
Microsoft. Mouse
Programmer's Reference Guide

Microsoft® Mouse
Programmer's Reference Guide

Microsoft Corporation

for IBM® Personal
Computers and
Compatibles

Information in this document is subject to change
without notice and does not represent a commitment on
the part of Microsoft Corporation. The software
described in this document is furnished under a license
agreement. The software may be used or copied only in
accordance with the terms of the agreement.

©Copyright Microsoft Corporation, 1986

If you have comments about this documentation or the
software it describes, complete the Problem Report at
the back of this manual and return it to Microsoft.

Microsoft® and the Microsoft logo are registered trade
marks, and InPortTM is a trademark, of Microsoft Cor
poration.
IBM® is a registered trademark of International Business
Machines Corporation.
Turbo Pascal® is a registered trademark of Borland
International, Inc.
HerculesTM is a trademark of Hercules Computer Tech
nology.
WordStar® is a registered trademark of MicroPro In ter
na tional Corporation.

Document Number 990973002-600-ROO-1186
Part Number 000-099-158

Contents

About This Guide vii
PREADME.DOC vii
Product Support VIU
Microsoft Software License Agreement Addendum IX
Disclaimer of Warran ty ix

Creating Mouse Menus

1 Creating Your Own Mouse Menu 1-1
Mouse Menu Language 1-1
Statement Format 1-2

Labels 1-3
Parameters 1-3
Comments 1-7

Mouse Menu Program Structure 1-7
Mouse Event Statements (BEGIN, ASSIGN) 1-8
Menu Subroutine Statements (MENU, OPTION, MEND) 1-9
Popup Subroutine Statements (POPUP, TEXT, SELECT, PEND) 1-10
Action Statements (EXECUTE, TYPE, NOTHING) 1-14
String Match Statement (MATCH) 1-16

Creating a Mouse Menu 1-18
Running a Mouse Menu Program 1-21

2 Mouse Menu Language Statements 2-1
ASSIGN 2-2

Description 2-2
Parameters 2-2

BEGIN 2-4
Description 2-4
Parameters 2-5

EXECUTE 2-7
Description 2-7
Parameters 2-7

MATCH 2-8
Description 2-8
Parameters 2-8

MENU ... MEND 2-11
Description 2-11
Parameters 2-12

NOTHING 2-14
Description 2-14

OPTION 2-15
Description 2-15

I iv Contents

Parameters 2-15
POPUP ... PEND 2-16

Description 2-16
Parameters 2-16

SELECT 2-19
Description 2-1 9
Parameters 2-19

TEXT 2-21
Description 2-21
Parameter 2-21

TYPE 2-22
Description 2-22
Parameters 2-22

3 Sample Mouse Menu Programs 3-1
SIMPLE Mouse Menu Program 3-1

SIMPLE Mouse Men u Source Program 3-2
DOSOVRLY Mouse Menu Program 3-2

DOSOVRL Y Mouse Men u Source Program 3-3

4 Mouse Menu Messages 4-1

Designing Mouse Interfaces

5 The Mouse Interface 5-1
Screen Modes 5-1
The Virtual Screen 5-2
Graphics and Text Cursors 5-4

Graphics Cursor 5-4
Software Text Cursor 5-6
Hardware Text Cursor 5-8

Mouse Buttons 5-9
Mouse Unit of Distance: The Mickey 5-9
The Internal Cursor Flag 5-10

6 Mouse Function Descriptions 6-1
Mouse Functions 6-2
Function 0: Mouse Reset and Status 6-4
Function 1: Show Cursor 6-6
Function 2: Hide Cursor 6-7
Function 3: Get Button Status and Mouse Position 6-8
Function 4: Set Mouse Cursor Position 6-9
Function 5: Get Button Press Information 6-10
Function 6: Get Button Release Information 6-11
Function 7: Set Minimum and Maximum Horizontal Cursor Position 6-12
Function 8: Set Minimum and Maximum Vertical Cursor Position 6-13
Function g: Set Graphics Cursor Block 6-14
Function 10: Set Text Cursor 6-16
Function 11: Read Mouse Motion Counters 6-17
Function 12: Set Interrupt Subroutine Call Mask and Address 6-18

Function 13: Light Pen Emulation Mode On 6-21
Function 14: Light Pen Emulation Mode Off 6-22
Function 15: Set Mickey /Pixel Ratio 6-23
Function 16: Conditional Off 6-24
Function 19: Set Double-Speed Threshold 6-26
Function 20: Swap Interrupt Subroutines 6-27
Function 21: Get Mouse Driver State Storage Requirements 6-30
Function 22: Save Mouse Driver State 6-31
Function 23: Restore Mouse Driver State 6-32
Function 29: Set CRT Page Number 6-33
Function 30: Get CRT Page Number 6-33

7 Making Mouse Function Calls 7-1
Making Calls from the BASIC Interpreter 7-2
Making Calls from Assembly-Language Programs 7-3
Making Calls from High-Level-Language Programs 7-6

Making Calls from Microsoft QuickBASIC 7-7
Making Calls from Microsoft Pascal 7-10
Making Calls from Microsoft FORTRAN 7-13
Making Calls from Microsoft C 7 -14

Piano Program Listing 7 -16
Sample Cursors 7-23

Standard Cursor Shape 7 -24
Up Arrow 7-25
Left Arrow 7-26
Check Mark 7-27
Pointing Hand 7-28
Diagonal Cross 7 -29
Rectangular Cross 7 -30
Hourglass 7 -31

8 Writing Mouse Programs for IBM EGA Modes 8-1
The EGA Register Interface Library 8-1

How the Interface Library Works 8-1
How to Call the EGA Register Interface Library 8-2

Making Calls from Assembly-Language Programs 8-2
Making Calls from High-Level-Language Programs 8-3

Restrictions on Use of the EGA Register Interface Library 8-6
Calls to BIOS ROM Video Routines 8-6

EGA Register In terface Functions 8-8
Function FO: Read One Register 8-9
Function Fl: Write One Register 8-11
Function F2: Read Register Range 8-13
Function F3: Write Register Range 8-15
Function F 4: Read Register Set 8-17
Function F5: Write Register Set 8-19
Function F6: Revert to Default Registers 8-21
Function F7: Define Default Register Table 8-22
Function FA: Interrogate Driver 8-24

Contents v I

I vi Contents

Appendix A Mouse Command Line Switches A-I
Control Panel Switches A-I
Mouse Driver Switches A-3

Specifying Mouse Sensitivity A-4
Setting the Interrupt Rate for the InPort Mouse A-4
Specifying the Type and Location of the Mouse A-4
Disabling or Removing the Mouse Driver A-5

Appendix B Linking Existing Mouse Programs with MOUSE.LIB B-1
Appendix C Making Calls from Borland Turbo Pascal Programs C-l

Appendix D Using the Hercules Graphics Card with Mouse
Programs D-l

Index 1-1

About This Guide

By now you're probably enjoying the convenience of the
Microsoft® Mouse with the applications and the Micro
soft Expert Mouse Menus that were included in your
mouse package. This guide explains how you can create
your own Mouse Menu programs for applications, as well
as design a mouse interface for applications that you
write yourself. It assumes that you have done some pro
gramming, understand basic program design concepts,
and are familiar with the operation of the Microsoft
Mouse.
This guide has two main parts:

• Creating Mouse Menus explains how to create a
Mouse Menu program that allows you to use the
Microsoft Mouse with an application that doesn't
have built-in mouse support .

• Designing Mouse Interfaces explains how to build
mouse support directly into one of your own applica
tions.

In addition, four appendices give you technical informa
tion about the mouse command line switches, linking
existing mouse programs with version 6.0 of the Micro
soft Mouse Library, using the mouse with Borland Turbo
Pascal programs, and using the Hercules Graphics Card
wi th mouse programs.

PREADME.DOC

The Microsoft Mouse Tools disk that came with this
guide may include a file named PREADME.DOC. Read
this file for information that became available after this
guide was printed.

IViii

Product Support

If you have a question about designing a mouse menu or
mouse interface and can't find the answer in this guide,
call our Prod uct Support staff by dialing the telephone
number on the registration card that came with the
Mz'crosoft Mouse Programmer's Reference Guz'de. They
will be ready to give you the help you need in order to
use the Microsoft Mouse with many applications.
When you call, please have the following information at
hand:

• The product number on the Microsoft Mouse Tools
disk

• The Mz'crosoft Mouse Programmer's Reference Guz'de

• Your Microsoft Mouse type
• Your system configuration

Microsoft Software License
Agreement Addendum

DISTRIBUTION OF MICROSOFT
MOUSE LIBRARY

Microsoft grants you the royalty-free right to repro
duce and distribute the Mouse Library provided that
you (a) distribute the Mouse Library only in conjunc
tion wIth and as part of your own software product;
(b) do not use Microsoft's name, logo, or trademarks
to market your software product; (c) include
Microsoft's copyright notice for the Library on your
product label and as part of the sign-on message for
your software product; and (d) otherwise comply with
the Microsoft License Agreement and this Addendum.
The "Mouse Library" consists of the files described as
"MOUSE.LIB", "OLDMOUSE.LIB", and "EGA. LIB" .
If you distribute any portion of the Mouse Library,
you agree to indemnify, hold harmless, and defend
Microsoft from and against any claims or lawsuits,
including attorney's fees, that arise or result from
such distribution.

Disclaimer of Warranty

USE OF MICROSOFT MOUSE
EXAMPLE SOURCE CODE

Your compilation of the source code included on the
Microsoft Mouse Tools disk and/or described in this
guide, and your su bsequen t use of the resultant pro
grams, constitutes your acceptance of all results,
intended or otherwise, of such use. The source code is
meant solely as an example, and Microsoft does not
warrant, guarantee, or otherwise make any claim con
cerning the usability or functionality of the programs
defined by the source code.

About This Guide ix I

Mouse Menus

Creating Mouse Menus

This section explains how to use the ~10use Menu pro
gramming language to create your own mouse menus for
a pplica tions.
Chapter 1, "Creating Your Own Mouse Menu," gives an
overview of the Mouse Menu programming language and
explains how to create and run a Mouse Menu program.
Chapter 2, "Mouse Menu Language Statemen ts,"
explains in detail how to use each of the Mouse Men u
language statements.
Chapter 3, "Sample Mouse Menu Programs," provides
the listings for two Mouse Menu programs that are both
good examples for designing mouse menus and useful pro
grams you may wan t to use yourself.
Chapter 4, "Mouse Menu Messages," lists the messages
that the Mouse Menu programs can display, along
with descriptions of possible causes and actions you
should take.

1 Creating Your Ow n Mouse
Menu

This chapter provides background information that
you'll need before you create a Mouse Menu program.
It includes:

• An overview of the Mouse 11enu programming
language

• A description of program statements and their
components

• Descriptions of the various types of subroutines
• A discussion of how statements and subroutines are

combined to form a Mouse Menu program

Once you're familiar with how a Mouse Menu program is
put together, follow the procedure in "Creating a Mouse
Menu" at the end of this chapter to create a working
mouse menu.

Note Mouse menus cannot be used with programs that
use graphics display modes or that have built-in mouse
support.

Mouse Menu Language

The Mouse Men u programming language consists of 13
commands. These commands are used in statements,
which assign different functions to the mouse, simulate
pressing keys, and create menus.
The following table lists the commands in the Mouse
Menu programming language:

Creating Mouse Menus

Command

ASSIGN
BEGIN
EXECUTE

MATCH

MENU
MEND
NOTHING

OPTION

POPUP
PEND
SELECT

TEXT

TYPE

Purpose

Assigns new values for the mouse.
Assigns initial values for the mouse.
Specifies a sequence of sta temen ts exe
cuted when the mouse is moved, a mouse
button is clicked, or a menu item is
chosen.
Specifies the action taken when a unique
string of characters is displayed at a
specific location on the screen.
Begins a Menu subroutine.
Ends a Menu subroutine.
Indicates that no action is taken. An
alternative to the EXECUTE, TYPE,
and MATCH sta temen ts.
Defines an item in a Menu subroutine
and the action taken when the item is
selected.
Begins a Popup subroutine.
Ends a Popup subroutine.
Defines the action taken when an item is
selected in a popup menu.
Defines the text for a popup menu title
or menu items.
Specifies a key or keys typed when the
mouse is moved, a mouse button is
clicked, or a menu item is chosen.

Statement Format

You can enter statements in the Mouse Menu program-.
ming language in uppercase or lowercase letters. Most
statements have the following format:

[label:] command [parameters ;comments]

The BEGIN statement and statements within Menu and
Popup subroutines don't use this format because they
don't require labels-BEGIN doesn't need a label because
it's always the first statement in a program; statements
within subroutines don't need labels because the program
executes them sequentially.

The components of a state men t are described next.

Creating Your Own Mouse Menu 1-31

Labels

A label is the name you give a statement. For example, in
the following statement "matl" is the label of the
MATCH statement:

mati: MATCH 23"INVERSE,"FORMAT",execi,exec2

A label allows the program to execute statements in a
different order than the order in which they appear.
When using labels, follow these rules:

• A statement's label must begin with a letter and be
followed by a colon (:).

• Put at least one space between the colon and the
command.

• Do not use command names or the words BACKSPACE,
ENTER, ESCAPE, or TAB for labels.

• Use any printable standard ASCII characters except
for a colon.

• Use labels that suggest what the statement does in the
program. For example, use "menul" as the label for
the first Menu subroutine.

Parameters

A parameter is a variable tha t affects the action of the
statement. Generally, when you use the statement, you
m list substitute an appropria te value for each param
eter. All statements except NOTHING, MEND, and
PEND have parameters.
Parameters come after the command word in a state
ment. Put a space between the command word and the
first parameter. Commas must separate any parameters
after the first one.
The EXECUTE and TYPE statements allow a variable'
number of parameters. These statements can have from 1
to 31 parameters. Other statements have a set number of
parameters. If you don't want to use a parameter but
want to use the parameters that follow, include an addi
tional comma to hold the place of the unused parameter.

Creating Mouse Menus

Numeric
parameters

String
parameters

Display attribute
parameters

1.1 Effects of Attribute
Parameters

For example, in the following statement, "23",
"INVERSE", "FORMAT", "exec1", and "exec2" are the
values of MATCH statement parameters. The two com
mas (,,) indicate that the second parameter is not used:

matl: MATCH 23"INVERSE,"FORMAT",execl,exec2

The program automatically ,uses a specific value (the
default value) for any parameter that is left out of a
statem'ent that has a set number of parameters.
Th'e Mouse Menu programming language uses three types
of parameters: numeric parameters, string parameters,
and attribute parameters.
Numeric parameters are used for numeric data, such as
screen coordinates or movement-sensitivity values for the
mouse. As the name suggests, you must use a number for
a numeric parameter.
In the preceding example, "23", the row coordinate
for the MATCH statement, is the value of a numeric
parameter.
Most string parameters specify text for menus or mes
sages. Use a string of digits, letters, special characters, or
spaces for a string parameter.
In the example above, "FORMAT", the string that the
MATCH statement looks for, is the string parameter.
A display attribute parameter specifies how a menu or
message box appears on the screen. This parameter can
have one of four values: "normal", "bold", "inverse", or,
if your system uses a color display adapter and monitor,
a number that designates specific foreground and back
ground colors. Figure 1.1 shows how the values "normal",
"bold" , and "inverse" affect the text displayed by a
popup menu.

Normal Bold

BASI C Commands

-;;II;;I;'4I11M
List
Run
Load

Inverse

Creating Your Own Mouse Menu 1-51

If you do not specify an attribute parameter, the default
attribute is used. The default attributes are included in
the description of each statement in Chapter 2, "Mouse
Menu Language Statements."
If your system uses a color display adapter and color Color menus
monitor, you can use the attribute parameter in a state-
men t to specify particular colors for the background and
foreground of a menu or message box. Text is displayed
in the foreground color; the rest of the box is displayed in
the background color.
The table on the next page lists the background and fore
ground colors available, and gives a corresponding value
for each. (The exact shades of colors may vary somewhat
on different equipment.) The value for a particular color
differs depending on whether the color is being used for
the foreground or background. The display attribu te that
specifies a particular color combination is the sum of the
values for the desired foreground and background colors.

Note If you specify a display attribute value greater
than 127, the foreground color will blink when the menu
or message box is displayed.

11-6 Creating Mouse Menus

Foreground and
background
color values

Color Foreground Background

Black 0 0
Blue 1 16
Green 2 32
Cyan (blue-green) 3 48
Red 4 64
Magenta 5 80
Brown 6 96
White 7 112
Gray 8 128
Light Blue 9 144
Light Green 10 160
Light Cyan 11 176
Light Red 12 192
Ligh t Magen ta 13 208
Yellow 14 224
White (high intensity) 15 240

If you want green text on a blue background, the value
of the attribute parameter would be 18. The value for a
green foreground is 2, and the value for a blue back
ground is 16; add these two values together to get the
final value of 18.
Specifying a value of 7 is equivalent to specifying
the attribute parameter "normal". The value 7 is the
sum of 0, the value for a black background, and 7, the
value for a white foreground. Similarly, you can specify
a "bold" menu by specifying the attribute value 15, and
an "inverse" menu by specifying the value 112. "Bold"
uses high-intensity white for the foreground (15) and
black for the background (0); "inverse" uses black for
the foreground (0) and whIte for the background (112).

Note A gray background (128) looks the same as a
black background (0).

Creating Your Own Mouse Menu 1-71

Comments

Comments describe what a statement does. Comments
have no effect on how the statement is executed. They
are used only to help you read and understand the
program.
You can insert comments at the end of a statement or on
a separate line. Precede a comment with a semicolon (;).
If you include comments on the same line as the state
ment, separate the last parameter of the statement and
the semicolon preceding the comments with a space.

Mouse Menu Program Structure

There are five types of statements in a Mouse Menu
source program:

• Mouse Event Statements: BEGIN, ASSIGN
Define what action is taken when a mouse event
occurs (such as clicking a mouse button)

• Menu Subroutine Statements: MENU, OPTION,
MEND
Create single-column popup menus

• Popup Subroutine Statements: POPUP, TEXT,
SELECT, PEND
Create multiple-column menus and message boxes

• Action Statements: EXECUTE, TYPE, NOTHING
Perform an action as a result of a Mouse Event, Menu
Subroutine, or String Match Statement

• String Match Statement: MATCH
Executes other sta tements depending on wha t is
displayed on the screen

The following sections describe how each statement type
is used in a Mouse Menu source program. (For specific
information about statements and their parameters, see
Chapter 2, "Mouse Menu Language Statements.")

11-8 Creating Mouse Menus

BEGIN
statement

ASSIGN
statement

Mouse Event Statements (BEGIN, ASSIGN)

Mouse Event statements specify which statements the
program executes when the user clicks a mouse button or
moves the mouse.
Use the BEGIN statement to specify the initial state
ments executed when particular mouse events occur and
to set the initial mouse sensitivity. Always use BEGIN as
the first statement in your program.
There are three types of parameters in the BEGIN
statement:

• Button Parameters:
lfbtn Left bu tton
rtbtn Righ t bu tton
btbtn Both buttons

Define the action taken when one or both mouse but
tons are pressed

• Movemen t Parameters:
lfmov Mouse left
rtmov Mouse right
upmov Mouse up
dnmov Mouse down

Define the action taken when the mouse is moved. The
cursor keys aTe often assigned to the mouse movement
parameters in a TYPE statement.

• Movement Sensitivity Parameters:
hsen Horizontal movement sensitivity
vsen Vertical movement sensitivity

Define how much the mouse must move (in mickeys,
the unit of mouse movement) before the cursor moves.
This is helpful in tailoring cursor movement to the
different column and row widths found in spreadsheet
programs. (For more information on mickeys, see
Chapter 5, "The Mouse Interface.")

Use the ASSIGN statement to assign new values to
mouse events or mouse sensitivity. ASSIGN is useful if
you want to execute different statements or subroutines
depending on the mode of an application program or on
other conditions that require the mouse to be used
differen tly.

Creating Your Ow n Mouse Menu 1-9 I

Menu Subroutine Statements
(MENU, OPTION, MEND)

Menu subroutines create single-column popup menus.
Single-column menus are bordered menus with a single
column of menu items. (Figure 1.1, earlier in this chapter,
shows examples of single-column menus.) The user
chooses items in the menu by moving the mouse pointer
to the desired item, then clicking either mouse button. If
the user clicks both mouse buttons at once, the equiva
lent of a NOTHING statement is executed and the menu
disa ppears.
Menu subroutines use this format:

label: MENU ["title",row,column,attribute]
OPTION ["text",pointer]

MEND

A Menu subroutine begins with a MENU statement that
specifies:

• The menu's title, enclosed in double quotation marks
• The row and column of the screen where the upper-left

corner of the menu will appear
• The menu's display attribute (for more information,

see "Parameters" earlier in thIS chapter)

OPTION statements specify the menu items and action
when an item is chosen. At least one OPTION statement
should be included in each Menu subroutine as an exit
point from the menu.
The pointer parameter is the label of the statement
that is executed when the user chooses that menu item.
If no pointer parameter is specified, the equivalent of a
NOTHING statement is executed when that item is
chosen and the menu disappears.

MENU
statement

OPTION
statement

11-10 Creating Mouse Menus

MEND
statement

Sample Menu
subroutine

A MEND (or "menu end") statement always follows the
last OPTION statement to end the Menu subroutine.

This sample Menu subroutine produces the "Inverse
Attribute" menu shown in Figure 1.1:

menul: MENU
OPTION
OPTION
OPTION
OPTION
MEND

Fl: TYPE 0,59
F2: TYPE 0,60
F3: TYPE 0,61

tlBASIC Commands tl ,5,20
tlCancel Menu tl
tlList tl ,Fl
tlRuntl,F2
tlLoad tl ,F3

;simulate pressing the F1 key
;simulate pressing the F2 key
;simulate pressing the F3 key

The menu produced by this subroutine appears at row 5,
column 20. Because no attribute was specified, inverse
screen characteristics (the default attribute) are used.
When the menu appears on the screen, the cursor bar is
always on the first menu item (in this case, "Cancel
Menu").
If the user chooses "Cancel Menu" , the menu disappears
because no pointer parameter is specified for that
OPTION statement. If the user chooses any other item,
the statement identified in the pointer parameter for that
OPTION statement is executed.

Popup Subroutine Statements
(POPUP, TEXT, SELECT, PEND)

Popup subroutines are used to create more complex
men us or message boxes.
Multiple-column menus are used in the same way
as single-column menus: the user chooses items by
moving the mouse pointer to the item, then clicking
either mouse button. Clicking both mouse buttons at
once removes the menu from the screen. When the menu
first appears on the screen, the highlight is always over
the first menu item.

Creating Your Own Mouse Menu 1-11 \

Figure 1.2 shows a sample multiple-column menu:

Message boxes are simply popup menus that display
messages instead of menu items. You can combine Popup
subroutines with MATCH statements so that message
boxes appear when the program mode changes, or when
other conditions cause the screen display to change.
Figure 1.3 shows a sample message box:

Popup subroutines for multiple-column menus and mes
sage boxes use the following forma t:

label: POPUP [row,column,attribute1
[TEXT ["text string"]]

SELECT [row,col,width,pointer1

PEND

1.2 Multiple-Column
Menu

1.3 Message Box

Popup
subroutine
format

11-12 C,-ea ling Mouse Menus

POPUP
statement

TEXT
statements

SELECT
statements

PEND
statement

Each Popup subroutine begins with a POPUP statement
tha t specifies:

• The row and column of the menu's top-left corner
• The menu's display attribute. For more information

on display attribu tes, see "Parameters" earlier in this
chapter.

Use TEXT statements to specify the menu title and
menu items. Type in the title text, item text, and menu
borders exactly as they'll appear on each line of the
menu, and enclose them in double quotation marks. You
can include ASCII graphics characters, such as "=" or
"I", in the borders or item text.
The text will be located on the screen relative to the
coordinates you specify in the POPUP statement.
Use SELECT statements to define:

• The areas in which the user can choose each menu
item. Specify the row, column, and width of the selec
tion area, relative to the menu's top-left corner. T10
relative coordinates of the top-left corner of the popup
menu are "1,1".

• The sta tement that is executed when the user chooses
an item. As with the OPTION statement for a single
column menu, you specify the label of the statement
that is executed.

You must include at least one SELECT statement in
each Popup subroutine as an exit point.

A PEND (or "popup end") statement always follows the
last SELECT statement to end the Popup subroutine.

Creating Your Own Mouse Menu 1-131

This sample Popup subroutine creates the multiple
column menu shown earlier, in Figure 1.2:

movmen: popup 2,1
text " ======= CURSOR MOVEMENT ======= "
text "I Cancel menu Top of screen I"
text "I Screen up Bottom of scrn I"
text "I Screen down Start of file I"
text" I Previous place End of file I"
text " =============================== "
select 2,3,15
select 3,3,15,keyctrlr
select 4,3,15,keyctrlc
select 5,3,15,keyctrlqp
select 2,16,15,keyctrlqe
select 3,16,15,keyctrlqx
select 4, 16, 15,keyctrlqr
select 5,16,15,keyctrlqc
pend

In this example, the top-left corner of the menu will be
at row 2, column 1. Because no attribute parameter is
specified, the menu will be displayed using the inverse
display attribute.
The TEXT statements specify the menu items and their
locations relative to the top-left corner. The first item
starts at "relative" row 2, column 3 in the menu, but its
actual coordinates are row 3, column 3. ASCII graphics
characters are used to create solid menu borders.
When the men u appears on the screen, the first item (in
this case, "Cancel menu") is highlighted.
The SELECT statements define the item selection
areas. In the first item ("Cancel menu"), "2, 13, 15"
define the row, column, and width of the selection
area, respectively. Because the SELECT statement for
"Cancel menu" does not specify a label for the pointer
parameter, the menu will be cleared from the screen if
the user chooses "Cancel menu." The other SELECT
statements execute the statements named in their pointer
parameters.

Sample Popup
subroutines

11-14 Creating Mouse Menus

EXECUTE
statement

The following sample Popup subroutine creates the mes
sage box shown in Figure 1.3:

mousehlp: popup 2,1
text =============== MOUSE HELP =================== II

text I I"
text I Left button - Displays Edit/Block menu I"
text I Right button - Displays Cursor movement menu I"
text I Both buttons - Displays Edit/File menu I"
text I I"
text I Moving the mouse up, down, left, or right will I"
text I cause the cursor to move in that direction. I"
text" I I"
text II == II

select 1,18,10
pend

The POPUP statement defines row 2, column 1 as the
top-left-corner coordinates. Because no attribute param
eter is specified, "inverse" will be used.
The TEXT statements define the message box border and
the message text. The single SELECT statement defines
an exit point for the menu. Because the message box has
only one SELECT statement, the user cannot move the
cursor within the message box.

Action Statements
(EXECUTE, TYPE, NOTHING)

Action statements specify what action is taken when the
user chooses a menu item, clicks one or both buttons, or
moves the mouse.
Use the EXECUTE statement to define a series of state
ments that will be executed when:

• The user clicks one or both mouse buttons
• The user chooses a menu item
• The user moves the mouse
• A MATCH statement is executed (see the next section,

"String Match Statement")

Use statement labels to specify the statements that
the EXECUTE statement will carry out. You can spec
ify up to 31 labels for each EXECUTE statement. An

Creating Your Own Mouse Menu 1-151
EXECUTE statement can carry out another EXECUTE
statement to increase the number of statements that are
carried out. You can link up to 31 EXECUTE statements
in this manner.
Here is a sample EXECUTE statement with five labels:

execl: EXECUTE dsk,s,a,s,exec4

This statement executes the statements labeled "dsk",
"s", "a", "s", and "exec4".
Use the TYPE statement to simulate pressing keys on
the keyboard. For example, the following TYPE state
ment simulates pressing the a key:

keyl: TYPE "a"

The following TYPE statement simulates typing the
diskcopy a: b: command and pressing the ENTER key:

key15: TYPE "diskcopy a: b:",enter

You can indicate which key or sequence of keys is simu
lated in one of three ways:

• Use its key name, or a sequence of key names, enclosed
in double quotation marks (for example, "A").

• Use the ASCII code for the character on the key
(for example, 65 for "A"). You can use extended
ASCII codes, ASCII control characters, and extended
keyboard scan codes to simulate special keys or key
sequences, such as ALT, CONTROL-Q, spacebar, and
arrow keys. (See the IBM BASIC manual for a list of
ASCII codes. For a list of ASCII control characters
and extended keyboard scan codes, see "TYPE" in
Chapter 2, "Mouse Menu Language Statements.")

• Use its sxmbolic name. The predefined symbolic keys
are "enter", "tab", "backsp", and "esc".

TYPE
statement

11-16 Creating Mouse Menus

NOTHING
statement

Here are sample TYPE statements. The comments indi
cate which key(s) each statement simulates.

Label Code Comments

dir: TYPE "dir" ;type the command "dir"
a: TYPE "a:" ;type "a:"
If: TYPE 0,75 ;simulate the left arrow key
rt: TYPE 0,77 ;simulate the right arrow key
up: TYPE 0,72 ;simulate the up arrow key
dn: TYPE 0,80 ;simulate the down arrow key
s: TYPE 32 ;type a space
ent: TYPE enter ;simulate the ENTER key

The statements labeled "dir" and "a" simulate typing a
character string by enclosing the characters in double
quotation marks.
The next four statements define the arrow keys using
extended keyboard scan codes. The statement labeled
"s" sim ulates the spacebar by using the standard
ASCII code.
The statement labeled "ent" simulates pressing ENTER by
using the symbolic name for the key.
Use the NOTHING statement to specify that no action
is taken. Most often, this statement is used with other
statements when you want to disable a parameter.

String Match Statement (MATCH)

MATCH statements permit a 110use Menu program to
take different actions depending on what is displayed on
the screen.
A MATCH statement specifies a string of characters,
a row and column on the screen, and a display attribute.
If a line on the screen matches the specified string,
begins at the specified row and column, and appears in
the specified display attribute, then the program executes
a particular statement. This feature enables a Mouse
Menu source program to respond to different operating
modes of the application program or screen display.
For example, if an application program always displays
"COMMAND" on line 22 of the screen when it is in com
mand mode, and displays "ALPHA" in the same place
when it is in alphanumeric mode, you can use a MATCH
statement to take a different action depending on which
mode the application program is in.

Crea ling Your 0 w n Mouse Menu 1-171
A MATCH statement uses the following format:
MATCH row,column,attribute,string,match,nomatch

• The "row" and "column" parameters describe where
the "string" parameter must be located on the screen
for a match.

• The "attribute" parameter indicates how the string
must appear on the screen for a match. This param
eter can have one of the symbolic values "normal",
"bold" , or "inverse", or a decimal value that denotes
specific foreground and background colors. (For infor
mation on the attribute parameter, see "Parameters"
earlier in this chapter.) If the attribute parameter is
left blank or given the value of 0, all display attri
butes are matched.

• The "match" and "nomatch" parameters are the
labels of the statements to be executed if the match is
made or not made.

The following sample Mouse Menu source program shows
how a MATCH statement is used:

BEGIN menul,chna,ent,lf,rt,up,dn

chna: MATCH 4, 1, norma I , "A",ex20,ex19
chnb: MATCH 4,1, normal, "B",ex21,chna
chnc: MATCH 4,1, normal, "C",ex19,chna
ana: ASSIGN ,chna
anb: ASSIGN ,chnb
anc: ASSIGN ,chnc
ex19: EXECUTE cls,a,ent,ana ; change to A:
ex20: EXECUTE cls,b,ent,anb ; change to B:
ex21: EXECUTE cls,c,ent,anc ; change to C:
ent: TYPE enter
cIs: TYPE "cls",enter
a: TYPE "a:"
b: TYPE "b:"
c: TYPE "c:"

This program changes the active disk when the user
clicks the right mouse button. The program follows this
procedure:

Sample program
using MATCH
statements

11-18 Creating Mouse Menus

• When the user clicks the right mouse button, the
MATCH statement labeled "chna" checks row 4,
column 1 on the screen. If it finds an "A" in "normal"
display, it executes the statement labeled "ex20".

• The "ex20" statement clears the screen, changes
the active drive to "B:" and executes the statement
labeled "anb", which reassigns the right button
parameter to "chn b" .

• Now if the user clicks the right mouse button, the
MATCH statement labeled "chnb" checks row 4,
column 1 on the screen. If it finds a "B" in "normal"
display, it executes the statement labeled "ex21".

• The "ex2l" statement clears the screen, changes the
active drive to "C:" and executes the statement
labeled "anc", which reassigns the right button
parameter to "chnc".

