides several ways to control the NMAKE session through dot
directives and preprocessing directives. Directives are instructions to NMAKE that
are placed in the makefile or in TOOLS.INI. NMAKE interprets dot directives and
preprocessing directives and applies the results to the makefile before processing
dependencies and commands.

Dot Directives
Dot directives must appear outside a description block and must appear at the
beginning of a line. Dot directives begin with a period (.) and are followed by a
colon (:). Spaces and tabs can precede and follow the colon. These directive names
are c'ase sensitive and must be uppercase.

Chapter 16 Managing Projects with NMAKE 571

.IGNORE:
Ignores nonzero exit codes returned by programs called from the makefile. By
default, NMAKE halts if a command returns a nonzero exit code. This directive
affects the makefile from the place it is specified to the end of the file. To tum it
off again, use the !CMDSWITCHES preprocessing directive. To ignore the
exit code for a single command, use the dash (-) command modifier. To ignore
exit codes for an entire file, invoke NMAKE with the /I option .

. PRECIOUS : targets
Tells NMAKE not to delete targets if the commands that build them are
interrupted. This directive has no effect if a command is interrupted and handles
the interrupt by deleting the file. Separate the target names with one or more
spaces or tabs. By default, NMAKE deletes the target if building was
interrupted by CTRL+C or CTRL+BREAK. Multiple specifications are cumulative;
each use of .PRECIOUS applies to the entire makefile .

. SILENT:
Suppresses display of the command lines as they are executed. By default,
NMAKE displays the commands it invokes. This directive affects the makefile
from the place it is specified to the end of the file. To tum it off again, use the
!CMDSWITCHES preprocessing directive. To suppress display of a single
command line, use the @ command modifier. To suppress the command display
for an entire file, invoke NMAKE with the /S option .

. SUFFIXES : list
Lists file suffixes (extensions) for NMAKE to try to match when it attempts to
apply an inference rule. (For details about using .SUFFIXES, see "Inference
Rules" on page 563.) The list is predefined as follows:

.SUFFIXES : .exe .obj .asm .c .cpp .cxx .bas .cbl .for .pas .res .rc

To add additional suffixes to the end of the list, specify

.SUFFIXES : suffixlist

where suffixlist is a list of the additional suffixes, separated by one or more
spaces or tabs. To clear the list, specify

.SUFFIXES :

without extensions. To change the list order or to specify an entirely new list,
you must clear the list and specify a new setting. To see the current setting, run
NMAKE with the /P option.

572 Environment and Tools

Preprocessing Directives
NMAKE preprocessing directives are similar to compiler preprocessing directives.
You can use several of the directives to conditionally process the makefile. With
other preprocessing directives you can display error messages, include other files,
undefine a macro, and tum certain options on or off. NMAKE reads and executes
the preprocessing directives before processing the makefile as a whole.

Preprocessing directives begin with an exclamation point (!), which must appear at
the beginning of the line. Zero or more spaces or tabs can appear between the
exclamation point and the directive keyword; this allows indentation for readability.
These directives (and their keywords and operators) are not case sensitive.

!CMDSWITCHES {+I- } opt ...
Turns on or off one or more options. (For descriptions of options, see page 529.)
Specify an operator, either a plus sign (+) to tum options on or a minus sign (-)
to tum options off, followed by one or more letters representing options. Letters
are not case sensitive. Do not specify the slash (/). Separate the directive from
the operator by one or more spaces or tabs; no space can appear between the
operator and the options. To tum on some options and tum off other options, use
separate specifications of the !CMDSWITCHES directives.

All options with the exception of IF, /HELP, /NOLOGO, IX, and /? can appear
in !CMDSWITCHES specifications in TOOLS.INI. In a makefile, only the
letters D, I, N, and S can be specified. If !CMDSWITCHES is specified within
a description block, the changes do not take effect until the next description
block. This directive updates the MAKEFLAGS macro; the changes are
inherited during recursion.

!ERROR text
Displays text to standard error in the message for error UI050, then stops the
NMAKE session. This directive stops the build even if /K, II, .IGNORE,
!CMDSWITCHES, or the dash (-) command modifier is used. Spaces or tabs
before text are ignored.

!MESSAGE text
Displays text to standard output, then continues the NMAKE session. Spaces or
tabs before text are ignored.

!INCLUDE IT <]filename IT>]
Reads and evaluates the file filename as a makefile before continuing with the
current makefile. NMAKE first looks for filename in the current directory if
filename is specified without a path; if a path is specified, NMAKE looks in the
specified directory. Next, if the !INCLUDE directive is itself contained in a file
that is included, NMAKE looks for filename in the parent file's directory; this
search is recursive, ending with the original makefile's directory. Finally, if
filename is enclosed by angle brackets « », NMAKE searches in the
directories specified by the INCLUDE macro. The INCLUDE macro is
initially set to the value of the INCLUDE environment variable.

Chapter 16 Managing Projects with NMAKE 573

!IF constant expression
Processes the statements between the !IF and the next !ELSE or !ENDIF if
constantexpression evaluates to a nonzero value.

!IFDEF macroname
Processes the statements between the !IFDEF and the next !ELSE or !ENDIF
if macro name is defined. NMAKE considers a macro with a null value to be
defined.

!IFNDEF macroname
Processes the statements between the !IFNDEF and the next !ELSE or
!ENDIF if macroname is not defined.

!ELSE [IF constantexpressionlIFDEF macronamelIFNDEF macroname]
Processes the statements between the !ELSE and the next !ENDIF if the
preceding !IF, !IFDEF, or !IFNDEF statement evaluated to zero. The optional
keywords give further control of preprocessing.

!ELSEIF
Synonym for !ELSE IF.

!ELSEIFDEF
Synonym for !ELSE IFDEF.

!ELSEIFNDEF
Synonym for !ELSE IFNDEF.

!ENDIF
Marks the end of an !IF, !IFDEF, or !IFNDEF block. Anything following
!ENDIF on the same line is ignored.

!UNDEF macroname
Undefines a macro by removing macroname from NMAKE's symbol table.
(For more information, see "Null Macros and Undefined Macros" on page 553.)

Example
The following set of directives

! IF
!ELSE

IF
ENDIF

!ENDIF

is equivalent to the set of directives

! IF
! ELSE IF
!ENDIF

574 Environment and Tools

Expressions in Preprocessing
The constant expression used with the !IF or !ELSE IF directives can consist of
integer constants, string constants, or program invocations. You can group
expressions by enclosing them in parentheses. NMAKE treats numbers as decimals
unless they start with 0 (octal) or Ox (hexadecimal).

Expressions in NMAKE use C-style signed long integer arithmetic; numbers are
represented in 32-bit two's-complement form and are in the range -2147483648 to
2147483647.

Two unary operators evaluate a condition and return a logical value of true (1) or
false (0):

DEFINED (macroname)
Evaluates to true if macroname is defined. In combination with the !IF or
!ELSE IF directives, this operator is equivalent to the !IFDEF or !ELSE
IFDEF directives. However, unlike these directives, DEFINED can be used in
complex expressions using binary logical operators.

EXIST (path)
Evaluates to true if path exists. EXIST can be used in complex expressions
using binary logical operators. If path contains spaces (allowed in some file
systems), enclose it in double quotation marks.

Integer constants can use the unary operators for numerical negation (-), one's
complement (-), and logical negation (!).

Constant expressions can use any binary operator listed in Table 16.2. To compare
two strings, use the equality (==) operator and the inequality (!=) operator. Enclose
strings in double quotation marks.

Table 16.2 Binary Operators for Preprocessing

Operator

+

*

%

&

A

&&

II

Description

Addition

Subtraction

Multiplication

Division

Modulus

Bitwise AND

Bitwise OR

Bitwise XOR

Logical AND

Logical OR

Chapter 16 Managing Projects with NMAKE 575

Table 16.2 Binary Operators for Preprocessing (continued)

Operator Description

«

»

!=

<

>

<=

>=

Left shift

Right shift

Equality

Inequality

Less than

Greater than

Less than or equal to

Greater than or equal to

Example
The following example shows how preprocessing directives can be used to control
whether the linker inserts debugging information into the .EXE file:

!INCLUDE <infrules.txt>
! CMDSWITCHES +0
winner.exe : winner.obj
!IF DEFINED(debug)

!ELSE

IF "$(debug)"=="y"
LINK ICO winner.obj;

ELSE
LI NK wi nner. obj ;

ENDIF

ERROR Macro named debug is not defined.
!ENDIF

In this example, the !INCLUDE directive inserts the INFRULES.TXT file into the
makefile. The !CMDSWITCHES directive sets the /D option, which displays the
time stamps of the files as they are checked. The !IF directive checks to see if the
macro deb u 9 is defined. If it is defined, the next !IF directive checks to see if it is
set to y. If it is, NMAKE reads the LINK command with the ICO option; otherwise,
NMAKE reads the LINK command without ICO. If the deb u 9 macro is not
defined, the !ERROR directive prints the specified message and NMAKE stops.

Executing a Program in Preprocessing
You can invoke a program or command from within NMAKE and use its exit code
during preprocessing. NMAKE executes the command during preprocessing, and it
replaces the specification in the makefile with the command's exit code. A nonzero
exit code usually indicates an error. You can use this value in an expression to
control preprocessing.

576 Environment and Tools

Specify the command, including any arguments, within brackets ([]). You can use
macros in the command specification; NMAKE expands the macro before
executing the command.

Example
The following part of a makefile tests the space on disk before continuing the
NMAKE session:

!IF [c:\util\checkdskJ != 0
ERROR Not enough disk space; NMAKE terminating.

!ENDIF

Sequence of NMAKE Operations
When you write a complex makefile, it can be helpful to know the sequence in
which NMAKE performs operations. This section describes those operations and
their order.

When you run NMAKE from the command line, NMAKE' s first task is to find the
makefile:

1. If the IF option is used, NMAKE searches for the filename specified in the
option. If NMAKE cannot find that file, it returns an error.

2. If the IF option is not used, NMAKE looks for a file named MAKEFILE in the
current directory. If there are targets on the command line, NMAKE builds them
according to the instructions in MAKEFILE. If there are no targets on the
command line, NMAKE builds only the first target it finds in MAKEFILE.

3. If NMAKE cannot find MAKEFILE, NMAKE looks for target files on the
command line and attempts to build them using inference rules (either defined by
the user in TOOLS.INI or predefined by NMAKE). If no target is specified,
NMAKE returns an error.

NMAKE then assigns macro definitions with the following precedence (highest to
lowest):

1. Macros defined on the command line

2. Macros defined in a makefile or include file

3. Inherited macros

4. Macros defined in the TOOLS.INI file

5. Predefined macros (such as CC and RFLAGS)

Chapter 16 Managing Projects with NMAKE 577

Macro definitions are assigned first in order of priority and then in the order in
which NMAKE encounters them. For example, a macro defined in an include file
overrides a macro with the same name from the TOOLS.INI file. Note that a macro
within a makefile can be redefined; a macro is valid from the point it is defined until
it is redefined or undefined.

NMAKE also assigns inference rules, using the following precedence (highest to
lowest):

1. Inference rules defined in a makefile or include file

2. Inference rules defined in the TOOLS.INI file

3. Predefined inference rules (such as .asm.obj)

You can use command-line options to change some of these priorities.

• The IE option allows macros inherited from the environment to override macros
defined in the makefile.

• The /R option tells NMAKE to ignore macros and inference rules that are
defined in TOOLS.INI or are predefined.

Next, NMAKE evaluates any preprocessing directives. If an expression for
conditional preprocessing contains a program in brackets ([]), the program is
invoked during preprocessing and the program's exit code is used in the expression.
If an !INCLUDE directive is specified for a file, NMAKE preprocesses the
included file before continuing to preprocess the rest of the makefile. Preprocessing
determines the final makefile that NMAKE reads.

NMAKE is now ready to update the targets. If you specified targets on the
command line, NMAKE updates only those targets. If you did not specify targets on
the command line, NMAKE updates only the first target in the makefile. If you
specify a pseudotarget, NMAKE always updates the target. If you use the fA
option, NMAKE always updates the target, even if the file is not out-of-date.

NMAKE updates a target by comparing its time stamp to the time stamp of each
dependent of that target. A target is out-of-date if any dependent has a later time
stamp; if the /B option is specified, a target is out-of-date if any dependent has a
later or equal time stamp.

If the dependents of the targets are themselves out-of-date or do not exist, NMAKE
updates them first. If the target has no explicit dependent, NMAKE looks for an
inference rule that matches the target. If a rule exists, NMAKE updates the target
using the commands given with the inference rule. If more than one rule applies to
the target, NMAKE uses the priority in the .SUFFIXES list to determine which
inference rule to use.

578 Environment and Tools

NMAKE nonnally stops processing the makefile when a command returns a
nonzero exit code. In addition, if NMAKE cannot tell whether the target was built
successfully, it deletes the target. The /I command-line option, .IGNORE directive,
! CMDSWITCHES directive, and dash (-) command modifier all tell NMAKE to
ignore error codes and attempt to continue processing. The /K option tells NMAKE
to continue processing unrelated parts of the build if an error occurs. The
.PRECIOUS directive prevents NMAKE from deleting a partially created target if
you interrupt the build with CTRL+C or CTRL+BREAK. You can document errors by
using the !ERROR directive to print descriptive text. The directive causes
NMAKE to print some text, then stop the build.

A Sample NMAKE Makefile
The following example illustrates many of NMAKE' s features. The makefile
creates an executable file from C-Ianguage source files:

This makefile builds SAMPLE.EXE from SAMPLE.C.
ONE.C. and TWO.C. then deletes intermediate files.

CFLAGS
LFLAGS
CODEVIEW

Ic IAL 10d $(CODEVIEW)
ICO
IZi

OBJS = sample.obj one.obj two.obj

all : sample.exe

sample.exe : $(OBJS)
link $(LFLAGS) @«sample.lrf

$(OBJS: =+A
)

sample.exe
sample.map;
«KEEP

controls compiler options
controls linker options
controls debugging information

sample.obj : sample.c sample.h common.h
CL $(CFLAGS) sample.c

one.obj : one.c one.h common.h
CL $(CFLAGS) one.c

two.obj : two.c two.h common.h
CL $(CFLAGS) two.c

Chapter 16 Managing Projects with NMAKE 579

clean:
-del *.obj
-del *.map
-del *.lrf

Assume that this makefile is named SAMPLE.MAK. To invoke it, enter

NMAKE IF SAMPLE.MAK all clean

NMAKE builds SAMPLE.EXE and deletes intermediate files.

Here is how the makefile works. The C F LA G S, COD E V lEW, and L F LA G S macros
define the default options for the compiler, linker, and inclusion of debugging
information. You can redefine these options from the command line to alter or
delete them. For example,

NMAKE IF SAMPLE.MAK CODEVIEW= CFLAGS= all clean

creates an .EXE file that does not contain debugging information.

The OBJS macro specifies the object files that make up the executable file
SAMPLE.EXE, so they can be reused without having to type them again. Their
names are separated by exactly one space so that the space can be replaced with a
plus sign (+) and a carriage return in the link response file. (This is illustrated in the
second example in "Substitution Within Macros" on page 560.)

The all pseudo target points to the real target, sam p 1 e . ex e. If you do not specify
any target on the command line, NMAKE ignores the c 1 e a n pseudotarget but still
builds all because all is the first target in the makefile.

The dependency line containing the target sam p 1 e . ex e makes the object files
specified in a B J S the dependents of sam p 1 e . ex e. The command section of the
block contains only link instructions. No compilation instructions are given since
they are given explicitly later in the file. (You can also define an inference rule to
specify how an object file is to be created from a C source file.)

The 1 ink command is unusual because the LINK parameters and options are not
passed directly to LINK. Rather, an inline response file is created containing these
elements. This eliminates the need to maintain a separate link response file.

The next three dependencies define the relationship of the source code to the object
files. The .H (header or include) files are also dependents since any changes to them
also require recompilation.

The c 1 e an pseudotarget deletes unneeded files after a build. The dash (-)
command modifier tells NMAKE to ignore errors returned by the deletion
commands. If you want to save any of these files, don't specify c 1 e a n on the
command line; NMAKE then ignores the c 1 e an pseudotarget.

580 Environment and Tools

NMAKE Exit Codes
NMAKE returns an exit code to the operating system or the calling program. A
value of 0 indicates execution of NMAKE with no errors. Warnings return exit
code O.

Code Meaning

o No error

Incomplete build (issued only when !K is used)

2 Program error, possibly due to one of the following:

• A syntax error in the makefile

• An error or exit code from a command

• An interruption by the user

4 System error--out of memory

255 Target is not up-to-date (issued only when IQ is used)

581

CHAPTER 17

Managing Libraries with LIB

Overview

This chapter describes the Microsoft Library Manager (LIB) version 3.20. LIB
creates and manages standard libraries, which are used to resolve references to
external routines and data during static linking.

LIB creates, organizes, and maintains standard libraries. Standard libraries are
collections of compiled or assembled object modules that provide a common set of
useful routines and data. You use these libraries to provide your program with the
routines and data at link time; this is called static linking. After you have linked a
program to a library, the program can use a routine or data item exactly as if it were
included in the program.

With LIB you can create a library file, add modules to a library, and delete or
replace them. You can combine libraries into one library file and copy or move a
module to a separate object file. You can also produce a listing of all public
symbols in the library modules.

LIB works with the following kinds of files:

• Object files in the Microsoft Relocatable Object-Module Format (OMF), which
is based on the Intel 8086 OMF

• Standard libraries in Microsoft library format

• Import libraries created by the Microsoft Import Library Manager (lMPLIB)

II 286 XENIX archives and Intel-style libraries

This chapter distinguishes between an "object file" and an "object module." An
object file is an independent file that can have a full path and extension (usually
.OBJ). An object module is an object file that has been incorporated into a library.
Object modules in the library have only base names. For example, SORT is an
object-module name, while B:\RUN\SORT.OBJ is an object-file name.

582 Environment and Tools

Running LIB
To run LIB, type LIB at the operating system prompt and press ENTER. You can
provide input to LIB in three ways, separately or in combination:

• Specify input on the command line.

• Respond to the prompts that LIB displays.

• Specify a response file that contains the expected input.

The LIB Command Line
You can run LIB and specify all the input it needs from the command line. The LIB
command line has the following form:

LIB oldlibrary [options] [commands] [, [lisifile] [, [newlibrary]]] [;]

Fields must appear in order but can be left blank (except for oldlibrary). A
semicolon (;) after any field terminates the command; LIB assumes defaults for any
remaining fields. The fields are described in "Specifying LIB Fields," which begins
on page 583.

To terminate the session at any time, press CTRL+C.

The following example instructs LIB to combine the object files FIRST.OBI and
SECOND.OBI and to name the combined library THIRD.LIB:

LIB FIRST +SECOND, , THIRD

For a more detailed example of running LIB from the command line, see page 591.

LIB Command Prompts
If you do not specify all expected input on the command line and do not end the line
with a semicolon, LIB asks you for the missing input by displaying four prompts.
LIB waits for you to respond to each prompt and then asks for the next input. The
responses you give to the LIB command prompts correspond to the fields on the LIB
command line. The following list shows these correspondences:

Library name: oldlibrary [options]
Operations: commands
List file: lisifile
Output library: newlibrary

You can select default responses to the remaining prompts at any time by typing a
single semicolon (;) followed immediately by a carriage return. The defaults for
prompts are the same as the defaults for the corresponding command-line fields.

Chapter 17 Managing Libraries with LIB 583

The following example specifies TH I RD as the output library-file name at the
prompt:

Output library: THIRD

For a more detailed example of how to use the LIB prompts, see page 591.

The LIB Response File
To run LIB without typing the full command line or responses to prompts, you can
use a response file. You must first create a response file, which is a text file
containing the command-line information; you can write and edit this file in PWB
or use another editor. Then invoke LIB using the following command:

LIB @respol1sefile

The respol1sefile is the name of a text file containing some or all of the input
expected by LIB. You can specify a full path with the filename. Precede it with an
at sign (@).

You can also enter the name of the response file at any position in a command line
or after any of LIB's prompts. The input from the response file is treated exactly as
if it had been entered in the command line or after prompts. When you run LIB with
a response file, LIB displays prompts followed by the input from the response file.
If the response file does not contain all expected input and does not end with a
semicolon, LIB prompts for the remaining responses.

Each input field in the response file must appear on a separate line or must be
separated from other fields on the same line by a comma. A carriage return and
linefeed combination is equivalent to pressing ENTER in response to a prompt or to
entering a comma in a command line. Input must appear in the same order as in the
command-line fields or at the LIB prompts.

The following response file tells LIB to add the object files CURSOR.OBl and
HEAP.OBl as the last two modules in LIBFOR.LIB:

LIBFOR
+CURSOR +HEAP;

Specifying LIB Fields
For all three methods of input, LIB expects information to be specified in a definite
order and organized into fields. This section describes the input fields in the order
required by LIB. The fields are oldlibrGlY, options, commands, listfile, and
newlibrary.

584 Environment and Tools

The Library File

LIB Options

The oldlibrary field specifies the name of an existing library or a library to be
created. If you omit the extension, LIB assumes an extension of .LIB. You can
specify a full path with the filename.

Important The path and filename cannot contain a dash character (-). LIB
interprets the dash as the LIB "delete" operator.

Creating a Library File
To create a new library file, give the name of the library file you want to create in
the oldlibrary field of the command line or at the Lib r a r y n am e: prompt. LIB
supplies the .LIB extension.

The name of the new library file must not be the name of an existing file. If it is,
LIB assumes that you want to change the existing file. When you give the name of a
library file that does not currently exist, LIB displays the following prompt:

Library file does not exist. Create?

Press y to create the file or N to terminate the library session. If the library name
is followed immediately by commands, a comma, or a semicolon, LIB suppresses
the message and assumes Y.

Performing Consistency Checks
If oldlibrary is followed immediately by a semicolon (;), LIB perfonns a
consistency check on the specified library to see if all the modules in the library are
in usable form. LIB prints a message only if it finds an invalid object module; no
message appears if all modules are intact. LIB puts the message in the listing file if
one is created; otherwise, it writes the message to the standard output.

The following example causes LIB to perform a consistency check of the library file
FOR.LIB if the library file exists.

LIB FOR;

No other action is performed. LIB displays any consistency errors it finds and ends
the session. If FOR.LIB does not exist, LIB creates an empty library file with that
name.

Options are not case sensitive and can appear only between the oldlibrary and
commands fields on the command line or at the Libra ry Name: prompt following
the oldlibrary specification. The option name must be preceded by a forward slash

Chapter 17 Managing Libraries with LIB 585

(/) as the option specifier. (Do not use a dash, -, as the option specifier. LIB
interprets a dash as the "delete" operator.) Options can be abbreviated to the
shortest unique name; the brackets show the optional part of the name. This chapter
uses meaningful yet legal forms of the option names, which may be longer than the
shortest unique names. LIB has the following options:

IH[ELP]
Calls the QuickHelp utility. If LIB cannot find the Help file or QuickHelp, it
displays a brief summary of LIB command-line syntax.

/I [GNORECASE]
Tells LIB to ignore case when comparing symbols. LIB does this by default. Use
the /NOI option to create a library that is marked as case sensitive.

Use /lGN when combining a case-sensitive library with others that are not case
sensitive to create a new library that is not case sensitive. (See the /NOI option
for more information.)

/NOE[XTDICTIONARY]
Prevents LIB from creating an extended dictionary of cross-references between
modules. LINK uses the extended dictionary to speed up a library search.
(LINK also has an option called /NOE, where /NOE means "do not read an
extended dictionary.")

Creating an extended dictionary requires more memory. If LIB reports the error
message no more vi rtua 1 memory, either use /NOE or build the library
with fewer modules.

/NOI[GNORECASE]
Tells LIB to preserve case when comparing symbols. By default, LIB ignores
case. Use /NOI when you have symbols that are the same except for case.
(When LINK uses the library, it ignores case unless LINK's /NOI option is
specified.)

If a library is built with /NOI, the library is internally marked to indicate that
case sensitivity is in effect. (Libraries for case-sensitive languages such as Care
built with /NO!.) If you combine multiple libraries and anyone of them is case
sensitive, LIB marks the output library as case sensitive. To override this, use
the /lGN option.

/NOL[OGO]
Suppresses the LIB copyright message.

IP [AGES IZE] :number
Specifies the page size of a new library or changes the page size of an existing
library. The number specifies the new page size in bytes. It must be an integer
power of 2 between 16 and 32,768. The default page size is 16 bytes for a new
library or the current page size for an existing library. Combined libraries take
the largest component page size.

586 Environment and Tools

/?

LIB Commands

The page size of a library sets the alignment of modules stored in the library.
Modules start at locations that are a multiple of the page size from the beginning
of the file. When creating a library, LIB builds a dictionary, which holds the
locations of each name in each module. Each location value represents the
number of pages in the file. Because of this addressing method, a library with a
large page size can hold more modules than a library with a smaller page size.

The page size also determines the maximum possible size of the .LIB file. This
limit is number * 64K. For example, / PAG E : 32 limits the .LIB file to 2
megabytes (32 * 65,536 bytes). However, for each module in the library, an
average of number/2 bytes of storage space is wasted. In most cases, a small
page size is advantageous; you should use a small page size unless you need to
put a very large number of modules in a library.

Displays a brief summary of LIB command-line syntax.

The commands field specifies five operations for performing library-management
tasks with LIB and manipulating modules: add, delete, replace, copy, and move.
These commands can be used on the command line or in a response file in response
to the 0 per a t ion s : prompt. To use this field, type a command operator followed
immediately by a module name or an object-file name. You can specify more than
one operation in this field in any order. If you leave the commands field blank, LIB
does not make any changes to oldlibrmy.

If you have many operations to perform during a library session, you can use an
ampersand (&) to extend the operations line. Type the ampersand after a module
name or filename; do not put the ampersand between an operator and a name.
Immediately after the ampersand, press ENTER and then continue to type the rest of
the command line. You can use this technique on the command line or in response
to a prompt. When the ampersand is entered at a prompt, it tells LIB to repeat the
Ope rat ion s : prompt. In a response file, begin a new line of commands after the
ampersand. See the examples at the end of this chapter for an illustration of the use
of the ampersand.

You can perform one or more library-management functions during a LIB session.
For each session, LIB determines whether a new library is being created or an
existing library is being examined or modified. It then processes commands in the
following order:

1. Deletion and move commands. LIB does not actually delete modules from the
existing library file. Instead, it marks the selected modules for deletion, creates a
new library file, and copies only the modules not marked for deletion into the
new library file. If there are no deletion or move commands, LIB creates the
new file by copying the original library file. (The newlibrmy field, described on
page 590, controls what happens to the existing library.)

Chapter 17 Managing Libraries with LIB 587

2. Addition commands. Like deletions, additions are not performed on the original
library file. Instead, the additional modules are appended to the end of the new
library file.

As LIB carries out these commands, it reads the object modules in the library and
checks them for validity. It then builds a dictionary, an extended dictionary (unless
/NOE is specified), and a listing file (if a listfile is specified): The listing file
contains a list of all public symbols and the names of the modules in which they are
defined.

Important Paths and filenames specified with these commands cannot contain a
dash character (-). LIB interprets the dash as the LIB "delete" operator.

The Add Command (+)
Use the add command to create a library file, to add a module, or to combine
libraries. The command has the form:

+l1ame

where name is the name of the object file or library file. If no extension is specified,
LIB assumes .OBJ. You can specify a path with the filename.

Creating a New Library
Use the add command to create a new library from one or more object files. Specify
the name of the new library in the oldlibrmy field, then specify each object file's
name preceded by a plus sign. In the following example, LIB is instructed to create
the library file FIRST.LIB containing the object module called MORE:

LIB FIRST +MORE;

Adding Library Modules
Use the add command to add an object module to a library. Give the name of the
object file to be added immediately following the plus sign. LIB adds object
modules to the end of a library file.

LIB strips the drive, path, and extension from the object-file name and leaves only
the base name. This becomes the name of the object module in the library. For
example, if the object file B:\CURSOR.OBJ is added to a library file, the name of
the corresponding object module is CURSOR.

588 Environment and Tools

In the following example, LIB is instructed to add the module MORE to the already
existing library file FIRST.LIB:

LI B FI RST +MORE;

Combining Libraries
To combine the contents of two libraries, supply the name of a library instead of an
object file. In addition to standard libraries, LIB lets you combine import libraries
(created by IMPLIB), 286 XENIX archives, and Intel-format libraries.

Specify the plus sign followed by the name of the library whose contents you wish
to add to the original library. You must include the .LIB extension of the library
name. Otherwise, LIB assumes that the file is an object file and looks for the file
with an .OBJ extension.

LIB adds the modules of the new library to the end of the original library. Note that
the added library still exists as an independent library. LIB copies the modules
without deleting them.

Once you have added the contents of a library or libraries, you can save the new,
combined library under a new name by giving a new name in the newlibrary field.
If you omit this field, LIB saves the combined library under the name of the original
library, that is, the name given in the oldlibrary field. The original library is saved
with the same base name and the extension .BAK.

The following example combines DRA W.LIB and CHART.LIB into a library with
the filename GRAPHICS.LIB:

LIB DRAW +CHART. LIB •• GRAPHICS

The Delete Command (-)
Use the delete command to delete an object module from a library. The command
has the form:

-name

where name is the name of the module to be deleted. A module name does not have
a path or extension; it is simply a name, such as CURSOR.

The following example tells LIB to delete the FLOAT module from the MATH.LIB
library:

LIB MATH -FLOAT;

Chapter 17 Managing Libraries with LIB 589

The Replace Command (-+)
Use the replace command to replace a module in the library. The command has the
form:

-+name

where name is the name of the module to be replaced. A module name has no path
and no extension. LIB deletes the given module and then appends the object file
having the same name as the module. The object file is assumed to have an .OBJ
extension and to reside in the current directory.

The following three examples of command lines are equivalent. All three instruct
LIB to replace the HEAP module in the library LANG.LIB. LIB deletes the HEAP
module from the library and then appends the object file HEAP.OBJ as a new
module in the library. Delete operations are always carried out before add
operations, regardless of the order in which they are specified.

LI B LANG -+H EAP;
LIB LANG -HEAP +HEAP;
LIB LANG +HEAP -HEAP;

The Copy Command (*)
Use the copy command to copy a module from the library file into a newly created
object file of the same name. The command has the following form:

*name

where name is the name of the module to be copied. The module remains in the
library file. LIB names the object file by using the base name of the module and
adding an .OBJ extension. It then puts it in the current directory. You cannot
override this filename or location; however, you can later rename the file and copy
or move it to any location. LIB writes the full name of the object file (including
drive, path to the current directory, base name, and extension) into the header of the
object file.

The Move Command (-*)
Use the move command to move an object module from the library file to an object
file. The command has the form:

-*name

where name is the name of the module to be moved. This operation is equivalent to
copying the module to an object file using the copy command (*) and then deleting
the module from the library using the delete command (-).

590 Environment and Tools

The Cross-reference Listing
A cross-reference listing contains two lists in the following order:

1. An alphabetical list of all public symbols in the library. Each symbol name is
followed by the name of the module in which it is defined.

2. A list of the modules in the library with the location and size of each. Under
each module name is an alphabetical listing of the public symbols defined in that
module.

Create a cross-reference listing by giving a name for the listing file in the listfile
field of the command line or at the Lis t f i 1 e: prompt. To create it in a directory
other than the current one, specify a full path for the listing file. LIB does not
supply a default extension if you omit the extension. When you do not specify a
filename, the default is the special file named NUL, which tells LIB not to create a
listing.

The following example creates a listing called LCROSS.PUB. It does nothing else
except perform a consistency check of the library file LANG.LIB.

LIB LANG, LCROSS.PUB;

Note Source code symbols less than 127 characters long can exceed 127 characters
as an internal or decorated name in an object file. LIB may not be able to
successfully build a library from an object file if it contains symbols with names
longer than 127 characters.

The Output Library
The newlibrary field specifies a name for a changed library file. You can specify a
full path with the filename. LIB does not supply a default extension if you omit the
extension.

You can change an existing library file by giving the name of the library file at the
Libra ry name: prompt. All operations you specify in the commands field of the
command line or at the 0 per at ion s : prompt are performed on that library.

LIB keeps both the unchanged library file and the newly changed version; it copies
the library and makes changes to the copy. (This prevents the loss of your original
file if you terminate LIB before the session is finished.) It names the two versions
as follows:

• If you specify the name of a new library file in the newlibrary field, the
modified library is stored under that name, and the original library is preserved
under its own name.

Examples

Chapter 17 Managing Libraries with LIB 591

• If you leave the field blank, LIB replaces the original library file with the
changed version of the library and saves the original library file with the
extension .BAK. Either way, at the end of a session you have two library files:
the changed version and the original version.

Note You need enough space on disk for both the original library file and the copy.

All the following examples instruct LIB to:

• Suppress the creation of an extended dictionary of cross-references.

• Move the module STUFF from the library FIRST.LIB to an object file called
STUFF.OBJ; the module STUFF is deleted from the library.

• Copy the module MORE from the library to an object file called MORE.OBJ;
the module MORE remains in the library.

• Delete the module HEAP from the library.

• Create a cross-listing file called CROSSLST.

• Name the revised library SECOND.LIB. The new library contains all the
modules in FIRST.LIB except STUFF and HEAP.

• Leave the original library, FIRST.LIB, unchanged.

Command-Line Example
LIB FIRST INOE -*STUFF *MORE &
-HEAP, CROSSLST, SECOND

LIB Prompt Example
Library Name: FIRST INOE
Operations: -*STUFF *MORE &
Operations: -HEAP
List File: CROSSLST
Output file: SECOND

592 Environment and Tools

Response-File Example
FIRST INOE
-*STUFF *MORE &
-HEAP
CROSSLST
SECOND

LIB Exit Codes
LIB returns an exit code (also called return code or error code) to the operating
system or the calling program. You can use the exit code to control the operation of
batch files or makefiles.

Code Meaning

o No error.

2 Program error. Commands or files given as input to the utility produced the
error.

4 System error. The library manager encountered one of the following problems:

• There was insufficient memory.

• An internal error occurred.

• The user interrupted the session.

CHAPTER 18

Creating Help Files
With HELPMAKE

This chapter describes how to create and modify Help files using the Microsoft
Help File Maintenance Utility (HELPMAKE) version 1.08. A "Help file" is a
file that can be read by the Microsoft Advisor Help system and QuickHelp. If
you've used the Programmer's WorkBench (PWB) or one of the Microsoft

593

Quick languages, you already know the advantages of the Microsoft Advisor.
HELPMAKE extends these advantages by allowing you to customize the Microsoft
Help files or create your own Help files.

HELPMAKE translates Help source files to a Help database accessible within the
following environments:

• Microsoft Programmer's WorkBench (PWB)

• Microsoft QuickHelp utility

• Microsoft Code View debugger

• Microsoft Editor version 1.02

• Microsoft QuickC compiler versions 2.0 and later

• Microsoft QuickBasic versions 4.5 and later

• Microsoft QuickPascal version 1.0

• Microsoft Word version 5.5

• MS-DOS EDIT version 5.0

• MS-DOS QBasic version 5.0

Warning The PWB editor breaks lines longer than about 250 characters. Some
Help sources contain lines longer than this. To edit files that have long lines, you
must either use an editor (such as Microsoft Word) that does not restrict line length
or extend long lines using the backslash (\) line-continuation character.

594 Environment and Tools

Overview
HELPMAKE creates a Help file by encoding a source file. A Help file contains
infonnation that can be read by a Help reader (sometimes referred to in this chapter
as an application). Examples of Help readers are the Microsoft Advisor or
Microsoft QuickHelp. Help files have an .HLP extension.

Source files for HELPMAKE are text files that contain topic text along with
attributes and commands that tell HELPMAKE how to process the file.
HELPMAKE encodes text files written in the following fonnats: QuickHelp, rich
text fonnat (RTF), and minimally fonnatted ASCII.

Encoding compresses the text and translates the commands into information for the
Help reader. You can control the amount of compression and other aspects of
encoding.

HELPMAKE can also decode an existing Help file. Decoding decompresses the
text into ASCII format. Attributes and commands can be preserved or omitted
during decoding. You can modify an existing Help file by using HELPMAKE to
decode the file and then rebuild it into a different Help file. You can even modify
a Microsoft help file by decompressing it and then encoding it with your changes.
Regardless of the source fonnat, HELPMAKE always decodes a Help file into the
QuickHelp format.

The basic unit of Help is the database. A Help database is an individual file created
by HELPMAKE. At the time it is created, it is given an internal name that is the
same as the filename on disk. If the file is later renamed, the database retains this
internal name as it is known by HELPMAKE and the Help reader.

A Help system consists of one or more physical Help files that are available to a
Help reader. A physical Help file is a file on disk with an .HLP extension. It can
contain a single database (with either the same or a different filename) or mUltiple
databases. To create a physical Help file that contains several Help databases, use
the MS-DOS COpy command. Specify the /b modifier to combine them as binary
files. You can merge several databases into one physical Help file, combine two or
more physical Help files, or append a Help database to an existing physical Help
file. For example, the following command concatenates three individual Help
databases into a new physical Help file:

COpy helpl.hlp /b + help2.hlp /b + help3.hlp /b myhelp.hlp

The next example merges the database you r h e 1 p . hlp with the existing Help file
util s. hl p:

COpy utils.hlp /b + yourhelp.hlp /b

Chapter 18 Creating Help Files with HELPMAKE 595

It is recommended that you back up existing Help files before running the COpy
command. You may need to concatenate Help files if you reach a limit on physical
files imposed by your system or the Help reader.

You can use HELPMAKE to deconcatenate, or split, a physical Help file that
contains multiple databases. If you want to decompress such a Help file, you must
first split it and then decompress each database.

When designing a Help system, it is important to know that a single database is
more efficient to search than multiple databases or physical Help files.

Running HELPMAKE

Encoding

The following sections describe HELPMAKE's syntax and options for encoding a
Help file, decoding or deconcatenating a Help file, and getting Help on
HELPMAKE. Some options apply only to encoding, others apply only to decoding,
and a few apply to both.

The following are some general rules for syntax:

• Options are not case sensitive. Precede each option with either a forward slash
(I) or a dash (-).

• You can specify a path with a filename. Separate multiple filenames with spaces
or tabs. Where multiple files can be specified, you can use wildcard characters
(* and ?).

To create a Help file, use the following syntax:

HELP MAKE 1E[1l] IOoutfile options source files

The IE option encodes a Help source file and creates a compressed Help database.
The n is a decimal number that specifies the type of compression. If n is omitted,
HELP MAKE compresses the file as much as possible (about 50 percent). The value
of n is in a range from 0 through 15, which represents the following compression
techniques:

Value

o

2

4

8

Technique

No compression

Run-length compression

Keyword compression

Extended keyword compression

Huffman compression

596 Environment and Tools

You can add these values to combine compression techniques. For example, specify
1E3 to get run-length and keyword compression. Use lEO to create the database
quickly during the testing stages of database creation when you are not yet
concerned with size.

The 10 option specifies a filename for the database. This option is required when
encoding.

Additional options are discussed in the next section and in "Other Options" on
page 599.

The sourcefiles field specifies one or more text files that contain Help source
information.

Options for Encoding
The following options control encoding:

lAc

IC

Specifies c as a control character for the Help database. A control character
marks a line that contains special information for internal use by the Help
reader. Control characters differ for each Help reader. For example, the
Microsoft Advisor uses a colon (:) to indicate a command, so you must specify
I A: when building a Help file for use with the Advisor. HELPMAKE assumes
IA: if the IT option is specified.

Makes context strings case sensitive.

fKfilename
Optimizes keyword compression by supplying a list of characters to act as word
separators. The filename is a text file that contains a list of separator characters.

HELPMAKE can apply "keyword compression" to words that occur often
enough to justify replacing them with shorter character sequences. A "word" is
any series of characters that do not appear in the separator list. The default
separator list includes all ASCII characters from a to 32, ASCII character 127,
and the following characters:

! "# & ' , () * + -, I: ; < = >? @ [\]" _ { I } -

You can improve keyword compression by designing a separator list tailored to
a specific Help file. For example, a number sign (#) is treated as a separator by
default. However, in a Help file about the C language, you might want to have
HELPMAKE treat each directive such as #include as a keyword instead of as a
separator followed by a word. To encode #include and other directives as
keywords, create a separator list that omits the number sign:

!" &"()*+-,/:;<=>?@[\]"-{I}-

Decoding

/L

Chapter 18 Creating Help Files with HELPMAKE 597

ASCII characters in the range from 0 through 31 are always separators, so you
do not need to list them. However, a customized list must include all other
separators, including the space (ASCII character 32). If you omit the space,
HELPMAKE will not use spaces as word separators.

Locks the Help file so that it cannot be decoded later.

/Sn

rr

Specifies the type of input file, according to the following n values:

Option File Type

/SI

/S2

/S3

Rich text fonnat (RTF)

QuickHelp (the default)

Minimally fonnatted ASCII

Translates dot commands into internal format. If your source file contains dot
commands other than .context and .comment, you must supply this option. The
rr option is required if you want to use commands in the QuickHelp dot format.
Dot commands are described on page 605. HELPMAKE assumes the /A: option
if rr is specified.

/Wwidth
Sets the fixed width of the resulting Help text in number of characters. The
width is a decimal number in a range from 11 through 255. If /W is omitted, the
default width is 76. When encoding an RTF source (lSI), HELPMAKE wraps
the text to width characters. When encoding QuickHelp (lS2) or minimally
formatted ASCII (lS3) files, HELPMAKE truncates lines to this width.

Example
The following example invokes HELPMAKE with the N, IE, and /0 options:

HELPMAKE IE IV IOmy.hlp my.txt > my. log

HELPMAKE reads input from the source file my. txt and creates the compressed
Help database my • hlp (10 option). The IE option, without a compression
specification, maximizes compression. The N option enables verbose output; the
MS-DOS redirection symbol (» sends a log of HELPMAKE diagnostic
information to the file my . log, because the verbose mode can generate a lengthy
log.

To decode a Help file, use the following syntax:

HELPMAKE jD[c] [/Ooutfile] options sourcefiles

598 Environment and Tools

Getting Help

The ID option decodes a Help file or splits a concatenated file into its component
databases. The ID option can take a qualifying character c, which is either S or U.

Specify ID without a qualifying character to fully decode a database into a text file
that is in QuickHelp format, with all links and formatting information intact. If the
physical Help file contains concatenated databases, only the first database is
decoded.

Specify IDU to decompress the database and remove all screen formatting and
links. If the physical Help file contains concatenated databases, only the first
database is decoded.

Specify IDS to split (deconcatenate) a physical Help file that contains one or more
databases. HELPMAKE creates a physical Help file for each database in the
original Help file. The Help file is not decompressed. HELPMAKE names the
deconcatenated files using the names of the databases. The deconcatenated files are
placed in the current directory. If a database in the file has a name that matches the
name of the original physical Help file, HELPMAKE issues an error. In this case,
rename the physical Help file, or run HELPMAKE in another directory and specify
a path with the source file. Do not use the /0 option with IDS.

The /0 option specifies a filename for the decoded file. If /0 is not specified,
HELPMAKE sends the text to standard output. This option is not valid when using
IDS.

There is one option available to control decoding. The rr option translates
commands from internal format to dot-command format. This option applies only
when using ID. It is recommended to always use this option to make the resulting
source file more readable.

Additional options are discussed in "Other Options" on page 599.

The sourcefiles field specifies one or more physical Help files.

Example
The following example decodes the help file my • hlp into the source file my • s r c:

HELPMAKE 10 IT IOmy.src my.hlp

To get help on HELPMAKE, use the following syntax:

HELPMAKE {IH[ELP] I/?}

The following are the options for help:

Chapter 18 Creating Help Files with HELPMAKE 599

/?
Displays a brief summary of the HELPMAKE command-line syntax and exits
without encoding or decoding any files. All other information on the command
line is ignored.

IH[ELP]
Calls the QuickHelp utility and displays Help about HELPMAKE. If
HELPMAKE cannot find QuickHelp or the Help file, it displays the same
information as with the /? option. No files are encoded or decoded. All other
information on the command line is ignored.

Other Options
The following options apply whether encoding or decoding.

The INOLOGO option
The /NOLOGO option suppresses the HELPMAKE copyright message.

The IV option
The N option controls the verbosity of diagnostic and informational output.
HELPMAKE sends this information to standard output. The syntax for N is:

N[I1]

Specify N without 11 to get a full output. The decimal number 11 controls the amount
of information produced. Numbers in a range from 0 through 3 are valid only for
decoding. The values of 11 are:

Option

N
NO
Nl

N2

N3

N4

N5

N6

Output

Maximum diagnostic output

No diagnostic output and no banner

HELPMAKE banner only

Pass names

Context strings encountered on first pass

Context strings encountered on each pass

Any intermediate steps within each pass

Statistics on Help file and compression

Source File Formats
You can create Help source files for HELPMAKE in any of three formats. The
QuickHelp format is the default format for encoding. When Help databases are
decoded, the resulting text files are always in QuickHelp format. The discussion

600 Environment and Tools

that follows uses QuickHelp fonnat to describe how to create a Help source file.
Later sections describe the two other fonnats: rich text fonnat (RTF) and minimally
fonnatted ASCII.

Rich text fonnat is a Microsoft word-processing fonnat that is supported by several
word processors, including Microsoft Word version 5.0 and later and
Microsoft Word for Windows. For more infonnation, see "Rich Text Fonnat" on
page 609.

Minimally fonnatted ASCII files define contexts and their topic text. They cannot
contain fonnatting commands or explicit links. For more infonnation, see
"Minimally Fonnatted ASCII" on page 612.

In addition to these three fonnats, you can link to unfonnatted ASCII files from
within a Help database. Unfonnatted ASCII files are text files with no fonnatting
commands, context definitions, or special infonnation. You do not process
unfonnatted ASCII files with HELPMAKE. An unfonnatted ASCII file does not
become a database or part of a physical Help file. The file's name is used as the
object of a link. For example, you can create a link to an include file or a program
example. Any word that is an implicit link in other Help files is also an implicit link
in unfonnatted ASCII files.

A Help system can use any combination of files with different fonnat types.

Elements of a Help Source File
The following sections describe how to create the fundamental elements of a Help
file.

Defining a Topic
A Help source file is a text file that consists of a sequence of topics. A topic is the
fundamental unit of Help infonnation. It is usually a screen of infonnation about a
particular subject.

Each topic begins with one or more consecutive .context statements or definitions.
The topic consists of all subsequent lines up to the next .context statement. A
context definition associates the topic with a "context string," which is the word or
phrase for which you want to be able to request Help. When Help is requested on a
context string, the Help reader displays the topic. A context definition has the
following fonn:

.context string

The .context command defines a context string for the topic that follows it. A
context string can contain one word or several words depending on the Help reader
and the delimiters it understands. For example, because Microsoft QuickBasic

Chapter 18 Creating Help Files with HELPMAKE 601

considers spaces to be delimiters, a context string in a QuickBasic Help file is
limited to a single word. Other applications, such as PWB, can handle context
strings that span several words. In either case, the application hands the context
string to an internal "Help engine" that searches the database for a topic that is
marked with the requested context string.

For example, the following line introduces Help for the #include directive:

.context #include

A topic can be associated with more than one context string. For example, the C
language functions strtod, strtol, _ strtold, and strtoul are described in a single
topic, and each is defined in a separate .context command for that topic, as follows:

.context strtod

.context _strtold

.context strtol

.context strtoul

Warning HELPMAKE warns you if it encounters a duplicate context definition
within a given Help source file. Each context string must be unique within a
database. You cannot associate a single context string with several topics in a
single database.

A context string can be global or local. The string for a local context is preceded by
an at sign (@). For more information, see "Local Contexts" on page 603.

Creating Links to Other Topics
A topic can contain a link to another topic. Links let you navigate a Help database.
When a topic is displayed, you can ask for Help on links contained in the topic.
These links can be associated with other contexts in the same Help database,
contexts in other Help databases, or even ASCII files on disk. You can view the
cross-referenced material immediately by activating the link without having to
search the Help system's indexes and tables of contents for the topic.

The keystroke that activates a link depends on the application. Consult the
documentation for each product for the various ways to get Help on a link. In
Microsoft language products, use ENTER, SPACEBAR, or Fl. If the file that contains
the link's destination is not already open, the Help reader finds it and opens it.

The topic text can present the link in various ways, depending on how you want to
design your Help system. The link can appear as a "See:" cross-reference, for
example, or as a button that contains a title surrounded by special characters. It can
even be undistinguished from surrounding text.

602 Environment and Tools

A link is either explicit (coded) or implicit (available without coding). It is
associated with either a global context (visible throughout the Help system) or a
local context (visible only in one database). The following sections discuss these
features of links.

Explicit Links
An explicit link is a word or phrase coded with invisible text that provides the
context to which the link refers or the action which the Help reader is to take. Use
the \v formatting attribute to delimit the invisible text. Format the explicit link in the
source file using the following syntax:

string\vtext\v

If string consists of more than one word, you must anchor the string with the \ a
formatting attribute as follows:

\astring\vtext\v

An anchored link must be specified entirely on one line.

The \v attributes surround the invisible text, which is one of the following
commands to the Help reader:

contextstring
Display the topic associated with contextstring when the link is activated. The
context string must be available either as a local context in the same Help
database or as a global context anywhere in the Help system. For a discussion of
global and local contexts, see "Local Contexts" on page 603.

helpfile!contextstring
Search helpfile for contextstring and display the topic associated with it. Only
the specified Help database or physical Help file is searched for the context.
Since helpfile is not in the local database, contextstring must be a global
context. Use this specification to confine the search to a single database if a
context is contained in more than one database and you want only one of the
topics to be found.

filename!
Display filename as a single topic. The specified file must be a text file no
larger than 64 K.

!command
Execute the command specified after the exclamation point (!). The command is
case sensitive. Commands are application-specific. For example, in the
Microsoft Advisor and QuickHelp, the command !B represents the previously
accessed topic.

In the following example, the word Examp 1 e is an explicit link:

Chapter 18 Creating Help Files with HELPMAKE 603

\bSee also:\p Example\vopen.ex\v

The \v fonnatting attribute marks the explicit link in the Help text. The \b and \p are
fonnatting attributes that mark See a 1 so: as bold text. (Fonnatting attributes are
described on page 605.) The link refers to open. ex. On the screen, this line
appears as follows:

See also: Example

If you select any letter in Exa mp 1 e and request Help, the Help reader displays the
topic whose context is open. ex.

To create an explicit link that contains more than one word, you must use an
anchor, as in the following example:

\bSee also:\p \aExample l\vopen.exl\v. \aExample 2\vopen.ex2\v

The \ a attribute creates an anchor for the explicit link. The phrase following the \ a
attribute refers to the context specified in the invisible text. The first \v attribute
marks both the end of the anchored string and the beginning of the invisible text.
The second \v attribute ends the invisible text. The anchored link must fit on one
line.

Implicit Links
An implicit link is a single word for which a global context exists somewhere in the
Help system. Any word that appears as a global context is implicitly linked. You do
not code the word to create the link. When you ask for Help on a word that exists as
an implicit link, the Help reader displays the topic that has a .context string that
matches the selected word.

For example, suppose that the Help database contains a screen that starts with:

.context open

If you ask for Help on the word "open" (using the features for requesting Help that
are available in your Help reader), the topic that begins with. context open is
displayed. An explicit link to the topic is not necessary. For example, in PWB you
can place the cursor on the word "open" as it appears in your source file or in a
displayed Help topic, then click the right mouse button or press Fl. Thus, every
occurrence of "open" is a potential implicit link.

Local Contexts
A "local context" is a context string that begins with an at sign (@). Local contexts
use less file space and speed access. However, a local context has meaning only
within the database in which it appears.

604 Environment and Tools

HELPMAKE encodes a local context as an internally generated number rather than
a context string. This saves space in the database. Unlike a global context (a
context string that is specified without the preceding @), a local context is not
stored as a string. Thus, topics headed by local contexts can only be accessed using
explicit links and cannot be accessed from another database. Local contexts are not
restored as strings when a database is decompressed.

The following source file contains two topics, one marked with a global context and
one marked with a local context:

.context Global
This is a topic that is marked with a global context.
It is accessed using the context string "Global". It
contains a link to a topic marked with a local context.
See: \aA Local Topic\v@Local\v

.context @Local
This topic can be reached only by the explicit link in
the previous topic (or by sequentially browsing the file).

The text A Loca 1 Top; c is explicitly linked to @1 oca 1, which is a local context.
If the user asks for Help on the text or scrolls through the Help file, the Help reader
displays the topic text that follows the context definition for @1 oca 1. This topic
cannot be accessed any other way (except by sequentially browsing the database).

If you want a topic to be accessible in both local and global contexts, mark the topic
text with both global and local.context statements:

.context Global

.context @Local
This is a topic that is marked with a global context and
a local context. It can be accessed using the context
string "Global" (as an explicit or implicit link) or the
context string "@Local" (as an explicit link only). (It
can also be reached by sequentially browsing the file).

Both .context statements must appear together, immediately before the topic text
they are to be associated with.

To create a context that begins with a literal @, precede it with a backslash (\).

Formatting Topic Text
You can use formatting attributes to control the appearance of the text on the
screen. Using these attributes, you can make words appear in various colors,
inverse video, and so forth, depending on the application and the capabilities of
your display. This is useful, for example, to distinguish explicit links in the text.

Each formatting attribute consists of a backslash (\) followed by a character.
Table lS.llists the formatting attributes.

Chapter 18 Creating Help Files with HELPMAKE 605

Table 18.1 Formatting Attributes

Formatting Attribute Action

\a

\b, \B

\i, \I

\p,\P

\U, \U

\v,\V

\\

Anchors text for explicit links

Turns bold on or off

Turns italics on or off

Turns off all attributes

Turns underlining on or off

Turns invisibility on or off (hides explicit links)

Inserts a single backs lash in text

On color monitors, text labeled with the bold, italic, and underline attributes is
translated by the application into suitable colors, depending on the user's default
color selections. On monochrome monitors, the text's appearance depends on the
application.

The \b, \i, \u, and \v options are toggles; they tum their respective attributes on or
off. You can use several of these on the same text. Use the \p attribute to tum off all
attributes except \v. Use the \v attribute to hide explicit links in the text. Explicit
links are discussed on page 602.

Only visible characters count toward the character-width limit specified with the
/W command-line option. Lines that begin with an application-specific control
character are truncated to 255 characters regardless of the width specification. For
more information on truncation and application-specific control characters, see
"Options for Encoding" on page 596.

In the following example, \b initiates bold text for E x amp 1 e 1, and \p changes the
remaining text to plain text:

\bExample l\p This is a bold head for the first example.

Dot and Colon Commands
Dot commands identify topics and convey other topic-related information to the
Help reader.

The most important dot command is the .context command, described in "Defining
a Topic" on page 600. Every topic begins with one or more .context commands.
Each .context command defines a context string for the topic. You can define more
than one context for a single topic, as long as you do not place any topic text
between the context definitions.

Most dot commands have an equivalent colon command, which consists of a colon
(:) followed by a character. If you decode a database without using rr, commands

606 Environment and Tools

in the database are shown as colon commands. You can use both colon commands
and dot commands in the same source file. If you use any dot commands other than
.context or .comment, you must supply the rr option when encoding.

Table 18.2 lists the dot and colon commands. Some commands are not supported by
all Help readers.

Table 18.2 Dot and Colon Commands

Dot
Command

.category string

.command

.comment string
•• string

.context string

.end

.execute

. freeze numlines

. length topiclength

.line number

Colon
Command

:c

:x

none

none

:e

:y

:z

:1

none

Action

Lists the category in which the current topic
appears and its position in the list of topics. The
category name is used by the QuickHelp
Categories command, which displays the list of
topics. Supported only by QuickHelp.

Indicates that the'topic cannot be displayed. Use
this command to hide command topics and other
internal information.

The string is a comment that appears only in the
source file. Comments are not inserted in the
database and are not restored during decoding.

The string defines a context.

Ends a paste section. See the .paste command.
Supported only by QuickHelp.

Executes the specified command. For example,
. execute Pmark context represents a jump to
the specified context at the specified mark. See
the .mark command .

Locks the first numlines lines at the top of the
screen. These lines do not move when the text is
scrolled .

Sets the default window size for the topic in
topiclength lines .

Tells HELPMAKE to reset the line number to
begin at number for subsequent lines of the
input file. Line numbers appear in HELPMAKE
error messages. See .source. The .line command
is not inserted in the Help database and is not
restored during decoding.

Chapter 18 Creating Help Files with HELPMAKE 607

Table 18.2 Dot and Colon Commands (continued)

Dot Colon
Command Command

.list :i

.mark name [column] :m

.next context :>

.paste pastelwnze :p

.popup :g

. previous context :<

.raw :u

.ref topic[, topic] :r

Action

Indicates that the current topic contains a list of
topics. Help displays a highlighted line; you can
choose a topic by moving the highlighted line
over the desired topic and pressing ENTER. If the
line contains a coded link, Help looks up that
link. If it does not contain a link, Help looks
within the line for a string terminated by two
spaces or a newline character and looks up that
string. Otherwise, Help looks up the first word.

Defines a mark immediately preceding the
following line of text. The marked line shows a
script command where the display of a topic
begins. The name identifies the mark. The
column is an integer value specifying a column
location within the marked line. Supported only
by QuickHelp.

Tells the Help reader to look up the next topic
using context instead of the topic that physically
follows it in the file. You can use this command
to skip large blocks of .command or .popup
topics.

Begins a paste section. The pastelwnze appears
in the QuickHelp Paste menu. Supported only by
QuickHelp.

Tells the Help reader to display the current topic
as a popup window instead of as a normal,
scrollable topic. Supported only by QuickHelp .

Tells the Help reader to look up the previous
topic using context instead of the topic that
physically precedes it in the file. You can use
this command to skip large blocks of .command
or .popup topics.

TUlTIs off special processing of certain characters
by the Help reader.

Tells the Help reader to display the topic in the
Reference menu. You can list multiple topics;
separate each additional topic with a comma. A
.ref command is not affected by the /W option.
If no topic is specified, QuickHelp searches the
line immediately following for a See or See Also
reference; if present, the reference must be the
first word on the line. Supported only by
QuickHelp.

608 Environment and Tools

Table 18.2 Dot and Colon Commands (continued)

Dot Colon
Command Command Action

.source filename

. topic text

Example

(none)

:n

Tells HELPMAKE that subsequent topics come
fromfilename. HELPMAKE error messages
contain the name and line number of the input
file. The .source command tells HELPMAKE to
use filename in the message instead of the name
of the input file and to reset the line number to 1.
This is useful when you concatenate several
sources to form the input file. See .line. The
.source command is not inserted in the Help
database and is not restored during decoding .

Defines text as the name or title to be displayed
in place of the context string if the application
Help displays a title. This command is always
the first line in the context unless you also use
the .length or .freeze commands.

The following example is in QuickHelp format:

.context Sample

.context @Sample

.topic Sample Help Topic

.1 ength 20

.freeze 3
\i\p\aBack\v!B\v\i\p

Help can contain text with three attributes:

\bAttribute\p

\iItalic\p
\bBold\p
\uUnderline\p

\bOuickHelp Code\p

\\i
\\b
\\u

The visual appearance of each attribute
or combination of attributes is determined
by the application that displays the help.

\bSee:\p

Chapter 18 Creating Help Files with HELPMAKE 609

Coding, Expressions, Grammar, Keywords, Syntax
\i\p\aFlow Control\v@flow\v\i\p
\i\p\aRelease Notes\v$DOC:README.DOC!\v\i\p
.context @flow
.topic Sample Help: Flow Control
.length 8
.freeze 3

\i\p\aBack\v!B\v\i\p

Here's another sample help screen.

This is an explicit link: \i\p\aSample\v@Sample\v\i\p
This is an implicit link: Sample

Other Help Text Formats
There are two other Help text fonnats you can use to create a Help database: rich
text fonnat (RTF) and minimally fonnatted ASCII. These fonnats are described in
the next two sections.

Rich Text Format
Rich text fonnat (RTF) is a Microsoft word-processing fonnat supported by several
word processors, including Microsoft Word version 5.0 and later and Microsoft
Word for Windows. RTF is an intennediate fonnat that allows documents to be
transferred between applications without loss of fonnatting. You can use RTF to
simplify the transfer of help files from one fonnat to another. Like QuickHelp files,
RTF files can contain fonnatting attributes and links.

As with the other text fonnats, each topic in an RTF source file consists of one or
more context strings followed by topic text. The help delimiter (») at the
beginning of any paragraph marks the beginning of a new Help entry. The text that
follows on the same line is defined as a context for the topic. If the next paragraph
also begins with the Help delimiter, it also defines a context string for the same
topic. You can define any number of contexts for one topic. The topic text
comprises all subsequent paragraphs up to the next paragraph that begins with the
Help delimiter.

All QuickHelp dot commands, except .context and .length, can be used in RTF
files. Each command must appear in a separate paragraph.

There are two ways to create an RTF file. The easiest way is to use a RTF word
processor. RTF files usually contain additional infonnation that is not visible to the
user; HELPMAKE ignores this extra infonnation.

610 Environment and Tools

You can also use an ordinary text editor to insert RTF codes manually. Utility
programs exist that convert text files in other formats to RTF format. For more
information on converting to and from RTF, see the Microsoft Word for Windows
User's Guide.

Using a Word Processor
In an RTF-compatible word processor, enter the text and format it as you want it to
appear: bold, underlined, hidden, and italic. You can also format paragraphs by
selecting body and first-line indenting. Choose a monospace font and set the margin
to the /W value you plan to encode the database with. The only item you need to
insert into an RTF file manually is the Help delimiter (») followed by the context
string that starts each entry. If you use dot commands, place each in its own
paragraph.

When you have entered and formatted the text, save it in RTF format. In Microsoft
Word version 5.5, for example, choose Save As from the File menu, then select
RTF under Format.

You cannot see the RTF formatting codes when you load an RTF file into a
compatible word processor. The word processor displays the text with the specified
attributes. However, you can view these codes by loading an RTF file into a text
editor or word processor.

Manually Inserting RTF Formatting Codes
RTF uses curly braces ({ }) for nesting. Thus, the entire file is enclosed in curly
braces, as is each specially formatted text item.

When you manually insert RTF codes, you must delimit each dot command with the
\par code. (An RTF editor or word processor inserts" \par" at the beginning and
end of a paragraph.) For example, to use the .popup command, write:

\par.popup\par

HELPMAKE recognizes the subset of RTF codes listed in Table 18.3.

Table 18.3 RTF Formatting Codes

RTF code

\b

\fin

\i

\lin

\line

\par

Action

Bold. The Help reader decides how to display this; often it is intensified
text.

Paragraph first-line indent, n twips. *
Italic. The application decides how to display this; often it is reverse video.

Paragraph indent from left margin, n twips. *
New line (not new paragraph).

End of paragraph.

Chapter 18 Creating Help Files with HELPMAKE 611

Table 18.3 RTF Formatting Codes (continued)

RTF code

\pard

\plain

\tab

\ul

\v

Action

Default paragraph formatting.

Default attributes. On most screens, this is nonblinking normal intensity.

Tab character.

Underline. The application decides how to display this attribute; some
adapters that do not support underlining display it as blue text.

Hidden text. Hidden text is used for explicit links; it is not displayed.

* A "twip" is 1/20 of a point or 1/1440 of an inch. One space is approximately 180 twips.

Encoding RTF with HELPMAKE
When HELPMAKE compresses an RTF file, it formats the text to the width given
by the /W option and ignores the paragraph formats.

When HELP MAKE encodes RTF, any text between an RTF code and invisible text
becomes an explicit link. This is illustrated in the following example:

{\b Formatting table}{\v prinf.ex}

The string Forma t tin 9 ta b 1 e is displayed in bold and is part of an explicit link
to pri ntf . ex.

Example
The following example is in RTF format:

{\rtfl
\pard\plain »Sample
\par >@Sample
\par .topic Sample Help Topic
\par .freeze 3
\par \pard \li8000 {\i }{\b Back}{\v !B}{\i }
\par \pard --
\par
\par \pard \li360 Help can contain text with three attributes:
\par \pard
\par \pard \li360 {\b Attribute} {\b OuickHe1p Code}
\par \pard
\par \pard \li360 {\i Italic} \\i
\par \pard \li360 {\b Bold} \\b
\par \pard \li360 {\ul Underline} \\u
\par \pard
\par \pard \li360\ri720 The visual appearance of each attribute
or combination of attributes is determined
by the application that displays the help.

612 Environment and Tools

\par \pard
\par \pard \li360 {\b See:}
\par \pard
\par \pard \li360 Coding, Expressions, Grammar, Keywords, Syntax
\par \pard \li360 {\i }{\b Flow Control}{\v @flow}{\i }
\par {\i }{\b Release Notes}{\v $DOC:README.DOC!}{\i
\par \pard >@flow
\par .topic Sample Help: Flow Control
\par .freeze 3
\par \pard \li8000 {\i }{\b Back}{\v !B}{\i
\par \pard --
\par
\par \pard \li360 Here's another sample help screen.
\pa r
\par \pard \li360 This is an explicit link: {\i }{\b Sample}{\v
@Sample}{\i }
\par \pard \li360 This is an implicit link: Sample
\par
}

Minimally Formatted ASCII
Minimally fonnatted ASCII files define contexts and their topic text. The Help
infonnation is displayed exactly as it appears in the file. A minimally fonnatted
ASCII file cannot contain screen-fonnatting commands or explicit links. Any
fonnatting codes are treated as ASCII text. Minimally fonnatted ASCII files have a
fixed width.

A minimally fonnatted ASCII file contains a sequence of topics, each preceded by
one or more context definitions. Each context definition must be on a separate line
that begins with a help delimiter (»). The topic consists of all subsequent lines up
to the next context definition.

Implicit links work the same way they do in the other fonnats. A word in the Help
text is an implicit link if it exists as a context somewhere in the Help system.

There are two ways to use a minimally fonnatted ASCII file. You can compress it
with HELPMAKE and create a Help database, or a Help reader can access the
uncompressed file directly. A Help reader can search a minimally fonnatted ASCII
file faster if it has been compressed.

The following example coded in minimally fonnatted ASCII shows the same
sample help topic as the QuickHelp and RTF examples presented elsewhere in this
chapter:

Chapter 18 Creating Help Files with HELPMAKE 613

»Samp 1 e
---------------------[Sample Help Topic]------------------

Help can contain text with three attributes:

Attribute
Ita 1 i c
Bold
Underline

QuickHelp Code
\i
\b
\u

The visual appearance of each attribute
or combination of attributes is determined
by the application that displays the help.

See:

Coding, Expressions, Grammar, Keywords, Syntax

»Codi ng
--------------------[Sample Help: Coding]------------------

Here's another sample help screen.

The last three lines of this example differ from the ending lines in the other two
examples because minimally formatted ASCII files cannot contain explicit links,
and the help information is displayed exactly as it appears in the file.

Context Prefixes
Microsoft Help databases use several context prefixes. A context prefix is a single
letter followed by a period. It appears before a context string and has a predefined
meaning. You may see these contexts in the resulting text file when you decode a
Microsoft help database.

The context prefixes shown in Table 18.4 are used by Microsoft to mark product
specific features. They appear in decompressed databases. However, you do not
need to add them to the files you write.

Table 18.4 Microsoft Product Context Prefixes

Prefix

d.

e.

Purpose

Dialog box. The context string for the Help on a dialog box is d.
followed by the number assigned to that dialog box.

Error number. If a product supports the error numbering used by
Microsoft languages, it displays Help for each error using this prefix.

614 Environment and Tools

Table 18.4 Microsoft Product Context Prefixes (continued)

Prefix

h.

m.

n.

Purpose

Help item. The context string for miscellaneous Help is h. followed
by an assigned string. These strings are described in Table 18.5. For
example, most Help readers look for the context string h. contents
when Contents is chosen from the Help menu.

Menu item. The strings that can follow h. are defined by the access
keys for the product's menu items. For example, the Exit command on
the File menu is accessed by ALT +F, X. The context string for Help on
the command is m. f . x.

Message number. The context string for the Help on a message box is
n. followed by the number assigned to that message box.

You can use the h. prefix, shown in Table 18.5, to identify standard Help-file
contexts. For instance, h.default identifies the default Help screen (the screen that
usually appears when you select top-level Help).

Table 18.5 Standard h. Contexts

Context

h.contents

h.default

h.index

h.pgl

h.title

Description

The table of contents for the Help file. You should also define the string
"contents" for direct reference to this context.

The default Help screen, typically displayed when the user presses
SHIFT +Fl to get the "top level" in some applications.

The index for the Help file. You can also define the string "index" for
direct reference to this context.

The Help text that is logically first in the file. This is used by some
applications in response to a "go to the beginning" request made within
the Help window.

The title of the Help database.

615

CHAPTER 19

Browser Utilities

This chapter describes three utilities:

• Microsoft Browser Database Maintenance Utility (BSCMAKE) version 2.00

• Microsoft Browse Information Compactor (SBRP ACK) version 2.00

• Microsoft Cross-Reference Utility (CREF) version 6.00

These utilities build a browser database for use with the Microsoft Source Browser,
a feature of the Microsoft Programmer's Workbench (PWB). As a navigation tool,
the browser gives you the means to move around quickly in a large project and find
pieces of code in your source and include files. As an interactive program database,
the browser can answer questions about where functions are invoked or where
variables and types are used. The browser can also generate useful outlines, call
trees, and cross-reference tables.

When you tell PWB to create a browser database (.BSC file) for the program you
are building, PWB automatically calls BSCMAKE. You do not need to know how
to run BSCMAKE to create your database in PWB. However, you may want to
read this chapter to understand the PWB options available to modify the database.
For information on how to create and use a browser database in PWB, see "Using
the Source Browser" in Chapter 5.

If you build your program outside of PWB, you can still create a custom browser
database that you can examine with the Browser in PWB. Run the BSCMAKE
utility to build the database from .SBR files created during compilation. You might
need to run SBRP ACK to provide more efficiency during the build. This chapter
describes how to use both these utilities to create your browser database. For
further information, see "Building Databases for NOll-PWB Projects" on page 94.

Note BSCMAKE is the successor to the Microsoft PWBRMAKE Utility. To allow
existing makefiles to remain compatible, a file called PWBRMAKE.EXE is
provided with BSCMAKE. This version of PWBRMAKE calls BSCMAKE using
the arguments and options specified on the PWBRMAKE command line.

616 Environment and Tools

Overview of Database Building
BSCMAKE can build a new database from newly created .SBR files. It can also
maintain an existing database using .SBR files for object files that have changed
since the last build. The following sections describe how .SBR files are created,
what you need to know to build a database, and how you can make the database
building process more efficient.

Preparing to Build a Database
The input files for BSCMAKE are .SBR files that you create when you compile or
assemble your source files. When you build or update your browser database, all
.SBR files for your project must be available on disk. To create an .SBR file,
specify the appropriate command-line option to the compiler or assembler (shown in
parentheses below). The following products generate .SBR files:

• Microsoft MASM versions 6.0 and later (/FR or IFr)

• Microsoft C Compiler versions 6.0 and later (/FR or IFr)

• Microsoft FORTRAN versions 5.1 and later (IFR or IFr)

• Microsoft Basic versions 7.1 and later (IFBr or IFBx)

• Microsoft COBOL versions 4.0 and later (BROWSE)

The above options /FR, IFBx, and BROWSE put all possible information into the
.SBR file. The options IFr and IFBr omit local symbols from the .SBR file. (If the
.SBR file was created with all possible information, you can still omit local symbols
by using BSCMAKE's lEI option; see page 620.)

Database building can be more efficient if the .SBR files are first packed by
SBRPACK. The Microsoft C Compiler (CL) versions 7.0 and later automatically
calls SBRP ACK when it creates an .SBR file. (If you want to prevent packing,
specify CL' s an option.) Other Microsoft language products do not call
SBRP ACK. Before you run BSCMAKE, you may want to run SBRP ACK on any
.SBR files that were not previously packed. See "SBRPACK" on page 623.

You can create an .SBR file without performing a full compile. For example, you
can specify the ML or CL as option to perform a syntax check and still generate an
.SBR file if you specify /FR or IFr.

