

MICROSOFT®

PROGRAMMER'S
REFERENCE

MICROSOFT®

PROGRAMMER'S
REFERENCE

SECOND EDITION

®

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1991 by Microsoft Corporation

All rights reserved. No part of the contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library ofCongress Cataloging-in-Publication Data

Microsoft Mouse programmer's reference / Microsoft Corporation. -- 2nd
ed.

p. em.
Includes index.
ISBN 1-55615-336-8
1. Microcomputers--Programming

I. Microsoft.
QA76.6.M516 1991 <MRC Rib
005. 265--dc20

2. Computer interfaces.

90-49853
CIP

Printed and bound in the United States ofAmerica.

23456789 MLML 654321

Distributed to the book trade in Canada by Macmillan of Canada, a division of
Canada Publishing Corporation.

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Data available.

IBM~ PC/AT~ and PS/2@ are registered trademarks of International Business Machines Corporation.
Symphony® is a registered trademark and VisiCalc TN is a trademark of Lotus Development Corporation.
CodeVie~InPort~ Microsoft~MS-DOS~Multiplan~and XENIX® are registered trademarks and
BallPoint TN is a trademark of Microsoft Corporation. BRIEF® is a registered trademark of UnderWare,
Inc. WordStar@ is a registered trademark ofWordstar Corporation.

Acquisitions Editor: Michael Halvorson
Project Editor: Nancy Siadek
Technical Editor: Daniel Lipkie

Contents
Acknowledgments vzz

Introduction zx

PART I: INTRODUCTION
Chapter 1: Evolution of the Mouse 3
Chapter 2: Overview of Mouse Programming 17

PART II: MOUSE MENUS
27

49

Chapter 3: Creating Your Own Mouse Menu
Chapter 4: Mouse Menu Language Statements
Chapter 5: Sample Mouse Menu Programs 69

PART III: MOUSE PROGRAMMING INTERFACE
Chapter 6: Mouse Programming Interface 79

Chapter 7: Mouse Programming Considerations 109

Chapter 8: Mouse Function Calls 121

Chapter 9: Sample Mouse Programming Interface
Programs 217

Chapter 10: Writing Mouse Programs for IBM EGA
Modes 273

PART IV: APPENDIXES
Appendix A: ASCII Character Set 299

Appendix B: Domestic Mouse-Driver Messages 305

Appendix C: Mouse Menu Messages 309

Appendix D: Linking Existing Mouse Programs with
MOUSE.LIB 313

Appendix E: Making Calls from Borland Turbo Pascal
Programs 315

Appendix F: Using the Mouse with the Hercules Graphics
Card 319

Index 321

Acknowledgments
Several people made outstanding contributions to the Microsoft Mouse
Programmer's Reference, 2d edition. In particular, we thank the following
reviewers whose technical skills and timely critiques proved invaluable
to this project: John Pennock, Ken Robertson, Charles Nichols, and
John Clark Craig. Their expertise, hard work, and dedication helped
make this book a superb tool for serious programmers.

In addition, we thank the following reviewers and subject-matter
experts who also made essential contributions: Eric Watson, Bridget
Cameron, Tom Hensel,Jeff Hinsch, Mary Dejong, and David Rygmyr.
And special kudos to the eagle-eyed proofreaders at Microsoft Press
in particular, Deborah Long, Alice Copp-Smith, and Pat Forgette.

For the first edition, we are indebted to Eric Fogelin, Tom Hensel,
Greg Lee, Paul Schuster, Rich Abel, Henry Burg"ess, Tom Button, Stew
Chapin, Barbara Hubbard, Len Oorthuys, Steve Shaiman, Rick
Thompson, Bill Wesse, and Nathan Williams.

vii

Introduction
The Microsoft Mouse Programmer's Reference, 2d edition, is both an overview
and a technical resource for experienced programmers. The book in
cludes a history of the Microsoft mouse, an overview of mouse pro
gramming, detailed information about writing and using mouse menu
programs, and instructional information on using the mouse program
ming interface to add mouse support to an application program you've
written. In addition, the Microsoft Mouse Programmer's Reference offers a
wealth of sample programs in several languages to demonstrate the
topics and functions it discusses.

This package includes disks that contain the MOUSE.LIB and
EGA.LIB libraries and all the sample mouse menu and mouse program
ming interface programs listed in this book. In addition, the disks in
clude lengthy sample programs not listed in the book.

The Microsoft Mouse Programmer's Reference is divided into four sec
tions. Part I, "Introduction," provides a history of the Microsoft mouse
and an overview of mouse programming. Part II, "Mouse Menus,"
details the mouse menus programming language, gives a complete de
scription of each mouse menu command, and offers sample mouse
menu programs. Part III, "Mouse Programming Interface," discusses
the topics you'll need to consider when adding mouse support to a
program you're writing. It also describes each of the mouse functions
available through MOUSE.LIB or Interrupt 33H and offers sample pro
grams in QuickBasic, interpreted Basic, C, QuickC, MASM, FORTRAN,
and Pascal. In addition, Part III includes information about adding
mouse support to programs that will run on an EGA and describes the
EGA Register Interface functions available throughout the EGA.LIB
library. The appendixes in Part IV cover the ASCII character set, mouse
messages, calls from Borland Turbo Pascal programs, and mouse use
with the Hercules Graphics Card.

The following notational conventions are used in this book:

Italics Variable names and replaceable parameters in syntax
lines, and function names in text

Initial Caps Menu names and mouse function names

ALL CAPS Menu command names, filenames, program names,
directory names, utility names, and MS-DOS command
names

ix

MICROSOFT MOUSE PROGRAMMER'S REFERENCE

To take full advantage of all the sample programs and libraries in
the Microsoft Mouse Programmer's Reference, you'll want to have the
most current mouse-driver version (8.0). Mouse-driver upgrades
are available to Microsoft mouse owners for $25. To upgrade,
mouse-driver owners can call Microsoft Customer Service at
1-800-426-9400 (6 A.M. to 5:30 P.M. Pacific time, Monday through
Friday). Be sure to have the following information handy: the
mouse-driver software version number, which is printed on the
original driver disks, and the FCC ID number for your mouse,
which is printed on the bottom of the mouse.

x

PART I

Introduction
Chapter 1: Evolution of the Mouse

• The Early Mice
• The Microsoft Mouse
• A Look Ahead

Chapter 2: Overview of Mouse Programming

• The Mouse Driver
• Mouse Menus
• The Mouse Programming Interface

Chapter 1

Evolution of
the Mouse

The mouse-a small, hand-held device that controls the movement of
the cursor on a computer screen-was first developed 27 years ago.
From humble beginnings as an odd-looking, one-button, wooden pro
totype, the mouse has evolved into a sleek, sophisticated tool that is
nearly as familiar to today's computer user as the keyboard.

Spanning fewer than 10 years of the mouse's history, Microsoft's
role in the evolution of the mouse is nevertheless significant. The
Microsoft mouse, first introduced in 1983, has set new standards for how
people interact with the computer. Although Microsoft didn't invent
the mouse, it has done much to fine-tune it.

To understand Microsoft's involvement, let's look at how the
mouse originated and developed.

THE EARLY MICE
We were experimenting with lots of types of devices at the time. Once the
mouse proved itself to us, we tested it against several other devices, and it
clearly won. I felt that until something better came along, the mouse would
definitely remain the best pointing device for computer users.

- Doug Engelbart
Inventor of the mouse

When Doug Engelhart developed his wooden prototype of the mouse
at Stanford Research Institute in 1963, he designed it for use with his
Augment computer. Engelbart's ideas later influenced the designs of

3

PART I: INTRODUCTION

the Xerox Star, Apple Lisa, and Apple Macintosh personal computers.
Not even Engelbart then envisioned what would occur over the next
27 years.

Engelbart's mouse was a simple analog device that responded to
each movement of the mouse by sending a signal to the software that
shifted the position of the cursor on the screen. Inside the wooden
mouse body were two metal wheels that were connected to the shafts of
two variable resistors. Figure 1-1 shows Engelbart's mouse.

The concept ofusing a mouse became more widely known in the
early seventies when Xerox Corporation's Palo Alto Research Center
(PARe) commissionedJack S. Hawley to build the first digital mouse.
Hawley's mouse was basically a digital version of Engelbart's mouse. At
the time, Xerox was developing the powerful Alto computer and
wanted to include a mouse as part of the computer package. Although
the Xerox Alto performed poorly in the marketplace-fewer than a
hundred were sold-it paved the way for the future development of
personal computers and the mouse. In 1975, Xerox asked Hawley to de
velop a new standard for the mouse, a standard that many manufactur
ers adopted and followed into the eighties. Mter Hawley completed his
commission for Xerox, he went on to design and manufacture mice
through his own company, the Mouse House, in Berkeley, California.

Figure 1-1. DougEngelharts original wooden mouse.

THE MICROSOFT MOUSE
As the Xerox mouse received more attention, Microsoft began to con
sider the idea ofdesigning a mouse. A former Xerox PARe employee,
Charles Simonyi, had recentlyjoined Microsoft and wanted to add

4

Chapter 1: Evolution of the Mouse

mouse support to a new product, Microsoft Word. At about the same
time, Microsoft's Bill Gates, Paul Allen, and Raleigh Roark were also ex
ploring ideas for hardware products.

From a Lump of Clay
In the early eighties, Microsoft was a small company with no in-house
design resources. For most of its design needs, the company relied on
a Seattle graphic designer, David Strong, who had developed the
Microsoft corporate logo and color scheme. It therefore seemed natu
ral for Microsoft to approach Strong for assistance with the mouse
design.

After the Microsoft team explained precisely what it wanted-a
small, easy-to-handle mouse unit just big enough to accommodate the
required internal circuitry-Strong went to work. He produced a
2Y2-inch by 4-inch by 1Y4-inch clay model with thumbtacks on the un
derside that simulated gliders. (Figure 1-2 shows the model.)

As Raleigh Roark recalls, "A bunch of us sat around a conference
table for hours just gliding this lump of clay back and forth, trying to
decide ifwe liked the feel of it. Nobody could really agree. After a
while, we settled on the design and dimensions we thought would work.

"Then, with the clay model in hand, I got on a plane for Tokyo to
meet with an electronics manufacturer to get them to build the thing."

Roark flew to Tokyo with Kay Nishi, who was then a Microsoft vice
president and president ofASCII Corporation inJapan. Nishi and
Roark met with manufacturing engineers to discuss what Microsoft
wanted. Discussions came to an abrupt, but temporary, halt when

Figure 1-2. The clay modelfor the original Microsoft mouse.

5

PART I: INTRODUCTION

the engineers said it couldn't be done. They believed that the mouse
encoders couldn't possibly be squeezed into the small, hand-size mouse
that Microsoft wanted. As Roark remembers, "There was a bunch of
grumbling about how this was impossible-itjust couldn't be done.
Then suddenly the room grew quiet, and the chief of engineering said,
'Our engineers will now leave the room for exactly one hour, and when
they return they will have a solution to this problem.' The engineers
came back with a workable design, and a few months later Microsoft
had its first mouse."

The First Generation
Doing the serial mouse was the biggest thrill for me. It was a conceptual
breakthrough; no one had been able to do anything like it before.

-Raleigh Roark
Head of the Microsoft Serial Mouse Development Team

InJune 1983, Microsoft introduced a new product for the IBM Personal
Computer, the Microsoft bus mouse. This was a two-button mechanical
mouse that relied on a steel ball and a pair of rollers to register move
ment as the mouse glided across a flat surface. The mouse was powered
by a half-size circuit board that contained an Intel 8255 Programmable
Peripheral Interface and some support chips. A distinct advantage of
the Microsoft mouse (shown in Figure 1-3) was that its mechanical en
coders used very little power.

A year after the release of the bus mouse, Microsoft developed a
serial version of the mouse. This was a major technological break
through because the mouse could be connected directly to an RS-232

Figure 1-3. Microsoft sfirst-generation mouse.

6

Chapter 1: Evolution of the Mouse

serial port. It required neither a bus card nor a separate power supply
because a CMOS processor in the mouse drew enough power from the
RS-232 port for operation.

The first-generation mice had separate, hardware-specific operat
ing software (mouse drivers) for the bus and serial versions and a sepa
rate linkable library, MOUSE.LIB, for high-level language development.
To help people become comfortable using mice, Microsoft also pro
vided these programs in the original mouse package:

• Notepad, a mouse-oriented text editor

• Piano, an on-screen piano keyboard that users could "play" by
using the mouse

• Life, a graphical game in which users followed the life and
death of simulated microorganisms they designed

Subsequent releases of the mouse software in 1983-1984 brought
updates and enhancements to Notepad, the addition of a drawing pro
gram named Doodle, and the introduction of mouse menus. With
mouse menus, Microsoft provided a way to make the mouse accessible
to applications that weren't originally designed for use with a mouse.
Users ofVisiCaIe, Multiplan, WordStar, and Lotus 1-2-3 could now in
stall special menus that allowed use of the mouse within those applica
tions. In addition, Microsoft provided a MENU.COM program for
loading menus and a MAKEMENU.EXE compiler so that users could
design and build their own mouse menus.

With the release of MS-DOS 2.0 in 1983, the mouse took advantage
of a new MS-DOS feature known as installable device drivers. With in
stallable device drivers; it became much easier to configure any com
puter system for use with MS-DOS and the mouse.

In 1985, two major software releases, mouse drivers 3.0 and 4.0, in
troduced support for the IBM PC/AT and the growing number of high
resolution graphics devices. People could now install mouse software
for use with most display adapters, including the Hercules Graphics
Card, the IBM Color Graphics Adapter (CGA) , the IBM Enhanced
Graphics Adapter (EGA), and other newly introduced high-resolution
display adapters and monitors. In addition, the mouse driver could now
detect the hardware configuration on which it was installed.

With software release 4.0 in May 19.85, Microsoft replaced Doodle
with a popular state-of-the-art graphics application, PC Paintbrush.

7

PART I: INTRODUCTION

The Second Generation
The Microsoft gray-button mouse, with its 200 ppi, changed the nature of
the way people used mice. Doubling the sensitivity meant that users didn't
have to push a mouse all over a desk to move the cursor around the screen.

-Steve Shaiman
Lead Software Designer for Microsoft Mouse 5.0

In October 1985, the mouse achieved a new level of sophistication with
its more streamlined, professional look and reengineered driver. Many
changes were immediately visible: a gray color for the buttons, a
redesigned body, larger wraparound buttons, and a rubber-covered
steel ball in place of the solid steel ball. But the true significance of this
release could be felt rather than seen. By doubling the resolution to 200
ppi (points per inch), Microsoft made the mouse much easier to use.
Figure 1-4 shows Microsoft's second-generation mouse.

The gray-button mouse required much less surface area for move
ment (a circle of 4-5 inches), and most operations could be accom
plished easily with simple wrist and hand movements. By contrast, the
earlier mouse seemed clunky and cumbersome, requiring movement
over a relatively large surface area (a circle of 8-10 inches).

In April 1986, Microsoft released a modified version of the bus
mouse interface that was powered by a custom InPort chip, which fur
ther enhanced mouse performance because the mouse driver could
take advantage of the chip's programmable interrupt rate.

Improved performance of mouse hardware set the stage for what
was perhaps the most important mouse software release, mouse

Figure 1-4. Microsofts second-generation mouse.

8

Chapter 1: Evolution of the Mouse

driver 6.0. Introduced in September 1986, mouse driver 6.0 brought a
-major overhaul of the mouse software:

• PC Paintbrush was updated and renamed Microsoft
Paintbrush.

• A mouse setup program was added, and Show Partner, a
graphics presentation program, was added. (Show Partner was
discontinued in version 6.1.)

• Expert mouse menus were added for power users of Lotus 1-2-3,
DisplayWrite III, and Multimate 3.31.

• Computer-based tutorials became part of the package. (These
were discontinued in version 6.1.)

• A mouse control panel let people adjust the sensitivity of the
mouse for different applications.

Furthermore, in this release an optional international version of
the mouse driver generated messages in anyone of nine foreign lan
guages, which let software developers readily build in mouse support
for most foreign-language applications. The international driver is
shipped to users outside the United States.

The Third Generation
The new Microsoft mouse (the one that looks like a bar ofDove soap), with
its repositioned baU and seemingly improved mechanism, makes aU the dif
ference in the world.

-John C. Dvorak
PC Magazine, December 22, 1987

The third-generation mouse, introduced in September 1987, had
a smaller, sleeker mouse body with easy-to-use buttons that clicked
when pressed.

Figure 1-5 on the following page shows Microsoft's third
generation mouse.

The internal architecture of this new Microsoft mouse remained
basically the same as that of the gray-button mouse, but some major
changes made the mouse easier to control-changes such as moving
the traction ball to the front of the mouse and making the left button
larger than the right. InJuly 1988, The Wall StreetJournal published an ar
ticle (shown in Figure 1-6 on page 11) about the ergonomics of the
third-generation mouse.

9

PART I: INTRODUCTION

Figure 1-5. Microsofts third-generation mouse.

Software included in the mouse package continued to improve
and offered increasingly more options. Microsoft introduced an im
proved third-generation mouse-the 400 ppi mouse-in September
1989. Its release represented a maJor hardware and software advance
ment. The previous version of the mouse offered a sensitivity of 200
pulses per inch, which meant that as the user dragged the device across
a desktop, the mouse sent the computer 200 electric pulses, or inter
rupts, for every inch it was moved. The new mouse increased sensitivity
from 200 ppi to 400 ppi, which improved speed, accuracy, and accelera
tion by 100 percent. Also, the desktop area required by the mouse was
reduced to one fourth of its previously required space.

The 400-ppi mouse also introduced the relocation of the cable
interface to inside the mouse body. Previously, the mouse came in two
pieces-a main body with cable and an interface box with cable. The
user would connect the two, creating a somewhat cumbersome adapter.
The new serial mouse enclosed the circuitry inside the mouse body,
which made the mouse more convenient to use.

Microsoft currently offers the mouse in a variety of bus-version
and serial-version hardware and software configurations. The bus ver
sion, like earlier Microsoft bus mice, uses its own card. The serial ver
sion can be connected directly to a serial port o~ to the mouse port on
IBM PS/2 computers and other PS/2-style mouse port interfaces.

The improved performance of mouse hardware coincided with an
important software release. Mouse driver 7.0 included improved ac
celeration support and video support. Previously, only a double-speed
acceleration threshold existed. If the user moved the mouse faster than
a certain speed, the cursor speed doubled. The new release introduced
sixteen distinct, user-defined thresholds that could increase or decrease

10

nny Mouse Holds
Many Design Problems

COMPUTER MICE cram a
surprising number of design
issues into a tiny package,

as Microsoft Corp. proved when it
undertook to develop a new model
of the hand-held control.

SHAPE: "Most mice on the
market take their shape from the
form of a computer or keyboard.
They're rectilinear, with fairly
hard edges," says Paul Bradley,
an industrial designer at Matrix
Product Design Inc., of Palo Alto,
Calif., which was responsible for
the new mouse's appearance.
"We used a softer form that's
closer to the contour of a hand."

Microsoft Mice:
Old (top); New (bottom)

Chapter 1: Evolution of the Mouse

Matrix collaborated with hu
man-factors specialists at ID Two
in San Francisco and engineers at
David Kelley Design, Palo Alto.

SIZE: "At first we thought a
much smaller device, to be held
in the fingertips, might give more
accurate control," says Mr. Brad
ley. Tests proved that wrong.
"Our nlouse is lower, but other
wise not smaller," he says. "You
can drive it with your fingertips,
but still rest your hand on it."

BALANCE: A mouse rolls on a
plastic ball set in its underside,
usually at about the middle. The
designers moved the ball forward
to facilitate fingertip operation.

CONTROLS: ID Two did ex
tensive testing on the type, size
and configuration of the two but
tons that execute mouse com
mands. It found that making one
button larger than the other im
proved performance without trou
bling left-handed users, but that a
ridge was needed between the
buttons as a tactile landmark.
Test users preferred buttons with
crisply clicking feedback over a
"mushier" button used earlier.

FINISH: Most mice tend to
have a textured finish, often in
universal humdrum computer
beige. Microsoft chose to make
the new mouse glossy white.

Microsoft considers the effort
worthwhile. Since it introduced
the model last fall, sales have al
ready exceeded total previous Mi
crosoft mouse sales since 1984.

Figure 1-6. Articlefrom The Wall StreetJournal about the new
Microsoft mouse.

11

PART I: INTRODUCTION

the motion of the cursor. This enhancement provided greater precision
for pointing to objects located close to or far from the cursor. Increased
video support in the mouse package allowed for more video modes and
adapters, making the mouse more versatile.

A subsequent software release, mouse driver 7.04, introduced fur
ther enhancements-10 new information functions, the setspeed fea
ture for loading a custom acceleration curve, and additional features
for enhancing laptop performance. Further video support was also
added- most notably Video 7 support.

The Fourth Generation
As software becomes more complex, more ofus will need to adopt pointing
devices to work efficiently with computers. There is probably a mouse in
yourfuture.

-CaryLu
Author of The Apple Macintosh Book, 3rd edition, Microsoft Press

In March 1991, Microsoft introduced an alternative pointing device
the BallPoint mouse-to fill the need for a suitable pointing device in a
portable environment.

Laptop computing was one of the fastest growing segments of the
personal computer market. Users accustomed to running Windows on
their desktop systems with a mouse wanted to duplicate this setup on
their laptops. Laptop computers were becoming increasingly capable of
running graphical user interface (GUI) applications; but the mouse
still the best general-purpose pointing device around-requires sur
face area on which to run, and portables are often used in places where
little, if any, space is available alongside the system. The goal of the
design team was to come up with a "surfaceless" solution, which meant
designing a pointing device that physically attached to the keyboard.

Mter examining many different pointing-device technologies,
such as touch pads, ISOPOINT, trackballs, and miniature mice, the
team decided that a variation on the traditional trackball would be
most suitable and began experimenting with different shapes and sizes.
The group settled on a small, D-shaped device that could be cradled
comfortably in the hand. The unit was operated by rolling the thumb
while the buttons were pressed with the index finger. Different num
bers, shapes, and positions ofbuttons were tried, and the team settled
on a side-by-side design very similar to the Microsoft mouse, with the
primary button marked with a ridge. Unlike the mouse, however, the
BallPoint mouse (shown in Figure 1-7) was designed with four buttons so
it could be used on the left, right, or front of the computer.

12

Chapter 1: Evolution of the Mouse

Figure 1-7. Microsofts fourth-generation mouse-the BallPoint mouse.

"The most difficult design problem," recalls Bridget Cameron,
BallPoint mouse product manager, "was how to attach this mini
trackball to all the laptops on the market, and worse yet, to all the lap
tops that would be designed in the future." The group finally settled
on a clamping mechanism that used metal arms to fit between the keys
and the side of the keyboard. The arms could be adjusted to fit differ
ent keyboards and replaced with longer or shorter versions if required.

As Cameron remembers, "Our allegiance to the mouse had made
us a little contemptuous toward trackballs, so we attempted to design
something unlike other trackballs, making sure the hand would be in a
relaxed position while rolling the ball and pressing the buttons, and
dragging could be done easily and with one hand." The group found
that the key to this was not only in the shape and size of the BallPoint
mouse itself, but also in the ability to adjust the tilt angle of the unit.
They designed a tilt positioner into the clamp, which allowed the Ball
Point to be used at a 0-,30-,60-, or gO-degree angle. The size, shape, at
tachability, and adjustability of BallPoint made it unlike any other
pointing device on the market and ideal for the portable environment.

Software released with the BallPoint mouse (driver 8.0) included
all the features of the 7.04 release but added the ability to define the in
ternal device orientation as well as to select which of the four buttons to
be used. (A mouse assumes what is up, down, right, and left; the Ball
Point mouse's orientation must be defined by the user according to how
he or she will use it.) The new software introduced a utility called COM
PASS for defining the orientation, a new function for locating the
mouse initialization file (MOUSE.INI), and support for the new IBM
XGA video hardware.

Figure 1-8 illustrates the milestones in Microsoft mouse history.

13

MILESTONES IN MICROSOFT MOUSE HISTORY

HARDWARE RELEASES MAJOR SOFTWARE RELEASES

Mouse Driver 2.0
Contained updates to the driver software
plus a new graphics program, Doodle.

1984

Mouse 1.0 --+---- JUNE ---+--- Mouse Driver 1.0
Bus Version Contained the mouse driver plus

The Microsoft Green-button Mouse software that demonstrated and taught
Microsoft introduced its first mouse: a use of the mouse. This release supported

two-button, mechanical mouse Microsoft Word and contained separate
designed for the IBM PC. The mouse drivers for bus and serial versions.

supported Microsoft Word.

Mouse 1.0 --+---FEBRUARY
Serial Version

The Microsoft Green-button Mouse
The serial mouse was designed to plug

directly into an RS-232 serial port instead
of a separate bus card.

19 8:5
JANUARY

MAY

Mouse Driver 3.0
Provided early support for the IBM Enhanced
Graphics Adapter (EGA) and MS-DOS 3.x.
The disk also contained updates to Notepad.

Mouse Driver 4.0
With mouse driver 4.0, Doodle was replaced
with Z-Soft's popular color painting program,
PC Paintbrush. The mouse software was
extended to two floppy disks.

Mouse 5.0 --......-..- OCTOBER
The Microsoft Gray-button Mouse
Reengineered hardware and software
doubled the sensitivity and resolution

(200 ppi) of the earlier mouse.

Mouse Driver 5.0
Mouse driver 5.0 was revised to install and
identify the type of mouse in use. Reengineered
mouse hardware enhanced software
performance (resolution now 200 ppi).

~J:;·D"T'I~I\JlDl:<iD ---t--- Mouse Driver 6.0

Mouse driver 6.0 was a major update. The
disk contained a new mouse setup program
and a new version of Microsoft Paintbrush. It
also contained computer-based training and a
control panel.

Mouse 5.03 --+----APRIL
The InPort Mouse

Introduction of the InPort mouse. The
InPort chip is a custom LSI (Large Scale
Integration) Microsoft design used in the

bus mouse board and as the peripheral
interface on the Microsoft MACH 10 and

MACH 20.

Figure 1-8. Major hardware and software releases ofthe Microsoft Mouse.

14

MILESTONES IN MICROSOFT MOUSE HISTORY

MAJOR SOFTWARE RELEASES

Mouse Driver 7.04
Mouse driver 7.04 introduced further
enhancements-IO new information functions,
the setspeed feature for loading a custom
acceleration curve, and features for enhancing
laptop performance. Additional video support
was also added.

Mouse Driver 7.0
Reengineered mouse hardware enhanced
software performance (resolution now 400 ppi).
Mouse driver 7.0 included improved
acceleration support and video support.

Mouse Driver 6.1
Microsoft added the following support for VGA
graphics: serial-interface and bus-interface
versions of EasyCAD and Microsoft Windows
2.03 with Microsoft Paintbrush.

Mouse Driver 8.0
Mouse driver 8.0 included setup support for the
BallPoint mouse and introduced the utility
COMPASS, which helped the user define the
internal dev~ce orientation for the BallPoint
mouse according to how he or she planned to
use it. Also included a new function for locating
the mouse initialization file (MOUSE.INI) and
support for the new IBM XGA video hardware.

1987

~

~MAY

SEPTEMBER

1 989

SEPTEMBER

1 990

MAY

199 1

MARCH

Mouse 6.1
The Microsoft Mouse for the mM PS/2

Introduction of the Microsoft mouse for the
IBM PS/2 mouse port. Microsoft's PS/2 mouse
arrived on the market one month after the first

announcement of the PS/2 line.

HARDWARE RELEASES

Mouse 2.0
The 400 ppi Mouse

Increased mouse sensitivity from 200 ppi to 400
ppi; improved speed, accuracy, and acceleration
by 100 percent. Also reduced amount of desktop

space required to operate the mouse. Cable
interface was relocated inside the mouse body.

BallPoint Mouse 1.0
The BallPoint Mouse

Microsoft introduced its first alternative pointing
device for the portable environment. A variation

on the traditional trackball, the BallPoint is a
small, D-shaped device operated by rolling the

thumb while the buttons are pressed with the
index finger. This new "mouse" was designed

with four buttons so it could be used on the left,
right, or front of the computer.

Mouse 1.0
The New Mouse

Microsoft redesigned the mouse body and moved
the trackball to the front of the mouse. The mouse

became available in three different software
configurations and two hardware configurations.

15

PART I: INTRODUCTION

A LOOK AHEAD
Sometime in the not-too-distantfuture, every microcomputer will be shipped
with a mouse. As the world moves to Windows and OS/2, mice will become
as pervasive as keyboards are.

-Steve Shaiman
General Manager,

Microsoft Systems, Peripherals, and Accessories Group

In the summer of1988, 25 years after Doug Engelbart crafted his
wooden prototype, Microsoft celebrated the sale of its millionth mouse.
Since 1988, mouse sales have doubled almost every year.

Today, software applications with graphical user interfaces are
rapidly becoming the norm rather than the exception, and with this
comes wider acceptance and use of the mouse. As OS/2 and Presenta
tion Manager, Microsoft Windows, and other graphical-user-interface
software come into wider use, using a mouse makes increasingly more
sense and seems a necessity rather than a luxury.

16

Chapfer2

Overview of
Mouse Programming

The mouse is an electronic device that sends signals to your computer.
To your software, these signals represent cursor movements and button
presses. However, the raw data sent to your computer is difficult to use
in its original form. Also, different signals are generated depending on
whether a bus, InPort, serial, or PS/2 mouse is used. To give program
mers an easy-to-use, consistent interface, Microsoft and most other
mouse manufacturers provide a mouse driver.

THE MOUSE DRIVER
A mouse driver is software that lets the operating system consistently in
terpret the raw data from the mouse. The Microsoft mouse driver does
this by providing application programs with 53 function calls that let
programs perform specific tasks, such as checking the state of a mouse
button. These function calls are consistent regardless of the mouse
hardware you use. (Of the functions numbered 0 through 52, Functions
17 and 18 are not supported; and Function 46 is an internal function
that is not documented here.)

Microsoft provides three means for interfacing with the mouse
driver: the mouse menus programming language, the mouse library,
and direct calls to MS-DOS Interrupt 33H. Each method offers distinct
advantages and disadvantages, and each method fulfills a particular
need. For example, you can use mouse menus only with existing appli
cations. However, you can use the mouse library and Interrupt 33H in
programs you write yourself.

17

PART I: INTRODUCTION

Using the Mouse Menus Programming Language
The mouse menus programming language lets you integrate the mouse
into most preexisting, text-based software packages that wouldn't other
wise support the mouse. Thus, you can create menus that aren't already
in the application, you can emulate keystrokes, and you can assign dif
ferent functions to the mouse (for instance, assign mouse motions and
button presses to tasks you would normally perform with the keyboard).

Using the Mouse Library
The mouse library lets you incorporate mouse support into an applica
tion as you write it. Because the mouse support becomes an integral
part of the program, the functionality of the mouse support within the
application program far exceeds that which you can obtain with mouse
menus. The library lets the application take advantage of 53 mouse
functions, which are accessible from high-level languages such as inter
preted Basic, QuickBasic, C, QuickC, FORTRAN, and Pascal. The func
tions are also accessible from MASM.

Using MS-DOS Interrupt 33H
You can access the mouse driver directly through MS-DOS software In
terrupt 33H, which provides the same 53 functions as those available
through the mouse library. Because the overhead of making library
calls is eliminated, a program written using Interrupt 33H is smaller
and faster than the same program written using the mouse library.
Most professionally developed programs that use the mouse interact
with it through Interrupt 33H. Any language that can make calls to the
MS-DOS interrupts can use this method of interfacing with the mouse
driver.

MOUSE MENUS
A mouse menu program displays menus with options you can select.
Selecting an option either feeds characters into the keyboard buffer for
the current application or executes other menu commands.

NOTE: The only way the mouse menu programs interact with an application is by
detecting mouse motion or button presses and then feeding characters into the key
board buffer.

18

Chapter 2: Overview of Mouse Programming

The keyboard buffer is a small portion of memory that holds the
characters you enter from the keyboard. Your application program
reads these characters from the buffer in the order in which they were
input and acts on them accordingly. A mouse menu program can emu
late the keyboard by sending characters directly to the keyboard buffer
as you move the mouse or press one or more mouse buttons.

Menu software loads the keyboard buffer much faster than you
can load it by typing at the keyboard. How fast the buffer is loaded by
the keyboard is limited to a set rate determined by each computer's
BIOS; however, the menu software doesn't have this limitation. For this
reason, when the mouse emulates the direction keys, the cursor moves
much faster than ifyou pressed the actual keys on the keyboard.

NOTE: Because certain applications access the keyboard directly, your rrwuse
menu program might not work as you expect. In addition, rrwuse menu programs
can't generate some keystrokes, such as Ctrl-Alt-Del. These keystrokes are listed
under the TYPE statement entry in Chapter 4, ''Mouse Menu Language
Statements. "

Keyboard Mapping
A mouse menu program recognizes seven mouse actions:

• Left-hand button pressed

• Right-hand button pressed

• Both buttons pressed

• Right motion

• Left motion

• Upward motion

• Downward motion

Note that unlike the desktop Microsoft mouse, the BallPoint
mouse does not follow a left and right button orientation. To provide
flexibility in orienting the device the way you want, the BallPoint offers
two pairs of buttons. They are referred to as "primary" and "second
ary" mouse buttons because their position might not consistently be
physically left or right-depending on where you attach the device to
your laptop keyboard. Functionally, however, the primary button works
in the same way as the left-hand button on the conventional Microsoft
mouse. The secondary button works in the same way as the right-hand

19

PART I: INTRODUCTION

button. The COMPASS orientation program lets you designate primary
and secondary buttons.

NOTE: Documentation for your applications might refer to left and right mouse
buttons. Remember that for the BallPoint mouse, this means you should use the
''primary'' and "secondary" buttons you define with the orientation program
COMPASS.

You can make each of these actions correspond to one or more
menu commands. For example, some useful and common mappings of
mouse actions to the keyboard buffer include the following:

• Right, left, upward, and downward motions that correspond to
the right-arrow, left-arrow, up-arrow, and down-arrow keys

• A button press that corresponds to pressing Enter or Esc

• A button press that tells the menu software to display a custom
menu, which you usually write to execute application program
commands or MS-DOS commands

The following mouse menu program ~emonstratessome simple
keyboard mapping:

,BE GIN 1b,rb, bb,l m, rm ,um,drn, 48,48
lb: EXECUTE fl ;Left button emulates Fl key
rb: EXECUTE entkey ;Right button emulates Enter
bb: EXECUTE.escape :Both buttons emulate Esc key

,1 m: EXECUTE 1eft :Left movement.emul ates left-arrow
rm: EXECUTE" right :Right movemerltemulatesr;ght~arrow

um: EXECUTE up :Upmovernenternulates up-arrow key
dm: EXECUTE down ;Down movement emulates down-arrow key

fl:
.•••.•·entkey:
escape:
left:
right:
up:
down:

TYPE .0,59
TYPE: enter
TYPE' 2.7
TYPEp,75
TYPE 0,77
TYPE.· .• O,72
TYPE 0,80

:These command.s perform the
:.actuaJ workwbellYou move
:the··.mouseor.<preSs· one or
:both'mouse buttons. Refer
:toChapter 4 fora detailed
:explanation of each of
:these .commands.

Creating a Mouse Menu
The mouse menus programming language has commands that let you
create custom pop-up menus in a variety of configurations and hier
archies. You can create simple single-function menus, or you can create

20

Chapter 2: Overview of Mouse Programming

elaborate, multilayered menu systems in which choosing an item from
one menu can call up another menu.

You follow the same basic steps to create a mouse menu as you do
when developing any other software:

1. Design and write the source code.

2. Compile the source file.

3. Run t4e mouse menu program.

4. Debug the program.

For instructions on creating a mouse menu program, see Chapter 3,
"Creating Your Own Mouse Menu."

THE MOUSE PROGRAMMING INTERFACE
Mouse menus provide mouse support for an existing application pro
gram that doesn't already support the mouse. However, the most effi
cient way to add mouse program support is to write the mouse support
directly into the application program's code. The mouse can then act
as a separate user-input device, not merely a keyboard emulator. The
most important feature the mouse brings to the user interface is the
free-floating cursor used in many popular products such as Microsoft
Word, Microsoft Works, AutoCAD, and Microsoft Windows. This fea
ture makes programs more intuitive and user-friendly.

As the link between the mouse hardware and the application soft
ware, the mouse driver keeps constant track of mouse movement and
button-press information. When an application program needs mouse
information, it makes a request to the driver, which then returns the re
quested information to the application program.

Working with Functions
The mouse driver understands 53 input and output operations. Each
operation, or function, is a specific instruction to the mouse driver that
enables a program to communicate with the mouse. Some functions re
quest information about the mouse, such as button-press information,
relative cursor position, and relative motion. Other functions control
characteristics of the mouse interface by regulating the sensitivity of
cursor motion, defining the shape of the cursor, and limiting cursor
movement to a specific area. The application program makes requests
of the mouse driver through the mouse function calls, and the driver
does the rest.

21

PART I: INTRODUCTION

Communicating with the Mouse Driver
You can communicate with the mouse driver from within a program in
the following two ways: You can access the MOUSE.LIB library, which
allows the program to communicate with the mouse driver by following
the calling conventions of a particular language; or you can communi
cate with the driver by using MS-DOS Interrupt 33H. All mouse func
tions are available by making library calls or by using MS-DOS Inter
rupt 33H. Note, however, that each method has distinct advantages.

NOTE: The rrwuse driver and the corresponding interface control only the rrwuse.
You must set video rrwdes and program interaction with the mouse within a pro
gram as requiredfor your specific application.

Using the MOUSE.LIB Library
You can use the MODSE.LIB library supplied with the disks in this book
as a library file for several Microsoft languages. You add mouse support
to a program by making procedure calls in Pascal, subprogram calls in
QuickBasic, function calls in C and QuickC, or subprogram calls in
FORTRAN. The library interprets all parameter passing and declara
tions to be consistent with the language you are using. Thus, no special
programming techniques are necessary to program the mouse. Calls to
the mouse simply become subroutines.

To use the mouse library, the language you use must support
Microsoft library conventions. If the language supports the conven
tions, you can link the library with your program. For information
about linking to various mouse programs, see Chapter 9, "Sample
Mouse Programming Interface Programs."

You might also want to consult the documentation of the lan
guage you are using regarding linking of external libraries. If the lan
guage doesn't support the Microsoft library conventions, you will be
unable to link with the MOUSE.LIB library. However, it might be pos
sible to program the mouse by using Interrupt 33H, as described in the
following section.

Using Interrupt 33H
A command in the AUTOEXEC.BAT or CONFIG.SYS file usually loads
the mouse driver when MS-DOS starts. The driver installs the starting
address as the vector for Interrupt 33H and then attaches itself to the
operating system. You can then access the mouse driver through soft
ware Interrupt 33H. When the software calls this interrupt, the system

22

Chapter 2: Overview of Mouse Programming

finds the address of the mouse driver in the interrupt vector table, goes
to the mouse driver, and executes the requested function.

NOTE: The mouse driver (MOUSE.COM or MOUSE.SYS) must be installed in
memory when an application or program uses mouse function calls. When the
driver is loaded, programs can access the Interrupt 33H vector by using the mouse
function calls (in which the driver provides an interface for application
programmers) .

You can specify the different functions by loading the AX, BX, ex,
and DX registers with the appropriate values. Some functions also use
the ES, SI, and DI registers. The mouse driver returns values to the call
ing routine through these same registers. For detailed information
about using registers to pass function variables, see Chapter 8, "Mouse
Function Calls."

The primary advantage of using Interrupt 33H instead of the
mouse library is improved execution speed. Also, languages that can't
use the supplied mouse library can use Interrupt 33H if they can load
processor registers and make calls to MS-DOS.

EGA Register Interface
Although the mouse driver supports EGA and VGA hardware, program
mers sometimes like to program their EGA or VGA hardware directly.
Because the mouse driver keeps track of the EGA and VGA registers,
programmers must take some special considerations into account when
programming the D, E, F, 10, 11, 12, and 13 graphics modes of the EGA
and VGA adapters.

For detailed information about using the EGA Shadow Register
Interface, see Chapter 10, "Writing Mouse Programs for IBM EGA
Modes."

23

PART II

Mouse Menus
Chapter 3: Creating Your Own Mouse Menu

• Mouse Menu Language Commands
• Statement Format
• Mouse Menu Program Structures
• Creating a Mouse Menu Program

Chapter 4: Mouse Menu Language Statements

• Statement Syntax Conventions
• Statement Descriptions

Chapter 5: Sample Mouse Menu Programs

• The SIMPLE Mouse Menu Program
• The DOSOVRLY Mouse Menu Program
• Other Sample Mouse Menu Programs

Chapter 3

Creating Your Own
Mouse Menu

This chapter provides an overview of the mouse menu programming
language and how you can use it to provide mouse supp~rtfor appli
cations that don't already support the mouse. The mouse menu pro
gram communicates with an application through the keyboard buffer
by issuing a set of commands. The following sections describe how to
employ those commands to design and run your own mouse menus.

MOUSE MENU LANGUAGE COMMANDS
The mouse menu programming language includes 13 commands. You
use these commands in statements that assign different functions to
the mouse, create menus, and si~ulatekey presses.

Figure 3-1 lists the commands in the mouse menu programming
language.

Command

ASSIGN

BEGIN

Purpose

Assigns actions to be performed in response to mouse
events or changes mouse-movement sensitivity.

Assigns initial action to be performed when a mouse
event (such as moving the mouse, pressing a mouse
button, or choosing a menu item) occurs and sets
initial mouse-movement sensitivity.

Figure 3-1. The mouse menu programming language commands. (continued)

27

PART II: MOUSE MENUS

Figure 3-1. continued

Command

EXECUTE

MATCH

MENU

MEND

NOTHING

OPTION

POPUP

PEND

SELECT

TEXT

TYPE

.STATEMENT FORMAT

Purpose

Specifies the label of the statement that contains the
mouse menu statements to be executed when a mouse
event (such as moving the mouse, pressing a mouse
button, or choosing a menu item) occurs.

Specifies the action to be performed if a designated
character or string of characters is displayed at a
defined location on the screen.

Begins a menu subroutine.

Ends a menu subroutine.

Indicates that no action will be performed. A
NOTHING statement can function as an alternative to
using an EXECUTE, TYPE, or MATCH statement.

Specifies a menu item within a menu subroutine and
the action to be performed when you choose that item.

Begins a pop-up subroutine.

Ends a pop-up subroutine.

Defines the action to be performed when you choose an
item from a pop-up menu.

Defines the text for a pop-up menu title or menu items.

Specifies the key or keys "typed" into the keyboard
buffer when a mouse event (such as moving the mouse,
pressing a mouse button, or choosing a menu item)
occurs.

The mouse menu programming language lets you enter statements in
uppercase or lowercase letters. Most statements take the following
format:

[label:] command [parameters :comments]

NOTE: A BEGIN statement and statements within menu and pop-up subroutines
don't follow this format because they don't require wbels. A BEGIN statement
doesn't need a wbel because it always appears as the first statement in a program,
and statements within menu or pop-up subroutines don't need wbels because they
run sequentially.

The following sections describe the components of a statement.

28

Chapter 3: Creating Your Own Mouse Menu

Labels
A label is the name you give a mouse menu statement. Except for state
ments in menu or pop-up subroutines, all statements must have labels
in order for the program to access them. Your program calls a state
ment when its label is referenced in another statement. When the
labeled statement's action is completed, control returns to the state
ment that referenced the label, not to the next statement. In the follow
ing statement, matl is the label of the MATCH statement:

matI: MATCH 23"inverse,"Format",execI,exec2

When you include a label, be sure to follow these guidelines:

• Begin a label with a letter and follow it immediately with a
colon.

• Leave at least one space between the colon and the command.

• Don't use mouse menu command names or the words backsp,
enter, esc, or tab for labels.

• Use any printable standard ASCII characters except a colon in a
label.

• Create labels that suggest the statement's purpose in the pro
gram. For example, you might use menul as the label for the
first menu subroutine.

Parameters
A parameter is a variable that affects the resulting action of a state
ment. When you use a statement, you must substitute an appropriate
value for each parameter you want to use. All commands except
NOTHING, MEND, and PEND require parameters.

Parameters follow the command word in a statement, with a space
separating the command word and the first parameter. Commas sepa
rate any additional parameters.

The EXECUTE and TYPE commands allow up to 15 parameters.
Other commands, such as the MATCH command, require a specific
number of parameters. However, ifyou don't want to include a particu
lar parameter, you can insert an additional comma to hold the place of
the unused parameter. The MAKEMENU utility uses the default value
for any parameter left out of a statement requiring a specific number of
parameters. (See the section titled "Creating a Mouse Menu Program"
later in this chapter for more information about the MAKEMENU

29

PART II: MOUSE MENUS

utility.) For example, in the statement that follows, 23, inverse, Format,
execl, and exec2 are five of the six required values for MATCH statement
parameters. The second comma immediately following the first comma
tells the MAKEMENU utility that the second parameter is not included
and that the default value should be used:

matI: MATCH 23"inverse,"Format",execl,exec2

The mouse menu programming language uses three types of parame
ters: numeric parameters, string parameters, and attribute parameters.

Numeric Parameters
You use numeric parameters for numeric data, such as screen coordi
nates or movement sensitivity values for the mouse.

In the preceding example, 23, the row coordinate for the MATCH
statement, is the value for a numeric parameter.

String Parameters
A string parameter can contain digits, letters, special characters, or
spaces. Most string parameters specify text for menus or messages.

You must enclose a string parameter in double quotation marks
(" ") and thus cannot include a double quotation mark as part of the
string.

Attribute Parameters
The attribute parameter determines the display attribute, which speci
fies the way in which a menu or message box appears on the screen.
This parameter can take one of four values: normal, bold, inverse, or, if
your system uses a color display adapter and monitor, a number that
designates specific foreground and background colors. Figure 3-2
shows how the normal, bold, and inverse values affect the text dis
played by a pop-up menu.

SaJIIple CollUlHlndS

.''''p''j'ymM
CLS
BIB

Silllple ee-n4s

.e"FY'i Ai 'M
as
BIB

Normal Bold Inverse

Figure 3-2. Effects ofdisplay attributes applied to pop-up menu text.

30
/

Chapter 3: Creating Your Own Mouse Menu

Ifyou don't specify an attribute parameter, the default attribute is
used. See Chapter 4, "Mouse Menu Language Statements," for a de
scription of each command statement's default attribute.

Color Menus
Ifyour system uses a color display adapter and color monitor, you can
use the attribute parameter in a MATCH, MENU, or POPUP statement
to specify particular colors for the background and foreground of a
menu or message box. Text appears in the foreground color; the re
mainder of the box appears in the background color.

Figure 3-3 lists the available foreground and background colors
and corresponding values for each color. A particular color's value
differs depending on whether it will fill foreground or background.
The display attribute that specifies a color combination equals the sum
of the values for the desired foreground and background colors. Sup
pose you want to display green text on a blue background. The value
for a green foreground is 2, and the value for a blue background is 16.
Therefore, the value of the attribute parameter is 18.

Color Foreground Background

Black 0 0
Blue 1 16
Green 2 32
Cyan (blue-green) 3 48
Red 4 64
Magenta 5 80
Brown 6 96
White 7 112
Gray 8 128
Light blue 9 144
Light green 10 160
Light cyan 11 176
Light red 12 192
Light magenta 13 208
Yellow 14 224
White (high intensity) 15 240

Figure 3-3. Foreground and background color values.

31

PART II: MOUSE MENUS

NOTE: Be aware that color shades can vary according to the type ofequipment you
have. Also, ifyou specify a display-attribute value greater than 127, theforeground
color blinks while the 'fTI£nU or 1I1£Ssage box is displayed. In addition, a gray back
ground (128) appears the same as a black background (0).

Specifying the value 7 is equivalent to specifying the normal at
tribute parameter. The value 7 is the sum of 0 (the value for a black
background) and 7 (the value for a white foreground). Specifying 15 is
equivalent to specifying the bold attribute parameter. The value 15 is
the sum of 0 (the value for a black background) and 15 (the value for a
high-intensity white foreground). Specifying a value of 112 is the equiva
lent of specifying the inverse attribute parameter. The value 112 is the
sum of 112 (the value for a white background) and 0 (the value for a
black foreground).

Comments
Comments describe what a statement does. They help you and anyone
who might read your program to understand the program, but they
have no effect on statement execution.

You can in~erta comment at the end of a statement or on a sepa
rate,line. Simply type a semicolon (;) followed by the comment. Ifyou
include a comment on the same line as that of a statement, separate the
last parameter of the statement and the semicolon preceding the com
ment with one or more spaces. The following is an example of a TYPE
statement followed by a comment:

Fl: TYPE 0,59 :Simulates pressing the Fl key

MOUSE MENU PROGRAM STRUCTURES
The following sections describe how each type of command is used in a
mouse menu source file. For detailed information about commands
and their parameters, see Chapter 4, "Mouse Menu Language
Statements.' ,

Mouse Event Commands
Mouse event commands, BEGIN and ASSIGN, specify the statements
the program executes when particular mouse events occur, such as
pressing a mouse button, moving the mouse, or choosing a menu item.

32

Chapter 3: Creating Your Own Mouse Menu

The BEGIN Command
Use the BEGIN command in a statement to specify the initial state
ments to be executed when particular mouse events occur and to set
the initial mouse sensitivity. Always use a BEGIN statement as the first
statement in your program. (The ASSIGN command can be used later
to change these assignments.)

You can include one or more of the following parameters in a
BEGIN statement:

• Button parameters: lJbtn (left-hand button), rtbtn (right-hand
button), and/or btbtn (both buttons). Button parameters define
the action performed when you press one or both mouse
buttons.

• Movement parameters: lfmov (mouse left), rtrrwv (mouse right),
upmov (mouse up), and/or dnmov (mouse down). Movement
parameters define the action performed when you move the
mouse.

• Movement sensitivity parameters: hsen (horizontal movement
sensitivity) and/or vsen (vertical movement sensitivity). Move
ment sensitivity parameters define the distance the mouse must
move before the cursor will move. This control is helpful in
tailoring cursor movement to the different column and row
widths found in spreadsheet programs. You specify the move
ment of the mouse in a unit of distance known as a mickey,
which is approximately Y200 inch. For more information about
the mickey, see Chapter 6, "Mouse Programming Interface."

The ASSIGN Command
Use the ASSIGN command in a statement to assign new values to
mouse events and mouse movement sensitivity. An ASSIGN command
is useful when you want your mouse menu program to execute particu
lar statements or subroutines depending on the current mode of an ap
plication program or on other conditions that require a change in
mouse functioning (thus necessitating your changing the mouse-event
values or mouse movement sensitivity value).

Menu Subroutine Commands
Menu subroutines create single-column pop-up menus, bordered
menus that display a single column of menu items. (See Figure 3-4 on
the following page.)

33

PART II: MOUSE MENUS

Figure 3-4. Single-column pop-up menu.

To choose items in a menu, move the mouse to highlight the
desired item and then press either mouse button. Ifyou press both
mouse buttons at one time, the equivalent of a NOTHING command is
executed and the menu disappears.

MENU, OPTION, and MEND are menu subroutine commands. To
code menu subroutines, use the following format:

label: MENU ["title"],[row],[column],[attribute]
OPTION ["text"], [label]

MEND

The MENU Command
Begin each menu subroutine with a MENU command. You can include
the following parameters:

• The menu's title, enclosed in double quotation marks (It ")

• The row and column of the screen where the upper left corner
of the menu will appear

• The menu's display attribute

The OPTION Command
Include the OPTION command in statements within a menu subrou
tine to define one or more menu items and the action performed when
you choose an item. Always include at least one OPTION statement that
lets you exit from the menu.

The text parameter is the text the menu displays for that item. If
you omit the text parameter, the menu displays a blank line. Case is sig
nificant; that is, uppercase and lowercase characters are displayed ex
actly as you type them.

The pointer parameter is the label of the statement to be executed
when you choose a particular menu item. Ifyou do not specify a pointer
parameter, the equivalent ofa NOTHING statement is executed when
you choose that item, and the menu disappears.

34

Chapter 3: Creating Your Own Mouse Menu

The MEND Command
Always follow the last OPTION statement with a statement that uses the
MEND (menu end) command, which ends the menu subroutine.

Sample Menu Subroutine
The following menu subroutine produces the Inverse Attribute menu
shown in Figure 3-2. In this example, the upper left corner of the menu
produced by this subroutine appears at row 5, column 20. Because an
attribute is not specified in the MENU statement, the inverse display at
tribute (the default) is used. When the menu appears on the screen,
the first menu item is highlighted (in this case, Cancel Menu).

Ifyou choose Cancel Menu, the menu disappears because a pointer
parameter was not specified for that OPTION statement. Ifyou select
any other item, the statement identified by the label specified in the
pointer parameter for that OPTION statement is executed.

menu!: MENU "Sample Commands",5,20
OPTION "Cancel Menu"
OPTION "CLS",cls
OPTION "DIR",dir
MEND

cls: TYPE "cls",enter
dir: TYPE "dir",enter

Pop-up Subroutine Commands
You can use pop-up subroutines to create multiple-column menus and
message boxes. Multiple-column menus function in the same way as
single-column menus. You choose an item by moving the mouse
pointer to the item and then pressing either mouse button. Pressing
both mouse buttons at one time issues the equivalent of a NOTHING
statement and removes the menu from the screen. When the menu first
appears on the screen, the first menu item, as defined by the first
SELECT statement in the POPUP subroutine, is highlighted. Figure 3-5
shows a multiple-column menu.

rr=='== CURSOR 110UE11EnT =====iI
lHiili.g'pi§liI_rop of screen

Screen up Bottom of screen
Screen down Start of file
Preuious place End of file

Figure 3-5. Multiple-column menu.

35

PART II: MOUSE MENUS

Message boxes are simply pop-up menus that display messages in
stead of menu items, as shown in Figure 3-6. You can combine pop-up
subroutines with MATCH commands so that message boxes appear
when your application program changes the display mode or when
other conditions change the screen display.

Ir======= i"lIld-"'"P =========iI

Left button - Displays Edit/Block lltenu
Right button - Displays Cursor ftouelllent lltenu
Both buttons - Displays Edit/Fi Ie I\renu

ftoulng the IQOUse up. down. left. or right
causes the cursor to lIIOue in that direction.

Figure 3-6. Message box.

The pop-up subroutine commands are POPUP, TEXT, SELECT,
and PEND. To code pop-up subroutines for multiple-column menus
and message boxes, use the following format:

label: POPUP [row],[column],[attribute]
[TEXT [" text"]]

SELECT row,column,length,[pointer]

PEND

The POPUP Command
Begin each pop-up subroutine with a statement that uses the POPUP
command. You can include the following three parameters:

• The row coordinate of the menu's upper left corner

• The column coordinate of the menu's upper left corner

• The menu's display attribute

The TEXT Command
Include the TEXT command in statements within a pop-up subroutine
to specify the menu title, menu items, and, optionally, menu borders.
Type the title text, item text, and menu borders exactly as you want
them to appear on each line of the menu and enclose them in double

36

Chapter 3: Creating Your Own Mouse Menu

quotation marks (" "). The text generated by a TEXT command ap
pears on the screen in a location relative to the coordinates you specify
in the POPUP statement.

NOTE: Menus created by using the MENU command and menus created by
using the POPUP command differ. The MENU command, which creates only
single-column menus, draws a border around the displayed menu and a line be
tween the menu title and the menu items. See Figure 3-2. The POPUP command
doesn't draw the border and divider line, so you must include line-drawing charac
ters within TEXT statements. The easiest way to do so is to type equal signs (=) or
hyphens (-) for the horizontal lines, and vertical-line characters (:) for the vertical
lines. Examples of this technique are shown on the following pages. To produce the
same line-drawing characters as those created by the MENU command, use the
line-drawing characters ofthe extended ASCII character set, shown in Appendix A,
''ASCII Character Set. " To create these characters, hold down the Alt key, type the
number of the character on the numeric keypad, and then release the Alt key. The
line-drawing character appears on your screen.

The SELECT Command
Use the SELECT command in statements to define the size of the area
in which you can choose each menu item. Specify the row, column, and
width of the selection area, relative to the location of the menu's upper
left corner. The coordinates of the upper left corner of a pop-up menu
are (1, 1). You can include a pointer parameter in a SELECT statement
to specify a statement to be executed when you choose an item that is
pointed to by the SELECT statement. As with an OPTION statement for
a single-column menu, you simply specify the label of the statement to
be executed.

Note that you must include at least one SELECT statement in each
pop-up subroutine.

The PEND Command
Always follow the last SELECT statement with a statement that uses the
PEND (pop-up end) command, which ends the pop-up subroutine.

Sample Pop-up Subroutines
The following pop-up subroutine creates the multiple-column menu
shown in Figure 3-5.

In this example, the upper left corner of the menu begins at row
2, column 1. Because an attribute parameter is not specified in the
POPUP statement, the inverse display attribute (the default) is used.

37

PART II: MOUSE MENUS

The TEXT statements define the menu's borders, title, and text.
Their location on the screen is relative to the coordinates you indicated
in the POPUP statement as the upper left corner of the menu. The first
character of the first menu item appears at relative row 2, column 3 in
the menu; however, its actual screen coordinates are row 3, column 3.
When the pop-up menu appears on the screen, the first item is
highlighted. .

The SELECT statements define item selection areas. For the first
item (Cancel menu), 2, 3, and 15 define the row, column, and width of
the selection area. Because the SELECT statement for the Cancel menu
doesn't include a label for the pointer parameter, the menu disappears
from the screen ifyou choose Cancel menu. The other SELECT
statements execute' the statements named in their pointer parameters.

I"
I

.",
movemen: POPUP 2,1

TEXT " ===:z=:l===:a CURSOR MOVEMENT cma:c:I===
TEXT ": Cancel menu Top of screen
TEXT": Screen up Bottom of screen I"
TEXT ": Screen down Start of file :"
TEXT ": Previous place End of file
TE XT " _~ma==========================::==

SELECT .2·,3,15
SELECT 3.3,15,keyctrlr
SELECT 4,3,IS,keyctrlc
SELECT'S,3, IS, keyctrl qp
SELECT.2,18, 17 ,keyctrl qe
SELECT 3,18,17,keyctrlqx
SELECT 4.18,17,keyctrlqr
SELECT5,18~17.keyctrlqc

PEND

The following pop-up subroutine creates the message box shown
in Figure 3-6. Note that the message box in Figure 3-6 uses the ex
tended ASCII characters 186, 187, 188, 200, 201, and 205 to create the
border.

In this example, the POPUP statement defines row 2, column 1 as
the upper left corner coordinates. Because an attribute parameter is not
specified in the POPUP statement, the inverse display attribute is used.