• Now if the user clicks the right mouse button, the
MATCH statement labeled "chnc" checks row 4,
column 1 on the screen. If it finds a "c" in "normal"
display, it executes the statement labeled "ex19".

• The "exl9" statement clears the screen, changes
the active drive to "A:" and executes the statement
labeled "ana", which reassigns the right button
parameter to "chna". The program is now back to
step 1.

Creating a Mouse Menu

You should now be able to start writing Mouse Menu
programs. Follow the procedure below to create a source
file and then an executable Mouse Menu program file
from the source file.

Note The Microsoft Mouse Tools disk that came with
this guide includes Mouse Menu source files for some
commonly used applications that don't have built-in
mouse support (such as WordStar). Use the following
procedure to create mouse menus from these source files.

Creallng Your Own Mouse Menu 1-191

To create a mouse menu:

[i] Write the Mouse Menu program into a source file
using a text editor or word processing program. Save
the source file with the filename extension ".DEF".
This file is used by the MAKEMENU utility program
to generate an executable Mouse Menu program (a
.MNU file).
Be sure to save the source file as a standard ASCII
text file. Most simple editors save files in ASCII by
default, but when using a word processing program,
such as Microsoft Word, you usually need to select a
special "unformatted" option to get ASCII text.
If you want to create a mouse menu from one of the
source files included on the Microsoft Mouse Tools
disk, you can copy the source file and edit the copy to
meet your specific needs.

Note When a source file is converted t'o a .MNU file,
it must not exceed 57K.

Ii] Use the MAI(EMENU utility to create an executable
menu file from the source file.
To use MAI(EMENU, type makemenu and press
ENTER.

At the prompt, type the name of the source file
(without the" .DEF" extension), then press ENTER.

If your file has no errors, MAKEMENU displays this
message:

Conversion completed

and returns you to DOS. The mouse menu is ready to
be tested following the procedure given below.
If your file has errors, MAKEMENU displays the
types of errors and sta temen ts con taining the errors.
(For more information on error messages, see Chapter
4, "Mouse Menu Messages.") Correct the source pro
gram and repeat this procedure.

11-20 Creating Mouse Menus

Testing the
mouse menu

When the Mouse Menu source file has been translated
into an executable menu file, it is ready to be tested.

Note If, when you ran the Mouse Setup program, you
did not specify that the mouse driver should be loaded
automatically every time you start DOS, make sure you
type mouse to install the mouse driver before you start
your menu file.

To test the mouse menu:

IlJ Type menu <filename> at the DOS prompt and press
ENTER to start the Mouse Menu program. In this com
mand, <filename> is the name of the Mouse Menu
program file without the .MNU extension.
When the Mouse Menu file has been loaded, this mes
sage appears:

Menu installed

Ii] Start your application program and tryout the menu
to ensure that it works under all conditions in your
program.
If it doesn't work as desired, end the Mouse Menu pro
gram by typing menu off at the DOS prompt and
pressing ENTER.

This message is displayed:

Keyboard emulation off

Correct the source file, then run the MAKEMENU
utility program again.

Creating Your Own Mouse Menu 1-21 I

Running a Mouse Menu Program

Follow these steps to run a Mouse Menu program:

[!] Use t.he DOS COpy command to copy the executable
Mouse Menu CMNU) file and the MENU.COM file
onto the disk that contains the application program
with which you want to use the menu.

[g] Type menu <filename> to run the 110use Menu
program for the application. In this command,
<filename> is the name of the Mouse Menu program.

No Ie To start a Mouse Men u program that is not
in the current directory, include the path name of the
directory that contains the Mouse 11enu file. For more
information, see the PATH command in your DOS
manual.

When the Mouse Menu file has been loaded, the fol
lowing message appears:

Menu installed

[I] Run the application program according to the instruc-
tions in the program's documentation.

A Mouse Menu program runs independently of the
corresponding application program. You should end the
Mouse Menu program you're running and begin another
whenever you end one application and begin another.

To end the Mouse Menu program:

l!J Type menu off and press ENTER.

This message is displayed:

Keyboard emulation off

You can then load and run another Mouse Menu
program.

Ending a Mouse
Menu program

11-22 Creating Mouse Menus

Memory
allocation for
mouse menus

MENU.COM can allocate up to 57K of memory for a
Mouse Menu program. (The size of MENU.COM (7K)
plus the size of the .MNu file cannot exceed 64K.) If the
menu file is less than 6K, MENU.COM allocates 6K of
memory. If the menu file is greater than 6K, MENU.COM
alloca tes the exact size of the file.
Every time you start DOS, the first menu file you load
determines the amount of memory reserved for a menu
file. If you plan to use more than one mouse menu be
fore restarting your system, first load the .MNU file
that requires the greatest amount of memory so that
MENU.COM will have allocated enough memory to
hold each men u file.

2 Mouse Menu Language
Statements

This chapter describes in alphabetical order each of
the sta temen ts used by the Mouse Menu programming
language. Each statement description includes:

• The statement syntax
• A description of each parameter
• An example of how to use the statement

In the syntax diagram for each statement:

• The command word appears in capital letters.
• Labels appear in small letters. Each label must be

separated from the command word by a colon (:) and
a space.

• Parameters appear in small letters. Each parameter
must be separated from other parameters by a comma
(,). If a parameter is not used, the statement must
include an additional comma where the parameter
would have appeared. (For example, if the second
parameter in a statement is not used, the statement
would include two commas in a row (,,) after the first
parameter.)

• If a parameter appears in brackets ([]), it is optional.
If a parameter does not appear in brackets, it is
required. If a parameter appears in double quotation
marks (" "), the double quotation marks are required.

• If a parameter can appear more than once in a
statement, the second occurrence of the parameter is
enclosed in brackets and followed by an ellipsis (...).

Statem e nt syntax
conventions

12-2 Creating Mouse Menus

ASSIGN

label: ASSIGN rlfbtn 1
1
[rtbtn/,/btbtn], [lfmot], [rtmot],

[upmot],[dnmot ,[hsen , vsen]

Oesc ription

ASSIGN redefines one or more of the mouse parameters
given in the BEGIN statement or most recent ASSIGN
sta temen t. If a parameter val ue isn't specified in an
ASSIGN statement, the last parameter value given (in
either the BEGIN statement or another ASSIGN state
ment) is used. Statement labels are used for all param
eters except "hsen" and "vsen".
All ASSIGN statements must be labeled.

Parameters

lfbtn

rtbtn

btbtn

lfmot

rtmot

upmot

dnmot

hsen

vsen

New label of the first statement executed
when the user clicks the left mouse button.
New label of the first statement executed
when the user clicks the right mouse but
ton.
New label of the first statement executed
when the user clicks both mouse buttons at
once.
New label of the first statement executed
when the user moves the mouse to the left.
New label of the first statement executed
when the user moves the mouse to the
right.
New label of the first statement executed
when the user moves the mouse forward.
New label of the first statement executed
when the user moves the mouse backward.
New value of the horizontal movement
sensitivity parameter.
New value of the vertical movement sensi
tivity parameter.

Mouse Menu Language Statements 2-31
Example

BEGIN esc,ent,mml,lf,rt,up,dn

reassign: ASSIGN y,not""not,not,~6,18

In this example, the BEGIN statement assigns the
initial values of all button and movement parameters.
Because no values are specified for the sensitivity param
eters ("vsen" and "hsen"), the default values are used.
The ASSIGN statement changes the values of the left
button, right button, and up and down movement
parameters. (If "Not" were the label of a NOTHING
statement, the ASSIGN statement would disable any
response to clicking the right mouse button or moving
the mouse forward or backward.) It also changes the
value of "hsen" to 16 and the value of "vsen" to 18.
Commas are used for the parameters whose values
aren't changed.

12-4 Creating Mouse Menus

BEGIN

BEGIN [Ifbtn]'lrtbtn]" [btbtn], [lfmot], [rtmot], [upmot],
[onmot ,[hsenJ,[vsen]

Description

BEGIN defines what actions are taken when the mouse
is used. Because BEGIN is always the first statement in
a menu source file, it doesn't require a statement label.
The parameters for BEGIN define the statements to
be executed when the mouse buttons are clicked or the
mouse is moved. It also defines the movement sensitivity
for the mouse. All parameters are optional. If no value is
given for a button or mouse movement parameter, the
corresponding function is not used.

Note When a Menu subroutine is executed, the param
eters for BEGIN do not affect the mouse functions. Either
mouse button can be used to choose an item in a menu,
and all mouse movement functions are active.

Statement labels are required for all parameters except
the mouse movement parameters. These are the labels
of the statements that are executed when the event
governed by each parameter occurs.
The movement sensitivity parameters control the hor
izontal and vertical movement sensitivity of the mouse.
Movement sensitivity is the distance the mouse must
move (measured in mickeys, the unit of mouse move
ment) before the on-screen pointer moves. (For more
information about mickeys, see Chapter 5, "The Mouse
Interface.")

Mouse Menu Language Statements 2-51

Parameters

lfbtn

rtbtn

btbtn

lfmot

rtmot

upmot

dnmot

hsen

vsen

Label of the first statemen t executed when
the user clicks the left mouse button. If you
don't specify a label, nothing happens
when the user clicks the left mouse button.
Label of the first statement executed when
the user clicks the right mouse button. If
you don't specify a label, nothing happens
w hen the user clicks the right mouse bu t
ton.
Label of the first statement executed when
the user clicks both mouse buttons. If you
don't specify a label, nothing happens
when the user clicks both mouse buttons.
La bel of the first sta temen t executed when
the user moves the mouse to the left. If you
don't specify a label, nothing happens
when the user moves the mouse to the left.
Label of the first statement executed when
the user moves the mouse to the right. If
you don't specify a label, nothing happens
when the user moves the mouse to the
righ t.
Label of the first statement executed when
the user moves the mouse forward. If you
don't specify a label, nothing happens
when the user moves the mouse forward.
Label of the first statement executed when
the user moves the mouse backward. If you
don't specify a label, nothing happens
when the user moves the mouse backward.
Number between 0 and 32767 that defines
how many mickeys the mouse must move
vertically before the on-screen pointer
moves. If 0 is specified, the mouse is dis
abled horizontally. If no value is specified,
the default value of 4 mickeys is used. (One
mickey is approximately 1/200 inch.)
Number between 0 and 32767 that defines
how many mickeys the mouse must move
vertically before the on-screen pointer
moves. If 0 is specified, the mouse is dis
abled vertically. If no value is specified, the
default value of 8 mickeys is used.

Creating Mouse Menus

Exam pie

BEGIN ent,esc"lf,rt,up,dn

1 f: TYPE 0,75 ; simulate the left cursor key
rt: TYPE 0,77 ; simulate the right cursor key
up: TYPE 0,72 ;simulate the up cursor key
dn: TYPE 0,80 ; simulate the down cursor key
esc: TYPE ESC ; simulate the Esc key
ent: TYPE ENTER ;simulate the enter key

The BEGIN statement in this example gives initial
values for all parameters except "btbtn", "hsen", and
"vsen" . Because "btbtn" isn't specified, nothing happens
when the user clicks both mouse buttons. Because no
values are given for "hsen" and "vsen", the default
values are used (4 and 8 mickeys, respectively).

Mouse Menu Language Statements 2-71

EXECUTE

label: EXECUTE statement[,statement ...]

Description

EXECUTE can carry out other statements when one of
the following events occurs:

• A menu item is selected
• The mouse is moved
• One or both mouse bu ttons are clicked
• A MATCH statement is executed

Each EXECUTE statement may specify up to 31
other statements to be executed. EXECUTE can call
other EXECUTE statements to increase the number even
further; up to 31 EXECUTE statements can be linked in
this manner. Statements within an EXECUTE statement
are executed sequentially, starting with the first state
ment.

Parameters

label

statement

Example

dir: TYPE
s: TYPE

a: TYPE
ent: TYPE

Name of the EXECUTE statement. All
EXECUTE statements must be labeled.
Name(s) of the statement(s) to be executed.
Any labeled statement can be used. (Using
the calling statement may cause an endless
loop.)

"dir" ; type dir
32 ;simulate the spacebar

. " " may also be used
"A:" ; type A:
ENTER ;simulate the ENTER key

exec4: EXECUTE dir,s,a,ent

The EXECUTE statement labeled "exec4" executes the
statements labeled "dir", "s", "a", and "ent". These
statements simulate typing dir A: and pressing ENTER.

12-8 Creating Mouse Menus

MATCH

label: MATCH row,column,attribute,string,match,
nomatch

Desc ription

MATCH executes other statements or subroutines
depending on whether or not it finds a specified string
in a given screen location.
Values for the row and column parameters are given in
absolute screen coordinates. The starting coordinates for
the screen are in the upper-left corner of the screen (row
1, column 1).

Parameters

label

row

column

attribute

Name of the MATCH statement. All
MATCH statements must be labeled.
A number that specifies the row of the first
character of the match string. If no value
is specified, row 1 is assigned.
A number that specifies the column of the
first character of the match string. If no
value is specified, column 1 is assigned.
A value that specifies how the match
string must appear on the screen for a
match to occur. This can be one of the
symbolic values "normal", "bold", or
"inverse" , or a decimal value that denotes
specific foreground and background colors.
(For more information, see "Parameters"
in Chapter 1, "Creating Your Own Mouse
Menu.") If the attribute parameter is left
blank or given the value of 0, the MATCH
statement matches any attribute value.

string

match

nomatch

Example

Mouse Menu Language Statements 2-91

The string to match. This can be any
string of up to 255 ASCII characters
enclosed in double quotation marks (" ").
You must specify the string parameter.
Label of a statement or subroutine exe
cuted if the string is matched. This label
must be present in the program.
Label of a statement or subroutine exe
cuted if the string is not matched. This
label must be present in the program.

BEGIN leftb,rightb,bothb,mousel,mouser,mouseu,moused,16,40

leftb: MATCH 1,12,normal,"e",imen,chk33
chk33: MATCH 1,12,,"n",imen,chkl
chkl: MATCH 1,11,,":",emen,not

imen: POPUP 2,1

PEND

emen: POPUP 2,1

PEND
not: NOTHING

This sample from the WS.DEF menu source file checks
whether WordStar is displaying the BEGINNING MENU
or the MAIN MENU.
When the user clicks the left mouse button:

• The MATCH statement labeled "leftb" looks for an
"e" at row 1, column 12. This is the first character in
the string "editing no file" , which is on the screen in
that position if WordStar version 3.2 is displaying the
BEGINNING MENU.

12-10 Crea ling Mouse Menus

If "leftb" finds the "e" in that position, it executes
the statement labeled "imen". (In WS.DEF, "imen"
displays the NO-FILE popup menu for WordStar.)
If "leftb" doesn't find the "e" in that position, it exe
cutes the statement labeled "chk33" .

• The "chk33" statement looks for the letter "n" at row
1, column 12. This is the first character in the string
"not editing" , which is on the screen in that position if
WordStar version 3.3 is displaying the BEGINNING
MENU.
If "chk33" finds the "n" in that position, it executes
the statement labeled "imen". (In WS.DEF, "imen"
displays the NO-FILE popup menu for WordStar.)
If "chk33" doesn't find the "n" in that position, it
executes the statement labeled "chkl" .

• The "chkl" statement looks for a colon (:) after the
disk drive identifier in the first line of the WordStar
MAIN MENU display.
If "chkl" finds a colon, it executes the statement
labeled "emen". (In WS.DEF, "emen" displays the
EDIT /BLOCK popup menu.)
If "chkl" doesn't find a colon, the menu program does
nothing.

Mouse Menu Language Statements 2-11 I

MENU ... MEND

label: MENU ["title"], [row], [column], [attribute]

MEND

Description

The MENU statement is the first statement in a Menu
subroutine. A Menu subroutine creates a single-column
popup menu. (For an ex-
ample of the format of a Menu subroutine, see "Menu
Sub- routine Statements" in Chapter 1, "Creating Your
Own Mouse Menu.")
Menus created with a Menu subroutine are bordered,
single-column menus. The specific dimensions of a menu
are determined by the number of items in a menu and the
largest number of characters in either the longest menu
item or the menu title.
When the menu is displayed, the first menu item (if any)
is highlighted. The user chooses any menu item by mov
ing the mouse until that item is highlighted, then clicking
either mouse button. If the user clicks both mouse but
tons, the equivalent of a NOTHING statement is exe
cuted and the menu disappears.
The MEND ("menu end") statement indicates the end of
a Menu subroutine. Each Menu subroutine must have a
MEND statement. MEND statements are not labeled.

12-12 Creating Mouse Menus

Parameters

label

title

row

column

attribute

Name of the Menu subroutine. All Menu
subroutines must be labeled.
Text of the menu title, enclosed in double
quotation marks (" "). The menu title is
limited to one line above the rest of the
menu. If you don't specify a title, a blank
line is used.
A number that specifies the row where the
top-left corner of the menu appears. Be
sure to specify a value that allows the
entire menu to be displayed. (For example,
if the menu contains 20 items and you
choose a row value greater than 5, then
some of the screen items will not be
displayed on the 25-row screen.) If you
don't specify a row, the top-left corner is in
row l.
A number that specifies the column where
the top-left corner of the menu appears. If
you don't specify a column, the top-left
corner is in column l.
A value that specifies how the menu
is displayed on the screen. This can be
"normal", "bold", or "in verse" , or a
decimal value that specifies particular
foreground and background colors. (For
more information, see "Parameters" in
Chapter 1, "Creating Your Own Mouse
Menu.") If you don't specify a value,
inverse is used. The colors of the mouse
pointer depend on the display attribute
value for the menu. (For detailed infor
mation on how the interaction between the
mouse pointer and menu display determine
the colors of the pointer, see "Graphics
Cursor" in Chapter 5, "The Mouse Inter
face.")

Mouse Menu Language Statements 2-131
Example

menu1: MENU
OPTION
OPTION
OPTION
OPTION
MEND

"Display Directory",5,5,normal
"Cancel"
"A:",ex1
"B:",ex2
"C:",ex3

ex1: EXECUTE dir,s,a,ent ;dir A:
ex2: EXECUTE dir,s,b,ent ;dir B:
ex3: EXECUTE dir,s,c,ent ;dir C:
ent: TYPE 13 ;simulate the enter
dir: TYPE "dir" ; type dir
a: TYPE "A:" ; type A:
b: TYPE "B:" ; type B:
c: TYPE "C:" ; type C:
s: TYPE 32 ; type a space

key

In this example, the MENU statement uses all four
parameters. The menu title is "Display Directory".
The top-left column of the menu is in row 5, column 5.
The menu is displayed with a normal screen attribute.
The OPTION statements specify which statements are
executed when the user chooses items from the menu.
(For more information about the OPTION statement,
see "OPTION" later in this chapter.)

12-14 Crea ling Mouse Menus

NOTHING

label: NOTHING

Description

Use the NOTHING statement to specify that no action
is taken when the user clicks a mouse button, moves the
mouse, or chooses a menu option, or when a MATCH
statement is executed. A NOTHING statement must be
labeled.

Example

rightb: MATCH 1, 11, NORMAL, ":",movmen,nul

movmen: POPUP 2,1

TEXT "======= CURSOR MOVEMENT ======"

nul: NOTHING

This example from the WS.DEF Mouse Menu program
determines which popup menu is displayed when the user
clicks the right mouse button .

• If the MATCH statement finds the specified char
acter, it executes the statement labeled "movmen" to
display the CURSOR MOVEMENT popup menu .

• If the MATCH statement doesn't find the specified
character, it executes the NOTHING statement
labeled "nul", and the Mouse Menu program does
nothing.

Mouse Menu Language Statements 2-1 5\

OPTION

[label:] OPTION [text],[pointer]

Desc ription

OPTION statements define each menu item in a Menu
su brou tine. OPTION parameters define the text of the
menu item and what happens when the user chooses the
menu item.
OPTION statements are usually not labeled, although
they can be. If they are labeled, the MAI(EMENU pro
gram ignores the labels when assembling the source
program.

Parameters

text

pointer

Legend text for the menu item. The legend
text must be enclosed in double quotation
marks (" "). If you don't specify legend text
for a menu item, the menu displays a blank
line for that item.
Label of the statement that is executed
when the user chooses the menu item. If
you don't include a poin ter parameter, the
menu is cleared from the screen when the
user chooses the menu item. (For example,
you'd leave out the pointer parameter for a
"cancel menu" item.)

Example

menu5: MENU
OPTION
OPTION
OPTION
OPTION
MEND

"Format",5,5,normal
"Cancel"
"A:",ex16
"B:",ex17
"C:",ex18

This example shows OPTION sta tements that define four
menu items. If the user chooses the first menu item, the
menu is cleared from the screen because the OPTION
statement has no pointer parameter. If the user chooses
any other menu item, the specified statement is executed.

12-16 Creating Mouse Menus

POPUP ... PEND

label: POPUP [row], [column],[attribute]

PEND

Desc ription

The POPUP statement is the first statement in a Popup
subroutine. A Popup subroutine creates a multiple
column menu or a message box. (For an example of the
format of a Popup subroutine, see "Popup Subroutine
Statements" in Chapter 1, "Creating Your Own Mouse
Menu.")
The PEND ("popup end") statement indicates the end of
a Popup subroutine. Each Popup subroutine must have a
PEND statement. PEND statements are not labeled.

Parameters

label

row

Name of the Popup subroutine. All POPUP
statements must be labeled.
A number that specifies the row where
the top-left corner of the menu or message
box appears. Be sure to specify a value
that allows the entire menu or message
box to be displayed. (For example, if the
menu or message box takes up 20 lines and
you choose a row value greater than 5,
then some of the screen items will not be
displayed on the 25-row screen.) If you
don't specify a row, the top-left corner is in
row 1.

column

attribute

Mouse Menu Language Statements 2-1 71

Anum ber that specifies the column where
the top-left corner of the menu or message
box appears. If you don't specify a column,
the top-left corner is in column 1.
A value that specifies how the menu is
displayed on the screen. This can be "nor
mal", "bold", or "inverse", or a decimal
value that specifies particular foreground
and background colors. (For more infor
mation, see "Parameters" in Chapter 1,
"Creating Your Own Mouse Menu.") If you
don't specify a value, inverse is used. The
colors of the mouse pointer depend on the
display attribute value for the menu. (For
detailed information on how the interac
tion between the mouse pointer and menu
display determine the colors of the pointer,
see "Graphics Cursor" in Chapter 5, "The
Mouse Interface.")

Examples
This example from the VC.DEF Mouse Menu program is
a Popup subroutine for a multiple-column menu:

DELETE: POPUP 2,l,inverse
TEXT "Delete: Row Column"
SELECT l,9,3,DR
SELECT l,13,6,DC
PEND

DR: TYPE "/dr"
DC: TYPE "/de"

The POPUP statement defines the top-left corner of the
menu as row 2, column 1. The menu contains the menu
ti tie and the menu items on the same line, as shown by
the single TEXT statement. The two SELECT state
ments define the item selection areas. (For more infor
mation about SELECT and TEXT, see "SELECT" and
"TEXT" later in this chapter.)

12-1 8 Crea ling Mouse Menus

This example from the WS.DEF Mouse Menu program is
a Popup subroutine for a message box:

mousehlp: popup 2,1
text " =============== MOUSE HELP, =================== "
text" I I"
text "I Left button - Displays Edit/Block menu I"
text "I Right button - Displays Cursor movement menu I"
text "I Both buttons - Displays Edit/File menu I"
text" I I"
text "I Moving the mouse up, down, left, or right will I"
text "I cause the cursor to move in that direction. I"
text" I I"
text II == I'

select 1,18,10
pend

In this example, ASCII graphics characters are used
to create solid double borders for the menu. The single
SELECT sta temen t is used to clear the message box from
the screen. (Since the label for an executable statement is
not included in the SELECT statement, clicking a mouse
button simply clears the message box from the screen.)

Mouse Menu Language Statements 2-191

SELECT

SELECT row,column,width[,pointer]

Desc ription

The SELECT statement is used in Popup subroutines
to define selection areas for items on the menu. It also
specifies which statement is executed if the cursor is in
the defined area. The defined area does not have to con
tain any text. (For more information about the TEXT
statement, see "TEXT" later in this chapter.)
SELECT statements do not have labels.

Note The highlight in a menu or message box jumps
from one defined selection area to another when the user
moves the mouse. It is a good idea to define each part of
a menu with a SELECT statement so that the movement
of the highlight and the mouse are visually coordinated.
However, make sure you don't define the same screen
position with more than one SELECT statement.

Parameters

row

column

A number that defines the horizontal start
ing point (row) of the item selection area.
The defined area is relative to the "row"
and "column" coordinates specified in the
POPUP statement.
A number that defines the vertical starting
point (column) of the item selection area.
The defined area is relative to the "row"
and "column" coordinates specified in the
POPUP statement.

12-20 Creating Mouse Menus

width

pointer

Examples

The number of characters in the item selec
tion area. If you don't specify a number,
one character is assumed.
Label of the sta tement executed when the
user chooses the menu item. If a pointer
parameter isn't included, the menu is
cleared from the screen.

For examples of how to use SELECT statements, see
"Popup Subroutine Statements" in Chapter 1, "Creating
Your Own Mouse Menu" and "POPUP ... PEND" earlier
in this chapter.

Mouse Menu Language Statements 2-21 I

TEXT

TEXT "string"

Description

TEXT is used in Popup subroutines to define the menu
title and the legend text for menu items. It is similar to
the "title" and "text" parameters in the MENU and
OPTION statements, but allows text to be placed any
where on the screen below and to the right of the upper
left corner specified for the popup menu.

Parameter

string

Examples

Defines the popup menu title or the legend
text of a menu item. Text may include
ASCII graphics characters. All text must
be enclosed in double quotation marks
(" "). Text location on the screen is rela
tive to the top-left corner of the popup
menu. Text display attributes are deter
mined by the attribute parameter in the
POPUP statement.

For examples of how to use TEXT statements, see
"Popup Subroutine Statements" in Chapter 1, "Creating
Your Own Mouse Menu," and "POPUP ... PEND" earlier
in this chapter.

12-22 Creating Mouse Menus

TYPE
label: TYPE key [,key ... J

Description

A TYPE statement simulates typing one or more key
strokes. Keys are specified by enclosing the keystroke(s)
in double quotation marks, using the ASCII code that
corresponds to the keYes), using a predefined symbolic
key name, or, for certaIn special-function keys, using the
key's extended keyboard scan code.

Note All keys specified in the TYPE statement are
inserted into a keyboard buffer when the menu program
is running and are not output as keystrokes until the
menu program becomes inactive.

Parameters

label Name of the TYPE statement. Every
TYPE statement must be labeled.

key Name of the key. It can be:

• A single letter or n urn ber enclosed
in double quotation marks (" "), or a
sequence of keystrokes enclosed in dou
ble quotation marks (such as "dir")

• A standard ASCII code (characters 0
through 127), or an extended ASCII
code (characters 128 through 255)

• An extended keyboard scan code
• Any of the following predefined symbolic

keys: "enter", "tab" , "backsp", "esc".

Note If you want to simulate typing a quotation mark
(U), use ASCII code 34.

MOl/se Menl/ Language Statements 2-231
The ASCII control characters (0 through 31) and
extended keyboard scan codes that you can use with the
TYPE statement are listed after the examples below.
Refer to the IBM BASIC manual for a complete list of
ASCII character codes.

Exam pies
These TYPE statements use character strings to define
the keystrokes:

dir: TYPE "dir" ;type the command "dir"
a: TYPE "a:" ;type "a:"

This TYPE statement uses an ASCII code to simulate
typing a space:

s: TYPE 32 ;type a space

These TYPE statements use extended keyboard scan
codes to simulate the arrow keys:

1 f:
rt:
up:
dn:

TYPE 0,75
TYPE 0,77
TYPE 0,72
TYPE 0,80

;simulate the left arrow key
;simulate the right arrow key
;simulate the up arrow key
;simulate the down arrow key

ASCII Control Characters and Extended
Keyboard Scan Codes
This section lists the functions of the ASCII con trol char
acters and the extended keyboard scan codes when used
with the TYPE statement. (See the IBM BASIC manual
for a complete list of ASCII codes.) It also lists the key
sequences that cannot be simulated using the TYPE
statement.

Note The output characteristics listed for particular
key functions are for a mouse menu running at the DOS
level. A standard a pplica tion may not in terpret all key
board operations in the same way. Applications that
reprogram or directly access the keyboard, or bypass the
DOS system facilities for keybeard input, may not func
tion correctly with mouse mequs.

12-24 Creating Mouse Menus

ASCII Control Characters The following table lists
the function of each ASCII control character when used
with the TYPE statement:

ASCII Key ASCII Key
code equivalent code equivalent

0 none 16 CONTROL-P
1 CONTROL-A 17 CONTROL-Q
2 CONTROL-B 18 CONTROL-R

3 CONTROL-C 19 CONTROL-S

4 CONTROL-D 20 CONTROL-T
5 CONTROL-E 21 CONTROL-U
6 CONTROL-F 22 CONTROL-V
7 CONTROL-G 23 CONTROL-W
8 backspace 24 CONTROL-X
9 horizontal tab 25 CONTROL-Y

10 line feed 26 CONTROL-Z
11 CONTROL-!(27 ESCAPE
12 CONTROL-L 28 CONTROL-
13 carriage return 29 CONTROL-]
14 CONTROL-N 30 CONTROL-

A

15 CONTROL-O 31 CONTROL-_

Mouse Menu Language Statements 2-251

Extended Keyboard Scan Codes Extended key
board scan codes have two components: a character code
\which is always 0) and a scan code (for example,
'0,75"). The tables below list the scan codes you can use

with the TYPE statement and the character code 0 to
sim ula te specific keystrokes. (Standard or extended
ASCII characters cannot be used as extended keyboard
scan codes.)

Keystroke(s) Scan code

HOME 71
CONTROL-HOME 119
up arrow key 72
down arrow key 80
left arrow key 75
CONTROL-left arrow key 115
righ t arrow key 77
CONTROL-right arrow key 116
END 79
CONTROL-END 117
PAGEUP 73
CONTROL-PAGEUP 132
PAGEDOWN 81
CONTROL-PAGEDOWN 118
CONTROL-PRINTSCREEN 114
INSERT 82
DELETE 83
SHIFT-TAB 15

12-26 Creating Mouse Menus

Scan Scan
Keystroke(s) code Keystroke(s 2 code

F1 59 ALT-O 129
F2 60 ALT-1 120
F3 61 ALT-2 121
F4 62 ALT-3 122
F5 63 ALT-4 123
F6 64 ALT-5 124
F7 65 ALT-6 125
F8 66 ALT-7 126
F9 67 ALT-8 127
FlO 68 ALT-9 128
SHIFT-F1 (F11) 84 ALT-- 130
SHIFT-F2 (F12) 85 ALT-= 131
SHIFT-F3 (F13) 86 ALT-A 30
SHIFT-F4 (F14) 87 ALT-B 48
SHIFT-F5 (F15) 88 ALT-C 46
SHIFT-F6 (F16) 89 ALT-D 32

. SHIFT-F7 (F17) gO ALT-E 18
SHIFT-F8 (F18) 91 ALT-F 33
SHIFT-F9 (FI9) 92 ALT-G 34
SHIFT-FlO (F20) 93 ALT-H 35

Mouse Menu Language Statements 2-271
Scan Scan

Keystroke(s } code Keystroke(s} code

CONTROL-F1 (F21) 94 ALT-I 23
CONTROL-F2 (F22) 95 ALT-J 36
CONTROL-F3 (F23) 96 ALT-K 37
CONTROL-F4 (F24) 97 ALT-L 38
CONTROL-F5 (F25) 98 ALT-M 50
CONTROL-F6 (F26) 99 ALT-N 49
CONTROL-F7 (F27) 100 ALT-O 24
CONTROL-F8 (F28) 101 ALT-P 25
CONTROL-F9 (F29) 102 ALT-Q 16
CONTROL-FlO (F30) 103 ALT-R 19
ALT-F1 (F31) 104 ALT-S 31
ALT-F2 (F32) 105 ALT-T 20
ALT-F3 (F33) 106 ALT-U 22
ALT-F4 (F34) 107 ALT-V 47
ALT-F5 (F35) 108 ALT-W 17
ALT-F6 (F36) 109 ALT-X 45
ALT-F7 (F37) 110 ALT-Y 21
ALT-F8 (F38) 111 ALT-Z 44
ALT-F9 (F39) 112
ALT-F10 (F40) 113

12-28 Creating Mouse Menus

Key Sequences That Cannot Be Simulated
Some key sequences cannot be simulated using the
TYPE statement because they are suppressed in the
ROM (Read-Only Memory) BIOS (Basic Input/Output
System) keyboard routine. These include the following
key combinations:

SHIFT-PRINTSCREEN

ALT-BACKSPACE

ALT-ESCAPE

ALT plus one of the following characters: [] ; , , , . / *
ALT plus one of the following keys: ENTER, CONTROL,
SHIFT, CAPS LOCK, NUM LOCK, SCROLL LOCK

ALT plus one of the arrow keys
CONTROL plus one of the following characters: 1 3 4 5 7 8
90=;",./
CONTROL plus one of the following keys: TAB, SHIFT,
CAPSLOCK,NUMLOCK

CONTROL-BREAK

CONTROL-AL T-DELETE

CONTROL plus one of the arrow keys
CONTROL-INSERT

3 Sam pie Mouse Menu
Programs

This chapter includes the source program listings for two
basic Mouse Menu programs that simplify some of the
tasks commonly performed on an IBM PC or compatible
computer:

• The SIMPLE Mouse Men u program allows you to
simulate pressing the ENTER, ESCAPE, INSERT, and
arrow keys by either clicking or moving the mouse .