How BSCMAKE Builds a Database
BSCMAKE builds or rebuilds a database in the most efficient way it can. To avoid
some potential problems, it is important to understand the database-building
process.

Chapter 19 Browser Utilities 617

When BSCMAKE builds a database, it truncates the .SBR files to zero length.
During a subsequent build of the same database, a zero-length (or empty) .SBR file
tells BSCMAKE that the .SBR file has no new contribution to make. It lets
BSCMAKE know that an update of that part of the database is not required and an
incremental build will be sufficient. During every build (unless the /n option is
specified), BSCMAKE first attempts to update the database incrementally by using
only those .SBR files that have changed.

BSCMAKE looks for a .BSC file that has the name specified with the /0 option; if
/0 is not specified, BSCMAKE looks for a file that has the base name of the first
.SBR file and a .BSC extension. If the database exists, BSCMAKE performs an
incremental build of the database using only the contributing .SBR files. If the
database does not exist, BSCMAKE performs a full build using all .SBR files.

Requirements for a Full Build
For a full build to succeed, all specified .SBR files must exist and must not be
truncated. If any .SBR file is truncated, you must first rebuild it (by recompiling or
assembling) before running BSCMAKE.

Requirements for an Incremental Build
For an incremental build to succeed, the .BSC file must exist. All contributing .SBR
files, even empty files, must exist and must be specified on the BSCMAKE
command line. If you omit an .SBR file from the command line, BSCMAKE
removes its contribution from the database.

Methods for Increasing Efficiency
The database-building process can require large amounts of time, memory, and disk
space. However, there are several ways to reduce these requirements.

Managing Memory Under MS-DOS
Building a database uses a lot of memory. Large projects benefit the most from use
of the Source Browser, but under MS-DOS their large size can cause BSCMAKE
to run out of memory. There are several ways to run BSCMAKE under MS-DOS
that make use of virtual memory and extended memory. The commands to run these
forms of BSCMAKE are described in "System Requirements for BSCMAKE" on
page 618.

Making a Smaller Database
Smaller databases take less time to build, use up less space on disk, have a lower
risk of causing BSCMAKE to run out of memory, and run faster in the browser.
The following list gives some methods of making a smaller database:

• Use BSCMAKE options to exclude information from the database.

618 Environment and Tools

BSCMAKE

• Omit local symbols in one or more .SBR files when compiling or assembling.

• If an object file does not contain information that you need for your current stage
of debugging, omit its .SBR file when rebuilding the database.

Saving Build Time and Disk Space
Unreferenced definitions cause .SBR files to take up more disk space and cause
BSCMAKE to run less efficiently. The SBRPACK utility removes unreferenced
definitions from .SBR files. For more information, see "SBRPACK" on page 623.

Using C/C++ Precompiled Headers
Using precompiled headers speeds up BSCMAKE because the browser information
for the precompiled code is generated only when the .PCR file is created. The
browser information is not replicated in each source file's browser file, as it is
when you do not use precompiled headers. This reduces the size of .SBR files for
object files that use precompiled headers and makes database building faster. Also,
less disk space is used.

The Microsoft Browser Database Maintenance Utility (BSCMAKE) converts .SBR
files created by a compiler or assembler into database files that can be read by the
PWB Source Browser. The filename of the resulting browser database has the
extension .BSC. For more information on the browser, see "Using the Source
Browser" in Chapter 5.

System Requirements for BSCMAKE
BSCMAKE version 2.00 exists as two executable files. The form of BSCMAKE
that you run is determined by your computer's memory. The following executable
files are discussed in this section:

• BSCMAKE.EXE for MS-DOS; can use only extended memory

• BSCMAKEV.EXE for MS-DOS; can use virtual and extended memory

BSCMAKE can use either virtual memory or extended memory (or both) to avoid
running out of memory. BSCMAKE.EXE uses extended memory if available. If
extended memory is unavailable, BSCMAKE runs under MS-DOS in real mode.
The command to invoke this version of BSCMAKE.EXE is:

BSCMAKE

followed by the rest of the command line. For best results, the sum of available
conventional and extended memory should be half the size of the disk space
occupied by the finished database.

Chapter 19 Browser Utilities 619

If your computer does not have extended memory or if it is insufficient for your
database, you can use virtual memory. BSCMAKEV.EXE uses extended memory if
it is available. If extended memory is unavailable or insufficient, BSCMAKEV
uses virtual memory, copying information to your disk as needed during the
database build. Swapping to disk is slower but can overcome a shortage of memory.
The command to invoke this form of BSCMAKE is:

BSCMAKEV

followed by the rest of the command line.

To prevent BSCMAKE or BSCMAKEV from using extended memory, specify the
Ir option as the first option on the command line.

The BSCMAKE Command Line
To run BSCMAKE, use the following command line:

BSCMAKE [options] sblfiles

This syntax applies to all forms of BSCMAKE. Specify either BSCMAKE or
BSCMAKEV in the first position on the command line.

Options can appear only in the options field on the command line. If the Ir option is
used, it must be first.

The sblfiles field specifies one or more .SBR files created by a compiler or
assembler. If you specify more than one file, separate the names with spaces or
tabs. You must specify the extension; there is no default. You can specify a path
with the filename, and you can use operating-system wildcards (* and ?).

During an incremental build, you can specify new .SBR files that were not part of
the original build. If you want all contributions to remain in the database, you must
specify all .SBR files (including truncated files) that were originally used to create
the database. If you omit an .SBR file, that file's contribution to the database is
removed.

Do not specify a truncated .SBR file for a full build. A full build requires
contributions from all specified .SBR files. Before you perform a full build,
recompile and create a new .SBR file for each empty file.

620 Environment and Tools

Example
The following command runs BSCMAKE to build a file called MAIN.BSC from
three .SBR files:

BSCMAKE main.sbr filel.sbr file2.sbr

BSCMAKE Options
This section describes the options available for controlling BSCMAKE. Several
options control the content of the database by telling BSCMAKE to exclude or
include certain information. The exclusion options can allow BSCMAKE to run
faster and may result in a smaller .BSC file. Option names are case sensitive
(except for /HELP and /NOLOGO).

lEi filename
lEi (filename ...)

lEI

Excludes the contents of the specified include files from the database. To specify
multiple files, separate the names with spaces and enclose the list in parentheses.
Use lEi along with the IEs option to exclude files not excluded by IEs.

Excludes local symbols. The default is to include local symbols in the database.
For more information about local symbols, see "Preparing to Build a Database"
on page 616.

/Em
Excludes symbols in the body of macros. Use IEm to include only the names of
macros in the database. The default is to include both the macro names and the
result of the macro expansions.

IEr symbol
IEr (symbol ...)

IEs

Excludes the specified symbols from the database. To specify multiple symbol
names, separate the names with spaces and enclose the list in parentheses.

Excludes from the database every include file specified with an absolute path
or found in an absolute path specified in the INCLUDE environment variable.
(Usually, these are the system include files, which contain a lot of information
that you may not need in your database.) This option does not exclude files
specified without a path or with relative paths or found in a relative path in
INCLUDE. You can use the lEi option along with IEs to exclude files that IEs
does not exclude. If you want to exclude only some of the files that IEs excludes,
use lEi instead of IEs and list the files you want to exclude.

/HELP
Calls the QuickHelp utility. If BSCMAKE cannot find the Help file or
QuickHelp, it displays a brief summary of BSCMAKE command-line syntax.

/Iu

In

Chapter 19 Browser Utilities 621

Includes unreferenced symbols. By default, BSCMAKE does not record any
symbols that are defined but not referenced. If an .SBR file has been processed
by SBRP ACK, this option has no effect for that input file because SBRP ACK
has already removed the unreferenced symbols.

Forces a non incremental build. Use In to force a full build of the database
whether or not a .BSC file exists and to prevent .SBR files from being truncated.
See "Requirements for a Full Build" on page 617.

/NOLOGO
Suppresses the BSCMAKE copyright message.

10 filename

Ir

Specifies a name for the database file. By default, BSCMAKE assumes that the
database file has the base name of the first .SBR file and a .BSC extension.

Prevents BSCMAKE from using extended memory under MS-DOS. The Ir
option must appear first in the options field on the command line and cannot
appear in a response file. BSCMAKE.EXE and BSCMAKEV.EXE are
extender-ready and use extended memory if it exists. This option forces
BSCMAKE to use only conventional memory and forces BSCMAKEV to use
conventional memory and virtual memory. For more infonnation, see "System
Requirements for BSCMAKE" on page 618.

IS filename
IS (filename ...)

Iv

/?

Tells BSCMAKE to process the specified include file the first time it is
encountered and to exclude it otherwise. Use this option to save processing time
when a file (such as a header, or .R, file for a.C source file) is included in
several source files but is unchanged by preprocessing directives each time. You
may also want to use this option if a file is changed in ways that are unimportant
for the database you are creating. To specify multiple files, separate the names
with spaces and enclose the list in parentheses. If you want to exclude the file
every time it is included, use the lEi or IEs option.

Provides verbose output, which includes the name of each .SBR file being
processed and infonnation about the complete BSCMAKE run.

Displays a brief summary of BSCMAKE command-line syntax.

622 Environment and Tools

Example
The following command line tells BSCMAKE to use virtual memory and
conventional memory (but not extended memory) to do a full build ofMAIN.BSC
from three .SBR files. It also tells BSCMAKE to exclude duplicate instances of
TOOLBOX.H:

BSCMAKEV Ir In IS toolbox.h 10 main.bsc filel.sbr file2.sbr file3.sbr

Using a Response File
You can provide part or all of the command-line input in a response file, which is a
text file that contains options and/or filenames.

Specify the response file using the following syntax:

BSCMAKE @responsefile

This syntax applies to all forms of BSCMAKE; you can specify BSCMAKE or
BSCMAKEV in the first position on the command line. Only one response file is
allowed. You can specify a path with response file . Precede the filename with an at
sign (@). BSCMAKE does not assume an extension. You can specify additional
sblfiles on the command line after responsefile. If you use /r, you must specify it on
the command line before the response file.

In the response file, specify the input to BSCMAKE in the same order as you would
on the command line. Separate the command-line arguments with one or more
spaces, tabs, or newline characters.

Example
The following command calls BSCMAKE using the progl.txt response file:

BSCMAKE @progl.txt

Example
The following is a listing of progl.txt:

In Iv /0 main.bsc IEl
IS (
toolbox.h
verdate.h c:\src\inc\screen.h
)

IEr (HWND HpOfSbIb
LONG LPSTR
NEAR NULL
PASCAL
VOID
WORD
)

filel.sbr file2.sbr file3.sbr file4.sbr

Chapter 19 Browser Utilities 623

The prog1.txt response file instructs BSCMAKE to:

• Perfonn a nonincremental build (In, /0) ofMAIN.BSC from the FILEl, FILE2,
FILE3, and FILE4 * .SBR files.

• Report full infonnation about the complete BCSMAKE run (Iv).

• Exclude local symbols (lEI), and process the include files TOOLBOX.H,
VERDATE.H, and SCREEN.H files only once (/S).

• Exclude the HWND, HpOfSbIb, LONG, LPSTR, NEAR, NULL, PASCAL,
VOID, and WORD symbols (IEr).

BSCMAKE Exit Codes

SBRPACK

BSCMAKE returns an exit code (also called return code or error code) to the
operating system or the calling program. You can use the exit code to control the
operation of batch files or makefiles.

Code Meaning

o No error

Command-line error

4 Fatal error during database build

The Microsoft Browse Infonnation Compactor (SBRP ACK) removes unreferenced
symbols from .SBR files before they are processed by BSCMAKE. This can result
in smaller .SBR files, which allow BSCMAKE to run faster. Smaller .SBR files
also save space on disk.

624 Environment and Tools

Packing .SBR files is optional. The Microsoft C Compiler versions 7.0 (CL) and
later automatically call SBRPACK when you specify either /FR or IFr to create an
.SBR file. If you specify /Zn in addition to one of these options, CL does not call
SBRP ACK to pack the .SBR file. Other compilers and assemblers do not pack
.SBR files. You may want to use SBRPACK to pack an .SBR file that was created
without packing.

SBRPACK.EXE version 2.00 runs under real-mode MS-DOS. It does not use
virtual memory, expanded memory, or extended memory.

Overview of SBRPACK
When symbols such as functions or data are defined but not referenced, you can use
SBRP ACK to remove them from the .SBR files before the files are processed by
BSCMAKE. A common source of unreferenced symbols is an include, or header,
file. When a source file includes a header file, it often brings in a large number of
unreferenced definitions. Therefore, the .SBR file that results from compiling this
source file can contain a large amount of unneeded information. The time or disk
space saved by SBRP ACK is directly related to the number of unreferenced
symbols in the .SBR files.

If SBRPACK is not used, BSCMAKE will remove the same information (unless
you specify BSCMAKE's /lu option to preserve this information). However,
BSCMAKE can run more efficiently if the .SBR files are first processed by
SBRPACK. The time it takes to run both utilities can be less than if BSCMAKE is
used alone, especially under real-mode MS-DOS or under extended MS-DOS using
virtual memory.

You can run SBRPACK every time you create an .SBR file, or you can run it just
once before running BSCMAKE. If you need to save room on your disk, run
SBRP ACK after every compilation. The .SBR files will then be stored in a more
compact form. If you need to accelerate your program-build process, run
SBRP ACK only as needed, just before running BSCMAKE. The example in the
following section shows how to run SBRPACK to perform each kind of efficiency.

The SBRPACK Command Line
To run SBRP ACK, use the following command line:

SBRPACK [option] sbrfiles

Option names are not case sensitive. Only the /NOLOGO option applies to a
packing session; the other options provide help and then halt SBRPACK.

The sblfiles field specifies one or more .SBR files created by a compiler or
assembler. If you specify more than one file, separate the names with spaces or

Chapter 19 Browser Utilities 625

tabs. You must specify the extension; there is no default. You can specify a path
with the filename, and you can use operating-system wildcards (* and ?).

You do not specify a name for the resulting files; SBRP ACK saves the changed
files under their original name. If you want to preserve the original files, copy them
to another name before running SBRP ACK.

SBRP ACK has the following options:

/HELP
Calls the QuickHelp utility. If SBRPACK cannot find the Help file or
QuickHelp, it displays a brief summary of SBRPACK command-line syntax.

/NOLO GO
Suppresses the SBRP ACK copyright message.

/?
Displays a brief summary of SBRPACK command-line syntax.

Example
The following commands assemble a file using the Microsoft Macro Assembler
(ML), compile a file using the Microsoft C Optimizing Compiler (CL), and build a
browser database using both SBRP ACK and BSCMAKE:

ML IFR Ie progl.asm
CL IFR Ie prog2.e
SBRPACK prog2.sbr

BSCMAKE *.sbr

These commands run SBRP ACK every time an .SBR file is created. A separate
SBRPACK command isn't needed for PROG2.SBR because CL calls SBRPACK
automatically. Later in the program-building session, BSCMAKE builds a database
and names it PROG 1.BSC. This combination of commands saves space on disk

, during the program-building session.

The same commands can be configured to create the same database but save
running time. In the following example, SBRP ACK is called only when
BSCMAKE is about to run. If these commands are in a makefile, time is saved if
the program-building sequence stops before a database is built.

626 Environment and Tools

ML IFR Ie progl.asm
CL IFR IZn Ie prog2.e

SBRPACK *.sbr
BSCMAKE *.sbr

SBRPACK Exit Codes

CREF

Using CREF

SBRPACK returns an exit code (also called return code or error code) to the
operating system or the calling program. You can use the exit code to control the
operation of batch files or makefiles.

Code

o
1-4

Meaning

No error

Fatal SBRP ACK error

Each fatal error generates a specific exit code. For individual exit codes associated
with each error, see Appendix A.

This section contains information on the purpose and use of the Microsoft Cross
Reference Utility (CREF) Version 6.00.

The Microsoft Cross-Reference Utility (CREF) creates a cross-reference listing of
all symbols in an assembly-language program. A cross-reference listing is an
alphabetical list of symbols followed by references to where a symbol appears in
the source code. '

CREF is intended for use as a debugging aid to speed up the search for symbols
encountered during a debugging session. The cross-reference listing, together with
the symbol table created by the assembler, can make debugging and correcting a
program easier.

CREF creates a cross-reference listing for a program by converting PWB Source
Browser database files (those ending with a .BSC or an .SBR extension) into a
readable ASCII file.

Command-Line Syntax
CREF crossreferencefile [, crossreferencelisting] [;]

Chapter 19 Browser Utilities 627

crossreferencefile
Source Browser database file. Default filename extension is .BSC.

crossreferencelisting
Readable ASCII cross-reference listing. Default filename extension is REF. If
this filename is not supplied on the command line, the base filename of the
database file is used and the REF extension is added.

Using Prompts to Create a Cross-reference Listing
You can direct CREF to prompt you for the files it needs by starting CREF with
just the command name (CREF). CREF prompts you for the input it needs by
displaying the following lines, one at a time:

Cross-Reference [.BSC]:
Listing [filename. REF]:

The prompts correspond to the fields of the CREF command lines. CREF waits for
you to respond to each prompt before printing the next one. You must type a cross
reference filename (extension is optional) at the first prompt. For the second
prompt, you can either type a filename or press the ENTER key to accept the
default displayed in brackets after the prompt.

Use of BSCMAKE with CREF
Note that the CREF utility can create reports only from the final form of the Source
Browser database files. These files end in .BSC (Browser Source Cache), and are
created by the utility BSCMAKE. Because ML creates an intermediate Source
Browser file (with the filename extension .SBR), CREF invokes BSCMAKE to
create a .BSC file from a single .SBR file input. BSCMAKE takes as input the
.SBR files created by ML, merges them with other .SBR files created from other
assembly-language source modules (if any exist), and creates a .BSC file as the
result. The .BSC file contains all of the information (across multiple modules, if
necessary) to provide a comprehensive cross-listing file for an entire project.

CREF will invoke BSCMAKE only when a single .SBR file is given as input to the
utility; therefore, you must create a .BSC database file from the assembler
generated .SBR files before invoking CREF. An example of running BSCMAKE
IS:

BSCMAKE FILENAME.SBR FILE2.SBR FILE3.SBR ... FILEN.SBR

This example creates a .BSC file using the base name of the first .SBR file on the
command line. In this case, the resultant file would be named FILENAME.BSC.

By using the .BSC Source Browser database files, CREF is able to provide cross
reference files for either a single assembly-language module or for an entire
multi module assembly-language project. Below are the steps necessary for both
scenarios.

628 Environment and Tools

For more information on BSCMAKE options, see page 620, or type BSCMAKE /?
at the command line to get a quick-reference screen.

Creating Single-Module Cross-reference Listings
Using ML with the /FR switch, create an .SBR file for the assembly-language
module. An example is:

ML Ie IFR filename.ASM

This creates a file FILENAME.SBR (as well as FILENAME.OBJ).

Invoke CREF using the database file created above (FILENAME.SBR) as the input
cross-reference file. An example of this is:

CREF FILENAME.SBR. FILENAME. REF

This creates the cross-reference listing FILENAME.REF.

Note that because CREF is capable only of reading Source Browser .BSC database
files, the BSCMAKE utility is automatically invoked to convert the .SBR on the
command line into a .BSC file.

Creating Multimodule Cross-reference Listings
Using ML with the /FR switch, create an .SBR file for each of the assembly
language modules. An example is:

ML Ie IFR *.ASM

This creates a file FILENAME.SBR (as well as FILENAME.OBJ).

Invoke CREF using the database file created above (FILENAME.BSC) as the input
cross-reference file. An example of this is:

CREF FILENAME.BSC. FILENAME.REF

The cross-reference listing FILENAME.REF is created. This particular example
will have all of the symbols from all of the modules in one cross-reference listing
file.

Reading Cross-reference Listings
The cross-reference listing contains the name of each symbol defined in your
program. Each name is followed by a list of source filenames in which the symbol
appears. Each source name is then followed by a list of line numbers representing
the line or lines in the source file in which a symbol is referenced.

Line numbers in which a symbol is defined are marked with the number sign (#).

Example

Chapter 19 Browser Utilities 629

Below is a sample assembly-language source-code module, followed by the
resulting cross-reference listing file.

. DOSSEG .MODEL small, pascal

.STACK 100h

.DATA PUBLIC message, lmessage
message BYTE "Hello World!!!!" lmessage EQU $-message
.CODE
.STARTUP
EXTERN display:NEAR
call display
mov ax, 4C00h
int 21h
.EXIT END

Example Reference Listing (Created from above source-code module)

Microsoft Cross-Reference Version 6.00 Wed Nov 18 15:47:26 1992
Symbol Cross-Reference (# definition) Cref-l
@code .. \he11o.asm . . . 2
@CodeSize .. \he11o.asm 2
@data .. \hel1o.asm . . 2
@DataSize .. \he11o.asm 2
@fardata .. \he11o.asm 2
@fardata? .. \he11o.asm 2
@Interface .. \he11o.asm . 2
@Mode1 .. \ h ell 0 • as m . 2
@stack .. \hell o. asm . . 2
@Startup .. \he11o.asm . 14
_DATA .. \he11o.asm 2
_TEXT .. \he11o.asm 2# 12
DGROUP .. \he11o.asm 2# 2 14
display .. \he11o.asm 16 17 <Unknown>.
he11o.asm .. \he11o.asm 1
1message .. \he11o.asm 10# 7
message .. \he11o.asm 9# 10 7
STACK .. \hello.asm 4

Difference from Previous Releases
Use Differences
ML/MASM no longer generates a .CRF assembler-specific binary file. Instead,
CREF 6.0 uses the generic Source Browser database file (.BSC).

Because of this, CREF can actually be used with any source-code module or project
that is compiled/assembled by a Microsoft product that creates .SBR files.

630 Environment and Tools

Creating multimodule cross-reference listing files is another advantage of using
.BSC Browser database files. Previous releases of CREF were limited to single
modules.

Listing Differences
All line numbers that are reported are relative to the actual source-code module, not
the assembler-generated listing file. This is a direct result of using the Source
Browser database files (.BSC). These files are not directly related to MASM
listings and are generic across Microsoft language products.

631

CHAPTER 20

Using Other Utilities

CVPACK

This chapter explains how to use the following utilities:

• CVPACK (Microsoft Debugging Information Compactor) version 4.0S
Prepares executable files for use with the Code View debugger by reducing the
size of debugging information within the files.

• H2INC (Microsoft C Header Translation Utility) version 1.01-Translates C
header files into MASM-compatible include files.

• IMPLIB (Microsoft Import Library Manager) version lAO-Creates an import
library for use in resolving external references from a Windows-based program
to a dynamic-link library (DLL).

• RM (Microsoft File Removal Utility) version 2.00
UNDEL (Microsoft File Undelete Utility) version 2.00
EXP (Microsoft File Expunge Utility) version 2.00

• WX/WXServer Utility version 1.S0-Runs a Windows-based program in an
MS-DOS session.

This section describes the Microsoft Debugging Information Compactor
(CVPACK) version 4.0S. CVP ACK 4.0S prepares an executable file for use with
the Microsoft Code View debugger version 4.0S.

You should always use matching versions of CVPACK and CodeView. Earlier
formats of debugging information and CVPACK-packing are not compatible with
Code View 4.0S. If an executable file contains debugging information in an earlier
format but has not been packed, packing with CVP ACK 4.0S is all that is needed
for the file to run in Code View 4.0S. However, if the executable file has been
packed with an earlier version of CVP ACK, you must relink the file.

632 Environment and Tools

Also, executable files packed using CVP ACK 4.05 are not compatible with earlier
versions of Code View. The debugging information produced by Microsoft
compilers and packed by CVP ACK 4.05 is for use with Code View 4.05 and is not
compatible with earlier versions of Code View.

Overview of CVPACK
An executable file to be run under Code View 4.05 must first be packed by
CVPACK 4.05. The debugging information in the file must be in the form given in
the Microsoft Symbolic Debugging Information specification. This is the format
supported by current Microsoft compilers and linkers.

LINK versions 5.30 and later automatically call CVPACK when you specify
LINK's ICO option. You do not need to run CVPACK as a separate step. However,
if you want to use Code View to debug a file that was built by another linker (either
an earlier Microsoft linker or a third-party linker), you'must run CVPACK to
convert the executable file to the current Code View format. Be sure that the
executable file has not been packed by an earlier version of CVP ACK; if it has, you
must relink the file.

CVP ACK compresses debugging information by removing duplicate type
definitions. To be removed by CVPACK, the definitions must be absolutely
identical. For example, if a structure defined in two modules contains a pointer to
another structure, but the second structure is defined in only one module, the pointer
size is unknown in the other module. In this case, CVP ACK cannot pack the
duplicate structure definitions in the same way, which causes less efficient
compression.

CVPACK can pack an executable that is in .COM format. The linker puts
debugging information for a .COM file into a file with the same base name as the
executable file and with a .DBG extension. When you specify a .COM file to be
packed, CVP ACK looks for a .DBG file with the same base name and in the same
location as the .COM file.

The CVPACK Command Line
To run CVP ACK, use the following command line:

CVPACK [option] exefile

The exefile specifies a single executable file to be packed. You can specify a path
with the filename. If you do not specify an extension, CVP ACK assumes the default
extension .EXE.

Chapter 20 Using Other Utilities 633

CVPACK Options
CVP ACK has the following options; the option names are not case sensitive:

/H[ELP]
Calls the QuickHelp utility. If CVPACK cannot find the help file or QuickHelp,
it displays a brief summary of CVP ACK command-line syntax.

!M[INIMUM]
Preserves only public symbols and line numbers. All other debugging
information is removed from the executable file.

/N[OLOGO]
Suppresses the CVP ACK copyright message.

/?
Displays a brief summary of CVPACK command-line syntax.

Note The /P option is not a valid option for the current version of CVP ACK. Using
this option causes an error.

Example
The following command packs the file PROJECT.EXE, located in the directory
\TEST on the current drive:

CVPACK \TEST\PROJECT.EXE

CVPACK Exit Codes

H21NC

CVPACK returns an exit code (also called return code or error code) to the
operating system or the calling program. You can use the exit code to control the
operation of batch files or makefiles.

Code Meaning

o No error

Program error caused by commands or files given as input to CVPACK

This version (1.01) of H2INC now includes the following:

• The number of C keywords, preprocessor keywords and preprocessor pragmas
has been expanded to maintain compatibility with Microsoft C/C++ Version 7.0.

• Invalid command-line options generate a warning, rather than a fatal error.

634 Environment and Tools

• OPTION CASEMAP: NONE is automatically added in the generated * .INC.

• A new warning (HI4010) is generated whenever an attempt is made to redefine
a MASM keyword, or whenever a typedef statement converts to a type with the
same name as the type.

The H2INC utility translates C header files into MASM-compatible include files. C
header files normally have the extension .H; MASM include files normally have the
extension .INC. This is the origin of the program's name: "H to INC."

H2INC simplifies porting data structures from your C programs to MASM
programs. This is especially useful when you have:

• A program that mixes C code and MASM code with globally accessible data
structures.

• A program prototyped in C that you're translating to MASM for compactness
and fast execution.

The H2INC program translates data declarations, function prototypes, and type
definitions. H2INC does not convert C code into MASM code. When H2INC
encounters a C statement that would compile into executable code, H2INC ignores
the statement and issues a warning message to the standard output.

H2INC accepts C source code that is compatible with Microsoft C versions 6.0 and
later, and creates include files suitable for MASM versions 6.0 and later. These
include files will not work with versions of MASM earlier than version 6.0.

H2INC is designed to translate project header files that you have written
specifically for translation to MASM versions 6.0 and later include files. It is not
designed to translate header files such as PM.H and WINDOWS.H.

This section explains how H2INC performs the C code translation and how the
command-line options control the conversions.

Basic H21NC Operation
H2INC is designed to provide automatic translation of C declarations that you need
to include in the MASM portions of an application. However, the set of C
statements processed by H2INC must be those needed by and interpretable by
MASM. H2INC converts only function prototypes, some preprocessor directives,
and C declarations outside the scope of procedures. For example, H2INC translates
the C statement

#define MAX_EMPLOYEES 400

into this MASM statement:

Chapter 20 Using Other Utilities 635

MAX_EMPLOYEES EQU 400t

The t specifies the decimal radix.

H2INC does not translate C code into MASM code. Statements such as the
following are ignored:

printf("This is an executable statement.\n");

H2INC translates declarations, not executable code.

By default, H2INC creates a single .INC file. If the C header file includes other
header files, the statements from the original and nested files are translated and
combined into one .INC file. This behavior can be changed with the /Ni option.

The program also preprocesses some statements, just as the C preprocessor would.
For example, given the following statements, if V ERS I ON is not defined, H2INC
ignores the #ifdef block.

#ifdef VERSION
#define BOX_VALUE 4
#endif

If V E RS ION is defined, H2INC translates the statements inside the block from C
syntax to MASM syntax.

H2INC normally discards comments. If you use the IC option, C comments are
passed to the output file. If the line starts with a / * or / /, the comment specifier is
converted to a semicolon (;). If the line is part of a multiline comment, a semicolon
is prefixed to each line.

H2INC ignores anything that is not a comment or that cannot be translated. These
items do not appear in the output file. If H2INC encounters an error, it stops
translating and deletes the resulting .INC file.

H21NC Syntax and Options
To run H2INC, type H 2 INC at the command-line prompt, followed by the options
desired and the names of the .H files you want to convert:

H2INC [options] file.H ...

You can specify more than one file .H. File names are separated by a space. The
contents of eachfile.H are translated into a single file in the current directory with
the namefile.INC. The originalfile.H is not altered.

The following lists describe the available options. You can specify more than one
option. Note that the options are case sensitive except for /HELP.

636 Environment and Tools

H2INC recognizes /? to display a summary of H2INC syntax, and /HELP to invoke
QuickHelp for H2INC. If QuickHelp is not available, H2INC displays a short list
of H2INC options. This option is not case sensitive.

H2INC recognizes but ignores C 6.0 options that aren't specified in the following
two lists.

Options Directly Affecting H21NC Output
This list describes the options that directly affect the H2INC output:

Option

/C

/Fa [filename]

/Fc [filename]

/Mn

/Ni

/Zu

Action

Passes comments in the .H file to the .INC file.

Specifies that the output file contain only equivalent MASM
statements. This is the default. If specified, the filename
overrides the default, keeping the base name of the C header
files and adding the .INC extension.

Specifies that the output file contain equivalent MASM
statements plus original C statements converted to comment
lines.

Assumes the .MODEL directive is not specified for the
MASM source or the generated .INC files. Instructs H2INC
to declare explicitly the distances for all pointers and
functions.

Suppresses the expansion of nested include files.

Makes all structure and union tag names unique.

Options Indirectly Affecting H21NC Output
This list describes the options that indirectly affect the H2INC output:

Option

/AC

/AH

/AL

/AM

/AS

/AT

lD[const[=va!ue]]

/GO

/01

/02

Action

Specifies compact memory model.

Specifies huge memory model.

Specifies large memory model.

Specifies medium memory model.

Specifies small memory model, the default.

Specifies tiny memory model (.COM).

Defines a constant or macro.

Enables 8086/8088 instructions (default).

Enables 80186/80188 instructions.

Enables 80286 instructions.

Option

/G3

/G4

/Gc

/Gd

/Gr

/Ht

/lpatlzs

/J

/nologo

{fc [filename]

/uident

/U

/w

/WO

/WI

/W2

/W3

/W4

IX
/Za

{ZC

{Ze

/Zn string

/Zp{ 11214}

Chapter 20 Using Other Utilities 637

Action

Enables 80386 instructions. Changes the default word size
to DWORD.

Enables 80486 instructions. Changes the default word size
to DWORD.

Specifies Pascal as the default calling convention.

Specifies C as the default calling convention for functions
(default).

Specifies the _fastcall calling convention for functions.
Generates a warning since H2INC does not t~anslate
_fastcall functions and prototypes.

Enables generation of text equates. By default, text items are
not translated.

Searches named paths for include files before searching the
paths in the INCLUDE environment variable. Paths are
separated with a semicolon (;).

Changes default character type from signed char to
unsigned char.

Suppresses display of the sign-on banner.

Enables the processing of file whose name does not end in
.H.

"Undefines" one of the predefined identifiers.

"Undefines" all predefined identifiers.

Suppresses compiler warning messages; same as /WO.

Suppresses all warning messages.

Displays level 1 warning messages (default).

Displays levelland level 2 warning messages.

Displays levell, 2, and 3 warning messages.

Displays all warning messages.

Excludes search for include files in the standard places.

Disables language extensions (allows ANSI standard only).

Causes functions declared as _pascal to be case insensitive.

Enables language extensions (default).

Adds string to all names generated by H2INC. Used to
eliminate name conflicts with other H2INC-generated
include files.

Packs structure on a 1-,2-, or 4-byte boundary, following C
packing rules. Default is /Zp2.

638 Environment and Tools

Converting Data and Data Structures
The primary use of H2INC is to convert data automatically from C format into
MASM format. This section shows how H2INC converts constants, variables,
pointers, and other C data structures to definitions recognizable to MASM.

The previous version of H2INC required you to specify OPTION CASEMAP:NONE
in any MASM files that included .INC files generated with H2INC. H2INC now
automatically specifies this option in the * .INC file it generates.

User-Defined and Predefined Constants
H2INC translates constants from C to MASM format. For example, C symbolic
constants of the form

#define CORNERS 4

are translated to MASM constants of the form

CORNERS EOU 4t

in cases where CO RN E RS is an integer constant or is preprocessed to an integer
constant. For more information on integer constants in MASM, see the
Programmer's Guide.

When the defined expression evaluates to a noninteger value, such as a floating
point number or a string, H2INC defines the expression with TEXTEQU and adds
angle brackets to create text macros. By default, however, these TEXTEQU
expressions are not added to the include file. Set the /Ht option to tell H2INC to
generate TEXTEQU expressions.

/* #define PI 3.1415 */
PI TEXTEOU <3.1415>

H2INC uses this form when the expression is anything other than a constant integer
expression. H2INC does not check the constant or string for validity, nor does it
translate type-cast conversions. For example, although the following C definitions
are valid, H2INC creates invalid equates without generating an error.

These C statements

#define INT 6
#define FOREVER for(;;)
#define LONG_5 (long) 5

generate these MASM statements:

Chapter 20 Using Other Utilities 639

INT EQU 6t
FOREVER TEXTEQU <for(::»
LONG_5 TEXTEQU «long) 5>

The first #define statement is invalid because INT is a MASM instruction; in
MASM versions 6.0 and later, instructions are reserved and cannot be used as
identifiers. Any attempt to redefine a MASM keyword will result in the warning:

HI4010: identifier: identifier is a MASM keyword.

The for loop definition is invalid because MASM cannot assemble C code.

The long type-cast conversion is invalid because a type cannot be assigned to a
numerical equate. To resolve this in the above example, the C statement

#define LONG_5 (long) 5

could be changed to:

#define LONG_55.

Predefined constants control the contents of .INC files.

You can make use of the following predefined constants in your C code to
conditionally generate the code in .INC files. The predefined constants and the
conditions under which they are defined are:

Predefined Constant

H21NC

M 186

MSDOS

MSC VER

M 18086

M 1286

NO EXT KEYS

CHAR UNSIGNED - -
M 186SM

M 186MM

M 186CM

M 186LM

M 186HM

When Defined

Always defined

Always defined

Always defined

Defined as 610 for this release

Defined if /00 is specified

Defined if /00 is not specified

Defined if /Za is specified

Defined if /J is specified

Defined if / AS is specified

Defined if / AM is specified

Defined if /AC is specified

Defined if / AL is specified

Defined if / AH is specified

640 Environment and Tools

For example, if your C header file includes definitions which are specific to the C
portion of the program or otherwise are not appropriate for translation by H2INC,
you can bracket the C-specific code with

#ifndef _H2INC
1* C-specific code *1

#endif

In this case, only the C compiler processes the bracketed code.

The lu and /U options affect these predefined constants. The luarg option undefines
the constant specified as the argument. The /U option disables the definition of all
predefined constants. Neither lu or /U affects constants defined by the ID option.

H2INC places an OPTION EXPR32 directive in the .INC file so that MASM
correctly handles long integers within expressions. This means that the .INC files as
well as all the .ASM files which include .INC files created with H2INC will resolve
integer expressions in 32 bits instead of 16 bits.

This also means that if a negative number is evaluated in an expression, its value
can only be used as a double word (or longer) operand.

These C statements:

#define MINUS_1 (-1)
#define MINUS_2 -2

generate these MASM statements:

MINUS_1 EOU 0ffffffffh
MINUS_2 EOU -2t

In most cases, the second behavior is more desirable, as the decimal representation
can be cast within MASM to the appropriate size (with a wo rd pt r operator, for
example).

Variables
H2INC translates variables from C to MASM format. For example, this C
declaration

is translated into the MASM declaration

EXTERNDEF my_var:SWORD

H2INC converts C variable types to MASM types as follows:

CType

char

signed char

unsigned char

short, wchar _ t

unsigned short

int

unsigned int

long

unsigned long

float

double

long double

Chapter 20 Using Other Utilities 641

MASMType

BYTE or SBYTE (controlled by IJ option)

SBYTE

BYTE

SWORD

WORD

SWORD (SDWORD with IG3 or IG4 option)

WORD (DWORD with IG3 or IG4 option)

SDWORD

DWORD

REAL4

REAL8

REALlO

H2INC always assumes that a variable is external. For example, the C declaration

long big_data;

is converted to this MASM declaration:

EXTERNDEF big_data:SDWORD

For more information on MASM data types, see the Programmer's Guide.

H2INC does not allocate space for arrays since all variables are assumed to be
external. For example, the C declaration

int two_d[10][20];

translates to:

EXTERNDEF two d:SWORD

H2INC does not translate static variable values, since the scope of these variables
extends only to the file where they are declared. Instead, H2INC substitutes
EXTERNDEF declarations for all static variables. (This includes initialized static
variables.)

642 Environment and Tools

Pointers
H2INC translates C pointer variables into their MASM equivalents. The C
declarations

int *ptr_var;
char _near *pCh;

are translated into these MASM statements:

EXTERNDEF ptr_var:PTR SWORD
EXTERNDEF pCh:NEAR PTR SBYTE

If you set the /Mn option, H2INC specifies all distances explicitly (for example,
NEAR PTR instead of PTR). If /Mn is not set, the distances are generated only when
they differ from the default values implied by the memory model specified by the / A
command-line option.

H2INC converts _segment and _based variables to type WORD in MASM.

For information about MASM pointers, see the Programmer's Guide.

Structures and Unions
H2INC translates C structures and unions into their MASM equivalents. H2INC
modifies the C structure or union definition to account for differences from MASM
structure and union definitions. This list describes these modifications.

• C allows a structure or union variable to have the same name as the type name,
but MASM does not. The H2INC /ZU option prevents the structure name from
matching a variable or instance by prefixing every MASM structure name with
@ta9_. '

• If a C structure or union definition does not have a name, H2INC supplies one
for the MASM conversion. These generated structure names take the form
@ta 9_n, where n is an integer that starts at zero and is incremented for each
structure name H2INC generates.

• If the /Zn option is specified, H2INC inserts the given string between the
underscore and the number in the generated structure names. This eliminates
name conflicts with other H2INC-generated include files.

• H2INC adds the alignment value to the converted structure definition.

The following examples show how these rules are applied when converting
structures. (Union conversions are not shown; they are handled identically.) These
examples assume that the C header file defines an alignment value of 2. For
information on alignment values, see the Programmer's Guide.

The following named C structure definition

struct file_info
{

} ;

unsigned char file_addr;
unsigned int file_size;

Chapter 20 Using Other Utilities 643

is converted to the following MASM form. Except for explicitly specifying the
alignment value, the conversion is direct:

fil e_ info STRUCT 2t
fil e_addr BYTE ?
fil e_s i ze WORD ?
fil e info ENDS -

If the same C structure definition is converted using the jZu option, the @t a 9_
prefix is added to the structure's name so that the name does not duplicate the name
of a structure component:

@tag_file_ info STRUCT 2t
file_addr BYTE ?
fil e_s i ze WORD ?
@tag_file_info ENDS

If the original C structure definition is modified to be an unnamed-type declaration
of a specific instance (my f i 1 e)

struct
{

unsigned char file_addr;
unsigned int file_size;

myfile ;

its MASM conversion looks like the following example. (The specific integer added
to the @ta 9_ prefix is determined by the sequence in which H2INC creates tag
names.)

@tag_7
fil e_addr
fil e_si ze
@tag_7
EXTERNDEF

STRUCT 2t
BYTE ?
WORD ?
ENDS
C myfil e :@tag_7

644 Environment and Tools

Nested structures may have as many levels as desired; they are not limited to one
level. Nested structures are "unnested" (expanded) in the correct hierarchical
sequence, as shown with the C structure and H2INC-generated code in this
example.

1* C code: *1
struct phone
{

} ;

int areacode;
long number;

struct person
{

char name[30];
char sex;
int age;
int weight;
struct phone;

Jim;

H2INC generated code:
phone STRUCT 2t
areacode SWORD
number SOWaRD
phone ENDS

person STRUCT 2t
name SBYTE
sex SBYTE
age SWORD
weight SWORD
STRUCT

areacode SWORD
number SOWaRD

ENDS
person ENDS

EXTERNDEF C Jim:person

?

30t DUP (?)

?
?
?

?
?

For information on MASM structures and unions, see the Programmer's Guide.

Chapter 20 Using Other Utilities 645

Bit Fields
H2INC translates C bit fields into MASM records. H2INC looks at a structure
definition; if it consists only of bit fields of the same type and if the total size of the
bit fields does not exceed the type of the bit fields, then H2INC outputs a RECORD
definition with the name of the structure. All bit-field names are modified to include
the structure name for uniqueness, since record fields have global scope in MASM.

For example,

struct s

int i : 4;
int j:4 ;
int k:4;

becomes:

s RECORD @tag_0:4,
k@s:4,
j@s:4,
i@s:4

The @t a 9 variable pads the record to the type size of the bit fields so alignment of
the structures will be correct.

If the bit fields are too large, are not of the same type, or are mixed with fields that
are not bit fields, H2INC generates a RECORD definition inside the structure and
then uses the definition.

For example,

struct t
{

i nt i;
unsigned char a:4;
int j:9;
int k:9;
long 1;

m;

646 Environment and Tools

becomes:

t STRUCT 2t
i SWORD ?
rec@t 0 RECORD @tag_l:4,

a@t:4
@bit_0 rec@t_0 <>
rec@t_l RECORD @tag_2:7,

j@t:9
@bit_l rec@t_l <>
rec@t_2 RECORD @tag_3:7,

k@t:9
@bit_2 rec@t_2 <>
1 SDWORD ?
t ENDS

EXTERNDEF C m:t

Notice that j and k are not packed because their total size exceeds the 16 bits of an
integer in C.

Since the @b; t field names are local to the structure, these begin with 0 for each
structure type; the @rec variables have global scope and so their number always
increases.

The C bit-field declaration

struct SCREENMODE
{

unsigned int disp_mode 4;
unsigned int fg_color 3:
unsigned int bg_color 3;

} ;

is converted into the following MASM record:

SCREENMODE RECORD disp_mode@SCREENMODE:4,
fg_color@SCREENMODE:3,
bg_color@SCREENMODE:3

For information about MASM records, see the Programmer's Guide.

Chapter 20 Using Other Utilities 647

Enumerations
H2INC converts C enumeration declarations into MASM EQU definitions that are
treated as standard integer constants. If the C declaration is not assigned a value,
then H2INC generates an EQU statement that supplies a value equivalent to its
position in the list. For example, the C enumeration declaration

enum tagName
{

} ;

i dl.
id2.
id3 = 42.
id4

is converted into the following EQU statements:

idl
id2
id3
id4

EOU
EOU
Eau
Eau

0t
It
42t
43t

For information on MASM integer constants, see the Programmer's Guide.

Type Definitions
All type definitions using C base types are translated directly. For example, H2INC
converts the C type definitions

typedef int INTEGER;
typedef float FLOAT;

to these MASM forms:

INTEGER TYPEDEF SWORD
FLOAT TYPEDEF REAL4

Pointer types are converted in a similar fashion. The following declarations

typedef int *PINT
typedef int **PINT
typedef int far *PINT

become (respectively)

PINT TYPEDEF PTR SWORD
PINT TYPEDEF PTR PTR SWORD
PINT TYPEDEF FAR PTR SWORD

648 Environment and Tools

Addressing mode determines pointer size. The number of bytes allocated for the
pointer is set by the addressing mode you have selected unless if is specifically
overridden in the type definition. C statements using typedef which convert to a
type with the same name as the type will generate the warning:

HI4010: identifier: identifier is a MASM keyword.

and are not converted. For example, H2INC does not convert

typedef int SWORD
typedef unsigned char BYTE

since these typedef statements would generate these MASM statements:

SWORD TYPEDEF SWORD
BYTE TYPEDEF BYTE

For information on using TYPEDEF in MASM 6.1, see the Programmer's Guide.

Converting Function Prototypes
When H2INC converts C function prototypes into MASM function prototypes, the
elements of the C syntax are converted into the corresponding elements of the
MASM syntax.

The syntax of a C function prototype is

[storage]] [distance]] [rectype]] [langtype]] label ([parmlist]]

In C syntax, storage can be STATIC or EXTERN. H2INC does not translate static
function prototypes because static functions are visible only within the current
source module, and standard include files do not contain executable code.

In C, the ret_type is the data type of the return value. Because the MASM PROTO
directive does not specify how to handle return values, H2INC does not translate
the return type. However, H2INC checks the langtype specified in the C prototype
to determine how particular languages return the value-through the stack or
through registers.

For the Pascal, FORTRAN, or Basic langtype specifications, H2INC appends an
additional parameter to the argument list if the return type is longer than 4 bytes.
This parameter is always a near pointer with the type of the return value. If the
value of the return value type is not supported, this parameter is an untyped near
pointer.

For the _ cdecllangtype specification in the C prototype, all returned data is passed
in registers (AX or AX plus DX). There is no restriction on the return type.
Additional parameters are not necessary.

Chapter 20 Using Other Utilities 649

The langtype represents the naming and passing conventions for a language type.
H2INC accepts the following C language types and converts them to their
corresponding MASM language types:

C Language Type

cdecl

fortran

_pascal

stdcall

_syscall

MASM Language Type

C

FORTRAN

PASCAL

STDCALL

SYSCALL

H2INC explicitly includes the lang type in every function prototype. If no language
type is specified in the .H file prototype, the default language is _ cdecl (unless the
default is overridden by the /Gc command-line option).

In the MASM prototype syntax, the label is the name of the function or procedure.

If you select the /Mn option, H2INC specifies the distance of the function (near or
far), whether or not the C prototype specifies the distance. If /Mn is not set, H2INC
specifies the distance only when it is different from the default distance specified by
the memory model.

If the C prototype's parameter list ends with a comma plus an ellipsis (. . ..), the
function can accept a variable number of arguments. H2INC converts this to the
MASM form: a comma followed by the :VARARG keyword (. : VARARG)
appended to the last parameter.

H2INC does not translate _fastcall functions. Functions explicitly declared
_fastcall (or invoking H2INC with the /Gr option) generate a warning indicating
that the function declaration has been ignored.

The following examples show how the preceding rules control the conversion of C
prototypes to MASM prototypes (when the memory model default is small). The
example function is my_func. The TYPEDEF generated by H2INC for the
PROTO is given along with the PROTO statement.

1* C prototype */
my_func (float fNum, unsigned int x);

MASM TYPEDEF
@proto_0 TYPEDEF PROTO C :REAL4, :WORD

MASM prototype
my_func PROTO @proto_0

650 Environment and Tools

/* C prototype */
extern my_func! (char *argv[]);

MASM TYPEDEF
@proto_! TYPEDEF PROTO C :PTR PTR SBYTE

MASM prototype
my_func! PROTO @proto_!

/* C prototype */
struct vconfig _far * _far pascal my_func2 (int. scri);

MASM TYPEDEF
@proto_2 TYPEDEF PROTO FAR PASCAL : SWORD. : scri

MASM prototype
my_func2 PROTO @proto_2

/* C prototype */
long pascal my_func3 (double y. struct vconfig vc);

MASM TYPEDEF
@proto_3 TYPEDEF PROTO PASCAL :REAL8. :vconfig

MASM prototype
my_func3 PROTO @proto_3

/* C prototype */
void far _cdecl myfunc4 (char _huge * short);

MASM TYPEDEF
@proto_4 TYPEDEF PROTO FAR C :FAR PTR SBYTE. :SWORD

MASM prototype
myfunc4 PROTO @proto_4

/* C prototype */
short my_func5 (void *);

MASM TYPEDEF
@proto_5 TYPEDEF PROTO C :PTR

MASM prototype
my_func5 PROTO @proto_5

/* C prototype */
char my_func6 (int •...);

MASM TYPEDEF
@proto_6 TYPEDEF PROTO C :SWORD. :VARARG

MASM prototype
my_func6 PROTO @proto_6

/* C prototype */
typedef char * ptrchar;
ptrchar _cdecl my_func7 (char *);

MASM TYPEDEF
@proto_7 TYPEDEF PROTO C :PTR SBYTE

MASM prototype
my_func7 PROTO @proto_7

For more information, see the Programmer's Guide.

Chapter 20 Using Other Utilities 651

Summary of H2lNC-Recognized Keywords and Pragmas
The four lists below comprise a summary of all the special keywords recognized by
H2INC. Items or lists marked with an asterisk (*) are recognized by H2INC
version 1.01 or later.

C Keywords (Non-Scored)
auto
break
case
cdecl
char
const
continue
default
do
double

else
enum
extern
far
float
for
fortran
goto
huge
if

int
interrupt
long
near
pascal
register
return
short
signed
sizeof

static
struct
switch
typedef
union
unsigned
void
volatile
wchar_t *
while

C Keywords (Single-Scored) (Double-Scored)
_api
_asm
_based
_cdecl
_export
_far
_far16
_fastcall
_fortran
_huge

_interrupt
_loadds
_near
_pascal
_saveregs
_segment
_segname
_self
_stdcall
_syscall

Preprocessor Keywords
defme
elif
else
endif
error
ident
if

__ api
__ asm
__ based
__ cdec1
__ export
__ far
__ far16
__ fastcall
__ fortran
__ huge

ifdef
ifndef
include
line
pragma
undef

__ interrupt
__ loadds
__ near
__ pascal
__ saveregs
__ segment
__ segname
__ self
__ stdcall
__ syscall

652 Environment and Tools

IMPLIB

Preprocessor Pragmas
alloc_text inline_recursion * plmn
auto_inline * intrinsic same_seg
check_pointer line size search_lib
check_stack loop_opt segment
code_seg * message setlocale *
comment native_caller * skip
data_seg optimize subtitle
function pack switch_check
hdrstop * page title
iniCseg * pagesize vtordisp *
inline_depth * plmf warning *

This section describes the Microsoft Import Library Manager (lMPLIB) version
1.40. This utility creates an import library from one or more module-definition
(.DEF) files and dynamic-link libraries (DLLs) for use in resolving external
references from a Windows-based program to a DLL. IMPLIB version 1.40 is
designed to use .DEF files and DLLs that work with the Microsoft Segmented
Executable Linker, versions 5.30 and later.

About Import Libraries
An "import library" is a static library (usually with a .LIB extension) that can be
read by the LINK utility. You specify the import library to LINK in the same ways
you specify standard libraries created by the LIB utility. You can use LIB to
combine an import library with other static libraries, either standard or import. For
more information on LINK, see Chapter 13. For more information on LIB, see
Chapter 17.

Import libraries are recommended for resolving references from applications to
DLLs. Without an import library, an external reference to a dynamic-link routine
must be either declared in an IMPORTS statement in the application's .DEF file or
explicitly coded in your program.

This section assumes you are familiar with import libraries, dynamic linking, and
module-definition files. For information on module-definition files, see Chapter 14.
For information on dynamic linking and import libraries, see the Programmer's
Guide.

Chapter 20 Using Other Utilities 653

IMPLIB uses only the following statements from a module-definition file and
ignores other text in the .DEF file:

• LIBRARY

• EXPORTS

• INCLUDE

The IMPLIB Command Line

Options

To run IMPLIB, use the following command line:

IMPLIB [options] implibname {dllfile ... I deffile ... }

The options field specifies IMPLID options, which are explained in the next
section.

The implibname field specifies the name for the new import library.

The dllfile field specifies the name of a DLL. You can use the deffile field to
specify a module-definition file for the DLL rather than the DLL itself. You can
enter multiple dllfile and deffile specifications. When you specify a DLL, IMPLIB
puts all exports from the DLL into the import library. To include only a subset of
the DLL's exported items in the import library, specify a module-definition file that
contains only those exports.

IMPLIB does not assume default extensions for any field. You must specify the full
names of input and output files and include the file extensions. You can specify a
path with a filename.

Example
IMPLIB mylib.lib mylib.dll

This command creates the import library named MYLIB.LIB from the dynamic-link
library MYLIB.DLL.

Options names are not case sensitive and can be abbreviated to the shortest unique
name. IMPLIB has the following options:

IH[ELP]
Calls the QuickHelp utility. If IMPLIB cannot find the help file or QuickHelp, it
displays a brief summary of IMPLIB command-line syntax.

/NOI[GNORECASE]
Preserves case sensitivity in exported and imported names.

654 Environment and Tools

/NOL[OGO]
Suppresses the IMPLIB copyright message.

/?
Displays a brief summary of IMPLIB command-line syntax.

RM, UNDEL, and EXP
This sections describes the following utilities:

• Microsoft File Removal Utility (RM) version 2.00

• Microsoft File Undelete Utility (UNDEL) version 2.00

• Microsoft File Expunge Utility (EXP) version 2.00

RM, UNDEL, and EXP run under real-mode MS-DOS. You can use these utilities
to create hidden backup files, recover the files, and delete them when no longer
needed. You can also use them to manage the backup files created by the Microsoft
Programmer's WorkBench (PWB).

Be sure to use matching versions of the RM, EXP, and UNDEL utilities. You can
check version numbers by running each utility with the /? option.

Overview of the Backup Utilities
The RM, UNDEL, and EXP utilities help you create backup files and manage those
files. RM ("remove") moves a file into a hidden subdirectory named DELETED.
UNDEL ("undelete") makes the file visible again by moving it into DELETED's
parent directory. EXP ("expunge") deletes the DELETED directory and all files
contained within; after being expunged, these files cannot be restored by UNDEL.

Use RM, UNDEL, and EXP to manage backup files created by PWB. PWB stores
backup files in a DELETED directory when its Backup switch is set to Uudel.

The RM Utility
The RM utility moves one or more files to a hidden directory named DELETED.
DELETED is a subdirectory of the directory that contains the file being deleted.
Thus RM may create many DELETED directories on your drives or floppy disks.
RM creates a DELETED subdirectory of a given directory if one does not already
exist. Run RM using the following command line:

RM [options] [files]

The files field specifies the files to be deleted. You can name more than one file,
and you can use operating-system wildcards (* and ?). You can specify a path with

Chapter 20 Using Other Utilities 655

the filename. RM prompts for permission before removing a read-only file unless IF
is specified.

RM has the following options; the option names are not case sensitive:

IF
Deletes read-only files without prompting for permission.

/HELP

II

!K

Calls the QuickHelp utility. If RM cannot find the help file or QuickHelp, it
displays a brief summary of RM command-line syntax.

Inquires for permission before deleting any file.

Keeps read-only files without deleting or prompting.

IR directory

/?

Recurses into subdirectories of directory and moves all files into corresponding
DELETED directories.

Displays a brief summary of RM command-line syntax.

Example
RM IR \PROJECT

This command line tells RM to delete all files in the directory tree whose root is the
directory named PROJECT. The PROJECT directory lies in the root directory on
the current drive. RM moves all files in this tree to hidden directories named
DELETED, each of which is created as a subdirectory of a directory that contains
the file to be deleted.

The UNDEL Utility
The utility restores one or more deleted files by moving them from a hidden
DELETED subdirectory to the parent directory. Run UNDEL using the following
command line:

UNDEL [{ option I files}]

The files field specifies the files to be restored. If you specify more than one file,
separate the names with spaces. You cannot use operating-system wildcards (* and
?). You can specify a path with the filename. If more than one file in DELETED
has the specified name, UNDEL lists the versions and prompts for which file to
restore. If a file with the same name already exists in the parent directory, UNDEL
moves it to the DELETED directory before restoring the specified file.

656 Environment and Tools

To list all files in the current directory's DELETED subdirectory, specify the
UNDEL command alone. However, you cannot list files in a remote directory;
UNDEL does not accept a path without a filename.

UNDEL has the following options; the option names are not case sensitive:

!HELP

/?

Calls the QuickHelp utility. If UNDEL cannot find the help file or QuickHelp, it
displays a brief summary of UNDEL command-line syntax.

Displays a brief summary of UNDEL command-line syntax.

Example
UNDEL \PROJECT\WORK\REPORT.TXT

This command line tells UNDEL to restore the file called REPORT.TXT in the
directory\PROJEC1\WORK on the current drive. If a file called REPORT.TXT
already exists in that directory, UNDEL changes the file to a backup file in
\PROJEC1\WORK\DELETED before restoring REPORT. TXT. If more than one
file called REPORT.TXT exists in \PROJEC1\WORK\DELETED, UNDEL
prompts for which version to restore.

The EXP Utility
The EXP utility removes a hidden DELETED directory and all files contained
within. To run EXP, use the following command line:

EXP [options] [directories]

The directories field specifies one or more directories containing DELETED
directories to be expunged. If no directory is specified, EXP deletes the current
directory's DELETED subdirectory.

EXP has the following options; the option names are not case sensitive:

!HELP

IQ

/R

/?

Calls the QuickHelp utility. If EXP cannot find the help file or QuickHelp, it
displays a brief summary of EXP command-line syntax.

Suppresses display of the names of deleted files.

Recurses into subdirectories of the current or specified directory and expunges
all DELETED directories and files.

Displays a brief summary of EXP command-line syntax.

Chapter 20 Using Other Utilities 657

Example
EXP IR \PROJECT\WORK

This command line tells EXP to:

• Delete the hidden directory \PROJEC1\ WORK\DELETED along with any files
in the directory.

• Recurse through the tree whose root is \PROJEC1\ WORK and delete any
DELETED directories and associated files.

WX/WXServer
This section describes the Microsoft WXjWXServer Utility version 1.50. This
utility runs a Windows-based program from an MS-DOS prompt within the
Windows operating system. The utility has two parts:

• WX.EXE is a command-line utility that runs a Windows-based application from
an MS-DOS prompt either in a full screen or in a window.

• WXSRVR.EXE is a Windows-based program that must be running when you
use WX.

Microsoft Programmer's WorkBench (PWB) uses WXServer to run your
Windows-based programs and Microsoft Code View for the Windows operating
system.

Running WX/WXServer
WXjWXServer requires the Windows operating system 386 enhanced mode. The
[386Enh] section of SYSTEM.INI must contain the following line:

device=[path\Jvrnb.386

To use WXjWXServer, you start WXSRVR.EXE once and leave it running in the
Windows operating system. You then can run a Windows-based application in an
MS-DOS session, either in a window or full screen, by running WX.EXE.

Running WXSRVR.EXE
To run WXSRVR.EXE, start it as an application in the Windows operating system
using one of the following methods:

• In the File Manager window, double-click the WXSRVR.EXE file (or select it
and press ENTER).

• From the File menu in either the Program Manager or File Manager window,
choose the Run command and type WXSRVR in the Command Line box.

658 Environment and Tools

• In the Program Manager window, double-click the WXServer icon. If you added
the MASM.GRP to your windows desktop, the WXServer icon will be there.
(For information on adding the MASM.GRP to your windows desktop, see
Getting Started.)

When WXSRVR.EXE is running, it does not come up in a window or full screen.
The only features you can see are the WXServer icon on the desktop and the About
Microsoft WXServer dialog box. The About dialog box is displayed if
WXSRVR.EXE is running and you do one of the following:

• Open the Control menu for WXServer and choose About WXServer.

• Switch to WXServer.

• Double-click the WXServer icon on the desktop.

The About dialog box contains four command buttons, described below:

Button Label

OK
Cancel

Hide

Terminate

Action

Accepts changes to the Timer Delay setting

Closes the dialog box and ignores any changes

Removes the icon from the desktop and leaves WXServer running

Closes WXServer

The dialog box also contains a box labeled Timer Delay. The setting in this box
determines how often WXServer checks for requests by WX to run a program. The
default setting of 100 milliseconds is appropriate for most situations. You can try
increasing the timer delay if your system seems to be running too slowly. You can
decrease the timer delay to get a quicker response to the WX command.

If you want to hide the WXServer icon, you can do so in one of two ways:

• Run WXSRVR.EXE using the IH option, as in the following command:

wxsrvr Ih

• Open the About dialog box and choose Hide.

To restore the WXServer icon to the desktop, start WXSRVR.EXE again.

To end WXSRVR.EXE, do one of the following:

• From the Control menu for WXServer, choose Close.

• Open the About dialog box and choose Terminate.

Chapter 20 Using Other Utilities 659

Running WX
To run WX, open an MS-DOS session and enter the following command at the MS
DOS prompt:

WX [options] program [arguments ...]

The program is the filename of the Windows-based application you want to run.
The arguments are any command-line options, filenames, or other arguments
required to run your application. Specify options to WX before specifying the
program name. Options names are not case sensitive and can be abbreviated to the
shortest unique name. WX has the following options:

/A[SYNC]
Runs the program asynchronously. By default, WX runs synchronously, which
pauses the MS-DOS session until the program ends. The / A option lets other
programs run in the same MS-DOS session while the Windows-based program
is running.

When running synchronously, WX requires that the MS-DOS prompt run in the
background. (To do this, open the Control menu for the MS-DOS prompt and
choose the Settings command, then tum on the Background option under
Tasking Options.)

WXServer can run only one program synchronously, but it can run additional
programs asynchronously.

IB[ATCH]
Suppresses dialog messages if errors occur. This option is useful for batch
processing.

IH[ELP]
Displays a brief summary of WX command-line syntax.

IN[OLOGO]
Suppresses the WX copyright message.

IW[INDOW]

/?

Runs a program from an MS-DOS prompt that is in a window rather than full
screen.

Displays a brief summary of WX command-line syntax.

660 Environment and Tools

Example
The following command uses WX to run an application in a window without the
copyright display:

wx /w /nologo project

The WX Environment Variable
WX.EXE uses the environment variable WX if the variable has been set. For
example, if you always want to run WX in a window without the copyright display,
use the following command to set the environment variable:

SET WX=/W INOLOGO

After the WX environment variable is set, use the following command to run the
application:

wx project

PAR T 5

Using Help

Chapter 21 Using Help .. 663

663

CHAPTER 21

Using Help

MASM offers two systems for accessing Help:

• The Microsoft Advisor, found within the Programmer's WorkBench (PWB) and
CodeView

• QuickHelp, the standalone Help program

Both systems provide the same information on important topics and utilities
provided with the development system, which include the language, run-time
libraries, PWB, and CodeView.

Structure of the Microsoft Advisor
The Microsoft Advisor can be compared to a librarian managing a collection of
books. Each book, or Help file, has its own table of contents, index, and pages
of information. The Advisor organizes the Help files with a global contents and
index. All of the files are listed, and their specific tables of contents and indexes
can be accessed through the global references. The global contents screen is shown
in Figure 21.1.

664 Environment and Tools . [Z] Help: Microsoft Advisor ,llt
~ummt ~Back~ .~

---Microsoft Advisor

-Edit/Debug -Languages r--Classes. APIs

~Programmer's WorkBench~ ~C/C++ Language~ ~MS Foundation Classes~
~CodeUiew Debuggers~ ~C Libraries~ ~Windows API~
~Profiler~ ~Assembly~

~BASIC~ ~iostrea~
~P-Code Help~ ~COBOL~
~Errors Help~ ~FORTRAN~ ~PWB Extensions~

--Microsoft Utilities----- -Conmand Line-

~LINK~ ~QH~ ~C/C++ Compiler~ ~Using Help~
~NMAKE~ ~Macro Assembler~
~HELPMAKE~ ~BASIC Compiler~ ~ASCII Table~
~LIB~ ~COBOL Syste~
~Miscellaneous~ ~FORTRAN Compiler~

-+-

~

Figure 21.1 Microsoft Advisor Global Contents Screen

You can access a variety of infonnation from the Help system. Infonnation is
available on the languages, run-time libraries, errors, and the Help system itself.

Navigating Through the Microsoft Advisor
You request infonnation about a topic in a window by moving the cursor to it and
pressing Fi or by clicking it with the right mouse button. The Help system then
searches through the Help files for infonnation about the topic. If it finds the topic,
the Help system displays infonnation in the Help window. If Help cannot be found
for a particular word or symbol, a message infonns you that no information is
associated with the topic.

Sometimes, a topic with the same name occurs in several Help files. When you
request Help in PWB for one of these names, PWB displays a dialog box in which
you can select the context of the topic. The Next command on the Help menu takes
you to the next occurrence. When you are using QuickHelp, the first topic is
displayed. You can then press E to go to the next occurrence.

Note Code View does not use the right mouse button for Help in the Source
window. Clicking the right mouse button on a line in the Source window executes
the program to that line. However, the right mouse button activates Help in the
other Code View windows.

Chapter 21 Using Help 665

Using the Help Menu
The simplest method for accessing Help is by using the commands found in the
PWB and Code View Help menus. These commands present information in the Help
window.

Command

Index

Contents

Topic: topic

Help on Help

1=[2]

Description

Displays the global index of categories (see Figure 21.2).

Displays the global Help contents screen.

Provides information about the topic at the cursor. If information
about the topic is available, the topic's name is appended to the Topic
command. Otherwise, this command is dimmed.

Displays information about using Help itself.

Help: Microsoft Advisor Indexes =======tl! 1 t
~mmn.,. ~Back~

---Microsoft Advisor-------------------

Edit/Debug Indexes ~Programmer·s WorkBench~
~CodeUiew Debuggers~
~Profiler~
~P-Code~

Language Indexes ~C/C++ Language and Libraries~
~Assembler~
~BASIC~
~FORTRAN~
~COBOL~

Command Line Indexes ~C/C++ Compiler~
~Macro Assembler~
~BASIC Compiler~
~FORTRAN Compiler~
~COBOL Compiler~

Utilities Indexes ~LINH and EXEHDR~

Figure 21.2 Microsoft Advisor Global Index Screen

PWB and QuickHelp provide additional commands to access Help. These
commands are described in the program-specific sections at the end of this chapter.

Using the Mouse and the F1 Key
You can use the mouse and the Fl key to get information about any menu command
or dialog box, as well as information on keywords, operators, and run-time library
functions.

666 Environment and Tools

Help on Menu Commands
~ To view information about a menu item:

1. Open the menu.

2. Drag the mouse to the command and click the right mouse button.
-or-
Use the ARROW keys to select the command and press Fl.

The information on the selected command is displayed in a Help dialog box.

Help on Dialog Boxes
~ To view information about a dialog box:

1. Open the dialog box.

2. Click the Help button.
-or-
Press FI.

The information on the dialog box is displayed in a Help dialog box.

Using Hyperlinks
Hyperlinks are cross-references that connect related information.

Hyperlinks enclosed by the < and> characters are called "buttons." You can
navigate through the Help system by using these buttons.

You can press TAB to move to the next hyperlink button within the Help window.
Pressing SHIFf + TAB moves to the previous button. In PWB and Code View, typing
any letter moves the cursor to the next button that begins with that letter; holding
down SHIFT and typing a letter moves the cursor backward.

The Microsoft Advisor also recognizes language keywords, library functions,
constants, and similar identifiers as hyperlinks, but these are not marked. Unmarked
hyperlinks are recognized by the Microsoft Advisor wherever they appear in the
Help text or in your source code. However, an unmarked hyperlink is not delimited
with the < and> characters, and you can't move to it with the TAB key.

An unmarked hyperlink can be activated only by pointing to it with the mouse and
clicking the right mouse button or by placing the cursor on it and pressing Fl. In
QuickHelp, press the S key and then type the text of the hyperlink in the dialog box.
In CodeView, use the Help (H) Command-window command.

~ To activate a hyper link with the mouse:

1. Move the mouse pointer to the hyperlink.

2. Click the right mouse button.
-or-

Chapter 21 Using Help 667

Click the left mouse button twice (double-click). Double-clicking works only in
the Help window.

~ To activate a hyperlink with the keyboard:

1. Press TAB, SHIFr+TAB, or the ARROW keys to move the cursor to the hyperlink.
When you move the cursor to a hyperlink button, the entire button is selected.

2. Press Fl, ENTER, or SPACEBAR.

Any of these actions displays information about the topic at the cursor. If the topic
isn't a hyperlink, a message informs you that no information on the topic could be
found.

Note Code View uses the right mouse button differently in the Source window.
Clicking the right button in the Source window executes the program to the line
where the mouse was clicked. However, once the Help window is displayed, the
right mouse button can be used to activate hyperlinks.

Using Help Windows and Dialog Boxes
The Microsoft Advisor displays information in windows or dialog boxes. Help
windows and dialog boxes function in the same way as other windows and dialog
boxes found in PWB and Code View. For a complete description of windows and
dialog boxes, see Chapter 4, "User Interface Details."

Using the Help Window
The Help window displays various contents, indexes, and information about
selected topics. Some screens of information are larger than the Help window;
information beyond the window borders can be viewed by using the scroll bars or
the cursor-movement keys. The -+- symbol indicates the end of information in the
Help window.

668 Environment and Tools

Navigating with Hyperlinks
At the top of most Help windows is a row of hyperlink buttons that are useful for
moving through the Help system:

Button

<Up>

<Contents>

<Index>

<Back>

Description

Moves upward in the hierarchy of Help screens. Since infonnation is
ordered in a logical way, moving from the general to the specific, this
command is useful for moving up the infonnation tree.

Displays the global contents screen. This command is useful because
it returns you to a known point in the Help hierarchy. For some Help
databases, the Contents button goes to that database's contents.

Displays the global index list. Selecting an item from the list displays
the index for that category. When you are viewing an index for a
particular category, the letters on the bar across the top of the screen
are hyperlinks. For some Help databases, the Index button goes to
that database's index.

Moves you to the last Help you saw.

The Contents and Index commands on the Help menu always display the global
Contents and Index screens.

Screens on a particular topic are frequently grouped together in a Help file. You can
press CTRL+Fl to display information about the next physical topic in the Help file.

Viewing the Previous Help
The Microsoft Advisor remembers the last 20 Help screens you've accessed. To
return to a previous screen, use the <Back> button or press ALT+Fl as many times
as necessary to return to the screen you want to see. The Help screen that appears is
active; you can ask for Help on any of its hyperlinks or topics.

You can always return to the global Contents screen by choosing Contents from the
Help menu or by pressing SHIFT +Fl.

Copying and Pasting Help
Any text that appears in the PWB Help window can easily be copied to another
window. For example, to test an example program from the Help window, you only
have to copy it to a new file and compile it. You select and copy text in the Help
window just as you do for any other window in PWB.

If you are using QuickHelp, you cannot cut and paste directly into your text editor.
However, you can use the commands in the QuickHelp Paste menu to extract
predetermined portions of the Help screen to a file. To change the name of the paste
file, choose Rename Paste File from the File menu.

Chapter 21 Using Help 669

If you paste example code from QuickHelp, you will need to delete the "Topic" line
at the beginning and the -+- line at the bottom of the topic before you can
successfully assemble or compile the example.

Closing the Help Window
Once you're through working with the Help system, you can close the active Help
window.

~ To close the Help window:

• Choose the Close button in the upper left comer of the window.
-or-
Press ESC.

Using Help Dialog Boxes
Help dialog boxes provide infonnation about menu commands and dialog boxes. A
Help dialog box appears over the windows on the desktop. Unlike the Help
window, a Help dialog box must be closed before you can continue. The Cancel
button closes the Help dialog box.

~ To view information about a dialog box:

• Choose the Help button in the dialog box.
-or-
Press Fl.

~ To close a Help dialog box:

• Choose the Cancel button.
-or-
Press ESC.

Accessing Different Types of Information
This section presents some strategies for accessing the different types of
infonnation available within the Help system.