The TEXT statements define the message-box border, title, and
message text. Their screen location is relative to the coordinates you
specified in the POPUP statement as the location of the upper left cor
ner of the menu. The single SELECT statement highlights the menu

38

Chapter 3: Creating Your Own Mouse Menu

box title. Because the subroutine thatproduces the message box con
tains only one SELECT statement, you cannot move the cursor within
the message box.

an
a

a"
~

_n

-.tI·

a"·
a"·

fuousehTp: POPU¥2.1
TEXT" 1I:lII:mICII:Il:ImDCI1lZIII:IlIIOI:I-=m====a MOUSE HELP lIIlICllIICI~lIlIIlll:ZI:IlIlIII:IaIIl:C:liczI::I:c::a=:=llll1llZlD

TEXT "I
TEXT "I Left button - DisplaysEdit/Bl~ck menu
TEXT "I Right button - Displays Cursor Movement menu j"

TEXT "I Both buttons - Displays; EditlFilemenu
TEXT "1
TEXT "I Moving the mouse u~. down. left. or right
TEXT" I causes the cursor to move tn that direction>_ I"
TEXT "I
TEXT" a:z=c:=====::;=:==a==========ICmlII:Jam==:=====::I===z::c:z=:aca:.a

SELECT 1.18.10
PEND

Action Commands
Action commands specify the action to be performed when you choose
a menu item, press one or both mouse buttons, or move the mouse. The
EXECUTE, TYPE, and NOTHING commands are action commands.

It's important to understand the sequence of performed actions
in mouse menu programs. Most programming languages follow se
quentially from one statement to the next unless they encounter a
branching statement or a subroutine call. You can think of each mouse
menu program statement as a subroutine, with an implied return at the
end. And think of menu and pop-up subroutine blocks as single com
plex statements.

A mouse menu program is started when an action specified in a
BEGIN or ASSIGN statement, such as pressing a mouse button or mov
ing the mouse, occurs. The program then branches to the labeled state
ment indicated in the BEGIN or ASSIGN statement. When the program
executes that statement, it returns to the BEGIN or ASSIGN statement
and then terminates. Before completing its task, however, that state
ment might call another statement, and so on.

When the program completes the action of a labeled statement, it
returns contr?l to the statement that referenced that label. The pro
gram terminates when the nested chain of statements completes its
tasks and the program flow returns to the originating BEGIN or
ASSIGN statement.

39

PART II: MOUSE MENUS

The following example shows the flow of the action when you
press the right-hand mouse button:

leftb,'rightb

NOTHING

:Pressing" therlght· ·'buttoncalls "rtghtbU

:Pressing the left button does nothing

rightb: MATCHl,l.,"XXX",found,nope :If<~XX is found in the upper left
:c()'rne r, ca IT·'found'' --otherwi se ,ea11
:"nope"

found:
nope:

EXECUTE txtl,txt3
EXECUTE txtl,txt2,txt3

:Simu1ates typing "Xs were found!"
:S1mu1ates typfng "Xs were~not found!"

txt!: TY PE"Xs we re "
txt2: TYPE "not "
txt3: TYPE "found!"

Assuming that XXX is currently displayed in the upper left corner
of the screen, the program performs the following actions when the
right-hand button is pressed.

40

Statement

1. BEGIN

2. BEGIN:rightb

3. BEGIN:rightb:found

4. BEGIN:rightb:found:txtl

5. BEGIN:rightb:found

6. BEGIN:rightb:found:txt3

7. BEGIN:rightb:found

8. BEGIN:rightb

9. BEGIN

Action

Program begins here when you press the
right button.

The BEGIN statement calls rightb.

The MATCH statement labeled rightb
calls found.

The EXECUTE statement labeled found
calls txtl.

The TYPE statement labeled txtl is
executed, and control returns to found.

The EXECUTE statement labeled found
calls txt3.

The TYPE statement labeled txt3 is
executed, and control returns to found.

The EXECUTE statement labeled found
is executed, and control returns to rightb.

The MATCH statement labeled rightb is
executed, and control returns to the
originating BEGIN statement.

The BEGIN statement is executed, the
mouse menu program terminates, and
control returns to you.

Chapter 3: Creating Your Own Mouse Menu

The EXECUTE Command
Use the EXECUTE command in a statement to define a series of state
ments to be executed when you perform one of the following actions:

• Press one or both mouse buttons.

• Choose a menu item.

• Move the mouse.

• Cause a MATCH command to be executed.

You use statement labels to identify statements that an EXECUTE
statement calls. You can specify up to 15 labels for each EXECUTE
statement. The following EXECUTE statement includes five labels. The
program executes the statement labeled dsk, and then the statement
labeled s, and so on. Mter the program executes the statement labeled
exec 4, it returns to the statement that referenced execl.

exec!: EXECUTE dsk,s,a,s,exec4

It is possible for an EXECUTE statement to call another EXECUTE
statement. In fact, up to 15 EXECUTE statements can call other EXE
CUTE statements. For example, the following sequence of nested state
ments simulates typing abcdef:

start:
abedef:
abe:
ab:
a:
b:
e:
def:

EXECUTE abedef
EXECUTE abe,def
EXECUTE ab,c
EXECUTE a,b
TYPE "a"
TYPE "b"
TYPE "e"
TYPE "def"

The TYPE Command
Use a TYPE command in a statement to simulate key presses. For ex
ample, the following TYPE statement simulates pressing the A key:

key!: TYPE "A"

The following TYPE statement simulates typing the diskcopy a: b: com
mand and pressing the Enter key:

key!5: TYPE "diskcopy a: b:",enter

41

PART II: MOUSE MENUS

Note that you can enter a series of separate keystrokes by separating
each group with commas. You can indicate which key is simulated in
one of the following three ways:

• Enter the key's name enclosed in double quotation marks (for
example, "A").

• Enter the ASCII code that matches the character on the key
(for example, enter 65 for A). You can use extended ASCII
codes, ASCII control characters, and extended-keyboard scan
codes to simulate special keys or key sequences, such as the Alt,
Ctrl-Q, Spacebar, and direction keys. (For a list ofASCII
control characters and extended-keyboard scan codes, see Ap
pendix A, ' 'ASCII Character Set.")

• Enter the key's symbolic name ifit has one. The predefined
symbolic keys are Enter, Tab, Backsp, and Esc.

In the following TYPE statements, the comments indicate which
key or keys each statement simulates. Notice that the statements
labeled dir and a simulate typing character strings by enclosing the
characters in double quotation marks. The statements labeled if, rt, up,
and dn define the direction keys by using extended keyboard scan
codes. The statement labeled s simulates pressing the spacebar by using
the standard ASCII code for a space. The statement labeled ent simu
lates pressing the Enter key by using the symbolic name for the key.
The statement labeled els simulates typing the MS-DOS CLS command
and pressing the Enter key. The statements labeled etrle and etrld simu
late pressing Ctrl-key combinations. The statements labeled home and
end simulate pressing the Home and End keys.

42

Statement

dir: TYPE "dir"

a: TYPE "a:"

If: TYPE 0,75

rt: TYPE 0,77

up: TYPE 0,72

dn: TYPE 0,80

s: TYPE 32

ent: TYPE enter

Comments

; Types the DIR command

; Types a:

; Simulates pressing the left-arrow key

; Simulates pressing the right-arrow key

; Simulates pressing the up-arrow key

; Simulates pressing the down-arrow key

; Types a space

; Simulates pressing the Enter key

(continued)

Chapter 3: Creating Your Own Mouse Menu

continued

Statement

cis: TYPE "cls",enter

ctrlc: TYPE 3

ctrld: TYPE 4

home: TYPE 0,71

end: TYPE 0,79

Comments

; Types CLS command, simulates pressing the
Enter key

; Simulates pressing Ctrl-C

; Simulates pressing Ctrl-D

; Simulates pressing the Home key

; Simulates pressing the End key

The NOTHING Command
Use a NOTHING command in a statement to specify that no action is to
be performed.

The MATCH Command
Use the MATCH command in a statement to direct a mouse menu
program to perform an action depending on what is displayed on
the screen.

A MATCH statement's parameters specify a string of characters, a
row and column on the screen, and a display attribute. If a line on the
screen matches the specified string, begins at the specified row and col
umn, and appears in the specified display attribute, then the program
executes an assigned statement. This feature enables a mouse menu
program to respond to different operating modes of the application
program or screen display.

For example, if an application program always displays the word
COMMAND in column 1 of row 22 of the screen when it is in command
mode and if it displays the word ALPHA in the same place when it is in
alphanumeric mode, you can use a MATCH command to perfornl an
action depending on which mode the application program is in.

A MATCH statement takes the following format:

MATCH row,co]umn,[attribute],string,match,nomatch

The row and column parameters describe where the string parameter
must be located on the screen to qualify as a match. To be matched, the
row and column parameters must point to the first character of a
string. If row and column parameters are not included, the default loca
tion coordinate becomes (1, 1). If the string parameter is not included,
the match succeeds with any text.

43

PART II: MOUSE MENUS

The attribute parameter indicates how the string must appear on
the screen for a match. This parameter can take normal, bold, or in
verse symbolic values or an integer value that denotes specific fore
ground and background colors. If the attribute parameter is not
included or if it has the value 0, all display attributes are matched.

The match and nomatch parameters are the labels of the statements
executed if the match is made or not made, respectively. If the match or
nomatch parameters are not included, the equivalent of a NOTHING
command is executed.

Sample Program
The following mouse menu source program shows how MATCH
statements are used. It also changes the active drive when you press the
right-hand mouse button. The program follows this procedure:

1. When you press the right-hand mouse button, the chdriv EXE
CUTE statement calls the checka MATCH statement and then
clears the screen.

2. The checka MATCH statement checks row 2, column 1 on the
screen. If it finds a: in normal display mode, it executes the tob
statement. If a: is not found, it executes the checkb statement,
which performs a similar check for the b: characters. The pro
gram calls up to three MATCH statements, looking for the first
match with a:, b:, or c:.

3. The tob statemen"t clears the screen, changes the active drive to
B, and ends the mouse menu program. Similarly, toc and loa
change the active drive to C or A.

4. If the three MATCH statements fail to find a:, b:, or c: at row 2,
column 1, the program clears the screen and terminates
without changing the active drive. With the screen cleared, the
MS-DOS prompt should put the active drive letter in row 2, col
umn 1, ready for the next press of the right-hand mouse button.

5. Pressing the left-hand button creates a directory listing, and
pressing both buttons simulates pressing Ctrl-C.

44

BEGIN dir,chdrlv.ctrlc

chari\': EXECUTEchecka.cls

Chapter 3: Creating Your Own Mouse Menu

:Labels for left. right, or both
;Buttons
:Cal1s"checka," then clears screen

checka: MATCH 2.1,normal,"a:",tob,checkb :If a: found, change to (jrive B
cheekb: MATCH 2,l,normal."b:",toc :If b: found, change to drive C
checkc: MATCH/2.1,normal,"c:",toa c: found., change •• to.drive A

toa:
tob:
toe:

a:
b:
e:

c1 s:
dir:

ent:
etrlc:

EXECUTE cls,a.ent
EXECUTE~ls,b,ent

EXECUTE cls,e,ent

TYPE "a:"
TYPE ••"b: II

TYPE "c:"

TYPE "els",enter
TYPE·. "d; rtf ,enter

TYPE enter
TYPE 3

ears screen, changes to drive
;Clearsscreen, changes to drive B
:Clears screen, changes to drive C

;Types.·a:
;Types b:
:Types c:

:Clears th~sereen

:Createsdlrectory listing

:Simulatespressing the Enter key
:Simulates·pressing Ctrl-C

CREATING A MOUSE MENU PROGRAM
The following procedure lets you create a mouse menu source file. It
then shows you how to create a mouse menu program from the source
file by using the MAKEMENU utility.

To create a mouse menu program, take the following steps:

1. Create the mouse menu source file by using a text editor or
word processing program.

2. Save the source file with the filename extension DEF. A file
with this extension is used by the MAKEMENU utility to gener
ate a mouse menu program (a MNU file). When a source file is
converted to a MNU file, the resulting program must not ex
ceed57KB.

3. Type malkemenu and press the Enter key.

4. At the prompt, type the name of the source file (without the
DEF extension), and then press the Enter key.

45

PART II: MOUSE MENUS

NOTE: Be sure ~o save the source file as a standard ASCII text file. Most simple
text editors save files in ASCII by default. In word processing programs, however,
you usuaUy need to select a special unformatted option to create ASCII text. You
can combine steps 3 and 4 by typingmakemenu followed by a space and the name
ofthe sourcefile (without the DEF extension) on the same line.

Ifyour file contains no errors, MAKEMENU displays the following
message:

Conversion completed

and returns you to MS-DOS. The mouse menu is then ready for you to
test. However, ifyour file contains errors, MAKEMENU displays the
types of errors and the statements that contain the errors. In this case,
correct the source file and repeat steps 3 and 4. For more information
about error messages, see Appendix B, "Domestic Mouse-Driver
Messages."

NOTE: The disks that come with this book contain mouse menu source programs
for some commonly used applications (such as WordStar) that don't include built-in
mouse support. Ifyou want to create a mouse menu from one of the source pro
grams included on the disks, you can copy the source file and edit the copy to meet
your specific needs. You can then use the procedure just discussed to create mouse
menus.

WARNING: Mouse menu programs that use the TYPE command might not work
underDOS 4.0 and 4.01. The menu wiU instaU into memory but wiU not interface
correctly with DOS. The only available solution is to load the ANSLSYS driver
(that comes with Dl?S) by inserting thefollowing line in your CONFIG.SYSfile:

device=c:\dos\ansi.sys 11 Ik

WARNING: The running of any of the following Microsoft products wiU disable
previously installed mouse menus: Microsoft Word; Microsoft Q}lickC; Microsoft
Q}lickBasic; M, the editorfor MASM; and PWB, the editor ofMicrosoft C.

Testing the Mouse Menu Program
When the mouse menu source file has been successfully translated into
an executable menu file, it is ready for you to test.

NOTE: If when you ran the Mouse Setup program you did not specify that the
mouse driver should be loaded every time you start MS-DOS, be sure you type
mouse to instaU the mouse driver before you run your menu program. The menu
program wiU load beforeyou typemouse; however, it will not work.

46

Chapter 3: Creating Your Own Mouse Menu

To test the mouse menu program, take the following steps:

1. Type menu fikname at the MS-DOS prompt, and press the Enter
key to start your mouse menu program. In this command, file
name is the name of the MNU file generated by MAKEMENU
with or without the MNU extension. When the mouse menu file
is loaded, the following message appears:

Menu installed

2. Start your application program, and test the menu to be sure it
works under all conditions in your program.

3. Ifyour application program doesn't work properly, quit the ap
plication program and then end the mouse menu program by
typing menu off at the MS-DOS prompt and pressing the Enter
key. The following message is displayed:

Keyboard emulation off

4. Correct the source file, and then run the MAKEMENU utility
again.

Running a Mouse Menu Program
Follow the steps below to run a mouse menu program.

1. Use the MS-DOS COPY command to copy the mouse menu
(MNU) file and the MENU.COM file onto the disk that contains
the application program to be used with the menu.

2. Type menu fikname to run the mouse menu program for the ap
plication. In this command, filename is the name of the mouse
menu program. When the mouse menu file is loaded, the fol
lowing message appears:

Menu installed

NOTE: To start a mouse rnenu program that is not in the current directory, in
clude as part offilename the pathname of the directory that contains the rrwuse
rnenufile.

3. Run the application program according to the instructions in
the program's documentation.

A mouse menu program runs independently of the corresponding
application program. You should end a mouse menu program and
begin another whenever you end one application and begin another.

47

PART 1/: MOUSE MENUS

Ending a Mouse Menu Program
To end the mouse menu program, simply type menu off and press the
Enter key. The following message is displayed:

Keyboard emulation off

You can then load and run another mouse menu program.

Allocating Memory for Mouse Menus
MENU.COM can allocate up to 57 KB of memory for a mouse menu
program. Note that the size of MENU.COM [7 KB] plus the size of the
MNU file cannot exceed 64 KB. If the menu file is smaller than 6 KB,
MENU.COM allocates 6 KB of memory. If the menu file is greater than
6 KB, MENU.COM allocates the exact size of the file.

Every time you start MS-DOS, the size of the first menu file you
load determines the amount of memory reserved for other menu files.
Ifyou plan to use more than one mouse menu before restarting your
system, first load the MNU file that requires the greatest amount of
memory so that MENU.COM will allocate enough memory to hold each
menu file.

Note that a mouse menu will function correctly only if the appli
cation it is working with allows memory-resident programs to run with
it. In addition, a mouse menu will not work with an application that in
tercepts the keyboard interrupt and bypasses the keyboard buffer.

Ifyou type menu off to disable a mouse menu, note that the
memory allocated by MENU.COM will not be released for use by other
programs.

48

Chapfer4

Mouse Menu
Language Statements

This chapter describes in detail each statement used by the mouse
menu programming language. Each statement description includes the
statement syntax, a description of each parameter, and one or more ex
amples of how to use the statement.

STATEMENT SYNTAX CONVENTIONS
In this book, the following syntax conventions apply for each statement:

• The command word appears in uppercase.

• Labels appear in lowercase italic. A colon (:) and a space must
separate each label from the command word.

• Parameters appear in lowercase italic. A comma (,) must sepa
rate each parameter from another parameter. If you don't in
clude a parameter, you must include an additional comma
where the parameter would have appeared.

• A parameter in brackets ([]) is optional. A parameter that
doesn't appear in brackets is required.

• If a parameter appears enclosed in double quotation marks
(It It), you must include the double quotation marks when typ
ing the parameter.

• If a parameter appears more than once in a statement, the sec
ond occurrence of the parameter is enclosed in brackets and
followed by an ellipsis (...).

49

PART II: MOUSE MENUS

THE ASSIGN STATEMENT
An ASSIGN statement takes the following format:

label: ASSIGN [lfbtn],[rtbtn],[btbtn],[lfmov],[rtmov],
[upmov],[dnmov],[hsen],[vsen]

Description
An ASSIGN statement redefines one or more of the mouse parameters
in a BEGIN statement or in the most recent ASSIGN statement. Ifyou
don't specify a parameter value in an ASSIGN statement, the last pa
rameter value given (in either a BEGIN statement or another ASSIGN
statement) is used. Statement labels are the values you use for all pa
rameters except hsen and vsen.

Parameters
The parameters for an ASSIGN statement are as follows:

Example

Parameter

lfbtn

rtbtn

btbtn

lfmov

rtmov

upmov

dnmov

hsen

vsen

Description

Label of the first statement to be executed when you
press the left-hand mouse button.

Label of the first statement to be executed when you
press the right-hand mouse button.

Label of the first statement to be executed when you
press both mouse buttons at one time.

Label of the first statement to be executed when you
move the mouse to the left.

Label of the first statement to be executed when you
move the mouse to the right.

Label of the first statement to be executed when you
move the mouse forward.

Label of the .first statement to be executed when you
move the mouse backward.

Value of the horizontal movement sensitivity parameter.

Value of the vertical movement sensitivity parameter.

50

In the following example, the BEGIN statement assigns initial values to
all button and movement parameters. Because values are not specified
for the sensitivity parameters (vsen and hsen), the default values 4 and 8
are used.

Chapter 4: Mouse Menu Language Statements

The ASSIGN statement changes the values of the left button, right
button, and up-and-down movement parameters. It also changes the
value of hsen to 16 and the value of vsen to 18. Commas indicate the
values that aren't being changed.

BEGIN esc.ent,mml,lf,rt.up,dn

reassign: ASSIGNy.not •••• not,not.16,18

THE BEGIN STATEMENT
A BEGIN statement takes the following format:

BEGIN [7fbtn],[rtbtn],[btbtn],[7fmov],[rtmov],
[upmov],[dnmov],[hsen],[vsen]

Description
A BEGIN statement defines the actions to be performed when a mouse
event occurs.

The parameters for BEGIN define the statements to be executed
when you move the mouse or press the mouse buttons. They also define
the movement sensitivity for the mouse. All parameters for the BEGIN
statement are optional. Ifyou don't provide a value for a mouse button
or a mouse movement sensitivity parameter (all parameters except hsen
and vsen) , nothing happens when you press a mouse button or move the
mouse. Ifyou don't provide a value for hsen or vsen, the default values 4
and 8 are used. You use statement labels as the values for all parameters
except hsen and vsen.

NOTE: When a mouse menu subroutine (see MENU and POPUP) is executed, the
parameters for the BEGIN statement do not affect the mouse functions within that
subroutine. You can press either mouse button to choose an item in a menu. All
mouse movementfunctions are active.

The movement sensitivity parameters, hsen and vsen, control the
horizontal and vertical movement sensitivity of the mouse. Movement
sensitivity is the distance the mouse must move (measured in mickeys)
in order for the on-screen pointer to move. (For more information
about the mickey, see Chapter 6, "Mouse Programming Interface.")

51

PART II: MOUSE MENUS

Parameters
Because a BEGIN statement is always the first statement in a menu
source program, it doesn't require a label. The parameters for the
BEGIN statement are as follows:

Example

Parameter

lJbtn

rtbtn

btbtn

lfmov

rtmov

upmov

dnmov

hsen

vsen

Description

Label of the first statement to be executed when you
press the left-hand mouse button.

Label of the first statement to be executed when you
press the right-hand mouse button.

Label of the first statement to be executed when you
press both mouse buttons at one time.

Label of the first statement to be executed when you
move the mouse to the left.

Label of the first statement to be executed when you
move the mouse to the right.

Label of the first statement to be executed when you
move the mouse forward.

Label of the first statement to be executed when you
move the mouse backward.

Number from 0 through 32,767 that defines how many
mickeys the mouse must move horizontally in order for
the on-screen pointer to move. Ifyou specify the value 0,
the mouse's horizontal movement is disabled. Ifyou
don't specify a value, the default value 4 (mickeys) is
used.

Number from 0 through 32,767 that defines how many
mickeys the mouse must move vertically in order for the
on-screen pointer to move. Ifyou specify the value 0, the
mouse's vertical movement is disabled. Ifyou don't
specify a value, the default value 8 (mickeys) is used.

52

The BEGIN statement in this example defines initial values for all
parameters except btbtn, hsen, and vsen. Because btbtn isn't specified,
nothing happens when you press both mouse buttons. Because values
are not given for hsen and vsen, the default values 4 and 8 (mickeys)
are used.

Chapter 4: Mouse Menu Language Statements

BEGIN ent,es"lf.rt,up,dn
1f: TYPE 0,75 :Simulates pressing the left-arrow key
rt: TYPE 0,77 :Simulates pressing the right-arrow key
up: TYPE 0,72 :Simulates pressing the up-arrow key
do: TYPE 0,80 :Simulatespressing the down-arrow key
es: TYPE esc :Simulates pressing the Esc key
ent: TYPE enter :Simulates pressing the Enter key

THE EXECUTE STATEMENT
An EXECUTE statement takes the following format:

label: EXECUTE label [, label ...]

Description
An EXECUTE statement executes specified statements when you per
form one of the following defined actions:

• Select a menu and a pop-up item.

• Move the mouse.

• Press one or both mouse buttons.

• Execute a MATCH statement.

Each EXECUTE statement can specify up to 15 other statements to
be executed. An EXECUTE statement can also call other EXECUTE
statements-you can link up to 15 EXECUTE statements in this man
ner. Statements within an EXECUTE statement are executed sequen
tially, beginning with the first statement.

Parameters
The parameters for an EXECUTE statement are as follows:

Parameter

label

label

Description

Name of the EXECUTE statement. All EXECUTE
statements must be labeled.

Name(s) of the label(s) to call. Each EXECUTE
statement begins with a label. However, you should not
use that label as a parameter within that EXECUTE
statement or in a nested EXECUTE statement-ifyou
do, you will create an endless loop.

53

PART II: MOUSE MENUS

Examples
In this example, the EXECUTE statement labeled exec4 executes the
statements labeled dir, s, a, and ent, which simulate typing dir a: and
then pressing the Enter key.

TYPE "dir"
TYPE 32

:Types the OIR command
;Simulates pressing the Spacebar
;TYPE " " can also be used

a: TYPE"a:.. ;Typesa:
ent: TYPE enter :Simulates pressing the Enter key
exec4: EXECUTE dir,s,a,ent

di r:
s:

In the following example, two EXECUTE statements are nested,
and the first EXECUTE statement calls the second. The comments de
scribe the flow of the program when the exec] statement is activated.

execl: EXECUTE a,ent ;Executes statements labeled a and ent
:and then returns to the point from
:which execl was called

EXECUTE al,a2 ;Executes aland a2 and then returns to the second
:part of the EXECUTE statement labeled exec!

TYPE "a" :Simulates typing a lowercase a and then returns
:to the middle of the a: statement

TYPE "AA" ;Simulates typing uppercase AA and then returns
:to the end nf.the a: statement

TYPE enter ;Simulatespressing the Enter key and then returns to
;the end of the statement labeled execl

The following examples cause infinite loops, which you should
avoid creating. EXECUTE statements must not call themselves.

badl: EXECUTE badl ;Infinite loop

Also, a nested EXECUTE statement must not call any EXECUTE
statement that leads to its own activation.

bad2: EXECUTE bad3
bad3: EXECUTE bad2

;Executes statement labeled bad3
;Infinite loop

54

Chapter 4: Mouse Menu Language Statements

THE MATCH STATEMENT
A MATCH statement takes the following format:

label: MATCH [row],[column],[attribute], "string",match,nomatch

Description
A MATCH statement executes other statements or subroutines depend
ing on whether it finds a specified string at a defined screen location.
You must provide values for the row and column parameters in the form
of absolute screen coordinates. The starting coordinates for the screen
are located at row 1, column 1.

Parameters
The parameters for a MATCH statement are as follows:

Parameter

label

row

column

attribute

string

match

nomatch

Description

Name of the MATCH statement. All MATCH statements
must include labels.

Number that specifies the row designation of the first
character of the match string. If you do not specify a
value, row 1 is assigned.

Number that specifies the column designation of the first
character of the match string. Ifyou do not specify a
value, column 1 is assigned.

Value that specifies how the match string must appear on
the screen for a match to occur. This value can be the
normal, bold, or inverse symbolic value, or it can be a
decimal value that denotes (equals the sum of) the
specific foreground and background colors to be
matched. Ifyou leave the attribute parameter blank or
give it the value 0, the MATCH statement matches any
attribute. See Chapter 3 for more information about the
attribute parameter.

String you want to match. The string can contain up to
255 ASCII characters. You must specify the string
parameter, and you must enclose it in double quotation
marks (" ").

Label of a statement or a subroutine to be executed if the
string is matched. If you don't specify a label, nothing
happens when the match is made.

Label of a statement or a subroutine to be executed if the
string is not matched. Ifyou don't specify a label,
nothing happens when the match is not made.

55

PART II: MOUSE MENUS

Example
The following example from the WS.DEF mouse menu source program,
which is included on the disks in this book, checks whether WordStar is
displaying the Beginning menu or the Main menu.

BEGIN leftb,rightb,bothb,mousel,mouser,mouseu,moused,16,40
leftb: MATCH l,12,normal,"e",imen,chk33
chk33: MATCH 1,12,,"n",imen,chkl
chkl: MATCH 1,11,,":",emen,nbt

POPUP 2,1

PEND
emen: POPUP 2,1

PEND
not: NOTHING

When you press the left-hand mouse button, the following occurs:

• The MATCH statement labeled kftb looks for an e at row 1, col
umn 12. This is the first character in the string editing nofik,
which appears on the screen in that position ifWordStar ver
sion 3.2 is displaying the Beginning menu. If kftb finds the e in
that position, it executes the statement labeled irnen. (In
WS.DEF, the irnen statement displays the No-File pop-up menu
for WordStar.) If kftb doesn't find the e in that position, it exe
cutes the statement labeled chk33.

• The chk33 statement looks for the letter n at row 1, column 12.
This is the first character in the string not editing, which appears
on the screen in that position ifWordStar version 3.3 is display
ing the Beginning menu. If the ehk33 statement finds the n in
that position, it executes the statement labeled irnen. (In
WS.DEF, the irnen statement displays the No-File pop-up menu
for WordStar.) If chk33 doesn't find the n in that position, it
executes the statement labeled chkl.

56

Chapter 4: Mouse Menu Language Statements

• The chkl statement looks for a colon (:) after the disk drive
identifier in the first line of the WordStar main menu display. If
chkl finds a colon, it executes the statement labeled emen. (In
WS.DEF, the emen statement displays the Edit/Block pop-up
menu.) If chkl doesrl't find a colon, the menu program does
nothing.

THE MENU ... MEND STATEMENTS
A MENU statement takes the following format:

label: MENU ["title"], [row], [column], [attribute]

MEND

Description
A MENU statement is the first statement in a menu subroutine that
creates a bordered, single-column pop-up menu. The specific dimen
sions of a menu are determined by the number of items listed in a
menu. The dimensions are also determined by the largest number of
characters in the longest menu item or in the menu title.

When the menu is displayed, the first menu item is highlighted.
You can choose any menu item by moving the mouse to highlight that
item and then pressing either mouse button. Ifyou press both mouse
buttons at the same time, the equivalent of a NOTHING statement is
executed and the menu disappears. Any movement or button actions
defined in a BEGIN or ASSIGN statement are ignored within the MENU
subroutine.

Each menu subroutine must include a MEND (menu end) state
ment, which indicates the end of a menu subroutine. The MEND
statement takes no parameters.

NOTE: The MENU statement automatically generates a border around the entire
menu and draws a line between the menu titk and the menu items.

57

PART II: MOUSE MENUS

Parameters
The parameters for a MENU statement are as follows:

Example

Parameter

label

title

row

column

attribute

Description

Name of the menu subroutine. All menu subroutines
must be labeled.

Text of the menu title, enclosed in double quotation
marks (" "). The menu title is limited to one line. Ifyou
don't specify a title, MENU generates a blank line.

Number that specifies the row where the upper left
corner of the menu border begins. Be sure to specify a
value that displays the entire menu. (For example, if the
menu contains 20 items and you choose a row value
greater than 5, some of the screen items will not appear
on a 25-row screen.) Ifyou don't specify a row number,
the upper left corner is assigned row 1.

Number that specifies the column where the upper left
corner of the menu border begins. Ifyou don't specify a
column number, the upper left corner is assigned
column 1.

Value that specifies how the menu is displayed on the
screen. This value can be normal, bold, or inverse, or it can
be a decimal value that denotes (equals the sum of) the
specific foreground and background colors to be
matched. (For more information about the attribute
parameter, see Chapter 3, "Creating Your Own Mouse
Menu.") Ifyou don't specify a value, MENU uses the
inverse value. The colors of the mouse pointer depend
on the display-attribute value for the menu. For detailed
information about how the interaction between the
mouse pointer and menu display determines the colors
of the pointer, see Chapter 6, "Mouse Programming
Interface."

58

In the following example, the MENU statement contains all four pa
rameters. The menu title is Display Directory. The upper left corner of
the menu border is located at row 5, column 5. The menu is displayed
with a normal screen attribute.

The OPTION statements specify the statements to be executed
when you choose items from the menu. (OPTION statements are de
scribed in greater detail later in this chapter.)

Chapter 4: Mouse Menu Language Statements

NOTE: You should always include a provision for closing the menu without caus

ing an action. This example includes a Cancel option that, because it doesn't have
a label in the line, executes the equivalent ofa NOTHING statement.

menu1: MENU "Display Directory",5,5,normal
OPTION "Cancel"
OPTION "a:",exl
OPTION "b:",ex2
OPTION "c:",ex3
MEND

ex!: EXECUTE dir,s,a,ent :DIR a:
ex2: EXECUTE dir,s,b,ent :DIR b:
ex3: EXECUTE dir,s,c,ent :DIR c:
ent: TYPE enter ;Simulates pressing the Enter key
dir: TYPE "dir" :Types the DIR command
a: TYPE "a:" :Types a:
b: TYPE "b:" :Types b:
c: TYPE "c:" :Types c:
s: TYPE 32 :Types a space

THE NOTHING STATEMENT
A NOTHING statement takes the following format:

label: NOTHING

Description
A NOTHING statement specifies that no action occur when you press a
mouse button, move the mouse, or choose a menu option. You can also
use a NOTHING statement to specify that no action occur when a
MATCH statement is executed.

Parameters
A NOTHING statement takes no parameters.

Example
This example from the WS.DEF mouse menu source program, which is
included on the disks in this book, determines which pop-up menu is
displaye~ when you press the right-hand mouse button.

59

PART II: MOUSE MENUS

The WS.DEF program does the following:

• If the MATCH statement finds the specified character, it exe
cutes the statement labeled movernenu, which displays the CUR
SOR MOVEMENT pop-up menu.

• If the MATCH statement doesn't find the specified character, it
executes the NOTHING statement, labeled nul, and the mouse
menu program does nothing.

rightb: MATCH 1,11,NORMAL, ":",movemenu,nul

movemenu: POPUP 2,1
TEXT " CURSOR MOVEMENT ="

nul: NOTHING

THE OPTION STATEMENT
An OPTION statement takes the following format:

[label:] OPTION [text],[pointer]

Description
OPTION statements define each menu item in a menu subroutine by
specifying the text of the menu item and the action to be performed
when you choose the item.

It's not necessary to label OPTION statements, although you can if
you want to. Ifyou do label them, the MAKEMENU program ignores
the labels when it compiles the source program.

Parameters
The parameters for an OPTION statement are as follows.

60

Example

Parameter

text

pointer

Chapter 4: Mouse Menu Language Statements

Description

Text for the menu item. You must enclose the text in
double quotation marks (" "). Ifyou don't specify text for
a menu item, a blank line is displayed in the menu for
that item.

Label of the statement to be executed when you choose
the menu item. Ifyou don't include a pointer parameter,
the menu clears from the screen when you choose the
menu item. (The equivalent of a NOTHING statement is
executed.) For example, you would not include the
pointer parameter for a Cancel Menu item.

The following example shows OPTION statements that define four
menu items. Ifyou choose the first menu item, the menu disappears
from the screen because the OPTION statement doesn't include a
pointer parameter. Ifyou choose any other menu item, the specified
statement is executed.

menu5: MENU "Display Directory".5.5.normal
OPTION "Cancel"
OPTION "a:",exl
OPTION "b:".ex2
OPTION "c:".ex3
MEND

exl: EXECUTE dir.s.a.ent :DIR a:
ex2: EXECUTE dir.s.b.ent :DIR b:
ex3: EXECUTE dir.s.c.ent :DIR c:
ent: TYPE enter :Simulates pressing the Enter key
dir: TYPE "dir" ;Types the DIR command
a: TYPE "a:" ;Types a:
b: TYPE "b:" ;Types b:
c: TYPE "c:" ;Types c:
s: TYPE 32 ;Types a space

THE POPUP... PEND STATEMENTS
A POPUP statement takes the following format:

label: POPUP [row].[column].[attribute]

PEND

61

PART II: MOUSE MENUS

Description
A POPUP statement is the first statement in a pop-up subroutine that
creates a multiple-column menu or a message box.

Each pop-up subroutine must include a PEND (pop-up end) state
ment, which indicates the end of a pop-up subroutine.

Parameters
The parameters for a POPUP statement are as follows:

62

Parameter

label

row

column

attribute

Description

Name of the pop-up subroutine. All POPUP statements
must be labeled. Do not label the PEND statement.

Number that specifies the row where the upper left
corner of the first row of the menu or message box
begins. Be sure to specify a value that displays the entire
menu or message box. (For example, if the menu or
message box contains 20 lines and you choose a row
value greater than 5, some of the screen items will not
appear on the 25-row screen.) Ifyou don't specify a row
number, the upper left corner is assigned row 1. (Note:
Subsequent menu items in a pop-up menu are created
with a TEXT statement.)

Number that specifies the column where the upper left
corner of the menu or message box begins. Ifyou don't
specify a column number, the upper left corner is
assigned column 1.

Valu'e that specifies how the menu is displayed on the
screen. This value can be normal, bold, or inverse, or it can
be a decimal value that denotes (equals the sum of) the
specific foreground and background colors to be
matched. (For more information about the attribute
parameter, see Chapter 3, "Creating Your Own Mouse
Menu.") Ifyou don't specify a value, POPUP uses the
inverse value. The colors of the mouse pointer depend
on the display-attribute value for the menu. For detailed
information about how the interaction between the
mouse pointer and menu display determines the colors
of the pointer, see Chapter 6, "Mouse Programming
Interface."

Examples

Chapter 4: Mouse Menu Language Statements

NOTE: Unlike the MENU statement, which generates a border around the entire
menu and draws a line between the menu title and the menu items, a POPUP
statement doesn't draw any lines. You must, therefore, include line-drawing charac
ters within the TEXT statements that are part ofthe pop-up subroutine. The easiest
characters to use are the equal sign (=) or the minus sign (-) for creating horizon
tal lines, the pipe character (:) for creating vertical lines, and the plus sign (+) for
forming the corners. You can also use the extended ASCII line-drawing characters,
which are listed in Appendix A, ''ASCII Character Set. "

In addition, a POPUP statement provides a greater degree of control for de
fining menu. choices than does a MENU statement. Your pop-up subroutine must
include SELECT statements to select and act upon the menu choices presented by
TEXT statements.

The following example creates a simple pop-up menu. When you press
the left-hand mouse button, the pop-up menu lets you select one of two
MS-DOS commands. The POPUP statement defines the location of the
upper left corner of the menu as row 5, column 20. The menu border is
created by using plus signs (+), pipes (:), and equal signs (=). The sec
ond line of the menu displays the title. In addition, the three menu
items in lines 4 and 5 are defined by the three SELECT statements in
lines 7 through 9. SELECT statements are discussed in further detail
later in this chapter.

BEGIN leftb

leftb: POPUP 5,20,inverse
TEXT "I +"
TEXT": POPUP - DOS helper I"
TEXT "+---------------------+"
TEXT ": CLS DIR I"
TEXT "I Exit POPUP menu :"
TEXT "I I"

SElECT 5,4,17
SELECT 4,6,5,c15
SELECT 4,14,5,dir
PEND

C15: TYPE "c15",enter
di r: TYPE "di r" ,enter

63

Moving the mouse up, down, left, or right
causes the cursor to move in that direction

Left button - Displays Edit/Block menu
Right button - Displays Cursor Movement menu
Both buttons - Display Edit/File menu

PART II: MOUSE MENUS

The following example from the WS.DEF mouse menu source pro
gram, which is included on the disks in this book, is a pop-up subrou
tine that produces a message box.

ASCII graphics characters create solid double borders around the
menu. Also, the single SELECT statement clears the message box from
the screen because it does not include a pointer parameter. Therefore,
pressing either mouse button clears the message box from the screen.

,mousehlp: POPUP 2,1
TEXT • _========_m:==a MOUSE HELP ========a::::a=m-=~I:lllllUllIII:==

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT II =lIC:IZI:I:================~=====

SELECT 1,18,10
PEND

THE SELECT STATEMENT
A SELECT statement takes the following format:

SELECT row,co7umn,7ength[,pointer]

Description
A SELECT statement in pop-up subroutines defines the size of selection
areas for items appearing on the menu. It also specifies the statement to
be executed if the cursor is moved to the defined area. It is not neces
sary for the defined area to contain text.

NOTE: The highlight in a menu or message box rrwves from one defined selection
area to another when you move the rrwuse. It sa good idea to define each part ofa
menu with a SELECT statement so that the rrwvement of the highlight and the
rrwvement of the mouse are visuaUy coordinated; however, be sure you don't define
the sa'fJU! screen position with more than one SELECT statement.

64

Chapter 4: Mouse Menu Language Statements

Parameters
The parameters for a SELECT statement are as follows:

Example

Parameter

row

column

length

pointer

Description

Number that defines the horizontal starting point (row)
of the item selection area relative to the row and column
coordinates you specified in the POPUP statement.

Number that defines the vertical starting point (column)
of the item selection area relative to the row and column
coordinates you specified in the POPUP statement.

Number of characters in the item selection area. If you
don't specify a number, the SELECT statement assumes
one character.

Label of the statement executed when you choose the
defined menu item. Ifyou don't include a pointer
parameter, the menu disappears from the screen. (You
can press either button to select the item; however, ifyou
press both buttons, the item is not selected and a
NOTHING statement is executed.)

The SELECT statements in the following example let you select CLS to
clear the screen, DIR to display a directory listing, or Exit pop-up menu to
clear the menu from the screen.

Notice that the first SELECT statement in a pop-up subroutine
defines which selection will be highlighted when the menu appears.

BEGIN leftb

leftb: POPUP 5,20,inverse
TEXT "I I"

TEXT ": POPUP - DOS helper :"
TEXT "+---------------------+"
TEXT ": CLS OIR :"
TEXT n: Exit pop-up menu :n
TEXT n +======= =====+ II

SELECT 5,4,17
SELECT 4.6,5,cls
SELECT 4.14,5,dir
PEND

cl s: TYPE "cl sII , enter
di r: TYPE nd; r" •enter

65

PART II: MOUSE MENUS

THE TEXT STATEMENT
A TEXT statement takes the following format:

TEXT "string"

Description
A TEXT statement in a pop-up subroutine defines the menu title, the
text for menu items, and the characters used to draw lines and borders.
Its purpose is similar to that of the titk and text parameters in the
MENU and OPTION statements, but it lets you position text anywhere
on the screen (as long as the text appears below and to the right of the
upper left corner of the pop-up menu).

Parameter
The parameter for a TEXT statement is as follows:

Example

Parameter

string

Description

The pop-up menu title or the text of a menu item. Text
can include ASCII graphics characters for lines and
borders and must be enclosed in double quotation marks
(" It). The location of text on the screen is relative to the
upper left corner position set by the POPUP statement.
Also, text display attributes are determined by the
attribute parameter in the POPUP statement.

66

The TEXT statements in the following example define the appearance
of the pop-up menu. The statements completely define the borders,
title, and all menu selections.

Chapter 4: Mouse Menu Language Statements

BEGIN leftb

leftb: POPUP 5,20,inverse
TEXT "I I"

TEXT": POPUP - DOS helper :"
TEXT "+---------------------+"
TEXT ": CLS DIR :"
TEXT": Exit pop-up menu :"
TEXT "I I"

SELECT 5,4,17
SELECT 4,6,5,cls
SELECT 4,14,5,dir
PEND

cls: TYPE "cls",enter
di r: TYPE "di r" ,enter

THE TYPE STATEMENT
A TYPE statement takes the following format:

label: TYPE key [,key ...]

Description
A TYPE statement simulates typing one or more keys.

NOTE: All keys you specify in a TYPE statement are read into the DOS keyboard
buffer at the time the TYPE statement is executed. When the menu programfinishes
processing the rrwuse event (executes the BEGIN statement), the application resumes
andfinds the keystrokes in the DOS buffer as ifthey had been typed.

Parameters
The parameters for a TYPE statement are as follows:

Parameter

label

key

Description

Name of the TYPE statement. Every TYPE statement
must be labeled.

Name of the key.

67

PART II: MOUSE MENUS

The name of the key can take any of the following forms:

• One or more letters or numbers enclosed in double quotation
marks (for example, "X" or "dir").

• A standard ASCII code (characters 0 through 127) or an ex
tended ASCII code (characters 128 through 255). The ASCII
control characters (0 through 31) that you can use with the
TYPE statement are listed in Appendix A, "ASCII Character
Set."

• An extended-keyboard code. (Appendix A, "ASCII Character
Set," lists them.)

• Any of the following predefined symbolic keys: Enter, Tab,
Backsp, Esc.

NOTE: To simulate typing a doubk quotation mark ("), use ASCII code 34.

Examples
The following TYPE statements use character strings to define the keys:

dir: TYPE "dir" :Types the DIR command
a: TYPE "a:" :Types a:

The following TYPE statement uses an ASCII code to simulate typing a
space:

s: TYPE 32 :Types a space

The following TYPE statements use extended-keyboard codes that
simulate the arrow keys:

- If:

rt:
up:
dn:

TYPE 0,75
TVPE· .•. O,77
TYPE' 0~},2,:
TYPE 0,80

:Simulates pressing the left-arrow key
:Si mUl~t.7~.pressing~h.~. -right-arro,w'n,keY
:Sil1lula;~e$·.· .presstng:,t~~\4P~··ar roVl~~Y-
:Simul ate's··' pressing the down-arrow*ey

Key Sequences That Can't Be Simulated
Some key sequences can't be simulated by using the TYPE command
because they are suppressed in the ROM (Read-Only Memory) BIOS
(Basic Input/Output System) keyboard routine. See Appendix A,
"ASCII Character Set," for a complete listing.

68

ChapterS

Sample Mouse
Menu Programs

This chapter discusses the source program listings for two mouse menu
programs that simplify some tasks commonly performed on an IBM
personal computer or compatible.

Use your word processor or text editor to create the source pro
gram for the mouse menus, run the MAKEMENU utility to generate a
mouse menu program, and then begin using the mouse menu program
immediately. You can also use these listings as a basis for designing
similar mouse menus that include features specific to your needs.

THE SIMPLE MOUSE MENU PROGRAM
The SIMPLE mouse menu program lets you use the mouse instead of
pressing commonly used keys. It is most helpful when used with appli
cations that require frequent pressing of the direction keys. For ex
ample, in many spreadsheet applications you must press the direction
keys to move the cursor. If the SIMPLE mouse menu is installed, you
can move the cursor by simply moving the -mouse. Pressing the left
hand mouse button simulates pressing the Enter key; pressing the
right-hand mouse button simulates pressing the Esc key; and pressing
both buttons at one time is equivalent to pressing the Ins key. Ifyour
application doesn't use one of these keys and you press the correspond
ing mouse button by accident, the application responds as ifyou had
pressed the key. You can then correct the mistake as you would correct
any typing error.

69

PART II: MOUSE MENUS

The source program for the SIMPLE mouse menu follows:

Amenu that simulates direction, Enter, Esc,
Ins keys

BEGIN ent,es,ins,lf,rt,up,dn,32,16

ent: TYPE enter
es: TYPE esc
ins: TYPE 0,82

1f: TYPE 0,75
rt: TYPE 0,77
up: TYPE 0,72
dn: TYPE 0,80

Enter key
Esc key
Ins key

Left-arrow key
Right-arrow key
Up-arrow key
Down-arrow key

THE DOSOVRLY MOUSE MENU PROGRAM
The DOSOVRLY (DOS overlay) mouse menu lets you choose several
MS-DOS commands at the MS-DOS command level by pointing to a
menu option and pressing either mouse button. In other words, this
mouse menu "overlays" MS-DOS.

In addition to a main menu, the DOSOVRLYmouse menu pro
gram has two submenus-Directory and Change Directory-which list
additional MS-DOS commands. The source listing for DOSOVRLYis a
good example of how to create a hierarchy of menus and submenus in
one ofyour own mouse menu programs.

The DOSOVRLY mouse menu program provides several features
that are useful at the MS-DOS command level:

• Moving the mouse to the left and right simulates pressing the
left-arrow and right-arrow keys, a feature that lets you edit your
MS-DOS commands by simply moving the mouse.

• Pressing the right-hand mouse button simulates pressing the
Enter key.

• Pressing both mouse buttons at one time simulates typing CLS,
the MS-DOS command for clearing the screen.

• Pressing the left-hand mouse button displays the DOSOVRLY
main menu. Options on this menu let you clear the screen,
execute the MS-DOS DATE or TIME command, or choose the

70

Chapter 5: Sample Mouse Menu Programs

Directory or Change Directory submenu. To choose a menu
option, move the mouse to highlight the option and then press
either mouse button. From within a submenu, you can choose
an option to move to the other submenu or to return to the
main menu.

NOTE: In the DOSOVRLY source program, the Ib, rb, bb, 1m, and rm parame
ters specified in the BEGIN statement are labels for EXECUTE statements. These
EXECUTE statements branch to the appropriate MENU or TYPE statements.

Ifyou want to simplify the following program, branch directly
from the BEGIN statement to the mnul menu subroutine and to the
TYPE statements by using the following statement:

BEGIN mnul,ent,cls,left,right

The source program for the DOSOVRLYmouse menu follows:

BEGIN lb,rb,bb,lm,rm
1b: EXECUTE mnul
rb: EXECUTE ent
bb: EXECUTE cls
1m: EXECUTE left
rm: EXECUTE right

Select Main Menu if left button
Type Enter if right button
Type CLS command if both buttons
Press left-arrow key if left motion
Press right-arrow key if right motton

mnul: MENU "Main Menu",2,55,NORMAL
OPTION "cancel ",none
OPTION "clear the screen ",c1s
OPTION "date ",date
OPTION "time ",time
OPTION "Directory ",mnu3
OPTION "Change Directory ",mnu2
MEND

mnu2: MENU "Change Directory",2,55,NORMAL
OPTION "cancel ",none
OPTION "cd .. ",cdl
OPTION "cd ",cd2
OPTION "Directory ",mnu3
OPTION "Main menu ",mnul
MEND

mnu3: MENU "Directory",2,55,NORMAL
OPTION "cancel ",none

(continued)

71

PART II: MOUSE MENUS

continued

none:

ent:
cls:
left:
right:
date:
time:
cd1:
cd2:
di r:
dire:
dirb:
dirx:
dirs:
dird:
dirz:

NOTHING

TYPE enter
TYPE "cls",enter
TYPE 0,75
TYPE 0,77
TYPE "date"~enter

TYPE "time",enter
TYPE "cd .. ",enter
TYPE "cd"
TYPE "di rtf ,enter
TYPE "di r *•.exe" ,enter
TYPE "di r *.bat" ,enter
TYPE "dir·*.bak",enter
TYPE "dir *.sys",enter
TYPE "dir •. doc~~enter
TYPE "di r *. II

OTHER SAMPLE MOUSE MENU PROGRAMS
The disks that accompany this book contain 11 sample mouse menu
programs, which you can recognize by the DEF filename extension. Of
the 11 DEF files, 5 are demonstration programs and 6 are fully opera
tional mouse menu programs designed for use with early versions of
IBM Multiplan, Microsoft Multiplan, Symphony, VisiCalc, WordStar,
and BRIEF. These files are located in the \MENUS directory on disk 2.

Demonstration Programs
The five demonstration programs on the disks are designed to show
various elements of mouse menu programming. The source files for
these programs are COLOR.DEF, DROP.DEF, EXECUTEI.DEF,

72

Chapter 5: Sample Mouse Menu Programs

EXECUTE2.DEF, and KBD.DEF. Each contains comments that explain
how the demonstration program works. For an overview of each
demonstration program, read the following sections.

The COLOR Program
The COLOR program displays a menu of all possible color choices for
mouse menus:

UIT=======================n
9ee 916 93Z 048 661 689 996 llZ lZ8 141 169 176 19Z Z98 ZZ4 Z19
991 917 933 019 965 9Bl 997 113 1Z9 145 161 177 193 Z99 ZZ5 Z11
99Z 918 934 es9 966 9BZ 998 111 139 146 16Z 178 194 Z19 226 212
993 919 935 esl 967 9B3 999 115 131 147 163 179 195 211 227 243
991 9Z9 936 asz 968 9B1 le9 116 13Z 148 161 189 196 ZlZ Z28 Z44
805 921 937 953 969 9B5 191 117 133 149 165 181 197 213 2Z9 245
986 9ZZ 938 951 979 986 19Z 118 131 159 166 18Z 198 Z11 Z39 Z16
997 9Z3 939 955 971 987 193 119 135 151 167 183 199 215 231 217
9ao 921 919 956 97Z 988 194 129 136 15Z 16B 181 2ea 216 232 218
999 9Z5 911 957 973 9B9 195 121 137 153 169 185 Z91 Z17 Z33 249
919 9Z6 94Z asa 971 999 196 12Z 138 151 179 186 Z9Z Z18 Z34 Z59
911 9Z7 943 959 975 991 197 123 139 155 171 187 293 219 235 251
91Z 928 944 969 976 992 19B 121 149 156 172 188 291 229 236 252
913 929 945 961 977 993 199 125 141 157 173 189 295 221 237 253
911 939 916 G6Z 978 991 119 lZ6 14Z 158 174 199 Z96 ZZ2 Z3B 251
915 931 947 963 979 995 111 127 113 159 175 191 297 223 239 255

The numbers in the menu are the sums of the various foreground and
background color combinations listed in Figure 3-3 in Chapter 3. The
COLOR program can help you choose color combinations for MENU or
POPUP statements.

The DROP Program
The DROP program demonstrates how you can create drop-down
menus. When you run the program and press the left-hand mouse but
ton, the following main menu appears:

I CLR SCRtI ILIST BIB ICIt BBIVE I
Ifyou choose the menu item CLR SCRN, the DROP program

clears the screen and causes the main menu to disappear. Ifyou choose
the menu item LIST DIR, a second pop-up menu appears in place of
the main menu, giving the appearance of a drop-down menu:

II CLB SCNt LIST DIB CH DRIVE II
dir

-.bat
-.CO£l'l

-.doc
-.exe
-.sys
CA"CEL

73

PART II: MOUSE MENUS

The selection rectangle's movement is restricted to the items within the
newly displayed column, letting you list a directory of the current drive
in one of several ways.

Ifyou choose the menu item CH DRIVE, a third pop-up menu ap
pears in place of the main menu. Like the second menu, the third
menu also gives the appearance ofa menu "pulled down" from the
menu bar.

II CLK SCM I LIST DIR at DRIUE

A:
B:
C:

CAttCEL

The EXECUTEl Program
The EXECUTEI demonstration program is designed to show how the
EXECUTE mouse menu command functions.

When you press the left-hand mouse button, a menu displaying a
single option appears on the screen. The option leads to a second
menu, and then the screen clears. Although the string cis <enter> is sent
to the keyboard buffer before the second menu is displayed, the screen
doesn't clear until after the second menu disappears because the con
tents of the keyboard buffer are not processed until the mouse menu
returns control to MS-DOS.

The EXECUTE2 Program
The EXECUTE2 demonstration program is designed to show how to
create a multilevel menu.

The program relies on mouse-event trapping to determine
whether or not a second menu is displayed. When you press the left
hand mouse button, a menu is displayed in the upper right corner of
your screen. Ifyou press either mouse button, the program clears the
screen and the menu disappears. Ifyou press both buttons at the same
time, the menu disappears and the program does not clear the screen.
If, however, you move the mouse horizontally after pressing the left or
right mouse button, a second menu is displayed. The horizontal mouse
movement is the event trapped by the mouse menu program: Unless it
detects horizontal mouse movement, the mouse menu program will not
display the second menu.

NOTE: The EXECUTE2 program is well comrnented; it's a good idea to read the
source program before you compile and run the program.

74

Chapter 5: Sample Mouse Menu Programs

The KBD Program
The KBD program is designed to provide partial keyboard emulation
with the mouse. Most but not all of the keystrokes that the mouse can
emulate are included in the program.

When you press a mouse button, the following pop-up menu
appears:

To type a character, move the mouse pointer to that character and click
the left-hand mouse button. The KBD program then sends that charac
ter to the keyboard buffer. A second click reactivates the menu. To
close the menu and instruct the KBD program to act on the "key
strokes" you sent to the keyboard buffer, click on the Enter box at the
top of the menu.

Alternatively, you can click on the Ctrl box at the top of the menu,
which causes the following menu to appear:

qultllXYbd Synbll

e tlUL DLE 18
1 SOH Del 11
Z SIX DCZ lZ
3 ETX DC3 13
1 EDT DC1 11
5 EtlQ "AX 15
6 ACX Sytl 16
7 BEL ETB 17
8 BS CAn 18
9 HT En 19
A LF SUB lA
B UT ESC lB
C FF FS lC
D CR GS lD
E so RS lE
F SI US IF

Clicking on one of the characters in the menu causes the KBD program
to send that character to the keyboard buffer. You can also click on the
Quit option to return to the MS-DOS prompt, or you can click on the

75

PART II: MOUSE MENUS

Kybd option to return to the first menu. Note that this second menu
has no Enter option. To choose Enter, you must return to the first
menu and choose the Enter option, or you can click on the Symb
option and then choose the Enter option.

Clicking on the Symb option in either the first or second menu
causes the following menu to appear:

quit II Keyboard Control Enter

~ Ii e a a a I ~ e e e I t 1 A A
E a fI 6 i:i 0 n u y ti U C £ ¥ ft J
, f 6 U ii A 9 it L , ~ % i c »

IX B r 11 1: (f .. T I e o i CDtlS E n
= + 2 1 r J + :: 0 .J n 2 •

Double-clicking on one of the characters in this menu causes the KBD
program to send that character to the keyboard buffer and then
redisplay the menu. You can then choose the Enter option, which clears
this menu and causes the KBD program to act on the keystrokes you
sent to the keyboard buffer. You can also choose the Keyboard option
to activate the first menu, or you can choose the Control option to acti
vate the second menu.

Application Mouse Menus
The six mouse menu programs on the disks are designed to work with
earlier versions of six applications that didn't offer mouse support. The
following table lists the names of the source files and the application
programs for which they are designed:

Source File

MPIBM.DEF

MPMS.DEF

SYM.DEF

VC.DEF

WS.DEF

BRIEF.DEF

Application Program

Multiplan (IBM)

Multiplan (Microsoft)

Symphony

VisiCalc

WordStar

BRIEF

To create a compiled mouse menu program, use the MAKEMENU
utility. To load and start the mouse menu program, use the MENU
program.

76

PART III

Mouse Programming
Interface

Chapter 6: Mouse Programming Interface

• Video Adapters and Displays
• The Virtual Screen
• Graphics and Text Cursors
• The Internal Cursor Flag
• Reading the Mouse
• Calling Mouse Functions
• Passing Buffer Pointers
• Testing for Installed Mouse

Chapter 7: Mouse Programming Considerations

• Setting Up Your System
• Advanced Topics
• Mouse Functions

Chapter 8: Mouse Function Calls

• Introduction to Mouse Functions
• Mouse Functions

Chapter 9: Sample Mouse Programming Interface Programs

• Interpreted Basic Programs
• QuickBasic Programs
• C and QuickC Programs
• MASM Programs
• FORTRAN Programs
• Pascal Programs

Chapter 10: Writing Mouse Programs for IBM EGA Modes
• The EGA Register Interface Library
• EGA Register Interface Functions

Chapfer6

Mouse
Programming
Interface

This chapter covers the interface issues you must consider when pro
gramming for the mouse: how your particular display adapter affects
the type of cursor displayed, how your program must manipulate the
cursor, and how your program can access information about mouse ac
tivities. It presents information you will need in order to provide the ap
propriate mouse support in your program-such as information about
the difference between text mode and graphics mode and between text
cursors and graphics cursors. This chapter also discusses the concept of
a virtual screen-an important tool for ensuring that the mouse driver
interacts properly with the video display.

VIDEO ADAPTERS AND DISPLAYS
The IBM family of personal computers offers many types ofvideo
adapters and video displays. Each computer's unique display capabili
ties and characteristics affect, how the mouse cursor appears and moves
on the screen.

79

PART III: MOUSE PROGRAMMING INTERFACE

Screen Modes
The screen mode defines the number of pixels and the types of objects
that appear on the screen. A pixel is a point of light or a block of light
made up of individual points. The screen modes available to you de
pend on the type ofvideo adapter installed in your computer. Some
adapters display both points of light and blocks of light; others display
only blocks of light.