• The DOSOVRL Y Mouse Menu program allows you to
execute simple DOS commands by using the mouse to
choose the commands from a menu rather than typing
them on the keyboard.

You can type the source program listing for either mouse
menu into a source file, run MAKEMENU to generate an
executable Mouse Menu file, then start using the mouse
menu immediately. Or you may want to use these listings
as a basis for designing similar mouse menus that include
additional features specific to your needs.

SIMPLE Mouse Menu Program

The SIMPLE Mouse Menu allows you to use the mouse
instead of typing a few commonly used keys. It is most
helpful when used with applications that require frequent
use of the arrow keys. For example, in many spreadsheet
applications you must press the arrow keys on your key
board to move the cursor on the screen. If the SIMPLE
Mouse Menu is installed, you can move the cursor on the
screen by simply moving the mouse on your desk top. In
addition, clicking the left mouse button is equivalent to
pressing the ENTER key, clicking the right mouse button
simulates pressing the ESCAPE key, and clicking both
mouse buttons at once is the same as pressing the INSERT

Creating Mouse Menus

key. If your application does not use one of these keys,
and you click the corresponding mouse bu tton(s) by
accident, the application will respond as if you had typed
the key on the keyboard. You can correct the mistake as
you would any typing error.

SIMPLE Mouse Menu Source Program
; A menu to simulate arrow, enter, escape,
; and insert keys

,
begin ent,es,ins,lf,rt,up,dn,32,16

ent:
es:
ins:
,
1 f:
rt:
up:
dn:

type
type
type

type
type
type
type

enter
esc
0,8,2

0,75
0,77
0,72
0,80

DOSOVRlY Mouse Menu Program

The DOSOVRL Y Mouse Menu allows you to choose
several commonly used DOS commands at the DOS
command level by simply pointing to an option on a
menu and clicking the mouse. In other words, this
mouse menu "overlays" DOS.
In addition to a main menu, the DOSOVRL Y Mouse
Menu program has two submenus, "Directory" and
"Change Directory," which each list additional DOS
commands. The source program for DOSOVRL Y is a
good example of how you might create a hierarchy of
men us and su bmen us in one of your own Mouse Menu
programs.
The DOSOVRL Y Mouse Menu provides several features
that are useful at the DOS command level:

• Moving the mouse left and right simulates pressing
the left and right arrow keys. This allows you to edit
your DOS commands by just moving the mouse .

• Clicking the right mouse button simulates pressing the
ENTER key.

Sample Mouse Menu Programs 3-31
• Clicking both mouse buttons at once simulates typing

cls, the DOS command for clearing the screen .
• Clicking the left mouse button displays the

DOSOVRL Y main menu. Options on this menu allow
you to clear the screen, execute the DATE or TIME
command, or choose "DIRECTORY" or "CHANGE
DIRECTORY" to view the corresponding submenus
of DOS commands. To select a menu option, move
the highlight to the option, then click either mouse
button. From within a submenu, you can choose an
option to move to the other su bmen u or click the left
mouse button to return to the main menu.

Note In the DOSOVRLY source program, the Ib, rb, bb,
1m, and rm parameters specified in the BEGIN statement
are la bels for EXECUTE sta temen ts. These EXECUTE
statements branch off to the appropriate TYPE state
ments. This format demonstrates how you can use the
EXECUTE statement in your Mouse Menu programs.
This program could be simplified by branching directly
from the BEGIN statement to the TYPE statements
using: BEGIN mnul,return,cls,left,right

DOSOVRL Y Mouse Menu Source Program
BEGIN Ib,rb,bb,lm,rm
Ib: execute mnul
rb: execute return
bb: execute cIs
1m: execute left
rm: execute right

main menu if left button
type enter if right button
type CLS if both buttons
left arrow if left motion
right arrow if right motion

mnul: MENU "Main Menu", 2, 55, NORMAL
option "cancel
option "clear the screen
option "date
option "time
option "DIRECTORY
option "CHANGE DIRECTORY
MEND

",none
",cIS
",date
",time
",mnu3
",mnu2

mnu2: MENU "Change
option "cancel
option "cd ..
option "cd

Directory", 2, 55, NORMAL
",none

option "DIRECTORY
option "MAIN MENU
MEND

",cdl
",cd2
",mnu3
",mnul

~nu3: MENU "Directory",2,55,NORMAL
option "cancel ",none

13-4 Creating Mouse Menus

option
option
option
option
option
option
option
option
option
MEND

none:

return:
cls:
left:
right:
date:
time:
cdl:
cd2:
dir:
dire:
dirb:
dirx:
dirs:
dird:
dirz:

"dir
"dir *.exe
"dir *.bat
"dir *.bak
"dir *.sys
"dir *.doc
"dir *
"CHANGE DIRECTORY
"MAIN MENU

nothing

enter
"cls",enter
0,75
0,77
"date",enter
"time", enter

",dir
",dire
",dirb
",dirx
",dirs
",dird
",dirz
" ,mnu2
" ,mnul

do nothing

left arroW'
right arroW'

type
type
type
type
type
type
type
type
type
type
type
type
type
type
type

"cd .. ",enter
"cd
"dir",enter
"dir *.exe",enter
"dir *.bat",enter
"dir * .bak", enter
"dir *.sys",enter
"dir *.doc",enter
"dir *."

4 Mouse Menu Messages

This chapter lists the messages that the MENU and
MAKEMENU programs can display, along with descrip
tions of possible causes and what actions you may take
in response to them.

Conversion completed
• The MAKEMENU program jinz'shed creatz'ng an

executable menu jile.
No action is required. The DOS system prompt
appears after MAKEMENU displays this message.

Error--Invalid statement: xxxx
• Ez'ther the statement had no label) the statement)s label

dz'dn't end with a colon (:)) or the statement had an
z'nvalz'd parameter or syntax error.
Make sure that all statemen ts (except the BEGIN
sta tement and statements withm Menu and Popup
subroutines) are labeled. Make sure that all labels are
followed by a colon. Check the statement syntax for
correct use of commas and spaces ..

Error--Label already used: label
• The same label was used to name more than one

statement.
Make sure that labels are unique for each statement.

Error--Label not found: xxxx
• A label specz'jied for a parameter dz'd not exist.

Make sure that the statements have labels and that
the labels are correct.

Illegal function call at address xxxxxx
• A TYPE or EXECUTE statement had too many param

eters) a SELECT statement defined the item selection
area outsz'de of the menu) or a SELECT or an OPTION
statement had quotation marks placed z'ncorrectly.
Use the correct n urn ber of parameters, redefine the
item selection area, or ensure that double quotation
marks are used correctly to designate text strings.

1"'-2 Creating Mouse Menus

Keyboard emulation off
• The Mouse Menu program is no longer running.

No action is required.

Keyboard emulation on
• The Mouse Menu program is running.

No action is required.

Menu installed
• You ~tarted up a Mouse Menu program, and it is

runnzng.
No action is required. Use the mouse menu as usual.

Nam e of file to convert:
• You typed "makemenu" to create an executable Mouse

Menu file.
Type in a Mouse Menu filename without the ".DEF"
extension.

Mouse Interfaces

Desig ning Mouse Interfaces

This section provides the technical information you need
to design a mouse interface for one of your own applica
tion programs. To build mouse support into your pro
gram, you'll include calls to a set of mouse functions.
You can make mouse function calls from the BASIC
interpreter, from assembly-language programs, and from
programs in high-level languages such as Microsoft
QuickBASIC, Pascal, FORTAN, and C.
Chapter 5, "The Mouse Interface," describes the interface
between the computer screen and the Microsoft Mouse
software.
Chapter 6, ":tv10use Function Descriptions," describes the
input, output, and operation of each function call your
program can make to the mouse driver.
Chapter 7, "Making Mouse Function Calls," describes
how to make mouse function calls from interpreted
BASIC, assembly, and high-level-language programs.
It also includes the source listing for the Piano demon
stration program that came in your Microsoft Mouse
package, and explains how to specify eight mouse cursor
shapes.
Chapter 8, "Writing Mouse Programs for IBM EGA
Modes," explains how to use the Microsoft EGA Register
Interface when your program includes mouse support for
IBM enhanced graphics modes D, E, F, and 10.

5 The Mouse Interface

This chapter describes the interface between the mouse
software and the IBM PC. In particular, it discusses how
the mouse software uses certain features of the computer
to create a cursor on the screen and control its move
ment. This chapter talks about:

• Screen modes
• The virtual screen
• Graphics and text cursors
• Mouse buttons
• The mouse unit of distance: the mickey
• The internal cursor flag

Since many of the mouse functions use the interface, it is
important for you to read the following sections carefully
and understand them before you use the functions in
application programs.

Screen Modes

The screen mode defines the number of pixels (points of
light) on the screen and the types of objects that appear
on the screen. The available screen modes depend on the
adapter in your computer. These screen modes and the
adapters on which they are supported are listed in the
table on the next page. (Specific information about each
screen mode is given in the documentation for each
adapter.)

15-2 Designing a Mouse Interface

Virtual Bits/Pixel
Screen Display Screen Cell (Graphics
Mode Adapter (X x Y} Size Modes}

0 C,E,3270 640 x 200 16 x 8
1 C,E,3270 640 x 200 16 x 8
2 C,E,3270 640 x 200 8x8
3 C,E,3270 640 x 200 8x8
4 C,E,3270 640 x 200 2 x 1 2
5 C,E,3270 640 x 200 2 x 1 2
6 C,E,3270 640 x 200 1 x 1 1
7 M,E,3270 640 x 200 8x8
D E 640 x 200 16 x 8 2
E E 640 x 200 1 x 1 1
F E 640 x 350 1 x 1 1
10 E 640 x 350 1 x 1 1
30 3270 720 x 350 1 x 1 1

H 720 x 348 1 x 1 1

Display adapters:

M = IBM Monochrome Display /Printer Adapter
C = IBM Color/Graphics Monitor Adapter
E = IBM Enhanced Graphics Adapter
3270 = IBM All Points Addressable Graphics Adapter

(3270 PC)
H = Hercules Monochrome Graphics Card

The Virtual Screen

The mouse software operates on the computer screen as
if it were a virtual screen of individual points arranged in
a matrix of horizontal and vertical points. The "Virtual
Screen" column in the table above gives the number of
horizontal and vertical points in the matrix for each sup
ported screen mode.

Whenever interrupt 10h is called to change the screen
mode, the mouse software intercepts the call and deter
mines which virtual screen to use. The mouse software
also reads the screen mode and chooses the appropriate
virtual screen whenever mouse function 0 is called to
reset default parameter values in the mouse software.
Regardless of the screen mode, the software uses a pair
of virtual-screen coordinates to locate an object on the
screen. Each pair of coordinates defines a point on the
virtual screen. The horizontal coordinate is given first.
Many mouse functions take virtual-screen coordinates as
input or return them as output. Whenever you refer to a
pixel or character in a mouse function, make sure that
the horizontal and vertical coordinates are the correct
values for the given screen mode. The mouse functions
always return correct values for the given screen mode.
In graphics modes 6, E, F, 10, and 30, and for the Her
cules graphics display modes, each point in the virtual
screen has a one-to-one correspondence with each pixel
on the screen. In these modes, the full range of coordi
nates in the "Virtual Screen" column is permitted.
In graphics modes 4 and 5, the screen has half the num
ber of pixels that it has in the other graphics modes. To
compensate, the mouse software uses only even-n umbered
horizontal coordinates. This means that every other
point in the virtual screen corresponds to a pixel.
In text modes 2, 3, and 7, only characters are permitted
on the screen. Each character is an S-by-S-pixel group
(see the "Cell Size" column in the table).
Because the mouse software cannot access the individual
pixels in a character, it uses the coordinates of the pixel
in the upper-left corner of the cell for the character's
location. Since each character is an S-by-S-pixel group,
both the horizontal and vertical coordinates are multi
ples of eight.
For example, the character in the upper-left corner of
the screen has the coordinates (0,0), and the character
immediately to the right of it has the coordinates (S,O).
In text modes ° and 1, as in text modes 2, 3, and 7, only
characters are permitted on the screen. Each character is
a 16-by-S-pixel group (see "Cell Size" in the table).
The mouse software uses the coordinates of just one pixel
in a character for the character's location. However, the
screen has only half as many pixels as in modes 2, 3, and
7. To compensate, the mouse software uses horizontal
coordinates that are multiples of 16.

The Mouse Interface 5-31

Graphics modes
6, E, F, 10, and
30

Graphics modes
4 and 5

Text modes
2, 3, and 7

Text modes
o and 1

15-4 Designing a Mouse Interface

For example, the character in the upper-left corner of
the screen has the coordinates (0,0), and the character
immediately to the right of it has the coordinates (16,0).

Graphics and Text Cursors

The mouse has three different cursors:

• The graphics cursor is a shape (for example, an arrow)
that moves over the images on the screen.

• The software text cursor is a character attribute (for
example, an underscore) that moves from character to
character on the screen.

• The hardware text cursor is a flashing block, half
block, or underscore that moves from character to
character on the screen.

The mouse software supports only one of these cursors on
the screen at any time. In your application program, you
can choose which cursor is on the screen, and even switch
back and forth between cursors.
Mouse functions 9 and 10 permit you to define the
characteristics of these cursors in your a pplica tion pro
gram. You can define the characteristics yourself, or use
the characteristics of the sample cursors provided. For
more information about the sample cursors, see Chapter
7, "Making Mouse Function Calls."
The following paragraphs describe the cursors in detail.

Graphics Cursor

The graphics cursor, used when the computer is in one of
the graphics modes, is a block of pixels.

• In modes 6, E, F, 10, and 30, and for the Hercules
Monochrome Graphics Card, it is 256 pixels in a 16-
by-16-pixel square.

• In modes 4 and 5, it is 128 pixels in an 8-by-16-pixel
square.

The Mouse Interface 5-51
As the mouse moves, the block moves over the screen and
interacts with the pixels directly under it. This inter
action creates the cursor shape and background.
The interaction between the cursor points and screen
pixels is defined by two 16-by-16-bit arrays: the screen
mask and the cursor mask .

• The screen mask determines whether the cursor pixel
is part of the shape or background .

• The cursor mask determines how the pixel under the
cursor con tribu tes to the color of the cursor.

In your application program, you can specify the shapes
of the screen mask and cursor mask by defining them as
arrays and passing these arrays as parameters in a call
to mouse function 9. (For more information, see the
description of function 9 in Chapter 6, "Mouse Function
Descriptions.")
The interactions between the screen mask and the cursor
mask differ somewhat between graphics modes 4, 5, 6, F,
and 30 and the IBM Enhanced Graphics Adapter graph
ics modes E and 10.
In modes 6, F, and 30, and for the Hercules Graphics
Card, each bit in the masks corresponds to a pixel in the
cursor block. In modes 4 and 5, each pair of bits
corresponds to a pixel.
To create the cursor, the mouse software operates on the
data in the computer's screen memory that defines the
color of each pixel on the screen. First, the software logi
cally ANDs the screen mask with the 256 bits of data
that define the pixels under the cursor. Then, it logically
XORs the cursor mask with the result of the AND opera
tion. The following table shows how these operations
affect the individual screen bits:

If the screen
mask bit is

o
o
1
1

And the cursor
mask bit is

o
1
o
1

The resulting
screen bit is

o
1

unchanged
inverted

In modes 6, F, and 30, and for the Hercules Graphics
Card, each screen bit defines the color of a single pixel.
Therefore, one bit in the screen mask and one bit in the

Screen mask and
cursor mask

Modes 4, 5,6, F,
and 30, and the
Hercules
Graphics Card

15-6 Designing a Mouse Interface

Modes E and 10

Graphics cursor
"hot spot"

cursor mask define the pixel's color when the cursor is
over it. For example, if the first bit in the screen mask is
1 and the first bit in the cursor mask is 0, then the
upper-left corner of the cursor block is transparent.
In modes 4 and 5, each pair of screen bits defines the
color of a pixel. Therefore, a pair of bits in the screen
mask and a pair in the cursor mask define a pixel's color.
In EGA four-plane modes E and 10, as in modes 6, F,
and 30, each bit in the screen mask and cursor mask
corresponds to a pixel in the cursor block.
The cursor mask and screen mask are stored in off-screen
memory. Each plane has its own cursor mask and screen
mask. Therefore, for each plane, the "resulting screen
bit" in the table on the previous page is actually the bit
used in the color table lookup on the EGA.
In modes E and 10, the mouse driver automatically sets
the write mask register on the EGA to all Is. Therefore,
when your application program calls mouse function 9 to
set the cursor shape, the cursor pixels may be either
black, white, transparent, or inverted.
The mouse driver does not support color cursors in modes
E and 10.
Whenever a mouse function refers to the graphics cursor
location, it gives the point on the virtual screen that lies
directly under the cursor's hot spot. The hot spot is the
point in the cursor block that the mouse software uses to
determine the cursor coordinates.
You can define the hot spot in the cursor block by pass
ing the horizon tal and vertical coordin a tes of the point
to mouse function 9. The coordinates can be within the
range -16 to 16; however, in modes 4 and 5, the horizon
tal coordinate must be an even number. In all graphics
modes, the coordinates are relative to the upper-left
corner of the cursor block ..

Software Text Cursor

The software text cursor is used when the computer is in
one of the text modes.
The text cursor affects how characters appear on the
screen. Unlike the graphics cursor, the text cursor usually
does not have a shape of its own. Instead, it changes the
character attributes (such as fore~round and background
color, intensity, and underscoring) of the character
directly under it. If the cursor does have a shape of

its own, it is one of the 256 characters in the ASCII char
acter set.
The effect of the text cursor on the character under it is
defined by two 16-bit values called the screen mask and
the cursor mask .

• The screen mask determines which of the character's
attributes are preserved .

• The cursor mask determines how these attributes are
changed to yield the cursor.

To create the cursor, the mouse software operates on
the data that defines each character on the screen. The
software first logically ANDs the screen mask and the 16
bits of screen data for the character under the cursor. It
then logically XORs the cursor mask and the result of
the AND operation.
The 16 bits of screen data for each character take the
following form:

15 14 12 11 10 8 7 0

b bckgd i foregd char

odd address (M + 1) even address (M)

In Figure 5.1:

Bit(s)

15 (b)
12-14 (bckgd)
11 (i)
8-10 (foregd)
0-7 (char)

Purpose

Sets blinking or nonblinking character
Set the background color
Sets high in tensity or medium in tensi ty
Set the foreground color
ASCII value of the character

The range of values for each field depends on the display
adapter in the computer. (See the display adapter docu
mentation for details.)

The Mouse Interface 5-71

Screen mask and
cursor mask

5.1 Screen Data for
Character

15-8 Designing a Mouse Interface

5.2 Sample
Screen/Cursor Mask
Values

Scan lines

The screen mask and cursor mask are divided into the
same fields as those shown in Figure 5.1. The values of
these fields in the screen mask and cursor mask define the
character's new attributes when the cursor is over the
character.
For example, to invert the foreground and background
colors, the screen mask and cursor mask should have the
values shown in Figure 5.2:

b bckgd i foregd char =

I screen mask 0 111 0 111 11111111 &H77FF
cursor mask 0 111 0 111 00000000 &H7700

In your application program, you can define the values of
the screen mask and cursor mask by p,assing their values
as parameters to mouse function 10. lFor more informa
tion, see the description of function 10 in Chapter 6,
"Mouse Function Descriptions.")
Whenever a mouse function refers to the text cursor loca
tion, it gives the coordinates of the character under the
cursor. The text cursor does not have a hot spot.

Hardware Text Cursor

The hardware text cursor is another cursor that can be
used when the computer is in one of the text modes.
The hardware text cursor is actually the computer's cur
sor (the one ~ou see on the screen after the DOS system
level prompt). The mouse software allows you to adapt
this cursor to your needs.
The hardware cursor is 8 pixels wide and 8 to 14 pixels
tall. Each horizontal set of pixels forms a line called a
scan l£ne. There are 8 to 14 scan lines.
A scan line can be on or off. If a scan line is on, it
appears as a flashing bar on the screen. If a scan line is
off, it has no effect on the screen. Your program can
define which lines are on and which are off by passing
the n urn bers of the first and last lines in the cursor to
mouse function 10.
The number of lines in the cursor depends on the display
adapter in the computer.

• If the computer has an IBM Color/Graphics Monitor
Adapter, the cursor has 8 lines, numbered 0 to 7.

• If the computer has an IBM Monochrome Display and
Printer Adapter, the cursor has 14 lines, numbered 0
to 13.

• If the computer has an IBM Enhanced Graphics
Adapter and an IBM Color Display, the cursor has 8
lines, numbered 0 to 7. If the computer has an IBM
Enhanced Graphics Adapter and an IBM Enhanced
Color Display, the cursor has 14 lines, n urn bered 0 to
13.

Note Only block cursors are supported on the 3270 PC.

Mouse Buttons

Mouse functions 5 and 6 read the state of the mouse
buttons and keep a count of the number of times the
bu ttons are pressed and released.
A button state is pressed if the button is down, and
released if the button is up. When a mouse function
returns the state of the buttons, it returns an integer
value in which the first 2 bits are set or cleared. Bit 0
represents the state of the left button, and bit 1
represents the state of the right button. If a bit is set
(equal to 1), the button is down. If a bit is clear (equal
to 0), the button is up.
The mouse software increments a counter each time the
corresponding button is pressed or released. The software
sets a counter to 0 after a reset (mouse function 0) or
after a counter's contents are read.

Mouse Unit of Distance: The Mickey

The motion of the mouse track ball is translated in to
values that express the direction and duration of the
motion. The values are given in a unit of distance called
a mickey, which is approximately 1/200 inch.

The Mouse Interface 5-91

15-10 Designing a Mouse Interface

Mouse
sensitivity

When the user slides the mouse across a desk top, the
mouse hardware passes to the mouse software a horizon
tal and vertical mickey count; that is, the n urn ber of
mickeys the mouse ball has rolled in the horizon tal and
vertical directions. The software uses the mickey count
to move the cursor a certain number of pixels on the
screen.
The number of pixels that the cursor moves does not
have to correspond one-to-one with the number of mick
eys the track ball rolls. The mouse software defines a
sensitivity for the mouse-the number of mickeys
required to move the cursor 8 pixels on the screen. The
sensitivity determines the rate at which the cursor moves
on the screen.
In your application program, you can define the mouse's
sensitivity by passing a mickey count to mouse function
15. The mickey coun t can be any value from 1 to 32767.
For example, if you pass a count of 8, the sensitivity is 8
mickeys per 8 pixels. That is, the cursor will move 1 pixel
for each mickey the ball rolls, or one character for every
8 mickeys the ball rolls.

The Internal Cursor Flag

The mouse software maintains an internal flag that
determines when the cursor should be displayed on the
screen. The value of this flag is always 0 or less .

• When the flag is 0, the cursor is displayed .
• When the flag is any other value, the cursor is hidden.

Application programs cannot access this flag directly. To
change the flag's value, the program must call mouse
functions 1 and 2. Function 1 increments the flag; func
tion 2 decrements it. Initially, the flag's value is -1, so a
call to function 1 displays the cursor.
Your program can call either function 1 or function 2 any
number of times, but if it calls function 2, it must call
function 1 later to restore the flag's previous value. For
example, if the cursor is on the screen and your program
calls function 2 five times, it must also call function 1
five times to return the cursor to the screen.

The Mouse Interface 5-11

If the cursor is displayed, any additional calls to function
1 have no effect on the internal cursor flag, so one call to
function 2 will always hide the cursor. In addition, your
program can call mouse function 0 or change screen
modes to reset the flag to -1 and hide the cursor.

6 Mouse Function
Desc rip tio ns

This chapter describes the input, output, and 9peration
of each mouse function call. The actual statements
required to make the function calls depend on the pro
gramming language you're using. For specific instructions
on making calls from the BASIC interpreter, assembly
language programs, and high-level-language programs,
refer to Chapter 7, "Making Mouse Function Calls."

Note If you are designing an application program
with mouse support that uses extended graphics modes
D, E, F, and 10 on the IBM Enhanced Graphics Adapter
(EGA), the program must interact with the adapter
through the Microsoft EGA Register Interface. For
instructions on using the EGA Register Interface, see
Chapter 8, "Writing Mouse Programs for IBM EGA
Modes."

16-2 Designing a Mouse Interface

Mouse Functions

The following table lists the mouse functions by function
number:

Number

o
1
2
3
4

5
6
7

8

9
10
11
12

13
14
15
16
19
20
21

22
23
29
30

Function

Mouse Reset and Status
Show Cursor
Hide Cursor
Get Button Status and Mouse Position
Set Mouse Cursor Position
Get Button Press Information
Get Button Release Information
Set Minimum and Maximum Horizon tal
Cursor Position
Set Minimum and Maximum Vertical
Cursor Position
Set Graphics Cursor Block
Set Text Cursor
Read Mouse Motion Counters
Set Interrupt Subroutine Call Mask and
Address
Light Pen Emulation Mode On
Light Pen Emulation Mode Off
Set Mickey /Pixel Ratio
Conditional Off
Set Double-Speed Threshold
Swap Interrupt Subroutines
Get Mouse Driver State Storage
Requirements
Save Mouse Driver State
Restore Mouse Driver State
Set CRT Page Number
Get CRT Page Number

Mouse Function Descriptions 6-31
Each function description in this chapter specifies the fol
lowing:

• The parameters required to make the call (input) and
the expected return values (ou tpu t)

• Any special considerations regarding the function
• A BASIC interpreter program fragment that illus

trates how to use the call. (For more information
about calling mouse functions from the BASIC inter
preter, see Chapter 7, "Making Mouse Function
Calls.")

In the descriptions of all functions, the parameter names
Ml%, M2%, M3%, and M4% are dummy variable
names. When making a call, use the names of the vari-
a bles that you want to pass.
The dummy variable names include the percent sign (%)
to emphasize that only integer variables can be used as
parameters. Constants, single-precision variables, and
double-precision variables are not allowed.
If the function description does not specify an input
for a parameter, you don't need to supply a value for
that parameter before making the call. If the function
description does not specify an output value for a param
eter, the parameter's value is the same before and after
the call.

C a u tio n All function calls require four parameters. The
mouse software does not check input values, so be sure
that the values you assign to the parameters are correct
for the given function and screen mode. If you pass the
wrong number of parameters or assign incorrect values,
you will get unpredictable results.

16-4 Designing a Mouse Interface

Function 0: Mouse Reset and Status

Input Output

M1%=a M1 %=mouse status
M2%=number of buttons

(2 if M1 %=-1, otherwise 0)

Function a returns the current status of the mouse
hardware and software. The mouse status is a if the
mouse hardware and software are not installed or -1 if
the hardware and software are installed.
This function also resets the mouse driver to the follow
ing default values:

Parameter

cursor position
in ternal cursor flag
graphics cursor
text cursor
interrupt call mask

light pen emulation
mode
horizontal
mickey /pixel ratio
vertical mickey /pixel
ratio
horizontal min/max
cursor position
vertical min/max cur
sor position
CRT page number

Value

screen cen ter
-1 (cursor hidden)
arrow
reverse video
all a (no interrupt subroutine
specified)
enabled

8 to 8

16 to 8

a/current display-mode virtual
screen x-value minus 1
a/current display-mode virtual
screen y-value minus 1
a

Example
This program fragment verifies that the mouse is
installed, and returns an error message if it is not.

100
200 Is mouse present? If not, error.
300
400 DEE' SEG=O
500 MSEG=256*PEEK(51*4+3)+PEEK(51*4+2)
600 MOUSE=256*PEEK(51*4+1) +PEEK(51*4) +2
700 IE' MSEG OR (MOUSE-2) THEN 60
800 PRINT "Mouse not found":END
900 DEE' SEG=MSEG

1000 IE' PEEK (MOUSE-2)=207 then 700
1100 M1%=0
1200 CALL MOUSE (M1%, M2%, M3%, M4%)
1300 IE' NOT (M1%)THEN 700

Mouse Function Descriptions 6-51

16-6 Designing a Mouse Interface

Function 1: Show Cursor

Input Output

M1%=1

Function 1 increments the internal cursor flag and, if the
flag is 0, displays the cursor on the screen. The cursor
tracks the motion of the mouse, changing position as the
mouse changes position.
The current value of the in ternal cursor fl ag depends on
the number of calls that have been made to functions 1
and 2. (For more information, see "The Internal Cursor
Flag" in Chapter 5, "The Mouse Interface.") The default
flag value is -1; therefore, after a reset (function 0), the
program must call function 1 to redisplay the cursor.
If the internal cursor flag is already 0, this function does
nothing.

Example

100
200 Show the cursor
300
400 M1%=1
500 CALL MOUSE (M1%, M2%, M3%, M4%)

Mouse Function Descriptions 6-71

Function 2: Hide Cursor

Input Output

Ml%=2

Function 2 removes the cursor from the screen and decre
ments the internal cursor flag. When the cursor is hidden,
it continues to track the motion of the mouse, changing
position as the mouse changes position.
Use this function before you change any area of the
screen that contains the cursor. This will ensure that the
cursor won't affect the data written to the screen.

Note If your program changes the screen mode, func
tion 2 is called automatically so that the cursor will be
drawn correctly the next time it is displayed.

Remember that each time your program calls function 2,
it must call function 1 later to restore the internal cursor
flag to its previous value. ~For more information, see
"The Internal Cursor Flag' in Chapter 5, "The Mouse
Interface.")

Note At the end of your program, call function 2 to
hide the mouse cursor. If the internal cursor flag is 0
when the program ends, the lnouse cursor will remain on
the screen.

Example

100
200 Hide the cursor
300
400 M1%=2
500 CALL MOUSE (M1%, M2%, M3%, M4%)

16-8 Designing a Mouse Interface

Function 3: Get Button Status and
Mouse Position

Input

Ml%=3

Output

M2%=button status
M3%=cursor position (horizontal)
M4%=cursor position (vertical)

Function 3 returns the state of the left and right mouse
buttons and the horizontal and vertical coordinates of
the cursor.
The button status is a single integer value. Bit 0
represents the left button; bit 1 represents the right bu t
ton. These bits are 1 if the corresponding button is down,
and 0 if it is up.
The cursor coordinates are always within the range of
minimum and maximum values for the virtual screen.
(For more information, see "The Virtual Screen" in
Chapter 5, "The Mouse Interface.")

Example

100
200 Check button status
300
400 M1%=3
500 CALL MOUSE (M1%, M2%, M3%, M4%)
600 IF M2% AND 1 THEN PRINT "Left button down."
700 IF M2% AND 2 THEN PRINT "Right button down."

Function 4: Set Mouse Cursor
Position

Input

Ml%=4
M3%=new cursor coordinate

(horizon tal)
M4%=new cursor coordinate

(vertical)

Output

Mouse Function Descriptions 6-91

Function 4 sets the cursor to the specified horizon tal and
vertical screen coordinates. The parameter values must
be within the horizontal and vertical coordinate ranges
for the virtual screen.
If the screen is not in a mode with a cell size of 1 x 1, the
parameter values are rounded to the nearest horizontal
or vertical coordinate values permitted for the current
screen mode. (For more information, see "The Virtual
Screen" in Chapter 5, "The Mouse Interface.")