Keyword Information
The Help system contains infonnation about all keywords, operators, symbolic
constants, and library functions in the development system. If you know the exact
name of a keyword, you can type it in a window and click it with the right mouse
button or press Fl. For operators that do not have an alphabetic name, you must
select the operator before activating Help. You can also use the index for the
appropriate category of Help.

670 Environment and Tools

~ To get Help using the index:

1. From the Help menu, choose Index.
-or-
Choose the Index button on any Help screen.

2. Choose the appropriate category of Help from the list of indexes.

Each index has a row of letters across the top.

3. Choose the keyword's first letter from the row of letters. If you want Help for
a nonalphabetic operator, choose the asterisk (*).

4. Scroll down the list of entries and choose the topic's hyperlink.

In PWB, you can get Help on a keyword or operator by using the Arg function,
typing the keyword in the Text Argument dialog box, then pressing Fl. Assuming
that Arg is assigned to ALT+A (the default assignment), the following procedure
displays Help for the mov function.

~ To get Help using the Arg function in PWB:

1. Press ALT+A

PWB displays the message Arg [1] on the status bar.

2. Type may.

When you type the first letter of the keyword, PWB displays the Text Argument
dialog box. Continue typing the keyword.

3. Press Flo

PWB displays the Help for the mov function.

~ To get Help on a topic in QuickHelp:

1. Choose Search from the View menu or press the s key.

QuickHelp displays a dialog box where you can type the topic name.

2. Type the keyword.

3. Choose OK or press ENTER.

Figure 21.3 shows a PWB window with the information for the mov function.

Chapter 21 Using Help 671

1=[2]= Help: MOl) Instruction == l t
-4Detail~ -4](e~~ -4Up~ -4Contents~ -4lndex~ -4Back~ t

Title: Moue Data Flags: 0 D ITS ZAP C

S~ntax: MOIJ dest.src -none-

See also: MOIJS. MOIJSX. MOIJZX. MOl) Special. LEA. XCHG

Description:

Moues the ualue in the source operand to the destination operand.
If the destination operand is SS. interrupts are disabled until
the next instruction is executed (except on earl~ uersions of the
8088 and 8086).

-+-

Figure 21.3 Help for mov in a PWB Window

When information about a programming-language keyword or function is shown in
the Help window, two additional hyperlink buttons are displayed.

<Description>
Provides a detailed explanation of the function. When the description
information is displayed, the button changes to <Summary>. Click this button to
return to the summarized information about the function.

<Example>
Displays source code that provides an example of how the function is used.

Topical Information
The Help system is useful when you want an overview of the available reference
topics or when you only have a general idea of what information you need. Start
with the global contents screen, and then select any hyperlinks that relate to the
topic. You can traverse the hyperlinks until you locate the necessary information.

Menu and Dialog-Box Help
You can get information about any menu command or dialog box by pressing Fl

when the menu command is highlighted or the dialog box is displayed. This is
helpful when you are fIrst learning to use the development system and you are not
completely familiar with all of the features.

Error Help
The Microsoft Advisor provides information about compiler and linker error
messages. Whenever a message is displayed on the bottom line of the window in
PWB, press Fl to see Help on that error.

You can also get Help for any error in the Build Results window.

672 Environment and Tools

~ To find the meaning of an error message using the mouse:

1. Position the mouse pointer on the error number in the Build Results window.

2. Click the right mouse button.

~ To find the meaning of an error message using the keyboard:

1. Move the cursor to the Build Results window.

2. Position the cursor on the error number.

3. Press Fl.

Help on error messages is also available directly by executing the Arg function,
typing the error number and its alphabetic prefix, and then pressing Fl. Make sure
that you type the number exactly-case is significant.

Using Different Help Screens
In addition to the global screens and the topic screens that have already been
described in this chapter, the Microsoft Advisor contains some other types of
screens that you use in special ways.

Using Index Screens
An index screen has a bar of letters at the top of the screen, below the row of
hyperlink buttons. Each letter on the bar is a hyperlink to that letter's list of index
entries. The asterisk (*) at the end of the bar is also a hyperlink. This screen lists
the nonalphabetic entries. Click the right mouse button on the letter to see that part
of the index.

Figure 21.4 shows the PWB index screen for the A category. Below the row of
alphabet hyperlinks is a list of index entries. Each entry is a hyperlink to the
indicated topic.

Chapter 21 Using Help 673

1=[2]===== Help: Programmer's Io.brkBench Index III t
.. ~ "Contents~ "Inde~ "Back~

-Programmer's Io.brkBench Index---------------

'A'
About
adding to the Run menu
Alert
All Files
'all' pseudotarget
ALTGR
Anchor

Figure 21.4 PWB Index

Using Topic Lists

"Meta Function~
"Help menu, About command~
"Run menu, Customize Run Menu command~
"Color Names~
"File menu, All Files cOmmdnd~
"Build :all Switch~
"Enablealtgr Switch~
"Edit menu, Set Anchor corrmand~
"Edit menu, Select To Anchor command~

Some topics are not a screen of text with fixed hyperlink buttons at the top. Instead,
they are a list of topics in which each line is a hyperlink. The entire line is
highlighted. You can point to the line and click the right mouse button to activate
the hyperlink. You can also use the UP ARROW and DOWN ARROW keys to select a
topic, and then press Fl or ENTER to go to that topic.

Using Help in PWB
PWB provides additional Help features to help you find the information you need.

Opening a Help File
You can open Help files temporarily in PWB by using the SetHelp function. If you
keep rarely used Help files in a directory that is not listed in the HELPFILES
environment variable, you can still open the files when you need them.

~ To open another Help file in PWB:

1. Execute the Arg function (press ALT+A).

2. Type the name of the Help file to open. PWB displays the Text Argument dialog
box when you type the first letter of the filename.

3. Execute the SetHelp function (press SHIFT+CTRL+S).

To close a Help file, execute Arg Metafile SetHelp. That is, press ALT+A, F9, type
the filename, then press SHIFT +CTRL+S.

674 Environment and Tools

Global Search
The Global Search command on the Help menu in PWB lets you search all open
Help files for a string of text or a regular expression. All text in the Help files is
searched, not just the topic names. A global search results in a list of topics, each of
which contains text that matches the search string. QuickHelp can also perform
global Help searches, but does not offer regular-expression matching.

Searching all the Help can take a long time. Therefore, it is recommended that you
use the Global Search command only after you have tried other methods of finding
the information you need.

Running a Global Search
When you choose the Global Search command, PWB displays the Global Search
dialog box where you can specify options for the search. Enter the string or pattern
you want to locate in the Find Text box. If you want the search to be case sensitive,
tum on the Match Case option. To match a regular expression rather than literal
text, tum on the Regular Expression option.

Regular expressions allow you to specify general patterns of text or several
alternative strings to match. The current regular-expression syntax is displayed in
parentheses after the Regular Expression option. For more information about
searching with regular expressions, see Chapter 5, "Advanced PWB Techniques,"
and Appendix B.

When you choose OK, PWB starts searching for the specified string or regular
expression. The search begins with the Help file that was opened most recently.
Because the search can take a long time, it is recommended that you choose a likely
category of Help from the global Contents screen before starting a global search.

When you start a global search, PWB displays a dialog box that shows the progress
of the search. Choose the Stop Search button at any time to stop the search and
view the partial results. When the search ends, PWB displays a list of matching
topics.

Using Search Results
When the search is finished, or when you halt the search by choosing Stop Search,
PWB displays a list of the topics that contain text that matches the specified string.
Each topic is represented by its title if it has one, followed by the name of the
database that contains the topic, and sometimes followed by the topic name.

~ To select a topic from the list:

• Click the right mouse button on the line.
-or-

Chapter 21 Using Help 675

Press the UP ARROW and DOWN ARROW keys until the topic is highlighted, and
then press ENTER or Fl.

PWB displays the selected topic. If that topic does not supply the information that
you need, go back to the list and select another topic.

~ To go back to the list:

• Choose Search Results from the Help menu.
-or-
Press ALT+Fl until the list is displayed.

Restricting the Search
By default, PWB performs a global search in all open databases. There are several
ways to control which databases are searched:

• Before the search, display Help from the database that is most likely to contain
the information you want. When you run the search, choose Stop Search when
the dialog box indicates that the first database has been searched.

• Close some databases by using the Meta form of the SetHelp function.

• Set the HELPFILES environment variable to the file or files to be searched by
using the Environment Variables command on the Options menu. The list of
files cannot exceed the MS-DOS limit of 128 characters.

Note that the changes you make to HELPFILES may be restored the next time
you start PWB or use the project, depending on the settings of the Envcursave
and Envprojsave switches.

• Choose the Editor Settings command from the Options menu. Then select
PWBHELP as the Switch Owner and Text as the switch type. Assign a value to
the Helpfiles switch to open other Help files in addition to the ones listed in the
HELPFILES environment variable.

To see a list of all open Help files and databases, execute the Arg ? SetHelp
command. The default keystrokes for this are ALT+A, ?, SHIFT+CTRL+S. The resulting
list of physical Help files and Help databases is displayed in the Help window.

Using QuickHelp
QuickHelp is a separate application that provides access to any Help file. It uses the
same Help files as the Microsoft Advisor and presents information about topics in
the same way. QuickHelp is designed for the developer who prefers using

676 Environment and Tools

command-line utilities or another editor and doesn't have access to the Microsoft
Advisor through PWB.

Major utilities that come with MASM invoke QuickHelp and display related
information when you use the /Help option. You can also use QuickHelp from the
command line, as explained in the following sections.

Using the IHeip Option
You can get immediate information on the major MASM components by using the
/Help option. The following procedures use the LIB utility as an example. However,
you can use these methods for all command-line utilities in the development system.

~ To learn about the LIB utility:

• At the operating-system command line, type:

LIB IHelp

LIB starts QuickHelp which displays information about LIB.

Using the QH Command
You can also run QuickHelp from the MS-DOS command line or by double
clicking the MASM 6.1 Reference icon in your Windows operating system Program
Manager MASM group. (For more information on adding the MASM.GRP
program group to your windows desktop, see Getting Started.)

~ To get Help on the LIB utility:

• At the operating-system command line, type:

OH LIB. EXE

You can type the name of any Microsoft utility instead of LIB.

~ To start QuickHelp to view the Advisor Contents screen:

• At the operating-system command line, type:

OH Advisor

In addition to information about programs, QuickHelp can also display information
about compiler and run-time errors. Type Q H and the error number with its
alphabetic prefix on the command line.

Chapter 21 Using Help 677

Opening and Closing Help Files
When you run QuickHelp, it looks for the environment variable HELPFILES and
opens all listed .HLP files. If the HELPFILES variable isn't defined, QuickHelp
opens all .HLP files in directories specified by the PATH environment variable.

Warning Windows-based Help files are not compatible with QuickHelp. Make
sure that Windows-based Help files are not listed in the HELPFILES environment
variable.

Choose the List Database command on the File menu to view a list of all the open
Help files.

~ To open additional Help files:

1. Choose the Open Database command from the File menu.

2. Type the name of the Help file to be opened in the dialog box that appears. You
can specify all Help files in a directory by typing * . HLP.

3. Press ENTER or choose the OK button.

~ To close an open Help, file:

1. Choose the Close Database command from the File menu.

The File menu changes to a list of open Help files.

2. Choose the Help file to close.

Displaying a Topic
You can view information about a topic by using the Search command on the View
menu. When topic information is displayed, it is shown in the same format as
information presented by the Microsoft Advisor.

~ To display a topic from any of the open Help files:

1. Choose the Search command from the View menu.

2. Type the topic you want information about in the dialog box.

3. Click the OK button or press ENTER.

QuickHelp searches for the topic in the open Help files. If the topic cannot be
found, a dialog box informs you that the search failed. If the search is successful,
information about the topic is displayed in the QuickHelp window.

678 Environment and Tools

Navigating Through Topics
A series of commands on the View menu allow you to display selected topics.
These commands include the following:

Command Description

View History Displays a list of all the topics that have recently been displayed. See
"Using Topic Lists" on page 673 for infonnation on using the list.

View Last

View Next

View Back

Displays the last topic you looked at.

Displays the next topic in the Help file.

Moves backward one topic in the Help file.

Using the QuickHelp Window
The QuickHelp window shown in Figure 21.5 is similar to the Microsoft Advisor
Help window. Information that doesn't fully fit in a window can be scrolled, and
hyperlinks are used to display additional information. The main difference is that
information presented in QuickHelp cannot be copied selectively.

I -II - II I

~Inde~ ~Back~ t
-Microsoft Advisor------------------- :;:

Ed itiDebug·-----.

~Programmer's WorkBench~
~CodeUiew Debuggers~
~Profiler~

~P-Code Help~
~Errors Help~

icrosoft Utilities

~LINN~ ~QH~
~NmNE~
~HELpmNE~
~LIB~
~Miscellaneous~

Languages------,

~C/C++ Language~
~C Libraries~
~Assembly~
~BASIC~
~COBOL~
~FORTRAN~

orrrnand Line

lasses, APIs------,

~MS Foundation Classes~
~Windows API~

~iostrearri-

~PWB Extensions~

~C/C++ Compiler~ ~Using Help~
~Macro Assembler~
~BASIC Compiler~ ~ASCII Table~
~COBOL Systerri-
~FORTRAN Compiler~

-+-

Microsoft Advisor

Figure 21.5 The QuickHelp Window

Chapter 21 Using Help 679

Copying and Pasting in QuickHelp
To transfer information from QuickHelp to another program, specify a file with the
Rename Paste File command in the File menu. Once the file is specified, choose the
Current Window or the Current Topic command in the Paste menu to transfer the
text to that file. Be sure to specify a new file when you paste because QuickHelp
overwrites the existing file by default. To append to an existing file, choose the
Paste Mode command from the Options menu. The default filename is PASTE.QH
in the directory specified by the TMP environment variable.

More About QuickHelp
In addition to the features mentioned previously, QuickHelp has a variety of other
options such as changing the appearance of the Help window, searching for text
within topics, and controlling the function of the right mouse button.

~ To learn more about QuickHelp's features:

1. Make sure the QH.HLP file is open.

2. To view QuickHelp' s Help, press Fl.

-or-
To get information about a menu command, click it with the right mouse button,
or highlight the command and press Fl.

Managing Help Files
When you run the MASM Version 6.10 SETUP program, you are given a choice of
whether to install the Help files. If you choose to install Help, SETUP copies the
Help files to the directory that you specify. By default, this is the C:\MASM\Help
directory.

Several other Microsoft products contain a Microsoft Advisor Help system. If you
have more than one of these products, you can use all the files as one system by
copying all.HLP files to a common directory. However, make sure that Windows
based Help files are separate from the Advisor Help files.

Some Help files, such as UTILS.HLP, exist in other Microsoft language products.
When an existing Help file has the same filename as a MASM Help file, use the
most recent file. Note that the files RC.HLP and UTILERR.HLP are obsolete and
should be deleted or moved to another directory.

The HELPFILES environment variable tells the Advisor where to find Help files.
You usually set this variable in AUTOEXEC.BAT. If you move the Help files,
make sure to change the SET command in AUTOEXEC.BAT to point HELPFILES
to the new location.

680 Environment and Tools

Managing Many Help Files
If you have a large number of Help files, you may reach a limit on the number of
physical Help files or Help databases that can be open at one time. QuickHelp,
PWB, and CodeView display a message when you have too many Help files. If this
is the case, you must do one or more of the following:

• Delete all obsolete Help files.

• Move rarely used Help files to another directory. You can then open these files
as you need them.

• Concatenate some Help files.

It is recommended that you always keep ADVISOR.HLP. Moreover, for Help on
error messages, you must use the Help file for the tool that issues the error. It is
recommended that you save backup copies of all Help files before concatenating,
splitting, or deleting any files.

To open and close Help files in PWB, use the SetHelp function. To open and close
Help files in QuickHelp, choose the Open Database and Close Database commands
from the File menu.

You can get a listing of the open Help files in PWB and QuickHelp. These lists
show the open Help files, the Help databases contained in the files, and the title for
each database if it has one. To get a list of open Help files in PWB, execute the
function sequence Arg ? SetHelp. With the default keystrokes, press ALT+A, type a
question mark (?), then press SHIFf +CTRL+S. To get a list of open Help files in
QuickHelp, choose the List Databases command from the File menu. Once you
have created the list of Help files, you can print it for later reference.

Concatenating Help Files
To concatenate two or more physical Help files, use the MS-DOS COPY command.
(Before you concatenate a Help file, save a backup copy of the files you are going
to concatenate.) The syntax for using the COPY command to combine Help files is:

COPY file /b IT + file /b] ... newfile

Use a plus sign (+) between the filenames of the original Help files. Specify the /b
option to copy the files as binary files. If you don't specify a new filename, the
resulting file takes the name of the first file and the original file is overwritten.

You can use this command to combine two Microsoft Advisor Help files. For
example, to create a physical Help file named ADVISOR.HLP that contains
ADVISOR.HLP and QH.HLP, use the following command:

Chapter 21 Using Help 681

COPY ADVISOR. HLP Ib + OH.HLP Ib

You can also combine your own Help file (created using HELPMAKE) with
Microsoft Help files.

Splitting Help Files
To split a physical Help file into its component databases, use the HELPMAKE
utility. (Before you split a Help file, save a backup copy of the file you are going to
split.) The syntax for using HELPMAKE to split a Help file is:

HELPMAKE IDS file

Specify the IDS option when splitting a Help file. For more information on the IDS
option, as well as other uses of HELPMAKE, see Chapter 18. HELPMAKE
creates individual physical files with the name of the original Help database. The
resulting files are created in the current directory.

For example, the following command extracts the component Help databases from
the UTILS.HLP file:

HELPMAKE IDS UTILS.HLP

The UTILS.HLP file itself is not changed. You can delete the unneeded component
files and then concatenate the remaining files to create a new version of
UTILS.HLP.

Appendixes

Appendix A Error Messages . 685
Appendix B Regular Expressions . 845

685

APPENDIX A

Error Messages

The error messages generated by MASM components fall into three categories:

• Fatal errors. These indicate a severe problem that prevents the utility from
completing its normal process.

• Nonfatal errors. The utility may complete its process. If it does, its result is not
likely to be the one you want.

• Wamings. These messages indicate conditions that may prevent you from
getting the results you want.

All error messages take the form:

Utility: Filename (Line) : [Error type} (Code): Message text

Utility is the program that sent the error message.

Filename is the file that contains the error-generating condition.

Line is the approximate line where the error condition exists.

Error type is Fatal Error, Error, or Warning.

Code is the unique 5- or 6-digit error code.

Message text is a short and general description of the error condition.

Error Message Lists
Messages for each utility are listed below in numerical order, with a brief
explanation of each error. The following two tables list the messages by utility
and error code, respectively.

686 Environment and Tools

Table A.I Error Codes Listed by Utility

Utility Name Error Type Code Page

BSCMAKE Fatal BK1500 to BK15l5 688

Warnings BK4500 to BK4503 691

C/C++ Expression All CANOOOO to CAN0063; 692
Evaluators CXXOOOO, CXX0064

CodeView Nonfatal CVOOOO to CV5014 700

CVPACK Fatal CKlOOO to CKl02l 716

Warnings CK4000 to CK4003 720

EXEHDR Fatal UllOO to Ul140 721

Math Coprocessor All M6l0l to M6205 722

H2INC Fatal HIl003 to HI180l 724

Nonfatal HI2000 to HI2555 727

Warnings HI4000 to HI4820 745

HELPMAKE Fatal HlOOO to H1990 761

Nonfatal H2000 to H2003 766

Warnings H4000 to H4003 766

IMPLIB Fatal IM1600 to IM1608 767

Nonfatal IM260 1 to IM2603 768

Warnings IM4600 and IM4601 768

LIB Fatal Ul150 to U1203 769

Nonfatal U2l52 to U2l59 772

Warnings U4l50 to U4l58 773

LINK Fatal LlOOl to L1129 775

Nonfatal L2000 to L2064 786

Warnings L4000 to L4086 791

ML Fatal AlOOO to A190l 798

Nonfatal A2000 to A290l 802

Warnings A4000 to A6005 825

NMAKE Fatal UlOOO to U1099; 828
U1450 to U1455

Nonfatal U200l 838

Warnings U400l to U4009 838

PWB All PWB3089 TO PWB39l2; 840
PWB12078 TO PWB12086

SBRPACK All SBlOOO to SBlOO6 842

Appendix A Error Messages 687

Table A.2 Error Codes Listed by Error Code Range

Code Utility Name Error Type Page

A1000 to A1901 ML Fatal 798

A2000 to A2901 ML Nonfatal 802

A4000 to A6005 ML Warnings 825

BK1500 to BK1515 BSCMAKE Fatal 688

BK4500 to BK4503 BSCMAKE Warnings 691

CANOOOO to CAN0063; CjC++ Expression All 692
CXXOOOO, CXX0064 Evaluators

CK1000 to CK1021 CVPACK Fatal 716

CK4000 to CK4003 CVPACK Warnings 720

CVOOOO to CV5014 CodeView Nonfatal 700

H1000 to H1990 HELPMAKE Fatal 761

H2000 to H2003 HELPMAKE Nonfatal 766

H4000 to H4003 HELPMAKE Warnings 766

HI1003 to HI1801 H2INC Fatal 724

HI2000 to HI2555 H2INC Nonfatal 727

HI4000 to HI4820 H2INC Warnings 745

IM1600 to IM1608 IMPLIB Fatal 767

IM2600 to IM2603 IMPLIB Nonfatal 768

IM4600 and IM4601 IMPLIB Warnings 768

LlOOl to L1129 LINK Fatal 775

L2000 to L2064 LINK Nonfatal 786

L4000 to L4086 LINK Warnings 791

M6101 to M6205 Math Coprocessor All 722

PWB3089 to PWB3912; PWB All 840
PWB12078 to PWB12086

SB1000 to SB1006 SBRPACK All 842

U1000 to U1099 NMAKE Fatal 828

U1100 to Ul140 EXEHDR Fatal 721

Ul150 to U1203 LIB Fatal 769

U1450 to U1455 NMAKE Fatal 828

U2001 NMAKE Nonfatal 838

U2152 to U2159 LIB Nonfatal 772

U4001 to U4009 NMAKE Warnings 838

U4150 to U4158 LIB Warnings 773

688 BSCMAKE Error Messages

BSCMAKE Error Messages
Microsoft Browser Database Maintenance Utility (BSCMAKE) generates the
following error messages:

• Fatal errors (BKlxxx) cause BSCMAKE to stop execution.

• Warnings (BK4xxx) indicate possible problems in the database-building
process.

BSCMAKE Fatal Error Messages
BK1500

BK1501

BK1502

BK1503

BK1504

UNKNOWN ERROR
Contact Microsoft Product Support Services

BSCMAKE detected an unknown error condition.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

unknown character character in option option

BSCMAKE did not recognize the given character specified for the given option.

incomplete specification for option option

The given option did not contain the correct syntax.

cannot write to file filename

BSCMAKE could not write to the given file.

One of the following may have occurred:

• The disk was full.

• A hardware error occurred.

cannot position in file filename

BSCMAKE could not move to a location in the given file.

One of the following may have occurred:

• The disk was full.

• A hardware error occurred.

• The file was truncated. Truncation can occur if the compiler runs out of disk space or is
interrupted when it is creating the .SBR file.

BK1505

BK1506

BK1507

BK1508

BSCMAKE Error Messages 689

cannot read from file filename

BSCMAKE could not read from the given file.

One of the following may have occurred:

• The file was corrupt.

• The file was truncated. Truncation can occur if the compiler runs out of disk space or is
interrupted when it is creating the .SBR file.

cannot open file filename

BSCMAKE could not open the given file.

One of the following may have occurred:

• No more file handles were available. Increase the number of file handles by changing the
FILES setting in CONFIG.SYS to allow a larger number of open files. FILES=50 is the
recommended setting.

• The file was locked by another process.

• The disk was full.

• A hardware error occurred.

• The specified output file had the same name as an existing subdirectory.

cannot open temporary file filename

BSCMAKE could not open one of its temporary files.

One of the following may have occurred:

• No more file handles were available. Increase the number of file handles by changing the
FILES setting in CONFIG.SYS to allow a larger number of open files. FILES=50 is the
recommended setting.

• The TMP environment variable was not set to a valid drive and directory.

• The disk was full.

cannot delete temporary file filename

BSCMAKE could not delete one of its temporary files.

One of the following may have occurred:

• Another process had the file open.

• A hardware error occurred.

690 BSCMAKE Error Messages

BK1509 out of heap space

BK1510

BK1511

BK1512

BSCMAKE ran out of memory.

One of the following may be a solution:

• Reduce the memory that BSCMAKE will require by using one or more options. Use /Ei
or /Es to eliminate some input files. Use /Em to eliminate macro bodies.

• Run BSCMAKE (or PWB if you are building a database in PWB) in an MS-DOS
session within Windows to use virtual memory provided under the Windows operating
system.

• Free some memory by removing terminate-and-stay-resident (TSR) software.

• Reconfigure the EMM driver.

• Change CONFIG.SYS to specify fewer buffers (the BUFFERS command) and fewer
drives (the LASTDRIVE command).

• Run BSCMAKEV.EXE instead of BSCMAKE.EXE.

corrupt .SBR file filename

The given .SBR file is corrupt or does not have the expected format.

Recompile to regenerate the .SBR file.

invalid response file specification
BSCMAKE did not understand the command-line specification for the response file. The
specification was probably wrong or incomplete.

For example, the following specification causes this error:

bscmake @

database capacity exceeded
BSCMAKE could not build a database because the number of definitions, references,
modules, or other information exceeded the limit for a database.

One of the following may be a solution:

• Exclude some information using the /Em, /Es, or /Ei option.

• Omit the /Iu option if it was used.

• Divide the list of .SBR files and build multiple databases.

BK1513

BK1514

BK1515

BSCMAKE Error Messages 691

nonincremental update requires all .SBR files

An attempt was made to build a new database, but one or more of the specified .SBR files
was truncated. This message is always preceded by warning BK4502, which will give the
name of the .SBR file that caused the error.

BSCMAKE can process a truncated, or zero-length, .SBR file only when a database already
exists and is being incrementally updated.

One of the following may be a cause:

• The database file was missing.

• The wrong database name was specified.

• The database was corrupted, and a full build was required.

all .SBR files truncated and not in database

None of the .SBR files specified for an update was a part of the original database. This
message is always preceded by warning BK4502, which will give the name of the .SBR file
that caused the error.

One of the following may be a cause:

• The wrong database name was specified.

• The database was corrupted, and a full build was required.

bscfile : incompatible version; cannot incrementally update

The given database (.BSC file) was not created with this version of BSCMAKE.
A database can be incrementally built only by the same version of BSCMAKE as the one
used to fully build the database.

BSCMAKE Warning Messages
BK4500

BK4501

UNKNOWN WARNING
Contact Microsoft Product Support Services

An unknown error condition was detected by BSCMAKE.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

ignoring unknown option option

BSCMAKE did not recognize the given option and ignored it.

If the given option is Ir, it must be specified first on the BSCMAKE command line.

692 CodeView C/C++ Expression Evaluator Errors

BK4502 truncated .SBR file filename not in database

BK4503

The given zero-length .SBR file, specified during a database update, was not originally part
of the database.

If a zero-length file that is not part of the original build of the database is specified during a
rebuild of that database, BSCMAKE issues this warning. One of the following may be a
cause:

• The wrong database name was specified.

• The database was deleted (error BK1513 will result).

• The database file was corrupted, requiring a full build.

minor error in .SBR file filename ignored

The given .SBR file contained an error that did not halt the build. However, the resulting
.BSC file may not be correct.

Recompile to regenerate the .SBR file.

CodeView C/C++ Expression Evaluator Errors
CANOOOO no error condition

No error has occurred, and this message should not appear.

You can continue debugging normally.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

CANOOOI exception executing user function

The code being executed caused a general protection fault.

CAN0002 error accessing user memory

The expression attempts to reference memory that is not allocated to the program being
debugged.

CAN0003 internal error in expression evaluator

The Code View expression evaluator encountered an internal error.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

CAN0004 syntax error

The syntax of the expression is incorrect.

Retype the expression with the correct syntax.

CodeView C/C++ Expression Evaluator Errors 693

CAN0005 operator not supported

An unsupported C operator was specified in an expression.

You can usually write an equivalent expression using the supported C operators.

CAN0006 missing left parenthesis

Unbalanced parentheses were found in the expression.

Retype the expression with balanced parentheses.

CAN0007 missing right parenthesis

Unbalanced parentheses were found in the expression.

Retype the expression with balanced parentheses.

CAN0008 missing \at end of string

The double quotation mark (") expected at the end of the string literal was missing.

Retype the expression, enclosing the string literal in double quotation marks.

CAN0009 missing' after character constant

The single quotation mark (') expected at the end of the character constant was missing.

Retype the expression, enclosing the character constant in single quotation marks.

CANOOI0 missing left bracket

The expression contains unbalanced square brackets.

Retype the expression with balanced square brackets.

CANOOll missing right bracket

The expression contains unbalanced square brackets.

Retype the expression with balanced square brackets.

CAN0012 missing left curly brace

The expression contains an unbalanced curly brace.

Retype the expression with balanced curly braces.

CAN0013 missing operator

An operator was expected in the expression but was not found.

Check the syntax of the expression.

CAN0014 missing operand

An operator was specified without a required operand.

Check the syntax of the expression.

694 CodeView C/C++ Expression Evaluator Errors

CAN0015 expression too complex (stack overflow)

The expression entered was too complex or nested too deeply for the amount of storage
available to the C expression evaluator.

Overflow usually occurs because of too many pending calculations.

Rearrange the expression so that each component of the expression can be evaluated as it is
encountered, rather than having to wait for other parts of the expression to be calculated.

Break the expression into multiple commands.

CAN0016 constant too big

The Code View C expression evaluator cannot accept an unsigned integer constant larger
than 4,294,967,295 (OFFFFFFFF hexadecimal), or a floating-point constant whose
magnitude is larger than approximately 1.8E+308.

CAN0017 symbol not found

A symbol specified in an expression could not be found.

One possible cause of this error is a case mismatch in the symbol name. Since C and C++
are case-sensitive languages, a symbol name must be given in the exact case in which it is
defined in the source.

CAN0018 bad register name

A specified register does not exist or cannot be displayed.

CodeView can display the following registers: AX, SP, DS, IP, BX, BP, ES, FL, CX, SI,
SS, DX, DI, CS.

When running with MS-DOS on an 80386 machine, the 386 option can be selected to
display the following registers: EAX, ESP, DS, GS, EBX, EBP, ES, SS, ECX, ESI, FS,
EIP, EDX, EDI, CS, EFL.

CAN0019 bad type cast

The Code View C expression evaluator cannot perform the type cast as written.

One of the following may have occurred:

• The specified type is unknown.

• There were too many levels of pointer types.

For example, the type cast:

(char far * far *)h_message

cannot be evaluated by the Code View C expression evaluator.

CAN0020 operand types bad for this operation

An operator was applied to an expression with an invalid type for that operator.

For example, it is not valid to take the address of a register, or subscript an array with a
floating-point expression.

CodeView C/C++ Expression Evaluator Errors 695

CAN0021 struct or union used as scalar

A structure or union was used in an expression, but no element was specified.

When manipulating a structure or union variable, the name of the variable may appear by
itself, without a field qualifier. If a structure or union is used in an expression, it must be
qualified with the specific element desired.

Specify the element whose value is to be used in the expression.

CAN0022 function call before main

The Code View C expression evaluator cannot evaluate a function before Code View has
entered the function _main. The program is not properly initialized until _main has been
called.

Execute 9 rna in; p to enable function calls in expressions.

CAN0023 bad radix

The radix specified is not recognized by the Code View C expression evaluator. Only
decimal, hexadecimal, and octal radixes are valid.

CAN0024 operation needs I-value

An expression that does not evaluate to an I-value was specified for an operation that
requires an I-value.

An I-value (so called because it appears on the left side of an assignment statement) is an
expression that refers to a memory location.

For example, buffer [count] is a valid I-value because it points to a specific memory
location. The logical comparison zed ! = 0 is not a valid I-value because it evaluates to
TRUE or FALSE, not a memory address.

CAN0025 operator needs struct/union

An operator that takes an expression of struct or union type was applied to an expression
that is not a struct or union.

Components of class, structure, or union variables must have a fully qualified name.
Components cannot be entered without full specification.

CAN0026 bad format string

A format string was improperly specified.

Check the syntax of the expression.

CAN0027 tp addr not I-value

Check the syntax of the expression.

696 CodeView C/C++ Expression Evaluator Errors

CAN0028 not struct/union element

An expression of the fonn Struct. Member or pStruct- >Member was specified, but
member is not an element of the structure.

The expression may not be parenthesized correctly.

CAN0029 not struct pointer

The member-selection operator (-» was applied to an expression that is not a pointer to a
structure.

Check that the entire expression is parenthesized correctly, or type cast the address
expression to the appropriate structure pointer type.

CAN0030 expression not evaluatable
The expression could not be evaluated as written.

This error is frequently caused by dereferencing a pointer which is not valid.

Check that the syntax of the expression is correct, and that all symbols are specified in the
exact case as they are defined in the program.

CAN0031 expression not expandable

The Code View C expression evaluator encountered an internal error.

You may be able to write an equivalent expression that can be evaluated correctly.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

CAN0032 divide by 0

The expression contains a divisor of zero, which is illegal. This divisor may be the literal
number zero, or it may be an expression that evaluates to zero.

CAN0033 error in OMF type information

The executable file did not have a valid OMF (Object Module Fonnat) for debugging by
CodeView.

One of the following may have occurred:

• The executable file was not created with the linker released with this version of
CodeView. Relink the object code using the current version ofLINK.EXE.

• The executable file was not created with the high-level language released with this
version of Code View. Recompile the program with the current version of the compiler.

• The .EXE file may have been corrupted. Recompile and relink the program.

CodeView C/C++ Expression Evaluator Errors 697

CAN0034 types incompatible with operator

The operand types specified are not legal for the operation.

For example, a pointer cannot be multiplied by any value.

You may need to type cast the operands to a type compatible with the operator.

CAN0035 overlay not resident

An attempt was made to access an overlay that is not currently resident in RAM.

Execute the program until the overlay is loaded.

CAN0036 bad context { ... } specification

This message can be generated by any of several errors in the use of the context-resolution
operator ({ }).

• The syntax of the context-resolution operator ({ }) was given incorrectly.

The syntax of the context operator is:

{[function],[module],[dll]}expression

This specifies the context of expression. The context operator has the same precedence and
usage as a type-cast.

Trailing commas can be omitted. If any of [f u net ion], [m 0 d u 1 e], or [d 1 1] contain a
literal comma, you must enclose the entire name in parentheses.

• The function name was spelled incorrectly, or does not exist in the specified module or
dynamic-link library.

Since C is a case-sensitive language,junction must be given in the exact case as it is
defined in the source. The C expression evaluator ignores the Code View case-sensitivity
state set with the OC command or the Case Sensitive command in the Options menu.

• The module or DLL could not be found.

Check the full path name of the specified module or DLL.

CAN0037 out of memory

The Code View C expression evaluator ran out of memory evaluating the expression.

CAN0038 function argument count and/or type mismatch

The function call as specified does not match the prototype for the function.

Retype the call with the correct number of arguments. Type cast each argument to match the
prototype, as necessary.

698 CodeView C/C++ Expression Evaluator Errors

CAN0039 symbol is ambiguous

The Code View C expression evaluator cannot determine which instance of a symbol to use
in an expression. The symbol occurs more than once in the inheritance tree.

You must use the scope resolution operator (::) to explicitly specify the instance to use in the
expression.

CAN0040 function requires implicit conversion

Implicit conversions involving constructor calls are not supported by the Code View C
expression evaluator.

CAN0041 class element must be static member or member function

A nonstatic member of a class (or structure or union) was used without specifying which
instantiation of the class to use.

Only static data members or member functions can be used without specifying an
instantiation.

CAN0042 bad line number

This error should never occur.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

CAN0043 this pointer used outside member function

This pointer can only be used for nonstatic member functions.

CAN0044 use of _based(void) pointer requires :> operator

A pointer based on void cannot be used directly. You must form a complete pointer using
the :> operator.

CAN0045 not a function

An argument list was supplied for a symbol in the program that is not the name of a
function.

For example, this error is generated for the expression

queue(alpha. beta

when que u e is not a function.

CAN0046 argument list required for member function

An expression called a member function but did not specify any actual parameters.

CAN0047 argument list does not match a function

An expression called a function with an actual parameter list that did not match the formal
parameter list of any function with the same name defined in the program.

Overloaded functions can be called only if there is an exact parameter match, or a match
that does not require the construction of an object.

CodeView C/C++ Expression Evaluator Errors 699

CAN0048 calling sequence not supported

A function specified in the expression uses a calling sequence not supported by the
Code View C expression evaluator. You cannot call this function in a Code View expression.

CAN0049 obsolete OMF - please relink program

The program used an old OMF (Object Module Format).

The program must be linked with LINK version 5.30 or later, and packed with CVPACK
version 4.0 or later.

CAN0050 left side of :: must be class/struct/union

The symbol on the left side of the scope-resolution operator (::) was not a class, structure or
umon.

CAN0051 more than one overloaded symbol specified in breakpoint

Code View could not determine which of more than one overloaded symbol to use as a
breakpoint.

CAN0052 member function not present

A member function was specified as a breakpoint but could not be found. This error can be
caused by setting a breakpoint at a function that has been inlined.

Recompile the file with inlining forced off (lObO) to set a breakpoint in this function.

An expression called a function that was not defined.

CAN0053 nonfunction symbol match while binding breakpoints

A symbol used as a breakpoint was not a function. This error can be caused by specifying a
data member as a breakpoint.

CAN0054 register in breakpoint expression illegal

A register cannot be used in a breakpoint expression.

CAN0055 ambiguous symbol in context operator

A symbol in the context operator ({ }) referred to more than one symbol in the program.

The scope resolution operator (::) may be able to resolve the ambiguity.

CAN0056 error in line number

An invalid line number was specified.

CAN0057 no code at line number

No code was generated for the specified line number. It cannot be used as a breakpoint.

CAN0058 overloaded operator not found

A class type was specified as the left operand in an expression, but an overloaded operator
was not defined for the class.

700 CodeView Error Messages

CAN0059 left operand is class not a function name

The left operand of a function call was a class name and could not be resolved to a function
call. This error can be caused by omitting the name of a member function in an expression.

CAN0060 register is not available

An expression specified a register that cannot be used.

This error can be caused by trying to access a register that does not exist on the machine
running CodeView, for example, accessing 80386-specific registers on an 8088-based
machine.

CAN0061 function nesting depth exceeded

The expression contains a function nesting depth greater than the limit.

The expression should be modified to reduce the nesting depth.

CAN0062 constructor calls not supported

An expression made a call to a constructor.

Expressions cannot make explicit calls to constructors or make conversions that require a
call to a constructor.

CXX0063 overloaded operator -> not supported

The expression used an overloaded class member access operator (-».

CXX0064 can't set breakpoint on bound virtual member function

A breakpoint was set on a virtual member function through a pointer to an object, such as:

pClass->vfunc(int);

A breakpoint can be set on a virtual function by entering the class, such as:

Class::vfunc(int);

CodeView Error Messages
CVOOOO no error; NOERROR; No Error Condition

You should not normally receive this error message since CVOOOO indicates that no error
occurred.

CV0002

CV0003

CV0005

CV0007

CV0008

CodeView Error Messages 701

no such file or directory

The specified file does not exist or a path does not specify an existing directory.

Check the file or directory name in the most recent command.

One of the following may have occurred:

• The View Source (VS) command or the Open Source command from the File menu was
used to view a nonexistent file.

• An attempt was made to print to a nonexistent file or directory.

program terminated: restart to continue

Code View has detected a termination request by the program being debugged.

The program cannot be executed because it has terminated and has not been restarted.
Program memory remains allocated and may still be examined at this point.

To run the program again, reload it using the Restart command.

1/0 error

An attempt was made to access an address that is not accessible to the program being
debugged.

Check the previous command for numeric constants used as addresses and for pointers used
for indirection.

number of arguments exceeds DOS limit of 128

Code View is not able to restart the program that is being debugged because the number of
arguments to the executable program exceeds the limit of 128.

executable file format error

The system is not able to load the program to be debugged. The file is not an executable
file, or it has an invalid format for this operating system.

Try to run the program outside of Code View to see if it is a valid executable file.

This error can be caused if there is not enough memory available to run the program.

Try making more memory available to the program.

702 CodeView Error Messages

CV0012 out of memory

CV0013

CV0014

CV0018

CV0022

Code View was unable to allocate or reallocate the memory that it required because not
enough memory was available.

Possible solutions include the following:

• Recompile without symbolic information in some of the modules. Code View requires
memory to hold information about the program being debugged. Compile some modules
with the {Zd option instead of (Zi, or don't use either option.

• Remove other programs or drivers running in the system that could be consuming
significant amounts of memory.

• Decrease the settings in CONFIG.SYS for FILES and BUFFERS.

access denied

A specified file's permission setting does not allow the required access.

One of the following may have occurred:

• An attempt was made to write to a read-only file.

• A locking or sharing violation occurred.

• An attempt was made to open a directory instead of a file.

invalid address

The command expected an address but was given an argument that could not be interpreted
as a valid address.

A name or constant may have been specified without the period (.) that indicates a filename
or line number.

no such file or directory

The specified file does not exist or a path does not specify an existing directory.

Check the file or directory name in the most recent command.

One of the following may have occurred:

• The View Source (VS) command or the Open Source command from the File menu was
used to view a nonexistent file.

• An attempt was made to print to a nonexistent file or directory.

invalid argument

An invalid value was given as an argument.

CV0024

CV0028

CVOIOI

CVOI02

CVOI03

CodeView Error Messages 703

too many open files

Code View could not open a file it needed because a file handle was not available.

Increase the number of file handles by changing the FILES setting in CONFIG.SYS to
allow a larger number of open files. FILES=50 is the recommended setting.

The program being debugged may have so many files open that all available handles are
exhausted. Check that the program has not left files open unnecessarily. The first four
handles are reserved by the operating system.

Additional files can be made available by closing source windows. If more files are needed,
set helpbuffers=O in the [pwb] section of TOOLS . IN!. As a result, online help cannot be
used but several file handles will be made available.

no space left on device

The disk does not have any space available for writing.

One of the following may have occurred:

• Code View could not find room for writing a temporary file.

• An attempt was made to write to a disk that was full.

no Code View information for filename

The executable file or dynamic-link library (DLL) did not contain the symbols needed by
CodeView.

Be sure to compile the program or DLL using the /Zi option. If linking in a separate step, be
sure to use the ICO option. Use the most current version of LINK.

unpacked CodeView information infilename: use CVPACK

For this version of Code View, you must process all executable files using CVP ACK, which
compresses the debugging information in the file.

Pass the file through CVPACK.EXE before starting CodeView.

relinkfilename with the current linker

This version of Code View expects the executable file to be in the format produced by the
current version of the linker.

Make sure PWB, NMAKE, or the compiler is not running an older version of the linker.

704 CodeView Error Messages

CVOI04 Code View information for filename is newer than this version of Code View

CVIOOI

CVI003

CVI004

CVI006

The executable file was compiled or linked with a version of a Microsoft compiler that is
newer than the version of Code View you are using.

Try one of the following:

• Reinstall Code View that came with the new compiler.

• Remove older versions of Code View that may be present on your hard disk.

• Recompile the program with an older version of a Microsoft compiler.

invalid breakpoint command

Code View could not interpret the breakpoint command.

The command probably used an invalid symbol or the incorrect command format.

extra input ignored

The first part of the command line was interpreted correctly.

The remainder of the line could not be interpreted or was unnecessary.

invalid register

The Register (R) command named a register that does not exist or cannot be displayed.
CodeView can access the following registers: AX, SP, DS, IP, BX, BP, ES, FL, CX, SI,
SS, DX, DI, CS.

When running with MS-DOS or the Windows operating system on an 80386 or an 80486
machine, the 80386 registers option can be selected to access the following registers: EAX,
ESP, DS, GS, EBX, EBP, ES, SS, ECX, ESI, FS, EIP, EDX, EDI, CS, EFL.

When debugging p-code, CodeView can also access the following registers: TL, TH, PQ.

breakpoint number or '*' expected

A breakpoint was specified without a number or asterisk.

A Breakpoint Clear (BC), Breakpoint Disable (BD), or Breakpoint Enable (BE) command
requires one or more numbers to specify the breakpoints or an asterisk to specify all
breakpoints.

For example, the following command causes this error:

be rika

CVI007

CVIOll

CVI012

CVI016

CVI017

CVI018

CodeView Error Messages 705

unable to open file

The specified file cannot be opened.

One of the following may have occurred:

• The file may not exist in the specified directory.

• The filename was misspelled.

• The file's attributes are set so that it cannot be opened.

• A locking or sharing violation occurred.

no previous regular expression

The Repeat Last Find command was executed, but a regular expression (search string) was
not previously specified.

regular expression too long

The regular expression was too long or complex.

Use a simpler or more general regular expression.

match not found

A string could not be found that matched the search pattern.

syntax error

The command contained a syntax error.

This error is probably caused by an invalid command or expression.

unknown symbol

The symbolic name specified could not be found.

One of the following may have occurred:

• The specified name was misspelled.

• The wrong case was used when case sensitivity was turned on. Case sensitivity is
toggled by the Case Sensitivity command from the Options menu or is set by the Option
(0) Command-window command.

• The module containing the specified symbol may not have been compiled with the /Zi
option to include symbolic information.

• A search was made for an undefined label or function.

706 CodeView Error Messages

CVI021 unknown format specifier; specify one of A,B,I,IU,IX,L,LU,LX,R,RL,RT

CVI022

CVI023

CVI027

An unknown fonnat specifier was given to a View Memory (VM), Memory Dump (MD),
or Memory Enter (ME) command.

The valid fonnat specifiers are:

Specifier

A
B
I
IU
IX
L
LU
LX
R
RL
RT

Display Format

ASCII
byte
l6-bit signed decimal integer
16-bit unsigned decimal integer
l6-bit hexadecimal integer
32-bit signed decimal integer
32-bit unsigned decimal integer
32-bit hexadecimal integer
32-bit single precision floating point
64-bit double precision floating point
80-bit lO-byte real (long double)

This error is probably due to a mistyped command.

invalid flag

An attempt was made to examine or change a flag, but the flag name was not valid.

Any flags preceding the invalid name were changed to the values specified. Any flags after
the invalid name were not changed.

Use the flag mnemonics displayed after entering the R FL command.

no code at this line number

A line number was specified but code was not generated for that line. This error can be
caused by a blank line, comment line, line with program declarations, or line moved or
removed by compiler optimization.

To set a breakpoint at a line deleted by the optimizer, recompile the program with the IOd
option to turn off optimization.

Note that in a multiline statement the code is associated only with one line of the statement.

This error can be caused by debugging a program whose source has been modified after it
was compiled. Recompile the file before running it through Code View.

invalid radix: specify 8, 10, or 16

The Radix (N) command takes three radixes: 8 (octal), 10 (decimal), and 16 (hexadecimal).
Other radixes are not pennitted. The new radix is always entered as a decimal number,
regardless of the current radix.

CVI031

CVI039

CVI040

CVI041

CVI042

CVI043

CVI046

CodeView Error Messages 707

no source lines at this address

An attempt was made to view an address that does not have source code.

This error can be caused by debugging a program whose source has been modified after it
was compiled. Recompile the file before debugging it with Code View.

not a text file

An attempt was made to load a file that is not a text file. The file may be binary data.

This error can also occur if the first line of a file includes characters that are in the range of
ASCII 0 to 8, 14 to 31, or 127 (OxO to Ox8, OxE to OxlF, or Ox7F).

The Source window can only be used to view text files.

video mode changed without /S option

The program being debugged changed screen modes, and Code View was not set for
swapping. The program output is now damaged or unrecoverable.

To be able to view program output, exit Code View and restart it with the Swap (IS) option.

file error

Code View could not write to the disk.

One of the following may have occurred:

• There was not enough space on the disk.

• The file was locked by another process.

library module not loaded

The program being debugged uses load-on-demand dynamic-link libraries (DLLs). At least
one of these libraries is needed but could not be found.

application output lost; screen exchange is off

The program being debugged wrote to the display when the Flip (IF) or Swap (IS) option
was turned off. The program output was lost.

When flipping is on, video page 1 is usually reserved for CodeView. Programs usually write
to video page 0 by default. Programs that write to video page 1 must be debugged with
swapping on.

Tum Flip or Swap on to be able to view program output.

invalid executable file: relink

The executable file did not have a valid format.

One of the following may have occurred:

• The executable file was not created with the linker released with this version of
CodeView. Relink the object code using the current version ofLINK.EXE.

• The .EXE file may have been corrupted. Recompile and relink the program.

708 CodeView Error Messages

CVI047 overlay not resident

CVI048

CVI050

CVI051

CVI053

CVI054

An attempt was made to access machine code from an overlay section of code that is not
currently resident in memory.

Execute the program until the overlay is loaded.

floating-point support not loaded

An attempt was made to access the math processor registers in a program that does not use
floating-point arithmetic.

One of the following can cause this error:

• Math processor registers can only be accessed through the floating-point library code. If
the program does not perform floating-point calculations, this error can occur because
the floating-point library code will not be loaded and cannot be used to access math
processor registers.

• If the program does not use floating-point instructions, this error can occur when you
attempt to access the math processor before any floating-point instructions have been
performed. The run-time library includes a floating-point instruction near the beginning
so that the math processor registers are always accessible.

• If a floating-point instruction occurs in an assembly language routine before such an
instruction occurs in the high-level language code that calls the routine, this error occurs.

expression not a memory address

The expression does not evaluate to an address.

For example, b u f fer [co u n t] is a valid address because it points to a specific memory
location. The logical comparison zed ! = 0 is not a valid address because it evaluates to
TRUE or FALSE, not a memory address.

missing or corrupt emulator information

Status information about the floating-point emulator is missing or corrupt.

The program probably wrote to this area of memory. Make sure the pointer points to its
intended object.

TOOLS.INI not found

The directory listed in the INIT environment variable did not contain a TOOLS.INI file.

Check the INIT variable to be sure that it points to the correct directory.

cannot read this version of CURRENT .STS

The state file (CURRENT.STS) has a version number that is not recognized by this version
of Code View.

The old CURRENT.STS was ignored, and a new one will be created when Code View exits.

CVI056

CVI057

CVI058

CVI059

CVI060

CVI061

CVI062

CVI063

CodeView Error Messages 709

cannot understand entry infilename

At least one line in the given file (either the state file or the TOOLS.INI file) could not be
interpreted.

On startup, Code View reads the state file (CURRENT.STS) and the TOOLS.INI file (if the
latter is available).

Examine the given file to find the problem.

CURRENT.STS not found; creating

Since the state file (CURRENT.STS) could not be located at startup, Code View created a
state file.

no source window open
A command was entered to manipulate the contents of a Source window, but a Source
window was not open.

no Code View source information

Code View symbol listing for the source file or module being debugged does not exist.

Be sure the file was compiled with the /Zi option or the /Zd option. If linking in a separate
step, be sure to use the /CO option.

command not supported for current configuration

If you have specified the two monitors option (12), you cannot specify the flip/swap option
(lof- or /of+) from the CodeView Command Window.

no second monitor connected to system

Code View was invoked with the /2 option, but there was only one monitor for Code View to
use.

invalid code-segment context change

An attempt was made to set the IP register to a line or address in a different segment.

cannot create CURRENT .STS

CodeView could not find an existing state file (CURRENT.STS), and CodeView tried to
create one but failed.

One of the following may have occurred:

• There was not enough space either on the disk containing the program to be debugged or
on the disk pointed to by the INIT environment variable.

• There were not enough free file handles. Increase the number of file handles by changing
the FILES setting in CONFIG.SYS to allow a larger number of open files.

• The environment variable INIT pointed to a directory that does not exist.

710 CodeView Error Messages

CVI064 window could not be opened

CVI065

CVI066

CVI067

CVI068

CV1250

CV1251

CodeView tried to open a window, but failed to do so.

This error is probably caused by a lack of memory available to Code View.

Exit Code View and make more memory available, then restart Code View.

cannot load expression evaluator filename

Code View could not load the specified expression evaluator.

Make sure that filename is a valid expression evaluator DLL. If not, try reinstalling the
Code View DLLs from the distribution disks.

cannot load expression evaluator filename; limit is 10

Up to 10 expression evaluators can be specified in the TOOLS.INI file.

Try removing expression evaluators you won't be using in your debugging session.

extension missing for Expression Evaluator: filename in TOOLS.INI

The Eval entry in the TOOLS.INI file expected a list of filename extensions.

breakpoint specifier is out of range

The breakpoint number specified was higher than the number of current breakpoints.

general expression-evaluator error

An error occurred in a Code View expression evaluator.

This error is probably caused by a lack of memory available to the expression evaluator.
You can free memory by doing one or more of the following:

• Close windows that are not needed. The Memory window should be closed if possible.

• Delete breakpoints that are not needed.

• Disable options that are not needed.

As a last resort, exit Code View and start the debugging session again.

This error can also be caused by an expression that cannot be evaluated by the expression
evaluator.

message

An error occurred within a Code View expression evaluator.

No further explanation is available.

CV1254

CV1255

CV2206

CV2207

CV2209

CV2210

CV2211

CV2401

CodeView Error Messages 711

invalid address expression

The expression entered does not evaluate to an address.

The expression must be in a form that can appear on the left side of an assignment and refer
to a memory location.

For example, buffer [count] is a valid I-value because it points to a specific memory
location. The logical comparison zed ! = 0 is not a valid I-value because it evaluates to
TRUE or FALSE, not a memory address.

no data members

The class, structure, or union that was expanded did not have data members. A class must
contain at least one data member to be expanded.

corrupt CodeView information infilename; discarding

This error can be caused by using mismatched versions of development tools. Verify that
the versions of all tools are current and synchronized.

Try recompiling the file with the /Zd switch (Prepare for Debugging option).

This option produces an object file containing only public symbols (global or external) and
line numbers.

loaded symbols for module

CodeView automatically loaded the symbols for the given dynamic-link library (DLL). The
DLL can now be debugged.

This message is for your information only and does not indicate an error.

cannot restart; current process is not the process being debugged

The debugging session was halted, and a different process was started.

Return to the debugged program's process by setting a breakpoint in it and issue a Go
command.

invalid tab setting; using 8

The value for tabs cannot be less than 0 or greater than 19. If you supply a value that is not
in this range, the default tab value is 8.

cannot terminate; current process is not the process being debugged

The debugging session was halted, and a different process was current.

Return to the debugged program's process by setting a breakpoint in it and issue a Go
command.

missing argument for option option

This error can be caused by splitting a response file line naming a program to be debugged
and its command-line options. The program name and its command-line option must be on
one line.

712 CodeView Error Messages

CV2402 unknown option option; ignored

CV2403

CV2404

CV240S

CV2406

CV3608

CV3620

CV3621

The specified option was not a valid option.

Check that the option was typed correctly.

response files cannot be nested

A response file cannot refer to another response file.

cannot open response file: filename

The specified response file could not be opened.

Check that the name of the file is spelled correctly and that the response file is correct.

command line option, option, invalid for target operating system

The specified command line option was illegal in this context.

command-line is too big. arguments truncated

The command line argument in a response file was longer than the limit of 256 bytes.

out of memory

Code View needed additional memory, but insufficient memory was available.

Possible solutions include the following:

• Remove some drivers or applications that have been loaded in high memory.

• Recompile without symbolic information in some of the modules. Code View requires
memory to hold information about the program being debugged. Compile some modules
with the /Zd option instead of /Zi, or don't use either option.

• Remove other programs or drivers running in the system that could be consuming
significant amounts of high memory.

• Free some memory by removing terminate-and-stay-resident (TSR) software.

• Remove unneeded watch expressions or breakpoints.

bad DLL format infilename

Code View did not recognize the format of the specified Code View dynamic-link library
(DLL) file.

The DLL may be damaged or may be the wrong version.

This error is caused if the specified file is not a DLL.

cannot find DLLfilename

Code View could not find the specified dynamic-link library (DLL). This may be caused by
a mistyped filename in the TOOLS.INI file.

CV3622

CV3623

CV3624

CV3625

CV3626

CV3627

CV3628

CV3629

CV3630

CodeView Error Messages 713

cannot load DLL filename

Code View was unable to load the specified dynamic-link library (DLL) file.

Reinstall the Code View DLL from the distribution disks.

wrong DLLfilename

CodeView expected one type of dynamic-link library (DLL) but read a different type. This
error is probably caused by specifying an incorrect filename in the TOOLS.INI file. For
example, you may have specified an execution model in the expression-evaluator entry.

cannot load execution model filename - limit is 1

Too many execution models are specified in the TOOLS.INI file.

Only one execution model can be used at a time.

Remove those execution models you are not using in your debugging session.

no transport layer; exiting

Code View needs a transport layer to make appropriate calls to the operating system in local
debugging and to a remote computer in remote debugging.

Check your TOOLS.INI file, and make sure there is a Transport entry in the [cv] or [cvw]
Code View section.

no execution model; exiting

Code View needs an execution model in order to function.

Check your TOOLS.INI file, and make sure there is a Native entry specified.

no nonnative execution models found

You must specify a nonnative execution model in order to debug a p-code program.

Add the following line to your TOOLS.INI file:

model: nmdlpcd. dll

too many transport layers: choose one

Only one transport layer can be selected at one time.

too many execution models: choose one

Only one execution model can be selected at a time.

Additional execution models should be removed.

no symbol handler found; exiting

A symbol handler dynamic-link library (DLL) could not be found. The DLLs that
Code View uses must be in a location specified by the cvdllpath entry in the [cvw] or [cv]
section of TOOLS.IN!.

714 CodeView Error Messages

CV3631 program being debugged contains p-code, but no model: specified in tools.ini

The entry mode 1 =nmd 1 pcd . d 11 must be specified in TOOLS.INI to debug a program that
contains p-code.

CV 4000 assembler: not enough operands

CV4001

CV4002

CV4003

CV4004

CV400S

CV4006

CV4007

Additional operands are required for this instruction.

The instruction was rejected and the address was not advanced.

assembler: too many operands

Too many operands were specified for the most recently issued instruction.

The instruction was rejected and the address was not advanced.

assembler: incorrect operand size

An instruction required an operand of a different size.

The instruction was rejected and the address was not advanced.

assembler: illegal range

The size of a specified value exceeds the size expected by the instruction.

The instruction was rejected and the address was not advanced.

assembler: overflow

Numeric overflow occurred while assembling the current instruction.

The instruction was rejected and the address was not advanced.

assembler: syntax error

The syntax for the instruction is incorrect.

The instruction was rejected and the address was not advanced.

assembler: unknown opcode

An instruction was not recognized.

Check that the instruction was typed correctly.

The instruction was rejected and the address was not advanced.

assembler: extra characters

The instruction contained extra characters that could not be recognized. The instruction may
have been mistyped.

The line was ignored.

The instruction was rejected and the address was not advanced.

CV4008

CV4009

CV4010

CV4011

CV4012

CV4S00

CV4S01

CV4S02

CVSOOI

CVS004

CodeView Error Messages 715

assembler: illegal operand

The wrong type of operand was used for this context.

The instruction may have been mistyped.

The instruction was rejected and the address was not advanced.

assembler: illegal segment

An invalid segment was used.

The instruction was rejected and the address was not advanced.

assembler: illegal register

An illegal or nonexistent register was accessed.

The register name may have been mistyped.

This error can be caused by trying to access 80386- or 80486-specific registers when
Code View is running on an 8088- or 80286-based machine.

The instruction was rejected and the address was not advanced.

assembler: divide by zero

Code View encountered a divide-by-zero error while assembling the current instruction.

The instruction was rejected and the address was not advanced.

cannot assemble code with current execution model

This error can be caused by trying to assemble p-code in CodeView.

bad fixed format length: using variable length

In invalid length was specified for the Memory window. Code View will set the length based
on the current window width.

Try specifying a different length.

invalid window id

The window ID was invalid. It must be either 0 or 1.

unable to open the requested memory window

Code View could not open a Memory window.

The only valid window IDs are 0 and 1. You may need to close some windows.

cannot select

The cursor was not on the same line as an automatically selectable symbol.

cannot read file

Code View could not read a file.

Read the file again. If the second read fails, exit and restart Code View. If the read process
still fails, the file may be corrupt.

716 CVPACK Error Messages

CV5005 no file selected

CV5009

CV5012

CV5013

CV5014

A module must be selected before OK is chosen.

To exit the dialog box without selecting a module, choose Cancel.

no watch expression to delete

An attempt was made to delete one or more watch variables (watch expressions), but watch
expressions are not currently selected.

packed executable file

Code View cannot step through the beginning of files that are linked with the /EXEP ACK
option. There are two solutions to this problem:

• Relink without this option to debug the file and then switch back to linking with
/EXEPACK for the release version of your program.

• Execute the program through startup code, and set breakpoints only after the program
has entered main.

no expression evaluators found; exiting

Code View needs at least one expression evaluator in order to operate.

Check the [cv] or [cvw] section of your TOOLS.lNI file and specify at least one Eval entry.

cannot execute function in watch expression

A watch expression cannot specify a function to be executed.

CVPACK Error Messages
Microsoft Debugging Information Compactor (CVP ACK) generates the
following error messages:

• Fatal errors (CKlxxx) cause CVPACK to stop execution.

• Warnings (CK4xxx) indicate possible problems in the packing process.

CVPACK Fatal Error Messages
CKIOOO unknown error; contact Microsoft Product Support Services

CVPACK detected an unknown error condition.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

CKIOOI

CKI002

CKI003

CKI004

CKI005

CKI006

CVPACK Error Messages 717

out of memory

The executable file is too big for the available memory. This error can occur with MS-DOS
when there is little extra memory. Even though CVPACK uses virtual memory, which
involves swapping to disk, some information can be stored only in real memory.

One of the following may be a solution:

• Assemble and link in separate steps (that is, use NMAKE).

• Recompile one or more of the object files without debugging information. If the file was
compiled using the /Zi option, use either /Zd or no option.

iii Add more memory to your computer.

out of virtual memory

There was not enough virtual memory for CVP ACK to pack the executable file. Virtual
memory can be any of the following:

• Conventional memory. Remove TSR (terminate-and-stay-resident) programs or run
CVP ACK outside of a shell or a makefile.

• Extended or expanded memory. Run CVPACK under a DPMI server, or as an MS-DOS
session within the Windows operating system (386 Enhanced Mode).

• Disk space. Free some disk storage.

cannot open file

CVP ACK could not open the specified executable file.

One of the following may be a cause:

• The specified file does not exist. Check the spelling of the filename and path.

• The executable file was opened or deleted by another process.

file is read-only

CVP ACK cannot pack a read-only file. Change the read attribute on the executable file and
run CVPACK again.

invalid executable file

CVP ACK could not process the executable file. One of the following may be a cause:

• The debugging information in the executable file is corrupt.

• The executable file is a zero-length file.

invalid module module

The given object file did not have a valid format.

Check the linker version.

718 CVPACK Error Messages

CKI007 invalid table table in module module

CKI008

CKI009

CKIOI0

CKIOll

CKI012

The given table in the given object file was not valid.

Check the compiler and linker versions.

cannot write packed information

There was not enough space on disk for CVP ACK to write the packed executable file. This
leaves a corrupt file on disk.

Make more space available on disk and relink the program.

module module unknown type index number;
contact Microsoft Product Support Services

The debugging information in the executable file is corrupt. This is due to an internal error
in either the compiler or CVP ACK. Recompile the program. If the problem persists, note the
circumstances of the error and notify Microsoft Corporation by following the instructions in
the "Microsoft Support Services" section of the introduction to this book.

symbol error in module module;
contact Microsoft Product Support Services

The debugging information in the executable file is corrupt. This is due to an internal error
in either the compiler or CVP ACK. Recompile the program. If the problem persists, note the
circumstances of the error and notify Microsoft Corporation by following the instructions in
the "Microsoft Support Services" section of the introduction to this book.

error in type number for module module;
contact Microsoft Product Support Services

The debugging information in the executable file is corrupt. This is due to an internal error
in either the compiler or CVPACK. Recompile the program. If the problem persists, note the
circumstances of the error and notify Microsoft Corporation by following the instructions in
the "Microsoft Support Services" section of the introduction to this book.

no Symbol and Type Information

The executable file does not contain debugging information.

Link the program using the ICO option to put at least minimal debugging information in the
executable file. To include full debugging information in an object file, compile or assemble
using the IZi option. To include minimal information and line numbers, compile or assemble
using the /Zd option.

CKI013

CKI014

CKI015

CKI016

CKI017

CKI018

debugging information missing or unknown format

One of the following has occurred:

CVPACK Error Messages 719

• The program did not contain debugging information. Recompile using /Zi or /Zd, then
link using ICO.

• The executable file was linked using an obsolete or unsupported linker. Use Microsoft
LINK version 5.3x or later.

• The executable file was already packed using a previous version of CVP ACK.

module module type number refers to skipped type index;
contact Microsoft Product Support Services

The debugging information in the executable file is corrupt. This is due to an internal error
in the compiler. Recompile the program. If the problem persists, note the circumstances of
the error and notify Microsoft Corporation by following the instructions in the "Microsoft
Support Services" section of the introduction to this book.

too many segments in module module

The alloc _text pragma was used more than 20 times in an object file that was compiled with
Microsoft C version 6.x or earlier.

One of the following may be a solution:

• Recompile using Microsoft CIC++ version 7.0 or later.

• Split the object file into multiple files.

• Group the pragma statements according to segment.

unable to execute MPC for CVPACK /PCODE

CVPACK could not find MPC.EXE on the path.

precompiled types file filename not found

The program used a precompiled header, but the program was linked without the object file
that was created when the header was precompiled.

precompiled types object file filename inconsistent with
precompiled header used to compile object file filename

The program used a precompiled header, but the object file linked to the program was not
the object file that was created when the header was precompiled. Either the user or the
creator changed since the last compilation.

Recompile and relink. If a makefile is used, check the makefile dependencies.

720 EXEHDR Error Messages

CKI020 packed type index exceeds 65535 in module module

The debugging infonnation exceeded a CVPACK limit.

CKI021

This error may occur when precompiled headers are used.

One of the following may be a solution:

• Eliminate unused type strings.

• Compile some object files without debugging infonnation.

error in precompiled types signature in module module

The program was compiled with an out-of-date precompiled header.

Delete the object file and recompile.

CK 1022 Symbol table for file is too large

The corrective action is to compile file without Code View infonnation, reduce the number of
symbols in the file, or split the file into two or more pieces.

CVPACK Warning Messages
CK4000

CK4001

CK4002

CK4003

unknown warning; contact Microsoft Product Support Services

CVP ACK detected an unknown error condition.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

file already packed
CVP ACK took no action because the executable file has already been processed by
CVPACK 4.00.

duplicate public symbol symbol in module module

The given symbol was redefined in the given module. CVP ACK deleted the second
occurrence of the symbol.

Probably an earlier version of the linker was used. Use LINK 5.30 or later.

error in lexical scopes for module module, symbols deleted

The scoping of symbols in the given object module was corrupted. CVP ACK deleted the
symbols in the module.

This is probably a compiler error. Recompile and relink the object file.

EXEHDR Error Messages
This section includes error messages generated by the Microsoft EXE File
Header Utility (EXEHDR). EXEHDR errors (U1100 through Ul140) are always
fatal.

EXEHDR Error Messages 721

EXEHDR Fatal Error Messages
UIIIO

UIIII

Ull12

Ull13

Ull14

UIIIS

Ull16

UI120

UI121

UI130

UI131

Ul132

malformed number number

A command-line option for EXEHDR required a value, but the given number was mistyped.

option requires value

A command-line option for EXEHDR required a value, but no value was specified or the
specified value was in an illegal format for the given option.

value out of legal range lower - upper

A command-line option for EXEHDR required a value, but the specified number did not fall
in the required decimal range.

value out of legal range lower - upper

A command-line option for EXEHDR required a value, but the specified number did not fall
in the required hexadecimal range.

missing option value; option option ignored

The given command-line option for EXEHDR required a value, but nothing was specified.
EXEHDR ignored the option.

option option ignored

The given command-line option for EXEHDR was ignored. This error usually occurs with
error U1116, unrecognized option.

unrecognized option: option

A command-line option for EXEHDR was not recognized. This error usually occurs with
either U1115, option ignored, or Ullll, option requires value.

input file missing

No input file was specified on the EXEHDR command line.

command line too long: commandline

The given EXEHDR command line exceeded the limit of 512 characters.

cannot readfilename

EXEHDR could not read the input file. Either the file is missing or the file attribute is set to
prevent reading.

invalid .EXE file

The input file specified on the EXEHDR command line was not recognized as an executable
file.

unexpected end-of-file

EXEHDR found an unexpected end-of-file condition while reading the executable file. The
file is probably corrupt.

722 Math Coprocessor Error Messages

Ul140 out of memory

There was not enough memory for EXEHDR to decode the header of the executable file.

Math Coprocessor Error Messages

M6101

M6102

M6103

M6104

M610S

M6106

invalid

The error messages listed below correspond to exceptions generated by the math
coprocessor hardware. Refer to the manufacturer's documentation for your
processor for a detailed discussion of hardware exceptions. These errors may also
be detected by the floating-point emulator or alternate math library.

An invalid operation occurred. This error usually occurs when the operand is NAN (not a
number) or infinity.

This error terminates the program with exit code 129.

denormal

A very small floating-point number was generated, which may no longer be valid because of
a loss of significance. Denormal floating-point exceptions are usually masked, causing them
to be trapped and operated upon.

This error terminates the program with exit code 130.

divide by 0

A floating-point operation attempted to divide by zero.

This error terminates the program with exit code 131.

overflow

An overflow occurred in a floating-point operation.

This error terminates the program with exit code 132.

underflow

An underflow occurred in a floating-point operation. Underflow floating-point exceptions
are usually masked, causing the underflowing value to be replaced by 0.0.

This error terminates the program with exit code 133.

inexact

Loss of precision occurred in a floating-point operation. This exception is usually masked.
Many floating-point operations cause a loss of precision.

This error terminates the program with exit code 134.

M6107

M6108

M6110

M6111

M6201

M6202

Math Coprocessor Error Messages 723

unemulated

An attempt was made to execute a coprocessor instruction that is invalid or is not supported
by the emulator.

This error terminates the program with exit code 135.

square root

The operand in a square-root operation was negative.

This error terminates the program with exit code 136.

The sqrt function in the C run-time library and the FORTRAN intrinsic function SQRT do
not generate this error. The C sqrt function checks the argument before performing the
operation and returns an error value if the operand is negative. The FORTRAN SQRT
function generates the DOMAIN error M6201 instead of this error.

stack overflow

A floating-point expression caused a stack overflow on the 8087/80287/80387 coprocessor
or the emulator.

Stack-overflow floating-point exceptions are trapped up to a limit of seven levels in addition
to the eight levels usually supported by the 8087/80287/80387 coprocessor.

This error terminates the program with exit code 138.

stack underflow

A floating-point operation resulted in a stack underflow on the 8087/80287/80387
coprocessor or the emulator.

This error terminates the program with exit code 139.

function : _DOMAIN error

An argument to the given function was outside the domain of legal input values for that
function.

function: _SING error

An argument to the given function was a singularity value for this function. The function is
not defined for that argument.

For example, in FORTRAN the following statement generates this error:

result = LOG10C0.0)

This error calls the _ matherr function with the function name, its arguments, and the error
type. You can rewrite the _ matherr function to customize the handling of certain run-time
floating-point math errors.

724 H21NC Error Messages

M6203 function : _OVERFLOW error

M6205

The given function result was too large to be represented.

This error calls the _ math err function with the function name, its arguments, and the error
type. You can rewrite the _ matherr function to customize the handling of certain run-time
floating-point math errors.

function: _ TLOSS error

A total loss of significance (precision) occurred.

This error may be caused by giving a very large number as the operand of sin, cos, or tan
because the operand must be reduced to a number between 0 and 21t.

