

MICROSOFl:

MOUSE
PROGRAMMER'S
REFERENCE

....

MICROSOFl:

MOUSE
PROGRAMMER'S
REFERENCE

®

PUBLISHED BY

Microsoft Press
A Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

Copyright © 1989 by Microsoft Press
All rights reserved. No part of the contents of this book may
be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Cataloging in Publication Data

Microsoft Mouse programmer's reference.
Includes index.
1. Microcomputers-Programming. 2. Computer interfaces.
I. Microsoft Press.
QA76.6.M516 1989 005.265 88-32395
ISBN 1-55615-191-8

Printed and bound in the United States of America.

123456789 MLML 32109

Distributed to the book trade in the United States
by Harper & Row.

Distributed to the book trade in Canada by General
Publishing Company, Ltd.

Distributed to the book trade outside the United States
and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

IBM~ PCI AT~ and PS/2® are registered trademarks ofInternational Business Machines
Corporation. CodeVie~ InPort~ Microsoft~ MS-DOS~ and XENIX® are registered trademarks
of Microsoft Corporation. UNIX™ is a trademark of AT&T Bell Laboratories. Microsoft Mouse
is a trademark of Microsoft Corporation.

Project Manager: David L. Rygmyr Project Editor: O'Vivian Kent-Russell Technical Editor:John Clark Craig

Contents

Acknowledgments vii
Introduction zx

PART I: INTRODUCTION 1
Chapter 1: Evolution of the Mouse 3

Chapter 2: Overview of Mouse Programming 15

PART II: MOUSE MENUS 23
Chapter 3: Creating Your Own Mouse Menu 25
Chapter 4: Mouse Menu Language Statements 47
Chapter 5: Sample Mouse Menu Programs 73

PART III: MOUSE PROGRAMMING INTERFACE 81
Chapter 6: Mouse Programming Interface 83
Chapter 7: Mouse Programming Considerations 101

Chapter 8: Mouse Function Calls 113
Chapter 9: Sample Mouse Programming Interface

Programs 205
Chapter 10: Writing Mouse Programs for

IBM EGA Modes 259

PART IV: APPENDIXES 285
Appendix A: Mouse Command Line Switches 287

Appendix B: Domestic Mouse Driver Messages 293
Appendix C: Mouse Menu Messages 297
Appendix D: Linking Existing Mouse Programs with

MOUSE.LIB 301

Appendix E: Making Calls from Borland Turbo
Pascal Programs 303

Appendix F: Using the Mouse with the Hercules
Graphics Card 305

Appendix G: ASCII Character Set 307

Index 315

Acknowledgments
Several people made outstanding contributions to the Microsoft Mouse
Programmer's Reference. In particular, we would like to thank the follow
ing reviewers whose technical skills and timely critiques proved invalu
able to this project: Eric Fogelin, Tom Hensel, Greg Lee, and Paul
Schuster. Their expertise, hard work, and dedication helped make this
book a superb tool for serious programmers.

In addition, we would like to thank the following reviewers and
writers who also made essential contributions: Rich Abel, Henry
Burgess, Tom Button, Stew Chapin, Barbara Hubbard, Len Oorthuys,
Steve Shaiman, Rick Thompson, Bill Wesse, and Nathan Williams.

vii

Introduction
The Microsoft Mouse Programmer's Reference is both an overview and a
technical resource for experienced programmers. The Mouse Reference
includes a history of the Microsoft Mouse, an overview of mouse pro
gramming, detailed information on writing and using mouse menu
programs, and detailed information on using the mouse programming
interface to add mouse support to an application program you've writ
ten. In addition, the Microsoft Mouse Programmer's Reference offers a
wealth of sample programs in several languages to demonstrate the
topics and functions discussed in this book.

This package includes disks that contain the MOUSE.LIB and
EGA.LIB libraries and all the sample mouse menu and mouse program
ming interface programs listed in this book. In addition, the disks in
clude several lengthy sample programs not listed in the book.

The Microsoft Mouse Programmer's Reference is divided into four sec
tions. Part I, "Introduction," provides a history of the Microsoft Mouse
and an overview of mouse programming. Part II, "Mouse Menus,"
details the mouse menu programming language, gives a complete de
scription of each mouse menu statement, and offers sample mouse
menu programs. Part III, "Mouse Programming Interface," discusses
the topics you'll need to consider when adding mouse support to a pro
gram you're writing. ~art III also describes each of the mouse function
calls available through MOUSE.LIB or Interrupt 33H and offers sample
programs in QuickBASIC, Interpreted BASIC, C, Quick C, MASM,
FORTRAN, and Pascal. In addition, Part III includes information on
adding mouse support to programs that will run on an EGA and de
scribes the EGA Register Interface functions available through the
EGA.LIB library. The appendixes in Part IV cover mouse command line
switches, mouse messages, and the ASCII character set.

The following notational conventions are used in this book:

Italics Variable names, replaceable parameters in syntax lines, and
function names in text

Initial Cap Menu names, menu command names, and mouse function
names

ALL CAPS Filenames, directory names, and MS-DOS command names

Boldface User input (what the user types)

ix

PART I

Introduction
Chapter 1: Evolution of the Mouse

• The Early Mice
• The Microsoft Mouse
• Looking Ahead

Chapter 2: Overview of Mouse Programming

• The Mouse Driver
• Mouse Menus
• The Mouse Programming Interface

Chapter 1

Evolution
of the Mouse

The mouse-a small, hand-held device that controls the movement
of the cursor on a computer screen-was first developed 25 years ago.
From humble beginnings as an odd-looking, one-button, wooden
prototype, the mouse has evolved into a sleek, sophisticated tool that
is nearly as familiar to today's computer user as the keyboard.

Spanning fewer than 10 years of the mouse's 25-year history,
Microsoft's role in the evolution of the mouse is nevertheless signi
ficant. The Microsoft Mouse, first introduced in 1983, has set new
standards for how people interact with the computer. Although
Microsoft didn't invent the mouse, it has done much to fine-tune it.
To understand Microsoft's involvement, let's look at how the mouse
originated and developed.

THE EARLY MICE
We were experimenting with lots of types of devices at the time. Once the mouse
proved itself to us, we tested it against several other devices, and it clearly
won. I felt that until something better came along, the mouse would definitely
remain the best pointing device for computer users.

-Doug Engelbart
Inventor of the mouse

3

PART I: INTRODUCTION

4

When Doug Engelbart developed his wooden prototype of the
mouse at Stanford Research Institute in 1963, he designed it for use
with his Augment computer. Englebart's ideas later influenced the
designs of the Xerox Star, Apple Lisa, and Apple Macintosh personal
computers. Not even Engelbart then envisioned what occurred over
the next 25 years.

Engelbart's mouse was a simple analog device that responded to
each movement of the mouse by sending a signal to the software that
shifted the position of the cursor on the screen. Inside the wooden
mouse body were two metal wheels that were connected to the shafts
of two variable resistors. Figure 1-1 shows Engelbart's mouse.

Figure 1-1. Doug Engelhart's original wooden mouse.

The concept of using a mouse became more widely known in the
early seventies when Xerox Corporation's Palo Alto Research Center
(PARe) commissioned Jack S. Hawley to build the first digital mouse.
Hawley'S mouse was basically a digital version of Engelbart's mouse.
At the time, Xerox was developing the powerful Alto computer and
wanted to include a mouse as part of the computer package. Although
the Xerox Alto performed poorly in the marketplace-fewer than a
hundred were sold-it paved the way for the future development of
personal computers and the mouse. In 1975, Xerox asked Hawley to de
velop a new standard for the mouse, a standard that many manufactur
ers adopted and followed into the eighties. Mter Hawley completed his
commission for Xerox, he went on to design and manufacture mice
through his own company, the Mouse House, in Berkeley, California.

Chapter 1: Evolution of the Mouse

THE MICROSOFT MOUSE
As the Xerox mouse received more attention, Microsoft began to con
sider the idea of designing a mouse. A former Xerox PARe employee,
Charles Simonyi, had recently joined Microsoft and wanted to add
mouse support to a new product, Microsoft Word. At about the same
time, Microsoft's Bill Gates, Paul Allen, and Raleigh Roark were also
exploring ideas for hardware products.

From a Lump of Clay
In the early eighties, Microsoft was a small company with no in-house
design resources. For most of its design needs, the company relied
on a Seattle graphic designer, David Strong, who had developed the
Microsoft corporate logo and color scheme. It therefore seemed natu
ral for Microsoft to approach Strong for assistance with the mouse
design.

After the Microsoft team explained precisely what it wanted-a
small, easy-to-handle mouse unit just big enough to accommodate the
required internal circuitry-Strong went to work. He produced a 2Y2-
inch by 4-inch by 1Y4-inch clay model with thumbtacks on the under
side that simulated gliders (Figure 1-2).

Figure 1-2. The clay model for the original Microsoft Mouse.

As Raleigh Roark recalls, "A bunch of us sat around a conference
table for hours just gliding this lump of clay back and forth, trying to
decide if we liked the feel of it. Nobody could really agree. Mter a
while, we settled on the design and dimensions we thought would work.

5

PART I: INTRODUCTION

Then, with the clay model in hand, I got on a plane for Tokyo to meet
with an electronics manufacturer to get them to build the thing."

Roark flew to Tokyo with Kay Nishi, who was then a Microsoft vice
president and president of ASCII Corporation inJapan. Nishi and
Roark met with manufacturing engineers to discuss what Microsoft
wanted. Discussions came to an abrupt, but temporary, halt when the
engineers said it couldn't be done. They believed that the mouse en
coders couldn't possibly be squeezed into the small, hand-size mouse
that Microsoft wanted. As Roark remembers, "There was a bunch of
grumbling about how this was impossible-it just couldn't be done.
Then suddenly the room grew quiet, and the chief of engineering said,
'Our engineers will now leave the room for exactly one hour, and when
they return they will have a solution to this problem.' The engineers
came back with a workable design, and a few months later Microsoft
had its first mouse."

The First Generation

6

Doing the serial mouse was the biggest thrill for me. It was a conceptual
breakthrough; no one had been able to do anything like it before.

-Raleigh Roark
Head of the Microsoft Serial Mouse Development Team

In June 1983, Microsoft introduced a new product for the IBM

Personal Computer, the Microsoft Bus Mouse. This was a two-button
mechanical mouse that relied on a steel ball and a pair of rollers to
register movement as the mouse glided across a flat surface. The mouse
was powered by a half-size circuit board that contained an Intel 8255

Programmable Peripheral Interface and some support chips. A distinct
advantage of the Microsoft mouse (shown in Figure 1-3) was that its
mechanical encoders used very little power.

A year after the release of the bus mouse, Microsoft developed
a serial version of the mouse. This was a major technological break
through because the mouse could be connected directly to an RS-232

serial port. It required neither a bus card nor a separate power supply
because a CMOS processor in the mouse drew enough power from the
RS-232 port for operation.

Chapter 1: Evolution of the Mouse

Figure 1-3. Microsoft s first-generation mouse.

The first-generation mice had separate, hardware-specific operat
ing software (mouse drivers) for the bus and serial versions and a sepa
rate linkable library, MOUSE.LIB, for high-level language development.
To help people become comfortable using mice, Microsoft also pro
vided these programs in the original mouse package:

• Notepad, a mouse-oriented text editor

• Piano, an on-screen piano keyboard that users could "play"
with the mouse

• Life, a graphic game in which users followed the life and death
of simulated microorganisms they designed

Subsequent releases of the mouse software in 1983-1984 brought
updates and enhancements to Notepad, the addition of a drawing pro
gram named Doodle, and the introduction of mouse menus. With
mouse menus, Microsoft provided a way to make the mouse accessible
to applications that weren't originally designed for use with a mouse.
Users ofVisiCalc, Multiplan, WordStar, and Lotus 1-2-3 could now in
stall special menus that allowed use of the mouse within those applica
tions. In addition, Microsoft provided a MENU.COM program for
loading menus and a MAKEMENU.EXE compiler so that people could
design and build their own mouse menus.

7

PART I: INTRODUCTION

With the release of MS-DOS 2.0 in 1983, the mouse took advantage
of a new MS-DOS feature known as installable device drivers. With in
stallable device drivers, it became much easier to configure any com
puter system for use with MS-DOS and the mouse.

In 1985, two major software releases, Microsoft Mouse 3.0 and 4.0,

introduced support for the IBM PCI AT and the growing number of
high-resolution graphics devices. People could now install mouse soft
ware for use with most display adapters, including the Hercules
Graphics Card, the IBM Color Graphics Adapter (CGA), the IBM

Enhanced Graphics Adapter (EGA), and other newly introduced high
resolution display adapters and monitors. In addition, the mouse driver
could now autodetect the hardware configuration it was installed on.

With software release 4.0 in May 1985, Microsoft replaced Doodle
with a popular state-of-the-art graphics application, PC Paintbrush.

The Second Generation

8

The Microsoft gray-button mouse, with its 200 ppi, changed the nature of the
way people used mice. Doubling the sensitivity meant that users didn't have to
push a mouse all over a desk to move the cursor around the screen.

-Steve Shaiman
Lead Software Designer for Microsoft Mouse 5.0

In October 1985, the mouse achieved a new level of sophistication
with its more streamlined, professional look and reengirieered driver.
Many changes were immediately visible: a gray color for the buttons, a
redesigned body, larger wraparound buttons, and a rubber-covered
steel ball in place of the solid steel ball. But the true significance of this
release could be felt rather than seen. By doubling the resolution to
200 ppi (points per inch), Microsoft made the mouse much easier to
use. Figure 1-4 shows Microsoft's second-generation mouse.

The gray-button mouse required much less surface area for move
ment (a circle of 4-5 inches), and most operations could be accom
plished easily with simple wrist and hand movements. By contrast, the
earlier mouse seemed clunky and cumbersome, requiring movement
over a relatively large surface area (a circle of 8-10 inches).

Chapter 1: Evolution of the Mouse

Figure 1-4. Microsoft's second-generation mouse.

In May 1986, Microsoft released, a modified version of the bus
mouse interface that was powered by a custom InPort chip, which fur
ther enhanced mouse performance because the mouse driver could
take advantage of the chip's programmable interrupt rate.

Improved performance of mouse hardware set the stage for what
was perhaps the most important mouse software release, Microsoft
Mouse 6.0. Introduced in September 1986, Microsoft Mouse 6.0 brought
a major overhaul of the mouse software:

• PC Paintbrush was updated and renamed Microsoft Paintbrush.

• A mouse setup program was added, and Show Partner, a
graphics presentation program, was added. (Show Partner was
discontinued in version 6.1).

• Expert mouse menus were added for power users of Lotus 1-2-3,

Display Write III, and Multimate 3.31.

• Computer-based tutorials became part of the packa,ge. (These
were discontinued in version 6.1.)

• A mouse Control Panel let people adjust the sensitivity of the
mouse for different applications.

Furthermore, in this release an optional international version of
the mouse driver generated messages in anyone of nine foreign lan
guages, which let software developers readily build in mouse support
for most foreign-language applications. The international driver is
shipped to users outside the United States.

9

PART I: INTRODUCTION

The Third Generation

10

The new Microsoft Mouse (the one that looks like a bar of Dove soap), with its
repositioned ball and seemingly improved mechanism, makes all the difference
in the world.

-John C. Dvorak
PC Magazine, December 22, 1987

The third-generation mouse, introduced in September 1987, had a
smaller, sleeker mouse body with easy-to-use buttons that clicked when
pressed.

Figure 1-5 shows Microsoft's third-generation mouse.

Figure 1-5. Microsofts third-generation mouse.

The internal architecture of this new Microsoft Mouse re
mained basically the same as that of the gray-button mouse, but some
major changes made the mouse easier to control-changes such as
moving the traction ball to the front of the mouse and making the left
button larger than the right. InJuly 1988, the Wall StreetJournalpub
lished an article (shown in Figure 1-6) about the ergonomics of the
third-generation mouse.

Software included in the mouse package continued to improve
and offered increasingly more options. Microsoft currently offers the
mouse in a variety of bus-version and serial-version hardware and soft
ware configurations. The bus version, like earlier Microsoft bus mice,
uses its own card. The serial version can be connected directly to a
serial port or to the mouse port on IBM PS/2 computers and other
PS/2-style mouse port interfaces.

Figure 1-7 on p. 12 illustrates the milestones in Microsoft mouse
history.

nny Mouse Holds
Many Design Problems

COMPUTER MICE cram a
surprising number of design
issues into a tiny package,

as Microsoft Corp. proved when it
undertook to develop a new model
of the hand-held control.

SHAPE: "Most mice on the
market take their shape from the
form of a computer or keyboard.
They're rectilinear, with fairly
hard edges," says Paul Bradley,
an industrial designer at Matrix
Product Design Inc., of Palo Alto,
Calif., which was responsible for
the new mouse's appearance.
"We used a softer form that's
closer to the contour of a hand."

Microsoft Mice:
Old (top),· New (bottom)

Chapter 1: Evolution of the Mouse

Matrix collaborated with hu
man-factors specialists at ID Two
in San Francisco and engineers at
David Kelley Design, Palo Alto.

SIZE: "At first we. thought a
much smaller device, to be held
in the fingertips, might give more
accurate control," says/Mr. Brad
ley. Tests proved that wrong.
"Our mouse is lower, but other
wise not smaller," he says. "You
can drive it with your fingertips,
but still rest your hand on it."

BALANCE: A mouse rolls on a
plastic uall sct in its underside,
usually at about the middle. The
designers moved the ball forward
to facilitate fingertip operation.

CONTROLS: ID Two did ex
tensive testing on the type, size
and configuration of the two but
tons that execute mouse com
mands. It found that making one
button larger than the other im
proved performance without trou
bling left-handed users, but that a
ridge was needed between the
buttons as a tactile landmark.
Test users preferred buttons with
crisply clicking feedback over a
"mushier" button used earlier.

FINISH: Most mice tend to
have a textured finish, often in
universal humdrum computer
beige. Microsoft chose to make
the new mouse glossy white.

Microsoft considers the effort
worthwhile. Since it introduced
the model last fall, sales have al
ready exceeded total previous Mi
crosoft mouse sales since 1984.

Figure 1-6. Article from the Wall StreetJournal about the new Microsoft Mouse.

11

PART I: INTRODUCTION

MILESTONES IN MICROSOFT MOUSE HISTORY
HARDWARE RELEASES

Mouse 1.0
Bus Version

The Microsoft Green-button Mouse
Microsoft introduced its first mouse: a two
button, mechanical mouse designed for the

IBM PC. The mouse supported Microsoft Word.

Mouse 1.0
Serial Version

The Microsoft Green-button Mouse
Designed to plug directly into an RS -232 serial

port instead of a separate bus card.

MouseS.O
The Microsoft Gray-button Mouse

Reengineered hardware and software doubled
the sensitivity and resolution (200 ppi) of the

earlier mouse.

MouseS.03
The Inport Mouse

Introduction of the InPort Mouse. The InPort
chip is a custom LSI (Large Scale Integration)
Microsoft design used in the bus mouse board

and as the peripheral interface on the
Microsoft MACH 10 and MACH 20.

Mouse 6.10
The Microsoft Mouse for the IBM PS/2

Introduction of the Microsoft Mousefor the
IBM PS/2 mouse port. Microsoft's PS/2 Mouse

arrived on the market a month after the first
announcement of the PS/2 line.

Mouse 1.0
The New Mouse

Microsoft redesigned the mouse body and
moved the track ball to the front of the mouse.

The mouse became available in three different
software configurations and two hardware

configurations.

MAJOR SOFTWARE RELEASES

Mouse Driver 1.0
Contained the mouse driver plus software that
demonstrated and taught use of the mouse.
This release supported Microsoft Word and
contained separate drivers for bus and serial

Mouse Driver 2.0
Contained updates to the driver software plus
the introduction of a new graphics program,
Doodle.

___ ." .. u Driver 3.0
Provided early support for the IBM Enhanced
Graphics Adapter (EGA) and MS -DOS 3.x. Th
disk also contained updates to Notepad.

Mouse Driver 4.0
With Mouse Driver 4.0, Doodle was replaced
with Z-Soft's popular color painting program,
PC Paintbrush. The mouse software was
extended to two floppy disks.

Mouse Driver S.O
Mouse Driver 5.0 was revised to install and
identify the type of mouse in use. Reenglneered
mouse hardware enhanced software
performance (resolution now 200 ppi).

Mouse Driver 6.0
Mouse Driver 6.0 was a major update. The dis~
contained a new mouse setup program and a
new version of Microsoft Paintbrush. It also
contained computer-based training and
Control Panel.

Mouse Driver6J
Microsoft added the following supportfor VGA
graphics: serial-interface and bus-interface
versions of EasyCAD, and Microsoft Windows
2.03 with Microsoft Paintbrush.

Figure 1-7. Major hardware and software releases of the Microsoft Mouse.

12

Chapter 1: Evolution of the Mouse

LOOKING AHEAD
As software becomes more complex, more of us will need to adopt pointing
devices to work efficiently with computers. There is probably a mouse in your
future.

-CaryLu
Author of The Apple Macintosh Book, 3rd ed., Microsoft Press

Sometime in the not-too-distant future, every microcomputer will be shipped
with a mouse. As the world moves to Windows and OS/2, mice will become as
endemic as keyboards are.

- Steve Shaiman
Director, Microsoft Hardware Group

In the summer of 1988, 25 years after Doug Engelbart crafted his
wooden prototype, Microsoft celebrated the sale of its millionth
mouse.

Today, software applications with graphical user interfaces are
rapidly becoming the norm rather than the exception, and with this
comes wider acceptance and use of the mouse. As OS/2 and Presenta
tion Manager, Microsoft Windows, and other graphical-user-interface
software come into wider use, using a mouse makes increasingly more
sense and begins to seem a necessity rather than a luxury.

13

Chapter 2

Overview
of Mouse
Programming

The mouse is an electronic device that sends signals to your computer.
To your software, these signals represent cursor movements and button
presses. However, the raw data sent to your computer is difficult to use
in its original form. Also, different signals are generated depending on
whether a bus, InPort, serial, or PS/2 mouse is used. To give program
mers an easy-to-use, consistent interface, Microsoft and most other
mouse manufacturers provide a mouse driver.

THE MOUSE DRIVER
A mouse driver is software that lets the operating system consistently
interpret the raw data from the mouse. The Microsoft mouse driver
does this by providing application programs with 35 function calls that
let programs perform specific tasks, such as checking the state of a
mouse button. These function calls are consistent regardless of the
mouse hardware you use.

Microsoft provides three methods for interfacing with the mouse
driver: mouse menus, the mouse library, and direct calls to MS-DOS

Interrupt 33H. Each method has distinct advantages and disadvantages,
and each method fulfills a particular need. For example, you can use

15

PART I: INTRODUCTION

mouse menus only with existing applications. However, you can use the
mouse library and Interrupt 33H in programs you write yourself.

Using Mouse Menus
Mouse menus let you integrate the mouse into most preexisting text
based software packages that wouldn't otherwise support the mouse.
Thus, you can bringup menus that aren't necessarily in the appli
cation, and you can emulate keystrokes. You can also assign mouse
motions and button presses to tasks you would normally perform
with the keyboard.

Using the Mouse Library
The mouse library lets you incorporate the mouse into an application
as you write it. Because the mouse support becomes an integral part of
the program, the functionality of the mouse support within the appli
cation program far exceeds that which you can obtain with mouse
menus. The library lets the application take advantage of 35 mouse
function calls, which are accessible from high-level languages such as
interpreted BASIC, QuickBASIC, C, QuickC, FORTRAN, and Pascal. The
function calls are also accessible from MASM.

Using MS-DOS Interrupt 33H
You can access the mouse driver directly through MS-DOS software
Interrupt 33H, which provides you the same 35 functions that are avail
able through the mouse library. Because the overhead of making li
brary calls is eliminated, a program written using Interrupt 33H is
smaller and faster than the same program written using the mouse li
brary. Most professionally developed programs that use the mouse in
teract with it through Interrupt 33H. Any language that can make calls
to the MS-DOS interrupts can use this method of interfacing with the
mouse driver.

MOUSE MENUS

16

A mouse menu displays menus on the screen with options you can
select. The selected option can feed characters into the keyboard
buffer for the current application, or it can execute other menu
commands.

Chapter 2: Overview of Mouse Programming

NOTE: The only way the mouse menu programs interact with an applica
tion is by detecting mouse motion or button presses and then feeding characters into
the keyboard buffer.

The keyboard buffer is a small portion of memory that holds char
acters you type on the keyboard. Your application program reads these
characters from the buffer in the order in which they were input and
acts on them accordingly. A mouse menu program can emulate the
keyboard by sending characters directly to the keyboard buffer as you
move the mouse or press one or more mouse buttons.

Menu software loads the keyboard buffer much faster than you
can load it by typing at the keyboard. How fast the buffer is loaded by
the keyboard is limited to a set rate determined by each computer's
BIOS; however, the menu software doesn't have this limitation. For this
reason, when the mouse emulates the direction keys, the cursor moves
much faster than if you pressed the actual keys on the keyboard.

NOTE: Because certain applications access the keyboard directly, your mouse
menu program might not work as you expect. In addition, mouse menu programs
can't generate some keystrokes, such as Ctrl-All-Del. These keystrokes are listed
under the TYPE statement entry in Chapter 4, ''Mouse Menu Language
Statements. "

Keyboard Mapping
A mouse menu program recognizes seven mouse actions:

• Left button pressed

• Right button pressed

• Both buttons pressed

• Right motion

• Left motion

• Upmotion

• Down motion

You can make each of these actions correspond to one or more
menu commands. For example, some useful and common mappings of
mouse actions to the keyboard buffer include the following:

• Right, left, up, and down motions that correspond to the right
arrow, left-arrow, up-arrow, and down-arrow keys

17

PART I: INTRODUCTION

• A button press that corresponds to pressing Enter or Esc

• A button press that tells the menu software to display a custom
menu, which you usually write to execute application program
commands or MS-DOS commands

The following mouse menu program demonstrates some simple
keyboard mapping:

BEGIN lb.rb.bb,lm.rm,um.dm.48.48
1b: EXECUTE fl :Left button emulates Fl key
rb:
bb:
1m:
rm:
urn:
dm:

f1:
entkey:
escape:
left:
right:
up:
down:

EXECUTE entkey
EXECUTE escape
EXECUTE left
EXECUTE ri ght
EXECUTE up
EXECUTE down

TYPE 0.59
TYPE enter
TYPE 27
TYPE 0,75
TYPE 0,77
TYPE 0.72
TYPE 0,80

:Right button emulates Enter key
:Both buttons emulate Esc key
:Left movement emulates left-arrow key
;R1ght movement emulates right-arrow key
:Up movement emulates up-arrow key
:Down movement emulates down-arrow key

:These commands perform the
:actual work when you move
:the mouse or press one or
:both mouse buttons. Refer
;to Chapter 4 for detailed
;explanations of each of
:these commands.