Example
Assume that HMAX and VMAX are the maximum hori
zontal and vertical coordinate values for the virtual
screen. This call to function 4 sets the cursor to the
cen ter of the screen:

100
200 Put cursor in center of screen
300
400 M1%=4
500 M3%=INT(HMAX/2)
600 M4%=INT(VMAX/2)
700 CALL MOUSE (M1%, M2%, M3%, M4%)

16-10 Designing a Mouse Interface

Function 5: Get Button Press
Information

Input

Ml%=5
M2%=button

Output

Ml %=button status
M2%=number of button presses
M3%=cursor (horizon tal) at last

press
M4%=cursor (vertical) at last press

Function 5 returns the following:

• The current status of the specified button
• The number of times the specified button was pressed

since the last call to this function
• The horizontal and vertical coordinates of the cursor

the last time the specified button was pressed

The parameter M2% specifies which button is checked. If
this parameter is 0, the left button is checked. If this
parameter is 1, the right button is checked.
The button status is a single integer value. Bit 0
represents the left button and bit 1 represents the right
button. These bits are 1 if the corresponding button is
down, and 0 if it is up.
The number of button presses is always in the range 0 to
32767. Overflow is not detected. The count is set to 0
after the call.
The values for the horizon tal and vertical coordinates
are in the ranges defined by the virtual screen. These
values represent the cursor position when the button was
last pressed, not the cursor's current position.

Example

100
200 Get button press information
300
400 M1%=5
500 M2%=0 left button
600 CALL MOUSE (M1%, M2%, M3%, M4%)
700 IF (M1% AND 1) THEN PRINT "Left button down."

Function 6: Get Button Release
Information

Input Output

Mouse Function Descriptions 6-11 I

Ml%=6
M2%=button

Ml %=button status
M2%=number of button releases
M3%=cursor (horizontal) at

last release
M4%=cursor (vertical) at

last release

Function 6 returns the following:

• The current status of the specified button
• The number of times the specified button was released

since the last call to this function
• The horizontal and vertical coordinates of the cursor

the last time the specified button was released

The parameter M2% specifies which button is checked. If
this parameter is 0, the left button is checked. If this
parameter is 1, the right button is checked.
The button status is a single integer value. Bit 0
represents the left button and bit 1 represents the right
button. These bits are 1 if the corresponding button is
down, and 0 if it is up.
The n urn ber of bu tton releases is always in the range 0 to
32767. Overflow is not detected. The count is set to 0
after the call.
The values for the horizontal and vertical coordinates
are in the ranges defined by the virtual screen. These
values represent the cursor position when the button was
last released, not the cursor's current position.

Example

100
200 Get button release information
300
400 M1%=6
500 M2%=1 right button
600 CALL MOUSE (Ml%, M2%, M3%, M4%)
700 IF (Ml% AND 2) THEN PRINT "Right button down."

16-12 Designing a Mouse Interface

Function 7: Set Minimum and
Maximum Horizontal Cursor Position

Input

Ml%=7
M3%=minimum position
M4%=maximum position

Output

Function 7 sets the minimum and maximum horizontal
cursor coordinates on the screen. All cursor movement
after the call to function 7 is restricted to the specified
area. The minimum and maximum values are defined by
the virtual screen. (For more information, see "The Vir
tual Screen" in Chapter 5, "The Mouse Interface.")
If the minimum value is greater than the maximum
value, the two values are swapped.

Exam pie

100
200
300
400
500
600
700

I Limit cursor to horizontal positions below 150
I

M1%=7
M3%=0
M4%=150
CALL MOUSE(M~%, M2%, M3%, M4%)

Mouse Function Descriptions 6-131

Function 8: Set Minimum and
Maximum Vertical Cursor Position

Input

Ml%=8
M3%=minimum position
M4%=maximum position

Output

Function 8 sets the minimum and maximum vertical cur
sor coordinates on the screen. After function 8 is called,
cursor movement is restricted to the specified area. The
minimum and maximum values are defined by the virtual
screen. (For more information, see "The Virtual Screen"
in Chapter 5, "The Mouse In terface.")
If the minimum value is greater than the maximum
value, the two values are swapped.

Example

100
200 Limit cursor to vertical positions between
300 100 and 150
400
500 M1%=8
600 M3%=100
700 M4%=150
800 CALL MOUSE (M1%, M2%, M3%, M4%)

16-14 Designing a Mouse Interface

Function 9: Set Graphics Cursor
Block

Input

M1%=9
M2%=cursor hot spot (horizontal)
M3%=cursor hot spot (vertical)
M4%=pointer to screen and cursor

nlasks

Output

Function 9 defines the shape, color, and center of the
graphics cursor (the cursor used when the computer is in
graphics mode). 'your program must call function 1 to
display the graphics cursor.
Function 9 uses the val ues found in the screen mask and
cursor mask to build the cursor shape and color.
To pass the screen mask and cursor mask, assign their
values to an integer array (packed 2 bytes per integer)
and use the first elemen t of the array as the parameter
M4% in the call (see the example on the next page).
The cursor hot spot values must define one pixel within
the cursor. The values must be within the range -16 to
16.
For more information about the screen mask, cursor
mask, and the graphics cursor hot spot, see "Graphics
and Text Cursors" in Chapter 5, "The Mouse Interface."

Note For more information about calling function 9
from programs in assembly language, see the section
"Making Calls from Assem bly-Language Programs" in
Chapter 7, "Making Mouse Function Calls."

Mouse Function Descriptions 6-151
Example
To define a cursor in high-resolution graphics mode, first
assign the values to the cursor array, then make the call:

100
200
300
400
SOO
600
700
800
900

1000
1100
1200
1300
1400
lS00
1600
1700
1800
1900
2000
2100
2200
2300
2400
2S00
2600
2700
2800
2900
3000
3100
3200
3300
3400
3S00
3600
3700
3800
3900
4000
40S0
4100
4200
4300
4400
4S00

, Define the screen mask ,
CURSOR (0, 0) =&HFFFF
CURSOR (l,O)=&HFFFF
CURSOR(2,0)=&HFFFF
CURSOR (3,0) =&HFFFF
CURSOR (4, 0) =&HFFFF
CURSOR (S,O) =&HFFFF
CURSOR(6,0)=&HFFFF
CURSOR (7,0) =&HFFFF
CURSOR (8,0) =&HFFFF
CURSOR (9,0) =&HFFFF
CURSOR(10,0)=&HFFFF
CURSOR(ll,O)=&HFFFF
CURSOR(12,0)=&HFFFF
CURSOR (13,0) =&HFFFF
CURSOR(14,0)=&HFFFF
CURSOR(lS,O)=&HFFFF ,

Define the cursor mask

CURSOR(0,1)=&H8000
CURSOR(l,l)=&HEOOO
CURSOR(2,1)=&HF800
CURSOR(3,1)=&HFEOO
CURSOR(4,1)=&HD800
CURSOR(S,l)=&HOCOO
CURSOR(6,1)=&H0600
CURSOR(7,1)=&H0300
CURSOR(8,1)=&HOOOO
CURSOR(9,1)=&HOOOO
CURSOR(10,1)=&HOOOO
CURSOR(ll,l)=&HOOOO
CURSOR(12,1)=&HOOOO
CURSOR (13, 1) =&HOOOO
CURSOR(14,1)=&HOOOO
CURSOR(lS,l)=&HOOOO ,

'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111
'1111111111111111

'1000000000000000
'1110000000000000
'1111100000000000
'1111111000000000
'1101100000000000
'0000110000000000
'0000011000000000
'0000001100000000
'0000000000000000
'0000000000000000
'0000000000000000
'0000000000000000
'0000000000000000
'0000000000000000
'0000000000000000
'0000000000000000

Set the mouse cursor shape, color, and
hot spot

M1%=9
M2%=0' horizontal hot spot
M3%=0' vertical hot spot
CALL MOUSE (M1%, M2%, M3%, CURSOR(O,O»

16-16 Designing a Mouse Interface

Function 10: Set Text Cursor

Input

M1%=10
M2%=cursor select
M3%=screen mask value/scan line

start
M4%=cursor mask value/scan line

stop

Output

Function 10 selects the software or hardware text cursor.
Your program must call function 1 to display the text
cursor.
The value of the pJarameter M2% specifies which cursor
is selected. If M2% is 0, the software text cursor is
selected. If M2% is 1, the hardware text cursor is
selected.
If the software text cursor is selected, parameters M3%
and M4% must specify the screen mask and cursor mask.
These masks define the attributes of a character when
the cursor is over it. The mask values depend on the
display adapter in the computer. (For more information,
see "Software Text Cursor" in Chapter 5, "The Mouse
In terface.")
If the hardware text cursor is selected, parameters M3%
and M4% must specify the line numbers of the first and
last scan lines in the cursor. These line numbers depend
on the display adapter in the computer. (For more infor
mation, see "Hardware Text Cursor" in Chapter 5, "The
Mouse Interface.")

100
200 Create text cursor that inverts foreground
300 and background colors
400
500 M1%=10
600 M2%=0 ' select software text cursor
700 M3%=&HFFFF ' screen mask
800 M4%=&H7700 ' cursor mask
900 CALL MOUSE (M1%, M2%, M3%, M4%)

Mouse Function Descriptions 6-171

Function 11: Read Mouse Motion
Counters

Input

Ml%=11

Output

M3%=count (horizontal)
M4%=count (vertical)

Function 11 ret urns the horizon tal and vertical mickey
count since the last call to this function. The mickey
count is the distance that the mouse has moved, in 1/200
inch increments. (For more information, see "Mouse Unit
of Distance: The Mickey" in Chapter 5, "The Mouse
Interface.")
The mickey count is always within the range -32768 to
32767 .

• A positive horizontal count indicates motion to the
right. A negative horizontal count indicates motion to
the left .

• A positive vertical count indicates motion to the bot
tom of the screen. A negative vertical count indicates
motion to the top of the screen.

Overflow is ignored. The mickey count is set to 0 after
the call is completed.

Example

100
200 Get the mickey count
300
400 Ml%=ll
500 CALL MOUSE (M1%, M2%, M3%, M4%)

16-18 Designing a Mouse Interface

Function 12: Set Interrupt Subroutine
Call Mask and Address

Input

M1%=12
M3%=call mask
M4%=subroutine address

Output

Function 12 sets the call mask and subroutine address
for mouse hardware interrupts.
The mouse hardware interrupts automatically stop exe
cution of your program and call the specified subroutine
whenever one or more of the conditions defined by the
call mask occur. When the subroutine finishes, your pro
gram continues execution at the point of interruption.
The call mask is a single integer value that defines which
conditions cause an interrupt. Each bit in the call mask
corresponds to a specific condition, as shown in the fol
lowing table:

Mask bit

o
1
2
3
4
5-15

Condition

Cursor position changes
Left button pressed
Left button released
Righ t button pressed
Right button released
Not used

To enable the subroutine for a given condition, set the
corresponding call mask bit to 1 and pass the mask as
parameter M3%.
To disa ble the subroutine for a given condition, set the
corresponding bit to 0 and pass the mask as parameter
M3%.
A call to function 0 automatically sets the call mask to
o.

Mouse Function Descriptions 6-191

Note Before your program ends, be sure to set the in ter
rupt call mask to O. If the call mask and subroutine
remain defined when the program is no longer running,
the su brou tine will still be execu ted if one of the condi
tions defined by the call mask occurs.

When the mouse software makes a call to the subroutine,
it loads the following information into the CPU registers:

Register

AX

BX
CX
DX
DI
SI

Information

Condition mask (similar to the call mask
except a bit is set only if the condition
has occurred)
Button state
Cursor coordinate (horizontal)
Cursor coordinate (vertical)
Horizontal mouse counts (mickeys)
Vertical mouse counts (mickeys)

Note The DS register con tains the mouse driver da ta
segments. The subroutine is responsible for setting DS as
needed.

To use function 12 with the BASIC interpreter:

OJ Load an assembly-language subroutine into the
BASIC interpreter's data segment. All exits from the
subroutine must use a far return instruction.

[!] Assign the entry address of the subroutine to an
integer varia ble.

121 Pass this varia hIe to function 12 as the fourth
parameter.

To use function 12 in a high-level-language program:

[!] Link an assembly-Ian~uage subroutine with the
program's object file(sJ. All exits from the subroutine
must use a far return Instruction.

Calling from
interpreted
BASIC programs

Calling from
high-Ievel
language
programs

16-20 Designing a Mouse Interface

Calling from
assembly
language
programs

[g] Assign the entry address of the subroutine to an
integer variable.
In QuickBASIC programs and C small- and compact
model programs, the address is an offset only.
In FORTRAN programs, Pascal programs, and C
medium-, large-, and huge-model programs, the
address consists of both a segment and an offset.

m Pass this variable to function 12 as the fourth param
eter.

For information on using function 12 in assembly
language programs, see "Making Calls from Assem bly
Language Programs" in Chapter 7, "Making Mouse
Function Calls."

Example
The following example calls function 12 from the BASIC
interpreter. Assume that an assembly-language sub
routine has been loaded into the BASIC interpreter's
data segment and that the integer variable SKETCH%
has been assigned the subroutine's entry address. The fol
lowing BASIC statements set up calls to SI(ETCH% any
time the user presses the left mouse button.

100
200 Call subroutine SKETCH on left button press
300
400 M1%=12
500 M3%=&H01
600 M4%=SKETCH%
700 CALL MOUSE(M1%, M2%, M3%, M4%)

Mouse Function Descriptions 6-21 I

Function 13: Light Pen Emulation
Mode On

Input Output

M1%=13

Function 13 allows the mouse to emulate a light pen.
When the mouse emulates a light pen, calls to the PEN
function (described in the IBM BASIC manual) return the
cursor position at the last "pen down."
The mouse buttons control the "pen down" and "pen off
the screen" states. The pen is down when both mouse
buttons are down. The pen is off the screen when both
mouse buttons are up.
The mouse software enables light pen emulation mode
after each reset (function 0).

Example

100
200 Enable light pen
300
400 Ml%=13
500 CALL MOUSE (M1%, M2%, M3%, M4%)

16-22 Designing a Mouse Interface

Function 14: Light Pen Emulation
Mode Off

Input Output

M1%=14

Function 14 disables light pen emulation. When light pen
emulation is disabled, calls to the PEN function
(described in the IBM BASIC manual) return information
about the light pen only.
If a program uses both a light pen and the mouse, the
program must disable the mouse light pen emulation
mode to work correctly.

Example

100
200 Disable light pen
300
400 M1%=14
500 CALL MOUSE (M1%, M2%, M3%, M4%)

Mouse Function Descriptions 6-231

Function 15: Set Mickey/Pixel Ratio

Input

Ml%=15
M3%=mickey /pixel ratio

(horizon tal)
M4%=mickey /pixel ratio (vertical)

Output

Function 15 sets the mickey-to-pixel ratio for horizontal
and vertical mouse motion. The ratios specify the
number of mickeys per 8 pixels. The values must be in
the range 1 to 32767. (For more information, see "Mouse
Unit of Distance: The Mickey" in Chapter 5, "The Mouse
Interface.")
The default value for the horizontal ratio is 8 mickeys to
8 pixels. With this ratio, the mouse must travel 6.4
inches to move the cursor horizontally across the screen.
The default value for the vertical ratio is 16 mickeys to 8
pixels. \Vith this ratio, the mouse must travel 4 inches to
move the cursor vertically across the screen.

Example

100
200 Set mickey/pixel ratio at 16 to 8 and 32 to 8
300
400 M1%=lS
500 M3%=16 I horizontal ratio
600 M4%=32 I vertical ratio
700 CALL MOUSE (M1%, M2%, M3%, M4%)

16-24 Designing a Mouse Interface

Function 16: Conditional Off

Input

M1%=16
M4%=address of the region

array

Output

Function 16 defines a region on the screen for updating.
If the mouse pointer is in the defined region or moves into
it, function 16 hides the mouse cursor while the region is
being updated. After your program calls function 16, the
program must call function 1 to show the cursor again.
The region is defined by placing the screen coordinate
values in a four-element array. The elements of the array
are defined as follows:

Array Offset

1
2
3
4

Value

Left x screen coordinate
Upper y screen coordinate
Right x screen coordinate
Lower y screen coordinate

Function 16 is similar to function 2, but is intended for
advanced applications that require quicker screen
updates.

Note For information on calling function 16 from
assembly-language programs, see "Making Calls from
Assembly-Language Programs" in Chapter 7, "Making
Mouse Function Calls."

Mouse Function Descriptions 6-251
Example

100
200
300

Define screen region for conditional off

400 OFF%(1)=10
500 OFF%(2)=30
600 OFF%(3)=40
700 OFF%(4)=80
800 M1%=16

, left x value of region
upper y value of region

, right x value of region
, lower y value of region

900 CALL MOUSE (M1%, M2%, M3%, OFF%(O»
1000 '
1100' Screen update routine

2200 '
2300 M1%=1
2400 CALL MOUSE (M1%, M2%, M3%, M4%)

16-26 Designing a Mouse Interface

Function 19: Set Double-Speed
Threshold

Input

M1%=19
M4%=threshold speed in

mickeys/second

Output

Function 19 sets the threshold speed for dou bling the
cursor's motion on the screen. Using function 19 makes it
easier to poin t at images widely separated on the screen.
Parameter M4% defines the mouse's threshold speed. If
no value is given, or if the mouse is reset by a call to
function 0, a default value of 64 mickeys per second is
assigned. If the mouse moves faster than the value of
M4%, cursor motion doubles in speed. The threshold
speed remains set until function 19 is called again or
until the mouse is reset by function o.
Once your program turns on the speed-doubling feature,
this feature is always on. However, the program can
effectively turn off this feature by setting M4% to a speed
faster than the mouse can physically move (for example,
10,000) and then calling function 19.

Exam pie

1.00
1.1.0 Set threshold to 32 mickeys/sec
1.20
1.30 M1.%=1.9
1.40 M4%=32 mickeys/second
1.50 CALL MOUSE (M1.%, M2%, M3%, M4%)

1.000 Turn off speed doubling
1.01.0 M1.%=1.9
1.020 M4%=1.0000 mickeys/second
1.030 CALL MOUSE (M1.%, M2%, M3%, M4%)

Function 20: Swap Interrupt
Subroutines

Input Output

Mouse Function Descriptions 6-271

Ml%=20
M2%=segment of

new su brou tine

M2%=segment of old
subroutine

M3%=new call mask
M4%=offset of new

M3%=0Id call mask
M4%=offset of old

subroutine
su broutine

Function 20 sets new values for the call mask and sub
routine address for mouse hardware interrupts and
returns the values that were previously specified.
The mouse hardware interrupts automatically stop exe
cution of your program and call the specified subroutin'e
whenever one or more of the conditions defined by the
call mask occur. When the subroutine finishes, your pro
gram continues execution at the point of interruption.
The call mask is an integer value that defines which con
ditions cause an interrupt. Each bit in the call mask
corresponds to a specific condition, as shown in the fol
lowing table:

Mask bit

o
1
2
3
4
5-15

Condition

Cursor position changes
Left button pressed
Left button released
Right button pressed
Righ t button released
Not used

To enable the subroutine for a given condition, set the
corresponding call mask bit to 1 and pass the mask as
parameter M3%.
To disable the subroutine for a given condition, set the
corresponding bit to 0 and pass the mask as parameter
M3%. Function 0 automatically disables all interrupts.

16-28 Designing a Mouse Interface

Calling from
interpreted
BASIC programs

Calling from
high-Ievel
language
programs

Note Before your program ends, be sure to restore the
initial values of the call mask and subroutine address.

When the mouse software makes a call to the subroutine,
it loads the following information into the CPU registers:

Register

AX

BX
CX
DX
DI
SI

Information

Condition mask (similar to the call mask
except a bit is set only if the condition
has occurred)
Button state
Cursor coordinate (horizontal)
Cursor coordina te (vertical)
Horizontal mouse counts (mickeys)
Vertical mouse counts (mickeys)

Note The DS register contains the mouse driver data
segments. The subroutine is responsible for setting DS as
needed.

To use function 20 with the BASIC interpreter:

[j] Load an assembly-language subrou tine into the
BASIC interpreter's data segment. All exits from the
subroutine must use a far return instruction.

[] Assign the entry offset of the subroutine to an integer
variable.

m Pass this variable to function 20 as the fourth param-
eter.

If M2% is set to 0 in an interpreted BASIC program, the
segment of the new subroutine is assumed to be identical
to the BASIC data segment.

To use function 20 in a high-level-language program:

[j] Link an assembly-Iangyage subroutine with the
program's object file(sJ. All exits from the subroutine
must use a far return Instruction.

[] In FORTRAN programs, Pascal programs, and C
medium-, large-, and huge-model programs, assign the
subroutine's segment to an integer variable. In Quick
BASIC programs, and C small- and compact-model
programs, set this variable to o.

Mouse Function Descriptions 6-291

Ii] Assign the subroutine's offset to an integer variable.
m Pass the variable containing either the subroutine's

segment or 0 to function 20 as the second parameter.
Pass the variable containing the subroutine's offset as
the fourth parameter.
If M2% is set to 0 in a high-level-language program,
the segment of the new subroutine is assumed to be
identical to the program's data segment.
For information on using function 20 in assembly
language programs, see "Making Calls from
Assembly-Language Programs" in Chapter 7, "Mak
ing Mouse Function Calls."

Example
The following example calls function 20 from the BASIC
interpreter. Assume that an assembly-language sub
routine has been loaded into the BASIC interpreter's
data segment and that the integer variable SKETCH%
has been assigned the subroutine's entry offset. The fol
lowing BASIC statements set up calls to SI(ETCH% any
time the user presses the left mouse button.

100
200 Call subroutine SKETCH on left button press
300
400 Ml%=20
500 M2%=0
600 M3%=&HOl
700 M4%=SKETCH%
800 CALL MOUSE(Ml%, M2%, M3%, M4%)

If your pr~gram does not change the return values of
Ml %, M2%, M3%, and M4%, you can restore the pre
vious interrupt subroutine call mask and address by
adding the following statement after the initial call to
function 20.

CALL MOUSE (Ml%, M2%, M3%, M4%)

Calling from
assembly
language
programs

16-30 Designing a Mouse Interface

Function 21: Get Mouse Driver State
Storage Requirements

Input

Ml%=21

Output

M2%=buffer size required for mouse
driver state

Function 21 returns the size of the buffer required to
store the current state of the mouse driver. It is used
with functions 22 and 23 when you want to temporarily
interrupt a program that is using the mouse and execute
another program that also uses the mouse, such as one of
the Microsoft Expert Mouse Men u programs.

Example

~oo

200 Get required storage size
300
400 Ml%=21
500 CALL MOUSE (Ml%, M2%, M3%, M4%)
600 BufSIZE%=M2%

o

o

o

Mouse Function Descriptions 6-31 I

Function 22: Save Mouse Driver State

Input Output o M1%=22

o

o

M4%=pointer to the buffer

Function 22 saves the curren t mouse driver state in a
buffer allocated by your program. It is used with func
tions 21 and 23 when you want to temporarily interrupt
a program that is using the mouse and execute another
program that also uses the mouse.
Before your program calls function 22, the program
should call function 21 to determine the buffer size
required for saving the mouse driver state, then allocate
the appropriate amount of memory.

Note For information on calling function 22 from an
assembly-language program, see "Making Calls from
Assembly-Language Programs" in Chapter 7, "Making
Mouse Function Calls."

Example
Assume that the buffer size was obtained by calling func
tion 21 and has been allocated in the BASIC interpreter's
data segment. Assume also that BUFPTR contains the
address of the buffer.

100
200 Save the mouse driver state
300
400 Ml%=22
500 M4%=BUFPTR
600 CALL MOUSE (M1%, M2%, M3%, M4%)

16-32 Designing a Mouse Interface

Function 23: Restore Mouse Driver
State

Input Output

M1%=23
M4%=pointer to the buffer

Function 23 restores the last mouse driver state saved by
function 22. It is used with functions 21 and 22 when you
wan t to temporarily in terru pt a program that is using
the mouse and execute another program that also uses
the mouse. To restore the mouse driver state saved by
function 22, call function 23 at the end of the interrupt
program.

Note For information on calling function 23 from an
assembly-language program, see "Making Calls from
Assembly-Language Programs" in Chapter 7, "Making
Mouse Function Calls."

Example
Assume that function 22 saved the mouse driver state in
a buffer allocated by -the program. Assume also that
BUFPTR contains the address of the buffer.

100
200 Restore the mouse state
300
400 M1%=23
500 M4%=BUFPTR
600 CALL MOUSE (M1%, M2%, M3%, M4%)

o

o

o

Mouse Function Descriptions 6-331

Function 29: Set CRT Page Number

Input Output

o Ml%=29

o

o

M2%=CRT page for mouse
cursor display

Function 29 specifies the CRT page on which the mouse
cursor will be displayed.
For information on the number of CRT pages available
in each display mode your adapter supports, see the
documentation that came with the graphics adapter.

Exam pie

100
200 Display mouse cursor on page 3
300
400 M1%=29
500 M2%=3
600 CALL MOUSE (M1%, M2%, M3%, M4%)

Function 30: Get CRT Page Number

Input

Ml%=30

Output

M2%=CRT page number of current
cursor display

Function 30 returns the number of the CRT page on
which the mouse cursor is displayed.

Example

100
200 Get CRT page number
300
400 M1%=30
500 CALL MOUSE (M1%, M2%, M3%, M4%)

o

o

o

o

o

o

7 Making Mouse Function
Calls

The statements and instructions required to call the
mouse functions depend on the language you're using for
your application program. This chapter explains how to
make mouse function calls from the following types of
programs:

• BASIC programs running under the BASIC interpreter
• Assembly-language programs
• Programs in Microsoft high-level languages

This chapter also includes the BASIC source program
listing for the Piano demonstration program that came
in your Microsoft Mouse package.
The last section in this chapter describes eight sample
mouse cursors you can use in high-resolution graphics
mode.

Additional
examples

17-2 Designing a Mouse Interface

Making Calls from the BASIC
Interpreter

To make a mouse function call from a BASIC program 0
running under the BASIC interpreter:

OJ Assign the offset and segment of the BASIC entry
point into the mouse driver to a pair of integer vari
ables in your program. The mouse entry offset and
segment are in memory. To get these values, insert the
following statements into your program:

10 DEF SEG=O
20 MSEG=256*PEEK(51*4+3)+PEEK(51*4+2)
30 MOUSE=256*PEEK(51*4+1) +PEEK(51*4) +2
40 IF MSEG OR (MOUSE-2) THEN 60
50 PRINT "Mouse Driver not found":END
60 DEF SEG=MSEG
70 IF PEEK(MOUSE-2)=207 then 50

Be sure that these statements appear before any calls
to mouse functions.

~ Use the CALL statement to make the call. The state
ment should have the form

CALL MOUSE (M1%, M2%, M3%, M4%)

where MOUSE is the variable containing the offset of
the BASIC entry point into the mouse driver, and
Ml%, M2%, M3%, and M4% are the names of the
integer variables you have chosen for parameters in
this call. (Constan ts and noninteger variables are not
allowed.) All of the parameters must appear in the
CALL statement even if no value is assigned to one or
more of them.
To ensure that the variables are integer variables, use
the percent sign (%) as part of all the variable names.
You may also use the DEFINT statement at the
beginning of your program. For example, the state
ment

10 DEFINT A-Z

defines all variables as integer variables. If this state
ment appears at the beginning of the program, the
variable names don't need to include the percent sign.

o

o

o

Making Mouse Function Calls 7-31
Example

Assuming that the variable MOUSE has the offset of the
BASIC entry point into the mouse driver, use the follow
ing statements to set the cursor position to 320 (horizon
tal) and 100 (vertical):

100
200 Set cursor position to (320,100)
300
400 M1%=4 'Function number is 4
500 M3%=320 'Horizontal coordinate
600 M4%=100 'Vertical coordinate
700 CALL MOUSE (M1%, M2%, M3%, M4%)

No Ie For additional examples of making calls from the
BASIC interpreter, see the sample source code after the
description of each function in Chapter 6, "Mouse Func
tion Descriptions," and the section "Piano Program List
ing" later in this chapter.

Making Calls from Assembly-o language Programs

o

To make a mouse function call from an assem bly
language program:

(jJ Include statements in your program that check if the
mouse driver is installed. These statements must
appear before any calls to mouse functions. (See the
assembly-language program example on the next
page.)

Ii] Load the appropriate CPU registers (AX, BX, CX,
DX, SI, DI, andlor ES) with the parameter values.

m Execute software interrupt 51 (33H).

For all mouse functions except functions 9, 12, 16, 20, 22,
and 23, the A~ BX, CX, and DX registers correspond to
the Ml %, M2'/o, ~13%, and ~14% parameters defined for
the BASIC interpreter in Chapter 6, "Mouse Function
Descriptions."

17-4 Designing a Mouse Interface

Assembly
language
program

The parameter definitions for functions 9, 12, 16, 20, 22,
and 23 are given in the following table:

Function Input Output

9 AX = 9
BX = cursor hot spot 0

(horizon tal)
CX = cursor hot spot (vertical)
ES:DX = address of first element
in screen and cursor masks array

12 AX = 12

16

20

CX = call mask
ES:DX = su brou tine address

AX = 16
CX = upper x screen coordinate
DX = left y screen coordinate
SI = lower x screen coordinate
DI = right y screen coordinate

AX = 20 CX = old
CX = new call mask
ES:DX = new subroutine address

22 AX =22

call mask
ES:DX = old
sUbroutineo address

ES:DX = start of buffer address
23 AX =23

ES:DX = start of buffer address

Example

The following assembly-language program puts an IBM
Color/Graphics Adapter into 640 x 200 graphics mode
and displays the default mouse cursor (the standard cur
sor shape described under "Sample Cursors" later in this
chapter). Clicking the left mouse button returns the
video display to 80-column, black-and-white text mode,
and ends the program.

stack

stack

data

segment stack
db

ends

'stack'
256 dup(?)

segment public 'data'
o

msgl db "Microsoft Mouse not found","!?"

data

code

o start:

o begin:

()

Making Mouse Function Calls 7-51
msg2
ends

db "Press the left mouse button to EXIT","$"

segment public
assume cs:code,

'code'
ds:data, es:data; ss:stack

push bp
mov bp,sp
mov aX,seg data
mov dS,ax

push es
mov aX,03533h
int 21h
mov aXles
or aX,bx
jnz begin

-----mo;;,-------ol-, e s: [b x]
cmp bl,Ocfh

____ jn~ _____ E~gj..!:!_j

mov dX,offset
mov ah,09h
int 21h
pop es
jmp short exit

mov ax,O
int 33h
cmp ax,O
jz exit -------'
mov aX,0006h

msg1

int 10h /I . '
Se/ldV'S?>.(;' J''os mov aX,4

mov cx,200
mov dX,100
int 33h
mov aX,7
mov cx,150
mov dX,450
int 33h
mov aX,8
mov cx,50
mov dX,150
int 33h
mov aX,l
int 33h

mov dX,offset msg2
mov ah,09h
int 21h
xor aX,ax

;Set DS to the
;data segment

;Save PSP segment address
;Get int 33h vector
;by calling int 21
;Check segment and
;offset of int 33
;vector. If 0 or pointing to
;IRET, driver not installed

;Exit

;Get not found message offset
;Output message to screen

;Exit

;Initialize mouse

;1s mouse installed?
;No, exit
;Set up for 640x200 resolution
;graphics mode (eGA mode 6)
;Function 4-set cursor position
;M3 200
;1"14 = 100

; Function 7)e!hU:J irH 5.Y AOI'-
;M3 150 (
;M4 = 450

;Function 8
;M3 50
;M4 = 150

;Show the mouse cursor

;Get exit message
;Output message to screen

17-6 Designing a Mouse Interface

around:

exit:

code
end

mov
int
cmp
jne

mov
int
mov
int

mov
pop
mov
int

ends
start

ax,3
33h
bX,OOOlh
around

ax,O
33h
ax,0003h
lOh

sp,bp
bp
aX,04cOOh
21h

;Get mouse status

;Left mouse button
;pressed? Branch if not

;Reset mouse
;Set up 80x25
;character text mode

;Terminate

Making Calls from High-Level
Language Programs

o

Mouse function calls from high-level-languages can be
included as ordinary procedure calls in the source pro- 0
gram. After the program is compiled, it must be linked
with the Microsoft 110use Library (110USE.LIB), which
is included on the Microsoft Mouse Tools disk.
110USE.LIB contains procedures that give access to all
the mouse functions.
This section describes how to make function calls from
the following high-level languages:

• 11icrosoft QuickBASIC
• Microsoft Pascal (version 3.30 or later)
• 11icrosoft FORTRAN (version 3.30 or la ter)
• 11icrosoft C (version 3.0 or la ter)

For information about linking programs written for ear
lier versions of the 11icrosoft Mouse Library, see Appen
dix B, "Linking Existing Mouse Programs with
NIOUSE.LIB (Version 6.0)."
For information on accessing the mouse functions from a
program written in Borland Turbo Pascal, see Appendix
C, "11aking Calls from Borland Turbo Pascal Pro
grams."

o

o

o

o

Making Mouse Function Calls 7-71

Making Calls from Microsoft QuickBASIC

To make a mouse function call from a program in 11icro
soft QuickBASIC (version 1.0 or later):

lI1 Include statements in your program that check if the
mouse driver is installed. These statements must
appear before any calls to mouse functions. (See the
QuickBASIC program example on the next page.)