H21NC Error Messages

H21NC Fatal Errors
HII003

HII004

HII007

HII008

HII009

HII011

error count exceeds n; stopping compilation

Errors in the program were too numerous or too severe to allow recovery, and the compiler
must terminate.

unexpected end-of-file found

The default disk drive did not contain sufficient space for the compiler to create temporary
files. The space required is approximately two times the size of the source file.

This message also appears when the #if directive occurs without a corresponding closing
#endif directive while the #if test directs the compiler to skip the section.

unrecognized flag string in option

The string in the command-line option was not a valid option.

no input file specified

The compiler was not given a file to compile.

compiler limit: macros nested too deeply

Too many macros were being expanded at the same time.

This error occurs when a macro definition contains macros to be expanded and those macros
contain other macros.

Try to split the nested macros into simpler macros.

compiler limit: identifier: macro definition too big

The macro definition was longer than allowed.

Split the definition into shorter definitions.

HII012

HII016

HII017

HII018

HII019

HII020

HII021

HII022

HII023

HII024

H21NC Error Messages 725

unmatched parenthesis nesting - missing character

The parentheses in a preprocessor directive were not matched. The missing character is
either a left, (, or right,), parenthesis.

#if[n]def expected an identifier

An identifier must be specified with the #ifdef and #ifndef directives.

invalid integer constant expression

The expression in an #if directive either did not exist or did not evaluate to a constant.

unexpected '#elir

The #elif directive is legal only when it appears within an #if, #ifdef, or #ifndef construct.

unexpected '#else'

The #else directive is legal only when it appears within an #if, #ifdef, or #ifndef construct.

unexpected '#endir

An #endif directive appeared without a matching #if, #ifdef, or #ifndef directive.

invalid preprocessor command string

The characters following the number sign (#) did not fonn a valid preprocessor directive.

expected '#endir

An #if, #ifdef, or #ifndef directive was not tenninated with an #endif directive.

cannot open source file filename

The given file either did not exist, could not be opened, or was not found.

Make sure the environment settings are valid and that the correct path name for the file is
specified.

If this error appears without an error message, the compiler has run out of file handles. If in
MS-DOS, increase the number of file handles by changing the FILES setting in
CONFIG.SYS to allow a larger number of open files. FILES=20 is the recommended
setting.

cannot open include file filename

The specified file in an #include preprocessor directive could not be found.

Make sure settings for the INCLUDE and TMP environment variables are valid and that the
correct path name for the file is specified.

If this error appears without an error message, the compiler has run out of file handles. If in
MS-DOS, increase the number of file handles by changing the FILES setting in
CONFIG.SYS to allow a larger number of open files. FILES=20 is the recommended
setting.

726 H21NC Error Messages

HII026 parser stack overflow, please simplify your program

HII033

HII036

HII039

HII040

HII047

The program cannot be processed because the space required to parse the program causes a
stack overflow in the compiler.

Simplify the program by decreasing the complexity of expressions. Decrease the level of
nesting in for and switch statements by putting some of the more deeply nested statements in
separate functions. Break up very long expressions involving ',I operators or function calls.

cannot open assembly language output file filename

There are several possible causes for this error:

• The given name is not valid

• The file cannot be opened for lack of space.

• A read-only file with the given name already exists.

cannot open source listing file filename

There are several possible causes for this error:

• The given name is not valid.

• The file cannot be opened for lack of space.

• A read-only file with the given name already exists.

unrecoverable heap overflow in Pass 3

The post-optimizer compiler pass overflowed the heap and could not continue.

One of the following may be a solution:

• Break up the function containing the line that caused the error.

• Recompile with the /Od option, removing optimization.

• In MS-DOS, remove other programs or drivers running in the system which could be
consuming significant amounts of memory.

• In MS-DOS, if using NMAKE, compile without using NMAKE.

unexpected end-of-file in source file filename

The compiler detected an unexpected end-of-file condition while creating a source listing or
mingled source/object listing.

limit of option exceeded at string

The given option was specified too many times. The given string is the argument to the
option that caused the error.

If the CL or H2INC environment variables have been set, options in these variables are read
before options specified on the command line. The CL environment variable is read before
the H2INC environment variable.

HII048

HII049

HII050

HII052

HII053

HII090

HI1800

HI1801

H21NC Error Messages 727

This error existed in previous versions of H2INC as "unknown option character in option."
This condition now generates warning HI4799.

This error existed in previous versions of H2INC as "invalid numerical argument string."
This condition now generates warning HI4052.

segment: code segment too large

A code segment grew to within 36 bytes of 64K during compilation.

A 36-byte pad is used because of a bug in some 80286 chips that can cause programs to
exhibit strange behavior when, among other conditions, the size of a code segment is within
36 bytes of 64K.

compiler limit: #if/#ifdef nested too deeply

The program exceeded the maximum of 32 nesting levels for #if and #ifdef directives.

compiler limit: struct/union nested too deeply

A structure or union definition was nested to more than 15 levels.

Break the structure or union into two parts by defining one or more of the nested structures
using typedef.

segment data allocation exceeds 64K

The size of the named segment exceeds 64K.

This error occurs with based allocation.

This error existed in previous versions of H2INC as "option: unrecognized option." This
condition now generates warning HI4799.

incomplete model specification

Only part of a custom memory-model specification was specified on the command line.

When you specify a custom memory model with the fA command-line option, you must
specify code pointer distance, data pointer distance, and DS register setup. This error is
equivalent to the D2013 error message for CL.

H21NC Nonfatal Errors
HI2000 UNKNOWN ERROR Contact Microsoft Product Support Services

The compiler detected an unknown error condition.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

728 H21NC Error Messages

HI2001 newline in constant

A string constant was continued onto a second line without either a backslash or closing and
opening quotes.

To break a string constant onto two lines in the source file, do one of the following:

• End the first line with the line-continuation character, a backslash, \.

• Close the string on the first line with a double quotation mark, and open the string on the
next line with another quotation mark.

It is not sufficient to end the first line with \n, the escape sequence for embedding a newline
character in a string constant.

The following two examples demonstrate causes of this error:

pri ntf("Hello,
world");

or

printf("Hello, \n
worl d") ;

The following two examples show ways to correct this error:

printf("Hello,\
world");

or

printf("Hello,"
" world");

Note that any spaces at the beginning of the next line after a line-continuation character are
included in the string constant. Note, also, that neither solution actually places a newline
character into the string constant. To embed this character:

printf("Hello, \n\
worl d") ;

or

HI2003

HI2004

HI2005

HI2006

HI2007

HI2008

HI2009

HI2010

HI2012

HI2013

pri ntf("Hello. \
\nworld");

or

printf("Hello.\n"
"world");

or

printf("Hello."
"\nworld");

expected defined id

H21NC Error Messages 729

An identifier was expected after the preprocessing keyword defined.

expected defined(id)

An identifier was expected after the left parenthesis, (, following the preprocessing keyword
defined.

#line expected a line number, found token

A #line directive lacked the required line-number specification.

#include expected a file name, found token

An #include directive lacked the required file-name specification.

#define syntax

An identifier was expected following #define in a preprocessing directive.

character: unexpected in macro definition

The given character was found immediately following the name of the macro.

reuse of macro formal identifier

The given identifier was used more than once in the formal-parameter list of a macro
definition.

character: unexpected in macro formal-parameter list

The given character was used incorrectly in the formal-parameter list of a macro definition.

missing name following '<'
An #include directive lacked the required filename specification.

missing '>'
The closing angle bracket (» was missing from an #include directive.

730 H21NC Error Messages

HI2014 preprocessor command must start as first non-white-space

Non-white-space characters appeared before the number sign (#) of a preprocessor directive
on the same line.

HI2015 too many characters in constant

HI2016

HI2017

HI2018

HI2019

HI2021

HI2022

HI2025

HI2026

HI2027

A character constant contained more than one character.

Note that an escape sequence (for example, \t for tab) is converted to a single character.

no closing single quotation mark

A newline character was found before the closing single quotation mark of a character
constant.

illegal escape sequence

An escape sequence appeared where one was not expected.

An escape sequence (a backslash, \, followed by a number or letter) may occur only in a
character or string constant.

unknown character hexnumber

The ASCII character corresponding to the given hexadecimal number appeared in the source
file but is an illegal character.

One possible cause of this error is corruption of the source file. Edit the file and look at the
line on which the error occurred.

expected preprocessor directive, found character

The given character followed a number sign (#), but it was not the first letter of a
preprocessor directive.

expected exponent value, not character

The given character was used as the exponent of a floating-point constant but was not a valid
number.

number: too big for character

The octal number following a backslash (\) in a character or string constant was too large to
be represented as a character.

identifier: enum/struct/union type redefinition

The given identifier had already been used for an enumeration, structure, or union tag.

identifier: member of enum redefinition

The given identifier has already been used for an enumeration constant, either within the
same enumeration type or within another visible enumeration type.

use of undefined enum/struct/union identifier

The given identifier referred to a structure or union type that was not defined.

HI2028

HI2030

HI2031

HI2033

HI2034

HI2035

HI2037

HI2038

HI2041

H21NC Error Messages 731

struct/union member needs to be inside a struct/union

Structure and union members must be declared within the structure or union.

This error may be caused by an enumeration declaration containing a declaration of a
structure member, as in the following example:

enum a {
january,
february,
int march: 1* Illegal structure declaration *1
} :

identifier: struct/union member redefinition

The identifier was used for more than one member of the same structure or union.

identifier: function cannot be struct/union member

The given function was declared to be a member of a structure or union.

To correct this error, use a pointer to the function instead.

identifier: bit field cannot have indirection

The given bit field was declared as a pointer (*), which is not allowed.

identifier: type of bit field too small for number of bits

The number of bits specified in the bit-field declaration exceeded the number of bits in the
given base type.

struct/union identifier: unknown size

The given structure or union had an undefined size.

Usually this occurs when referencing a declared but not defined structure or union tag.

For example, the following causes this error:

struct s_tag *ps:
ps = &my_var:
ps = 17: 1 This line causes the error *1

left of operator specifies undefined struCt/union identifier

The expression before the member-selection operator (-> or.) identified a structure or union
type that was not defined.

identifier: not struct/union member

The given identifier was used in a context that required a structure or union member.

illegal digit character for base number

The given character was not a legal digit for the base used.

732 H21NC Error Messages

HI2042 signed/unsigned keywords mutually exclusive

HI2056

HI2057

HI2058

HI2059

HI2060

HI2061

HI2062

HI2063

HI2064

The keywords signed and unsigned were both used in a single declaration, as in the
following example:

unsigned signed int i;

illegal expression

An expression was illegal because of a previous error, which may not have produced an
error message.

expected constant expression

The context requires a constant expression.

constant expression is not integral

The context requires an integral constant expression.

syntax error: token

The token caused a syntax error.

syntax error: end-of-file found

The compiler expected at least one more token.

Some causes of this error include:

• Omitting a semicolon (;), as in

int *p

• Omitting a closing brace (}) from the last function, as in

main()
{

syntax error: identifier identifier

The identifier caused a syntax error.

type type unexpected

The compiler did not expect the given type to appear here, possibly because it already had a
required type.

identifier: not a function

The given identifier was not declared as a function, but an attempt was made to use it as a
function.

term does not evaluate to a function

An attempt was made to call a function through an expression that did not evaluate to a
function pointer.

H21NC Error Messages 733

HI2065 identifier: undefined

An attempt was made to use an identifier that was not defined.

HI2066 cast to function type is illegal

An object was cast to a function type, which is illegal.

However, it is legal to cast an object to a function pointer.

HI2067 cast to array type is illegal

An object was cast to an array type.

HI2068 illegal cast

A type used in a cast operation was not legal for this expression.

HI2069 cast of void term to nonvoid

The void type was cast to a different type.

HI2070 illegal sizeof operand

The operand of a sizeof expression was not an identifier or a type name.

HI2071 identifier: illegal storage class

The given storage class cannot be used in this context.

HI2072 identifier: initialization of a function

An attempt was made to initialize a function.

HI2043 illegal break

A break statement is legal only within a do, for, while, or switch statement.

HI2044 illegal continue

A continue statement is legal only within a do, for, or while statement.

HI2045 identifier: label redefined

The label appeared before more than one statement in the same function.

HI2046 illegal case

The keyword case may appear only within a switch statement.

HI2047 illegal default

The keyword default may appear only within a switch statement.

HI2048 more than one default

A switch statement contained more than one default label.

HI2049 case value value already used

The case value was already used in this switch statement.

734 H21NC Error Messages

HI2050 nonintegral switch expression

HI2051

HI2052

HI2054

HI2055

HI2075

HI2076

HI2077

HI2078

HI2079

HI2080

HI2082

HI2084

A switch expression did not evaluate to an integral value.

case expression not constant

Case expressions must be integral constants.

case expression not integral

Case expressions must be integral constants.

expected '(' to follow identifier

The context requires parentheses after the function identifier.

One cause of this error is forgetting an equal sign (=) on a complex initialization, as in

int arrayl[] 1* Missing = *1
{

1, 2.3
} ;

expected formal-parameter list, not a type list

An argument-type list appeared in a function definition instead of a formal-parameter list.

identifier: array initialization needs curly braces

There were no curly braces, { }, around the given array initializer.

identifier: struct/union initialization needs curly braces

There were no curly braces, { }, around the given structure or union initializer.

nonscalar field initializer identifier

An attempt was made to initialize a bit-field member of a structure with a nonscalar value.

too many initializers

The number of initializers exceeded the number of objects to be initialized.

identifier uses undefined struct/union name

The identifier was declared as structure or union type name, but the name had not been
defined. This error may also occur if an attempt is made to initialize an anonymous union.

illegal far _fastcall function

A far _fastcall function may not be compiled with the /Gw option, or with the /Gq option if
stack checking is enabled.

redefinition of formal parameter identifier

A formal parameter to a function was redeclared within the function body.

function/unction already has a body

The function has already been defined.

HI2086

HI2087

HI2090

HI2091

HI2092

H21NC Error Messages 735

identifier: redefinition

The given identifier was defined more than once, or a subsequent declaration differed from a
previous one.

The following are ways to cause this error:

int a;
char a;
main()
{

}

main()
{

int a;
int a;

However, the following does not cause this error:

int a;
int a;
main()
{

}

identifier: missing subscript

The definition of an array with multiple subscripts was missing a subscript value for a
dimension other than the first dimension.

The following is an example of an illegal definition:

int func(a)
char a[10][];
{ }

The following is an example of a legal definition:

int func(a)
char a[][5];
{ }

function returns array

A function cannot return an array. It can return a pointer to an array.

function returns function
A function cannot return a function. It can return a pointer to a function.

array element type cannot be function

Arrays of functions are not allowed. Arrays of pointers to functions are allowed.

736 H21NC Error Messages

HI2095 function: actual has type void: parameter number

HI2100

HI2101

HI2102

HI2103

HI2104

HI2105

HI2106

HI2107

HI2108

HI2109

HI2110

HI2111

HI2112

An attempt was made to pass a void argument to a function. The given number indicates
which argument was in error.

Formal parameters and arguments to functions cannot have type void. They can, however,
have type void * (pointer to void).

illegal indirection

The indirection operator (*) was applied to a nonpointer value.

1&1 on constant

The address-of operator (&) did not have an lvalue as its operand.

I & I requires lvalue

The address-of operator (&) must be applied to an Ivalue expression.

I & I on register variable

An attempt was made to take the address of a register variable.

I & I on bit field ignored

An attempt was made to take the address of a bit field.

operator needs lvalue

The given operator did not have an Ivalue operand.

operator: left operand must be lvalue

The left operand of the given operator was not an lvalue.

illegal index, indirection not allowed

A subscript was applied to an expression that did not evaluate to a pointer.

nonintegral index

A nonintegral expression was used in an array sUbscript.

subscript on nonarray

A subscript was used on a variable that was not an array.

pointer + pointer

An attempt was made to add one pointer to another using the plus (+) operator.

pointer + nonintegral value

An attempt was made to add a nonintegral value to a pointer.

illegal pointer subtraction

An attempt was made to subtract pointers that did not point to the same type.

HI2113

HI2114

HI2115

HI2117

HI2118

HI2120

HI2121

HI2124

HI2128

HI2129

HI2130

HI2131

H21NC Error Messages 737

pointer subtracted from non pointer

The right operand in a subtraction operation using the minus (-) operator was a pointer, but
the left operand was not.

operator: pointer on left; needs integral right

The left operand of the given operator was a pointer; so the right operand must be an integral
value.

identifier: incompatible types

An expression contained incompatible types.

operator: illegal for struct/union

Structure and union type values are not allowed with the given operator.

negative subscript

A value defining an array size was negative.

void illegal with all types

The void type was used in a declaration with another type.

operator: bad left/right operand

The left or right operand of the given operator was illegal for that operator.

divide or mod by zero

A constant expression was evaluated and found to have a zero denominator.

identifier: huge array cannot be aligned to segment boundary

The given huge array was large enough to cross two segment boundaries, but could not be
aligned to both boundaries to prevent an individual array element from crossing a boundary.

If the size of a huge array causes it to cross two boundaries, the size of each array element
must be a power of two, so that a whole number of elements will fit between two segment
boundaries.

static function/unction not found

A forward reference was made to a static function that was never defined.

#line expected a string containing the file name, found token

The optional token following the line number on a #line directive was not a string.

more than one memory attribute

More than one of the keywords _near, _far, _huge, or _based were applied to an item, as in
the following example:

typedef int _near nint;
nint _far a; /* Illegal */

738 H21NC Error Messages

HI2132 syntax error: unexpected identifier

An identifier appeared in a syntactically illegal context.

HI2133 identifier: unknown size

An attempt was made to declare an unsized array as a local variable.

HI2134 identifier: struct/union too large

HI2136

HI2137

HI2139

HI2141

HI2143

HI2144

HI2145

The size of a structure or union exceeded the 64K compiler limit.

function : prototype must have parameter types

A function prototype declarator had formal-parameter names, but no types were provided for
the parameters.

A formal parameter in a function prototype must either have a type or be represented by an
ellipsis (...) to indicate a variable number of arguments and no type checking.

One cause of this error is a misspelling of a type name in a prototype that does not provide
the names of formal parameters.

empty character constant

The illegal empty-character constant (") was used.

type following identifier is illegal

Two types were used in the same declaration.

For example:

int double a;

value out of range for enum constant

An enumeration constant had a value outside the range of values allowed for type int.

syntax error: missing token] before token2

The compiler expected token} to appear before token2.

This message may appear if a required closing brace (}), right parenthesis 0), or semicolon
(;) is missing.

syntax error: missing token before type type

The compiler expected the given token to appear before the given type name.

This message may appear if a required closing brace (}), right parenthesis 0), or semicolon
(;) is missing.

syntax error: missing token before identifier

The compiler expected the given token to appear before an identifier.

This message may appear if a semicolon (;) does not appear after the last declaration of a
block.

HI2l46

HI2l47

HI2l48

HI2l49

HI2l50

HI2l5l

HI2l52

HI2l53

HI2l54

HI2l56

H21NC Error Messages 739

syntax error: missing token before identifier identifier

The compiler expected the given token to appear before the given identifier.

unknown size

An attempt was made to increment an index or pointer to an array whose base type has not
yet been declared.

array too large

An array exceeded the maximum legal size of 64K.

Either reduce the size of the array, or declare it with _huge.

identifier: named bit field cannot have 0 width

The given named bit field had zero width. Only unnamed bit fields are allowed to have zero
width.

identifier: bit field must have type int, signed int, or unsigned int

The ANSI C standard requires bit fields to have types of int, signed int, or unsigned int. This
message appears only when compiling with the /Za option.

more than one language attribute

More than one keyword specifying a calling convention for a function was given.

identifier: pointers to functions with different attributes

An attempt was made to assign a pointer to a function declared with one calling convention
C_cdecl, _fortran, _pascal, or _fastcall) to a pointer to a function declared with a different
calling convention.

hex constants must have at least 1 hex digit

The hexadecimal constants Ox, OX and \x are illegal. At least one hexadecimal digit must
follow the x or X.

segment: does not refer to a segment name

A _based-allocated variable must be allocated in a segment unless it is extern and
uninitialized.

pragma must be outside function

A pragma that must be specified at a global level, outside a function body, occurred within a
function.

For example, the following causes this error:

rnai n ()
{

1Ipragrna optirnize("l". on)
}

740 H21NC Error Messages

HI2157 function: must be declared before use in pragma list

HI2158

HI2159

HI2160

HI2161

HI2162

HI2165

HI2166

HI2167

HI2168

The function name in the list of functions for an alloc _text pragma has not been declared
prior to being referenced in the list.

identifier: is a function

The given identifier was specified in the list of variables in a same_seg pragma but was
previously declared as a function.

more than one storage class specified

A declaration contained more than one storage class, as in

extern static int i:

cannot occur at the beginning of a macro definition

A macro definition began with a token-pasting operator (##), as in

#define mac(a.b) ##a

cannot occur at the end of a macro definition

A macro definition ended with a token-pasting operator (##), as in

#define mac(a.b) a##

expected macro formal parameter

The token following a stringizing operator (#) was not a formal-parameter name.

For example:

#define print(a) printf(#b)

keyword: cannot modify pointers to data

The _fortran, _pascal, _cdecl, or _fastcall keyword was used illegally to modify a pointer
to data, as in the following example:

char _pascal *p:

lvalue specifies const object

An attempt was made to modify an item declared with const type.

function: too many actual parameters for intrinsic function

A reference to the intrinsic function name contained too many actual parameters.

function: too few actual parameters for intrinsic function

A reference to the intrinsic function name contained too few actual parameters.

HI2171

HI2172

HI2173

HI2174

HI2177

HI2178

HI2179

H21NC Error Messages 741

operator: illegal operand

The given unary operator was used with an illegal operand type, as in the following example:

int (*fp)();
double d,dl;
fp++;
d .,. -dl;

function: actual is not a pointer: parameter number

An attempt was made to pass. an argument that was not a pointer to a function that expected
a pointer. The given number indicates which argument was in error.

function: actual is not a pointer: parameter numberl, parameter list number2

An attempt was made to pass a nonpointer argument to a function that expected a pointer.

This error occurs in calls that return a pointer to a function. The first number indicates which
argument was in error; the second number indicates which argument list contained the
invalid argument.

function: actual has type void: parameter number 1, parameter list number2

An attempt was made to pass a void argument to a function. Formal parameters and
arguments to functions cannot have type void. They can, however, have type void * (pointer
to void).

This error occurs in calls that return a pointer to a function. The first number indicates which
argument was in error; the second number indicates which argument list contained the
invalid argument.

constant too big

Information was lost because a constant value was too large to be represented in the type to
which it was assigned.

identifier : storage class for same seg variables must be extern

.The given variable was specified in a same_seg pragma, but it was not declared with extern
storage class.

identifier: was used in same _seg, but storage class is no longer extern

The given variable was specified in a same_seg pragma, but it was redeclared with a
storage class other than extern.

742 H21NC Error Messages

812185 identifier: illegal _based allocation

812187

812189

812193

812194

812195

812200

812201

812205

A _based-allocated variable that explicitly has extern storage class and is uninitialized may
not have a base of any of the following:

(_segment) & var
_segname("_STACK")
(_segment)_self
void

If the variable does not explicitly have extern storage class or it is uninitialized, then its base
must use _segname("string") where string is any segment name or reserved segment name
except "_STACK".

cast of near function pointer to far function pointer

An attempt was made to cast a near function pointer as a far function pointer.

#error : string

An #error directive was encountered. The string is the descriptive text supplied in the
directive.

identifier: already in a segment

A variable in the same _ seg pragma has already been allocated in a segment, using _based.

segment: is a text segment

The given text segment was used where a data, const, or bss segment was expected.

segment: is a data segment

The given data segment was used where a text segment was expected.

function: function has already been defined

A function name passed as an argument in an alloc _text pragma has already been defined.

function: storage class must be extern

A function declaration appears within a block, but the function is not declared extern. This
causes an error if the /Za option is in effect.

For example, the following causes this error, when compiled with /Za:

rna in ()
{

static int funcl();
}

identifier: cannot initialize extern block-scoped variables

A variable with extern storage class may not be initialized in a function.

HI2208

HI2209

HI2210

HI2211

HI2212

HI2213

HI2214

HI2215

HI2216

H21NC Error Messages 743

no members defined using this type

An enum, struct, or union was defined without any members. This is an error only when
compiling with /Za; otherwise, it is a warning.

type cast in _based construct must be (_segment)

The only type allowed within a cast in a _based declarator is (_segment).

identifier: must be near/far data pointer

The base in a _based declarator must not be an array, a function, or a _based pointer.

(_segment) applied to function identifier function

The item cast in a based declarator must not be a function.

identifier : _based not available for functions/pointers to functions

Functions cannot be _based-allocated. Use the alloc _text pragma.

identifier: illegal argument to _based

A symbol used as a base must have type _segment or be a near or far pointer.

pointers based on void require the use of :>

A _based pointer based on void cannot be dereferenced. Use the :> operator to create an
address that can be dereferenced.

:> operator only for objects based on void

The right operand of the :> operator must be a pointer based on void, as in

char _based(void) *cbvpi

attribute} may not be used with attribute2

The given function attributes are incompatible.

Some combinations of attributes that cause this error are

• _saveregs and _interrupt

• _fastcall and _saveregs

• _fastcall and Jnterrupt

• _fastcall and _export

744 H21NC Error Messages

HI22I7 attribute} must be used with attribute2

HI22IS

HI22I9

HI2220

HI222I

HI2222

HI2223

The first function attribute requires the second attribute to be used.

Some causes for this error include

• An interrupt function explicitly declared as near. Interrupt functions must be far.

• An interrupt function or a function with a variable number of arguments, when that
function is declared with the _fortran, _pascal, or _fastcall attribute. Functions
declared with the _interrupt attribute or with a variable number of arguments must use
the C calling conventions. Remove the _fortran, _pascal, or _fastcall attribute from the
function declaration.

type in _based construct must be void

The only type allowed within a _based construct is void.

syntax error: type qualifier must be after '*'
Either const or volatile appeared where a type or qualifier is not allowed, as in

int (canst *p);

warning treated as error - no object file generated

When the compiler option /WX is used, the first warning generated by the compiler causes
this error message to be displayed.

Either correct the condition that caused the warning, or compile at a lower warning level or
without /WX.

'.' : left operand points to struct/union, use '->'
The left operand of the'.' operator must be a struct/union type. It cannot be a pointer to a
struct/union type.

This error usually means that a -> operator must be used.

-> : left operand has struct/union type, use'.'

The left operand of the -> operator must be a pointer to a struct/union type. It cannot be a
struct/union type.

This error usually means that a '.' operator must be used.

left of ->member must point to struct/union

The left operand of the -> operator is not a pointer to a struct/union type.

This error can occur when the left operand is an undefined variable. Undefined variables
havetypeint.

HI2224

HI2225

H21NC Error Messages 745

left of .member must have struct/union type

The left operand of the'.' operator is not a struct/union type.

This error can occur when the left operand is an undefined variable. Undefined variables
have type int.

tagname : first member of struct is unnamed

The struct with the given tag started with an unnamed member (an alignment member).
Struct definitions must start with a named member.

H21NC Warnings
HI4000
(level I)

HI4001
(levell,
4)

HI4002
(level I)

HI4003
(level I)

UNKNOWN WARNING Contact Microsoft Product Support Services

The compiler detected an unknown error condition.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

nonstandard extension used - extension

The given nonstandard language extension was used when the IZe option was specified.

This is a level 4 warning, except in the case of a function pointer cast to data when the Quick
Compile option, Iqc, is in use, which produces a level 1 warning.

If the jZa option has been specified, this condition generates a syntax error.

too many actual parameters for macro identifier

The number of actual arguments specified with the given identifier was greater than the
number of formal parameters given in the macro definition of the identifier.

The additional actual parameters are collected but ignored during expansion of the macro.

not enough actual parameters for macro identifier

The number of actual arguments specified with the given identifier was less than the number
of formal parameters given in the macro definition of the identifier.

When a formal parameter is referenced in the definition and the corresponding actual
parameter has not been provided, empty text is substituted in the macro expansion.

746 H21NC Error Messages

HI4004 missing ')' after defined

(levell) The closing parenthesis was missing from an #if defined phrase.

HI4005
(levell)

HI4006
(levell)

HI4007
(level 2)

HI4008
(level 2)

HI4009
(levell)

The compiler assumes a right parenthesis,), after the first identifier it finds. It then attempts
to compile the remainder of the line, which may result in another warning or error.

The following example causes this warning and a fatal error:

#if defined(IDI) I I (ID2)

The compiler assumed a right parenthesis after ID 1, then found a mismatched parenthesis in
the remainder of the line. The following avoids this problem:

#if defined(IDI) I I defined(ID2)

identifier: macro redefinition

The given identifier was defined twice. The compiler assumed the new macro definition.

To eliminate the warning, either remove one of the definitions or use an #Undef directive
before the second definition.

This warning is caused in situations where a macro is defined both on the command line and
in the code with a #define directive.

#Undef expected an identifier

The name of the identifier whose definition was to be removed was not given with the
#Undef directive. The #Undef was ignored.

identifier: must be attribute

The attribute of the given function was not explicitly stated. The compiler forced the
attribute.

For example, the function main must have the _ cdecl attribute.

identifier: fastcall attribute on data ignored

The _fastcall attribute on the given data identifier was ignored.

string too big, trailing characters truncated

A string exceeded the compiler limit of 2047 on string size. The excess characters at the end
of the string were truncated.

To correct this problem, break the string into two or more strings.

HI40l0
(levell)

HI40ll
(levell)

HI40l5
(levell)

HI40l6
(level 3)

HI40l7
(levell)

HI4020
(levell)

HI402l
(levell)

H21NC Error Messages 747

identifier is a MASM keyword

This warning is issued if the .h include file tries to redefine a MASM keyword.

H2INC will give a warning whenever such conflicts take place. This includes #define,
typedef, structures, and other variables. If you want to redefine a MASM keyword, use
#define instead. A #define in the .INC file will not try to redefine the MASM keyword
unless the /Ht option is set.

This warning will also be issued anytime converting a typedef statement will result in a type
with the same name as the type. The translation is not done in this case. For more
information on warning HI4010, see "Miscellaneous Utilities."

identifier truncated to identifier

Only the first 31 characters of an identifier are significant. The characters after the limit
were truncated.

This may mean that two identifiers that are different before truncation may have the same
identifier name after truncation.

identifier: bit-field type must be integral

The given bit field was not declared as an integral type. The compiler assumed the base type
of the bit field to be unsigned.

Bit fields must be declared as unsigned integral types.

function: no function return type, using int as default

The given function had not yet been declared or defined, so the return type was unknown. A
default return type of int was assumed.

cast of int expression to far pointer

A far pointer represents a full segmented address. On an 8086/8088 processor, casting an int
value to a far pointer may produce an address with a meaningless segment value.

The compiler extended the int expression to a 4-byte value.

function: too Inany actual parameters

The number of arguments specified in a function call was greater than the number of
parameters specified in the function prototype or function definition.

The extra parameters were passed according to the calling convention used on the function.

function: too few actual parameters

The number of arguments specified in a function call was less than the number of parameters
specified in the function prototype or function definition.

Only the provided actual parameters are passed. If the called function references a variable
that was not passed, the results are undefined and may be unexpected.

748 H21NC Error Messages

HI4022 function: pointer mismatch: parameter number

(level 1) The pointer type of the given parameter was different from the pointer type specified in the
argument-type list or function definition.

HI4023
(level 1)

HI4024
(level 1)

HI4028
(level 1)

HI4030
(level 1)

HI4031
(level 1)

HI4034
(level 1)

HI4040
(level 1)

The parameter will be passed without change. Its value will be interpreted as a pointer
within the called function.

function : _based pointer passed to unprototyped function: parameter number

When in a near data model, only the offset portion of a _based pointer is passed to an
unprototyped function. If the function expects a far pointer, the resulting code will be wrong.
In any data model, if the function is defined to take a _based pointer with a different base,
the resulting code may be unpredictable.

If a prototype is used before the call, the call will be generated correctly.

function : different types: parameter number

The type of the given parameter in a function call did not agree with the type given in the
argument-type list or function definition.

The parameter will be passed without change. The function will interpret the parameter's
type as the type expected by the function.

parameter number declaration different

The type of the given parameter did not agree with the corresponding type in the argument
type list or with the corresponding formal parameter.

The original declaration was used.

first parameter list longer than the second

A function was declared more than once with different parameter lists.

The first declaration was used.

second parameter list is longer than the first

A function was declared more than once with different parameter lists.

The first declaration was used.

sizeof returns 0

The sizeof operator was applied to an operand that yielded a size of zero.

This warning is informational.

memory attribute on identifier ignored

The _near, _far, _huge, or _based keyword has no effect in the declaration of the given
identifier and is ignored.

One cause of this warning is a huge array that is not declared globally. Declare huge arrays
outside of main.

014042
(levell)

014044
(levell)

014047
(levell)

014048
(levell)

014049
(levell)

H21NC Error Messages 749

identifier: has bad storage class

The storage class specified for identifier cannot be used in this context.

The default storage class for this context was used in place of the illegal class:

• If identifier was a function, the compiler assumed extern class.

• If identifier was a formal parameter or local variable, the compiler assumed auto class.

• If identifier was a global variable, the compiler assumed the variable was declared with
no storage class.

_huge on identifier ignored, must be an array

The compiler ignored the _huge memory attribute on the given identifier. Only arrays may
be declared with the _huge memory attribute. On pointers, _huge must be used as a
modifier, not as a memory attribute.

operator: different levels of indirection

An expression involving the specified operator had inconsistent levels of indirection.

If both operands are of arithmetic type, or if both are not (such as array or pointer), then they
are used without change, though the compiler may DS-extend one of the operands if one is
far and one is near. If one is arithmetic and one is not, the arithmetic operator is converted to
the type of the other operator.

For example, the following code causes this warning but is compiled without change:

char **p;
char *q;
p = q; 1* Warning *1

array's declared subscripts different

An expression involved pointers to arrays of different size.

The pointers were used without conversion.

operator: indirection to different types

The pointer expressions used with the given operator had different base types.

The expressions were used without conversion.

For example, the following code causes this warning:

5truct t51 *51;
5truct t52 *52;
52 = 51; 1* Warning *1

750 H21NC Error Messages

HI4050 operator: different code attributes

(level 4) The function-pointer expressions used with operator had different code attributes. The
attribute involved is either _export or Joadds.

HI4051
(level 2)

HI4052

HI4053
(level 1)

HI4063
(level 2)

HI4066
(level 2)

HI4067
(level 1)

HI4071
(level 2)

This is a warning and not an error, because _export and _Ioadds affect only entry
sequences and not calling conventions.

type conversion, possible loss of data

Two data items in an expression had different base types, causing the type of one item to be
converted. During the conversion, a data item was truncated.

invalid numerical argument string

A numerical argument was expected instead of the given string.

at least one void operand

An expression with type void was used as an operand.

The expression was evaluated using an undefined value for the void operand.

function : function too large for post-optimizer

Not enough space was available to optimize the given function.

One of the following may be a solution:

• Recompile with fewer optimizations.

• Divide the function into two or more smaller functions.

local symbol-table overflow - some local symbols may be missing in listings

The listing generator ran out of heap space for local variables, so the source listing may not
contain symbol-table information for all local variables.

unexpected characters following directive directive - newline expected

Extra characters followed a preprocessor directive and were ignored. This warning appears
only when compiling with the /Za option.

For example, the following code causes this warning:

ffendif

To remove the warning, compile with /Ze or use comment delimiters:

ffendif /* NO_EXT_KEYS */

function : no function prototype given

The given function was called before the compiler found the corresponding function
prototype.

The function will be called using the default rules for calling a function without a prototype.

HI4072
(levell)

HI4073
(levell)

HI4076
(levell)

HI4079
(levell)

HI4082
(levell)

HI4083
(levell)

HI4084
(levell)

H21NC Error Messages 751

function: no function prototype on _fastcall function

A _ fastcall function was called without first being proto typed.

Functions that are _fastcall should be proto typed to guarantee that the registers assigned at
each point of call are the same as the registers assumed when the function is defined. A
function defined in the new ANSI style is a prototype.

A prototype must be added when this warning appears, unless the function takes no
arguments or takes only arguments that cannot be passed in the general-purpose registers.

scoping too deep, deepest scoping merged when debugging

Declarations appeared at a static nesting level greater than 13. As a result, all declarations
beyond this level will seem to appear at the same level.

type: may be used on integral types only

The signed or unsigned type modifier was used with a nonintegral type.

The given qualifier was ignored.

The following example causes this warning:

unsigned double x;

unexpected token token

An unexpected separator token was found in the argument list of a pragma.

The remainder of the pragma was ignored.

expected an identifier, found token

An identifier was missing from the argument list.

The remainder of the pragma was ignored.

expected 1(" found token

A left parenthesis, (, was missing from a pragma's argument list.

The pragma was ignored.

The following example causes this warning:

#pragma check_pointer on)

expected a pragma keyword, found token

The token following #pragma was not recognized as a directive.

The pragma was ignored.

The following example causes this warning:

#pragma (on)

752 H21NC Error Messages

HI4085 expected [on 1 off]

(level 1) The pragma expected an on or off parameter, but the specified parameter was unrecognized
or missing.

HI4086
(level 1)

HI4087
(level 1)

HI4088
(level 1)

HI4089
(level 1)

HI4090
(level 1)

The pragma was ignored.

expected [11214]

The pragma expected a parameter of either 1, 2, or 4, but the specified parameter was
unrecognized or missing.

function : declared with void parameter list

The given function was declared as taking no parameters, but a call to the function specified
actual parameters.

The extra parameters were passed according to the calling convention used on the function.

The following example causes this warning:

int f1(void);
f1(10);

function: pointer mismatch: parameter number, parameter list number

The argument passed to the given function had a different level of indirection from the given
parameter in the function definition.

The parameter will be passed without change. Its value will be interpreted as a pointer
within the called function.

function: different types: parameter number, parameter list number

The argument passed to the given function did not have the same type as the given parameter
in the function definition.

The parameter will be passed without change. The function will interpret the parameter's
type as the type expected by the function.

different constlvolatile qualifiers

A pointer to an item declared as const was assigned to a pointer that was not declared as
const. As a result, the const item pointed to could be modified without being detected.

The expression was compiled without modification.

The following example causes this warning:

canst char *p = "abcde";
int str(char *s);
str(p);

HI409l
(level 2)

HI4092
(level 2)

HI4093
(level 3)

HI4095
(Ievell)

HI4096
(level 2)

HI4098
(Ievell)

HI4l04
(Ievell)

H21NC Error Messages 753

no symbols were declared

The compiler detected an empty declaration, as in the following example:

int ;

The declaration was ignored.

untagged enum/struct/union declared no symbols

The compiler detected an empty declaration using an untagged structure, union, or
enumerated variable.

The declaration was ignored.

For example, the following code causes this warning:

struct { ... };

unescaped newline in character constant in inactive code

The constant expression of an #if, #elif, #ifdef, or #ifndef preprocessor directive evaluated
to 0, making the code that follows inactive. Within that inactive code, a newline character
appeared within a set of single or double quotation marks.

All text until the next double quotation mark was considered to be within a character
constant.

expected ')', found token

More than one argument was given for a pragma that can take only one argument.

The compiler assumed the expected parenthesis and ignored the remainder of the line.

attribute} must be used with attribute2

The use of attribute2 requires the use of attribute 1.

For example, using a variable number of arguments (oo.) requires that _cdecl be used. Also,
Jnterrupt functions must be _far and _ cdecl.

The compiler assumed attribute} for the function.

void function returning a value

A function declared with a void return type also returned a value.

A function was declared with a void return type but was defined as a value.

The compiler assumed the function returns a value of type int.

identifier: near data in same _seg pragma, ignored

The given near variable was specified in a same _ seg pragma.

The identifier was ignored.

754 H21NC Error Messages

014105 identifier: code modifiers only on function or pointer to function

{level 1) The given identifier was declared with a code modifier that can be used only with a function
or function pointer.

The code modifier was ignored.

014109 unexpected identifier identifier

{level 1) The pragma contained an unexpected token.

014110
{level 1)

014111
{level 1)

014112
{level 1)

014113
{level 1)

014114
{level 1)

014115
(level 1)

014116
{level 1)

The pragma was ignored.

unexpected token int constant

The pragma contained an unexpected integer constant.

The pragma was ignored.

unexpected token string

The pragma contained an unexpected string.

The pragma was ignored.

macro name name is reserved, command ignored

The given command attempted to define or undefine the predefmed macro name or the
preprocessor operator defined. The given command is displayed as either #define or #Undef,
even if the attempt was made using command-line options.

The command was ignored.

function parameter lists differed

A function pointer was assigned to a function pointer, but the parameter lists of the functions
do not agree.

The expression was compiled without modification.

same type qualifier used more than once

A type qualifier (const, volatile, signed, or unsigned) was used more than once in the same
type.

The second occurrence of the qualifier was ignored.

tag: type definition in formal parameter list

The given tag was used to define a struct, union, or enum in the formal parameter list of a
function.

The compiler assumed the definition was at the global level.

(no tag) : type definition in formal parameter list

A struct, union, or enum type with no tag was defined in the formal parameter list of a
function.

The compiler assumed the definition was at the global level.

HI4119
(level 1)

HI4120
(level 1)

HI4123
(level 1)

HI4125
(level 4)

HI4126
(level 1)

HI4128
(level 4)

HI4129
(level 4)

H21NC Error Messages 755

different bases name} and name2 specified

The _based pointers in the expression have different symbolic bases. There may be
truncation or loss in the code generated.

based/unbased mismatch

The expression contains a conversion between a _based pointer and another pointer that is
unbased. Some information may have been truncated.

This warning commonly occurs when a _based pointer is passed to a function that accepts a
near or far pointer.

different base expressions specified

The expression contains a conversion between _based pointers, but the base expressions of
the _based pointers are different. Some of the _based conversions may be unexpected.

decimal digit terminates octal escape sequence

An octal escape sequence in a character or string constant was terminated with a decimal
digit.

The compiler evaluated the octal number without the decimal digit, and assumed the decimal
digit was a character.

The following example causes this warning:

char arrayl[] = "\709";

If the digit 9 was intended as a character and was not a typing error, correct the example as
follows:

char array[] = "\0709"; /* String containing "89" */

flag: unknown memory model flag

The flag used with the / A option was not recognized and was ignored.

storage-class specifier after type

A storage-class specifier (auto, extern, register, static) appears after a type in a declaration.
The compiler assumed the storage class specifier occurred before the type.

New-style code places the storage-class specifier first.

character: unrecognized character escape sequence

The character following a backslash in a character or string constant was not recognized as
a valid escape sequence.

As a result, the backslash is ignored and not printed, and the character following the
backslash is printed.

To print a single backslash (\), specify a double backslash (\\).

756 H21NC Error Messages

HI4130 operator: logical operation on address of string constant

(level 4) The operator was used with the address of a string literal. Unexpected code was generated.

HI4131
(level 4)

HI4132
(level 4)

HI4135
(level 3)

For example, the following code causes this warning:

char *pc;
pc = "Hello";
if (pc == "Hello")

The if statement compares the value stored in the pointer pc to the address of the string
"Hello" which is separately allocated each time it occurs in the code. It does not compare the
string pointed to by pc with the string "Hello."

To compare strings, use the strcmp function.

function: uses old-style declarator

The function declaration or definition is not a prototype.

New-style function declarations are in prototype form.

• old style

int addrec(name, id
char *name;
i nt i d ;
{ }

• new style

int addrec(char *name, int id)
{ }

object: const object should be initialized

The value of a const object cannot be changed, so the only way to give the const object a
value is to initialize it.

It will not be possible to assign a value to object.

conversion between different integral types

Information was lost between two integral types.

For example, the following code causes this warning:

int intvar;
long longvar;
intvar = longvar;

If the information is merely interpreted differently, this warning is not given, as in the
following example:

unsigned uintvar = intvar;

HI4136
(level 4)

HI4138
(level 1)

H21NC Error Messages 757

conversion between different floating types

Infonnation was lost or truncated between two floating types.

For example~ the following code causes this warning:

double doublevar;
float floatvar;
floatvar = doublevar;

Note that unsuffixed floating-point constants have type double~ so the following code causes
this warning:

floatvar = 1.0;

If the floating-point constant should be treated as float type~ use the F (or f) suffix on the
constant to prevent the following warning:

floatvar = 1.0F;

*/ found outside of comment

The compiler found a closing comment delimiter (*/) without a preceding opening delimiter.
It assumed a space between the asterisk (*) and the forward slash (/).

The following example causes this warning:

int *1*comment*/ptr;

In this example~ the compiler assumed a space before the first comment delimiter (!*)~ and
issued the warning but compiled the line nonnally. To remove the warning, insert the
assumed space.

Usually~ the cause of this warning is an attempt to nest comments.

To comment out sections of code that may contain comments, enclose the code in an
#if/#endif block and set the controlling expression to zero, as in:

lIif 0
int my_variable; 1* Declaration currently not needed *1
lIendif

758 H21NC Error Messages

HI4l39 hexnumber: hex escape sequence is out of range

(levell) A hex escape sequence appearing in a character or string constant was too large to be
converted to a character.

HI4l86
(levell)

HI4200
(levell)

HI420l
(level 3)

HI4202
(level 4)

HI4203
(levell)

If in a string constant, the compiler cast the low byte of the hexadecimal number to a char. If
in a char constant, the compiler made the cast and then sign extended the result. If in a char
constant and compiled with IJ, the compiler cast the value to an unsigned char.

For example, '\XHf' is out of range for a character. Note that the following code causes this
warning:

printf("\x7Bell\n");

The number 7be is a legal hex number, but is too large for a character. To correct this
example, use three hex digits:

pri ntfC "\x007Bell \n") ;

string too long - truncated to 40 characters

The string argument for a title or subtitle pragma exceeded the maximum allowable length
and was truncated.

local variable identifier used without having been initialized

A reference was made to a local variable that had not been assigned a value. As a result, the
value of the variable is unpredictable.

This warning is given only when compiling with global register allocation on (JOe).

local variable identifier may be used without having been initialized

A reference was made to a local variable that might not have been assigned a value. As a
result, the value of the variable may be unpredictable.

This warning is given only when compiling with the global register allocation on (JOe).

unreachable code

The flow of control can never reach the indicated line.

This warning is given only when compiling with one of the global optimizations (JOe, 109,
or 101).

function: function too large for global optimizations

The named function was too large to fit in memory and be compiled with the selected
optimization. The compiler did not perform any global optimizations (JOe, 109, or 101).
Other 10 optimizations, such as lOa and 10i, are still performed.

One of the following may remove this warning:

• Recompile with fewer optimizations.

• Divide the function into two or more smaller functions.

HI4204
(level 3)

HI420S
(level 4)

HI4209
(level 4)

HI4300
(level 2)

HI4301
(level 2)

H21NC Error Messages 759

function: in-line assembler precludes global optimizations

The use of in-line assembler in the named function prevented the specified global
optimizations (JOe, lag, or 101) from being performed.

statement has no effect

The indicated statement will have no effect on the program execution.

Some examples of statements with no effect:

1 ;
a + 1;
b == c;

comma operator within array index expression

The value used as an index into an array was the last one of multiple expressions separated
by the comma operator.

An array index legally may be the value of the last expression in a series of expressions
separated by the comma operator. However, the intent may have been to use the expressions
to specify multiple indexes into a multidimensional array.

For example, the following line, which causes this warning, is legal in C, and specifies the
index c into array a:

a[b.c]

However, the following line uses both band c as indexes into a two-dimensional array:

a[b][c]

insufficient memory to process debugging information

The program was compiled with the /Zi option, but not enough memory was available to
create the required debugging information.

One of the following may be a solution:

• Split the current file into two or more files and compile them separately.

• Remove other programs or drivers running in the system which could be consuming
significant amounts of memory.

loss of debugging information caused by optimization

Some optimizations, such as code motion, cause references to nested variables to be moved.
The information about the level at which the variables are declared may be lost. As a result,
all declarations will seem to be at nesting level 1.

760 H21NC Error Messages

HI4323 potential divide by 0

(level 3) The second operand in a divide operation evaluated to zero at compile time, giving undefined
results.

HI4324
(level 3)

HI4799
(levell)

HI4800
(levell)

HI480l
(levell)

HI4802
(levell)

HI48l0
(level 2)

HI48ll
(levell)

The 0 operand may have been generated by the compiler, as in the following example:

funcl() { int i,j,k; i /= j && k; }

potential mod by 0

The second operand in a remainder operation evaluated to zero at compile time, giving
undefined results.

unknown option character in option

A command line option was specified that was not understood by H2INC, or the given
character was not a valid letter for the option.

For example, the following line:

/lpragma optimize("q", on)

causes the following warning:

unknown option 'q' in '/lpragma optimize'

more than one memory model specified

There was more than one memory model given at the command line. The IAT, lAS, lAM,
lAC, IAL, and IAH options specify the memory model.

This error is caused by conflicting options specified at the command line and in the CL and
H2INC environment variables.

more than one target processor specified

There was more than one processor type given at the command line. The IGO, IGl, and IG2
options specify the processor type.

This error is caused by conflicting options specified at the command line and in the CL and
H2INC environment variables.

ignoring invalid /Zp value value

The alignment value specified to the /Zp option was not 1, 2, or 4. The default of 1 was
assumed.

untranslatable basic type size

H2INC could not translate the item to a MASM type.

The C void type cannot be translated to a similar MASM type.

static function prototype not translated

H2INC does not translate static items, as they are not visible outside the C source file.

HI48l2
(levell)

HI48l5
(levell)

HI48l6
(levell)

HI4820
(levell)

HELPMAKE Error Messages 761

static variable declaration not accepted with IMn switch

H2INC does not translate static items, as they are not visible outside the C source file.

string : EQ U string truncated to 254 characters

A #define statement exceeded 254 characters, the maximum length of a MASM EQ U
statement. The string was truncated.

ignoring _fastcall function definition

H2INC does not translate function declarations or prototypes with the _fastcall attribute.
The _fastcall calling convention cannot be used directly with MASM. See the
documentation with your C compiler for details on _fastcall.

ignoring function definition: function()

H2INC translates header information only; it cannot convert program code. H2INC does not
translate function bodies.

I

HELPMAKE Error Messages
Microsoft Help File Maintenance Utility (HELPMAKE) generates the following
error messages:

• Fatal Errors (Hlxxx) cause HELPMAKE to stop execution. No output file is
produced.

• Errors (H2xxx) do not prevent an output file from being produced, but parts of
the conversion are not completed.

• Warnings (H4xxx) do not prevent an output file from being produced, but
problems may exist in the output.

HELPMAKE Fatal Error Messages
HlOOO I A requires character

The fA option requires an application-specific control character.

The correct form is:

lAc

where c is the control character.

762 HELPMAKE Error Messages

H1001 IE compression level must be numeric

H1002

H1003

H1004

H1005

H1006

H1050

H1051

The IE option requires either no argument or a numeric value in the range 0-15.

The correct form is:

lEn

where n specifies the amount of compression requested.

multiple 10 parameters specified

Only one output file can be specified with the /0 option.

invalid IS file-type identifier

The IS option was given an argument other than 1,2, or 3.

The IS option requires specification of the type of input file. An invalid file-type identifier
was specified.

The correct form is:

ISn

where n specifies the format of the input file. Valid values are 1 (RTF), 2
(QuickHelp format), and 3 (minimally formatted ASCII).

IS requires file-type identifier

The IS option requires specification of the type of input file. There was no file-type identifier
specified.

The correct form is:

ISn

where n specifies the format of the input file. Valid values are 1 (RTF), 2
(QuickHelp format), and 3 (minimally formatted ASCII).

IW fixed width invalid

An invalid width was specified with the /W option. The valid range is 11-255.

multiple IK parameters specified

The option for specifying a keyword separator file, /K, was used more than once on the
HELPMAKE command line.

Only one file containing separator characters can be specified.

option invalid with IDS

The IC, /L, and /0 options for encoding are invalid with the IDS option for decoding.

improper arguments for ID

The ID option permits either no argument or an S or U argument. In addition, ID is invalid
with the /C or /L option.

HI052

HI053

HI097

HI098

HI099

HIIOO

HIIOI

HII02

HII03

HII04

HELPMAKE Error Messages 763

encode requires /0 option

Database encoding was requested without a specified output-file name for the operation.

compression level exceeds 15

A value greater than 15 was specified with the IE option.

The IE option requires either no argument or a numeric value in the range 0-15.

The correct form is:

lEn

where 11 specifies the amount of compression requested.

no operation specified

The HELPMAKE command line did not contain an option for encoding, decoding, or Help.

HELPMAKE requires the IE, /D, /H, or /? option.

unrecognized option

An unrecognized name followed the option indicator.

An option is specified by a forward slash (/) or a dash (-) and an option name.

syntax error on command line

HELPMAKE cannot interpret the command line.

cannot open file

One of the files specified on the HELPMAKE command line could not be found or created.

error writing file

The output file could not be written, probably because the disk is full.

no input file specified

In an encoding operation, no input Help text file was specified.

no context strings found

No context strings were found in the input stream during encoding.

Either the file is empty or the specified /S value does not correspond to the Help text
formatting.

no topic text found

No topic text was found in the Help text file.

Either the file is empty or the specified /S value does not correspond to the Help text
formatting.

764 HELPMAKE Error Messages

HII07 cannot overwrite input file

H1200

H1201

H1250

H1251

H1300

H1302

The IDS option for splitting a concatenated Help file was specified, but the Help file
contained a database with the same name as the Help file. It may be that the Help file is not a
concatenated file and contains only one database, and the database has the same name as its
physical Help file.

One of the following may be a solution:

• Rename the Help file so that the filename does not match any of the database names.

• Run HELPMAKE from a directory other than the one that holds the physical Help file.
Since HELPMAKE creates the split files in the current directory, no filename conflict
occurs.

insufficient memory to allocate context buffer

There was insufficient memory to run HELPMAKE.

HELPMAKE requires 256K free memory.

insufficient memory to allocate utility buffer

There was insufficient memory to run HELPMAKE.

HELPMAKE requires 256K free memory.

not a valid compressed Help file

The input file specified for a decompressiori operation is not a valid Help database file.

cannot decompress locked Help file

An attempt was made to decompress a Help database file that is locked.

A file is locked if the /L option is specified when the Help file is created.

word too long in RTF processing

A single word was longer than the specified format width (set by the /W option) or was
found to be longer than 128 characters when HELPMAKE was reformatting a paragraph.

attribute stack overflow processing RTF

RTF attribute groups are nested too deeply. HELPMAKE supports a maximum of 50 levels
of attribute-group nesting in RTF format.

H1303

H1304

H1305

H1900

H1901

H1902

H1903

HELPMAKE Error Messages 765

unknown RTF attribute

An unknown RTF fonnatting command was found.

One of the following may have occurred:

• A new RTF attribute was used. HELPMAKE recognizes a set of attributes that were
current at the time this version of HELPMAKE was created. It interprets some of the
attributes and knows to ignore the others. Any RTF attribute defined after HELPMAKE
was created is not known by HELPMAKE and will cause this error.

• The RTF file is corrupted.

topic too large

A topic exceeded the limit for the size of topics.

A single topic cannot exceed 64K.

topic text without context string

The source file contained topic text that was not preceded by a .context definition.

internal virtual memory error

This message indicates an internal HELPMAKE error.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

out of local memory

This message indicates an internal HELPMAKE error.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

out of disk space for swap file

The current drive or directory is full.

HELPMAKE uses a temporary swap file, written to the current drive and directory. The
temporary file can grow to 1.5 times the size of the input files (for large Help files) and is
not removed until the final Help file is completed.

cannot open swap file

HELPMAKE was unable to create its temporary swap file on the current drive and directory
for one of the following reasons:

• The current drive or directory is full.

• The device cannot be written to.

766 HELPMAKE Error Messages

H1990 internal compression error

This message indicates an internal HELPMAKE error.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

HELPMAKE Error Messages
H2000

H2001

H2002

H2003

line too long, truncated

A line exceeded the fixed width specified by the /W option or the default of 76 characters.
HELPMAKE truncated the extra characters.

duplicate context string

A context string preceded more than one topic in a Help database. A context string can be
associated with only one block of topic text.

zero length hot spot

A cross-reference was specified, but the word or anchored text associated with it was of zero
length.

With no visible text to associate with the cross-reference, the hot spot will be inoperative.
This error is issued as a warning and does not prevent the building of a Help file. However,
some applications may not be able to use the resulting Help file correctly.

The following example will cause this error:

\a\vcross_reference\v

unrecognized dot command

A line in the source file contained a dot (.) in column 1, but it was not followed by a
command recognized by HELPMAKE.

HELPMAKE Warning Messages
H4000

H4002

keyword compression analysis table size exceeded
no further new words will be analyzed

The maximum number (16,000) of unique keywords has been encountered during keyword
compression. This happens only in very large Help files. No further keywords will be
included in the analysis. HELPMAKE continues to analyze how frequently words occur that
it has already encountered.

reference to undefined local context

A string specifying a local context was used in a cross-reference but was not defined in a
.context statement.

A local context begins with an at sign (@). Each local context that is used must be defined in
a .context statement in one of the input files to HELPMAKE.

H4003

IMPLIB Error Messages 767

negative left indent

Topic text in an RTF file was fonnatted with a left indent to a position to the left of column 1.
HELPMAKE deleted all text preceding column 1.

IMPLIB Error Messages
Microsoft Import Library Manager (IMPLIB) generates the following error
messages:

• Fatal errors (1M 16xx) cause IMPLIB to stop execution.

• Errors (lM26xx) prevent IMPLIB from creating an import library.

• Warnings (IM46xx) indicate possible problems in the output file being created.

IMPLIB Fatal Error Messages
IM1600 error writing to output file-message

IMPLIB could not create the import library for the given reason.

Probably the drive or directory where the import library is being created is full.

IM1601 out of memory, near/far heap exhausted

There was not enough room in memory for the heap needed by IMPLIB.

Increase the available memory. Some ways to do this include:

• Remove TSR (tenninate-and-stay-resident) programs.

• Run IMPLIB outside of an NMAKE session.

• Run IMPLIB outside of a shell.

IM1602 syntax error in module-definition file

IMPLIB could not understand the contents of a .DEF input file.

IM1603 filename: cannot create file-message

IMPLIB could not create the given file for the given reason.

One of the following may be a cause:

• The file already exists with a read-only attribute.

• There is insufficient disk space to create the file.

• The drive cannot be written to.

768 IMPLIB Error Messages

IM1604 filename: cannot open file-message

IMPLIB could not find the specified module-definition (.DEF) file or dynamic-link library
(DLL) for the given reason.

IM1605 too many nested include files in module-definition file

A module-definition (.DEF) file contained an INCLUDE statement specifying a nested set
of include files that exceeded the limit for nesting. The limit is 10 levels.

IM1606 missing or invalid include file name

IM1607

IM1608

A syntax error occurred in an INCLUDE statement in a module-definition (.DEF) file.

One of the following may have occurred:

• A filename was not specified.

• More than one filename was specified.

• A long filename was specified without being enclosed in quotation marks or was enclosed
in one single and one double quotation mark.

extension: invalid extension for target library

The given extension was specified for the import library.

An import library cannot be given a .DEF or .DLL extension.

no .DLL or .DEF source file specified

No input file was specified on the IMPLIB command line.

IMPLIB Error Messages
IM2601 symbol multiply defined

The given symbol was defined more than once in the input files.

IM2602 unexpected end of name table in DLL

A dynamic-link library (DLL) specified to IMPLIB was corrupted.

IM2603 filename: invalid .DLL file

IMPLIB did not recognize the given input file as a dynamic-link library (DLL).

IMPLIB Warning Messages
IM4600

IM4601

line number too long; truncated to 512 characters

The given line in the module-definition (.DEF) file exceeded the limit on line length. IMPLIB
ignored text after the first 512 characters.

unrecognized option option; option ignored

The given option was not a valid IMPLIB option. IMPLm used the rest of the command line
to try to build an import library.

LIB Error Messages 769

LIB Error Messages
This section lists error messages generated by the LIB utility.

Microsoft Library Manager (LIB) generates the following error messages:

• Fatal errors (U1150 through U1203) cause LIB to stop execution.

• Errors (U2152 through U2159) do not stop execution but prevent LIB from
creating a library.

• Warnings (U4150 through U4158) indicate possible problems in the library
being created.

LIB Fatal Error Messages
V1150

VIISI

V1152

V1153

V1154

V1155

V1156

page size too small; use option /PAGE:n to increase it

The page size of an input library was too small, indicating an invalid input .LIB file.

syntax error: illegal file specification

A command operator was not followed by a module name or filename.

One possible cause of this error is an option specified with a dash (-) instead of a forward
slash (/).

syntax error: option name missing

A forward slash (/) appeared on the command line without an option name after it.

syntax error: option value missing

The /pAGE option was given without a value following it.

unrecognized option

An unrecognized name followed the option indicator (/).

An option is specified by a forward slash (/) and a name. The name can be specified by a
legal abbreviation of the full name.

syntax error: illegal input

A specified command did not follow correct LIB syntax.

syntax error

A specified command did not follow correct LIB syntax.

770 LIB Error Messages

UIIS7 comma or newline missing

UIIS8

U1161

U1162

U1163

U1164

U1170

U1171

A comma or newline character was expected in the command line but did not appear.

One cause of this error is an incorrectly placed comma, as in the following command line:

LIB math.lib, -mod! +mod2;

The line must be entered as follows:

LIB math.lib -mod! +mod2;

terminator missing

The last line of the response file supplied to LIB did not end with a newline character.

cannot rename old library

LIB could not rename the old library with a .BAK extension because the .BAK version
already existed with read-only protection.

Change the protection attribute on the .BAK file.

cannot reopen library

The old library could not be reopened after it was renamed with a .BAK extension.

One of the following may have occurred:

• Another process deleted the file or changed it to read-only.

• The floppy disk containing the file was removed.

• A hard-disk error occurred.

error writing to cross-reference file

The disk or root directory was full.

Delete or move files to make space.

name length exceeds 255 characters
A filename specified on the command line exceeded the LIB limit of 255 characters. Reduce
the number of characters in the name.

too many symbols

The number of symbols in all object files and libraries exceeded the capacity of the
dictionary created by LIB.

Create two or more smaller libraries.

insufficient memory

LIB did not have enough memory to run.

Remove any shells or resident programs, or add more memory.

U1172

U1173

U1174

U1175

U1180

U1181

U1182

U1183

U1184

U1185

U1186

LIB Error Messages 771

no more virtual memory

The LIB session required more memory than the I-megabyte limit imposed by LIB.

Try using the /NOE option or reducing the number of object modules.

internal failure

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

mark: not allocated

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

free: not allocated

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

write to extract file failed

The disk or root directory was full.

Delete or move files to make space.

write to library file failed

The disk or root directory was full.

Delete or move files to make space.

filename: cannot create extract file

The disk or root directory was full, or the given extract file already existed with read-only
protection.

Make space on the disk or change the protection of the extract file.

cannot open response file

The response file was not found.

unexpected end-of-file on command input

An end-of-file character was received prematurely in response to a prompt.

cannot create new library
The disk or root directory was full, or the library file already existed with read-only
protection.

Make space on the disk or change the protection of the library file.

error writing to new library

The disk or root directory was full.

Delete or move files to make space.

772 LIB Error Messages

UI187 cannot open temporary file VM.TMP

The disk or root directory was full.

UI188

UI189

UI190

UI19I

UI200

UI203

Delete or move files to make space.

insufficient disk space for temporary file

The library manager cannot write to the virtual memory.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

cannot read from temporary file

The library manager cannot read the virtual memory.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

interrupted by user

LIB was interrupted with either CTRL+C or CTRL+BREAK.

libraryname : cannot write to read-only file

Operations cannot be performed on the given library because it is marked as a read-only file.

Change the protection attribute on the library.

filename: invalid library header

The input library file had an invalid format.

Either it was not a library file or it was corrupted.

filename: invalid object file near location

The given file was not a valid object file or was corrupted at the given location.

LIB Error Messages
U2I52 filename: cannot create listing

One of the following may have occurred:

• The directory or disk was full.

• The cross-reference-listing file already existed with read-only protection.

U21SS

U21S7

U21S8

U21S9

LIB Error Messages 773

module: module not in library; ignored

The specified module was not found in the input library.

One cause of this error is a filename or directory containing a a hyphen or dash (-). LIB
interprets the dash as the operator for the delete command. This error occurs if you install a
Microsoft language product in a directory that has a dash in its path, such as C:\MS-C. The
SETUP program for a language calls LIB to create combined libraries, but the dash in the
command line passed to LIB causes the library-building session to fail.

Another possible cause of this error is an option specified with a dash (-) instead of a
forward slash (/).

filename: cannot access file

LIB was unable to open the specified file, probably because the file did not exist.

Check the path and filename.

library: invalid library header; file ignored

The given library had an incorrect format and was not combined.

filename: invalid format (number); file ignored

The given file was not recognized as a XENIX archive and was not combined.

LIB Warning Messages
U41S0

U41S1

U41S3

U41SS

module: module redefinition ignored

A module was specified with the add operator (+) to be added to a library, but a module
having that name was already in the library.

One cause of this error is an incorrect specification of the replace operator (- +).

symbol: symbol defined in module module; redefinition ignored

The given symbol was defined in more than one module.

option: value: page size invalid; ignored

The argument specified with the /pAGE option was not valid for that option. The value must
be an integer power of 2 between 16 and 32,768. LIB assumed an existing page size from a
library that is being combined.

modulename : module not in library

The given module specified with a command operator does not exist in the library.

If the replacement command (- +) was specified, LIB added the file anyway. If the delete
(-), copy (*), or move (- *) command was specified, LIB ignored the command.

774 LINK Error Messages

U4156 library: output-library specification ignored

U4157

U4158

A new library was created because the filename specified in the oldlibrary field did not
exist. However, a filename was also specified in the newlibrary field. LIB ignored the
newlibrary specification.

For example, both of the following command lines cause this error if PROJECT. LIB does
not already exist:

LIB project.lib +one.obj. new. 1st. project.lib
LIB project.lib +one.obj. new. 1st. new. lib

insufficient memory, extended dictionary not created

Insufficient memory prevented LIB from creating an extended dictionary.

The library is still valid, but the linker cannot take advantage of the extended dictionary to
speed linking.

internal error, extended dictionary not created

An internal error prevented LIB from creating an extended dictionary.

The library is still valid, but the linker cannot take advantage of the extended dictionary to
speed linking.

LINK Error Messages
Microsoft Segmented-Executable Linker (LINK) generates the following error
messages:

• Fatal errors (Llxxx) cause LINK to stop execution.

• Errors (L2xxx) do not stop execution but might prevent LINK from creating the
main output file.

• Warnings (L4xxx) indicate possible problems in the output file being created.

LINK Error Messages 775

LINK Fatal Error Messages
LIOOI

LI003

LI004

LI005

LI006

LI007

LI008

LI009

option: option name ambiguous

A unique option name did not appear after the option indicator.

An option is specified by a forward slash (/) and a name. The name can be specified by an
abbreviation of the full name, but the abbreviation must be unambiguous.

For example, since many options begin with the letter N, the following command causes this
error:

LINK IN main;

This error can also occur if the wrong version of the linker is being used. Check the
directories in the PATH environment variable for other versions of LINK.EXE.

/Q and IEXEPACK incompatible

LINK cannot be given both the /Q option and the /EXEP ACK option.

value: invalid numeric value

An incorrect value was specified with a LINK option.

For example, this error occurs if a nonnumeric string is specified with an option that requires
a number.

option: packing limit exceeds 64K

The value specified with the /P ACKC or /p ACKD option exceeded the limit of 65,536 bytes.

number: stack size exceeds 64K-2

One of the following may have occurred:

• The given value specified with the jSTACK option exceeded the limit of 65,534 bytes.

• A space appeared before or after the colon (:) between JST ACK and the argument
specified with it.

/OVERLAYINTERRUPT: interrupt number exceeds 255

An overlay interrupt number greater than 255 was specified with the JOV option value.

Check the Microsoft MS-DOS Programmer's Reference or other MS-DOS technical manual
for information about interrupts.

/SEGMENTS : segment limit set too high

The value specified with the jSEG option exceeded 16,375.

value: /CP ARM : illegal value

The value specified with the JCP ARM option was not in the range 1-65,535.

776 LINK Error Messages

LI020 no object files specified

LI021

LI022

LI023

LI024

LI025

LI026

LI027

LI030

LI031

LI032

LI033

The object-files field was empty.

LINK requires the name of at least one object file.

cannot nest response files

A response file was specified in a response file.

response line too long

A line in a response file was longer than 255 characters.

To extend a field to another line, put a plus sign (+) at the end of the current line.

terminated by user

The LINK session was halted by CTRL+C or CTRL+BREAK.

nested right parentheses

The parentheses for assigning overlays were specified incorrectly.

nested left parentheses

The parentheses for assigning overlays were specified incorrectly.

unmatched right parenthesis

The parentheses for assigning overlays were specified incorrectly.

unmatched left parenthesis

The parentheses for assigning overlays were specified incorrectly.

missing internal name

An IMPORTS statement specified an ordinal value but not an internal name for the routine
or data item being imported.

An item imported by ordinal must be given an internal name.

module description redefined

The module-definition (.DEF) file contained more than one DESCRIPTION statement.

module name redefined

The module-definition (.DEF) file contained more than one NAME or LIBRARY
statement.

input line too long; number characters allowed

The LINK command line cannot exceed the given number of characters.

LI034

LI035

LI040

LI041

LI042

LI043

LI044

LINK Error Messages 777

name truncated to string

A name specified either on the LINK command line or in a module-definition (.DEF) file
exceeded 255 characters. The name was truncated to the given string.

This is a warning, not a fatal error. However, it indicates a serious problem. This message
may be followed by another error as LINK tries to use the specified name. For example, if
the string is a filename, LINK issues an error when it cannot open the file.

syntax error in module-definition file

A statement in the module-definition (.DEF) file was incorrect.

too many exported entries

The program exceeded the limit of 65,535 exported names.

resident names table overflow

The size of the resident names table exceeded 65,535 bytes.

An entry in the resident names table is made for each exported routine designated
RESIDENT NAME and consists of the name plus three bytes of infonnation. The first entry
is the module name.

Reduce the number of exported routines or change some to nonresident status.

nonresident names table overflow

The size of the nonresident names table exceeded 65,535 bytes.

An entry in the nonresident names table is made for each exported routine not designated
RESIDENTNAME and consists of the name plus three bytes of infonnation. The first entry
is the DESCRIPTION statement.

Reduce the number of exported routines or change some to resident status.

relocation table overflow

More than 32,768 long calls, long jumps, or other long pointers appeared in the program.

Replace long references with short references wherever possible.

imported names table overflow

The size of the imported names table exceeds 65,535 bytes.

An entry in the imported names table is made for each new name given in the IMPORTS
section, including the module names, and consists of the name plus one byte.

Reduce the number of imports.

778 LINK Error Messages

LI045 too many TYPDEF records

LI046

LI047

LI048

LI049

LI050

LI051

LI052

An object file contained more than 255 TYPDEF records.

TYPDEF records describe communal variables. (TYPDEF is an MS-DOS term. It is
explained in the Microsoft MS-DOS Programmer's Reference and in other reference books
on MS-DOS.)

This error appears only with programs created by the Microsoft FORTRAN Compiler or
other compilers that support communal variables.

too many external symbols in one module

An object file specified more than 1023 external symbols.

Break the object file into smaller files.

too many group, segment, and class names in one module

An object file contained too many group, segment, and class names.

Reduce the number of groups, segments, or classes in the object file, or break the object file
into smaller files.

too many segments in one module

An object file had more than 255 segments.

Either create fewer segments or break the object file into smaller files.

too many segments

The program contained more than the maximum number of segments.

The maximum number of segments is set with the /SEG option (in the range
1-16,384). If /SEG is not specified, the default is 128.

If this error occurs when linking a p-code program, recompile and use CL's INQ option to
combine the temporary p-code segments.

too many groups in one module

An object file contained more than 21 group definitions (GRPDEF).