The screen modes and the video adapters that support them are
listed in Figure 6-1.

NOTE: For Hercules Monochrome Graphics Cards, the current convention is to
use screen mode 5 for page 1 and screen mode 6for page o. See AppendixF, "Using
the Mouse with the Hercules Graphics Card, "for more information.

Text Mode vs. Graphics Mode
Some adapters display only text mode, and others display both text
mode and graphics mode. The modes have their own characteristics
but share similar programming considerations for the mouse.

In graphics mode, you can access individual points of light. Some
graphics modes display these points in only one color; other graphics
modes offer a choice of colors.

In text mode, you can access only character-cell-size blocks of light
made up of individual points. Common text modes on IBM PCs offer
screen sizes of 80 columns by 25 rows or 40 columns by 25 rows. Text
mode uses less memory and is generally faster than graphics mode.
However, color combinations in text mode apply to entire character
cells rather than to individual points within each character cell, and all
graphics created in text mode must consist ofASCII characters.

Testing for Screen Modes
Suppose you want to write programs that can run on a variety of ma
chines. Because you don't know what types ofvideo adapters are in
stalled in the other machines, and because your program might use
graphics or color, your program must test each video adapter to check
that the desired screen modes are available. In addition, your program
should be able to compensate if only text mode is available.

80

Chapter 6: Mouse Programming Interface

Screen Virtual Bits
Mode Display Text/ Screen Cell per
(Hex) Adapter Graphics (x, y) Size Pixel

0 CGA, EGA, MCGA, VGA, Text 640 x 00 I6x8
3270

CGA, EGA, MCGA, VGA, Text 640 x 200 I6x8
3270, I6-color, 40 x 25

2 CGA, EGA, MCGA, VGA, Text 640 x 200 8x8
3270, I6-color, 80 x 25

3 CGA, EGA, MCGA, VGA, Text 640 x 200 8x8
3270, 16-color, 80 x 25

4 CGA, EGA, MCGA, VGA, Graphics 640 x 200 2xI 2
3270, 4-color, 320 x 200

5 CGA, EGA, MCGA, VGA, Graphics 640 x 200 2xI 2
3270, 4-color, 320 x 200

6 CGA, EGA, MCGA, VGA, Graphics 640 x 200 IxI 2
3270, 2-color, 640 x 200

7 CGA, EGA, MCGA, VGA, Text 640 x 200 8x8
3270, MDA, 80 x 25

8 16-color, 160 x 200 Graphics 640 x 200 4xl 4
(PCjr only)

9 16-color, 320 x 200 Graphics 1280 x 200 lxI
(PCjronly)

A 4-color, 640 x 200 Graphics 640 x 200 IxI
(PCjr only)

D EGA, VGA, 16-color, Graphics 640 x 200 2xI 2
320 x 200

E EGA, VGA, 16-color, Graphics 640 x 200 IxI
640 x 200

F EGA, VGA, MDA, 640 x 350 Graphics 640 x 350 Ixl

MDA =Monochrome Display Adapter (continued)
CGA =Color/Graphics Adapter
EGA =Enhanced Graphics Adapter
MCGA =Multi-Color Graphics Array
VGA =Video Graphics Array
XGA =Extended Graphics Array
3270 =IBM 3270 All-Paints-Addressable Graphics Adapter

Figure 6 -1. Screen-mode characteristics ofthe IBM PCfamily of
ofvideo-display adapters.

81

PART III: MOUSE PROGRAMMING INTERFACE

Figure 6-1 continued

Screen Virtual Bits
Mode Display Text/ Screen Cell per
(Hex) Adapter Graphics (x, y) Size Pixel

10 EGA, VGA, 16-color, Graphics 640 x 350 lxl
640 x 350

11 MCGA, VGA, 2-color, Graphics 640 x 480 1 x 1
640 x 480

12 VGA, 16-color, 640 x 480 Graphics 640 x 480 1 x 1 1

13 MCGA, VGA, 256-color, Graphics 640 x 200 2xl 2
320 x 200

20 16-color, 40 x 25 Text 640 x 200 4xl

21 Hercules page 0, 2-color, Graphics 720 x 348 lxl
720 x 348

22 Hercules page 1, 2-color, Graphics 720 x 348 lxl
720 x 348

23 Genius VHR, 2-color, Graphics 728 x 1008 1 x 1
728 x 1008

24 HPVectra Graphics 640 x 400 lxl

25 IBM 8514, XGA, 16-color, Graphics 1024 x 768 1 x 1
1024 x 768

26 Genius, 66-line mode Text 640 x 528 8x8

30 PC 3270 Graphics 720 x 350 1 xI 1

40 Olivetti, 16-color, Graphics 640 x 400 lxl 1
640 x 400

40 Video7, 16-color, 80 x 42 Text 640 x 400 1 x 1

41 Video7, 16-color, 132 x 25 Text 1056 x 344 1 x 1

42 Video7, 16-color, 132 x 43 Text 1056 x 344 lxl

43 Video7, 16-color, 80 x 60 Text 640 x 480 lxl

44 Video7, 16-color, 100 x 60 Text 800 x 480 lxl

45 Video7, 16-color, 132 x 28 Text 1056 x 392 1 xI

60 Sprite, 132 x 25 Text 1056 x 200 8x8

60 Video7, 16-color, Graphics 752 x 408 lxl
752 x 410

61 Sprite, 132 x 50 Text 1056 x 400 8x8

61 Video7, 16-color, Graphics 720 x 536 1 x 1
720 x 540

62 Video7, 16-color, Graphics 800 x 600 1 x 1
800 x 600

6E Sprite, 16-color, 720 x 540 Graphics 720 x 540 1 x 1

(continued)

82

Chapter 6: Mouse Programming Interface

Figure 6-1. continued

Screen Virtual Bits
Mode Display Text/ Screen Cell per
(Hex) Adapter Graphics (x, y) Size Pixel

6F Sprite, 16-color, 768 x 576 Graphics 768 x 576 1 x 1 1

70 Sprite, 16-color, 800 x 600 Graphics 800 x 600 lxl 1

71 Sprite, 16-color, 960 x 720 Graphics 960 x 720 1 x 1 1

72 Sprite, 16-color, Graphics 1024 x 768 lxl 1
1024 x 768

74 Toshiba T2100/T3100, Graphics 640 x 400 4xl 4
16-shade gray, 640 x 400

78 Sprite, 256-color, Graphics 640 x 400 1 x 1
640 x 400

79 Sprite, 256-color, Graphics 640 x 480 1 x 1
640 x 480

7A Sprite, 256-color, Graphics 720 x 540 lxl
720 x 540

7B Sprite, 256-color, Graphics 768 x 576 lxl 1
768 x 576

7E Ericsson Graphics 640 x 400 lxl

In C programming, the _setvirkomode function returns a value that
lets you check availability of specified video modes. The following pro
gram demonstrates this by attempting to set a medium-resolution
graphics mode with as many colors as possible.

/*
* SETVID.C
* Short QuickC program that sets a graphics video
* mode based on the available graphics adapter.
** Program list: setvid

*/
'include <stdio.h>
#include <graph.h>

main()
{

if (_setvideomode(_MRES256COLOR»
printf("VGA medium.resol~tion, 256 colors\n"):

else if (_setvideomode(-MRES16COLOR»
printf("EGA medium resolution. 16 colors\n");

(continued)

83

PART III: MOUSE PROGRAMMING INTERFACE

continued

elseff{_setvideomode{~MRES4COLORJ)

pri ntf{ "CGA mediumreso1ut10n,.4 .co1ors \n lt
) :

els~

pri ntf("Nomedium-resoluti on graphi cs mode avai 1abl e\n"):

In QuickBasic, you can use the ON ERROR statement to test for
valid video modes and available video adapters. The'SElVID.BAS
program demonstrates one way to do this:

, SETVID.BAS
• Short QuickBasic program that sets a graphics video
, mode based on the available graphics adapter.

ON ERROR GOTO ErrorTrap

• Try VGA medium resolution, 256 colors
videoMode ga 13
SCREEN videoMode

, Try EGA medium resolution, 16 colors
IF videoMode ~ OTKEN

videoMode -7
SCREEN videoMode

END IF

• Try CGA medium resolution, 4 colors
IF videoMode - 0 THEN

videoMode =r 1
SCREEN videoMode

END IF

, Clear the error trapping
ON ERROR GOTO 0

, Did we find a valid video mode?
IF videoMode THEN

PRINT "Video mode number": videoMode
ELSE

PRINT ~No medium-resolution graphics mode available"
END IF

(continued)

84

Chapter 6: Mouse Programming Interface

, All done
END

ErrorTrap:
videoMode l:l 0
RESUME NEXT

Following is a similar program in interpreted Basic. Notice that
BASICA might not support all available modes.

100 ' Short BASICA program that sets a graphics video
110 ' mode based on the available "graphics adapter.
120 '
130 ON ERROR GOT0270
140 VIDEOMODE l:l 13 .
150 SCREEN VIDEOMODE
160 IF VIDEOMODE THEN GOTO 230
170 VIOEOMODE C2 7
180 SCREE~ VIDEOMODE
190 IF VfDEOMODE THEN GOTO 230
200 VIDEOMODE l:l 1
210 SCREEN VIDEOMODE
220 '
230 IF VIDEOMODE THEN PRINT "Video mode number": VIDEOMODE
240 IF VIDEOMODE ~ n THEN PRINT "No medium-resolution mode ~vailable"

250 END
260 .,
270 VIDEOMODE l:l 0
280 RESUME NEXT

THE VIRTUAL SCREEN
To understand how the mouse interacts with the normal display ofyour
program, you must understand the concept of a virtual screen. A vir
tual screen simplifies programming for the screen resolutions available
with the various video adapters. A virtual screen can be thought of as a
grid that overlays the physical screen. As a programmer, you need to
work only with the grid coordinates on the virtual screen. The mouse
software translates the virtual-screen coordinates into the physical
screen coordinates for the current screen mode.

The mouse software interacts with the computer screen as if it
were a virtual screen composed of a matrix of horizontal and vertical
points. In Figure 6-1, the Virtual Screen column shows the number of
horizontal and vertical points in the matrix for each screen mode.

85

PART III: MOUSE PROGRAMMING INTERFACE

NOTE: The minimum size ofa virtual screen is 640 pixels by 200pixels.

Notice that most text and graphics modes have virtual-screen
dimensions of 640 by 200 pixels. This standard often simplifies the task
of programming the mouse in several graphics modes.

You can set or change the screen mode by issuing an Interrupt
10H instruction, which invokes a built-in routine in the computer's
ROM BIOS. When issuing an Interrupt 10H, you must specify a function
number and (optionally) a subfunction number that indicate the work
you want Interrupt 10H to perform.

Whenever your program calls Interrupt 10H to change the screen
mode, the mouse software intercepts the call and determines which vir
tual screen to use. The mouse software also reads the screen mode and
chooses the appropriate virtual screen whenever your program calls
Mouse Function 0 (Mouse Reset and Status) to reset default parameter
values in the mouse software.

In the following C program, the mouse driver intercepts Inter
rupt 10H during the second call to the _setvideomode function and then
hides the mouse cursor. The mouse cursor reappears after you press
a key.

'include <stdio.h)
#include <graph.h)
#include <dos.h)

void mouse(i nt *, i nt *, tnt *, int*l:

maine)
{

int ml,m2,m3,m4:

if (_setvideomode(-.MRES256COLOR»
{

printf("320 x 200\n"):
ml,=:I.O; 1* ·Reset
mouSe(~ml,,&m2 ,&m3,~m~):

mt =a 1: 1* Show
mouse(&ml,&m2.&m3,&m4l;
}

getch():, ' ",
if (....setv·t#e.ornode(__~RE.S.16COLOR)J:··'·

{
pri ntf("640 x 480\n"):

(continued)

86

Chapter 6: Mouse Programming Interface

geteh():
ml Ir:J 1:
mouse (&ml,&m2, &m3.&m4J.:
}

geteh():

void mouse(m1, m2, m3, m4)
int *ml, *m2, *m3, *m4:
{

union REGS reg:

reg.x.ax =a *m1:
reg.x.bx =a *m2:
reg.x.ex = *m3:
reg.x.dx ~ *m4:
int86(Ox33. ®, ®):
*ml = reg.x.ax:
*m2= reg.x.bx:
*m3·r.z:a reg.x.ex:
*m4 == reg.x.dx:

*/

Regardless of the screen mode, the mouse software uses a pair of
virtual-screen coordinates to locate an object on the screen. Each pair
of coordinates defines a point on the virtual screen. The horizontal
coordinate is listed first.

Many mouse functions take virtual-screen coordinates as input or
return them as output. Whenever you refer to a virtual-screen coordi
nate for a pixel or character in a mouse function, be sure the values are
correct for the current screen mode. When you first program mouse
functions, a common error is confusing physical-screen coordinates
and virtual-screen coordinates. For example, in a medium-resolution
mode (320 by 200 pixels) a horizontal mouse position of 320 pixels is at
the center of the screen rather than at the right edge. In this case, even
though there are 320 physical pixels across the screen, the virtual
screen has 640 pixels. Remember that mouse functions always refer to
virtual-screen coordinates.

The Cell Size column in Figure 6-1 lists for each mode the
minimum resolution of mouse motion in terms of the virtual screen.
Consider, for example, the 8-by-S cell size listed for mode 3 (the SO
character-by-25-line text mode). In this mode, as the cursor moves from
character to character, the returned position of the mouse changes by S

87

PART III: MOUSE PROGRAMMING INTERFACE

virtual-screen units. The character cell at the upper left corner of the
screen is located at mouse coordinates (0, 0), but when the cursor
moves to the second character cellon that line, the coordinates become
(8, 0). At the lower right character cell of the screen, the coordinates
are (632,192).

Graphics Modes
In graphics modes 6, E, F, 10, 11, and 12, and in graphics modes 5 and 6
with a Hercules Graphics Card (HGC) , each pixel on the virtual screen
maintains a one-to-one correspondence with each pixel on the physical
screen. In these modes, the full range of coordinates listed in the Vir
tual Screen column of Figure 6-1 is available.

In graphics modes 4, 5, D, and 13, the size of the physical screen is
320 by 200 pixels. The size of the virtual screen for these modes is 640 by
200 pixels, which makes the modes consistent with the other CGA
graphics modes. Notice that the horizontal coordinates for the mouse
cursor are evenly numbered. Each horizontal pixel position on the
screen represents a change of two virtual-screen units. Thus, the hori
zontal pixel positions numbered 0 through 319 on the physical screen
map to positions 0 through 638 on the virtual screen. The vertical coor
dinates are unaffected because both the physical-screen and virtual
screen coordinates are numbered from 0 through 199.

Text Modes
Text modes 2, 3, and 7 display only characters on the screen, and each
character is formed by an 8-by-8-pixel group. (See the Cell Size column
in Figure 6-1.)

When in text mode, you can't access the individual pixels in a
character, so the mouse software uses the coordinates of the pixel in
the cell's upper left corner as the character's location. Because each
character is formed by an 8-by-8-pixel group, both the horizontal and
the vertical coordinates are multiples of 8.

For example, the character in the upper left corner of the screen
has the coordinates (0,0), and the character immediately to the right
of that character has the coordinates (8, 0).

In text modes 0 and 1, as in text modes 2, 3, and 7, only characters
can appear on the screen. Note that in modes 0 and 1 each character is
a 16-by-8-pixel block. (See the Cell Size column in Figure 6-1.)

As in text modes 2,3, and 7, the mouse software uses the coordi
nates of the pixel in the cell's upper left corner as the character's

88

Chapter 6: Mouse Programming Interface

location. But because modes 0 and 1 have only one-half as many pixels
as modes 2,3, and 7, the mouse software uses horizontal coordinates
that are multiples ofl6.

For example, the character in the upper left corner of the screen
has the coordinates (0, 0), and the character immediately to the right
of the first character has the coordinates (16, 0).

In all these text modes, whether they use 40 or 80 columns, the
character cells are 8 pixels in height. This means that the vertical coor
dinates change by 8 virtual-screen units for each vertical character-cell
movement of the cursor. For example, the first character in the second
row of the screen has the coordinates (0, 8).

GRAPHICS AND TEXT CURSORS
The mouse software can display one of three cursors at a time:

• The graphics cursor, a shape that moves over images on the
screen (for example, an arrow).

• The software text cursor, a character attribute that moves from
character to character on the screen (for example, an under
score, reversed type, or a blinking square).

• The hardware text cursor, a flashing square, half-square,
or underscore that moves from character to character on
the screen.

In the graphics modes, the graphics cursor is the only cursor avail
able. The mouse software can display either of the two types of text cur
sor in the text modes. Your application program might change the
cursor type, shape, or other attributes "on the fly," so it's a good idea to
hide the cursor temporarily while changes are made.

Functions 9 (Set Graphics Cursor Block) and 10 (Set Text Cursor)
let you define the characteristics of the cursors in your application pro
grams. You can define the characteristics yourself, or you can apply the
characteristics of the sample cursors provided in this book. For more
information about the sample cursors, see the descriptions of functions
9 and 10 in Chapter 8, "Mouse Function Calls."

The Graphics Cursor
The graphics cursor, which is used when the video adapter is in one of
the graphics modes, is a block of individual pixels. In modes 6, D, E, F,
10, 11, and 12, and modes 5 and 6 with an HGC, the cursor is a 16-by-16

89

PART III: MOUSE PROGRAMMING INTERFACE

square that contains 256 pixels. In modes 4 and 5, the cursor is an
8-by-16 square that contains 128 pixels.

As you move the mouse, the graphics cursor moves across the
screen and interacts with the pixels directly under it. This interaction
determines the cursor shape and background.

Screen Mask and Cursor Mask
For each graphics mode, the interaction between the screen pixels and
the cursor pixels is defined by two 16-by-16-bit arrays: the screen mask
and the cursor mask. The screen mask determines whether the cursor
pixels are part of the shape or part of the background. The cursor mask
determines how the pi~elsunder the cursor contribute to the color of
the cursor when the video adapter is in text mode.

In your application programs, you can specify the shapes of the
screen mask and cursor mask by defining the shapes as arrays and pass
ing these arrays as parameters in a call to Function 9 (Set Graphics Cur
sor Block). For more information about Function 9, see Chapter 8,
"Mouse Function Calls."

Mask interaction in modes 4 and 5. The interaction between the
screen mask and the cursor mask differs somewhat between modes 4
and 5 and the rest of the graphics modes. In modes 4 and 5, each pair
of bits in the masks represents one pixel on the screen. The graphics
cursor masks are always defined as 16-by-16-bit squares; however, in
modes 4 and 5 the cursor appears as an 8-by-16 rectangle of screen
pixels. This two-to-one mapping causes each 2-bit pair of masks to
represent one screen pixel. In all other graphics modes, one mask
bit represents one pixel on the screen.

To create the cursor, the mouse software operates on the data in
the computer's screen memory that defines the color of each pixel on
the screen. First, each bit in the masks expands to match the number of
bits in video memory required for each pixel's color information. For
example, in mode D each screen pixel requires 4 bits to produce one of
16 possible colors. In this case, each 1 in the masks expands to 1111 and
each 0 expands to 0000. Other graphics modes result in different
amounts of this bit expansion. Mode 4 (2 colors) doesn't require ex
pansion, whereas mode 13H (256 colors) requires that each mask bit
expand to 8 bits.

The mouse software then logically ANDs each of these bit groups
with the bit group for the associated screen pixel, which allows the
pixel color to remain unaltered wherever the screen-mask bit is 1. It also

90

Chapter 6: Mouse Programming Interface

allows a new color setting wherever the screen-mask bit is o. The pixel is
blocked by a 0 bit and allowed through by a 1 bit.

Finally, the pixel bits are XORed with the expanded bit groups
from the cursor mask. Where the cursor mask is 0, the pixels are un
altered. Where the mask is 1, the color bits are inverted. The result is an
inversion of the color information for the pixel. Most commonly, the
screen mask is 0 and the cursor mask is 1 wherever the cursor image is
shown, resulting in a solid, bright white image. Careful manipulation of
the screen and cursor masks and of the color palette information lets
you create transparent or colorful graphics cursors.

Figure 6-2 shows how these operations affect each screen bit.

If the
screen- And the cursor- The resulting
mask bit is mask bit is screen bit is

0 0 0

0 1 1

1 0 Unchanged

1 1 Inverted

Figure 6-2. This tabk shows how the screen-mask bit and the cursor-mask
bit affect the screen bit.

In modes 4 and 5, each pair of mask bits maps to one screen pixel,
resulting in a slightly different cursor creation. Each screen pixel re
quires 2 bits of color information. These 2 bits logically AND and XOR
with the screen mask bit pair and the cursor mask bit pair to form the
cursor. Note that you should set each pair of mask bits to the same
value to prevent the cursor image from bleeding around the edges. You
can see this bleeding effect as a magenta or cyan (blue) fringe on the
default cursor arrow when in mode 4 or 5.

Figure 6-3 on the following page depicts the screen and cursor
masks for the default graphics cursor. The 1's in the screen mask let the
background show through; the O's hide the background pixels. The 1's
in the cursor mask indicate bright white pixels composing the cursor
image; the O's let the background show through unaltered.

Mask interaction in modes Eand 10. In modes E and 10, as in modes 6
and F, each bit in the screen mask and cursor mask corresponds to a
pixel in the cursor block.

91

PART III: MOUSE PROGRAMMING INTERFACE

Screen·· Mask

1001111111111111
1000111111111111
1000011111111111
1000001111111111
1000000111111111
1000000011111111
1000000001111111
1000000000111111
1000000000011111
1000000000001111
1000000011111111
1000100001111111
1001100001111111
1111110000111111
1111110000111111
1111111000111111

0011100000000000
0011110000000000
0011111000000000
0011111100000000
0011111110000000
0011111111000000
0011111000000000
0011011000000000
0010001100000000
0000001100000000
0000000110000000
0000000110000000
0000000000000000

Figure 6-3. The default graphics-mode screen and cursor masks.

The cursor mask and the screen mask are stored in off-screen
memory, and each plane has its own identical copy of the cursor mask
and screen mask. Therefore, for each plane, the resulting screen bit (as
shown in Figure 6-2) is actually the bit used in the color lookup table on
the EGA.

In EGA and VGA graphics modes, the color information is kept in
lookup tables. This means that the pixel-color information bits repre
sent an index to a table of predefined colors. By changing the colors in
this table, you can change the color of the cursor. For more informa
tion about changing colors, see the Basic PALETTE statement or the C
_remappalette function in your product's language reference manual.

The Graphics-Cursor Hot Spot
The graphics-cursor location is the point on the virtual screen that
coincides with the cursor's hot spot. You can set the hot spot at any
virtual-screen coordinates up to ±127 units from the upper left corner
of the screen-mask and cursor-mask definitions. This means that you
can set the hot spot at a visible cursor pixel location or at an invisibk
pixel location where the background is visible. The cursor appears on
the screen relative to the hot spot.

Vou define the hot spot in the cursor block by passing the horizon
tal and vertical coordinates of the point to Function 9. For all graphics

92

Chapter 6: Mouse Programming Interface

modes, the coordinates are relative to the upper left corner of the cur
sor block. In most cases, the hot spot is set in the range 0 through 15,
the area where the cursor pixel masks are defined; however, you can
define the hot spot anywhere in the range -128 through 127.

The Text Cursors
Two types of text cursors are available for use with the mouse. The soft
ware text cursor affects the appearance of the entire character cell,
altering the character's attributes. The hardware text cursor comes
with the computer hardware; it usually contains a block of scan lines in
a portion of the character cell. Choosing one type of text cursor instead
of the other is largely a matter of aesthetic preference. Both are fast
and efficient.

The Software Text Cursor
You use the software text cursor when the video adapter is in one of the
text screen modes. The software text cursor affects how characters ap
pear on the screen. Unlike the graphics cursor, the software text cursor
usually doesn't have a defined shape. Instead, it displays its position by
changing the character attributes (such as foreground and background
colors, intensity, and underscoring) of the character directly under it;
however, if the cursor does have a defined shape, it takes the shape of
one of the 256 characters in the ASCII character set.

The screen and cursor masks control which attributes are altered
and whether the ASCII code for the character itself is modified.

The screen mask and cursor mask. Earlier in this chapter, you read
about the relationships of screen and cursor masks to the graphics cur
sor. Software text cursors also use screen and cursor masks. In fact, the
effect of the software text cursor on the character beneath it is defined
by the screen mask and the cursor mask. The screen mask is a 16-bit
value that determines which of the character's attributes are preserved,
and the cursor mask is a 16-bit value that determines how these at
tributes change to yield the cursor.

To create the cursor, the mouse software operates on the data that
defines each character on the screen. The mouse software first logically
ANDs the screen mask and the 16 bits of screen data for the character
currently beneath the cursor. The mouse software then logically XORs
the cursor mask with the result of the AND operation, producing the
cursor's appearance on the screen.

93

PART III: MOUSE PROGRAMMING INTERFACE

The format of the screen data for each character is shown in
Figure 6-4. Each of the 16 bits shown has a purpose, as follows:

Bif(s)

15
12-14
11
8-10

0-7

Purpose

Sets blinking or nonblinking character

Sets the background color

Sets high intensity or medium intensity

Sets the foreground color

ASCII value of the character

The range ofvalues for each field depends on the characteristics
of the display adapter installed in your computer. (See the documenta
tion that came with your display adapter for details.)

Bit: 15 14 12 11 10 8 7 0

LJ [:J I I
I II

II
Odd address Even address

Figure 6-4. Dataformat for each screen character in text mode.

The screen mask and cursor mask are identical in structure to the
character structure shown in Figure 6-4. The value contained in each
field of the screen mask and cursor mask defines a character's new at
tributes when the cursor is over that character. For example, to invert
the foreground and background colors, be sure the screen mask and
cursor mask have the values shown in Figure 6-5. (The software text
cursor defined in this figure is the default cursor before Function 10
(Set Text Cursor) is called to redefine it.)

Bit:

Screen mask:

Cursor mask:

7 0

1 1 1 1 1 1 1 1 =&H77FF
o 0 0 0 0 0 0 0 = &H7700

Figure 6-5. Sampk screen-mask and cursor-mask values.

In your application programs, you can define the values of the
screen mask and cursor mask by passing their values as parameters to
Function 10 (Set Text Cursor). For more information about Function
10, see Chapter 8, "Mouse Function Calls."

94

Chapter 6: Mouse Programming Interface

The text-cursor location is determined by the virtual-screen coor
dinates of the character beneath the cursor. The text cursor doesn't
have a hot spot.

The Hardware Text Cursor
The hardware text cursor is another type of text-mode cursor. You can
also set a hardware text cursor by using Function 10.

The hardware text cursor is the computer's cursor-the one that
appears on the screen after the MS-DOS system-level prompt. The
mouse software lets you adapt this cursor to your needs.

Scan lines. The hardware cursor is 8 pixels in length and 8 to 14 pixels
in height. Each horizontal set of pixels forms a line called a scan line.
The cursor contains 8 to 14 scan lines.

Your program turns scan lines on or off. If a scan line is turned
on, it appears as a flashing bar on the screen. If a scan line is turned off,
it has no effect on the screen. Your program defines which lines are on
and which are off by passing the numbers of the first and last lines in
the cursor to Function 10.

The number of scan lines in the cursor depends on the display
adapter installed in your computer. For example,

• Ifyour computer has a Color/Graphics Adapter, the cursor
contains 8 lines, numbered 0 through 7.

• Ifyour computer has a Monochrome Display Adapter, the cur
sor contains 14 lines, numbered 0 through 13.

• Ifyour computer has an Enhanced Graphics Adapter and a
Color Display, the cursor contains 8 lines, numbered 0
through 7.

• Ifyour computer has an Enhanced Graphics Adapter and an
Enhanced Color Display, the cursor contains 8 lines, numbered
othrough 7.

THE INTERNAL CURSOR FLAG
Regardless of the type of cursor displayed, the mouse software main
tains an internal flag that determines whether the cursor appears on
the screen. The value of this flag is always 0 or less. When the value of
the flag is 0, the mouse software displays the cursor. When the value
of the flag is less than 0, the mouse software hides the cursor.

95

PART III: MOUSE PROGRAMMING INTERFACE

Application programs cannot change the value of this flag di
rectly. To change the flag's value, your program must call Functions 1
(Show Cursor) and 2 (Hide Cursor). Function 1 increments the flag;
Function 2 decrements it. Initially, the flag's value is -1, so a call to
Function 1 displays the cursor. A call to Function 42 (Get Cursor Hot
Spot) returns the value of this flag.

Your program can call Function 1 or Function 2 any number of
times, but if it calls Function 2, it must subsequently call Function 1 to
restore the flag's previous value. For example, if the cursor displayed on
the screen and your program calls Function 2 five times, it must also
call Function 1 five times to return the cursor to the screen.

Ifyour program calls Function 1 to display the cursor, any addi
tional calls to Function 1 have no effect on the internal cursor flag;
therefore, one call to Function 2 always hides the cursor. In addition,
your program can call Function 0 (Mouse Reset and Status), or it can
change screen modes to reset the flag to -1 and hide the cursor.

READING THE MOUSE
You can obtain input from the mouse by directing your program to
read the status of the mouse buttons and check if (and how far) you
have moved the mouse. Your program can also check how many times
you pressed or released a particular button, and it can adjust the mouse
movement sensitivity.

Mouse Buttons
Function 5 (Get Button Press Information) and Function 6 (Get But
ton Release Information) read the state of the mouse buttons. They
return a count of the number of times the buttons are pressed and
released. The button status is an integer value in which the first 2 bits
are set or cleared. Bit 0 represents the state of the left-hand button, and
bit 1 represents the state of the right-hand button. If a bit is set (equal to
1), the button is down. If a bit is clear (equal to 0), the button is up.

The mouse software increments a counter each time the corre
sponding button is pressed or released. Functions 5 and 6 can read the
contents of these counters. The software sets the counter to 0 after you
reset the mouse (Function 0) or after you read a counter's contents.

Mouse Unit of Distance: The Mickey
The motion of the mouse track ball translates into values that express
the direction and duration of the motion. These values are given in
a unit of distance called a mickey, which is approximately Y200 inch

96

Chapter 6: Mouse Programming Interface

(Y400 inch for a 400 ppi mouse). When you move the mouse across a
desktop, the mouse hardware passes a horizontal and vertical mickey
count-that is, the number ofmickeys the mouse ball rolled in the
horizontal and vertical directions-to the mouse software. The mouse
software uses the mickey count to move the cursor a certain number of
pixels on the screen.

You can use Function 11 (Read Mouse Motion Counters) to read
the relative motion counters kept by the mouse software. After the
counters are read, they are reset to o. You can also obtain the absolute
position of the mouse as maintained by the mouse software by calling
Function 3 (Get Button Status and Mouse Position).

Mouse Sensitivity
The number of pixels that the cursor moves doesn't always correspond
one-to-one with the number of mickeys the track ball rolls. The mouse
software defines a sensitivity for the mouse, which is the number of
mickeys required to move the cursor 8 pixels on the screen. The sen
sitivity determines the rate at which the cursor moves.

In your application programs, you can define the mouse's sen
sitivity by passing a mickey count to Function 15 (Set Mickey/Pixel
Ratio) or by calling Function 26 (Set Mouse Sensitivity). The default
mickey count is 8 mickeys to 8 pixels, but the mickey count can be any
value from 1 through 32,767. For example, ifyou pass a count of 32, the
sensitivity is 32 mickeys per 8 pixels. In this case, the cursor moves at
one-fourth the speed of the default setting.

CALLING MOUSE FUNCTIONS
Before calling any mouse functions, your program should verify that
the mouse driver has been installed. (See "Testing for Installed
Mouse" later in this chapter.) All example code in the function de
scriptions assumes that the mouse driver has been installed.

You can use either of two methods-MOUSE.LIB and MS-DOS
Interrupt 33H-to communicate with the mouse driver from within a
program. All mouse function calls are available by using either
method. (See "The Mouse Programming Interface" in Chapter 2.)

MOUSE.LIB offers eight interfaces, four that support C language
calling conventions and four that support Pascal calling conventions.
(QuickBasic uses Pascal calling conventions.) Within each group of
four is an interface for each of four different memory models: Small,
Medium, Compact, and Large.

97

PART III: MOUSE PROGRAMMING INTERFACE

Interface Convention Model

cmouses C Small

cmousem C Medium

cmousec C Compact

cmousel C Large

mouse Pascal Small, Medium

mouses Pascal Small

mousem Pascal Medium

mousel Pascal Large, Compact

For Pascal calling conventions with small and medium memory models, the interfaces
mouse, mouses, and mousem can be used interchangeably.

All MODSE.LIB interfaces require four parameters. In the mouse
function descriptions in this book, the parameter names Ml%, M2%,
M3%, and M4% act as placeholders. Following ~he standard notation
for interpreted Basic and QuickBasic, the percent sign (%) emphasizes
that the passed parameters are 16-bit integers. In C and QuickC, the pa
rameters are short integers named Ml, M2, MJ, and M4.

For almost all mouse function calls using MODSE.LIB, values are
assigned to Ml%, M2%, MJ%, and M4%, and then the parameters are
passed by reference to the MODSE.LIB interface. (Functions 9,12,16,
22, 23, 24, and 51 treat M4 %differently; see the function descriptions
in Chapter 8 and "Passing Buffer Pointers" later in this chapter for
details.)

The MS-DOS Interrupt method of calling mouse functions uses
the AX, BX, ex, and DX registers to pass parameters that correspond
to Ml %, M2 %, M3 %, and M4 %. In a few special cases, ES and SI are
also used.

The example code in the function descriptions in Chapter 8
assumes the variable and types are defined as in the templates that fol
low (for example, RegType for QuickBasic and iReg and oReg for C and
QuickC).

To initialize the variables MOUSESEG and MOUSE used in the
interpreted Basic template, execute the interpreted Basic code listed
in the section "Testing for Installed Mouse" later in this chapter before
making any interpreted Basic program calls to the mouse. Also, for
brevity in the function descriptions in Chapter 8, the two DEF SEC

lines in the interpreted Basic template are not repeated in the example
code shown.

98

Chapter 6: Mouse Programming Interface

Interpreted Basic

110 Ml% == number of the function to be cal ed
120 M2%.==valueof.secondparameter
130 M3%== value of third parameter
140 M4% == value of fourth parameter
150 OEFSEG == MOUSESEG
160 CALL MOUSE(Ml%, M2%,M3%. M4%)
170 OEF SEG • Restore Basic data segment
160 • Ml%. M2%, M3%. M4% now contain return values

The QuickBasic template that follows assumes a small or medium
memory model. To use a compact or a large model, change mouse to
mousel.

QuickBasic

, Using MOUSE.LIB interface
Ml% == number of·function.to be called
M2% == value of second parameter
M3% == value of third parameter
M4% 1:1 value of fourth parameter
mouse(Ml%. M2%. M3%. M4%)
, Ml%, M2%, M3%. M4% now contain return values

QuickBasic

•• Usi ngMS-OOS Interrupt 33H
OEFINT A-Z
TYPE RegTypeX

ax AS INTEGER
bx AS INTEGER
cx AS INTEGER
dx AS INTEGER
bp AS INTEGER
si AS INTEGER
di AS INTEGER
flags AS INTEGER
ds AS INTEGER
es AS INTEGER

END TYPE

(continued)

99

PART III: MOUSE PROGRAMMING INTERFACE

continued

DECLARE SUB InterruptX (i ntnum%, i Reg·. ASRegTypeX,oReg AS RegTypeX)
DIM iReg AS RegTypeX
DIMoReg AS RegTypeX
iReg.ax>==numberof.t.he.functton tobecaJled
i Reg.bx Cl

• val ueof second parameter
iReg.cx Cl value of third parameter
iReg.dx== value of fourth parameter
InterruptX &H33,iReg, oReg
'. •cReg.ax, oReg.bx,. oReg.ex,oReg. dxnowcontain.return

The C/QuickC template that follows assumes a small memory
model. To change to another memory model, simply change the define
statement.

C/QuickC

/* Using MOUSE.LIB */
Iidefine mouse(a,b,e,d) emouses(a,b,e,d)
int MI, M2, M3, M4:
Ml 1m .number of function to be called:
M2 ClValue of second parameter:
M3 ~ value of third parameter;
M4 = value of fourth parameter:
mouse(&MI, &M2, &M3, &M4):
/* MI, M2, M3, M4now contatn r'eturn values */

C/QuickC

/* ·UslngMS-DOS InterruptOx33* I
Iii nelude <dos. h>
union REGS iReg,oReg;
iReg.x.ax CI number of functIon to be called:
iReg.x.bx== value of second parameter:
1Reg.x.cx =- value of thi rdparamet.er:
iReg.x.dx Ir.1 value of fourth parameter:
int86(Ox33, &iReg, &oReg):
/* oReg.x.ax, oReg.x.bx, oRt!g.x.cx, oReg.x.dx cont.afn

100

Chapter 6: Mouse Programming Interface

MASM

; Using MS-DOS Interrupt 33H
mov aX,number of function to be called
mov hX,value of second parameter
movcx,value of third parameter
movdx,value of fourth parameter
int 33h
; ax, bx, cd, dx now contain return values

Ifyou use the MS-DOS Interrupt method for Functions 9,12, 22,
23, 24, 41, 51, and 52, additional information is passed in register ES,
and for Functions 43, 44, and 45, additional information is passed in
registers ES and SI. To pass this information in QuickBasic, use the
definition for iRegin the previous example and move the information
into iReg.es and iReg.si. To pass this information in C and QuickC, read
the current values of the segment registers by using segread, put the ad
ditional information into segreg.es and segreg.si, and then use int86x as
shown in the following example.

C/QuickC

/* Using MS-DOS Interrupt Ox33 to pass additional information */
#include <dos.h)
union REGS iReg,oReg;
struct SREGS segregs;
iReg.x.ax ~ number of function to be called;
iReg.x.bx ~ value of second parameter;
iReg.x.cx == value of third parameter;
iReg.x.dx tall value of fourth parameter;
segread(&segregs);
segreg.es = additional information;
segreg.si = additional information;
int86x(Ox33, &inregs, &outregs, &segreg);
/* oReg and segreg contain return values */

If the function description doesn't specify an input value for a pa
rameter, you don't need to supply a value for that parameter before
making the function call. If the function description doesn't specify an
output value for a parameter, the parameter's value is the same before
and after you make the function call.

101

PART ,,,: MOUSE PROGRAMMING INTERFACE

NOTE: The rrwuse software doesn't check pararn£ter input values, so be sure the
values you assign to the pararn£ters are correct for the given function and screen
rrwde. Ifyou pass the wrong number ofparameters Or assign incorrect values, the
result will be unpredictable.

PASSING BUFFER POINTERS
Functions 9,16,22,23, and 51 pass a pointer to a buffer as M4%.

Ifyou are using C/QuickC and the MOUSE.LIB method to com
municate to the mouse driver, use the following memory-model
independent code to pass a pointer to the buffer as the fourth parameter.

C/QuickC

/* Memory Model Independent code for passing buffer pointer */
int _far *M4FPTR; /* M4FPTR is a far pointer to */
M4FPTR ~ (int _far *)buffer; /* a buffer */
/* Variable &MFPTR can now be passed as the fourth */
/* parameter in a call to MOUSE.LIB for any memory model */

Ifyou are using C/QuickC or MASM and the MS-DOS Interrupt
method to communicate to the mouse driver, pass the offset of the
buffer in the DX register and the segment of the buffer in the ES
register.

C/QuickC

/* Passing buffer pointer to MS-DOS Interrupt */
iReg.x.ax == •••
iReg.x.bx 1:1 •••

i Reg. x.ex - ...
iReg.x.dx = FP_OFF(mptr):
segregs. es lID ·FP_SEG(.mptr •••• J;
tnt86x(Ox33. &iReg, &oReg.&segregs};

MASM

movax, ...
mov bx •...
movcx, ...
mov dx,OFFSET buffer
mov ex SEG buffer
; nt33h
i ••nt86x(·Ox33.,

102

Chapter 6: Mouse Programming Interface

TESTING FOR INSTALLED MOUSE
Ifyou use the MOUSE.LIB method to communicate to the mouse, call
Function 0 (Mouse Reset and Status) to verify that the mouse software
and hardware are installed. Ifyou have installed the mouse hardware
and software correctly, Function 0 returns M1% =-1. (With mouse ver
sion 6.25 or later, if the driver is installed correctly but you later discon
nect a serial or PS/2 mouse, subsequent calls to Function 0 will return
M1% =0.) Ifyou didn't install the hardware and software correctly,
Function 0 returns M1 % = o.

Ifyou use the MS-DOS Interrupt method to communicate to the
mouse driver, you need to do the following: First check to see that the
mouse-driver software was installed correctly by verifying that the vec
tor for Interrupt 33H does not point to 0:0 or to an IRET instruction.
Next check to see that the mouse hardware is installed by using Func
tion 0 (Mouse Reset and Status). Optionally, you can then include a
call to Functions 36 (Get Driver Version, Mouse Type, and IRQ
Number) and 50 (Get Active Advanced Functions) to check the version
of the mouse driver that is installed and to verify that the mouse func
tions you will use later in the application program are supported by the
installed mouse driver.

Be sure your program issues a message if the mouse driver is not
installed properly or (assuming you used Functions 36 and 50) if the
mouse driver does not support the mouse functions you will use later.

Each of the following program fragments verifies mouse installa
tion and displays a message stating whether the mouse driver and
mouse were found.

Interpreted Basic communicates with the mouse driver directly
without using MOUSE.LIB or the MS-DOS interrupts. The code that fol
lows should appear in every interpreted Basic program. It determines
the interrupt vector for MS-DOS Interrupt 33H and, if the mouse driver
is installed, initializes MOUSESEG to the segment for the mouse driver
and MOUSE to the offset of the second byte of the mouse driver. The
second byte is a special entry point to support a call from interpreted
Basic, which passes it parameters on the stack. Only interpreted Basic
programs should use this entry point. All mouse function calls are then
made by setting the segment to MOUSESEG, calling MOUSE, and reset
ting the segment as shown in the previous example.

103

PART III: MOUSE PROGRAMMING INTERFACE

Interpreted Basic

100 ' Verify Mouse Driver &~ouse

110'
120·'·"'.'··'< Determi nedmOtllSe ..·.Or1 v.er'·.·· ·.j··...~ltell\ruIPtajrJarE!Ss.
1300EF·.··SEG
140 MOUSEG 1:1 256* PEEK(207)+
150 MOUSE ~ 256 *PEEK(205) + PEEK(204) + 2
160 DEF S£G - MOUSEG
170'
180 ' Check if iriterrupt code loaded
190 IF (MOUSEG% OR (MOUSES - 1) AND (PEEK(MOUSE
200 PRINT "Mouse ~river not found"
210 DEE<SEG ',Restore Basic datasegmef)t
220.··ENO
230 '
240' Mouse Reset and Status
250 MIS 1:1 0
260 CALL MOUSE(Ml%, M2%,M3%, M4%J
270 OfF S£G ' Restore Basic data segment
280 '
290 ' Was mouse hardware found?
300 IF M1%~ -1 THEN 340
310 PRINT "Mouse not found"
320 END
330 '
340 PRINT "Mouse driver and mouse found and reset"
350.END

QuickBasic

, Ver1fy Mouse Ori ver&Mous~.Insta lIed
• Determine mouse-driver interrupt address
DEF SEG ~ 0
mouseseg ~ 256 * PEEK(207) + PEEK(206)
mous,e9fs. ~256 .. *P~£K(205)~}eEEK(2041...... ~~
DEFSEG=:a mouseseQ\ .• '.'.:. .••••·••..•••• :Y:
IF' (mouseseg - O'AND mouseofs =0) .ORPEEK(mouseofs) =207 .. THEN

PRINT "Mouse driver not found"
SYSTEM

END>~f .
'Mouse Resetatlcf:'Status
i Reg.ax 1:1I 0
Interrupt &H33, iReg, oReg

(continued)

104

Chapter 6: Mouse Programming Interface

IF oReg.ax- -1 THEN
PRINT "Mouse,dri ver and mouse 'foundatidreset",<

ELSE
PRINT "Mouse not found"
SYSTEM

END IF

C/QuickC

/* Verify Mouse Driver &Mouse Installed*/
Hinc1ude <stdio.h>
Hinc1ude <std1ib.h>
Hinclude <dos.h>
rna; n()
{

105

PART III: MOUSE PROGRAMMING INTERFACE

MASM

: Ver.ifi.MouseDriver&M~u.selrlstalled
print MACRO string

mov dx,OFFSET string
mov ah,9
tnt 2lh
ENDM
DOSSEG
.MODEL SMALL
.STACK lOOh
•DATA

mesgO db "Mouse driver not found", l3~ 10, "$"
mesgl db "Mouse not found~, 13, 10, "$"
mesg2 db "Mouse driver and mouse found and

.CODE
:.Setup OS fortbedata segment

start: mov ax, @DATA
mov ds,ax
: Determine mouse-driver interrupt address
mov ax,3533h : Get Interrupt 33H vector
tnt 2lh
mov aX,es
orax,bx
Jz no_driver ; esandbxboth 0 ?
cmp byte ptr es:[bx], 207
jne reset

no_dri. ver:
print mesgO
:Exi t wi th a code "of 1
moval,l
jmp short exit

reset: : Mouse Reset and Status
xor aX,ax ; Mil = 0
int 33h.
: Was mouse found?
orax,ax
ane found
: Mouse not
print mesgl
: Exit with a cod. of 1
moval,l
jmp short exit

(continued)

106

Chapter 6: Mouse Programming Interface

107

Chapfer7

Mouse Programming
Considerations

This chapter covers some basic programming"considerations for add
ing mouse support to your application programs. It discusses specific
uses for commonly used mouse functions as well as functions that ad
dress more advanced programming issues. The last section presents a
list of mouse functions categorized by operation.

SETTING UP YOUR SYSTEM
The Microsoft mouse driver provides 51 functions for adding mouse
support to your application program. Mter you load the mouse
driver-either by loading MOUSE.COM from the MS-DOS command
prompt or from AUTOEXEC.BAT or by loading MOUSE.SYS with a
DEVICE directive in CONFIG.SYS-you can include these functions in
your application program by calling MS-DOS Interrupt 33H with the
appropriate parameters or by using the mouse library, MOUSE.LIB.

Although using these functions is fairly straightforward, to do so
you must consider several aspects of the system on which your applica
tion is running. The most important considerations are the type of
video hardware installed and what modes it is capable of displaying.
Mouse functions that draw, display, and move the cursor are heavily
dependent on the current video display mode. Other considerations
include the version of the mouse driver, the language setting for the
country in which the application program is being used, and whether
the application program using the mouse is a terminate-and-stay
resident (TSR) program.

109

PART III: MOUSE PROGRAMMING INTERFACE

Although there are no hard-and-fast rules about where you must
place mouse support within your program, you should include certain
mouse functions early in your program to ensure that you installed the
mouse driver properly and that its version supports the mouse func
tions you plan to use in your application. In addition, because the
mouse driver works closely with the video adapter, be sure your applica
tion program communicates with the video adapter by using the BIOS.
You should not program the video hardware directly.

You make mouse function calls either by using Interrupt 33H or
by calling the MOUSE.LIB library. Both methods offer identical func
tionality and differ only in how you access th.em. See Chapter 2, "Over
view of Mouse Programming," for more information; however, note
that application programs calling the MOUSE.LIB must treat the func
tions as external.

You must include four variables when making a mouse function
call. The first variable identifies the function number; the other three
provide any additional information required by that function. The
mouse function returns information in these same variables. You
declare the variables as you would any other integer-value variables
within your program.

Testing for the Mouse Driver
After declaring any necessary variables and functions, you should
check that the mouse driver was installed correctly by verifying that the
vector for Interrupt 33H does not point to 0:0 or to an IRET
instruction. You can also include a call to Function 36 (Get Driver Ver
sion, Mouse Type, and IRQ Number) to check the version number of
the installed mouse driver. If the version number is high enough (7.0 or
later), a call to Function 50 (Get Active Advanced Functions) is neces
sary to determine which of the functions beyond 36 are available.

NOTE: Be sure your program issues an error rru!Ssage that sends a warning if the
mouse driver is not instalkd properly or if the mouse-driver version is incapable of
supporting the mousefunctions you plan to use later.

You should then include Function 0 (Mouse Reset and Status) in
your program to reset the mouse driver. A call to Function 47 (Mouse
Hardware Reset) performs the same reset function as Function 0, but it
doesn't reset the software values, only hardware values.

110

Chapter 7: Mouse Programming Considerations

In most cases, you can now call Function 1 (Show Cursor) in your
application program to display a cursor. The cursor that appears
reflects the. current mode of the video adapter: The mouse driver dis
plays a square if the video adapter is in text mode or a solid arrow if the
video adapter is in graphics mode. Ifyour video adapter is in a mode
that is not supported by the mouse driver, the result is unpredictable.
For example, the cursor might not appear at all, but your application
might continue to run normally; or your system might lock up. (See
"Supported and Unsupported Video Modes" later in this chapter.)

Before calling Function 1 (Show Cursor) to display the cursor, you
can first call other mouse functions to perform tasks such as modifying
the shape of the cursor or defining an area to which cursor movement
will be restricted. Although you can include these calls at any point in
the program, you might want to do so early to avoid making changes
in the program later.

Controlling the Cursor
As explained in Chapter 6, "Mouse Programming Interface," you can
include in your program Function 9 (Set Graphics Cursor Block) and
Function 10 (Set Text Cursor) to modify the shape of any graphics or
text cursor. In addition, you can use Function 7 (Set Minimum and
Maximum Horizontal Cursor Position) and Function 8 (Set Minimum
and Maximum Vertical Cursor Position) to define a boundary for cur
sor movement on the screen. You can also use Function 16 (Conditional
Off) to define an area of the screen in which the cursor will disappear
if moved into that area.

To turn off the cursor completely without losing any of the cursor
attributes you've set in your program, you can use Function 2 (Hide
Cursor). Note that after your program hides the cursor, the mouse
driver continues to keep track of mouse movements and button presses.
Ifyou include in your program mouse functions that continue to track
mouse movements and button presses when the cursor is turned off,
you can use Function 1 (Show Cursor) to display the cursor in the up
dated position. You can also use Function 4 (Set Mouse Cursor Posi
tion) to position the cursor before you display it.

Other functions let you control the relationship between mouse
movement and cursor movement. Function 15 (Set Mickey/Pixel Ratio)
adjusts the ratio of mouse movement to cursor movement, and Func
tion 19 (Set Double-Speed Threshold) defines the level of mouse

111

PART III: MOUSE PROGRAMMING INTERFACE

movement speed that causes mouse sensitivity to double. Note that
Function 19 is a "quick-and-dirty" method for providing crude ac
celeration. You can manipulate full acceleration curves by calling Func
tion 43 (Load Acceleration Curves), Function 44 (Read Acceleration
Curves), and Function 45 (Set/Get Acceleration Curve).

A single call to Function 26 (Set Mouse Sensitivity) is equivalent to
separate calls to Functions 15 and 19. In most cases, you'll find it's easier
to use Function 26 than to use the two separate functions. Calling
Function 27 (Get Mouse Sensitivity) lets your program check the cur
rent mickey-per-pixel ratio and double-speed threshold, allowing the
program to use Function 26 to reset values if necessary.

Determining Mouse Position and Button-Press Status
To use the mouse as more than a pointing device, you need to request
from the mouse driver status information about mouse position and
button presses. Your program can then use the information to control
program flow by augmenting the user interface.

You can use Function 3 (Get Button Status and Mouse Position)
to determine whether the user pressed a mouse button and, if so, the
position of the cursor when the button was pressed. This information
lets your program perform tasks such as highlighting text, selecting on
screen menu items, and creating shapes.

Function 5 (Get Button Press Information) and Function 6 (Get
Button Release Information) return mouse-movement and button
press status. Functions 5 and 6 are similar to Function 3 except that
they maintain a buffer to keep a cumulative count of button presses or
releases since those functions were last called. Function 3 checks the
button-press status at the time of the function call. Functions 5 and 6
let you build a "click-ahead" buffer into your program in the same way
as the keyboard buffer lets you use a type-ahead buffer.

Using Function 11 (Read Mouse Motion Counters) lets your pro
gram keep track of relative mouse motion, as opposed to absolute
screen position. In other words, Function 11 can indicate how far the
user moved the mouse since the last call to Function 11.

112

Chapter 7: Mouse Programming Considerations

Function 39 (Get Screen/Cursor Masks & Mickey Counts) lets
your program determine raw counts for accumulated Plickey counts
since the last time the mouse was polled for movement. These counts
are unaffected by acceleration tables, double-speed threshold, or sen
sitivity settings.

BallPoint Support
All functions but one operate in the same way for the Microsoft mouse
and the Microsoft BallPoint mouse. Call Function 48 (Set/Get Ball
Point Information) to control the variables unique to the BallPoint
direction orientation and button definition.

ADVANCED TOPICS
Several mouse functions address specific programming issues not nor
mally encountered in an average program. The following sections
discuss these functions.

Querying the Driver
You can use a variety of functions to determine the status of the mouse
driver, including Function 37, Function 38, Function 39, Function 42,
Function 49, and Function 51. Accessible information includes mouse
type, cursor type, interrupt rate, internal flags, xy-coordinate
minimums and maximums, screen-mask values, cursor-mask values,
horizontal and vertical raw mickey counts, and switch settings. See
specific function descriptions in Chapter 8 for further details.

Video Modes
Due to the close interaction between the mouse driver and the video
adapter, you need to take special steps ifyour program performs ad
vanced video techniques. (For EGA programming considerations, see
Chapter 10, "Writing Mouse Programs for IBM EGA Modes.")

. 113

PART III: MOUSE PROGRAMMING INTERFACE

When your program changes video modes, the manner in which
the system uses video memory can change substantially. To ensure that
the cursor does not interfere with other portions of memory, you
should first include Function 2 (Hide Cursor) in your program to hide
the cursor. You can then change the video mode within the program
and use Function 1 (Show Cursor) to display the cursor again. Taking
these steps reduces the possibility of interference with video memory.

(We also recommend hiding the cursor ifyou want to draw an ob
ject under the cursor in graphics mode.)

Function 40 (Set Video Mode) instructs applications to inform
the mouse driver of the currently active video mode. Legally set video
mode numbers will override any video-mode default assumptions from
the mouse driver. The application can find valid video-mode numbers
by calling Function 41 (Enumerate Video Modes).

Video Paging
Many video adapters have several pages of memory available for pro
grams to use. To accommodate this feature, include in your program
Function 29 (Set CRT Page Number) and Function 30 (Get CRT Page
Number), which report to the mouse driver which video page is active
so the driver can display the mouse cursor there.

User-Installed Mouse Interrupt Subroutines
Any mouse event that occurs as the application is running, such as a
mouse movement or a button press, generates a hardware interrupt.
The operating system detects the interrupt, suspends processing of the
currently running program, and checks the interrupt vector table for
the address of the interrupt routine, which in this case is an address in
stalled by the mouse driver when the driver was loaded. The operating
system then transfers control to the interrupt routine, which executes
and returns control to the operating system. Finally, the operating sys
tem "cleans up" the interrupt and returns control to the program that
was running.

When it executes, the interrupt routine installed by the mouse
driver first checks the call mask, a built-in table of bits that correspond
to types of mouse events, such as a mouse movement, a button press, a
button release, and so on. If the bit corresponding to the mouse event
that caused the interrupt is set to 0 (zero), the interrupt handler simply

114

Chapter 7: Mouse Programming Considerations

executes as it normally would. If the corresponding bit is set to 1, the in
terrupt handler also executes the user-written interrupt handler for
that event.

You can specify the location of an interrupt handler that you cre
ated, as well as make changes to the call mask, by using any of three
mouse functions provided for that purpose: Function 12 (Set Interrupt
Subroutine Call Mask and Address), Function 20 (Swap Interrupt Sub
routines), and Function 24 (Set Alternate Subroutine Call Mask and
Address). You can use an additional function, Function 25 (Get User
Alternate Interrupt Address), before calling Function 20 or Function
24 to determine which subroutine mask and address were set by a pre
vious call to Function 20 or Function 24.

Writing and Installing Custom Interrupt Handlers
You write and install custom interrupt handlers for one or more mouse
events ifyou want an alternate set of events to occur as the result of an
action. Doing so supplements the steps the mouse driver would nor
mally take for a mouse event.

Your first step in installing a custom interrupt handler is to write
the interrupt subroutine. You need to write the subroutine as a FAR
assembly language subroutine because it must perform an inter
segment return to the mouse driver. Next you must determine which
mouse event(s) will cause your subroutine to be used in addition to
the mouse driver's subroutine and then set the appropriate call-mask
bit(s). For each mouse event, such as a right-hand button press, the
driver checks the portion of the call mask that represents that event to
determine if that event causes the interrupt subroutine to be executed.
If so, the system executes your interrupt subroutine. Interrupt routines
cannot call any MS-DOS or BIOS interrupts because MS-DOS and the
BIOS are not reentrant; that is, they can't be suspended to call other in
stances of themselves.

To install your custom interrupt subroutine, you can use one of
three functions: Function 12 (Set Interrupt Subroutine Call Mask and
Address), Function 20 (Swap Interrupt Subroutines), or Function 24
(Set Alternate Subroutine Call Mask and Address). Note, however, that
Functions 20 and 24 have superseded Function 12 and provide more
flexibility and functionality.

Function 12. Function 12 (Set Interrupt Subroutine Call Mask and Ad
dress) replaces an existing interrupt subroutine address and call mask
with a new address and call mask. When the mask condition specified

115

PART III: MOUSE PROGRAMMING INTERFACE

by Function 12 is matched, the specified subroutine is executed. The
disadvantage of using Function 12 is that it doesn't offer a method for
the calling program to obtain the existing subroutine address and call
mask so they can be restored after the subroutine specified by Function
12 executes. For example, suppose you are writing a terminate-and-stay
resident program for the mouse and you need to install your own inter
rupt subroutine. Function 12 replaces the existing interrupt address in
the mouse driver with its own interrupt address; consequently, the pro
gram you are running is unable to call its interrupt subroutine. We
therefore strongly recommend that you use Function 20 or Function 24
rather than Function 12.

Function 20. Like Function 12, Function 20 (Swap Interrupt Subrou
tines) replaces an existing subroutine address and call mask with a new
address and call mask. Function 20 also returns to the program the pre
vious address and call mask so that the program can restore them after
it finishes with the new subroutine and call mask.

Function 24. Function 24 (Set Alternate Subroutine Call Mask and Ad
dress) sets up to three unique interrupt addresses and call masks. This
function lets you create up to three separate interrupt subroutines,
each ofwhich has its own call mask, so that your program can perform
a different action depending on which event specified by the call mask
occurs. Note that you don't need to create all three subroutines. For ex
ample, you can create only one interrupt subroutine and have the ad
dresses associated with all three call masks point to it; then any of three
unique events will cause that interrupt subroutine to execute.