[il Call the mouse library procedure "NIOUSE" as a regu
lar QuickBASIC external subroutine.

[II Compile the program and link it with MOUSE.LIB.
If you are using version 2.0 of the QuickBASIC com
piler, you can compile and link in one step from within
the QuickBASIC editor following t,he procedure given
below. (For instructions on linking with 110USE.LIB
outside of the QuickBASIC editor, see your documen
tation on 11icrosoft QuickBASIC.)

Linking with MOUSE.LIB within QuickBASIC
To simultaneously compile a QuickBASIC program (ver
sion 2.0) and link the program with lv10USE.LIB, first set
up a special library su broutine called "USERLIB.EXE".
To set up USERLIB.EXE:

lI1 Create a QuickBASIC source file that contains the
single statement:

CALL MOUSE

[il Compile this source file outside of the QuickBASIC
editor. To do this, type the following at the DOS
prompt:
qb <filename>;
and press the ENTER key. «filename> is the name of
the source file.)

[II Make sure the compiled QuickBASIC file,
110USE.LIB, and the QuickBASIC utilities
BUILDLIB.EXE and BRUN20.LIB are in the current
directory.

Setting up
USERLIB.EXE

17-8 Designing a Mouse Interface

Linking within
QuickBASIC

QuickBASIC
program

o To create the USERLIB.EXE file, type the following at
the DOS prompt:
buildlib <filename>, userlibn mouse;

and press the ENTER key. «filename> is the name of
the compiled QuickBASIC file.)

To compile a QuickBASIC program and link it with
1\10USE.LIB in one step:

EJ 11ake sure the USERLIB.EXE file is in the same direc
tory as the QuickBASIC compiler (QB.EXE) before
you start QuickBASIC.

[] To start QuickBASIC, type qb/ l (not qb) and press the
ENTER key.

[I] Compile the mouse application program within the
QuickBASIC editor. This also automatically links the
program with :NfOUSE.LIB.

Example

o

The following program puts an IB11 Color /Graphics
Adapter into 640 x 200 graphics mode and displays the
default mouse cursor (the standard cursor shape 0
described under "Sample Cursors" later in this chapter).
This program calls the su brou tine "chkdrv", which is
shown in the assembly-language program that follows.

, Mouse library call test in QuickBASIC V2.0

call chkdrv

screen 0

ml%=O ' function 0
call mouse(ml%,m2%,m3%,m4%)
if (ml% = 0) then

print "Microsoft Mouse not found"
end

end if

ml%=4 ' function 4
m3%=200
m4%=100
call mouse(ml%,m2%,m3%,m4%)

ml%=7 ' function 7
m3%=150
m4%=450
call mouse(ml%,m2%,m3%,m4%)

o

o

o

0

Making Mouse Function Calls 7-9

ml%=8 function 8
m3%=50
m4%=150
call mouse(ml%,m2%,m3%,m4%)

screen 2

print "Cursor limited to the center of the screen."
print "Press the left mouse button to EXIT."

ml% = 1
call mouse(ml%,m2%,m3%,m4%)

m2% = 99
while (m2% <> 1)

ml% = 3
call mouse(ml%,m2%,m3%,m4%)

wend

screen 0

end

In the following assembly-language source program,
"chkdrv" checks if the mouse driver is installed.

mdata segment byte public 'data'

chkdrv
subroutine

msg db "Mouse Driver not installed","$"
mdata

mcode

chkdrv

ends

segment para public 'CODE'
assume cs:mcode

public

proc
push
push

mov
int
mov
or
jnz
mov
cmp
jne

mov
mov
mov
mov
int
pop
pop

chkdrv

far
bp
es

ax,03533h
21h
aX,es
ax,bx
back
bl, es: [bx]
bl, Ocfh
back

ax,seg mdata
ds,ax
dx,offset msg
ah,09h
21h
es
bp

;Get int 33h by
;ca'lling int 21
;Check segment and offset
;of int 33 vector. If
;0 or pointing to IRET,
;driver not installed

;Exit

Set up DS to
pOint to data seg
Get message
output to screen

17-10 Designing a Mouse Interface

Pascal program

mov ax,04cOOh ; Terminate
int .21h

back:
pop es
pop bp
ret

chkdrv endp

mcode ends
end

Making Calls from Microsoft Pascal

To make a mouse function call from a program in Micro
soft Pascal (version 3.30 or later):

II] Include statements in your program that check if the
mouse driver is installed. These statements must
appear before any calls to mouse functions. (See the
Pascal program example below.)

[gJ Declare the mouse library proced ure "MOUSES" as an
external procedure. The parameters can be declared as
either INTEGER or WORD. Use one of the following
statements to declare MOUSES as an external pro
cedure:

PROCEDURE MOUSES(VARS m1,m.2,m3,m4:INTEGER);EXTERN;

or

PROCEDURE MOUSES(VARS m1,m.2,m3,m4:WORD);EXTERN;

lIJ Use Microsoft Pascal calling conventions to make the
call.

III Link the compiled program with MOUSE.LIB. (For
details about using the LINI(command, see your
documentation on Microsoft Pascal.)

Exam pie

o

o

The following program puts an IBM Color/Graphics
Adapter into 640 x 200 graphics mode and displays
the default mouse cursor (the standard cursor shape
described under "Sample Cursors" later in this chapter). 0
This program calls two procedures, "graf" and "chkdrv".
These procedures are shown in the assembly-language
listing that follows this program.

o

o

Making Mouse Function Calls 7-11 I
program mtest (output);

procedure mouses (vars ml,m2,m3,m4:word) ; extern;
procedure chkdrv;extern;
procedure graf;extern;

var
ml, m2, m3, m4: word;

begin {demo}

chkdrv;

Ml:=O;
mouses(ml,m2,m3,m4);
if (ml = 0) then

writeln('Microsoft
else

begin

ml := 4;
m3 := 200;
m4 := 100;
mouses(ml, m2,

{Mouse driver installed?
{No, exit
{Yes, initialize mouse

Mouse not found')

}
}
}

{function call 4, set mouse }
{horizontal cursor position }
{vertical cursor position }
m3, m4);

ml := 7; {function call 7, set mouse}
m3 := 150; {minimum horizontal position}
m4 := 450; {maximum horizontal position}
mouses(ml, m2, m3, m4);

ml := 8;
m3 := 50;
m4 := 150;
mouses(m1, m2,

graf;

{function call 8, set mouse}
{minimum vertical position }
{maximum vertical position }
m3, m4);

{change into graphics mode }

writeln('Cursor limited to the center of the screen. ');
writeln('Press the left mouse button to EXIT. ');

m1 :=1; {function calli}
mouses(m1,m2,m3,m4); {show mouse cursor }

m2 := 999; {dummy value for loop }
repeat {until }

m1 := 3; {function call 3 }
mouses(m1, m2, m3, m4); {Get current mouse status}

until m2 = 1; {left mouse button pressed }

end

4t) end. {demo}

17-12 Designing a Mouse Interface

graf and chkdrv
procedures

In the following assembly-language source program,
"graf" changes the display mode to 640 x 200 graphics
mode (eGA mode 6) and "chkdrv" checks if the mouse
driver is installed.

mdata segment byte public 'data'

msg db "Mouse Driver not installed","$"

mdata ends

mcode segment para public 'CODE'
assume cs:mcode

public graf

graf proc far
push bp
mov ax,06h ; Change to graphics
int 10h ;mode by calling
pop bp ;int 10 service
ret

graf endp

public chkdrv

chkdrv proc far
push bp
push es

mov ax,03533h ;Get int 33h by
int 21h ;calling int 21
mov aX,es ; Check segment, offset
or ax,bx ;of int 33 vector. If
jnz back ;0 or pointing to IRET,
mov bl, es: [bx] ;driver not installed
cmp bl,Ocfh
jne back ;Exit

mov ax,seg mdata ;Set up DS to
mov ds,ax ;point to data seg
mov dx,offset msg ;Get message
mov ah,09h ; output to screen
int 21h
pop es
pop bp
mov ax,04cOOh ; Terminate
int 21h

back:
pop es
pop bp
ret

chkdrv endp

mcode ends
end

0

0

0

o

o

o

Making Mouse Function Calls 7-131

Making Calls from Microsoft FORTRAN

To make a mouse function call from a program in Micro
soft FORTRAN (version 3.30 or later):

[j] Include statements in your program that check if the
mouse driver is installed. These statements must
appear before any calls to lnouse functions. (See the
FORTRAN program example below.)

II) Call the mouse library procedure "1I10USES" as a reg
ular FORTRAN external su brou tine.

o Link the compiled program with MOUSE.LIB. (For
details about using the LINK command, see your
documentation on Microsoft FORTRAN.)

Example
The following program puts an IBM Color/Graphics
Adapter into 640 x 200 graphics mode and displays the
default mouse cursor (the standard cursor shape
described uncleI' "Sample Cursors" later in this chapter).
This program calls two assembly-language subroutines,
"graf" and "chkdrv". (See the assembly-language pro
gram after the Pascal program example earlier in this
chapter for the "graf" and "chkdrv" subroutine listings.)

PROGRAM MTEST

C

FORTRAN
program

C -- Mouse Library calls test in MS FORTRAN V3.31 --
C

INTEGER*2
EXTERNAL

M1, M2, M3, M4
GRAF, CHKDRV

C Call driver checking routine
CALL CHKDRV 0

C -- Mouse init call -
M1 = 0

C

CALL MOUSES (M1, M2, M3, M4)
IF (M1 .EQ. 0) THEN

ENDIF

WRITE(*,*)' Microsoft Mouse not found'
STOP

Place cursor in the center of the screen -
M1 = 4
M3 = 200
M4 = 100
CALL MOUSES (M1, M2, M3, M4)

C Set minimum and maximum horizontal position --
M1 = 7

17-14 Designing a Mouse Interface

C

M3 = 150
M4 = 450
CALL MOUSES(M1, M2, M3, M4)

Set minimum and maximum vertical position -
M1 = 8
M3 = 50
M4 = 150
CALL MOUSES(M1, M2, M3, M4)

CALL GRAF ()

WRITE(*,*) , Cursor is limited to the center of the screen.'
WRITE(*,*) , Press the left mouse button to EXIT.'

M1 = 1
CALL MOUSES(M1, M2, M3, M4)

C Loop for left mouse button pressed
M2 = 9999

100 M1 = 3
CALL MOUSES(M1, M2, M3, M4)

IF (M2 .NE. 1) GOTO 100

STOP
END

Making Calls from Microsoft C

o

To make a mouse function call from a program in Micro- 0
soft C (version 3.0 or later):

[!] Include statements in your program that check if the
mouse driver is installed. These statements must
appear before any calls to mouse functions. (See the C
program example on the next page.)

[gJ Call one of the following mouse library procedures as
a regular C external routine:

Use this
procedure

CMOUSES
CMOUSEC
C110USEM
C110USEL

To call from a

Small-model program
Compact-model program
Medium-model program
Large- or huge-model program

Parameters are declared as signed or unsigned
integers. Since tvl0USE.LIB requires that all param
eters be passed by reference, precede each parameter
name with "&" (address of).

o

o

o

o

Making Mouse Function Calls 7-1 51

[!] Link the compiled program with MOUSE.LIB. (For
details about using the LINI(command, see your
documentation on Microsoft C.)

Exam pie
The following program puts an IB1,1 Color/Graphics
Adapter into 640 x 200 graphics mode and displays the
default Inouse cursor (the standard cursor shape
described under "Sample Cursors" later in this chapter).

*include <stdio.h>
*include <dos.h>

void chkdrv 0 ;
void graf () ;

main ()
{

int m1, m2, m3, m4;

chkdrv(); /* check for mouse driver

~
m1-=:-ztp

m~ 0; /* initialize mouse
ouses(&m1, &m2, &m3, &m4);

if (m1 = 0) {
printf("Microsoft Mouse not found");

*/

*/

exit (-1); /* exit, if mouse not found */
}

m~ = 4; /* function call 4 * /
m3 = 200; /* set mouse position at */
m4 = 100; /* center of the screen */
cmouses(&m1, &m2, &m3, &m4);

m~ = 7; /* function ca 11 7 * /
m3 = 150; /* minimum horizontal value */
m4 = 450; /* maximum horizontal value */
cmouses(&m1, &m2, &m3, &m4);

m1 = 8; /* function call 8 */
m3 = 50; /* minimum vertical value */
m4 = 150; /* maximum vertical value */
cmouses(&m1, &m2, &m3, &m4);

graf () ;

C program

printf("Cursor limited to the center of the screen.\n");
printf("Press the left mouse button to EXIT.");

m1 = 1; /* Function 1, show cursor */
cmouses(&m1, &m2, &m3, &m4);

m2 = 0; /* Loop until left mouse */

17-16 Designing a Mouse Interface

while (m2 != 1) { /* button is pressed */
m1 = 3;
cmouses(&m1, &m2, &m3, &m4);
}

m1 = 2;
cmouses(&m1, &m2, &m3, &m4);

}

void chkdrv ()
{

union REGS inregs, outregs;
struct SREGS segregs;
long address;
~ char first_byte;

inregs.x.ax = Ox3533;
intdosx (&inregs, &outregs, &segregs);

o

address= (((long) segregs . es) < <16) + (long) outregs . x . bx;
first_byte=*(long far *)address;

}

If «address == 0) I I (first_byte == Oxcf»{
printf("Mouse driver not installed");
exit () ;
}

void gra f ()
{

union REGS cpuregs;

cpuregs.x.ax = Ox0006;
int86 (Ox10, &cpuregs, &cpuregs);

}

Piano Program Listing

This section presents the complete source code for the
Piano demonstration program that came in your Micro
soft Mouse package. The program is written in BASIC
for the IBM Personal Computer's BASIC Interpreter.
(The Piano source program listing is also in the file
PIANO.BAS on the Microsoft Mouse Tools Disk.)
The following is an explanation of the program details:

Line n urn bers Comments

o

1000-1090
1100-1160

Copyright message 0

1170-1250

Set up music, clear graphics screen to
blue.
Read in the frequencies for the various
piano keys.

o

o

o

Line n urn hers

1260-1380

1390-1430

1440-1620

1630-1810

1820-1860

1870-1930

1940-2150
2160-2200

2210-2240

2250

Making Mouse Function Calls 7-171

Comments

Link the mouse software and the pro
gram.
Function 15 sets the mouse sensitivity.
\:Vith this setting, a horizontal move
ment of 1.6 inches moves the cursor
across the en tire screen. This rela
tively high sensitivity permits songs to
be played rapidly. Accuracy is no
problem since the piano keys are
large.
The integer array CURSOR contains
the screen and cu rsor masks, \V hich
define the shape and color of the cur
SOl'. These sta temen ts define the screen
mask; the mask is set to all ones. The
mask is logically ANDed with the
screen under the cursor.
Define the cursor mask. The values are
XORed with the result of the AND
operation to create the cursor shape
and color. In this case, the cursor
shape is a north-pointing arrowhead.
Its color is the inverse of whatever is
under it.
Function 9 sets the cursor shape. It
also defines the cursor hot spot. In this
case, the hot spot is the tip of the
arrowhead. The mouse software
automatically prevents the cursor hot
spot from leaving the screen.
Read in the 1-1icrosoft logo from pre
calculated data and place the data on
the screen.
Draw the white and black piano keys.
Draw the QUIT box in the lower-right
corner.
Function 4 centers the cursor to just
under the piano keys.
Function 1 turns on the cursor. The
cursor appears on the screen and can
be moved using the mouse.

17-18 Designing a Mouse Interface

Line numbers

2260-2290

2300-2370

2380-2430

2440-2510

2520-2570

2580-2630

2640-3050

1000 '

Comments

Function 3 gives the status of the two
mouse buttons and the location of the
cursor. This is probably the most com
mon mouse function used in applica
tions.
Some decisions are made. If both
mouse buttons are up, or if the cursor
is not on the piano keyboard, then any
sound that migh t be playing is turned
off.
At this point, the mouse button is
down when the cursor is over the
QUIT box. The program turns off the
cursor, clears the screen, then quits.
The program has determined that a
button is down and the cursor is over
the piano keyboard. These statements
~etermine which key the mouse cursor
IS over.
The note is played by the SOUND
sta temen t set wi th the correct fre
quency. This note is played in the
background as the program loops back
to line 2090.
This data contains the correct fre
quencies to play the musical notes.
Data to draw the Microsoft logo using
the PUT statement.

1010 ' THE VIRTUAL PIANO
1020 '
1030 ' COPYRIGHT (C) 1983 BY MICROSOFT CORPORATION
1040 ' WRITTEN BY CHRIS PETERS
1050 '
1060 ,--
1070 '
1080 ' INITIALIZE
1090 '
1100 DEFINT A-Z
1110 DIM CURSOR(15,1),FREQ(27,2) ,MICROSOFT(839)
1120 KEY OFF
1130 PLAY"MF"
1140 SCREEN 1
1150 COLOR 1,1
1160 CLS
1170 '

o

o

o

o

o

o

1180
1190
1200
1210
1220
1230

1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1375
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740

Making Mouse Function Calls 7-191
, Read in the flat, normal, and sharp note frequencies ,
FOR J=O TO 2
FOR 1=0 TO 6
READ K
FREQ(I,J)=K : FREQ(I+7,J)=K*2
FREQ(I+21,J)=K*8
NEXT
NEXT ,

FREQ(I+14,J)=K*4

, Determine mouse driver location; if not found, quit. ,
DEF SEG=O
MSEG=256*PEEK(51*4+3)+PEEK(51*4+2) 'Get mouse segment
MOUSE=256*PEEK(51*4+1)+PEEK(51*4)+2 'Get mouse offset
IF MSEG OR (MOUSE-2) THEN 1370
PRINT"Mouse: Microsoft Mouse driver not found"
PRINT
PRINT"Press any key to return to system"
I$=INKEY$: IF I$="" THEN 1360 ELSE SYSTEM
DEF SEG=MSEG 'Set mouse segment
IF PEEK(MOUSE-2)=207 THEN 1330
M1=0 : CALL MOUSE (M1,M2,M3,M4) 'Initialize mouse ,
, Set Mouse sensitivity ,
M1 = 15 : M3=4 : M4=8
CALL MOUSE(M1,M2,M3,M4) ,
, Define the "logical and" cursor mask ,
CURSOR(O,O)=&HFFFF ' Binary 1111111111111111
CURSOR(1,0)=&HFFFF ' Binary 1111111111111111
CURSOR(2,0)=&HFFFF ' Binary 1111111111111111
CURSOR(3,0)=&HFFFF ' Binary 1111111111111111
CURSOR(4,0)=&HFFFF ' Binary 1111111111111111
CURSOR(5,0)=&HFFFF ' Binary 1111111111111111
CURSOR(6,0)=&HFFFF ' Binary 1111111111111111
CURSOR(7,0)=&HFFFF ' Binary 1111111111111111
CURSOR(8,0)=&HFFFF ' Binary 1111111111111111
CURSOR(9,0)=&HFFFF ' Binary 1111111111111111
CURSOR(10,0)=&HFFFF ' Binary 1111111111111111
CURSOR(ll,O)=&HFFFF ' Binary 1111111111111111
CURSOR(12,0)=&HFFFF ' Binary 1111111111111111
CURSOR(13,0)=&HFFFF ' Binary 1111111111111111
CURSOR(14,0)=&HFFFF ' Binary 1111111111111111
CURSOR(15,0)=&HFFFF ' Binary 1111111111111111 ,
, Define the "exclusive or" cursor mask ,
CURSOR(0,1)=&H0300 ' Binary 0000001100000000
CURSOR(1,1)=&H0300 ' Binary 0000001100000000
CURSOR(2,1)=&HOFCO ' Binary 0000111111000000
CURSOR (3,1)=&HOFCO ' Binary 0000111111000000
CURSOR(4,1)=&H3FFO ' Binary 0011111111110000
CURSOR(5,1)=&H3FFO ' Binary 0011111111110000
CURSOR(6,1)=&HFCFC ' Binary 1111110011111100
CURSOR(7,1)=&HCOOC ' Binary 1100000000001100
CURSOR(8,1)=&HOOOO ' Binary 0000000000000000

17-20 Designing a Mouse Interface

1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970

1980

CURSOR(9,l)=&HOOOO '
CURSOR(10,l)=&HOOOO '
CURSOR(11,l)=&HOOOO '
CURSOR(12,l)=&HOOOO '
CURSOR(13,l)=&HOOOO '
CURSOR(14,l)=&HOOOO '
CURSOR(15,l)=&HOOOO ' ,

Binary
Binary
Binary
Binary
Binary
Binary
Binary

, Set the mouse cursor shape ,
M1 = 9 : M2 = 6 : M3 = 0

0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

CALL MOUSE (M1,M2,M3,CURSOR(O,O» ,
, Draw the MICROSOFT logo from pre-calculated data ,
FOR 1=0 TO 779
READ MICROSOFT(I)
NEXT
~UT(62,O) ,MICROSOFT,PSET

, Initialize keyboard size parameters ,
YL = 60 : WKL = 80 : BKL = 45 : KW = 15
WKN = 21
XL = 320-KW*WKN : YH = YL + WKL : XH = 319
BKW2=KW3
QX = 272 : QY = 176 ,
, Draw the white keys ,
LINE (XL,YL)-(XH,YH),3,BF
FOR I=XL TO XH STEP KW
LINE (I, YL) - (I, YH),O
NEXT ,
, Draw the "black" keys ,
C=6
FOR X=XL TO XH STEP KW
C=C+1 : IF C=7 THEN c=o
IF C=O OR C=3 THEN 2150
LINE(X-BKW2,YL)-(X+BKW2,YL+BKL),2,BF
NEXT ,
, Draw the quit box ,
LINE(QX,QY)-(319,199),3,B
LOCATE 24,36 : PRINT"Quit"; ,
, Set mouse cursor location, then turn on cursor ,
M1 = 4 : M3 = 320 : M4 = 160 : CALL MOUSE (M1,M2,M3,M4)
M1 = 1 : CALL MOUSE (M1,M2,M3,M4) ,
, MAIN LOOP ,

1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290 'Get mouse location

and button status
2300 IF (BT AND 2) THEN OTV=7 : GOTO 2340

M1=3 : CALL MOUSE (M1,BT,MX,MY)

o

o

o

o

o

o

Making Mouse Function Calls 7-21

'If right button down, set high octave
2310 IF (BT AND 1)

2320 SOUND 442,0
2330 GOTO 2290
2340 MX = MX2

THEN OTV=O : GOTO 2340
'If left button down, set lower octave
'If both buttons up, turn off sound

2350 IF MX <= XL OR

'Keep looping ...
'Correct for medium

MY < YL THEN 2320

2360 IF MY <= YH THEN 2470

2370 IF MY < QY OR MX < QX THEN 2320'

2380 '
2390 ' Button down inside the quit box
2400 '

resolution screen
'If above keyboard,
turn off sound

'If on keyboard,
play sound

'If above quit box,
turn off sound

2410 M1=2 : CALL MOUSE (M1,M2,M3,M4)
2420 CLS ' Clear screen

'Turn off mouse cursor

2430 END ' Quit
2440 '
2450 ' Button down over keyboard, determine which key
2460 '
2470 WKY = (MX-XL)kW+OTV : R = 1

2480 IF MY > YL+BKL THEN 2560

2490 MK=(MX-XL) MOD KW 'No, get which
2500 IF MK <= BKW2 THEN R=O : GOTO 2560

2510 IF MK >= KW-BKW2 THEN R=2 'Is it
2520 '

'Get which white
key cursor is over

'Is it lower than
the black keys?

side of key
'Is it the left
black key?

the right black key?

2530 ' Play the note. For BASIC interpreter duration = 2
2540 ' For BASIC compiler duration = 1
2550 '
2560 SOUND FREQ(WKY,R),2
2570 GO TO 2290 'Continue looping
2580 '
2590 ' Musical note frequencies
2600 '
2610 DATA 131,139,156,175,185,208,233
2620 DATA 131,147,165,175,196,220,247
2630 DATA 139,156,165,185,208,233,247
2640 '
2650 ' Data to draw the MICROSOFT logo
2660 '
2670 DATA 462,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2680 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2690 DATA 0,0,0,-193,240,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2700 DATA 0,0,0,0,0,768,-1,0,0,0,0,3840,-1,-16129,0,
-253,0,0,-193,240

2710 DATA 0,0,0,0,0,0,0,0,0,-193,0,16128,4095,252,
16128,-1,240, -256,-769,0

2720 DATA 0,0,0,0,-193,240,768,-1,255,768,-1,1023,-1,
-1,240,0,0,0,-193,192

2730 DATA -256,4095,252,-253,-1,255,-256,-1,240,-253,
-1,-1,768,-1,255,16128,-1,-3841,768,-1

2740 DATA 1023,-1,-1,240,0,0,0,-193,192,-256,4095,252,
-193,-1,-3841,-256,-1, 252,-1009,0

2750 DATA -256,4032,-1,-16129,-253,-1,-1,768,-1,1023,
-1,-1,240,0,0,0,-193,240,-253,4095

17-22 Designing a Mouse In/erface

2760 DATA 252,-3841,0,-961,-256,-1,255,0,0,0,3840,-1,
-16129,-241,0,-253,960,-1,1023,-1

2770 DATA -1,240,0,0,0,-193,240,-253,4095,1020,255,0,
-253,-256,4032,-16129,-1,-1,-1,4092

2780 DATA 4095,-16129,-4033,0,16128,1008,-1,1023,-1,-1,
240,0,0,0,-193,252,-241,4095,1020,252

2790 DATA 0,-256,-256,960,-15361,252,0,0,4095,1023, 0
-16129,-16321,0,3840,1008,255,0,3840,252,0

2800 DATA 0,0,0,-193,252,-241,4095,4092,240,0,16128,
-64,192,-16129,0,0,0,3840,255,0

2810 DATA 255,0,768,1020,255,0,3840,252,0,0,0,0,-193,
255,-193,4095,4092,240,0,16128

2820 DATA -64,192,-12289,-1,192,-241,-12289,-3841,0,
255,0,768,1020,255,0,3840,252,0,0,0

2830 DATA 0,-193,255,-193,4095,16380,192,0,3840,-16,
960,-12289,240,0,0,-15553,-1,768,252,0

2840 DATA 0,1023,255,0,3840,252,0,0,0,0,-193,-16129,
-1,4095,16380,192,0,0,-256,4032

2850 DATA -16129~0,0,0,768,-1,1008,252,0,0,1023,-1,
255,3840,252,0,0,0,0,-3265

2860 DATA -16129,-3073,4095,16380,192,0,0,-256,-1,4095,
-1,0,-253,-16129,-1,1020,252,0,0,1023

2870 DATA -1,255,3840,252,0,0,0,0,-3265,-3073,-3073,
4095,16380,192,0,0,-256,-1,4095,240

2880 DATA 0,0~-16321,-241,1023,252,0,0,1023,-1,255,
3840,252,0,0,0,0,-4033,-3073,-15361

2890 DATA 4095,16380,192,0,0,-256,-1,252,0,0,0,0,16128,
-15361,252,0,0,1023,-1,255

2900 DATA 3840,252,0,0,0,0,-4033,-1,-15361,4095,16380,192,
0,0,-256,-1,4092,240,0,0 0

2910 DATA -16321,768,-3073,252,0,0,1023,255,0,3840,252,0,
0,0,0,-4033,-193,1023,4095,4092

2920 DATA 240,0,0,-256,-64,4092,-1,192,-241,-16129,0,
-3841,255,0,768,1020,255,0,3840,252

2930 DATA 0,0,0,0,-4033,-193,1023,4095,4092,240,0,16128,
-64,4032,255,0,0,0,16128,252

2940 DATA -3841,255,0,768,1020,255,0,3840,252,0,0,0,0,
-4033,-241,1020,4095,1020,252,0

2950 DATA -256,-256,960,1023,252,0,0,16383,1023,-3841,
-16321,0,3840,1008,255,0,3840,252,0,0

2960 DATA 0,0,-4033,-241,1020,4095,1020,255,0,-253,-256,
960,-16129,-1,-1,-1,16380,-1,-3841,-4033

2970 DATA 0,16128,1008,255,0,3840,252,0,0,0,0,-4033,-253,
1008,4095,252,-3841,0,-961,-256

2980 DATA 192,-16129,0,0,0,3840,-1,-16129,-241,0,-253,960,
255,0,3840,252,0,0,0,0

2990 DATA -4033,-253,1008,4095,252,-193,768,-3841,-256,
192,-16129,-1009,0,-256,4032,-1,255,-253,240,-193

3000 DATA 768,255,0,3840,252,0,0,0,0,-4033,-256,960,4095,
252,-253,-1,255,-256,192,-16129

3010 DATA -253,-1,-1,768,-1,252,16128,-1,-3841,768,255,0,
3840,252,0,0,0,0,-4033,-256

3020 DATA 960,4095,252,16128,-1,240,-256,192,-16129,0,0, 0
0,0,-193,192,768,-1,255,768,255

3030 DATA 0,3840,252,0,0,0,0,0,0,0,0,0,768,-1,0,0,0,0,3840,-1
3040 DATA -16129,0,0,0,0,-193,240,0,0,0,0,0,0,0,0,0,0,0,0,0
3050 DATA 0,0,0,0,0,0,0,0,-193,240,0,0,0,0,0,0,0,0,0,0

o

o

o

Making Mouse Function Calls 7-231

Sample Cursors

This section describes the following sample graphics
cursors:

• Standard Cursor Shape
• Up Arrow
• Left Arrow
• Check Mark
• Poin ting Hand
• Diagonal Cross
• Rectangular Cross
• Hourglass

These sample cursors illustrate the wide variety of cursor
shapes that can be defined for use in application pro
grams.
The sample cursors are designed for high-resolution
graphics mode. Each cursor is a white shape with a black
outline on a transparent field. The shape typically sug
gests the type of action you may take with the mouse.
For example, an arrow usually means "make a selection
by pointing at an item."
To use a sample cursor in an interpretive BASIC pro
gram, copy the BASIC statements presented for the cur
sor directly to your program. Type the statements
exactly as shown, using line numbers that are consistent
with your program's numbering scheme.
To use a sample cursor in an assembly- or high-Ievel
language program, define an array in your progranl and
assign the values given for each cursor to the array ele
ments. Assign the values in a way that will make their
storage order identical to their storage order in a BASIC
program.
The statenlents in this section define only the cursor's
shape. It is up to you to define the action associated with
a cursor by including the necessary statements in your
program.

17-24 Designing a Mouse Interface

Standard Cursor Shape

The standard cursor shape is a solid arrow that points
up and to the left. The hot spot is just beyond the
arrow's tip, so you can point to an item without covering
it. The standard cursor is the most convenient shape 0
when using the mouse to choose or select items from the
screen .