Reduce the number of group definitions or split the module.

(Group definitions are explained in the Microsoft MS-DOS Programmer's Reference and in
other reference books on MS-DOS.)

too many groups

The program defined more than 20 groups, not counting DGROUP.

Reduce the number of groups.

too many libraries

An attempt was made to link with more than 32 libraries.

Combine libraries, or use modules that require fewer libraries.

LI053

LI054

LI056

LI057

LI063

LINK Error Messages 779

out of memory for symbol table

The program had more symbolic information than could fit in available memory. Symbolic
information includes public, external, segment, group, class, and file names.

One of the following may be a solution:

• Eliminate as many public symbols as possible.

• Combine object files or segments.

• Link from the command line instead of from a makefile or PWB.

• Remove terminate-and-stay-resident programs or otherwise free some memory.

requested segment limit too high

LINK did not have enough memory to allocate tables describing the requested number of
segments. The number of segments is the value specified with the /SEG option or the default
of 128.

One of the following may be a solution:

• Assemble with /c and link in a separate step.

• Link again using the /SEG option to set fewer segments.

• Remove terminate-and-stay-resident programs or otherwise free some memory.

too many overlays

The program defined more than 127 overlays.

data record too large

An LEDATA record in an object module contained more than 1024 bytes of data. This is a
translator error. (LEDATA is an MS-DOS term explained in the Microsoft MS-DOS
Programmer's Reference and in other MS-DOS reference books.)

Note which translator (compiler or assembler) produced the incorrect object module. Please
report the circumstances of the error to Microsoft Corporation by following the instructions
in the "Microsoft Support Services" section of the introduction to this book.

out of memory for debugging information

LINK ran out of memory for processing debugging information.

Reduce the amount of debugging information by compiling some object files with jZd instead
of /Zi or with neither option.

780 LINK Error Messages

LI064 out of memory-near/far heap exhausted

LI065

LI066

LI067

LI070

LI071

LI072

LINK was not able to allocate enough memory for the given heap.

One of the following may be a solution:

• Reduce the size of code, data, and symbols in the program.

• If the program is a segmented executable file, put some code into a dynamic-link library.

too many interoverlay calls
use /DYNAMIC:nnn; current limit is number

The program had more than the given limit of interoverlay calls.

The maximum number of interoverlay calls is set with the /DYNAMIC option (in the range
1-10,922). If /DYNAMIC is not specified, the default is 256.

To determine the setting needed by the program, run LINK with the /INFO option. The
output gives the number of interoverlay calls that are generated and the current limit.

size of overlaynumber overlay exceeds 64K

The overlay represented by the given number exceeded the MOVE size limit of 65,535
bytes.

memory allocation error

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

segment: segment size exceeds 64K

A single segment contained more than 65,536 bytes of code or data.

Try changing the memory model to use far code or data as appropriate. If the program is in
C, use CL's /NT option or the __ based keyword (or its predecessor, the alloc_text pragma)
to build smaller segments.

segment _TEXT exceeds 64K-16

The segment named _TEXT grew larger than 65,520 bytes. This error is likely to occur only
in small-model C programs, but it can occur when any program with a segment named
_TEXT is linked using the LINK /DOSSEG option.

Small-model C programs must reserve code addresses 0 and 1; this range is increased to 16
for alignment purposes.

Try compiling and linking using the medium or large model. If the program is in C, use CL's
/NT option or the __ based keyword (or its predecessor, the alloc_text pragma) to build
smaller segments.

common area exceeds 64K

The program had more than 65,536 bytes of communal variables. This error occurs only with
programs produced by the Microsoft FORTRAN optimizing compiler or other compilers that
support communal variables.

LI073

LI074

LI075

LI078

LI080

LI081

LI082

LINK Error Messages 781

file-segment limit exceeded

The number of physical or file segments exceeded the limit of 255 imposed by the Windows
operating system for each application or dynamic-link library.

A file segment is created for each group definition, nonpacked logical segment, and set of
packed segments.

Reduce the number of segments, or put more information into each segment. Use the
/pACKC option or the /pACKD option or both.

group: group exceeds 64K

The given group exceeds the limit of 65,536 bytes.

Reduce the size of the group, or remove any unneeded segments from the group. Refer to the
map file for a listing of segments.

entry table exceeds 64K-l

The entry table exceeded the limit of 65,535 bytes.

The table contains an entry for each exported routine and for each address that is the target
of a far relocation, when PROTMODE is not enabled and the target segment is designated
MOVABLE.

Declare PROTMODE if applicable, reduce the number of exported routines, or make some
segments FIXED if possible.

file-segment alignment too small

The segment-alignment size specified with the fALlON option was too small.

cannot open list file

The disk or the root directory was full.

Delete or move files to make space.

out of space for run file

The disk or the root directory was full.

Delete or move files to make space.

filename: stub file not found

LINK could not open the file given in the STUB statement in the module-definition (.DEF)
file.

The file must be in the current directory or in a directory specified by the PATH environment
variable.

782 LINK Error Messages

LI083 cannot open run file

LI084

LI085

LI086

LI087

LI088

One of the following may have occurred:

• The disk or the root directory was full.

• Another process opened or deleted the file.

• A read-only file existed with the same name.

• The floppy disk containing the file was removed.

• A hard-disk error occurred.

cannot create temporary file

One of the following may have occurred:

• The disk or the root directory was full.

• The directory specified in the TMP environment variable did not exist.

cannot open temporary file-message

LINK could not open a temporary file for the given reason.

One of the following may have occurred:

• The disk or the root directory was full.

• The directory specified in the TMP environment variable did not exist.

temporary file missing

An internal error has occurred.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

unexpected end-of-file on temporary file

A problem occurred with the temporary linker-output file.

One of the following may have occurred:

• The disk that holds the temporary file was removed.

• The disk or directory specified in the TMP environment variable was full.

out of space for list file

The disk or the root directory was full.

Delete or move files to make space.

LI089

LI090

LI091

LI092

LI093

LI094

LI095

LI096

filename: cannot open response file

LINK could not find the given response file.

One of the following may have occurred:

• The response file does not exist.

• The name of the response file was incorrectly specified.

LINK Error Messages 783

• An old version of LINK was used. Check your path. To see the version number of LINK,
run LINK with the /? option.

cannot reopen list file

The original floppy disk was not replaced at the prompt.

Restart the LINK session.

unexpected end-of-file on library

The floppy disk containing the library was probably removed.

Replace the disk containing the library and run LINK again.

cannot open module-definition file

LINK could not find the specified module-definition (.DEF) file.

Check that the name of the .DEF file is spelled correctly.

filename: object file not found

LINK could not find the given object file.

Check that the name of the object file is spelled correctly.

filename: cannot open file for writing

LINK was unable to open the given file with write permission.

Check the attributes for the file.

filename: out of space for file

LINK ran out of disk space for the specified output file.

Delete or move files to make space.

unexpected end-of-file in response file

LINK encountered a problem while reading the response file.

One of the following may be a cause:

• The response file is corrupt.

• The file was deleted between reads.

784 LINK Error Messages

LI097 1/0 error-message

LI098

LIIOO

LIIOI

LII02

LII03

LII04

LII05

LII06

LINK encountered the given input or output error.

cannot open include file filename-message

LINK could not open the given include file for the given reason.

An include file is specified in an INCLUDE statement in the module-definition (.DEF) file.

stub .EXE file invalid
The file specified in the STUB statement in the module-definition (.DEF) file is not a valid
MS-DOS executable file.

invalid object module

LINK could not link one of the object files.

Check that the correct version of LINK is being used.

If the error persists after recompiling, note the circumstances of the error and notify
Microsoft Corporation by following the instructions in the "Microsoft Support Services"
section of the introduction to this book.

unexpected end-of-file

The given library or object file had an invalid format.

attempt to access data outside segment bounds

A data record in an object file specified data extending beyond the end of a segment. This is
a translator error.

Note which translator (compiler or assembler) produced the incorrect object module and the
circumstances in which it was produced. Please report the error to Microsoft Corporation by
following the instructions in the "Microsoft Support Services" section of the introduction to
this book.

filename: invalid library

The given file had an invalid format for a library.

invalid object due to interrupted incremental compile

Delete the object file, recompile the program, and relink.

unknown COMDAT allocation type for symbol; record ignored

This is a translator error. The given symbol is either a routine or a data item.

Note which translator (compiler or assembler) produced the incorrect object module and the
circumstances in which it was produced. Please report this error to Microsoft Corporation by
following the instructions in the "Microsoft Support Services" section of the introduction to
this book.

LII07

LII08

Lll13

Lll14

LIIIS

Lll17

Ll123

LINK Error Messages 785

unknown COMDAT selection type for symbol; record ignored

This is a translator error. The given symbol is either a routine or a data item.

Note which translator (compiler or assembler) produced the incorrect object module and the
circumstances in which it was produced. Please report this error to Microsoft Corporation by
following the instructions in the "Microsoft Support Services" section of the introduction to
this book.

invalid format of debugging information

This is a translator error.

Note which translator (compiler or assembler) produced the incorrect object module and the
circumstances in which it was produced. Please report this error to Microsoft Corporation by
following the instructions in the "Microsoft Support Services" section of the introduction to
this book.

unresolved COMDEF; internal error

This is a translator error.

Note which translator (compiler or assembler) produced the incorrect object module and the
circumstances in which it was produced. Please report this error to Microsoft Corporation by
following the instructions in the "Microsoft Support Services" section of the introduction to
this book.

unresolved COMDAT symbol; internal error

This is a translator error. The given symbol is either a routine or a data item.

Note which translator (compiler or assembler) produced the incorrect object module and the
circumstances in which it was produced. Please report this error to Microsoft Corporation by
following the instructions in the "Microsoft Support Services" section of the introduction to
this book.

option: option incompatible with overlays

The given option cannot be used when linking an overlaid program.

unallocated COMDAT symbol; internal error

This is a translator error. The given symbol is either a routine or a data item.

Note which translator (compiler or assembler) produced the incorrect object module and the
circumstances in which it was produced. Please report this error to Microsoft Corporation by
following the instructions in the "Microsoft Support Services" section of the introduction to
this book.

segment: segment defined both 16-bit and 32-bit

Define the segment as either 16-bit or 32-bit.

786 LINK Error Messages

Ll127 far segment references not allowed with iTINY

Ll128

Ll129

The /fINY option for producing a .COM file was used in a program that has a far segment
reference.

Far segment references are not compatible with the .COM file format. High-level-language
programs cause this error unless the language supports the tiny memory model. An assembly
language program that references a segment address also causes this error.

For example, the following causes this error:

mav ax, seg mydata

too many nested include files in module-definition file

Nesting of INCLUDE statements in a module-definition (.DEF) file is limited to 10 levels.

missing or invalid include file name

The file specification in an INCLUDE statement in the module-definition (.DEF) file was
missing or was not a valid filename.

LINK Error Messages
L2000

L2002

L2003

imported starting address

The program starting address as specified in the END statement in an assembly-language file
is an imported routine. This is not supported by the Windows operating system.

fixup overflow at number in segment segment

This error message is followed by one of these strings:

• target external symbol

• frm seg name}, tgt seg name2, tgt offset number

A fixup overflow is an attempted reference to code or data that is impossible because the
source location (where the reference is made "from") and the target address (where the
reference is made "to") are too far apart. Usually the problem is corrected by examining the
source location.

For information about frame and target segments, see the Microsoft MS-DOS Programmer's
Reference.

near reference to far target at offset in segment segment
pos: offset target external name

The program issued a near call or jump to a label in a different segment.

This error occurs most often when specifically declaring an external procedure as near that
should be declared as far.

This error can be caused by compiling a small-model C program with CL's /NT option.

L200S

L2010

L2011

L2012

L2013

L2022

L2023

LINK Error Messages 787

fixup type unsupported at number in segment segment

A fixup type occurred that is not supported by LINK. This is probably a translator error.

Note which translator (compiler or assembler) produced the incorrect object module and the
circumstances in which it was produced. Please report this error to Microsoft Corporation by
following the instructions in the "Microsoft Support Services" section of the introduction to
this book.

too many fixups in LIDATA record

The number of far relocations (pointer- or base-type) in an LIDAT A record exceeds the limit
imposed by LINK.

The cause is usually a DUP statement in an assembly-language program. The limit is
dynamic: a 1,024-byte buffer is shared by relocations and the contents of the LIDAT A
record. There are 8 bytes per relocation.

Reduce the number of far relocations in the DUP statement.

identifier: NEAR/HUGE conflict

Conflicting NEAR and HUGE attributes were given for a communal variable. This error
can occur only with programs produced by the Microsoft FORTRAN optimizing compiler or
other compilers that support communal variables.

arrayname : array-element size mismatch

A far communal array was declared with two or more different array-element sizes (for
instance, an array was declared once as an array of characters and once as an array of real
numbers). This error occurs only with the Microsoft FORTRAN optimizing compiler and any
other compiler that supports far communal arrays.

LIDATA record too large

An LID AT A record contained more than 512 bytes. This is probably a translator error.

Note which translator (compiler or assembler) produced the incorrect object module and the
circumstances in which it was produced. Please report this error to Microsoft Corporation by
following the instructions in the "Microsoft Support Services" section of the introduction to
this book.

entry (alias internalname) : export undefined

The internal name of the given exported routine or data item is undefined.

entry (alias internalname) : export imported

The internal name of the given exported routine or data item conflicts with the internal name
of a previously imported routine or data item.

788 LINK Error Messages

L2024 symbol: special symbol already defined

L2025

L2026

L2027

L2028

L2029

The program defined a symbol name already used by LINK for one of its own low-level
symbols. For example, LINK generates special symbols used in overlay support and other
operations.

Choose another name for the symbol to avoid conflict.

symbol: symbol defined more than once

The same symbol has been found in two different object files.

entry ordinal number, name name: multiple definitions for same ordinal

The given exported name with the given ordinal number conflicted with a different exported
name previously assigned to the same ordinal. Only one name can be associated with a
particular ordinal.

name : ordinal too large for export

The given exported name was assigned an ordinal that exceeded the limit of 65,535 (64K-l).

automatic data segment plus heap exceed 64K

The size of the sum of the following exceeds 64 K:

• Data declared in DGROUP

• The size of the heap specified in the HEAPSIZE statement in the module-definition
(.DEF) file

• The size of the stack specified in either the /STACK option or the ST ACKSIZE
statement in the .DEF file

Reduce near-data allocation, HEAPSIZE, or stack.

symbol: unresolved external

A symbol was declared to be external in one or more modules, but it was not publicly defined
in any module or library.

The name of the unresolved external symbol is given, followed by a list of object modules
that contain references to this symbol. This message and the list of object modules are written
to the map file, if one exists.

One cause of this error is using the /NOI option for files that use case inconsistently in
identifiers.

This error can also occur when a program compiled with C/C++ version 7.0 (or later) is
linked using /NOD. The /NOD option tells LINK to ignore all default libraries named in
object files. C/C++ 7.0 embeds in an object file both the name of the default run-time library
and OLDNAMES.LIB. To avoid this error, either specify OLDNAMES.LIB in the libraries
field or specify /NOD:library where library is the name of the default run-time library to be
excluded from the search.

L2030

L2041

L2043

L2044

L2046

L2047

LINK Error Messages 789

starting address not code (use class 'CODE')

The program starting address, as specified in the END statement of an .ASM file, should be
in a code segment. Code segments are recognized if their class name ends in "CODE". This
is an error in a segmented-executable file.

The error message can be disabled by including the REALMODE statement in the module
definition (.DEF) file.

stack plus data exceed 64K

If the total of near data and requested stack size exceeds 64K, the program will not run
correctly. LINK checks for this condition only when IDOSSEG is enabled, which is the case
in the library startup module for Microsoft language libraries.

For object modules compiled with the Microsoft C or FORTRAN optimizing compilers,
recompile with the /Gt command-line option to set the data-size threshold to a smaller
number.

This is a fatal LINK error.

Quick library support module missing

The required file QUICKLIB.OBJ was missing. QUICKLIB.OBJ must be linked in when
creating a Quick library.

symbol: symbol multiply defined, use /NOE

LINK found what it interprets as a public-symbol redefinition, probably because a symbol
defined in a library was redefined.

Relink with the /NOE option. If error L2025 results for the same symbol, then this is a
genuine symbol-redefinition error.

share attribute conflict-segment segment in group group

The given segment has a different sharing attribute than other segments that are assigned to
the given group.

All segments assigned to a group must have the same attribute, either SHARED or
NONSHARED. The attributes cannot be mixed.

IOPL attribute conflict-segment segment in group group

The specified segment is a member of the specified group but has an IOPL attribute that is
different from other segments in the group.

790 LINK Error Messages

L2048 Microsoft Overlay Manager module not found

L20S0

L20S2

L20S7

L20S8

L2060

L2061

Overlays were designated, but an overlay manager was missing.

By default, the overlay manager is the Microsoft Overlay Virtual Environment (MOVE).
This is provided in MOVE.LIB, which is a component library of the default combined
libraries provided with Microsoft C/C++ version 7.0. The error occurs when LINK cannot
find the moveinit routine.

If the /OLDOVERLA Y option is specified, the overlay manager is the Microsoft Static
Overlay Manager, which is also provided in the default combined libraries.

USE16/USE32 attribute conflict-segment segment in group group

You cannot group 16-bit segments with 32-bit segments.

symbol: unresolved external; possible calling convention mismatch

A symbol was declared to be external in one or more modules, but LINK could not find it
publicly defined in any module or library.

The name of the unresolved external symbol is given, followed by a list of object modules
that contain references to this symbol. The error message and the list of object modules are
written to the map file, if one exists.

This error occurs in a C-Ianguage program when a prototype for an externally defined
function is omitted and the program is compiled with CL' s /Gr option. The calling convention
for __ fastcall does not match the assumptions that are made when a prototype is not included
for an external function.

Either include a prototype for the function, or compile without the /Gr option.

duplicate of function with different size found; record ignored

An inconsistent class definition was found.

Check the include files and recompile.

different duplicate of function found; record ignored

An inconsistent class definition was found.

Check the include files and recompile.

size of data block associated with symbol (16-bit segment) exceeds 64K

A class had too many virtual functions. The given symbol is the v-table for the class, in the
form of a decorated name.

no space for data block associated with function inside segment segment

The given function was allocated to the given segment, but the segment was full.

L2062

L2063

L2064

LINK Error Messages 791

continuation of COMDA T function has conflicting attributes; record ignored

This is a translator error.

Note which translator (compiler or assembler) produced the incorrect object module and the
circumstances in which it was produced. Please report this error to Microsoft Corporation by
following the instructions in the "Microsoft Support Services" section of the introduction to
this book.

function is allocated in undefined segment

The given function was allocated to a nonexistent segment.

starting address not in the root overlay

The segment or object file that contains the starting address for the program was placed into
an overlay.

The starting address in a C-Ianguage program is provided by the main function.

LINK Warning Messages
L4000

L4001

L4002

L4004

L4010

segment displacement included near offset in segment segment

This is the warning generated by the /W option.

frame-relative fixup, frame ignored -near offset in segment segment

A reference was made relative to a segment or group that is different from the target segment
of the reference.

For example, if _ i d 1 is defined in segment _ T EXT, the instruction call 0 G R 0 UP: _ i d 1
produces this warning. The frame DGROU P is ignored, so LINK treats the call as if it were
call _ T EXT: i d 1.

frame-relative absolute fixup near offset in segment segment

A reference was made relative to a segment or group that was different from the target
segment of the reference, and both segments are absolute (defined with AT).

LINK assumed that the executable file will be run only with MS-DOS.

possible fixup overflow at offset in segment segment

A near call or jump was made to another segment that was not a member of the same group
as the segment from which the call or jump was made.

This can cause an incorrect real-mode address calculation when the distance between the
paragraph address (frame number) of the segment group and the target segment is greater
than 64K, even though the distance between the segment where the call or jump was actually
made and the target segment is less than 64K.

invalid alignment specification

The number specified in the /ALIGN option must be a power of 2 in the range 2-32,768.

792 LINK Error Messages

L4011 IPACKC value exceeding 64K-36 unreliable

L4012

L4013

L4014

L4015

L4016

L4017

L4018

L4020

The packing limit specified with the /pACKC option was in the range 65,501-65,536 bytes.
Code segments with a size in this range are unreliable on some versions of the 80286
processor.

IHIGH disables IEXEPACK

The /HIGH and /EXEP ACK options cannot be used at the same time.

option : option ignored for segmented executable file

The given option is not allowed for segmented-executable programs.

option: option ignored for DOS executable file

The given option is not allowed for MS-DOS programs.

ICO disables IDSALLOC

The ICO and /DSALLOC options cannot be used at the same time.

ICO disables IEXEPACK

The ICO and /EXEPACK options cannot be used at the same time.

option: unrecognized option name; option ignored

The given option was not a valid LINK option. LINK ignored the option specification.

One of the following may be a cause:

• An obsolete option was specified to the current version of LINK. For example, the IINCR
option is obsolete in LINK version 5.30. The current options are described in the manual
and in online Help. To see a list of options, run LINK with the /? option.

• An old version of LINK was used. Check your path. To see the version number of LINK,
run LINK with the /? option.

• The name was incorrectly specified. For example, the option specification
/NODEFAULTLIBSEARCH is an invalid abbreviation of the
/NODEFAULTLIBRARYSEARCH option. Option names can be shortened by removing
letters only from the end of the name.

missing or unrecognized application type; option option ignored

The /PM option accepts only the keywords PM, VIO, and NOVIO.

segment: code-segment size exceeds 64K-36

Code segments that are 65,501 through 65,536 bytes in length may be unreliable on some
versions of the 80286 processor.

L4021

L4022

L4023

L4024

L4025

L4026

L4027

L4028

L4029

LINK Error Messages 793

no stack segment

The program did not contain a stack segment defined with the STACK combine type.

Normally, every program should have a stack segment with the combine type specified as
STACK. You can ignore this message if you have a specific reason for not defining a stack
or for defining one without the STACK combine type. Linking with versions of LINK earlier
than version 2.40 might cause this message since these linkers search libraries only once.

group1, group2 : groups overlap

The given groups overlap. Since a group is assigned to a physical segment, groups cannot
overlap in segmented-executable files.

Reorganize segments and group definitions so the groups do not overlap. Refer to the map
file.

entry(internalname) : export internal name conflict

The internal name of the given exported function or data item conflicted with the internal
name of a previous import definition or export definition.

name: multiple definitions for export name

The given name was exported more than once, an action that is not allowed.

modlilename.entry(internainame) : import internal name conflict

The internal name of the given imported function or data item conflicted with the internal
name of a previous export or import. (The given entry is either a name or an ordinal number.)

modlilename.entry(internainame) : self-imported

The given function or data item was imported from the module being linked. This error can
occur if a module tries to import a function or data item from itself or from another source
(such as a DLL) that has the same name.

name: multiple definitions for import internal name

The given internal name was imported more than once. Previous import definitions are
ignored.

segment: segment already defined

The given segment was defined more than once in a SEGMENTS statement of the module
definition (.DEF) file.

segment: DGROUP segment converted to type DATA

The given logical segment in the group DGROUP was defined as a code segment.

DGROUP cannot contain code segments because LINK always considers DGROUP to be a
data segment. The name DGROUP is predefined as the automatic (or default) data segment.

LINK converted the named segment to type DATA.

794 LINK Error Messages

L4030 segment: segment attributes changed to conform with automatic data segment

L4031

L4032

L4033

L4034

L4036

L4037

The given logical segment in the group DGROUP was given sharing attributes
(SHARED/NONSHARED) that differed from the automatic data attributes as declared by
the DATA instance specification (SINGLE/MUL TIPLE). The attributes are converted to
conform to those ofDGROUP.

The name DGROUP is predefined as the automatic (or default) data segment. DGROUP
cannot contain code segments because LINK always considers DGROUP to be a data
segment.

segment: segment declared in more than one group

A segment was declared to be a member of two different groups.

segment: code-group size exceeds 64K-36

The given code group has a size in the range 65,501-65,536 bytes, a size that is unreliable
on some versions of the 80286 processor.

first segment in mixed group group is a USE32 segment

A 16-bit segment must be first in a group created with both USE16 and USE32 segments.

LINK continued to build the executable file, but the resulting file may not run correctly.

more than 1024 overlay segments; extra put in root

The limit on the number of segments that can go into overlays is 1024. Segments starting
with the 1025th segment are assigned to the permanently resident portion of the program (the
root).

no automatic data segment

The application did not define a group named DGROUP.

DGROUP has special meaning to LINK, which uses it to identify the automatic (or default)
data segment used by the operating system. Most segmented-executable applications require
DGROUP.

This warning will not be issued if DATA NONE is declared or if the executable file is a
dynamic-link library.

group: both USE16 and USE32 segments in group; assuming USE32

The given group was allocated contributions from both 16-bit segments and 32-bit segments.

L4038

L4040

L4042

L4043

L4045

L4050

LINK Error Messages 795

program has no starting address

The segmented-executable application had no starting address. A missing starting address
will usually cause the program to fail.

High-level languages automatically specify a starting address. In a C-Ianguage program, this
is provided by the main function.

If you are writing an assembly-language program, specify a starting address with the END
statement.

MS-DOS programs and dynamic-link libraries should never receive this message, regardless
of whether they have starting addresses.

stack size ignored for ITINY

LINK ignores stack size if the !TINY option is used and if the stack segment has been
defined in front of the code segment.

cannot open old version

The file specified in the OLD statement in the module-definition (.DEF) file could not be
opened.

old version not segmented executable format

The file specified in the OLD statement in the module-definition (.DEF) file was not a valid
segmented-executable file.

name of output file is filename

LINK used the given filename for the output file.

If the output filename is specified without an extension, LINK assumes the default extension
.EXE. Creating a Quick library, DLL, or .COM file forces LINK to use a different
extension. In the following cases, if either .EXE or no extension is specified, LINK assumes
the appropriate extension:

!TINY option: .COM
IQ option: .QLB
LIBRARY statement: .DLL

file not suitable for IEXEPACK; relink without

The size of the packed load image plus packing overhead was larger than it would be for the
unpacked load image. There is no advantage to packing this program.

Remove /EXEPACK from the LINK command line. In PWB, clear the Pack EXE File check
box in the Additional Debug/Release Options dialog box under Link Options.

This warning also occurs if the name specified in the LIBRARY statement in the module
definition (.DEF) file does not match the name specified in the exefile field.

796 LINK Error Messages

L4051 filename: cannot find library

L4053

L4054

L4055

L4056

L4057

L4058

L4067

LINK could not find the given library file.

One of the following may be a cause:

• The specified file does not exist. Enter the name or full path specification of a library file.

• The LIB environment variable is not set correctly. Check for incorrect directory
specifications, mistyping, or a space, semicolon, or hidden character at the end of the line.

• An earlier version of LINK is being run. Check the path environment variable and delete
or rename earlier linkers.

VM.TMP : illegal filename; ignored

VM.TMP appeared as an object-file name.

Rename the file and rerun LINK.

filename: cannot find file

LINK could not find the specified file.

Enter a new filename, a new path specification, or both.

start address not equal to Oxl00 for /TINY

The starting address for a .COM file must be 100 hexadecimal.

Put the following line of assembly source code in front of the code segment:

ORG 100h

/EXEPACK valid only for OS/2 and real-mode DOS; ignored

The /EXEP ACK option is incompatible with Windows-based programs.

stack specified for DLL; ignored

A stack was specified for a dynamic-link library (DLL). Either the /STACK option was used
on the command line or the ST ACKSIZE statement was used in the module-definition
(.DEF) file. LINK ignored the specification and did not create a stack.

A DLL does not have a stack.

ignoring alias for already defined symbol symbol

The specified symbol was redefined in the program. However, it is an identifier from a C run
time library that has an alias to a new name in OLDNAMES.LIB. LINK ignored the alias for
the symbol.

This warning appears only when the /INFO option is specified.

changing default resolution for weak external symbol from oldresolution to
newresolution

LINK found conflicting default resolutions for a weak external. It ignored the first resolution
and used the second.

L4068

L4069

L4070

L4076

L4077

L4079

L4080

L4081

L4082

L4083

LINK Error Messages 797

ignoring stack size greater than 64K

A stack was defined with an invalid size. LINK assumed 64K.

filename truncated to filename

A filename specification exceeded the length allowed. LINK assumed the given filename.

too many public symbols for sorting

LINK uses the stack and all available memory in the near heap to sort public symbols for the
/MAP option. This warning is issued if the number of public symbols exceeds the space
available for them. In addition, the symbols are not sorted in the map file but are listed in an
arbitrary order.

no segments defined

There was no code in the program.

This warning can occur if the file contains only resources.

symbol/unction not defined; ordered allocation ignored

The given function was specified in a FUNCTIONS statement in the module-definition
(.DEF) file, but the function was not defined.

symbol/unction already defined for ordered allocation; duplicate ignored

The given function was specified twice in FUNCTIONS statements in the module-defmition
(.DEF) file.

changing substitute name for alias symbol from oldalias to newalias

LINK found conflicting alias names. It ignored the first alias and used the second.

cannot execute program arguments-message

LINK could not run the given program (with the given arguments) for the given reason.

changing overlay assignment for segment segment from oldnumber to newnumber

The given segment was assigned to two overlays, represented by oldnumber and newnumber.
LINK assumed the newnumber overlay.

Probably a command-line overlay specification with parentheses conflicted with an overlay
specification in the module-definition (.DEF) file.

changing overlay assignment for symbol symbol from oldnumber to newnumber

The given symbol was assigned to two overlays, represented by oldnumber and newnumber.
LINK assumed the newnumber overlay.

Probably a command-line overlay specification with parentheses conflicted with an overlay
specification in the module-definition (.DEF) file.

798 ML Error Messages

L4084 option: argument missing; option ignored

L4085

L4086

The given option requires an argument, but none was specified.

For example, the following option specification causes this error:

IONERROR

option: argument invalid; assuming argument

The given option was specified with a numeric argument that was out of range for the option.
LINK assumed the given argument.

For example, the option specification /DYNAMIC: 11000 causes the following error:

IDYNAMIC:11000 : argument invalid: assuming 10922

Ir not first on command line; ignored

This message appears if the Ir option is not specified before other LINK options. Ir must be
the first option specified or it will be ignored.

ML Error Messages

ML Fatal Errors
AIOOO cannot open file: filename

The assembler was unable to open a source, include, or output file.

One of the following may be a cause:

• The file does not exist.

• The file is in use by another process.

• The filename is not valid.

• A read-only file with the output filename already exists.

• Not enough file handles exist. In MS-DOS, increase the number of file handles by
changing the FILES setting in CONFIG.SYS to allow a larger number of open files.
FILES=50 is the recommended setting.

• The current drive is full.

• The current directory is the root and is full.

• The device cannot be written to.

• The drive is not ready.

AIOOI

AI002

AI003

AI005

AI006

ML Error Messages 799

I/O error closing file

The operating system returned an error when the assembler attempted to close a file.

This error can be caused by having a corrupt file system or by removing a disk before the file
could be closed.

I/O error writing file

The assembler was unable to write to an output file.

One of the following may be a cause:

• The current drive is full.

• The current directory is the root and is full.

a The device cannot be written to.

• The drive is not ready.

I/O error reading file

The assembler encountered an error when trying to read a file.

One of the following may be a cause:

• The disk has a bad sector.

• The file-access attribute is set to prevent reading.

• The drive is not ready.

assembler limit: macro parameter name table full

Too many parameters, locals, or macro labels were defined for a macro. There was no
more room in the macro name table.

Define shorter or fewer names, or remove unnecessary macros.

invalid command-line option: option

ML did not recognize the given parameter as an option.

This error is generally caused when there is a syntax error on the command line.

800 ML Error Messages

AI007 nesting level too deep

AI008

AI009

AIOIO

The assembler reached its nesting limit. The limit is 20 levels except where noted
otherwise.

One of the following was nested too deeply:

• A high-level directive such as .IF, .REPEAT, or .WHILE

• A structure definition

• A conditional-assembly directive

• A procedure definition

• A PUSHCONTEXT directive (the limit is 10).

• A segment definition

• An include file

• Amacro

unmatched macro nesting

Either a macro was not terminated before the end of the file, or the terminating directive
ENDM was found outside of a macro block.

One cause of this error is omission of the dot before .REPEAT or .WHILE.

line too long

A line in a source file exceeded the limit of 512 characters.

If mUltiple physical lines are concatenated with the line-continuation character (\), the
resulting logical line is still limited to 512 characters.

unmatched block nesting:

A block beginning did not have a matching end, or a block end did not have a matching
beginning. One of the following may be involved:

• A high-level directive such as .IF, .REPEAT, or .WHILE

• A conditional-assembly directive such as IF, REPEAT, or WHILE

• A structure or union definition

• A procedure definition

• A segment defmition

• APOPCONTEXTd~octi~

• A conditional-assembly directive, such as an ELSE, ELSEIF, or ENDIF without a
matching IF

A10ll

A1012

A1013

A1014

A1015

ML Error Messages 801

directive must be in control block

The assembler found a high-level directive where one was not expected. One of the
following directives was found:

• .ELSE without .IF

• .ENDIF without .IF

• .ENDW without .WHILE

• .UNTIL[CXZ] without .REPEAT

• .CONTINUE without .WHILE or .REPEAT

• .BREAK without .WHILE or .REPEAT

• .ELSE following .ELSE

error count exceeds 100; stopping assembly

The number of nonfatal errors exceeded the assembler limit of 100.

Nonfatal errors are in the range A2xxx. When warnings are treated as errors they are
included in the count. Warnings are considered errors if you use the /WX command-line
option, or if you set the Warnings Treated as Errors option in the Macro Assembler Global
Options dialog box of PWB.

invalid numerical command-line argument: number

The argument specified with an option was not a number or was an invalid number.

too many arguments

There was insufficient memory to hold all of the command-line arguments.

This error usually occurs while expanding input filename wildcards (* and ?). To eliminate
this error, assemble multiple source files separately.

statement too complex

The assembler ran out of stack space while trying to parse the specified statement.

One or more of the following changes may eliminate this error:

• Break the statement into several shorter statements.

• Reorganize the statement to reduce the amount of parenthetical nesting.

• If the statement is part of a macro, break the macro into several shorter macros.

802 ML Error Messages

AIOl7 missing source filename

Al901

ML could not find a file to assemble or pass to the linker.

This error is generated when you give ML command-line options without specifying a
filename to act upon. To assemble files that do not have a .ASM extension, use the {fa
command-line option.

This error can also be generated by invoking ML with no parameters if the ML environment
variable contains command-line options.

Internal Assembler Error
Contact Microsoft Product Support Services

The MASM driver called ML.EXE, which generated a system error.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

ML Nonfatal Errors
A2000

A200I

A2002

A2003

A2004

A200S

memory operand not allowed in context

A memory operand was given to an instruction that cannot take a memory operand.

immediate operand not allowed

A constant or memory offset was given to an instruction that cannot take an immediate
operand.

cannot have more than one ELSE clause per IF block

The assembler found an ELSE directive after an existing ELSE directive in a conditional
assembly block (IF block).

Only one ELSE can be used in an IF block. An IF block begins with an IF, IFE, IFB,
IFNB, IFDEF, IFNDEF, IFDIF, or IFIDN directive. There can be several ELSEIF
statements in an IF block.

One cause of this error is omission of an ENDIF statement from a nested IF block.

extra characters after statement

A directive was followed by unexpected characters.

symbol type conflict: identifier

The EXTERNDEF or LABEL directive was used on a variable, symbol, data structure, or
label that was defined in the same module but with a different type.

symbol redefinition: identifier

The given nonredefinable symbol was defined in two places.

A2006

A2007

A2008

A2009

A2010

ML Error Messages 803

undefined symbol: identifier

An attempt was made to use a symbol that was not defined.

One of the following may have occurred:

• A symbol was not defined.

• A field was not a member of the specified structure.

• A symbol was defined in an include file that was not included.

• An external symbol was used without an EXTERN or EXTERNDEF directive.

• A symbol name was misspelled.

• A local code label was referenced outside of its scope.

non-benign record redefinition

A RECORD definition conflicted with a previous definition.

One of the following occurred:

• There were different numbers of fields.

• There were different numbers of bits in a field.

• There was a different label.

• There were different initializers.

syntax error:

A token at the current location caused a syntax error.

One of the following may have occurred:

• A dot prefix was added to or omitted from a directive.

• A reserved word (such as C or SIZE) was used as an identifier.

• An instruction was used that was not available with the current processor or coprocessor
selection.

• A comparison run-time operator (such as ==) was used in a conditional assembly
statement instead of a relational operator (such as EQ).

• An instruction or directive was given too few operands.

• An obsolete directive was used.

syntax error in expression

An expression on the current line contained a syntax error. This error message may also be a
side-effect of a preceding program error.

invalid type expression

The operand to THIS or PTR was not a valid type expression.

804 ML Error Messages

A2011 distance invalid for word size of current segment

A2012

A2013

A2014

A2015

A2016

A2017

A procedure definition or a code label defined with LABEL specified an address size that
was incompatible with the current segment size.

One of the following occurred:

• A NEAR16 or F AR16 procedure was defined in a 32-bit segment.

• A NEAR32 or F AR32 procedure was defined in a 16-bit segment.

• A code label defined with LABEL specified FAR16 or NEAR16 in a 32-bit segment.

• A code label defined with LABEL specified F AR32 or NEAR32 in a 16-bit segment.

PROC, MACRO, or macro repeat directive must precede LOCAL

A LOCAL directive must be immediately preceded by a MACRO, PROC, macro repeat
directive (such as REPEAT, WHILE, or FOR), or another LOCAL directive.

.MODEL must precede this directive

A simplified segment directive or a .ST ARTUP or .EXIT directive was not preceded by a
.MODEL directive.

A .MODEL directive must specify the model defaults before a simplified segment directive,
or a .ST ARTUP or .EXIT directive may be used.

cannot define as public or external : identifier

Only labels, procedures, and numeric equates can be made public or external using PUBLIC,
EXTERN, or EXTERNDEF. Local code labels cannot be made public.

segment attributes cannot change: attribute

A segment was reopened with different attributes than it was opened with originally.

When a SEGMENT directive opens a previously defined segment, the newly opened segment
inherits the attributes the segment was defined with.

expression expected

The assembler expected an expression at the current location but found one of the
following:

• A unary operator without an operand

• A binary operator without two operands

• An empty pair of parentheses, (), or brackets, []

operator expected

An expression operator was expected at the current location.

One possible cause of this error is a missing comma between expressions in an expression
list.

A2018

A2019

A2020

A2021

A2022

A2023

A2024

A2025

A2026

A2027

ML Error Messages 805

invalid use of external symbol: identifier

An attempt was made to compare the given external symbol using a relational operator.

The comparison cannot be made because the value or address of an external symbol is not
known at assembly time.

operand must be RECORD type or field

The operand following the WIDTH or MASK operator was not valid.

The WIDTH operator takes an operand that is the name of a field or a record. The MASK
operator takes an operand that is the name of a field or a record type.

identifier not a record : identifier

A record type was expected at the current location.

record constants cannot span line breaks

A record constant must be defined on one physical line. A line ended in the middle of the
definition of a record constant.

instruction operands must be the same size

The operands to an instruction did not have the same size.

instruction operand must have size

At least one of the operands to an instruction must have a known size.

invalid operand size for instruction

The size of an operand was not valid.

operands must be in same segment

Relocatable operands used with a relational or minus operator were not located in the same
segment.

constant expected

The assembler expected a constant expression at the current location. A constant expression
is a numeric expression that can be resolved at assembly time.

operand must be a memory expression

The right operand of a PTR expression was not a memory expression.

When the left operand of the PTR operator is a structure or union type, the right operand
must be a memory expression.

806 ML Error Messages

A2028 expression must be a code address

A2029

A2030

A2031

An expression evaluating to a code address was expected.

One of the following occurred:

• SHORT was not followed by a code address.

• NEAR PTR or FAR PTR was applied to something that was not a code address.

multiple base registers not allowed

An attempt was made to combine two base registers in a memory expression.

For example, the following expressions cause this error:

[bx+bp]
[bx][bp]

In another example, given the following definition:

idl prac argl:byte

either of the following lines causes this error:

mav al. [bx].argl
lea ax. argl[bx]

multiple index registers not allowed

An attempt was made to combine two index registers in a memory expression.

For example, the following expressions cause this error:

[si+di]
[di][si]

must be index or base register

An attempt was made to use a register that was not a base or index register in a memory
expression.

For example, the following expressions cause this error:

[ax]
[b 1]

A2032

A2033

A2034

A2035

A2036

ML Error Messages 807

invalid use of register

An attempt was made to use a register that was not valid for the intended use.

One of the following occurred:

• OFFSET was applied to a register. (OFFSET can be applied to a register under the
M510 option.)

• A special 386 register was used in an invalid context.

• A register was cast with PTR to a type of invalid size.

• A register was specified as the right operand of a segment override
operator (:).

• A register was specified as the right operand of a binary minus operator (-).

• An attempt was made to multiply registers using the * operator.

• Brackets ([]) were missing around a register that was added to something.

invalid INVOKE argument: argument number

The INVOKE directive was passed a special 386 register, or a register pair containing a byte
register or special 386 register. These registers are illegal with INVOKE.

must be in segment block

One of the following was found outside of a segment block:

• An instruction

• A label definition

• A THIS operator

• A $ operator

• A procedure definition

• An ALIGN directive

• An ORG directive

DUP too complex

A declaration using the DUP operator resulted in a data structure with an internal
representation that was too large.

too many initial values for structure: structure

The given structure was defined with more initializers than the number of fields in the type
declaration of the structure.

808 ML Error Messages

A2037 statement not allowed inside structure definition

A structure definition contained an invalid statement.

A2038

A2039

A2040

A2041

A2042

A2043

A2044

A2045

A structure cannot contain instructions, labels, procedures, control-flow directives,
.STARTUP, or .EXIT.

missing operand for macro operator

The assembler found the end of a macro's parameter list immediately after the! or %
operator.

line too long

A source-file line exceeded the limit of 512 characters.

If multiple physical lines are concatenated with the line-continuation character
(\), the resulting logical line is still limited to 512 characters.

segment register not allowed in context

A segment register was specified for an instruction that cannot take a segment register.

string or text literal too long

A string or text literal, or a macro function return value, exceeded the limit of 255 characters.

statement too complex

A statement was too complex for the assembler to parse.

Reduce either the number of tokens or the number of forward-referenced identifiers.

identifier too long

An identifier exceeded the limit of 247 characters.

invalid character in file

The source file contained a character outside a comment, string, or literal that was not
recognized as an operator or other legal character.

missing angle bracket or brace in literal

An unmatched angle bracket (either < or » or brace (either { or }) was found in a literal
constant or an initializer.

One of the following occurred:

• A pair of angle brackets or braces was not complete.

• An angle bracket was intended to be literal, but it was not preceded by an exclamation
point (!) to indicate a literal character.

A2046

A2047

A2048

A2049

A20S0

A20S1

ML Error Messages 809

missing single or double quotation mark in string

An unmatched quotation mark (either' or ") was found in a string.

One of the following may have occurred:

• A pair of quotation marks around a string was not complete.

• A pair of quotation marks around a string was formed of one single and one double
quotation mark.

• A single or double quotation mark was intended to be literal, but the surrounding
quotation marks were the same kind as the literal one.

empty (null) string

A string consisted of a delimiting pair of quotation marks and no characters within.

For a string to be valid, it must contain 1-255 characters.

nondigit in number

A number contained a character that was not in the set of characters used by the current
radix (base).

This error can occur if a B or D radix specifier is used when the default radix is one that
includes that letter as a valid digit.

syntax error in floating-point constant

A floating-point constant contained an invalid character.

real or BCD number not allowed

A floating-point (real) number or binary coded decimal (BCD) constant was used other
than as a data initializer.

One of the following occurred:

• A real number or a BCD was used in an expression.

• A real number was used to initialize a directive other than DWORD, QWORD, or
TBYTE.

1:1 A BCD was used to initialize a directive other than TBYTE.

text item required

A literal constant or text macro was expected.

One of the following was expected:

• A literal constant, which is text enclosed in < >

• A text macro name

• A macro function call

• A % followed by a constant expression

810 ML Error Messages

A2052 forced error

A2053

A2054

A2055

A2056

A2057

A2058

A2059

A2060

A2061

A2062

A2063

A2064

The conditional-error directive .ERR or .ERRI was used to generate this error.

forced error: value equal to 0

The conditional-error directive .ERRE was used to generate this error.

forced error: value not equal to 0

The conditional-error directive .ERRNZ was used to generate this error.

forced error: symbol not defined

The conditional-error directive .ERRNDEF was used to generate this error.

forced error: symbol defined

The conditional-error directive .ERRDEF was used to generate this error.

forced error : string blank

The conditional-error directive .ERRB was used to generate this error.

forced error: string not blank

The conditional-error directive .ERRNB was used to generate this error.

forced error : strings equal

The conditional-error directive .ERRIDN or .ERRIDNI was used to generate this error.

forced error : strings not equal

The conditional-error directive .ERRDIF or .ERRDIFI was used to generate this error.

[ELSE]IF2/.ERR2 not allowed: single-pass assembler

A directive for a two-pass assembler was found.

The Microsoft Macro Assembler (MASM) is a one-pass assembler. MASM does not accept
the IF2, ELSEIF2, and .ERR2 directives.

This error also occurs if an ELSE directive follows an IFI directive.

expression too complex for .UNTILCXZ

An expression used in the condition that follows. UNTILCXZ was too complex.

The .UNTILCXZ directive can take only one expression, which can contain only == or !=. It
cannot take other comparison operators or more complex expressions using operators like II.
can ALIGN only to power of 2 : expression

The expression specified with the ALIGN directive was invalid.

The ALIGN expression must be a power of 2 between 2 and 256, and must be less than or
equal to the alignment of the current segment, structure, or union.

structure alignment must be 1, 2, or 4

The alignment specified in a structure definition was invalid.

A2065

A2066

A2067

A2068

A2069

A2070

A2071

A2072

A2073

A2074

ML Error Messages 811

expected: token

The assembler expected the given token.

incompatible CPU mode and segment size

An attempt was made to open a segment with a USE16, USE32, or FLAT attribute that
was not compatible with the specified CPU, or to change to a 16-bit CPU while in a 32-bit
segment.

The USE32 and FLAT attributes must be preceded by one of the following processor
directives: .386, .386C, .386P, .486, or .486P.

LOCK must be followed by a memory operation

The LOCK prefix preceded an invalid instruction. No instruction can take the LOCK prefix
unless one of its operands is a memory expression.

instruction prefix not allowed

One of the prefixes REP, REPE, REPNE, or LOCK preceded an instruction for which it
was not valid.

no operands allowed for this instruction

One or more operands were specified with an instruction that takes no operands.

invalid instruction operands

One or more operands were not valid for the instruction they were specified with.

initializer too large for specified size

An initializer value was too large for the data area it was initializing.

cannot access symbol in given segment or group: identifier

The given identifier cannot be addressed from the segment or group specified.

operands have different frames

Two operands in an expression were in different frames.

Subtraction of pointers requires the pointers to be in the same frame. Subtraction of two
expressions that have different effective frames is not allowed. An effective frame is
calculated from the segment, group, or segment register.

cannot access label through segment registers

An attempt was made to access a label through a segment register that was not assumed to its
segment or group.

812 ML Error Messages

A2075 jump destination too far [: by 'n' bytes]

A2076

A2077

A2078

A2079

A2080

A2081

A2082

A2083

A2084

The destination specified with a jump instruction was too far from the instruction.

One of the following may be a solution:

• Enable the LJMP option.

• Remove the SHORT operator. If SHORT has forced a jump that is too far, n is the
number of bytes out of range.

• Rearrange code so that the jump is no longer out of range.

jump destination must specify a label

A direct jump's destination must be relative to a code label.

instruction does not allow NEAR indirect addressing

A conditional jump or loop cannot take a memory operand. It must be given a relative address
or label.

instruction does not allow FAR indirect addressing

A conditional jump or loop cannot take a memory operand. It must be given a relative address
or label.

instruction does not allow FAR direct addressing

A conditional jump or loop cannot be to a different segment or group.

jump distance not possible in current CPU mode

A distance was specified with a jump instruction that was incompatible with the current
processor mode.

For example, 48-bit jumps require .386 or above.

missing operand after unary operator

An operator required an operand, but no operand followed.

cannot mix 16- and 32-bit registers

An address expression contained both 16- and 32-bit registers.

For example, the following expression causes this error:

[bx+edi]

invalid scale value

A register scale was specified that was not 1, 2, 4, or 8.

constant value too large

A constant was specified that was too big for the context in which it was used.

A2085

A2086

A2087

A2088

A2089

A2090

A2091

A2092

ML Error Messages 813

instruction or register not accepted in current CPU mode

An attempt was made to use an instruction, register, or keyword that was not valid for the
current processor mode.

For example, 32-bit registers require .386 or above. Control registers such as CRO require
privileged mode .386P or above. This error will also be generated for the NEAR32, F AR32,
and FLAT keywords, which require .386 or above.

reserved word expected

One or more items in the list specified with a NOKEYWORD option were not recognized as
reserved words.

instruction form requires 80386/486

An instruction was used that was not compatible with the current processor mode.

One of the following processor directives must precede the instruction: .386, .386C, .386P,
.486, or .486P.

END directive required at end of file

The assembler reached the end of the main source file and did not find an .END directive.

too many bits in RECORD: identifier

One of the following occurred:

a Too many bits were defined for the given record field.

• Too many total bits were defined for the given record.

The size limit for a record or a field in a record is 16 bits when doing 16-bit arithmetic or 32
bits when doing 32-bit arithmetic.

positive value expected

A positive value was not found in one of the following situations:

a The starting position specified for SUBSTR or @SubStr

• The number of data objects specified for COMM

• The element size specified for COMM

index value past end of string

An index value exceeded the length of the string it referred to when used with INSTR,
SUBSTR, @InStr, or @SubStr.

count must be positive or zero

The operand specified to the SUBSTR directive, @SubStr macro function, SHL operator,
SHR operator, or DUP operator was negative.

814 ML Error Messages

A2093 count value too large

The length argument specified for SUBSTR or @SubStr exceeded the length of the specified
string.

A2094 operand must be relocatable

A2095

A2096

A2097

A2098

A2099

A2100

An operand was not relative to a label.

One of the following occurred:

• An operand specified with the END directive was not relative to a label.

• An operand to the SEG operator was not relative to a label.

• The right operand to the minus operator was relative to a label, but the left operand was
not.

• The operands to a relational operator were either not both integer constants or not both
memory operands. Relational operators can take operands that are both addresses or both
non-addresses but not one of each.

constant or relocatable label expected

The operand specified must be a constant expression or a memory offset.

segment, group, or segment register expected

A segment or group was expected but was not found.

One of the following occurred:

• The left operand specified with the segment override operator (:) was not a segment
register (CS, DS, SS, ES, FS, or GS), group name, segment name, or segment expression.

• The ASSUME directive was given a segment register without a valid segment address,
segment register, group, or the special FLAT group.

segment expected: identifier

The GROUP directive was given an identifier that was not a defined segment.

invalid operand for OFFSET

The expression following the OFFSET operator must be a memory expression or an
immediate expression.

invalid use of external absolute

An attempt was made to subtract a constant defined in another module from an expression.

You can avoid this error by placing constants in include files rather than making them
external.

segment or group not allowed

An attempt was made to use a segment or group in a way that was not valid. Segments or
groups cannot be added.

A2101

A2102

A2103

A2104

A210S

A2107

A2108

A2109

A2110

A2111

A2112

A2113

ML Error Messages 815

cannot add two relocatable labels

An attempt was made to add two expressions that were both relative to a label.

cannot add memory expression and code label

An attempt was made to add a code label to a memory expression.

segment exceeds 64K limit

A 16-bit segment exceeded the size limit of 64K.

invalid type for data declaration: type

The given type was not valid for a data declaration.

HIGH and LOW require immediate operands

The operand specified with either the HIGH or the LOW operator was not an immediate
expression.

cannot have implicit far jump or call to near label

An attempt was made to make an implicit far jump or call to a near label in another segment.

use of register assumed to ERROR

An attempt was made to use a register that had been assumed to ERROR with the ASSUME
directive.

only white space or comment can follow backslash

A character other than a semicolon (;) or a white-space character (spaces or TAB characters)
was found after a line-continuation character (\).

COMMENT delimiter expected

A delimiter character was not specified for a COMMENT directive.

The delimiter character is specified by the first character that is not white space (spaces or
TAB characters) after the COMMENT directive. The comment consists of all text following
the delimiter until the end of the line containing the next appearance of the delimiter.

conflicting parameter definition

A procedure defined with the PROC directive did not match its prototype as defined with the
PROTO directive.

PROC and prototype calling conventions conflict

A procedure was defined in a prototype (using the PROTO, EXTERNDEF, or EXTERN
directive), but the calling convention did not match the corresponding PROC directive.

invalid radix tag

The specified radix was not a number in the range 2-16.

816 ML Error Messages

A2114 INVOKE argument type mismatch: argument number

The type of the arguments passed using the INVOKE directive did not match the type of the
parameters in the prototype of the procedure being invoked.

A2115 invalid coprocessor register

The coprocessor index specified was negative or greater than 7.

A2116 instructions and initialized data not allowed in AT segments

A2117

A2118

A2119

A2120

A2121

A2122

An instruction or initialized data was found in a segment defined with the AT attribute.

Data in AT segments must be declared with the? initializer.

I A T option requires TINY memory model

The I AT option was specified on the assembler command line, but the program being
assembled did not specify the TINY memory model with the .MODEL directive.

This error is only generated for modules that specify a start address or use the .STARTUP
directive.

cannot have segment address references with TINY model

An attempt was made to reference a segment in a TINY model program.

All TINY model code and data must be accessed with NEAR addresses.

language type must be specified

A procedure definition or prototype was not given a language type.

A language type must be declared in each procedure definition or prototype if a default
language type is not specified. A default language type is set using either the .MODEL
directive, OPTION LANG, or the ML command-line options /Gc or /Gd.

PROLOGUE must be macro function

The identifier specified with the OPTION PROLOGUE directive was not recognized as a
defined macro function.

The user-defined prologue must be a macro function that returns the number of bytes needed
for local variables and any extra space needed for the macro function.

EPILOGUE must be macro procedure

The identifier specified with the OPTION EPILOGUE directive was not recognized as a
defined macro procedure.

The user-defined epilogue macro cannot return a value.

alternate identifier not allowed with EXTERNDEF

An attempt was made to specify an alternate identifier with an EXTERNDEF directive.

You can specify an optional alternate identifier with the EXTERN directive but not with
EXTERNDEF.

A2123

A2125

A2126

A2127

A2129

A2130

A2131

A2132

A2133

A2134

ML Error Messages 817

text macro nesting level too deep

A text macro was nested too deeply. The nesting limit for text macros is 40.

missing macro argument

A required argument to @InStr, @SubStr, or a user-defined macro was not specified.

EXITM used inconsistently

The EXITM directive was used both with and without a return value in the same macro.

A macro procedure returns a value; a macro function does not.

macro function argument list too long

There were too many characters in a macro function's argument list. This error applies also to
a prologue macro function called implicitly by the PROC directive.

V ARARG parameter must be last parameter

A parameter other than the last one was given the VARARG attribute.

The : V ARARG specification can be applied only to the last parameter in a parameter list for
macro and procedure definitions and prototypes. You cannot use multiple :VARARG
specifications in a macro.

V ARARG parameter not allowed with LOCAL

An attempt was made to specify :VARARG as the type in a procedure's LOCAL
declaration.

V ARARG parameter requires C calling convention

A V ARARG parameter was specified in a procedure definition or prototype, but the C,
SYSCALL, or STnCALL calling convention was not specified.

ORG needs a constant or local offset

The expression specified with the ORG directive was not valid.

ORG requires an immediate expression with no reference to an external label or to a label
outside the current segment.

register value overwritten by INVOKE

A register was passed as an argument to a procedure, but the code generated by INVOKE
to pass other arguments destroyed the contents of the register.

The AX, AL, AR, EAX, DX, DL, DR, and EDX registers may be used by the assembler to
perform data conversion.

Use a different register.

structure too large to pass with INVOKE: argument number

An attempt was made with INVOKE to pass a structure that exceeded 255 bytes.

Pass structures by reference if they are larger than 255 bytes.

818 ML Error Messages

A2136 too many arguments to INVOKE

A2137

A2138

A2140

A2141

A2142

A2143

A2144

A2145

A2146

A2147

The number of arguments passed using the INVOKE directive exceeded the number of
parameters in the prototype for the procedure being invoked.

too few arguments to INVOKE
The number of arguments passed using the INVOKE directive was fewer than the number of
required parameters specified in the prototype for the procedure being invoked.

invalid data initializer
The initializer list for a data definition was invalid.

This error can be caused by using the R radix override with too few digits.

RET operand too large
The operand specified to RET, RETN, or RETF exceeded two bytes.

too many operands to instruction

Too many operands were specified with a string control instruction.

cannot have more than one .ELSE clause per .IF block

The assembler found more than one .ELSE clause within the current .IF block.

Use .ELSEIF for all but the last block.

expected data label
The LENGTHOF, SIZEOF, LENGTH, or SIZE operator was applied to a non-data label,
or the SIZEOF or SIZE operator was applied to a type.

cannot nest procedures
An attempt was made to nest a procedure containing a parameter, local variable, USES
clause, or a statement that generated a new segment or group.

EXPORT must be FAR: procedure

The given procedure was given EXPORT visibility and NEAR distance.

All EXPORT procedures must be FAR. The default visibility may have been set with the
OPTION PROC:EXPORT statement or the SMALL or COMPACT memory models.

procedure declared with two visibility attributes: procedure

The given procedure was given conflicting visibilities.

A procedure was declared with two different visibilities (PUBLIC, PRIV ATE, or
EXPORT). The PROC and PROTO statements for a procedure must have the same
visibility.

macro label not defined: macro label

The given macro label was not found.

A macro label is defined with :macrolabel.

A2148

A2149

A2150

A2151

A2152

A2153

A2154

A2155

A2156

A2157

ML Error Messages 819

invalid symbol type in expression: identlfier

The given identifier was used in an expression in which it was not valid.

For example, a macro procedure name is not allowed in an expression.

byte register cannot be first operand

A byte register was specified to an instruction that cannot take it as the first operand.

word register cannot be first operand

A word register was specified to an instruction that cannot take it as the first operand.

special register cannot be first operand

A special register was specified to an instruction that cannot take it as the first operand.

coprocessor register cannot be first operand

A coprocessor (stack) register was specified to an instruction that cannot take it as the first
operand.

cannot change size of expression computations

An attempt was made to set the expression word size when the size had been already set
using the EXPR16, EXPR32, SEGMENT: USE32, or SEGMENT:FLAT option or the
.386 or higher processor selection directive.

syntax error in control-flow directive

The condition for a control-flow directive (such as .IF or .WHILE) contained a syntax error.

cannot use 16-bit register with a 32-bit address

An attempt was made to mix 16-bit and 32-bit offsets in an expression.

Use a 32-bit register with a symbol defined in a 32-bit segment.

For example, if i d 1 is defined in a 32-bit segment, the following causes this error:

idl[bx]

constant value out of range

An invalid value was specified for the PAGE directive.

The first parameter of the PAGE directive can be either 0 or a value in the range 10-255.
The second parameter of the PAGE directive can be either 0 or a value in the range 60-255.

missing right parenthesis

A right parenthesis,), was missing from a macro function call.

Be sure that parentheses are in pairs if nested.

820 ML Error Messages

A2158 type is wrong size for register

A2159

A2160

A2161

A2162

A2163

A2164

A2165

An attempt was made to assume a general-purpose register to a type with a different size
than the register.

For example, the following pair of statements causes this error:

ASSUME bx:far ptr byte far pointer is 4 or 6 bytes
ASSUME al :word ; al is a byte reg, cannot hold word

structure cannot be instanced

An attempt was made to create an instance of a structure when there were no fields or data
defined in the structure definition or when ORG was used in the structure definition.

non-benign structure redefinition: label incorrect

A label given in a structure redefinition either did not exist in the original definition or was
out of order in the redefinition.

non-benign structure redefinition: too few labels

Not enough members were defined in a structure redefinition.

OLDSTRUCT/NOOLDSTRUCT state cannot be changed

Once the OLDSTRUCTS or NOOLDSTRUCTS option has been specified and a structure
has been defined, the structure scoping cannot be altered or respecified in the same module.

non-benign structure redefinition: incorrect initializers

A STRUCT or UNION was redefined with a different initializer value.

When structures and unions are defined more than once, the definitions must be identical.
This error can be caused by using a variable as an initializer and having the value of the
variable change between definitions.

non-benign structure redefinition: too few initializers

A STRUCT or UNION was redefined with too few initializers.

When structures and unions are defined more than once, the definitions must be identical.

non-benign structure redefinition: label has incorrect offset

The offset of a label in a redefined STRUCT or UNION differs from the original
definition.

When structures and unions are defined more than once, the definitions must be identical.
This error can be caused by a missing member or by a member that has a different size than
in its original definition.

A2166

A2167

A2169

A2170

A2171

A2172

A2173

A2175

A2176

A2177

ML Error Messages 821

structure field expected

The righthand side of a dot operator (.) is not a structure field.

This error may occur with some code acceptable to previous versions of the assembler. To
enable the old behavior, use OPTION OLDSTRUCTS, which is automatically enabled by
OPTION M510 or the /Zm command-line option.

unexpected literal found in expression

A literal was found where an expression was expected.

One of the following may have occurred:

• A literal was used as an initializer

• A record tag was omitted from a record constant

divide by zero in expression

An expression contains a divisor whose value is equal to zero.

Check that the syntax of the expression is correct and that the divisor (whether constant or
variable) is correctly initialized.

directive must appear inside a macro

A GOTO or EXITM directive was found outside the body of a macro.

cannot expand macro function

A syntax error prevented the assembler from expanding the macro function.

too few bits in RECORD

There was an attempt to define a record field of 0 bits.

macro function cannot redefine itself

There was an attempt to define a macro function inside the body of a macro function with the
same name. This error can also occur when a member of a chain of macros attempts to
redefine a previous member of the chain.

invalid qualified type

An identifier was encountered in a qualified type that was not a type, structure, record, union,
or prototype.

floating point initializer on an integer variable

An attempt was made to use a floating-point initializer with DWORD, QWORD, or
TBYTE. Only integer initializers are allowed.

nested structure improperly initialized

The nested structure initialization could not be resolved.

This error can be caused by using different beginning and ending delimiters in a nested
structure initialization.

822 ML Error Messages

A2178 invalid use of FLAT

A2179

A2180

A2181

A2182

A2183

A2184

A2185

There was an ambiguous reference to FLAT as a group.

This error is generated when there is a reference to FLAT instead of a FLAT subgroup. For
example,

mov
mov

ax, FLAT
ax, SEG FLAT:_data

structure improperly initialized

Generates A2178
Correct

There was an error in a structure initializer.

One of the following occurred:

• The initializer is not a valid expression.

• The initializer is an invalid DUP statement.

improper list initialization

In a structure, there was an attempt to initialize a list of items with a value or list of values of
the wrong size.

initializer must be a string or single item

There was an attempt to initialize a structure element with something other than a single
item or string.

This error can be caused by omitting braces ({ }) around an initializer.

initializer must be a single item

There was an attempt to initialize a structure element with something other than a single
item.

This error can be caused by omitting braces ({ }) around an initializer.

initializer must be a single byte

There was an attempt to initialize a structure element of byte size with something other than a
single byte.

improper use of list initializer

The assembler did not expect an opening brace ({) at this point.

improper literal initialization

A literal structure initializer was not properly delimited.

This error can be caused by missing angle brackets « » or braces ({ }) around an initializer
or by extra characters after the end of an initializer.

A2186

A2187

A2188

A2189

A2190

A2191

A2192

A2193

A2194

ML Error Messages 823

extra characters in literal initialization

A literal structure initializer was not properly delimited.

One of the following may have occurred:

• There were missing or mismatched angle brackets « » or braces ({ }) around an
initializer.

• There were extra characters after the end of an initializer.

• There was a syntax error in the structure initialization.

must use floating point initializer

A variable declared with the REAL4, REAL8, and REALI0 directives must be initialized
with a floating-point number or a question mark (?).

This error can be caused by giving an initializer in integer form (such as 18) instead of in
floating-point form (18.0).

cannot use .EXIT for OS OS2 with .8086

The INVOKE generated by the .EXIT statement under OS_ OS2 requires the .186 (or
higher) directive, since it must be able to use the PUSH instruction to push immediates
directly.

invalid combination with segment alignment

The alignment specified by the ALIGN or EVEN directive was greater than the current
segment alignment as specified by the SEGMENT directive.

INVOKE requires prototype for procedure

The INVOKE directive must be preceded by a PROTO statement for the procedure being
called.

When using INVOKE with an address rather than an explicit procedure name, you must
precede the address with a pointer to the prototype.

cannot include structure in self

You cannot reference a structure recursively (inside its own definition).

symbol language attribute conflict

Two declarations for the same symbol have conflicting language attributes (such as C and
PASCAL). The attributes should be identical or compatible.

non-benign COMM redefinition

A variable was redefined with the COMM directive to a different language type, distance,
size, or instance count.

Multiple COMM definitions of a variable must be identical.

COMM variable exceeds 64K

A variable declared with the COMM directive in a 16-bit segment was greater than 64K.

824 ML Error Messages

A2195 parameter or local cannot have void type

A2196

A2197

A2198

A2199

A2200

A2201

A2202

A2203

A2204

The assembler attempted to create an argument or create a local without a type.

This error can be caused by declaring or passing a symbol followed by a colon without
specifying a type or by using a user-defined type defined as void.

cannot use TINY model with OS OS2

A .MODEL statement specified the TINY memory model and the OS_OS2 operating
system. The tiny memory model is not allowed under OS/2.

expression size must be 32-bits

There was an attempt to use the 16-bit expression evaluator in a 32-bit segment. In a 32-bit
segment (USE32 or FLAT), you cannot use the default 16-bit expression evaluator
(OPTION EXPR16).

.EXIT does not work with 32-bit segments

The .EXIT directive cannot be used in a 32-bit segment; it is valid only when generating 16-
bit code.

.STARTUP does not work with 32-bit segments

The .ST ARTUP directive cannot be used in a 32-bit segment; it is valid only when
generating 16-bit code.

ORG directive not allowed in unions

The ORG directive is not valid inside a UNION definition.

You can use the ORG directive inside STRUCT definitions, but it is meaningless inside a
UNION.

scope state cannot be changed

Both OPTION SCOPED and OPTION NOSCOPED statements occurred in a module.
You cannot switch scoping behavior in a module.

This error may be caused by an OPTION SCOPED or OPTION NOSCOPED statement in
an include file.

illegal use of segment register

You cannot use segment overrides for the FS or GS segment registers when generating
floating-point emulation instructions with the /FPi command-line option or OPTION
EMULATOR.

cannot declare scoped code label as PUBLIC

A code label defined with the "label:" syntax was declared PUBLIC. Use the "label::"
syntax, the LABEL directive, or OPTION NOSCOPED to eliminate this error.

.MSFLOAT directive is obsolete: ignored

The Microsoft Binary Format is no longer supported. You should convert your code to the
IEEE numeric standard, which is used in the 80x87 -series coprocessors.

A220S

A2206

A2207

A2208

A2209

A2901

ML Error Messages 825

ESC instruction is obsolete: ignored

The ESC (Escape) instruction is no longer supported. All numeric coprocessor instructions
are now supported directly by the assembler.

missing operator in expression

An expression cannot be evaluated because it is missing an operator. This error message
may also be a side-effect of a preceding program error.

The following line will generate this error:

valuel = (1 + 2) 3

missing right parenthesis in expression

An expression cannot be evaluated because it is missing a right (closing) parenthesis. This
error message may also be a side-effect of a preceding program error.

The following line will generate this error:

valuel = ((1 + 2) * 3

missing left parenthesis in expression

An expression cannot be evaluated because it is missing a left (opening) parenthesis. This
error message may also be a side-effect of a preceding program error.

The following line will generate this error:

valuel = ((1 + 2) * 3))

reference to forward macro redefinition

A macro cannot be accessed because it has not been yet defined.

Move the macro definition ahead of all references to the macro.

cannot run ML.EXE

The MASM driver could not spawn ML.EXE.

One of the following may have occurred:

• ML.EXE was not in the path.

• The READ attribute was not set on ML.EXE.

• There was not enough memory.

ML Warnings
A4000 cannot modify READONL Y segment

An attempt was made to modify an operand in a segment marked with the READONL Y
attribute.

826 ML Error Messages

A4002 non-unique STRUCT/UNION field used without qualification

A4003

A4004

A400S

A4006

A4007

A4008

A4009

A4010

A STRUCT or UNION field can be referenced without qualification only if it has a unique
identifier.

This conflict can be resolved either by renaming one of the structure fields to make it unique
or by fully specifying both field references.

The NONUNIQUE keyword requires that all references to the elements of a STRUCT or
UNION be fully specified.

start address on END directive ignored with .ST ARTUP

Both .STARTUP and a program load address (optional with the END·directive) were
specified. The address specification with the END directive was ignored.

cannot ASSUME CS

An attempt was made to assume a value for the CS register. CS is always set to the current
segment or group.

unknown default prologue argument

An unknown argument was passed to the default prologue.

The default prologue understands only the FORCEFRAME and LOADDS arguments.

too many arguments in macro call

There were more arguments given in the macro call than there were parameters in the macro
definition.

option untranslated, directive required: option

There is no ML command-line equivalent for the given MASM option. The desired behavior
can be obtained by using a directive in the source file.

Option

IA
/P
IS

Directive

. ALPHA
OPTION READONL Y
.SEQ

invalid command-line option value, default is used: option

The value specified with the given option was not valid. The option was ignored, and the
default was assumed.

insufficient memory for IEP : IEP ignored

There is not enough memory to generate a first-pass listing.

expected '>' on text literal

A macro was called with a text literal argument that was missing a closing angle bracket.

A4011

A4012

A4013

A4910

A5000

A5001

A5002

A5003

A5004

ML Error Messages 827

multiple .MODEL directives found: .MODEL ignored

More than one .MODEL directive was found in the current module. Only the first .MODEL
statement is used.

line number information for segment without class 'CODE'

There were instructions in a segment that did not have a class name that ends with
"CODE." The assembler did not generate Code View information for these instructions.

Code View cannot process modules with code in segments with class names that do not end
with "CODE."

instructions and initialized data not supported in AT segments

An instruction or initialized data was found in a segment defined with the AT attribute. The
code or data will not be loaded at run time.

Data in AT segments must be declared with the? initializer.

cannot open file: filename

The given filename could not be in the current path.

Make sure that filename was copied from the distribution disks and is in the current path.

@@: label defined but not referenced

A jump target was defined with the @@: label, but the target was not used by a jump
instruction.

One common cause of this error is insertion of an extra @@: label between the jump and the
@@: label that the jump originally referred to.

expression expected, assume value 0

There was an IF, ELSEIF, IFE, IFNE, ELSEIFE, or ELSEIFNE directive without an
expression to evaluate. The assembler assumes a 0 for the comparison expression.

externdef previously assumed to be external

The OPATTR or .TYPE operator was applied to a symbol after the symbol was used in an
EXTERNDEF statement but before it was declared. These operators were used on a line
where the assembler assumed that the symbol was external.

length of symbol previously assumed to be different

The LENGTHOF, LENGTH, SIZEOF, or SIZE operator was applied to a symbol after the
symbol was used in an EXTERNDEF statement but before it was declared. These operators
were used on a line where the assembler assumed that the symbol had a different length and
size.

symbol previously assumed to not be in a group

A symbol was used in an EXTERNDEF statement outside of a segment and then was
declared inside a segment.

828 NMAKE Error Messages

A5005 types are different

A6001

A6003

A6004

A6005

The type given by an INVOKE statement differed from that given in the procedure prototype.
The assembler performed the appropriate type conversion.

no return from procedure

A PROC statement generated a prologue, but there was no RET or IRET instruction found
inside the procedure block.

conditional jump lengthened

A conditional jump was encoded as a reverse conditional jump around a near unconditional
jump.