Alternate subroutines set by Function 24 are always activated by a
combination of a Shift, Alt, or Ctrl key press combined with mouse mo
tion or button presses. The call mask for each call to Function 24 must
include one or more of the bits that correspond to the shift keys as well
as one or more of the bits that correspond to mouse activity.

Light-Pen Emulation
When you use Function 13 (Light-Pen Emulation Mode On), the mouse
emulates a light pen. You use this function primarily to include mouse
support for programs that have been developed for use with a light pen.
With light-pen emulation mode on, the mouse loads its cursor-position
values into the area of the system where a light pen would load its posi
tion values.

•
116

Chapter 7: Mouse Programming Considerations

NOTE: You cannot use a light pen and a rrwuse at the same time. Ifyour system
has a light pen and a mouse instalkd, you must use Function 14 (Light-Pen
Emulation Mode Off) to prevent the mouses position values from conflicting with
those ofthe light pen. By default, light-pen emulation mode is on.

Supported and Unsupported Video Modes
Figure 7-1 lists the most commonly used video modes supported by the
Microsoft mouse. To access a complete listing of all supported video
modes, call Function 41 (Enumerate Video Modes). Figure 6-1 on page
81 also offers a complete listing.

Video Screen
Mode Display Adapter Mode Resolution

0 CGA, EGA, MCGA, VGA, 3270 text 640 x 200

1 CGA, EGA, MCGA, VGA, 3270 text 640 x 200

2 CGA, EGA, MCGA, VGA, 3270 text 640 x 200

3 CGA, EGA, MCGA, VGA, 3270 text 640 x 200

4 CGA, EGA, MCGA, VGA, 3270 graphics 640 x 200

5 CGA, EGA, MCGA, VGA, 3270 graphics 640 x 200

6 CGA, EGA, MCGA,VGA, 3270 graphics 640 x 200

7 MDA, EGA, MCGA, VGA, 3270 text 640 x 200

D EGA,VGA graphics 640 x 200

E EGA,VGA graphics 640 x 200

F EGA,VGA graphics 640 x 350

10 EGA,VGA graphics 640 x 350

11 MCGA,VGA graphics 640 x 480

12 VGA graphics 640 x 480

13 MCGA,VGA graphics 640 x 200

MDA = Monochrome Display Adapter
CGA = Color/Graphics Adapter
EGA = Enhanced Graphics Adapter
MCGA = Multi-Color Graphics Array
VGA = Video Graphics Array
3270 = IBM 3270 All-Points-Addressable Graphics Adapter

Figure 7-1. Commonly used video modes supported by the Microsoft mouse.

NOTE: For Hercuks Monochrome Graphics cards, the current convention is to use
screen mode 5 for page 1 and screen mode 6 for page o. See Appendix F, "Using the
Mouse with the Hercuks Graphics Card. "

117

PART III: MOUSE PROGRAMMING INTERFACE

The mouse driver might not draw the cursor correctly or return
correct screen coordinates in unsupported screen modes. Ifyou want to
use the mouse with an unsupported screen mode, contact Microsoft
Product Support or the manufacturer ofyour video adapter. (Instruc
tions for contacting Microsoft Product Support can be found in the
documentation that comes packaged with your Microsoft mouse.)

Language Support
The table in Figure 7-2 shows the languages supported by the interna
tional version of the mouse driver, the language numbers, and the lan
guage switch designators.

Language
Language Number Switch Designator

English 0 None (default)

French 1 F

Dutch 2 NL

German 3 D

Swedish 4 S

Finnish 5 SF

Spanish 6 E

Portuguese 7 P

Italian 8 I

Figure 7-2. The languages supported by the international version ofthe
mouse driver.

The /L command-line switch sets the language when the mouse
driver is loaded; load-time me.ssages are displayed in the selected lan
guage. The mouse driver does not issue run-time messages, and mes
sages used by the nonselected languages are not loaded into memory.

Function 34 (Set Language for Messages) is a special-case func
tion that lets the mouse reset the language being used. Only the mouse
driver can use this function; your program cannot. Using Function 34
on the domestic (English only) version of the mouse has no effect; the
domestic version ignores the /L command-line switch.

Occasions might arise when you need to know the installed lan
guage. Function 35 (Get Language Number) returns the number value
of the currently installed language.

118

Chapter 7: Mouse Programming Considerations

MOUSE FUNCTIONS
The following list organizes the mouse functions by functional
category:

Driver Control and Feedback
Function 0: Mouse Reset and Status
Function 21: Get Mouse Driver State Storage Requirements
Function 22: Save Mouse Driver State
Function 23: Restore Mouse Driver State
Function 28: Set Mouse Interrupt Rate
Function 31: Disable Mouse Driver
Function 32: Enable Mouse Driver
Function 33: Software Reset
Function 36: Get Driver Version, Mouse Type, and IRQ Number
Function 37: Get General Information (Driver Type, Cursor Type, and

IRQ Number)
Function 38: Get Maximum Virtual Coordinates
Function 39: Get Screen/Cursor Masks and Mickey Counts
Function 42: Get Cursor Hot Spot
Function 43: Load Acceleration Curves
Function 44: Read Acceleration Curves
Function 45: Set/Get Active Acceleration Curve
Function 47: Mouse Hardware Reset
Function 49: Get Minimum/Maximum Virtual Coordinates
Function 50: Get Active Advanced Functions
Function 51: Get Switch Settings

Cursor Control
Function 1: Show Cursor
Function 2: Hide Cursor
Function 4: Set Mouse Cursor Position
Function 7: Set Minimum and Maximum Horizontal Cursor Position
Function 8: Set Minimum and Maximum Vertical Cursor Position
Function 9: Set Graphics Cursor Block
Function 10: Set Text Cursor
Function 15: Set Mickey/Pixel Ratio
Function 16: Conditional Off

(continued)

119

PART III: MOUSE PROGRAMMING INTERFACE

Cursor Control continued

Function 19: Set Double-Speed Threshold
Function 26: Set Mouse Sensitivity
Function 27: Get Mouse Sensitivity
Function 43: Load Acceleration Curves
Function 44: Read Acceleration Curves
Function 45: Set/Get Active Acceleration Curve

Button and Position Feedback
Function 3: Get Button Status and Mouse Position
Function 5: Get Button Press Information
Function 6: Get Button Release Information
Function 11: Read Mouse Motion Counters
Function 48: Set/Get BallPoint Information

Video Control and Feedback
Function 29: Set CRT Page Number
Function 30: Get CRT Page Number
Function 40: Set Video Mode
Function 41: Enumerate Video Modes

Connecting to Additional Subroutines
Function 12: Set Interrupt Subroutine Call Mask and Address
Function 20: Swap Interrupt Subroutines

Connecting to Alternate Subroutine
Function 24: Set Alternate Subroutine Call Mask and Address
Function 25: Get User Alternate Interrupt Address

Light-Pen Emulation
Function 13: Light-Pen Emulation Mode On
Function 14: Light-Pen Emulation Mode Off

Language Support (International Version Only)
Function 34: Set Language for Messages
Function 35: Get Language Number

For more information about programming with mouse functions
and for specific programming examples, see Chapter 8, "Mouse Func
tion Calls," and Chapter 9, "Sample Mouse Programming Interface
Programs."

120

Chapter 8

Mouse Function Calls
This chapter describes the operation of each mouse function, the input
required to make each function call, and the resulting output. The
actual function-call statements follow the format of the programming
language you choose to use. This chapter provides examples for calling
each function in the following languages: interpreted Basic, Quick
Basic, C and QuickC, and MASM (Microsoft Macro Assembler). For fur
ther instructions on making function calls from these languages, see
Chapter 9, "Sample Mouse Programming Interface Programs."

The program fragments in each function description assume you
have verified that the mouse hardware and software are installed. See
the sections "Calling Mouse Functions," "Passing Buffer Pointers,"
and "Testing for Installed Mouse" in Chapter 6 for detailed informa
tion about proper variable and type declarations and methods for com
municating with the mouse hardware and software.

NOTE: Ifyou design a mouse-supported application program that uses a graphics
mode on an IBM EGA (or on a graphics adapter emulating an EGA) that is not
supported by the mouse driver, or ifyou program the EGA hardware directly, your
program must interact with the adapter through the Microsoft EGA Register Inter
face. For instructions on using the EGA Register Interface, see Chapter 10, ''Writ-
ing Mouse Programsfor IBM EGA Modes. "

INTRODUCTION TO MOUSE FUNCTIONS
The table that follows shows the number and name of each mouse func
tion described in this chapter.

121

PART III: MOUSE PROGRAMMING INTERFACE

122

Function
Number

o
1

2
3
4

5

6

7

8

9

10

11

12

13

14

15

16

19

20
21

22
23
24

25
26

27
28

29
30

31

32
33
34

35

36

Function Name

Mouse Reset and Status

Show Cursor

Hide Cursor

Get Button Status and Mouse Position

Set Mouse Cursor Position

Get Button Press Information

Get Button Release Information

Set Minimum and Maximum Horizontal Cursor Position

Set Minimum and Maximum Vertical Cursor Position

Set Graphics Cursor Block

Set Text Cursor

Read Mouse Motion Counters

Set Interrupt Subroutine Call Mask and Address

Light-Pen Emulation Mode On

Light-Pen Emulation Mode Off

Set Mickey/Pixel Ratio

Conditional Off

Set Double-Speed Threshold

Swap Interrupt Subroutines

Get Mouse Driver State Storage Requirements

Save Mouse Driver State

Restore Mouse Driver State

Set Alternate Subroutine Call Mask and Address

Get User Alternate Interrupt Address

Set Mouse Sensitivity

Get Mouse Sensitivity

Set Mouse Interrupt Rate

Set CRT Page Number

Get CRT Page Number

Disable Mouse Driver

Enable Mouse Driver

Software Reset

Set Language for Messages

Get Language Number

Get Driver Version, Mouse Type, and IRQ Number

(continued)

Function
Number

37

38

39

40

41

42

43

44

45

47
48

49

50

51

52

Chapter 8: Mouse Function Calls

Function Name

Get General Driver Information

Get Maximum Virtual Coordinates

Get Screen/Cursor Masks and Mickey Counts

Set Video Mode

Enumerate Video Modes

Get Cursor Hot Spot

Load Acceleration Curves

Read Acceleration Curves

Set/Get Active Acceleration Curve

Mouse Hardware Reset

Set/Get BallPoint Information

Get Minimum/Maximum Virtual Coordinates

Get Active Advanced Functions

Get Switch Settings

Get MOUSE:oINI

Each function description includes the following:

• The parameters required to make the function call (input) and
the expected return values (output).

• Any special considerations regarding the function.

• Sample program fragments that illustrate how to use the func
tion call.

The mouse function parameter names Ml%, M2%, M3%, and
M4 %are placeholders. When you make a function call, use the actual
values that you want to pass. Be sure the values are appropriate for the
language you are using.

If the function description doesn't specify an input value for a
parameter, you don't need to supply a value for that parameter before
making the function call. If the function description doesn't specify an
output value for a parameter, the parameter's value is the same before
and after you make the function call.

NOTE: All rrwuse function calls require four parameters. The rrwuse software
doesn't check input values, so be sure the values you assign to the para1TU!ters are
correctfor the given function and screen molk. Ifyou pass the wrong number ofpa
rameters or assign incorrect values, you will get unpredictabk results.

123

PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 0: MOUSE RESET AND STATUS

Call with

Returns

MI%

MI%
M2%

o

mouse status (if mouse found and reset =-1, otherwise =0)
number ofbuttons (if mouse found and reset =2)

Description Mouse Function 0 returns the current status of the mouse hardware
and software. Ifyou installed the mouse hardware and software (mouse
driver version 6.25 or later), the mouse status value is -1. (With mouse
version 6.25 or later, if the driver is installed correctly but you later
disconnect a serial or PS/2 mouse, subsequent calls to Function 0 will
return Ml% = 0.) Ifyou didn't install the hardware and softwal"e, the
mouse status value is o.

If the mouse pointer is currently visible, Function 0 hides it as a
part of the reset process. Function 0 also disables any interrupt han
dlers previously installed by the user for mouse events except those in
stalled by using Function 24.

Function 0 resets the mouse driver to the following default values:

Parameter

Cursor position

Internal cursor flag

Graphics cursor

Text cursor

Interrupt call mask

Light-pen emulation mode

Horizontal mickey-per-pixel ratio

Vertical mickey-per-pixel ratio

Double-speed threshold

Minimum horizontal cursor
position

Maximum horizontal cursor
position

Minimum vertical cursor position

Maximum vertical cursor position

CRT page number

Value

Center of screen

-1 (cursor hidden)

Arrow

Reverse video block

All 0 (no interrupt subroutine
specified) *

Enabled

8t08

16 to 8

64 mickeys per second

o

Current display-mode virtual
screen x-value minus 1

o
Current display-mode virtual
screen y-value minus 1

o

*This is true only for interrupt subroutines that weren't installed by using Function 24.

124

Chapter 8: Mouse Function Calls

Examples Each of the following program fragments resets the mouse.

Interpreted Basic

lOO.'Mouse· Reset and
110" Ml% = 0
120 CALL MOUSE(M1%, M2%.M3%. M4%)
13R:IF.Ml%~·1> TH~N 16.0
14(rPRINT~'Mouse'not found"
150'·.END
160 ' Mouse ~oundand reset

QuickBasic

'Mouse Reset and Status
iReg .ax 1m 0
IoterruptX&H33. iReg,'oReg

C/QuickC

I~Mouse Reset.and Status *1
tRag.x. ax-O:
lnt86(Ox33,&iReg, &oReg):

MASM

: ~Mouse Reset and Status
xorax,ax : Ml% = 0
int33h

MOUSE FUNCTION 1: SHOW CURSOR

Call with

Returns

Ml%

Nothing

1

Description Mouse Function 1 increments the internal cursor flag and, if the value
of the flag is 0, displays the cursor on the screen. The mouse driver
then tracks the motion of the mouse, changing the cursor's position as
the mouse changes position.

125

PART III: MOUSE PROGRAMMING INTERFACE

NOTE: Ifyourprogram used Function 7 orFunction 8 to establish a display area,
Function 1 displays the cursor within that area. Also, Function 1 will disable a
conditional-offregion established by usingFunction 16 (Conditional Off).

The current value of the internal cursor flag depends on the num
ber of calls your program makes to Functions 1 and 2. The default flag
value is -1. Therefore, when you start up your computer or reset the
mouse driver by using Function 0 or Function 33, your program must
call Function 1 to redisplay the cursor. For more information about the
internal cursor flag, see Chapter 6,"'Mouse Programming Interface."

If the value of the internal cursor flag is already 0, Function 1 does
nothing.

Examples Each of the following program fragments shows how you can make
the mouse cursor visible after you reset the mouse driver by using
Function o.

Interpreted Basic

110' Show.Cursor
,.,,120,Ml% =;·1

'130'.' CALL MOUSE(Ml% ,

QuickBasic

, Show Cursor
i Reg. ax == 1
InterruptX &H33, iReg, oReg

C/QuickC

MASM

: Show Cursor
mov ax,1 ..
int 33h

126

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 2: HIDE CURSOR

Call with

Returns

M1%

Nothing

2

Description Mouse Function 2 removes the cursor from the screen and decrements
the internal cursor flag. Mter Function 2 hides the cursor, the mouse
driver continues to track the motion of the mouse, changing the cur
sor's position as the mouse changes position.

Use this function before you change any area of the screen that
contains the cursor. This ensures that the cursor won't affect the data
you write to the screen.

NOTE: Ifyourprogram changes the screen mode, it should caUFunction 2 prior to
changing the screen mode and then caUFunction 1 so that the cursor wiU be drawn
correctly the next time it appears on the screen.

Each time your program calls Function 2, it must subsequently call
Function 1 to restore the internal cursor flag to its previous value. Alter
natively, your program can call Function 0 or Function 33 to force the
value of the internal cursor flag to -1 and then call Function 1 to dis
play the cursor again. For more information about the internal cursor
flag, see Chapter 6, "Mouse Programming Interface."

At the end ofyour program, call Function 2, Function 0, or Func
tion 33 to hide the cursor; otherwise, if the internal cursor flag is 0
when the program ends, the cursor remains on the screen.

Examples Each of the following program fragments shows how you can make the
cursor invisible.

Interpreted Basic

110·' Hide . Cursor
120Ml%== 2
130 CALL MOUSE(Ml%, M2%, M3%, M4%)

QuickBasic

, Hide Cursor
i Reg .. ax== 2
InterruptX&H3~t, iReg,

127

PART III: MOUSE PROGRAMMING INTERFACE

CjQuickC

1* Hide Cursor *1
iReg.x.ax r= 2;
int86(Ox33, &1Reg,

MASM

MOUSE FUNCTION 3:
GET BUTTON STATUS AND MOUSE POSITION

Call with

Returns

Ml%

M2%
M3%
M4%

3

button status
horizontal cursor coordinates
vertical cursor coordinates

Description Mouse Function 3 returns the state of the left-hand and right-hand
mouse buttons. It also returns the state of the cursor's horizontal and
vertical virtual-screen coordinates.

The button status is a single-integer value. Bit 0 represents the left
hand button; bit 1 represents the right-hand button. The value of a bit is
1 if the corresponding button is pressed and 0 if it is released.

The cursor coordinates that Function 3 returns are always within
the range of minimum and maximum values for the virtual screen or
within the range set with Function 7 and Function 8. For more informa
tion about the virtual screen, see Chapter 6, "Mouse Programming
Interface."

Examples Each of the following program fragments returns the mouse-button
status and the current mouse coordinates (in virtual-screen
coordinates) .

128

Chapter 8: Mouse Function Calls

Interpreted Basic4

300 ' Get Button Status and Mouse Position
310'
320 MIS'· c;lI 3
33d'C~tL.··· MOUSE(Ml%,····M2%, .M3%,M4%)
340 '
350 PRINT "Mouse virtual-screen coordi~ates: "; M3S, M4S
360 IF M2% ;:m 0 THEN PRINT "Neither button pressed"
37Q':{FM2% ',r=a 1 THEN PRINorI'L~ft butt9":!pressed "
380 IF M2S= 2 THEN PRINT "Right, buttoh pressed "
390 IF M2% ~ 3 THEN PRINT "Both buttons pressed "
400 IF M2% > 3 THEN PRINT "Unexpected number of buttons pressed"

QuickBasic

• Get Button Status and Mouse Position
iReg.ax llllI,3
InterruptX &H33, iReg, oReg

PRINT "Mouse virtual-screen coordinates: It: oReg.cx, oReg.dx

SELECT CASE oRe~~bx

CASE 0
PRINT "Neither button pressed"

CASE.·.·.1
PRINT "Left button .pressed

CASE 2
PRINT "Right button pressed "

CASE 3
,PRINT "Both. buttonsupressed "

CASEi:'ELSE
PRINT "Unexpected number of buttons pressed"

END-SELECT

C/QuickC

/* Get Button Status and Mouse Position */
1Re~.,~.ax ,'c:rI .3:
int86l0x33, .&iReg,&oReg):

printf("Mouse virtual-screen coordinates: Sd,Sd\n~J

oReg.x.cx, oReg.x.dx):

(continued)

129

PART III: MOUSE PROGRAMMING INTERFACE

continued

CoReg.x.bx)

2:
printf("Right button pressed

'break;
'case 3:'

printf("Both buttons Hpressed
·,break:

default:
printf("Unexpected number of buttons Dressea,
break:

l

MASM

:'GetBtitton Status and'Mouse ·Posit1on
mov ax.3 : MIl = 3
int'33h

moy mouse-x, ex
moy mouse-y.dx
movHaX.bx
and.8.)f,)
mov,·left~button,ax

shr'bx;l
moy right_button,bx

MOUSE FUNCTION 4: SET MOUSE CURSOR POSITION

Call with MI %
M3%
M4%

4
new horizontal cursor coordinate
new vertical cursor coordinate

Returns

130

Nothing

Chapter 8: Mouse Function Calls

Description Mouse Function 4 sets the cursor position at the location of the speci
fied horizontal and vertical virtual-screen coordinates. The parameter
values must be within the range of minimum and maximum values
for the virtual screen or within the range set with Function 7 and Func
tion 8.

The cursor appears at the new location unless one of the following
conditions is true:

• Function 1 hasn't yet displayed the cursor.

• Function 2 hid the cursor.

• Function 0 or Function 33 hid the cursor during the reset
process.

• The cursor was set to appear in a conditional-off region pre
viously established by using Function 16.

Ifyour program set minimum and maximum vertical and hori
zontal cursor positions by using Functions 7 and 8, you can include
Function 4 to adjust the values you specified in the function call, which
places the cursor within the maximum boundaries. For example,
assume you used Function 7 to set the minimum horizontal cursor posi
tion to 50 and the maximum horizontal cursor position to 90, and you
used Function 8 to set the minimum vertical cursor position to 100 and
the maximum horizontal cursor position to 150. Ifyou then use Func
tion 4 with a value of (0, 0), the cursor appears at (50, 100). Ifyou use
Function 4 with a value of (150, 200), the cursor appears at (90, 150).
Therefore, if the horizontal cursor position value or the vertical cursor
position value you specify in Function 4 is less than the minimum or
greater than the maximum values established when using Functions 7
and 8, Function 4 places the cursor at the nearest corresponding edge
inside the boundaries established by Functions 7 and 8.

If the virtual screen is not in a graphics mode with a I-by-l cell
size, Function 4 rounds the parameter values to the nearest horizontal
coordinate or vertical-coordinate values permitted for the current
screen mode. For more information, see Chapter 6, "Mouse Program
ming Interface."

Examples Each of the following program fragments sets the cursor position to the
middle of the screen. Assume that the HMAX% and VA1AX% variables
are the values of the maximum virtual-screen coordinates.

131

PART III: MOUSE PROGRAMMING INTERFACE

Interpreted Basic

QuickBasic

C/QuickC

MASM

MOUSE FUNCTION 5: GET BUTTON PRESS INFORMATION

Call with MI %
M2%

Returns MI%
M2%
M3%
M4%

132

5
button

button status
number of button presses
horizontal cursor coordinate at last press
vertical cursor coordinate at last press

Chapter 8: Mouse Function Calls

Description Mouse Function 5 returns the following:

• The current status of both buttons.

• The number of times you pressed the specified button since the
last call to this function.

• The cursor's horizontal and vertical coordinates the last time
you pressed the specified button.

The M2 %parameter specifies which button Function 5 checks. If the
value of this parameter is 0, Function 5 checks the status of the left
hand button. If the value of this parameter is 1, Function 5 checks the
status of the right-hand button.

The button status is a single-integer value. Bit 0 represents the left
hand button, and bit 1 represents the right-hand button. The value of a
bit is 1 if the corresponding button is pressed and 0 if it is released.

The number of button presses always ranges from 0 through
65,535. Function 5 doesn't detect overflow, and it sets the count to 0
after the call.

The values for the horizontal and vertical coordinates are in the
ranges defined by the virtual screen. These values represent the cursor
position when you last pressed the button, not the cursor's current
position.

Examples Each of the following program fragments returns button-press informa
tion for the left-hand mouse button, accumulated since your program
last called this function.

Interpreted Basic

110. 'Ge.t Button Pr.ess Information
120 '
130 Ml%c:a 5
140 .M2%=z •• 0 'Check left button
150 CALLMOUSE(M~%, M2%. M3%, M4%)
160 '
170 PRINT "Left button presses: M2%
180 PRINT "Horizontal position at last press: "; M3%
190. PRINT "Verti catpositi on. at last press: "; M4%

133

PART III: MOUSE PROGRAMMING INTERFACE

QuickBasic

C/QuickC

1* Get Button Press lnformation*l
tR~~,.:~. ax = 5~
i Reg~x.·bx· =0·; Z~';ChecfJeft'bott'()ri'*/
int86(Ox33, &iReg, &oReg):

pr;ntJl"teftbuttonp~~$S e,s: ·~d·~n",oRe~;.}{ ~bx) ;: :>.\)

printf("Horizonta1 pos'iti on 'at'lastpres~:'ld\n",'()Reg .x.ex);
pr;ntf("Vertical positton at last press: Sd\n",QReg.x.dx): .

MASM

~.;. :: :.:.: .-: -::. ':HH:;:::;'-:':':--=::<;-T;~:-? '::.' :: :.... . ..' ::--. ·;·:::\':~::rn;;::=!;::::.--:_::·::_": ". . ." :" ".:: ~;\~?';~ :~: :.:. ,'::< :- - ';:",: :\~-<-'::/-~'::- .: .'.', ...

; NU111ber of] eft butt()npresses<;;~M2i

:Mousex-co~~dinate.at.ilast pr-ess caqM3~·

;: Mouse ·.·y~co:qrdln ~te,:at'L,la s.tqpu:ess ~·.M~;%:;·
','. :.;: .;: :'/':':" "':" - -: .:':-::::.":<'-:'.: ... :': :-: ',.--:'::",-: -.:_::-',. :: :'.. :-.-:: ---"-:<·"::-.-;'i:-:--»;::_: :--: ..: ' .:- .-, ..", : ,,<:,:'~'~'>':.i'~:_'" ' .. -'--' -:- :-:::--::--:_:;-,:><-::.:.::;?~ ..:-:;

moYI~ftpresses,bx

mOY,mousex,cx
moy;n;.~~s~y, d.~':;

: Get,',Button~~~ss Information,
lDoy<ax,5
xor bx,bx
int.33h

MOUSE FUNCTION 6: GET BUTTON RELEASE INFORMATION

Call with Ml%
M2%

6
button

Returns Ml%
M2%
M3%
M4%

button status
number of button releases
horizontal cursor coordinate at last release
vertical cursor coordinate at last release

134

Chapter 8: Mouse Function Calls

Description Mouse Function 6 returns the following:

• The current status of both buttons.

• The number of times you released the specified button since
the last call to this function.

• The cursor's horizontal and vertical coordinates the last time
you released the specified button.

The M2% parameter specifies which button Function 6 checks. If
the value of this parameter is 0, Function 6 checks the left-hand button.
If the value of this parameter is 1, Function 6 checks the right-hand
button.

The button status is a single-integer value. Bit 0 represents the left
hand button, and bit 1 represents the right-hand button. The value of a
bit is 1 if the corresponding button is pressed and 0 if it is released.

The number of button releases always ranges from 0 through
65,535. Function 6 doesn't detect overflow, and it sets the count to 0
after the call.

The values for the horizontal and vertical coordinates are in the
ranges defined by the virtual screen. These values represent the cursor
position when you last released the button, not the cursor's current
position.

Examples Each of the following program fragments returns button-release infor
mation for the left-hand mouse button, accumulated since your pro
gram last called this function.

Interpreted Basic

135

PART III: MOUSE PROGRAMMING INTERFACE

QuickBasic

p~J.NT.' .. "Leftp~~~on reJ~a~~~:"; oReg.,~x~
'R~:~NT .·"Horizo9tal.·.·.posit;i()n?·at··lastrel~ase: ": oRe'g.cx
PRINT "Vertical positfonaf last release: u; oReg.dx

C/QuickC

1* Get Button ReTease Information
iReg.x.ax c:I 6:
iReg.x.bx QQ: /* Check·left button*/
tnt86(Ox33,~~Reg" &oReg):,

printf("Leftbutton releases: %d\n",oReg.x.bx):
printf("Ho~izontal position at last release: Id\n", oReg.x.ex)
printf("Vertieal position at last release: Id\n", oReg.x.dx);

MASM

;'G.et ButtonRe] ease Information
movax.6
xo'rbx,bx ; Cheek 'leftbuttt:>n
int 33h

mov1eftrelea~~s,bx

mav .·mous·~x ,ex,'
'TIIQymousey,dx

; Number of" left button releases = M2%

::~o~~e X-~q~r~tnate .atJ!~~~.releas.e.~.::~3%
:<.MOu.se···· Y:'~c9Qrdlnate' atla:~~rel ease ',-'M4%

MOUSE FUNCTION 7: SET MINIMUM
AND MAXIMUM HORIZONTAL CURSOR POSITION

Call with MI %
M3%
M4%

7
minimum position
maximum position

Returns

136

Nothing

Chapter 8: Mouse Function Calls

Description Mouse Function 7 sets the position of the minimum and maximum
horizontal cursor coordinates on the screen. Thus, a call to Function 7
restricts all cursor movement to the specified area. The resolution of
the current virtual screen defines the minimum and maximum values.
For more information about the virtual screen, see Chapter 6, "Mouse
Programming Interface." See Function 49 for information about
returning minimum/maximum cursor position.

NOTE: If the minimum value is greater than the maximum value, Function 7
interchanges the two values.

Examples Each of the following program fragments limits cursor movement to
the middle half of the screen (see Figure 8-1). Assume that the HMAX%
variable is the maximum virtual-screen horizontal coordinate.

Cursor movement
limited to this area.

Figure 8-1. Cursor moverrumt limited to the middle halfofthe screen.

Interpreted Basic

110 • Set Minimum and Maximum Hori
120 M1%==]
130 .• M3% <== •HMAX% ·\4
140 M4% = 3 * HMAX% \ 4
150 CALL MOUSE(M1%, M2%, M3%. M4%)

Cursor Position

137

PART III: MOUSE PROGRAMMING INTERFACE

QuickBasic

C/QuickC

MASM

: Set Mintmum"and Maximum. H9rizonta.l

;~~y.a~'7."

\;~!;~i~~o'dk:'j~OW~~;";,.· •.·.
mOY dx,···cx

':shr'cx, 1
·adddx. ex

: ":.·:.:fnt·33h ..

MOUSE FUNCTION 8: SET MINIMUM
AND MAXIMUM VERTICAL CURSOR POSITION

Call with

Returns

Ml%
M3%
M4%

Nothing

8
minimum position
maximum position

Description Mouse Function 8 sets the position of the minimum and maximum ver
tical cursor coordinates on the screen. Thus, a call to Function 8
restricts all cursor movement to the specified area. The resolution of ,
the current virtual screen defines the minimum and maximum values.

138

Chapter 8: Mouse Function Calls

For more information about the virtual screen, see Chapter 6, "Mouse
Programming Interface." See Function 49 for information about
returning minimum/maximum cursor position.

NOTE: If the minimum value is greater than the maximum value, Function 8
interchanges the two values.

Examples Each of the following program fragments limits cursor movement to
the middle half of the screen (see Figure 8-2). Assume that the ViWAX%
variable is the maximum virtual-screen vertical coordinate.

Cursor movement
limited to this area.

Figure 8-2. Cursor movement limited to the middle halfofthe screen.

Interpreted Basic

/~lO' ·,Set:.Min1muma~d Maximum Vertical Cursor Position
::~:i·~~;g,~f;;,~;~.> •.' ..•. ' .•.•• •· •... ;u··}u~':: •.':'

:', ·~":t30./M31;;'}#·'::O\iMAX% .' Ox;· ':~r' '.
':':"~'4()'M4S'<~3 * VMAX% \ 4
:\150 ••··.CAL.LMOUSEfMl%,M2% •••·.M3.%•••M4%)

QuickBasic

139

PART III: MOUSE PROGRAMMING INTERFACE

C/QuickC

MASM

MOUSE FUNCTION 9: SET GRAPHICS CURSOR BLOCK

Call with

Returns

M1%
M2%
M3%
M4%

Nothing

9
horizontal cursor hot spot
vertical cursor hot spot
pointer to screen and cursor masks

Description Mouse Function 9 defines the shape, color, and center of the graphics
cursor (the cursor used when your computer is in graphics mode) .
Function 9 doesn't automatically display the cursor. To make the cur
sor visible, your program must call Function 1 (Show Cursor).

The cursor hot-spot values define one pixel relative to the upper
left corner of the cursor block. Although the values within the cursor
block can range from -128 through 127, they usually range from 0
through 15.

Function 9 uses the values found in the screen mask and the cur
sor mask to build the cursor shape and color. To pass the screen and
cursor masks, you assign their values to an integer array (packed 2 bytes
per integer). You then use the address of the first element of the array
as the M4 %parameter in the function call.

140

Chapter 8: Mouse Function Calls

For more information about the screen mask, the cursor mask,
and the graphics cursor hot spot, see Chapter 6, "Mouse Programming
Interface."

Examples Each of the following program fragments creates a graphics-mode
cursor shaped like a hand. The hot spot is at the tip of the extended
index finger.

Interpreted Basic

(continued)

141

PART III: MOUSE PROGRAMMING INTERFACE

continued

QuickBasic

(continued)

142

DATA &HOOOO: REM 00000000000000.00
DATA &HOOOO:REM 0000000000000000

Chapter 8: Mouse Function Calls

DATA &HIEOO:.REM
DATA &H1200 <: REM
DATA &HI200>: REM
DATA &H1200. : REM
DATA &H1200: REM
DATA &H13FF:REM
DATA &H1249>:i.REM
DATA &H1249: REM
DATA &HF249: REM
DATA &H9001: REM
DATA &H9001 REM
DATA &H9001 : REM
DATA &H8001: REM
DATA &H8001 : REM

. DATA &H800l: REM
DATA &H8001 .. : REM
DATA &HFFFF.: REM

C/QuickC

000111100.0000000
0001001000000000
0001001000000000
0001001000000000
OOOlOOlnOOOOOoOO
0001001111111111
0001001001001001
0001001001001001
1111001001001001
1001000000000001
1001000000000001
1001000000000001
1000000000000001
1000000000000001
1000000000000001
1000000000000001
111111111111·1111

/* Set Graphics Cursor Block */

static tnt maskshand[J a

{

/* >screen· mask .. */

OxE1FF,
OxEIFF,
OxE1FF,
OxE1FF,
OxE1FF,
OxEOOO,
OxEOOO,
OxEOOO,
OxOOOO,
OxOOOO,
OxOOOO,
OxOOOO,
oxOOOO,
OxOOOO,
OxOOOO,
OxOOOO,

/* 1110000111111111 */
/* ··1110000111111111* /
/* 1110000111111111 */
/* 1110000111111111*/
/* 1110000111111111····*/
/* 1110000000000000 */
/* 1110000000000000 .• */
/* ·1110000000000000 d *1
/* 0000000000000000 */
/* .°9°0000000000000*/
/* 0000000000000000 */
/* 0000000000000000·*/
/*>0000000000000000*1
/*·0000000000000000*/
/* 0000000000000000*/
I *···oooooooooOOOOOOOi*/

(continued)

143

PART III: MOUSE PROGRAMMING INTERFACE

continued

MASM

(continued)

144

Chapter 8: Mouse Function Calls

0000000000000000
0000000000000000
OOODOOOOOOO.OOOOO
0000000000000000
0000000000000000
0001111000000000
0001001000000000
0001001000000000
0001001000000000
0001001000000000
0001001111111111
0001001001001001
0001001001001001
1111001001001001
1001000000000001
1001000000000001
1001000000000001
1000000000000001
1000000000000001
1000000000000001
1111111111111111

dw OOOOOh
dw ODOOOh
dw OQOOOh
dw· GOOOOh
dw OOOOOh

:dw OlEOOh
dw 01200h
dw 01200h
ow 01200h
dw 01200h
dw 013FFh

01249h
dw 01249h
dw OF249h
dw 09001h

. dw 09001h
dw 09001h
dw 08001h
dw 08001h
dw 08001h
dw 'OFFFFh

;.. Hot spot, x
: Hotspot, y
: Be sure ES is
;. set sameas.DS
rAddress of bit pattern

:. SelGraphies ·CursorBl ocR
mov ax,9
movQ)(,5
xorox,ex
mov dx,ds
moves,dx
movdx,OFFSEThand
int33h

MOUSE FUNCTION 10: SET TEXT CURSOR

Call with M1%
M2%
M3%
M4%

10
cursor select
screen-mask value or scan-line start
cursor-mask value or scan-line stop

Returns Nothing

145

PART III: MOUSE PROGRAMMING INTERFACE

Description Mouse Function 10 selects the software text cursor or the hardware text
cursor. Before your program can call Function 10, it must call Function
1 (Show Cursor) to display the cursor.

The value of the M2%parameter specifies which cursor you want
to select. If the value of M2% is 0, Function 10 selects the software text
cursor. If the value of M2% is 1, Function 10 selects the hardware text
cursor.

IfFunction 10 selects the software text cursor, the M3% and M4%
parameters must specify the screen mask and the cursor mask. These
masks define the attributes ofa character when the cursor overlays it.
The screen-mask and cursor-mask values depend on the type ofdisplay
adapter in the computer.

IfFunction 10 selects the hardware text cursor, the M3% and
M4 %parameters must specify the line numbers of the cursor's first and
last scan lines. These line numbers depend on the type of display
adapter in the computer.

NOTE: For more information about the software text cursor and the hardware text
cursor, see Chapter 6, ''Mouse Programming Interface. "

Examples Each of the following program fragments sets the software text cursor,
which transposes the foreground and background colors.

Interpreted Basic

110'·$etTextCiu'sor
120 MIS l:II 10
130 M2% = 0 'Select software'text cursor
140 ·'~'~:~ueD .••.~HFFf:f..·:....... ...u....,<.......... . .'~~:~;~e.n ··.•~a·sk
150~4.%=-·&H770Q'{:·····!:· ...j·::::: '.' tCu~$or ma's~>"
160 .CALL MOUSE(Mll.M2%.,p M3%,· M4S)

QuickBasic

• Set Text Cursor
i Reg .·ax=-lO

i. ~e,.~.·.~;~* •...•..•~ •.·...•..•O•..............•....... ..•.•..·.i:• '·.·;.'1Reg:~ucx ·.·c:a&HF:FF;'FF·';i:."·
iReg:dx =&H7700
I nterruptX &H33.• ···1 Reg;

146

Chapter 8: Mouse Function Calls

C/QuickC

MASM

MOUSE FUNCTION 11: READ MOUSE MOTION COUNTERS

Call with

Returns

Ml%

M3%
M4%

11

horizontal mickey count
vertical mickey count

Description Mouse Function 11 returns the horizontal and vertical mickey counts
since your program last called this function. The mickey count is the
distance that the mouse has moved in mickey units (Y2oo-inch incre
ments for the 200 ppi mouse and ~oo-inch increments for the 400 ppi
mouse). For more information about the mickey, see Chapter 6,
"Mouse Programming Interface."

The mickey count always ranges from -32,768 through 32,767. A
positive horizontal count indicates motion to the right, whereas a nega
tive horizontal count indicates motion to the left. A positive vertical
count indicates motion to the bottom of the screen, whereas a negative
vertical count indicates motion to the top of the screen.

Function 11 ignores overflow, and it sets the mickey count to 0
after the call is completed.

Examples Each of the following program fragments returns the horizontal and
vertical mickey counts since your program last called this function.

147

PART III: MOUSE PROGRAMMING INTERFACE

Interpreted Basic

100' Read Mouse Motion Counters
110 '
120.··Ml%~{11

130·CAI.LMOUSE(Ml%,
140 '
150 ·PRINT"Horizonta1 miekey·count:
160 PRINT "Vertical miekeycount: ";M4%

QuickBasic

, Read Mouse Motion Counters
i Reg .ax-1I
InterruptX.&H33, iReg,oReg

PRINT "Hdrlzontal .mickeycourit: "; oReg~¢)(
PRINT "Vertical mickey count: "; oReg~dx

C/QuickC

/* Read Mouse MotionCol.lt'l'ters .*1
i Reg.x. ax =11:
int86(Ox33, tiReg, &oReg)1

printf(flHor;zontal mickey count: Sd\n". oReg.x.ex);
pri ntf(nVentical mi ckey .. count: Sd\n".,· .oReg. x.dx) :

MASM

Hor; zontal ··mickeys
:Vertiealmfckeys

; Read Mouse Motion Counters
movax,11 ~11

int33h

moy mickeyx.cx
. may mi ckeyy ,dx

148

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 12:
SET INTERRUPT SUBROUTINE CALL MASK AND ADDRESS

Call with

Returns

M1%
M3%
M4%

Nothing

12
call mask
subroutine address

Description Mouse Function 12 sets the subroutine call mask and the subroutine ad
dress for mouse hardware interrupts.

A mouse hardware interrupt stops your program's execution and
calls the specified subroutine whenever one or more of the conditions
defined by the call mask occurs. When the subroutine ends, your pro
gram continues execution at the point of interruption.

The call mask is a single-integer value that defines which condi
tions cause an interrupt. Each bit in the call mask corresponds to a
specific condition, as shown in the following table:

Mask Bit

o
1

2
3

4

5-15

Condition

Cursor position changed

Left-hand button pressed

Left-hand button released

Right-hand button pressed

Right-hand button released

Not used

To enable the subroutine for a given condition, set the corre
sponding call-mask bit to 1 and pass the mask as the M3% parameter.

To disable the subroutine for a given condition, set the value of
the corresponding bit to 0, and pass the mask as the M3% parameter.

Your program can set any combination of one or more bits in the
call mask. When anyone of the indicated conditions is detected, the
mouse hardware interrupt calls the subroutine. The subroutine deter
mines which condition occurred by inspecting the bits passed in the
ex register. The indicated conditions are ignored when you set the
value of the call-mask bits to o.

A call to Function 0 sets the value of the call mask to o.

149

PART IIi: MOUSE PROGRAMMING INTERFACE

Before your program ends, be sure it sets the value of the inter
rupt call mask to o. (This is handled automatically ifyour program calls
Function 0.) If the call mask and subroutine remain defined when the
program is no longer running, the subroutine will still execute ifone of
the conditions defined by the call mask occurs.

When the mouse software makes a call to the subroutine, it loads
the following information into the microprocessor's registers:

Register

AX

BX

CX
DX
SI

DI

Information

Condition mask (similar to the call mask exceptthat a bit is
set only if the condition occurs)

Button state

Horizontal cursor coordinate

Vertical cursor coordinate

Horizontal mouse counts (mickeys)

Vertical mouse counts (mickeys)

NOTE: Tlu! DS register, which contains tlu! mouse-driver data segment, does not
appear in this list. The interrupt subroutine is responsibkfor setting tlu! DS register
as needed. Because the mouse driver loads tlu! hardware registers directly, we recom
mend that you use assembly language to create your Function 12 routine so that
registers can be manipulated easily.

Using Function 12 from Within Programs
To use Function 12 with interpreted Basic programs,

1. Load an assembly language subroutine into the Basic inter
preter's data segment. All exits from the subroutine must use a
FAR return instruction.

2. Pass the subroutine's address to Function 12 as the fourth pa
rameter (M4%).

To use Function 12 with QuickBasic programs,

1. Load an assembly language subroutine into QuickBasic's data
segment. You can load the subroutine into a string or into a
COMMON array.

2. Pass the subroutine's address to Function 12 as the fourth pa
rameter (M4 %). The VARPTR function returns the address of
an array.

150

Chapter 8: Mouse Function Calls

To use Function 12 with C or QuickC programs,

1. Use the appropriate mouse call for the memory model ofyour
program. Use crrwuses for small-model programs, use cmousec for
compact-model programs, use crrwusem for medium-model pro
grams, and use crrwusel for large-model and huge-model programs.

2. Pass the offset part of the subroutine's address in the fourth
parameter (M4%). Ifyou want to call the mouse interrupt di
rectly, place the segment part of the address in the ES register.

To use Function 12 with MASM programs, move the segment of the sub
routine into the ES register, the offset into the DX register, the call
mask into the ex register, and the mouse function number (12) into
the AX register.

Examples Each of the following short programs calls Function 12 to activate an
interrupt-driven subroutine for the mouse. When you press the right
hand mouse button, the mouse cursor moves to the upper left corner of
the screen.

Interpreted Basic

100;' Set Interrupt Subroutine Cal Mask and Address
llQl;.;'~O~s~ •••·Re~~.t.>andStatus
1'2'Of:MI%····~c() .
13Q,CAlLt40USE(MlS, .M?%, M3%, M4%)
14~~;'C~: ~..~:
150'.:' Show' Cursor

l~.~;~;'.:~~%~.il. .
170~",CALLt40USE(M1S, M2%, M3%, M4%)
1892':' .

:,··:(t~~?~~~·~:.~ul~·'~· intef'rupt~driven 'subroutineto activate.'. Function 12
206:)?DIM M$081(5)
21Q,iJ,'MSUB.(·Ol- &H488 • Subroutine. is from this code •••
22'Q~IiMSUB~'fi)='HB90() MOV AX,4 Function 4, Set Mouse Cursor
230· ..·"SU81(2) .=&HO MOV CX, 0 Left edge of screen

>':'2A;~;~1:MS~~~~~}='&HBA MO:V DX,O Top···edge>of screen
, 2SO: MSUBil4} ma &HCDOa INT 33h Mouse interrupt

26,Q:.}:MSUB%~5) =&HC833 RETF Return to BASIC
';'}":'21'a~~It(/}~:;l.;:~; .. ." <;.". . .. '..>.....

2~O~,:,Sj~j~~nterruPt Subrout1 ne Ca11 Mask and Address
~:l,:~«·2'~~~<~~~~.';~;·~i~:l2 ' ·Mouse .Functi on l~

(continued)

151

PART III: MOUSE PROGRAMMING INTERFACE

continued

300,M3%f:,'<S "Jhterrup·t;;~henrlgh~buttdn pressed
310· CALL>MOUSE(MlS, M2%,M3%. MSUBS(0»' Mousedri verversionsbefore
~~R··.·.'. M4~.=. VARPT~(MSUB%~O»....•...•...•...................•• ' .. Mous.e ..driv~tvers.ions6. 25 .. ~nd later
~'~'Q .. ' 'CA1..l..MOUSE<'~1%,M2~,M3%, •. 'r!1'4%) 'Mouse driververstons 6.2S'and .late.r
340'
3~O .' Loqp: untilk~yispressed, allowing mousetest1"g
3~QH.',IF···INKEY$="'i':THENGOiO. 410: .
370~ ,

380 ' Reset the mouse to deactivate the ,i nterrupt
:~~,QM1%~{:O., '..''•..••••.•......•......·.u.

400 CALL MOUSE(MlS, M2%,M3%. M4%)
410 '
4'20·.·END

QuickBasic

, Set Interrupt Subrouti ne Ca 11, Mask and Address

• 'MouseReset and Status
iReg.ax .~O

rhterrufltX&H33;~ 'iReg ,uoReg· ,

• Subroutine is from tttis code •••
MOV AX,4 : Function 4, Set Mouse Cursor
MOVCX ,0 :.Lefte~ge.ofs9~~en

MOVDX,O : Top edge of screen
INT33h ~Mouse interrupt
RETf : Return to QuickBasi

'"ShowCursor
i:~eg. aX'&:rtt
rnterrupt~ &H33,"

~ .~ .. ':,;/. . >~-:» -.-. : --.-:: -. ,

'-':Bui Idinterrupt-dr1 yen 'subroutine' toacti vat'eFuncti on .12
DIM msub%(5)
G-P''',MON In~~b%()
rnsu'b%(OJ~&H4B8