.,,,,, t
..LVV

200 ' Define the screen mask
300 '
400 CURSOR(0,0)=&H3FFF
500 CURSOR(1,0)=&H1FFF
600 CURSOR(2,0)=&HOFFF
700 CURSOR(3,0)=&H07FF
800 CURSOR(4,0)=&H03FF
900 CURSOR(5,0)=&H01FF

1000 CURSOR(6,0)=&HOOFF
1100 CURSOR(7,0)=&H007F
1200 CURSOR(8,0)=&H003F
1300 CURSOR(9,0)=&H001F
1400 CURSOR(10,0)=&H01FF
1500 CURSOR(11,0)=&H10FF
1600 CURSOR(12,0)=&H30FF
1700 CURSOR(13,0)=&HF87F
1800 CURSOR(14,0)=&HF87F
1900 CURSOR(15,0)=&HFC3F
2000 '

'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

2100 ' Define the cursor mask
2200 '
2300 CURSOR(O,l)=&HOOOO
2400 CURSOR(1,1)=&H4000
2500 CURSOR(2,1)=&H6000
2600 CURSOR(3,1)=&H7000
2700 CURSOR(4,1)=&H7800
2800 CURSOR(5,1)=&H7COO
2900 CURSOR(6,1)=&H7EOO
3000 CURSOR(7,1)=&H7FOO
3100 CURSOR(8,1)=&H7F80
3200 CURSOR(9,1)=&H78CO
3300 CURSOR(10,1)=&H7COO
3400 CURSOR(11,1)=&H4600
3500 CURSOR(12,1)=&H0600
3600 CURSOR(13,1)=&H0300
3700 CURSOR(14,1)=&H0300
3800 CURSOR(15,1)=&H0180

'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

0011111111111111
0001111111111111
0000111111111111
0000011111111111
0000001111111111
0000000111111111
0000000011111111
0000000001111111
0000000000111111
0000000000011111
0000000111111111
0001000011111111
0011000011111111
1111100001111111
1111100001111111
1111110000111111

0000000000000000
0100000000000000
0110000000000000
0111000000000000
0111100000000000
0111110000000000
0111111000000000
0111111100000000
0111111110000000
0111111111000000
0111110000000000
0100011000000000
0000011000000000
0000001100000000
0000001100000000
0000000110000000

3900 '
4000 '
4050 '
4100 '

Set the mouse cursor shape, color, and hot
spot

4200 M1% = 9
4300 M2% = -1 'Horizontal hot spot
4400 M3% = -1 'Vertical hot spot
4500 CALL MOUSE (M1%,M2%,M3%,CURSOR(0,0»

o

o

o

o

o

Making Mouse Function Calls 7-25\
Up Arrow

The up arrow is a solid, up-directed arrow with the hot
spot at the tip. This shape is useful when directing a
motion on the screen with the mouse.

100 '
200' Define the screen mask
300 '
400 CURSOR(0,0)=&HF9FF
500 CURSOR(1,0)=&HFOFF
600 CURSOR(2,0)=&HE07F
700 CURSOR(3,0)=&HE07F
800 CURSOR(4,0)=&HC03F
900 CURSOR(5,0)=&HC03F

1000 CURSOR(6,0)=&H801F
1100 CURSOR(7,0)=&H801F
1200 CURSOR(8,0)=&HOOOF
1300 CURSOR(9,0)=&HOOOF
1400 CURSOR(10,0)=&HFOFF
1500 CURSOR(ll,O)=&HFOFF
1600 CURSOR(12,0)=&HFOFF
1700 CURSOR(13,0)=&HFOFF
1800 CURSOR(14,0)=&HFOFF
1900 CURSOR(15,0)=&HFOFF
2000 '

'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

2100' Define the cursor mask
2200 '
2300 CURSOR(O,l)=&HOOOO
2400 CURSOR(1,1)=&H0600
2500 CURSOR(2,1)=&HOFOO
2600 CURSOR(3,1)=&HOFOO
2700 CURSOR(4,1)=&H1F80
2800 CURSOR(5,1)=&H1F80
2900 CURSOR(6,1)=&H3FCO
3000 CURSOR(7,1)=&H3FCO
3100 CURSOR(8,1)=&H7FEO
3200 CURSOR(9,1)=&H0600
3300 CURSOR(10,1)=&H0600
3400 CURSOR(11,1)=&H0600
3500 CURSOR(12,1)=&H0600
3600 CURSOR(13,1)=&H0600
3700 CURSOR(14,1)=&H0600
3800 CURSOR(15,1)=&HOOOO

'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

1111100111111111
1111000011111111
1110000001111111
1110000001111111
1100000000111111
1100000000111111
1000000000011111
1000000000011111
0000000000001111
0000000000001111
1111000011111111
1111000011111111
1111000011111111
1111000011111111
1111000011111111
1111000011111111

0000000000000000
0000011000000000
0000111100000000
0000111100000000
0001111110000000
0001111110000000
0011111111000000
0011111111000000
0111111111100000
0000011000000000
0000011000000000
0000011000000000
0000011000000000
0000011000000000
0000011000000000
0000000000000000

3900 '
4000 '
4050 '
4100 '

Set the mouse cursor shape, color, and hot
spot

4200 M1 9
4300 M2 = 5 'Horizontal hot spot
4400 M3 = 0 'Vertical hot spot
4500 CALL MOUSE (M1,M2,M3,CURSOR(0,0»

17-26 Designing a Mouse Interface

left Arrow

The left, arrow is a solid, left-directed arrow with the hot
spot at the tip. This shape is useful when directing a
motion on the screen with the mouse. To generate a right
arrow, just reverse the binary bit pattern for each array
element and move the hot spot to the new tip. For exam
ple, the first element, Binary 1111111000011111
~ &HF'E1F), becomes Binary 1111100001111111
~&HF87F).

100 '
200' Define the screen mask
300 '
400 CURSOR(0,0)=&HFE1F
500 CURSOR(1,0)=&HF01F
600 CURSOR(2,0)=&HOOOO
700 CURSOR(3,0)=&HOOOO
800 CURSOR(4,O)=&HOOOO
900 CURSOR(5,0)=&HF01F

1000 CURSOR(6,0)=&HFE1F
1100 CURSOR(7,0)=&HFFFF
1200 CURSOR(8,0)=&HFFFF
1300 CURSOR(9,0)=&HFFFF
1400 CURSOR(10,0)=&HFFFF
1500 CURSOR(11,0)=&HFFFF
1600 CURSOR(12,0)=&HFFFF
1700 CURSOR(13,0)=&HFFFF
1800 CURSOR(14,0)=&HFFFF
1900 CURSOR(15,0)=&HFFFF
2000

'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

2100' Define the cursor mask
2200 '
2300 CURSOR(O,l)=&HOOOO
2400 CURSOR(1,1)=&HOOCO
2500 CURSOR(2,1)=&H07CO
2600 CURSOR(3,1)=&H7FFE
2700 CURSOR(4,1)=&H07CO
2800 CURSOR(5,1)=&H07CO
2900 CURSOR(6,1)=&HOOOO
3000 CURSOR(7,1)=&HOOOO
3100 CURSOR(8,1)=&HOOOO
3200 CURSOR(9,1)=&HOOOO
3300 CURSOR(10,1)=&HOOOO
3400 CURSOR(ll,l)=&HOOOO
3500 CURSOR(12,1)=&HOOOO
3600 CURSOR(13,1)=&HOOOO
3700 CURSOR(14,1)=&HOOOO
3800 CURSOR(15,1)=&HOOOO

'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

1111111000011111
1111000000011111
0000000000000000
0000000000000000
0000000000000000
1111000000011111
1111111000011111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111

0000000000000000
0000000011000000
0000011111000000
0111111111111110
0000011111000000
0000000011000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

3900 '
4000 '
4050 '
4100 '

Set the mouse cursor shape, color, and hot
spot

4200 M1 = 9
4300 M2 = 0 'Horizontal hot spot
4400 M3 = 3 'Vertical hot spot
4500 CALL MOUSE(M1,M2,M3,CURSOR(0,0»

o

o

o

o

o

o

Making Mouse Func lion Calls 7-27\

Check Mark

The check mark is a solid figure with the hot spot in the
center of the "V" formed by the check. This shape can be
used when checking off items in a list with the mouse or
while a program is checking some aspect of its operation.

100 '
200' Define the screen mask
300 '
400 CURSOR(O,O)=&HFFFO
500 CURSOR(1,0)=&HFFEO
600 CURSOR(2,0)=&HFFCO
700 CURSOR(3,0)=&HFF81
800 CURSOR(4,0)=&HFF03
900 CURSOR(5,0)=&H0607

1000 CURSOR(6,0)=&HOOOF
1100 CURSOR(7,0)=&H001F
1200 CURSOR(8,0)=&HC03F
1300 CURSOR(9,0)=&HF07F
1400 CURSOR(10,0)=&HFFFF
1500 CURSOR(11,0)=&HFFFF
1600 CURSOR(12,0)=&HFFFF
1700 CURSOR(13,0)=&HFFFF
1800 CURSOR(14,0)=&HFFFF
1900 CURSOR(15,0)=&HFFFF
2000 '

'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

2100' Define the cursor mask
2200 '
2300 CURSOR(O,l)=&HOOOO
2400 CURSOR(1,1)=&H0006
2500 CURSOR(2,1)=&HOOOC
2600 CURSOR(3,1)=&H0018
2700 CURSOR(4,1)=&H0030
2800 CURSOR(5,1)=&H0060
2900 CURSOR(6,1)=&H70CO
3000 CURSOR(7,1)=&H1D80
3100 CURSOR(8,1)=&H0700
3200 CURSOR(9,1)=&HOOOO
3300 CURSOR(10,l)=&HOOOO
3400 CURSOR(11,1)=&HOOOO
3500 CURSOR(12,1)=&HOOOO
3600 CURSOR(13,1)=&HOOOO
3700 CURSOR (14, l)=&HOOOO
3800 CURSOR(15,1)=&HOOOO

'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

1111111111110000
1111111111100000
1111111111000000
1111111110000001
1111111100000011
0000011000000111
0000000000001111
0000000000011111
1100000000111111
1111000001111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111

0000000000000000
0000000000000110
0000000000001100
0000000000011000
0000000000110000
0000000001100000
0111000011000000
0001110110000000
0000011100000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

3900 '
4000 '
4050 '
4100 '

Set the mouse cursor shape, color, and hot
spot

4200 M1 9
4300 M2 = 6 'Horizontal hot spot
4400 M3 = 7 'Vertical hot spot
4500 CALL MOUSE(M1,M2,M3,CURSOR(0,0»

17-28 Designing a Mouse Interface

Pointing Hand

The pointing hand is a solid figure with the hot spot at
the tip of the extended finger. The pointing hand is
another convenient shape to use when choosing or select-
ing items from the screen, especially if the items are 0
represented by icons or symbols such as the keys of a
piano key board or a calculator.

100 '
200' Define the screen mask
300 '
400 cURSOR(0,0)=&HE1FF
500 cURSOR(1,0)=&HE1FF
600 cURSOR(2,0)=&HE1FF
700 cURSOR(3,0)=&HE1FF
800 cURSOR(4,0)=&HE1FF
900 cURSOR(5,0)=&HEOOO

1000 cURSOR(6,0)=&HEOOO
1100 cURSOR(7,0)=&HEOOO
1200 CURSOR (8,0)=&HOOOO
1300 cURSOR(9,0)=&HOOOO
1400 cURSOR(10,0)=&HOOOO
1500 cURSOR(ll,O)=&HOOOO
1600 cURSOR(12,0)=&HOOOO
1700 cURSOR(13,0)=&HOOOO
1800 cURSOR(14,0)=&HOOOO
1900 cURSOR(15,0)=&HOOOO
2000 '

'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

2100' Define the cursor mask
2200 '
2300 cURSOR(0,1)=&H1EOO
2400 cURSOR(1,1)=&H1200
2500 cURSOR(2,1)=&H1200
2600 cURSOR(3,1)=&H1200
2700 cURSOR(4,1)=&H1200
2800 cURSOR(5,1)=&H13FF
2900 cURSOR(6,1)=&H1249
3000 cURSOR(7,1)=&H1249
3100 cURSOR(8,1)=&HF249
3200 cURSOR(9,1)=&H9001
3300 cURSOR(10,1)=&H9001
3400 CURSOR(11,1)=&H9001
3500 CURSOR(12,1)=&H8001
3600 CURSOR(13,1)=&H8001
3700 CURSOR(14,1)=&H8001
3800 cURSOR(15,1)=&HFFFF

'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

1110000111111111
1110000111111111
1110000111111111
1110000111111111
1110000111111111
1110000000000000
1110000000000000
1110000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

0001111000000000
0001001000000000
0001001000000000
0001001000000000
0001001000000000
0001001111111111
0001001001001001
0001001001001001
1111001001001001
1001000000000001
1001000000000001
1001000000000001
1000000000000001
1000000000000001
1000000000000001
1111111111111111

3900 '
4000 '
4050 '
4100 '

Set the mouse cursor shape, color, and hot
spot

4200 M1 = 9
4300 M2 = 5 'Horizontal hot spot
4400 M3 = 0 'Vertical hot spot
4500 CALL MOUSE (M1,M2,M3,cURSOR(0,0»

o

o

o

o

o

Making Mouse Function Calls 7-291
Diagonal Cross

The diagonal cross is a solid figure with the hot spot at
the center of the cross. This shape is useful as a pointer
in a game, or when canceling an operation or deleting an
item from a list.

100 '
200' Define the screen mask
300 '
400 CURSOR(0,0)=&H07EO
500 CURSOR(1,0)=&H0180
600 CURSOR(2,0)=&HOOOO
700 CURSOR(3,0)=&HC003
800 CURSOR(4,0)=&HFOOF
900 CURSOR(5,0)=&HC003

1000 CURSOR(6,0)=&HOOOO
1100 CURSOR(7,0)=&H0180
1200 CURSOR(8,0)=&H07EO
1300 CURSOR(9,0)=&HFFFF
1400 CURSOR(10,0)=&HFFFF
1500 CURSOR(ll,O)=&HFFFF
1600 CURSOR(12,0)=&HFFFF
1700 CURSOR(13,0)=&HFFFF
1800 CURSOR(14,0)=&HFFFF
1900 CURSOR(15,0)=&HFFFF
2000 '

'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

2100' Define the cursor mask
2200 '
2300 CURSOR(O,l)=&HOOOO
2400 CURSOR(1,1)=&H700E
2500 CURSOR(2,1)=&H1C38
2600 CURSOR(3,1)=&H0660
2700 CURSOR(4,1)=&H03CO
2800 CURSOR(5,1)=&H0660
2900 CURSOR(6,1)=&H1C38
3000 CURSOR(7,1)=&H700E
3100 CURSOR(8,1)=&HOOOO
3200 CURSOR(9,1)=&HOOOO
3300 CURSOR(10,1)=&HOOOO
3400 CURSOR(ll,l)=&HOOOO
3500 CURSOR(12,1)=&HOOOO
3600 CURSOR(13,1)=&HOOOO
3700 CURSOR(14,1)=&HOOOO
3800 CURSOR(15,1)=&HOOOO
3900 '

'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

0000011111100000
0000000110000000
0000000000000000
1100000000000011
1111000000001111
1100000000000011
0000000000000000
0000000110000000
0000011111000000
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111

0000000000000000
0111000000001110
0001110000111000
0000011001100000
0000001111000000
0000011001100000
0001110000111000
0111000000001110
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

4000' Set the mouse cursor shape, color, and hot
4050' spot
4100 '
4200 Ml = 9
4300 M2 7 'Horizontal hot spot
4400 M3 = 4 'Vertical hot spot
4500 CALL MOUSE (M1,M2,M3,CURSOR(0,0»

17-30 Designing a Mouse Interface

Rectangular Cross

The rectangular cross is a solid figure with the hot spot
at the center of the cross. This shape is useful as a
pointer in a game, or when inserting items into a list.

100 '
200' Define the screen mask
300 '
400 CURSOR(0,0)=&HFC3F
500 CURSOR(1,0)=&HFC3F
600 CURSOR(2,0)=&HFC3F
700 CURSOR(3,0)=&HOOOO
800 CURSOR(4,0)=&HOOOO
900 CURSOR(5,0)=&HOOOO

1000 CURSOR(6,0)=&HFC3F
1100 CURSOR(7,0)=&HFC3F
1200 CURSOR(8,0)=&HFC3F
1300 CURSOR(9,0)=&HFFFF
1400 CURSOR(10,0)=&HFFFF
1500 CURSOR(ll,O)=&HFFFF
1600 CURSOR(12,0)=&HFFFF
1700 CURSOR(13,0)=&HFFFF
1800 CURSOR(14,0)=&HFFFF
1900 CURSOR(15,0)=&HFFFF
2000 '

'Binary
iBinary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

2100' Define the cursor mask
2200 '
2300 CURSOR(O,l)=&HOOOO
2400 CURSOR(1,1)=&H0180
2500 CURSOR(2,1)=&H0180
2600 CURSOR(3,1)=&H0180
2700 CURSOR(4,1)=&H7FFE
2800 CURSOR(5,1)=&H0180
2900 CURSOR(6,1)=&H0180
3000 CURSOR(7,1)=&H0180
3100 CURSOR(8,1)=&HOOOO
3200 CURSOR(9,1)=&HOOOO
3300 CURSOR(10,1)=&HOOOO
3400 CURSOR(ll,l)=&HOOOO
3500 CURSOR(12,1)=&HOOOO
3600 CURSOR(13,1)=&HOOOO
3700 CURSOR(14,1)=&HOOOO
3800 CURSOR(15,1)=&HOOOO

'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

1111110000111111
1111110000111111
1111110000111111
0000000000000000
0000000000000000
0000000000000000
1111110000111111
11l11100001111l1
1111110000111111
1111111111111111
1111111111111111
1111111111111111
11llllllllllllll
11llllllllllllll
1111111111111111
1111111111111111

0000000000000000
0000000110000000
0000000110000000
0000000110000000
0111111111111110
0000000110000000
0000000110000000
0000000110000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

3900 '
4000 '
4050 '
4100 '

Set the mouse cursor shape, color, and hot
spot

4200 M1 = 9
4300 M2 7 'Horizontal hot spot
4400 M3 = 4 'Vertical hot spot
4500 CALL MOUSE(M1,M2,M3,CURSOR(0,0»

o

o

o

o

o

o

Making Mouse Function Calls 7-31 I

Hourglass

The hourglass is a solid figure with the hot spot at the
center of the glass. This shape can be used to show that
the operation in progress will take some time to com
plete.

100 '
200' Define the screen mask
300 '
500 CURSOR(1,0)=&HOOOO
600 CURSOR(2,0)=&HOOOO
700 CURSOR(3,0)=&HOOOO
800 CURSOR(4,0)=&H8001
900 CURSOR(5,0)=&HC003

1000 CURSOR(6,0)=&HE007
1100 CURSOR(7,0)=&HFOOF
1200 CURSOR(8,0)=&HE007
1300 CURSOR(9,0)=&HC003
1400 CURSOR(10,0)=&H8001
1500 CURSOR(ll,O)=&HOOOO
1600 CURSOR(12,0)=&HOOOO
1700 CURSOR(13,0)=&HOOOO
1800 CURSOR(14,0)=&HOOOO
1900 CURSOR(15,0)=&HFFFF
2000 '

'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

2100' Define the cursor mask
2200 '
2300 CURSOR(O,l)=&HOOOO
2400 CURSOR(1,1)=&H7FFE
2500 CURSOR(2,1)=&H6006
2600 CURSOR(3,1)=&H300C
2700 CURSOR(4,1)=&H1818
2800 CURSOR(5,1)=&HOC30
2900 CURSOR(6,1)=&H0660
3000 CURSOR(7,1)=&H03CO
3100 CURSOR(8,1)=&H0660
3200 CURSOR(9,1)=&HOC30
3300 CURSOR(10,1)=&H1998
3400 CURSOR(11,1)=&H33CC
3500 CURSOR(12,1)=&H67E6
3600 CURSOR(13,1)=&H7FFE
3700 CURSOR(14,1)=&HOOOO
3800 CURSOR(15,1)=&HOOOO

'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary
'Binary

0000000000000000
0000000000000000
0000000000000000
1000000000000001
1100000000000011
1110000000000111
1111000000001111
1110000000000111
1100000000000011
1000000000000001
0000000000000000
0000000000000000
0000000000000000
0000000000000000
1111111111111111

0000000000000000
0111111111111110
0110000000000110
0011000000001100
0001100000011000
0000110000110000
0000011001100000
0000001111000000
0000011001100000
0000110000110000
0001100110011000
0011001111001100
0110011111100110
0111111111111110
0000000000000000
0000000000000000

3900 '
4000 '
4050 '
4100 '

Set the mouse cursor shape, color, and hot
spot

4200 M1 = 9
4300 M2 = 7 'Horizontal hot spot
4400 M3 = 7 'Vertical hot spot
4500 CALL MOUSE (M1,M2,M3,CURSOR(0,0»

o

o

o

o

o

8 Writing Mouse Programs
for IBM EGA Modes

If your application program includes mouse support for
IBM enhanced graphics modes D, E, F, and 10, your pro
gram must interact with the IBM Enhanced Graphics
Adapter (EGA) through the Microsoft EGA Register
Interface Library (EGA.LIB). EGA.LIB is included on the
Microsoft Mouse Tools disk. If your program tries to set
the EGA registers directly, rather than through this
in terface, the mouse cursor will not be drawn correctly.
The EGA Register Interface allows your program to
write to and read from write-only registers on the EGA.
You need this capability to use interrupt-driven graphics,
such as the cursor update code.

The EGA Register Interface Library

The Microsoft EGA Register Interface Library consists of
nine functions that can be called from assembly-language
programs or from programs written in high-level
languages such as Microsoft QuickBASIC, Pascal, FOR
TRAN, and C. These functions:

• Read from or write to one or more of the EGA write
only registers

• Define default values for EGA write-only registers or
reset the registers to these default values

• Check whether the EGA Register Interface is present
and, if so, return its version number

o How the Interface library Works

The mouse driver loads the EGA Register Interface
Library if it detects an EGA installed in the system. The
interface maintains shadow maps (memory images) of the

18-2 Designing a Mouse Interface

EGA write-only registers, which allow application pro
grams to read these registers. The shadow maps are
updated whenever your program calls one of the interface
functions to set a register; therefore, the shadow maps
always con tain the last values written to the registers.
When your program calls one of the interface functions 0
to read a register, the function call returns the value
stored in the shadow map. .
The code in the interface intercents mode-chanlre calls to
the BIOS ROM (INT 10h with All = 0) and updates the
shadow maps and default register tables accordingly.

How to Call the EGA Register
Interface Library

This section shows how to call functions in the EGA
Register In terface Library from programs written in
assembly language and high-level languages.

Making Calls from Assembly-Language
Programs

To call EGA Register Interface functions from an
assembly-language program:

II] Load the AX, BX, ex, DX, and ES registers (as
required) with the parameter values.

~ Execute software interrupt 16 (10h).

Values returned by the EGA Register Interface functions
are placed in the registers.
When called from assembly-language programs, func
tions F2, F3, F4, F5, and F7 expect ES:BX to be a table
pointer.

o

o

o

o

Writing Mouse Programs for IBM EGA Modes 8-31
Example
Use the following instructions to set the palette registers
to the values in the array "my table" :

my table

mov ax,

db OOh,Olh,02h,03h,04h,OSh,14h,07h
db 38h,39h,3ah,3bh,3ch,3dh,3eh,3fh

ds
mov es, ax ;set es to the data segment
mov bx, offset my table ;now es:bx --> my table
mov cx, 0010h ; starting at reg 0 for 16
mov dx, 18h ;18h attribute chip
mov ah, Of3h ;f3h = write register range
int 10h ; go!

Making Calls from High-level-language
Programs

You can include EGA Register In terface function calls in
QuickBASIC, Pascal, FORTRAN, and C programs as
ordinary procedure calls.
To make an EGA function call from a high-Ievel
language program:

[!] Declare the appropriate procedure as an external pro
cedure:
For compiled BASIC and Pascal programs, use the
procedure "EGA" if the argument addresses are in the
program's data segment (short addresses), or the pro
cedure "EGAS" if the arguments are in another seg
ment (long addresses).
For FORTRAN programs, use the procedure "EGAS".
For C programs, use the procedure "cegas" for small
model programs, the procedure "cegam" for medium
model programs, or the procedure "cegal" for large
model programs.
Your program must pass the addresses (not the
values) of five integer arguments to these procedures,
so be sure to include an appropriate parameter list in
the declarations.

~ Use the normal calling conventions to make the calls.
o Link the compiled program with EGA.LIB.

18-4 Designing a Mouse Interface

All functions require five parameters: El, E2, E3, E4, and
E5. The following table shows how these parameters
correspond to the registers listed in the function descrip
tions:

Parameter Register

El AH
E2 BX
E3 CX
E4 DX
E5 ES

E5 is a dummy parameter for all functions except func
tion FA (Interrogate Driver). For function FA, the value
returned for ES is placed in E5.
Use the following conventions when calling functions F2,
F3, F4, F5, and F7 from a high-level-language program:

0

• Procedures that use short argument addresses
("EGA", "cegas", and "cegam") set register ES to the
value in register DS when they are called.
Procedures that use long argument addresses 0
("EGAS" and "cegal") set register ES to the value of
the segment passed as part of parameter E2 .

• In BASIC, FORTRAN, and Pascal programs, fill an
integer array (packed 2 bytes per integer) with the
table values required by the function. Pass the first
elemen t of the array as parameter E2.
In C programs, fill a character array with the table
values required by the function. Pass either the name
of the array or a pointer to the array as parameter
E2.

o

o

o

o

Writing Mouse Programs for IBM EGA Modes 8-51
Exam pies
In a Pascal program with long argument addresses, use
the following statement to declare "EGAS" as an exter
nal procedure:

PROCEDURE EGAS
(VARS E1, E2, E3, E4, E5:INTEGER);
EXTRN;

Once the procedure has been declared, use the following
statements to restore the default settings for the EGA
registers:

E1 .- 246 (*Function number is 246 = F6 (hexadecimal)*)
EGAS(E1, E2, E3, E4, E5)

In a small-model C program (version 3.0 or later), the
following example restores the default settings for the
EGA registers:

int ah, bx, cx, dx, es;

ah = OxF6; /* restore default settings */
cegas(&ah, &bx, &cx, &dx, &es);

In a QuickBASIC program, the following example prints
the version number of the EGA Register Interface:

I Interrogate driver, get version number.

100

e1% = &hOOFA
e2% = 0

call ega (e1%, e2%, e3%, e4%, e5%)

if (e2% <> 0) then 100
print "EGA Register Interface not found"
end

print "EGA Register Interface found, version "
def seg = e5%
majver = peek(e2%)
minver = peek(e2% + 1)
def seg
print" = ";
print majver;
print ".";
print minver
def seg

10-6 Designing a Mouse Interface

Restrictions on Use of the EGA
Register Interface library

This section describes restrictions on the ways that 0
application programs can use the EGA Register Interface
Library.

Calls to BIOS ROM Video Routines

The EGA Register Interface Library only intercepts calls
to the BIOS ROM video routines (INT 10h AH = l3h or
less) that change the screen mode(AH = oj. It does not
intercept any other BIOS ROM video routIne calls. How
ever, any other BIOS ROM video routine calls should
restore all registers, so there is no problem in using them.
A call to interrupt 10h to set the color palette fAH = Bh)
is an exception to this rule. Use EGA Register nterface
function F5 to set the color palette. (For more informa
tion about function F5, see "EGA Register Interface
Functions" later in this chapter.)

Attribute Controller Registers
Before your application program uses the Attribute Con
troller registers (I/O address 3COh) in an extended inter
rupt 10h call, the program must set the Address or Data
register flip-flop to the Address register (by doing an
input from I/O port 3BAh or 3DAh). The flip-flop is
always reset to this state when the program returns from
the interrupt 10h call.
An interrupt routine that accesses the attribute chip
always leaves the flip-flop set to the Address register
when the program returns from the interrupt call. There
fore, if your application program sets the flip-flop to the
Data register and expects the flip-flop to remain in this
state, the program must disable interrupts between the
time it sets the flip-flop to the Data register state and the
last time the flip-flop is assumed to be in this state.

Sequencer Memory Mode Register

o

When the Sequencer Memory Mode register (I/O address 0
3C5h, data register 4) is accessed, the sequencer produces
a glitch on the CAS hnes that may cause problems with
video random-access memory (VRAM). As a result, your
application program cannot use the EGA Register Inter-
face to read from or write to this register. Instead, use

o

o

o

Writing Mouse Programs for IBM EGA Modes 8-71
the following procedure to safely alter this register:

II] Disable interrupts.
~ Set Synchronous Reset (bit 1) in the Sequencer Reset

register to O.
~ Read/modify /write the Sequencer Memory Mode

register.
GJ Set Synchronous Reset (bit 1) in the Sequencer Reset

register to 1.
1II Enable interrupts.

Input Status Registers
Your application program cannot use the EGA Register
Interface to read Input Status registers 0 (I/O address
3C2h) and 1 (I/O address 3BAh or 3DAh). tf the program
must read these registers, it should do so directly.

Graphics Controller Miscellaneous Register
When the Graphics Controller Miscellaneous register
(I/O address 3CFh, data register 6) is accessed, a glitch
on the CAS lines occurs that may cause problems with
video random-access memory (VRAJ\1). As a result, your
application program should not use the EGA Register
Interface to read from or write to this register.
EGA Register Interface function F6 does not alter the
state of the Graphics Controller Miscellaneous register.
Use the following procedure to safely alter this register:

II] Disable interrupts.
~ Set Synchronous Reset (bit 1) in the Sequencer Reset

register to O.
~ Read/modify /write the Graphics Controller

Miscellaneous register.
GJ Set Synchronous Reset (bit 1) in the Sequencer Reset

register to 1.
1II Enable interrupts.

18-8 Designing a Mouse Interface

EGA Register Interface Functions

This section describes each EGA Register Interface func-
tion in detail. The following list shows these functions by 0
function n urn ber:

Number (Hex)

FO
Fl
F2
F3
F4
F5
F6
F7
FA

Function

Read one register
Write one register
Read register range
Write register range
Read register set
Write register set
Revert to default registers
Define default register table
Interrogate driver

Note Calls F8h, F9h, and FBh through FFh are
reserved.

Each function description includes:

• The parameters required to make the call (input) and
the expected return values (output)

• Any special considerations regarding the function

If the function description does not specify an input for a
parameter, you don't need to supply a value for that
parameter before making the call. If the function descrip
tion does not specify an output value for a parameter,
the parameter's value is the same before and after the
call.

Caution The EGA Register Interface does not check

o

input values, so be sure that the values you load into the 0
registers are correct before making a call.

o

o

Writing Mouse Programs for IBM EGA Modes 8-91

Function FO: Read One Register

Function FO reads data from a specified register on the
EGA.

Input:

AH = FOh

BX = Pointer for pointer /data chips:

BH =0
BL = pointer

Ignored for single registers

DX = Port number:

Pointer/ data chips

Oh: CRT Controller (3?4h)
8h: Sequencer (3C4h)

10h: Graphics Controller (3CEh)
18h: Attribute Controller (3COh)

Single registers

20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3?Ah)
30h: Graphics 1 Position register (30Ch)
38h: Graphics 2 Position register (3CAh)

? = B for monochrome modes or D for color modes

Output:

AX: Restored

BH: Restored
BL: Data

o DX: Restored

All other registers restored

18-10 Designing a Mouse Interface

Examples
The following example saves the contents of the
Sequencer Map Mask register in "myvalue":

myvalue db ?

mov ah, OfOh
mov bx, 0OO2h

mov dx, 0OO8h
int lOh
mov myvalue, bl

;fO = read one register
;bh = 0 / bl = map mask
; index
;dx = sequencer
; get it! -
;save it!

The following example saves the contents of the Miscel
laneous Output register in "myvalue":

myvalue db ?

mov ah, OfOh
mov dx, 0020h

int lOh
mov myvalue, bl

fO = read one register
dx = miscellaneous output
register

get it!
save it!

o

o

o

o

o

o

Writing Mouse Programs for IBM EGA Modes 8-11 I

Function F1: Write One Register

Function FI writes data to a specified register on the
EGA.
When your application program returns from a call to
function FI, the contents of registers BH and DX are not
restored. Your program must save and restore these
registers itself if this is desired.

Input:

AH = FIh

BL = Pointer for pointer/data chips

or

Data for single registers

BH = Data for pointer/data chips (ignored for
single registers)

DX = Port number:

Pointer/ data chips

Oh: CRT Controller (3?4h)
8h: Sequencer (3C4hJ

lOh: Graphics Controller (3CEh)
I8h: Attribute Controller (3COh)

Single registers

20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3?Ah)
30h: Graphics 1 Position register (30Ch)
38h: Graphics 2 Position register (3CAh

? = B for monochrome modes or D for color modes

18-12 Designing a Mouse Interface

Output:

AX: Restored

BL: Restored
BH: Not restored

DX: Not restored

All other registers restored

Exam pies
The following example writes the contents of "myvalue"
into the CRT Controller Cursor Start register:

myvalue db 3h

mov ah, Oflh fl write one register
mov bh, myvalue bh data from myvalue
mov hI, OOOah hI cursor start index
mov dx, OOOOh dx crt controller
int lOh write it!