Creating a Mouse Menu

18

The mouse menu programming language has commands that let you
create custom pop-up menus in a variety of configurations and hier
archies. You can create simple single-function menus, or you can
create elaborate multilayer menu systems in which choosing an item
from one menu can call up another menu.

You follow the same basic steps to create a mouse menu as you do
when developing any other software:

1. Design and write the source code

2. Compile the source file

3. Run the mouse menu program

4. Debug the program

For instructions on creating a mouse menu program, see Chapter 3,

"Creating Your Own Mouse Menu."

Chapter 2: Overview of Mouse Programming

THE MOUSE PROGRAMMING INTERFACE
Mouse menus provide mouse support for an existing application pro
gram that doesn't already support the mouse. However, the most effi
cient way to add mouse program support is to write the mouse support
directly into the application program's code. The mouse can then
become a separate user-input device of its own, not merely a keyboard
emulator. The most important feature the mouse brings to the user in
terface is the free-floating cursor used in many popular products such as
Microsoft Word~ Microsoft Works, AutoCAD, Microsoft Paintbrush,
and Microsoft Windows. This feature makes programs more intuitive,
user-friendly, and easy to learn.

As the link between the mouse hardware and the application soft
ware, the mouse driver keeps constant track of mouse movement and
button-press information. When an application program needs mouse
information, it makes a request to the driver, which then returns the re
quested information to the application program.

Working with Functions
The mouse driver understands 35 input and output operations. Each
operation, or function, is a specifi~ instruction to the mouse driver that
enables a program to communicate with the mouse. Some functions
request information about the mouse such as button-press information,
relative cursor position, and relative motion. Other functions control
characteristics of the mouse interface such as regulating the sensitivity
of cursor motion, defining the shape of the cursor, and limiting cursor
movement to a specific area. The application program tells the mouse
driver what it wants through the mouse function calls, and the driver
does the rest.

Communicating with the Mouse Driver
You can use two methods to communicate with the mouse driver from
within a program: You can use the MOUSE.LIB library, which allows
the program to communicate with the mouse driver using the calling
conventions of a particular language, or you can communicate with
the driver using MS-DOS Interrupt 33H. All mouse function calls are
available using library calls or using MS-DOS Interrupt 33H. Each
method has its distinct advantages; however, functionality is the same
in both methods.

19

PART I: INTRODUCTION

20

NOTE: The mouse driver and the corresponding interface control only the
mouse. You must set video modes and program interaction with the mouse within a
program as required for your specific application.

Using the MOUSE.LlB Library
You can use the MOUSE.LIB library supplied with the disks in this book
as a library file for several Microsoft languages. Using the libraries lets
you add mouse support to a program by making procedure calls in Pas
cal, subprogram calls in QuickBASIC, function calls in C and QuickC,
or subprogram calls in FORTRAN. The library enables all parameter
passing and declarations to be consistent with the language you are
using. Because of this, no special programming techniques are neces
sary to program the mouse. Calls to the mouse simply become another
subroutine.

To use the mouse library, the language you use must support
Microsoft library conventions. If the language supports the conven
tions, you can link the library with your program. For information
about linking to various mouse programs, see Chapter 9, "Sample
Mouse Programming Interface Programs."

You should also consult the documentation of the language you
are using regarding the linking of external libraries. If the language
doesn't support the Microsoft library conventions, you will be unable to
link with the MOUSE.LIB library. However, it might be possible to pro
gram the mouse using Interrupt 33H as described in the following
section.

Using Interrupt 33H
A command in the AUTOEXEC.BAT or CONFIG.SYS file usually loads the
mouse driver when MS-DOS starts. The driver installs the starting ad
dress as the vector for Interrupt 33H and then attaches itself to the
operating system. You can then access the mouse driver through soft
ware Interrupt 33H. When your software calls this interrupt, the system
finds the address of the mouse driver in the interrupt vector table, goes
to the mouse driver, and executes the requested function.

NOTE: The mouse driver (MOUSE. COM or MOUSE.SYS) must be in memory
when an application or program uses mouse function calls. When the driver is
loaded, programs can access the Interrupt 33H vector if they use the mouse function
calls (in which the driver provides an inteiface for application programmers).

Chapter 2: Overview of Mouse Programming

You can specify the different functions by loading the AX, BX, ex,
and DX registers with the appropriate values. Some functions also use
the ES, SI, and DI registers. The mouse driver returns values to the call
ing routine through these same registers. For detailed information on
using registers to pass function variables, see Chapter 8, "Mouse Func
tion Calls."

The primary advantage of using Interrupt 33H instead of the
mouse libraries is improved execution speed. Interrupt 33H circum
vents the overhead associated with calling subroutines by calling the
interrupt directly. Also, languages that can't use the supplied mouse li
brary can use Interrupt 33H if they can load processor registers and
make calls to MS-DOS.

EGA Register Interface
Although the mouse driver supports the EGA and VGA, programmers
sometimes like to program the EGA or VGA hardware directly. Because
the mouse driver keeps track of the EGA and VGA registers, program
mers must take some special considerations into account when pro
gramming the D, E, F, 10, 11, 12, and 13 graphics modes of the EGA and
VGA adapters.

For detailed information on using the EGA Shadow Register Inter
face, see Chapter 10, "Writing Mouse Programs for IBM EGA Modes."

21

PART II

Mouse Menus
Chapter 3: Creating Your Own Mouse Menu

• Mouse Menu Language Commands
• Statement Format
• Mouse Menu Program Structures
• Creating a Mouse Menu.Program

Chapter 4: Mouse Menu Language Statements

• Statement Syntax Conventions
• Statement Descriptions

Chapter 5: Sample Mouse Menu Programs

• The SIMPLE Mouse Menu Program
• DOSOVRLY Mouse Menu Program
• Other Sample Mouse Menu Programs

Chapter 3

Creating Your
Own Mouse Menu

The mouse menu programming language is designed to provide
mouse support for applications that don't currently support the mouse.
The menu communicates to the application through the keyboard
buffer by using a set of commands. This chapter describes how to use
those commands to design and run your own mouse menus.

MOUSE MENU LANGUAGE COMMANDS
The mouse menu programming language consists of 13 commands.
You use these commands in statements that assign different functions
to the mouse, create menus, and simulate the pressing of keys.

Table 3-1 lists the commands in the mouse menu programming
language:

TABLE 3-1: MOUSE MENU COMMANDS

Command Purpose

ASSIGN Assigns new values to mouse events or changes mouse
movement sensitivity.

BEGIN Assigns initial actions taken when a mouse event occurs and sets
initial mouse-movement sensitivity.

EXECUTE Specifies the label of the statement that contains the mouse
menu command or commands to be executed when you move
the mouse, press a mouse button, or choose a menu item.

(continued)

25

PART II: MOUSE MENUS

CQ11lmand

MATCH

MENU

MEND

NOTHING

OPTION

POPUP

PEND

SELECT

TEXT

TYPE

TABLE 3-1: MOUSE MENU COMMANDS (continued)

Purpose

Specifies the action taken if a certain character or string of
characters is displayed at a specific location on the screen.

Begins a menu subroutine.

Ends a menu subroutine.

Indicates that no action will be taken. NOTHING is used as an
alternative to the EXECUTE, TYPE, and MATCH statements.

Specifies a menu item within a menu subroutine and the action
taken when you select that item.

Begins a pop-up subroutine.

Ends a pop-up subroutine.

Defines the action taken when you select an item from a pop-up
menu.

Defines the text for a pop-up menu title or menu items.

Specifies the key or keys "typed" into the keyboard buffer
when you move the mouse, press a mouse button, or choose
a menu item.

STATEMENT FORMAT

Labels

26

In the mouse menu programming language, you can enter statements
in uppercase or lowercase letters. Most statements have the following
format:

[label:] command [parameters ;comments]

NOTE: The BEGIN statement and statements within menu and pop-up
subroutines don't use this format because they don't require labels. The BEGIN

statement doesn't need a label because it s always the first statement in a program,
and statements within menu or pop-up subroutines don't need labels because they
run sequentially.

The components of a statement are described in the following
sections.

A label is the name you give a mouse menu statement. Except for state
ments in menu or pop-up subroutines, all statements must have labels
for the program to access them. Your program calls a statement when
its label is referenced in another statement. When the labeled state
ment is completed, control returns to the statement that referenced

Chapter 3: Creating Your Own Mouse Menu

the label. In other words, control doesn't fall through to the next
statement. In the following statement, mat1 is the label of the MATCH

statement:

matI: MATCH 23 •• inverse."Format".execI.exec2

When you include a label, be sure to follow these guidelines:

Parameters

• Begin a label with a letter and follow it immediately with a
colon.

• Leave at least one space between the colon and the command.

• Do not use mouse menu command names or the words backsp,
enter, esc, or tab for labels.

• Use any printable standard ASCII characters except a colon in a
label.

• Use labels that suggest what the statement does in the program.
For example, you could use menu1 as the label for the first
menu subroutine.

A parameter is a variable that affects the action of a statement. When
you use a statement, you must substitute an appropriate value for each
parameter you want to use. All statements except NOTHING, MEND, and
PEND have parameters. .

Parameters follow the command word in a statement. When you
use parameters in a statement, you must type a space between the com
mand word and the first parameter. Commas must separate any addi
tional parameters.

The EXECUTE and TYPE statements let you use from 1 to 15 pa
rameters. However, other statements require a specific number of pa
rameters. Suppose you are using one of these other statements, such as
the MATCH statement, and you don't want to use a particular parame
ter. However, you do want to use the parameters that follow. To accom
plish this, you include an additional comma to hold the place of the
unused parameter. The MAKEMENU utility automatically uses the
default value for any parameter that you leave out of a statement that
has a required number of parameters.

For example, in the following statement, 23, inverse, Format,
execl, and exec2 are five of the six required values for MATCH statement
parameters. The fact that the second comma immediately follows the

27

PART II: MOUSE MENUS

28

first comma tells the MAKEMENU utility that the second parameter is
not included and that the default value should be used:

matI: MATCH 23 .• inverse."Format".execI.exec2

The mouse menu programming language uses three types of parame
ters: numeric parameters, string parameters, and attribute parameters.

Numeric Parameters
You use numeric parameters for numeric data, such as screen coordi
nates or movement-sensitivity values for the mouse.

In the preceding example, 23, the row coordinate for the MATCH

statement, is the value for a numeric parameter.

String Parameters
Most string parameters specify text for menus or messages. A string
parameter can contain digits, letters, special characters, or spaces.

You must enclose a string in double-quotation marks (" "). You
cannot use a double-quotation mark as part of the string: The double
quotation marks enclosing the string are the only ones allowed.

Attribute Parameters
The attribute parameter determines the display attribute, which speci
fies how a menu or message box appears on the screen. This parameter
can have one of four values: normal, bold, inverse, or, if your system uses a
color display adapter and monitor, a number that designates specific
foreground and background colors. Figure 3-1 shows how the normal,
bold, and inverse values affect the text displayed by a pop-up menu.

BASIC COllllllands

.*hll;;';'4 111+
List
Run
Load

Nonnal

BASIC ec-nds

.eml,Y,iM
List
IkIn
Load

Bold Inverse

Figure 3-1. Effects of display attributes applied to pop-up menu text.

If you don't specify an attribute parameter, the default attribute
is used. Default attributes are included in the description of each state
ment in Chapter 4, "Mouse Menu Language Statements."

Chapter 3: Creating Your Own Mouse Menu

Color Menus
If your system uses a color display adapter and color monitor, you can
use the attribute parameter in a MATCH, MENU, or POPUP statement
to specify particular colors for the background and foreground of a
menu or message box. Text is displayed in the foreground color; the
remainder of the box is displayed in the background color.

Table 3-2 lists the background and foreground colors available,
and it gives a corresponding value for each color. The value for a par
ticular color differs depending on whether you use the color for the
foreground or the background. The display attribute that specifies a
particular color combination is the sum of the values for the desired
foreground and background colors. Suppose you want green text on a
blue background. The value for a green foreground is 2, and the value
for a blue background is 16. Therefore, the value of the attribute
parameter is 18.

NOTE: Color shades can vary on different equipment. Also, if you specify
a display-attribute value greater than 127, the foreground cowr blinks when the
menu or message box is displayed. In addition, a gray background (128) woks
the same as a black background (0).

TABLE 3-2: FOREGROUND AND BACKGROUND COLOR VALUES

Color

Black
Blue
Green
Cyan (blue-green)
Red
Magenta
Brown
White
Gray
Light blue
Light green
Light cyan
Light red
Light IIJ.agenta
Yellow
White (high intensity)

Foreground

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Background

o
16
32
48
64
80
96

112
128
144
160
176
192
208
224
240

29

PART II: MOUSE MENUS

Specifying a value of7 is equivalent to specifying the normal at
tribute parameter. The value 7 is the sum ofo (the value for a black
background) and 7 (the value for a white foreground). Specifying a
value of 15 is equivalent to specifying the bold attribute parameter. The
value 15 is the sum of o· (the value for a black background) and 15 (the
value for a high-intensity white foreground). Specifying a value of 112 is
the equivalent of specifying the inverse attribute parameter. The value
112 is the sum of 112 (the value for a white background) and 0 (the value
for a black foreground).

Comments
Comments describe what a statement does. They are used to help you
and anyone else who might read your program to understand the pro
gram, and they have no effect on how the statement is executed.

You can insert a comment at the end of a statement or on a sepa
rate line. To specify a comment, simply type a semicolon (;) followed
by the comment. If you include a comment on the same line as a state
ment, separate the last parameter of the statement and the semicolon
preceding the comment with one or more spaces. The following is an
example of a TYPE statement followed by a comment:

F1: TV P EO, 59 ;Simulates pressing the Fl key

MOUSE MENU PROGRAM STRUCTURES
The following sections describe how each type of command is used in
a mouse menu source program. For detailed information about com
mands and their parameters, see Chapter 4, "Mouse Menu Language
Statements."

Mouse Event Commands

30

Mouse event commands, BEGIN and ASSIGN, specify which statements
the program executes when you press a mouse button or move the
mouse.

The BEGIN Command
Use a BEGIN command to specify the initial statements executed when
particular mouse events occur and to set the initial mouse sensitivity.
Always use a BEGIN command as the first statement in your program.

Chapter 3: Creating Your Own Mouse Menu

You can include one or more of the following parameters in the
BEGIN statement:

• Button parameters: lfbtn (left button), rtbtn (right button),
and/or btbtn (both buttons). Button parameters define the ac
tion taken when you press one or both mouse buttons.

• Movement parameters: lfmov (mouse left), rtmov (mouse right),
upmov (mouse up), and/or dnmov (mouse down). Movement
parameters define the action taken when you move the mouse.

• Movement-sensitivity parameters: hsen (horizontal movement
sensitivity) and/or vsen (vertical movement sensitivity). Move
ment-sensitivity parameters define how much the mouse must
move before the cursor moves. This is helpful in tailoring cur
sor movement to the different column and row widths found in
spreadsheet programs. You specify the movement of the mouse
in a unit of distance known as a mickey, which is approximately
Y200 inch. For more information on the mickey, see Chapter 6,

"Mouse Programming Interface."

The ASSIGN Command
Use the ASSIGN command to assign new values to mouse events and
mouse sensitivity. An ASSIGN command is useful if you want your
mouse menu program to execute different statements or subroutines,
depending on one of the following:

• The current mode of an application program

• Other conditions that require the mouse buttons to cause
different actions or the movement sensitivity to change .

Menu Subroutine Commands
Menu subroutines create single-column pop-up menus, which are bor
dered menus with a single column of menu items (Figure 3-2).

Figure 3-2. Single-column pop-up menu.

31

PART II: MOUSE MENUS

32

To choose items in a menu, you move the mouse pointer to the
desired item and then press either mouse button. If you press both
mouse buttons at once, the equivalent of a NOTHING command is exe
cuted and the menu disappears.

MENU, OPTION, and MEND are menu subroutine commands. To
code menu subroutines, use the following format:

label: MENU ["title"],[row],[column],[attribute]
OPTION ["text"],[label]

MEND

The MENU Command
Begin each menu subroutine with a MENU command. You can include
four parameters:

• The,menu's title, enclosed in double-quotation marks (" ")

• The row and column of the screen where the upper-left corner
of the menu will appear

• The menu's display attribute

The OPTION Commands
Include OPTION commands within a menu subroutine to specify one
or more menu items and the action taken when you choose an item. Al
ways include at least one OPTION command that lets you exit from the
menu.

The text parameter is the text the menu displays for that item. If
you omit the text parameter, the menu displays a blank line. Case is sig
nificant; that is, uppercase and lowercase are displayed exactly as you
type them.

The pointer parameter is the label of the statement that is to be
executed when you choose that menu item. If you do not specify a
pointer parameter, the equivalent of a NOTHING statement is executed
when that item is chosen, and the menu disappears.

The MEND Command
Always follow the last OPTION command with a MEND (menu end)
command, which ends the menu subroutine.

Chapter 3: Creating Your Own Mouse Menu

Sample Menu Subroutine
The following menu subroutine produces the Inverse Attribute menu
shown earlier, in Figure 3-1.

In this example, the upper-left corner of the menu produced by
this subroutine appears at row 5, column 20. Because an attribute is
not specified in the MENU statement, the inverse display attribute (the
default) is used. When the menu appears on the screen, the first menu
item is highlighted (in this case, Cancel Menu).

If you select Cancel Menu, the menu disappears because a pointer
parameter is not specified for that OPTION statement. If you select any
other item, the statement identified by the label specified in the pointer
parameter for that OPTION statement is executed. .

menu1: MENU "BASIC Commands".5,20
OPTION "Cancel Menu"
OPTION "List",F1
OPTION "Run",F2
OPTION "Load",F3
MEND

F1: TYPE 0,59 ;Simulates pressing the F1 key
F2: TYPE 0,60 ;Simulates pressing the F2 key
F3: TYPE 0,61 ;Simulates pressing the F3 key

Pop-up Subroutine Statements
You can use pop-up subroutines to create multiple-column menus and
message boxes.

You use multiple-column menus in the same way as single
column menus: Choose an item by moving the mouse pointer to the
item, and then press either mouse button. Pressing both mouse buttons
at once is the equivalent of a NOTHING statement and removes the
menu from the screen. When the menu first appears on the screen, the
first menu item, as defined by the first SELECT statement in the POPUP

subroutine, is highlighted. Figure 3-3 shows a multiple-column menu.

CURSOR MOVEMENT ==91

'fil!3f1-1!igIllWrop of screen
Screen up Botton of screen
Screen down Start of file
Preuious place End of file

Figure 3-3. Multiple-column menu.

33

PART II: MOUSE MENUS

34

Message boxes are simply pop-up menus that display messages in
stead of menu items (Figure 3-4). You can combine pop-up subroutines
with MATCH commands so that message boxes appear when your appli
cation program changes the display mode or when other conditions
change the screen display.

11""'"'---- jullf.i'''H8Q ------.,.
Left button - Displays Edit/Block JIIenu
Right button - Displays Cursor MoueJllent Menu
Both buttons - Displays Edit/File JIIenu

Mouing the JIIouse up, down, left, or right
causes the cursor to JIIoue in that direction.

Figure 3-4. Message box.

The pop-up subroutine statements are the POPUP, TEXT, SELECT,

and PEND statements.
To code pop-up subroutines for multiple-column menus and mes

sage boxes, use the following format:

label: POPUP [row],[column],[attribute]
[TEXT [" text"]]

SELECT row, column, length, [pointer]

PEND

The POPUP Command
Begin each pop-up subroutine with a POPUP command. You can in
clude three parameters:

• The row of the menu's upper-left corner

• The column of the menu's upper-left corner

• The menu's display attribute

The TEXT Command
Include TEXT commands within a pop-up subroutine to specify the
menu title, menu items, and, optionally, menu borders. Type the title
text, item text, and menu borders exactly as they'll appear on each line
of the menu and enclose them in double-quotation marks (" ").

Chapter 3: Creating Your Own Mouse Menu

NOTE: Menus created with the MENU command and menus created with
the POPUP command differ. The MENU command, which creates only single
column menus, creates a border around the displayed menu and draws a line
between the menu title and the menu items. Figure 3-1 shows an example of those
lines. The POPUP command doesn't draw these lines, so you must include line
drawing characters within TEXT statements. The easiest way to do this is to use
equal signs (=) or hyphens (-) for the horizontal lines, and vertical-line characters
(:) for the vertical lines. Examples of this technique are shown on the following
pages. To use the same line-drawing characters created by the MENU command,
use the line-drawing characters of the extended ASCII character set. These are
shown in Appendix G, ''ASCII Character Set. " To create these characters, hold
down the Alt key, type the number of the character on the numeric keypad, then
release the Alt key. The line-drawing character will appear on your screen.

The text generated by a TEXT command will be located on the
screen relative to the coordinates you specify in the POPUP statement.

The SELECT Commands
Use SELECT commands to define the area in which you can choose
each menu item. Specify the row, column, and length of the screen
area you want to select, relative to the menu's upper-left corner. The
coordinates of the upper-left corner ofa pop-up menu are (1,1). You
can also include a pointer parameter to specify a statement that is exe
cuted when you choose an item on the screen that is pointed to by that
SELECT statement. As with the OPTION statement for a single-column
menu, you simply specify the label of the statement that will be
executed.

You must include at least one SELECT command in each pop-up
subroutine as an exit point.

The PEND Command
Always follow the last SELECT command with a PEND (pop-up end)
command, which ends the pop-up subroutine.

Sample Pop-up Subroutines
The following pop-up subroutine creates the multiple-column menu
shown earlier, in Figure 3-3.

In this example, the upper-left corner of the menu is at row 2, col
umn 1. Because an attribute parameter is not specified in the POPUP

statement, the inverse display attribute (the default) is used.

35

PART II: MOUSE MENUS

36

The TEXT statements specify the menu's borders, title, and items.
Their location is relative to the coordinates you specified in the POPUP

statement as the upper-left corner of the menu. The first character of
the first menu item starts at relative row 2, column 3 in the menu; how
ever, its actual screen coordinates are row 3, column 3. When the pop
up menu appears on the screen, the first item is highlighted.

The SELECT statements define item-selection areas. In the first
item (Cancel menu), 2, 3, and 15 define the row, column, and length of
the selection area. Because the SELECT statement for the Cancel menu
doesn't include a label for the pointer parameter, the menu disappears
from the screen if you select Cancel menu. The other SELECT statements
execute the statements named in their pointer parameters.

movemen: POPUP 2.1
TEXT .. ----- CURSOR MOVEMENT ==:===- "

TEXT "f Cancel menu Top of screen :"
TEXT ": Screen up Bottom of screen :"
TEXT u: Screen down Start of file ." .
TEXT n: Previous place End of fil e I"
TEXT 'f ======a:::===========--_________________ == "

SELECT 2.3.15
SELECT 3.3.15.keyctrlr
SELECT 4.3.1S.keyctrlt
SELECT 5.3.15.keyctrlqp
SELECT 2.18.17.keyctrlqe
SELECT 3.18.17.keyctrlqx
SELECT4.18,17.keyctrlqr
SELECT 5,18.17.keyctrlqc
PEND

The following pop-up subroutine creates the message box shown
earlier, in Figure 3-4. Note that the message box in Figure 3-4 uses the
upper-ASCII characters 186,187,188,200,201, and 205 to create the
border.

In this example, the POPUP statement defines row 2, column 1 as
the upper-left-corner coordinates. Because an attribute parameter is not
specified in the POPUP statement, the inverse display attribute is used.

The TEXT statements define the message-box border, title, and
message text. Their screen location is relative to the coordinates you
specified in the POPUP statement as the upper-left corner of the menu.
The single SELECT statement highlights the menu box title and defines

Chapter 3: Creating Your Own Mouse Menu

an exit point for the menu. Because the message box has only one
SELECT statement, you cannot move the cursor within the message box.

mousehlp: pOPUP 2.1
TEXT II --------------- MOUSE HELP _= __ ;= _____________ II

TEXT ": :"
TEXT ": Left button - Displays Edit/Block menu tit
TEXT ": Right button - Displays Cursor Movement menu :"
TEXT ": Both buttons - Displays Edit/File menu :"
TEXT ": :"
TEXT ": Moving the mouse uP. down. left. or right :"
TEXT If: causes the cursor to move in that direction. :"
TEXT ": :"
TEXT II ==== ___ .. == ___ 111111 ______ ===-======~==================== ________ .. __ II

SELECT 1.18.10
PEND

Action Commands
Action commands specify the action taken when you choose a menu
item, press one or both buttons, or move the mouse. The EXECUTE,

TYPE, and NOTHING commands are action commands.
It's important to understand the flow of the actions taken by

mouse menu programs. Most programming languages follow sequen
tially from one statement to the next unless they encounter a branch
ing statement or a subroutine call. You can think of mouse menu
program statements as subroutines, with an implied return at the end
of each statement. The only exception to this rule occurs with the
statements in the menu or pop-up subroutines, but if you think of the
MENU-MEND and POPUP-PEND blocks as single complex statements,
the rule applies to all cases.

A mouse menu program is entered when one of the actions of the
BEGIN or ASSIGN statements occurs, such as pressing a mouse button or
moving the mouse. The program then branches to the labeled state
ment indicated in the BEGIN or ASSIGN statement. When the program
completes that statement, it returns to the BEGIN or ASSIGN statement
and terminates. Before completing its task, however, that statement
might call out another statement, and so on.

When the program completes the action of a labeled statement, it
returns control to the statement that referenced that label. The pro
gram terminates when the nested chain of statements completes its

37

PART II: MOUSE MENUS

38

tasks and the program flow returns to the originating BEGIN or ASSIGN

statement.
The following example shows the flow of the action when you

press the right mouse button:

BEGIN leftb.rightb ;Pressing the' right button calls "rightb"

1 eftb: NOTH I NG :Press1ng the left button does nothing

r1ghtb: . MATCHl~l •• "XXX".found,nope ;If XXX is found in the upper-left
:corner. call "found" otherwise. call
:"nope"

found: EXECUTE txtl.txt3
nope: EXECUTE txtl.txt2.txt3

txtl: TYPE "Xs were ..
txi2: TYPE "not ..