msub%(1)~&HB900

~~~~%( 2);:;&HO
mS'ub%(3) .~ &HBA'
mSub%(4) ~ &HCDOO
msub%(51;;:r&HCB33

:i~"<Set .J r1t~r ruptSUbr.out1ne,CalliMask·and"Addres.s
iReg. ax'~'12
iuR~g. cx Ls .8:. .... .... .' <' .Interruptwhe~.ri ght.~~ttonpr~ssed
t~eg. ~x~.. VARPTR,(ms ub%tQ.. ) ..
InterruptX &H33,lReg.oReg

(continued)

152



Chapter 8: Mouse Function Calls

'. Wa1t
H

unti 1 any key is presseq
DO
LOOP WHILE INKEY$ == ''''

, Reset mouse to deactivate
i Reg .ax< ==0
InterrtiptX &H33, iReg, oReg

END

C/QuickC

I*Set H lnterruptSubroutineCall Mask and Address *1

#include<dos.h>
/Ii ncl ude<coni o. h>

union ... RE(iS1Reg.oR~g:
st ruct·SREGS ·segregs:
1* This is the sub to be activated with the right mouse button *1
void far msub()

;1Reg~x.ax ... ·4;
iReg.x.cx CD 0:
; Reg.x. dx = 0:
; nt86{Ox33, &iReg •. &oReg):

main()
{

1* Function·· 4: Set Mouse Cursor *I
1* Left edge of screen */
1* Top ~dge of screen *1
/* Moves cursor to upper 1eft corner */

print.f(tt\n\n\nD~monstrationofmou~eFtJnction 12... \n tt ):
pri<ot'f("Press any key .to .quitXn"):

1* Mouse Reset and Status */
iReg.x.ax =0;
inta~(p)(33, ·&fR~g,. &aReg);.

1* Show .Cursor .• */
; Reg.x.ax g 1;
in~a6{Ox33,&tRegt &oReg):

(continued)

153



PART III: MOUSE PROGRAMMING INTERFACE

continued

1*.Set, Interrupt Subroutine Call Mask. and Address*l
iReg,.x.ax =r 12: 1* Mouse Function 12 is called *1
·i~~~}~~.<;xcm8: l~when ..rfghtb~~ton •..'·is '. pre~sed*l
l~e~)~;~rcJx .• ··aa..·,·.FP_OFF{~~.Ul),): 7*Q·,·Offset."oT H msub(}···j nto.·· OX .··*t
segregs. es= FP_SEGfms·ub); 1* Segment of "msub() intoES· */
fnt86x<Ox33,&iReg,&oReg, &segregsl;

1* Wait for a keypress *1
getctt()·:

/*Reset the mouse deactivate the interrupt *1
i Reg.~.ax = 0;
int86(Ox33, &iReg,&oReg);

}

MASM

: Set lnterrupt Subroutine Call Mask and Address

.MODEL LARGE

.STACK lOOh

.CODE

: Function 4, Set Mouse Cursor
; Left edge of s.creell
: Topedgsofscreen
: Move the cursor

msub

: This is the subroutine activated by the right mouse button
msub PROC

movax,4
xorcx,cx
lDovdx,cx
tnt 33h
ret
ENDP

:,Set up OS for,the data segment
star~: lIIoy·ax,@DATA

moy ds ,ax

: Mouse Reset and Status
xor aX,ax

33h

(continued)

154



Chapter 8: Mouse Function Calls

Offsetof ,sUb' '.• i nto~ES
Mouse Function 12
Int~~ruptwhen .. right button released
Segment'ofsub into OX

Mask arid·' Address

;S,~owCurs()r

movax,l
int33h

p ~--::,--:-::\: ..::~. .;:.,. . - .' -.: :--/.;' - ;'.: " - .'. -.-:: "',<

: Set Interrupt Subroutine Call
movax,SEGmsub
mo~,es,'ax

lIlovax,12
moy;cx,8
.mov "'dx ,0FFSETmsub
int33h

; Walt for a keypress, allowi ng test; ng'of mouse
mav ah.8

the mouse to deactivate the interrupt
){orax,a><.
fnt33h

: <EKit. ·to .MS- DOS
movax.4COOH
int21h

Exit no error

END ·start

MOUSE FUNCTION 13: LIGHT-PEN EMULATION MODE ON

Call with M1% 13

Returns Nothing

Description Mouse Function 13 lets the mouse emulate a light pen. Mter your pro
gram calls Function 13, calls to the PEN function return the cursor po
sition at the last pen doum.

The mouse buttons control the pen doum and pen offthe screen states.
The pen is down when you press both mouse buttons. The pen is off the
screen when you release either mouse button.

The mouse software enables the light-pen emulation mode after
each reset (Function 0).

Examples Each of the following program fragments enables the light-pen emula
tion mode.

155



PART III: MOUSE PROGRAMMING INTERFACE

Interpreted Basic

QuickBasic
:\:':::: :::::, - ~: :.: '. -_:: : =: - --: -:-:= . . . :: ::~

'iLight-Pen.·.Ernulation .Mnt1IDillln

iReg.ax =- 13
InterruptX &H33, iReg, oReg

C/QuickC

1* Light-Pen Emulation ModeuOn *1
iR~g,.x. ax c:I 13:
.inf86COx33; &tReg,&oRegl:,<!'

MASM

:l.igbt-PenEmulatJon·ModeOn
moV.

u

ax,13
int33h

MOUSE FUNCTION 14: LIGHT-PEN EMULATION MODE OFF

Call with

Returns

M1%

Nothing

14

Description Mouse Function 14 disables light-pen emulation. After your program
calls Function 14, calls to the PEN function return information about
the light pen only.

If a program uses both a light pen and a mouse, the program must
disable the mouse light-pen emulation mode in order to work correctly.

Examples Each of the following program fragments disables the light-pen emula
tion mode.

156



Chapter 8: Mouse Function Calls

Interpreted Basic

QuickBasic

, Light-Pen Emulation Mode Off
i Reg.ax p

·•· ••14
Interrup'tX .·.&H33, iReg, .oReg

CjQuickC

/* Light-Pen Emulation Mode> Off */
i Reg •• x.ax l:3 14;
int86(Ox33. &iReg,&oReg};

MASM

; ··.l.ight ... Pen···. Emula~Jon .• Mode Off
movax,14
int 33h

MOUSE FUNCTION 15: SET MICKEY/PIXEL RATIO

Call with

Returns

M1%
M3%
M4%

Nothing

15
horizontal mickey/pixel ratio
vertical mickey/pixel ratio

Description Mouse Function 15 sets the mickey-per-pixel ratio for horizontal and
vertical mouse motion. The ratios specify the number of mickeys for
every 8 virtual-screen pixels. The values must range from 1 through
32,767. For more information about the mickey, see Chapter 6, "Mouse
Programming Interface."

The default value for the horizontal ratio is 8 mickeys to 8 virtual
screen pixels. The default value for the vertical ratio is 16 mickeys to 8
virtual-screen pixels.

157



PART III: MOUSE PROGRAMMING INTERFACE

Later in this chapter, you'll see that Function 26 (Set Mouse Sen
sitivity) combines Function 15 and Function 19 (Set Double-Speed
Threshold) and lets you set the mouse-sensitivity parameters in one
function call instead of two.

Examples Each of the following program fragments sets the mickey-per-pixel
horizontal ratio to 16 to 8 and the vertical ratio to 32 to 8, thus setting
'the cursor to half speed.

Interpreted Basic

;110 ' Set MfckeylPi xel Ratto
120 MIS &=15 .
130 M3% mI2 16 'Horizontal ratio
140 M4%~ 32 'Vertical r~tto

150 CALL .MOUSE(MlS, M2%.M3S, M4%)

QuickBasic

, Set Mickey/Pixel Ratio·
iReg .aX&=l~·· .
fReg. cX 1llll IB:
i Reg. dx&=32
InterruptX &H33, iReg,oReg

C/QuickC

/* Set Mickey/Pixel Ratio */
iReg.x.ax =a. 15:
iReg.x.cx - 16:
; Reg. x.cbt=a.}?:
nt86( Ox33,&fReg., ..nlolan·.······

MASM

,', HorlzOntill" .ratIo
'Verticalratto

; Set .Mtg~eyz:r,;xel ,R~1ilQ'.; .••·1):· ... ·:.·:
;mov ·ax ,15 .

-m(jy cx,I6
moy dx,32
int 33h

158



Chapter 8: Mouse Function Calls

MOUSE FUNCTION 16: CONDITIONAL OFF

Call with

Returns

M1%
M4%

Nothing

16
address of the region array

Description Mouse Function 16 defines a region you want to update on the screen.
If the cursor appears in the defined region or moves into it, Function 16
hides the cursor during the updating process. When Function 16 ends,
your program must call Function 1 (Show Cursor) to redisplay the
cursor.

Function 16 defines a region by placing the screen-coordinate
values in a four-element array. The following table defines the elements
of the array:

Array Offset

1

2
3

4

Value

Left x screen coordinate

Top y screen coordinate

Right x screen coordinate

Bottom y screen coordinate

Function 16 is similar to Function 2 (Hide Cursor), but you can
use Function 16 for advanced applications that require faster screen
updates.

In the QuickBasic, C/QuickC, and MASM examples, notice that
the elements of the array are loaded into registers ex, DX, SI, and DI
when you use Interrupt 33H. Compare this with the interpreted Basic
example, which passes the address of an integer array that defines the
region.

Examples Each of the following program fragments hides the cursor if it moves
into the upper left corner of the screen.

Interpreted Basic

200 ' Conditional Off
210'
~20Il1MR'EGlON%(4),

(continued)

159



PART III: MOUSE PROGRAMMING INTERFACE

continued

QuickBasic

C/QuickC

MASM

160



Chapter 8: Mouse Function Calls

MOUSE FUNCTION 19: SET DOUBLE-SPEED THRESHOLD

Call with

Returns

M1%
M4%

Nothing

19
threshold speed in mickeys per second

Description Mouse Function 19 sets the threshold speed for doubling the cursor's
motion on the screen. This function makes it easier for you to point the
cursor at images that appear far apart on the screen.

The M4% parameter defines the mouse's threshold speed. Ifyou
specify a value of 0 or ifyour program calls Function 0 (Mouse Reset
and Status) or Function 33 (Software Reset) to reset the mouse, Func
tion 19 assigns a default value of 64 mickeys per second. Ifyou move the
mouse faster than the value of the M4% parameter, cursor motion
doubles in speed. The threshold speed remains set until your program
calls Function 19 again or until Function 0 resets the mouse.

Once your program turns the speed-doubling feature on, the fea
ture remains activated. Your program can effectively turn this feature
off by calling Function 19 again and setting the M4% parameter to a
speed faster than the mouse can physically move (for example, 10,000
mickeys per second).

Later in this chapter, you'll learn that Function 26 (Set Mouse
Sensitivity) combines Function 15 (Set Mickey/Pixel Ratio) and Func
tion 19, letting you set the mouse-sensitivity parameters by making one
function call instead of two.

Examples Each of the following program fragments sets the double-speed
threshold to 32 rnickeys per second. Later, it sets the threshold to a
value that effectively turns the speed-doubling feature off.

Interpreted Basic

llOu'Set D()qble -Speed Jhre.~hold:.
l20:,iM~% .mIg· , ..
130'M4S em 32
140u CALL •.v"' , • ... IV·.' ,.,.

229:{~1%···.···\1~

230!'M4S ==10000
240 CALL MOUSE(MlS.M2%. M3%.M4S)

161



PART III: MOUSE PROGRAMMING INTERFACE

QuickBasic

fRe'g.ax
iReg.dx CI

1I1terruptX &H33, iReg, oReg

C/QuickC

1*. Set Double-Speed Threshold */
iH~e~.x·.ax.=.l~~;

.i'~·~gH.x·.·dx ..•..•H32:.;:,:
1ntS6( OX33,&:i~eg, &oReg):'

'rReg. x•ax=·l·g.·;:
iReg. x.dx-lOOOO:
int86(Ox33, &fReg. &oReg):

MASM

:: Set Double~Speed Threshold
mov.ax.19
rn9~;dx.32

tnt: ,a3h

162



Chapter 8: Mouse Function Calls

MOUSE FUNCTION 20: SWAP INTERRUPT SUBROUTINES

Call with

Returns

M1%
M2%
M3%
M4%

M2%
M3%
M4%

20
segment of new subroutine
new call mask
offset of new subroutine

segment of old subroutine
old call mask
offset of old subroutine

Description Mouse Function 20 sets new values for the call mask and the subroutine
address for mouse hardware interrupts. It also returns the values that
you previously specified.

A mouse hardware interrupt stops your program's execution and
calls the specified subroutine whenever one or more of the conditions
defined by the call mask occurs. When the subroutine ends, your pro
gram continues execution at the point of interruption.

The call mask is an integer value that defines which conditions
cause an interrupt. Each bit in the call mask corresponds to a specific
condition, as shown in the following table:

Mask Bit

o
1

2
3

4

5-15

Condition

Cursor position changed

Left button pressed

Left button released

Right button pressed

Right button released

Not used

To enable the subroutine for a given condition, set the corre
sponding call-mask bit to 1, and pass the mask as the M3% parameter.

To disable the subroutine for a given condition, set the value of
the corresponding bit to 0, and pass the mask as the M3% parameter.

Your program can set any combination of one or more bits in the
call mask. When anyone of the indicated conditions is detected, the
mouse hardware interrupt calls the subroutine. The subroutine deter
mines which condition occurred by inspecting the bits passed in the
ex register. The indicated conditions are ignored when you set the
value of the call-mask bits to O.

163



PART III: MOUSE PROGRAMMING INTERFACE

Before your program ends, be sure to restore the initial values of
the call mask and the subroutine address by calling Function o.

When the mouse software makes a call to the subroutine, it loads
the following information into the central processing unit's registers:

Register

AX

BX

CX
DX

51

DI

Information

Condition mask (similar to the call mask except that a bit is
set only if the condition occurs)

Button state

Horizontal cursor coordinate

Vertical cursor coordinate

Horizontal mouse counts (mickeys)

Vertical mouse counts (mickeys)

NOTE: The DS register, which contains the rrwuse-driver data segments, does not
appear in this list. The interrupt subroutine is responsibkfor setting the DS register
as needed. Because the rrwuse driver loads the hardware directly, we recommend
that you use assembly language to create yourFunction 20 routine so that registers
can be manipulated easily.

Using Function 20 from Within Programs
To use Function 20 with interpreted Basic programs,

1. Load an assembly language subroutine into the Basic inter
preter's data segment. All exits from the subroutine must use a
FAR return instruction.

2. Pass the subroutine's entry address to Function 20 as the fourth
parameter (M4%).

3. Pass 0 in the second parameter (M2%). This is a signal to the
mouse driver that the subroutine is in Basic's data segment.

To use Function 20 with QuickBasic programs,

1. Load an assembly language subroutine into QuickBasic's data
segment. You can load the subroutine into a string or into a
COMMON array.

2. Pass the subroutine's address to Function 20 as the fourth pa
rameter (M4 %). The VARPTR function returns the address of
an array.

164



Chapter 8: Mouse Function Calls

3. Pass the segment of the subroutine in the second parameter
(M2 %). The VARSEG function returns the segment of any
QuickBasic variable.

To use Function 20 with C or QuickC programs,

1. Use the appropriate mouse call for the memory model ofyour
program. Use cmouses for small-model programs, cmousec for
compact-model programs, cmousem for medium-model pro
grams, and cmousel for large-model and huge-model programs.

2. Pass the offset part of the subroutine's address in the fourth pa
rameter (M4%).

3. Pass the segment part of the subroutine's address in the second
parameter (M2%).

To use Function 20 with MASM programs, move the segment of the
subroutine into the ES register, the offset into the DX register, the call
mask into the ex register, and the mouse function number (20) into
the AX register.

Examples Each of the following program fragments swaps a new interrupt sub
routine with the current subroutine. The mouse hardware interrupt
calls the new subroutine when you release the left-hand mouse button.
The subroutine moves the cursor to the middle of the screen.

Interpreted Basic

, Subroutine 1s fromthi s code ••• ./"
MOV AX,4 Function 4, Set
MOVCX,320 :Mi.ddleofscne~n

.. f MOV DXj:l.OO : Mlddleof ,., scree'n
I NT 33h i

• ; Mouse Interrupt
RETF : Return to BASIC

100 'Swa!plnterruptSubr,outines

~~P' BU11dr~placement,subroutineto,activate FUflction 20
.:r3.g:Q'DIMMS,~·~.2%(5)
3tO'MSU82S~fO) ,,' ,,'u &H488
320 MSUB21(1) -=, &HB900
~~gM$U~.2~(?1 •••••. ,aca &H140

"·):~~~.'.·".· ••MSUB'~~'(:a·.)' ••,·""" '&.H6'4.B,:/J.
.·.35;(lMSUB2fa4) d c::J &HCDOO
360 MSUB'2%15J = &HCB33

(continued)

165



PART III: MOUSE PROGRAMMING INTERFACE

continued

QuickBasic

166



Chapter 8: Mouse Function Calls

C/QuickC

~>J>':'<~~~)~~,ist~!;;~~e.;,r:~pl·a.cem~n~<~Ubfoutf..ne<;f~t@nct f.~n ••gp»>.~l
:::·'·):'YOl·(j:msub21}:~" ..' . . ..' '.
'··::<··:t

1* FunctiGn 4: SetMouseCursor*/
1* Middle of screen *1
1* Miqdleof screen~I.. ...... ....:.. '.. ,~~'

1*.<"oY~$····curs0rto •... 4Pp~r :.1 eft·gor~¢r i~.1

iReg .x.ax c= 4:
1Reg.x.cxc=.320;
tReg .x.d~~,c=lOO :

<c'):':'; ·~i·j:.in t86,c€:OX~~t "~iReg ,&oReg)::..•....
('·~··:·ji~

;I*·SW~~ .. 1nterrupt Subroutine *1
: ·iReg.:X·~a:·x":=·:20: MoUse Funcffon 20 *1

iReg.x.cx=4: 1* When left button is released *1
iReg.x.dx== FP_OFF(msub2); 1* Offset ofmsub2() into OX *1
segregs.es= FP_SEG(msub2); /* Segment ofmsub2() into ES*I
.; nt86x{O.x~3, &i.,Reg ,&oReg&segregs) ;

MASM

FunGti on4. SetMo,useCursor.
MlddJeof screg.n:
Middle of screen
Move the cursor

Interrupt Subroutines

is· the repl acement .. subrout1 ne for Functi on 20
PROC
mov· ..·ax,4
mQv .:c~,,3 20

.m()vdx~100
int'33h
ret
ENDP

(continued)

167



PART III: MOUSE PROGRAMMING INTERFACE

continued

es,bx
assume~s:nothing

Inov cx,4
movdx,OFfSETmsub2
;:nt···33'h;"

:lnt~rrupt when 1eft button urel eased
:~ffs_t ofsu~ into OX

MOUSE FUNCTION 21:
GET MOUSE DRIVER STATE STORAGE REQUIREMENTS

Call with

Returns

M1%

M2%

21

buffer size required to save the mouse-driver state

Description Mouse Function 21 returns the size of the buffer required to store the
current state of the mouse driver. You can use this function with Func
tions 22 and 23 when you want to temporarily interrupt a program that
uses the mouse in order to execute another program that also uses the
mouse, such as the control panel.

Examples Each of the following program fragments returns the buffer size re
quired to store the mouse-driver state.

Interpreted Basic

110' 'Get Mouse Dr; verState storage Requi rements
120Ml% z= 21
130 CALL MOUSECM1%, M2%,M3%, M4S)
140 BUFSIZE% = M2%

QuickBasic

168



Chapter 8: Mouse Function Calls

C/QuickC

/* Get Mouse Drtver State Storage Requirements */
iReg.~•. axa21:
int86('Q~33,&iR~g,)&oReg):

bufsizemaoReg.x.bx

MASM

: Get Mouse Driver State storage Requirements
mov~x,;;21

into 3311'
mov bufsize,bx

MOUSE FUNCTION 22: SAVE MOUSE DRIVER STATE

Call with

Returns

Ml%
M4%

Nothing

22
pointer to the buffer

Description Mouse Function 22 saves the current mouse-driver state in a buffer allo
cated by your program. You can use this function with Functions 21 and
23 when you want to temporarily interrupt a program that uses the
mouse in order to execute another program that also uses the mouse.

Before your program calls Function 22, it should call Function 21
to determine the buffer size required for saving the mouse-driver state.
It should then allocate the appropriate amount of memory.

Examples Each of the following program fragments saves the mouse-driver state
in a buffer.

Interpreted Basne

100 DIM ~Uf%(1000)

(continued)

169



PART 11/: MOUSE PROGRAMMING INTERFACE

continued

2501F".BUFSIZES >1000 THEN.PRINT "Buffer "'n..<,h'i'i,ft."nlll'l .... '"

260Ml%=22
.262 ',M~%,~, VARPTRCBUFSfO),),,:',,',
27O.CA~LMPUSE(Ml%, "M2S,~3~~.'M~%)

QuickBasic

, Save Mouse Driver State
buff=SPACE$1bufsizS)
tReg .ax.;= 22
iReg.d~-'~SADD( bufS)
I nterr(fp:~~&~~·~., tReg,.'·oR~g':-r

CjQuickC

/* Save Mouse Driver State*/
if «buf< =u rna 11 oc( bufs; ze» !=-NUlL)

{

iRe~rx.ax, ,~22:, ' ",,)" ,' .• ,' '",'.'.'' "
iR~9c/~~,dx ..~ ..... RILOFF(~~f;ft,';+; .... ;.' .I.Bufof~~e~;:~;ri'to;nX.l ,. Jii;i;~
s~greg~ .es .cO .FP-SEG(~~fl:~'. l*au1'.S~1Jln~Rt't:WtOESi~1
int86x{Ox33 , ,&i Reg .&oReg','-&segregs) : '0'

J

MASM

=i.,' 'sav~I.'i.~p.Use/D,ni,ver ,,'.S+a~e··:
rnov,~x';~i?~
rnov;dx_,i~S

rnoves-~~~x

assumees:data
movdx,OFFSET buf
int 33h

170



Chapter 8: Mouse Function Calls

MOUSE FUNCTION 23: RESTORE MOUSE DRIVER STATE

Call with

Returns

M1%
M4%

Nothing

23
pointer to the buffer

Description Mouse Function 23 restores the last mouse-driver state saved by Func
tion 22. You use this function with Functions 21 and 22 when you want
to temporarily interrupt a program that uses the mouse in order to exe
cute another program that also uses the mouse. To restore the mouse
driver state saved by Function 22, call Function 23 at the end of the in
terrupt program.

Examples Each of the following program fragments restores the state of the
mouse driver. The buffer variable contains the state previously saved
by Function 22.

Interpreted Basic

31.0>' .RestoreMouseDriverState
32'0'
330Ml% all 23
334>M4% cs VARPTR(BUFS( 0»
340 CALL MOUSE(M1S, M2S,M3;,M4S)

QuickBasic

, Restore Mouse Driver ·State
i~~~.ax .' -23
iReg.dx. ell SAODfbuf$)
InterruptX &H33, 1Reg, oReg

C/QuickC

/*Restore Mouse Driver State */
tR~g.x.ax =.23.
j~~~~;~u.~.~.•..•.• ai' ••.•~~....gf~(buf);;. .•.. 1~:· ..QY;fC:pf·f~gt intQ;DX'1
'§egregs.es~ '=. ·F:P.i$EG( buf): " . " ···t*uB·qt·\·::s.egllleht·'ii(to·;~:E$' I
irita6xfOx33, .&jReg, &oReg, "'&segregs):"': .

171



PART rrr: MOUSE PROGRAMMING INTERFACE

MASM

':'::;RestoreMouse
rnOvax.2·3
~()v·dx.ds

,may' es ,dx
a5S tAme es:data .

.·:Dlov:,~<tx,OFFSET 'buf
"···/i.ot·.•·.33h

MOUSE FUNCTION 24:
SET ALTERNATE SUBROUTINE CALL MASK AND ADDRESS

Call with

Returns

M1%
M3%
M4%

M1%

24
user-interrupt call mask
user subroutine address

error status (-1 if error occurred)

Description Mouse Function 24 sets the call mask and address for up to three alter
nate user subroutines. Function 24 differs from Function 12 in two
ways: Subroutine calls using Function 24 let the called subroutine make
its own interrupt calls, and Function 24 uses more call-mask bits to pro
vide a wider range ofdetectable conditions. The new bits allow detec
tion ofAlt, Ctrl, and Shift key presses when you move the mouse or
press a button.

A mouse hardware interrupt stops your program and calls the
specified subroutine whenever one or more of the conditions defined
by the call mask occurs. When the subroutine ends, your program con
tinues execution at the point of interruption.

NOTE: When bits 5 through 7 are set, they require the corresponding shift state to
be true in orderfor other mouse events to caU the user subroutine. Unless you set bit
5, 6, or 7, or any combination ofthose bits, the subroutine won't be calkd.

The call mask is a single-integer value that defines which condi
tions cause an interrupt to the subroutine. Each of the first 8 bits in the
call mask corresponds to a specific mouse or keyboard condition, as
shown in the following table.

172



Mask Bit

o
1

2
3

4

5

6

7

8-15

Chapter 8: Mouse Function Calls

Condition

Cursor position changed

Left-hand button pressed

Left-hand button released

Right-hand button pressed

Right-hand button released

Shift key pressed during button press or release

Ctrl key pressed during button press or release

Alt key pressed during button press or release

Not used

To call the subroutine for any of the listed conditions, set the cor
responding bit(s) in the call mask to 1, and pass the mask as the M3%
parameter. One or more of the Shift-key bits (bits 5, 6, and 7) must be
set in combination with one or more of the mouse-activity bits (bits 0
through 4) to allow activation of the user subroutine.

To disable the subroutine for any of the listed conditions, set the
corresponding bit(s) in the call mask to 0, and pass the mask as the
M3% parameter. Failure to reset the mask results in the subroutine's
execution whenever the last specified mouse or keyboard condition
occurs.

NOTE: None ofthe mouse-driver versions ckars the call mask when Function 0 or
Function 33 is called. (The only way to reset a mask created by usingFunction 24
is to use another Function 24 call with the mouse-activity-bits portion of the mask
set to all zeros.) To work around this problem, use Function 20 instead ofFunction
24 to swap your interrupt subroutine into place. Before your program exits, swap
the original call address back into place.

When the mouse software makes a call to the subroutine, it loads
the following information into the microprocessor's registers:

Register

AX

BX

ex

Information

Condition mask. (Similar to the call mask except that a bit is
set only if the specified condition has occurred. Also, only
mouse action bits 0 through 4 are affected, and Shift-key
bits 5 through 15 are always set to 0.)

Button state

Horizontal cursor coordinate

(continued)

173



PART III: MOUSE PROGRAMMING INTERFACE

continued

Register

DX
SI

DI

Information

Vertical cursor coordinate

Horizontal mouse counts (mickeys)

Vertical mouse counts (mickeys)

NOTE: The DS register, which contains the mouse-driver data segment, does not
appear in this list. The interrupt subroutine is responsiblefor setting the DS register
as ne¢,ed. Because the mouse driver works directly with the hardware, we recom
mend that you use assembly language to create your Function ~4 routine so that
registers can be manipulated easily.

Using Function 24 from Within Programs
To use Function 24 with interpreted Basic programs,

1. Load an assembly language subroutine into the Basic inter
preter's data segment. All exits from the subroutine must use a
FAR return instruction.

2. Pass the subroutine's entry address to Function 24 as the fourth
parameter (M4%).

To use Function 24 with QuickBasic programs,

1. Load an assembly language subroutine into QuickBasic's data
segment. You can load the subroutine into a string or into a
COMMON array.

2. Pass the subroutine's address to Function 24 as the fourth pa
rameter (M4%). The VARPTRfunction returns the address of
an array.

To use Function 24 with C or QuickC programs,

1. Use the appropriate mouse call for the memory model ofyour
program. Use cmouses for small-model programs, cmousec for
compact-model programs, cmousem for medium-model pro
grams, and cmousel for large-model and huge-model programs.

2. Pass the offset part of the subroutine's address in the fourth
parameter (M4%). Ifyou want to call the mouse interrupt di
rectly, place the segment part of the address in the ES register.

174



Chapter 8: Mouse Function Calls

To use Function 24 with MASM programs, pass the segment of the sub
routine into the ES register, the offset into the DX register, the call
mask into the ex register, and the mouse function number (24) into
the AX register.

Examples Each program calls Function 24 to activate an interrupt-driven subrou
tine for the mouse. When you press Shift and the left mouse button si
multaneously, the cursor moves to the upper left corner of the screen.

Interpreted Basic

, Set Alternate Subroutine Call Mask and Address

, Stibrotitirie i~fromthis code ...
MOVAX,4 Function 4, Set Mouse Cursor
MOV CX,O Left edge of screen
MOV.· OX. 0 Top.edge of .screen
INT 33h Mouse Interrupt
RETf : RetOrn to Basic

21Q 'Buildi nterrupt-dri ven subroutine toacti v'ate Function 24
220 DIM MSUB%(S)
230' MSUB%(O) 11:1 &H4B8
240 MSUB%(l) ~&HB900

, 250 MSllB%C2> -&HO
260"MSUB%{3J z= &HBA
270 MSUBS(4) ~ &HCOOO
28()MSUB%(5l~'&HCB33

380 ' Set Alternate Subroutine Call Mask and Address
39Er MIla 24 t MouseuuFunct ion 24
400·M3% ~ 34 ' When Shift key and left button are pressed
402M4S'=VARPTR(MSUB%fO) )
410 CALL MOUSE(Ml%.M2% •. M3%,. M4%)

QuickBasic

• s~tA]ternateSub~outineCall Mask and uAdd.ress

DIM:.··msub%(5:)
COMMON' msub%( )

(continued)

175



PART III: MOUSE PROGRAMMING INTERFACE

continued

C/QuickC

(continued)

176



Chapter 8: Mouse Function Calls

i.Reg~x •• clX,· ·~'·ifP:.OF F(msub),',: l~jO~fset.:: ~fqM~!H~()'.",." i.n.t,~.Cip~.i:tl
s:egregs.esi:'J::J:,FP_SEG.f~sub): :1* 'Segment "of'"titsub:(' ) 'into":'ES:'::;*l
i nt86x.( Ox33,&i Reg, &oReg, &segregs):

MASM

Set Alternate Subroutine Call Mask ana'Address

: Function 4, Mouse Cursor
: Left edge of screen
: Top edge of screen
: Move~~he cursor

.:,j>Ihis iSithe.subrouti neactivated by functjon24
;mslJb PROC '

movax,4
xor ex,cx
mov dx,cx
tnt 33h
ret
EHOP

: Segment of sub·· into ES
: Mousa Function 24 when
: Shift key and left button are pressed
: Offset of subintoDX

: Set Alternate Subroutine Call Mask and Address
movdax,SEG msub
moves,ax
mov ax,24
mav cX.34
movdx,OFFSET msub
int'33h

MOUSE FUNCTION 25:
GET USER ALTERNATE INTERRUPT ADDRESS

Call with Ml%
M3%

25
user-interrupt call mask

Returns M1%

M2%
M3%
M4%

error status (-1 if no vector/mask, in which case M2%, M3 %,
and M4% return 0)
user subroutine segment
user-interrupt call mask
user subroutine address

177



PART III: MOUSE PROGRAMMING INTERFACE

Description Mouse Function 25 returns the interrupt address of the alternate
mouse user subroutine identified by the specified call mask. You can
call this function to retrieve the last alternate interrupt subroutine ad
dress prior to calling Function 24 so that you can restore the subroutine
address later.

The call mask is a single-integer value that defines which condi
tions cause an interrupt to the subroutine. Each of the first 8 bits in the
call mask corresponds to a specific mouse or keyboard condition, as
shown in the following list:

Mask Bit

o
1

2
3

4

5

6

7

8-15

Condition

Cursor position changed

Left-hand button pressed

Left-hand button released

Right-hand button pressed

Right-hand button released

Shift key pressed during button press or release

Ctrl key pressed during button press or release

Alt key pressed during button press or release

Not used

For assembly language programs, the subroutine address is
returned as BX:DX.

Examples Assume that Function 24 was used to set the alternate interrupt subrou
tine. Each of the following program fragments returns the interrupt
address of an alternate mouse-user subroutine.

Interpreted Basic

178



Chapter 8: Mouse Function Calls

QuickBasic

':['('q~t' :User·•••••Alt:~r'lat~e ': I'ntertUPtiAd,d'res~:l
1'Reg •• ax ~ '25
iReg.cx r= 34
InterruptX AH33. iReg •
.q~J]rnask%==..?R~9.CX

:':~'lJljseg% =oR~g.bx

,suboff%=oReg. dx

C/QuickC
;.. " . -- -:-.--,

1* Get User. Alternate InterruptAddres:s''1:I'
iReg.x.ax 1:1 25: /*MouseFunction25*1
iReg. x. ex CIl 34: /* Same 1 maskd*l
1nt86(Ox33. &iReg, &oRegl:
callmask aJ•• oReg~x.cx:

·::subseg·,· oReg'.x.Ox:
suboff c::a oReg.x.dx:

MASM

;n'Get User.', Alte'rnate Inter~upt·Address

mov ax,25 Mouse Function 25
mov.cx.34 : Same call mask

·1 nt33h
.m~¥cal1 mask;·~x

:niov\subseg,bx'
mov>suboff,dx

MOUSE FUNCTION 26: SET MOUSE SENSITIVITY

Call with Ml%
M2%
M3%
M4%

26
horizontal mickey sensitivity number
vertical mickey sensitivity number
threshold for double speed

Returns Nothing

Description Mouse Function 26 sets mouse-to-cursor movement sensitivity by defin
ing a scaling factor for the mouse mickeys and the double-speed
threshold. For more information about the mickey, see Chapter 6,
"Mouse Programming Interface."

179



PART III: MOUSE PROGRAMMING INTERFACE

The sensitivity numbers range from 1 through 100, where 50
specifies the default mickey factor of1. These mickey multiplication
factors range from about ~2 for a parameter of 5, to lo/! for a parameter
of100. The mickeys are multiplied by these factors before the mickey
to-pixel ratios (set by Function 15) are applied.

The double-speed ratio is also set to its default value by setting
M4% to 50.

This function provides a simplified approach to setting the mouse
sensitivity and double-speed ratios. The 0-through-l00 range provides
an intuitive scale for speeding or slowing the mouse motion.

Examples Each of the following program fragments sets the mouse sensitivity to
10 and the double-speed threshold to 32.

Interpreted Basic

110 • Set Mouse Sensitivity
120 MI% z= 26
130M2%z= 10
140M3%== 10
150 M4% = 32
160CALL•••• MOUSE( Ml%, ••. M2%,<M3%,<M4%)

QuickBasic

C/QuickC

180



Chapter 8: Mouse Function Calls

MASM

: Set Mouse Sensitivity
mov ax,26
mov bx,10
mov cx,bx

,rnov:dx,32
irit 33h

MOUSE FUNCTION 27: GET MOUSE SENSITIVITY

Call with

Returns

M1%

M2%
M3%
M4%

27

horizontal mickey sensitivity number
vertical mickey sensitivity number
threshold for double speed

Description Mouse Function 27 returns mouse-to-cursor movement sensitivity scal
ing factors previously set by Function 26.

These factors range from 1 through 100, with default values of 50.
To slow the cursor speed, use Function 26 to decrease the setting. To in
crease the speed (i.e., increase the mouse sensitivity), use Function 26
to increase the setting within the range 1 through 100.

Examples Each of the following program fragments returns the current horizon
tal and vertical mouse sensitivity settings and the double-speed
threshold sensitivity setting.

Interpreted Basic

300 ' Get Mouse Sensitivity
310 '
320 Ml% ::t 27
330. CALL MOUSE (MIl, M2% ,M3% ,M4%)
340 HFACTOR-M2%
350. VFACrOR~.M3%

.360 DFACTOR.·.··~· ·M4%

181



PART III: MOUSE PROGRAMMING INTERFACE

QuickBasic

C/QuickC

MASM

MOUSE FUNCTION 28: SET MOUSE INTERRUPT RATE

Call with

Returns

Ml%
M2%

Nothing

28
interrupt rate (in interrupts per second)

Description Mouse Function 28 operates only with the InPort mouse. This function
sets the rate ·at which the mouse driver polls the status of the mouse.
Faster interrupt rates provide better resolution in graphics applica- .
tions, but slower interrupt rates might let the applications run faster.

The interrupt rate is a single-integer value that defines the rate
(in interrupts per second). Integer values from 0 through 4 correspond
to specific maximum interrupt rates, as shown in the following table.

182



Rate Number

o
1

2
3

4

>4

Chapter 8: Mouse Function Calls

Maximum Interrupt Rate

No interrupts allowed

30 interrupts per second

50 interrupts per second

100 interrupts per second

200 interrupts per second

Not defined

NOTE: If a value greater than 4 is used, the InPort mouse driver might behave
unpredictably.

Examples Each of the following program fragments sets the mouse driver inter
rupt rate to 100 interrupts per second.

Interpreted Basic

110'.' •• Set Mouse Interrupt ·'Rate
120M1% ma 28
130M2% ::; 3
140>CALL MOUSE(Ml%, M2%,

QuickBasic

C/QuickC

MASM

183



PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 29: SET CRT PAGE NU.MBER

Call with MI %
M2%

29
CRT page for mouse cursor display

Returns Nothing

Description Mouse Function 29 specifies the number of the CRT page on which the
cursor will be displayed. For information about the number of CRT
pages available in each display.mode your adapter supports, see the
documentation that came with your graphics adapter.

Examples Each program fragment sets the CRT page number to 3.

Interpreted Basic

110 ' Set CRT Page Number
120 M1S- 29
130M2% z=3 'Page 3
140 CALL MOUSE (MIl,M?I,M~I.·M4S)

QuickBasic

'SetCRTPage Number
iReg .ax '1:1 2"9
iReg~bx ~. 3 • Page 3
Int~rrup~X &H33, 1Reg,oReg

C/QuickC

1*>SetCRT Page Numberu*l
iReg.:x.ax 1:1 29:
iReg.x.bx "ID 3:
int8610~33 ,. ·&tReg, "'''''''_~ ..~ .• ' ..'..

MASM

184



Chapter 8: Mouse Function Calls

MOUSE FUNCTION 30: GET CRT PAGE NUMBER

Call with Ml %

Returns M2%

30

CRT page of current cursor display

Description Mouse Function 30 returns the number of the CRT page on which the
cursor is currently displayed.

Examples Each of the following program fragments returns the number of the
CRT page on which the cursor is currently displayed.

Interpreted Basic

300 ' Get CRT Page Number
310 ..·. '
320iMl% -30
330<CAlL MOUSE(M1S, M2%. M3S. M4%)
340 CRTPAGE% ~ M2%

QuickBasic

'Get CRT Page Number
iReg.ax r::I 30
InterruptX &H33. iReg. oReg
CRTPage% -·oReg.bx

C/QuickC

/*Get CRT· Page Number *1
,iReg.x.ax· =30:
int86(Ox33. &iReg. &oReg);
crtpage ~ oReg.x.bx;

MASM

.; .Get CRT Page Number
mov ax,30
tnt·.33h

.' m:R!t Crtpageh • P'S;:.· .•.

185



PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 31: DISABLE MOUSE DRIVER

Call with

Returns

M1%

M1%
M2%
M3%

31

error status (-1 if error occurred)
offset of old Interrupt 33H vector
segment ofold Interrupt 33H vector

Description Use Mouse Function 31 in the MOUSE OFF portion ofyour program to
disable the mouse driver, which subsequently disables the mouse. When
your program calls Function 31, you can restore the Interrupt 33H
vector to the value it held before the mouse driver was enabled by using
the M2% and M3% parameters. Function 31 removes all other vectors
used by the mouse driver.

If this function can't remove all mouse-driver vectors, excluding
the Interrupt 33H vector, it returns an error of-1 for the Ml %
parameter.

Examples Each of the following program fragments disables the mouse driver
and returns the segment and offset of the old Interrupt 33H.

When your program calls Function 31 from an assembly language
program, use ES:BX for the address of the old Interrupt 33H vector.

Interpreted Basic

290 ' Disable Mouse Driver
300 MIl ~ 31 ' Mouse Function 31
310 CALL MOUSE(MlS, M2%. M3S, M4S)
320 ERRORSTATS - MIS
330 1330FF% - M2%
340 I33SEGS = M3%

QuickBasic

186



Chapter 8: Mouse Function Calls

C/QuickC

/* Disable Mouse Driver */
tReg.x.ax ca 31: /* Mouse Function */
int86X( Ox33./&fReg, &oReg. &$egregs):

,~rro rstat •.~·.· •••. oReg. x.ax:
, f330ff .lIIIioReg.• x. bx :

i33seg C:lsegreg.es:

MASM

: Disable <Mause Driver
mov ax,3l
int 33h
mov errstat,ax
OlOV i330ff,bx
mav i33seg,es

MOUSE FUNCTION 32: ENABLE MOUSE DRIVER

Call with

Returns

Ml% = 32

The same error status flags as does Function 0 for mouse-driver versions
7.0 and later; previous versions return nothing.

Description Use mouse Function 32 in the MOUSE ON portion ofyour program to
enable the mouse driver, which subsequently enables the mouse. Func
tion 32 sets the Interrupt 33H vector to the mouse-interrupt vector and
installs all other mouse-driver vectors.

Examples Each of the following program fragments enables the mouse driver.

Interpreted Basic

'110 ' Enable Mouse Driver
120. MIl ...•c=}?> ... '.

'".'fIf~30,· 'CALL·.·.·MpU$'E(Mll, M2%·,M3%·; .,.M4%)

QuickBasic

.:.·.'E~~bl:)~~M~~ .. Driver
·"··jReg •aX'I:l/3:~" "

InterruptX&H33, .. 1Reg, oReg

187



PART III: MOUSE PROGRAMMING INTERFACE

C/QuickC

MASM

MOUSE FUNCTION 33: SOFTWARE RESET

Call with

Returns

MI%

M1%
M2%

33

-1 (if mouse driver installed; otherwise, 33)
2 (provided M1 %=-1)

Description Mouse Function 33 is similar to Function 0 (Mouse Reset and Status)
except that Function 33 neither initializes the mouse hardware nor
resets other variables that are dependent on display hardware. Resets
are confined to software only. Compare with Function 47, which resets
only hardware values.

Function 33 indicates a valid software reset by returning both
values. The Ml %parameter must equal-I, and the M2% parameter
must equal 2 for a valid reset.

Function 33 resets the mouse driver to the following default
values:

Parameter

Cursor position

Internal cursor flag

Graphics cursor

Text cursor

Interrupt call mask

Horizontal mickey-per-pixel ratio

Value

Center of screen
-1 (cursor hidden)

Arrow

Reverse video block

All 0 (no interrupt subroutine
specified)*
8 t08

188

*This is true only for interrupt subroutines that weren't
installed by using Function 24.

(continued)



Parameter

Vertical mickey-per-pixel ratio

Double-speed threshold

Minimum horizontal cursor
position

Maximum horizontal cursor
position

Minimum vertical cursor position

Maximum vertical cursor position

Chapter 8: Mouse Function Calls

Value

16to 8

64 mickeys per second

o

Current display-mode virtual
screen x-value minus 1

o
Current display-mode virtual
screen y-value minus 1

Examples Each of the following program fragments resets the mouse driver.

Interpreted Basic

300 • Software Reset
310'
320 MlS 10:1 33
330 CALL MOUSE(M1%. M2S, ~3%, M4S)
340 STAT1% - M1%
350 ·STAT2% -M2%

QuickBasic

, Software Reset
iReg.ax =a 33
InterruptX &H33. iReg, oReg
stat1S - oReg.ax
stat2% all oReg.bx

C/QuickC

1*>SOftware Reset*l
iReg.x.ax - 33:
int86(Ox33. &iReg, &oReg)
statl{- oReg.x.ax:
sta ~2:.: c=" ""oReg.oX .~~:;

189



PART III: MOUSE PROGRAMMING INTERFACE

MASM

MOUSE FUNCTION 34: SET LANGUAGE FOR MESSAGES

Call with

Returns

Ml%
M2%

Nothing

34
language number

Description Mouse Function 34 operates only with the international version of the
mouse driver-it produces no effect with the domestic version of the
driver. Function 34 lets you specify the language in which messages and
prompts from the mouse driver are displayed. You can specify the lan
guage with a single integer from the Number column in this table.

Number Language

0 English

1 French

2 Dutch

3 German

4 Swedish

5 Finnish

6 Spanish

7 Portuguese

8 Italian

Examples Each of the following program fragments sets the language to Dutch.

Interpreted Basic

110 t Set·· Languagefor·~es$~g·e~
120 MIS ma34
130 M2% c= 2
140 CALL MOUSE (MIS. M2%.>M3i. ·~M4S)

190



Chapter 8: Mouse Function Calls

QuickBasic

, Set language for MesSag~~s

iReg.ax =.34
iReg.bx==2
InlerruptX&H8a.

C/QuickC

/* Set lan.glJage. for Messages. *1
i Reg .x. ax" 34 : .
iReg.x.bx =2:
int86(Ox33. &iReg. &oReg):

MASM

: Set language for Messages
moy ax.34
moy bx.2
int 33h

MOUSE FUNCTION 35: GET LANGUAGE NUMBER

Call with

Returns

Ml%

M2%

35

the current language

Description Mouse Function 35 operates only with the international version of the
mouse driver. This function returns the number of the language cur
rently set in the mouse driver.

NOTE: The number returned in M2% represents a language. (See the language
table in the discussion ofFunction 34.) Ifyou don't have an international mouse
driver, the value 0 (English) wiU always be returned.

Examples Each of the following program fragments returns the current language
number from the mouse driver.

191



PART III: MOUSE PROGRAMMING INTERFACE

Interpreted Basic

110 .. 'Ge,t Language Number
120 MIS = 35
'130 CALL MOUSE(MlS" M2%,M3S,.M4S)
140 LANGUAGE% - M2%

QuickBasic

CjQuickC

/* Get Language Number*/
iReg.x.ax- 35:
int86(Ox33, &iReg, &oReg);
language = oReg.x.bx:

MASM

: Get Language Number
may ax,35
int 33h
may language,bx

MOUSE FUNCTION 36:
GET DRIVER VERSION, MOUSE TYPE, AND IRQ NUMBER

Call with MI %

Returns M2%
M3%

36

mouse-driver version number
mouse type and IRQ number

Description Mouse Function 36 returns the version number of the mouse driver, the
type of mouse the driver requires, and the number of the interrupt re
quest type (IRQ). In the returned value M2%, the high-order 8 bits con
tain the m3Jor version number and the low-order 8 bits contain the
minor version number. For example, ifyou were using mouse-driver

192



Chapter 8: Mouse Function Calls

version 6.10, Function 36 would return an M2 %value of1552 (decimal),
which is equal to 0610 (hexadecimal).

The high-order 8 bits of the returned value M3% contain the
mouse type as follows:

• The value 1 indicates a bus mouse.

• The value 2 indicates a serial mouse.

• The value 3 indicates an InPort mouse.

• The value 4 indicates a PS/2 mouse.

• The value 5 indicates a Hewlett-Packard mouse.

The low-order 8 bits of the returned value M3% contain the value
for the interrupt-request type as follows:

• The value 0 indicates PS/2.

• A value ranging from 2 through 5 or the value 7 indicates a
mouse interrupt.

Examples Each of the following program fragments returns the mouse-driver ver
sion number, the mouse type, and the IRQ number.

Interpreted Basic

110 ' Get Driver Version, Mouse Type, and IRQ Number
120 '
130 MIS -36
140 CALL MOQSE(M1';, M2%,M3%, M4%)
150 VERSIONS- RIGHT$("OOO" + HEXS(M2%),4)
160 MAJORVERSION% &:l VAL(LEFT$(VERSIONS,2» 'Decimal notation
170 MINORVERSION% ~ VAL(RIGHTS(VERSIONS,2» 'Decimal notation
180 MOUSETYPEI ~ M3% \ 256
190 MOUSEIRO%a M3% AND&HFF

QuickBasic

, Get DriverVers;on, Mouse Type, and lRONumber
1Reg. ax· =-3.6

.•• Interrupt~;}§H·33', ... ; Reg '9R~~, .......•.........•...•. '" "H'<'
, .>version$ ·~:.RIGHT$ ("OOO"tHEXlCoReg .bx),·'4'J·

majorVersl()r1%- VAL(lEFT$(.version$, 2» 'Decimal notation
minorVerslon%- VAl(RIGHT$(version$, 2»'Decimal notation
mouseType%l:l oReg.cx \256
mouseIRQ%-.·oReg. ex AND&HFF

193



';.' Hexadeclmal"dlgi ts ·notation
: Hexadeclmal·-di g1 tsnotat1on.

PART III: MOUSE PROGRAMMING INTERFACE

C/QuickC

mi 1/\1""',"'" "'l"'i ~"'I/\

mousetype>=r·oReg.
lRQnum aaoReg.h.cl;

MASM

; Get Dr1verVers10n. MouseType~andlRO Number
moyax,36
int33h
moy maJoryersion.bh
moy. minoryersion.bl
moy mousetype.ch
moy IROnum. cl.

MOUSE FUNCTION 37: GET GENERAL DRIVER INFORMATION

Call with M1% 37

Returns M1% general information
M2% fCursorLock
M3% fInMouseCode
M4% fMouseBusy

Description Mouse Function 37 returns general information about the mouse
driver. Single-integer values M2%, M3%, and M4% are used for OS/2
programming.

Bit fields in the single-integer value Ml % provide the following
information:

• Bit 15 represents the driver type; the value 0 indicates the
mouse driver was loaded as a COM file; the value 1 indicates the
driver was loaded as a SYS file by a command in CONFIG.SYS.

• Bit 14 is 0 if the mouse driver is the original nonintegrated type
or 1 if it's the newer integrated type. This new driver is seme
times referred to as MDD, or Mouse Display Driver.

194



Chapter 8: Mouse Function Calls

• Bits 12 and 13 indicate the current cursor type. Both bits are 0
when the software text cursor is in effect, whether the cursor is
visible or not. Bit 13 is 0 and bit 12 is 1 when the hardware text
cursor is in effect. Bit 13 is 1, and bit 12 can be either 0 or 1, to
indicate the graphics cursor.

• Bits 8 through 11 indicate the interrupt rate at which the
mouse driver polls the status of the mouse. The binary value of
these four bits is the same as the rate number for Function 28
(Set Mouse Interrupt Rate). A default value of 30 interrupts per
second is normally indicated. You can change the interrupt
rate from its default only ifyou are using the InPort mouse.
Refer to Function 28 for more information.

The least significant byte of Ml %, bits 0 through 7, is used only by
the integrated mouse driver. This I-byte value is the count of currently
active MDDs.

The parameter M2%,fCursorLock, is an OS/2 semaphore flag used
to prevent reentrancy problems. With OS/2 it's possible to have stacked
mouse interrupts, in which the mouse driver interrupts the mouse
driver. The parameter fCursorLock is used by the driver to coordinate
its actions.

The parameter M3%,flnMouseCode, is a flag that indicates to OS/2
programs that the current execution path is in the mouse-driver code.

The parameter M4%,fMouseBusy, is a flag that indicates to OS/2
programs that mouse-driver code has been entered and has not yet ex
ited. This flag can be set even if the mouse driver is not the currently
active task.

This function is available in mouse-driver version 6.26 or later.

Examples Each of the following program fragments returns general driver
information.

Interpreted Basic

195



PART III: MOUSE PROGRAMMING INTERFACE

QuickBasic

'.·Get. General Dri Yerlnformation
iReg.ax g 37
InterruptX &H33, iReg,oReg

C/QuickC

MASM

; Get General DrtYerlnformation
moy ax,37
int 33h

MOUSE FUNCTION 38:
GET MAXIMUM VIRTUAL COORDINATES

Call with Ml% 38

Returns M2% mouse-disabled flag
M3% maximum virtual x
M4% maximum virtual y

Description Mouse Function 38 returns a flag in M2 %that indicates whether the
mouse driver is disabled and indicates the maximum virtual coordi
nates in M3% and M4% for the current video mode.

The mouse-disabled flag is nonzero after mouse Function 31 is
called to disable the driver. The flag is 0 ifFunction 31 has not been
called or if Function 32 was called to enable the driver.

The maximum virtual xy-coordinates are the defaults for the cur
rently set video mode. For example, all eGA text and graphics modes
return 639 and 199 for maximum virtual xy-coordinates.

You can use Functions 7 and 8 to set effective maximum values for
mouse coordinates. Function 38 ignores these settings and returns the
absolute maximum for the current video mode. Use Function 49 to
return the values set by Functions 7 and 8.

This function is available in mouse-driver version 6.26 or later.

196



Chapter 8: Mouse Function Calls

Examples Each of the following program fragments returns the maximum virtual
coordinates.

Interpreted Basic

110.··.'·. Get Maximum Virtual Coordinates
120 •• MI% == 38
130 CALL MOUSE(MIl, M2%, M3%, M41) .

QuickBasic

Get Maximum/Virtual Coordinates
i Reg. ax == 38
InterruptX &H33, iReg, oReg

C/QuickC

/* Get Maximum Virtual Coordinates */
iReg.x.ax =a 38:
int86(Ox33, &iReg, &oReg);

MASM

: Get Maximum Virtual Coordinates
mov ax,38
tnt33h

MOUSE FUNCTION 39:
GET SCREEN/CURSOR MASKS AND MICKEY COUNTS
Call with

Returns

Ml%

Ml%
M2%
M3%
M4%

39

screen-mask value or scan-line start
cursor-mask value or scan-line stop
horizontal mickey counts
vertical mickey counts

Description Mouse Function 39 returns cursor information and accumulated raw
mickey counts. If the software cursor is in effect, the first two parame
ters return single-integer screen-mask and cursor-mask values. Function
10 lets you change these mask values from their default settings.

197



PART III: MOUSE PROGRAMMING INTERFACE

If the hardware cursor is in effect, the first two parameters return
the scan-line start and stop values. These values depend on the display
adapter in the computer.

The horizontal and vertical mickey counts are raw counts accumu
lated since the last time the mouse was polled for movement. These
counts are unaffected by the acceleration table, double-speed thresh
old, or sensitivity settings.

This function is available in mouse-driver version 7.01 or later. The
scan-line start and scan-line stop information is returned only by mouse
driver version 7.02 or later.

NOTE: For more information about the software text cursor and the hardware text
cursor, see Chapter 6, ''Mouse Programming Interface. "

Examples Each of the following program fragments re~urns the mickey counts
and the screen/cursor mask values or scan-line start and stop values.

Interpreted Basic

QuickBasic

'Get Screen/Cursor· .• MasksandMtckey Counts
i Reg. ax 1m 39
InterruptX &H33, iReg,oReg

C/QuickC

1* Get Screen/CursorMasksand Mickey Counts *1
iReg.x.ax =a 39;
int86(Ox33, &iReg, &oReg);

MASM

198



Chapter 8: Mouse Function Calls

MOUSE FUNCTION 40: SET VIDEO MODE

Call with

Returns

M1%
M3%
M4%

M3%

40
video-mode number
font size

success flag

Description Mouse Function 40 sets the mouse driver's video mode. Use Function 41
to determine valid modes for your computer.

This function ignores modes unsupported by the video hardware
in your computer. The mouse driver changes its behavior only if the
selected video mode is valid. The returned value of M3% is 0 when the
mode selected is valid and is the attempted video-mode number if the
mode selected is not valid.

Some video modes support font size control. The most significant
byte of the font size parameter sets the y font size value, and the least
significant byte sets the x font size value. Set the font size parameter to
oto indicate the internally defined default font size for the indicated
video mode.

Functions 40 and 41 do nothing if M3% equals o.
This function is available in mouse-driver version 7.0 or later.

Examples Each of the following program fragments sets the video mode.

Interpreted Basic

110 ' Set Video Mode
120 Ml% -40
130 M3% = ModeNumber%
140 M4S =- 0
150 CALL MOUSE(Ml%, M2%,M3%, M4S)

QuickBasic

, .. Set'Video Mode
iReg.ax =40
iReg.cx~ ModeNumber%
,iReg .d~d ..~ .. 0

..InteJ'r:uptX. &H33, .....tReg, oReg

199



PART III: MOUSE PROGRAMMING INTERFACE

C/QuickC

MASM

:. Set·ViCleoqMode
moy ax,40
moy eX,mode_number
xor dx, dx
int 33h

MOUSE FUNCTION 41: ENUMERATE VIDEO MODES

Call with M1% 41
M3% find first, or find next

Returns M2% segment of string
M3% video mode number
M4% offset ofstring

Description Mouse Function 41 enumerates, or lists, all video modes supported by
the currently installed mouse driver. The returned video-mode num
bers are the same as those passed to Function 40 to set a mode.

Set M3% to 0 to list the first video mode. Set M3% to any nonzero
value to list the next video mode in the list. The end of the list is indi
cated by a returned video-mode number of o.

If a string description of the listed video mode is available, the seg
ment and offset of the beginning of the string are returned. This far
pointer is NULL (both the segment and offset are zero) if the string de
scription is not provided by the currently installed mouse driver. The
string is terminated by a $ character (ASCII 36 decimal), followed by a
zero byte.

This function is available in mouse-driver version 7.0 or later.

NOTE: The enum£rated video-mode numbers might not be in increasing order
and might be repeated in the enum£ration.

200



Chapter 8: Mouse Function Calls

Examples Each program fragment returns a video-mode number.

Interpreted Basic

110 'Enumerate Video Modes
120 M1%= 41
130 M3% = ·Fi·rstOrNext%
140 CALL MOUSE(M1S, M2l, M3S~ M4%)

QuickBasic

t Enumerate Video Modes
iReg.ax = 41
iReg.qx.= FirstOrNe~t%

InterruptX &H33, iReg,oReg

CjQuickC

1* Enumerate VideoModes~1

iReg.x.ax = 41:
iReg.x~cx - first_or_next;
int86x(Ox33, &iReg, ·&oReg,&segregsJ:

MASM

: Enumerate Video Modes
moy ax,41

. moy ~x,first_or_next

, int 33h

MOUSE FUNCTION 42: GET CURSOR HOT SPOT

Call with

Returns

Ml%

Ml%
M2%
M3%
M4%

42

fCursor
horizontal cursor hot spot
vertical cursor hot spot
type of mouse

Description Function 42 returns the cursor hot-spot location, the type of mouse in
use, and the internal counter that controls cursor visibility.

201



PART III: MOUSE PROGRAMMING INTERFACE

The parameter fCursor is the internal count of calls to Function 1
(Show Cursor) and Function 2 (Hide Cursor). For more information
about the operation of this internal cursor count, see Chapter 6,
"Mouse Programming Interface."

The horizontal and vertical hot-spot locations are relative to the
upper left corner of the cursor block. Although these values can range
from -128 through 127, they usually range from 0 through 15, which is
within the cursor pixel area. Function 9 sets the hot-spot location.

One ofsix mouse types is currently returned, as shown in the fol
lowing table:

Value

o
1
2
3
4
5

Meaning

No mouse
Bus mouse
Serial mouse
InPort mouse
IBM mouse
Hewlett-Packard mouse

This function is available in mouse-driver version 7.02 or later.

Examples Each of the following program fragments returns the coordinate values
of the cursor hot spot and the type value of the cursor.

Interpreted Basic

110 • Get Cursor Hot Spot
120 MIl CIa 42
130"CALLMOUS{(M1%, M2% ,M3%, M4%)

QuickBasic

·"Gel •• Cursor<Hol Sp.at
iReg.ax = 42
InterruptX &H33, iReg, oReg

C/QuickC

/* Bet Cursor Hot Spot*/
1Re'g.x .ax CD I. 42~:

iht86(Ox33~ •.•·&jiReg, .&oR~g);'"

202



Chapter 8: Mouse Function Calls

MASM

: Get Cursor Hot Spot
mov ax,42
int 33h

MOUSE FUNCTION 43: LOAD ACCELERATION CURVES

Call with

Returns

MI%
M2%
M3%
M4%

MI%

43
curve number
segment of curve data buffer
offset of curve data buffer

success flag

Description Mouse Function 43 loads acceleration-curve data into the mouse driver
or optionally resets the default curves.

Set curve number to -I to restore default curves or to a value from
1 through 4 in order to select which curve to activate. Pass the far ad
dress of a byte array defining the curves in the ES:SI registers (M3%
and M4 %). The byte array contains 324 bytes, grouped in four sequen
tial tables that completely define the acceleration curves. The structure
of this buffer, and an explanation of each part, appears on page 204.

This function is available in mouse-driver version 7.0 or later.
Only one of the four acceleration curves is active at any time. The

mouse driver accumulates raw mouse-motion counts and determines
cursor move.ment based on values from these tables. The mouse-count
table is scanned from the first count less than the raw mouse-motion
count. The position in this table is used as an index for the scale-factor
table. The raw mouse count is multiplied by the selected scale factor to
determine the accelerated distance to move the mouse cursor.

The first table of the array indicates the number of significant en
tries in the next two tables. For example, a byte value of 7 in the third
byte of the array (offset 2) indicates that the third curve will use only 7
mouse-count values and 7 scale factors. Values in this table should be in
the range 1 to 32.

The mouse-count-threshold table values are compared with raw
mouse-motion counts to determine which scale factor the mouse driver
should use. The threshold values must be arranged in ascending order
because the mouse driver searches for the first entry greater than the
raw mouse count.

203



PART III: MOUSE PROGRAMMING INTERFACE

Curve-Length Table
Offset Bytes Description

o
1

2

3

1

1

1

1

Number of mouse counts and factors for curve 1

Number of mouse counts and factors for curve 2

Number of mouse counts and factors for curve 3

Number. of mouse counts and factors for curve 4

Mouse-Count Table
Offset Bytes Description

4 32 Array of ascending mouse-count thresholds for curve 1

36 32 Array ofascending mouse-count thresholds for curve 2

68 32 Array ofascending mouse-count thresholds for curve 3

100 32 Array ofascending mouse-count thresholds for curve 4

Scale-Factor Table
Offset Bytes Description

132

164

196

228

32

32

32

32

Array ofscale factors at each threshold for curve 1

Array ofscale factors at each threshold for curve 2

Array of scale factors at each threshold for curve 3

Array of scale factors at each threshold for curve 4

Curve-Name Table
Offset Bytes