You may be able to rearrange code to avoid the longer form.

procedure argument or local not referenced

You passed a procedure argument or created a variable with the LOCAL directive that was
not used in the procedure body.

Unnecessary parameters and locals waste code and stack space.

expression condition may be pass-dependent

Under the jZm command-line option or the OPTION M510 directive, the value of an
expression changed between passes.

This error message may indicate that the code is pass-dependent and must be rewritten.

NMAKE Error Messages
This section lists error messages generated by the NMAKE utility.

Microsoft Program Maintenance Utility (NMAKE) generates the following error
messages:

• Fatal errors (UIOOO through UI099) cause NMAKE to stop execution.

• Errors (U200 I) do not stop execution but prevent NMAKE from completing the
make process.

• Warnings (U4001 through U4011) indicate possible problems in the make
process.

NMAKE Fatal Error Messages
UIOOO syntax error: I)' missing in macro invocation

A left parenthesis, (, appeared without a matching right parenthesis,), in a macro invocation.
The correct form is $(name), and $n is allowed for one-character names.

UIOOI

UI002

UI003

UI004

UI005

UI006

NMAKE Error Messages 829

syntax error: illegal character character in macro

The given character appeared in a macro but was not a letter, number, or underscore (_).

If the colon (:) is omitted in a macro expansion, the following error occurs:

syntax error: illegal character '=' in macro

syntax error: invalid macro invocation '$'

A single dollar sign ($) appeared without a macro name associated with it.

The correct form is $(name). To specify a dollar sign, use a double dollar sign ($$) or
precede it with a caret (A).

syntax error: '=' missing in macro substitution
A macro invocation contained a colon (:), which begins a substitution, but it did not contain
an equal sign (=).

The correct form is:

$(macroname:oldstring=newstring)

syntax error: macro name missing

One of the following occurred:

a The name of a macro being defined was itself a macro invocation that expanded to
nothing. For example, if the macro named 0 N E is undefined or has a null value, the
following macro definition causes this error:

$(ONE)=TWO

a A macro invocation did not specify a name in the parentheses. The following specification
causes this error:

$ ()

The correct form is:

$(name)

syntax error: text must follow':' in macro

A string substitution was specified for a macro, but the string to be changed in the macro was
not specified.

syntax error: missing closing double quotation mark

An opening double quotation mark (") appeared without a closing double quotation mark.

830 NMAKE Error Messages

UI007 double quotation mark not allowed in name

UIOl7

UIOIS

UIOl9

UI020

UI021

UI022

UI023

UI024

UI031

The specified target name or filename contained a double quotation mark (").

Double quotation marks can surround a filename but cannot be contained within it.

unknown directive! directive

The specified directive is not one of the recognized directives.

directive and/or expression part missing

The directive was incompletely specified.

The expression part of the directive is required.

too many nested !IF blocks

The limit on nesting of !IF directives was exceeded.

The !IF preprocessing directives include !IF, !IFDEF, !IFNDEF, !ELSE IF, !ELSE
IFDEF, and !ELSE IFNDEF.

end-of-file found before next directive

An expected directive was missing.

For example, an !IF was not followed by an !ENDIF.

syntax error: !ELSE unexpected

An !ELSE directive was found that was not preceded by an !IF directive, or the directive
was placed in a syntactically incorrect place.

The !IF preprocessing directives include !IF, !IFDEF, !IFNDEF, !ELSE IF, !ELSE
IFDEF, and !ELSE IFNDEF.

missing terminating character for string/program invocation: char

The closing double quotation mark (") in a string comparison in a directive was missing, or
the closing bracket (D in a program invocation in a directive was missing.

syntax error in expression

An expression was invalid.

Check the allowed operators and operator precedence.

illegal argument to ! CMDSWITCHES

An unrecognized command switch was specified.

filename missing (or macro is nUll)

An !INCLUDE directive was found, but the name of the file to be included was missing or a
macro representing the filename expanded to nothing.

UI033

UI034

UI035

UI036

NMAKE Error Messages 831

syntax error: string unexpected

The given string is not part of the valid syntax for a makefile.

The following are examples of causes and results of this error:

• If the closing set of angle brackets for an inline file are not at the beginning of a line, the
following error occurs:

syntax error : 'EOF' unexpected

.. If a macro definition in the makefile contained an equal sign (=) without a preceding name
or if the name being defined is a macro that expands to nothing, the following error
occurs:

syntax error : '=' unexpected

.. If the semicolon (;) in a comment line in TOOLS.INI is not at the beginning of the line,
the following error occurs:

syntax error : ';' unexpected

• If the makefile has been formatted by a word processor, the following error can occur:

syntax error : ':' unexpected

syntax error: separator missing

The colon (:) that separates targets and dependents is missing.

syntax error: expected I:' or '=' separator

Either a colon (:) or an equal sign (=) was expected.

Possible causes include the following:

• A target was not followed by a colon.

• A single-letter target was followed by a colon and no space (such as a:). NMAKE
interpreted it as a drive specification.

• An inference rule was not followed by a colon.

• A macro definition was not followed by an equal sign.

• A character followed a backslash (\) that was used to continue a command to a new line.

• A string appeared that did not follow any NMAKE syntax rule.

II The makefile was formatted by a word processor.

syntax error: too many names to left of '='
Only one string is allowed to the left of a macro definition.

832 NMAKE Error Messages

UI037 syntax error: target name missing

UI038

UI039

UI040

UI041

UI042

UI043

UI045

UI047

UI048

UI049

UI050

A colon (:) was found before a target name was found.

At least one target is required.

internal error: lexer

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

internal error: parser

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

internal error : macro expansion
Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

internal error: target building

Note the circumstances of the error and notify Microsoft Corporation by followipg the
instructions in the "Microsoft Support Services" section of the introduction to this book.

internal error: expression stack overflow

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

internal error: temp file limit exceeded

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

spawn failed: message

A program or command, called by NMAKE, failed for the given reason.

argument before ')' expands to nothing
The parentheses following the preprocessing operator DEFINED or EXIST either were
empty or contained an argument that evaluated to a null string.

cannot write to file filename

NMAKE could not write to the given file.

One cause of this error is a read-only file specified with IX.

macro or inline file too long (maximum: 64K)

An inline file or a macro exceeded the limit of 64K.

user-specified text

The message specified with the !ERROR directive was displayed.

UI051

UI052

UI053

UI054

U1055

UI056

UI057

UI058

NMAKE Error Messages 833

out of memory

The makefile was too large or complex for available memory.

file filename not found

NMAKE could not find the given file, which was specified with one of the following:

• The IF option

• The !INCLUDE preprocessing directive

• The at sign (@) specifier for a response file

Check that the file exists and the filename is spelled correctly.

file filename unreadable

The file cannot be read.

One of the following may be a cause:

• The file is in use by another process.

• A bad area exists on disk.

• A bad file-allocation table exists.

cannot create inline file filename

NMAKE failed to create the given inline file.

One of the following may be a cause:

• A file by that name exists with a read-only attribute.

• The disk is full.

out of environment space

The operating system ran out of room for environment variables.

Either increase the environment space or set fewer environment variables.

cannot find command processor

The command processor was not in the path specified in the COMSPEC or PATH
environment variables.

NMAKE uses COMMAND.COM or CMD.EXE as a command processor when executing
commands. It looks for the command processor first in the path set in COMSPEC. If
COMSPEC does not exist, NMAKE searches the directories specified in PATH.

cannot delete temporary file filename

NMAKE failed to delete the temporary inline file.

terminated by user

NMAKE was halted by CTRL+C or CTRL+BREAK.

834 NMAKE Error Messages

UI059 syntax error: '}' missing in dependent

UI060

UI061

UI062

UI063

UI064

UI065

A search path for a dependent was incorrectly specified. Either a space existed in the path or
the closing brace 0) was omitted. The syntax for a directory specification for a dependent is:

{directories}dependent

where directories specifies one or more paths, each separated by a semicolon (;). No spaces
are allowed.

If part or all of a search path is replaced by a macro, be sure that no spaces exist in the macro
expansion.

unable to close file: filename

NMAKE encountered an error while closing a file.

One of the following may be a cause:

• The file is a read-only file.

• There is a locking or sharing violation.

• The disk is full.

IF option requires a filename

The IF command-line option must be followed by either a makefile name or a dash (-), which
represents standard input.

missing filename with IX option

The IX command-line option requires the name of the file to which diagnostic error output
should be redirected.

To use standard output, specify' -' as the output filename.

missing macro name before ,=,
A macro definition on the NMAKE command line contained an equal sign (=) without a
preceding name.

This error can occur if the macro name being defined is itself a macro that expands to
nothing.

MAKE FILE not found and no target specified

The NMAKE command line did not specify a makefile or a target, and the current directory
did not contain a file named MAKEFILE.

NMAKE requires either a makefile or a command-line target. To make a makefile available
to NMAKE, either specify the IF option or place a file named MAKEFILE in the current
directory. NMAKE can create a command-line target by using an inference rule if a makefile
is not provided.

invalid option option

The specified option is not a valid option for NMAKE.

UI069

UI070

UI071

UI072

UI073

UI076

NMAKE Error Messages 835

no match found for wildcard filename

There is no file that matches the given filename, which was specified using one or more
wildcards (* and ?).

A target file specified using a wildcard must exist on disk.

cycle in macro definition macro name

The given macro definition contained a macro whose definition contained the given macro.
Circular macro definitions are invalid.

For example, the following macro definitions:

ONE=$(TWO)
TWO=$(ONE)

cause the following error:

cycle in macro definition 'TWO'

cycle in dependency tree for target targetname

A circular dependency exists in the dependency tree for the given target. The given target is a
dependent of one of the dependents of the given target. Circular dependencies are invalid.

cycle in include files: filename

The given file includes a file that eventually includes the given file. Inclusions (using the
!INCLUDE preprocessing directive) cannot be circular.

don't know how to make targetname

The specified target does not exist, and there is no command to execute or inference rule to
apply.

One of the following may be a solution:

• Check the spelling of the target name.

• If targetname is a pseudotarget, specify it as a target in another description block.

• If targetname is a macro invocation, be sure it does not expand to a null string.

name too long

A string exceeded one of the following limits:

• A macro name cannot exceed 1024 characters.

• A target name (including path) cannot exceed 256 characters.

• A command cannot exceed 2048 characters.

836 NMAKE Error Messages

UI077 program: return code value

UI078

UI079

UI080

UI08I

UI082

UI083

UI084

UI085

The given command or program called by NMAKE failed and returned the given exit code.

To suppress this error and continue the NMAKE session, use the /I option, the .IGNORE dot
directive, or the dash (-) command modifier. To continue the NMAKE session for unrelated
parts of the dependency tree, use the !K option.

constant overflow at expression

The given expression contained a constant that exceeded the range -2,147,483,648 to
2,147,483,647. The constant appeared in one of the following situations:

• An expression specified with a preprocessing directive

• An error level specified with the dash (-) command modifier

illegal expression: divide by zero

An expression tried to divide by zero.

operator and/or operand usage illegal

The expression incorrectly used an operator or operand.

Check the allowed set of operators and their order of precedence.

filename: program not found

NMAKE could not find the given program in order to run it.

Make sure that the program is in a directory specified in the PATH environment variable and
is not misspelled.

command: cannot execute command; out of memory

There is not enough memory to execute the given command.

target macro target expands to nothing

The given target is an invocation of a macro that has not been defined or has a null value.
NMAKE cannot process a null target.

cannot create temporary file filename

NMAKE was unable to create the temporary file it needs when it processes the makefile.

One of the following may be a cause:

• The file already exists with a read-only attribute.

• There is insufficient disk space to create the file.

• The directory specified in the TMP environment variable does not exist.

cannot mix implicit and explicit rules

A target and a pair of inference-rule extensions were specified on the same line. Targets
cannot be named in inference rules.

UI086

UI087

UI088

UI089

UI090

UI092

UI093

UI094

UI095

NMAKE Error Messages 837

inference rule cannot have dependents

The colon (:) in an inference rule must be followed by one of the following:

• A newline character

• A semicolon (;), which can be followed by a command

• A number sign (#), which can be followed by a comment

cannot have: and:: dependents for same target

A target cannot be specified in both a single-colon (:) and a double-colon (::) dependency.

To specify a target in multiple description blocks, use:: in each dependency line.

invalid separator'::' on inference rule

An inference rule must be followed by a single colon (:).

cannot have build commands for directive targetname

Dot directives cannot be followed by commands. The dot directives are .IGNORE,
.PRECIOUS, .SILENT, and .SUFFIXES.

cannot have dependents for directive targetname

Dot directives cannot be followed by dependents. The dot directives are .IGNORE,
.PRECIOUS, .SILENT, and .SUFFIXES.

too many names in rule

An inference rule cannot specify more than two extensions.

cannot mix dot directives

Multiple dot directives cannot be specified on one line. The dot directives are .IGNORE,
.PRECIOUS, .SILENT, and .SUFFIXES.

syntax error: only (NO)KEEP allowed here

Something other than KEEP or NOKEEP appeared after the closing set of angle brackets
«<) specifying an inline file. Only KEEP, NOKEEP, or a newline character may follow the
angle brackets. No spaces, tabs, or other characters may appear.

KEEP preserves the inline file on disk. NOKEEP deletes the file after the NMAKE session.
The default is NO KEEP.

expanded command line commandline too long

After macro expansion, the given command line exceeded the limit on length of command
lines for the operating system.

MS-DOS permits up to 128 characters on a command line.

If the command is for a program that can accept command-line input from a file, change the
command and supply input from either a file on disk or an inline file. For example, LINK and
LIB accept input from a response file.

838 NMAKE Error Messages

UI096 cannot open in line file filename

UI097

UI098

UI099

NMAKE could not create the given inline file.

One of the following occurred:

• The disk was full.

• A file with that name exists as a read-only file.

filename-parts syntax requires dependent

The current dependency does not have either an explicit dependent or an implicit dependent.
Filename-parts syntax, which uses the percent (%) specifier, represents components of the
first dependent of the current target.

illegal filename-parts syntax in string

The given string does not contain valid filename-parts syntax.

The makefile being processed was too complex for the current stack allocation in NMAKE.
NMAKE has an allocation of Ox3000 (12K).

To increase NMAKE' s stack allocation, run the EXEHDR utility with a larger stack option:

EXEHDR ISTACK:stacksize

where s t a c k s i z e is a number greater than the current stack allocation in NMAKE.

NMAKE Error Messages
U2001 no more file handles (too many files open)

NMAKE could not find a free file handle.

One of the following may be a solution:

• Reduce recursion in the build procedures.

• In MS-DOS, increase the number of file handles by changing the FILES setting in
CONFIG.SYS to allow a larger number of open files. FILES=50 is the recommended
setting.

NMAKE Warning Messages
U4001

U4002

command file can be invoked only from command line

A command file, which is invoked by the at sign (@) specifier, cannot contain a specification
for another command file. Such nesting is not allowed. The specification was ignored.

resetting value of special macro macroname

The given predefined macro was redefined.

U4004

U4005

U4006

U4007

U4008

U4010

U4011

NMAKE Error Messages 839

too many rules for target targetname

More than one description block was specified for the given target using single colons (:) as
separators. NMAKE executed the commands in the first description block and ignored later
blocks.

To specify the same target in mUltiple dependencies, use double colons (::) as the separator in
each dependency line.

ignoring rule rule (extension not in .SUFFIXES)

The given rule contained a suffix that is not specified in the .SUFFIXES list. NMAKE
ignored the rule.

This warning appears only when the /P option is used.

special macro undefined: macro name

The given special macro name is undefined and expands to nothing.

filename filename too long; truncating to 8.3

The base name of the given file has more than 8 characters, or the extension has more than
three characters. NMAKE truncated the name to an 8-character base and a 3-character
extension.

If long filenames are supported by your file system, enclose the name in double quotation
marks (").

removed target target

NMAKE was interrupted while trying to build the given target, and the target file was
incomplete. Because the target was not specified in the .PRECIOUS list, NMAKE deleted
the file.

target: build failed; /K specified, continuing ...

A command in the commands block for the given target returned a nonzero exit code. The /K
option told NMAKE to continue processing unrelated parts of the build and to issue an exit
code 1 when the NMAKE session is finished.

If the given target is itself a dependent for another target, NMAKE issues warning U4011
after this warning.

target: not all dependents available; target not built

A dependent of the given target either did not exist or was out of date, and a command for
updating the dependent returned a nonzero exit code. The /K option told NMAKE to continue
processing unrelated parts of the build and to issue an exit code 1 when the NMAKE session
is finished.

This warning is preceded by warning U4010 for each dependent that failed to be created or
updated.

840 PWB Error Messages

PWB Error Messages
PWB displays an error message whenever it detects a command it cannot
execute. Most errors terminate the command that is in error, but do not terminate
PWB.

For most errors, PWB displays a message box with only the text of the message.
The error number does not appear. With these messages, press FI or click Help
when the message box is displayed for Help on the error. Some errors terminate
PWB. PWB displays these fatal errors on the command line after returning to the
operating system.

This section lists only the fatal PWB errors.

PWB Fatal Errors
PWB3089

PWB3090

PWB3096

Out of local memory. Unable to recover.

PWB has run out of memory and cannot recover. This is a fatal PWB condition. However,
PWB is able to save your files, and you can restart PWB to continue.

This can happen when using PWB continuously for a long time.

This can also happen when creating a project with a very large number of files or adding
files to a large project. To make the largest amount of memory available to PWB for
creating a very large project, load only the PWBUTILS extension and only the language
extensions you need for the project. Start PWB with the IDS option, and create the project
before doing any other work.

If the project is too large for PWB to handle as a PWB project, you can use a non-PWB
makefile for your project.

Out of virtual memory space. Unable to recover.

PWB has run out of virtual memory and cannot recover. This is a fatal PWB condition.
However, PWB is able to save your files, and you can restart PWB to continue.

Unsupported video mode. Please change modes and restart.

A request was made to start PWB with the Savescreen switch set to yes (the default), but
PWB does not support the current operating-system video mode.

Change the video mode and restart PWB.

PWB3178

PWB3180

PWB3181

PWB3901

PWB3909

PWB3912

PWB12078

PWB12086

PWB Error Messages 841

Cannot start: unable to open swapping file

PWB is unable to create its virtual-memory file on disk.

PWB creates this file in the directory pointed to by the TMP environment variable. If no
TMP environment variable is set, PWB creates the file in the current directory.

Check that the disk has at least 2 free megabytes and that the directory can be accessed
with permission to create a file. Check that the TMP environment variable lists a single
existing directory.

Cannot start: not enough far memory

PWB ran out of memory while starting up.

Make more memory available to PWB and restart PWB.

Cannot initialize

PWB cannot initialize itself.

Check that there is enough memory available for PWB. Also, check that there is no conflict
with a TSR (terminate-and-stay-resident) program.

RE: error number, line line

PWB has encountered an error while processing a regular expression. The expression may
be malformed or too complex.

Check that the syntax of the regular expression is correct.

RemoveFile can't find file

PWB has encountered an internal error.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

Internal VM Error

PWB has encountered an internal error.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

Cannot access file: reason

PWB cannot access the given file for the stated reason.

Correct the situation and restart PWB.

Cannot access TMP directory: reason

PWB cannot access the directory listed in the TMP environment variable for the stated
reason.

Correct the situation and restart PWB.

842 SBRPACK Error Messages

SBRPACK Error Messages

SBI000

SBI001

SBI002

SBI003

This section lists error messages generated by the Microsoft Browse Information
Compactor (SBRPACK). SBRPACK errors (SB xxx) are always fatal.

UNKNOWN ERROR
Contact Microsoft Product Support Services

SBRP ACK detected an unknown error condition.

Note the circumstances of the error and notify Microsoft Corporation by following the
instructions in the "Microsoft Support Services" section of the introduction to this book.

This error ends SBRP ACK with exit code 1.

option : unknown option

SBRP ACK did not recognize the given option.

This error ends SBRPACK with exit code 1.

sblfile : corrupt file

The given .SBR file is corrupt or does not have the expected format.

Recompile to regenerate the .SBR file.

This error ends SBRP ACK with exit code 2.

sbrfile : invalid .SBR file

SBRPACK did not recognize the given file as an .SBR file.

One of the following may be a solution:

• Check the spelling of the specified file.

• Recompile to regenerate the .SBR file.

This error ends SBRPACK with exit code 2.

SB1004

SB1005

SB1006

SBRPACK Error Messages 843

sblfile : incompatible .SBR version

The given .SBR file cannot be packed by this version of SBRP ACK.

One of the following may be a cause:

• The .SBR file was created by a compiler that is not compatible with this version of
SBRPACK.

• The .SBR file is corrupt.

This error ends SBRP ACK with exit code 2.

sblfile : cannot open file

SBRP ACK cannot open the given .SBR file.

One of the following may be a cause:

II The .SBR file does not exist. Check the spelling.

• The .SBR file was locked by another process.

This error ends SBRP ACK with exit code 3.

cannot create temporary .SBR file

One of the following may have occurred:

II No more file handles were available. Increase the number of file handles by changing the
FILES setting in CONFIG.SYS to allow a larger number of open files. FILES=50 is
recommended.

• The disk was full.

This error ends SBRP ACK with exit code 4.

845

APPENDIX B

Regular Expressions

A regular expression (sometimes called a "pattern") is a find string that uses special
characters to match patterns of text. You can use regular expressions to find
patterns such as 5-digit numbers or strings in quotation marks. Selected portions of
found text can be used in a replacement.

In PWB you can specify regular expressions in two ways: UNIX syntax and non
UNIX syntax. UNIX regular expressions have a syntax similar to regular
expressions in the UNIX and XENIX operating systems. Code View uses a subset
of the UNIX regular-expression syntax. Non-UNIX regular-expression syntax has
the features of UNIX regular expressions but includes additional features and uses
a more compact syntax.

The Unixre switch determines whether PWB uses UNIX or non-UNIX regular
expressions in searches. PWB switches that accept regular expressions, such as
Build and Word, always use UNIX syntax.

Regular-Expression Summaries
The following table summarizes PWB' s UNIX regular-expression syntax.

Table B.1 UNIX Regular-Expression Summary

Syntax

\c

/I.

$

[class]

[/I.e/ass]

x*

x+

Description

Escape: literal character c

Wildcard: any character

Beginning of line

End of line

Character class: anyone character in set

Inverse class: anyone character not in set

Repeat: zero or more occurrences of x

Repeat: one or more occurrences of x

846 Environment and Tools

Table B.I UNIX Regular-Expression Summary (continued)

Syntax

\{x\}

\{x\!y\!z\}

\"'x

\(x\)

\n

\:e

Description

Grouping: group sUbexpression for repetition

Alternation: match one from the set

"Not": fail if x at this point

Tagged expression

Reference to tagged expression number n

Predefined expression

The following table summarizes the UNIX predefined expressions.

Table B.2 UNIX Predefined Expressions

Syntax Description

\:a Alphanumeric character

\:b White space

\:c Alphabetic character

\:d Digit

\:f Part of a filename

\:h Hexadecimal number

\:i Microsoft C/C++ identifier

\:n Unsigned number

\:p Path

\:q Quoted string

\:w English word

\:z Unsigned integer

Code View uses a subset of the UNIX regular-expression syntax. You can use
regular expressions as arguments to the Search (/) command and Examine Symbols
(X) command. The following table summarizes Code View regular expressions.

Appendix B Regular Expressions 847

Table B.3 Code View Regular Expressions

Character

Backslash

Period

Caret

Dollar sign

Asterisk

Brackets

Syntax

\c

A

$

c*

[...]

Meaning

Matches a literal character c. (Escape)

Matches any single character. (Wildcard)

Matches the beginning of a line. The caret must appear at the
beginning of the pattern.

Matches the end of a line. The dollar sign must appear at the
end of the pattern.

Matches zero or more occurrences of c.

Matches anyone character in the set of the characters within
the brackets.

Within the brackets, you can specify a negated set and ranges of characters by
using the following notation:

Character Syntax

Dash

Caret A

Meaning

Specifies a range of characters in the ASCII order between the
characters on either side, inclusive. For example, [a - zJ
matches the lowercase alphabet.

Matches anyone character not within the brackets. The caret
must be the first character within the brackets. For example,
["0 - 9] matches any character except a digit.

The following table summarizes the non-UNIX regular-expression syntax.

Table B.4 Non-UNIX Regular-Expression Summary

Syntax

\c

?
A

$

[class]

[-class]

x*

x+

x@

x#

(x)

(x!y!z)

Description

Escape: literal character c

Wildcard: any character

Beginning of line

End of line

Character class: anyone character in set

Inverse class: anyone character not in set

Repeat: zero or more occurrences of x

Repeat: one or more occurrences of x

Repeat: maximal zero or more occurrences of x

Repeat: maximal one or more occurrences of x

Grouping: group subexpression for repetition

Alternation: match one from the set

848 Environment and Tools

Table B.4 Non-UNIX Regular-Expression Summary (continued)

Syntax

{x}

$n

:e

Description

"Not": fail if x at this point

"Power": match n copies of x

Tagged expression

Reference to tagged expression number 11

Predefined expression

The following table summarizes the non-UNIX predefined expressions.

Table B.5 Non-UNIX Predefined Expressions

Syntax

:a

:b

:c

:d

:f

:h

:i

:n

:p

:q

:w
:z

Description

Alphanumeric character

White space

Alphabetic character

Digit

Part of a filename

Hexadecimal number

Microsoft C/C++ identifier

Unsigned number

Path

Quoted string

English word

Unsigned integer

UNIX Regular-Expression Syntax
PWB uses the following UNIX-style regular-expression syntax:

Table B.6 UNIX Regular-Expression Syntax

Syntax

\c

Description

Escape: matches a literal occurrence of the character c and ignores any
special meaning of c in a regular expression. For example, the express i ___ _
\? matches a question mark (?), \ 1\ matches a caret (1\), and \ \ rna
a backslash (\).

Wildcard: matches any single character. For example, the expression
matches aaa and a0a.

Appendix B Regular Expressions 849

Table B.6 UNIX Regular-Expression Syntax (continued)

Syntax

1\

$

[class]

x*

x+

\(x\)

\n

\{x\}

\{x\!y\!z\}

\-x

\:e

Description

Beginning of line. For example, the expression "T h e matches the word
The only when it occurs at the beginning of a line.

End of line. For example, the expression end $ matches the word end
only when it occurs at the end of a line.

Character class: matches anyone character in the class. Use a dash (-) to
specify a range of characters. Within a class, all characters except ,,- \]
are treated literally. For example, [a - zA - Z 0 - 9] matches any character or
digit, and [abc] matches a, b, or c.

Inverse of character class: matches any character not specified in the class.
For example, [" 0 - 9] matches any character that is not a digit.

Repeat operator: matches zero or more occurrences of x, where x is a single
character, a character class, or a grouped expression. For example, the
regular expression ba*b matches baaab, bab, and bb. This operator
always matches as many characters as possible.

Repeat operator (shorthand for xx*): matches one or more occurrences of x.
For example, the regular expression ba+b matches baab and bab but
not bb.

Tagged expression: marked text, which you can refer to as \1l elsewhere in
the find or replacement string. Within a find string, PWB finds text that
contains the previously tagged text. Within a replacement string, PWB
reuses the matched text in the replacement.

References the characters matched by a tagged expression, where Il is a
one-digit number and indicates which expression. The first tagged
expression is \ 1, the second is \ 2, and so on. The entire expression is
represented as \ 0.

Grouping. Groups a regular expression so that you can use a repeat operator
on the subexpression. For example, the regular expression \ {T est \ } +
matches Test and TestTest.

Alternation: matches one from a set of alternate patterns. The alternates are
tried in left-to-right order. The next alternate is tried only when the rest of
the pattern fails. For example, \ { + \ ! $ \} matches a sequence of blanks
or the end of a line.

"NOT" function: matches nothing but checks to see whether the text
matches x at this point and fails if it does. For example, "\~\ { \! $ \} • *
matches all lines that do not begin with white space or end of line.

Predefined regular expression, where e is a letter specifying the regular
expression.

850 Environment and Tools

Examples In PWB, to find the next occurrence of a number (a string of digits) that begins with
the digit 1 or 2:

1. Execute Arg Arg (ALT+A ALT+A)

2. Type [12J [0-9J*

3. Execute Psearch (F3)

The special characters in regular expression syntax are most powerful when they
are used together. For example, the following combination of the wildcard (.) and
repeat (*) characters

*

matches any string of characters. This expression is useful when it is part of a
larger expression, such as

B.*ing

which matches any string beginning with B and ending with i n g.

Tagged Regular Expressions

Example

Tagged expressions are regular expressions enclosed by the delimiters \ and \
(UNIX) or { and} (non-UNIX). Use tagged expressions to match repeated elements
and to mark substrings for use in a replacement. Note that a tagged expression is
not the same as a grouped expression.

When you specify a regular expression with tagged subexpressions, PWB finds text
that matches the regular expression and marks each substring matching a tagged
subexpression.

The UNIX regular expression

matches the string

<bracketed>

and tags the <, bracketed, and> substrings.

To refer to tagged text in a find or replacement pattern, use \n (UNIX) or $n (non
UNIX), where n is the number of a tagged subexpression from 1 to 9. In a find
pattern, this reference matches another occurrence of the previously matched text,
not another occurrence of the regular expression. In a replacement, PWB uses the
matched text.

Example

Appendix B Regular Expressions 851

The entire match is implicitly tagged for use in replacement text. Use \0 (UNIX) or
$0 (non-UNIX) to refer to the entire match. For example, the UNIX find pattern

A\([A]+\) +\([A]+\).*

with the replace pattern

\2 \1 (\0)

matches lines without leading spaces and at least two words. It replaces them
with lines that consist of the transposed words followed by the original line in
parentheses.

The tagged expressions:

UNIX Non-UNIX

\([A-Za-z]+\)==\l ([A - Za - z]+ }==$1

match one or more letters followed by two equal signs (==) and a repetition of the
letters. They match the first two strings below, but not the third:

ABCxyz==ABCxyz
;==;
ABCxyz==KBCxjj

The following example finds one or more hexadecimal digits followed by the letter
H. Each matching string is replaced by a string that consists of the original digits
(which were tagged so they could be reused) and the prefix 16#.

1. Find strings of the form hexdigitsH with the UNIX and non-UNIX patterns:

2.

UNIX Non-UNIX

\([0-9a-fA-F]+\)H {[0-9a-fA-F]+}H

These patterns can also be expressed by using the predefined pattern for
hexadecimal digits:

UNIX Non-UNIX

\(\:h*\)H {:h}H

Replace with the patterns:

UNIX Non-UNIX

16#\1 161/$1

852 Environment and Tools

Tagged Expressions in Build:Message
PWB uses tagged UNIX regular expressions to find the location of errors and
warnings displayed in the Build Results window. The tagged portions of the
message indicate the file and the location or token in error.

To define new messages for PWB to recognize, add a new Build:message switch
definition to the [PWB] section of TOOLS.lNI. The syntax for this switch is:

Build:message "pattern" [file [line [column]] I token]

The pattern is a macro string that specifies a tagged UNIX regular expression. The
file, line, col, and token keywords indicate the meaning of each tagged
sUbexpression.

For example, if the messages you want to match look like:

Error: Missing';' on line 123 in SAMPLE.XYZ

Place the following setting in TOOLS.lNI:

Build:message "AError: * on line \\(\\:Z\\) in \\(\\:p\\)" \
fil eli ne

Note that each backslash in the regular expression is doubled within the macro
string. This pattern uses the predefined expressions for integer (\:z) and path (\:p).

Justifying Tagged Expressions
To justify a tagged regular expression, use the following syntax in the replacement
string:

UNIX Non-UNIX

\(width,n) $(width.n)

The width is the field size (negative for left justification), and n is the number of the
tagged expression to justify.

PWB justfies the tagged text according to the following rules:

• If width is greater than the length of the tagged text, PWB right -justifies the
tagged expression within the field and pads the field with leading spaces.

• If width is negative and its magnitude is greater than the length of the text, PWB
left-justifies the expression and pads the field with trailing spaces.

• If width is less than or equal to the length of the text, PWB uses the whole text
and does not pad the field. PWB never truncates justified text.

Appendix B Regular Expressions 853

Predefined Regular Expressions
PWB predefines several regular expressions. The definitions in the following table
are listed in quoted non-UNIX syntax, as they would appear in a PWB macro. Use
a predefined expression by entering \:e (UNIX) or :e (non-UNIX).

Table B.7 Predefined Regular Expressions and Definitions

:e Description
Definition (non-UNIX)

:a Alphanumeric character
"[a-zA-Z0-9J"

:b White space
"([\ t]11> "

:c Alphabetic character
"[a-zA-Z]"

:d Digit
"[0-9J"

:f Part of a filename
"([---1\\\\ \\\"\\[\\]\\: +=;,.J#! .. !.)"

:h Hexadecimal number
"([0-9a-fA-F]#)"

:i Microsoft C/C++ identifier
"([a-zA-Z_$J[a-zA-Z0-9_$J@)"

:n Unsigned number
" ([0 - 9] #. [0 - 9]@! [0 - 9 J@. [0 - 9] #! [0 - 9] 1ft) "

:p Path
"«[A-Za-z]\\:!)(\\\\!/!)(:f(. :f!)(\\\\!/))@:f(.:f!.!))"

:q Quoted string
"(\"[---\"]@\"!'[---']@')"

:w English word
"([a-zA-ZJ#)"

:z Unsigned integer
"([0-9]#)"

854 Environment and Tools

Non-UNIX Regular-Expression Syntax
PWB uses the following non-UNIX regular-expression syntax:

Table B.8 Non-UNIX Regular Expression Syntax

Syntax

\c

?

"

$

[class]

["'class]

x*

x+

x@

•• -U
ATT

(x!y!z)

(x)

-x

Description

Escape: matches a literal occurrence of the character c and ignores any special
meaning of c in a regular expression. For example, the expression \?
matches a question mark ?, \" matches a caret 1\, and \ \ matches a
backslash \ .

Wildcard: matches any single character. For example, the expression a? a
matches aaa and ala but not aBBBa.

Beginning of line. For example, the expression 1\ The matches the word
The only when it occurs at the beginning of a line.

End of line. For example, the expression end $ matches the word end only
when it occurs at the end of a line.

Character class: matches anyone character in the class. Use a dash (-) to
specify a range of characters. Within a class, all characters except ~- \] are
treated literally. For example, [a - zA - Z*] matches any alphabetic character
or asterisk, and [abc] matches a single a, b, or c.

Inverse of character class: matches any single character not in the class. For
example, [~0 - 9] matches any character that is not a digit.

Minimal matching: matches zero or more occurrences of x, where x is a single
character or a grouped expression. For example, the expression b a * b
matches baaab, bab, and bb.

Minimal matching plus (shorthand for xx*): matches one or more occurrences
of x. For example, the expression b a +b matches b a a band b a b but not
bb.

Maximal matching: identical to x*, except that it matches as many
occurrences as possible .
~K~._:. __ ~1. __ ~.4-~1_:. __ ._1 __ ~~ :J __ . .4.: __ 14- ____ _______ 4- ... 1._L! ... ____ ... _,. ___ _

IV.laAll1J(:U l11atl,l1111b 1'1U~. lUC;Ul1~ctl tV AT, CA~C;l'l lUctlll UlctlCUC:S ct:s lllctlly

occurrences as possible.

Alternation: matches one from a set of alternate patterns. The alternates are
tried in left-to-right order. The next alternate is tried only when the rest of the
pattern fails. For example, the expression (ww! xx! xxyy) zz matches xxzz
on the second alternative and xxyyzz on the third.

Grouping. Groups an expression so that you can use a repeat operator with
the expression. For example, the expression (T est) + matches T est and
TestTest.

"NOT" function: matches nothing but checks to see if the text matches x at
this point and fails if it does. For example, I\~ (if! wh i 1 e) ? * $ matches all
lines that do not begin with if or wh i 1 e.

Examples

Appendix B Regular Expressions 855

Table B.S Non-UNIX Regular Expression Syntax (continued)

Syntax

x"n

{x}

$Il

:e

Description

Power function: matches n copies of x. For example, wA 4 matches wwww,
and (a?)A3 matches afiaba5.

Tagged expression: marked text, which you can refer to as $n elsewhere in the
find or replacement string. Within a find string, PWB finds text that contains
the previously tagged text. Within a replacement string, PWB reuses the
matched text in the replacement.

Reference to text matched by a tagged expression. The specific substring is
indicated by Il. The first tagged substring is indicated as $1, the second as
$2, and so on. A $0 represents the entire match.

Predefined regular expression, where e is a letter that specifies the regular
expression.

In PWB, to find the next occurrence of a number (a string of digits) that begins with
the digit 1 or 2:

1. Execute Arg Arg (ALT+A ALT+A).

2. Type [12J [0-9J*

3. Execute Psearch (F3).

Regular expressions are most powerful when they are used together. For example,
the combination of the wildcard (?) and repeat (*) operators

?*

matches any string of characters. This expression is useful when it is part of a
larger expression, such as

B?*ing

which matches any string beginning with B and ending with i n g.

Non-UNIX Matching Method
The type of non-UNIX matching method is significant only when you use a find
and-replace command. "Matching method" refers to the technique used to match
repeated expressions. For example, does the expression a * match as few or as
many characters as it can? The answer depends on the matching method.

PWB supports two matching methods in non-UNIX regular expressions:

856 Environment and Tools

Example

• "Minimal matching" matches as few characters as possible to find a match.
For example, a + matches only the first character in a a a a a. However, b a +b
matches the entire string b a a a a b because it is necessary to match every a
to match both occurrences of b.

• "Maximal matching" matches as many characters as possible. For example,
a II matches the entire string a a a a a a .

If a+ (minimal matching plus) is the find string and EE is the replacement string,
PWB replaces a a a a a with E E E E E E E E E E because at each occurrence of a, PWB
immediately replaces it with E E.

However, if all (maximal matching plus) is the find string, PWB replaces the same
string with E E because it matches the entire string a a a a a at once and replaces that
string with E E.

Glossary

386 enhanced mode A mode in the Windows
operating system that runs on the 80386 and 80486
processors. It provides access to extended memory
and the ability to run non-Windows-based
applications. This and standard mode are both
referred to as protected mode in the Windows
operating system and offer more capability than
real mode.

8086 family of processors All processors in the
Intel 8086 family, including the 8086, 80286,
80386, and 80486 CPU chips.

8087 family of math processors All math
processors (also called math coprocessors) in the
Intel 8087 family, including the 8087, 80287, and
80387 chips. These processors perform high-speed
floating-point and binary-coded-decimal number
processing. The 80486 chip includes a math
processor.

8087 window The Code View window in which
the floating-point math processor's registers are
displayed. This window remains empty until a
math processor instruction is executed. If the
program uses the Microsoft math processor
emulator library, the contents of the emulated
math processor's registers are displayed.

A
actual parameter See "argument."

adapter A printed-circuit card that plugs into a
computer and controls a device, such as a video
display or a printer.

address The memory location of a data item or
procedure, or an expression that evaluates to an
address. In Code View, the expression can

represent just the offset (a default segment is
assumed), or it can be in segment:offset format.

address range A range of memory bounded by
two addresses.

857

anonymous allocation Assignment to a segment at
link time.

ANSI (American National Standards Institute)
The institute responsible for defining
programming-language standards to promote
portability of languages between different
computer systems.

ANSI character set An 8-bit character set that
contains 256 characters. See "ASCII character
set. "

API (application programming interface)
A set of system-level routines that can be used in
an application program for tasks such as input,
output, and file management. In a graphics-oriented
operating environment like Microsoft Windows,
high-level support for video graphics output is part
of the API.

argc The conventional name for the first argument
to the main function in a C source program (an
integer specifying the number of arguments passed
to the program from the command line).

argument A value passed to a routine or specified
with an option in the command line for a utility.
Also called an actual parameter. See also
"parameter. "

argv The conventional name for the second
argument to the main function in a C source
program (a pointer to an array of strings). The first
string is the program name, and each following

858 array

string is an argument passed to the program from
the command line.

array A set of elements of the same type.

ASCII character set The American Standard Code
for Information Interchange 8-bit character set,
consisting of the first 128 (0 to 127) characters of
the ANSI character set. The term ASCII characters
is sometimes used to mean all 256 characters
defined for a particular system, including the
extended ASCII characters. ASCII values
represent letters, digits, special symbols, and other
characters. See also "extended ASCII."

ASCII file See "text file."

. ASM The extension for an assembly-language
source file.

Assembly mode The mode in which Code View
displays the assembly-language equivalent of the
machine code being executed. Code View
disassembles the executable file in memory to
obtain the code.

automatic data segment See "DGROUP."

available memory The portion of conventional
memory not used by system software, TSR
utilities, or other programs.

B
.BAK The extension that is often used to indicate a
backup file.

.BAS The extension for a Basic language source
file.

base name The part of a filename before the
extension, usually I to 8 characters. For example,
README is the base name of the filename
README.TXT.

. BAT The extension for an MS-DOS batch file.

batch file A file containing operating-system
commands that can be run from the command line.
Also called a command file.

binary file A file that contains numbers in binary,
machine-readable form. For example, an
executable file is a binary file.

binary operator An operator that takes two
operands.

BIOS (basic input/output system)
The code built into system memory that provides
hardware interface routines for programs. You can
trace into the BIOS with Code View when using
Assembly mode .

.BMP The extension for a bitmap file.

breakpoint A specified address where program
execution halts. Code View interrupts execution
when the program reaches the address where a
breakpoint is set. See also "conditional
breakpoint. "

.BSC The extension for a database file for use
with the Source Browser. A .BSC file is created by
BSCMAKE.

buffer An area in memory that holds data
temporarily, most often during input/output
operations.

c
.C The extension for a C source file.

call gate A special descriptor-table entry that
describes a subroutine entry point rather than a
memory segment. A far call to a call gate selector
transfers to the entry point specified in the call
gate. This is a feature of the 80286-80486
hardware and is typically used to provide a
transition from a lower privilege state to a higher
one .

case sensitivity The distinction made between
uppercase and lowercase letters. For example,
"MyFile" and "MYFILE" are considered to be
different strings in a case-sensitive situation but
are understood to be the same string if case is not
sensitive.

CGA (color graphics adapter) A video adapter
capable of displaying text characters or graphics
pixels in low resolution in up to 16 colors.

character string A sequence of bytes treated as a
set of ASCII letters, numbers, and other symbols.
A character string is often enclosed in single
quotation marks (, ,) or double quotation marks
(n ").

child process A process created by another
process (its parent process).

click To press and release quickly one of the
mouse buttons (usually the left button) while
pointing the mouse pointer to an object on the
screen.

clipboard A temporary storage area for text. The
clipboard is used for cut, copy, and paste
operations.

.COB The extension for a COBOL source file.

code symbol The address of a routine.

.COM The extension for an MS-DOS executable
file that contains a single segment. Tiny-model
programs have a .COM extension. See also "tiny
memory model."

command An instruction you use to control a
computer program, such as an operating system or
application.

command file A file containing operating-system
commands that can be run from the command line.
If the file's extension is .BAT, the command file

CPU (central processing unit) 859

contains MS-DOS commands. Also called a batch
file.

command file (in NMAKE) A text file containing
input expected by utilities such as NMAKE.

compact memory model A program with one code
segment and multiple data segments.

compile To translate programming language
statements into a fonn that can be executed by the
computer.

conditional breakpoint A breakpoint that is taken
when a specified expression becomes nonzero
(true). A conditional breakpoint is evaluated after
every instruction is executed unless an address is
also specified. Formerly called tracepoint and
watchpoint.

constant A value that does not change during
program execution.

constant expression Any expression that
evaluates to a constant. It may include integer
constants, character constants, floating-point
constants, enumeration constants, type casts to
integral and floating-point types, and other
constant expressions. It cannot include a variable
or function call.

conventional memory The first 640K (or
sometimes 1MB) of memory under MS-DOS. Also
called low memory.

coprocessor See "8087 family of math
processors."

.CPP An extension for a C++ source file.

CPU (central processing unit) The main processor
in a computer. For example, the CPU that receives
and carries out instructions in the PCI AT is an
80286 processor. See also "8086 family of
processors. "

860 CS:IP

CS:IP The address of the current program location.
This is the address of the next instruction to be
executed. CS is the value of the Code Segment
register, and IP is the value of the Instruction
Pointer register.

cursor The thin blinking line or other character
that represents the location of typed input or mouse
activity.

.CXX An extension for a C++ source file.

o
.DAT The extension that is often used to indicate a
data file.

data symbol The address of a global or static data
object. The concept of data symbol includes all
data objects except local (stack-allocated) or
dynamically allocated data.

. DBG The extension for a file that is created by
LINK when the ICO and /TINY options are used.
The file contains symbolic debugging information.

debugger A program that allows the programmer
to execute a program one line or instruction at a
time. The debugger displays the contents of
registers and memory to help locate the source of
problems in the program. An example is the
Microsoft Code View debugger.

debugging information Symbolic information used
by a debugger, especially information in the
Microsoft Symbolic Debugging Information format
that is used by the Microsoft Code View debugger.

.DEF The extension for a module-definition file.

default data segment See "DGROUP."

default library A standard library that contains
routines and data for a language. The language's
compiler embeds the name of the default library in
the object file in a COMMENT record. The

embedded name tells LINK to search the default
library automatically.

DGROUP The group that contains the segments
called _DATA (initialized data), CONST (constant
data), _BSS (uninitialized data), and STACK (the
program's stack). Also called default (or
automatic) data segment.

dialog box A box that appears when you choose a
command that requires additional information.

disassemble To translate binary machine code
into the equivalent assembly-language
representation. Also called unassemble.

disassembly The assembly-language
representation of machine code, obtained by
disassembling the machine code.

.DLL The extension for a dynamic-link library.

DLL A dynamic-link library .

.DOC The extension that is often used to indicate a
document file.

DOS application A program that runs only with
MS-DOS. An MS-DOS executable file contains a
header and one contiguous block of segments.

DOS-extended An application that is able to be
run by the DOS Extender in extended or expanded
memory.

DOS Extender A program that lets an application
run in extended or expanded memory.

DOS session Under the Windows operating
system, a full-screen emulation of the MS-DOS
environment started using the MS-DOS Prompt in
the Program Manager Main Group. The MS-DOS
Prompt program item starts a copy of the MS-DOS
command interpreter (COMMAND.COM).

double precision A real (floating-point) numeric

value that occupies 8 bytes of memory. Double
precision values are accurate to 15 or 16 digits.

OPMI (DOS Protected Mode Interface)
A server that provides extended or expanded
memory. An example of a DPMI server is an
MS-DOS session in Windows.

drag To move the mouse while holding down one
of its buttons.

dump To display the contents of memory at a
specified memory location.

dynamic link A method of postponing the
resolution of external references until load time or
run time. A dynamic link allows the called routines
to be created, distributed, and maintained
independently of their callers.

dynamic-link library A file, usually with a .DLL
extension, that contains the binary code for
routines and data that are linked to a program at
run time.

E
EGA (enhanced graphics adapter)
A video adapter capable of displaying all the
modes of the color graphics adapter (CGA) plus
additional modes in medium resolution in up to 64
colors.

EMM386.EXE An example of a VCPI server.
EMM386.EXE simulates expanded memory in
extended memory for an 80386 or higher
processor.

EMS Expanded Memory Specification. See
"expanded memory."

emulator A floating-point math package that
provides software emulation of the operations of a
math processor.

environment strings A series of user-definable
and program-definable strings associated with each

exit code 861

process. The initial values of environment strings
are established by a process's parent.

environment table The memory area, defined by
the operating system, that stores environment
variables and their values.

environment variable A string associated with an
identifier and stored by the operating system.
Environment variables are defined by the SET
command. The identifier and the string associated
with it can be used by a program.

.ERR The extension for a file of error-message
text or error output.

error code See "exit code."

escape sequence A specific combination of an
escape character (often a backslash) followed by a
character, keyword, or code. Escape sequences
often represent white space, nongraphic characters,
or literal delimiters within strings and character
constants .

. EXE One of the extensions for an executable file,
which is a file that can be loaded and executed by
the operating system.

executable file A program ready to be run by an
operating system, usually with one of the
extensions .EXE, .COM, or .BAT. When the name
of the file is typed at the system prompt, the
statements in the file are executed.

exit code An integer returned by a program to the
operating system or the program's caller after
completion to indicate the success, failure, or status
of the program. Also called a return code or error
code.

Exit code also refers to the executable code that a
compiler places in every program to terminate
execution of the program. This code typically
closes open files and performs other housekeeping
chores. When a program terminates in Code View,
the current line is in the exit code. No source code

862 expanded memory

is shown since none is available. See also "startup
code."

expanded memory Memory above 640K made
available to real-mode programs and controlled
through paging by an expanded memory manager.

expanded memory emulator A device driver that
allows extended memory on computers with an
80286 or later processor to behave like expanded
memory.

expanded memory manager (EMM)
A device driver for controlling expanded memory.

explicit allocation Assignment to a segment at
compile time.

expression A combination of operands and
operators that yields a single value.

extended ASCII ASCII codes between 128 and
255. The meanings of extended ASCII codes differ
depending on the system.

extended dictionary A summary of the definitions
contained in all modules of a standard library.
LINK uses extended dictionaries to search libraries
faster.

extended memory Memory above either 640K or
1 megabyte made available to protected-mode
programs on computers with an 80286 or later
processor. Extended memory is used by the
Windows operating system in standard mode or
386 enhanced mode.

extended memory manager A device driver for
controlling extended memory, for example,
HIMEM.SYS for the Windows operating system.

extender-ready See "DOS-extended."

extension One, two, or three characters that
appear after a period (.) following the base name in
a filename. For example, .TXT is the extension of
the filename README.TXT. A filename does not

necessarily have an extension. Sometimes the
extension is considered to include the preceding
period.

external reference A routine or data item declared
in one module and referenced in another.

F
far address A memory location specified by using
a segment (location of a 64K block) and an offset
from the beginning of the segment. Far addresses
require 4 bytes-2 for the segment and 2 for the
offset. Also called a segmented address. See also
"address" and "near address."

FAT (file allocation table) The standard file system
forMS-DOS.

fatal error An error that causes a program to
terminate immediately.

.FD The extension for a declaration file (a type of
include file) in FORTRAN.

.FI The extension for an interface file (a type of
include file) in FORTRAN.

file handle A value returned by the operating
system when a file is opened and used by a
program to refer to the file when communicating to
the system. Under MS-DOS, COMMAND. COM
opens the first five file handles as stdin, stdont,
stderr, stdanx, and stdprn.

filename A string of characters identifying a file
on disk, composed of a base name optionally
followed by a period C.) and an extension. A
filename may be preceded by a path. For example,
in the filename README. TXT , .TXT is the
extension and README is the base name.

fixup The linking process that resolves a reference
to a relocatable or external address.

flags register A register that contains individual
bits, each of which signals a condition that can be

tested by a machine-level instruction. In other
registers, the contents of the register are considered
as a whole, while in the flags register only the
individual bits have meaning. In Code View, the
current values of the most commonly used bits of
the flags register are shown at the bottom of the
Register window.

flat memory model A nonsegmented memory
model that can address up to 4 gigabytes of
memory.

flipping A screen-exchange method that uses the
video pages of the CGA or EGA to store both the
debugging and output screens. When you request
the other screen, the two video pages are
exchanged. See also "screen exchange" and
"swapping. "

.FOR The extension for a FORTRAN source file.

formal parameter See "parameter."

frame The segment, group, or segment register
that specifies the segment part of an address.

full-screen application A program that runs with
Windows but cannot run in a window.

function A routine that returns a value.

function call An expression that invokes a function
and passes arguments (if any) to the function.

G
gigabyte (G8) 1024 megabytes or 1,073,741,824
bytes (2 to the power of 30).

global symbol A symbol that is available
throughout the entire program. In CodeView,
function names are always global symbols. See
also "local symbol."

grandparent process The parent of a process that
created a process.

identifier 863

group A collection of segments having the same
segment base address.

H
.H The extension for an include (or header) file in
C.

HELPFILES The environment variable used by a
program to find .HLP files.

hexadecimal The base-16 numbering system
whose digits are 0 through F. The letters A through
F represent the decimal numbers 10 through 15.
Hexadecimal is easily converted to and from
binary, the base-2 numbering system the computer
itself uses.

highlight To select an area in a text box, window,
or menu as a command or as text to be deleted or
copied. A highlight is shown in reverse-video or a
bright color.

high memory Memory between the 640K of
conventional memory and the 1MB limit of a PC's
address space.

HIMEM.SYS An example of an XMS server.
HIMEM.SYS manages extended memory for an
80286 or higher processor.

.HLP The extension for a help file created by
HELPMAKE.

HPFS (high-performance file system)
An installable file system that uses disk caching
and that allows filenames to be longer and to
contain certain nonalphanumeric characters.

huge memory model A program with multiple
code and data segments, and data items that can
exceed 64K.

identifier A name that identifies a register or a
location in memory and usually represents a

864 IEEE format (Institute for Electrical and Electronic Engineers)

program element such as a constant, variable, type,
or routine. The terms identifier and symbol are
used synonymously in most documentation.

IEEE format (Institute for Electrical and Electronic
Engineers)
A standard for representing floating-point numbers,
performing math with them, and handling
underflow/overflow conditions. The 8087 family of
math processors and the Microsoft emulator library
implement this format.

import library A library, created by IMPLIB, that
contains entry points in DLLs. It does not contain
the actual code for routines and data. An import
library is used to resolve references at link time in
the same way as a standard library; each is a type
of static library. See "dynamic-link library" and
"standard library."

.INC The extension for an include file in Microsoft
Macro Assembler.

include file A file that is merged into a program's
source code with a file-inclusion command. In C,
this command is the #include preprocessor
directive. In FORTRAN, it is the INCLUDE
keyword or the $INCLUDE metacommand. In
Microsoft Macro Assembler, the equivalent
command is the INCLUDE directive. In a .DEF
file, the INCLUDE statement performs this action.
In an NMAKE makefile, it is the !INCLUDE
directive.

.lNI The extension for an initialization file.

INIT The environment variable usually used by a
program to find an initialization file.

installable file system A file system that exists in
addition to the FAT file system.

integer In Code View and the C language, a whole
number represented as a 16-bit two's complement
binary number that has a range from -32,768
through +32,767. See also "long integer."

interoverlay call A call from a function in one
overlay to a function in another overlay,
represented internally by an entry in a thunk table.

interrupt call A machine-level procedure that can
be called to execute a BIOS, DOS, or other
function. You can trace into BIOS interrupt-service
routines with CodeView, but not into the DOS
interrupt (Ox21).

I/O privilege mechanism A facility that allows a
process to ask a device driver for direct access to
the device's I/O ports and any dedicated or mapped
memory locations it has. The I/O privilege
mechanism can be used directly by an application
or indirectly by a dynamic-link library.

K
kilobyte (K) 1024 bytes (2 to the power of 10) .

L
label An identifier representing an address.

large memory model A program with multiple
code and data segments.

LIB The environment variable used by LINK to
find default libraries.

.LlB The extension for a static library.

library A collection of routines or data made
available to one or more programs through static or
dynamic linking.

LIM EMS Lotus/lntel/Microsoft Expanded Memory
Specification.

LINK The environment variable used by LINK for
command-line options.

linking The process in which the linker resolves
all external references by searching the run-time
and user libraries and then computes absolute

offset addresses for these references. The linking
process results in a single executable file.

list file A text file of infonnation produced by a
utility such as LIB. See "map file."

listing A generic tenn for a map, list, or cross
reference file.

.LNK The extension that is often used to indicate a
response file.

load library A static library specified to the linker
as an object file, causing all modules in the library
to be linked into the program. See "static library."

local symbol An identifier that is visible only
within a particular routine. See "global symbol."

Local window The CodeView window in which
the local variables for the current routine are
displayed.

logical segment A segment defined in an object
module. Each physical segment other than
DGROUP contains exactly one logical segment,
except when you use the GROUP directive in a
Microsoft Macro Assembler module. (Linking with
the /p ACKC option can also create more than one
logical segment per physical segment.)

long integer In Code View and the C language, a
whole number represented by a 32-bit two's
complement value. Long integers have a range of
-2,147,483,648 to +2,147,483,647. See "integer."

low memory See "conventional memory."

.LRF The extension that is often used to indicate a
response file. PWB creates response files with the
.LRF extension.

.LST The extension that is often used to indicate a
list file.

I-value An expression (such as a variable name)
that refers to a single memory location and is

memory-resident program 865

required as the left operand of an assignment
operation or the single operand of a unary operator.
For example, Xl is an I-value, but Xl +X2 is not.

M
machine code A series of binary numbers that a
processor executes as program instructions. See
also "disassemble."

macro A block of text or instructions that has
been assigned an identifier. For example, you can
create a macro that contains a set of functions that
you perfonn repeatedly and assign the macro to a
single keystroke.

.MAK The extension that is often used to indicate a
makefile or description file.

.MAP The extension for a map file.

map file A text file of infonnation produced by a
utility such as LINK. Also called a list file or
listing.

math coprocessor See "8087 family of math
processors.' ,

MB Megabyte.

MOl Multiple Document Interface.

medium memory model A program with multiple
code segments and one data segment.

megabyte {MB} 1024 kilobytes or 1,048,576 bytes
(2 to the power of 20).

memory model A convention for specifying the
number of code and data segments in a program.
Memory models include tiny, small, medium,
compact, large, huge, and flat.

memory-resident program See "tenninate-and
stay-resident. "

866 menu bar

menu bar The bar at the top of a display
containing menus.

Mixed mode The Code View source display mode
that shows each source line of the program being
debugged, followed by a disassembly of the
machine code generated for that source line. This
mode combines Source mode and Assembly mode.

modification time See "time stamp."

module A discrete group of statements. Every
program has at least one module (the main
module). In most cases, each module corresponds
to one source file.

module (in LIB) See "object module."

module-definition file A text file, usually with a
.DEF extension, that describes characteristics of a
program. A module-definition file is used by LINK
and by IMPLIB.

monochrome adapter A video adapter capable of
displaying only in medium resolution in one color.
Most monochrome adapters display text only;
individual graphics pixels cannot be displayed.

mouse pointer The reverse-video or colored
square that moves to indicate the current position
of the mouse. The mouse pointer appears only if a
mouse is installed.

MS32EM87.DLL A DLL required by the DOS
Extender. The SYSTEM environment variable
must be set to the directory that contains this file.

MS32KRNL.DLL A DLL required by the DOS
Extender. The SYSTEM environment variable
must be set to the directory that contains this file.

multitasking operating system An operating
system in which two or more programs or threads
can execute simultaneously.

N
NAN An acronym for "not a number." The math
processors generate NANs when the result of an
operation cannot be represented in IEEE format.

near address A memory location specified by only
the offset from the start of the segment. A near
address requires only two bytes. See also
"address" and "far address."

newline character The character used to mark the
end of a line in a text file, or the escape sequence
(\n in C language) used to represent this character.

null character The ASCII character whose value is
0, or the escape sequence (\0 in C language) used
to represent this character.

null pointer A pointer to nothing, expressed as the
integer value O.

o
.OBJ The extension for an object file produced by
a compiler or assembler.

object file A file produced by compiling or
assembling source code, containing relocatable
machine code.

object module A group of routines and data items
stored in a standard library, originating from an
object file. See also "standard library."

object module format The specification for the
structure of object files. Microsoft languages
conform to the Microsoft Relocatable Object
Module Format (OMF), which is based on the Intel
80860MF.

offset The number of bytes from the beginning of
a segment or other address to a particular byte.

OMF Object module format.

Output screen The Code View screen that contains
program output. To switch to this screen, choose
the Output command from the View menu or press
F4.

overlay A program component loaded into
memory only when needed.

p
packaged function A function that exists in an
object file as a COMDAT record. Packaged
functions allow function-level linking. Functions
that are not packaged can be linked only at the
object level.

parameter A data item expected by a routine or
information expected in the command line for a
utility. Also called a formal parameter. See also
"argument. "

parent process A process that creates another
process, called the child process.

,PAS The extension for a Pascal source file.

path A specification of the location of a file or a
directory. A path consists of one or more directory
names and may include a drive (or device)
specification. For example,
C:\PROJEC1\PROJLIBS is the path to a
subdirectory called PROJLIBS in a directory
called PROJECT that is located on the C drive.
Sometimes "path" refers to multiple path
specifications, each separated by a semicolon (;).
In certain circumstances, a path specification must
include a trailing backslash; for example, specify
C:\PROJEC1\PROJLIBS\ to tell LINK the
location of the PROJLIBS directory containing
additional libraries.

,PCH The extension for a precompiled C header
(or include) file.

physical segment A segment listed in the
executable file's segment table. Each physical
segment has a distinct segment address, whereas

program step 867

logical segments may share a segment address. A
physical segment usually contains one logical
segment, but it can contain more.

PIO (process identification number)
A unique code that the operating system assigns to
a process when the process is created. The PID
may be any value except O.

pointer A variable containing an address or offset.

pop-up menu A menu that appears when you click
the menu title with the mouse or press the ALT key
and the first letter of the menu at the same time.

port The electrical connection through which the
computer sends and receives data to and from
devices or other computers.

precedence The relative position of an operator in
the hierarchy that determines the order in which
expressions are evaluated.

privileged mode A special execution mode (also
known as ring 0) supported by the 80286-80486
hardware. Code executing in this mode can execute
restricted instructions that are used to manipulate
system structures and tables. Device drivers run in
this mode.

procedure A routine that does not return a value.

procedure call A call to a routine that performs a
specific action.

process Generally, any executing program or
code unit. This term implies that the program or
unit is one of a group of processes executing
independently.

processor See "CPU (central processing unit)."

program step To trace the next source line in
Source mode or the next instruction in Mixed mode
or Assembly mode. If the source line or instruction
contains a function, procedure, or interrupt call, the
call is executed to the end and the Code View

868 protected mode

debugger is ready to execute the instruction after
the call. See also "trace."

protected mode The operating mode of the
80286-80486 processors that allows the operating
system to protect one application from another.

protected mode (in Windows) Either of two modes
in the Windows operating system version 3.0:
standard mode or 386 enhanced mode. See also
"standard mode" and "386 enhanced mode."

Q
. OlB The extension for a Quick library.

R
radix The base of a number system. In CodeView,
numbers can be entered in three radixes: 8 (octal),
10 (decimal), or 16 (hexadecimal). The default
radix is 10.

RAM Random access memory. Usually refers to
conventional memory.

. Re The extension for a resource script file. An

.RC file defines resources for an application such
as icons, cursors, menus, and dialog boxes. The
Microsoft Windows Resource Compiler compiles
an .RC file to create an .RES file.

real mode The operating mode of the
80286-80486 processors that runs programs
designed for the 8086/8088 processor. All
programs for MS-DOS run in real mode.

real mode (in the Windows operating system)
An operating mode that provides compatibility
with versions of Windows-based applications prior
to 3.0. Real mode is the only mode of the Windows
operating system version 3.0 available for
computers with less than 1 megabyte of extended
memory.

redirection The process of causing a command or
program to take its input from a file or device other

than the keyboard (standard input), or causing the
output of a command or program to be sent to a file
or device other than the display (standard output).
The operating-system redirection symbols are the
greater-than (» and less-than «) signs.

The same symbols are used in the Code View
Command window to redirect input and output of
the debugging session. In addition, the equal sign
(=) can be used to redirect both input and output.

Register window The Code View window in which
the CPU registers and the bits of the flags register
are displayed .

registers Memory locations in the processor that
temporarily store data, addresses, and logical
values. See also "flags register."

regular expression A text expression that specifies
a pattern of text to be matched (as opposed to
matching specific characters). Code View supports
a subset of the regular-expression characters used
in the XENIX and UNIX operating systems. PWB
supports both the full UNIX syntax and an
extended Microsoft syntax for regular expressions .

relocatable Not having an absolute address.

.RES The extension for a file produced by the
Microsoft Windows Resource Compiler from an
.RC file.

response file A text file containing input expected
by utilities such as LINK and LIB. Commonly used
extensions for response files include .LRF, .LNK,
and .RSP.

return code See "exit code."

ROM Read-only memory.

root In an overlaid MS-DOS program, the part of
the program that always remains in memory. Also
called the root overlay.

routine A generic tenn for a procedure, function,
or subroutine.

. RSP The extension that is often used to indicate a
response file.

RTF Rich text fonnat.

run-time error A math or logic error that occurs
during execution of a program. A run-time error
often results in tennination of the program.

S
.SBR The extension for a file used by BSCMAKE
to create a .BSC file.

scope The parts of a program in which a given
symbol has meaning. The scope of an item may be
limited to the file, function, block, or function
prototype in which it appears.

screen exchange The method by which both the
output screen and the debugging screen are kept in
memory so that both can be updated simultane
ously and either can be viewed at the user's
convenience. The two screen-exchange modes are
flipping and swapping. See also "flipping" and
"swapping. "

scroll To move text up, down, left, and right in
order to see parts that cannot fit on the screen.

segment A section of memory containing code or
data, limited to 64K for 16-bit segments or 4
gigabytes for 32-bit segments. Also refers to the
starting address of that memory area.

segmented-executable file The executable file
fonnat of a Windows-based application or DLL. A
segmented-executable file contains an MS-DOS
header, a new .EXE header, and multiple
relocatable segments.

semaphore A software flag or signal used to

stack trace 869

coordinate the activities of two or more threads. A
semaphore is commonly used to protect a critical
section .

shell To gain access to the operating-system
command line without actually leaving the PWB or
Code View environment or losing the current
context. You can execute operating-system
commands and then return to the environment.

single precision A real (floating-point) value that
occupies 4 bytes of memory. Single-precision
values are accurate to six or seven decimal places.

small memory model A program with one code
segment and one data segment.

SMARTDRV.EXE A driver that creates a disk cache
in extended or expanded memory.

source file A text file containing the high-level
description that defines a program.

Source mode The mode in which Code View
displays the source code that corresponds to the
machine code being executed.

stack A dynamically expanding and shrinking
area of memory in which data items are stored in
consecutive order and removed on a last-in, first
out basis. The stack is most commonly used to
store infonnation for function and procedure calls
and for local variables.

stack frame A portion of a program's stack that
contains a routine's local and temporary variables,
arguments, and control infonnation.

stack trace A symbolic representation of the
functions that have been executed to reach the
current instruction address. As a function is
executed, the function address and any function
arguments are pushed on the stack. A trace of the
stack shows the currently active functions and the
values of their arguments. See also "stack frame."

870 standard error

standard error The device to which a program
sends error messages. COMMAND.COM opens
standard error with a file handle named stderr.
The default device is the display (CON). Standard
error cannot be redirected.

standard input The device from which a program
reads input. COMMAND.COM opens standard
input with a file handle named stdin. The default
device is the keyboard (CON). Standard input can
be redirected using a redirection symbol «).

standard library A library created by LIB that
contains compiled routines and data. It is used to
resolve references at link time.

standard mode The normal Windows version 3.0
operating mode that runs on the 80286-80486
processors. This and 386 enhanced mode are both
referred to as protected mode in the Windows
operating system and offer more capability than
real mode.

standard output The device to which a program
sends output. COMMAND.COM opens standard
output with a file handle named stdout. The default
device is the display (CON). Standard output can
be redirected using a redirection symbol.

startup code The code placed at the beginning of a
program to control execution of the program code.
When Code View is loaded, the first source line
executed runs the entire startup code. If you switch
to Assembly mode before executing any code, you
can trace through the startup code. See also "exit
code."

static library A library used for resolving
references at link time. A static library can be
either a standard library or an import library. See
also "standard library" and "import library."

static linking The combining of multiple object
and library files into a single executable file with
all external references resolved at link time.

status bar The bar at the bottom of the Code View

or PWB display containing status information and
command buttons or a short description of the
dialog or menu item currently displayed.

stderr See "standard error."

stdin See "standard input."

stdout See "standard output."

string A contiguous sequence of characters, often
identified by a symbolic name as a constant or
variable.

structure A set of elements which may be of
different types, grouped under a single name. See
also "user-defined type."

structure member One of the elements of a
structure.

stub file An MS-DOS executable file added to the
beginning of a segmented executable file. The stub
is invoked if the file is executed with MS-DOS.

subroutine A unit of FORTRAN code terminated
by the RETURN statement. Program control is
transferred to a subroutine with a CALL
statement.

swapping A screen-exchange method that uses
buffers to store the Code View display and program
output screens. When you request the other screen,
the two buffers are exchanged. See also "flipping"
and "screen exchange."

symbol See "identifier."

symbolic debugging information See "debugging
information. "

,SYS The extension for a system file or device
driver.

SYSTEM An environment variable used by the
DOS Extender to find the files MS32EM87.DLL
and MS32KRNL.DLL.

T
TEMP The environment variable usually used by a
program to find the directory in which to create
temporary files. Other programs use the TMP
variable in a similar way.

temporary file A file that is created for use by a
command while it is running. The file is usually
deleted when the command is completed. Most
programs create temporary files in the directory
indicated by the TMP or TEMP environment
variable.

terminate-and-stay-resident (TSR)
An MS-DOS program that remains in memory and
is ready to respond to an interrupt.

ternary operator An operator that takes three
operands. For example, the C-language ? operator.

text file A file containing only ASCII characters in
the range of 1 to 127.

thread An operating-system mechanism that
allows more than one path of execution through the
same instance of a program.

thread 10 The name or handle of a particular
thread within a process.

thread of execution The sequence of instructions
executed by the CPU in a single logical stream. In
MS-DOS, there is only one thread of execution.

thunk An interoverlay call in an overlaid MS
DOS program.

time stamp The time of the last write operation to
the file. Sometimes the term time stamp refers to
the combination of the date and time of the last
write operation. Also called modification time.

tiny memory model A program with a single
segment holding both code and data, limited to
64K, with the extension .COM.

TMP The environment variable usually used by a

unassemble 871

program to find the directory in which to create
temporary files. Other programs use the TEMP
variable in a similar way.

.TMP The extension that is often used to indicate a
temporary file.

toggle A feature with two states. Often used to
describe a command that turns a feature on if it is
off and off if it is on. When used as a verb,
"to~gle" means to reverse the state of a feature.

TOOLS.lNI A file that contains initialization
information for Microsoft tools such as PWB,
CodeView, and NMAKE.

trace To execute a single line or instruction. The
next source line is traced in Source mode and the
next instruction is traced in Assembly mode. If the
source line or instruction contains a function,
procedure, or interrupt call, the first source line or
instruction of the call is executed. Code View is
ready to execute the next instruction inside the call.
See also "program step."

tracepoint (obsolete) A breakpoint that is taken
when an expression, variable, or range of memory
changes. This is now a type of conditional
breakpoint. See also "conditional breakpoint."

TSR See "terminate-and-stay-resident."

.TXT The extension for a text file.

type cast An operation in which a value of one
type is converted to a value of a different type.

type casting Including a type specifier in
parentheses in front of an expression to indicate the
type of the expression's value.

U
unary operator An operator that takes a single
operand.

unassemble To translate binary machine code into

872 unresolved external

the equivalent assembly-language representation.
Also called disassemble.

unresolved external A reference to a global or
external variable or function that cannot be found
either in the modules being linked or in the
libraries linked with those modules. An unresolved
reference causes a fatal link error.

user-defined type A data type defined by the user.
See also "structure."

v
variable A value that may change during program
execution.

VCPI Virtual Control Program Interface

VCPI server A server that provides expanded
memory. An example of a VCPI server is
Microsoft's EMM386.EXE.

VGA (video graphics adapter) A video adapter
capable of displaying both text and graphics at
medium to high resolution in up to 256 colors.

virtual memory A memory management system
that provides more memory to a program than is
actually in the system. Virtual memory can consist
of a file on disk, extended memory, or expanded
memory.

w
watchpoint (obsolete) A breakpoint that is taken
when an expression becomes true (nonzero). This
is now a type of conditional breakpoint. See also
"conditional breakpoint."

wildcard A character that represents one or more
matching characters. MS-DOS wildcards (* and ?)
in a filename specification are expanded by
COMMAND.COM.

Windows-based application A program that runs
only with the Windows operating system.

X
XMS Extended Memory Standard (or
Specification). See "extended memory."