TYPE "foundl"

:Simulates typing "Xs were found!"
:Simulates typing "Xs were not found!"

Assuming that XXX is currently displayed in the upper-left corner
of the screen, the program takes the following actions when the right
button is pressed:

Statement

1. BEGIN

2. BEGIN:rightb

3. BEGIN:rightb:found

4. BEGIN :rightb:found:txtl

5. BEGIN:rightb:found

6. BEGIN:rightb:found:txt3

7. BEGIN:rightb:found

8. BEGIN:rightb

Action

Program starts here when you press the
right button.

The BEGIN statement calls righth.

The MATCH statement labeled righth
calls found.

The EXECUTE statement labeled found
calls txtl.

The TYPE statement labeled txtl is com
pleted and control returns to found.

The EXECUTE statement labeled found
calls txt3.

The TYPE statement labeled txt3 is com
pleted and control returns to found.

The EXECUTE statement labeled found
is completed and control returns to
righth.

(continued)

continued

Statement

9. BEGIN

The EXECUTE Command

Chapter 3: Creating Your Own Mouse Menu

Action

The MATCH statement labeled rightb is
completed and control returns to the
originating BEGIN statement.

The BEGIN statement is completed, the
mouse menu program terminates, and
control returns to you.

Use the EXECUTE command to define a series of statements that will be
executed when you do the following:

• Press one or both mouse buttons.

• Choose a menu item.

• Move the mouse.

• Cause a MATCH command to be executed.

To specify statements that the EXECUTE statement calls out, you
use statement labels. You can specify up to 15 labels for each EXECUTE

statement. The following EXECUTE statement uses five labels. This
statement executes the statement labeled dsk, then the statement
labeled s, and so on. Mter the program executes the statement labeled
exec4, it returns to the statement that referenced exec1.

exec1: EXECUTE dsk,s,a,s,exec4

It is possible for an EXECUTE command to call out another EXECUTE

command. Furthermore, up to 15 EXECUTE commands can call out
other EXECUTE commands. For example, the following sequence of
nested EXECUTE commands simulates typing abcdef:

start: EXECUTE abcdef
abcdef: EXECUTE abc,def
abc: EXECUTE ab,c
ab: EXECUTE a,b
a: TYPE "a"
b: TYPE "b"
c: TYPE "c"
def: TYPE "def"

39

PART II: MOUSE MENUS

40

The TYPE Command
Use the TYPE command to simulate pressing keys on the keyboard. For
example, the following TYPE statement simulates pressing the A key:

key1: TYPE "A"

The following TYPE statement simulates typing the diskcopy a:b: com
mand and pressing the Enter key:

key15: TYPE "diskcopy a: b:",enter

Note that you can enter a series of separate keystrokes by separating
each group with commas. You can indicate which key is simulated in
one of three ways:

• Use the the key's name, enclosed in double-quotation marks
(for example, "A").

• Use the ASCII code for the character on the key (for example,
use 65 for A). You can use extended ASCII codes, ASCII control
characters, and extended keyboard scan codes to simulate spe
cial keys or key sequences, such as the Alt, Ctrl-Q, Spacebar,
and direction keys. (For a list of ASCII control characters and
extended keyboard scan codes, see Appendix G, "ASCII

Character Set.")

• Use the key's symbolic name ifit has one. The predefined sym
bolic keys are enter, tab, backsp, and esc.

In the following TYPE statements, the comments indicate which
key or keys each statement simulates.

Notice that the statements labeled dir and a simulate typing char
acter strings by enclosing the characters in double-quotation marks.
The statements labeled if, rt, up, and dn define the direction keys by
using extended keyboard scan codes. The statement labeled s simulates
pressing the Spacebar by using the standard ASCII code for a space. The
statement labeled ent simulates pressing the Enter key by using the sym
bolic name for the key. The statement labeled cls simulates typing the
MS-DOS CLS command and pressing the Enter key. The statements la
beled ctrlc and ctrld simulate pressing Ctrl-key combinations. The state
ments labeled home and end simulate pressing the Home and End keys.

Chapter 3: Creating Your Own Mouse Menu

Statement

dir: TYPE "dir"

a: TYPE "a:"

If: TYPE 0,75

rt: TYPE 0,77

up: TYPE 0,72

dn: TYPE 0,80

s: TYPE 32

ent: TYPE enter

cls: TYPE "cls",enter

ctrlc: TYPE 3

ctrld: TYPE 4

home: TYPE 0,71

end: TYPE 0,79

The NOTHING Command

Comments

Types the DIR command

Types a:

Simulates the left-arrow key

Simulates the right-arrow key

Simulates the up-arrow key

Simulates the down-arrow key

Types a space

Simulates the Enter key

Types CLScommand, simulates Enter key

Types Ctrl- C

Types Ctrl-D

Types Home

Types End

Use the NOTHING command to specify that no action is taken.

The MATCH Command
Use a MATCH command to direct a mouse menu program to take dif
ferent actions, depending on what is displayed on the screen.

A MATCH statement specifies a string of characters, a row and
column on the screen, and a display attribute. If a line on the screen
matches the specified string, begins at the specified row and column,
and appears in the specified display attribute, then the program exe
cutes a particular statement. This feature enables a mouse menu pro
gram to respond to different operating modes of the application
program or screen display.

For example, if an application program always displays the word
COMMAND in column 1 of row 22 of the screen when it is in command
mode and if it displays the word ALPHA in the same place when it is in
alphanumeric mode, you can use a MATCH command to take a dif
ferent action, depending on which mode the application program is in.

A MATCH statement uses the following format:

MATCH row,co7umn,[attrfbute],strfng,match,nomatch

The row and column parameters describe where the string parameter
must be located on the screen for a match. To be matched, the row and

41

PART II: MOUSE MENUS

42

column parameters must point to the first character of a string. If the
row and column parameters are blank, the default is (1,1). If the string
parameter is blank, the match succeeds with any text.

The attribute parameter indicates how the string must appe~r on
the screen for a match. This parameter can have the normal, bold, or
inverse symbolic values or an integer value that denotes specific fore
ground and background colors. If the attribute parameter is left blank
or if it has the value 0, all display attributes are matched.

The match and nomatch parameters are the labels of the statements
executed if the match is made or not made, respectively. If the match or
nomatch parameters are blank, the equivalent of a NOTHING command
is executed. .

Sample Program
The mouse menu source program on page 43 shows how MATCH

statements are used. It also changes the active drive when you press
the right mouse button. The program goes through the following
procedure:

• When you press the right mouse button, the chdriv EXECUTE

statement calls the checka MATCH statement and then clears
the screen.

• The checka MATCH statement checks row 2, column 1 on the
screen. If it finds a: in normal display, it executes the tob state
ment. If a: is not found, it executes the checkb statement, which
performs a similar check for the b: characters. The program
calls up to three MATCH statements, looking for the first match
with a:, b:, or c:.

• The tob statement clears the screen, changes the active drive to
B, and ends the mouse menu program. Similarly, toc and toa
change the active drive to C or A.

• If the three MATCH statements fail to find a:, b:, or c: at row 2,
column 1, the program clears the screen and terminates
without changing the active drive. With the screen cleared, the·
MS-DOS prompt should put the active drive letter in row 2, col
umn 1, ready for the next press of the right mouse button.

• Pressing the left button creates a directory listing, and pressing
both buttons simulates typing Ctrl-C.

Chapter 3: Creating Your Own Mouse Menu

BEGIN dir.chdriv.ctrlc :Labels for left. right. or both
:buttons

chdriv: EXECUTE checka.cls ;Calls "checka." then clears screen

checka: MATCH 2.1.normal ."a:".tob.checkb
checkb: MATCH 2.1.normal ."b:".toc.checkc
checkc: MATCH 2.1.normal ."c:".toa

;If a: found. change to drive B
;If b: found. change to drive C
:If c: found. change to drive A

toa: EXECUTE cls,a,ent ;Clears screen. changes to drive A
tob: EXECUTE cls.b.ent ;Clears screen. changes to drive B
toe: EXECUTE cls.c,ent :Clears screen. changes to drive C

a: TYPE "a:" ;Types a:
b: TYPE "b:" :Types b:
c: TYPE "c:" ;Types c:

cls: TYPE "cls".enter :Clears the: screen
dir: TYPE "dir",enter ;Gets directory listing

ent: TYPE enter ;Types the Enter key
ctrlc: TYPE 3 ;Types Ctrl- C

CREATING A MOUSE MENU PROGRAM
The following procedure lets you create a mouse menu source file. It
then shows you how to create a mouse menu program from the source
file by using the MAKEMENU utility.

To create a mouse menu, do the following:

1. Write the mouse menu source file by using a text editor or
word processing program.

2. Save the source file with the filename extension .DEF. A file
with this extension is used by the MAKEMENU utility to gener
ate a mouse menu program (a .MNU file). When a source file
is converted to a .MNU file, the resulting file must not exceed
57KB.

3. Type makemenu and press the Enter key.

4. At the prompt, type the name of the source file (without the
.DEF extension), and then press the Enter key.

43

PART II: MOUSE MENUS

NOTE: Be sure to save the source file as a standard ASCII text file. Most
simple text editors save files in ASCII by default. In word-processing programs, such
as Microsoft Word, however, you usually need to select a special unformatted op
tion to get ASCII text. You can combine steps 3 and 4 by typing makemenu
followed by a space and the name of the source file (without the .DEF extension) on
the same line.

If your file contains no errors, MAKEMENU displays the following
message:

Conversion completed

and returns you to MS-DOS. The mouse menu is then ready for you to
test. However, if your file contains errors, MAKEMENU displays the
types of errors and the statements that contain the errors. In this case,
correct the source program and repeat steps 3 and 4. For more infor
mation on error messages, see Appendix B, "Domestic Mouse Driver
Messages. "

NOTE: The disks that come with this book include mouse menu source files
for some commonly used applications that don't have built-in mouse support (such
as WordStar). If you want to create a mouse menu from one of the source files in
cluded on the disks, you can copy the source file and edit the copy to meet your
specific needs. You can then use the preceding procedure to create mouse menus
from these source files.

Testing the Mouse Menu Program

44

When the mouse menu source file has been successfully translated into
an executable menu file, it is ready for you to test.

NOTE: If you did not specify that the mouse driver should be loaded every
time you start MS-DOS when you ran the Mouse Setup program, be sure you type
mouse to install the mouse driver before you start your menu file. The menu will
load before you type mouse; however, it will not work.

To test the mouse menu, do the following:

1. Type menu filename at the MS-DOS prompt and press the Enter
key to start your mouse menu program. In this command, file
name is the name of the .MNU·file generated by MAKEMENU
with or without the .MNU extension. When the mouse menu
file is loaded, the following message appears:

Menu installed

2. Start your application program and tryout the menu to ensure
that it works under all conditions in your program.

Chapter 3: Creating Your Own Mouse Menu

3. If your application program doesn't work the way you want it to,
quit the application program, then end the mouse menu pro
gram by typing menu off at the MS-DOS prompt and pressing
the Enter key. The following message is displayed:

Keyboard emulation off

4. Correct the source file, and then run the MAKEMENU utility
again.

Running a Mouse Menu Program
Follow the steps below to run a mouse menu program.

1. Use the MS-DOS COPY command to copy the mouse menu
(.MNU) file and the MENU.COM file onto the disk that contains
the application program with which you want to use the menu.

2. Type menu filename to run the mouse menu program for the
application. In this command, filename is the name of the
mouse menu program. When the mouse menu file is loaded,
the following message appears:

Menu installed

NOTE: To start a mouse menu program that is not in the current direc
tory, include the pathname of the directory that contains the mouse menu
file as part of filename.

3. Run the application program according to the instructions in
the program's documentation.

A mouse menu program runs independently of the correspond
ing application program. You should end the mouse menu program
you're running and begin another whenever you end one application
and begin another.

Ending a Mouse,Menu Program
To end the mouse menu program, you simply type menu off and
press the Enter key. The following message is displayed:

Keyboard emulation off

You can then load and run another mouse menu program.

45

PART II: MOUSE MENUS

Allocating Memory for Mouse Menus

46

MENU .COM can allocate up to 57 KB of memory for a mouse menu
program. (The size of MENU. COM [7 KB] plus the size of the .MNU

file cannot exceed 64 KB.) If the menu file is smaller than 6 KB,

MENU.COM allocates 6 KB of memory. If the menu file is greater than
6 KB, MENU.COM allocates the exact size of the file.

Every time you start MS-DOS, the first menu file you load deter
mines the amount of memory reserved for a menu file. If you plan to
use more than one mouse menu before restarting your system, first
load the .MNU file that requires the greatest amount of memory so that
MENU.COM will allocate enough memory to hold each menu file.

Note that a mouse menu will work only if the application it is
working with allows memory-resident programs to run with it. In addi
tion, a mouse menu will not work with an application that intercepts
the keyboard interrupt and bypasses the keyboard buffer.

If you type menu off to disable a mouse menu, note that the
memory allocated by MENU.COM will not be released for use by
other programs.

Chapter 4

Mouse Menu
Language Statements

This chapter describes in detail each statement used by the mouse
menu programming language. Each statement description includes
the statement syntax, a description of each parameter, and one or
more examples of how to use the statement.

STATEMENT SYNTAX CONVENTIONS
The following syntax conventions apply for each statement:

• The command word appears in uppercase.

• Labels appear in lowercase. A colon (:) and a space must sepa
rate each label from the command word.

• Parameters appear in lowercase italic. A comma (,) must sepa
rate each parameter from other parameters. If you don't in
clude a parameter, you must include an additional comma
where the parameter would have appeared.

• A parameter in brackets ([]) is optional. A parameter that
doesn't appear in brackets is required.

• If a parameter appears in double-quotation marks (" "), you
must include the double-quotation marks.

• If a parameter appears more than once in a statement, the sec
ond occurrence of the parameter is enclosed in brackets and
followed by an ellipsis (...). .

47

PART II: MOUSE MENUS

THE ASSIGN STATEMENT
The ASSIGN statement has the following format:

label: ASSIGN [lfbtn].[rtbtn].[btbtn].[lfmov].[rtmov].
[upmov].[dnmov].[hsen].[vsen]

Description
The ASSIGN statement redefines one or more of the mouse parameters
in the BEGIN statement or in the most recent ASSIGN statement. If you
don't specify a parameter value in an ASSIGN statement, the last
parameter value given (in either the BEGIN statement or another
ASSIGN statement) is used. Statement labels are the values you use for
all parameters except hsen and vsen.

Parameters

48

The parameters for the ASSIGN statement are as follows:

Parameter Description

lfbtn Label of the first statement to be executed when you press
the left mouse button

rtbtn Label of the first statement to be executed when you press
the right mouse button

btbtn Label of the first statement to be executed when you press
both mouse buttons at once

lfmov Label of the first statement to be executed when you move
the mouse to the left

rtmov Label of the first statement to be executed when you move
the mouse to the right

upmov Label of the first statement to be executed when you move
the mouse forward

dnmov Label of the first statement to be executed when you move
the mouse backward

hsen Value of the horizontal-movement-sensitivity parameter

vsen Value of the vertical-movement-sensitivity parameter

Example

Chapter 4: Mouse Menu Language Statements

In the following example, the BEGIN statement assigns initial values to
all button and movement parameters. Because values are not specified
for the sensitivity parameters (vsen and hsen) , the default values of 4

and 8 are used.
The ASSIGN statement changes the values of the left button, right

button, and up-and-down':'movement parameters. It also changes the
value of hsen to 16 and the value of vsen to 18. Commas indicate which
values aren't being changed.

BEGIN esc.ent.mml.lf.rt.up.dn

reassign: ASSIGN y.not •••. not.not.16.18

49

PART II: MOUSE MENUS

THE BEGIN STATEMENT
The BEGIN statement has the following format:

BEGIN [7fbtn],[rtbtn],[btbtn],[7fmov],[rtmov],
[upmov],[dnmov],[hsen],[vsen]

Description
The BEGIN statement defines the actions taken when the mouse is used.

The parameters for BEGIN define the statements executed when
you move the mouse or press the mouse buttons. They also define the
movement sensitivity for the mouse. All parameters for the BEGIN

statement are optional. If you don't provide a value for a button or
mouse-movement parameter (all parameters except hsen and vsen) ,
nothing happens when you press a mouse button or move the mouse. If
you don't provide a value for hsen or vsen, the default values of 4 and 8

are used. Statement labels are the values you use for all parameters
used with the BEGIN statement except hsen and vsen.

NOTE: When a mouse menu subroutine (see MENU and POPUP) is exe
cuted, the parameters for the BEGIN statement do not affect the mouse functions
within that subroutine. You can use either mouse button to choose an item in a
menu, and all mouse-movement functions are active.

The movement-sensitivity parameters, hsen and vsen, control the
horizontal-movement and vertical-movement sensitivity of the mouse.
Movement sensitivity is the distance the mouse must move (measured
in mickeys) before the on-screen pointer moves. (For more informa
tion on the mickey, see Chapter 6, "Mouse Programming Interface.")

Parameters

50

Because the BEGIN statement is always the first statement in a menu
. source file, it doesn't require a label. The parameters for the BEGIN

statement follow.

Example

Chapter 4: Mouse Menu Language Statements

Parameter Description

lfbtn Label of the first statement executed when you press the
left mouse button.

rtbtn Label of the first statement executed when you press the
right mouse button.

btbtn Label of the first statement executed when you press both
mouse buttons.

lfmov Label of the first statement executed when you move the
mouse to the left.

rtmov Label of the first statement executed when you move the
mouse to the right.

upmov Label of the first statement executed when you move the
mouse forward.

dnmov Label of the first statement executed when you move the
mouse backward.

hsen Number between 0 and 32,767 that defines how many
mickeys the mouse must move horizontally before the on
screen pointer moves. If you specify 0, the mouse is disabled
horizontally. If you do not specify a value, the default value
of 4 mickeys is used.

vsen Number between 0 and 32,767 that defines how many
mickeys the mouse must move vertically before the on
screen pointer moves. If you specify 0, the mouse is disabled
vertically. If you do not specify a value, the default value of
8 mickeys is used.

The BEGIN statement in this example defines initial values for all
parameters except btbtn, hsen, and vsen. Because btbtn isn't specified,
nothing happens when you press both mouse buttons. Because values
are not given for hsen and vsen, the default values of 4 and 8 mickeys
are used.

BEGIN ent.es •• lf.rt.up.dn
.1 f: TYPE 0,75 ;S1mulates preSSing the left-arrow key
rt: TYPE 0.77 :Simulates pressing the right-arrow key
up: TYPE 0.72 :Simulates preSsing the up-arrow key
dn: TYPE 0,80 ;Simulates preSSing the down-arrow key
es: TYPE esc :Simulates pressing the Esc key
ent: TYPE enter :Simulates pressing the Enter key

51

PART II: MOUSE MENUS

THE EXECUTE STATEMENT
The Execute statement has the following format:

label: EXECUTE label [, label ..•]

Description
The EXECUTE statement carries out other statements when you

• Select a menu and pop-up item

• Move the mouse

• Press one or both mouse buttons

• Execute a MATCH statement

Each EXECUTE statement can specify up to 15 other statements to
execute. An EXECUTE statement can call other EXECUTE statements;
you can link up to 15 EXECUTE statements in this manner. Statements
within an EXECUTE statement are executed sequentially, starting with
the first statement. .

Parameters

Examples

52

The parameters for the EXECUTE statement are as follows:

Parameter Description

label Name of the EXECUTE statement. All EXECUTE state
ments must be labeled.

label Name(s) of the label(s) to execute. Each EXECUTE state
ment begins with a label. However, you should not use that
label as a parameter within that EXECUTE statement or in
a nested EXECUTE statement-if you do, you will create
an endless loop.

In this example, the EXECUTE statement labeled exec4 executes the
statements labeled dir, s, a, and ent, which simulate typing dira: and
then pressing Enter.

Chapter 4: Mouse Menu Language Statements

dir: TYPE "dir"
s: TYPE 32

a: TYPE "a:"
ent: TYPE enter
exec4: EXECUTE dir.s.a.ent

:Types the DIR command
:Simulates pressing the Spacebar
:TYPE " " can also be used
:Types a:
:Simulates pressing the Enter key

In the following example, two EXECUTE statements are nested,
and the first EXECUTE statement calls the second. The comments de
scribe the flow of the program when the exec1 statement is activated.

execl: EXECUTE a.ent

a: EXECUTE al.a2

al: TYPE "an

a2: TYPE "AA"

ent: TYPE enter

:Executes statements labeled a and ent
:and then returns to wherever execl was called

:Executes al and a2 and then returns to the second
:part of the EXECUTE statement labeled execl

:Simulates typing a lowercase a and then returns
:to the middle of the a: statement

:Simulates typing uppercase AA and then returns
:to the end of the a: statement

:Simulates pressing the Enter key and then returns to
:the end of the statement labeled execl

The following examples cause infinite loops, which you should
avoid. EXECUTE statements must not call themselves.

badl: EXECUTE badl :Infinite loop

Also, a nested EXECUTE statement must not call any EXECUTE

statement that leads to its own activation.

bad2: EXECUTE bad3
bad3: EXECUTE bad2

:Executes statement labeled bad3
:InfinHe loop

53

PART II: MOUSE MENUS

THE MATCH STATEMENT
The MATCH statement has the following format:

label: MATCH [rowJ,[columnJ,[attrfbuteJ,"strfng",match,nomatch

Description
The MATCH statement executes other statements or subroutines, de
pending on whether it finds a specified string at a given screen loca
tion. You must provide values for the row and column parameters in
absolute screen coordinates. The starting coordinates for the screen
are at row 1, column 1.

Parameters

54

The parameters for the MATCH statement are as follows:

Parameter Description

label Name of the MATCH statement. All MATCH statements
must be labeled.

row

column

attribute

string

Number that specifies the row of the first character of the
match string. If you do not specify a value, row 1 is
assigned.

Number that specifies the column of the first character of
the match string. If you do not specify a value, column 1 is
assigned.

Value that specifies how the match string must appear on
the screen for a match to occur. This can be the normal,
bold, or inverse symbolic values, or it can be a decimal
value that denotes specific foreground and background
colors. (This value is the sum of the foreground and back
ground colors you want to use.) If you leave the attribute
parameter blank or give it the value of 0, the MATCH state
ment matches any attribute. For more information on the
attribute parameter, see Chapter 3, "Creating Your Own
Mouse Menu."

String you want to match. The string can contain up to
255 ASCII characters. You must specify the string parame
ter, and you must enclose it in double-quotation marks
(" ").

(continued)

Example

Chapter 4: Mouse Menu Language Statements

continued

Parameter Description

match Label of a statement or subroutine executed if the string is
matched. This label must exist in the program. If you do
not specify a label, nothing happens when the match is
made.

nomatch Label of a statement or subroutine executed if the string is
not matched. This label must exist in the program. If you
do not specify a label, nothing happens when the match is
not made.

The following example from the WS.DEF menu source file, included
on the disks in this book, checks whether WordS tar is displaying the
Beginning menu or the Main menu.

When you press the left mouse button, the following occurs:

• The MATCH statement labeled leftb looks for an e at row 1, col
umn 12. This is the first character in the string editing no file,
which appears on the screen in that position if WordS tar ver
sion 3.2 is displaying the Beginning menu. If leftb finds the
e in that position, it executes the statement labeled irnen. (In
WS.DEF, the irnen statement displays the No-File pop-up menu
for WordStar.) If leftb doesn't find the e in that position, it exe
cutes the statement labeled chk33.

• The chk33 statement looks for the letter n at row 1, column 12.

This is the first character in the string not editing, which is on
the screen in that position if WordS tar version 3.3 is displaying
the Beginning menu. If the chk33 statement finds the n in that
position, it executes the statement labeled irnen. (In WS.DEF, the
irnen statement displays the No-File pop-up menu for Word
Star.) If chk33 doesn't find the n in that position, it executes
the chkl statement.

• The chkl statement looks for a colon (:) after the disk drive
identifier in the first line of the WordS tar Main menu display.
If chkl finds a colon, it executes the statement labeled ernen.
(In WS.DEF, the ernen statement displays the Edit/Block pop
up menu.) If chkl doesn't find a colon, the menu program
does nothing.

55

PART II: MOUSE MENUS

56

BEGIN leftb.rightb.bothb~mousel~mouser.mouseu.moused.16.40

leftb: MATCH 1,12.normal."e".imen.chk33
chk33: MATCH 1.12. ,"n".itnen,chkl
chkl: MATCH 1.11 •• ":".emen.not
imen: POPUP 2.1

PEND
emen: POPUP 2.1

PEND
not: NOTHING

Chapter 4: Mouse Menu Language Statements

THE MENU ... MEND STATEMENTS
MENU statements have the following format:

label: MENU ["t1tle"].[row].[column].[attribute]

MEND

Description
The MENU statement is the first statement in a menu subroutine that
creates a bordered, single-column pop-up menu. The specific dimen
sions of a menu are determined by the number of items in a menu. The
dimensions are also determined by the largest number of characters in
the longest menu item or in the menu title.

When the menu is displayed, the first menu item is highlighted.
You can choose any menu item by moving the mouse until that item is
highlighted and then pressing either mouse button. If you press both
mouse buttons, the equivalent of a NOTHING statement is executed and
the menu disappears. Any movement or button actions defined in a
BEGIN or ASSIGN statement are ignored within the MENU subroutine.

Each menu subroutine must have a MEND (menu end) statement,
which indicates the end of a menu subroutine. The MEND statement
has no parameters.

NOTE: The MENU statement automatically generates a border around the
entire menu and draws a line between the menu title and the menu items.

Parameters
The MENU statement has the following parameters:

Parameter Description

label Name of the menu subroutine. All menu subroutines must
be labeled.

title Text of the menu title, enclosed in double-quotation marks
(" "). The menu title is limited to one line. If you don't
specify a title, MENU generates a blank line.