260 16

276 16

292 16

308 16

Description

ASCII string name for curve 1

ASCII string name for curve 2
ASCII string name for curve 3

ASCII string name for curve 4

The scale factor is selected based on the location of the threshold
value. For example, if the third threshold value is selected for a given
number of raw mouse counts, then the corresponding third scale factor
is used to modify the cursor movement. The calculated cursor move
ment is proportional to the scale factor, and the scale factor is selected
based on mouse velocity.

204



Chapter 8: Mouse Function Calls

The curve-name table contains 16-character ASCII string names
for each of the four curves. The default strings are padded with spaces
and are not terminated with any special byte value, for example, a $.

Examples Each of the following program fragments loads the acceleration tables
from a buffer.

Interpreted Basic

110'i1.0ad Accelerat ion· •.Curves
120Ml%sa 43
130 M2% c= 1
140M3% = 0
150M4% m VARPTRCBUF%(Ol)
160CAtL MOUSE(MlS. M2%,.M3%. M4%)

QuickBasic

, Load Acceleration Curves
iReg.ax = 43
i Reg.bx IlIlI 1
1Reg.es IlIlI VARSEG{a$)
1Reg.st •• 11.1 SADD(a$)
InterruptX &H33. iReg, oReg

C/QuickC

/* load Acceleration Curves */
i Reg .x.ax em 43:
tReg.x.bx == 1;
segregs.es =. FP_SEG(
iReg.x.si = FP_OFF( buf ):
int86x(Ox33, &iReg, &oReg. &segregs);

MASM

: Load .Accel.eratton
moviq~.SEG ·buf
moYeS,ax
moYst,OFFSET buf
moy.·ax,43
movbx.l
fnt33h

205



PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 44: READ ACCELERATION CURVES

Call with

Returns

Ml%

Ml%
M2%
M3%
M4%

44

success flag
curve number
segment-of-curve data buffer
offset-of-curve data buffer

Description Function 44 reads acceleration-curve data from the mouse driver. The
success-flag value is 0 if the function was successful. The currently ac
tive acceleration-curve number is returned in the second parameter.
The ES:SI registers (M3% and M4%) return a far address to a 324-byte
array that defines the four acceleration curves.

For more information about the contents of this array, see Func
tion 43 (Load Acceleration Curves).

This function is available in mouse-driver version 7.0 or later.

Examples Each of the following program fragments returns acceleration-curve
information.

Interpreted Basic

110'.Read Acceleration Curves
120 MIl .. 44
130 CALL MOUSE(Mll, M2S, M31,M4S)

QulckBasic

C/QuickC

206



Chapter 8: Mouse Function Calls

MASM

: Read Acceleration Curves
moy, ax,44
int33h

MOUSE FUNCTION 45:
SET/GET ACTIVE ACCELERATION CURVE

Call with

Returns

MI%
M2%

MI%
M2%
M3%
M4%

45
set/get curve number
-I to get active curve
1 through 4 to set curve number 1 through 4

success flag
curve number
segment of curve name string
offset of curve name string

Description Mouse Function 45 sets one of the four acceleration curves or gets the
currently active curve number. Set M2% to -I to return the currently
active curve number, or set M2% to a number in the range 1 through 4
to set the active curve number.

The success-flag value is 0 if the function was successful or -2 if
the set curve number is not in the range 1 through 4. The active curve
number is returned in M2%. The ES:SI registers (M3% and M4%)
return a far address to a 16-byte string description of the active curve
number. Note that this string is not terminated with any special byte
value, for example, a $.

For more information about acceleration curves, see Function 43
(Load Acceleration Curves).

This function is available in mouse-driver version 7.0 or later.

Examples Each program fragment returns the active acceleration-curve value.

Interpreted Basic

110'Set/GetAct1ve Acceleration
120 MIS m 45
130M2S=a -1
140 CALL MOUSE(Ml% , M2%,M3S •. M4%')

207



PART III: MOUSE PROGRAMMING INTERFACE

QuickBasic

'SetlGetuActi ve Accel e'rati on. Curve
iReg.ax=45
iReg.b~I:I.• -l
Inter:ruptX &H33, i Reg ,oReg

C/QuickC

/* Set/Get Active Acceleration Curve */
iReg.x.ax =z 45;
i Reg .x.. bx.- -1;
int86x{Ox33, &iReg, &oReg,&segregs);

MASM

: Set/Get Active Accelerati~n Curve
moy ax,45
moy bx,-l
tnt 33h

MOUSE FUNCTION 47: MOUSE HARDWARE RESET

Call with

Returns

M1%

M1%

47

success flag

Description Mouse Function 47 is similar to Function 0 (Mouse Reset and Status)
except that Function 47 doesn't reset software values. Mouse hardware
and variables that are dependent on display hardware are reset. Com
pare this function with Function 33 (Software Reset), which resets only
the software and not the hardware.

The success-flag value is -1 if the function was successful or 0 if the
hardware reset failed.

This function is available in mouse-driver version 7.02 or later.

Examples Each of the following program fragments resets the mouse hardware.

208



Chapter 8: Mouse Function Calls

Interpreted Basic

110 ' Mouse Hardware Reset
120 M1% CI 47
130 CALL MOUSEfM1%, M2%, .M3%.M4%)

QuickBasic

, Mouse Hardware Reset
; Reg.ax mll 47
InterruptX &H33~ iReg, oReg

C/QuickC

/* Mouse· Hardware Reset */
iReg.x.ax CI 47;
int86(Ox33, &iReg, &oReg};

MASM

: Mouse Hardware Reset
mov ax,47
int33h

MOUSE FUNCTION 48: SET/GET BALLPOINT INFORMATION

Call with

Returns

Ml%
M2%
M3%

Ml%
M2%
M3%

48

rotation angle
command

status
rotation angle
button masks

Description Mouse Function 48 sets or returns BallPoint-orientation and button
mask information. Set the command value to 0 to return the status of
the BallPoint device. Set the command value to a nonzero value to set
the rotation angle and masks. The rotation angle ranges from -32,768
through +32,767 degrees relative to the internal device orientation. The
high byte of command sets the primary button mask, and the low byte

209



PART III: MOUSE PROGRAMMING INTERFACE

sets the secondary button mask. The middle 4 bits set buttons bI, b2, b3,
and b4 and have the form

o 0 bl b3 b2 b4 0 0

The returned status is meaningful only if the mouse driver supports
the BallPoint device. The status is -1 if the BallPoint device is not pre
sent. Otherwise, status returns the state of the buttons, in the form

o 0 0 0 0 0 0 0 0 0 bl b3 b2 b4 0 0

The rotation angle is returned in the range 0 through 360 degrees. The
high byte of the button-mask parameter is the primary button mask,
and the low byte is the secondary button mask. These masks have the
same form as described above.

This function is available in mouse-driver version 7.04 or later.

Examples Each program fragment returns BallPoint information.

Interpreted Basic

110 • SetJGet Ba11Poin~lnformation

120··.Ml% ~48

130 ··M3%-Q
140 CALL MOUSE (M11, .. M2S, <M3%, M4%J

QuickBasic

, Set/Get BallPoint Information
i-Reg. ax 1::1 .48
iReg.~cx. '-0
Inte.rr4P~X&H33, i Reg,:oRt!9

C/QuickC

I*Set/Get BallPoint Information *1
iReg .x. ax 1::1 48:
iReg.x.cx= 0:
il1t86(Ox33, &iReg. &oReg):

210



Chapter 8: Mouse Function Calls

MASM

: Set/Get BallPoint Information
movax,48
movcx,O
int33h

MOUSE FUNCTION 49:
GET MINIMUM/MAXIMUM VIRTUAL COORDINATES

Call with

Returns

Ml%

Ml%
M2%
M3%
M4%

49

virtual x minimum
virtual y minimum
virtual x maximum
virtual y maximum

Description Mouse Function 49 returns the minimum and maximum horizontal
and vertical coordinates for the current video mode. These x and y
values are those set by Functions 7 and 8. If not set by these functions,
they default to 0 for the minimum values and absolute maximum x
and y for the maximum values. See Functions 7,8, and 38 for related
information.

This function is available in mouse-driver version 7.05 or later.

Examples Each of the following program fragments returns the minimum and
maximum virtual coordinates.

Interpreted Basic

110 • Get Minimum/Maximum Virtual Coordinates
120Ml% c= 49
130 CALL MOUSE(Ml%. M2%,M3%,M4%)

QuickBasic

•• Get MinimumlMaximum Virtual Coordinates
i Reg .ax CI 49
InterruptX &H33, iReg, oReg

211



PART III: MOUSE PROGRAMMING INTERFACE

C/QuickC

I*:GetMi ni mum/Maxllllum.Vi,rtua:l <Coordinates· *1
tReg.x.ax c::I49:
int8610x33, &1nregs.&outregsl:

MASM

MOUSE FUNCTION 50: GET ACTIVE ADVANCED FUNCTIONS

Call with

Returns

M1%

M1%

50

active function flags

Description Mouse Function 50 returns 16 flags (bits) that indicate active advanced
functions.

The most significant bit in Ml %is 1 if Function 37 is active and 0 if
it's not active. The next most significant bit is the flag for Function 38,
and so on.

Function 50 provides a convenient way to determine ifversion 8.0
of the mouse driver is installed. Earlier versions support all mouse func
tions from 0 through 36, but many of the functions from 37 on are
available only in version 8.0.

This function is available in mouse-driver version 7.05 or later.

Examples Each of the following program fragments returns information that in
dicates which advanced functions are active.

Interpreted Basic

110 ' Get Act1veAdvanced.Junctions
120 MIl = 50
130 CALL MOUSE(MI%. M2I,·M3S'dM4S)

212



Chapter 8: Mouse Function Calls

QuickBasic

C/QuickC

/* Get Active Advanced. Functions */
·1 Reg. x.ax=t.50:
1nt86fOx33·,·&iReg•.&oReg);

MASM

: Get ActlYeAdYanced Functions
moy ax.50
int 33h

MOUSE FUNCTION 51: GET SWITCH SETTINGS

Call with

Returns

M1%
M3%
M4%

M1%
M3%
M4%

51
length of buffer
pointer to buffer

o
number of bytes returned in buffer
pointer to buffer

Description Mouse Function 51 returns the current settings of switch values that can
be passed to the mouse driver. The settings are returned in a buffer.
M3% contains the length of the buffer. M4% is a pointer to the buffer
(ES:DX).

This function is available in mouse-driver version 7.05 or later.

213



1
2
3
4
5
6
7
8
9

10
11
13
14
15

16-339

PART III: MOUSE PROGRAMMING INTERFACE

Contents of Output Buffer
Byte Contents

o MouseType (low nibble)
MousePort (high nibble)
Language
Horizontal Sensitivity
Vertical Sensitivity
Double Threshold
Ballistic Curve
Interrupt Rate
Cursor Override Mask
Laptop Adjustment
Memory Type
Super VGA Support
Rotation Angle
Primary Button
Secondary Button
Click Lock Enabled
Acceleration-Curve Data (see Function 43
for description)

Examples Each program fragment returns current mouse switch settings.

Interpreted Basic

110 ' Get Switch Settings
120 M1% mI 51
130 M3% =a 340
140 M4% - VARPTR( BUFFER(O) )
150 CALL MOUSE(Ml%, M2%~ M3%, M4%)

QuickBasic

Range

0-5
0-4
0-10
0-10
0-100
0-100
1-4
1-4

0-255
0-255
0-2
0-1

0-359
1-4
1-4
0-1

i Reg. cx ...a:I. 340
iReg.dx - SADD( BUF$ )
InterruptX &H33, iReg, oReg

214



Chapter 8: Mouse Function Calls

C/QuickC

/* ~et Switch Settings
int,buf[3401:-
fReg.x. ax = ·51:
iReg.x.cx = 340;
iReg.x.dx = FP_OFF( but );
segregs.es ~ FP_SEG( buf);
int,86x( Ox33. &iReg, &oReg,segregs)

MASM

: Get·. Switch Setti ngs
movax,51
moy cx,340
moy dx,OFFSET but
may es,SEG but
int 33h

MOUSE FUNCTION 52: GET MOUSE.INI

Call with

Returns

Ml%

Ml%
M3%
M4%

52

o
segment of buffer
offset of buffer

Description Mouse Function 52 returns a pointer to a buffer that contains a string
that is the full path of the location of the mouse-driver initialization
file, MOUSE.INI. M3% and M4% (ES:DX) return the segment and off
set of the buffer.

If the environment variable MOUSE is defined, the value of the
variable is used to determine the full pathname of MOUSE.INI. If the
environment variable is not defined and you are using DOS 3.0 or later,
then the directory that contains the mouse driver is used to determine
the full pathname of MOUSE.INI. If the environment variable is not de
fined, the version of DOS you are using is earlier than 3.0, and you have
a hard-disk drive (C:), then C:\MOUSE.INI is returned; otherwise,
A:\MOUSE.INI is returned. If MOUSE.INI does not exist, the buffer
contains a null string.

This function is available in mouse-driver version 8.0 or later.

215



PART III: MOUSE PROGRAMMING INTERFACE

Examples Each of the following program fragments returns the location of the
current mouse switch settings.

Interpreted Basic

llQ·,·)'·>GetlOcation "o{Swttch'Settlngs
12.0 MIS =52
130 CALL MOUSE(M1';, M2%, M3S. M4%)

QuickBasic

" .GetLQcation of Swttch§e.t,tings
iReg'.aXi=52 "',' ,,',' .
Inte'rruptX &H33. iReg.<oReg

C/QuickC

/* Get Location of Switch Settings */
iReg.x.ax= 52:
int86x(Ox33. &iReg, &oReg. segregs):

MASM

: Get Location of Switch Settings
mav aX,52
int 33h

216



Chapfer9

Sample Mouse
Programming
Interface Programs

This chapter presents mouse programming examples that use inter
preted Basic, QuickBasic, C and QuickC, MASM, FORTRAN, and Pas
cal. You will see some overlap of functionality among the programs;
however, there are significant differences in style and programming
techniques that can provide insight into the many ways you can pro
gram the mouse.

The two basic means by which you call mouse functions are the
MOUSE.LIB library and Interrupt 33H. Using the mouse library is
straightforward and self-documenting, as shown in many of the follow
ing programs. Note that the MOUSE.LIB library provides subroutines
for each of the major Microsoft language products. (See Chapter 6,
"Mouse Programming Interface," for more information.)

Using the mouse interrupt requires calling Interrupt 33H directly.
Most of the languages mentioned above provide a built-in mechanism
for calling system interrupts. Generally, most languages also provide a
method for passing and retrieving register values. Calling mouse func
tions by using Interrupt 33H offers slightly faster speed and greater effi
ciency; however, in doing so you might sacrifice some program
readability and simplicity.

Several of the programs that follow are presented in more than
one language. These programs provide an opportunity to learn more

217



PART III: MOUSE PROGRAMMING INTERFACE

about programming in different languages. For example, ifyou're
learning C and you already know QuickBasic, you might want to ex
amine the QBTEST.BAS and CTEST.C programs to compare how the
programs use the mouse function calls.

NOTE: For information about writingprograms in Turbo Pascal, see AppendixE,
"Making Calls from Borland Turbo Pascal Programs. "

The companion disks that come with this book include subdirec
tories for each language. Programming examples for each language
are contained in the subdirectories.

NOTE: This chapter contains descriptions of each of the programs listed below;
however, the actual codefor some ofthe lengthy programs appears only on disk. You
can use yourfavorite text editor to view the source codefor these programs on your
screen, oryou can print the source-codefiks ifyou want to work with hard copy.

\QC&C
cmouse.c
·ctest.c

;··~.•;p·~ ••~.·.·t ..··F.·.••..•••. ··•..•••.••••..• .
··;,,?:<:,mg~;~3j!~~·;·~·:·

·.... ·.···m~~~~~6~ :'.~
:mQ~h.J.11b ~ c
msc~xamp.c

'pencil.c

\OB
-qbmOU•• bas
qbtnt.. bas
qbtnc.bas
abso1ute.bas
; ntrrupt. bas'
mouse.bas
mousedem. bas .
qbi2.&20~bas

:.·:··.:-q.b24····~··~·a··s

.·qQtest·~bas
pencil.bas

\BAS/C
tstl.bas
batest.bas
piano.,bas

(continued)

218



Chapter 9: Sample Mouse Programming Interface Programs'

rn20sub.asm
catspaw.c
1nfo.c

,mva.c
:sPl.Irry ••c

\ASM'
tstl.asm
atest.asm
asmexamp.asm
tst12&20.asm
tst24.asm

\ FORTRAN
forI. for
ftest.for
fdemo.for
subs.asm

\PASCAL
moushgcp.pas
initpas.asm
pasexamp.pas
subs.asm
pdemo.pas

INTERPRETED BASIC PROGRAMS
The programs in this section demonstrate using the mouse from
interpreted Basic. The TSTI.BAS program shows the minimum steps
required for displaying the default graphics-mode cursor. The
BATEST.BAS program is the interpreted-Basic version of a program
that is presented in several languages in this chapter. The most sophisti
cated program is PIANO.BAS. This program lets you use the mouse to
play music on a simulated piano keyboard and demonstrates the steps
necessary to change the graphics-mode cursor.

To call the mouse functions from interpreted Basic, you must first
determine the vector address of the mouse driver. The first few lines in
each of these programs show how the address is determined. The seg
ment of the address is saved in the MOUSEG variable, and the offset is
saved in the MOUSE variable. After the program uses the DEF SEG
statement to set the current segment to MOUSEG, it can call mouse
functions with the CALL statement.

219



PART III: MOUSE PROGRAMMING INTERFACE

The CALL statement takes the following form:

CALL MOUSE(Ml%, M2%, M3%, M4%)

The variable MOUSE contains the offset of the Basic entry point into
the mouse driver, and M1%, M2%, M3%, and M4% are the names of
the integer variables you chose for parameters in this call. (Constants
and noninteger variables are not allowed.) All parameters must appear
in the CALL statement even if no value is assigned to one or more of
them. To ensure that the variables are integer variables, include the
percent sign (%) as part of all variable names.

See the TSTI.BAS program for a straightforward example of the
steps required to use the mouse with interpreted Basic.

The TST1.BAS Program
The TSTI.BAS program demonstrates the steps required to activate and
display the default graphics-mode cursor. To end the program, press
any key.

. - - - - - - .

10' ******************)(c***~***~***~*,:(c*'**~****'.*:***lf;*~****'*'**********
20 '* lST1 .BAS i. *
3'0 "'.* "....... ..'..'«" " . . .' .. "',.," " ""., *
40" * Qispl?ys"grapbjq~~;W;0,~ein9lJ~~it~'q,~~?r~1I;tiJ~,~~rfs pre~,~~~ *
50 ,.. Note:: •••••• Pro~,.ram ••••ass.umes.\mouse·~nd •• ;mgM~:~<~river •.••• ar~ •• ·, ...•,i.n.sJ~J •• led *
60 '****************************************************************
70 '
80 ': Set and clear thedtsplay
90.. SCREEN 2
100CLS
110' PRINT "Press any key t()qUi t"
120 '
130 ' Det~rminemouse'interruptaddress

140 DEFSEG CD 0
150 MOUSEG"= 256 * PEEK(207)+ PEEK(206) .

. .'160 MOUSE ••a256 .*.PEEKC205>•..... +·. PEEKC2041'+?
170 DEF •• SEG·.,.ICl3.M.OUSEG ••.• '.' .•• ••·• •• ·· ••·..i>,.. '..... ..i·····'.'.ii .. ·· .. ·.'.··.·.·.·.·.·.· ··' ..··.·.·· ) .'. ····.···.·.· .. ·.· .. ·.·.··.·.· ..'.·.·· i •••••••••.•.••...•..•...•.•...
180 IF .(MOUSEGOR.·{MOUSE·. - 2»AND PEEKfMOUSE-.2) .<>207THENGOT0210
190 PRINT "Mouse driver not found" :>END

.200 '
210 ' 'Reset mouse
220 MilaO
230 CALL MOUSE(Ml%. M2%~ M3%~ M4S)
240 •
250 'Show cursor

(continued)

220



Chapter 9: Sample Mouse Programming Interface Programs

260 MIl _ 1
270 · .CALL MOUSE (MIl, M3% ,.M4%)
280 '
290 'Wait for any key press
300 IF INKEY$.GlI 'u, THEN GOT0300
310 '
320 • Hide cursor
330 MIl- 2
340 CALL MOUSE(M1%, M2%, M3%, M4%)
350 • .
360 ' Reset mouse
370M1% a= 0
380 CALL MOUSE( M1%, .M2%, M3% ,M4%)
390 •
400 END

The BATEST.BAS Program
The BATEST.BAS program uses mouse Function 11 (Read Mouse Mo
tion Counters) to detect vertical mouse motion. The program displays
a three-line menu with one option highlighted. When Function 11
detects vertical mouse motion, the program moves the highlight up
ward or downward in the list.

In addition, this program uses mouse Function 5 (Get Button
Press Information) to detect a button press. To select a highlighted op
tion, simply press either mouse button. Before the program terminates,
it displays a message stating which option you selected and which but
ton you pressed.

This program is presented in several languages in this chapter so
that you can compare the mouse function calls in different languages.
If you want to compare the programs, see the QBTEST.BAS, CTEST.C,
ATEST.ASM, and FTEST.FOR programs.

100 '*******************************************************************
110 '* BATEST.BAS .*
120 ,~. ~

130 '. Demonstrates use of the Microsoft Mouse from 1nterpretedBas1c *
140 '***************'!c************************~***********~************,.
150' • ,.-
160 'Clear the display
170CLS
180'<

(continued)

221



PART III: MOUSE PROGRAMMING INTERFACE

continued

, print second 'line of the menu" highlighted if' selected

•·pr1ntfi rst 'line of the" menu,' ,high11 ghtedi f 'se1ected
IF MENUPTRI = 1 THEN COLOR 0,7 ELSE COLOR 7,0
LOCATE 10, 29
PRINT" 1. First option ..

, Update the menu only when necessary
WHILEWFLAG% = 1

WFLAG% =a 0

190 ' Deterhl'inemouse·.interruptaddress
200 DEFSEG==O
210 MOUSEG- 256 PEEK(207) + PEEK(206)
220 MOUSE =:1256 PEEK(205)+ PEEK(204) +2
230 DEF··.SEG= .• MOUSEG
232 IF·· lMOtlSEGOR ·CMOUSE->2JJ ·ANO·PEEK(MOUSE· .. 2)<>207

THEN·GOTO 260
234 PRINT "Mouse driver not found" : END
240 '
250 ' Display instruct10nsfor user

,.260 PRINT ."BATEST .. Mouse demonstration using interpreted Basic"
270 PRINT
280 PRINT "Use mouse .tohighlight a menu option."
290 PRINT "Press either button to select option."
300 '
310 ' Reset mouse and verify its existen~e

320 Ml% =.. 0
330 CALL MOUSE(Ml%. M2%. M3S, M4%)
340 '
350 ' Quit if mouse wasn't found
360 IF MIl ~ 0 THEN PRINT "Error: Mouse not found ": END
370 " .
380 ' Initiatfze menu pointer to first option
390 MENUPTR% == 1
400 '
410 ' Initialize count of accumulated vertical mouse motion
420 MOTION%= 0
430 '
440 ' Set flag to cause the menu to be updated first time through
450 WFLAGS =1
460 '
470 ' Main loop starts here
480 WHILEl
490
500
510
520
530
540
550
560
570
580
590

(continued)

222



Chapter 9: Sample Mouse Programming Interface Programs

600 IF MENUPTRS .. =a 2 THEN COLOR 0.7 ELSE COLOR 7,0
610 LOCATE 11, 29
620 PRINT" 2. Second option"
630

650 IF MENUPTRS>-3· THEN COLOR 0.7 .... ELSE ·COLOR7~:O··'

660 LOCATE 12, 29
670 PRINT" 3. Third option
680
690 'Be sure highlighting is turned off
700 £OLOR 7. 0
710
720 " End of updating the menu
730 WEND
740
750 'Accumul ate· vertical mouse motton ·· .• counts
760 ft1l%= 11
770 CALL MOUSE(Mll,>M2%, M3%. M4S)
780 MOTIONS =- MOTIONI + M4S
790
800 '.Move up the menu if enough mous.e motion
810 IEMOTIONS) -17 THEN GOTO 880
820 MOTION% ~ 0
830 IFMENUPTRS<~ 1 THEN 'GOTO 88.0
840 MENUPTR%= MENUPTRI - 1
850 WFLAGS = 1
860
870 'Move down the.menu if enough mouse motion
880 If MOTION% < 17 THEN GOTO 950
890 MOTION%= n
900 IF MENUPTRS)- 3 THEN GOT0950
910 MENUPTR% -MENUPTR% + 1
920 WFLAGS - 1
930
940 ' ~heck if left button pressed
950 HI%· ,.JI:Z 5
960 ,M'2% 1m 0
970 CALL MOUSE(Ml%,M2S. M3%. M4%)
980 IF M2% CIt 0 THEN GOTO 1030
990 PRINT "Left button used to
1000

(continued)

223



PART III: MOUSE PROGRAMMING INTERFACE

continued

The PIANO.BAS Program
The PIANO.BAS program creates a graphics-mode piano keyboard and
lets you play the keys by using the mouse. Ifyou want to play notes in a
lower octave, select the keys by pressing the left-hand mouse button. If
you want to play notes in a higher octave, select the keys by pressing the
right-hand mouse button.

This program demonstrates several mouse function calls. Func
tion 9 (Set Graphics Cursor Block) sets the cursor shape. Function 4
(Set Mouse Cursor Position) sets the cursor position. Function 1 (Show
Cursor) makes the cursor visible. Function 3 (Get Button Status and
Mouse Position) gets the mouse location and button status informa
tion. The program uses the block of DATA statements at the end of the
listing to create the Microsoft logo.

NOTE: Because of this program~ length, it is included on the companion disks
that come with this book rather than listed here. You can use yourfavorite text edi
tor to view the source code for the program on your screen, or you can print the
source code ifyou want to work with hard copy.

QUICKBASIC PROGRAMS
You can call mouse functions from QuickBasic in several ways. The
programs that follow call mouse functions by using the MOUSE
subprogram in MOUSE.LIB and the INTERRUPT and ABSOLUTE
subprograms supplied with QuickBasic.

The simplest programs are QBMOU.BAS, QBINT.BAS, and
QBINC.BAS. Each of these programs displays the text-mode cursor and
then waits for you to press a key before terminating. In these programs,
the mouse functions are called by using the MOUSE and INTERRUPT
subprograms, providing a direct comparison ~etween the two calling
methods. The QBINT.BAS and QBINC.BAS programs differ only in the
way you make declarations to prepare for using the INTERRUPT
subprogram.

.224



Chapter 9: Sample Mouse Programming Interface Programs

ABSOLUTE.BAS, INTRRUPT.BAS, and MOUSE.BAS are larger
programs that demonstrate how you can make the same mouse func
tion calls by using CALL ABSOLUTE, CALL INTERRUPT, or CALL
MOUSE. Two of these programs create a new graphics-mode cursor.

The MOUSEDEM.BAS program presents some useful QuickBasic
sUbprograms in addition to demonstrating several mouse functions.
MOUSEDEM.BAS changes the text-mode cursor and displays pop-up
windows as it demonstrates each function.

The QB12&20.BAS and QB24.BAS programs present examples of
setting and swapping user-interrupt subroutines by using Functions 12,
20, and 24. These interrupt subroutines are activated quickly while a
program is running when they detect mouse motion, mouse button
presses, or combinations of Shift key presses and mouse activity.

The QBTEST.BAS program is the three-line menu program that
detects vertical mouse motion. It is presented in several other lan
guages in this chapter for comparison.

All these programs require that you load a Quick Library with
the QuickBasic environment. Programs that use INTERRUPT or
ABSOLUTE sUbprograms can use the QB.QLB Quick Library supplied
with QuickBasic. To load this file with QuickBasic, type the following
command at the MS-DOS prompt:

OB IL OB.OLB

Programs that call the MOUSE sUbprogram require that the Quick
Library loaded in memory include the code found in the MOUSE.LIB
library. You can create a new Quick Library named QBMOUSE.QLB
that contains the MOUSE.LIB routines in addition to the QB.QLB
routines by typing the following command:

LINK IOU INOE OB.LIB + MOUSE.LIB.OBMOUSE.OLB.NUL.BOLB45.LIB:

NOTE: To be sure that LINK jinds each jik, copy MOUSE.LIB, QB.LIB, and
BQLB45.LIB into your current directory.

The following command also creates a combined library that lets
your programs compile and link into stand-alone .EXE programs:

LIB OBMOUSE.LIB + MOUSE.LIB + OB.LIB:

Mter you create the QBMOUSE.QLB and QBMOUSE.LIB libraries, start
QuickBasic by typing the following command:

OB IL QBMOUSE.QLB

225



PART III: MOUSE PROGRAMMING INTERFACE

When you load QBMOUSE.QLB into the QuickBasic environment, all
QuickBasic programs in this section will run, whether they call the
mouse functions by using CALL ABSOLUTE, CALL INTERRUPT, or
CALL MOUSES.

The first three programs here, QBMOU.BAS, QBINT.BAS, and
QBINC.BAS, demonstrate three variations on calling mouse functions.
Each program clears the screen, displays the text-mode cursor, and
waits for you to press a key before terminating.

The QBMOU.~AS Program
The QBMOU.BAS program calls the MOUSE subprogram provided in
the MOUSE.LIB library. To call this subprogram from the QuickBasic
environment, you must build and load the QBMOUSE.QLB library as
described earlier in this section.

'***********************~**********************.*******

'* OBMOU.BAS *
'* *
'* Calls>mouse functions using the MOUSE subprogram *
'* *
'* Tol0adOBMOUSE.QlBtntomemory with Quicka~sic. *
'* type:QB •• /L QBMOUSE.QlB . *
'******************************************************

, Initialization
DEFINT A-Z
DECLARE SUB Mouses (ml%.m2%. m3%. m4%)
CLS
PRINT "Press . any ·keyto .•.• quitn

, Mouse~Resetand Status
ml··==O
Mouses mI. m2. m3. m4

(continued)

226



Chapter 9: Sample Mouse Programming Interface Programs

, Reset mouse driver
ml =:a 0
Mouses ml, m2. m3,m4

END

The QBINT.BAS Program
The QBINT.BAS program calls mouse functions by using the INTER
RUPT subprogram. The INTERRUPT SUbprogram is part of the
QB.QLB Quick Library that comes with QuickBasic. Before you load
and run QBINT.BAS, be sure you load the QB.QLB library into the
QuickBasic environment.

'***********************************************************
'* QBINT.BAS
'*

*
*

'* Calls mouse functions by using the INTERRUPT subprogram *
'* *
'* To load OB.QLB into memory with QuickBasic, type: *
'* QB IL QB.OLB *
'***********************************************************

DEFINT A-Z

TYPE RegType
ax AS INTEGER
bx AS INTEGER
ex AS INTEGER
dx AS INTEGER
bp AS INTEGER
s1 AS INTEGER
d1 AS INTEGER
flags AS INTEGER

END TYPE

DECLARE SUB Interrupt (intnum%. iReg AS RegType,oReg AS RegTypel

DIM iReg AS RegType
DIM oReg AS RegType

, Initialization
CLS
PRINT "Press any key to quit"

(continued)

227



PART III: MOUSE PROGRAMMING INTERFACE

continued

, Mouse Reset and Status
iReg. ax s:;a··O

Interrupt&H33, iReg, oReg

ShowCurSXlr
iReg.ax= 1
Interrupt iH33, iReg, oReg

, Wait until any key is pressed
DO
LOOP WHIL.EINKEY$ _""

, Hide Cursor
iReg.ax =2
InterrupttH33, iReg, DReg

, Reset mouse
iReg.ax == 0
Interrupt &H33, iReg, oReg

END

The QBINC.BAS Program
The QBINC.BAS program is almost identical to the QBINT.BAS
program except that you make the declarations necessary to use the
INTERRUPT SUbprogram by including the QB.BI fi~e. To insert the
contents of the QB.BI file at the appropriate place in the listing, simply
use the $INCLUDE metacommand. Like QBINT.BAS, the QBINC.BAS
program requires that you load the QB.QLB library into the QuickBasic
environment.

'***********************************************************
'* QBINC.BAS
'*

*
*

'* Calls mouse functions by using the INTERRUPT subprogram *
'* *

Declar~~lons for INTERRUPT are loaded from the
OB. BIfile' by the$INC1UDE metacommand.

'*
'* To load Q8.QLB into memory with Qu1ckBasic, type: *
'. QB·/LQB~QLB *
'***********************************************************

(continued)

228



Chapter 9: Sample Mouse Programming Interface Programs

DEFINT A-Z

'$:1 NCLUOE: ••••. ·o.a!~I.·

DIM iReg AS RegType
DIM oReg AS RegType

, ,10-1 tial.ization
ClS
PRINT npressany key to quit"

, Mouse Reset and Status
jRe.g .ax ClO .. ..;
Inte.rrupt&H33. i Reg. ·.oReg

, Show Cursor
iReg.ax ... 1
,Interrupt &H33, i Reg, <lReg

, Wait until any key is pressed
DO
LOOP WHILE INKEY$ - ""

, Hide Cursor
fReg.ax 1:12
Interrupt &H33. iReg, oReg

, Reset mouse
.fReg.ax'" .0
Interrupt &H33, iReg, oReg

END

The ABSOLUTE.BAS Program
The ABSOLUTE.BAS program demonstrates working with the mouse
from QuickBasic 4.5 by using the CALL ABSOLUTE command. This
program employs several mouse functions. Function 0 (Mouse Reset
and Status) resets the mouse, and Function 1 (Show Cursor) makes the
cursor visible. Functions 7 (Set Minimum and Maximum Horizontal
Cursor Position) and 8 (Set Minimum and Maximum Vertical Cursor
Position) limit the cursor motion to the center of the screen. To check
mouse status, the program calls Function 3 (Get Button Status and
Mouse Position). Before the program terminates, it calls Function 0
(Mouse Reset and Status) to hide the cursor.

229



PART III: MOUSE PROGRAMMING INTERFACE

Before you can run the ABSOLUTE.BAS program, you must load
QB.QLB into memory by typing the following command:

OB Il OB.OlB

The CALL ABSOLUTE function won't work ifyou don't load QB.QLB
with QuickBasic.

You can now load and run the program. Note that the default
graphics-mode cursor appears inside a square that-marks cursor
movement limits set by Functions 7 and 8. To end the program, press
the left-hand mouse button.

The ABSOLUTE.BAS program was written for EGA graphics
mode (SCREEN 9). For CGA operation, change the SCREEN and LINE
statements. You should also change the horizontal and vertical motion
limits set in the calls to Functions 7 and 8 as required for the eGA
mode you set.

'*******************************************************************
*'* ABSOLUTE. BAS

'* 6/24188 by Dave Tryon, MicrosoftProduc~Support

'*

'*
,* Demonstrates calling mouse funct tons by •using CALL ",U ...fUl.-lUl I I.-

, Initial fzat; on
DEFINT A-Z
DEF SEG gO
CLS

'* To load Q8.0lB into memory with QuickBasic, type: QB Il
'* Assumes EGA - For CGA change SCREEN and LINE statements
'*******************************************************************

, Get mouse driver vector
MSEG~256* PEEK(51 * 4 + 3)
MOUSE-: 256 * PEEK( 51 * 4

, .....-,

, Proceed if driver found
IF MSEG OR (MOUSE - 2) THEN

'DEFSEG- MSEG
'IF PEEK( MOUSE -2) <> 207

, SCREEN 9

(continued)

230



Chapter 9: Sample Mouse Programming Interface Programs

, Print cursor location
LOCATE 2.2
PRINTM3,M4

WEND

COLOR 7
M2- a
WHILE (M2 =' 0)

, Function 3
Ml=3
CA LLAB$D LUTECMl, .M2, M3.M~·, MOUSE)

, Function T Limit Horizontal Motion
MI c= 7:M3= 100: M4= 540
~ALL ABSOLUTE(Ml, M2~::,M3, ·M4".MPUSE)

, Function 8 Limit Vertical Motion
HI = 8: M3~ 50: M4 = 300

,CALL ABSOLUTE(MI. M2,:M3, H4,M'()USE)

, Function 1 Show Cursor
Ml - 1
CALL ABSOLUTE(Ml, M2.M3, M4. MOUSE)

, Draw box to show mouse motion range
COLOR 1
LINE (lOO,50) - (540,50)
LINE (S40, SO) -' (540,300)
LINE (S40, 300) - (100. 300)
LINE (100,300) - (100. 50)

'Loop unti 1, buttonpre'ssed

'Function 0 Mouse Reset and Status
HI -= 0
eALL ABSOl.VTEfMI.' M2.,\~3~.,M4.·MP·USE)

PRINT "Mouse Dri ver lU·nT·······l.n ••nl"ll···.

END IF

231



PART III: MOUSE PROGRAMMING INTERFACE

The INTRRUPT.BAS Program
The INTRRUPT.BAS program demonstrates working with the mouse
from QuickBasic 4.5 by using the CALL INTERRUPT subprogram. This
program is similar in design and operation to the ABSOLUTE.BAS
program. Many of the same functions are called by INTRRUPT.BAS. In
addition, INTRRUPT.BAS calls Function 9 (Set Graphics Cursor Block)
to set a new graphics-mode cursor shape.

Before you can run the INTRRUPT.BAS program, you must load
QB.QLB into memory by typing the following command:

OB /l OB.OlB

The CALL INTERRUPT subprogram won't work ifyou don't load
QB.QLB with QuickBasic.

You can now load and run the program. Notice that the new
graphics-mode cursor appears inside a square that marks cursor
movement limits set by Functions 7 (Set Minimum and Maximum
Horizontal Cursor Position) and 8 (Set Minimum and Maximum Verti
cal Cursor Position). To end the program, press the left-hand mouse
button.

The INTRRUPT.BAS program was written for EGA graphics mode
(SCREEN 9). For CGA operation, change the SCREEN and LINE
statements.

You should also change the horizontal-motion and vertical
motion limits set in the calls to Functions 7 and 8 as required for the
CGA mode you set.

NOTE: Because of this programs lJmgth, it is included on the companion disks
that come with this book rather than listed here. You can use yourfavorite text edi
tor to view the source code for the program on your screen, or you can print the
source-codefiks ifyou want to work with hard copy.

The MOUSE.BAS Program
The MODSE.BAS program demonstrates working with the mouse from
QuickBasic 4.5 by using the CALL MOUSE function. This program is
similar in design and operation to both the ABSOLUTE.BAS and the
INTRRUPT.BAS programs.

The MOUSE sUbprogram is found in the MOUSE.LIB library. To
call this subprogram from the QuickBasic environment, you must build
and load the QBMOUSE.QLB library as described earlier.

232



Chapter 9: Sample Mouse Programming Interface Programs

You can now load and run the program. Notice that the new
graphics-mode cursor appears inside a square that marks the cursor
movement limits set by Functions 7 (Set Minimum and Maximum Hori
zontal Cursor Position) and 8 (Set Minimum and Maximum Vertical
Cursor Position). To terminate the program, press the left-hand mouse
button.

The MOUSE.BAS program was written for EGA graphics mode
(SCREEN 9). For eGA operation, change the SCREEN and LINE
statements. You should also change the horizontal-motion and vertical
motion limits set in the calls to Functions 7 and 8 as required for the
CGA mode you set.

'**************************************************************
'* MOUSE.BAS *
'* 6/24/88 by Dave Tryon, Microsoft Product Support *
'* *
'* Demonstrates calling mouse functions by us1ngCALL MOUSE *
'* *
'* To load QBMOUSE.QLB into memory with QuickBasic, type: *
'* QB /L QBMOUSE.QLB *
'* *
'* Assumes EGA - For CGA change SCREEN and LINEslatements *
'******************.******************.*******~****************

, Initialization
DIM.CURSOR( 15, 1) AS I NT;GER
COMMON CURSOR() AS INTEGER
DECLARE SUB MOUSES (Ml%, M2%, M3%, M4%)
CLS

• Define Cursor Array
CURSOR(O, 0) - &HEIFF
CURSOR(l, 0) = &HEIFF
CURSOR(2, 0) ~ &HEIFF
CURSOR( 3, O)IDlI&HEl FF
CURSOR(4, OJ~&HEIFF

CURSOR(5, 0) ~ &HEOOO
CURSOR(6, 0) = &HEOOO
CURSOR(7, 0) = &HEOOO
CURSOR(8, 0). == &HO
CURSOR(9, 0) ~ &HO
CURSOR(lO, 0) = &HO
CURSOR(II, G) = &HO
CURSQR(12, 0) ~ &HO

(continued)

233



PART III: MOUSE PROGRAMMING INTERFACE

continued

(continued)

234



Chapter 9: Sample Mouse Programming Interface Programs

LINE (540, 50 )<~ .. (540, 300)
41NE (540, 300l.'-:.(lQQ,.··300l
LINE (100, 300'r ••~";(100,50)

, Function 9 Set Graphics Cursor
MI% ~ 9: M2% ~ 5~ M3% ~ 0
CALL MOUSES(MI%,.M2%, M3%, VARPTRfCURSOR(O, 0»)

. , Functi on 1 Show Cursor
Ml%=1
CALLMOUSES(MI%,M2%,M3%, M4%)

, Loop until button pressed

COLOR 7
M2%- 0
WHI LE (M2% z:;iOJ

, Function 3 Get Button Status
MI% ~ 3
CALL MOUSES(MI%, M2%, M3%,

Mouse Position

, Function 0 Mouse Reset and Status
MI% Ill! 0
CALL MOUSES(Ml%,M2%,M3%, M4%)

ELSE PRINT "Mouse'· Driver Not Found'!
END IF

ELSE PRINT "Mouse Driver Not Found"
END.IF

The MOUSEDEM.BAS Program
The MOUSEDEM.BAS program uses modular QuickBasic program
ming techniques to demonstrate uses of several mouse functions. The
program makes calls to the mouse driver by calling the MouseDriver
subprogram. The MouseDriver subprogram uses one CALL INTER
RUPT to access the mouse driver.

This program demonstrates setting the hardware and software
text cursors by using Function 10 (Set Text Cursor). The program

235



PART III: MOUSE PROGRAMMING INTERFACE

makes the cursor blink by setting an appropriate hardware cursor, and
then it sets the cursor back to the default software cursor by means of a
second call to Function 10. The comments in the program listing ex
plain the process in detail.

The MOUSEDEM.BAS program also presents several creative sub
programs that you might find useful. For example, the MoveFrom
Screen and MoveToScreen sUbprograms show one way to save and
restore a rectangular area of the text-mode display.

Before you can run this program, you must load QB.QLB into
memory by typing the following command:

OB Il OB.OlB

The CALL ABSOLUTE command won't work ifyou don't load QB.QLB
with QuickBasic.

NOTE: Because of this programs length, it is included on the companion disks
that come with this book rather than listed here. You can use yourfavorite text edi
tor to view the source code for the program on your screen, or you can print the
source-codefiles ifyou want to work with hard copy.

The QB12&20.BAS Program
The QB12&20.BAS program demonstrates Functions 12 (Set Interrupt
Subroutine Call Mask and Address) and 20 (Swap Interrupt Subrou
tines). Function 12 sets a user-interrupt subroutine, and Function 20
swaps this interrupt subroutine with a second subroutine.

The program displays the text-mode mouse cursor and lets you
move the cursor around the screen. The cursor moves to the upper left
corner of the screen whenever you press the right-hand mouse button.

When you press a key, Function 20 replaces the first interrupt sub
routine with the second interrupt subroutin~.Now, when you release
the left mouse button, the cursor moves to the center of the screen.

To end the program, press any key.

'***************************************************************
'* OB12&20.BAS
'*
'* Demonstrates Mouse Funttinns 12 and 20
'* ('

'* To load OB.OlB·into memory with Ouic~Bastc, type:
'* OB 11 OB.alB

*
*
*
*
*
*

'*************************************.*************************

(continued)

236



msub%(2} == &HO
msub%(3) = &HBA
msub%(4) = &HCDOO
msub%(5) = &HCB33

msub2%(2) - &H140
msub2%(3) - &H64BA
msub2%(4) = &HCOOO
m~ub2%(S)=&HCB33

Chapter 9: Sample Mouse Programming Interface Programs

DEFINT A-Z

TYPE RegType
ax AS INTEGER
bx AS· INTEGER
cx AS INTEGER
dx AS INTEGER
bp AS· INTEGER
si AS INTEGER
di AS INTEGER
flags AS INTEGER

END TYPE

DECLARE SUB Interrupt (;ntnum%, iReg AS RegType, oReg AS RegType)

DIM iReg AS RegType
DIM oReg AS RegType

DIM msub%(S),msub2%(S)
COMMON msub%(), msub2%()

, First instructions
CIS
PRINT "Test by pressing right mouse button"
PRINT "Then press enter"

, Build interrupt-driven subroutine to activate Function 12
msub%(O) = &H4B8 ' Subroutine is from this code:
msub%(l) == &HB900 MOV AX,4 : Function 4, Set

: Mouse Cursor Position
MOV CX,O : Left edge of screen
MOV OX,O : Top edge of screen
INT 33h : Mouse Interrupt

,. RETF : Return to QuickBasic

, Build interrupt-driven subroutine to activate Function 20
msub2%(O) = &H4B8 ' Subroutine is from this code:
msub2%( 1) m &HB900 MOV AX,4 : Function .4, Set

: Mouse Cursor Position
MOV CX,320 Middle of screen
MOV OX,IOO Middle of screen
INT 33h Mouse Interrupt
RETF Return to· QuickBastc

(continued)

237



PART III: MOUSE PROGRAMMING INTERFACE

continued

, MousErRe~e~<and Status
iReg.ax.;=*.Q
Interrupt&~33, iReg, oReg

, Show Cursor
iReg.ax= 1
Interrupt'&~33, iReg, oReg

, Set Interrupt .. Subrouti ne Call Mask. and Address
iReg •.ax r¥= 12."·,·· ' Mouse Func·tipn .·12
·tReg.:.c~~·~:···· , lntertup:~·:}~h~rr .••ri 9ht button pressed·H::···.>••. ';:
iReg.dx~V.ARPTR(msub%(O» 'Offsetofmsubl .
Interrupt&H33,i Reg, oReg

, Waft until any key is pressed
00
LOOP WHI~E INKEY$ - ""

END

, Waf tuntilany .key; s pressed
00
LOOP 'WHI~EJNKEY$ ==. n'.,

, Next instructions
CLS
PRINT "Next, test by pressing and releasing left mouse
PRI NT"""benpr~s$ E.nter"

, Swap Interrupt Subroutines
iReg.ax-20 ' Mouse Function 20
i Reg.bx==VARSEG(msub2%(O» , Segment of msub2
iReg.cx= '4 ' Interrupt when left button released
;Reg.dx~ VARPTR(msub2%(O» , Offset of msub2
Interrupt &H33, fReg, oReg

.::.······I·, •. ';pi:' .. :·. . ....

, Resetm()tJ"s~··:·'iodea ctfva te
i Reg.ax.- •.o
Interrupt.IH33, iReg, oReg

238



Chapter 9: Sample Mouse Programming Interface Programs

The QB24.BAS Program
The QB24.BAS program uses Function 24 (Set Alternate Subroutine
Call Mask and Address) to set a user-interrupt subroutine. The bytes
that compose the short subroutine are placed in the msub%( ) array,
and the address of the first member of that array is passed to Function
24 as the address of the subroutine.

The program builds the subroutine, displays the cursor, and calls
Function 24 to activate the subroutine. The call mask is set so that you
must press a Shift key and the left-hand mouse button simultaneously
to cause the mouse driver to call the subroutine.

The program then enters a loop, waiting for you to press any key
before terminating. During this time, you can move the cursor on the
screen. Ifyou press a Shift key and the left-hand mouse button, the cur
sor moves to the upper left corner of the screen.

WARNING: Shortly before the program terminates, it calls Function 0 (Mouse
Reset and Status) to reset the mouse. Note that Function 0 will not deactivate the
user-interrupt subroutine. The subroutines address remains with the mouse driver
even though the subroutine itself is not present. Activation of the subroutine will
probably cause your system to crash.

'**************************************************************
'* QB24.BAS *
'* *
'* Demonstrates Mouse Function 24 *
'* Set Alternate Subroutine Call Mask and Address *
'* *
'* To load QB.QLB into memory with Qu;ckBasic, type: *
'* QB /L QB.QLB *
'**************************************************************

DEFINT A-Z

INTEGER
AS INTEGER
AS INTEGER
AS INTEGER
AS INTEGER
AS INTEGER

di AS INTEGER
flags AS INTEGER

END TYPE

(continued)

239



PART III: MOUSE PROGRAMMING INTERFACE

continued

DECLARE SUB Interrupt

01M i Reg AS RegType
DIM oRegAS RegType

DIM msub%(S)
COMMON msub%()

msub%(2) = &HO
msub%(3) = &HBA
msub%(4) = &HCDOO
msub%(S) - &HCB33

, Build interrupt-driven subroutine ~o acttvateFunction 24
msub%(O) - &H4B8 ' Subroutine is from this code:
msub%(l) - &HB900 MOV AX,4 : Function 4. Set

: Mouse Cursor Position
MOV. CX.O : Left •edge of screen
MOV DX.O ; Top edge. of screen
INT 33h : Mouse •• Interrupt
RETF ; Return to OuickBasic

, Display1nstructions
CLS
PRINT "Test while holding down
PRINT "and releasing the left IIlUU::J.t:d ,uU"·.·\';UJI.

PRINT "Then press Enter"

, Mouse Reset and Status
iReg. ax -= 0
Interrupt &H33, iReg,oReg

J Show Cursor
1Reg. ax r= 1
Interrupt &H33. iReg. oReg

, Set Alternate Subroutine Call Mask and Address
1Reg.ax == 24
iReg.cx == 36 ' Left button released and Shift key' pressed
iReg.dx = VARPTR(msub%(O»
Interrupt &H33. iReg, oReg

• Wait until any key is pressed
DO
LOOP WHILE INKEY$ == ""

• Deactivate Function 14
iReg.ax= 24,
i, Reg. ex .-. 32
Interrupt &H33. i Reg.oReg

(continued)

240



Chapter 9: Sample Mouse Programming Interface Programs

, Reset mouse
i Reg. ax c= 0
Interrupt &H33, iReg, oReg

END

The QBTEST.BAS Program
The QBTEST.BAS program uses Function 11 (Read Mouse Motion
Counters) to detect vertical mouse motion. The program displays a
three-line menu with one option highlighted. When Function 11
detects vertical mouse motion, the program moves the highlight up
ward or downward in the list.

In addition, this program uses Function 5 (Get Button Press Infor
mation) to detect a button press. To select a highlighted option, you
simply press either mouse button. Before the program terminates, it
displays a message stating which option you selected and which button
you pressed.

This program is presented in several languages in this chapter so
that you can compare the mouse function calls in different languages.
Ifyou want to compare the programs, see the BATEST.BAS, CTEST.C,
ATEST.ASM, and FTEST.FOR programs in this chapter.

NOTE: Because of this programs length, it is included on the companion disks
that come with this book rather than listed here. You can use yourfavorite text edi
tor to view the source code for the program on your screen, or you can print the
source-codeJiles ifyou want to work with hard copy.

The PENCIL.BAS Program
The PENCIL.BAS program is an enjoyable sketching program that you
can expand into a complete graphics-editing package. It demonstrates
several mouse functions and defines and uses more than one graphics
mode cursor. Depend,ing on the state of the program, the cursor ap
pears as an image of the Microsoft Mouse or as a pencil.

This chapter also offers the PENCIL program in C and QUickC.
(See the PENCIL.C program later in this chapter.)

NOTE: Because of this programs length, it is included on the companion disks
that come with this book rather than listed here. You can use yourfavorite text edi
tor to view the source code for the program on your screen, or you can print the
source-codeJiles ifyou want to work with hard copy.

241



PART III: MOUSE PROGRAMMING INTERFACE

C AND QUICKC PROGRAMS
This section presents a variety of mouse-programming examples that
use the C and QuickC languages. Most of the following programs were
set up for the medium-memory model. To set the memory model for
QuickC, set Options to Full Menus and use the Options Make menu
command to change the compiler flags to Memory Model Medium. In the
header of each program listing, you will find instructions for compiling
and linking under C version 6.0 and instructions for the program list
requirements under QuickC.

To change these programs for other memory models under C,
change all occurrences of crrwusem to the function call appropriate for
the desired model. These calls are listed in several program headers.
Notice that the programs that call the mouse functions by using
int86x() rather than the functions supplied in MOUSE.LIB require no
change to the function names when compiling the programs for other
memory models.

The CMOU5E.C Program
The CMOUSE.C program demonstrates and tests several important
mouse functions. It also shows some useful programming techniques to
help keep your mouse programs well organized. As the program exe
cutes these mouse functions, it displays a sequence of instructions.

The program also defines constants for the mouse functions, mak
ing the program listing easier to follow. In addition, the #define state
ments near the beginning of the program redefine these function
numbers with text labels.

As listed in the program header, the C versions of the mouse calls
in the MOUSE.LIB library are provided for all the memory models. To
change memory models, you must change all occurrences of the mouse
function call to the function name for the desired model. In this pro
gram, a #define statement creates a generic mouse function call, requir
ing changes to be made only in the #define statement in order to affect
all mouse calls. Notice that only one occurrence of crrwusem() appears in
the entire listing.

NOTE: Because of this program ~ limgth, it is included on the companion disks
that come with this book rather than listed here. You can use yourfavorite text edi
tor to view the source code for the program on your screen, or you can print the
source-codefiles ifyou want to work with hard copy.

242



Chapter 9: Sample Mouse Programming Interface Programs

The CTEST.C Program
The CTEST.C program uses Function 11 (Read Mouse Motion Count
ers) to detect vertical mouse motion. The program displays a three-line
menu with one option highlighted. When Function 11 detects vertical
mouse motion, the program moves the highlight upward or downward
in the list.

In addition, this program uses Function 5 (Get Button Press Infor
mation) to detect a button press. To select a highlighted option, you
simply press either mouse button. Before the program terminates, it
displays a message stating which option you selected and which button
you pressed.

This program is presented in several languages in this chapter so
that you can compare the mouse function calls in different languages.
Ifyou want to compare the programs, see the BATEST.BAS,
QBTEST.BAS, ATEST.ASM, and FTEST.FOR programs in this chapter.

NOTE: Because of this program ~ length, it is included on the companion disks
that come with this book rather than listed here. You can use yourfavorite text edi
tor to view the source code for the program on your screen, or you can print the
source-codefiles ifyou want to work with hard copy.

The LPEN.C Program
The LPEN.C program uses Function 14 (Light-Pen Emulation Mode
Off) to turn off light-pen emulation.

When the mouse is initialized by calling Function 0 (Mouse Reset
and Status), light-pen emulation is turned on. The LPEN.C program
resets the mouse and enters a loop, displaying the light-pen status of
the BIOS video interrupt returned by Function 4 (Set Mouse Cursor Po
sition). The AX, BX, CX, and DX registers are displayed constantly so
that you can watch the effects of emulating the light pen by pressing
both mouse buttons.

Ifyou press any key, the program exits the first loop. The light-pen
emulation is then turned off, and a second loop is entered. Again, the
registers are displayed as the program continuously checks the light
pen position information from the BIOS. To end the program, press
any key.

NOTE: The BIOS function that returns the light-pen information isn't set up for
VGA but only for eGA and EGA. In VGA, you'll see a difference in the returned
value of the AX register when the light-pen emulation is turned on or off; however,
the returned position information remains constant.

243



PART III: MOUSE PROGRAMMING INTERFACE

:/**********~*************~*,*~***********:****~* ***** **.~***** ****lie

* ·LPEI.C *
* *
* Demonstrates use of light-pen emulattonfrom,C 6.0 *
* and QuickC. First, emulation 1s on. Press.both mouse *
* buttons. t~ emul ate pen down. Press·any~ey to turn *
* off emulation·. Register.~teturnedpfr.()'nr610S Fun~ti()np4, *
* Interrupt 10H, are displayed (Get tight-Pen Position). *
* *
* Note: The BIOS Funct;'on4, Interrupt 10H, doesn't *
* return the light-penpos·ition forVGA. It's *
* des; gned to work wi th>CGA and EGA only. *
* ~.

* This program uses int86() to call the~ouse driver. *
* *
* Microsoft C 6.0: *
* cl lpen~c *
* ** QuickC: *
* Program List (not required) *
* ** Note: Program assumes mouse driver and mouse installed. *
******t***************.*******.*******************************/

Ilinclude <stdio.h)
#include <stdlib.h>
Iii nc1ude <dos .h>

maine )
{

union REGS iReg,oReg:
struct SREGS segregs:

/* Mouse Reset and Status */
iReg .x. aX' ·''=iO:
int86(Ox33, &iReg, 1oReg);

/* Show Cursor */
iReg.x.ax z=l;
int86(Ox33,&iReg,&oReg):

/* Display message *1
printf("\n\nLight-Pen Emulation Mode On, Status •.. \"");

·244

(continued)



Chapter 9: Sample Mouse Programming Interface Programs

while (!kbhit(»
{

iReg.h.ah ~ 4; /* Get Light-Pen Position */
int86(OxlO, &iReg, &oReg);
printf{"\rAX: %.4X BX:%.4X eX:%.4X OX: %.4X",

iReg.x.ax,iReg.x.bx,iReg.x.cx,iReg.x.dx);
}

getch{):

/* Light-Pen Emulation Mode Off */
i Reg.x. ax em 14:
int86{Ox33,&iReg, &oReg);

/* Display message */
printf("\n\ntight-Pen Emulation Mode Off, Status ... \n"):

while (!kbhit{»
{

iReg.h.ah ~ 4: /* Get Light~Pen Position */
int86{OxlO, &iReg, &oReg);
printf("\rAX: %.4X BX: %.4X ex: %.4X OX: %.4X",

iReg.x.ax,iReg.x.bx,iReg.x.cx,iReg.x.dx):
}

getch();

/* Mouse Reset and Status */
i Reg.x .ax = 0:
int86(Ox33, &iReg, &oReg);
exit (0):

}

The MOU5_INT.C, MOU5_LIB.C,
MOUH_INT.C, and MOUH_LIB.C Programs

The MOUS_INT.C, MOUS_LIB.C, MOUH_INT.C, and MOUH_LIB.C
programs demonstrate the differences between calling mouse func
tions by using the int86x() function and by using the mouse calls pro
vided in the MOUSE.LIB library. MOUH_INT.C and MOUH_LIB.C also
show the differences required for using the Hercules Graphics Card.
These programs produce almost identical results.

Functions 7 (Set Minimum and Maximum Horizontal Cursor Po
sition) and 8 (Set Minimum and Maximum Vertical Cursor Position)
restrict the cursor motion to the middle half of the screen. Function 9

245



PART III: MOUSE PROGRAMMING INTERFACE

(Set Graphics Cursor Block) sets ~ new graphics-mode cursor, shaped
like a pointing hand. As you move the cursor around the middle of the
screen, Function 3 (Get Button Status and Mouse Position) con
tinuously checks the mouse position, which is displayed in the upper
left corner of the screen. To end the program, press either mouse
button.

NOTE: Because of the length ofthese programs, they are included on the compan
ion disks that come with this book rather than listed here. You can use yourfavorite
text editor to view the source codefor the programs on your screen, oryou can print
the source-codefiles ifyou want to work with hard copy.

The MSCEXAMP.C Program
The MSCEXAMP.C program demonstrates several common mouse
functions and a subroutine that checks whether the mouse driver is in
stalled. The default graphics-mode cursor is displayed, and its motion is
limited by calls to Functions 7 (Set Minimum and Maximum Horizon
tal Cursor Position) and 8 (Set Minimum and Maximum Vertical Cur
sor Position). To end the program, press the left-hand mouse button.

This program is set up for a medium-memory model. To change it
to any other model for C version 6.0, globally change all occurrences of
cmousem to the appropriate call for the desired model. You'll also need
to change the / AM option on the CL command line for the new model.

1************************************************************
* MSCEXAMP.C *

*
*
*
*

*
*
*
*
*

.r *

** Mi c'rosoft···C ·6.0:
* cl/AM ~scexamp.c -link mouse

, ,'f> '... ...> .. '..... ..r:

The 'fiJniclloncmousem(JJsfor a mediurt1~mernory model.•
For other memory models,.repl ace cmousem() wit.h the

* approprtatefunction:
* cmouses() - C small model
* cmousec() - C compact model
* Crn()tJs~m() - C medfum model
* ·cmousel··(.) - C.... l•.arge\;pn••...·.huge ..... ,mode1

* Demonstrates use of the Microsoft Mouse. from C6.0
* and QuiekC.It checks to see that the mouse driver
* installed, displays a graphics-modec~rsor, and limits
* cursor motion to the middle of the screen.

*

(continued)

246



Chapter 9: Sample Mouse Programming Interface Programs

*
* QuickC:
* Program Li.st MSCEXAMP.C, MOUSE.LIB, GRAPHICS.LIB *
*********=1:****************************************************:/

/Iinclude(stdi o.h>
/Iinc] ude<dos. h>
/li ncl ude<graph. h>

void chkdrv();

/Idefi ne mouse (a,b, C,d) cmousem( a,b, c, d)

maine )
{

tnt ml, m2, m3, m4;

chkdr.v(): /* Check for mouse driver */

ml = 0: /* Initialize mouse */
mousef&ml, &m2, &m3, &m4);

f ( ml =s:a 0 )
{

printf("Microsoft Mouse NOT found"):
exit (-1): / * Exit, if mouse not found *1
}

_setvideomode(_HRESBW);

ml =4; /* Function call 4 */
m3 = 200: /* Set mouse position at */
m4 = 100: /* center of the screen */
mouse(&ml, &m2, &m3, &m4):