The following example writes the contents of "myvalue"

o

into the Feature Control register: 0
myvalue db 2h

mov ah, Oflh
mov hI, myvalue
mov dx, 0028h

int lOh

fl = write one register
hI = data from myvalue
dx = feature control
register
write it!

o

o

o

o

Writing Mouse Programs for IBM EGA Modes 8-131

Function F2: Read Register Range

Function F2 reads data from a specified range of regis
ters on the EGA. A range of registers is defined to be
several registers on a single chip that have consecutive
indexes. This call makes sense only for the pointer/data
chips.

Input:

AH = F2h

CH = Starting pointer value
CL = Number of registers (must be > 1)

DX = Port number:

Oh: CRT Controller (314h)
8h: Sequencer (3C4h)

10h: Graphics Controller (3CEh)
18h: Attribute Controller (3COh)

? = B for monochrome modes or D for color modes

ES:BX = Poin ts to table of one- byte en tries (length =
value in CL). On return, each entry is set to
the con ten ts of the corresponding register.

Output:

AX: Restored

BX: Restored

CX: Not restored

DX: Restored

ES: Restored

All other registers restored

18-14 Designing a Mouse Interface

Example
The following example saves the contents of the Attri
bute Controller Palette registers in "paltable":

paltable db 16 dup (?)

mov ax, ds assume paltable in
data segment

mov es, ax es = data segment
mov bx, offset paltable es:bx = paltable

address
mov ah, Of2h f2 = read register

range
mov cx, 0010h ch = start index of

cl = 16 registers
to read

mov dx, 0018h dx = attribute
controller

int 10h read them!

0

0

o

o

o

o

o

Writing Mouse Programs for IBM EGA Modes 8-15\

Function F3: Write Register Range

Function F3 writes data to a specified range of registers
on the EGA. A range of registers is defined to be several
registers on a single chip that have consecutive indexes.
This call only makes sense for the pointer/data chips.

Input:

AR = F3h

CR = Starting pointer value
CL = Number of registers (must be > 1)

DX = Port number

Oh: CRT Controller (3?4h)
8h: Sequencer (3C4h)

10h: Graphics Controller (3CEh)
18h: Attribute Controller (3COh)

? = B for monochrome modes or D for color modes

ES:BX = Points to table of one-byte entries (length =
value in CL). Each entry contains the value to be
written to the corresponding register.

Output:

AX: Restored

BX: Not restored

CX: Not restored

DX: Not restored

ES: Restored

All other registers restored

18-16 Designing a Mouse Interface

Exam pie
The following example writes the contents of "cursloc"
into the CRT Controller Cursor Location High and Cur
sor Location Low registers.

cursloc db Olh, OOh cursor at page 0
offset OlOOh

mov ax, ds

mov es, ax
mov bx, offset
mov ah, Of3h

mov cx, Oe02h

mov dx, OOOOh
int lOh

cursloc

assume cursloc in
data segment

es=data segment
es:bx=cursloc address
f3=write register
range

ch=start index of 14
cl=2 registers to
write

dx=crt controller
write them!

o

o

o

Writing Mouse Programs for IBM EGA Modes 8-171

Function F4: Read Register Set

Function F 4 reads data from a set of registers on the
EGA. A set of registers is defined to be several registers
that mayor may not have consecutive indexes, and that
mayor may not be on the same chip.

Input:

AH = F4h

CX = N urn ber of registers (m ust be > 1)

ES:BX = Points to table of records with each entry in
this format:

Bytes 1-2: Port number

Pointer/ data chips

Oh: CRT Controller (3?4h)
8h: Sequencer (3C4hJ

O
10h: Graphics Controller (3CEh)
18h: Attribute Controller (3COh)

o

Single registers

20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3?Ah)
30h: Graphics 1 Position register (30Chl
38h: Graphics 2 Position register (3CAh

? = B for monochrome modes or D for color
modes

Byte 3: Pointer value (0 for single
registers)

Byte 4: EGA Register Interface fills
in data read from register specified
in bytes 1-3.

18-18 Designing a Mouse Interface

Output:

AX: Restored

BX: Restored

CX: Not restored

ES: Restored

All other registers restored

Example
The following example saves the contents of the Miscel
laneous Output register, Sequencer Memory Mode regis
ter, and CRT Controller Mode Control register in
"results" :

outvals dw 0020h
db 0
db 7

dw 0008h
db 04h
db 7

dw OOOOh
db 17h
db 7

miscellaneous output register
o for single registers
returned value

sequencer
memory mode register index
returned value

crt controller
mode control register index
returned value

results db 3 dup (7)

mov ax, ds

moves, ax
mov bx, offset outvals
mov ah, Of4h
mov cx, 3

int 10h

mov si, 3

add si, offset outvals
mov di, offset results
mov cx, 3

assume outvals in
data segment

es=data segment
es:bx=outvals address
f4=read register set
number of entries in

outvals
get values into
outvals!

move the returned
values from
outvals
to results

3 values to move

o

o

movloop: mov ax, [si]
mov [di], ax
add si, 4
inc di

move one value from outvals 0
to results

skip to next source byte
point to next destination
byte loop movloop

o

Writing Mouse Programs for IBM EGA Modes 8-191

Function F5: Write Register Set

Function F5 writes data to a set of registers on the EGA.
A set of registers is defined to be several registers that
mayor may not have consecutive indexes, and that may
or may not be on the same chip.

Input:

All = F5h

CX = Number of registers (must be > 1)

ES:BX = Points to table of values with each entry in this
format:

Bytes 1-2: Port number

Pointer / data chips

Oh: CRT Controller (3?4h)
8h: Sequencer (3C4h)

O
10h: Graphics Controller (3CEh)
18h: Attribute Controller (300h)

o

Single registers

20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3?Ah)
30h: Graphics 1 Position register (30Chl
38h: Graphics 2 Position register (3CAh

? = B for monochrome modes or D for color
modes

Byte 3: Pointer value (0 for single
registers)

Byte 4: Data to be written to register
specified in bytes 1-3

18-20 Designing a Mouse Interface

Output

AX: Restored

BX: Restored

CX: Not restored

ES: Restored

All other registers restored

Example
The following example writes the contents of "outvals"
to the Miscellaneous Output register, Sequencer Memory
Mode register, and CRT Controller Mode Control regis
ter:

outvals dw 0020h miscellaneous output register
db 0 0 for single registers
db Oa7h output value

dw 0OO8h sequencer
db 04h memory mode register index
db 03h output value

dw OOOOh crt controller
db 17h mode control register index
db Oa3h output value

mov ax, ds assume outvals in
data segment

mov es, ax es=data segment
mov bx, offset outvals es:bx=outvals address
mov ah, OfSh fS=write register set
mov cx, 3 number of entries in

outvals
int 10h write the registers!

o

0

o

Writing Mouse Programs for IBM EGA Modes 8-21 I

Function F6: Revert to Default
Registers

Function F6 restores the default settings of any registers
that your application program has changed through the
EGA Register Interface. The default settings are defined
in a call to function F7.

Input:

AH = F6h

Output:

All registers restored

Note If your program makes an interrupt 10h (video
display adapter) call to function 0 to set the display
mode, the default register values will change to the BIOS
values for the selected mode.

Example
The following example restores the default settings of the
EGA registers:

mov ah, Of6h

int 10h

f6 = revert to default
registers

do it now!

18-22 Designing a Mouse Interface

Function F7: Define Default Register
Table

Function F7 defines a table containing default values for
any pointer/data chip or single register. If you define
default values for a pointer/data chip, you must define
them for all registers within that chip.

Input:

AH = F7h

DX = Port number:

Pointer / data chips

Oh: CRT Controller (3?4h)
8h: Sequencer (3C4h)

10h: Graphics Controller (3CEh)
18h: Attribute Controller (3COh)

Single registers

20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3?Ah)
30h: Graphics 1 Position register (30Ch)
38h: Graphics 2 Position register (3CAh)

? = B for monochrome modes or D for color modes

ES:BX = Points to table of one- byte entries. Each entry
contains the default value for the corresponding
register. The table must contain entries for all
registers.

Output:

AX: Restored

BX: Not restored

DX: Not restored

ES: Restored

All other registers restored

Writing Mouse Programs for IBM EGA Modes 8-231
Examples
The following example defines default values for the
Attribu te Con troller:

attrdflt db OOh, Olh, 02h, 03h, 04h, OSh, 06h, 07h
db lOh, Ilh, I2h, I3h, I4h, ISh, I6h, I7h
db OSh, OOh, Ofh, OOh

mov ax, ds assume attrdflt in
data segment

mov es, ax es = data segment
mov bx, offset attrdflt es:bx = attrdflt

address
mov ah, Of7h f7 = define default

register table
mov dx, OOlSh dx = attribute

controller
int lOh do it!

The following example defines a default value for the
Feature Control register:

featdfl t db OOh

mov ax, ds assume featdfl t in
data segment

mov es, ax es = data segment
mov bx, offset featdflt es:bx = featdfl t

address
mov ah, Of7h f7 = define default

register table
mov dx, 002Sh dx = feature control

register
int lOh do it!

18-24 Designing a Mouse Interface

Function FA: Interrogate Driver

Function FA interrogates the mouse driver and returns a
value specifying whether or not the mouse driver is
present.

Input:

AH =FAh

BX=O

Output:

AX: Restored

BX = 0 if mouse driver is not present

ES:BX: Pointer to EGA Register Interface version number,
if present:

Byte 1: Major release number
Byte 2: Minor release number (in 1/100ths)

Writing Mouse Programs for IBM EGA Modes 8-251
Example
The following example interrogates the mouse driver and
displays the results:

gotmsg db
nopmsg db
revmsg db
crlf db

ten db

mov
mov
int
or
jnz
mov

mov
int
jmp

found: mov

mov
int
mov

mov
int
mov
add
mov
int

mov
mov
int
mov
xor

"mouse driver found", Odh, Oah, 24h
"mouse driver not found", Odh, Oah, 24h
"revision $"
Odh, Oah, 24h

10

bx, 0
ah, Ofah
10h
bx, bx
found
dx, offset nopmsg

ah, 09h
21h
continue

dx, offset gotmsg

ah, 09h
21h
dx, offset revmsg

ah, 09h
21h
dl, es: [bx]
dl, "0"
ah, 2
21h

dl, " "
ah, 2
21h
aI, es: [bx+1]
ah, ah

must be 0 for this call
fa = interrogate driver
interrogate!
bx = 0 ?
branch if driver present
assume nopmsg in data

segment
9 = print string
output not found message
that all for now

assume gotmsg in data
segment

9 = print string
output found message
assume revmsg in data

segment
9 = print string
output "revision "
dl = major release number
convert to ascii
2 = display character
output major release

number
dl = "."
2 = display character
output a period
al = minor release number
ah = 0

idiv ten al = 10ths, ah = 100ths
save ax in bx mov bx,

mov dl,
add dl,
mov ah,
int 21h
mov dl,
add dl,
mov ah,
int 21h

mov dx,

mov ah,
int 21h

continue:

ax
al
"0"
2

bh
"0"
2

offset crlf

09h

dl = 10ths
convert to ascii
2 = display character
output minor release 10ths
dl = 100ths
convert to ascii
2 = display character
output minor release
100ths

assume crlf in data
segment

9 = print string
output end of line
the end

Appendices

Appendix A
Mouse Command Line
Switches

This appendix describes the mouse command line
switches you can use to customize the operation of the
Control Panel and the mouse driver.

Control Panel Sw itches

The Control Panel (CPANEL.EXE) is a memory-resident
program that allows you to adjust the mouse sensitivity
level-the ratio of cursor movement to actual mouse
Inovement. (For information on using the Control Panel,
see Chapter 4, "Moving the Mouse," in your Microsoft
Mouse User's Guide.)

Whenever you invoke the Control Panel, the program
reserves memory for the area of the screen the Control
Panel overlays. The amount of memory needed depends
on the type of display adapter used and the complexity
of the image the Control Panel overlays. The Control
Panel has a default size for the overlay buffer, but you
can use a command line switch to change the amount of
memory reserved by the Control Panel. If your system
beeps when you activate the Control Panel, the screen
buffer is not large enough.

Use one of the following command line switches to
change the size of the buffer, depending on the type of
display adapter installed in your system:

Use this switch

/C<n>
/E<n>

/H<n>
/M<n>
/A<n>

For this display adapter

IBM Color/Graphics Adapter
IBM Enhanced Graphics
Adapter
Hercules display adapter
IBM Monochrome Adapter
AT&T 6300 display adapter

where <n> is a number in the range 0 to 9. The larger
the number, the larger the screen overlax buffer. If no
switch is specified, the default value is jE7.
The size of the buffer required depends on the mode of
the screen the Control Panel overlays. For example,
screens displayed in the enhanced graphics modes require
a larger Control Panel overlay buffer than screens
displayed in text modes.
In general, use a value in the range 0 to 4 if the Control
Panel will overlay only text screens; use a value in the
range 5 to 9 if the Control Panel will overlay graphics
screens.
The following table shows how many bytes of memory
are occupied by the Control Panel and buffer for each
possible switch setting:

Setting Switch
/M /H /A /e /E

0 9712 14240 14992 9360 9360
1 9760 14288 15040 9456 9456
2 9808 14336 15088 9552 9552
3 9856 14384 15136 9744 9744
4 9904 14432 15184 10128 10128
5 9952 14480 15232 11872 19088
6 10000 14528 15280 12128 19344
7 10048 14576 15328 14768 29168
8 10096 14624 15376 15024 29424
9 10144 14672 15424 15280 29680

Mouse Command Line Switches A-31
Use a Control Panel switch to specify the size of the
overlay buffer when you load the Control Panel into
memory. If the Control Panel is already in memory, you
must first to remove the Control Panel from memory.
To remove the Control Panel from memory:

l!J Type cpanel off

To specify a screen buffer size when you load the Control
Panel:

l!J Type cpanel followed by the appropriate switch.
For example, to specify the largest possible screen
buffer for the area the Control Panel overlays on a
CGA system, you would type cpanel / C9

Mouse Driver Sw itches

Use mouse driver command line switches to:

• Specify the sensitivity of the mouse
• Set the interrupt rate (for the InPort® Mouse only)
• Tell the mouse driver the type and location of the

Microsoft mouse installed in your system so the driver
can bypass its usual procedure for determining mouse
hardware configuration

• Disable the mouse driver or remove it from memory

You can add mouse driver command line switches to the
mouse command lines in the AUTOEXEC.BAT or
CONFIG.SYS file, or you can type mouse and the com
mand line switches at the DOS prompt. If you type one
or more switches at the DOS prompt, there must be a
space between mouse and each switch.
The following sections describe how to use the mouse
driver command line switches.

Using a Control
Panel sw itch

Using a mouse
driver sw itch

Specifying Mouse Sensitivity

Use the following command line switches to set mouse
sensitivity levels:

Use this switch

/S<nnn>

/H<nnn>
/V<nnn>
/D<nnn>

To set

Horizontal and vertical
sensitivity
Horizontal sensitivity only
Vertical sensitivity only
Dou ble-speed threshold

where <nnn> is a number in the range a to 100.
The switches for the horizon tal and vertical sensitivity
are interpreted in the same manner as a Control Panel
setting. The dou ble-speed-threshold switch determines
the threshold speed for dou bling the cursor's motion on
the screen. Setting a double-speed threshold makes it
easier to move the cursor to widely-separated images on
the screen. (You can also use mouse function 19 to build
this feature into an application program. For more infor
mation, see the description of function 19 in Chapter 6,
"Mouse Function Descriptions.")

Setting the Interrupt Rate for the InPort
Mouse

If you are using an InPort Mouse, you can use one of the
following command line switch settings to specify the
in terrupt rate for the mouse:

Switch Setting

/RO
/Rl
/R2
/R3
/R4

Interrupt Rate

disabled
30Hz (default)
50Hz
100Hz
200Hz

Specifying the Type and location of the
Mouse

The command line switches described in this section
direct the mouse driver to bypass its usual search to
determine the mouse hardware configuration and to look
for a particular type of Microsoft Mouse at a particular
I/O port.

Mouse Command Line Sw itches A-51

This feature is useful if:

• The mouse driver has trou ble determining which port
the mouse is connected to, given your system's
configura tion

• More than one InPort device is connected to your
computer

• You want to decrease the time required to load the
mouse driver

The following table lists each switch you can use to tell
the mouse driver to look for a particular mouse hardware
configura tion:

Use this switch

/B

/11

/12

/Cl
/C2

To look for

Bus or InPort Mouse at primary
InPort address
InPort Mouse at primary InPort
address
InPort Mouse at secondary InPort
address
Serial mouse on COM!
Serial Mouse on COM2

Disabling or Removing the Mouse Driver

If necessary, you can disable the mouse driver or remove
it from memory. Before you disable or remove the mouse
dri ver, you need to remove the Con trol Panel from
m~mory and end any Mouse Men u program you are
USIng.

To remove the Control Panel from memory:

l!J Type cpanel off

To end a Microsoft Expert Mouse Menu program:

l!J Type <filename> off
where <filename> is the name of the Expert Mouse
Menu program.

To end a Mouse :L\.1enu program that you wrote yourself:

[!] Type menu off

To disable or remove the mouse driver from memory:

[!] Type mouse off

If the mouse driver is MOUSE.SYS, it is disabled; if the
mouse driver is 110USE.COM, it is removed from
memory.

Appendix B
Linking EXisting Mouse
Programs with MOUSE.LIB
(Version 6.0)

If you have a high-level language program that links
with an earlier version of the Microsoft Mouse Library,
you may have to modify the J?rogram to link it with the
new MOUSE.LIB (version 6.0) on the Microsoft Mouse
Tools disk.
Version 6.0 of MOUSE.LIB functions the same as the pre
vious mouse library (version 5.03), except that version
6.0 has the following new features:

• New mouse functions 20, 21, 22, 23, 29, and 30
• The fourth parameter (M4%) of mouse function 9

must be passed by reference (instead of by value).
• Mouse function 16 requires four parameters (instead

of five).

If your program doesn't call function 9 or 16, you can
link it with MOUSE.LIB (version 6.0) without
modification.
If your program calls function 9 or 16, you must modify
the program so that it conforms with the new interface
definitions before you can link it with MOUSE.LIB (ver
sion 6.0). If you do not plan to call any of the new mouse
functions in your program, you may want to link the pro
gram with a previous version of the mouse library.

Note Version 5.03 of the Microsoft Mouse Library is
included on the Microsoft Mouse Tools disk in the file
OLDMOUSE.LIB.

Appendix C
Making Calls from Borland
Turbo Pascal Programs

To call mouse functions from a program in Borland
Turbo Pascal, use the procedure shown below to pass the
correct parameters to the mouse driver. Include this pro
cedure in your code, then call the mouse functions by
passing values into this procedure.

Procedure Mouse (Var m1, m2, m3, m4, mS : integer);

Var
CpuReg: record of

begin

if

AX, BX, CX, DX, BP,
SI, DI, DS, ES, FLAGS: integer;

end;

{mouse}

m1 >= 0 then
begin

CpuReg.AX .- m1;
CpuReg.BX .- m2;
CpuReg.CX .- m3;

if (m1 = 9) or (m1
or (m1 = 22) or
begin

CpuReg.DX .
CpuReg.ES .

end;

else if m1 = 16
begin

CpuReg.CX .-
CpuReg.DX .-
CpuReg.SI .-
CpuReg.DI .-

end;
else

CpuReg.DX .-
intr (~33, CpuReg);

{Load parameters }
{ into appropriate}
{ registers }

= 12) or (m1 = 20)
(m1 23) then

ofs (m4); {m4 = pOinter of }
seg (m4); { the address of }

m2;
m3;
m4;
mS;

m4;

{Left
{Upper
{Right
{Lower

{ the user array }
{ or subroutine }

x coordinate}
y coordinate}
x coordinate}
y coordinate}

{Call mouse driver}
{ at interrupt 33h }

IC-2
if (ml = 20) then

m2:= CpuReg.ES;

ml .- CpuReg.AX
m2 .- CpuReg.BX
m3 .- CpuReg.CX
m4 .- CpuReg.DX

end;

end; {mouse}

{Special returns }

{Return values back}
{ to parameters }

Appendix D
Using the Hercules Graphics
Card with Mouse Programs

Before you use the Hercules Monochrome Graphics Card
with a program that has built-in mouse support, you
must do the following:

[j] Put the Hercules card into graphics mode (if neces
sary, see the document a tion that came with your Her
cules card).

[t] Store a 6 in memory location 40h:49h if the Hercules
card is using CRT page O. Store a 5 in memory loca
tion 40h:49h if the Hercules card is using CRT page 1.

II) Call mouse function 0 to set the mouse cursor boun
daries and CRT page number to the appropriate
values.

Index

Index

Action statement 1-7, 1-14-1-16
Adapter See specific adapter
Address

entry 6-20
first element in screen 7-4
register 8-6
restoring previous 6-29

AH register 8-4
ALT-Fl F31 2-27
ALT-F2 F32 2-27
ALT-F3 F33 2-27
ALT-F4 F34 2-27
AL T-F5 F35 2-27
AL T-F6 F36 2-27
AL T-F7 F37 2-27
ALT-F8 F38 2-27
AL T-F9 F39 2-27
ALT-FI0(F40) 2-27
Ampersand (&) 7-14
AND operatIOn

graphics cursor 5-5
Piano program 7-17
software text cursor 5-7

Argument address 8-3
Array, four-element 6-24
Arrow keys

down arrow key 2-25
frequent use 3-1
left arrow key 2-25
right arrow key 2-25
simulating

with TYPE statement 2-23
with mouse 3-2

up arrow key 2-25
ASCII code

character set 5-7
control characters 2-23-2-24
extended 2-22
graphics characters 1-12, 1-13, 2-18, 2-21
list 2-24
use to specify keys 2-22-2-28
value of character 5-7

Assembly-language program
calling EGA Register Interface Library

8-2-8-3
cursor 7-23
making function calls 7-3-7-6
use with EGA.LIB 8-1-8-5

Assembly-language subroutine 6-19, 6-20
ASSIGN command 1-2
ASSIGN statement

described 2-2
labels 2-2
mouse

event value 1-8
sensitivity value 1-8

parameter 2-2
use 1-8, 1-17, 2-3

AT &T 6300 display adapter A-2
Attribute Controller Palette register 8-14
Attribute Controller register 8-6, 8-23
Attribute parameter

See also Parameter
MATCH statement 2-8
MEND statement 2-12
MENU statement 2-12
POPUP statement 2-17,2-21

AUTOEXEC.BAT file A-3
AX register 6-19, 6-28, 7-3, 7-4, 8-2

Background color See Color
Backspace

ASCII code 2-24
use with TYPE statement 2-22

BACKSPACE, prohibited use 1-3
BASIC

calling conventions 6-19, 6-28, 8-4
cursor use 7-23
making mouse function calls 7-2-7-3

Basic Input/Output System See BIOS
ROM

BASIC interpreter
entry point 7-2

11-2 Index

BASIO interpreter {contz'nued}
fragments 6-3
making function calls 7-2-7-3
parameters 7-3
sample use 6-20
use with function 12 6-19
use with function 20 6-28, 6-29
use with function 22 6-31

bb parameter 3-3
BEGIN command 1-2
BEGIN statement

described 2-4-2-5
format 1-2
initial mouse sensitivity 1-8
labels 2-5
parameters 1-8, 2-5
redefining parameter with ASSIGN

statement 2-2
use 1-8, 2-6, 3-2, 3-3

BEGINNING MENU 2-9
BH register, saving and restoring 8-11
BIOS ROM 2-28,8-2,8-6,8-21
Bold menu attribute value 1-6
Bold symbolic value 1-17
Borland Turbo Pascal program 7-6,0-1
Brackets ([l), use in statements 2-1
BRUN20.tIB 7-7
btbtn label

ASSIGN statement 2-2
BEGIN statement 2-5

Buffer
address 6-32, 7-4
changing size A-2
keyboard 2-22
saving mouse driver state 6-31
size, specifying A-3
storage requirements 6-30
storing state of mouse driver 6-30

BUILDLIB.EXE 7-7
Button

bit value 6-8
counter 5-9
double click 2-2, 2-11, 3-1-3-2, 3-3
left 2-2, 3-1, 3-3, 7-4
no action statement (NOTHING) 2-14
number of times pressed 6-10
number of times released 6-11
removing menu with 1-10
returning state 6-8
right 1-17-1-18, 2-2, 3-1, 3-2
state 5-9, 6-19

Button {continued}
statement labels 2-5
status 6-8, 6-10, 6-11, 7-18

BX register 6-19, 6-28, 7-3, 7-4, 8-2, 8-4

o model programs 6-20, 6-28
o program

calling conventions 8-4
EGA Register Interface Library 8-3-8-5
external routine 7-14
linking with MOUSE.LIB 7-15
making function calls 7-6, 7-14-7-16
mouse library procedures 7-14
parameters 7-14
restoring default setting 8-5

Oall mask
new values 6-27
parameter definition 7-4
restoring initial values 6-28
restoring previous values 6-29
setting 6-18-6-20

Oall, mouse function See Mouse
OALL statement 7-2
Oarriage return 2-24
OAS lines 8-7
cegal procedure 8-3, 8-4
cegam procedure 8-3, 8-4
cegas procedure 8-3, 8-4
OGA mode 7-12
Ohange Directory submenu 3-2, 3-3-3-4
Oharacter

array 8-4
attributes

changing with cursor mask 5-7
changing with text cursor 5-6
defined by mask 6-16
preserving with screen mask 5-7

blinking/nonblinking 5-7
screen data 5-7

Oheck mark cursor 7-27
chkdrv subroutine

FORTRAN 7-13-7-14
Pascal 7-10-7-12
QuickBASIO 7-8-7-10

cls command 3-3
OMOUSEO procedure 7-14
OMOUSEL procedure 7-14
OMOUSEM procedure 7-14
OMOUSES procedure 7-14

Colon (:)
missing in label 4-1
use in labels 1-3
use in statements 2-1

Color
background

inverting 5-8
parameter value 1-5-1-6
setting 5-7

foreground
inverting 5-8
parameter value 1-5-1-6
setting 5-7

palette 8-6
values for foreground, background 1-6

Column parameter
MATCH statement 2-8
MEND statement 2-12
MENU statement 2-12
POPUP statement 2-17
SELECT statement 2-19

COM1, serial mouse on A-5
COM2, serial mouse on A-5
Comma (,)

use in parameters 1-3
use in statements 2-1

Command
ASSIGN 1-2
BEGIN 1-2
cls 3-3
DATE 3-3
DOS

editing with DOSOVRL Y 3-2
executing with DOSOVRL Y 3-2-3-4

DOS COPY 1-21
EXECUTE 1-2
LINK

FORTRAN 7-13
Microsoft C 7-15
Pascal 7-10

MATCH 1-2
MEND 1-2
MENU 1-2
NOTHING 1-2
OPTION 1-2
PATH 1-21
PEND 1-2
POPUP 1-2
prohibited use of names 1-3
SELECT 1-2
TEXT 1-2

Command (continued)
TIME 3-3
TYPE 1-2

Index 1-31

word, syntax conventions 2-1
Comment, statement 1-7
Compact-model program 7-14
Complex menu, creating 1-10-1-14
Condition mask 6-19
Conditional off function 6-2, 6-24-6-25
CONFIG.SYS file A-3
Constant not allowed in mouse functions

6-3
Control characters See ASCII code
Control Panel program A-1-A-3, A-5
Control Panel switches A-1-A-3
CONTROL-] 2-24
CONTROL-" 2-24
CONTROL-_2-24
CONTROL-A 2-24
CONTROL-B 2-24
CONTROL-C 2-24
CONTROL-D 2-24
CONTROL-E 2-24
CONTROL-END 2-25
CONTROL-F 2-24
CONTROL-F1 F21 2-27
CONTROL-F2 F22 2-27
CONTROL-F3 F23 2-27
CONTROL-F4 F24 2-27
CONTROL-F5 F25 2-27
CONTROL-F6 F26 2-27
CONTROL-F7 F27 2-27
CONTROL-F8 F28 2-27
CONTROL-F9 F29 2-27
CONTROL-F10(F30) 2-27
CONTROL-G 2-24
CONTROL-HOME 2-25
CONTROL-K 2-24
CONTROL-L 2-24
CONTROL-left arrow 2-25
CONTROL-N 2-24
CONTROL-O 2-24
CONTROL-P 2-24
CONTROL-P AGED OWN 2-25
CONTROL-PAGEUP 2-25
CONTROL-PRINTSCREEN 2-25
CONTROL-Q 2-24
CONTROL-R 2-24
CONTROL-right arrow 2-25
CONTROL-S 2-24
CONTROL-T 2-24

1,-4 Index

CONTROL-U 2-24
CONTROL-V 2-24
CONTROL-W 2-24
CONTROL-X 2-24
CONTROL-Y 2-24
CONTROL-Z 2-24
Copying

.MNU file 1-21
Mouse Menu file 1-21

Copyright message, Piano program 7-16
Corner, top-left See Column parameter;

Row parameter
CP ANEL.EXE A-I
CPU register 6-19, 7-3
CRT Controller Cursor Location High

register 8-16
CRT Controller Cursor Location Low

register 8-16
CRT Controller Cursor Start register 8-12
CRT Controller Mode Control register

8-18,8-20
CRT page 6-4, 6-33
Cursor

assembly-language program 7-23
background 5-5
BASIC program 7-23-7-31
block 5-9
check mark 7-27
color 5-5, 7-17
computer, adapting 5-8
coordinates 6-8, 6-9, 6-10, 6-11, 6-12,

6-13, 6-19
default

FORTRAN 7-13-7-14
Microsoft C 7-15-7-16
mouse 7-4-7-6
Pascal 7-10-7-12
QuickBASIC 7-8-7-9

diagonal cross 7-29
displaying 6-6
graphics

defined 5-4-5-6
defining characteristics 6-14-6-15
hot spot, defined 5-6
parameter 6-4
use with different modes 5-4-5-6

hardware text
defined 5-4-5-6
described 5-8-5-9
selecting 6-16

hiding 6-7, 6-24

Cursor (continued)
high-level-language program use 7-23
horizontal min/max position 6-4
hot spot

check mark 7-27
defined in Piano program 7-17
diagonal cross 7-29
hourglass 7-31
left arrow 7-26
pointing hand 7-28
rectangular cross 7-30
standard shape 7-24
up arrow 7-25

hourglass 7-31
internal flag

decrementing 6-7
described 5-10-5-11
incrementing 6-6
parameter 6-4
restoring to initial value 6-7

left arrow 7-26
mask

array 7-4
field values 5-8
graphics 5-5-5-6
Piano program 7-17
specifying 6-16
text 5-7
used to build cursor 6-14

minimum/maximum horizontal
coordmates 6-12

minimum/maximum vertical
coordmates 6-13

movement
BEGIN statement parameters 1-8
double-speed-threshold A-4
help message 1-14
mickey count 5-10
minimum/maximum values 6-12
ratio A-I
SIMPLE mouse menu 6-12

pixel 5-5
pointing hand 7-28
position parameter 6-4
rectangular cross 7-30
removing from screen 6-7
returning CRT page 6-33
samples 7-23-7-31
scan line 6-16
setting position 7-3
shapes 5-5, 7-17, 7-23-7-31

Cursor (continued)
software text

creating 5-7
defined 5-4-5-6
described 5-6-5-8
selecting 6-16

specifying CRT page 6-33
speed, setting 6-26
standard shape 7-24
text

parameter 6-4
setting 6-16

turning on/off 7-17,7-18
up arrow 7-25
update code 8-1
vertical min/max position 6-4

CURSOR integer array 7-17
CX register

Assembly-language program call 7-3
EGA function call 8-4
EGA Register Interface Library 8-2
set interrupt subroutine 6-19
swap interrupt subroutine 6-28

Data register 8-6
DATE command 3-3
.DEF extension 4-2
.DEF source file 1-19
Default

settings restoring 8-21
size A-3
values

Attribute Controller 8-23
EGA write-only registers 8-1
pointer/data chip 8-22
single register 8-22

DEFINT statement 7-2
DELETE key 2-25
DI register 6-19, 6-28, 7-4
Diagonal cross cursor 7-29
Directory submenu 3-2, 3-3-3-4
Disk

active, changing with MATCH
statement 1-17-1-18

, Mouse Tools 1-18, 7-6, 7-16, 8-1
Display adapter 5-2,5-7,5-8
Display attribute

specifying with MENU statement 1-9
parameter See Parameter
value 2-17

Index I-51

Display mode, changing with graf 7-12
dnmot label

ASSIGN statement 2-2
BEGIN statement 2-5

DOS commands
editing with DOSOVRL Y 3-2
executing with DOSOVRL Y 3-1,

3-2-3-4
executing with mouse 3-1, 3-2-3-4

DOS COpy command 1-21
DOS system

applications bypassing 2-23
prompt 4-1, 5-8

DOSOVRL Y Mouse Menu program 3-1,
3-2-3-4

Double-precision variables 6-3
Down arrow key 2-25
DS register 6-19, 6-28
Dummy variables defined 6-3
DX register