(continued)

57

PART II: MOUSE MENUS

Example

58

continued

Parameter Description

row Number that specifies the row where the upper-left corner
of the menu border appears. Be sure to specify a value that
displays the entire menu. (For example, if the menu con-

. tains 20 items and you choose a row value greater than 3,
some of the screen items will not appear on a 25-row
screen.) If you don't specify a row, the upper-left corner is
assigned row 1.

column Number that specifies the column where the upper-left cor
ner of the menu appears. If you don't specify a column, the
upper-left corner is assigned column 1.

attribute Value that specifies how the menu is displayed on the
screen. This can be normal, bold, or inverse, or it can be a
decimal value that specifies particular foreground and
background colors. (For more information on the attribute
parameter, see Chapter 3, "Creating Your Own Mouse
Menu.") If you don't specify a value, MENU uses the in
verse value. The colors of the mouse pointer depend on the
display-attribute value for the menu. For detailed informa
tion on how the interaction between the mouse pointer
and menu display determines the colors of the pointer, see
Chapter 6, "Mouse Programming Interface."

In the following example, the MENU statement contains all four
parameters. The menu title is Display Directory. The upper-left corner of
the menu border is at row 5, column 5. The menu is displayed with a
normal screen attribute.

The OPTION statements specify which statements execute when
you choose items from the menu. OPTION statements are described in
greater detail later in this chapter.

NOTE: You should always include a provision for the user to make the menu
disappear without causing an action to occur. This example includes a Cancel
option that, because it doesn't have a label in the line, executes the equivalent of a
NOTHING statement.

Chapter 4: Mouse Menu Language Statements

menul: MENU "Display Directory".5.5,normal
OPTION "Cancel"
OPTION "a:".exl
OPTION "b:".ex2
OPTION "c:".ex3
MEND

exl: EXECUTE dir.s,a.ent :DIR a:
ex2: EXECUTE dir,s.b,ent ;DIR b:
ex3: EXECUTE dfr,s,c,ent :DIR c:
ent: TYPE enter :Simulates pressing the Enter key
di r: TYPE "dir" :Types the DIR command
a: TYPE "a:" :Types a:
b: TYPE "b:" ;Types b:
c: TYPE Itc :" :Types c:
s: TYPE 32 ;Types a space

59

PART II: MOUSE MENUS

THE NOTHING STATEMENT
The NOTHING statement has the following format:

label: NOTHING

Description
The NOTHING statement specifies that no action occur when you press
a mouse button, move the mouse, or choose a menu option. You can
also use .the NOTHING statement to specify that no action occur when a
MATCH statement is executed.

Parameters

Example

60

The NOTHING statement has no parameters.

This example from the WS.DEF mouse menu program, which is in
cluded on the disks in this book, determines which pop-up menu is
displayed when you press the right mouse button.

The WS.DEF program does the following:

• If the MATCH statement finds the specified character, it exe
cutes the statement labeled movemenu, which displays the
CURSOR MOVEMENT pop-up menu.

• If the MATCH statement doesn't find the specified character, it
executes the NOTHING statement, labeled nul, and the mouse
menu program does nothing.

\ rightb:· MATCH l.11,NORMAL. ":",movemenu,nul

movemenu: POPUP 2,1
TEXT "--==== CURSOR MOVEMENT ... ===="

nul: NOTHING

Chapter 4: Mouse Menu Language Statements

THE OPTION STATEMENT
The OPTION statement has the following format:

[label:] OPTION [text]. [pointer]

Description
OPTION statements define each menu item in a menu subroutine: the
text of the menu item and the action taken when you choose the item.

You usually don't label OPTION statements, although you can if
you want to. If you do label them, the MAKEMENU program ignores
the labels when it assembles the source program.

Parameters

Example

The parameters for OPTION statements are as follows:

Parameter Description

text Text for the menu item. You must enclose the text in
double-quotation marks (" "). If you don't specify text for a
menu item, OPTION displays a blank line for that item.

pointer Label of the statement that is executed when you choose
the menu item. If you don't include a pointer parameter,
the menu clears from the screen when you choose the
menu item. (The equivalent of a NOTHING statement is
executed.) For example, you'd leave out the pointer
parameter for a Cancel Menu item.

The following example shows OPTION statements that define four
menu items. If you choose the first menu item, the menu disappears
from the screen because the OPTION statement doesn't have a pointer
parameter. If you choose any other menu item, the specified statement
is executed.

61

PART II: MOUSE MENUS

menu5: MENU "Display Directory",5,5,normal
OPTION "Cancel"
OPTION "a:".exl
OPTION "b:",ex2
OPTION "c:",ex3
MEND

exl: EXECUTE dir:s,a,ent :DIR a:
ex2: EXECUTE dir.s.b.ent :OIR b:
ex3: EXECUTE dir.s.c.ent :OIR c:
ent: TYPE enter :Simulates pressing the Enter key
di r: TYPE t'd; r" :Types the DIR command
a: TYPE "a:" ;Types a:
b: TYPE "b: " ;Types b:
c: TYPE "c":" :Types c:
s: TYPE 32 ;Types a space

62

Chapter 4: Mouse Menu Language Statements

THE POPUP ... PEND STATEMENTS
POPUP statements have the following format:

7abe7: pOPUP [row],[co7umn],[attr1bute]

PEND

Description
The POPUP statement is the first statement in a pop-up subroutine that
creates a multiple-column menu or a message box.

Each pop-up subroutine must have a PEND (pop-up end) state
ment, which indicates the end of a pop-up subroutine.

Parameters
The parameters for the POPUP statement are as follows:

Parameter Description

label Name of the pop-up subroutine. All POPUP statements
must be labeled. Do not label the PEND statement.

row Number that specifies the row where the upper-left corner
of the first row of the menu or message box appears. Be
sure to specify a value that displays the entire menu or mes
sage box. (For example, if the menu or message box con
tains 20 lines and you choose a row value greater than 5,
some of the screen items will not appear on the 25-row
screen.) If you don't specify a row, the upper-left corner is
assigned row 1. (Note: Subsequent menu items in a pop-up
menu are created with the TEXT statement.)

column Number that specifies the column where the upper-left cor
ner of the menu or message box appears. If you don't speci
fya column, the upper-left corner is assigned column 1.

(continued)

63

PART II: MOUSE MENUS

Examples

64

continued

Parameter Description

attribute Value that specifies how the menu is displayed on the
screen. This can be normal, bold, or inverse, or it can be a
decimal value that specifies particular foreground and
background colors. (For more information on the attribute
parameter, see Chapter 3, "Creating Your Own Mouse
Menu.") If you don't specify a value, POPUP uses the
inverse value. The colors of the mouse pointer depend on
the display-attribute value for the menu. For detailed infor
mation on how the interaction between the mouse pointer
and menu display determines the colors of the pointer, see
Chapter 6, "Mouse Programming Interface."

NOTE: Unlike the MENU statement, which generates a border around the
entire menu and draws a line between the menu title and the menu items, a POPUP
statement doesn't draw any lines. You must, therefore, include line-drawing charac
ters within the TEXT statements that are part of the pop-up subroutine. The easiest
characters to use are the equal sign (=) or the minus sign (-) for horizontal lines,
the vertical line character (:) for vertical lines, and the plus sign (+) for the cor
ners. You can also use the upper-ASCII line-drawing characters, which are listed in
Appendix G, ''ASCII Character Set. "

In addition, the POPUP statement provides a greater degree of control when
you define menu choices than does the MENU statement. Your pop-up subroutine
must include SELECT statements to select and act upon the menu choices presented
with TEXT statements.

The following example is a simple pop-up menu. When you press the
left mouse button, the pop-up menu lets you select one of two MS-DOS
commands. The POPUP statement defines the upper-left corner of the
menu as row 5, column 20. The menu border is created using plus signs
(+), pipes (:), and equal signs (=). The second line of the menu dis
plays the title. In addition, three menu selections are presented in the
fourth and fifth lines, as defined by the SELECT statements. SELECT

statements are discussed in further detail later in this chapter.

Chapter 4: Mouse Menu Language Statements

BEGIN leftb

leftb: POPUP 5.20.inverse
TEXT "+-----------------+"
TEXT ": POPUP - DOS hel per I"

TEXT "+---------------------+"
TEXT ": CLS DIR :"
TEXT ": Exi t POPUP menu :"
TEXT "+-------... -----...... ---+.,
SELECT 5.4.17
SELECT 4.6.5.cls
SELECT 4.14.5.dir
PEND

cls: TYPE "cls".enter
d1 r: TYPE "di r". enter

The following example from the WS.DEF mouse menu program,
included on the disks in this book, is a pop-up subroutine for ames-·
sage box.

ASCII graphics characters create solid double borders for the
menu. Also, the single SELECT statement clears the message box from
the screen because it does not include a pointer parameter. Therefore,
pressing either mouse button clears the message box from the screen.

mousehlp: POPUP 2.1
TEXT " ---------- MOUSE HELP -= ... ============= "

TEXT ": :"
TEXT ": Left button - Displays Edit/Block menu I"
TEXT ": Right button - Displays Cursor Movement menu :"
TEXT ": Both buttons - Displays Edit/File menu I"
TEXT ": :n
TEXT ": Moving the mouse up, down. left. or right :"
TEXT ": causes the cursor to move in that direction. :"
TEXT ": :n
TEXT " -----------------------------...... ---...... "
SELECT 1.18.10
PEND

65

PART II: MOUSE MENUS

THE SELECT STATEMENT
The SELECT statement has the following format:

SELECT row, column, length[,pointer]

Description
The SELECT statement in pop-up subroutines defines selection areas
for items on the menu. It also specifies which statement executes if the
cursor is in the defined area. The defined area doesn't have to contain
any text.

NOTE: The highlight in a menu or message box moves from one defined
selection area to another when you move the mouse. It s a good idea to define each
part of a menu with a SELECT statement so that the movement of the highlight and
the movement of the mouse are visually coordinated; however, be sure you don't
define the same screen position with more than one SELECT statement.

Parameters

66

The parameters for the SELECT statement are as follows:

Parameter Description

row Number that defines the horizontal starting point (row)
of the item-selection area relative to the row and column
coordinates you specified in the POPUP statement.

column Number that defines the vertical starting point (column)
of the item-selection area relative to the row and column
coordinates you specified in the POPUP statement.

length Number of characters in the item-selection area. If you
don't specify a number, the SELECT statement assumes
one character.

pointer Label of the statement executed when you choose the
menu item. If you don't include a pointer parameter, the
menu disappears from the screen. (You can press either
button to select the item; however, if you press both but
tons, the item is not selected and the menu merely dis
appears from the screen.)

Example

Chapter 4: Mouse Menu Language Statements

The SELECT statements in the following example let you select CLS to
clear the screen, DIR to get a directory listing, or Exit pop-up menu to
clear the menu from the screen.

Notice that the first SELECT statement in a pop-up subroutine
defines which selection will be highlighted when the menu appears.

BEGIN leftb

leftb: POPUP 5,20,1nverse
TEXT "+--------------+"
TEXT HI POPUP - DOS helper I"
TEXT "+---------------------+"
TEXT OIl CLS OIR :"
TEXT"I Exit pop-up menu I"
TEXT "+----------+"
SELECT 5,4.17
SELECT 4.6,5.cls
SELECT 4.14.5.dir
PEND

cls: TYPE "cls",enter
dir: TYPE "dir".enter

67

PART II: MOUSE MENUS

THE TEXT STATEMENT
The TEXT statement has the following format:

TEXT "string"

Description
The TEXT statement in pop-up subroutines defines the menu title, the
text for menu items, and the characters used to draw lines and borders.
It is similar to the title and text parameters in the MENU and OPTION

statements, but it lets you place text anywhere on the screen (as long
as the text is below and to t~e right of the upper-left corner of the
pop-up menu).

Parameter

Example

68

The parameter for the TEXT statement is as follows:

Parameter Description

string The pop-up menu title or the text of a menu item. Text
can include ASCII graphics characters for lines and bor
ders, and you must enclose all text in double-quotation
marks (" "). The location of text on the screen is relative
to the upper-left corner set by the POPUP statement.
Also, text display attributes are determined by the
attribute parameter in the POPUP statement.

The TEXT statements in the following example define the appearance
of the pop-up menu. The statements completely define the borders,
title, and all menu selections.

Chapter 4: Mouse Menu Language Statements

BEGIN leftb

leftb: POPUP S,20,inverse
TEXT "+-------------=====+"
TEXT ": POPUP - DOS hel per :"
TEXT "+---------------------+"
TEXT ": CLS DIR :"
TEXT ": Exit pop-up menu :"
TEXT "+---===--------------+"
SELECT S,4,17
SELECT 4,6,S,cls
SELECT 4.14.5.dir
PEND

cl 5: TYPE "cl s" .enter
dir: TYPE "dir",enter

69

PART II: MOUSE MENUS

THE TYPE STATEMENT
The TYPE statement has the following format:

label: TYPE key [,key ... J

Description
A TYPE statement simulates typing one or more keys.

NOTE: All keys you specify in the TYPE statement are inserted into a key
board buffer when the menu program is running. They are not output as keystrokes
until the menu program becomes inactive.

Parameters

70

The parameters for the TYPE statement are as follows:

Parameter Description

label Name of the TYPE statement. Every TYPE statement
must be labeled.

key Name of the key.

The name of the key can be:

• One or more letters or numbers enclosed in double-quotation
marks (such as "X" or "dir").

• A standard ASCII code (characters 0 through 127) or an ex~
tended ASCII code (characters 128 through 255) . The ASCII con
trol characters (0 through 31) that you can use with the TYPE
statement are listed in Appendix G, "ASCII Character Set."

• An extended-keyboard-scan code. (These are listed in Appen
dix G, "ASCII Character Set.")

• Any of the following predefined symbolic keys: enter, tab,
backsp, esc.

NOTE: If you want to simulate typing a double-quotation mark ("), use
ASCII code 34.

Examples

Chapter 4: Mouse Menu Language Statements

The following TYPE statements use character strings to define the keys:

dir: TYPE "dir" :Types the OIR command
a: TYPE ."a:" :Types a:

The following TYPE statement uses an ASCII code to simulate
typing a space:

s: TYPE 32 :Types a space

The following TYPE statements use extended-keyboard-scan codes
to simulate the arrow keys:

If: . TYPE 0,75
rt: TYPE 0.77
up: TYPE 0.72
dn: TYPE 0,80

;Simulates pressing the left-arrow key
:Simulates pressing the right-arrow key
;Simulates pressing the up-arrow key
;Simulates pressing the down-arrow key

Key Sequences That Can't Be Simulated
Some key sequences can't be simulated by using the TYPE statement be
cause they are suppressed in the ROM (Read-Only Memory) BIOS (Basic
Input/Output System) keyboard routine. These include the following
key combinations:

• Alt-Backspace

• Alt-Esc

• Alt plus one of the direction keys

• Alt plus one of the following characters: [] ; , - , . / *
• Alt plus one of the following keys: Enter, Ctrl, Shift, Caps Lock,

Num Lock, Scroll Lock

• Ctrl-Alt-Del

• Ctrl-Break

• Ctrl-Ins

• Ctrl plus one of the direction keys

• Ctrl plus one <?f the following characters: 1 3 4 5 7 8 9 0 = ;

'-, ./

71

PART II: MOUSE MENUS

72

• Ctrl plus one of the following keys: Tab, Shift, Caps Lock,
NumLock

• Shift-PrtSc

ChapterS

Sample Mouse
Menu Programs

- This chapter discusses the source program listings for two simple
mouse menu programs that simplify some tasks commonly performed
on an IBM personal computer or compatible.

Use your word processor or text editor to create the source file for
either mouse menu, run the MAKEMENU utility to generate a mouse
menu file, and then start using the mouse menu immediately. You can
also use these listings as a basis for designing similar mouse menus that
include features specific to your needs.

THE SIMPLE MOUSE MENU PROGRAM
The SIMPLE mouse menu program lets you use the mouse instead of
commonly used keys. It is most helpful when used with applications
that require frequent use of the direction keys. For example, in many
spreadsheet applications you must press the direction keys to move the
cursor. If the SIMPLE mouse menu is installed, you can move the cursor
by simply moving the mouse. In addition, pressing the left mouse but
ton is equivalent to pressing the Enter key, pressing the right mouse
button simulates pressing the Esc key, and pressing both buttons
at once is the same as pressing the Ins key. If your application doesn't
use one of these keys and you press the corresponding mouse button(s)
by accident, the application responds as if you had typed a key on the
keyboard. You can then correct the mistake as you would correct any
typing error.

73

PART II: MOUSE MENUS

The source program for the SIMPLE mouse menu is as follows:

A menu that simulates direction, Enter, Esc.
and Ins keys

BEGIN ent,es.ins.lf,rt.up.dn,32.16

ent: TYPE enter Enter key
es: TYPE esc Esc key
ins: TYPE 0,82 Ins key

If: TYPE 0,75 left·arrow key
rt: TYPE 0.77 Righ't-arrow key
up: TYPE 0,72 Up-arrrow key
dn: TYPED,80l Down·arrow key

THE DOSOVRLY MOUSE MENU PROGRAM

74

The DOSOVRLY (DOS overlay) mouse menu lets you choose several MS

DOS commands at the MS-DOS command level by pointing to a menu
option and pressing the mouse. In other words, this mouse menu
"overlays" MS-DOS.

In addition to a main menu, the DOSOVRLY mouse menu program
has two submenus, Directory and Change Directory, which list addi
tional MS-DOS commands. The source listing for DOSOVRLY is a go?d
example of how to create a hierarchy of menus and submenus in one of
your own mouse menu programs.

The DOSOVRLY mouse menu program provides several features
that are useful at the MS-DOS command level:

• Moving the mouse left and right simulates pressing the left
arrow and right-arrow keys. This lets you edit your MS-DOS

commands by simply moving the mouse.

• Pressing the right mouse button simulates pressing Enter.

• Pressing both mouse buttons at once simulates typing CLS, the
MS-DOS command for clearing the screen.

• Pressing the left mouse button displays the DOSOVRLY main
menu. Options on this menu let you clear the screen, execute
the MS-DOS DATE or TIME command, or choose the Directory
or Change Directory submenu. To select a menu option, move

Chapter 5: Sample Mouse Menu Programs

the highlight to the option and then press either mouse but
ton. From within a submenu, you can choose an option to move
to the other submenu or to return to the main menu.

NOTE: In thenOSOVRLY source program, the1b, rb, bb, 1m, andrm
parameters specified in the BEGIN statement are labels for EXECUTE statements.
These EXECUTE statements branch to the appropriate MENU or TYPE statements.

!fyou want to simplify the following program, branch directly
from the BEGIN statement to the mnul menu subroutine and to the
TYPE statements by using the following statement:

BEGIN mnu!,ent,cls,left,right

The source program for the DOSOVRLY mouse menu is as follows:

BEGIN lb,rb,bb,lm.rm
lb; EXECUTE mnul
rb: EXECUTE ent
bb: EXECUTE cls
1 m: EXECUTE 1 eft
rm: EXECUTE right

Select Main Menu if left button
Type Enter if right button
Type CLS command if both buttons
Press left·arrow key if left motion
Press right·arrow key if right motion

mnul: MENU "Main Menu".2.55,NORMAL
OPTION "cancel ",none
OPTION "clear the screen ",cls
OPTION "date ",date
OPTION "time ",time
OPTION "Directory ".mnu3
OPTION "Change Directory ";mnu2
MEND

mnu2: MENU "Change Directory".2,55.NORMAL
OPTION "cancel ".none
OPTION "cd .. ",cd!
OPTION "cd ",cd2
OPTION "Directory ",mnu3
OPTION "Main menu ",mnul,
MEND

mnu3: MENU "Directory",2,55,NORMAL
OPTION "cancel ".none
OPTION "dir ",dir
OPTION "dir *.exe ",dire

(continued)

75

PART II: MOUSE MENUS

continued

OPTION "dir *.bat ",dirb
OPTION "dir *.bak ",dirx
OPTION "dir *.sys ",dirs
OPTION "dir *.doc ",dird
OPTION "dir *. ",dirz
OPTION "Change Directory ",mnu2
OPTION "Main menu ",mnul
MEND

none: NOTHING 00 nothing

ent: TYPE enter
cls: TYPE "cls",enter
left: TYPE 0,75 Left-arrow key
right: TYPE 0,77 Right-arrow key
date: TYPE "date",enter
time: TYPE "time" ,enter
cd1: TYPE "cd .• ",enter
cd2: TYPE "cd "
di r: TYPE "dir",enter
dire: TYPE "dir *.exe",enter
dirb: TYPE "dir *.bat".enter
dirx: TYPE "dir *.bak",enter
di rs: TYPE "dir *.sys",enter
dird: TYPE "dir *.doc",enter
dirz: TYPE "dir * "

OTHER SAMPLE MOUSE MENU PROGRAMS
The disks that accompany this book contain ten sample mouse menu
programs, which you can recognize by the .DEF filename extension. Of
the ten .DEF files, five are demonstration programs and five are fully
operational mouse menu programs designed for use with early versions
of IBM Multiplan, Microsoft Multiplan, Symphony, VisiCalc, and
WordS tar. These files are located in the \MENUS directory on disk 2.

Demonstration Programs

76

The five demonstration programs on the disks are designed to show
various elements of mouse menu programming. The source files
for these programs are the COLOR.DEF, DROP.DEF, EXECUTE1.DEF,

EXECUTE2.DEF, and KBD.DEF files. Each of these files contains com
ments that explain how the demonstration program works. For an over
view of each demonstration program, read the following sections.

Chapter 5: Sample Mouse Menu Programs

The COLOR Program
When you run the COLOR program, it displays a menu of all possible
color choices for mouse menus:

UIT---------------------n
000 016 032 OiB 06i OBO 096 112 12B 11i 160 176 192 20B 22i 2iO
001 017 033 Oi9 065 OBl 097 113 129 liS 161 177 193 209 225 211
002 01B 03i 050 066 OB2 09B 11i 130 116 162 17B 19i 210 226 2i2
003 019 035 051 067 OB3 099 115 131 117 163 179 195 211 227 2i3
OOi 020 036 052 06B OBi 100 116 132 11B 16i lBO 196 212 22B 211
005 021 037 053 069 OB5 101 117 133 li9 165 lBl 197 213 229 2i5
006 022 03B 05i 070 OB6 102 11B 13i 150 166 lB2 19B 211 230 2i6
007 023 039 055 071 OB7 103 119 135 151 167 lB3 199 215 231 2i7
OOB 02i OiO 056 072 OBB 10i 120 136 152 16B lBi 200 216 232 2iB
009 025 011 057 073 OB9 105 121 137 153 169 lB5 201 217 233 2i9
010 026 Oi2 05B 07i 090 106 122 13B lSi 170 lB6 202 21B 23i 250
011 027 Oi3 059 075 091 107 123 139 155 171 lB7 203 219 235 251
012 02B 011 06!) 076 092 108 12i 110 156 172 18B 20i 220 236 252
013 029 Oi5 061 077 093 109 125 111 157 173 lB9 205 221 237 253
011 030 Oi6 062 07B 09i 110 126 112 15B 17i 190 206 222 23B 25i
015 031 Oi7 063 079 095 111 127 113 159 175 191 207 223 239 255

The numbers in the menu are the sums of the various foreground and
background color combinations listed in Table 3-2 in Chapter 3. The
COLOR program can help you choose color combinations for MENU or
POPUP statements.

The DROP Program
The DROP program demonstrates how you can create drop-down
menus. When you run the program and press the left mouse button,
the following main menu appears:

II CLR SCRN I LIST DIR I CH DRIVE I
If you choose the leftmost menu item, CLRSCRN, the DROP program
clears the screen and causes the main menu to disappear. If you choose
the middle menu item, LIST DIR, a second pop-up menu appears in
place of the main menu, giving the appearance of a drop-down menu:

II CLR SCRN LIST DIR CH DRlUE II
dir

-.bat
-.COIII

-.doc
-.exe
-.sys
CANCEL

77

PART II: MOUSE MENUS

78

The selection rectangle is restricted to the items within the newly dis
played column, letting you list a directory of the current drive in one of
several ways.

If you choose the rightmost main menu item, CH DRIVE, a third
pop-up menu appears in place of the main menu. Like the second
menu, the third menu also gives the appearance of a menu "pulled
down" from the main menu.

/I CLR SCRtt I LIST DIR CH DRIVE

A:
B:
C:

CAttCEL

The EXECUTEl Program
The EXECUTE 1 demonstration program is designed to show the
EXECUTE mouse menu command.

When you press the left mouse button, a menu with a single op
tion appears on the screen. The option leads to a second menu, and
then it clears the screen. Although the string cls <enter> is sent to the
keyboard buffer before the second menu is displayed, the screen
doesn't clear until after the second menu disappears because the con
tents of the keyboard buffer are not processed until the mouse menu
returns control to MS-DOS.

The EXECUTE2 Program
The EXECUTE2 demonstration program is designed to show how to
create a multi-level menu.

The program relies on mouse event trapping to determine
whether or not a second menu is displayed. When you press the left
mouse button, a menu is displayed in the upper-right corner of your
screen. If you press either mouse button, the program clears the screen
and the menu disappears. If you press both buttons, the menu disap
pears and the program does not clear the screen. If, however, you move
the mouse horizontally before pressing the left or right mouse button, a
second menu is displayed. The horizontal mouse movement is the event
trapped by the mouse menu program - unless it detects horizontal
mouse movement, the mouse menu program will not display the sec
ondmenu.

Note: The EXECUTE2 program is well commented; we recommend that you
read the source file before you compile and run the program.

Chapter 5: Sample Mouse Menu Programs

The KBD Program
The KBD program is designed to provide partial keyboard emulation
with the mouse. Most, but not all, the keystrokes that the mouse can
emulate are included in the program.

When you press a mouse button, the following pop-up menu is
displayed:

h t p I fl f2 f3 f4 f5
~ . ~ f6 fS fS f9 flO
e ... d rr========='1

To select a character, move the mouse pointer to that character and
double-click the left mouse button. The KBD program then sends that
character to the keyboard buffer and the menu is reactivated. To make
the menu disappear and cause the KBD program to act upon the "key
strokes" you sent to the keyboard buffer, click the Enter box at the top
of the menu.

Alternately, you can click the Ctrl box at the top of the menu,
which causes the following menu to appear:

o NUL DLE 10
1 SOH DCl 11
2 SIX DC2 12
3 EIX DC3 13
4 EOI DC1 11
5 ENQ NAK 15
6 ACK SYN 16
7 BEL EIB 17
B BS CAN lS
9 HI EN 19
A LF SUB lA
B VI ESC IB
C FF FS lC
D CR GS ID
E SORS lE
F SI US IF

Double-clicking one of the characters in the menu causes the KBD

program to send that character to the keyboard buffer. You can also
click the Quit option to return to the MS-DOS prompt, or you can click

79

PART II: MOUSE MENUS

the Kybd option to return to the first menu. Note that this second
menu has no Enter option. To select Enter, you must return to the first
menu and choose the Enter option, or click the Symb option and
choose the Enter option.