ml-]: /* Function call 7 */
m3 ~ 150; /* minimum horizontal value */
m4 ==.450; /* maximum horizontal value*l
mouse(&ml, &m2, &m3, &m4):

mt =.8: /* Function •• call .•····S
m3 = 50; /* minimum vertical value
m4 m150; /*maximumvertical value
mouse(&ml,&m2,&m3, &m4);

(continued)

247



PART III: MOUSE PROGRAMMING INTERFACE

continued

_setvideomode(_DEFAUlTMODE);
exit (0);

/* Loop until left-hand mouse *1
/ *. bu~ton.is,pressed:.

ml ~2; /* Function 2, Hide
mouse(&ml.,&m2, .. ·&m3,.&m4)·;

pri~tf(nGrap~ics ..cursRr 11 m1,~~~ .• to·£~~ter ..of.~he.s cre~~· •• \n">.:
pril1:tf{"PreS~'.~he···.leftbuttp.rt::to·•••• EXI"';~.'~)':

m1 es .l: 1* Function 1, Show Cursor *1
mous.~(&ml, &m?·, &m~,jAJ1l4):

in2 ClO;
while ( m2

"h{

ml lCa 3:
mouse(&m1,

".J

}

void chkdrv ()
{

unsigned long address~

unsigned char first_byte:

union 'REGSinregs,oOtregs:
struct SREGS segregs:

1* Structures to cont~in *1
/* register values for intdosx */

/* Be sure vector isn't 0 "and first fnstruction'tsn't ret
if «address =- Ol) 11 (fi rst...byte OxCF»
{ .·i/ ...·.. .····· /h.".····.···.·.··.• ·•.. ···· ••·

printff"\nThe.Mouse Drivermust.be· installed
t (-1):

i nreg.s.x. ax ••. gg. Ox353~:·" /* ·Getinterruptvecto.rh ' for .OX3~ .• /
intdosx (&inregs, &outregs, &segregsl:
address c:z «((long) ~egregs.es) « 16) + (lQng)outregs.x.bx
fi r"St~byte lIR( uns igne.d cha,r))~. (1 ongjf~r *)~~dress:

}

248



Chapter 9: Sample Mouse Programming Interface Programs

The PENCll.C Program
The PENCIL.C program is an enjoyable sketching program that you
can expand into a complete graphics-editing package. It demonstrates
several mouse functions and defines and uses more than one graphics
mode cursor. Depending on the state of the program, the cursor ap
pears as an image of the Microsoft Mouse or as a pencil.

This chapter also offers the PENCIL program in QuickBasic. (See
the PENCIL.BAS program earlier in this chapter.)

This program uses Function 20 (Swap Interrupt Subroutines) to
set an interrupt-driven user subroutine. Function 20 swaps subroutines,
which is acceptable even if the subroutine is the only one being used.
You can also use Function 24 (Set Alternate Subroutine Call Mask and
Address).

In the header of the program listing, you will find a list of the
mouse functions used in the program, as well as the commands used to
build the program under C version 6.0 or QUickC.

NOTE: Because of this programs length, it is included on the companion disks
that corne with this book rather than listed here. You can use yourfavorite text edi
tor to view the source code for the program on your screen, or you can print the
source-codefiles ifyou want to work with hard copy.

The M20SUB.ASM Program
The M20SUB.ASM program provides the interrupt-driven subroutine
named NewMouseHardwareSub for the PENCIL.C program. This sub
routine returns the current status of the mouse in four C variables,
each ofwhich is declared EXTRN in this listing.

PENCIL uses Function 20 (Swap Interrupt Subroutines) to set this
subroutine. The passed call mask causes this subroutine to activate
when you release the right-hand mouse button.

******************************************************************
* M20SUB.ASM *

:* *
:* MASM subrouti ne for CIQui ckC.program PENCIL. C *
:* *
:* _NewMouseHardwareSub: *
:*Oescription: Passes the mouse variables to·thee routine *
':* ... when a mouse i nterruptoccurs . *

(continued)

249



PART III: MOUSE PROGRAMMING INTERFACE

continued

Mouse button state
Currenthor1zo~ta] cursorppos;ti
Cu~reJJt·.,· ••··yert1cal cursor. po,$iti:on
Condition thatoccurred'r,esulti ng
in a cal] to this routine

EXTRN _ButtbnState:WORD
EXTRN _HorizCursCoord:WORD
~XTRN·': _VertpursCoord :WpRD
rXTRN _MouseCondi ti onBits: WORD

:,~': Thi 5 code is
:* Example:
;* masm IMlm20sub: *
;:f'cl IAM,pencil.c m20sub.obj ~link mouse *
~******************************************************************.':,. . '. . ,.... , .., :.. ",". . ,/, '.. ;:.,.,' ': .,.':' .: ':' ::.'( } :.:.. , . ,': :: ..,'.: "

oode SEGMENT para .public. ..• ' code,'
assume cs :'code
public _NewMouseHardwareSub

Restore data segment
Far return

Resto'reConditf'oll mask
Pass condition 10 C r6utine
Pass button state to C routine
Pass cursor coordinates·toC routine

Far. procedure
Save 'c,urrent·"da,ta ,segment
Savecondition'mask
Load data segment

code ENDS
end

~NewMouseHardwareSubPROC far
push OS
push AX
movAX,SEG _ButtonState
mov"OS,AX
pop AX
mov.· _MouseCondi tionBi ts.ax
mov, _ButtonState,BX
moY_HorizCursCoord
mov_VertCursCoord.DX
pop OS
RET

_NewMouseHardwareSub ENDP

MASM PROGRAMS
The programs in this section demonstrate calls to several mouse func
tions from MASM. The TSTI.ASM program is a simple program that
shows the basics of activating and displaying the standard default
graphics-mode cursor. Other programs show the use of mouse func
tions that provide flexible, creative programming from the MASM
environment. For example, the TST12&20.ASM program demonstrates
how you can use more than one interrupt subroutine in your programs
to respond quickly to mouse activity.

250



Chapter 9: Sample Mouse Programming Interface Programs

Making mouse function calls from MASM is similar to making
mouse function calls from high-level languages. The most important
difference is the use of the AX, BX, ex, and DX registers (instead of the
Ml, M2, M3, and M4 integer variables) followed by a call to Interrupt
33H. Parameters passed to and received from the mouse functions use
these registers. They correspond directly with the four integer
variables.

In addition to the AX, BX, ex, and DX registers, some mouse
function calls use the ES, DI, and SI registers. For example, Function 12
(Set Interrupt Subroutine Call Mask and Address) requires all four
registers. (For more information about mouse functions, see Chapter 8,
"Mouse Function Calls.")

The TST1.ASM Program
The TSTl.ASM program resets the mouse, sets the graphics adapter to
640-by-200 black-and-white mode, and displays the standard graphics
mode cursor at the center of the screen.

To terminate this program, press any key. The cursor disappears
and the video mode returns to 80-by-25 text mode.

Program: TST1.ASM

Description: Demonstrates the mouse in graphics mode

To·· Run: MASM TST1:
LINK TST1:
TST1

Note: Program assumes mouse and mouse driver are installed .

._--------------------------------------------------------------,

.MODEL LARGE
DOSSEG
.STACK lOOh
.DATA
msg db 13,.10

d~ "TSTI-This program demonstrates the fundamental mouse", 13, 10
db. "function ca 11 srequi red to display a graphics-mode",i13, 10
db "mouse cursor. Press any ·key to end the program..••••• 13,· 10
db 13. 10, "S"

(continued)

251



PART III: MOUSE PROGRAMMING INTERFACE

continued

.CODE
"IJI()Y .ax.•~QATA
moYds,ax
; Set 640 x 200black-and-wh1teg~aph1cs

xor ax,ax
1nt lOh

: Mouse Reset and Status
xorax,ax
tnt 33h

: •. 01 spl ay the message
may ah,9h
moy dx,OFFSET msg
tnt 21h .

: Show Cursor
moy ax,l
1nt 33h

: Wait for a keypress, a~low1ng testing of mouse
moy ah,8
tnt 21h

:. Reset the mouse
xor ax,ax
int 33h

: Set 80x 25 text mode
moy ax,3
int lOh

;£xit to MS-DOS
moy ax,4COOh
int 21h

END start
END

The ATEST.ASM Program
The ATEST.ASM program uses Function 11 (Read Mouse Motion
Counters) to detect vertical mouse motion. The program displays a
three-line menu with one option highlighted. When Function 11
detects vertical mouse motion, the program moves the highlight up
ward or downward in the list.

252



Chapter 9: Sample Mouse Programming Interface Programs

In addition, this program uses Function 5 (Get Button Press Infor
mation) to detect a button press. To select a highlighted option, simply
press either mouse button. Before the program terminates, it displays a
message stating which option you selected and which button you
pressed.

This program is presented in several languages in this chapter so
that you can compare the mouse function calls in different languages.
Ifyou want to compare the programs, see the BATEST.BAS,
QBTEST.BAS, CTEST.C, and FTEST.FOR programs in this chapter.

NOTE: Because of this programs length, it is included on the companion disks
that ComJ! with this book rather than listed here. You can use yourfavorite text edi
tor to view the source code for the program on your screen, or you can print the
source-codefiles ifyou want to work with hard copy.

The ASMEXAMP.ASM Program
The ASMEXAMP.ASM program demonstrates several mouse function
calls and checks that the mouse driver was installed. Function 7 (Set
Minimum and Maximum Horizontal Cursor Position) and Function 8
(Set Minimum and Maximum Vertical Cursor Position) limit the cur
sor movement to the middle section of the screen. In addition, Func
tion 3 (Get Button Status and Mouse Position) detects when you press
the left-hand mouse button, at which time the program terminates.

.---------------------------------------------------------------.
Program: ASMEXAMP.ASM

Description: Demonstrates mouse Functions O. 1. 2. 3. 4. 7.
and 8. Displays graph1-cs-mode cursor and
checks for installation of the mouse driver.

: To Run: MASMASMEXAMP:
lINK ASMEXAMP:
ASMEXAMP

stack segment stack 'stack'
st~ck ends
data segment public 'data'

msg db "ASMEXAMP", 13. 10 .
db "Demonstrates mouse FunctionsO. 1. 2. "
db "3. 4, 7. 8 in graphics mode."

(continued)

253



PART III: MOUSE PROGRAMMING INTERFACE

continued

db 13, •• 10••••13 ••• "$>"
msgO db "Mouse driver not installed","S"
msgl db "Mouse not found","S"
msg2 db "Graphics •cursor. ·limltto·center ·ofthe..•. screen", Odh.Oah

db "Press the left mouse button to EXIT.....$"
data ends

segment public
assume cs:cade.

code

start:
mav
mav
assume

ax,seg
ds,ax
ds:data

nathi es:nothing

:Set OS the
:data segment

: Check if mouse driver installed
mov aX,03533h
fnt 21h
mov aX,es
or ax,bx
jz not installed
cmp byte ptr es:[bx], OCFh
j ne check_mouse

:Get Int·33H vector
;by· ca11 fng Int21H.
:Check segment and offset of
:lnt 33H. If 0 then driver
:1s··notinsta11ed.
:Alsb, ifIRET then driver is
:not installed.

not_installed:
mov
mov
int
mov
int

check_mouse:
xor
int
or
jnz

dx,affset msgO
ah,09h
2Ih
ax,4COlh
2Ih

aX,ax
33h
aX,ax
mouse_ok

:Message 0
:Output.· message to screen

:Exit

;lnitiallzemouse

:Is mouse installed?
:Ihen ·continue

: Mouse not found
mov dx,offsetmsgl
mav ah.09h
i rit 21h
mov ax.4COlh
int 2Ih

254

:Messag~il

:Output messageto scraen

(continued)



Chapter 9: Sample Mouse Programming Interface Programs

;Set up. for 640 x 200 . resolution
;graphies mode.<CGA mode.6)

moy dX,offset·msg
moy ah,90h
int 21h

mov ax,4
mov ex,200
moy dx,lOO
int 33h

mov ax,7
moy ex,150
mov dx,450
int 33h

moy ax,8
mov cx,50
mov dx,150
int 33h

mov ax,l
int 33h

mov dx,offset msg2
mo.v ah,09h
int 21h

moy ax,3
tnt 33h

test bx,OOOlh
jz around

:Get main message
;Output message·. to

:Function 4
:M3 ::I 200
:M4 IIIlI 100
:Set Mouse Cursor Pos;

:Function 7
:M3 -= 150
;M4 ::I 450
;Set Minimum and Maximum Hortzontal
:CursorPosttion

:Funetion 8
:M3 -= 50
:M4 .. 150
;Set Minimum and. Maximum Vertical
:Cursor Position

:Show cursor

:Get exit message
:Output message to screen

:Function 3
:Get Button Status and Mouse·Positi

;Left button pressed?
;Branch if left button NOT nr~l~~~~n

:Funeti on.O
;MouseResetand Status

mov
int

ax,0003h
10h

;Set up BOx 25 character text mode

(continued)

255



PART III: MOUSE PROGRAMMING INTERFACE

continued

mov
int

aX,04COOh
21h

;~.ormal exit

code ' ends
end start

The TST12&20.ASM Program
The TST12&20.ASM program demonstrates Functions 12 (Set Interrupt
Subroutine Call Mask and Address) and 20 (Swap Interrupt Subrou
tines). Function 12 sets the first user-interrupt subroutine. This subrou
tine, which is activated when you press the right-hand mouse button,
uses Function 4 to set the cursor position at the upper left corner of the
screen. You can test this action by moving the cursor around the screen
and occasionally pressing the right-hand mouse button. To begin test
ing Function 20, press any key.

Function 20 swaps user-interrupt subroutines. In this program,
the second subroutine replaces the first, causing the cursor to act dif-.
ferently. Now, when you press the left-hand mouse button, the cursor
moves to the middle of the screen. To test this action, move the cursor
around the screen and press the left-hand mouse button. To terminate
the program, press any key.

._-------~-------------------------------------------- ----------.
Program: TST1l&20.ASM

Description: Demonstrates Mouse Functions 12 and 20.

To Run: MASM TST12&20;
LINK TST12&20;
TST12&20

Note: Program assumes mouse and mouse driver are installed .

.MODEL LARGE
DOSSEG
.STACK 100h

._--------~---------,

(continued)

256



Chapter 9: Sample Mouse Programming Interface Programs

•DATA
msg db ,,13, 10

db "TST12&20", 13, 10. 13. 10
db "This program demonstrates mouse Functions 12 and 20.". 13, 10
db "First. press the right button to see how the function", 13, 10
db "acti vated by Functi on 12 moves the cursor to", 13, 10
db "the upper left corner of the screen .1'. 13. 10
dbl3, 10
db "Next, press ~ny key to cause Function 20 to", 13, 10
db "activate a function that moves the cursor to the", 13, 10
db "center of th.e screen when the left button is released.", 13, 10
db "FfnallY.pressany key to end the program.", 13. 10
db' 13, 10, "S"

.CODE

; Function 4. Set.Mouse Cursor PO'siti on
: Left edge of screen
; Top edge of screen
; Move the cursor

msub

; This is the subroutine activated by Function 12
msub PROC

moy·ax,4
xor<cx,cx
mov dx,cx
int 33h
ret
ENOP

; Function 4, Set Mouse Cursor Position
: Middle of screen

Middle of screen
; Moy~thecursor

: This is the replacement subroutine for Function 20
msub2 PROC

mov ax,4
movcx,320

;movdx,lOO
tnt ··33h
ret

msub2 ENOP

: Set up OS for' the data segment
start: movax,@DATA

mov ds,ax

: Display the message
mov.ah,09h
movdx~OFFSET msg
int·.··21h

: Mouse Reset and Status
xorax,a.x
int33h

(continued)

257



PART III: MOUSE PROGRAMMING INTERFACE

continued

: .. s~~n;e~t:~iSUbJ.ilto ES
: M~useFunctlon 12

Interruptwhenrlght button ·pressed
: Off~et of sub into OX

InterruptSubroutine'C~ll Mask and Address
SEGmsub

eS,ax
aX,12

mov eX,8
moy dX,OFFSET msub
int 33h

: Wait for a keypress, allowin9 testing of mouse
mov ah,8
int 21h

: Swap Interrupt Subroutines
moy ax, 20 : Mouse Function 20
mov bx,SEG msub2 Offset of sub into ax
moy cx,4 Ihterrupt when left button released
movdx,OFFSET msub2 Segment'ofsubtnto OX
int33h

:/Wait for a keypress, allowingtest1ngof mouse
moy ah,8
int 21h

: Reset the mouse to deactivate the interrupt
xor ax,ax
int 33h

: Exit to MS-DOS
moy ax,4COOh
int 21h

258



Chapter 9: Sample Mouse Programming Interface Programs

The TST24.ASM Program
The TST24.ASM program demonstrates Function 24 (SetAlternate
Subroutine Call Mask and Address). Function 24 is similar to Function
12 (Set Interrupt Subroutine Call Mask and Address) in the way it sets a
user-interrupt subroutine. However, unlike Function 12, this function
allows activation of the subroutine based on Shift-key status at the time
of the detected mouse activity. In this case, the cursor moves to the up
per left corner of the screen only when you press a Shift key and the
left-hand mouse button simultaneously.

Program: TST24.ASM

Description: This program demonstrates mouse Function 24.

To Run: MASM TST24;
LINK TST24;
TST24

Note: Program assumes mouse and mouse driver are installed .

.MODEL LARGE
DOSSEG
.STACK 100h
. DATA
msg db 13, 10

db "TST24", 13, 10, 13, 10
dh "Hold down the Shift key and click the left mouse button", 13, 10
db "to demonstrate mouse Function 24. (The cursor will", 13, 10
db "Jump to.the upper left corner of the screen.)", 13, 10
db 13. 10
db "Press any other key to quit", 13, 10. 13, 10. "$"

.CODE

Function 4, Set Mouse Cursor Position
Left edge of screen
Top edge of screen
Move the cursor

: This
msub

is the subroutine activated by Function 24
PROC
mov··.ax,4
xor cx,CX
mov dx,cx
int 33h
ret
ENDP

(continued)

259



PART III: MOUSE PROGRAMMING INTERFACE

continued

: Set up OS for the data segment
start: mov aX,@OATA

mov ds,ax

; Oi splay the message
mov ah,9h
mov dX,OFFSET msg
int 2lh

: Mouse Reset and Status
xor aX,ax
int 33h

; Show Cursor
mov ax,l
int 33h

Segment of sub into ES
Mouse Function 24
When Shift key and left button pressed
Offset of sub into OX

: Set Alternate Subroutine Call
mov ax,SEG msub
mov eS,ax
mov ax,24
mov cx,34.
mov dX,OFFSfTmsub
int 33h

Mask and Address

: Watt for a keypress, allowing testing of mouse
mov ah,8
i nt .2lh

: Deactivate Function 24
mov ax,24
mov cx,32
int 33h

: Reset the mouse
xor aX,ax
int 33h

:· Exit toiOOS
mov ax,4COOh
int 21h

END start
END

260



Chapter 9: Sample Mouse Programming Interface Programs

FORTRAN PROGRAMS
The following programs demonstrate calling mouse functions from
FORTRAN 4.1. The shortest program is FORI.FOR, which simply dis
plays the default text-mode cursor and waits for you to press either
mouse button before the program terminates. The FDEMO.FOR
program sets a high-resolution graphics mode and displays a new cur
sor shaped like a mouse. The FTEST.FOR program is the FORTRAN
version of the three-line menu that appears in several languages in this
chapter.

The best way to program the mouse from FORTRAN is by calling
the MOUSEL subroutine in the MOUSE.LIB library. When linking the
programs, be sure to link with the MOUSE.LIB file. Each program uses
the MOUSEL call.

The header of each program listing includes the compile-and-link
command line, which you use to create each executable module.

The FOR1.FOR Program
The FORI.FOR program resets the mouse, displays the cursor, and waits
until you press either mouse button. When the program detects a but
ton press, it hides the cursor and terminates.

This program shows the basic method of programming the
mouse from FORTRAN. Each mouse function is called by using the
MOUSEL subroutine provided in the MOUSE.LIB library. You must
link this library file with FORI.FOR in order for the program to run.

******************************************************************
* FORI. FOR *
* *
* Short example of calling mouse functions from FORTRA~ 4.1 . *

** Compile using large model (default), and link with MOUSE.LIB *
* Example: f1 IFPc forl.for -link mouse *
******************************************************************

PROGRAM 'FORI

INTEGER*2 Ml, M2, M3, M4

* Display short message for user
WRITEt~/~) •Press ~i ther mouse button to quit',

(continued)

261



PART III: MOUSE PROGRAMMING INTERFACE

continued

* Mouse Reset and Status
Ml=O
CALL MOUS£L (MI, M2, M3, M4)

* Show Cursor
MI ==1
CALLMQUSEL (MI, M2, M3.M4)

100 CONTINUE

* Get Button Status and Mouse
Ml ~ .•.• 3
CALL MOUSEL (MI, M2, M3. M4)

* Loop until either button is pressed
M2 ==MOD(M2. 4)
IF (M2 .EO. 0) GOIO 100

* Mouse Reset and Status
Ml.·=O
CALL MOUSEL (Ml.M2, M3,M4)

STOP
~END

The FTEST.FOR Program
The FTEST.FOR program uses Function 11 (Read Mouse Motion
Counters) to detect vertical mouse motion. The program displays a
three-line menu with one option highlighted. When Function 11
detects vertical mouse motion, the program moves the highlight up
ward or downward in the list.

In addition, this program uses Function 5 (Get Button Press Infor
mation) to detect a button press. To select a highlighted option, simply
press either mouse button. Before the program terminates, it displays a
message stating which option you selected and which button you
pressed.

This program is presented in several languages in this chapter so
that you can compare the mouse function calls in different languages.
Ifyou want to compare the programs, see the BATEST.BAS,
QBTEST.BAS, CTEST.C, and ATEST.ASM programs in this chapter.

262



Chapter 9: Sample Mouse Programming Interface Programs

NOTE: This program uses the ANSLSYS escape-code sequences to ckar the screen,
locate the cursor, and set the character attributes. You must load the ANSLSYSfik
into merrwry, or these escape-code sequences wiU display strange characters and the
menu won't function correctly. ANSLSYS is loaded at system startup from a com
mand in the CONFIG.SYS fik. For more information about the ANSLSYS fik, see
your MS-DOS documentation.

NOTE: Because of this programs length, it is included on the companion disks
that come with this book rather than listed here. You can use yourfavorite text edi
tor to view the source code for the program on your screen, or you can print the
source-codefiles ifyou want to work with hard copy.

The FDEMO.FOR Program
The FDEMO.FOR program demonstrates one method of programming
graphics-mode mouse functions by using FORTRAN. The MASM
program SUBS.ASM supplies some important subroutines for this pro
gram. You must link SUBS.ASM and the MOUSE.LIB library with
FDEMO.FOR for proper operation.

The INTEGER*2 array named MCURSOR holds the mask data for
redefining the graphics-mode cursor. Function 9 (Set Graphics Cursor
Block) sets the new cursor shape, and the mask redefines the cursor to
look like a mouse-whiskers, tail, and all.

This program also demonstrates the operation of Function 16
(Conditional Off) , which defines a rectangular region of the display
that hides the cursor. The cursor remains visible unless you move it into
the defined part of the screen. To see how this works, move the cursor
to the upper left corner of the screen.

NOTE: Because of this programs length, it is included on the companion disks
that come with this book rather than listed here. You can use yourfavorite text edi
tor to view the source code for the program on your screen, or you can print the
source-codefiles ifyou want to work with hard copy.

PASCAL PROGRAMS
The programs in this section demonstrate how you can program the
mouse from Microsoft Pascal. The MOUSE.LIB library provides a pro
cedure named mousel for making calls from Pascal. Notice that this is
the same routine called from FORTRAN. The languages share the
same parameter-passing and procedure-calling mechanisms.

263



PART III: MOUSE PROGRAMMING INTE.RFACE

All these program examples use assembly language procedures. In
addition, the following routines set the graphics modes and check for
mouse-driver installation.

The MOUSHGCP.PAS Program
The MOUSHGCP.PAS program demonstrates programming the mouse
for the Hercules Graphics Card. You must link this program with the
INITPAS.OBJ object module and the MOUSE.LIB library for proper
operation.

This program first calls the GRAF assembly routine to set the Her
cules graphics mode (720 by 348 pixels). The program calls mouse
functions to reset the mouse, display the cursor, and check for button
press information. When you press a mouse button, the program resets
the mouse driver and sets the Hercules Graphics Card back to text
mode.

(*

* Programmer:
* Eric Fogelin
* ~une 1, 1987

'Purpose:
Using Microsoft Pascal

* Monochrome. Graphics

*
*

to· ••. Dr'C)grclm>lrJlOuse·•..• sut)pOlrt for the Hercul es

* Limits:
* Must link with MOUSE.LIB and INITPAS~OBJ to resolve mouse function
* calls and HGC display routine references.
*
* Make file:
** moushgcp.obj: moushgcp.pas
* pas1 moushgcp:
* pas2:
** initpas·.obj: initpas.
* masm initpas.asm:

".

(continued)

264



Chapter 9: Sample Mouse Programming Interface Programs

** Hi story:
* 611/87 - Created
*)

(*External references to mouse library and HGC screen routines *)

,proceduremousel (vars m1, m2. m3, m4:word}:extern:
procedure~MOOE:extern;

procedure TMODE:extern:

var
adsbyte: ads of char;
m1, m2. m3. m4: word:
videomode: char;

begin

(* 32-bit pointer. segment and offset *)
(* Standard mouse parameters *)

(* Used to save/restore video mode *)

(* Point to byte which holds Video BIOS mode *)
·adsbyte.s :~ 16#0000;
adsbyte.r :~ 16#0449;

(*Save current screen mode value*)
videomode :- adsbyte";

(* Put HGC into graphics mode using modified Hercules INIT.ASM routine *)
GMODE;

(* Put byte value of 6 to direct graphics cursor to HGC page 0 *)

adsbyte" := chr(6};

(* Reset mouse driver. HGC 720 x 348 resolution is recognized *)

m1 := 0:
mousel (mI. m2. m3. m4):

Turn on default graphics cursor *}
:= 1:

(ml, m2. m3~ m4);

unt i1 ei ther' mouse button<prescsed

3:
mousel (ml, m2. m3. m4);

until(m2 <> 0);

(continued)

265



PART III: MOUSE PROGRAMMING INTERFACE

continued

mouse driver *)

m2, m3. m4):

back to text mode

UDC'Tn."D state of Vi deo BIOS mode va1ue *)

:== videomode:

end.

The INITPAS.ASM Program
The INITPAS.ASM module provides support code for the program
MOUSHGCP.PAS. The gmodeprocedure sets the 6845 CRT controller for
the 72Q-by-348 graphics mode of the Hercules Graphics Card. The tmode
procedure sets Hercules text mode.

NOTE: Because of the l£ngth of this program, it is included on the companion
disks that corne with this book rather than listed here. You can use yourfavorite text
editor to view the source code for the program on your screen, or you can print the
source-codefiles ifyou want to work with hard copy.

The PASEXAMP.PAS Program
The PASEXAMP.PAS program demonstrates several mouse functions. It
also checks that you installed the mouse driver before it tries to reset
the driver. Functions 0 (Mouse Reset and Status) and 1 (Show Cursor)
reset the mouse and display the cursor. Function 4 (Set Mouse Cursor
Position) sets the cursor position. Functions 7 (Set Minimum and Maxi
mum Horizontal Cursor Position) and 8 (Set Minimum and Maximum
Vertical Cursor Position) restrict cursor motion to the middle part of
the screen.

The program enters a loop, using Function 3 (Get Button Status
and Mouse Position) to check continuously for a press of the left-hand
mouse button. To end the program, press the left-hand mouse button.

NOTE: You must assemble and link the SUBS.ASM assembly language module
with this programfor proper operation. You must also link the MOUSE.LIB library
to satisfy the mousefunction caUs.

266



Chapter 9: Sample Mouse Programming Interface Programs

{--------------------------------------------------------)
{ PASEXAMP.PAS - Mous~ functions and Microsoft Pascal )
{ )
{ Program enters graphics mode. displays default }
{ cursor. restricts its range of motion. and quits when}
{ the left mouse button is pressed. }
{ }
{ Make File: }
{ }
{ pasexamp.obj: pasexamp.pas }
{ pas1 pasexamp: }
{pas2 }
{ }
{ pasexamp.exe: pasexamp.obj subs~obj }
{ link pasexamp subs •••.. \mouse: }
{ }
{--------------------------------------------------------}

program mtest (output):

proceduremousel(vars mI. m2. m3,. ·m4:word}: extern:
p.rocedure thkdrv:extern:
procedure. graf:extern;

var
mI. ro2. m3. m4: word;

begin {demo}
chkdrv: {Check mouse driver. If not}

{installed, exit. }
ml := 0; {Installed. initialize mouse}
mousel(ml, m2. m3, m4):

if ( ml = 0 ) then
writeln('Microsoft Mouse NOT found')

else
begin

, ml := 4: {Function call 4. set mouse}
m3 := 200; {hori zonta1 position }
m4 := 100: {vertical position }
mousel(ml. m2, m3, m4);

(continued)

267



PART III: MOUSE PROGRAMMING INTERFACE

continued

ml:.=o1 ···7: {Functi on ·.call.··••• 7,set. mouse}
m3 :==150.: {minimumhortzontal position}
014 :=450: {maximum horizontal position}
mouseT(ml, m2, m3, m4);

ml :~ 8: {Function call 8, set mouse}
m3 :~ 50: {minimum vertical posit1-on }
m4 :=01 150: {maximum vertical position }
mousel(ml, m2, m3, m4):

graf: {Change into graphics mode }

w~iteTn('Graphics cursor· limited.to•••• centerof
writelnt'Press the left mouse button to EXIT.'):

ml := 1: {Function call 1 }
mousel(ml, m2, m3, m4); {show mouse cursor }

m2 :== 999: {Dummy value for loop }
repeat {until left button pressed }

m1 :=3; {Funct ion call 3 }
mousel(ml, •. m2, m3 ,m4):. {get current mouse status

until.m2 :=01 1: {Left mouse button pressed }

ml := 0: {Reset mouse driver }
mousel(ml, m2, m3, m4):

end

end. {demo}

The SUBS.ASM Program
The SUBS.ASM program module provides the graf and chkdrv subrou
tines for the PASEXAMP.PAS program. The graf subroutine sets a high
resolution graphics mode (640 by 200 pixels, 2 colors), and chkdrv
checks that you installed the mouse driver.

The code in this module is identical to that in the SUBS.ASM
module for the FORTRAN examples. Also, the parameter-passing con
ventions for Microsoft Pascal and Microsoft FORTRAN are the same.
This explains why both languages call the same procedure (mousel)
from the MOUSE.LIB library.

268



Chapter 9: Sample Mouse Programming Interface Programs

:******************************************************************
;* SUBS.ASM
:*
:* MASM subrouti~es for PASCAL programPASEXAMP.PAS
:*
;* .graf .. Set 640 x 200, 2-color graphics mode
-;* chkdrv - Check that mouse driver is installed

:*. See PASEXAMP.PAS program for information.on linking.
:*

*
*
*
*
*
*
*
*
*

:**~*************************~*************************************

mdata

mdata

meode

segment byte public 'data'

msg db "Mouse driver NOT ;nstalled","$"

ends

segment para public 'CODE'
assume cs:mcode

public graf

:graf - Set 640~ 200, 2-color graphics mode

graf

graf

proc
push
mov
int
pop
ret
endp

far
bp
ax,06h
10h
bp

:Change to graphics
:mode by calling
:Int 10H service

;chkdrv Check that mouse driver is installed

public chkdrv

proc far
push bp
push es .

mov aX,03533h
int 2lh
mov aX,es
or ax,bx

:Get Int ·33H
:bycalling Int 2lH
~Checksegment and
:offset of Int 33H

(continued)

269



PART III: MOUSE PROGRAMMING INTERFACE

continued

jnz
cmp
jne

int
pop
pop
mov
int

NotInstalled
byte ptres:L_n~. __ .
back

es
bp
ax.04cOlh
21h

:vector if 0 or IRET
:mouse driver not
:Exit

:Function code for
:end process

back:
pop es
pop bp
ret
endp

The PDEMO.PAS Program
The PDEMO.PAS program demonstrates several mouse functions.
Function 0 (Mouse Reset and Status) initializes the mouse. Function 9
(Set Graphics Cursor Block) sets a new graphics-mode cursor shape. In
addition, Function 16 (Conditional Off) defines an area of the screen
that hides the mouse. Ifyou move the cursor to the upper left portion
of the screen, Function 16 causes the cursor to disappear. Function 3
(Get Button Status and Mouse Position) waits for you to press the left
hand mouse button. When you do so, the program terminates.

270

Program
displays·a
if it
Program ends when

was installed.
the cursor

of the screen.
button is pressed.

(continued)



Chapter 9: Sample Mouse Programming Interface Programs

{ }
{ MakeFi 1e: }
{ }
{ pdemo .obj: pdemo.pas }
{ pas1 pdemo: }
{pas2 }
{ }
{ pdemo.exe: pdemo.obj subs.obj }
{ link pdemo subs", .. \mouse: }
{ }
{------------------------------~-------------------------}

program mtest(output):

procedure mousel(varsm1,m2,m3,m4:word):extern:
procedure chkdrv:extern:
procedure graf:extern:

var
m1,m2.m3.m4:word:
Cursor array [0 .•31]of word:
bound : array [0 .. 3] of word:
ptradd : array II.. 2Iof .word:
i. j: integer;

begin

fori :- 0 to 15 do cursorfi] :=a 16/1ffff;
Cursor[16] :- 16//8000;
Cursor[17] :~ 16#EOOO;
Cursor[18] :~ 161F800:
Cursor[19] :-16#FEOO: {Initialize cursor array}
Cursor[20] :- 16//0800:
Cursor[21] :~ 1610COO;
Cursor[22] :~ 1610600;
Cursor[23] := 1610300;
for j :- 24 to 31 do Cursor[j] :~ 16#0000:

chkdrv: {Check for mouse- }
{driver installation}

ml :~ 0; {Function call 0 }
mousel(ml,m2,m3.m4); {Initialize mouse }
if ( ml 1m 0 r then {No. output message }

write1n('Microsoft Mouse NOT found')

(continued)

271



PART III: MOUSE PROGRAMMING INTERFACE

continued

else
begin

graf:

{Yes, demo Function 9}
rand Functi on 16 }
{set to graphics mode}

{Function call 9 }
{ set graphics cursor}

ml:=9:
m2:-1:
m3:=I:
ptradd[l] := (ads Cursor).r: {offset of the array}
ptradd[2] := (ads Cursor).s: {segment of the array}
mousel(ml,m2,m3,ptradd[1]):

writeln('Mo'usecursorwi11 disappear within this area.'):
writeln{'Press<the<rtghtmouse button to·EXIT ');

ml := 1:
mousel (ml ,m2 ,m3,m4);

{Function callI}
{show cursor }

ml := 16: {Function<call 16 }
bound[O] :=0: {Left x.coordi nate 1
bound[l] :=0.: {Upperycoordi nate }
bound[2] :=390: {~ight x>coordinate }
bound[3] := 25: fLowery coordinate }
ptradd[l] ·.:==(adsboundl.r: {offset .. of.thearray}
ptraddf21:- .••• Cads.·.b?undl.s: {segment··.of .the array}
mouseJlml,rn2,m3,ptraddfl]l;

m2 :- 999: {Dummy value for loop}
repeat runt; 1.:.. }

ml := 3: {Function ca113, get}
mousel(ml,m2,m3,m4): {current mouse status}

until m2 := 2: {Left button preSsed}

mt := 0: {Reset mouse drtver
mousel(ml,m2,m3,m4):

end
end.

272



Chapter 10

Writing Mouse
Programs for IBM
EGA Modes

If your application program includes mouse support for IBM enhanced
graphics modes D, E, F, and 10, your program must interact with the
IBM Enhanced Graphics Adapter (EGA) through the new video inter
rupt functions provided in the mouse driver. You can simplify this pro
gramming by using a special library, the Microsoft EGA Register
Interface library (EGA.LIB), which is included on the companion disks
that come with this book. Or ifyou are programming in a language
that can call interrupts, the program can call the video interrupt func
tions directly.

To prevent unnecessary problems when using EGA graphics, fol
low this rule: If your program will modify the EGA registers and if it
uses the mouse, then you should use the EGA Register Interface library.
Ifyour program will not modify the EGA hardware directly, you don't
need to use the EGA.LIB library.

The EGA hardware uses several write-only registers to control the
many EGA display attributes. However, without the new video interrupt
functions, the mouse driver would be unable to keep track of the con
tents of these special registers, and it would be impossible to correctly
update the cursor position and shape if these registers were altered.

273



PART III: MOUSE PROGRAMMING INTERFACE

The EGA Register Interface lets your program write to and read
from write-only registers on the EGA by keeping shadow maps, or work
ing copies, of the registers. This capability is required for interrupt
driven graphics such as the cursor update code in the mouse driver.

THE EGA REGISTER INTERFACE LIBRARY
The Microsoft EGA Register Interface library consists of nine functions
that you can call from MASM programs or from programs written in
high-level languages such as Microsoft QuickBasic, C, QuickC,
FORTRAN, and Pascal. The nine functions perform the following
actions:

• Read from or write to one or more of the EGA write-only
registers.

• Define default values for EGA write-only registers or reset the
registers to these default values.

• Check whether the EGA Register Interface is present and, if so,
return its version number.

How the Interface Library Works
Current versions of the mouse driver install the EGA Register Interface
library if the driver detects an EGA installed in the system. The inter
face maintains shadow maps of the EGA write-only registers, which lets
application programs read the registers. The shadow maps are updated
whenever your program calls one of the interface functions to set a
register; therefore, the shadow maps always contain the last values writ
ten to the registers. When your program calls one of the interface func
tions to read a register, the function call returns the value stored in the
shadow map.

The code in the interface intercepts mode-change calls to the
ROM BIOS (Interrupt 10H with AH =0) and updates the shadow maps
and default register tables accordingly.

Calling the Library from MASM Programs
To call EGA Register Interface functions from a MASM program, take
the following steps:

1. Load the AX, BX, ex, DX, and ES registers (as required) with
the parameter values.

2. Execute software Interrupt 10H.

274



Chapter 10: Writing Mouse Programs for IBM EGA Modes

Values returned by the EGA Register Interface functions are
placed in the registers.

NOTE: When called from MASM programs, Functions F2, F3, F4, F5, and F7
expect ES:BX to be a table pointer. These functions are discussed in detail later
in this chapter.

MASM Example
Use the following instructions to set the palette registers to the values
in the mytable array:

mytable db OOh,Olh,02h,03h,04h,OSh,14h,07h
db 38h,39h,3ah,3bh,3ch,3dh,3eh,3fh

mov aX,ds
moy eS,ax
moy bx,offset mytable
moy cX,0010h
mov dx,18h
moy ah,Of3h
int 10h

:Set ES to the data segment
:Now ES:BX --) mytable
:Starting at reg 0 for 16
;18H - attribute chip
:F3H ~ write register range
:Execute the interrupt

Calling the Library from High-Level Language Programs
You can call EGA Register Interface functions from QuickBasic, C,
QuickC, FORTRAN, and Pascal programs by linking the programs with
the EGA.LIB library. This library provides several calls that match the
parameter-passing and memory-model requirements of each language.

For all these languages, the EGA Register Interface call requires
four integer parameters: E1, E2, E3, and E4. The following table shows
how these parameters correspond to the registers listed in the function
descriptions later in this chapter:

Parameter Register

E1 AH

E2 BX

E3 ex
E4 DX

275



PART III: MOUSE PROGRAMMING INTERFACE

When your program calls the EGA Register Interface, the inter
face copies the parameters into the corresponding registers, calls the
video interrupt, and copies the returned register values back into the
parameters.

For Function FA, the value returned in the ES register is placed in
the £4 parameter. The way in which the parameters are passed to the
EGA Register Interface determines how the ES register is loaded. Those
calls that use short parameter addresses (EGAS, cegas, and cegam) copy
the DS register into ES. Those calls that use long parameter addresses
(EGAL, cegac, and cegal) copy the segment part of the address pointed
to by £2 into the ES register.

Calling from QuickBasic
To call the EGA Register Interface library from QuickBasic programs,
use the EGAS subprogram. For functions requiring a table, pass the
first element of an integer array or pass the address of a string by using
the SADD function.

To access EGA.LIB from within the QuickBasic environment,
create a Quick Library that contains EGA.LIB. For example, the fol
lowing command combines the QB.QLB, MOUSE.LIB, and EGA.LIB
libraries into a composite Quick Library named QBNEW.QLB:

LINK /QU /NOE
MOUSE.LIB+EGA.LIB+QB.LIB,QBNEW.QLB,NUL,BQLB45.LIB;

To load this new Quick Library with QuickBasic, enter the following
command:

QB /L QBNEW.QLB

Alternatively, you can create the equivalent library file QBNEW.LIB by
entering

LIB QBNEW.LIB+MOUSE.LIB+EGA.LIB+QB.LIB;

Creating this file lets your programs compile and link into .EXE
programs, which you can run from the MS-DOS prompt.

QuickBasic example. The following example prints the version num
ber of the EGA Register Interface.

276



Chapter 10: Writing Mouse Programs for IBM EGA Modes

, Get version number of EGA Register Interface

DEFINT A-Z

el - &HFA
e2 c= 0

'Interrogate·drlver

CALL egas(el, e2, e3. e4)

Calling from C and QuickC
To call the EGA Register Interface library from C programs, use
the cegas function for small-model programs, the cegam function for
medium-model programs, the cegac function for compact-model pro
grams, or the cegal function for large-model programs. For functions
requiring a table, pass a pointer to the name of a character array or a
pointer to the array pointer.

To call the EGA Register Interface library from the QuickC pro
gramming environment, use the cegam function (the C function for
medium-model programs) and add EGA.LIB to the program list. For
functions requiring a table, pass a pointer to the name of a character
array or a pointer to the array pointer.

C example. In a small-model C program (versions 3.0 and later), the
following example restores the default settings for the EGA registers:

int ah. bx, ex. dx:

ah l1l:I OxF6: /* Restore default settings */
eegas(&ah, &bx, &ex. &dx):

277



PART III: MOUSE PROGRAMMING INTERFACE

Calling from FORTRAN
To call the EGA Register Interface library from FORTRAN programs,
use the EGAL subprogram. For functions requiring a table, pass the
first element of an integer array (packed 2 bytes per integer).

FORTRAN example. The EGA.FOR program calls EGAL to access the
EGA Register Interface and uses Function FA to interrogate the driver.
If the EGA Register Interface is present, its version number is displayed.

You must link this program with EGA.LIB in order to use the
EGAL call, and you must link this program with IPEEK.OBJ in order to
use the IPEEK function.

***********************************************************~

* EGA. FOR *
* ** Example of calling the EGA Register Interface from *
* FORTRAN *
* ** Compile .using large model (defaultJ,I~ndltnkwith *
* IPEEK .OBJ and<EGA.LIB *
* ** Exampl.e: fl/FPc ega.forfp'eek.obj ~·11IJk .ega *
*******.* .*******************:Ie****~.**************************

PROGRAM EGA

INTEGER*2E1, E2, E3, E4
INTEGER*2 MAJVER, MINVER

* Interrogate Driver
E1.== ••. i/FA
E2==' 0
CALL EGAL( E1. E2, E3 II £4)

* Check results
IF (E2.EO.OlGOTO 100

• Get the version numbers
MAJVER ~ IPEEK(E4,E2)
E2- E2 + 1
MINVER - IPEEK(E4, E2)

* Print the returned version number
WRITE(*,10) MAJVER, MINVER

10 FORMAT(lX. 'EGA Register Interface found. Version ',12,'.',12)

(continued)

278



Chapter 10: Writing Mouse Programs for IBM EGA Modes

* We're done
GOTO 900

100 CONTINUE

* EGA Register Interface wasn't found
WRITE(*,*) 'EGA Register Interface not found.'

900 CONTINUE
END

You must assemble and link the IPEEK.ASM file with the EGA.FOR
program. The IPEEK function lets a FORTRAN program get a byte
from any location in memory.

e. _

,
Function: IPEEK

Description: Called from EGA. FOR to get a byte from
any location in memory.

Example: BYTVAL - IPEEK(SEG, OFS)

; To assemble: MASM IPEEK;
e. _

,

.MODEL LARGE

.CODE

public IPEEK

IPEEK proc

Standard entry
PUSH BP
MOV BP,SP
PUSH ES

Load address, then load contents of first parameter into AX
LES BX,DWORD PTR[BP + 10]
MOV AX,ES:[BX]

S~vefirst parameter on stack (the segment for IPEEK)
PUSH AX

(continued)

279



PART III: MOUSE PROGRAMMING INTERFACE

continued
•.. ., ... ":; .. ; .. :.; .... "----.------,

Load 'address, thenlo~dc&h·te.rlt,s.Ofsec.ondparameter into·"AX
LES BX,DWQRD•••••••PTR[B~t(i]

Load the registers with lhepararneters '
MOV BX,ES:[BX] Offset tntoBX
POP ES ; Segment into ES

Peek at the byte
MOV AL,ES:[BX]

Zero the high byte of AX
XOR AH.AH

Clean up and exit
POP ES
POP BP
RET 8

All done
I PEEK endp .'
END

Calling from Pascal
To call the EGA Register Interface library from Pascal programs, use
the EGAS procedure if the argument addresses are in the program's
data segment (short addresses). If the arguments are in another seg
ment (long addresses), use the EGAL procedure. For functions requir
ing a table, pass a pointer to the first element of an integer array
(packed 2 bytes per integer).

Pascal example. In a Pascal program with long argument addresses,
include the following statement to declare EGAL as an external
procedure:

PROCEDURE EGAL
(VARS E1, E2. E3, E4:INTEGER);
EXTRN; .

Once the procedure is declared, include the following statements
to restore the default settings for the EGA registers.

280



Chapter 10: Writing Mouse Programs for IBM EGA Modes

El:=z 246 {*Function number is 246 - F6 (hexadecimal)*)
EGAt( El,.· E2 ,E3, E4l

Considerations When Calling ROM BIOS Video Routines
You need to be aware of special considerations when your program uses
the EGA Register Interface library. The EGA Register Interface library
intercepts only those calls to the ROM BIOS video routines that change
the screen mode (Interrupt lOR, AH =0, AL =13h or less). It does not
intercept any other ROM BIOS video routine calls. However, any other
ROM BIOS video routine calls should restore all registers, so using
them does not create a problem.

A call to Interrupt lOR to set the color palette (AH = OBh) is an ex
ception to this rule. You should use EGA Register Interface Function F5
(Write Register Set) to set the color palette. For more information
about Function F5, see "EGA Register Interface Functions" later in
this chapter.

Attribute Controller Registers
Before your application program uses the Attribute Controller registers
(input/output address 3COh) in one of the new Interrupt lOR calls, the
program must set the Address or Data register flip-flop to the Address
register. It can do so by performing an input from input/output port
3BAh or C3DAh. The flip-flop is always reset to this state when the pro
gram returns from the Interrupt lOR call. (Note: The version of
EGA.LIB included with this book sets the Address or Data register flip
flop to the Address register automatically.)

An interrupt routine that accesses the attribute chip always leaves
the flip-flop set to the Address register when the program returns from
the interrupt call. Therefore, ifyour application program sets the flip
flop to the Data register and expects the flip-flop to remain in this
state, the program must disable interrup~sbetween the time it sets the
flip-flop to the Data register state and the last time the flip-flop was
assumed to be in this state.

Sequencer Memory Mode Register
When the S~quencerMemory Mode register (input/output address
3C5h, Data register 4) is accessed, the sequencer produces a glitch on

281



PART III: MOUSE PROGRAMMING INTERFACE

the CAS lines that can cause problems with video random access
memory (VRAM). As a result, your application program cannot use the
EGA Register Interface to read from or write to this register. Instead,
use the following procedure to alter this register:

1. Disable the interrupts.

2. Set Synchronous Reset (bit 1) in the Sequencer Reset register
toO.

3. Read from, write to, or modify the Sequencer Memory Mode
register.

4. Set Synchronous Reset (bit 1) in the Sequencer Reset register
to 1.

5. Enable the interrupts.

Input Status Registers
Your application program cannot use the EGA Register Interface to
read Input Status registers 0 (input/output address 3C2h) and 1 (input/
output address 3BAh or 3DAh). If the program must read these regis
ters, it should do so directly.

Graphics Controller Miscellaneous Register
When the Graphics Controller Miscellaneous register (input/output
address 3CFh, Data register 6) is accessed, a glitch occurs on the CAS
lines that can cause problems with video random access memory
(VRAM). As a result, your application program should not use the EGA
Register Interface to read from or write to this register.

EGA Register Interface Function F6 (Revert to Default Registers)
doesn't alter the state of the Graphics Controller Miscellaneous regis
ter. Use the following procedure to alter this register:

1. Disable the interrupts.

2. Set Synchronous Reset (bit 1) in the Sequencer Reset register
to o.

3. Read from, write to, or modify the Graphics Controller Miscel
laneous register.

4. Set Synchronous Reset (bit 1) in the Sequencer Reset register
to 1.

5. Enable the interrupts.

282



Chapter 10: Writing Mouse Programs for IBM EGA Modes

EGA REGISTER INTERFACE FUNCTIONS
The following table shows the number and the name of each function
described in detail in this chapter:

Function Number (Hex)

FO
Fl

F2

F3

F4

F5

F6

F7
FA

Function Name

Read One Register

Write One Register

Read Register Range

Write Register Range

Read Register Set

Write Register Set

Revert to Default Registers

Define Default Register Table

Interrogate Driver

NOTE: Function calls F8H, F9H, andFBH throughFFH are reserved.

Each function description includes the following:

• The parameters required to make the call (input) and the ex
pected return values (output)

• Any special considerations regarding the function

If the function description doesn't specify an input value for a pa
rameter, you don't need to supply a value for that parameter before
making the call. If the function description doesn't specify an output
value for a parameter, the parameter's value is the same before and
after the call.

NOTE: The EGA Register Interface doesn't check input values, so be sure that the
values you load into the registers are correct before making a call.

FUNCTION FO: READ ONE REGISTER
Function FO reads data from a specified register on the EGA.

Call with AH
BX

FOh
Pointer for pointer/data chips:

BH = 0
BL = pointer

Ignored for single registers

283



PART III: MOUSE PROGRAMMING INTERFACE

DX Port number:
Pointer/data chips
OOh: CRT Controller (3B4h for monochrome modes;

3D4h for color modes)
08h: Sequencer (3C4h)
IOh: Graphics Controller (3CEh)
18h: Attribute Controller (3COh)
Single registers
20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3B4h for monochrome

modes; 3D4h for color modes)
30h: Graphics I Position register (3CCh)
38h: Graphics 2 Position register (3CAb)

Returns AX: Restored
BH: Restored
BL: Data
DX: Restored
All other registers restored

Examples The following example saves the contents of the Sequencer Map Mask
register in myvalue:

myvalue db 1

mov ah,OfOh
mov bx,0002h
mov dx,0008h
int lOh
mov myvalue,bl

:FO = read one register
:BH - 0 / BL - map mask index
:DX 1:1 sequencer
:Call the interrupt
:Save the value

The following example saves the contents of the Miscellaneous
Output register in myvalue:

myvalue·db 1

284

mov ah,OfOh
mov dx,0020h
int lOh
mov·myvalue,bl

;FO = read one register
. :DX-m1scellaneous
;Cal1 the1nterrupt
:Save the value



Chapter 10: Writing Mouse Programs for IBM EGA Modes

FUNCTION Fl: WRITE ONE REGISTER
Function FI writes data to a specified register on the EGA.

When your application program returns from a call to Function
Fl, the contents of the BH and DX registers are not restored. Ifyou want
to save and restore these registers, you must instruct your application
program to do so.

Call with AH
BL

BH
DX

Flh
Pointer for pointer/data chips
or
Data for single registers
Data for pointer/data chips (ignored for single registers)
Port number:

Pointer/data chips
OOh: CRT Controller (3B4h for monochrome modes;

3D4h for color modes)
08h: Sequencer (3C4h)
IOh: Graphics Controller (3CEh)
18h: Attribute Controller (3COh)
Single registers
20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3B4h for monochrome

modes; 3D4h for color modes)
30h: Graphics 1 Position register (3CCh)
38h: Graphics 2 Position register (3CAb)

Returns AX: Restored
BL: Restored
BH: Not restored
DX: Not restored
All other registers restored

Examples The following example writes the contents of myvalue into the CRT
Controller Cursor Start register:

myva1ue db· .... 3h

movah.Oflh
mov·bh.myvalue
mov bl,OOOah
xordx,dx
tnt· lOh

Fla:r write oner,eg1ster
BH - data from myvalue
BL - cursor start index
OX-crt controller
Call the 1nterrupt

285



PART III: MOUSE PROGRAMMING INTERFACE

The following example writes the contents of myvalueinto the Fea
ture Control register:

FUNCTION F2: READ REGISTER RANGE
Function F2 reads data from a specified range of registers on the EGA.
(A range of registers is several registers on a single chip that have con
secutive indexes.) Using this call makes sense only for the pointer/data
chips.

Call with AH
CH
CL
DX

ES:BX

F2h
Starting pointer value
Number of registers (must be> 1)
Port number:

OOh: CRT Controller (3B4h for monochrome modes;
3D4h for color modes)

OSh: Sequencer (3C4h)
IOh: Graphics Controller (3CEh)
ISh: Attribute Controller (3COh)

Points to a table of I-byte entries (length =value in CL). On
return, each entry is set to the contents of the corresponding
register.

Returns AX: Restored
BX: Restored
CX: Not restored
DX: Restored
ES: Restored
All other registers restored

Example The following example saves the contents of the Attribute Controller
Palette registers in paltabk.

286



Chapter 10: Writing Mouse Programs for IBM EGA Modes

.~alt~ble db}: 16<dup (1)

moYax,ds

may eS,ax
mo.Y· .. bx.offset paltable
mov}ah,Of2h
may··.·· cx ,0010h

moy dx,0018h

intlOh

: Assume/paltable
: data segment

ES = data ·segment
ES:BX •• c:apal tabl e. address
F2-r~adreg;sterrange

CH -start index ·010
CL ~. 16reg1sters
to read
OX -attribute
controller
Call the'. interrupt

FUNCTION F3: WRITE REGISTER RANGE
Function F3 writes data to a specified range of registers on the EGA.
(A range of registers is several registers on a single chip that have con
secutive indexes.) Using this call makes sense only for the pointer/
data chips.

Call with AH
CH
CL
DX

ES:BX

F3h
Starting pointer value
Number of registers (must be > I)
Port number:

OOh: CRT Controller (3B4h for monochrome modes;
3D4h for color modes)

08h: Sequencer (3C4h)
IOh: Graphics Controller (3CEh)
18h: Attribute Controller (3COh)

Points to a table of I-byte entries (length =value in CL).
Each entry contains the value to be written to the corre
sponding register.

Returns AX: Restored
BX: Not restored
CX: Not restored
DX: Not restored
ES: Restored
All other registers restored

287



PART III: MOUSE PROGRAMMING INTERFACE

Example The following example writes the contents of cursloc into the CRT
Controller Cursor Location High and Cursor Location Low registers.

mov cx.Oe02h

xor dX,dx
int 10h

segment
cursloc address

F3 = register
range

: CH - start index of 14
: Cl = 2 registers to
: write

OX - crt controller
: Call the interrupt

FUNCTION F4: READ REGISTER SET
Function F4 reads data from a set of registers on the EGA. (A set of
registers is several registers that might or might not have consecutive in
dexes and that might or might not be on the same chip.)

Call with AH
CX
ES:BX

288

F4h
Number of registers (must be > 1)
Points to table of records with each entry in the following
format:

Byte 0: Port number
Pointer/data chips
OOh: CRT Controller (3B4h for monochrome modes;

3D4h for color modes)
08h: Sequencer (3C4h)
10h: Graphics Controller (3CEh)
ISh: Attribute Controller (3COh)
Single registers
20h: Miscellaneous Output register (3C2h)
2Sh: Feature Control register (3B4h for monochrome

modes; 3D4h for color modes)
30h: Graphics 1 Position register (3CCh)
38h: Graphics 2 Position register (3CAb)
Byte 1: Must be zero
Byte 2: Pointer value (0 for single registers)



Chapter 10: Writing Mouse Programs for IBM EGA Modes

Byte 3: EGA Register Interface fills in data read from
register specified in bytes 0 through 2

Returns AX: Restored
BX: Restored
CX: Not restored
ES: Restored
All other registers restored

Example The following example saves the contents of the Miscellaneous Output
register, Sequencer Memory Mode register, and CRT Controller Mode
Control register in results:

outvals dw 0020h
db 0
db ?

dw 0008h
db 04h
db ?

dw OOOOh
db 17h
db ?

Miscellaneous Output register
o for<s1ngle registers
Returned value

Sequencer
Memory Mode register index
Returned value

CRT Controller
Mode Control register index
Returned value

results db 3 dup (1)

movax,ds Assume outvals in
data segment

mov~s,ax ES = data se9ment
mov bx,affset autvals ES:BX ~ outvals address
mav ah,Of4h F4 - read register set
mov cx,3 Number of entries in

outvals
tnt lOh Get val ues.i nto outval s
moy s1 ,offsetoutvals+3 "': .•• Movethe'returned

:. val ues.····frOm. outval s
mov di,offset results to results
mav cx,3 3 values to move
cld Make moves f~rward

movloop:mo'ysb

addsi ,3
loop.movloop

MoveHone value'fromoutvals
to .•results
Skip-to next source byte
Get next byte

289



PART III: MOUSE PROGRAMMING INTERFACE

FUNCTION F5: WRITE REGISTER SET
Function F5 writes data to a set of registers on the EGA. (A set of regis
ters is several registers that might or might not have consecutive in
dexes and that might or might not be on the same chip.)

30h:
38h:
Byte 1:
Byte 2:
Byte 3:

Call with AH
CX
ES:BX

F5h
Number of registers (must be> 1)
Points to table ofvalues with each entry in the following
format:

Byte 0: Port number
Pointer/data chips
OOh: CRT Controller (3B4h for monochrome modes;

3D4h for color modes)
08h: Sequencer (3C4h)
IOh: Graphics Controller (3CEh)
18h: Attribute Controller (3COh)
Single registers
20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3B4h for monochrome

modes; 3D4h for color modes)
Graphics 1 Position register (3CCh)
Graphics 2 Position register (3CAb)
Must be zero
Pointer value (0 for single registers)
Data to be written to register specified in bytes 0
through 2

Returns AX: Restored
BX: Restored
CX: Not restored
ES: Restored
All other registers restored

Example The following example writes the contents of outvals to the Miscella
neous Output register, Sequencer Memory Mode register, and CRT
Controller Mode Control register.

290