Assembly-language program call 7-3
EGA function call 8-4
EGA Register Interface Library 8-2
saving and restoring 8-11
set interrupt subroutine 6-19
swap interrupt subroutine 6-28

EGA four-plane mode 5-6
EGA procedure 8-3, 8-4
EGA Register Interface

BIOS ROM calls 8-6
calling 8-2-8-5
calling from assembly-language program

8-2-8-3
calling from high-level language

programs 8
described 8-1-8-2
function

call 8-2, 8-3-8-5
listed 8-8-8-25

input values not checked 8-8
restoring default settings 8-21
restrictions on use 8-6

EGA register, restoring default setting 8-5
EGA.LIB

license agreement iii
linking with 8-3

EGAS procedure 8-3, 8-4, 8-5
Ellipsis (...), use in statements 2-1
END key 2-25

11-6 Index

Enhanced graphics modes A-2
ENTER key 3-1, 3-2
ENTER, prohibited use 1-3
Entry address 6-20
Error messages 4-1
ES register

EGA function call 8-4
EGA Register Interface Library 8-2

ES:DX register 7-4
ESCAPE key 2-24, 3-1
ESCAPE, prohibited use 1-3
EXECUTE command 1-2
EXECUTE statement

described 1-14-1-15, 2-7
error 4-1
parameter 2-7
use 1-17, 3-3
variable number of parameters 1-3

Expert Mouse Menu program A-5
Extended graphics mode 6-1
Extended keyboard scan codes 2-25-2-27

F1 key 2-26
F2 key 2-26
F3 key 2-26
F4 key 2-26
F5 key 2-26
F6 key 2-26
F7 key 2-26
F8 key 2-26
F9 key 2-26
FlO key 2-26
Far return instruction 6-19, 6-28
Feature Control register 8-12, 8-23
File

AUTOEXEC.BAT A-3
CONFIG.SYS A-3
creating in QuickBASIC 7-7
MENU.COM

copying 1-21
memory allocation 1-22

.MNU 1-19, 1-21, 1-22
object 6-19, 6-28
PIANO.BAS 7-16
PREADME.DOC i
source See Source file
standard ASCII text 1-19

Filename menu 4-2
Foreground color See Color

Format,
menu subroutine statement 1-9
Popup subroutine 1-11
statement See Statement

FORTRAN
address 6-20
calling conventions 8-4
chkdrv subroutine 7-13-7-14
EGA Register Interface Library 8-3-8-5
external subroutine 7-13
graf subroutine 7-13-7-14
IBM Color/Graphics Adapter

7-13-7-14
linking with MOUSE.LIB 7-13
making function calls 7-6, 7-13-7-14
use with function 20 6-28

Frequency setting, Piano program 7-16,
7-18

Function
call, making from assembly-language

program 7-3-7-6
define default register table 8-22-8-23
FO 8-9-8-10, 8-21
F18-11-8-12
F2

described 8-13-8-14
high-level-language program 8-4
use 8-2

F3
described 8-15-8-16
high-level-language program 8-4
use 8-2

F4
described 8-17-8-18
high-level-language program 8-4
use 8-2

F5
described 8-19-8-20
high-level-language program 8-4
setting the color palette 8-6
use 8-2

F6 8-7,8-21
F7

described 8-22-8-23
high-level-language program 8-4
use 8-2, 8-21

F8h, reserved 8-8
F9h, reserved 8-8
FA 8-4,8-24-8-25
FBh-FFh, reserved 8-8
interface 8-2

Function {continued}
interrogate driver 8-24-8-25
mouse See Mouse
read one register 8-9-8-10
read register 8-17-8-18
read register range 8-13-8-14
revert to default registers 8-21
write one register 8-11-8-12
write register range 8-15-8-16
write register set 8-19-8-20

Get button press information function 6-2,
6-10

Get button release information function
6-2 6-11

Get button status and mouse position
. function 6-8

Get button status function 6-2
Get CRT page number function 6-2, 6-33
Get mouse driver state storage

requirements function 6-2, 6-30
Glitch

while accessing Graphics Controller
Miscellaneous register 8-7

while accessing Sequencer Memory Mode
register 8-6

graf subroutine
FORTRAN 7-13-7-14
Pascal 7-10-7-12

Graphics
characters See ASCII code
cursor See Cursor
interrupt-driven 8-1

Graphics Controller Miscellaneous register
8-7

Graphics mode
changing with graf subroutine 7-12
described 5-3
high-resolution 7-23
IBM Enhanced Graphics Adapter 5-5
menu, restrictions 1-1
mode4 5-3, 5-4, 5-5-5-6
mode5 5-3, 5-4,5-5-5-6
mode6 5-3, 5-4, 5-5-5-6
model0 5-3, 5-4, 5-5
mode30 5-3, 5-4,' 5-5-5-6
modeE 5-3, 5-4, 5-5
modeF 5-3, 5-4, 5-5-5-6

Index

Hardware test cursor See Cursor
Hercules card 5-2, 5-3, 5-4, 5-5, A-2, D-l
Hide cursor function 6-2, 6-7
High-level-language program

calling conventions 8-4
calling from 6-19-6-20
cursor 7-23
EGA Register Interface Library 8-3-8-5
linking with MOUSE.LIB 7-6, B-1
making function calls 7-6-7-16
use with EGA.LIB 8-1-8-5
use with function 20 6-28

High-resolution graphics mode 7-23
Highlight

position in menu 1-10
use with DOSOVRL Y 3-3

HMAX6-9
HOME key 2-25
Horizontal movement, sensitivity

parameter 1-8, 2-2
Horizontal tab 2-24
Hot spot See Cursor
Hourglass cursor 7-31
hsen label

ASSIGN statement 2-2
BEGIN statement 2-5

Huge-model program 7-14

IBM 3270 PC 5-9
IBM All Points Addressable Graphics

Adapter 5-2
IBM Color Display 5-9
IBM Color/Graphics Adapter

changing buffer size A-2
use 7-4-7-6
use with Microsoft C 7-15-7-16
use with Pascal 7-10
use with QuickBASIC 7-8-7-9

IBM Enhanced Color Display 5-9
IBM Enhanced Graphics Adapter

changing buffer size A-2
interacting with 8-1
use with extended graphics modes 6-1

IBM Monochrome Display and Printer
Adapter 5-2, 5-9, A-2

IBM PC 5-1-5-11,7-16
Illegal function call 4-1
Indexes, consecutive 8-13
InPort mouse A-4-A-5
Input Status register 8-7

11-8 Index

Input value, function description 6-3
INSERT key 2-25, 3-1-3-2
Integer

array 6-14, 8-4
signed or unsigned 7-14

INTEGER parameter 7-10
Intensity setting 5-7
Internal cursor flag

decrementing 6-7
described 5-10-5-11
incrementing 6-6
parameter 6-4
restoring to initial value 6-7

Interrupt 10h 5-3, 8-6, 8-21
Interrupt call mask parameter 6-4
Interrupt-driven graphics 8-1
Interrupt rate A-3, A-4
Invalid parameter See Parameter
Invalid statement 4-1
Inverse menu, attribute value 1-6
Inverse symbolic value 1-17

Key
See also speC£jic key
ASCII code 1-15
simulation with TYPE statement 1-15,

2-22-2-28
special-function 2-22
specifying 2-22-2-28
symbolic name 1-15, 2-22

Key parameter, TYPE statement 2-22
Keyboard

buffer 2-22
direct access applications 2-23
emulation 4-2
scan code 1-16, 2-22

Label
colon used with 1-3
described 1-3
error 4-1
ignored by MAKEMENU program 2-15
menu subroutine statement 1-9
mouse movement 2-5
not required for BEGIN statement 2-4
parameter See Label parameter
prohibited words 1-3
rules for use 1-3
syntax conventions 2-1

Label {continued}
unique 4-1
when used 1-2

Label parameter
MATCH statement 2-8
MEND statement 2-12
MENU statement 2-12
POPUP statement 2-16
TYPE statement 2-22

Large-model program 7-14, 8-3
Ib parameter 3-3
Left arrow cursor 7-26
Left arrow key 2-25
Legend text

defining with TEXT statement 2-21
menu for OPTION statement 2-15
placement on screen 2-21

Ifbtn label
ASSIGN statement 2-2
BEGIN statement 2-5

Ifmot label
ASSIGN statement 2-2
BEGIN statement 2-5

License agreement iii
Light pen emulating 6-21, 6-22
Light pen emulation mode

off function 6-2, 6-22
on function 6-2, 6-21
parameter 6-4

Line feed 2-24
Line number specifying 6-16
LINK command

FORTRAN 7-13
Microsoft C 7-15
Pascal 7-10

1m parameter 3-3
Long argument address 8-4, 8-5

Ml% 6-3
M2% 6-3
M3% 6-3
M4% 6-3
MAIN MENU, in WordStar 2-9
MAKEMENU program

ignoring labels for OPTION statement
2-15

messages 4-1-4-2
use 1-19 1-20 3-1

Mask ' ,
See also Cursor mask; Screen mask

Mask (cont";nued)
bit 6-27
interrupt call, parameter 6-4

MATCH command 1-2
Match parameter 2-9
MATCH statement

combining with Popup subroutines 1-11
described 1-16-1-18, 2-8-2-10
parameters 2-8-2-9
use 1-17-1-18, 2-14

Maximum cursor coordinates See Cursor
Medium-model program 7-14, 8-3
Memory-resident program A-I
MEND command 1-2
MEND statement

described 2-11-2-13
lack of parameters 1-3
use 1-10

Menu
borders 1-13, 2-18
choosing item 1-14-1-16
clearing after item choice 2-15
command list 1-2
complex, creating 1-10-1-14
corner

column specified 2-12
row specified 2-12

corner coordinate, specifying 1-9, 1-12
creating 1-1-1-22
dimension determination 2-11
display

attribute value 2-12
specifying with MENU statement 2-12
specifying with POPUP statement

2-17
display attribute, specifying 1-9, 1-12
DOSOVRL Y program 3-1, 3-2-3-4
ending A-6
exit from with OPTION statement 1-9
file 1-19-1-20
filename 4-2
hierarchy, creating 3-2
highlight 1-10, 2-11, 2-19
item location 1-13
item selection area

character number specified 2-19
column specified 2-19
defined 2-19-2-20
error 4-1
row specified 2-19

language statements 2-1-2-28

Menu (cont~·nued)
legend text 2-15
memory allocation 1-22
multiple-column

creating 1-10, 1-13, 2-16
sample 1-11

popup
defining title 2-21

Index 1-91

single-column created with MENU
statement 2-11

program
ending 1-21
not in directory 1-21
running 1-21
sample 3-1-3-4
structure 1-7-1-8

programming language 1-1-1-7
removing with mouse buttons 1-10
sample source program 1-17-1-18
screen cleared 2-20
SIMPLE program 3-1-3-2
source files 1-18
subroutine

beginning statement 1-9
end statement 1-10
ending with MEND statement 2-11
exit statement 1-9
MENU statement used in 2-11
sample 1-10

testing 1-20
title

defining with TEXT statement 2-21
specifying 1-9, 2-12

top-left corner See Column parameter;
Row parameter

use prohibition 1-1
WS.DEF 2-14

MENU command 1-2
MENU program messages 4-1-4-2
MENU statement

described 2-11-2-13
use 1-9, 1-10, 2-13

Menu subroutine statement
described 1-7, 1-9-1-10
format 1-9
label 1-9

MENU.COM file
copying 1-21
memory allocation 1-22

Message box
creating 1-14

11-1 0 Index

Message box (continued)
creating with Popup subroutine 2-16
Popup subroutine example 2-18
sample 1-11
top-left corner See Column parameter;

Row parameter
Messages 4-1-4-2
Mickey

count 5-10,6-17,6-19,6-28
default value 2-5, 2-6
described 2-4, 5-9-5-10
use 1-8

Mickey /pixel ratio
horizontal, parameter 6-4
setting 6-23
vertical, parameter 6-4

Microsoft
copyright notice iii
license agreement iii
logo 7-17, 7-18
Product Support ii

Microsoft C See C program
Microsoft EGA Register Interface

Library See EGA Register Interface
Microsoft Expert Mouse Menu program

6-30
Microsoft FORTRAN See FORTRAN
Microsoft Mouse Library 7-6
Microsoft Mouse Tools disk 7-6, 7-16
Microsoft Pascal See Pascal
Microsoft QuickBASIC See QuickBASIC
Microsoft Word 1-19
Minimum cursor coordinates See Cursor
Miscellaneous Output register 8-10, 8-18,

8-20
.MNU extension 1-20
.MNU file

copying 1-21
described 1-19
size limitation 1-22

Mode
display, changing with graf 7-12
graphics See Graphics
Hercules graphics display 5-3
light pen emulation 6-4
screen 5-1-5-2, 6-7
text See Text mode

Mode-change calls 8-2
Mouse

button See Button
disabling vertically, horizontally 2-5

Mouse (continued)
driver

checking installation 7-3
da ta segments 6-19
disabling A-5-A-6
FORTRAN 7-13-7-14
interrogating 8-24-8-25
loading automatically 1-20
loading EGA.LIB 8-1
MOUSE.COM A-6
MOUSE.SYS A-6
Pascal 7-10-7-12
QuickBASIC 7-7, 7-9-7-10
removing A-5-A-6
resetting 6-4
restoring state 6-32
saving state 6-31
state, restoring 6-32
storing state in buffer 6-30
switches A-3-A-6

emulating light pen 6-21, 6-22
entry

offset 7-2
segment 7-2

function 0 5-3, 5-9, 6-4-6-5
function 1 5-10-5-11, 6-6, 7-17
function 2 5-10-5-11, 6-7
function 3 6-8, 7-18
function 4 6-9, 7-17
function 5 5-9, 6-10
function 6 5-9, 6-11
function 7 6-12
function 8 6-13
function 9 5-4, 5-5, 5-6, 6-14-6-15,

7-3-7-4, 7-17
function 10 5-4, 5-8, 6-16
function 11 6-17
function 12 6-18-6-20, 7-3-7-4
function 13 6-21
function 14 6-22, 6-23
function 15 7-17
function 16 6-24-6-25, 7-3-7-4
function 19 6-26, A-4
function 20 6-20-6-29, 7-3-7-4
function 21 6-30
function 22 6-31, 7-3-7-4
function 23 6-32,7-3-7-4
function 29 6-33
function 30 6-33
function list 6-2
hardware configuration A-3

Mouse (continued)
hardware interrupts 6-18-6-20, 6-27
hardware status 6-4
InPort A-4-A-5
motion, reading 6-17
movement

parameters 2-2
sensitivity 7-17
setting ratio 6-23
statement labels 2-5

parameter See Parameter
program

existing program, linking with
MOUSE.LIB B-1

temporarily interrupting 6-30, 6-31,
6-32

reset and status function 6-2, 6-4-6-5
sensitivity

adjusting A-I
defining 5-10
double-speed threshold A-4
horizontal A-4
initial 1-8
setting A-4
specifying A-3
vertical A-4

Setup program 1-20
software

linking to program 7-16
status 6-4"

specifying A-4-A-5
support, built-in 1-1
threshold speed 6-26
tracking 6-6, 6-7
unit of distance 5-9

Mouse count See Mickey
Mouse Event Statement 1-7-1-8
Mouse function See Mouse
Mouse Library license agreement iii
Mouse Menu See Menu
Mouse Tools disk,I-18, 8-1
MOUSE.LIB""

license agreement iii',
linking with existing mouse programs

B-1
linking with FORTRAN 7-13
linking with high-level-languages 7-6,

B-1
linking with Microsoft C 7-14-7-15
linking with Pascal 7-10
linking with QuickBASIC 7-7-7-8

Index 1-11 I

MOUSE.LIB (continued)
parameter requirements 7-14

MOUSES
use with FORTRAN 7-13
use with Pascal 7-10
use with QuickBASIC 7-7

Movement sensitivity
parameter 2-4
values 1-4

Multiple-column menu See Menu

Nomatch in MATCH statement 2-9
Normal symbolic value 1-17
NOTHING command 1-2
NOTHING statement

described 1-16, 2-14
equivalent 1-9, 2-11
lack of parameters 1-3

Numeric parameter See Parameter

OLDMOUSE.LIB iii, B-1
Operation

AND
graphics cursor 5-5
Piano program 7-17
software text cursor 5-7

OR
graphics cursor 5-5
Piano program 7-17

OPTION command 1-2
OPTION statement

described 2-15
error 4-1
use 1-9, 1-10, 2-13

OR operation 5-5, 7-17
Output value 6-3

Page number, CRT, parameter 6-4
PAGEDOWN key 2-25
P AGEUP key 2-25
Palette register 8-3
Parameter

ASSIGN statement 2-2
attribute

MATCH statement 1-17
MEND statement 2-12
MENU statement 2-12
POPUP statement 2-17,2-21

11-12 Index

Parameter (continued)
BASIC call 7-2
bb 3-3
before and after call 6-3
BEGIN statement 2-5
bold 1-4, 1-6
button 1-8
changing value with ASSIGN statement

2-3
color specification 1-5-1-6
column

MATCH statement 1-17
MEND statement 2-12
MENU statement 2-12
POPUP statement 2-17
SELECT statement 2-19

comma used with 1-3-1-4
default attribute 1-5
default value 1-4, 2-3
definitions 7-4
described 1-3-1-6
disabling with NOTHING statement

1-16
display attribute 1-4-1-5
dummy variable names 6-3
E18-4
E28-4
E38-4
E48-4
E58-4
excess 4-1
EXECUTE statement 2-7
function call requirements 6-3, 8-4
function FO 8-9-8-10
function Fl 8-11-8-12
function F2 8-13-8-14
function F3 8-15-8-16
function F4 8-17-8-18
function F5 8-19-8-20
function F6 8-21
function F7 8-22-8-23
function FA 8-24-8-25
horizontal movement sensitivity 2-2
incorrect for function calls 6-3
initial value assigned 2-3
input requirement 6-3
INTEGER 7-10
invalid 4-1
inverse 1-4, 1-6
key 2-22

Parameter (continued)
label

MEND statement 2-12
MENU statement 2-12
POPUP statement 2-16
TYPE statement 2-22

Ib 3-3
limit to value 6-9
1m 3-3 .
Ml%,M2%,M3%,M4%~3
match 1-17
MATCH statement 2-8-2-9
MEND statement 2-12
MENU statement 2-12
mouse, redefining with ASSIGN

statement 2-2
mouse function 10 5-8
movement 1-8
nonmatch 1-17
normal 1-4
numeric 1-4
OPTION statement 2-15
optional 2-1
output requirement 6-3
pointer 1-9, 1-13, 2-20
POPUP statement 2-16-2-17
preceded with ampersand (&) 7-14
rb 3-3
redefining with ASSIGN statement 2-2
register for EGA Register Interface

Library 8-2
required 2-1
required for EGA Register Interface

Functions 8-8
resetting default values 5-3
rm 3-3
row

MATCH statement 1-17
MEND statement 2-12
MENU statement 2-12
POPUP statement 2-16
SELECT statement 2-19

signed integer 7-14
statements without parameters 1-3
string 1-4, 2-21
syntax conventions 2-1
title

MEND statement 2-12
MENU statement 2-12

TYPE statement 2-22
unsigned integer 7-14

Parameter (cont£nued)
unused 1-3-1-4
value not required 8-8
value not specified 2-2
vertical movement sensitivity 2-2
width, SELECT statement 2-20
WORD 7-10

Pascal
address 6-20
calling conventions 7-10, 8-4
chkdrv subroutine 7-10-7-12
EGA Register Interface Library 8-3-8-5
graf subroutine 7-10-7-12
IBM Color/Graphics Adapter used with

7-10
long argument address 8-5
making function calls from 7-6,

7-10-7-12
use with function 20 6-28

PATH command 1-21
PEN function 6-21, 6-22
PEND command 1-2
PEND statement

described 1-12, 2-16-2-18
lack of parameters 1-3
use 1-11, 1-13-1-14

Percent sign (%)
in dummy variables 6-3
use with variable names 7-2

Piano keys 7-17
Piano program, source code 7-16-7-22
PIANO.BAS file 7-16
Pixel

8-by-85-3
8-by-165-4
16-by-8 5-3-5-4
16-by-16 5-4
cursor 5-5
even-numbered correspondence 5-3
movement 5-10
number on screen 5-1
one-to-one correspondence 5-3
settin~ ratio to mickey 6-23

Pointer/data chip 8-13, 8-15
Pointer parameter See Parameter
Pointing hand cursor 7-28
POPUP command 1-2
Popup menu

defining title 2-21
single-column, created with MENU

statement 2-11

POPUP statement
attribute parameter 2-21
described 1-12, 2-16-2-18
use 1-11, 1-13-1-14

Popup subroutine

Index 1-131

combining with MATCH statements
1-11

defining legend text with TEXT
statement 2-21

defining menu title with TEXT
statement 2-21

ending 1-12, 2-16
first statement 2-16
format 1-11
sample 1-13-1-14
statement 1-10-1-14
types 1-7

PREADME.DOC file i
Product Support ii
Program See specific program
Programming language for Mouse Menu

1-1-1-7
PUT statement 7-18

QuickBASIC
address 6-20
EGA Register Interface Library 8-3-8-5
external subroutine 7-7
linking with MOUSE.LIB 7-8
making function calls 7-6, 7-7-7-10
use with function 20 6-28

QUIT box 7-17, 7-18
Quotation marks ("")

incorrect placement 4-1
simulating 2-22
specifying keys with 2-22
use in statements 2-1

rb parameter 3-3
Read mouse motion counter function 6-2,

6-7
Read one register function 8-9-8-10
Read-Only Memory See BIOS ROM
Rectangular cross cursor 7-30
Register

Address 8-6
AH 8-4
Attribute Controller 8-6, 8-23
Attribute Controller Palette 8-14

11-14 Index

Register (continued)
BH 8-11
BX8-4
CPU 6-19,6-28
CRT Controller Cursor Location High

8-16
CRT Controller Cursor Location Low

8-16
CRT Controller Cursor Start 8-12
CRT Controller Mode Control 8-18, 8-20
CX 8-4 .
Data 8-6
DX 8-4,8-11
Feature Control 8-12, 8-23
Graphics Controller Miscellaneous 8-7
Input Status 8-7
Miscellaneous Output 8-10, 8-18, 8-20
palette 8-3
range, defined 8-13
Sequencer Map Mask 8-10
Sequencer Memory Mode 8-6-8-7,8-18,

8-20
Sequencer Reset 8-7
set, defined 8-17
write-only 8-1

Restore mouse driver state function 6-2,
6-32

Right arrow key 2-25
rm parameter 3-3
ROM BIOS See BIOS ROM
Routine, external, use with Microsoft C

7-14
Row parameter

MATCH statement 2-8
MEND statement 2-12
MENU statement 2-12
POPUP statement 2-16
SELECT statement 2-19

rtbtn label
ASSIGN statement 2-2
BEGIN statement 2-5

rtmot label
ASSIGN statement 2-2
BEGIN statement 2-5

Save mouse driver state function 6-2, 6-31
Scan code, keyboard See Keyboard
Scan line 5-8, 6-16
Screen

bit, resulting 5-5

Screen (continued)
buffer A-I, A-3
coordinate 6-24, 7-4
data, character 5-7
defining region for updating 6-24
graphics, clearing 7-16
legend text placement 2-21
mask

field values 5-8
graphics 5-5-5-6
specifying 6-16
text 5-7
used to build cursor 6-14

mode 5-1-5-2, 6-3, 6-7
overlay buffer A-2
removing cursor from 6-7
virtual 5-2-5-4, 6-9, 6-10, 6-11, 6-13

Screen coordinates 1-4, 2-9
Screen mask 7-17
SELECT command 1-2
SELECT statement

described 1-12, 2-19-2-20
error 4-1
use 1-11, 1-13-1-14, 2-17, 2-18

Sensitivity, mouse See Mouse
Sequencer Map Mask register 8-10
Sequencer Memory Mode register 8-6-8-7,

8-18, 8-20
Sequencer Reset register 8-7
Set CRT page number function 6-2, 6-33
Set double-speed threshold function 6-2,

6-26
Set graphics cursor block function 6-2,

6-14-6-15
Set interrupt subroutine call mask and

address function 6-2, 6-18-6-20
Set mickey/pixel ratio function 6-2, 6-23
Set minimum/maximum vertical cursor

function 6-2, 6-13 .
Set minimum/maximum horizontal cursor

function 6-2, 6-12
Set mouse cursor position function 6-9
Set text cursor function 6-2, 6-16
Setup program for mouse 1-20
Shadow maps 8-1-8-2
SHIFT-Fl Fll 2-26
SHIFT-F2 F12 2-26
SHIFT-F3 F13 2-26
SHIFT-F4 F14 2-26
SHIFT-F5 F15 2-26
SHIFT-F6 F16 2-26

SHIFT-F7!F17j2-26
SHIFT-F8 F18 2-26
SHIFT-F9 F19 2-26
SHIFT-F10(F20) 2-26
SHIFT-TAB 2-25
Short argument address 8-4
Show cursor function 6-2, 6-6
SI register 6-19, 6-28, 7-4
Signed integer 7-14
SIMPLE Mouse Menu program 3-1-3-2
Simulating

arrow keys See TYPE statement
keystrokes See TYPE statement

Single-column menu See Menu
Single-precision variables 6-3
Small-model program 7-14, 8-3
Software interrupt 16(10h) 8-2
Software interrupt 51(33H) 7-3
Software text cursor See Cursor
SOUND statement 7-18
Source code, Piano program 7-16-7-22
Source file

.DEF 1-19
errors 1-19
on Mouse Tools disk 1-18 \
saving with word processing program

1-19
size limitation 1-19
use with menu programs 1-19
WS.DEF 2-9-2-10

Space, simulating 2-23
Speed-doubling, cursor 6-26
Spread sheet applications 3-1
Standard cursor 7-24
Statement

action, described 1-7
ASSIGN

described 2-2
use 1-17, 2-3

BEGIN
described 2-4-2-5
DOSOVRL Y 3-3
format 1-2
initial mouse sensitivity 1-8
parameters 1-8
redefining parameter with ASSIGN

statement 2-2
use 1-8, 2-6, 3-2

CALL 7-2
calling, use 2-7
comment 1-7

Statement (continued)
DEFINT 7-2
EXECUTE

described 1-14-1-15, 2-7
error 4-1
use 1-17,3-3

Index 1-151

variable number of parameters 1-3
format 1-2-1-7
invalid 4-1
label

mouse movement 2-5
use with EXECUTE sta temen t

1-14-1-15
MATCH

described 1-16-1-18, 2-8-2-10
format 1-17
use 1-17-1-18, 2-14

MEND
described 2-11-2-13
lack of parameters 1-3
use 1-10

MENU
described 2-11-2-13
use 1-9, 1-10, 2-13

menu subroutine, described 1-7
Mouse Event, described 1-7-1-8
NOTHING

described 1-16, 2-14
equivalent 1-9
lack of parameters 1-3

OPTION
described 2-15
error 4-1
use 1-10, 2-13

order of appearance 1-3
parameter See Parameter
PEND

described 1-12, 2-16-2-18
lack of parameters 1-3
use 1-11, 1-13-1-14

POPUP
described 1-12, 2-16-2-18
use 1-11, 1-13-1-14

Popup subroutine 1-7,1-10-1-14
PUT 7-18
SELECT

described 1-12, 2-19-2-20
error 4-1
use 1-11, 1-13-1-14, 2-17, 2-18

SOUND 1-16-1-18,7-18
string match, described 1-7, 1-16-1-18

11-16 Index

Statement (cont£nued)
syntax conventions 2-1
TEXT

described 1-12, 2-21
use 1-11, 1-13-1-14,2-17

TYPE
described 1-15-1-16, 2-22
error 4-1
sample 1-16
use 1-17, 3-2,3-3
variable number of parameters 1-3

types described 1-7
within EXECUTE statement 2-7
within Menu subroutines 1-2
within Popup subroutines 1-2

Status
mouse hardware 6-4
mouse software 6-4

String match statement 1-7, 1-16-1-18
String parameter

See a/so Parameter
MATCH statement 2-9
TEXT statement 2-21

Submenu
Change Directory 3-2, 3-3-3-4
Directory 3-2, 3-3-3-4
hierarchy, creating 3-2

Subroutine
See also spec'tjic subrout£ne
address 6-27, 6-28, 7-4
assembly-language 6-19, 6-28
calling 6-18, 6-19, 6-28
chkdrv

in FORTRAN 7-13-7-14
QuickBASIC 7-8-7-10
with Pascal 7-10-7-12

disabling for certain condition 6-27
enabling for certain condition 6-18, 6-27
external, use with FORTRAN 7-13
external, use with QuickBASIC 7-7
graf

in FORTRAN 7-13-7-14
with Pascal 7-10-7-12

menu
ending with MEND statement 2-11
MENU statement used in 2-11

offset 6-29
Popup subroutine, first statement 2-16
segment 6-28-6-29
USERLIB.EXE 7-7-7-8

Swap interrupt subroutine function 6-2,
6-27-6-29

Switch
Control Panel A-1-A-3
mouse driver A-3-A-6
settings for Control Panel A-2

Symbolic name for key 2-22
Synchronous Reset 8-7
Syntax

conventions, statement 2-1
error 4-1

TAB, prohibited use 1-3
TEXT command 1-2
Text cursor See Cursor
Text mode

described 5-3
mode 0 5-3-5-4
mode 1 5-3-5-4
mode 2 5-3
mode 3 5-3
mode 7 5-3
overlay buffer size A-2

Text parameter 2-15
TEXT statement

described 1-12, 2-21
parameter 2-21
use 1-11, 1-13-1-14, 2-17

Text string designation 4-1
Threshold speed, mouse 6-26
TIME command 3-3
Title parameter

MEND statement 2-12
MENU statement 2-12

TYPE command 1-2
TYPE statement

ASCII control characters 2-23-2-24
described 1-15-1-16, 2-22
error 4-1
key sequences not simulated with 2-28
keyboard scan codes 2-25-2-27
sample 1-16
use 1-17, 3-2, 3-3
variable number of parameters 1-3

Unsigned integer 7-14
Up arrow cursor 7-25
Up arrow key 2-25
upmot label

ASSIGN statement 2-2
BEGIN statement 2-5

USERLIB.EXE, setting up 7-7-7-8
Utility program, MAKEMENU 1-19-1-20

Variable
double-precision 6-3
single-precision 6-3

VC.DEF program, use with POPUP
statement 2-17

Version number, returning 8-1
Vertical movement, sensitivity parameter

1-8, 2-2
Video random access memory 8-6, 8-7
Virtual screen See Screen
VMAX6-9
vsen label

ASSIGN statement 2-2
BEGIN statement 2-5

Width parameter, SELECT statement
2-20

WORD parameter 7-10
Word processing program, saving source

files 1-19
WordStar sample menu 2-9
Write mask register 5-6
Write-only registers 8-1
WS.DEF program 2-9-2-10,2-14,2-17

XOR operation
graphics cursor 5-5
software text cursor 5-7

Index 1-171

MICRDSOFT®
16011 NE 36th Way, Box 97017, Redmond, WA 98073 Problem Report

Name __ __

Street __ __

City ____________ State _____ Zip ______ __

Phone Date _______ __

Instructions

Use this form to report problems with Microsoft hardware or software, docu
mentation errors, or suggested enhancements. Mail the form to Microsoft.

Category

Software Problem Hardware Enhancement

Hardware Problem Documentation Problem
(Document #)

Software Enhancement
Other

Product Description

NUcrosoftProduct __ _

Rev. ___________ Registration # _________________________ _

Operating System ______________________________________ _

Rev. ________ Supplier _________________________ _

Other Software Used ________________________________ _

Rev. _________ Supplier ________________________ _

Hardware Description

Manufacturer ______ CPU ________ Memory _________ KB

Disk Size _________ " Density: Sides:

Single __ Single __

Double __ Double __

Peripherals ______________________________________ __

Problem Description

Describe the problem. (Also describe how to reproduce it, and your
diagnosis and suggested correction.) Attach a listing if available.