Clicking the Symb option on either the first or second menu
causes the following menu to appear:

quitll J<eyboard Control Enter

~ U e a a a a !S e e e 1 i 1 A Ii
E le II 0 o [) n u ij t:I U e I: ¥ n f a (6 It ii ii !l t l. r , ~ ~ , « ,.

a: R r n ~ II" P T II e n 6 ",pf E n
= + 2 S. f J t '" • J n z •

Double-clicking one of the characters in this menu causes the KBD

program to send that character to the keyboard buffer. You can then
choose the Enter option, which clears this menu and causes the KBD
program to act upon the keystrokes you sent to the keyboard buffer.
You can also choose the Keyboard option to activate the first menu, or
you can choose the Control option to activate the second menu.

Application Mouse Menus

80

The five mouse menu programs on the disks are designed to work with
earlier versions of five applications that didn't offer mouse support.
The following table lists the names of the source files and the applica
tion programs for which they are designed:

Source File

MPIBM.DEF
MPMS.DEF
SYM.DEF
VC.DEF
WS.DEF

Application Program

Multiplan (IBM)
Multiplan (Microsoft)
Symphony
VisiCalc
WordStar

To create a mouse menu file, use the MAKEMENU utility. To load
and start the mouse menu file, use the MENU program.

PART III

Mouse Programming
Interface
Chapter 6: Mouse Programming Interface

• The Mouse Driver Software
• Video Adapters and Displays
• The Virtual Screen
• Graphics and Text Cursors
• The Internal Cursor Flag
• Reading the Mouse

Chapter 7: Mouse Programming Considerations

• Setting Up Your System
• Advanced Topics
• Mouse Functions

Chapter 8: Mouse Function Calls

• Introduction to Mouse Functions
• Function Descriptions

Chapter 9: Sample Mouse Programming Interface Programs

• Interpreted BASIC Programs
• QuickBASIC Programs
• C and QuickC Programs
• MASM Programs
• FORTRAN Programs
• Pascal Programs

Chapter 10: Writing Mouse Programs for IBM EGA Modes

• The EGA Register Interface Library
• Restrictions on Using the EGA Register Interface Library
• EGA Register Interface Functions

Chapter 6

Mouse
Programming
Interface

This chapter describes the interface between the mouse software and
IBM PC or IBM-compatible computers. It discusses how your program
uses mouse function calls to select the type of cursor displayed, how
the cursor interacts with information on the screen, and how your
actions with the mouse influence the cursor.

THE MOUSE DRIVER SOFTWARE
The following sections describe the interface issues you must consider
when programming for the mouse: how your particular display adapter
affects the type of mouse cursor displayed, how your program must ma
nipulate the cursor, and how your program can acquire information
about mouse activities. It discusses information you will need in order
to provide the appropriate mouse support in your program-such as
information on the difference between text mode and graphics mode
and between graphics cursors and text cursors.

The sections also cover the concept of a virtual screen - an im
portant concept for ensuring that the mouse driver interacts properly
with the video display.

83

PART III: MOUSE PROGRAMMING INTERFACE

VIDEO ADAPTERS AND DISPLAYS
Many types of video adapters and video displays are available for the
IBM family of personal computers. Their unique display capabilities
and characteristics affect how the mouse cursor appears and moves on
the screen.

Screen Modes

84

The screen mode defines the number of pixels and the types of objects
that appear on the screen. A pixel is a point of light or a block of light
made up of individual points. The screen modes available to you de
pend on the video adapter installed in your computer. Some adapters
display both points of light and blocks of light; others display only
blocks of light.

The screen modes and the video adapters that support them are
listed in Figure 6-1.

Screen Virtual Bits
Mode Text/ Screen Cell per
(Hex) Display Adapter Graphics (x,y) Size Pixel

0 eGA, EGA, MeGA,
VGA,3270 Text 640 x 200 I6x8

1 eGA, EGA, MeGA,
VGA,3270 Text 640 x 200 I6x8

2 eGA, EGA, MeGA,
VGA,3270 Text 640 x 200 8x8

3 eGA, EGA, MeGA,
VGA,3270 Text 640 x 200 8x8

4 eGA, EGA, MeGA,
VGA,3270 Graphics 640 x 200 2xI 2

5 eGA, EGA, MeGA,
VGA,3270 Graphics 640 x 200 2xI 2

6 eGA, EGA, MeGA,
VGA,3270 Graphics 640 x 200 IxI 1

7 MDA, EGA, VGA, 3270 Text 640 x 200 8x8
D EGA,VGA Graphics 640 x 200 2xI 2
E EGA,VGA Graphics 640 x 200 IxI 1
F EGA,VGA Graphics 640 x 350 IxI 1

Figure 6-1. Screen-mode characteristics of the IBM PC family of video-display adapters.

(continued)

Chapter 6: Mouse Programming Interface

Figure 6-1. continued

Screen
Mode
(Hex) Display Adapter

10 EGA,VGA
11 MCGA,VGA
12 VGA
13 MCGA,VGA

MDA = Monochrome Display Adapter
CGA = Color/Graphics Adapter
EGA = Enhanced Graphics Adapter
MCGA = Multi-Color Graphics Array
VGA = Video Graphics Array

Text/
Graphics

Graphics
Graphics
Graphics
Graphics

3270 = IBM 3270 All-Paints-Addressable Graphics Adapter

Virtual Bits
Screen Cell per
(x,y) Size Pixel

640 x 350 1 x 1 1
640 x 480 1 x 1 1
640 x 480 1 x 1 1
640 x 200 2xl 2

NOTE: For Hercules Monochrome Graphics Cards, the current convention is
to use screen mode 5 for page 1 and screen mode 6 for page O. See Appendix F for
more information.

Text Mode vs Graphics Mode
Some adapters display only text mode, and others display both text
mode and graphics mode. Each mode has its own characteristics; how
ever, the modes share similar programming considerations for the
mouse.

In graphics mode, you can access individual points of light. Some
graphics modes display these points in only one color; others give you a
choice of colors.

In text mode, you can access only character-cell-sized blocks of
light made up of individual points. Common text modes on IBM PCs in
clude 80 columns by 25 rows or 40 columns by 25 rows. Text mode uses
less memory and is generally faster than graphics mode. The disadvan
tages are that color combinations apply to entire character cells, ~ot to
individual points within each character cell, and that any graphics
must consist of ASCII characters.

Testing for Screen Modes
Suppose you want to write programs that can run on a variety of ma
chines. Because you don't know what types of video adapters are in
stalled in the other machines, and because your program might use
graphics or color, your program must test each video adapter to see if
the desired screen modes are available. In addition, your program
should be able to compensate if only text mode is available.

85

PART III: MOUSE PROGRAMMING INTERFACE

86

In C programming the _ setvideomode function returns a value that
lets you check availability of specified video modes. The following pro
gram demonstrates this by attempting to set a medium-resolution
graphics mode with as many colors as possible:

/*
* SETVIO.C
* Short QuickC program that sets a graphics video
* mode based on the available graphics adapter.

*
* Program list: setvid

*/

#include <stdio.h>
#include <graph.h>

maine)
(

if (_setvideomode(_MRES256COLOR»
printf("VGA medium resolution. 256 colors\n"):

else if (_setvideomode(_MRES16COLOR»
printf("EGA medium resolution~ 16 colors\n"):

el sei f (_setvi deomodeCMRES4COLOR»
printf("CGA medium resolution. 4 colors\n");

else
printf("No medium-resolution graphics modeavailable\n"):

In QuickBASIC, you can use the ON ERROR statement to test for
valid video modes and available video adapters. The SETVID.BAS
program demonstrates one way to do this:

t SETVIO.BAS
I Short OuickBASIC prog~am that sets a ~raphics video
• mode based on theava11able graphics adapter.

ON ERROR GOTOErrorTrap

• TryVGA medium resolution. 256 colors
videoMode .. 13
SCREEN v1deoMod~

(continued)

Chapter 6: Mouse Programming Interface

continued

• Try EGA medium resolution, 16 colors
IF videoMode a 0 THEN

videoMode - 7
SCREEN videoMode

END IF

• Try CGA medium resolution, 4 colors
IF videoMode- 0 THEN

videoMode - 1
SCREEN videoMode

END IF

• Clear the error trapping
ON ERROR GOTO 0

• Did we find a valid video mode?
IF videoMode THEN

PRINT "Video mode number"; videoMode
ELSE

PRINT "No medium-resolution graphics mode available"
END IF

• All done
END

ErrorTrap:
videoMode - 0
RESUME NEXT

Following is a similar program in interpreted BASIC. Notice that
BASICA may not support all available modes.

100 • Short BASICA program that sets a graphics video
110 • mode based on the available graphics adapter.
120 •
130 ON ERROR GOTO 270
140 VIDEOMODE - 13
150 SCREEN VIDEOMODE
160 IF VIDEOMODE THEN GO TO 230
170 VIOEOMODE - 7
180 SCREEN VIDEOMODE
190 IF VIDEOMODE THEN GOTO 230
200 VIDEOMODE - 1

(continued)

87

PART III: MOUSE PROGRAMMING INTERFACE

continued

210 SCREEN VIDEOMODE
220 '
230 IFVIDEOMODE THEN PRINT "Video mode number";VIDEOMODE
240 IF VIDEOMODE - 0 THEN PRINT "No medium-resolution mod~ available"
250 END
260 '
270 VIDEOMODE - 0
280 RESUME NEXT

THE VIRTUAL SCREEN

88

To understand how the mouse interacts with the normal display of
your program, you must understand the concept of a virtual screen.

A virtual screen simplifies programming for the screen resolu
tions that are available with the various video adapters. A virtual screen
can be thought of as a grid that overlays the physical screen. As a pro
grammer, you need to work only with the grid coordinates on the vir
tual screen. The mouse software translates the virtual-screen coordi
nates into the physical-screen coordinates for the current screen mode.

The mouse software operates on the computer screen as if it were
a virtual screen composed of a matrix of horizontal and vertical points.
In Figure 6-1 on pages 84 and 85, the Virtual Screen column shows the
number of horizontal and vertical points in the matrix for each screen
mode.

NOTE: The minimum size of a virtual screen is 640 pixels by 200 pixels.
Notice that most of the text and graphics modes have virtual

screen dimensions of 640 by 200 pixels. This often simplifies the task of
programming the mouse in several graphics modes.

You can set or change the screen mode by issuing an Interrupt lOH

instruction, which invokes a built-in routine in the computer's ROM

BIOS. When issuing an Interrupt lOH, you must specify a function num
ber and (optionally) a subfunction number that specify the work you
want Interrupt lOH to perform.

Whenever your program calls Interrupt lOH to change the screen
mode, the mouse software intercepts the call and determines which
virtual screen to use. The mouse software also reads the screen mode
and chooses the appropriate virtual screen whenever your program
calls Mouse Function 0 (Mouse Reset and Status) to reset default
parameter values in the mouse software.

Chapter 6: Mouse Pr.ogramming Interface

In the following C program, the mouse driver intercepts Inter
rupt lOH during the second call to the _setvideomode function and then
hides the mouse cursor. Mter you press a key, the mouse cursor
reappears.

#include <stdio.h>
#include <graph.h>
#include <dos.h>

void mouse(int * int * int *. int *);

maine)
{

int m1.m2.m3.m4;

if (_setvideomode(_MRES256COLOR»
{

printf("320 x 200\n");
ml - 0;
mouse(&m1.&m2.&m3.&m4);
m1 = I;
mouse(&m1.&m2.&m3.&m4);
}

getch();
if (_setvideomode(_VRESI6COLOR»

{

printf("640 x 480\n");
getch();
ml - 1;
mouse(&m1.&m2.&m3,&m4);
}

getch();

void mouse(m1, m2. m3. m4)
int *m1. *m2. *m3, *m4;
{

union REGS reg;

reg.x.ax ... *m1:
reg.x.bx = *m2;
reg.x.cx - *m3;
reg.x.dx ... *m4;

/* Reset mouse */

1* Show cursor *1

/* Cursor is now hidden */
/* Show cursor */

(continued)

89

PART III: MOUSE PROGRAMMING INTERFACE

continued

int86(Ox33. ®. ®):
*m! ... reg.x.ax:
*m2 - reg.x.bx:
*m3 = reg.x.ex:
*m4 ... reg.x.dx:

Regardless of the screen mode, the mouse software uses a pair of
virtual-screen coordinates to locate an object on the screen. Each pair
of coordinates defines a point on the virtual screen. The horizontal
coordinate is given first.

Many mouse functions take virtual-screen coordinates as input
or return them as output. Whenever you refer to a virtual-screen coordi
nate for a pixel or character in a mouse function, be sure the values are
correct for the current screen mode. When you first program mouse
functions, a common error is confusing physical-screen coordinates and
virtual-screen coordinates. For example, in a medium-resolution mode
(320 by 200 pixels) a horizontal mouse position of 320 pixels is at the
center of the screen rather than at the right edge. In this case, even
though there are 320 physical pixels across the screen, the virtual
screen has 640 pixels. Remember that mouse functions always refer to
virtual-screen coordinates.

The Cell Size column in Figure 6-1 shows the minimum resolution
of mouse motion in terms of the virtual screen for each mode. Consider,
for example, the 8-by-8 cell size shown for mode 3 (the 8o-characters
by-25-lines text mode). In this mode, as the mouse cursor moves from
character to character, the returned position of the mouse changes by 8
virtual-screen units. The character cell at the upper-left corner of the
screen is at mouse coordinates (0,0), but as soon as the mouse cursor
moves to the second character cell on that line the coordinates are (8,0).
At the bottom-right character cell of the screen, the coordinates are
(632,192).

Graphics Modes

90

In graphics modes 6, E, F, 10, 11, and 12, and in graphics modes 5 and 6
with an HGC, each pixel on the virtual screen has a one-to-one corre
spondence with each pixel on the physical screen. In these modes, the
full range of coordinates in the Virtual Screen column of Figure 6-1 is
permitted.

Chapter 6: Mouse Programming Interface

In graphics modes 4, 5, D, and 13, the physical screen is 320 by 200
pixels. The virtual screen for these modes is 640 by 200 pixels, which
makes the modes consistent with the other eGA graphics modes. Notice
that the horizontal coordinates for the mouse cursor are evenly num
bered. Each horizontal pixel position on the screen represents a
change of two virtual-screen units. In this way, the horizontal pixel
positions numbered ° through 319 on the physical screen map to posi
tions ° through 638 on the virtual screen. The vertical coordinates are
unaffected because both the physical-screen and virtual-screen coordi
nates are numbered from ° through 199.

Text Modes
Text modes 2, 3, and 7 display only characters on the screen, and each
character is an 8-by-8-pixel group. (See the Cell Size column in Figure
6-1.)

When you are in text mode, you can't access the individual pixels
in a character, so the mouse software uses the coordinates of the pixel
in the cell's upper-left corner as the character's location. Because each
character is an 8-by-8-pixel group, both the horizontal and the vertical
coordinates are multiples of 8.

For example, the character in the upper-left corner of the screen
has the coordinates (0,0), 'and the character immediately to the right of
that character has the coordinates (8,0).

In text modes ° and 1, as in text modes 2,3, and 7, only characters
can appear on the screen; however, in modes ° and 1, each character is
a 16-by-8-pixel block. (See the Cell Size column in Figure 6-1.)

As in text modes 2,3, and 7, the mouse software uses the coordi
nates of the pixel in the cell's upper-left corner as the character's loca
tion. But because modes ° and 1 have only half as many pixels as modes
2,3, and 7, the mouse software uses horizontal coordinates that are mul
tiples of 16.

For example, the character in the upper-left corner of the screen
has the coordinates (0,0), and the character immediately to the right of
the first character has the coordinates (16,0).

In all these text modes, whether they use 40 or 80 columns, the
character cells are 8 pixels in height. This means that the vertical coor
dinates change by 8 virtual-screen units for each vertical-character-cell
movement of the mouse cursor. For example, the first character in the,
second row of the screen has the coordinates (0,8).

91

PART III: MOUSE PROGRAMMING INTERFACE

GRAPHICS AND TEXT CURSORS
The mouse has one of three cursors:

• The graphics cursor, a shape that moves over images on the
screen (for example, an arrow)

• T~e software text cursor, a character attribute that moves from
character to character on the screen (for example, an under
score, reversed type, or a blinking square)

• The hardware text cursor, a flashing square, half-square, or
underscore that moves from character to character on the
screen

The mouse software supports only one cursor on the screen at a
time. In the graphics modes, the graphics cursor is the only cursor
available. The mouse software can display either of the two types of text
cursors in the text modes. Your application program might change the
cursor type, shape, or other attributes "on the fly," so it's a good idea
to hide the cursor temporarily while changes are made. Hiding the cur
sor during changes lets the mouse driver detect any changes made by
an Interrupt 10H call. Mouse Functions 1 (Show Cursor) and 2 (Hide
Cursor) can help you with this. For more information on these func
tions, see Chapter 8, "Mouse Function Calls."

Mouse Functions 9 (Set Graphics Cursor Block) and 10 (Set Text
Cursor) let you define the characteristics of the cursors in your applica
tion programs. You can define the characteristics yourself, or you can
use the characteristics of the sample cursors provided in this book. For
more information about the sample cursors, see Chapter 8, "Mouse
Function Calls."

The Graphics Cursor

92

The graphics cursor, which is used when the video adapter is in one of
the graphics modes, is a block of individual pixels. In modes 6, D, E, F,

10,11, and 12, and modes 5 and 6 on an HGC, the cursor is a 16-by-16
square that contains 256 pixels. In modes 4 and 5, the cursor is an 8-by-
16 square that contains 128 pixels.

As you move the mouse, the graphics cursor moves over the
screen and interacts with the pixels directly under it. This interaction
creates the cursor shape and background.

Chapter 6: Mouse Programming Interface

Screen Mask and Cursor Mas~
For each graphics mode, the interaction between the screen pixels and
cursor pixels is defined by two 16-by-16-bit arrays: the screen mask and
the cursor mask. The screen mask determines whether the cursor pix
els are part of the shape or part of the background. The cursor mask
determines how the pixels under the cursor contribute to the color of
the cursor when the video adapter is in text mode .

. In your application programs, you can specify the shapes of the
screen mask and cursor mask by defining the shapes as arrays and pass
ing these arrays as parameters in a call to Mouse Function 9. For more
information on Mouse Function 9, see Chapter 8, "Mouse Function
Calls."

Mask interaction in modes 4 and 5 The interaction between the screen
mask and the cursor mask differs somewhat between modes 4 and 5
and the rest of the graphics modes. In modes 4 and 5, each pair of bits
in the masks represents one pixel on the screen. The graphics cursor
masks are always defined as 16-by-16-bit squares; however, in modes 4

and 5 the cursor appears as an 8-by-16 rectangle of screen pixels. This
two-to-one mapping causes each 2-bit pair of the masks to represent
one screen pixel. In all other graphics modes, one mask bit represents
one pixel on the screen.

To create the cursor, the mouse software operates on the data in
the computer's screen memory that defines the color of each pixel on
the screen. First, each bit in the masks expands to match the number of
bits in video memory that are required for each pixel's color informa
tion. For example, in mode D each screen pixel requires 4 bits to indi
cate one of 16 possible colors. In this case, each 1 in the masks expands
to 1111 and each 0 expands to 0000. Other graphics modes result in dif
ferent amounts of this bit expansion. Mode 4 (2 colors) doesn't require
expansion; whereas mode 13H (256 colors) requires that each mask bit
expand to 8 bits.

The mouse software then logically ANDs each of these bit groups
with the bit group for the associated screen pixel. This allows the pixel
color to remain unaltered wherever the screen-mask bit is 1. It also
allows a new color setting wherever the screen-mask bit is o. The pixel
is blocked by a 0 and allowed through by a 1.

93

PART III: MOUSE PROGRAMMING INTERFACE

94

Finally, the pixel bits are XORed with the expanded bit groups
from the cursor mask. Where the cursor mask is 0, the pixel is un
altered. Where the mask is 1, the color bits are inverted. This results in
an inversion of the color information for the pixel. Most commonly,
the screen mask is 0 and the cursor mask is 1 wherever the cursor image
is shown, resulting in a solid, bright white image. Careful manipulation
of the screen and cursor masks, and of the color palette information,
lets you create transparent or colorful graphics cursors.

Figure 6-2 shows how these operations affect each individual
screen bit.

If the screen . And the cursor The resulting
mask bit is mask bit is screen bit is

0 0 0
0 1 1
1 0 Unchanged
1 1 Inverted

Figure 6-2. This table shows how the screen-mask bit and the cursor-mask
bit affect the screen bit.

In modes 4 and 5, each pair of mask bits maps to one screen pixel,
resulting in a slightly different cursor creation. Each screen pixel re
quires 2 bits of color information. These 2 bits logically AND and XOR
with the screen-mask-bit and cursor-mask-bit pairs to create the cursor.
The most important consequence of this is that you should set each
pair of mask bits to the same value to prevent the cursor image from
bleeding around the edges. You can see this bleeding effect as a magenta
or cyan (blue) fringe on the default-cursor arrow when you are in
mode4or5.

The illustration on page 95 depicts the screen and cursor masks
for the default graphics cursor. The Is in the screen mask let the back
ground show through; the Os hide the background pixels. The Is in the
cursor mask indicate bright white pixels composing the cursor image;
the Os let the background show through unaltered.

Mask interaction in modes E and 10 In modes E and 10, as in modes 6 and F,

each bit in the screen mask and cursor mask corresponds to a pixel in
the cursor block.

Chapter 6: Mouse Programming Interface

Screen Mask Cursor Mask Hot Spot

1001111111111111 0000000000000000 X = 0
1000111111111111 0010000000000000 y - -1
1000011111111111 0011000000000000
1000001111111111 0011100000000000
1000000111111111 0011110000000000
1000000011111111 0011111000000000
1000000001111111 0011111100000000
1000000000111111 0011111110000000
1000000000011111 0011111111000000
1000000000001111 0011111000000000
1000000011111111 0011011000000000
1000100001111111 '0010001100000000
1001100001111111 0000001100000000
1111110000111111 0000000110000000
1111110000111111 0000000110000000
1111111000111111 0000000000000000

The default graphics mode screen and cursor masks.

The cursor mask and screen mask are stored in off-screen memory.
Each plane has its own identical copy of the cursor mask and screen
mask; therefore, for each plane, the resulting screen bit in Figure 6-2 is ac
tually the bit used in the color look-up table on the EGA.

In EGA and VGA graphics modes, the color information is kept in
look-up tables. This means that the pixel-color information bits repre
sent an index to a table of predefined colors. By changing the colors in
this table, you can change the color of the mouse cursor. For more in
formation about changing colors, see the BASIC PALETTE statement or
the C _ remappalette function in your product's language reference
manual.

The Graphics-Cursor Hot Spot
Whenever a mouse function refers to the graphics-cursor location, it
gives the point on the virtual screen that coincides with the cursor's
hot spot. You can set the hot spot at any virtual-screen coordinates up tb

±127 units from the upper-left corner of the screen-mask and cursor
mask definitions. This means that you can set the hot spot at a visible
cursor pixel location or at an invisible pixel location where the back
ground is visible. The cursor image appears on the screen relative to
the hot spot.

95

PART III: MOUSE PROGRAMMING INTERFACE

You define the hot spot in the cursor block by passing the horizon
tal and vertical coordinates of the point to Mouse Function 9. For all
graphics modes, the coordinates are relative to the upper-left corner of
the cursor block. In most cases, the hot spot is set in the range 0 through
16, the area where the cursor pixel masks are defined; however, you can
define the hot spot anywhere in the range -128 through 127.

Text Cursors

96

Two types of text cursors are used with the mouse. The software text
cursor affects the appearance of the entire character cell, altering the
character's attributes. The hardware text cursor comes with the com
puter hardware; it usually contains a block of scan lines in part of the
character cell. Picking one type of text cursor instead of the other is
largely a matter of preference. Both are fast and efficient.

The Software Text Cursor
You use the software text cursor when the video adapter is in one of the
text-screen modes.

The software text cursor affects how characters appear on the
screen. Unlike the graphics cursor, the software text cursor usually
doesn't have a shape of its own. Instead, it changes the character attri
butes (such as foreground and background colors, intensity, and under
scoring) of the character directly under it; however, if the cursor has a
shape of its own, it is shaped as one of the 256 characters in the ASCII

character set.
The screen and cursor masks control which attributes are altered

and whether the ASCII code for the character itself is modified.

Screen mask and cursor mask Earlier in this chapter, you read about the
relationships of screen and cursor masks to the graphics cursor. Soft
ware text cursors also use screen and cursor masks. In fact, the effect of
the software text cursor on the character under it is defined by the
screen mask and the cursor mask. The screen mask is a 16-bit value that
determines which of the character's attributes are preserved, and the
cursor mask is a 16-bit value that determines how these attributes
change to yield the cursor.

To create the cursor, the mouse software operates on the data
that defines each character on the screen. The mouse software first

Chapter 6: Mouse Programming Interface

logically ANDs the screen mask and the 16 bits of screen data for the
character currently under the cursor. The mouse software then logi
cally XORs the cursor mask with the result of the AND operation, caus
ing the cursor's appearance on the screen.

The format of the screen data for each character is shown in
Figure 6-3. Each of the 16 bits shown in Figure 6-3 has a purpose as
follows:

Bit(s)

15
12-14
11
8-10
0-7

Purpose

Sets blinking or nonblinking character
Sets the background color
Sets high intensity or medium intensity
Sets the foreground color
ASCII value of the character

The range of values for each field depends on the characteristics
of the display adapter in your computer. (See the documentation that
came with your display adapter for details.)

Bit: 15 14 12 11 10 8 7 o

~------~------~I~I ~ ____ -. ______ ~

Odd address Even address

Figure 6-3. Data format for each screen character in text mode.

The. screen mask and cursor mask are identical in structure to the
character structure shown in Figure 6-3. The value contained in each
field of the screen mask and cursor mask defines a character's new at
tributes when the cursor is over that character.

For example, to invert the foreground and background colors, be
sure the screen mask and cursor mask have the values shown in Figure
6-4. (The software text cursor defined in this figure is the default cursor
before Mouse Function 10 (Set Text Cursor) is called to redefine it.)