outvals dw 0020h
db 0
db Oa7h

dw 0008h
db 04h
db 03h

dw OOOOh
db 17h
db Oa3h

Chapter 10: Writing Mouse Programs for IBM EGA Modes

Miscellaneous Output register
o for single registers
Output value

Sequencer
Memory Mode register index
Output value

CRT Controller
Mode Control register index
Output value

mav ax,ds

mov eS,ax
mov bX,offset outvals
mov ah,Of5h
mov ~x.3

int lOh

~Assume outvals ,in
; data segment

ES ~ data segment
ES:BX ~ outvals address
F5 ~ write register set
Number of entries in
outvals
Call the interrupt

FUNCTION F6: REVERT TO DEFAULT REGISTERS
Function F6 restores the default settings of any registers your applica
tion program changed through the EGA Register Interface. The default
settings are defined in a call to Function F7.

Call with AH = F6h

Returns All registers restored

NOTE: If your program makes a caU to Interrupt lOH, Function 0, to set
the display mode, the default register values change to the BIOS values for the
selected mode.

Example The following example restores the default settings of the EGA
registers:

mov ah.Of6h
int lOh

F6 m revert to default registers
Call the interrupt

291



PART III: MOUSE PROGRAMMING INTERFACE

FUNCTION F7: DEFINE DEFAULT REGISTER TABLE
Function F7 defines a table that contains default values for any pointer/
data chip or single register. Ifyou define default values for a pointer/
data chip, you must define them for all registers within that chip.

WARNING: Function F7 sets the default values for all registers within a chip. You
must know what to set in all affected registers to prevent unwanted results. Some
combinations oj register settings might cause physical damage to the EGA adapter
or the monitor.

Call with AH
CX

DX

ES:BX

F7h
VGA Color Select Flag:

5448h: Allows the EGA Register Interface to recognize
byte offset 14h of the table pointed to by ES:BX as
the value for the VGA color select register.

Port number:
Pointer/data chips
OOh: CRT Controller (3B4h for monochrome modes;

3D4h for color modes)
08h: Sequencer (3C4h)
IOh: Graphics Controller (3CEh)
18h: Attribute Controller (3COh)
Single registers
20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3B4h for monochrome

modes; 3D4h for color modes)
30h: Graphics 1 Position register (3CCh)
38h: Graphics 2 Position register (3CAb)

Points to a table of I-byte entries. Each entry contains the
default value for the corresponding register. The table must
contain entries for all registers.

Returns

292

AX: Restored
BX: Not restored
DX: Not restored
ES: Restored
All other registers restored



Chapter 10: Writing Mouse Programs for IBM EGA Modes

Examples The following example defines default values for the Attribute
Controller:

attrdflt db DOh, .Olb!••. 02h,03h,g4h, ..05h,06h'iQ7h
db lOh, llh, 12h,~13h, 14h, 15h,16h,17h
db 08h, OOh, Ofh, OOh, OOh

moy ax,ds : Assume attrdflt in
: data segment

mav ~s,ax ES - data segment
may bX,offset attrdflt ES:BX - attrdflt

address
moYah,Of7h F7 -define default

register table
xar eX,ex No VGAeolor select register
maydx,0018h OX - attribute

controller
1nt lOh Call the interrupt

The following example defines a default value for the Feature
Control register:

featdflt db OOh

moy aX,ds Assume·featdflt .in
data segment

may eS,ax ES - data segment
movbx,affsetfeatdflt ES:BX- featdflt

address
moy ah,Of7h F7 - define default

register table
moy dx,0028h ," DX -feature control

register
int lOh Call the interrupt

FUNCTION FA: INTERROGATE DRIVER
Function FA interrogates the mouse driver and returns a value that in
dicates whether the mouse driver is present.

Call with AH
BX

FAh
o

293



PART III: MOUSE PROGRAMMING INTERFACE

Returns AX
BX
ES:BX

Restored
oif mouse driver is not present
Points to EGA Register Interface version number, if present:

Byte 0: Major release number
Byte 1: Minor release number (in Ylooths)

Example The following example interrogates the mouse driver and displays the
result:

gotms~ ~b "EGA Register Interface found", Odh, Oah, "$"
nopmshdb "EGA, Reg; ster Interface not founcP', Odh, Oah, "$"
revmsgdb "Revision $"
crlf db Odh, Oah, "$"

ten db 10

294

xor bx,bx
mov ah,Ofah
tnt 10h
or bX,bx
jnz found
mov dx,offset nopmsg

mov ah,09h
int 21h
jmp continue

found: mov dx,offset gotmsg

:mov ah,09h
int 21h
mov dx,offset revmsg

mov ah,09h
int 21h
mov dl,es:[bx]
add dl.,"O"
movah,2
int 21h

ntovdl., '!'."
mov ah,2
tnt 21h .

Must be °for this call
FA ~ interrogate driver
Interrogate!
BX 1m °1
Branch if driver present
Assume nopmsg in data
segment
9 -print string
Output not found message
That's all for,now

Assume gotmsg in data
segment
9 CD print strtng
Outpu~found message
Assume revmsg in data
segment

9 IIlII print string
Output "revision"
Dl IIlIImajorrel~ase number
Conv.ert to ,'ASCJI
2 -dlspl ay. 'character
Output major release
number

,', ,Dtc=.~.u~n,,<;

2 lIlII'dls·playcharacter
Output a period

(continued)



Chapter 10: Writing Mouse Programs for IBM EGA Modes

mov al •• es: [bx+· 1]
xor ah.ah
idiv ten
mov ox,ax.
mov dl,al
add dl,"O"
mov ah,2
int 21h
mov dl,bh
add dl,"O"
mav ah,2
int 2lh

mov dx,offset crlf

mov ah,09h
int 2lh

continue:

AL=minorreTeasenumber
AH c::r·O
AL ~JOths, AH c:J lOOths
Save AX inBX
DL &::l lOths
Convert to ASCII
2 = display character
Output minor release lOths
DL- lOOths
Convert to ASCII
2 ~ display character
Output minor release
lOOths
Assume crlf in data
segment
9 = print string
Output end of line
The end

295





PART IV

Appendixes
Appendix A: ASCII Character Set

Appendix B: Domestic Mouse-Driver Messages

Appendix C: Mouse Menu Messages

Appendix D: Linking Existing Mouse Programs with
MOUSE.LIB

Appendix E: Making Calls from Borland Turbo
Pascal Programs

Appendix F: Using the Mouse with the Hercules
Graphics Card





Appendix A

ASCII Character Set
This appendix provides tables for the ASCII standard character set, the
IBM extended character set, and the line-drawing characters in the ex
tended character set. In addition, the section at the end of this appen
dix discusses how you can use ASCII characters and extended-keyboard
scan codes with the TYPE statement.

ASCII TABLES
Figures A-I and A-2 show all 256 characters of the IBM extended char
acter set supported by most computers that run MS-DOS. The figures
show the characters in four columns; each character is followed by its
corresponding code in decimal and hexadecimal notation. Many com
patible printers print the full character set; ifyou're not sure about
your printer, check its manual.

299



PART IV: APPENDIXES

The ASCII Standard Character Set
Figure A-I shows the first 128 characters (codes 0 through 127) of the
ASCII standard character set.

ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex

0 00 <space> 32 20 @ 64 40 96 60
© 1 01 33 21 A 65 41 a 97 61

• 2 02 34 22 B 66 42 b 98 62

• 3 03 # 35 23 C 67 43 c 99 63
+ 4 04 $ 36 24 D 68 44 d 100 64

• 5 05 % 37 25 E 69 45 e 101 65

• 6 06 & 38 26 F 70 46 f 102 66
• 7 07 39 27 G 71 47 g 103 67
a 8 08 40 28 H 72 48 h 104 68
0 9 09 41 29 I 73 49 105 69

• 10 OA * 42 2A J 74 4A j 106 6A
a 11 OB + 43 2B K 75 4B k 107 6B
Q 12 OC 44 2C L 76 4C 1 108 6C
J 13 OD 45 2D M 77 4D m 109 6D
.0 14 OE 46 2E N 78 4E n 110 6E
~ 15 OF / 47 2F 0 79 4F 0 111 6F
~ 16 10 0 48 30 P 80 50 p 112 70
.... 17 11 1 49 31 Q 81 51 q 113 71
t 18 12 2 50 32 R 82 52 r 114 72
!! 19 13 3 51 33 S 83 53 s 115 73
11 20 14 4 52 34 T 84 54 116 74
§ 21 15 5 53 35 U 85 55 u 117 75

22 16 6 54 36 V 86 56 v 118 76
1 23 17 7 55 37 W 87 57 w 119 77
t 24 18 8 56 38 X 88 58 x 120 78
~ 25 19 9 57 39 y 89 59 y 121 79

26 lA 58 3A Z 90 5A z 122 7A
27 IB 59 3B [ 91 5B 123 7B
28 lC < 60 3C \ 92 5C 124 7C... 29 ID 61 3D ] 93 5D 125 7D

• 30 IE > 62 3E A 94 5E 126 7E
~ 31 IF ? 63 3F 95 5F Q 127 7F

Figure A-I. The ASCIIstandard character set.

300



Appendix A: ASCII Character Set

The IBM Extended Character Set
Figure A-2 shows the IBM extended character set (codes 128 through
255).

ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex

<; 128 80 a 160 AO L 192 CO a 224 EO
ii 129 81 161 Al l. 193 Cl ~ 225 El
e 130 82 6 162 A2 T 194 C2 r 226 E2
a 131 83 11 163 A3 ~ 195 C3 1T 227 E3
it 132 84 fi 164 A4 - 196 C4 ~ 228 E4
a 133 85 N 165 A5 + 197 C5 (J' 229 E5
A 134 86 166 A6 ~ 198 C6 fJ. 230 E6
~ 135 87 Q 167 A7 I~ 199 C7 T 231 E7
e 136 88 l 168 A8 l!: 200 C8 <I> 232 E8
e 137 89 r- 169 A9 rr 201 C9 e 233 E9
e 138 8A ..., 170 AA JL 202 CA n 234 EA
1 139 8B I 171 AB ;r 203 CB 8 235 EBT

140 8C I 172 AC I~ 204 CC 00 236 EC4"
1 141 8D 173 AD 205 CD 4> 237 ED
A 142 8E « 174 AE JL 206 CE E 238 EElr
A 143 8F » 175 AF ~ 207 CF n 239 EF
E 144 90 ~~~ 176 BO 11 208 DO - 240 FO
re 145 91 I 177 Bl T 209 Dl ± 241 Fl
IE 146 92 I 178 B2 1T 210 D2 ~ 242 F2
0 147 93 I 179 B3 II 211 D3 ~ 243 F3
0 148 94 i 180 B4 I:: 212 D4 r 244 F4
0 149 95 ~ 181 B5 F 213 D5 J 245 F5
ii 150 96 ~I 182 B6 rr 214 D6 246 F6
U 151 97 11 183 B7 * 215 D7 = 247 F7
Y 152 98 1 184 B8 =t= 216 D8 0 248 F8
0 153 99 ~I 185 B9 J 217 D9 • 249 F9
0 154 9A II 186 BA r 218 DA 250 FA
¢ 155 9B 11 187 BB I 219 DB v 251 FB
£ 156 9C :!.I 188 BC • 220 DC 11 252 FC
¥ 157 9D lJ 189 BD I 221 DD 2 253 FD
1\ 158 9E d 190 BE I 222 DE 254 FE
f 159 9F 1 191 BF • 223 DF 255 FF

Figure A-2. The IBM extended character set.

301



PART IV: APPENDIXES

Line-drawing Characters
Figure A-3 shows the four sets of line-drawing characters in the IBM
extended character set.

186
196

186
205

II II

203 210

ZOlr II lII87 ZI4r T ~183

204 L ~L ~ 185 199~ + -1 182

I II I
206 215

zooL ~L JlI88 ZllL -L ~189
202 208

196

ZI81

179

I
194

T 1 191

205

Z13r

179

I
209

T

197 216

193 207

Figure A-3. Line-drawing characters in tM IBM exterttkd character set.

19ZL ~Z17 ZIZL J190.

302



Appendix A: ASCII Character Set

USING THE TYPE STATEMENT
The following table lists key sequences that can and cannot be simu
lated by using the TYPE statement.

NOTE: The output characteristics listed for particular key functions arefor mouse
menus running at the MS-DOS level. Therefore, standard applications might not
interpret all keyboard operations in the same way. Applications that reprogram or
directly access the keyboard, or applications that bypass the MS-DOS system facili
ties for keyboard input might notfunction correctly with mouse menus.

ASCII or Extendedt ASCII or Extendedt ASCII or Extendedt
Key Scan Code ASC II or Extendedt with Shift with Ctrl with Alt

Dec Hex Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
Esc 1 1 27 18 ~ 27 18 27 18 suppressed

1 I 2 2 49 31 1 33 21 I suppressed 120 78 NUL
2@ 3 3 50 32 2 64 40 @ 3 3 NUL 121 79 NUL
3 # 4 4 51 33 3 35 23 # suppressed 122 7A NUL
4 $ 5 5 52 34 4 36 24 $ suppressed 123 78 NUL
5% 6 6 53 35 5 37 25 0/0 suppressed 124 7C NUL
6 1\ 7 7 54 36 6 94 5E 1\ 30 1E 125 7D NUL
7 & 8 8 55 37 7 38 26 & suppressed 126 7E NUL
8 * 9 9 56 38 8 42 2A * suppressed 127 7F NUL
9 ( 10 OA 57 39 9 40 28 ( suppressed 128 80 NUL
0 ) 11 08 48 30 0 41 29 ) suppressed 129 81 NUL

- 12 OC 45 2D 95 5F 31 1F 130 82 NUL
= + 13 OD 61 3D = 43 ' 28 + suppressed 131 83 NUL

8ackspace 14 OE 8 8 bksp 8 8 127 7F suppressed
Tab 15 OF 9 9 tab 15 OF NUL suppressed suppressed

a 16 10 113 71 q 81. 51 a 17 11 16 10 NUL
W 17 11 119 77 w 87 57 W 23 17 17 11 NUL
E 18 12 101 65 e 69 45 E 5 5 18 12 NUL
R 19 13 114 72 r 82 52 R 18 12 19 13 NUL
T 20 14 116 74 t 84 54 T 20 14 20 14 NUL
Y 21 15 121 79 Y 89 59 Y 25 19 21 15 NUL
U 22 16 117 75 u 85 55 U 21 15 22 16 NUL
I 23 17 105 69 i 73 49 I 9 9 23 17 NUL

0 24 18 111 6F 0 79 4F 0 15 OF 24 18 NUL
P 25 19 112 70 P 80 50 P 16 10 25 19 NUL
[ { 26 1A 91 58 [ 123 78 { 27 18 suppressed
] } 27 18 93 5D ] 125 70 } 29 1D suppressed

Enter 28 1C 13 OD CR 13 00 CR 10 OA LF suppressed
Ctrl 29 1D suppressed suppressed suppressed suppressed

A 30 1E 97 61 a 65 41 A 1 1 30 1E NUL
S 31 1F 115 73 s 83 53 S 19 13 31 1F NUL
D 32 20 100 64 d 68 44 D 4 4 32 20 NUL
F 33 21 102 66 f 70 46 F 6 6 33 21 NUL
G 34 22 103 67 9 71 47 G 7 7 34 22 NUL
H 35 23 104 68 h 72 48 H 8 8 35 23 NUL
J 36 24 106 6A j 74 4A J 10 OA 36 24 NUL
K 37 25 107 68 k 75 48 K 11 08 37 25 NUL

(continued)

Figure A-4. Key sequences that can and cannot be simulated by using the
TYPE statement.

303



PART IV: APPENDIXES

ASCII or Extendedt ASCII or Extendedt ASCII or Extendedt
Key SCan Code ASCII or Extendedt with Shift with Ctrl with Alt

Dec Hex Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
L 38 26 108 6C I 76 4C L 12 OC 38 26 NUL
; : 39 27 59 38 ; 58 3A : suppressed suppressed
I" 40 28 39 27 34 22 " suppressed suppressed

- 41 29 96 60 126 7E - suppressed suppressed
Left Shift 42 2A suppressed suppressed suppressed suppressed

\ I 43 28 92 5C \ 124 7C I 28 1C suppressed
Z 44 2C 122 7A z 90 5A Z 26 1A 44 2C NUL
X 45 20 120 78 x 88 58 X 24 18 45 20 NUL
C 46 2E 99 63 c 67 43 C 3 3 46 2E NUL
V 47 2F 118 76 v 86 56 V 22 16 47 2F NUL
8 48 30 98 62 b 66 42 8 2 2 48 30 NUL
N 49 31 110 6E n 78 4E N 14 OE 49 31 NUL
M 50 32 109 60 m 77 40 M 13 00 50 32 NUL

I < 51 33 44 2C 60 3C < suppressed suppressed
.> 52 34 46 2E 62 3E > suppressed suppressed

I ? 53 35 47 2F I 63 3F ? suppressed suppressed
Right Shift 54 36 suppressed suppressed suppressed suppressed

* PrtSc 55 37 42 2A * INT5tt 16 10 suppressed
Alt 56 38 suppressed suppressed suppressed suppressed

Spacebar 57 39 32 20 space 32 20 space 32 20 space 32 20 space
Caps Lock 58 3A suppressed suppressed suppressed suppressed

F1 59 38 59 38 NUL 84 54 NUL 94 5E NUL 104 68 NUL
F2 60 3C 60 3C NUL 85 55 NUL 95 5F NUL 105 69 NUL
F3 61 3D 61 3D NUL 86 56 NUL 96 60 NUL 106 6A NUL
F4 62 3E 62 3E NUL 87 57 NUL 97 61 NUL 107 68 NUL
F5 63 3F 63 3F NUL 88 58 NUL 98 62 NUL 108 6C NUL
F6 64 40 64 40 NUL 89 59 NUL 99 63 NUL 109 60 NUL
F7 65 41 65 41 NUL 90 5A NUL 100 64 NUL 110 6E NUL
F8 66 42 66 46 NUL 91 58 NUL 101 65 NUL 111 6F NUL
F9 67 43 67 43 NUL 92 5C NUL 102 66 NUL 112 70 NUL

F10 68 44 68 44 NUL 93 50 NUL 103 67 NUL 113 71 NUL
F11 217 09 133 85 NUL 135 87 NUL 137 89 NUL 139 88 NUL
F12 218 DA 134 86 NUL 136 88 NUL 138 8A NUL 140 8C NUL

Num Lock 69 45 suppressed suppressed suppressed suppressed
Scroll Lock 70 46 suppressed suppressed suppressed suppressed

Home 71 47 71 47 NUL 55 37 7 119 77 NUL suppressed
Up Arrow 72 48 72 48 NUL 56 38 8 suppressed suppressed

Page Up 73 49 73 49 NUL 57 39 9 132 84 NUL suppressed
Gray - 74 4A 45 20 45 20 suppressed suppressed

Left Arrow 75 48 75 48 NUL 52 34 4 115 73 NUL suppressed
Numpad 5 76 4C 53 35 5 suppressed suppressfi'd suppressed

Right Arrow 77 40 77 40 NUL 54 36 6 116 74 NUL suppressed
Gray + 78 4E 43 28 + 43 28 + suppressed suppressed

End 79 4F 79 4F NUL 49 31 1 117 75 NUL suppressed
Down Arrow 80 50 80 50 NUL 50 32 2 suppressed suppressed

Page Down 81 51 81 51 NUL 51 33 3 118 76 NUL suppressed
Insert 82 52 82 52 NUL 48 30 0 suppressed suppressed
Delete 83 53 83 53 NUL 46 2E suppressed suppressed

t Extended codes return NUL (ASCII 0) as the initial character.
This is a signal that a second (extended) code is available in the keystroke buffer.

tt Under DOS, Shift PrtSc causes interrupt 5, which prints the screen unless an
interrupt handler has been defined to replace the default interrupt 5 handler.

304



AppendixB

Domestic Mouse
Driver Messages

This appendix lists the messages that the domestic mouse driver might
display. It also describes possible causes of the messages and the actions
you can take in response to them.

Invalid parameter

You typed an invalid parameter in a command-line switch. For more
information about command-line switches, see your Microsoft mouse
documentation.

Driver not installed--Internal Error 1

Insufficient space was found to load the interrupt service routine. If
you receive this message, please call Microsoft Product Support
Services.

Driver not installed--Microsoft Mouse not found

The mouse hardware was not found on the system in which the mouse
driver attempted to install itself. A hardware component in your com
puter might be defective.

Driver not installed--interrupt jumper missing

A jumper on the bus card of a bus or InPort mouse is missing. You need
to verify that the jumper has been installed. You might also need to
select another interrupt position.

Driver not installed--multiple interrupt jumpers found

305



PART IV: APPENDIXES

The mouse driver detected multiple interruptjumpers on an InPort
mouse. You need to verify that only one jumper block is present on the
interrupt selectjumper.

MSX Mouse driver installed

The driver for an MSX mouse on an MSX system was installed. No ac
tion is required.

Mouse driver installed

The installation of the mouse driver was successful. No action is
required.

Switch values passed to existing mouse driver

Command-line switch values were passed to the existing driver when
you reran MOUSE.COM ftom the MS-DOS prompt. No action is
required.

Existing mouse driver enabled

The previously loaded mouse driver was enabled when you reran
MOUSE.COM from the command line while a mouse driver was pre
sent. No action is required.

Existing mouse driver removed from memory

An existing mouse driver was removed from memory. No action is
required.

Existing mouse driver disabled

An existing mouse driver was disabled, but the driver was not unloaded
from memory. No action is required.

Mouse driver not installed

You used the mouse off command line, but no mouse driver was
installed.

Mouse driver installed. cannot change port
(Ii • Ic • and Ib invalid)

The mouse driver was successfully installed to use either an InPort port,
a serial port, or a bus port. Once the driver has been successfully in
stalled, you can't use the command-line switch to change the port.

Mouse driver already installed

306



Appendix B: Domestic Mouse-Driver Messages

You are trying to install another copy of MOUSE.SYS on top of an exist
ing one. Check your CONFIG.SYS file and modify it to load only one
copy of the driver.

Unable to disable Mouse driver--Control Panel is active

You can't disable the mouse driver when the control panel is active.
Disable the control panel by entering cpanel off with the appropriate
pathname at the MS-DOS prompt. You can now unload the mouse
driver.

Unable to disable Mouse driver--Mouse Menu is active

You can't unload the mouse driver while a mouse menu is active in the
system. Type menu off to disable the mouse menu.

307





AppendixC

Mouse Menu
Messages

This appendix lists the messages that the MENU program and the
MAKEMENU utility might display, along with descriptions of possible
causes and the actions you can take in response to them.

nnnn error(s) detected

This message indicates how many errors MAKEMENU c:Ietected while
attempting to process the DEF file.

nnnn symbol(s) used

Mter successfully converting the DEF file, MAKEMENU presents this
message telling you how many symbols were used in the DEF file.

xxxxxx before BEGIN

The first statement in your DEF file must be a BEGIN statement. Cor
rect the DEF file and run MAKEMENU again.

Cannot use system reserved label: xxxxxx

One of the labels in the DEF file is reserved for use by MAKEMENU.
Change each occurrence of the specified label in the DEF file and run
MAKEMENU again.

Cannot use system reserved parameter: xxxxxx

One of the parameters in the DEF file is reserved for use by
MAKEMENU. Change each occurrence of the specified parameter
in the DEF file and run MAKEMENU again.

309



PART IV: APPENDIXES

Close quote missing

A statement in the DEF file contained an item that did not include a
closing quotation mark. Correct the DEF file and run MAKEMENU
again.

Conversion completed

The MAKEMENU utility has finished creating a loadable menu file.
No action is required. The MS-DOS system prompt appears after
MAKEMENU displays this message.

Error--Invalid statement: xxxxxx

The statement didn't have a label, the statement's label didn't end with
a colon (:), the statement had an invalid parameter, or a syntax error
occurred. Be sure that all statements (except the BEGIN statement and
statements within menu and pop-up subroutines) are labeled. Also, be
sure that each label is followed by a colon. Check the statement syntax
for correct use of commas and spaces.

Error--Label previously used: xxxxxx

The same label was used to name more than one statement. Be sure
that the labels are unique for each statement.

Error--Label not found: xxxxxx

A label specified for a parameter did not exist. Be sure that the state
ments have labels and that the labels are correct.

Extra colon after label: xxxxxx

MAKEMENU detected an extra colon after one of the labels. You
can use only one colon after a label. Correct the DEF file and run
MAKEMENU again.

Illegal function call at address nnnn

A TYPE or an EXECUTE statement had too many parameters, a
SELECT statement defined the item selection area outside the menu, or
the quotation marks in a SELECT or an OPTION statement were placed
incorrectly. Use the correct number of parameters, redefine the item
selection area, or ensure that double quotation marks are used cor
rectly to designate text strings.

Invalid statement

MAKEMENU detected an invalid statement in the DEE file. Correct the
DEF file and run MAKEMENU again.

310



Appendix C: Mouse Menu Messages

Keyboard emulation off

The mouse menu program is no longer running. No action is required.

Keyboard emulation on

The mouse menu program is running. No action is required.

xxxxxx--Label pointer not found

One of the statement parameters referred to a label that did not exist in
the file. Correct the DEF file and run MAKEMENU again.

Label previously used

You used the same label twice in the same program. Correct the DEF
file and run MAKEMENU again.

Menu installed

You started up a mouse menu program, and it is running. No action is
required. Use the mouse menu as usual.

Must run under DOS 2.0 or later

You cannot use MAKEMENU with a version of MS-DOS earlier than 2.0.

Name of file to convert:

You typed makemenu to create a loadable mouse menu file. Type a
mouse menu filename without the DEF extension.

OPTION statement before MENU statement

You can use OPTION statements only within a MENU/MEND
subroutine. Correct the DEF file and run MAKEMENU again.

Program too large

The size of the mouse menu DEF file will cause the resulting MNU file
to be larger than the maximum size of 57 KB. Reduce the size of the
DEF file.

Too many symbols (user-defined labels)

Your DEF file used more than 967 symbols. (MAKEMENU allows 1,000
symbols. However, MAKEMENU uses 33, so only 967 are available to the
user.) Correct the DEF file and run MAKEMENU again.

311



\



Appendix 0

Linking Existing
Mouse Programs with
MOUSE.LIB

If you have a high-level language program that links with.an earlier ver
sion of the Microsoft mouse library, you might need to modify the pro
gram to link it with the new MOUSE.LIB library on the disks that come
with this book.

The new MOUSE.LIB library works in the same way as did pre
vious mouse libraries except that the new library has the following new
features:

• New mouse Functions 24-52.

• You must pass the fourth parameter (M4%) of mouse Function
9 by reference instead of by value.

• Mouse Function 16 requires four parameters instead of five.

If your program doesn't call Functions 9 or 16, you can link it with
the new MOUSE.LIB library without modification.

If your PGPgram calls Functions 9 or 16, you must modify the pro
gram so that it conforms to the new interface definitions before you
can link it with the new MOUSE.LIB.

313





AppendixE

Making Calls from
Borland Turbo Pascal
Programs

To call mouse functions from a program in Borland Turbo Pascal, use
the following procedure, which passes the correct parameters to the
mouse driver. Include this procedure in your code, and then call the
mouse functions by passing values into this procedure. Be sure to
specify the DOS unit in the uses clause. Pass the offset of the subroutine
or buffer in m4 and the segment of the subroutine or buffer in m5. See
comments in code for more detail.

Procedure Mouse ( Var ml, m2, m3, m4, m5 integer):

Var
CpuReg: Registers:

begin {mouse}

if ml >- 0 then
begin

CpuReg.AX :- ml:
CpuReg.BX :=:1 m2:
CpuReg.CX :- m3:

{Be sure to include ~uses DOS'}

{Load parameters }
{into appropriate}
{registers }

(continued)

315



PART IV: APPENDIXES

continued

{m4 ell offset of}
{th~ user ~rray }
{or subroutine }
{mS ell segment of .. }
{theusera·rray }
{or subroutine }

CpuReg.ES
end:

if (mi == 9) or(mi lID. 12) or (mi - 20)
or (mt = 22) or (ml- 23) or (mi =24)
or(mi lID 51} then
begin

CpuReg.OX ~- m4:

else if (ml-=- 16) then
begin

CpuReg.CX :aam2:
CpuReg.OX :-'rn3:
CpuReg~SI :~ m4;
CpuReg.OI :- rnS;

end:
else ff.(ml aa 43lthen

begin
CP4Beg.,SI :-m4:

CpljReg •. ES -:.m5:;·

end:
else

{Left x·coord1 nate}
{Upp~ry~·coordinate····}

{Right x-coordinate}
fLower-y-coordinate'}

{m4 ...... offset of the '••• }
{curve dat~buffer }
-{rnS-.~ segment of the. }
{cur~ed,~~,ablJffer }

. 1ntr ($33"CpuReg):

ml:IllICpuReg.Ax:
m2 :='CpuReg~BX;

m3 :e::tCpuReg.CX:.
m4 :-CpuReg.QX:-

. {ea11 mouse .driver}
{at Interrupt33H}

{Return.vaTues··.pacf(}
{to parameters }

{Special •• ·•• returns .}
i f(ml.-20Jor(ml-41)· then

begjn
-m2:= -CpuReg.E~:

end:
el·se •.•···.1f(ml=31)

begin
m3 :-·CpuReg.ES;

end;

(continued)

316



Appendix E: Making Calls from Borland Turbo Pascal Programs

els'e'lf(ml \lIZ 44lor(ml'~45) .
begln

end: {mouse}

317





AppendixF

Using the Mouse
with the Hercules
Graphics Card

Before you use the Hercules Monochrome Graphics Card with a pro
gram that has built-in mouse support, you must do the following:

1. Set the Hercules card to graphics mode. (If necessary, see the
documentation that came with your Hercules card.)

2. If the Hercules card is using CRT page 0, store a 6 in memory
location 40H:49H. If the Hercules card is using CRT page 1,
store a 5 in memory location 40H:49H.

3. Call mouse Function 0 to set the cursor boundaries and CRT
page number to the appropriate values.

If you are using Microsoft C and MSHERC.COM or Microsoft
QuickBasic and QBHERC.COM, you should follow the steps in this
order:

1. If the Hercules card is using CRT page 0, store a 6 in memory
location 40H:49H. If the Hercules card is using CRT page 1,
store a 5 in memory location 40H:49H.

2. Call mouse Function 0 to set the cursor boundaries and CRT
page number to the appropriate values.

3. Set the Hercules card to graphics mode. (If necessary, see the
documentation that came with your Hercules card.)

319





Note: Italicized page numbers refer
to entries in programs orfigures.

Special Characters
" 30,49
%98
,49
... 49
3270 graphics adapter 81, 82
:49
[] 49

A
ABSOLUTE.BAS program 229-31
ABSOLUTE subprogram 224, 225
acceleration curves 112, 203-8
action commands 39-40

EXECUTE 28, 41
NOTHING 28, 43
TYPE 28, 41-43

adapters. See video adapters
ANSI.SYS file 263
application programs

sample mouse menus for 72, 76
using mouse menus with 48

ASCII character set 299-304
ASCII text files 46
ASMEXAMP.ASM program

253-56
assembly language. See MASM

programs
ASSIGN command 27, 33
ASSIGN statement 39, 40, 50-51
ATEST.ASM program 252-53
Attribute Controller registers 281
attribute parameters 30-31

for MATCH statement 55
for MENU statement 58
for POP-UP statement 62
specifying colors with 31-32

AUTOEXEC.BAT file 22

B
BallPoint mouse

buttons on 19-20
development of 12-13
driver for 13
functions for 113
Set/Get BallPoint Information

function 113, 209-11

Index

Basic. See interpreted Basic
programs; QuickBasic
programs

BATEST.BAS program 221-24
BEGIN command 27, 33
BEGIN statement 33, 39, 40, 51-53
Borland Turbo Pascal, calling

mouse functions from 315-16
brackets ([]) 49
buffer pointers, passing

in C/QuickC 102
in MASM programs 102

bus mouse 6, 8, 10
button status, determining 96, 112,

128-30,132-36

C
CALL ABSOLUTE command 225,

226,229-31
calling mouse functions 22,

97-102, 217-18
CALL INTERRUPT command

225,226,232,235
call masks 114-15
CALL MOUSE command 225,

226,232-35
CALL statement 219-20
Cameron, Bridget 13
case in program statements 28
CGA display adapters 81
C language. See C/QuickC

programs
CMOUSE.C program 242-43
colon (:) 49
COLOR.DEF mouse menu

program 73
color menus 31-32
comma (,) 49
commands. See mouse menu

commands
comments in statements 32
COMPASS utility 13, 20
Conditional Off function 111,

159-60,263
CONFIG.SYS file 22, 263
coordinates, virtual-screen vs.

physical-screen 85, 87
C programs. See C/QuickC

programs
C/QuickC programs

calling conventions for 22, 97,
98,100,101

C/QuickC programs, continued
calling EGA.LIB library from

277
calling mouse functions from

Conditional Off 160
Disable Mouse Driver 187
Enable Mouse Driver 188
Enumerate Video Modes 201
Get Active Advanced

Functions 213
Get Button Press Information

134
Get Button Release

Information 136
Get Button Status and Mouse

Position 129-30
Get CRT Page Number 185
Get Cursor Hot Spot 202
Get Driver Version, Mouse

Type, and IRQ Number 194
Get General Driver

Information 196
Get Language Number 192
Get Maximum Virtual

Coordinates 197
Get Minimum/Maximum

Virtual Coordinates 212
Get Mouse Driver State

Storage Requirements 169
Get MOUSE.INI 216
Get Mouse Sensitivity 182
Get Screen/Cursor Masks and

Mickey Counts 198
Get Switch Settings 215
Get User Alternate Interrupt

Address 179
Hide Cursor 128
Light-Pen Emulation Mode Off

157
Light-Pen Emulation Mode On

156
Load Acceleration Curves 205
Mouse Hardware Reset 209
Mouse Reset and Status 125
Read Acceleration Curves 206
Read Mouse Motion Counters

148
Restore Mouse Driver State 171
Save Mouse Driver State 170
Set Alternate Subroutine Call .

Mask/i\ddress176-77
Set CRT Page Number 184

321



MICROSOFT MOUSE PROGRAMMER'S REFERENCE

C/QuickC programs, continued
Set Double-Speed Threshold

162
Set/Get Active Acceleration

Curve 210
Set/Get BallPoint Information

210
Set Graphics Cursor Block

143-44
Set Interrupt Subroutine Call

Mask/Address 153-54
Set Language for Messages 192
Set Mickey/Pixel Ratio 158
Set Minimum/Maximum

Horizontal Cursor Position
138

Set Minimum/Maximum
Vertical Cursor Position 140

Set Mouse Cursor Position 132
Set Mouse Interrupt Rate 183
Set Mouse Sensitivity 180
Set Text Cursor 147
Set Video Mode 200
Show Cursor 126
Software Reset 189
Swap Interrupt Subroutines

167
changing video modes from

86-87
CMOUSE.C program 242-43
CTEST.C program 243
LPEN.C program 243-45
M20SUB.ASM program 249-50
MOUH_INT.C program 245-46
MOUH_LIB.C program 245-46
MOUS_INT.C program 245-46
MOUS_LIB.C program 245-46
MSCEXAMP.C program 246-48
parameter notation in 98
passing buffer pointers in 102
PENCIL.C program 249
SETVID.C program 83-84
for using mouse 242-50
verifying mouse installation

from 105
verifying video modes from

83-84
CRT page numbers 114,184-85
CTEST.C program 243
cursor

graphics 89-93,140-45
hot spot 92-93, 96, 201-3
internal flags for 95-96
list of functions for 111-12,

119-20
showing/hiding 96, 111, 114,

125-28
text 89, 93-95, 145-47
types 89

322

cursor mask vs. screen mask
for graphics cursor 90-93
for software text cursor 93-95

D
DEF files 45, 72-76
Define Default Register Table

function 292-93
demonstration mouse menu

programs 72-76
Disable Mouse Driver function

186-87
disks (with book)

adapting programs on 46
libraries on 22, 273, 313
list of sample mouse

programming· interface
programs 218-19

sample mouse menu programs
72-76

displays. See video displays
DOSOVERLYmouse menu

program 70-72
driver. See mouse driver
DROP.DEF mouse menu program

73-74

E
EGA display adapter 23, 81, 82
EGA.LIB library 273-74

calling, from C/QuickC
programs 277

calling, from· FORTRAN
programs 278-80

calling, from high-level language
programs 275-76

calling, from MASM programs
274-75

calling, from Pascal programs
280-81

calling, from QuickBasic
programs 276-77

calling, ROM BIOS video
routines when using 281-82

functions in 283-95
when to use 273

EGA Register Interface Function
FO 283-84

EGA Register Interface Function
Fl285-86

EGA Register Interface Function
F2 286-87

EGA Register Interface Function
F3287-88

EGA Register Interface Function
F4288-89

EGA Register Interface Function
F5290-91

EGA Register Interface Function
F6291

EGA Register Interface Function
F7 292-93

EGA Register Interface Function
FA 293-95

EGA register interface functions
283-95

ellipsis (...) 49
Enable Mouse Driver function

187-88
Engelbart, Doug 3-4
Enumerate Video Modes function

114,117,200-201
Ericsson display adapter 83
EXECUTEI.DEF mouse menu

program 74
EXECUTE2.DEF mouse menu

program 74
EXECUTE command 28, 41
EXECUTE statement 41, 53-54

F
FDEMO.FOR program 263
flags, internal 95-96
FORI.FOR program 261-62
foreign language support 118,

190-92
FORTRAN programs 22, 261

calling EGA.LIB library from
278-80

FDEMO.FOR program 263
FORI.FOR program 261-62
FTEST.FOR program 262-63
SUBS.ASM program 263

FTEST.FOR program 262-63
functions. See EGA register

interface functions; mouse
functions

G
Genius VHR display adapter 82
Get Active Advanced Functions

function 212-13
Get Button Press Information

function 96, 112, 132-34
Get Button Release Information

function 96, 112, 134-36
Get Button Status and Mouse

Position function 97, 112,
128-30

Get CRT Page Number function
114,185

Get Cursor Hot Spot function 96,
201-3



Get Driver Version, Mouse Type,
and IRQ Number function
192-94

Get General Driver Information
function 194-96

Get Language Number function
118,191-92

Get Maximum Virtual
Coordinates function 196-97

Get Minimum/Maximum Virtual
Coordinates function 211-12

Get Mouse Driver State Storage
Requirements function
168-69

Get MOUSE.INI function 215-16
Get Mouse Sensitivity function

112,181-82
Get Screen/Cursor Masks and

Mickey Counts function 112,
197-98

Get Switch Settings function
213-15

Get User Alternate Interrupt
Address function 115, 177-79

Graphics Controller
Miscellaneous register 282

graphics cursor 89-93, 140-45
FORTRAN program for

redefining 263
hot spot 92-93, 96, 201-3
interpreted Basic program for

displaying 220-21
MASM program for displaying

251-52
graphics mode vs. text mode 80,

89

H
hardware text cursor 89, 95,

145-47
Hawley,jack 4
Hercules display adapter 82, 245,

264,317-18
Hide Cursor function 96, Ill, 114,

127-28
HP Vectra display adapter 82

$INCLUDE metacommand 228
IBM EGA modes

characteristics of 81-82
writing mouse programs for 23,

273-95
IBM extended character set 301-2
IBM XGA video mode 13, 82
INITPAS.ASM program 266
Input Status registers 282

int86x() function 242, 245
internal cursor flags 95-96
interpreted Basic programs. See

also QuickBasic programs
BATEST.BAS program 221-24
calling conventions for 98, 99
calling mouse functions from

Conditional Off 159-60
Disable Mouse Driver 186
Enable Mouse Driver 187
Enumerate Video Modes 201
Get Active Advanced

Functions 212
Get Button Press Information

133
Get Button Release

Information 135
Get Button Status and Mouse

Position 129
Get CRT Page Number 185
Get Cursor Hot Spot 202
Get Driver Version, Mouse

Type, and IRQ Number
function 193

Get General Driver
Information 195

Get Language Number 192
Get Maximum Virtual

Coordinates 197
Get Minimum/Maximum

Virtual Coordinates 211
Get Mouse Driver State

Storage Requirements 168
Get MOUSE.INI 216
Get Mouse Sensitivity 181
Get Screen/Cursor Masks and

Mickey Counts 198
Get Switch Settings 214
Get User Alternate Interrupt

Address 178
Hide Cursor 127
Light-Pen Emulation Mode Off

157
Light-Pen Emulation Mode On

156
Load Acceleration Curves 205
Mouse Hardware Reset 209
Mouse Reset and Status 125
Read Acceleration Curves 206
Read Mouse Motion Counters

148
Restore Mouse Driver State 171
Save Mouse Driver State

169-70
Set Alternate Subroutine Call

Mask and Address 175
Set CRT Page Number 184
Set Double-Speed Threshold

161-62

Index

interpreted Basic programs,
continued

Set/Get Active Acceleration
Curve 210

Set/Get BallPoint Information
210

Set Graphics Cursor Block
141-42

Set Interrupt Subroutine Call
Mask and Address 151-52

Set Language for Messages 191
Set Mickey/Pixel Ratio 158
Set Mininum/Maximum

Horizontal Cursor Position
137

Set Minimum/Maximum
Vertical Cursor Position 139

Set Mouse Cursor Position 132
Set Mouse Interrupt Rate 183
Set Mouse Sensitivity 180
Set Text Cursor 146
Set Video Mode 199
Show Cursor 126
Software Reset 189
Swap Interrupt Subroutines

165-66
parameter notation in 98
PIANO.BAS program 224
setting video mode in 85
TSTl.BAS program 220-21
for using mouse 219-24
verifying mouse installation

from 103-4
verifying video modes from 85

Interrogate Driver function
293-95

Interrupt 10H 86,281
Interrupt 33H 18, 22-23, 98, 103,

110,217
INTERRUPT.BAS program 232
interrupt handlers 114-15

installing 115-16
writing 115-16

INTERRUPT SUbprogram 224,
225,227-29

IXGA display adapter 81, 82

K
KBD.DEF mouse menu program

75-76
keyboard buffer 18-19
keyboard mapping 19-20
key sequences, simulating 19, 68,

303-4

323



MICROSOFT MOUSE PROGRAMMER'S REFERENCE

L
labels for program statements 29,

49
language support 118,190-92
laptops and BallPoint mouse 12-15
light-pen emulation 116-17, 120,

155-57
Light-Pen Emulation Mode Off

function 117, 156-57, 243
Light-Pen Emulation Mode On

function 116,155-56
line-drawing characters 37,302
Load Acceleration Curves

function 112, 203-5
lowercase in program statements

28
LPEN.C program 243-45

M
M20SUB.ASM program 249-50
MAKEMENU utility 7, 45-47,

309-11
MASM programs

ASMEXAMP.ASM program
253-56

ATEST.ASM program 252-53
calling conventions for 101, 251
calling EGA.LIB library from

274-75
calling mouse functions from

Conditional Off 160
Disable Mouse Driver 187
Enable Mouse Driver 188
Enumerate Video Modes 201
Get Active Advanced

Functions 213
Get Button Press Information

134
Get Button Release

Information 136
Get Button Status and Mouse

Position 130
Get CRT Page Number 185
Get Cursor Hot Spot 203
Get Driver Version, Mouse

Type, and IRQ Number 194
Get General Driver

Information 196
Get Language Number 192
Get Maximum Virtual

Coordinates 197
Get Minimum/Maximum

Virtual Coordinates 212
Get Mouse Driver State

Storage Requirements 169
Get MOUSE.INI 216
Get Mouse Sensitivity 182

324

MASM programs, continued
Get Screen/Cursor Masks and

Mickey Counts 198
Get Switch Settings 215
Get User Alternate Interrupt

Address 179
Hide Cursor 128
Light-Pen Emulation Mode Off

157
Light-Pen Emulation Mode On

156
Load Acceleration Curves 205
Mouse Hardware Reset 209
Mouse Reset and Status 125
Read Acceleration Curves 207
Read Mouse Motion Counters

148
Restore Mouse Driver State 172
Save Mouse Driver State 170
Set Alternate Subroutine Call

Mask and Address 177
Set CRT Page Number 184
Set Double-Speed Threshold

162
Set/Get Active Acceleration

Curve 211
Set/Get BallPoint Information

211
Set Graphics Cursor Block

144-45
Set Interrupt Subroutine Call

Mask and Address 154-55
Set Language for Messages 192
Set Mickey/Pixel Ratio 158
Set Minimum/Maximum

Horizontal Cursor Position
138

Set Minimum/Maximum
Vertical Cursor Position 140

Set Mouse Cursor Position 132
Set Mouse Interrupt Rate 183
Set Mouse Sensitivity 181
Set Text Cursor 147
Set Video Mode 200
Show Cursor 126
Software Reset 189
Swap Interrupt Subroutines

167-68
INITPAS.ASM program 266
M20SUB.ASM 249-50
passing buffer pointers in 102
SUBS.ASM program 263, 268-70
TSTl.ASM program 251-52
TSTI2&20.ASM program

256-58
TST24.ASM program 259-60
for using mouse 250-60
verifying mouse installation

from 105-7

MATCH command 28, 43-45
MATCH statement 43-44, 55-57
MCGA display adapter 81, 82
MDA display adapter 81
memory for mouse menu

programs 48
memory models 97-98

changing in C/QuickC 100, 242,
246

changing in QuickBasic 99
MEND command 28, 35
MEND statement See

MENU...MEND statement
MENU command 28, 34, 37
MENU.COM program 7,48,

309-11
MENU...MEND statement 57-59
menus. See mouse menu programs
menu subroutine commands

33-34
example 35
MEND 28, 35
MENU 28, 34, 37
OPTION 28, 34

message boxes 36, 38-39, 64
messages

in MAKEMENU utility 309-11
in MENU program 309-11
in mouse driver 305-7

mickey (unit ofdistance) 96-97
Microsoft Bus Mouse 6, 8, 10
Microsoft EGA Register Interface

library. See EGA.LIB library
Microsoft mouse 4-15. See .also

BallPoint mouse
Microsoft Pascal. See Pascal

programs
MNU files 45, 48
monochrome display adapter 81
MOUH_INT.C program 245-46
MOUH_LIB.C program 245-46
mouse. See also BallPoint mouse

defining sensitivity of97
determining position of96-97,

112
development of 4-15
origin of3-4
reading of96-97, 112
unit ofdistance for 96-97

MOUSE.BAS program 232-35
mouse buttons, status of96, 112,

.128-30, 132-36
MOUSE.COM driver 23. See also

mouse driver
MOUSEDEM.BAS program

235-36
mouse driver 17-18

accessing through Interrupt 33H
18,22-23,110,217



mouse driver, continued
for BallPoint mouse 13
determining status of 113
enabling/disabling 186-88
initial version of 7
international version of 118
languages supported by 118
list of functions for 119
loading 22
messages of 305-7
testing for 103-7, 110-11
version 3.0 7
version 4.0 7
version 5.0 8
version 6.0 9
version 7.0 10, 12
version 8.0 13

mouse event commands 32
ASSIGN 27, 33
BEGIN 27, 33

Mouse Function 0 86, 96, 103, 110,
124-25

Mouse Function 1 96, Ill, 114,
125-26

Mouse Function 2 96, Ill, 114,
127-28

Mouse Function 3 97, 112, 128-30
Mouse Function 4 111,130-32
Mouse Function 5 96, 112, 132-34
Mouse Function 696,112,134-36
Mouse Function 7 Ill, 136-38
Mouse Function 8 111,138-40
Mouse Function 9 90,92, Ill,

140-45,263
Mouse Function 10 94,95, Ill,

145-47
Mouse Function 11 97, 112, 147-48
Mouse Function 12 115-16,

149-55,236,256
Mouse Function 13 116,155-56
Mouse Function 14 117,156-57,

243
Mouse Function 15 97, Ill, 157-58
Mouse Function 16 Ill, 159-60,

263
Mouse Function 19 111,161-62
Mouse Function 20 115, 116,

163-68,236,256
Mouse Function 21 168-69
Mouse Function 22 169-70
Mouse Function 23 171-72
Mouse Function 24 115, 116,

172-77,239,259
Mouse Function 25 115,177-79
Mouse Function 26 97, 112, 179-81
Mouse Function 27 112, 181-82
Mouse Function 28 182-83
Mouse Function 29 114,184
Mouse Function 30 114, 185

Mouse Function 31 186-87
Mouse Function 32 187-88
Mouse Function 33 188-90
Mouse Function 34 118,190-91
Mouse Function 35 118,191-92
Mouse Function 36 192-94
Mouse Function 37 194-96
Mouse Function 38 196-97
Mouse Function 39 112, 197-98
Mouse Function 40 114,199-200
Mouse Function 41 114,117,

200-201
Mouse Function 42 96, 201-3
Mouse Function 43 112, 203-5
Mouse Function 44 112, 206-7
Mouse Function 45 112, 207-8
Mouse Function 47 208-9
Mouse Function 48 113, 209-11
Mouse Function 49 211-12
Mouse Function 50 212-13
Mouse Function 51 213-15
Mouse Function 52 215-16
mouse functions 21, 121-23

accessing 18, 22-23, 97-98, 217
for button feedback 96, 112, 120
calling, from C/QuickC

programs 100, 101
calling, from interpreted Basic

programs99,225-35
calling, from MASM programs

101
calling, from QuickBasic

programs 99-100
calling, with ABSOLUTE

subprogram 225, 226, 229-31
calling, with INTERRUPT

subprogram 225, 226,
227-29,232

calling, with MOUSE
subprogram 225,226-27,
232-35

for cursor control 96-97, 111-12,
119-20

for driver control 110-11, 113, 119
for interrupt handlers 115-16,

120
for language support 118,120
for light-pen emulation 116-17,

120
listed by function 119-20
listed numerically 122-23
for position feedback 112,120
system considerations for 109-13
for video control 113-14, 117-18,

120
and virtual-screen coordinates

87
Mouse Hardware Reset function

208-9

Index

mouse interface programs
C/QuickC examples 242-50
FORTRAN examples 261-63
interpreted Basic examples

219-24
MASM examples 250-60
modifying existing 313
Pascal examples 263-72
QuickBasic examples 224-41

mouse interrupt. See Interrupt
33H

MOUSE.LIB library 22, 97-98,
103,225,261,263,313

mouse libraries. See MOUSE.LIB
library; QBMOUSE.QLB
Quick Library

MOUSEL subroutine 261, 263
mouse menu commands. See also

names ofcommands
action 39-43
list of 27-28
menu subroutine 33-35
mouse event 32-33
pop-up subroutine 35-39
in program structures 32-45,

49-68
mouse menu programs 18-21

allocating memory for 48
for applications 72, 76
creating 45-48
demonstration 72-76
DOSOVERLY70-72
for keyboard mapping 20
maximum size of 45, 48
running 47
sample 69-76
SIMPLE 69-70
specifying color in 31-32
statements in 28-32, 49-68
testing 46-47

Mouse Reset and Status function
86,96,103,110, 124-25

MOUSESEG variable 98, 103, 219
mouse sensitivity, defining 97, 112,

179-81
MOUSE subprogram 224, 225,

226-27
MOUSE.SYS driver 23. See also

mouse driver
MOUSE variable 98, 103, 219, 2!0
MOUSHGCP.PAS program

264-66
MOUS_INT.C program 245-46
MOUS_LIB.C program 245-46
MSCEXAMP.C program 246-48
MS-DOS commands, mouse menu

overlay for 70-72
MS-DOS Interrupt 33H. See

Interrupt 33H
multiple-column menus 35,37-38

325



MICROSOFT MOUSE PROGRAMMER'S REFERENCE

N
Nishi, Kay 5
NOTHING command 28, 43
NOTHING statement 59-60
numeric parameters 30

o
Olivetti display adapter 82
ON ERROR statement 84
OPTION command 28, 34
OPTION statement 34, 60-61

p
Palo Alto Research Center (PARC)

4
parameters

for ASSIGN statement 50
attribute 30-32, 55, 58, 62
for BEGIN statement 52
conventions for 49
for EXECUTE statement 53
for MATCH statement 55
for MENU...MEND statement

58
for mouse functions 123
in mouse menu statements

29-32
numeric 30
for OPTION statement 61
passing of98
for POPUP... PEND statement

62-63
for SELECT statement 65
string 30
for TEXT statement 66
for TYPE statement 67-68

PARC (Palo Alto Research Center)
4

Pascal programs 263-64
Borland Turbo Pascal 315-16
calling EGA.LIB library from

280-81
calling mouse functions from 22,

97,315-16
INITPAS.ASM program 266
MOUSHGCP.PAS program

264-66
PASEXAMP.PAS program

266-68
PDEMO.PAS program 270-72
SUBS.ASM program 268-70

PASEXAMP.PAS program 266-68
PDEMO.PAS program 270-72
PENCIL.BAS program 241
PENCIL.C program 249
PEND command 28, 37

326

PEND statement. See
POPUP... PEND statement

percent sign (%) 98
PIANO.BAS program 224
pointers, passing to buffer 102
POPUP command 28, 36
POPUP... PEND statement 37, 38,

61-64
pop-up subroutine commands

35-36
example 37-39
PEND 28, 37
POPUP 28,36
SELECT 28, 37
TEXT 28, 36-37

portable computing and BallPoint
mouse 12-15

programs. See mouse interface
programs; mouse menu
programs

pulses per inch (ppi) 10

Q
QB12&20.BAS program 236-38
QB24.BAS program 239-41
QB.BI file 228
QBINT.BAS program 227-28
QBMOU.BAS program 226-27
QBMOUSE.QLB Quick Library

225-26
QB.QLB Quick Library 225
QBTEST.BAS program 241
QuickBasic programs 22

ABSOLUTE.BAS program
229-31

calling conventions for 22, 97,
98, 99-100, 101

calling EGA.LIB library from
276-77

calling mouse functions from
Conditional Off160
Disable Mouse Driver 186
Enable Mouse Driver 187-88
Enumerate Video Modes 201
Get Active Advanced

Functions 213
Get Button Press Information

134
Get Button Release

Information 136
Get Button Status and Mouse

Position 129
Get CRT Page Number 185
Get Cursor Hot Spot 202
Get Driver Version, Mouse

Type, and IRQ Number 193
Get General Driver

Information 196

QuickBasic programs, continued
Get Language Number 192
Get Maximum Virtual

Coordinates 197
Get Minimum/Maximum

Virtual Coordinates 211
Get Mouse Driver State

Storage Requirements 168
Get MOUSE.INI 216
Get Mouse Sensitivity 182
Get Screen/Cursor Masks and

Mickey Counts 198
Get Switch Settings 214
Get User Alternate Interrupt

Address 179
Hide Cursor 127
Light-Pen Emulation Mode Off

157
Light-Pen Emulation Mode On

156
Load Acceleration Curves 205
Mouse Hardware Reset 209
Mouse Reset and Status 125
Read Acceleration Curves 206
Read Mouse Motion Counters

148
Restore Mouse Driver State 171
Save Mouse Driver State 170
Set Alternate Subroutine Call

Mask/Address 175-76
Set CRT Page Number 184
Set Double-Speed Threshold

162
Set/Get Active Acceleration

Curve 210
Set/Get BallPoint Information

210
Set Graphics Cursor Block

142-43
Set Interrupt Subroutine Call

Mask/Address 152-53
Set Language for Messages 192
Set Mickey/Pixel Ratio 158
Set Minimum/Maximum

Horizontal Cursor Position
138

Set Minimum/Maximum
Vertical Cursor Position 139

Set Mouse Cursor Position 132
Set Mouse Interrupt Rate 183
Set Mouse Sensitivity 180
Set Text Cursor 146
Set Video Mode 199
Show Cursor 126
Software Reset 189
Swap Interrupt Subroutines

166
INTERRUPT. BAS program 232
MOUSE.BAS program 232-35



QuickBasic programs, continued
MOUSEDEM.BAS program

·235-36
ON ERROR statement in 84-85
parameter notation in 98
PENCIL. BAS program 241
QBI2&20.BAS program 236-38
QB24.BAS program 239-41
QBINC.BAS program 228-29
QBINT.BAS program 227-28
QBMOU.BAS program 226-27
QBTEST.BAS program 241
SElVID.BAS 84-85
for using mouse 224-41
verifying mouse installation

from 104-5
verifying video mode from

84-85
QuickC. See C/QuickC programs
quotation marks (") in string

parameters 30, 49

R
Read Acceleration Curves

function 112, 206-7
Read Mouse Motion Counters

function 97, 112, 147-48
Read One Register function

283-84
Read Register Range function

286-87
Read Register Set function 288-89
registers, EGA

calling interface library 274-82
functions for 283-95

registers, passing variables with 23,
98

Restore Mouse Driver State
function 171-72

Revert to Default Registers
function 291

Roark, Raleigh 5-6
ROM BIOS video routines, calling

281-82

s
sample mouse programs

in C/QuickC 242-50
in FORTRAN 261-63
in interpreted Basic 219-24
in MASM 250-60
in Pascal 263-72
in QuickBasic 224-41

Save Mouse Driver State function
169-70

scan lines in hardware text cursor
95

screen coordinates, virtual vs.
physical 85, 87

screen mask vs. cursor mask
for graphics cursor 90-93
for software text cursor 93-95

screen modes 80-85
SELECT command 28, 37
SELECT statement 37, 38-39,

64-65
Sequence Memory Mode register

281-82
Set Alternate Subroutine Call

Mask and Address function
115,116,172-77,239

Set CRT Page Number function
114,184

Set Double-8peed Threshold
function 111, 161-62

Set/Get Active Acceleration Curve
function 112, 207-8

Set/Get BallPoint Information
function 113, 209-11

Set Graphics Cursor Block
function 90, 92, Ill, 140-45,
263

Set Interrupt Subroutine Call
Mask and Address function
115-16,149-55,236,256

Set Language for Messages
function 118, 190-91

Set Mickey/Pixel Ratio function
97, 111, 157-58

Set Minimum and Maximum
Horizontal Cursor Position
function Ill, 136-38

Set Minimum and Maximum
Vertical Cursor Position
function 111, 138-40

Set Mouse Cursor Position
function 111,130-32

Set Mouse Interrupt Rate function
182-83

Set Mouse Sensitivity function 97,
112,179-81

Set Text Cursor function 94, 95,
111,145-47

SETVID.BAS program 84-85
SETVID.C program 83-84
_setvideomode function 83-84, 86
Set Video Mode function 114,

199-200
Shaiman, Steve 8
Show Cursor function 96, Ill, 114,

125-26
Simonyi, Charles 4
SIMPLE mouse menu program

69-70
Software Reset function 188-90
software text cursor 89, 93-95

Index

source files
saving as text files 46
translating to menu files 45-46

Sprite display adapter 82, 83
statements in mouse menu

program language 28
ASSIGN 50-51
BEGIN 51-53
comments in 32
components of 29-32
EXECUTE 53-54
MATCH 55-57
MENU...MEND 57-59
NOTHING 59-60
OPTION 60-61
POPUP... PEND 61-64
SELECT 64-65
syntax conventions of 49
TEXT 66-67
TYPE 67-68, 303-4

string parameters 30
Strong, David 5
SUBS.ASM program 263, 268-70
Swap Interrupt Subroutines

function 115, 116, 163-68,
236,256

T
TEXT command 28, 36-37
text files 46
text-mode cursor 89, 93-95,

145-47
text mode vs. graphics mode 80,

89
TEXT statement 38, 66-67
Toshiba display adapter 83
trackballs 12, 13
TST1.ASM program 251-52
TSTl.BAS program 220-21
TSTI2&20.ASM program 256-58
TST24.ASM program 259-60
TYPE command 28, 41-43
TYPE statement 41-43, 67-68,

303-4

u
unsupported video modes 118
uppercase in program statements

28

v
vertical mouse motion

C/QuickC program for
displaying 243

FORTRAN program for
displaying 262-63

327



MICROSOFT MOUSE PROGRAMMER'S REFERENCE

vertical mouse motion, continued
interpreted Basic program for

displaying 221-24
MASM program for displaying

252-53
QuickBasic program for

displaying 241
VGA display adapter 23, 81, 82
Video7 display adapter 82
video adapters 7,79-85
video displays 7,79-85
video modes

changing 86-87, 113-14
C/QuickC program for

changing 86-87
C/QuickC program for testing

83-84

328

video modes, continued
interpreted Basic program for

testing 85
QuickBasic program for testing

84-85
supported 80-85, 117
unsupported 118

video paging 114
virtual screen 85-89

and graphics modes 88
and text modes 88-89

w
The Wall StreetJournal 9, 11
Write One Register function

285-86

Write Register Range function
287-88

Write Register Set function 290-91
WS.DEF mouse menu source

program
MATCH statement in 56-57
NOTHING statement in 59-60 .
pop-up subroutine in 64

x
Xerox Corporation 4
XGA display adapter 13, 82



The manuscript for this book was prepared and submitted to Microsoft
Press in electronic form. Text files were processed and formatted using
Microsoft Word.

Principal word processors: Deb Kern andJudith Bloch
Principal proofreader: Deborah Long
Principal typographer: Ruth Pettis
Interior text designer: Darcie S. Furlan
Principal illustrator: Rebecca Geisler
Photographer: Ed Lowe
Cover designer: Rebecca Geisler
Cover color separator: Color Control

Text composition by Microsoft Press in Baskerville with display type
in Avant Garde Demi, using the Magna composition system and the
Linotronic 300 laser imagesetter.

Printed on recycled paper stock.







The OfficialReference
to the MS·DOS®OperatingSystem

MICROSOFf® MS·DOS®
PROGRAMMER'S REFERENCE

This is a must-have reference for every DOS* programmer!
Previously available only through limited distribution, this

comprehensive resource is a must-have reference for all DOS
programmers. With new information on DOS 5, this guide covers

every MS-DOS system call, including register contents, call
defmitions, special notes and warnings, version-compatibility

information, and full-program examples. There is no more
authoritative source of MS-DOS information than this reference.

464 pages, softcover $24.95

Microsoft Corporation
*DOS as used herein refers to the MS-DOS and PC-DOS operating systems.

Available wherever computer books are sold. Or order directly from Microsoft Press.

To ordel; call1·BOO·MSPRESSormail this order form:'"

TOTAL

Shipping

Bales Tax
SHIPPING

One book $2.50
Two books $3.25
Each additional book S.75

SALES TAX CHART
Add the applicable sales tax for the following states: AZ. CA. CO.

CT. DC. FL. GA. HI. 10. IN. IL. KY. MA. MD. ME. MI. MN. MO.
NE. NM. NV. NJ. NY. NC. OH. PA. SC. TN. TX. VA. and WA.

BMR

YESI Please send me__copies of MICROSOFf MS-DOS PROGRAMMER'S
REFERENCE (entry code MSPRRE) at only $24.95 each Subtotal $ _

$-----

$-----

$------

NAME

COMPANY (If applicable)

STREET (No P.O. Boxes)

CITY

DAYTIME PHONE

STATE ZIP

PAYMENT:
o Check/Money Order (U.S. funds)

o IZI VISA(l30rI6digits)

o [.l MasterCard06digits)

o ~ 0 ]J American Express (15 digits)

CREDIT CARD NUMBER EXP. DATE

CARDHOLDER SIGNATURE

Mail your prepaid order to:
Microsoft Press, P.O. Box 7005, La Vergne, TN 37086-7005

*In Canada, contact Macmillan of Canada,
Attn: Microsoft Press Dept., 164 Commander Blvd.,
Agincourt, Ontario, Canada MIS 3C7 416-293-8141

In the U.K., contact Microsoft Press,
27 Wrights Lane, London W8 5TZ

FOR FASTER SERVICE CALL
1-800-MSPRESS*
(gAM to 5PM Central Time)

and place your credit card order. Refer to campaign BMR.

All orders shipped RPS or UPS.

No P.O. Boxes please. Allow 2-3 weeks for delivery.



ISBN 1-55615-336-8

90000


	Contents
	Acknowledgments
	Introduction
	Part I: Introduction
	Chapter 1: Evolution of the Mouse
	Chapter 2: Overview of Mouse Programming

	Part II: Mouse Menus
	Chapter 3: Creating Your Own Mouse Menu
	Chapter 4: Mouse Menu Language Statements
	Chapter 5: Sample Mouse Menu Programs

	Part III: Mouse Programming Interface
	Chapter 6: Mouse Programming Interface
	Chapter 7: Mouse Programming Considerations
	Chapter 8: Mouse Function Calls
	Chapter 9: Sample Mouse Programming Interface Programs
	Chapter 10: Writing Mouse Programs for IBM EGA Modes

	Part IV: Appendixes
	Appendix A: ASCII Character Set
	Appendix B: Domestic Mouse-Driver Messages
	Appendix C: Mouse Menu Messages
	Appendix D: Linking Existing Mouse Programs with MOUSE.LIB
	Appendix E: Making Calls from Borland Turbo Pascal Programs
	Appendix F: Using the Mouse with the Hercules Graphics Card

	Index