XMS server A server that provides extended
memory. An example of an XMS server is
Microsoft's HIMEM.SYS.

Index

! (exclamation point)
HELPMAKE command 602
makefile syntax 544, 572
replacing text, PWB 86
Shell Escape command, CodeView 399,443-445

! command, Code View 398, 443-445
" (double quotation marks)

.DEF file syntax 494
LINK syntax 461
makefile syntax 537,553

" (quotation marks)
character strings 859
CodeView syntax 312-313
Pause command, Code View 400, 445

(number sign)
custom builds 53
HELPMAKE syntax 596-597
makefile syntax 536, 551-552, 564
Tab Set command, Code View 400, 445
TOOLS.lNI syntax 534

$ (dollar sign)
end of line, regular expression syntax 845,847, 849,

854
makefile syntax 536, 552, 554-556, 560, 562
reference to tagged expression 848, 855

$ macros (NMAKE) 555
% (percent sign)

Filename-Parts Syntax, PWB 247
makefile syntax 536

& (ampersand)
C address operator 391-392
CodeView 381
line continuation character, LIB 586

I (single quotation marks), LINK syntax 461
() (parentheses)

balancing, PWB 180-181
makefile syntax 554, 556, 560

(brackets), character class 849, 854
* (asterisk)

Comment command, Code View 400, 446
Copy command, LIB 589
deleting watch expressions, Code View 437
hyperlink, Microsoft Advisor 672
makefile syntax 555-556
match character, regular expression syntax 847
regular expressions, PWB 85
wildcard operator

HELPMAKE syntax 595
UNDEL syntax 655

* (asterisk) (continued)
wildcards 536

+ (plus sign)
concatenating help files 680
LIB syntax 587-588
LINK syntax 461,463,469-470
searching, PWB 84

, (comma)
argument separator, CodeView 326-327
CodeViewoperator 381
LIB syntax 582-583
LINK syntax 460,470
with context operator, CodeView 397-398

- (dash)
character classes, PWB 84
character ranges, regular expression syntax 845
HELPMAKE options 595
LIB syntax 584, 588
LINK syntax 471
makefile syntax 544, 572
NMAKE syntax 529-532

-*, LIB syntax 589
-+, LIB syntax 589
. (period)

Current Location command, Code View 400, 446
line number specifier, CodeView 339
LINK syntax 461, 466, 469
makefile syntax 564, 570
match character 844
wildcard character 845,847-848, 850

... (ellipsis)
call tree, PWB 92
menu commands, PWB 72,74,116

/ (forward slash), LIB syntax 584
/ (slash)

EXEHDR syntax 514
HELPMAKE options 595
LINK syntax 463,471
makefile syntax 535, 538, 543, 551-552
NMAKE syntax 529'

873

Search command, CodeView 335,336,400,447-48
/? option

BSCMAKE 621
CVPACK 633
EXEHDR 515
EXP 656
HELPMAKE 599
IMPLIB 654
LIB 586

874 Index

/? option (continued)
LINK 488
NMAKE 532
RM 655
SBRPACK 625
UNDEL 656

/2 option, Code View 310
/25 option, Code View 310-311
/43 option, Code View 310-311
/50 option, Code View 311
/8 option, Code View 310
: (colon)

Code View operator 381
.DEF file syntax 494
Delay command, Code View 400, 450
HELPMAKE commands 605
LINK syntax 471
makefile syntax 538-542, 560, 564, 570

:: (scope operator), Code View precedence 382
:> (base operator), Code View precedence 382
:> command, HELPMAKE 607
; (semicolon)

comments, PWB 126-127
.DEF file syntax 494
LIB syntax 582-584
LINK syntax 461,467-470
makefile syntax 542, 544, 564
TOOLS.INI syntax 534

< (less than operator), Redirect Input command, Code View
312-313,450

< > (angle brackets)
command buttons, PWB 72, 74
makefile syntax 547-548, 555

= (equal sign)
.DEF file syntax 494
makefile syntax 551,560
Redirect Input and Output command, Code View 400,

452
> (DOS redirection symbol), HELPMAKE syntax 597
> (greater than operator), Redirect Output command,

CodeView 312-313,400,450-451
> > (help delimiter), HELPMAKE 609-610,612
? (question mark)

call tree, PWB 91
decorated names, C++ 385-386
Display Expression command, Code View 400, 452-

453
makefile syntax 555-556
wildcard operator

HELPMAKE syntax 595
regular expression syntax 847854-855
UNDEL 655

wildcards 536
?: (conditional operator), Code View 381

?? command, Code View 400, 453-454
@ (at sign)

BSCMAKE syntax 622
LIB syntax 583
LINK syntax 470
local contexts, HELPMAKE 603-604
make file syntax 544-556
naming registers, Code View 377,395
NMAKE syntax 533
Redraw command, Code View 400, 454

@ command, Code View 400, 454
[] (brackets)

balancing, PWB 180-181
call tree, PWB 92
character class 845,847,849,854
match character 844

\ (backslash)
escape 847-848,854
HELPMAKE syntax 604-605
line continuation character, PWB 105-107, 126
match character 847-848,854
regular expressions, PWB 88
Screen Exchange command, CodeView 400,454

\\\ formatting attribute, HELPMAKE 604-605
" (caret)

character ranges 847
makefile syntax 535,551-552,561
regular expressions syntax

line beginning 845,847, 849,854
match line beginning 847, 849,854
PWB 84,87

_ (underscore), symbol format, CodeView 385-386
32-Bit Registers command, Code View 343, 346
386 enhanced mode defined 857
7 command, Code View 400, 448-449
8086

instruction mnemonics, assembling 400-402
processors defined 857

8087
command, CodeView 347-348,400,448-449
processors defined 855
window, Code View

defined 857
function 330
opening 348
overview 322

8259, interrupt trapping 314
8514 display, specifying, Code View 311

A
a, alphanumeric character, predefined expression syntax

846,848,853
A command, and Restart command, CodeView 412-413

A command, CodeView 398,400-402
\a fonnatting attribute, HELP MAKE 602, 604-605
IA option

LINK 472
NMAKE 530

About command
CodeVicw 349-350
PWB 70

lAc option, HELPMAKE 596
Access control, CodeView 386
Activating windows, PWB 244
Actual parameters See Arguments
Adapter defined 857
Add command, LIB 587-588
Add Watch command, CodeView 338-339,399
Add Watch dialog box, CodeView 339
Add Watch Expression command, CodeView 436
Adding

breakpoints, CodeView 341-342
commands, PWB Run menu 115, 117
custom sections, PWB 53
files, PWB 38-39,41,44
Program Item, PWB 58
watch expressions, CodeView 339,436

Address ranges
Code View expressions 379, 396-397
defined 857

ADDRESS, /MAP option 478
Addresses

CodeViewexpressions 378,396
defined 857
variables, debugging asembly code 391

AH register, CodeView syntax 395,426
AHelp, Help files 219-220
AL register, Code View syntax 395, 426
IALIGN option LINK 472
IALIGNMENT option LINK 472
Aligning tabs, PWB 276
Alignment, EXEHDR 522
All Files command, PWB 64
All Windows command, PWB 69
alloc_text pragma 509
Alphabetic characters, predefined expression syntax 846,

848,853
Alphanumeric characters, predefined expression syntax

846,848,853
Alternation, regular expression syntax 846-847,849,854
ALTGR key, enabling 257
Ampersand (&)

C address operator 391-392
CodeView 381
line continuation character, LIB 586

Angle brackets « >)
command buttons, PWB 72, 74
makefile syntax 547-548,555

Index 875

Animate command, CodeView 336-337,344,398,408,
429

Anonymous allocation defined 857
ANSI

defined 857
escape sequence, Code View expressions 385

API defined 857
Application programming interface defined 855
Application type

detennining EXEHDR 523
specifying

EXEHDR 514
NAME statement 495
/PM option, LINK 485

Windows See Windows, programs for
APPLOADER statement 498
Archives, in libraries, LIB 581
Arg function, PWB 140,146-147

executing 96-98
getting help 670
replacing text 86

argc defined 857
Arguments

CodeView
entering 326
format 326-327
setting 337-338

command line 309
defined 857
functions, PWB 146-147

argv defined 857
Arrange command

CodeView 347-348
PWB 69,135

Arrangewindow function, PWB 140, 147
Arrays

debugging assembly language 392
defined 858
expanding and contracting, CodeView 342,453-454

AS macro (NMAKE) 558
ASCn

characters defined 858
HELPMAKE fonnat 612
memory fonnat, Code View 331

Askexit switch, PWB 244, 248
Askrtn switch, PWB 244, 249
.ASM files defined 858
Assemble command

and Restart command 412-413
CodeView 398,400-402

Assembler, changing options, PWB 47,49-50

876 Index

Assembling 8086 instruction mnemonics 400-402
Assembly language, debugging 389-392
Assembly mode defined 858
Assign function

executing 98
key assignment, changing 111
PWB 140, 147-149
switch settings, changing 114

Asterisk (*)
Comment command, Code View 400, 446
deleting watch expressions, Code View 437
hyperlink, Microsoft Advisor 672
LIB syntax 589
makefile syntax 555-556
match character 844
regular expressions, PWB 85
wildcard operator

HELPMAKE syntax 595
UNDEL syntax 655

wildcards 536
At sign (@)

BSCMAKE syntax 622
LIB syntax 583
LINK syntax 470
local contexts, HELPMAKE 603-604
makefile syntax 544, 555-556
naming registers, Code View 377,395
NMAKE syntax 533
Redraw command, Code View 400, 454

Attributes
formatting, HELPMAKE 602, 604-605
segment See Code segments; Data segments;

Segments
Auto option, Language command, Code View 344
AUTOEXEC.BAT

HELPFILES environment variable 679
PWB configuration 127

Autoload switch, PWB 244, 249-250
Automatic data segment See DGROUP
Autosave switch, PWB 112, 244, 250
Autostart entry, TOOLS.INI file, CodeView 302
Autostart macro, PWB 210
Available memory defined 858
AX register, Code View syntax 395,426

8
\b formatting attribute, HELPMAKE 603-605
\b formatting code, HELPMAKE 610
B option, Code View 310
/B option

Code View 312
LINK 472
NMAKE 530

b, white space, predefined expression syntax 846,848,
853

Backing up files, PWB 87,281,654-656
Backslash (\)

escape, regular expression syntax 847-848,854
HELPMAKE syntax 604-605
line continuation character, PWB 105, 107, 126
LINK syntax 463
makefile syntax 535, 538, 543, 551-552
match character 847-848,854
regular expressions, PWB 88
Screen Exchange command, Code View 400, 454

Backtab function, PWB 118, 140, 149
Backup files

creating 654-656
setting number, in PWB 281

Backup switch, PWB 244, 251
.BAK file defined 858
Banner See /NOLOGO option
.BAS file defined 858
Base names

Curfilenam predefined macro, PWB 211
defined 858
Shortnames switch, PWB 275

Base operator (:<), Code View precedence 382
_based keyword, explicit allocation 509
.BAT file defined 858
Batch files

backing up .ASM files, PWB 87
building browser database, PWB 94-96
defined 858

/BATCH option, LINK 472
BC command, CodeView 398,402-403
BC macro (NMAKE) 558
BD command, CodeView 398,403-404
BE command, CodeView 398,404-405
Beep switch, PWB 244, 251
Begfile function, PWB 149
Begline function, PWB 150
BFLAGS macro (NMAKE) 559
BH register, Code View syntax 395,426
Binary

files defined 858
operators defined 858

BIOS defined 858
Bit rate, remote debugging 370
BL command, CodeView 398,405
BL register, CodeView 395,426
Black color value 254
Blue color value 254
.BMP file defined 858
Bold text, HELPMAKE formatting

QuickHelp 604-605
rich text format 610

Boolean switches, PWB 112,248
Box Mode command, PWB 64, 133
Boxes, command execution, PWB 72
BP command, CodeView 358-359,376,398,405-408,

420-421
BP register, CodeView syntax 395,426
Braces ({ })

context operator, CodeView 381-384,397-398
key box, PWB 110
makefile syntax 542, 565
RTF formatting codes 610

Brackets ([])
balancing, PWB 180-181
call tree, PWB 92
character class 847, 849, 854
match character 844

Breakpoint Clear command, Code View 398, 402-403
Breakpoint Disable command, CodeView 398,403-404
Breakpoint Enable command, Code View 398, 404-405
Breakpoint List command, Code View 398, 405
Breakpoint Set command, CodeView 358-359,398,405-

408,420-421
Breakpoints

CodeView
clearing 402-403
disabling 403-404
enabling 404-405
listing 405
saving 317
setting 298,339-341,358-359,405-408

defined 858
Bright Back check box, customizing colors, PWB 115
Bright Fore check box, customizing colors, PWB 115
Browcase switch, PWB 286
Brown color value 254
Browse Information Compactor See SBRPACK
Browse menu, PWB 68,134, 187
BROWSE option, and BSCMAKE, COBOL 616
Browse Options command, PWB 67
Browser database

See also BSCMAKE; SBRPACK
.BSC file 615,618
builds

described 616
full 617, 619, 621
incremental 617,619
optimizing 617, 624
options 620, 622

creating .SBR files 616
empty .SBR files 617
file size 617-618
full build 617,619,621
include files, excluding 620-621, 624
incremental build 617, 619

Browser database (continued)
information 621
local symbols, excluding 616, 620
macro expansions, excluding 620
naming the .BSC file 621
optimizing 617, 624
options 620, 622
overview 615
packing .SBR files 616, 623-624
public symbols 616
PWBRMAKE.EXE 615
removing an .SBR file 617
.SBR file 616
specifying .BSC file 617
symbols

excluding 616, 620
unreferenced 621, 623

tools 615
truncated .SBR files 617
unreferenced symbols 621,623
updating a database 616
verbose output 621
zero-length .SBR files 617

Index 877

Browser Database Maintenance Utility See BSCMAKE
Browser database, PWB

building 52, 92, 94-96
creating 89-90
estimating file size 94
finding symbol definitions 92-93
makefiles 55
menu commands 68
specifying switches 287

Browser information files, PWB
browser database 89-90
building browser database, non-PWB 95
estimating size 94

Browser Output command, PWB 69
Browser Output pseudofile, PWB 93
Browser, source See Source browser
BSCMAKE

See also Browser database; SBRPACK
.BSC file 615,618
building a database 616
builds

full 617, 619, 621
incremental 617, 619

command line 619-620
copyright message 621
creating .SBR files 616
empty .SBR files 617
environment variable, INCLUDE 620
error codes 623
exit codes 623
full build 617,619,621

878 Index

BSCMAKE (continued)
help 620-621
INCLUDE environment variable 620
include files, excluding 620-621,624
incremental build 617, 619
information 621
local symbols, excluding 620
macro expansions, excluding 620
naming .BSC file 617,621
operating system 618
options 620-622
overview 615,618
packing .SBR files 616,623-624
PWBRMAKE.EXE 615
removing an .SBR file 617
response file 622
return codes 623
rules 619
running 619-620,622
running requirements 618
.SBR file 616
symbols

excluding 620
unreferenced 621, 623

syntax 619,622
system requirements 618
truncated .SBR files 617
unreferenced symbols 621,623
updating a database 616
verbose output 621
zero-length .SBR files 617

BSCMAKE command, building browser database
non-PWB 95
PWB 89-90

BSCMAKE.EXE 618
.BSC files

defined 858
PWB

building browser database 89
estimating size 94

use 615,618
Buffers

Code View command window 328
decompression, specifying size 304
defined 858

Bugs See Debugging
Build command, PWB 66,134
Build errors in PWB 23
Build Results command, PWB 69
Build Results window, PWB

clearing 152
Nextmsg function 177
PWB 242
retaining results 268

Build switch, PWB 244
Build:message switch, tagged expressions 852
Building

browser database, PWB 89-90, 92, 94-96
canceling, _pwbcancelbuild macro 214
canceling, _wbcancelbuild macro 215
customized PWB projects 52-55
described, PWB 51-52
menu commands, PWB 66
multimodule programs, PWB 40
projects See NMAKE
_pwbbuild macro 214
targets, PWB 153-154

Buttons
command execution, PWB 72-74
hyperlinks

index screens 672
navigating with 666-668

BX register, CodeView'syntax 395,426
BY operator, CodeView 381,390-392
Bytes, displaying, CodeView 330-332

c
C Compiler Options command, PWB 67
C expression evaluator

choosing 380
defined 375
overview 375
using 381-384

C function prototypes 648
C header files 634
C option, Code View 310
C preprocessor keywords recognized by H2INC (list) 652
C preprocessor pragmas recognized H2INC (list) 652
C++ Compiler Options command, PWB 67
C++ expression evaluator

choosing 380
overview 375
u~ng 381-384,386-392

c, alphabetic character, syntax 846, 848, 853
C, C++ expression evaluator, debugging assembly

language programs
with BY memory operator 389-390
with DW memory operator 389-390
with WO memory operator 389-390

C, C++ expression evaluators
andMASM 389
symbols, search order 382

:c command, HELPMAKE 606
\c, escape, regular expression syntax 843, 846
.C files defined 858
IC option

CodeView 312-313

IC option (continued)
HELPMAKE 596
NMAKE 530

Ic option, ML, debugging considerations 296
C, C++ programs, debugging restrictions with Code View

382
Call gates defined 858
Call Tree (Fwd/Rev) command, PWB 68
Call trees, PWB 78,91-92
Calling functions, Code View expressions 382
Calls menu, CodeView 346-347
Cancel function, PWB 140, 150
Cancelling

background search, _pwbcancelsearch macro 215-
216

builds, _pwbcancelbuild macro 214-215
print operations, _pwbcancelprint macro 215

Cancelsearch function, PWB 141, 151
Caret (1\)

character ranges 845
line beginning 845, 847, 849, 854
makefile syntax 535,551-552,561
regular expressions, PWB 84, 87

Cascade command, PWB
described 69
predefined macros 135

Cascading window arrangements, _pwbcascade macro
216

Case sensitivity
browser database 286
CodeView

commands 393
expression evaluators 382
generally 346
options 422-424

command, Code View 342, 346
.DEF file syntax 494
defined 859
global searches, in Microsoft Advisor 674
/IGN option, LIB 585
IMPLIB 653
/NOIoption

LIB 585
LINK 480

PWB
options 131-132
search functions 251-252

Case switch, PWB 244,251-252
Case, matching, CodeView search option 335,336
CASEMAP:NONE argument, OPTION directive 638
.category command, HELPMAKE' 606
CC macro (NMAKE) 558
3dec1 keyword, symbol format, Code View 385-386
Cdelete function, PWB 140, 151

CFLAGS macro (NMAKE) 559
CGA

defined 859

Index 879

displays, suppressing snow, Code View option 314
CH register, Code View syntax 395,426
Character range, regular expression syntax 847
Character strings defined 859
Characters

ASCII, defined 856
classes,

PWB 84
regular expression syntax 845, 847, 849, 854

control, HELP MAKE 596
deleting, PWB 151,157,196
inserting, PWB 163
matching, regular expression syntax 847
predefined expression syntax 846, 848
searching 83

Check box, PWB 74
Checksum, EXEHDR 518,522
Child process defined 859
CL

options, debugging considerations 296
register Code View syntax 395,426

Class Hierarchy command, PWB
described 68
function 134

CLASS keyword, SEGMENTS statement 502
Class Tree (Fwd/Rev) command, PWB 68
Class Tree command, PWB 134
Classes

characters, syntax 845,847,849,854
Code View accessibility 386-388

Clearing breakpoints in CodeView 341-342,402-403
Clearmsg function, PWB 140, 152
Clearsearch function, PWB 140, 152
Click defined 859
Clipboard defined 859
Clipboard Results command, PWB 69
Close All command, PWB

described 69
predefined macros 135

Close command
CodeView 347-348
PWB 64,69,132,134-135

Close Project command, PWB 66
Closefile function, PWB 140, 153
Closing

files, PWB 64,217-218
help files

PWB 200
QuickHelp 677

menus, PWB 71
projects, PWB 218

880 Index

Closing (continued)
windows, PWB 206, 217

CLRFILE.CV4, CodeView 315-316,334-345
CLRFILE.CVW, Code View 315-316,334-345
!CMDSWITCHES directive 534, 572
ICO option, LINK 296-297,473,632
.COB files defined 859
COBFLAGS macro (NMAKE) 559
COBOL macro (NMAKE) 558
Code

inline, debugging 294
links, HELPMAKE 602
searching, PWB 77
segments

See also Segments
attributes 501,503
discardab1e 503
loading 504
moving 504
packing 481-482
permissions 503
sharing 504

source, displaying 324, 433-436
symbols defined 859
tracing p-code to native code 366-367

CODE statement 501
Codes, inserting, HELPMAKE rich text format 610
Code View 437

32-bit register command 346
access control 386
active window

identifying 322
selecting 322

ambiguous references, qualifying 386
and [386 Enh] section of SYSTEM.INI 352
and Assembly mode 324
and CVPACK 631
and environment table 294
and library code 324
andMASM 389
and Microsoft Windows 3.0

386 enhanced mode 353
and PIF file 353
Real mode 353
Standard mode 353

and system code 324
animating 408
arguments

entering 326
format 326
setting 337-338

breakpoints
clearing 402-403
disabling 403-404

CodeView (continued)
breakpoints (continued)

editing 341-342
enabling 404-405
listing 405
on constructors 387
on destructors 387
setting 298,339-341,358-359,405-408

C, C++ program debugging restrictions 382
case sensitivity

commands 346, 393
expression evaluators 382
options 422-424

ICO option, LINK 473
code segment attribute 503
command line 308-316
commands

copying text 327-328
described 436
entering 326
executing 312-313,409-410

compacting files with CVPACK 631-632
component DLLs, Table of 300
configuring 301
contracting elements 342, 453-454
current radix, overriding 384
CURRENT.sTS, PWB 128
CVW

commands 357-360
compared to CV 351-357
general protection faults (GPF) 363
mUltiple applications 355-357
multiple instances 354
restarting halted debugging sessions 363
running 352-353
techniques 360-363

CVW.EXE and CVW1.386 in current path 352
debugging

assembly language 389-392
p-code 363-367
RND.ASM example 26

displays
black-and-white 312
line-display mode 311
overview 319-321
redrawing 454
screen exchange 313,315,345,422-424,454
specifying 310-311
suppressing snow 314

dynamic-link libraries 299-300,314,337-338
editing 334-335
execution

controlling 361
speed of 429

CodeView (continued)
execution (continued)

terminating 362
exiting 309
expanding elements 342, 453-454
expression evaluators

andMASM 380
choosing 380-381, 430
defined 375
listing 344
numbers 384
operators 381-384
string literals 385
symbol format 385-386

expressions
See also Expressions
address ranges 379, 396-397
addresses 378, 396
C++ 386-392
line numbers 376, 394
overview 375
registers 377

first time startup, open windows 322
flags, changing values 426-428
functions

listing 411-412
tracing 428

GlobalLock function 439
help

See also Microsoft Advisor
getting 664-673
structure 663

Help menu 665
identifying bugs 297
installing 299-301
interrupt trapping 314
interrupting execution 361
line-display mode with EGA and VGA 311
loading symbolic information 314
locating bugs 298
memory

comparing 413-414
dumping 414-415
entering data 416-418
filling 418-419
format 330-332
management of 308
moving blocks of 419
searching 419-420
viewing 32, 431-433

menus
Calls menu 346-347
Data menu 338-342
Edit menu 334-335

Code View (continued)
menus (continued)

File menu 332-334
Help menu 349
Options menu 342-346
Run menu 336-338
Search menu 335-336
Windows menu 347

modules
configuring 337-338
listing 439

mouse, disabling 315
opening windows 322

Index 881

options 310-315,317,370-371,422-424
packed files 476
p-code, debugging considerations 367
preparing programs 293-297
printing 333
PWB menu commands 66
quitting 334
radix 420-421
radix, syntax 384
registers, changing values 426-428
remote debugging

overview 367
requirements 368-370
starting a session 371-373
syntax 370

restarting 337,412-413
searching 335-336
shell escape 443-445
slow motion execution 337,344
source code, displaying 433-436
source files

loading 333
opening 333

state file
overview 316-317
toggling status 315

stepping through a program 28
syntax 308-316

CVW commands 357-360
expressions 376-379, 394-397
regular expressions 845
TOOLS.lNI file entries 302-308

TOOLS.lNI file entries 302-308
trace speed 429
variables

listing 344
local 328-329
program 324-325

viewing output 349
watch expressions

adding 339, 436

882 Index

CodeView (continued)
watch expressions (continued)

deleting 339,437
listing 441
setting 298-299

watch window
adding expressions 325
and multi-level structures 325
changing variables 325
opening 325

windows
8087 window 330
Command window 326-328, 393
Help window 332
Local window 328-329
Memory windows 330-332
navigation 323
opening 347
overview 320-322
Register window 329-330
Source windows 324
Watch window 324-325

WKA command, and mouse pointer queue blocking
360

CodeView (CVW)
startup position in Microsoft Windows, setting with IX

and /Y options 316
IX option, when starting Code View from Microsoft

Windows 316
/Y option, when starting Code View from Microsoft

Windows 316
/CODEVIEW option, LINK 473
Code View Options command, PWB 67
CODEVIEW.LST, CodeView, Printfile entry in

TOOLS.INI 306
Colon (:)

Code View operator 381
.DEF file syntax 494
Delay command, Code View 400, 450
HELPMAKE commands 605
LINK syntax 471
makefile syntax 538-540, 542, 560, 564, 570

Color
entry, TOOLS.INI file, Code View 302
graphics adapter defined 857
switch, PWB 244, 252, 254

Colors
customizing, PWB 114-115
setting, Code View 345
specifying, PWB 252, 254, 288
values 254

Colors command
Code View 342, 345
PWB 67

Colors dialog box, Code View 345
.COM files, 487,859
Combo box, PWB 73-74
COMDAT record 484, 508
Comma (,)

argument separator, CodeView 326-327
Code View operator 381
LIB syntax 582-583
LINK syntax 460,470
with context operator, CodeView 397-398

Command buffer, using CodeView 328
Command button, PWB 74
Command command, CodeView 347-348
.command command, HELPMAKE 606
Command files

See also Response files
defined 859
inline, in makefiles 547
NMAKE 533-534, 859

Command lines
BSCMAKE 619-620
CodeView 308-316
CVPACK 632
EXEHDR 513-514
EXP 656
IMPLIB 653
LIB 582
limit 469
LINK 460-466, 468
NMAKE 529
PWB 131-132
RM 654-655
SBRPACK 624
UNDEL 655-656

Command shell, DOS Shell command, Code View 333
Command window, Code View

function 326-328
opening 348
overview 321

Command-line options, H2INC 636
COMMAND.COM, file handles 860
Commands

CodeView
copying text for 327-328
CVW 357-360
Data menu 338-342
Edit menu 334-336
entering 326
executing 312-313, 409-410
File menu 332-334
for Windows applications 351
format 326-327
generally 400-454
Help menu 349

Commands (continued)
Code View (continued)

Options menu 342-346
Run menu 336-338
Windows menu 347

defined 859
dot commands, HELPMAKE 597-598, 605-606, 608
Help menu, PWB 70
library See LIB
make file See Makefiles; NMAKE
PWB

choosing 70-71
cursor movement 144
Edit menu 64-6'5
executing 70,-74, 132, 160,205
File menu 64
Options menu 67
predefined 132-135
Project menu 66
Run menu 66
Run menu, adding 115, 117
Search menu 65
Window menu 69

QuickHelp 678
.comment command, HELPMAKE 606
Comment command, Code View 400, 446
Comment line, custom builds in PWB 53
Comments

.DEF files 494
DESCRIPTION statement 497
macros (NMAKE) 551
makefiles 536
pragma 465
TOOLS.lNI file 126-127,301,534

Compact memory model defined 859
Compacting files, CVPACK 631-632
Compile command, PWB, predefined macros 134
Compile File command, PWB 66
Compile function, PWB 140, 153-154
Compiler options, debugging considerations 295-296
Compilers, menu commands, PWB 67
Compiling

debugging considerations 295
defined 859
files, PWB 218-219

Compressing
help database 595-596
keywords, HELPMAKE option 596-597

Concatenating help files 680
Conditional breakpoints defined 859
Conditional operator (?:), CodeView 381
CONFIG.SYS

editing, PWB 58
memory management, Code View 308

CONFIG.SYS (continued)
PWB configuration 127

Configuring Code View
modules 337-338
TOOLS.lNI 301

Consistency check, LIB 584
Constant expressions defined 859
Constants defined 859

Index 883

Constructors, using C++ expressions 387-388
Contents command

Code View 349
PWB 70, 135,665

Context
loperator ({ D, Code View 381
operator ({ }), Code View 382-384, 397-398
prefixes, HELPMAKE 613

.context command, HELPMAKE 600-609
contextstring command, HELPMAKE 602-603
Contracting elements in CodeView 342,453-454
Control characters, specifying, HELPMAKE 596
Conventional memory

browser database 617-618, 621
defined 859

Conversion functions using C++ expressions 387-388
Coprocessors

defined 859
displaying registers, Code View 330

Copy command
Code View 335
LIB 589
PWB 64,133

COPY command, MS-DOS
concatenating help databases 594-595
concatenating help files 680

Copy function, PWB 141,154-155
Copying

files, PWB 87
text

CodeView commands 327-328
Microsoft Advisor 668
QuickHelp 679

Copyright message See /NOLOGO option
/CP option, LINK 473
/CPARM option, LINK 473
/CPARMAXALLOC option, LINK 473
.CPP file defined 859
CPP macro (NMAKE) 559
CPPFLAGS macro (NMAKE) 559
CPU defined 859
Creating

backup files 654-656
browser database, PWB 89-90
call tree, PWB 91-92
import libraries, IMPLIB 652-653

884 Index

Creating (continued)
pseudofiles, in PWB 175-176,227-228

Cross-reference listing, LIB 590
CS command, Code View 399
CS register, CodeView syntax 395,426
CS:IP

defined 860
saving, Code View 317

Curdate function, PWB 141, 155
Curday function, PWB 141, 155
Curfile predefined macro, PWB 207-210
Curfileext predefined macro, PWB 207,208,211
Curfilenam predefined macro, PWB 207,208,211
Current date, PWB 155
Current Location command, Code View 400, 446
CURRENT.STS

CodeView
overview 316-317
saving 334
toggling status of 315

PWB 128
Cursor

defined 860
PWB commands 144-146
shape of, in PWB 254

Cursormode switch, PWB 244, 254
Curtime function, PWB 141,156
Customize Project Template command, PWB 67
Customize Run Menu command, PWB 66
Cut command, PWB 64,133
CV See CodeView
Cvdllpath entry TOOLS.lNI file, CodeView 302-303
CVPACK

and Code View 631
and LINK 457
command line 632
exit codes 633
help 633
options 633
overview 631-632
syntax 632

CVW
See also CodeView
commands 357-360
compared to CV 351
debugging techniques 360-363
general protection faults (GPF), handling 363
multiple applications, debugging 354-357
running 352, 353

CX register, CodeView syntax 395,426
.CXX files defined 860
CXX macro (NMAKE) 559
CXXFLAGS macro (NMAKE) 559
Cyan color value 254

D
d., context prefix, HELPMAKE 613-614i
\d: (digit) predefined expression syntax 846,848,853
ID option

CL 405-408
HELPMAKE 598
NMAKE 530
PWB 131

IDA option, PWB 131
Dark Gray color value 254
Dash (-)

character classes, PWB 84
character ranges, syntax 845
HELPMAKE options 595
LIB syntax 584, 588
LINK syntax 471
makefile syntax 544, 572
NMAKE syntax 529-530, 532

.DA T files defined 860
Data

dumping, CodeView 414-415
entering, Code View 416-418
importing, module-definition files 507
moving blocks, Code View 419
symbol defined 858

Data menu, CodeView 338-342
Data segments

See also Segments
attributes 501, 503
default See DGROUP
loading 475,504
moving 504
packing 483
permissions 504
sharing 503-504

DATA statement 501
Database

browser See Browser database
help

context prefixes 613
creating 595-596
decoding 597-598
overview 594-595

Date, current, in PWB 155
Day, current, in PWB 155
.DBG files 473,487,860
Dblclick switch, PWB 244, 255
Debug command, PWB 66
Debugger defined 860
Debugging

See also CodeView
assembly language 389-392
ICO option, LINK 473

Debugging (continued)
CodeViewoptions 310-315,317
CVW

commands 357-360
compared to CV 351-357
multiple applications 355-357
multiple instances 352-354
techniques 360-363

examining memory 32
identifying bugs 297
information

See also Symbolic debugging information
defined 860

libraries 462
locating bugs 298
makefiles 530-531
p-code 363-367
packaged functions 481
packed files 476
programs

preparing 293-297
PWB 26

remote
bit rate 370
options 370-371
overview 367
requirements 368-370
starting a session 371-373
syntax 370

RND.ASM example 26
stepping through a program 28
syntax, TOOLS.INI file entries 302-308
watch expressions, setting 298-299

Debugging information See Symbolic debugging
information

Debugging Information Compactor See CVPACK
Decoding HELPMAKE options 597-598
Decompressing

help database 598
help files, specifying buffer size 304

Decorated names, debugging considerations 296
.DEF files See Module-definition files
Default

data segment See DGROUP
keys,PWB 132-140
libraries

defined 860
LINK 464-465,479

Define Mark command, PWB 65
DEFINED operator, NMAKE 574
Deflang switch, PWB 244, 255
Defwinstyle switch, PWB 244, 256
Delay command, CodeView 400,450

Delete command
LIB 588
PWB

described 64
predefined macros 133

Delete function, PWB 141,156

Index 885

Delete Watch command, CodeView 338-339,399
Delete Watch dialog box, CodeView 339
Delete Watch Expressions command, CodeView 437
DELETED directory, backup utilities 654
Deleting

breakpoints, CodeView 341-342
characters, PWB 151, 157, 196
files

during debugging session 333
EXP 656
PWB 42
RM 654-655

lines, PWB 165-166
marks, PWB 167-168
text, PWB 156, 216-217
watch expressions, Code View 339,437

Delimiters
help (> » 609-610,612
regular expressions, PWB 83

Dependency
command 544
dependents

described 542
filenames 555-556
macros, predefined 555-556

described 538
extending a line 538
macros, predefined 555-556
PWB programs 39,41
targets

described 538
filenames 555-556
macros, predefined 555-556
multiple description blocks 539
pseudotargets 540-541

time stamps 528
tree 538-539,542, 563
wildcards 536

Dependents
defined 528
described 542
filenames 546, 555-556
inferred 542, 563, 569-570
macros, predefined 555-556
paths 542
pseudotargets 541

Dereference Global Handle command, Code View 439
-440

886 Index

Dereference Local Handle command, CodeView 441-442
Dereferencing memory handles, Code View 360
Description blocks

commands 543
described 537
reusing targets 539-540
TOOLS.INI 534

Description file See Makefiles; NMAKE
DESCRIPTION statement 496-497, 518
Destructors using C++ expressions 387-388
DGROUP

attributes, viewing 518
defined 860
/DOSSEG option, LINK 474
segment number 519

DH register, Code View syntax 395, 426
DI register, Code View syntax 395,426
Dialog boxes

CodeView, getting help 669
defined 860
HELPMAKE context prefix 613
PWB

default key assignments 139
displaying 264-265,268,273
function 72-74
getting help 669
help 666,671

Dictionaries, extended 465, 479
Dictionary

extended, !NOE option, LIB 585
extended, suppressing, LIB 585
in a library, LIB 586

Digits, predefined expression syntax 846, 848, 853
DIR command, replacing text, PWB 86-87
Directives

makefile See Makefile; NMAKE
preprocessing, NMAKE 573-575

Directories, listing .ASM files, PWB 86
Disable Mouse in CodeView option 315
Disabling

breakpoints, Code View 341-342, 403-404
Mouse, CodeView option 315

Disassembling defined 860
DISCARDABLE attribute 503
Display

CodeView
arranging 299
black-and-white display 312
line-display mode 311
memory format 330-332
overview 319-321
redrawing 454
screen exchange 313,315,345,422-424,454
specifying 310-311

Display (continued)
CodeView (continued)

suppressing snow 314
PWB

height 263
Display

specifying color 252,254
width 284

screen, PWB 59
Display Expression command, CodeView 400,452-453
Display modules, listing, Code View 358
DL register, Code View syntax 395, 426
.DLL files defined 860
DLLs See Dynamic-link libraries
/DO option, LINK 457
.DOC files defined 860
Dollar sign ($)

end of line, syntax 845,847,849,854
makefile syntax 536, 552, 554-556, 560, 562
match line end, syntax 847
reference to tagged expressions, syntax 848,855

DOS
applications defined 860
Extender defined 860
help, getting 676
keyword, EXETYPE statement 499
managing memory, browser database 617-618
redirection symbol (», HELPMAKE syntax 597
session defined 860

DOS Protected-Mode Interface server, memory
management, Code View 308

DOS Shell command
CodeView 332-333
PWB 64,132

DOS shell, creating, PWB 201,239
DOS-extended defined 860
/DOSS option, LINK 474
/DOSSEG option, LINK 474
Dot commands, HELPMAKE 597-598,605-606,608
Dot directives, makefile See Makefiles; NMAKE
Double precision defined 860
Down function, PWB 141, 157
DPMI

defined 8561
server See DOS Protected-Mode Interface server

Dragging defined 861
/DS option

HELPMAKE 598, 681
LINK 475
PWB 131

DS register
CodeView syntax 395,426
/DSALLOC option, LINK 475

/DSALLOC option, LINK 475

/DSALLOCATE option, LINK 475
/DT option, PWB 131
/Du option, HELPMAKE 598
Dumping

defined 861
math registers, Code View 448-449
memory, Code View 414-415

DW operator, CodeView 381,390-392
DX register, CodeView syntax 395,426
/DY option, LINK 475
Dynamic

address, viewing memory, CodeView 331
links defined 861

Dynamic Data Exchange, debugging 354-357
/DYNAMIC option, LINK 475
Dynamic-link libraries

E

See also Windows, programs for
creating, LINK 459,466
debugging p-code 364
defined 861
EXEHDR output 519
export ordinals 505
initialization address 519
initialization routine, debugging 356-357
LIBRAR Y statement 496
listing modules, CodeView 358,439
loading symbolic information, CodeView 314
loading, CodeView 337-338
name 496
PRIV ATELIB 496
values, Code View 299-300

E command, CodeView 398,408,429
e, predefined expression, syntax 846, 848, 855
e. context prefix, HELPMAKE 613
:e command, HELPMAKE 606
IE option

HELPMAKE 595-596
LINK 475
NMAKE 530,561,563
PWB 132

IEAX register, CodeView syntax 395,426
EBP register, CodeView syntax 395,426
EBX register, CodeView syntax 395,426
ECX register, CodeView syntax 395,426
_edata variable 474
EDI register, CodeView syntax 395,426
Edit Breakpoints command, CodeView 338,341-342
Edit Breakpoints dialog box, CodeView 341-342
Edit menu

Code View 334-335
PWB

Edit menu (contillued)
PWB (colltinued)

described 64
functions 133
predefined macros 133

Edit Project command, PWB 66
Editing

breakpoints, CodeView 341-342
CONFIG.SYS, PWB 58

Index 887

files, Editreadonly switch, PWB 256
macros, PWB 101
Noedit function, PWB 178-179
projects, PWB 41-42, 49
repeat function, PWB 192
text, menu commands, PWB 64

Editor, PIF, starting PWB 58
Editor Settings command, PWB 67,675
Editreadonly switch, PWB 244, 256
EDX register, CodeView syntax 395,426
EGA defined 861
Ei option, BSCMAKE 620
/EI option, BSCMAKE 620
Ellipsis (...)

call tree, PWB 92
menu command, PWB 72,74,116

!ELSE preprocessing directive, NMAKE 573
!ELSEIF preprocessing directive, NMAKE 573
!ELSEIFDEF preprocessing directive, NMAKE 573
!ELSEIFNDEF preprocessing directive, NMAKE 573
/Em option, BSCMAKE 620
Emacscdel function, PWB 141, 157
Emacsnewl function, PWB 141,158
EMM386.EXE

Code View 308, 310
defined 861

EMM.386.SYS, CodeView 308,310
EMS defined 861
Emulators defined 861
Enablealtgr switch, PWB 244, 257
Enabling breakpoints, CodeView 341-342,404-405
Encoding HELPMAKE options 596-597, 611
.end command, HELPMAKE 606
_end variable 474
Endfile function, PWB 141, 158
!ENDIF preprocessing directive, NMAKE 573
Endline function, PWB 141, 158
English word, predefined expression syntax 846, 848, 853
Enhanced graphics adapter defined 859
Entab switch, PWB 118-119,244,257-258
Enterinsmode switch, PWB 244,258
Enterlogmode switch, PWB 244, 259
Enterselmode switch, PWB 244, 259
Envcursave switch, PWB 128,245,259-260
Environment function, PWB 141, 159, 160

888 Index

Environment strings defined 861
Environment tables

change in Code View 294
defined 861
saving, in PWB 259-260

Environment variables
defined 859
HELPFILES

defined 861
help file location 679
opening help files 677
restricting global search 675

INCLUDE 620
INIT

defined 862
remote debugging 371
use, 534

LIB 466,862
LINK 488-489, 862
makefiles 530,561-562
menu commands, PWB 67
NMAKE 534
PATH, installing Code View 299
PWB

function 159-160
starting 59
TOOLS.INI file 127-128

SET command 562-563
SYSTEM, defined 868
TEMP defined 869
TMP 490, 548, 869

Environment Variables command, PWB 67
Envprojsave switch, PWB 128, 245, 260
Equal sign (=)

.DEF file syntax 494
makefile syntax 551, 560
Redirect Input and Output command, Code View 400,

452
fEr option, BSCMAKE 620
.ERR files defined 861
Error bit

checking, EXEHDR 519
clearing, EXEHDR 515
linking 481

Error codes
BSCMAKE 623
CVPACK 633
defined 861
LIB 592
LINK 490
makefiles 531,544-545,571
NMAKE 580
SBRPACK 626

!ERROR directive 572

Error messages, getting help 671-672
Error numbers, HELPMAKE context prefix 613
Errors

building a PWB program 40
defined 867
help, getting 671-672
menu commands, PWB 66
simulating in Code View 360, 440-441

fEs option, BSCMAKE 620
ES register, CodeView syntax 395,426
Escape sequence

Code View expressions 385
defined 861

Escapes, regular expression syntax 845,847-848,854
ESI register, CodeView syntax 395,426
ESP register, CodeView syntax 395,426
Eval entry, TOOLS.INI file

CodeView 299-300,302-303,380
remote debugging 368-369

Examine Symbols command, CodeView 399,443
Exception-mask bits, 8087 command, Code View 448-449
Exclamation point (!)

HELPMAKE command 602
makefile syntax 544, 572
replacing text, PWB 86
Shell Escape command, Code View 399, 443-445

EXE File Header Utility See EXEHDR
.EXE files defined 861
Executable files

alignment, EXEHDR 522
application type 485,495,514,523
checksum 518,522
.COM file 487
creating See LINK
defined 861
error bit

checking, EXEHDR 519
clearing, EXEHDR 515
linking 481

header
See also EXEHDR
format 515
size 517

heap See Heap
inserting text 496
linker version 522
loading 477
memory allocation

EXEHDR 514
LINK 473

MS-DOS stub 497
name of program

EXEHDR 518-519
LIBRARY statement 496

Executable files (continued)
name of program (continued)

NAME statement 495
name, LINK 462
operating system

.DEF file 491
EXEHDR 521

packing
determining, EXEHDR 517
iterated (segment attribute) 523

relocations See Relocations
segments See Segments
size

/ALIGN option, LINK 472
EXEHDR 517
/EXEPACK option, LINK 476

stack See Stack
starting address, EXEHDR 518
Windows, programs for See Windows, programs for

.execute command, HELPMAKE 606
Execute command, PWB 66
Execute Commands option, CodeView 312-313
Execute function, PWB 98, 141, 160
EXECUTEONL Y, EXECUTE-ONLY attribute 503
EXECUTEREAD attribute 503
Executing

commands, PWB 70-74,132,205
functions, PWB 96-98, 160
macros, PWB 96-98

Execution
controlling, Code View 361
model, specifying, Code View 305

EXEHDR
32-bit checksum 522
address (in segment table) 520
application type 514, 523
bytes on last page 517
checksum 518
command line 513-514
copyright message 514
data 518-519
description (in output) 518-519
DGROUP

(in output) 519
attribute 518
segment number 519

DLL output 519
entry point 518
entry table 522
error bit

checking 519
clearing 515

.EXE size 517
exports table 520, 523

EXEHDR (continued)
extra paragraphs needed 517
extra stack allocation 518
file

in segment table 520
size 517
system, install able 514

flags (in segment table) 520
full information 515
header

format 515
size 517

heap
allocation (in output) 522
setting 514
size 522

help 514-515
imported names table 522
initial CS, IP 518-519
initial SS, SP 518-519
initial stack location 517
initialization 519
iterated (segment attribute) 523
library 519
linker version 522
magic number 517
mem (in segment table) 520
memory

allocation 514
needed 518
requirement 517-518

module 518,522
movable entry points 522
name

(in exports table) 521
of program 518-519

new .EXE header address 521
no. (in segment table) 520
non-resident names table 522
offset

(in exports table) 521
(in relocations) 524

operating system 521
options 514-515
ord (in exports table) 521
other module flags 523
output

Index 889

dynamic-link libraries 518,521
MS-DOS header 516,521
segmented executable files 518,521
verbose output 521, 630
Windows, programs for 518,521

overview 513

890 Index

EXEHDR (continued)
packed .EXE file

iterated (segment attribute) 523
MS-DOS header 517

pages in file 517
paragraphs in header 517
relocations 517-518,523,630
relocs (segment attribute) 523
reserved words (in MS-DOS header) 521
resident names table 522
resource table 522
running 513
seg (in exports table) 521
segment

attributes 519, 523
number (in relocations) 524
sector size 522
table 520, 522-523

stack
address 517-518
setting 515
size 518

starting address 518
syntax 513-515
target (in relocations) 524
type

(in relocations) 524
(in segment table) 520

verbose output 515
word checksum 518

/EXEPACK option, LINK 297,475
EXETYPE statement

described 498
STUB statement interaction 497

EXIST operator, NMAKE 574
Exit codes

BSCMAKE 623
CVPACK 633
defined 861
LIB 592
LINK 490
makefiles 531,544-545,571
NMAKE 580
SBRPACK 626

Exit command
CodeView 332-334
PWB 64,132

Exit function, PWB 141, 160-161
Exiting

Code View 334
PWB 41,160-161,233-234

EXP
command line 656
options 656

EXP (continued)
overview 631, 654
syntax 656

Expanded memory
defined 862
emulator defined 862
manager defined 862

Expanding elements in Code View 342, 453-454
EXPDEF record 460
Explicit

allocation 509,862
links, HELPMAKE 602

_export keyword 460, 505
Exported functions

See also Imported functions
EXPORTS statement 505
linking 464-465
name

EXEHDR 521
EXPORTS statement 506

OLD statement 505
ordinal number

EXEHDR 521
EXPORTS statement 506

table, EXEHDR 520, 523
EXPORTS statement

See also Exported functions
described 505
name, EXEHDR 521
ordinal number, EXEHDR 521

Expression evaluators, Code View
and MASM 380
choosing 380, 430
defined 375
listing 344
numbers 384
operators 381-384
specifying 303
string literals 385
symbol format 385-386

Expressions
address ranges 379,396-397
addresses 378, 396
C++, in CodeView 386-388
constant, defined 857
defined 862
displaying, CodeView 452-453
editing, CodeView 324-325
line number 376, 394
live, creating 331
overview, CodeView 375
predefined See Predefined expressions syntax
preprocessing directives, NMAKE 574-575
regular See Regular expressions

Expressions (continued)
registers 377,395
setting breakpoints, Code View 340
tagged See Tagged expressions
watch See Watch expressions

Expunging files See EXP
Extended ASCII defined 862
Extended dictionaries

defined 862
generally 465,479
suppressing, LIB 585

Extended memory
browser database 617 -618, 621
defined 862
Keepmem switch, PWB 265

Extended memory manager
Code View 308
defined 862

Extending line See Line continuation
Extension switches, PWB 246
Extensions

autoloading, PWB 121-122,249-250
Curfileext predefined macro, PWB 211
default, PWB 255
defined 862
IMPLIB 653
loading, PWB 266

External references 464-465,862
EXTERNDEF directive generated by H2INC 640

F
F option, Code View 310
f, filenames, predefined expression syntax 844, 846, 851
IF option

Code View 313
LINK 476
NMAKE 530
RM 655

Fl key, getting help 665-666
Factor switch, PWB 245,261
Far address defined 862
Far calls, optimizing 476,479,482
IFARCALL option, LINK 476
IFARCALLTRANSLATION option, LINK 476
_fastcall keyword, symbol format, CodeView 385-386
Fast functions, PWB switches 261
Fastfunc switch, PWB 245,262
FAT defined 862
Fatal errors

defined 862
simulating, Code View 360, 440-441

/pBr option and BSCMAKE 616
/pBx option and BSCMAKE 616

.FD files defined 862
FFLAGS macro (NMAKE) 559
.FI files defined 862
Fields See specific tool
File allocation table defined 860
File Expunge Utility See EXP
File handle defined 860
File Header Utility See EXEHDR
File history, setting maximum files 279
File menu

CodeView 332-334
PWB

described 64
predefined macros 132

File Removal Utility See RM
File Undelete Utility See UNDEL
Filehistory, PWB 64
Filename extensions

autoloading, PWB 249-250

Index 891

Curfileext predefined macro, PWB 211
default, PWB 255
defined 862
IMPLIB 653
loading, PWB 266

filename! command, HELPMAKE 602
Filename-extension tags, TOOLS.lNI file, PWB 123
Filename-Parts Syntax, PWB switches 247
Filenames

base names
Curfilenam predefined macro, PWB 211
defined 856
Shortnames switch, PWB 275

defined 862
long, in makefiles 537
makefiles 546, 555-556
predefined expression syntax 846, 848, 853
specifying, HELP MAKE 596, 598
wildcards 536

Files
adding, PWB 38-41,44
backing up, PWB 87,281,654-656
backup See Backup files
.BSC 615,618
closing, PWB 64,153,217-218
CodeView requirements 300-301
command See Command files; Response files
compacting for CodeView, CVPACK 631-632
compiling, PWB 218-219
creating, PWB 227
.DEF files See Module-definition files
deleting

during debugging session 333
PWB 42
RM 654-655

892 Index

editing, Editreadonly switch, PWB 256
estimating size, PWB 94
executable See Executable files
expunging 656
finding, PWB 64
header See Include files
help

See also Help files
rich text format 609-611

include
See also Include files
in browser database See Browser database
INCLUDE statement 510

inline, in makefiles See Inline files
listing, PWB 86
loading, PWB 132
long names

in makefiles 537
NAME statement 496
/NEWFILES option, EXEHDR 514

make See Makefiles
MAKEFILE 529-530
map, LINK 463,478
module-definition See Module-definition files
moving

PWB 42
RM 654-655

opening,PWB 64,131,179,269
printing

Code View 333
PWB 182-183

project file list, PWB 38
relocatable 459

. remote debugging 368-370
response See Command files; Response files
restoring, UNDEL 655
saving

Autosave switch, PWB 250
PWB 64,195,237-238,279

.SBR 616
searching, PWB 78-82
segmented executable See Segmented executable files
source See Source files
source, dot commands 605-608
specifying type, HELPMAKE 597
startup, PWB 127
state See State file, Code View
status, PWB 128-129
temporary, LINK 489-490
time stamps See Time stamps
TOOLS.lNI, makefiles 534-535, 552,572

Filetab switch, PWB 118,245,262
\fin formatting code, HELPMAKE 610
Find command

Code View 335-336
PWB 64-65, 79-82

Find Dialog box, CodeView 335-336
Finding

files, PWB 64
symbol definitions, PWB 90-93
text, in PWB 83-85

Mreplace function 173-174
Mreplaceall function 174
Qreplace function 189
Replace function 192-193

FIXED attribute 504
Fixup defined 862
Flags

8087 command, Code View 448-449
changing values, Code View 426-428
displaying value, Code View 329-330
register defined 862

FLAGS macro (NMAKE) 559
Flat memory model defined 863
Flipping screen exchange

Code View 313, 422-424
defined 863

Flow control statements 102-104
.FOR files defined 863
FOR macro (NMAKE) 559
Foreign makefiles in PWB 55-56
Format

commands, CodeView 326-327,393
HELPMAKE

described 599
QuickHelp 600-606, 608
rich text format 609-611

memory, changing 331
Formatting

attributes, HELPMAKE, QuickHelp format 602, 604
-605

codes, HELPMAKE, rich text format 610
text, HELPMAKE topics 604-605

Forward slash ({)
EXEHDR syntax 514
LIB syntax 584
LINK syntax 471
NMAKE syntax 529

IFR option and BSCMAKE 616
IFr option and BSCMAKE 616
Frames defined 863
.freeze command, HELPMAKE 606
Friction switch, PWB 245,263
FULL, /MAP option 478
Full-screen application defined 863
Function calls defined 863
Function Hierarchy command, PWB

described 68

Function Hierarchy command, PWB (continued)
function 134

Function-level linking 484, 508
Functions

anonymous 509
assigning 508
calling Code View expressions 382
defined 863
explicit allocation 509
exported See Exported functions
external references 464-465
imported See Imported functions
listing, Code View 411-412
ordered 508
overlaid 508-509
packaged

FUNCTIONS statement 508
/NOPACKF opti~n, LINK 481
IP ACKF option, LINK 484

PWB
Arg 86, 96-98
Assign 98, 111-112, 114
Backtab 118
call tree 91-92
closing 206
described 140-141, 146-206
executing 96-98
Linsert 98
listing references 92
mark 78
menu commands 132-135
Meta 97-98
modifying 170
Paste 86,98
Prompt 106
Psearch 97
tabs 118-119
Tell 98

tracing, Code View 428
FUNCTIONS statement described 508

G
G command, Code View 398, 409-410
:g command, HELPMAKE 607
G option, Code View 310
/G option, Code View 314
Gigabyte defined 863
Global contexts, help files, linking 603-604
Global

heaps, listing memory objects, Code View 357, 437
-438

memory handles, converting to pointers 439-440
symbols

Global (continued)
symbols (continued)

defined 863

Index 893

searching for, CodeView 382,-384
Global Search command, PWB 70,674-675
GlobalLock function in Code View 439
GlobalLock routine, locking memory handles 360-361
Go command, CodeView 398,409-410
Goto command, predefined macros, PWB 134
GOTO Definition command, finding symbols, PWB 90

-91
Goto Definition command, PWB function 68, 134
Goto Error command described, PWB 66
Goto Mark command, PWB 65
Goto Match command, PWB

described 65
predefined macros 133

Goto Reference command, PWB 68, 134
Grandparent process defined 863
Graphic function, PWB 141, 161
Greater than operator (», Redirect Input command,

CodeView 312-313,400-451
Green color value 254
Group defined 863

H
H command, CodeView 398,410
.H files defined 863
h, hexidecimal number, syntax 846,848,853
/H option

CVPACK 633
IMPLIB 653
LIB 585

H2INC
and BASIC langtype specification 648
and C return types 648
and 3decllangtype specification 648
and jastcall functions 649
and FORTRAN langtype specification 648
and negative numbers in expressions 640
and non-constant integer expressions 638
and Pascallangtype specification 648
and predefined constants 638
and static function prototypes 648
and user-defined constants 638
C data types (list) 640
C prototype conversion, examples 649
command-line options (lists) 636
converting

C bit fields 645
C enumerations 647
C type definitions 647
comments 635

894 Index

H2INC (continued)
converting (continued)

constants 638
function prototypes 648-649
nested structures 644
pointers 642
records 645
structures 642-643
unions 642-643
variables 640

converting function prototypes
and /Mn option 649
syntax 648

naming considerations 642
new features 633-634
overview 634
predefined constants (list) 639
recognized C preprocessor keywords (list) 652
recognized C preprocessor pragmas (list) 652
syntax 635
type definitions 647, 649
(U and lu options and /D option 640

Handlers, symbol, specifying 306-308
/HE option, LINK 477
/HEA option, EXEHDR 514
Header, file

See also Include files
examining and changing See EXEHDR
format 515
size 517

/HEAP option, EXEHDR 514
Heaps

global, listing memory objects 357,437-438
local, listing memory objects 358
setting

size

.DEF file 500
EXEHDR 514

EXEHDR 522
limit 500

HEAPSIZE statement 500
Height switch, PWB 245,263
/HEL option, EXEHDR 514
Help

See also Code View; Help files; Microsoft Advisor;
Quickhelp

displaying in PWB 8, 185,221,223
getting

Code View 664-673
HELPMAKE 598

index table, PWB 223-224
load state, PWB 219-220
next topic, PWB 186,220
previous topic, PWB 221

Help (continued)
searching, PWB 186-187,224
structure, Code View 663
switches 288-290
topic selection, PWB switch 289
topic, PWB 222

Help command
CodeView 347-348,398,410
PWB 69

Help database
compressing 595-596
context prefixes 613
creating 595-596
decoding 597-598
decompressing 598
overview 594-595

Help delimiters (> », HELPMAKE 609-610,612
Help File Maintenance Utility See HELPMAKE
Help files

closing
PWB 200
QuickHelp 677

concatenating 680
creating 595-596
decoding 597-598
decompressing 304
formats

described 599
minimally formatted ASCII 612
QuickHelp 603-606, 608
rich text format 609-611

listing 289,305,680
locking 597
managing 679-681
opening

Microsoft Advisor 673
PWB 200
QuickHelp 677

overview 594-595
requirements, CodeView 300-301
specifying 597
splitting 681
topics, defining 600-601

Help menu
CodeView 349,665
PWB 70, 135,665

Help on Help command
Code View 349
PWB 70, 135,665

HELP option, HELPMAKE 599
/HELP option

BSCMAKE 620
CVPACK 633
EXEHDR 514

/HELP option (continued)
EXP 656
IMP LIB 653
LIB 585
LINK 477
NMAKE 530
RM 655
SBRPACK 625
UNDEL 656
using 676

Help window
CodeView

function 332
opening 348
overview 322
using 667, 669

PWB
default key assignments 139
using 667, 669

setting size 288
Helpautosize switch, PWB 288
Helpbuffer entry, TOOLS.INI file, CodeView 302,304
helpfile! contextstring command, HELPMAKE 602
Helpfiles entry, TOOLS.lNI file, CodeView 302,305
HELPFILES environment variable

defined 863
help file location 679
opening help files 677
restricting global search 675

Helpfiles switch, PWB 289,675
Helplist switch, PWB 289
HELPMAKE 596

compatibility 593
context prefixes 613
decoding 597-598
defining topics 600-601
dot commands 605-606, 608
encoding 595-597, 611
formats

described 599
minimally formatted ASCII 612-613
QuickHelp 600-603, 605-606, 608
QuickHelp format 602-605
rich text format 609
rich text format 610-611
specifying 597

formatting attributes 602-605
formatting text 604-605
getting help 598
global contexts 603-604
local contexts 603-604
options

decoding 597-598
encoding 596-597

HELPMAKE 596 (continued)
overview 594-595
syntax 595-599

Helpwindow switch, PWB 289-290
Hexadecimal

defined 863

Index 895

numbers, predefined expression syntax 844, 846, 851
/HI option, LINK 477
/HIGH option, LINK 477
High memory defined 863
Highlight defined 863
Highlighting search strings in PWB 196, 197
Hike switch, PWB 245,264
HIMEM.SYS

Code View 308
defined 863

.HLP files defined 863
Home function, PWB 141, 161
Horizontal Scrollbars command, CodeView 342,345
HPFS defined 863
Hscroll switch, PWB 245, 264
Huge memory model defined 863
Hyperlinks, Microsoft Advisor

index screens 672
navigating with 666-668

I command, CodeView 398,410-411
:i command, HELPMAKE 607
I option, Code View 310
/I option

Code View 314
LIB 585
LINK 477
NMAKE 531
RM 655

i, C/C++ identifier, syntax 846, 848, 853
\i formatting attribute, HELPMAKE 604-605
\i formatting code, HELPMAKE 610
Identifiers

C/C++, syntax 846, 848, 853
case sensitivity 480
defined 863
searching, PWB 85

IEEE format defined 864
!IF preprocessing directive, NMAKE 573
!IFDEF preprocessing directive, NMAKE 573
!IFNDEF preprocessing directive, NMAKE 573
/lGN option, LIB 585
.IGNORE directive 571
/lGNORECASE option, LIB 585
IMPLIB

case sensitivity 653

896 Index

IMPLIB (continued)
command lines 653
.DEF files 493
EXPORTS statement 506
IMPORTS statement 506
linking import libraries 464
options 653
overview 631, 652-653
syntax 653

Implicit links, HELPMAKE 603
Import libraries

creating, IMPLIB 652-653
.DEF files 493
defined 864
EXPORTS statement 506
IMPORTS statement 506
linking 459,464

Import Library Manager See IMPLIB
Imported functions

See also Exported functions
EXEHDR 522
IMPORTS statement 506
name 507
OLD statement 505

IMPORTS statement
See also Imported functions
described 506

IMPURE attribute 504
.INC files defined 864
INCLUDE directive, PWB project dependencies 39
INCLUDE environment variable 620
Include files

defined 864
finding symbols, PWB 92
in browser database See Browser database
project dependencies, PWB 39,41

!INCLUDE preprocessing directive, NMAKE 572
INCLUDE statement described 510
IINCR option, LINK 457
Incremental linking 457
Indenting text

HELPMAKE 610
PWB 275

Index
Microsoft Advisor 670
screens, Microsoft Advisor 672

Index command
Code View 349
PWB 70,135,665

Indirection register, debugging, assembly language 391
Inference rules

command macros 558-559,568
commands 543,564
defining 564-567

Inference rules (continued)
dependents, inferred 542,563,569-570
described 563
displaying 531
ignoring 532
macros

in definition 564
predefined 558-559, 568

NMAKE-supplied 567-568
paths 565,566
precedence 570
predefined 567-568
priority 564
recursion 558
rules 564-570
.SUFFIXES 532, 563, 565, 568,-571
syntax 564-567

Inferred dependents 542, 563, 569-570
Infinite loops, terminating execution 362
/INFO option, LINK 477
Infodialog switch, PWB 264-265
Information function, PWB 141, 162
/INFORMATION option, LINK 477
Inheritance, makefile

described 557-558
macros 557, 563
N option, NMAKE 532

Inheritance, using C++ expressions 386
.INI files defined 864
INIT environment variable 534

defined 864
PWB 127
remote debugging 371
starting PWB 59

Initialization routine, debugging 356-357
Initialize function, PWB 141, 162
Inixre switch, PWB 246
Inline

code, debugging 294
files 547,-550
functions

debugging at the source level 294
source level debugging, workaround 294

Input, redirecting, Code View 450, 452
Insert

function, PWB 141, 163
mode, toggling, in PWB 163,258

Inserting
characters, PWB 163
lines, PWB 166-167
RTF formatting codes, HELPMAKE 610
space, PWB 201-202

Insertmode function, PWB 141, 163

Installable file system
defined 864
EXEHDR /NEWFILES option 514
NAME statement 496

Installing Code View 299-301
int, searching, PWB 83-85
Integers defined 864
Interoverlay calls

defined 864
/DYNAMIC option, LINK 475

Interrupt call defined 864
Interrupt number, overlays 482
Interrupting CodeView 361,445,450
Interrupts, trapping, Code View 314
Intrinsic functions, calling, Code View expressions 382
I/O privilege mechanism defined 864
Italics, HELPMAKE formatting

QuickHelp format 604-605
rich text format 610

iterated (segment attribute) 523

J
Justifying tagged expressions 852

K
K command, CodeView 411-412
/K option

HELPMAKE 596-597
NMAKE 531
RM 655

KEEP, inline file 548
Keepmem switch, PWB 245, 265
Key assignment, PWB 97,109-111, 125-126
Key assignments, PWB

cursor movement commands 144
default 135-140
Graphic function 161
menu commands 132-135
Unassigned function 204

Key Assignments command, PWB 67
Key box, assigning key function, PWB 110
Keyboard

choosing commands 70-71
executing PWB commands 70-71
hyperlinks, activating 667
nagivation in Code View 323
shortcut keys, PWB 71

Keys
shortcut, PWB 71
TOOLS.INI syntax, PWB 125-126

Keywords
See also Reserved words

Index 897

Keywords (continlled)
compressing, HELPMAKE option 596-597
help, getting 669,671

Kilobyte defined 864

L
L command, CodeView 398,412-413
:1 command, HELPMAKE 606
L option, Code View 310
/L option

CL 355-357
HELPMAKE 597
LINK 478

/L options, CodeView 314
Label defined 864
Label/Function command, CodeView 335-336
Language command, CodeView 342,344
Language dialog box, Code View 344
Language Options command, PWB 67
Large memory model defined 864
Lastproject switch, PWB 131,245,265-266
Lastselect function, PWB 141, 164
Lasttext function, PWB 141, 164-165
Ldelete function, PWB 141, 165-166
Leaving

CodeView 334
PWB 160-161,234

Left function, PWB 141, 166
.length command, HELPMAKE 606, 609
Less than operator «), Redirect Output command,

CodeView 312-313,450
LIB

See also LIB; Libraries
adding a module 587-588
case sensitivity 585
combining libraries 588
command line 582
commands

Add (+) 587-588
Copy (*) 589
Delete (-) 588
Move (-*) 589
Replace (-+) 589
specifying 586

consistency check 584
copying a module 589
copyright message 585
creating a library 584, 587
cross-reference listing 590
defaults

See also specific option or field
command line 582
listing filename 590

898 Index

LIB (continued)
deleting a module 588
error codes 592
exit codes 592
extended dictionary, suppressing 585
extending a line 586
extracting a module 589
fields

commands 586-587
described 583
listfile 590
newlibrary 588, 590
oldlibrary 584, 588
options 584-586
specifying 582-583

file types, input 581
help 585-586
input 584
limits

command line 583
library size 586

line continuation 586
listing 584, 590
memory 585
modules list 590
moving a module 589
naming a library 584, 590
options

/? 586
/HELP 585
/IGN 585
/NOE 585
/NOI 585
/NOL 585
/pAGE 585-586
described 584
rules 584

output 584
output library 590
overview 581
page size 585-586
prompts 582-584
removing a module 588-589
replacing a module 589
response file 583
return codes 592
running 582
saving a library 590
symbols list 590
syntax 582-583
updating a module 589

LIB environment variable 466, 864
.LIB files defined 864
LibEntry routine, debugging 356-357

Libraries
See also LIB
combining See LIB
comment pragma 465
creating See LIB
default 464-465,479,858
defined 864
dynamic-link See Dynamic-link libraries
extended dictionaries 465,479
formats 581
import See Import libraries
linking 463-466
linking, LIB 581
load 462
load defined 863
search order 465-466
size, LIB 586
standard 581
standard, defined 868
static, defined 868

Library files, PWB 38
Library Manager See LIB
LIBRARY statement

described 496
initialization, EXEHDR 519
name, EXEHDR 519

LIM EMS defined 864
\lin formatting code, HELPMAKE 610
.line command, HELPMAKE 606
Line continuation

command, makefile 543
dependency, makefile 538
LIB command line 586
LINK command line 461,463,469-470
macro definition, makefile 551

Line continuation character (\), PWB 105, 107, 126
\line formatting code, HELPMAKE 610
Line Mode command, PWB 64, 133
Line numbers

CodeViewexpressions 376,394
/LINE option, LINK 478

/LINE option, LINK 478
Line selection mode, setting in PWB 224-225
Line-display mode, setting, Code View 311
/LINENUMBERS option, LINK 478
Lines

deleting, PWB 165-166
inserting, PWB 166-167
mUltiple statements, debugging 294
trailing, display mode, in PWB 280

LINK
alignment 472
application type 485
case sensitivity 480

LINK (continued)
.COM file 487
command line 460-466, 468
copyright message 480
CVPACK 457
.DBG file 473, 487
debugging 473
.DEF file

See also Module-definition files
specifying 466

default libraries 464-465,479
defaults

See also specific option or field
input 462
output 459
prompts 469

directories 463
DLLs

See also Dynamic-link libraries
creating 459
.DEF file 466-467

environment variable 862
environment variables

LIB 466
LINK 488-489
TMP 490

error
bit 481
codes 490

errors
symbol defined more than once 465
symbol mUltiply defined 465
unresolved external 465,479

exit codes 490
extending a line 463
external references 464-465
far calls 476,479,482
fields

deffile 466
exefile 462
libraries 463-465, 466
mapfile 463
objfiles 461-462

function-level linking 484, 508
functions

ordered 508
packaged See Packaged functions

halting 461, 468
help 477,488
ILINK 457
import libraries 464
information 477-478
input 468
interoverlay calls 475

LINK (continued)
interrupting 461,468
libraries 459,462-466,479
library search order 465-466
library search record 465
limits

command line 469
interoverlay calls 475
libraries 463
program size 459,472
segments 483, 486
stack size 487

line numbers 478
mapfile 463,478
memory

allocation 473
loading 475,477
requirement 486

module-definition file
See also Module-definition files
specifying 466

MS-DOS programs
See also MS-DOS programs
creating 459

name
executable file 462
mapfile 463

new features 457 -458
NOEXE 481
NUL.DEF 467
null bytes 474,480
object files 461-462
operating system requirements 457
optimizing

far calls 476, 479, 482
load time 476
relocations 475

options
/? 488
IALIGN 472
/BATCH 472
ICO 473
ICPARM 473

Index 899

debugging considerations 295-297
described 471
/DOSSEG 474
/DSALLOC 475
/DYNAMIC 475
environment variable 488
/EXEPACK 475
/FARCALL 476
/HELP 477
/HIGH 477
/INFO 477

900 Index

LINK (continued)
options (continued)

/LINE 478
/MAP 478
/NOD 479
/NOE 479
/NOFARCALL 479
/NOGROUP 480
/NOI 480
/NOLO GO 480
/NONULLS 480
/NOPACKC 481
/NOPACKF 481
IOLDOVERLAY 481
IONERROR 481
IOV 482
/pACKC 482
/pACKD 483
/pACKF 484
/PAUSE 484
/PCODE 485
/PM 485
IQ 485
rules 471,472
ISEG 486
ISTACK 487
/TINY 487
/W 488

ordered functions 508
output files 459-460
overlays

See also Overlays
creating 459
deffile field 466
/DYNAMIC 475
IOLDOVERLAY 481
IOV 482

overview 458-459
p-code 485
packaged functions 481, 484
packing

code 481-482
data 483
executable file 475

paragraphs 473
path 463
program size 472,476
prompts 469,472
public symbols 478
PWB menu commands 67
references, resolving 464-465
relocatable files 459
relocations 475-476,479
requirements 457

LINK (continued)
response file 469-470,472
return codes 490
rules for output 459
running 457, 468
segmented-executable files

See also Segmented-executable files
creating 459,466

segments
aligning 472
limit 486
loading 475
ordering 474,480

stack
ISTACK option, EXEHDR 515
1ST ACK option, LINK 487
STACKSIZE statement 500

suppressing messages 472
syntax 460-466,468-469,471
system requirements 457
temporary files 489-490
Windows, programs for

See also Windows, programs for
creating 459,466

LINK environment variable 488-489,864
LINK Options command, PWB 67
Linker See LINK
Linking

debugging considerations 295-297
defined 864, 870
libraries, LIB 581
topics, HELPMAKE 601-603

Linsert function, PWB 98, 141, 166-167
List box, PWB 73
List files defined 865
List References command, PWB

described 68
function 134

List Watch command, CodeView 399
List Watch Expressions command, Code View 441
Listing

.ASM files, PWB 86
breakpoints, Code View 405
consistency check, LIB 584
cross references, LIB 590
defined 865
expression evaluators, Code View 344
functions, CodeView 411-412
help files 680
help files, Code View 305
mapfile, LINK 463
Microsoft Advisor topics 673
modules, Code View 439
project files, PWB 38