Bit:

Screen mask:

Cursor mask:

o
1 1 1 1 1 1 = &H77FF

o 0 0 0 0 0 0 0 = &H7700

Figure 6-4. Sample screen-mask and cursor-mask values.

97

PART III: MOUSE PROGRAMMING INTERFACE

98

In your application programs, you can define the values of the
screen mask and cursor mask by passing their values as parameters
to Mouse Function 10. For more information on Function 10, see
Chapter 8, "Mouse Function Calls."

Whenever a mouse function refers to the text cursor location, it
gives the virtual-screen coordinates of the character under the cursor.
The text cursor doesn't have a hot spot.

The Hardware Text Cursor
The hardware text cursor is another cursor that is used when the com
puter is in one of the text modes. This type of cursor is also set using
Function 10.

The hardware text cursor is the computer's cursor-the one you
see on the screen after the MS-DOS system-level prompt. The mouse
software lets you adapt this cursor to your needs.

Scan lines The hardware cursor is 8 pixels long and 8 to 14 pixels high.
Each horizontal set of pixels forms a line called a scan line. There are 8

to 14 scan lines.
Your program turns scan lines on or off. If a scan line is on, it ap

pears as a flashing bar on the screen. If a scan line is off, it has no effect
on the screen. Your program defines which lines are on and which are
off by passing the numbers of the first and last lines in the cursor to
Mouse Function 10.

The number of lines in the cursor depends on the display adapter
in your computer. For example:

• If your computer has a Color/Graphics Adapter, the cursor has
8 lines, numbered 0 through 7.

• If your computer has a Monochrome Display Adapter, the cur-
sor has 14 lines, numbered 0 through 13. .

• If your computer has an Enhanced Graphics Adapter and a
Color Display, the cursor has 8 lines, numbered 0 through 7.

• If your computer has an Enhanced Graphics Adapter and an
Enhanced Color Display, the cursor has 8 lines, numbered 0

through 7.

Chapter 6: Mouse Programming Interface

THE INTERNAL CURSOR FLAG
Regardless of the type of cursor displayed, the mouse software main
tains an internal flag that determines whether or not the cursor ap
pears on the screen. The value of this flag is always 0 or less. When the
value of the flag is 0, the mouse software displays the cursor. When the
value of the flag is less than 0, the mouse software hides the cursor.

Application programs cannot access this flag directly. To change
the flag's value, your program must call Mouse Functions 1 (Show Cur
sor) and 2 (Hide Cursor). Function 1 increments the flag; Function 2
decrements it. Initially, the flag's value is -1, so a call to Function 1

displays the cursor.
Your program can call Mouse Function 1 or Function 2 any num

ber of times, but if it calls Function 2, it must subsequently call Func
tion 1 to restore the flag's previous value. For example, if the cursor is
on the screen and your program calls Function 2 five times, it must also
call Function 1 five times to return the cursor to the screen.

If your program calls Function 1 to display the cursor, any addi
tional calls to Function 1 have no effect on the internal cursor flag;
therefore, one call to Function 2 always hides the cursor. In addition,
your program can call Mouse Function 0 (Mouse Reset and Status), or
it can change screen modes to reset the flag to -1 and hide the cursor.

READING THE MOUSE
To obtain input from the mouse, you can read the status of the mouse
buttons, and you can check to see if (and how far) you have moved the
mouse. In addition, your program can check how many times you
pressed or released a particular button, and it can adjust the mouse
movement sensitivity.

Mouse Buttons
Mouse Function 5 (Get Button Press Information) and Function 6 (Get
Button Release Information) read the state of the mouse buttons. They
return a count of the number of times the buttons are pressed and
released. The count that Mouse Functions 5 and 6 return is an integer
value in which the first 2 bits are set or cleared. Bit 0 represents the
state of the left button, and bit 1 represents the state of the right but
ton. If a bit is set (equal to 1), the button is down. If a bit is clear (equal
to 0), the button is up.

99

PART III: MOUSE PROGRAMMING INTERFACE

The mouse software increments a counter each time the corre
sponding button is pressed or released. Functions 5 and 6 can read the
contents of these counters. The software sets the counter to 0 after you
reset the mouse (Mouse Function 0) or after you read a counter's
contents.

Mouse Unit of Distance: The Mickey
The motion of the mouse track ball translates into values that express
the direction and duration of the motion. These values are given in a
unit of distance called a mickey, which is approximately 1/200 inch.

When you move the mouse across a desktop, the mouse hardware
passes a horizontal and vertical mickey count-that is, the number of
mickeys the mouse ball rolled in the horizontal and vertical direc
tions- to the mouse software. The mouse software uses the mickey
count to move the cursor a certain number of pixels on the screen.

You can use Mouse Function 11 (Read Mouse Motion Counters) to
read the relative motion counters kept by the mouse software. Mter the
counters are read, they are reset to o. You can also obtain the absolute
position of the mouse as maintained by the mouse software by calling
Mouse Function 3 (Get Button Status and Mouse Position).

Mouse Sensitivity

100

The number of pixels that the cursor moves doesn't need to corre
spond one-to-one with the number of mickeys the track ball rolls. The
mouse software defines a sensitivity for the mouse, which is the number
of mickeys required to move the cursor 8 pixels on the screen. The sen
sitivity determines the rate at which the cursor moves on the screen.

In your application programs, you can define the mouse's sensitiv
ity by passing a mickey count to Mouse Function 15 (Set Mickey/Pixel
Ratio) or by calling Mouse Function 26 (Set Mouse Sensitivity). The
default mickey count is 8 mickeys to 8 pixels, but the mickey count can
be any value from 1 through 32,767.

For example, if you pass a count of 32, the sensitivity is 32 mickeys
per 8 pixels. In this case, the cursor moves at one-fourth the speed of
the default setting.

Chapter 7

Mouse
Programming
Considerations

The Microsoft mouse driver provides you with 35 functions to add
mouse support to your application program. After you load the mouse
driver-either by loading MOUSE.COM from the MS-DOS command
prompt or from AUTOEXEC.BAT or by loading MOUSE.SYS with a DEVICE
directive in CONFIG.SYS-you can include these functions in your
application program by calling Interrupt 33H with the appropriate
parameters or by using the mouse library, MOUSE.LIB.

Although using these functions is fairly straightforward, you must
consider several aspects of the system on which your application is
running. The most important considerations are the type of video
hardware installed and what modes it is capable of displaying-mouse
functions that draw, display, and move the mouse cursor are heavily
dependent on the current video display mode. Other considerations
include the version of the mouse driver, the country in which the
application program is being used, and whether or not the application
program using the mouse is a terminate-and-stay-resident (TSR)
program.

101

PART III: MOUSE PROGRAMMING INTERFACE

SETTING UP YOUR SYSTEM
Although there are no hard-and-fast rules about where you must place
mouse support within your program, you should include certain mouse
functions early in your program to ensure that you properly installed
the mouse driver and that its version number is high enough to sup
port the mouse functions you plan to use in your application. In addi
tion, because the mouse driver works closely with the video adapter,
your application program must be well behaved in terms of how it uses
the video adapter. For example, you should be sure your program com
municates with the video adapter using the BIOS. You should not try to
program the video hardware directly.

You must use four variables to make a mouse function call. The
first variable identifies the function number; the other three indicate
any additional information required by that function. The mouse func
tions return information in these same variables. You should declare
these variables as you would any other integer-value variables within
your program.

You make mouse function calls either by using Interrupt 33H or
by calling the MOUSE.LIB library. Both offer identical functionality and
differ only in how you call them. See Chapter 2, "Overview of Mouse
Programming," for more information; however, note that application
programs using MOUSE.LIB must treat the functions as external.

Testing for the Mouse Driver

102

After declaring any necessary variables and functions, you should
check to see that the mouse driver was installed correctly by verifying
that the vector for Interrupt 33H does not point to 0:0 or an IRET

instruction. You should then include Mouse Function 0 (Mouse Reset
and Status) in your program to reset the mouse driver. Optionally, you
can then include a call to Mouse Function 36 (Get Driver Version,
Mouse Type, and IRQ Number) to check the version of the mouse
driver that is installed and to verify that the mouse functions you will
use later in the application program are supported.

Be sure your program issues an error message that sends a warn
ing if the mouse driver is not installed properly or (assuming you used
Mouse Function 36) if the version of the mouse driver is not high
enough to support the mouse functions you will use later.

In most cases, you can now call Mouse Function 1 in your applica
tion program to display a cursor. The cursor that appears reflects the

Chapter 7: Mouse Programming Considerations

current mode of the video adapter: The mouse driver displays a square
if the video adapter is in text mode or a solid arrow if the video adapter
is in graphics mode. If your video adapter is in a mode that is not
supported by the mouse driver, the results can be unpredictable at this
point. For example, the mouse cursor might not display, but your appli
cation might continue to run normally; or your system could lock up.
(See the section on unsupported video modes later in this chapter.)

Instead of calling Mouse Function 1 (Show Cursor) to display the
cursor, you can first call other mouse functions to perform such tasks as
modifying the shape of the cursor or defining an area to which cursor
movement will be restricted. Although you can include these calls at
any point later in the program, you may want to take care of these tasks
now so that you do not need to make such changes later.

Controlling the Mouse Cursor
As explained in Chapter 6, you can include in your program Function 9

(Set Graphics Cursor Block) and Function 10 (Set Text Cursor) to
modify the shape of any graphics or text cursor. In addition, you can
use Function 7 (Set Minimum and Maximum Horizontal Cursor Posi
tion) and Function 8 (Set Minimum and Maximum Vertical Cursor
Position) to define a boundary for cursor movement on the screen. You
can also use Function 16 (Conditional Off) to define an area of the
screen in which the cursor will disappear if the user moves the cursor
into that area.

To turn off the cursor completely, without losing any of the cursor
attributes you've set in your program, you can use Function 2 (Hide
Cursor). Note that after your program hides the cursor, the mouse
driver still keeps track of mouse movements and button presses. If you
include mouse functions in your program that continue to track mouse
movements and button presses when the cursor is turned off, a call to
Function 1 (Show Cursor) causes the mouse cursor to appear in the up
dated position. You can also use Function 4 (Set Mouse Cursor Posi
tion) to position the cursor before you display it.

Other functions let you control the relationship between mouse
movements and mouse cursor movements. Function 15 (Set Mickey /
Pixel Ratio) adjusts the ratio of mouse movement to mouse cursor
movement, and Function 19 (Set Double-Speed Threshold) defines the
speed of mouse movement that causes mouse sensitivity to double.

A single call to Function 26 (Set Mouse Sensitivity) is equivalent to
separate calls to Functions 15 and 19. In most cases, you'll find it's easier

103

PART III: MOUSE PROGRAMMING INTERFACE

to use Function 26 than to use the two separate functions. Calling
Function 27 (Get Mouse Sensitivity) lets your program check the cur
rent values of the .mickey-per-pixel ratio and double-speed threshold,
allowing your program t9 use Function 26 to set them to new values if
necessary.

Obtaining Button and Position Feedback
To use the mouse as more than a pointing device, you need to request
feedback from the mouse driver about mouse position and button
presses. Your program can then use this information to control pro
gram flow by augmenting the user interface.

You can use Function 3 (Get Button Status and Mouse Position)
to determine whether the user pressed a mouse button and, if so, what
the position of the cursor was when the button was pressed. This infor
mation lets your program perform such tasks as highlighting text,
selecting on-screen menu items, and creating shapes.

Function 5 (Get Button Press Information) and Function 6 (Get
Button Release Information) obtain mouse movement and button
press status. Functions 5 and 6 are similar to Function 3 except that
they maintain a buffer to keep a cumulative count of button presses or
releases since those functions were last called. Function 3 checks the
mouse buttons only when the function is called. Functions 5 and 6let
you build a "click-ahead" buffer into your program, much as the key
board buffer lets you use a type-ahead buffer.

Use of Function 11 (Read Mouse Motion Counters) lets your
program keep track of relative mouse motion, as opposed to absolute
screen position. In other words, Function 11 can indicate how far the
user moved the mouse since the last call to Function 11.

ADVANCED TOPICS

104

Several mouse functions address specific programming issues not
normally encountered in the average program.

Due to the close interaction between the mouse driver and the
video adapter, you need to take special steps if your program is per
forming advanced video techniques. (For EGA programming con
siderations, see Chapter 10, "Writing Mouse Programs for IBM EGA

Modes.")

Chapter 7: Mouse Programming Considerations

Video Modes
When your program changes video modes, the way the system uses
video memory can change substantially. To ensure that the mouse cur
sor does not interfere with other portions of memory, you first include
Function 2 (Hide Cursor) in your program to hide the cursor. You can
then change the video mode within the program and use Function 1

(Show Cursor) to display the cursor again. Following these steps re
duces the possibility that problems will occur in video memory.

NOTE: We also recommend hiding the cursor if you want to draw an object
in graphics mode under the cursor. This technique prevents garbage from appear
ing on the screen.

Video Paging
Many video adapters have several pages available for programs to use.
To accommodate this feature, your program can include Function 29

(Set CRT Page Number) and Function 30 (Get CRT Page Number),
which can let the mouse driver know which video page is the active
video page so that it can display the mouse cursor there.

User-Installed Mouse Interrupt Subroutines
Any mouse action that occurs as the application is running, such as
moving the mouse or pressing a button, generates a hardware inter
rupt. The operating system senses the interrupt, suspends processing
of the currently running program, and looks in the interrupt vector
table for the address of the interrupt routine, which in this case is an
address installed by the mouse driver when it was loaded. The oper
ating system then transfers control to the interrupt routine, which
executes and returns control to the operating system. Finally, the
operating system "cleans up" the interrupt and returns control to
the program that was, running.

When it executes, the interrupt routine installed by the mouse
driver first checks the call mask, a built-in table of bits that corresponds
to each type of mouse action, such as movement, a button press, a but
ton release, and so on. If the bit corresponding to the mouse action
that caused the interrupt is set to zero, the interrupt handler simply
executes as it normally would. If the corresponding bit is set to one, the
interrupt handler also executes the user-written interrupt handler for
that event.

105

PART III: MOUSE PROGRAMMING INTERFACE

106

Specifying Interrupt Handlers
You specify the location of an interrupt handler that you wrote, as well
as changes to the call mask, by using any of three mouse functions
provided for that purpose: Function 12 (Set Interrupt Subroutine Call
Mask and Address), Function 20 (Swap Interrupt Subroutines), and
Function 24 (Set Alternate Subroutine Call Mask and Address). You
can use an additional function, Function 25 (Get User Alternate Inter
ruptAddress) , before calling Function 20 or Function 24 to determine
what subroutine mask and address were set by a previous call to Func
tion 20 or Function 24.

Writing and Installing Interrupt Handlers
You write and install custom interrupt handlers for one or more mouse
actions if you want an alternate set of events to occur as the result of an

. action. Doing this supplements the steps the mouse driver would nor
mally take for a mouse event.

Your first step is to write the interrupt subroutine. The interrupt
subroutine needs to be a FAR assembly language program because the
subroutine must be able to do an intersegment return to the mouse
driver. Next, you must determine which mouse event(s) will cause your
subroutine to be used in addition to the mouse driver's subroutine,
and then set the appropriate call mask bit(s). A table corresponding to
all mouse actions is kept by the mouse driver. For each mouse event,
such as a right button press, the driver checks the portion of the table
that represents that event to see if that event will cause the interrupt
subroutine you have written to be executed. If so, the system will also
execute your interrupt routine. Interrupt routines cannot call any MS

DOS or BIOS interrupts because MS-DOS and the BIOS are not reentrant;
that is, they can't be suspended to call other instances of themselves.

To install your custom interrupt subroutine, you can use one of
three functions: Function 12 (Set Interrupt Subroutine Call Mask and
Address), Function 20 (Swap Interrupt Subroutines), or Function 24

(Set Alternate Subroutine Call Mask and Address). Avoid using Func
tion 12 because Functions 20 and 24 have superseded the older call and
provide more flexibility and functionality.

Mouse Function 12 Function 12 (Set Interrupt Subroutine Call Mask
and Address) replaces an existing interrupt subroutine address and
call mask with a new address and call mask. When the mask condition

Chapter 7: Mouse Programming Considerations

specified by Function 12 is matched, the specified subroutine is exe
cuted. The disadvantage of using Function 12 is that it doesn't offer a
method for the calling program to get the existing subroutine address
and call mask so that they can be restored after the subroutine spe
cified by Function 12 is finished. For example, suppose you are writing a
terminate-and-stay-resident program for the mouse and you need to in
stall your own interrupt subroutine. Function 12 replaces the existing
interrupt address in the mouse driver with its own interrupt address;
consequently, the program you are running is unable to call its inter
rupt subroutine. We therefore strongly recommend that you use Func
tion 20 or Function 24 instead of Function 12.

Mouse Function 20 Like Function 12, Function 20 (Swap Interrupt Sub
routines) replaces an existing subroutine address and call mask with a
new address and call mask. Function 20 also returns the previous ad
dress and call mask to the program so that your program can restore
them after it is finished with the new subroutine and call mask.

Mouse Function 24 Function 24 (Set Alternate Subroutine Call Mask
and Address) sets up to three unique interrupt addresses and call
masks. This allows you to create up to three separate interrupt subrou
tines, each of which has its own call mask, so that your program can
take a different action depending on which event specified by the call
mask occurs. You do not need to create all three subroutines. For ex
ample, you can create only one interrupt subroutine and have the ad
dresses associated with all three call masks point to it; then any of three
unique events will cause that interrupt subroutine to be executed.

Alternate subroutines set by Function 24 are always activated by a
combination of a Shift, Alt, or Ctrl key press combined with mouse mo
tion or button presses. The call mask for each call to Function 24 must
include one or more of the bits for the shift keys as well as one or more
of the bits for mouse activity.

Light Pen Emulation
When you use Function 13 (Light Pen Emulation Mode On), the mouse
emulates a light pen. You use this function primarily to include mouse
support for programs that have been developed for a light pen. With
light pen emulation on, the mouse loads its cursor-position values into
the area of the system where a light pen would load its position values.

107

PART III: MOUSE PROGRAMMING INTERFACE

NOTE: You cannot use a light pen and a mouse at the same time. If your sys
tem has a light pen as well as a mouse installed, you must use Function 14 (Light
Pen Emulation Mode Off) to prevent the mouse s position values from conflicting
with those of the light pen. By default, light pen emulation is on.

Supported and Unsupported Video Modes

108

The mouse supports the following video modes:

Video Display
Mode Adapter

0 CGA, EGA, MCGA, VGA, 3270
1 CGA, EGA, MCGA, VGA, 3270
2 CGA, EGA, MCGA, VGA, 3270
3 CGA, EGA, MCGA, VGA, 3270
4 CGA, EGA, MCGA, VGA, 3270
5 CGA, EGA, MCGA, VGA, 3270
6 CGA, EGA, MCGA, VGA, 3270
7 MDA, EGA, VGA, 3270
D EGA,VGA
E EGA,VGA
F EGA,VGA

10 EGA,VGA
11 MCGA,VGA
12 VGA
13 MCGA,VGA

MDA = Monochrome Display Adapter
CGA = Color/Graphics Adapter
EGA = Enhanced Graphics Adapter
MCGA = Multi-Color Graphics Array
VGA = Video Graphics Array

Mode

text
text
text
text
graphics
graphics
graphics
text
graphics
graphics
graphics
graphics
graphics
graphics
graphics

3270 = IBM 3270 All-Points-Addressable Graphics Adapter

Screen
Resolution .

640 x200
640 x 200
640 x 200
640 x 200
640 x 200
640 x 200
640 x 200
640 x 200
640 x 200
640 x 200
640 x 350
640 x 350
640 x 480
640 x 480
640 x 200

NOTE: For Hercules Monochrome Graphics cards, the current convention is
to use screen mode 5 for page 1 and screen mode 6 for page O. See Appendix F, "Using
the Mouse with the Hercules Graphics Card. "

The mouse driver might not draw the cursor correctly or return
correct screen coordinates in unsupported screen modes. If you want
to use the mouse with an unsupported screen mode, contact Microsoft
Product Support or the manufacturer of your video adapter. (Instruc
tions for contacting Microsoft Product Support can be found in the
documentation that came with your Microsoft Mouse.)

Chapter 7: Mouse Programming Considerations

Language Support
The following table shows the languages supported by the inter
national version of the mouse driver, the language numbers, and the
language switch designators.

Language Language Number Switch Designator

English 0 None (default)
French 1 F
Dutch 2 NL
German 3 D
Swedish 4 S
Finnish 5 SF
Spanish 6 E
Portuguese 7 P
Italian 8 I

The /L command line switch sets the language when the mouse
driver is loaded. Load-time messages are displayed in the selected lan
guage, and there are no run-time messages in the mouse driver. Mes
sages used by the nonselected languages are not loaded into memory.

Function 34 (Set Language for Messages) is a special-case func
tion that lets the mouse reset the language being used. This function
can be used only by the mouse driver, not by your program. Using
Function 34 on the domestic (English only) version of the mouse has
no effect; the domestic version ignores the /L command line switch.

There may be times when you want to know the installed lan
guage. Function 35 (Get Language Number) returns the number of
the currently installed language.

MOUSE FUNCTIONS
The following list shows the mouse functions by functional category:

Driver Control and Feedback
Function 0: Mouse Reset and Status
Function 21: Get Mouse Driver State Storage Requirements
Function 22: Save Mouse Driver State
Function 23: Restore Mouse Driver State
Function 28: Set Mouse Interrupt Rate
Function 31: Disable Mouse Driver

109

PART III: MOUSE PROGRAMMING INTERFACE

110

Function 32: Enable Mouse Driver
Function 33: Software Reset
Function 36: Get Driver Version, Mouse Type, and IRQ Number

Cursor Control
Function 1: Show Cursor
Function 2: Hide Cursor
Function 4: Set Mouse Cursor Position
Function 7: Set Minimum and Maximum Horizontal Cursor Positions
Function 8: Set Minimum and Maximum Vertical Cursor Positions
Function 9: Set Graphics Cursor Block
Function 10: Set Text Cursor
Function 15: Set Mickey/Pixel Ratio
Function 16: Conditional Off
Function 19: Set Double-Speed Threshold
Function 26: Set Mouse Sensitivity
Function 27: Get Mouse Sensitivity

Button and Position Feedback
Function 3: Get Button Status and Mouse Position
Function 5: Get Button Press Information
Function 6: Get Button Release Information
Function 11: Read Mouse Motion Counters

Video Control and Feedback
Function 29: Set CRT Page Number
Function 30: Get CRT Page Number

Connecting to Additional Subroutines
Function 12: Set Interrupt Subroutine Call Mask and Address
Function 20: Swap Interrupt Subroutines

Connecting to Alternate Subroutine
Function 24: Set Alternate Subroutine Call Mask and Address
Function 25: Get User Alternate Interrupt Address

Light Pen Emulation
Function 13: Light Pen Emulation Mode On
Function 14: Light Pen Emulation Mode Off

Chapter 7: Mouse Programming Considerations

Language Support (International Version Only)
Function 34: Set Language for Messages
Function 35: Get Language Number

For more' information on programming with mouse functions and for
specific programming examples, see Chapter 8, "Mouse Function
Calls," and Chapter 9, "Sample Mouse Programming Interface
Programs.' ,

111

Chapter 8

Mouse Function Calls
This chapter describes the input, output, and operation of each mouse
function call. The actual statements required to make the function
calls depend on the programming language you use; therefore, this
chapter also provides examples showing how you can call each
function in interpreted BASIC, QuickBASIC, C and QuickC, and MASM
(Microsoft Macro Assembler). For further instructions on making
function calls from these languages, see Chapter 9, "Sample Mouse
Programming Interface Programs."

NOTE: If you design a mouse-supported application program that uses a
graphics mode on the IBM EGA (or on a graphics adapter emulating an EGA) that
is not supported by the mouse driver or you program the EGA hardware directly,
your program must interact with the adapter through the Microsoft EGA Register
Interface. For instructions on using the EGA Register Interface, see Chapter 10,

'Writing Mouse Programs for IBM EGA Mode . . ,

INTRODUCTION TO MOUSE FUNCTIONS
The table on the following page shows the number and name of each
mouse function described in this chapter.

113

PART III: MOUSE PROGRAMMING INTERFACE

114

Function
Number

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Function
Name

Mouse Reset and Status
Show Cursor
Hide Cursor
Get Button Status and Mouse Position
Set Mouse Cursor Position
Get Button Press Information
Get Button Release Information
Set Minimum and Maximum Horizontal Cursor Position
Set Minimum and Maximum Vertical Cursor Position
Set Graphics Cursor Block
Set Text Cursor
Read Mouse Motion Counters
Set Interrupt Subroutine Call Mask and Address
Light Pen Emulation Mode On
Light Pen Emulation Mode Off
Set Mickey/Pixel Ratio
Conditional Off
Set Double~peed Threshold
Swap Interrupt Subroutines
Get Mouse Driver State Storage Requirements
Save Mouse Driver State
Restore Mouse Driver State
Set Alternate Subroutine Call Mask and Address
Get User Alternate Interrupt Address
Set Mouse Sensitivity
Get Mouse Sensitivity
Set Mouse Interrupt Rate
Set CRT Page Number
Get CRT Page Number
Disable Mouse Driver
Enable Mouse Driver
Software Reset
Set Language for Messages
Get Language Number
Get Driver Version, Mouse Type, and IRQ Number

Chapter 8: Mouse Function Calls

Each function contains the following:

• The parameters required to make the function call (input)
and the expected return values (output)

• Any special considerations regarding the function

• Sample program fragments that illustrate how to use the func
tion call

The mouse function parameter names Ml%, M2%, M3%, and
M4 % are placeholders. When you make a function call, use the actual
values that you want to pass. Be sure the values are appropriate for the
language you are using.

Use the percent sign (%) to emphasize that the. passed parame
ters are all16-bit integers. This is standard notation for interpreted
BASIC and QuickBASIC. When you use C or QuickC, pass the addresses
of short integer variables. When you use MASM, the AX, BX, CX, and DX
registers correspond to the Ml %, M2 %, M3 %, and M4 %. Note that in a
few special cases, ES is used for M2 % .

If the function description doesn't specify an input value for a
parameter, you don't need to supply a value for that parameter before
making the function call. If the function description doesn't specify an
output value for a parameter, the parameter's value is the same before
and after the function call.

NOTE: All mouse function calls require four parameters. The mouse soft
ware doesn't check input values, so be sure the values you assign to the parameters
are correct for the given function and screen mode. If you pass the wrong number
of parameters or assign incorrect values, you will get unpredictable results.

115

PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 0: MOUSE RESET AND STATUS

Call with M1 % = 0

Returns M1% = mouse status (if mouse found and reset = -1, otherwise = 0)

M2% = number of buttons (if mouse found and reset = 2)

Description Mouse Function 0 returns the current status of the mouse hardware
and software. If you installed the mouse hardware and software cor
rectly, the mouse status is = -1. (With mouse version 6.25 or later, if the
driver is installed correctly but you later disconnect a serial or PS/2
mouse, subsequent calls to Function 0 will return M1 %= 0.)

116

If you didn't install the hardware and software, the mouse status is = o.
Also, if the mouse pointer is currently visible, Function 0 hides it as part
of the reset process. In addition, Function 0 disables any interrupt han
dlers previously installed by the user for mouse events except those in
stalled using Function 24.

Function 0 resets the mouse driver to the following default values:

Parameter

Cursor position

Internal cursor flag

Graphics cursor

Text cursor

Value

Center of screen

-1 (cursor hidden)

Arrow

Reverse video block

Interrupt call mask All 0 (no interrupt subroutine specified)*

Light peri emulation mode Enabled

Horizontal mickey-per-pixel ratio 8 to 8

Vertical mickey-per-pixel ratio

Double-speed threshold

Minimum horizontal
cursor position

Maximum horizontal
cursor position

16 to 8

64 mickeys per second

o

Current display-mode virtual screen
x-value minus 1

Minimum vertical cursor position 0

Maximum vertical cursor position Current display-mode virtual screen
y-value minus 1

CRT page number 0

*This is true only for interrupt subroutines that weren't installed using Function 24.

Chapter 8: Mouse Function Calls

Examples Each of the following program fragments verifies mouse installation. If
the mouse is installed correctly, the programs reset it. The programs
also display a message stating whether the mouse was found.

NOTE: The Qy,ickBASIC and C/Qy,ickC examples show how to use structure
variables that represent the AX, BX, CX, and DX registers. They also demonstrate
how to directly call the mouse interrupt. A simpler way to call the mouse functions
is to use calls to routines provided in the MOUSE.LIB library. For more information
on this alternate method, see Chapter 7, ''Mouse Programming Considerations. "
The method presented here also works well and shows the correlation between the
Ml %, M2%, M3%, and M4% parameters and the AX, BX, CX, and DX registers.

Interpreted BASIC

100 ' Mouse Reset and Status
110 '
120 ' Determi ne mouse interrupt add ress
130 OEF SEG - 0
140 MOUSEG - 256 * PEEK(207) + PEEK(206)
150 MOUSE = 256 * PEEK(205) + PEEK(204) + 2
160 OEF SEG = MOUSEG
170 '
180 M1% - 0
190 ' Check if interrupt code loaded
200 IF (MOUSEG% OR (MOUSE% - 2» AND (PEEK(MOUSE - 2) <> 207) THEN GOTO 260
210 PRINT "Mouse driver not found"
220 OEF SEG 'Restore BASIC data segment
230 END
240 '
250 ' Mouse Reset and Status
260 CALL MOUSE(M1%. M2%, M3%. M4%)
270 OEF SEG 'Restore BASIC data segment
280 '
290 • Was mouse found?
300 IF M1% - -1 THEN 340
310 PRINT "Mouse not found"
320 END
330 '
340 PRINT "Mouse found and reset"
350 END

117

PART III: MOUSE PROGRAMMING INTERFACE

QuickBASIC

" Mouse Reset and Status

OEFINT A-Z

TYPE RegType
ax AS INTEGER
bx AS INTEGER
ex AS INTEGER
dx AS INTEGER
bp AS INTEGER
s1 . AS INTEGER
di AS INTEGER
flags AS INTEGER

END TYPE

DECLARE SUB Interrupt (i ntnum%. i Reg AS RegType .oReg AS RegType)

DIMiReg AS RegType
DIM oReg AS RegType

• Check for valid interrupt
OEF SEG- 0
mouseseg - 256 * PEEK(207) + PEEK(206)
mouseofs - 256*PEEK(205) + PEEK(204) + 2 .
OEF SEG -mouseseg
IF (mouseseg - 0 AND mouseofs - 0) OR PEEK(mouseofs) - 207 THEN

PRINT "Mouse driver not found"
SYSTEM

END IF

· Mouse Reset and Status
,; Reg.ax ... 0
Interrupt &H33. i Reg. oReg

'IF oReg. ax - -1 THEN
PRINT "Mouse found and reset"

ELSE
PRINT "Mouse no~found~
SYSTEM

END IF

118

Chapter 8: Mouse Function Calls

C/QuickC

/* Mouse Reset and Status */

#include <stdio.h>
#include <stdlib.h>
#inc1ude <dos.h>

maine)
{

union REGS. iReg,oReg;
void (interrupt far *int_hand1er)();
long vector;
unsigned char first_byte;

/* Get interrupt vector and first instruction of interrupt */
int_handler "" _dos_getvect(Ox33);
first_byte'" * (unsigned char far *) int_handler;
vector - (long) int_handler;

/* Vector shouldn't be 0, and first instruction shouldn't be iret */

if «vector -== 0) II (first_byte -- Oxcf»
{

printf("Mouse driver NOT installed");
exit(1);
}

/* Mouse Reset and Status */
iReg.x.ax - 0;
int86(Ox33, &iReg, &oReg);

/* Was the mouse found? */

if (oReg.x.ax -- -1)
printf("Mouse found and reset\n"):

else
{

printf("Mouse not found\n");
exit(1) :
}

119

PART III: MOUSE PROGRAMMING INTERFACE

120

MASM

; Mouse Reset and Status
print MACRO string

mov dx, OFFSET string
mov ah.9
int 21h
ENDM

DOSSEG
.MODEL SMALL
.STACK 100h
. DATA

mesgO db "Mouse driver not found", 13. 10, "$"

mesg1 db "Mouse not found", 13. 10. "$"

mesg2 db "Mou~e found and reset", 13. 10, "$"

.CODE

; Set up OS for the data segment
start: mov ax. @DATA

mov ds,ax

: Check for valid interrupt
mov ax. 3533h : Get Interrupt 33H vector
int 21h
mov ax, es
or ax, bx
jz no_driver
cmp byte ptr es:[bx], 207
jne reset

no_driver:
print mesgO

: Exit with a code of 1
mov a1, 1
jmp short exit

reset: ; Mouse Reset and Status
xor ax.ax
int 33h

es and bx both 0 ?

M1% 0

(continued)

continued

found:

exit:

END

; Was mouse found?
or ax, ax
jne found

; Mouse not found
print mesgl

; Exit with a code of 1
mov a 1, 1
jmp short exit

; Mouse was found
print mesg2

; Exit with a code of 0
xor al, al

: Exit to MS-DOS
mov ah, 4Ch
int 21h

start

Chapter 8: Mouse Function Calls

121

PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 1: SHOW CURSOR

Call with M1% = 1

Returns Nothing

Description Mouse Function 1 increments the internal cursor flag and, if the value
of the flag is 0, displays the cursor on the screen. The mouse driver
then tracks the motion of the mouse, changing the cursor's position as
the mouse changes position.

NOTE: If your program used Function 7 or Function 8 to establish a display
area, Function 1 displays the cursor within that area. Also, Function 1 will disable
a conditional-off region established using Function 16 (Conditional Off).

The current value of the internal cursor flag depends on the num
ber of calls your program makes to Functions 1 and 2. The default flag
value is -1. Therefore, when you start up your computer or reset the
mouse driver using Mouse Function ° or Function 33, your program
must call Function 1 to redisplay the cursor. For more information on
the internal cursor flag, see Chapter 6, "Mouse Programming
Interface."

If the internal cursor flag is already 0, Function 1 does nothing.

Examples Each of the following program fragments shows how you can make the
mouse cursor visible after you reset the mouse driver with Function 0:

122

Interpreted BASIC

110 'Show Cursor
120 M1% = 1
130 CALL MOUSE(Ml%. M2%. M3%, M4%) <

QuickBASIC

• Show Cursor
iReg.ax - 1
Interrupt &H33. iReg. oReg

C/QuickC

/* Show Cursor */
iReg.x.ax ... 1:
int86(Ox33. &iReg. &oReg);

MASM

: Show Cursor
mov ax.1
int 33h

Chapter 8: Mouse Function Calls

123

PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 2: HIDE CURSOR

Call with M1 % = 2

Returns Nothing

Description Mouse Function 2 removes the cursor from the screen and decrements
the internal cursor flag. After Function 2 hides the cursor, the mouse
driver continues to track the motion of the mouse, changing the cur
sor's position as the mouse changes position.

Use this function before you change any area of the screen that
contains the cursor. This ensures that the cursor won't affect the data
you write to the screen.

NOTE: If your program changes the screen mode, it should call Function 2

prior to changing the screen mode and then call Function 1 so that the cursor will
be drawn correctly the next time it appears on the screen.

Each time your program calls Function 2, it must subsequently
call Function 1 to restore the internal cursor flag to its previous value.
Alternately, your program can call Function 0 or Function 33 to force
the value of the internal cursor flag to -1 and then call Function 1 to
display the cursor again. For more information on the internal cursor
flag, see Chapter 6, "Mouse Programming Interface."

At the end of your program, call Function 2, Function 0, or Func
tion 33 to hide the mouse cursor; otherwise, if the internal cursor flag
is 0 when the program ends, the mouse cursor remains on the screen.

Examples Each of the following program fragments shows how you can make the
mouse cursor invisible:

124

Interpreted BASIC

110 I Hide Cursor
120 M1% -2
130 CALL MOUSE{M1%. M2%~ M3%. M4%)

QuickBASIC

, Hide Cursor
: i Reg. ax - 2

Interrupt &H33. iReg, oReg

C/QuickC

1* Hide Cursor *1
iReg.x.ax - 2:
int86(Ox33. &iReg, &aReg):

MASM

: Hide Cursor
mav ax.2
int 33h

Chapter 8: Mouse Function Calls

125

PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 3:
GET BUTTON STATUS AND MOUSE POSITION

Call with

Returns

Ml% =3

M2% = button status
M3% = horizontal cursor coordinates
M4% = vertical cursor coordinates

Description Mouse Function 3 returns the state of the left and right mouse buttons.
It also returns the state of the cursor's horizontal and vertical virtual
screen coordinates.

The button status is a single-integer value. Bit 0 represents the left
button; bit 1 represents the right button. The value of a bit is 1 if the
corresponding button is down and 0 if it is up.

The cursor coordinates that Function 3 returns are always within
the range of minimum and maximum values for the virtual screen
or within the range set with Function 7 and Function 8. For more infor
mation on the virtual screen, see Chapter 6, "Mouse Programming
Interface. "

Examples Each of the following program fragments returns the mouse button
status and the current mouse coordinates (in virtual-screen
coordinates) .

126

Chapter 8: Mouse Function Calls

Interpreted BASIC

300 • Get Button Status and Mouse Position
310 •
320 M1% - 3
330 CALL MOUSE(M1%. M2%. M3%. M4%)
340 .
350 PRINT "Mouse virtual-screen coordinates: ": M3%.
360 IF M2% - 0 THEN PRINT "Neither button pressed"
370 IF M2% - 1 THEN PRINT "Left button pressed
380 IF M2% - 2 THEN PRINT "Right button pressed "
390 IF M2% - 3 THEN PRINT "Both buttons pressed "

M4%

400 IF M2% > 3 THEN PRINT "Unexpected number of buttons

QuickBASIC

• Get Button Status and Mouse Position
i Reg. ax - 3
Interrupt &H33. 1Reg. oReg

pressed"

PRINT "Mouse virtual-screen coordinates: "; oReg.ex. oReg.dx

SELECT CASE oReg.bx
CASE 0

PRINT "Neither button pressed"
CASE 1

PRINT "Left button pressed
CASE 2

PRINT "Right button pressed ..
CASE 3

PRINT "Both buttons pressed ..
CASE ELSE

PRINT "Unexpected number of buttons pressed"
END SELECT

127

PART III: MOUSE PROGRAMMING INTERFACE

128

CIQuickC

1* Get Button Status and Mouse Position */
i Reg. x . a x .. 3; I

int86(Ox33. &iReg, &oReg);

printf("Mouse virtual-scr~en coordinates: %d.%d\n".
oReg.x.cx. oReg.x:dx);

switch (oReg.x.bx)
{

case 0:
printf("Neither button,pressed\n");
break::

case 1:
, pr1ntf("Left button pressed \n");
break;

case 2:
printf("Right button pressed \n"):
break;

case 3:
printf("Both buttons pressed \n"):
break;

default:
printf("Unexpected number of buttons pressed\n");
break:

MASM

: Get Button Status arid Mouse Position
mov ax.3 M1% - 3
int 33h

mov mouse_x.cx
mov mouse.......Y.dx
mov ax,bx
and ax.1
mov left_button,ax
shr bx.1
mov right_button.bx

Mouse x-coordinate" M3%
Mouse y-coordinate - M4%

Left but ton ... M2%. bit 0

Right button ~M2%. bit 1

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 4: SET MOUSE CURSOR POSITION

Call with Ml% =4

M3% = new horizontal cursor coordinate
M4% = new vertical cursor coordinate

Returns Nothing

Description Mouse Function 4 sets the cursor to the specified horizontal and verti
cal virtual-screen coordinates. The parameter values must be within
the range of minimum and maximum values for the virtual screen or
within the range set with Function 7 and Function 8.

The cursor appears at the new location unless one of the follow-
ing conditions is true:

• Function 1 hasn't yet displayed the cursor.

• Function 2 hid the cursor.

• Function ° or 33 hid the cursor during the reset process.

• The cursor was set to appear in a conditional-off region
previously established using Function 16.

If your program set a minimum and maximum vertical and hori
zontal cursor position using Functions 7 and 8, Function 4 adjusts the
values you specified in the function call, placing the cursor within the
maximum boundaries. For example, assume you used Function 7 to
set the minimum horizontal cursor position to 50 and the maximum
horizontal cursor position to 90, and you used Function 8 to set the
minimum vertical cursor position to 100 and the maximum horizontal
cursor position to 150. If you then use Function 4 with a value of (0,0),

the cursor appears at (50,100). If you use Function 4 with a value of (150,

200), the cursor would appear at (90,150). Therefore, if the horizontal
cursor position or vertical cursor position you specify in Function 4 is
less than the minimum or greater than the maximum values estab
lished using Functions 7 and 8, Function 4 places the cursor at the
nearest corresponding edge inside the boundaries established by Func
tions 7 and 8.

If the virtual screen is not in a graphics mode with a cell size of
1 by 1, Function 4 rounds the parameter values to the nearest horizon
tal-coordinate or vertical-coordinate values permitted for the current
screen mode. For more information, see Chapter 6, "Mouse Program
ming Interface."

129

PART III: MOUSE PROGRAMMING INTERFACE

Examples Each of the following program fragments sets the mouse cursor to the
middle of the screen. Assume that the HMAX% and VMAX% variables
are the maximum virtual-screen coordinates.

130

Interpreted BASIC

110 ' Set Mouse Cursor POSition
120 Ml% ... 4
130 M3% ... HMAX% \ 2
140 M4% - VMAX% \ 2
150 CAll MOUSE(Ml%, M2%. M3%. M4%)

QuickBASIC

• Set Mouse Cursor Position
iReg.ax ... 4
iReg.cx - HMAX% \ 2
iReg.dx'" VMAX% \ 2
Interrupt &H33. iReg. oReg

CIQuickC

1* Set ,Mouse Cursor Position *1
i Reg. x. ax ... 4:
iReg.x.cx - hmax » 1:
iReg.x.dx = vmax » 1:
int86(Ox33. &iReg. &oReg):

MASM

: Set Mouse Cursor Position
mov ax.4
mov ex,hmax
shr ex.1
mov dx.vmax
shr dx.l
int 33h

hmax 1 2

vmax I 2

hmax 1 2
"max 1 2

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 5: GET BUTTON PRESS INFORMATION

Call with

Returns

M1% =5

M2% = button

M1 % = button status
M2% = number of button presses
M3% = horizontal cursor coordinate at last press
M4% = vertical cursor coordinate at last press

Description Mouse Function 5 returns the following:

• The current status of both buttons

• The number of times you pressed the specified button since the
last call to this function

• The cursor's horizontal and vertical coordinates the last time
you pressed the specified button

The M2% parameter specifies which button Function 5 checks. If this
parameter is 0, Function 5 checks the left button. If this parameter is 1,

Function 5 checks the right button.
The button status is a single-integer value. Bit 0 represents the left

button, and bit 1 represents the right button. The value of a bit is 1 if
the corresponding button is down and 0 if it is up.

The number of button presses always ranges from 0 through 65535.

Function 5 doesn't detect overflow, and it sets the count to 0 after the
call.

The values for the horizontal and vertical coordinates are in the
ranges defined by the virtual screen. These values represent the cursor
position when you last pressed the button, not the cursor's current
position.

Examples Each of the following program fragments returns button press infor
mation for the left mouse button accumulated since your program last
called this function.

131

PART III: MOUSE PROGRAMMING INTERFACE

132

Interpreted BASIC

110 • Get Button Press Informati6n
120 '
130 M1%- 5
140 M2% "" 0 'Check left button
150 CALL MOUSE(M1%. M2%. M3%. M4%)
160 '
170 PRINT "Left button presses: "; M2%
180 PRINT "Horizontal position at last press: ": M3%
190 PRINT "Vertical position at last press: ": M4%

QuickBASIC

• Get Button Press Information
iReg.ax .. 5
i Reg. bx "" 0 ~Check left button
Interrupt &H33. 1Reg. oReg

PRINT "Left button presses: "; oReg~bx
PRINT "Horizontal position at last press: ";
PRINT "Vertical position at last press:

oReg.ex
"; oReg.dx

C/QuickC

/* Get Button Press Information*/
iReg.x.ax .. 5;
iReg.x.bx - 0: /* Check left button */
int86(Ox33. &iReg. &oReg);

printf("Left button presses: %d\n". oReg.x.bx);
printf{"Horizontal position at last press: %d\n". oReg.x.c~);

printf("Vertical position at last press: %d\n". oReg.x.dx);

MASM

: Get Button Press Information
mov ax,5
xor bx.bx :
int 33h

mov left_presses,bx
mov mouse_x,cx
mov mouse-Y,dx

Chapter 8: Mouse Function Calls

Check left button

Number of left button
Mouse x-coordinate at
Mouse y-coordinate at

presses - M2%
last press'" M3%
last press - M4%

133

PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 6: GET BUTTON RELEASE INFORMATION

Call with

Returns

MI%=6

M2% = button

MI % = button status
M2% = number of button releases
M3% = horizontal cursor coordinate at last release
M4% = vertical cursor coordinate at last release'

Description Mouse Function 6 returns the following:

• The current status of both buttons

• The number of times you released the specified button since
the last call to this function

• The cursor's horizontal and vertical coordinates the last time
you released the specified button

The M2 % parameter specifies which button Function 6 checks. If
this parameter is 0, Function 6 checks the left button. If this parameter
is 1, Function 6 checks the right button.

The button status is a single-integer value. Bit 0 represents the left
button, and bit 1 represents the right button. The value of a bit is 1 if
the corresponding button is down and 0 if it is up.

The number of button releases always ranges from 0 through
65535. Function 6 doesn't detect overflow, and it sets the count to 0 after
the call.

The values for the horizontal and vertical coordinates are in the
ranges defined by the virtual screen. These values represent the cursor
position when you last released the button, not the cursor's current
position.

Examples Each of the following program fragments returns button release infor
mation for the left mouse button accumulated since your program last
called this function.

134

Chapter 8: Mouse Function Calls

Interpreted BASIC

410 ' Get Button Release Information
420 '
430 Ml% - 6
440 M2% - 0 'Check left button
450 CALL MOUSE(Ml%. M2%. M3%. M4%)
460 '
470 PRINT "Left button releases: "; M2%
480 PRINT "Horizontal position at last release: "; M3%
490 PRINT "Vertical position at last release: "; M4%

QuickBASIC

, Get Button Release Information
iReg.ax - 6
i Reg. bx - 0
Interrupt &H33. iReg. oReg

'Check left button

PRINT "Left button releases: "; oReg.bx
PRINT "Horizontal position at last release: "; oReg.cx
PRINT "Vertical position at last release: "; oReg.dx

C/QuickC

/* Get Button Release Information */
iReg.x.ax - 6;
iReg.x.bx - 0; /* Check left button */
int86(Ox33. &iReg. &oReg);

printf("Left button releases: %d\n". oReg.x.bx);
printf("Horizontal position at last release: %d\n". oReg.x.cx):
printf("Vertical position at last release: %d\n". oReg.x.dx):

135

PART III: MOUSE PROGRAMMING INTERFACE

136

MASM

; Get Button Release Information
mov ax.6
xor bx,bx
int 33h

mov left_releases.bx
mov mouse_x,ex
mov mouse-y , dx

: Check left button

Number of left button releases -M2%
MOU,se x-coordinate at last release - M3%
Mouse y~coordinate at last release - M4%

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 7: SET MINIMUM
AND MAXIMUM HORIZONTAL CURSOR POSITION

Call with

Returns

Ml% =7

M3% = minimum position
M4% = maximum position

Nothing

Description Mouse Function 7 sets the minimum and maximum horizontal cursor
coordinates on the screen. Thus, a call to Function 7 restricts all cursor
movement to the specified area. The resolution of the current virtual
screen defines the minimum and maximum values. For .more informa
tion on the virtual screen, see Chapter 6, "Mouse Programming
Interface. "

NOTE: If the minimum value is greater than the maximum value,
Function 7 interchanges the two values.

Examples Each of the following program fragments limits cursor movement to
the middle half of the screen (see Figure 8-1). Assume that the HMAX%

variable is the maximum virtual-screen horizontal coordinate.

1/4
I

Cursor movement
limited to this area

1/4
I

Figure 8-1. Cursor movement limited to middle half of the screen.

137

PART III: MOUSE PROGRAMMING INTERFACE

138

Interpreted BASIC

110 • Set Minimum and Maximum Horizontal Cursor Position
120 Ml% ... 7
130 M3% - HMAX% \ 4
140 M4% - 3 * HMAX% \ 4
150 CAll MOUSE(Ml%, M2%. M3%, M4%)

QuickBASIC

t Set Minimum and Maximum Horizontal Cursor Position
iReg.ax - 7
iReg.ex - hmax% \ 4
iReg.dx - 3 * hmax% \ 4
Interrupt &H33. iReg, oReg

C/QuickC

1* Set Minimum and Maximum Horizontal Cursor Position *1
iReg.x.ax- 7;
iReg.x.ex = hmax / 4;
iReg.x.dx ... 3 * hmax / 4:
int86(Ox33. &iReg, &oReg);

MASM

: Set Minimum and Maximum Horizontal Cursor Position
mov ax.
mov ex,
shr ex.
mov dx,
shr ex,
add dx.
int 33h

7

hmax
1

ex
1
ex

hmax I 2
2 * hmax / 4
hmax 1 4
3 * hmax 1 4

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 8: SET MINIMUM
AND MAXIMUM VERTICAL CURSOR POSITION

Call with

Returns

Ml%=8

M3% = minimum position
M4% = maximum position

Nothing

Description Mouse Function 8 sets the minimum and maximum vertical cursor
coordinates on the screen. Thus, a call to Function 8 restricts cursor
movement to the specified area. The resolution of the current virtual
screen defines the mInimum and maximum values. For more informa
tion on the virtual screen, see Chapter 6, "Mouse Programming
Interface."

NOTE: If the minimum value is greater than the maximum value,
Function 8 interchanges the two values.

Examples Each of the following program fragments limits cursor movement to
the middle half of the screen (see Figure 8-2). Assume that the VMAX%

variable is the maximum virtual-screen vertical coordinate.

Cursor movement
limited to this area

Figure 8-2. Cursor movement limited to middle half of the screen.

139

PART III: MOUSE PROGRAMMING INTERFACE

140

Interpreted BASIC

110 ' Set Minimum and Maximum Vertical Cursor Position
120 Ml% - 8
130 M3% - VMAX% \ 4
140 M4% - 3 * VMAX% \ 4
150 CALL MOUSE(Ml%. M2%. M3%, M4%)

QuickBASIC

• Set Minimum and Maximum Vertical Cursor Position
i Reg.ax - 8

iReg.cx - VMAX% \ 4
iReg.dx - 3 * VMAX% \ 4
Interrupt &H33. iReg,oReg

C/QuickC

/* Set Minimum and Maxi~umVertical CUrsor
iReg.x.ax ... 8:
iReg.x.cx - vmax I 4:
fReg.x.dx -3 * vmax I 4:
in~86(Ox33. &1Reg. &oReg)~

MASM

: Set Minimum and Maximum Vertical Cursor Position
8
vmax
1
ex
1
cx

vmax I 2
2 * vmax /
vmax I 4

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 9: SET GRAPHICS CURSOR BLOCK

Call with

Returns

Ml%=9

M2% = horizontal cursor hot spot
M3% = vertical cursor hot spot
M4% = pointer to screen and cursor masks

Nothing

Description Mouse Function 9 defines the shape, color, and center of the graphics
cursor (the cursor used when your computer is in graphics mode).
Function 9 doesn't automatically display the cursor. To make the cur
sor visible, your program must call Function 1 (Show Cursor).

The cursor hot-spot values define one pixel relative to the
upper-left corner of the cursor block. Although the values within the
cursor block can range from -128 through 127, they usually range from
o through 15.

Function 9 uses the values found in the screen mask and the
cursor mask to build the cursor shape and color. To pass the screen
and cursor masks, you assign their values to an integer array (packed
2 bytes per integer). You then use the first element of the array as the
M4 % parameter in the function call.

For more information about the screen mask, the cursor mask,
and the graphics cursor hot spot, see Chapter 6, "Mouse Programming
Interface."

Examples Each of the following program fragments creates a graphics-mode
mouse cursor shaped like a hand. The hot spot is at the tip of the
extended index finger.