Listing (continued)
references, PWB 92
watch expressions, Code View 339,441

Literal characters, searching, PWB 83
Live expressions, creating, Code View 331
.LNK files defined 865
Load command, CodeView 336-338
Load dialog box, Code View 337-338
Load libraries 462, 865
Load Other Files option, CodeView 314
Load switch, PWB 245, 266
Loader, Windows 498
Loading

source files, Code View 333
symbolic information, CodeView 314

LOADONCALL attribute 504
Local

contexts, help files, linking 603-604
heaps, listing memory objects, Code View 358, 438
memory handles, converting to pointers 441-442
symbols defined 865
variables, listing, CodeView 328-329,344

Local command, CodeView 347-348
Local Options command, CodeView 342,344
Local Options dialog box 344
Local window

CodeView
function 328-329
opening 348
overview 322

defined 865
LocalLock routine, locking memory handles 360
Locking help files 597
Log command, PWB

described 65
predefined macros 133

Log Search Complete dialog box, PWB 80
Logged search, PWB 78, 167,225,259
Logical segment defined 865
Logsearch function, PWB 141, 167
Long integer defined 865
LONGNAMES keyword, NAME statement 496
Loops, infinite, terminating execution 362
Low memory defined 865
.LRF files defined 865
.LST files defined 865
/Iu option, BCSMAKE 621
I-value defined 865

M
M option, Code View 310
:m command, HELPMAKE 607

1M option
CL, setting breakpoints 405-408
CodeView 315
CVPACK 633
LINK 478
NMAKE 527, 531
PWB 132

m. context prefix, HELPMAKE 613
/MA option, EXEHDR 514
Machine code defined 865
Macros

Index 901

changing key assignment, PWB 109-111, 125-126
debugging

at the source level 294
programming considerations 294

defined 865
defining, PWB 147-149
executing, PWB 96-98, 160
flow control statements, PWB 102-104
key assignments, PWB 135-140
overview, PWB 99
predefined, PWB 132-135,207-244
recording, PWB 99-102, 190-191,234-235
.SBR files, PWB 94
shortcut keys, PWB 71
source level debugging, workarounds 294
TOOLS.INI syntax, PWB 125
undefined, PWB 210-212
user input statements, PWB 104-106

Macros (NMAKE)
assembler 558-559, 568
command 558-559, 568
comments 551
compiler 558-559, 568
defining 551-553
dependent path 542
dependents 555-556
described 550
displaying 531
environment variables 530,561-562
escaped characters 551
extending a line 551
filename 555-556
ignoring 532
inference rules 564
inheriting 532,557-558, 563
literal characters 551
Microsoft tools 558-559, 568
nesting 551, 560
newline character 535,551-552,561
NMAKE-supplied 554-559,561-562,568
null 551,553-554
precedence rules 563
predefined 554,556-559,561-562,568

902 Index

Macros (NMAKE) (continued)
preprocessing 553
recursion 557-558, 563
replacing strings 560-561
rules 551-554,560-561,563
substitution 560-561
syntax 551-554,560-561
targets 555-556
time stamps 555
TOOLS.INI 552
!UNDEF 553
undefined 551-554,559,568
using 554,560-561

Magenta color value 254
Magic number, in file header 517
.MAK files

See also Makefiles
defined 865

MAKE macro (NMAKE) 557
MAKEDIR macro (NMAKE) 557
MAKEFILE file 529-530
Makefiles

See also NMAKE
association with .PIF files 59
build process 51-52
building browser database, non-PWB projects 94-96
characters, literal 535
command files, inline 547
command modifiers

! (repeat command) 544, 555
- (ignore error) 544
@ (suppress echo) 544

commands
comments 536
dependents 544, 546
described 543
in dependency 544
inference rules 564
inline files 547-550
macros, predefined 558-559, 568
repeating 544, 564
rules 543
wildcards 536

comments 536
customizing 52-55
debugging 530-531
defined 528
dependency See Dependency
dependency tree 538-539, 542, 563
dependents

commands 544
described 542
filenames 555-556
inferred 542, 563, 569-570

Makefiles (continued)
dependents (continued)

macros, predefined 555-556
paths 542
pseudotargets 541

described 535
description blocks See Description blocks
directives

dot 570
preprocessing 572

error codes from commands 531,544-545,571
exit codes from commands 531,544-545,571
filenames

dependents 546
long 537
macros 555-556
wildcards 536

inference rules See Inference rules
inline files 547-550
literal characters 535-536
loading, PWB 132
macros See Macros (NMAKE)
non-PWB 55-56
opening 131
preprocessing

See also Preprocessing, makefile
error codes 545
exit codes 545
macros 553
return codes 545
suppressing builds 531-532

pseudotargets 540-541
recursion 557-558, 563
response files, inline 547
return codes from commands 531, 544-545, 571
rules 535
sample 578-579
sequence of operations 576-578
SET command 562-563
specifying 530
targets

accumulating 539
build rules 538-542
described 538-539
filenames 555-556
keeping 571
macros, predefined 555-556
mUltiple description blocks 539-540
pseudotargets 540-541

time stamps See Time stamps
TOOLS.INI 534-535, 552, 572
wildcards 536

MAKEFLAGS macro (NMAKE) 557
.MAP files 865

Map files defined 865
/MAP option, LINK 478
Mapfile, LINK 463,478-479
.mark command, HELPMAKE 607
Mark file, PWB menu commands 65
Mark function, PWB 78, 142, 167-168
Markfile switch, PWB 112,245,266-267
Marks

manipulating, in PWB 167-168
saving, in PWB 266-267

MASM
and CodeView 389
and CodeView expression evaluators 380
debugging assembly language 389-392
Options command, PWB 67
radix 420-421

Match Case command, PWB 68
Match case, search option, CodeView 335-336
Matches, searching, PWB 79-82
Matching

characters, syntax 844
regular expressions 284--285, 853-854

Math coprocessors
defined 865
displaying registers, Code View 330
dumping register contents 448-449

/MAX option, EXEHDR 514
Maximize command

CodeView 347-348
described, PWB 69
predefined macros, PWB 135

Maximize function, PWB 142, 168
Maximizing windows, PWB 168, 226
MAXV AL keyword, HEAPSIZE statement 500
Me command, Code View 398, 413-414
MD command, CodeView 398,414--415,420-421
MDC command, CodeView 415
MOl defined 865
ME command, CodeView 398,416-418

and Restart command 412-413
input radix 420-421

Medium memory model defined 865
Megabyte defined 865
Memory

allocation
EXEHDR 514
LINK 473

CodeView
comparing 413-414
displaying 330-332
dumping data 414--415
entering data 416-418
filling 418-419
moving data 419

Memory (continued)
CodeView (continued)

searching 419- 420
viewing 431-433

Index 903

expression evaluator requirements 380
extended

defined 860
Keepmem switch, PWB 265
LINK options 486

format, changing 331
high, defined 861
LIB requirement 585
LINK requirement 486
loading 475,477
managing, DOS 617-618
managing, CodeView 308
NMAKE, running 531

Memory 1 command, CodeView 347-348
Memory 2 command, CodeView 347-348
Memory Compare command, CodeView 398,413-414
Memory Dump Code command, Code View 415
Memory Dump command, CodeView 398,414--415,420-

421
Memory Enter command, Code View

and Restart command 412-413
generally 398, 416-418
input radix 420-421

Memory Fill command, Code View
and Restart command 412-413
generally 398,418-419

Memory handles
converting to pointers 439-442
dereferencing, Code View 360

Memory models defined 865
Memory Move command, CodeView 399,419
Memory objects, listing, CodeView 357-358,437-438
Memory operators

CodeView 381
debugging assembly language 390-392

Memory Search command, Code View 399
Memory Window command, Code View 344
Memory Window Options dialog box, Code View 344
Memory windows, Code View

changing values 299
described 299
function 330-332
initializing values 299
opening 348
overview 322
saving addresses 317
specifying 431-433

Memory-resident program defined 865
Menu bars

activating, PWB 169

904 Index

Menu bars (continued)
CodeView, overview 320
defined 866

Menu commands
adding,PWB 115,117
Browse menu, PWB 68, 134, 187
choosing, PWB 70-71
Data menu, CodeView 338-342
Edit menu

Code View 335-336
PWB 64

executing, PWB 70-71
File menu

CodeView 332-334
PWB 64,132

Help menu
Code View 349
PWB 70,135

help, getting 671
Options menu

CodeView 342-346
PWB 67

predefined macros, PWB 132-135
Project menu, PWB 66, 134
Run menu

CodeView 336-338
PWB 66,134

Search menu, PWB 65, 133
Window menu

CodeView 347
PWB 69,135

Menu items
adding, PWB Run menu 282-283
custom, PWB 241-242
help, getting 666
HELPMAKE context prefix 613

Menukey function, PWB 142, 169
Menus

Browse menu, PWB 68,134,187
Calls menu, CodeView 346-347
closing, PWB 71
Data menu, Code View 338-342
Edit menu

CodeView 334-335
PWB 64,133

File menu
CodeView 332-334
PWB 64,132

Help menu
CodeView 349,665
PWB 70, 135, 665

menu bars, Code View 320
Options menu

CodeView 342-346

Menus (continued)
Options menu (continued)

PWB 67
Project menu, PWB 66, 134
Run menu

CodeView 336-338
PWB 66,134,241-242,282-283

Search menu
CodeView 335-336
PWB 65,133

Window menu
PWB 69,135
CodeView 347

Merge command, PWB 64
Message classes, Code View options 405-408
!MESSAGE directive 572
Message function, PWB 142, 169
Message numbers, HELPMAKE context prefix 613
Messages, Windows types and class 358-359
Meta function, PWB 97-98, 142, 170
Metacharacters, searching, PWB 83
MF command, CodeView 398,412-413,418-419
Mgrep function, PWB 142,170-171
Mgreplist macro, PWB 210-212
IMI option, EXEHDR 514
Microsoft Advisor 8

copying text 668
error help 671-672
global searches 674-675
help files

concatenating 680
listing 680
managing 679-681
opening 673
splitting 681

Help menus 665
help, getting 664-673
hyperlinks 666-668
index 670
keyword help 669, 671
menu items 665
mouse functions 665
pasting text 668-669
Pwbhelp function 185
structure 663

Microsoft Browse Information Compactor See SBRPACK
Microsoft Browser Database Maintenance Utility See

BSCMAKE
Microsoft Debugging Information Compactor See

CVPACK
Microsoft EXE File Header Utility See EXEHDR
Microsoft File Expunge Utility See EXP
Microsoft File Removal Utility See RM
Microsoft File Undelete Utility See UNDEL

Microsoft Import Library Manager See IMPLIB
Microsoft Library Manager See LIB
Microsoft Program Maintenance Utility See NMAKE
Microsoft Relocatable Object-Module Format (OMF) 458
Microsoft Segmented Executable Linker See LINK
Microsoft Symbolic Debugging Information 473
Microsoft Windows

debugging 351-357
default key assignments, PWB 140

Microsoft Word, rich text format, HELPMAKE 609
/MIN option, EXEHDR 514
Minimally formatted ASCII

HELPMAKE 600,612
specifying, HELPMAKE 597

/MINIMUM option, CVPACK 633
Minimize command

CodeView 347-348
PWB 69,135

Minimize function, PWB 142,171
Minimizing windows in PWB 226
Minus sign (-) See Dash (-)
Mixed mode defined 864
ML options, debugging considerations 295-296
Mlines function, PWB 142, 171
MM command, CodeView 399,419
Mnemonics, assembling 400-402
Mode See Protected mode; Real mode
Model entry, TOOLS.lNI file

CodeView 299-302,305
debugging p-code 364
remote debugging 368-369

Module Outline command, PWB
described 68
function 134

Module-definition files
application name, type 495
attributes 503
case sensitivity 494
class, segment 502
code segments 501
comments 494,497
creating 491
custom loader 498
data segments 501
defined 858, 864
DLLs 505
export ordinals 505
exporting 505
functions

exported 505
FUNCTIONS 508
imported 506

heap 500
importing 506

Module-definition files (continued)
include file 510
inserting text 496
library name 496
linking 466
MS-DOS programs 499
MS-DOS stub 497
name of program 495-496
new features 491-492
numeric arguments 494
operating system 498
overlays 502
overview 492
private library 496
protected mode 499
PWB 38
real mode 500
reserved words 494, 510
segments

attributes 501-503
class 502
name 502

stack 500
statements

APPLOADER 498
CODE 501
DATA 501
DESCRIPTION 496
EXETYPE 498
EXPORTS 505
FUNCTIONS 508
HEAPSIZE 500
IMPORTS 506
INCLUDE 510
LIBRARY 496
NAME 495
OLD 505
PROTMODE 499
REALM ODE 500
SEGMENTS 502
STACKSIZE 500
STUB 497
summaries 493

syntax rules 494
version 499
Windows, programs for

Index 905

See also Windows, programs for
EXETYPE statement 499
NAME statement 495

Modules
configuring, CodeView 337-338
defined 866
listing, Code View 358, 439

906 Index

Monitors
CodeView

black-and-white display 312
redrawing 454
screen exchange 313,315,345,422-424,454
specifying 310-311
suppressing snow 314

line-display mode, Code View 311
PWB, specifying color 252,254
remote debugging 371

Monochrome adapter defined 866
Mouse

choosing commands 70
disabling, CodeView option 315
enabling, PWB 267
executing PWB commands 70-71
help, getting 664-665
hyperlinks, activating 667
pointer defined 866

Mousemode switch, PWB 245,267
Move command

CodeView 347-348
LIB 589
PWB 69,135

MOVEABLE attribute
.DEF file 504
EXEHDR 522

Movewindow function, PWB 142,172
Moving

files
PWB 42
RM 654-655

memory blocks, CodeView 419
windows, PWB 172, 227

Mpage function, PWB 142, 173
Mpara function, PWB 142, 173
MPC, debugging p-code 365
Mreplace function, PWB 142, 173-174, 269
Mreplaceall function, PWB 142,174
MS command, CodeView 419-420
MS-DOS headerformat 515
MS-DOS programs

See also Executable files
creating, LINK 459
.DEF files 491
EXETYPE statement 499
header

See also EXEHDR
format 515
information 516

interrupts 482
loading 475,477
memory allocation 473

MS32EM87.DLL defined 866

MS32KRNL.DLL defined 866
Msearch function, PWB 142,174-175
Msgdialog switch, PWB 245, 268
Msgflush switch, PWB 245, 268
Multi-level arrays or structures, watching in Code View

325
Multimodule programs, PWB

assembler options 47,49-50
building 40
editing 41-42, 49
extending projects 52-55
non-PWB makefi1es 55-56
opening projects 36
overview 35
project contents 38
project dependencies 39,41
using existing projects 42-43

Multiple applications, debugging 354-357
MULTIPLE attribute 504
Multitasking operating system defined 866
Mword function, PWB 142,175

N
N command, CodeView 399,420-421
:n command, HELPMAKE 608
n. context prefix,HELPMAKE 613
n, unsigned number, predefined expression syntax 846,

848,853
IN option

CodeView 310,314-315
CVPACK 633
NMAKE 531

/n option, BSCMAKE 621
\n, tagged expression reference, syntax 846, 849
Name decorations, debugging considerations 296,385-

386
NAME statement

application type, EXEHDR 514,523
described 495
name, EXEHDR 518

Named tags, TOOLS.INI file, PWB 124
Naming segments, debugging considerations 294
NAN defined 866
Native command, CodeView 342,346,366-367
Native entry, TOOLS.INI file

CodeView 299-300, 302, 305
remote debugging 368-369

Native execution model, specifying, CodeView 305
Navigation

Code View windows 323
cursor movement commands, PWB 144
Microsoft Advisor 664-673
QuickSearch 678

Navigation (continued)
windows, menu commands, PWB 69

/NE option, EXEHDR 514
Near address defined 866
Negated set, regular expression syntax 845
negative numbers in expressions and H2INC 640
Nested structures, expanding, contracting 453
New .EXE header

address 521
format 515
information 521

New command, PWB 64, 69, ~32, 135
New line, starting, PWB 158
New Project command, PWB 66
Newfile function, PWB 142,175-176
NEWFILES keyword, NAME statement 496
/NEWFILES option, EXEHDR 514
Newline character

.DEF file syntax 494
defined 866
makefile syntax 535,551-552,561,564

Newline function, PWB 142, 176
Newwindow switch, PWB 245,269
.next command, HELPMAKE 607
Next command, PWB 64,68,70, 132,135
Next Error command, PWB 66

multimodule builds 40
predefined macros 134

Next Match command, PWB
described 65
searching 81

Nextmsg function, PWB 142,177,269
Nextsearch function, PWB 142, 178,269
nfodialog switch, PWB 245
NMAKE

See also Makefiles
batch processing 532
building projects, PWB 39,52-54
builds

conditional 572
errors 572
forcing builds 530
halting 572
ignoring errors 531,544-545,571
keeping targets 571
managing projects 528
matching time stamps 530
suppressing 531-532
targets 538

command file 533-534
command files, inline 547
command line 529,533
command modifiers

! (repeat command) 544-555

NMAKE (continued)
command modifiers (continued)

- (ignore error) 544
@ (suppress echo) 544

commands
comments 536
dependency line 544
dependents 544, 546
described 543
displaying 531
error codes 531, 544-545, 571
exit codes 531,544-545,571
inference rules 564
inline files 547-550

Index 907

macros, predefined 558-559, 568
modifiers 544
repeating 544, 564
return codes 531,544-545,571
rules 543
suppressing display 532, 544, 571
wildcards 536

comments 534, 536, 551
copyright message 530-531
debugging makefiles 530-531
dependency See Dependency
dependency tree 538-539,542,563
dependents

commands 544
defined 530
described 542
filenames 555-556
inferred 542,563,569-570
macros, predefined 555-556
paths 542
pseudotargets 541

description blocks See Description blocks
directives

!CMDSWITCHES 534, 572
!dot 570
ERROR 572
.IGNORE 571
!MESSAGE 572
.PRECIOUS 558,571
preprocessing 572-575
.SILENT 571
.SUFFIXES 531-532,546,558,563,565,568-

571
!UNDEF 553, 563

environment variables
IE option 530
for NMAKE 534
INIT 534
TMP 548

error codes from commands 531,544-545,571

908 Index

NMAKE (continued)
errors

displaying 532
!ERROR 572
suppressing 530

extending a line
command 543
dependency 538
macro 551

fields
macros 529
options 529
targets 529

filenames
dependents 546
long 537
macros 555-556
wildcards 536

forcing builds 540-541
help 530, 532
inference rules

See also Inference rules
displaying 531
ignoring 532
predefined 567-568

information
additional 531
displaying 530-531
!ERROR 572
!MESSAGE 572
suppressing command echo 532, 544, 571
suppressing messages 530
lUNDEF 553, 563

INIT environment variable 534
inline files 547-550
input 530
KEEP 548
limits

command line 533,547
macro length 551
target length 538, 540

macros
See also Macros (NMAKE)
assembler 558-559, 568
command 558-559, 568
compiler 558-559, 568
dependent path 542
described 550
displaying 531
environment variables 530, 561-562
filename 555-556
ignoring 532
inheriting 532, 557-558, 563
Microsoft tools 558-559, 568

NMAKE (continued)
macros (continued)

precedence rules 563
predefined 554-562, 568
recursion 557-558, 563
replacing strings 560-561
rules 563
specifying 529
substitution 560-561
syntax 535

MAKEFILE file 529-530
makefiles

See also Makefiles
debugging 530-531
defined 528
described 535
PWB 56
specifying 529-530
standard input 530

messages
displaying 530
!ERROR 572
!MESSAGE 572
suppressing 530

new features 527
NO KEEP 548
operating system

requirements 527
time 528

option macros 559,568
options

!CMDSWITCHES 572
/? 532
IA 530
/B 530
IC 530
/D 530
IE 530,561,563
IF 529-530
/HELP 530
/I 531
/K 531
/N 531
/NOLOGO 531
/P 531
IQ 532
rules 529
/R 532
specifying 529-530
IS 532
IT 532
N 532,563
IX 532

NMAKE (continued)
output

additional 530-531
!ERROR 572
errors from NMAKE 532
preprocessing 531
suppressing command echo 532, 544, 571
suppressing messages 530

overview 528
preprocessing

See also Preprocessing, makefile
error codes 545
exit codes 545
macros 553
return codes 545
suppressing builds 531-532

pseudotargets 540-541
recursing 532
recursion 557-558,563
response files, inline 547
return codes from commands 531,544-545,571
running 527,529,533-535
sample makefile 578-579
sequence of operations 576-578
standard input 530
syntax 529
system requirements 527
targets

accumulating 539
build rules 538-542
building all 530
checking timestamps 532
defined 528
described 538
filenames 555-556
keeping 571
macros, predefined 555-556
multiple description blocks 539-540
pseudotargets 540-541
specifying 529

time stamps
2-second resolution 530
changing 532
checking 532
defined 528
dependencies 528
displaying 530
macros, predefined 555
pseudotargets 541

TMP environment variable 548
TOOLS.INI

!CMDSWITCHES directive 572
described 534-535
ignoring 532

NMAKE (continued)
TOOLS.INI (continued)

macros 552
touch 532

NMAKE Options command, PWB 67
NMDIPCD.DCC 364
NMWOPCD.DCC 364
/NO option, EXEHDR 514
/NOD option, LINK 479

Index 909

NODA T A keyword, EXPORTS statement 506
/NODEFAULTLIBRARYSEARCH option, LINK 479
/NOE option

LIB 585
LINK 465, 479

Noedit function, PWB 142,178-179
NOEXE, /ONERROR option 481
/NOEXTDICTIONARY option, LIB 585
/NOEXTDICTIONARY option, LINK 465,479
/NOF option, LINK 479
/NOFARCALL option, LINK 479
/NOFARCALLTRANSLATION option, LINK 479
/NOG option, LINK 480
/NOGROUP option, LINK 480
/NOGROUPASSOCIATION option, LINK 480
/NOloption

IMPLIB 653
LIB 585
LINK 480

/NOIGNORECASE option
IMPLIB 653
LIB 585
LINK 480

Noise switch, PWB 245, 270
NOKEEP, inline file 548
/NOL option

IMPLIB 654
LIB 585
LINK 480, 489

/NOLOGO option
BSCMAKE 621
CVPACK 633
EXEHDR 514
HELPMAKE 599
IMPLIB 654
LIB 585
LINK 480, 489
NMAKE 531
SBRPACK 625

/NON option, LINK 480
Non-constant integer expressions and H2INC 638
/NONULLS option, LINK 480
/NONULLSDOSSEG option, LINK 480
Non-UNIX

predefined expressions syntax 846

910 Index

Non-UNIX (continued)
regular expressions

matching method 855-856
syntax 847-848, 854-855
syntax, setting, in PWB 281-282

NONAME keyword, EXPORTS statement 506
NONAME keyword, OLD statement 505
NONDISCARDABLE attribute 503
NONE attribute 503
NONE keyword, STUB statement 497
Nonmaskable-interrupt, CodeView 314
Nonmaskable-Interrupt Trapping option, CodeView 315
Nonresident names

NONAME keyword, EXPORTS statement 506
table, EXEHDR 522

NONSHARED attribute 504
/NOP option, LINK 458
/NOPACKC option, LINK 481
/NOPACKCODE option, LINK 481
/NOPACKF option, LINK 481
/NOPACKFUNCTIONS option, LINK 481
NOTWINDOWCOMPAT keyword, NAME statement 495
NOVIO, /PM option 485
Null

bytes 474,480
character defined 868
pointer defined 868

Number sign (#)
custom builds 53
HELPMAKE syntax 596-597
makefile syntax 536, 551-552, 564
Tab Set command, Code View 400, 445
TOOLS.INI syntax 534

Numbers, predefined expression syntax 844,851
Numeric

o

constants, Code View expression evaluators 384
switches, PWB 112

o command, CodeView 399,422-424
03 command, CodeView 422-424
10 option

HELPMAKE 596, 598
LINK 458

10 option, BSCMAKE 621
OA command, CodeView 321,422-424
OB command, Code View 422-424
.OBJ files defined 868
Object files

defined 868
in libraries, LIB 581
linking See LINK
PWB 38

Object module format defined 868
Object modules defined 868
Object-Module Format 458
OC command, CodeView 422-424
10d option, ML, debugging considerations 296
OF command, CodeView 422-424
10f option, CL, debugging p-code 365
10f- option, CL, debugging p-code 365
Offset defined 868
OFFSET operator, MASM 391
OH command, CodeView 422-424
OL command, CodeView 422-424
10L option, LINK 481
Old header format 515
OLD statement 505
OLDNAMES.LIB 479
10LDOVERLA Y option, LINK 481
OMF

defined 866
LINK object-file format 458

ON command, CodeView 422-424
ION option, LINK 481
10NERROR option, LINK 481
Open command, PWB 64
Open Custom command, PWB 68
Open Module command, CodeView 332-333
Open Module dialog box, Code View 333
Open Project command, PWB 66
Open Source command, CodeView 332-,333
Open source File dialog box, CodeView 333
Openfile function, PWB 142, 179,269
Opening

files, PWB 64, 131, 179, 269
help files

Microsoft Advisor 673
PWB 200
QuickHelp 677

projects
automatically 265-266
PWB 36,43-44,183

source files, Code View 333
Source window, CodeView 324
windows

CodeView 347
PWB 188,206,228

Operating system
EXETYPE statement 498
MS-DOS stub 497
Windows See Windows, programs for
Operating system prompt, DOS Shell command 333

Operating system tags, TOOLS.INI file, PWB 122
Operations

LIB See LIB
regular expressions, PWB 86

Operators
flow control, PWB 102-104
functions, using C++ expressions 388
regular expressions, PWB 83-85, 87

Opt 315
Optimizing

assembler options, PWB 47
debugging considerations 296
far calls, LINK 476,479,482
load time 476
relocations, LINK 475

Option button, PWB 73
OPTION directive

CASEMAP 638
EXPR32 See EXPR32 argument, OPTION directive

Options
See also specific tool
assembler, changing in PWB 47,49-50
BSCMAKE 620-622
CL, debugging considerations 296
CodeView

described 310-315,422-424
remote debugging 370-371
setting 317

compiler 295-296
CVPACK 633
EXEHDR 514-515
EXP 656
HELPMAKE

decoding 597-598
encoding 596-597

IMPLIB 653
in makefiles 559, 568, 572
LIB 584-586
LINK 295-297,471-488
ML, debugging considerations 295-296
NMAKE 529-532
PWB 131-132
RM 654
SBRPACK 625
UNDEL 656

Options command, CodeView 399,422-424
Options menu

CodeView 342-346
PWB 67

Ordered functions 508
Ordering segments 294
Ordinal number, export

EXEHDR 521
EXPORTS statement 506
OLD statement 505

OS command, CodeView 422-424
Output

redirecting, CodeView 450-452

Output (contillued)
screen defined 869
viewing, Code View 349

IOv option, CL, debugging p-code 365
IOv- option, CL 365
IOV option, LINK 482
OV command, CodeView 422-424

Index 911

OVERLAY keyword, SEGMENTS statement 502
IOVERLA YINTERRUPT option, LINK 482
Overlays

creating 459, 466
defined 867
FUNCTIONS statement 509
interoverlay calls 475
interrupt number 482
LINK 457
overlay number 502
SEGMENTS statement 502
static overlays 481

Overloaded functions using C++ expressions 388
OVL keyword, SEGMENTS statement 502

p
P command, CodeView 399,425,428
:p command, HELPMAKE 607
\p formatting attribute, HELP MAKE 603-605
/p option

Code View 370-371
CVPACK 633
EXEHDR 514
LIB 585-586
NMAKE 531

P register, CodeView syntax 395,426
p, path, predefined expression syntax 846, 848, 853
P-code

debugging 346, 363-367
linking 485

defined 865
FUNCTIONS statement 508
/NOPACKF option, LINK 481
ordered 508
/p ACKF option, LINK 484

IPACKC option, LINK 482
/p ACKCODE option, LINK 482
/p ACKD option, LINK 483
/pACKDATA option, LINK 483
/p ACKF option, LINK

/pACKFUNCTIONS option, 484
registers, displaying 329

Packaged function
defined 867
LINK 484

912 Index

Packing
code 481-482
data 483
executable file

detennining, EXEHDR 517
/EXEPACK option, LINK 475
iterated (segment attribute) 523

files, CVPACK 631-632
.SBR files 616,623-624

/P ADC option, LINK 458
/PADD option, LINK 458
/PAGE option, LIB 585-586
/PAGESIZE option, LIB 585-586
\par fonnatting code, HELPMAKE 610
\pard fonnatting code, HELPMAKE 610
Parameters defined 869
Parent process defined 869
Parentheses ()

balancing, in PWB 180-181
makefile syntax 554, 556, 560

.P AS files defined 869
PASCAL macro (NMAKE) 559
.paste command, HELPMAKE 607
Paste command

Code View 335
PWB

described 64
predefined macros 133

Paste function, PWB 86, 98, 142, 179-180
Pasting text

Microsoft Advisor 668
QuickHelp 679

PATH environment variable
CodeView, installing 299
starting PWB 59

Paths
Curfile predefined macro, PWB 210
defined 867
predefined expression syntax 846, 848, 853

Patterns See Regular expressions
/PAU option, LINK 484
Pause command, Code View 400, 445
/PAUSE option, LINK 484
Pausing Trace Speed command, Code View 344
Pbal function, PWB 142,180-181
/PC option, LINK 485
/PC ODE option, LINK 485
.PCH files defined 869
Percent sign (%)

Filename-Parts Syntax, PWB 247
makefile syntax 536

Period (.)
Current Location command, Code View 400, 446
line number specifier, Code View 339

Period (.) (continued)
LINK syntax 461, 466, 469
makefile syntax 564, 570
match character, syntax 844
wildcard character, syntax 843,846

/PF option, PWB 131
PFLAGS macro (NMAKE) 559
Physical segments defined 867
PID defined 867
PIF files, association with Makefiles 59
/PL option, PWB 131
\plain fonnatting code, HELPMAKE 610
Playback macro, PWB 210
Plines function, PWB 142, 181
Plus sign (+)

concatenating help files 680
LIB syntax 587-588
LINK syntax 461,463,469-470
makefile syntax 572
searching, PWB 84

/PM option, LINK 485,495,514,523
PM, /PM option 485
/PMTYPE option

EXEHDR 514
LINK 485,495,514,523

Pointers
converting global memory handles 439-440
converting local memory handles 441-442
defined 867
expanding and contracting, Code View 342, 453-454
H2INC, translated by 642
null 474,480

.popup command, HELPMAKE 607
Pop-up menu defined 867
Port defined 867
Port Input command, CodeView 398,410-411
Port Output command, CodeView 399,424
port: option, CodeView 370
Postfix operator, Code View precedence 382
Pound sign (#)

custom builds 53
HELPMAKE syntax 596-597
makefile syntax 536,551-552,564
Tab Set command, Code View 400, 445
TOOLS.INI syntax 534

Power, regular expression syntax 845, 853
/pP option, PWB 131
Ppage function, PWB 142, 181-182
Ppara function, PWB 142, 182
PQ register, CodeView 395,426
Pragmas

alloc_text 509
comment 465

Precedence defined 867

.PRECIOUS directive
described 571
recursion 558

Predefined constants
and H2INC 638
converting 660

Predefined expressions syntax
non-UNIX 848
UNIX 846,853

_ predefined macro 226
Predefined macros, PWB 132-244
Prefixes

context, HELPMAKE 613
program segments, debugging considerations 295

PRELOAD attribute 504
Preprocessing directives, NMAKE 573-575
Preprocessing, makefile

conditional 572
directives 572
error codes 545
errors, forcing 572
exit codes 545
halting builds 572
indenting 572
macros 553
return codes 545
suppressing builds 531-532

.previous command, HELPMAKE 607
Previous command, PWB

described 68
function 135

Previous Error command, PWB
described 66
predefined macros 134

Previous match command, PWB
described 65
predefined macros 133
searching 81

Print command
CodeView 332-333
PWB 64

Print dialog box, Code View 333
Print dialog box, Code View 333
Print function, PWB 142, 182-183
Print Results command, PWB 69
Printcmd switch, PWB 245, 247, 270
Printfile entry, TOOLS.INI file, CodeView 302,306
Printing

cancelling, _pwbcancelprint macro 215
directly to a printer in Code View 333
files

Code View 333
PWB 182-183

specifying program, PWB 270

Index 913

Printing (continued)
to a file, Code View 333

PRIVATE keyword, EXPORTS statement 506
PRIV A TELIB keyword, LIBRARY statement 496
Privileged mode defined 867
Procedure call defined 867
Procedure defined 867
Process defined 867
Process Descriptor Block command block, Code View 357
Process identification number, defined 867
Program Arguments command, PWB 66
Program build errors 23
Program Item, adding, PWB 58
Program Maintenance Utility See NMAKE
Program segment prefixes 295
Program Step command, Code View

generally 399,425,428
controlling execution 361

Program step defined 867
Programs

building 51-52
debugging, preparing for 293-297
PWB

building 40
debugging 26
editing 41-42,49
multimodule 35
non-PWB makefiles 55-56
project dependencies 39,41
running 40-41

Project function, PWB 142, 183
Project menu described, PWB 66
Project menu, predefined macros, PWB 134
Project Templates command, PWB 67
Projects

building See NMAKE
opening automatically 265-266
PWB

adding files 38-39,41,44
closing 218
contents 38
defined 35
deleting files 42
dependencies 39,41
editing 41-42
extending 52-55
makefiles 51-52
menu commands 66
moving files 42
opening 36, 183
status files 129

using 42-43
Prompt function, PWB 106, 142, 183-184

914 Index

Prompts
Askexit switch, PWB 248
Askrtn switch, PWB 249
LIB 582-583
LINK 469,472

Protected mode
defined 855, 868
PROTMODE statement 499

PROTMODE statement 499
PROTO directive generated by H2INC 648
Prototypes converted by H2INC 648
Psearch function, PWB 97, 142, 184-185
Pseudofiles

creating, in PWB 175-176, 227-228
Saveall function, PWB 195

Pseudotargets
dependents 541
described 540-541
time stamps 541

PTR operator, debugging assembly language 391
Public symbols

browser database 616
ICO option, LINK 473
in a library, LIB 590
/MAP option, LINK 478
searching, CodeView 382-384

PURE attribute 504
PWB

Browse menu
described 68
functions 134, 187

build errors 23
build options 18
closing 7
command line 131-132
commands

choosing 70-71
cursor movement 144
executing 70-74, 132, 160,205

configuration
autoloading 121-122
environment variables 127-128
overview 120-121

customizing colors 114-115
Edit menu

described 64
predefined macros 133

File menu

files

described 64
predefined macros 132

adding 41, 44
deleting 42
estimating size 94

PWB (continued)
files (continued)

moving 42
functions 96-98, 106, 111-112, 114, 118, 140-141,

146-206
help

copying and pasting 668,679
getting 8, 664-673
global searches 674-675
keywords 669
managing files 680-681
opening files 673
structure 663

Help menu 70, 135, 665
HELPMAKE, restrictions 593
key assignments 135, 140
macros

changing key assignments 109-111, 125-126
executing 96-98, 160
flow control statements 102-104
overview 99
recording 99-102
user input statements 104-106

makefiles
loading 132
opening 131

multimodule programs
project dependencies 39
using existing projects 42-43

options 18, 131-132
Options menu 67
predefined macros 132-135,207,209-244
programs

adding files 38-39,44
assembler options 47,49-50
build process 22,51-52
building 40
editing 41-42,49
extending projects 52-55
non-PWB makefiles 55-56
opening projects 36
overview 35
project contents 38
project dependencies 41
running 25,40-41

project file list 38
Project menu 66, 134
prompt

Askexit switch 248
Askrtn switch 249

quitting 41, 160-161,233-234
regular expressions syntax 281-282
Run menu

adding commands 115, 117

PWB (continued)
Run menu (continued)

described 66
predefined macros 134

Search menu
described 65
predefined macros 133

searching
find command 79-82
mark function 78
overview 77
regular expressions 82-84

single-module programs, building 18
single-module programs, debugging 26
source browser

browser database 55
building database 92
call tree, showing 91-92
combined database 96
creating database 89-90
estimating file size 94
finding symbols 90, 92-93
non-PWB project database 94-96
Pwbrowse functions 187

starting 57-59
status files 128-129
switches 112-114,244,247-275,277,279,280-290
syntax 131-132,247-248
undefined macros 210-212
View menu 678
Window menutabs 118-119, 123
text, replacing 85-88
TOOLS.INI file

line continuation 126
macros 103-105
switch syntax 126
tags 122-124

tutorial 7
described 69
predefined macros 135

_pwb predefined macro 207
PWB Windows command, PWB 69
_pwbarrange predefined macro 207,212
_pwbboxmode predefined macro 207,213-214
_pwbbuild predefined macro 207,214
Pwbcancelbuild predefined macro 214-215
_pwbcancelbuild predefined macro 207
_pwbcancelprint predefined macro 207,215
_pwbcancelsearch predefined macro 215-216
_pwbcascade predefined macro 207,216
_pw belear predefined macro 207, 216-217
_pwbelose predefined macro 207
_pwbeloseall predefined macro 207,217
_pwbelosefile predefined macro 207, 217-218

Index 915

_pwbeloseproject predefined macro 207,218
_pwbcompile predefined macro 207,218-219
_pwbfilen predefined macro 207
_pwbgotomatch predefined macro 207, 219
Pwbhelp function 142, 185
_pwbhelp_again predefined macro 207, 220
_pwbhelp_back predefined macro 207,221
_pwbhelp_contents predefined macro 207,221
_pwbhelp_context predefined macro 207,222
_pwbhelp_general predefined macro 207,223
_pwbhelp_index predefined macro 207,223-224
Pwbhelpnext function 143, 186
_pwbhelpn1 predefined macro 207
_pwbhelpnl predefined macro 219-220
Pwbhelpsearch function 143, 186-187
_pwbhelp_searchres predefined macro 207,224
_pwblinemode predefined macro 207,224-225
_pwblogsearch predefined macro 207, 225
_pwbmaximize predefined macro 207, 226
_pwbminimize predefined macro 209
_pwbmove predefined macro 209,227
_pwbnewfile predefined macro 209,227-228
_pwbnewwindow predefined macro 209,228
_pwbnextfile predefined macro 209,229
_pwbnextlogmatch predefined macro 209, 229-230
_pwbnextmatch predefined macro 209,230
_pwbnextmsg predefined macro 209,231
_pwbpreviouslogmatch predefined macro 209, 231
_pwbpreviousmatch predefined macro 209,232
_pwbprevmsg predefined macro 209,232-233
_pwbprevwindow predefined macro 209,233
_pwbquit predefined macro 209,233-234
_pwbrebuild predefined macro 209,234
_pwbrecord predefined macro 209,234-235
_pwbredo predefined macro 209,235-236
_pwbrepeat predefined macro 209
_pwbresize predefined macro 209,236-237
_pwbrestore predefined macro 209,237
PWBRMAKE.EXE 615
Pwbrosweviewrel function 143
Pwbrowse1stdef function 143, 187
Pwbrowse1 stref function 143, 187
Pwbrowsecalltree function 143, 187
Pwbrowsec1hier function 143, 187
Pwbrowsec1tree function 143, 187
Pwbrowsefuhier function 143, 187
Pwbrowsegotodef function 143, 187
Pwbrowsegotoref function 143, 187
Pwbrowselistref function 143, 187
Pwbrowsenext function 143, 187
Pwbrowseoutline function 143, 187
Pwbrowsepop function 143, 187
Pwbrowseprev function 143, 187
Pwbrowseviewrel function 187

916 Index

Pwbrowsewhref function 143, 187
_pwbsaveall predefined macro 209,237-238
_pwbsavefile predefined macro 209, 238
_pwbsetmsg predefined macro 209, 238
_pwbshell predefined macro 209,239
_pwbstreammode predefined macro 209,239-240
_pwbtile predefined macro 209,240
_pwbundo predefined macro 209,241
_pwbusem predefined macro 209,241
PWBUTILS, PWB Options menu 67
_pwbviewbuildresults predefined macro 209,242
_pwbviewsearchresults predefined macro 209, 243
Pwbwindow function 143, 188
_pwbwindow predefined macro 244
_pwbwindown predefined macro 209
Pword function, PWB 143, 188

Q
Q command, CodeView 399,425
IQ option

EXP 656
LINK 485
NMAKE 532

q, quoted string, predefined expression syntax 846, 848,
853

QH command, MS-DOS 676
.QLB files defined 868
Qreplace function, PWB 143, 189
Question mark (?)

call tree, PWB 91
decorated names, C++ 385-386
Display Expression command, Code View 400, 452-

453
makefile syntax 555-556
Quick Watch command, Code View 400,453-454
wildcard character

regular expression syntax 847,848,850,855
UNDEL 655

wildcard operator, HELPMAKE syntax 595
wildcards 536

Quick Watch command, CodeView 338,342,400,453-
454

Quick Watch dialog box
CodeView

described 342
displaying 453-454
exploring watch expressions 299

QuickHelp
commands 678
copying text 679
CVPACK option 633
EXP option 656
help files, opening, closing 677

QuickHelp (continued)
/HELP option 676
HELPMAKE option 599
IMPLIB option 653
pasting text 679
QH command, MS-DOS 676
specifying format, HELPMAKE 597
topics

displaying 677
navigation 678
selecting 670

UNDEL option 656
QuickHelp format

defining topics 600-601
described, HELPMAKE 599
dot commands 605-606, 608
formatting attributes 602-605
global contexts 603-604
linking topics 601-603
local contexts 603-604

IQUICKLIBRARY option, LINK 485
Quit command, Code View 399,425
Quitting

Code View 334
PWB 41,160-161,234

Quotation marks, double (")
character strings 857
CodeView syntax 312-313
.DEF file syntax 494
LINK syntax 461
makefile syntax 537,553
Pause command, Code View 400, 445

Quotation marks, single C), LINK syntax 461
Quote function, PWB 143, 190
Quoted string, predefined expression syntax 846, 848, 853

R
R command, Code View 399
:r command, HELPMAKE 607
IR option

CodeView 371
EXEHDR 515
EXP 656
NMAKE 532
PWB 132
RM 655

Ir option
BSCMAKE 621
LINK 458

Radix
changing in CodeView 420-421
Code View expression evaluators 384
defined 868

Radix command, CodeView 399,420-421
RAM defined 868
Random access memory defined 866
rate option, CodeView 370
.RC files defined 868
RC macro (NMAKE) 559
RC.HLP file 679
RCVCOM option, CodeView 370-371
RCVCOM.EXE file, remote debugging 370
RCVWCOM option, CodeView 370-371
Read Only command, PWB 64
READONL Y attribute 504
Readonly switch, PWB 112,245,247,270-271
READWRITE attribute 504
Real mode

defined 868
REALM ODE statement 499-500

REALMODE statement 500
Realtabs switch, PWB 245,271
Realtabs switch, white space, PWB 118-119
Rebuild All command, predefined macros, PWB 134
Rebuilding, _pwbrebuild macro 234
Record function, PWB 143, 190-191
Record On command, PWB

described 64
predefined macros 133

Record Results, PWB 69
Recording macros, PWB 99-102, 190-191,234-235
Records generated by H2INC 645
Recursion, makefile

described 557-558
macros 557,563
N option, NMAKE 532

Red color value 254
Redirect Input and Output command, Code View 400, 452
Redirect Input command, CodeView 312-313,450
Redirect Output command, CodeView 312-313,400,

450-451
Redirection defined 868
Redo command, PWB 64, 133
Redraw command, Code View 400, 454
.ref command, HELPMAKE 607
Refresh function, PWB 143, 191
Register command, Code View 347-348, 366-367, 399
Register indirection, debugging assembly language 391
Register names, Code View recognition 377, 395
Register window

CodeView
debugging p-code 366-367
described 299
function 329-330
opening 348
overview 322

defined 868

Index 917

Registers
changing values, CodeView 426-428
CodeViewexpressions 377,395
defined 868
display radix 420-421
displaying value, CodeView 329-330
flags, defined 862
math coprocessors, dumping 448-449

Regular expressions
defined 868
finding, CodeView 335-336
global searches, in Microsoft Advisor 674
matching

non-UNIX 854-855
PWB 284-285

predefined See Predefined expressions
replacing text, PWB 85-88
searching for, CodeView 447-448
searching, PWB 77, 82-84
syntax

Code View 847
non-UNIX 847-848,854-855
PWB 84
UNIX 845-846,848-849

tagged See Tagged expressions
Relocatable defined 868
Relocatable Object-Module Format, LINK 458
Relocations

descriptions, EXEHDR 523
EXEHDR 630
far calls 476,479
number, EXEHDR 517,524
optimizing, LINK '475
table offset, EXEHDR 518

relocs (segment attribute) 523
Remote debugging

bit rate 370
options 370-371
overview 367
requirements 368-370
starting a session 371-373
syntax 370
with Windows-based target files 370

Remove Custom Project Templates command, PWB 67
Removing

breakpoints, CodeView 341-342
status bar, CodeView 321

Repeat
command, PWB 64, 133
function, PWB 143, 192
regular expression syntax 845-849, 854-855

Repeat Last Find command, Code View 335-336
Repeating function actions in PWB 262

918 Index

Replace command
LIB 589
PWB 65

Replace function, PWB 143, 192-193
Replacing text

Mreplace function, PWB 173-174
MreplaceaU function, PWB 174
Qreplace function, PWB 189
Replace function, PWB 192-193

.RES files defined 868
Reserved words

.DEF files 494,510
in MS-DOS header 521

Resetting
CodeView command 412-413
PWB 131

Resident names
RESIDENTNAME keyword, EXPORTS statement

506
table, EXEHDR 522

Resident option, CodeView 371
RESIDENTNAME keyword, EXPORTS statement 506
Resize function, PWB 143
Resizing windows, PWB 236-237
Resource-assembler source file, PWB 38
Response files

See also Command files
BSCMAKE 622
defined 868
inline, in makefiles 547
LIB 583
LINK 469-470

jRESERERROR option, EXEHDR 515
Restart command, CodeView 336-337,398,412-413
Restart macro, PWB 210,212
Restcur function, PWB 143, 194
Restore command

CodeView 347-348
PWB

described 69
predefined macros 135

Restorelayout switch, PWB 245, 272
Restoring

files, UNDEL 655
status bar, Code View 321
windows, PWB 237

Return codes
BSCMAKE 623
CVPACK 633
defined 861
LIB 592
LINK 490
makefiles 531,544-545,571
NMAKE 580

Return codes (continued)
described 600,609
encoding 611
formatting codes 610
specifying 597

Right function, PWB 143, 195
RM

command line 654-655
options 654
overview 631, 654
SBRPACK 626

RFLAGS macro (NMAKE) 559
Rich text format, HELPMAKE
syntax 654-655

Rmargin switch, PWB 245, 272
RND.ASM sample program 14
ROM defined 868
Root defined 868
Routines

defined 869
listing in CodeView 346-347

.RSP files defined 869
RTF See Rich text format, HELPMAKE
Rules, inference See Inference rules
Run DOS Command command, PWB 66
Run menu

CodeView 336-338
PWB

adding menu items 115, 117,282-283
custom items 241-242
described 66
predefined macros 134

Run OS/2 Command command, PWB 66
Run-time error defined 869
Running programs, PWB 40-41

s
S option, Code View 310
/S option

BSCMAKE 621
CodeView 313,315
EXEHDR 515
NMAKE 532

Sample programs
ONEOF.ASM 11
PWB, SHOW 35-36,38-43,47,49-50,52-56,89-

93
RND.ASM 14

Save All command, PWB 64, 132
Save As command, PWB 64
Save command, PWB

described 64
predefined macros 132

Save Custom Project Template command, PWB 67
Saveall function, PWB 143, 195
Savecur function, PWB 143, 195-196
Savescreen switch, PWB 245,273
Saving

Code View environment 334
files

Autosave switch, PWB 250
PWB 64,195,237-238,279

macros, PWB 102
marks, PWB 266-267

.SBR file 616

.SBR files
building browser database

non-PWB 95
PWB 89-90

defined 869
estimating size 94

SBRPACK
See also Browser database; BSCMAKE
and CL 616
command line 624
copyright message 625
creating .SBR files 616
error codes 626
exit codes 626
fatal errors 626
help 625
include files, excluding 624
operating system 624
options 625
overview 615-616,623-624
return codes 626
rules 624
running requirements 624
.SBR file 616
syntax 624-625
system requirements 624

Scope
defined 869
specifying, searching for symbols 443

Scope operator (::), Code View precedence 382
Screen exchange

CodeViewoptions 313,315,345,422-424
defined 869

Screen Exchange command, Code View 400, 454
Screen Swap command, CodeView 342,345
Scroll bars

CodeView
options 422-424
toggling options 345

PWB, window styles 207,256
Scrolling

defined 869

Scrolling (continued)
Mlines function, PWB 171
Plines function 181
switches, PWB 264
Vscroll switch, PWB 284

Sdelete function, PWB 143, 196
/SE option, LINK 486
Search command

CodeView 400,447-448
QuickHelp 677

Search logging, PWB 167,225

Index 919

Search Memory command, CodeView 419-420
Search menu

CodeView 335-336
PWB

described 65
predefined macros 133

Search Results command, PWB
described 69-70
predefined macros 135

Search Results dialog box, PWB 81
Search Results window

PWB
clearing 152
described 243
Mgrep function 170-171
Nextsearch function 178

Searchall function, PWB 143, 196-197
Searchdialog switch, PWB 246, 273
Searchflush switch, PWB 246, 274
Searching

backwards, PWB 174-175
cancelling

_pwbcascade macro 215-216
PWB 151

Find command, PWB 79-82
global, Microsoft Advisor 674-675
help system, in PWB 186-187
highlighting search strings, PWB 196-197
in CodeView, overview 335-336
logging searches in PWB 167,225,259
mark function, PWB 78
memory, CodeView 419-420
Mgrep function, PWB 170-171
Mgreplist macro, PWB 211-212
overview, PWB 77
regular expressions

CodeView 447-448
PWB 82-84

symbol definitions, PWB 90-93
symbols, CodeView 382-384,397-398,443
text, PWB 184-185

Searchwrap switch, PWB 246,274
Section tags, TOOLS.INI file, PWB 122

920 Index

/SEG option, LINK 486
Segmented-executable files

creating, LINK 459,466
defined 869
header See EXEHDR
header format 515
MS-DOS stub 497

Segmented-executable Linker See LINK
Segments

aligning 472
attributes

code segments 501
data segments 501
EXEHDR 519-520,523
keywords 503
SEGMENTS statement 502

class 502
code See Code segments
data See Data segments
defined 869
definitions 502
discardable 503
functions

assigning 508
explicit allocation 509
ordered 508

information 477-478
limit 483, 486, 502
listing 463
loading 504
moving 504
name 502
null bytes 474,480
ordering 294,474,480
overlays 502
packing

code 481-482
data 483

permissions 503-504
sharing 503-504
table, EXEHDR 520, 522-523

/SEGMENTS option, LINK 486
SEGMENTS statement described 502
Selcur function, PWB 143, 197
Select function, PWB 144, 197
Select To Anchor command, PWB

described 64
predefined macros 133

Selected Text command, Code View 336
Selected text command, Code View 335
Selecting in PWB

selection mode 198,224-225,239-240,259
text 197
windows 198

Selection modes, PWB
changing 198,224-225,239-240,259
setting 64

Selmode function, PWB 144, 198
Selwindow function, PWB 144, 198
Semaphores defined 869
Semicolon (;)

command separator, CodeView 312-313,326-327
comments, PWB 126, 127
.DEF file syntax 494
LIB syntax 582-584
LINK syntax 461,467,469-470
makefile syntax 542, 544, 564
TOOLS.INI file syntax 301,534
Separator, custom
predefined macros 133

Set Breakpoint command, Code View
described 338-341
line numbers 376

Set Breakpoint dialog box, CodeView 339-341
SET command, environment variables 562-563
Set Line-Display Mode option, CodeView 53
Sequence, NMAKE operations 576-578
Sessions

defined 858
remote debugging, starting 371-373

Set Anchor command, PWB
described 64
predefined macros 133

Set Mark File command, PWB 65
Set Project Templates command, PWB 67
Set Record command, PWB 64
Set Runtime Arguments command, CodeView 336-337
Set Screen Swapping option, CodeView 315
Set Screen-Exchange Method option, CodeView 313,422-

424
Set Switch function, changing settings, PWB 114
Setfile function, PWB 144, 199,269
Sethelp function, PWB 144,200,673
SETUP program

Code View, installing 299-301
help files, installing 679

Setwindow function, PWB 144, 200
SHARED attribute 504
Shell Escape command, CodeView 399,443-445
Shell function, PWB 144,201
Shells

defined 869
DOS Shell command 333

Shortcut keys
CodeView 320-321
PWB 71

Shortnames switch, PWB 246, 275

SHOW sample program, PWB 35-36,38-43,47,49-50,
52-56,89-93

Showing call tree, PWB 91-92
SI register, Code View syntax 395,426
Sign-on banner See /NOLO GO option
.SILENT directive 571
SINGLE attribute 503
Single precision defined 869
Sinsert function, PWB 144,201-202
Size command, CodeView 347-348
Size command, PWB

described 69
predefined macros 135

Slash (I)
EXEHDR syntax 514
HELPMAKE options 595
LIB syntax 584
LINK syntax 471
NMAKE syntax 529
Search command, CodeView 335-336,400,447-448

Slow motion, Code View execution 337, 344
Small memory model defined 869
SMARTDRV.SYS defined 869
ISn option, HELPMAKE 597
Snow, surpressing, CodeView option 314
Softcr switch, PWB 246,275
Source 92
Source 1 command, CodeView 347-348
Source 2 command, CodeView 347-348
Source browser

See also Browser database; BSCMAKE
browser database, PWB

building 92-93, 96
case sensitivity 286
combined 96
creating 89-90
estimating file size 94
finding symbols 93
makefiles 55
non-PWB projects 94-96
specifying 287

makefiles, PWB 55
menu commands, PWB 68
Pwbrowse functions 187
searching, PWB 78
switches 286-287

Source code, displaying, CodeView 324,433-436
.source command, HELPMAKE 608
Source files

decoding, HELPMAKE 597-598
defined 869
HELPMAKE formats

minimally formatted ASCII 612
QuickHelp 599-608

Source files (continued)
HELPMAKE formats (continued)

rich text format 609-610
loading, Code View 333
opening, CodeVicw 333
PWB project file list 38
specifying type, HELPMAKE 597

Source mode defined 869
Source window

CodeView
arranging display 299
displaying 433-436
function 324
getting help 664
opening 348
overview 321-322
setting mode 429-430

Index 921

options and view source (VS) command 343
Source1 Window command, Code View 342
Source2 Window command, Code View 342
SP register, CodeView syntax 395,426
Space

inserting, PWB 201-202
optimizing, PWB 47

Spaces
CodeView expression evaluators 382
.DEF file syntax 494
LINK syntax 461,463,469
makefile syntax 551-552,560,564-565,570
trailing, display mode 279-280

Specifiers
Code View Options command 422-424
displaying source code 433-436
memory format

dumping memory 414-415
entering data 416-418
viewing memory 431-433

scope, searching for symbols 443
Specify Interrupt Trapping option, CodeView 314
Specifying

color, PWB display 252, 254
execution model, Code View 305
expression evaluators, Code View 303
file type, HELPMAKE 597
filename, HELPMAKE 596, 598
interrupt trapping, CodeView 314
symbol handlers, Code View 306

Speed of execution
Code View 429
PWB switches 261, 263

Splitting help files 681
SS register, CodeView syntax 395,426
1ST option, LINK 487

922 Index

Stack
address 517-518
defined 869
frame defined 869
machine, debugging p-code 363
setting

.DEF file 500
/STACK option, EXEHDR 515
/STACK option, LINK 487

size, EXEHDR 518
trace defined 869

/STACK option
EXEHDR 515
LINK 487

Stack Trace command, CodeView 398,411-412
STACKSIZE statement 500
Standard

error, defined 870
input, defined 870
library, defined 870
mode,defined 870
output, defined 870

Starting PWB
command line 57-58
Windows Program Manager 58

Startup
code defined 870
files, PWB configuration 127

STARTUP.CMD, PWB configuration 127
State file, Code View

overview 316-317
toggling status 315

Statefileread entry, TOOLS.INI file, Code View 302,306,
315

Statements
.DEF file See Module-definition files
flow control, PWB 102-104
multiple, debugging 294
TOOLS.INI syntax, PWB 124-126
user input, PWB 104-106

Static
library defined 870
linking defined 870

Status Bar
overview, Code View 321
showing, Code View option 422-424

Status bar defined 870
Status Bar command, Code View 342, 345
Status files, PWB 128-129
Stream Mode command, PWB 64, 133
Stream selection mode, setting in PWB 239-240
String literals, Code View expression evaluators 385
String literals, Code View expression operators 385

Strings
Code View expression evaluators 385
debugging assembly language 392
defined 870
null terminated

viewing in memory window 392
viewing with memory dump ASCII (MDA)

command 392
searching, PWB 77-82

Structure member defined 870
Structures

debugging assembly language 392
defined 870
expanding and contracting, Code View 342, 453-454
H2INC, generated by 643
nested, expanding and contracting 453

Stub file defined 870
STUB statement

described 497
EXETYPE statement interaction 498-499

Subdirectories, copying file to, PWB 87
Subroutine defined 870
.SUFFIXES directive

dependents 546
described 571
inference rules 563, 568, 570
inferred dependents 569
/P option, NMAKE 531
priority 564-565
/R option 532
recursion 558

Suppress Snow option, CodeView 314
Swapping

defined 870
screen exchange, CodeView 313,315,345,422-424

Switches
PWB 83,112-114,118-119,244,247-275,277,

279,280-282,284-290
syntax, TOOLS.INI file, PWB 126

Switching, Window function, PWB 206
Symbol handler, specifying, CodeView 306
Symbolhandler entry, TOOLS.INI file

CodeView 299-300,302,306-307
remote debugging 368-369

Symbolic Debugging Information 473
compressing 296-297
defined 295, 870
loading 314
memory requirements 296
preserving, with CVPACK 633
searching 336

Symbolic information See Symbolic Debugging
Information

Symbols
defined 90-93,857-858,863
format, CodeView 385-386
.SBR files, PWB 94
searching for, CodeView 397-398,443
searching order with C, C++ expression evaluators

382
Syntax

See also specific tool, command, or statement
CodeView

command line 308-316
commands 357-360
context operator 382-384, 397-398
expressions 376,-379, 394, 395-397
regular expressions 844
TOOLS.lNI file entries 302-308

CVPACK 632
EXP 656
Filename-Parts Syntax, PWB switches 247
HELPMAKE 599

decoding 597-598
encoding 595-597
overview 595

IMPLIB 653
macros, TOOLS.lNI file, PWB 125
non-UNIX

predefined expressions 846
regular expressions 845-846, 852-853

PWB
Boolean switches 248
options 131-132
regular expressions 84,281-282

remote debugging 370
RM 654-655
TOOLS.INI file

switches, PWB 126
tags, PWB 122, 124

UNDEL 655
UNIX

predefined expressions 846, 848, 853
regular expressions 845-846, 848-849

.SYS files defined 870
SYSTEM environment variable defined 870
System include files, finding symbols, PWB 92

T
Tcommand, CodeView 399,408,428-429
rr option

HELPMAKE 597-598, 605
LINK 487
NMAKE 532
PWB 132

\tab formatting code, HELPMAKE 610

Index 923

Tab function, PWB 118, 144,202
Tab Set command, Code View 400, 445
Tabalign switch, PWB 118-119,246,276
Tabdisp switch, PWB 118,246,276
Tabs

.DEF file syntax 494
HELPMAKE syntax 595
hyperlinks, navigating with 666-668
makefile syntax 551-552,564-565,570
PWB 118-119,123,126,149,262,271,276-277
regular expressions, PWB 85
setting, Code View 445

Tabstops switch, PWB 113, 118,246,277
Tagged expressions

Build:message switch 852
justifying 852
overview 840-851
regular expression syntax 845-848, 853-855
replacing text, PWB 85-88

Tags, TOOLS.lNI file, PWB 122-124,301
Targets

accumulating 539
build rules 538-542
checking timestamps 532
compiling, PWB 153-154
defined 528
described 538
filenames 555-556
forcing builds 530,540-541
function, PWB 52-55
keeping 571
length limit 538, 540
macros, predefined 555-556
makefiles, PWB 56
multiple description blocks 539-540
pseudotargets 540-541

Tell dialog box, PWB 202-204
Tell function, PWB 98, 112, 144,202-204
TEMP environment variable defined 871
Temporary files

defined 871
LINK 489-490

Terminate-and-stay-resident programs
defined 871
DOS Shell command 333
Shell function, PWB 201

Terminating Code View execution 362
Ternary operator defined 871
Text

Arg function, PWB 96-98
argument, Arg function, PWB 96-98
box,PWB 73
copying

CodeView commands 327-328

924 Index

Text (continued)
copying (continued)

Microsoft Advisor 668
QuickHelp 679

defined 871
deleting, PWB 156,216-217
editing menu commands, PWB 64
files See Files
finding, PWB 83-85
formatting, HELPMAKE topics 604-605
indenting, PWB 275
pasting

Microsoft Advisor 668
QuickHelp 679

replacing
PWB 85-88
Qreplace function, PWB 189
Replace function, PWB 192-193

searching, PWB 77-82, 184-185
selecting, PWB 197
strings, searching, PWB 77-82
switches, PWB 112

Text Argument dialog box, PWB
default key assignments 139
Lasttext function 164-165
Prompt function 183, 184

TEXTEQU directive generated by H2INC 638
TH register, CodeView syntax 395,426
Thread defined 871
Thread ID defined 871
Thread of execution defined 871
Thunk defined 871
Tilde (-) menu command, PWB 116
Tile command

CodeView 347-348
PWB

described 69
predefined macros 135

Tilemode switch, PWB 246, 278
Tiling windows, PWB 240, 278
Time .

current, PWB 156
stamps

2-second resolution 530
changing, NMAKE 532
checking 532
checking targets 531
defined 528, 871
dependency 538
displaying, NMAKE 530
macros, NMAKE 555
pseudotargets 541

Timersave switch, PWB 246, 279
Tiny memory model defined 871

(fINY option, LINK 487
TL register, CodeView syntax 395,426
.TMP files defined 871
TMP environment variable 490, 548

defined 871
starting PWB 59

Tmpsav switch, PWB 246, 279
Toggle State-File Reading option, CodeView 315
Toggling defined 871
TOOLS.INI file

CodeView
configuring 301
entries 302-308
installing 299-301
remote debugging 368-369
setting options 317

comments 534
defined 871
makefiles 534-535,552,572
PWB

autoloading extensions 121-122
comments 126-127
extension switches 246
filename-extension tags 123
Initialize function 162
line continuation 126
macros 103-105
named tags 124
operating-system tags 122
sections tags 122
switch syntax 126

TOOLS.PRE file, installing, Code View 299-300
.topic command, HELPMAKE 608
Topic command

Code View 349
PWB 70,135

Topic lists, Microsoft Advisor 673
Topic: command described, PWB 665
Topics, help files, linking 600-603
Touch (time stamps), NMAKE 532
Trace command, CodeView 361,399,428
Trace speed command, CodeView 342,344,399,408,

429
Tracepoint defined 871
Tracing

defined 871
functions, Code View 428

Traildisp switch, PWB 246, 279
Trailing

lines, display mode, in PWB 280
spaces, display mode, in PWB 279-280

Traillines switch, PWB 246, 280
Traillinesdisp switch, PWB 246,280
Trailspace switch, PWB 246, 280

Translating white space, PWB 119
Transport entry, TOOLS.INI file

CodeView 299-302,307-308
remote debugging 368-369

Transport layer, specifying, CodeView 307-308
Trapping, interrupting, CodeView 314
TSF option, Code View 310
(fSF option, CodeView 315
TSR

defined 871
programs See Terminate-and-stay resident programs

Tutorial
conventions 5
PWB 7

Twips, defined 611
.TXT files defined 871
Type casting defined 871
TYPEDEF directive generated by H2INC 647,649

u
U command, CodeView 399,429-430
\u formatting attribute, HELPMAKE 604-605
\ul formatting code, HELPMAKE 610
Unary operators

CodeView precedence 382
defined 871
preprocessing directives, NMAKE 574

Unassemble command, CodeView 399,429-430
Unassembling

defined 858,871
p-code 367

Unassigned function, PWB 144,204
!UNDEF directive

macros 553
precedence rules 563

!UNDEF preprocessing directive, NMAKE 573
Undefined macros, PWB 210
UNDEL

command line 655
options 656
overview 631,654
syntax 655

Unde1count switch, PWB 246,281
Underlining, HELPMAKE code 610
Underscore L), symbol format, CodeView 385-386
Undo command

Code View 334
PWB

described 64
predefined macros 133

Undo function, PWB 144,204
Undocount switch, PWB 112,246,281
Unions generated by H2INC 642

Index 925

UNIX
predefined expression syntax 846, 853
regular expression syntax 281-282,843,845-846,

848-849
Unixre switch 83, 281-282,843
UNKNOWN keyword, EXETYPE statement 499
Unresolved external defined 872
Unsigned integer, predefined expression syntax 846, 848,

853
Unsigned numbers, predefined expression syntax 846,

848,853
Up function, PWB 144,205
Use 8514 Displays option, CodeView 311
Use Black-and-White Display option, CodeView 312
USE command, CodeView 399,430
Use Language command, CodeView 399,430
Use Two Displays option, CodeView 310
Use VGA Displays option, CodeView 311
User input statements 104-106
User switch, PWB 246-247,282-283
User-defined constants

and H2INC 660
converting 660

User-defined type defined 872
Usercmd function, PWB 144,205
UTILERR.HLP file 679
Utilities

extension, PWB Options menu 67
H2INC 634

UTILS.HELP file 679
UTILS.HLP file 681

v
\v formatting attribute, HELPMAKE 602, 604-605
\v formatting code, HELPMAKE 610
/V option

EXEHDR 515,521,630
HELPMAKE 599
NMAKE 532, 563

Iv option, BSCMAKE 621
Values, entering, CodeView 416-418
Variables

addresses, debugging assembly code 391
defined 872
editing, CodeView 324-325
environment See Environment variables
local, CodeView 328-329
.SBR files, PWB 94
scope, CodeView 422-424

VCPI server
See also Virtual Control Program Interface server
defined 872

/VERBOSE option, EXEHDR 515,521,630

926 Index

Verbose output, HELPMAKE option, HELPMAKE option
599

Vertical Scrollbars command, CodeView 342,345
VGA

and EGA displays, with Code View 311
defined 872
display, specifying, Code View 311

Video graphics adapter defined 872
View Back command, QuickHelp 678
View History command, QuickHelp 678
View Last command, QuickHelp 678
View Memory command, Code View 399, 412-413, 431-

433
View menu, PWB 678
View Next command, QuickHelp 678
View Output command, CodeView 347-349
View References command, searching, PWB 78
View Relationship command, PWB 68, 134
View Source Command, CodeView 376
View Source command, CodeView 399,433-436
VIO, /PM option 485
Virtual Control Program Interface server, memory

management, Code View 308
Virtual memory

browser database 617-618
defined 872

VM command, CodeView 399,412-413,431-433
VM.TMP 490
VS command, CodeView 376,399,433-436
Vscroll switch, PWB 246,284

w
W? command, CodeView 399,436
w, English word, predefined expression syntax 846, 848,

853
/W option

HELPMAKE 597, 605
LINK 488

/W ARNFIXUP option, LINK 488
Watch command, CodeView 347-348
Watch expressions

adding 339,436
deleting 437
listing 339,441
saving 317
setting 298-299

Watch window
CodeView

exploring watch expressions 299
function 324-325
opening 348
overview 322

Watch window (continued)
expressions

adding, in Code View 325
changing contents of, in CodeView 325

Watchpoint defined 872
WC command, CodeView 399,437
WDG command, CodeView 351,357,362,399,437-438
WDL command, CodeView 351,358,399,438
WDM command, Code View 358, 399, 439
WGH command, CodeView 351,360,399,439-440
Which Reference? command, PWB

described 68
function 134

White
color value 254
space

Width

converting, PWB 257,258
predefined expression syntax 846, 848, 853
searching, PWB 83, 85
tab switches, PWB 118-119
translating, PWB 271

HELPMAKE text 597
switch, PWB 246, 284

Wildcards
defined 872
HELPMAKE syntax 595
makefiles 536
regular expression syntax 845,847-848

Window function, PWB 144,206
Window menu, PWB

described 69
predefined macros 135

WINDOW API keyword, NAME statement 495
WINDOWCOMPAT keyword, NAME statement 495
Windows

Code View
8087 window 330
Command window 326-328, 393
Help window 332
Local window 328-329
Memory windows 330-332
navigation 323
opening 347
overview 320-322
Register window 329-330
Source windows 324
Watch window 324-325

PWB
activating 244
cascade arrangement 216
closing 217
maximizing 168, 226
minimizing 171, 226

Windows (contillued)
PWB (continued)

moving 172, 227
opening 188,206,228
resizing 236-237
restoring 237
selecting 198
styles in 207,256
tiling 240, 278

Windows Dereference Global Handle command, CodeView
351,360,399

Windows Dereference Local Handle command, Code View
351,360,399

Windows Display Global Heap command, CodeView 351,
357,399,437-438

Windows Display Local Heap command, Code View 351,
358,399,438

Windows Display Modules command, CodeView 351,
358,399,439

Windows File Manager, starting PWB 59
WINDOWS keyword, EXETYPE statement 499
Windows Kill Application command, Code View 360, 362,

399,440-441
Windows menu, Code View 347
Windows Program Manager

help, getting 676
starting, in PWB 58

Windows, programs for
application type 514, 523
character-mode application 485, 495
creating, LINK 459,466
custom loader 498
EXETYPE statement 499
FORTRAN 498
full-screen application 485,495
inserting text 496
LIBRARY statement 496
loader 498
module-definition files See Module-definition files
MS-DOS stub 497
NAME statement 495
/PM option, LINK 485
private library 496
protected mode 499
real mode 499-500
text window 485, 495
version 499

Winstyle function, PWB 144,207
WKA command, CodeView 351,360,362,440-441
WL command, CodeView 399,441
WLH command, CodeView 351,360,399,441-442
WO operator, CodeView 381,390-392
Word

processor formatting, HELPMAKE text 610

Word (colltinlled)
rich text format, HELPMAKE 609
switch, PWB 246,284-285

Index 927

wrapping, PWB switches 246, 272, 286
Words

English, regular expression syntax 846, 848, 853
finding in CodeView 335-336

Wordwrap switch, PWB 246,286
WX

/? 659
IA option 659
/B option 659
environment variable 660
/H option 659
IN option 659
running 659
running synchronously with the MS-DOS prompt 659
using 659
/W option 659

WX/WXServer
about dialog box 658
overview 657
setting request check interval with timer delay 658

WXServer

x

icon, hiding 658
running 657
using 657

(x), grouping 847, 854
x, repeat, regular expression syntax 845,847-849
Ix option, LINK 486
IX option, NMAKE 532
X command, Code View 399, 443
:x command, HELPMAKE 606
\{x\}, grouping, regular expression syntax 847
\(x), tagged expression 843
\(x\), tagged expression 847
x#, repeat, syntax 845, 852
x*, repeat, syntax 843,845,847,852
x+, repeat, syntax 843, 845, 852
x@, repeat, syntax 845
x"n, 845, 853
XMS
See also Extended memory manager

defined 872
Keepmem switch, PWB 265
server defined 872

(x!y!z!) alternation 854
xyz thing, alternation, syntax 843, 845, 847

928 Index

v
:y command, HELPMAKE 606
YeHow color value 254

z
:z command, HELPMAKE 606
z, unsigned integer, predefined expression syntax 844,

846,851
/Zd option

CL 296, 385-386
ML 296

IZd option, CL
and ICO option, LINK 473
and /LINE option, LINK 478

/Zi option
CL 296, 385-386
ML 296

/Zi option, CL
and ICO option, LINK 473
and /LINE option, LINK 478

/Zn option and BSCMAKE 6i6
/ZS option and BSCMAKE 616

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

"" II 1111 I III * 3 5 7 5 1 *