141

PART III: MOUSE PROGRAMMING INTERFACE

Interpreted BASIC

110 • Set Graphics Cursor Block
120 •
130 OIM CURSOR(15. 1)

140 '
141 • Screen mask
150 CURSOR(O. 0) &HElFF '1110000111111111
160 CURSOR(1. 0) == &HElFF '1110000111111111
170 CURSOR(2. 0) ... &HE1FF '1110000111111111
180 CURSOR(3. 0) ... &HElFF '1110000111111111
190 CURSOR(4. 0) ... &HElFF '1110000111111111
200 CURSOR(5. 0) - &HEOOO '1110000000000000
210 CURSOR(6. 0) om &HEOOO '1110000000000000
220 CURSOR(7. 0) .. &HEOOO '1110000000000000
230 CURSOR(8. 0) ... &HO '0000000000000000
240 CURSOR(9. 0) ... &HO '0000000000000000
250 CURSOR(10. 0) ... &HO '0000000000000000
260 CURSOR(11. 0) .. &HO '0000000000000000
270 CURSOR(12. 0) ... &HO '0000000000000000
280 CURSOR(13, 0) ... &HO '0000000000000000
290 CURSOR(14. 0) = &HO '0000000000000000
300 CURSOR(15. 0) -&HO '0000000000000000
310 •
312 ' Cursor mask
320 CURSOR(O. 1) ... &H1EOO '0001111000000000
330 CURSOR(1. 1) ... &H1200 '0001001000000000
340 CURSOR(2. 1) ... &H1200 '0001001000000000
350 CURSOR(3. 1) ... &H1200 '0001001000000000
360 CURSOR(4. 1) co &H1200 '0001001000000000
370 CURSOR(5. 1) ... &H13FF '0001001111111111
380 CURSOR(6. 1) .. &H1249 '0001001001001001,
390 CURSOR(7. 1)' ... &H1249 '0001001001001001
400 CURSOR(S. 1) ... &HF249 '1111001001001001
410 CURSOR(9, 1) ... &H9001 '1001000000000001
420 CURSOR(10. 1) ... &H9001 '1001000000000001
430 CURSOR(11. 1) ... &H9001 '1001000000000001
440 CURSOR{12. 1) ... &H8001 '1000000000000001
450 CURSOR(13. 1) -&HS001 '1000000000000001
460 CURSOR(14. 1) ... &H8001 '1000000000000001
470 CURSOR(15, 1) ... &HFFFF '1111111111111111
480 '
490 M1% -9
500M2% ... 5 'Horiiontal hot spot.
510 M3%= 0 'Vertical hotspot .
520 M4% .. VARPOINTER{CURSOR(O,O» 'Versions 6:2~and later
530 CALL MOUSE(M1%i M2%. M3%. M4%)

142

Chapter 8: Mouse Function Calls

QuickBASIC

, Set Graphics Cursor Block

, Build the masks
FOR i - 1 TO 32

READ wrd%
mask$ - mask$ + MKI$(wrd%)

NEXT i

, Set Graphics Cursor Block
i Reg. ax = 9
i Reg. bx ... 5 'Horizontal hot spot
iReg.cx - 0 'Vertical hot spot
iReg.dx = SADD(mask$) 'Pointer to screen and
Interrupt &H33. iReg. oReg

DATA &HE1FF REM 1110000111111111
DATA &HEl FF REM 1110000111111111
DATA &HElFF REM 1110000111111111
DATA &HElFF REM 1110000111111111
DATA &HEl FF REM 1110000111111111
DATA &HEOOO REM 1110000000000000
DATA &HEOOO REM 1110000000000000
DATA &HEOOO REM 1110000000000000
DATA &HOOOO REM 0000000000000000
DATA &HOOOO REM 0000000000000000
DATA &HOOOO REM 0000000000000000
DATA &HOOOO REM 0000000000000000
DATA &HOOOO REM 0000000000000000
DATA &HOOOO REM 0000000000000000
DATA &HOOOO REM 0000000000000000
DATA &HOOOO REM 0000000000000000

DATA &HlEOO REM 0001111000000000
DATA &H1200 REM 0001001000000000
DATA &H1200 REM 0001001000000000
DATA &H1200 REM 0001001000000000
DATA &H1200 REM 0001001000000000
DATA &H13FF REM 0001001111111111
DATA &H1249 REM 0001001001001001
DATA &H1249 REM 0001001001001001
DATA &HF249 REM 1111001001001001
DATA &H9001 REM 1001000000000001
DATA &H9001 REM 1001000000000001

cursor masks

(continued)

143

PART III: MOUSE PROGRAMMING INTERFACE

continued

DATA &H9001 REM 1001000000000001
DATA &H8001 REM 1000000000000001
DATA &H8001 REM 1000000000000001
DATA &H8001 REM 1000000000000001
DATA &HFFFF REM 1111111111111111

C/QuickC

/* Set Graphics Cursor Block */

static int masks_hand[] -

/* screen mask */

OxElFF. /* 1110000111111111 */

OxE1FF. /* 1110000111111111 */

OxElFF • /* 1110000111111111 */

OxElFF • 1* 1110000111111111 */

OxElFF . /* 1110000111111111 */

OxEOOO. 1* 1110000000000000 */

OxEOOO. /* 1110000000000000 */

OxEOOO. /* 1110000000000000 */

OxOOOO. /* 0000000000000000 */

OxOOOO. /* 0000000000000000 */

OxOOOO. /* 0000000000000000 */

OxOOOO. 1* 0000000000000000 */
OxOOOO. /* 0000000000000000 */

OxOOOO. /* 0000000000000000 */

OxOOOO. 1* 0000000000000000 */

OxOOOO. /* 0000000000000000 */

/* cursor mask */

Ox1EOO. /* 0001111000000000 */

Ox1200. 1* 0001001000000000 */
Ox1200. /* 0001001000000000 */

Ox1200. /* 0001001000000000 */
Ox1200. /* 0001001000000000 */

Ox13FF. /* 0001001111111111 */

Ox1249. /* 0001001001001001 */

Ox1249. /*0001001001001001 */

(continued)

144

Chapter 8: Mouse Function Calls

continued

OxF249. /* 1111001001001001 */
Ox9001. /* 1001000000000001 */
Ox9001, /* 1001000000000001 */

Ox9001. /* 1001000000000001 */
Ox8001. /* 1000000000000001 */
Ox8001, /* 1000000000000001 */
Ox8001. /* 1000000000000001 */
OxFFFF /* 1111111111111111 */
} :

/* Set Graphics Cursor Block */
iReg.x.ax - 9:
1Reg.x.bx - 5:
iReg.x.cx - 0:

/* Horizontal hot spot *}

/* Vertical hot spot */
iReg.x.dx - (int) masks_hand:
segread(&segregs);

/* Table offset into OX */

segregs.es - segregs.ds; /* Table segment into ES */
int86x(Ox33, &iReg. &oReg, &segregs):

MASM

: Set Graphics Cursor Block

hand dw OElFFh 1110000111111111
dw OElFFh 1110000111111111
dw OElFFh 1110000111111111
dw OElFFh 1110000111111111
dw OElFFh 1110000111111111
dw OEOOOh 1110000000000000
dw .0EOOOh 1110000000000000
dw OEOOOh 1110000000000000
dw OOOOOh 0000000000000000
dw OOOOOh 0000000000000000
dw OOOOOh 0000000000000000
dw OOOOOh 0000000000000000
dw OOOOOh 0000000000000000
dw OOOOOh 0000000000000000
dw OOOOOh 0000000000000000
dw OOOOOh 0000000000000000

(continued)

145

PART III: MOUSE PROGRAMMING INTERFACE

continued

146

dw OlEOOh 0001111000000000
dw 01200h 0001001000000000
dw 01200h 0001001000000000
dw 01200h 0001001000000000
dw 01200h 0001001000000000
dw 013FFh 0001001111111111
dw 01249h 0001001001001001
dw 01249h 0001001001001001
dw OF249h 1111001001001001
dw 09001h 1001000000000001
dw 09001h 1001000000000001
dw 09001h 1001000000000001
dw 08001h 1000000000000001
dw 08001h 1000000000000001
dw 08001h 1000000000000001
dw OFFFFh 1111111111111111

Set Graphics Cursor Block
mov ax,9
mov bx.5
xor eX,ex
mov dx,ds
mov es,dx
mov dX,OFFSET hand
int 33h

Hot spot. x
Hot spot. y
Be sure ES is
set same as OS
Address of bit patt~rn

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 10: SET TEXT CURSOR

Call with

Returns

Ml% = 10

M2% = cursor select
M3% = screen mask value or scan line start
M4% = cursor mask value or scan line stop

Nothing

D~scription Mouse Function 10 selects the software text cursor or the hardware
text cursor. Before your program can call Function 10, it must call
Function 1 (Show Cursor) to display the cursor.

The value of the M2 % parameter specifies which cursor you want
to select. If M2 % is 0, Function 10 selects the software text cursor. If
M2 % is 1, Function 10 selects the hardware text cursor.

If Function 10 selects the software text cursor, the M3% and M4%

parameters must specify the screen mask and the cursor mask. These
masks define the attributes of a character when the cursor is over it.
The mask values depend on the display adapter in the computer.

If Function 10 selects the hardware text cursor, the M3% and M4%

parameters must specify the line numbers of the first and last scan lines
in the cursor. These line numbers depend on the display adapter in the
computer.

NOTE: For more information on the software text cursor and the hardware
text cursor, see Chapter 6, ''Mouse Programming Interface. "

Examples Each of the following program fragments sets the software text cursor,
which inverts the foreground and background colors:

Interpreted BASIC

110 • Set Text Cursor
120 M1% -= 10
130 M2% - 0 'Select software text cursor
140 M3% - &HFFFF 'Screen mask
150 M4% = &H7700 'Cursor mask
160 CALL MOUSE(M1%. M2%. M3%. M4%)

147

PART III: MOUSE PROGRAMMING INTERFACE

148

QuickBASIC

'Set Text Cursor
iReg.ax'" 10
iReg.bx ... 0
iReg.cx- &HFFFF
i Reg. dx - &H7700
Interrupt &H33, iReg, oReg

C/QuickC

/* Set Text Cursor */

iReg.x.ax - 10;
iReg.x.bx == 0:
iReg.x.cx - OxFFFF:
iReg.x.dx - Ox7700;
int86(Ox33. &;Reg. &oReg):

MASM

: Set Text Cursor
mov ax.10
xor bX,bx
mov cX,OFFFFh
mov dx.7700h
int 33h

'Select software text cursor
'Screen mask
'Cursor mask

/* Select software text cursor */
/* Screen mask */
/* Cursor mask */

Select software text cursor
Screen mask
Cursor mask

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 11: READ MOUSE MOTION COUNTERS

Call with

Returns

Ml% = 11

M3% = horizontal mickey count
M4% = vertical mickey count

Description Mouse Function 11 returns the horizontal and vertical mickey count
since your program last called this function. The mickey count is the
distance that the mouse has moved, in 1/2oo-inch increments. For more
information on the mickey, see Chapter 6, "Mouse Programming
Interface.' ,

The mickey count always ranges from -32768 through 32767. A
positive horizontal count indicates motion to the right, whereas a nega
tive horizontal count indicates motion to the left. A positive vertical
count indicates motion t6·the bottom of the screen, whereas a negative
vertical count indicates motion to the top of the screen.

Function 11 ignores overflow, and it sets the mickey count to 0

after the call is completed.

Examples Each of the following program fragments returns the horizontal and
vertical mickey counts since your program last called this function:

Interpreted BASIC

100' Read Mouse Motion Counters
110 '
120 M1% ... 11
130 CAll MOUSE(M1%. M2%. M3%. M4%)
140 '
150 PRINT "Horizontal mickey count: ": M3%
160 PRINT "Vertical mickey count: ". M4%

QuickBASIC

, Read Mouse Motion Counters
i Reg. ax - 11
Interrupt&H33. iReg. oReg

PRINT "Horizontal mickey count: "; oReg.cx
"; oReg.dx

149

PART III: MOUSE PROGRAMMING INTERFACE

150

C/QuickC

/* Read Mouse Motion Counters */
1 Reg. x. ax ... 11;
int86(Ox33, &iReg, &oReg);

printf("Horizontal mickey count: %d\n", oReg.x.cx);
printf("Vert1cal mickey count: %d\n", oReg.x.dx);

MASM

Mouse Motion Counters
movax.ll
int 33h

mov mickey_x,cx
mov mickeY-y,dx

Ml% ... 11

Horizontal mickeys
Vertical mickeys

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 12:
SET INTERRUPT SUBROUTINE CALL MASK AND ADDRESS

Call with Ml% = 12

M3% = call mask
M4% = subroutine address

Returns Nothing

Description Mouse Function 12 sets the call mask and the subroutine address for
mouse hardware interrupts.

A mouse hardware interrupt stops your program's execution and
calls the specified subroutine whenever one or more of the conditions
defined by the call mask occurs. When the subroutine ends, your pro
gram continues execution at the point of interruption.

The call mask is a single-integer value that defines which condi
tions cause an interrupt. Each bit in the call mask corresponds to a
specific condition, as shown in the following table:

Mask Bit

o
1
2
3
4
5-15

Condition

Cursor position changed
Left button pressed
Left button released
Right button pressed
Right button released
Not used

To enable the subroutine for a given condition, set the corre
sponding call mask bit to 1 and pass the mask as the M3% parameter.

To disable the subroutine for a given condition, set the corre
sponding bit to 0 and pass the mask as the M3% parameter.

Your program can set any combination of one or more bits in the
call mask. When anyone of the indicated conditions is detected, the
mouse hardware interrupt calls the subroutine. The subroutine deter
mines which condition occurred by inspecting the bits passed in the
ex register. The indicated conditions are ignored when you set the
value of the call mask bits to o.

151

PART III: MOUSE PROGRAMMING INTERFACE

A call to Function 0 sets the call mask to o.
Before your program ends, be sure it sets the interrupt call mask

to o. (This is handled automatically if your program calls Mouse Func
tion 0.) If the call mask and subroutine remain defined when the pro
gram is no longer running, the subroutine will still execute if one of
the conditions defined by the call mask occurs.

When the mouse software makes a call to the subroutine, it loads
the following information into the microprocessor's registers:

Register

AX

BX

CX
DX
SI
DI

Information

Condition mask (similar to the call mask except that a bit
is set only if the condition occurs)

Button state

Horizontal cursor coordinate

Vertical cursor coordinate

Horizontal mouse counts (mickeys)

Vertical mouse counts (mickeys)

NOTE: The DS register, which contains the mouse driver data segment, is
missingfrom this list. The interrupt subroutine is responsible for setting the DS

register as needed. Because the mouse driver loads the hardware registers directly,
we recommend that you use assembly language to create your Function 12 routine
so that registers can be manipulated easily.

Using Function 12 from Within Programs

152

To Use Function 12 with interpreted BASIC programs,

1. Load an assembly-language subroutine into the BASIC
interpreter's data segment. All exits from the subroutine must
use a FAR return instruction.

2. Pass the subroutine's entry address to Function 12 as the fourth
parameter (M4 %) .

To use Function 12 with QuickBASIC programs,

1. Load an assembly-language subroutine into QuickBASIC's data
segment. You can load the subroutine into a string or into a
COMMON array.

2. Pass the subroutine's address to Function 12 as the fourth
parameter (M4%). TheVARPTRfunction returns the address of
an array.

Chapter 8: Mouse Function Calls

To use Function 12 with C or QuickC programs,

l. Use the appropriate mouse call for the memory model of your
program. Use cmouses for small-model programs, use cmousec
for compact-model programs, use cmousem for medium-model
programs, and use cmousel for large-model and huge-model
programs.

2. Pass the offset part of the subroutine's address in the fourth
parameter (M4%). If you want to directly call the mouse inter
rupt, place the segment part of the address in the ES register.

To use Function 12 with MASM programs,

l. Move the segment of the subroutine into the ES register, the
offset into the DX register, the call mask into the ex register,
and the mouse function number (12) into the AX register.

Examples Each of the following short programs calls Function 12 to activate an
interrupt-driven subroutine for the mouse. When you press the right
mouse button, the mouse cursor moves to the upper-left corner of the
screen.

Interpreted BASIC

100 ' Set Interrupt Subroutine Call Mask and Address
110 '
120 ' Determine mouse interrupt address
130 OEF SEG - 0
140 MOUSEG = 256 * PEEK(207) + PEEK(206)
150 MOUSE - 256 * PEEK(205) + PEEK(204) + 2
160 OEF SEG - MOUSEG
170 '
180 'Mouse Reset and Status
190 Ml% - 0
200 CALL MOUSE(M1%. M2%. M3%. M4%)
210 '
220 ' Sh~w Cursor
230 M1% - 1
240 CALL MOUSE(Ml%. M2%. M3%. M4%)
250 '
260 ' Build interrupt-driven subroutine to activate Function 12
270 DIM MSUB%(5)
280 MSUB%(O) - &H4B8 , Subroutine··isfrom this code ...

(continued)

153

PART III: MOUSE PROGRAMMING INTERFACE

continued

290 MSUB%(l) - &HB900
300 MSUB%(2) = &HO
310 MSUB%(3) - &HBA
320 MSUB%(4) - &HCDOO
330 MSUB%(S) = &HCB33
340 '

MOV AX.4
MOV CX,O

/' MOV DX,O
INT 33h
RETF

Function 4. Set Mouse Cursor
Left edge of screen
T~p edge of screen
Mouse interrupt
Return to BASIC

350 ' Set Interrupt Subroutine Call Mask and Address
360 M1% = 12 ' Mouse Function 12
370 M3% - 8 ' Interrupt when right button pressed
380 CALL MOUSE(M1%. M2%. M3%. MSUB%(O» • Mouse driver versions before 6~25
390 ' M4% - VARPTR(MSUB%(O» , Mouse driver versions 6.25 and later
400 • CALL MOUSE(M1%. M2%. M3%. M4%) • Mouse driver versions 6.25 and later
410 '
420 ' Loop until key press. allowing mouse testing
430 IF INKEY$="" THEN GOT a 410
440 '
450 ' Reset the mouse to deactivate the interrupt
460 M1% = 0
470 CALL MOUSE(Ml%, M2%. M3%. M4%)
480 '
490 END

QuickBASIC

I Set Interrupt Subroutine Call Mask and Address

DEFINT A-Z

TYPE RegType
ax AS INTEGER
bx AS INTEGER
cx AS INTEGER
dx AS INTEGER
bp AS INTEGER
s1 AS INTEGER
di AS INTEGER
fl ags AS INTEGER

END TYPE

DECLARE SUB Interrupt (intnum%. iReg AS RegType. oRegAS RegType)

DIM iReg AS RegType
DIMoReg AS RegType

154

(continued)

Chapter 8: Mouse Function Calls

continued

, Build interrupt-driven subroutine to activate Function 12
DIM msub%(5)
COMMON msub%()
msub%(O) - &H4B8
msub%(l) = &HB900
msub%(2) - &HO
msub%(3) - &HBA
msub%(4) - &HCDOO
msub%(S) - &HCB33

• Subroutine

, Mouse Reset and Status
iReg.ax ... 0
Interrupt &H33. iReg. oReg

, Show Cursor
i Reg. ax - 1
Interrupt &H33, iReg, oReg

MOV AX.4
MOV CX.O
MOV DX.O
INT 33h
RETF

is from this code ...
Function 4, Set Mouse
Left edge of screen
Top edge of screen
Mouse interrupt
Return to QuickBASIC

• Set Interrupt Subroutine Call Mask and Address
i Reg. ax - 12
iReg.cx - 8 • Interrupt when right button pressed
iReg.dx - VARPTR(msub%(O»
Interrupt &H33. iReg. oReg

, Wait until any key is pressed
DO
LOOP WHILE INKEY$ - ""

, Reset mouse to deactivate the interrupt
iReg.ax"" 0
Interrupt &H33, iReg. oReg

END

C/QuickC

/* Set Interrupt Subroutine Call Mask and Address *!

#include <dos.h>
#include <conio.h>

union REGS iReg.oReg:
struct SREGS segregs;

Cursor

(continued)

155

PART III: MOUSE PROGRAMMING INTERFACE

continued

/* This is the sub to be activated with the right mouse button */
void msub()
(

iReg.x.ax = 4; /* Function 4: Set Mouse Cursor
iReg.x.cx - 0: 1* Left edge of screen */
iReg.x.dx ... 0; 1* Top edge of screen *1

*/

int86(Ox33. &iReg. &oReg) : /* Moves cursor to upper-left corner */

maine)
{

printf("\n\n\nDemonstration of mouse Function 12 ... \0"):
priotf("Press any key to quit\n"):

1* Mouse Reset and Status *1
iReg.x.ax - 0;
fnt86(Ox33. &iReg. &oReg);

/* Show Cursor */
iReg.x.ax - 1:
lnt86{Ox33. &iReg. &oReg);

1* Set Interrupt Subroutine Call Mask and Address *1
lReg.x.ax = 12; /* Mouse Function 12 is called */
iReg.x.cx - 8; 1* when right button is pressed *1
iReg.x.dx'" (int) msub; /* Offset of msub() into DX *1
segregs.es= «long) msub) »16: 1* Segment of msub(} into ES*/
int86x(Ox33. &iReg, &oReg, &segregs):

1* Wait for a key press */
getch();

1* Reset the mouse to deactivate the interrupt *1
iReg.x.ax == 0;
int86(Ox33. &iReg. &oReg);

MASM

Set Interrupt Subroutine Call Mask and Address

.MODEL LARGE

. STACK 100h

.CODE

156
(continued)

Chapter 8: Mouse Function Calls

continued

; This is the subroutine activated by the right mouse button
msub PROC

mov aX,4 Function 4, Set Mouse
xor cx,cx Left edge of screen
mov dx,cx Top edge of screen
int 33h Move the cursor
ret

msub ENDP

; Set up OS for the data segment
start: mov aX,@DATA

mov dS,ax

: Mouse Reset and Status
xor aX,ax
int 33h

; Show Cursor
mov aX,1
int 33h

; Set Interrupt Subroutine Call Mask and Address
mov aX,SEG msub
mov eS,ax Offset of sub into ES
mov ax .12 Mouse Function 12

Cursor

mov cx.B Interrupt when right button
mov dX,OFFSET msub Segment of sub into OX
int 33h

; Wait for a key press. allowing testing of mouse
mov ah,B
int 21h

: Reset the mouse to deactivate the interrupt
xor ax. ax
int 33h

; Exit to MS-DOS
mov ax.4COOH
int 21h

END start

Exit no error

released

157

PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 13: LIGHT PEN EMULATION MODE ON

Call with M1% = 13

Returns Nothing

Description Mouse Function 13 lets the mouse emulate a light pen. After your pro
gram calls Function 13, calls to the PEN function return the cursor posi
tion at the last pen down.

The mouse buttons control the pen down and pen off the screen
states. The pen is down when you press both mouse buttons. The pen is
off the screen when you release either mouse button.

The mouse software enables the light pen emulation mode after
each reset (Function 0).

Examples Each of the following program fragments enables the light pen emula
tion mode:

158

Interpreted BASIC

110 ' Light Pen Emulation Mode On
120 M1% 13
130 CALL MOUSE(M1%. M2%. M3%. M4%)

QuickBASIC

• Light Pen Emulation Mode On
iReg.ax - 13
Interrupt &H33. iReg. oReg

C/QuickC

/* light Pen Emulation Mode On */
iReg.x.ax -13:
int86(ox33. &iReg. &oReg):

MASM

: light Pen Emulation Mode On
mov ax.13
int 33h

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 14: LIGHT PEN EMULATION MODE OFF

Call with M1% = 14

Returns Nothing

Description Mouse Function 14 disables light pen emulation. After your program
calls Function 14, calls to the PEN function return information about
the light pen only.

If a program uses both a light pen and a mouse, the program
must disable the mouse light pen emulation mode to work correctly.

Examples Each of the following program fragments disables the light pen emula
tion mode:

Interpreted BASIC

110 • Light Pen Emulation Mode Off
120 M1% - 14
130 CALL MOUSE(M1%. M2%. M3%. M4%)

QuickBASIC

t Light Pen Emulation Mode Off
iReg.ax - 14
Interrupt &H33, iReg. oReg

C/QuickC

1* Lig~t Pen Emulation Mode Off *1
iReg,x.ax ... 14;
int86(Ox33, &;Reg. &oReg);

MASM

; Light Pen Emulation Mode Off
. mov ax.14

int 33h

159

PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 15: SET MICKEY/PIXEL RATIO

Call with

Returns

Ml% = 15

M3% = horizontal mickey/pixel ratio
M4% = vertical mickey/pixel ratio

Nothing

Description Mouse Function 15 sets the mickey-to-pixel ratio for horizontal and ver
tical mouse motion. The ratios specify the number of mickeys for every
8 virtual-screen pixels. The values must range from 1 through 32767. For
more information on the mickey, see Chapter 6, "Mouse Programming
Interface."

The default value for the horizontal ratio is 8 mickeys to 8 virtual
screen pixels'. The default value for the vertical ratio is 16 mickeys to 8

virtual-screen pixels.
Later in this chapter, you'll see that Mouse Function 26 (Set

Mouse Sensitivity) combines Function 15 and Function 19 (Set Double
Speed Threshold) so that you can set the mouse-sensitivity parameters
in one function call instead of two.

Examples Each of the following program fragments sets the mickey-to-pixel hori
zontal ratio to 16 to 8 and the vertical ratio to 32 to 8. This sets the cur
sor at half speed.

160

Interpreted BASIC

lID' Set Mickey/Pixel Ratio
120 Ml% ... 15
130 M3% - 16 'Horizontal ratio
140 M4% = 32 'Vertical ratio
150 CALL MOUSE(Ml%. M2%. M3%, M4%)

QuickBASIC

, Set Mickey/Pixel Ratio
iReg.ax'" 15
iReg.cx - 16 'Horizontal ratio.
iReg.dx = 32 ·'.Vertical ratio
Interrupt &H33. iReg.oReg

C/QuickC

/* Set Mickey/Pixel Ratio */
iReg.x.ax "" IS;
iReg.x.cx - 16;
iReg.x.dx - 32;
int86(Ox33, &iReg, &oReg);

MASM

; Set Mickey/Pixel Ratio
mov ax,15
mov cx,16
mov dx,32
int 33h

Chapter 8: Mouse Function Calls

/* Horizontal ratio */
/* Vertical ratio */

;Horizontal ratio
;Vertical ratio

161

PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 16: CONDITIONAL OFF

Call with Ml% = 16

M4% = address of the region array

Returns Nothing

Description Mouse Function 16 defines a region on the screen that you want to
update. If the mouse cursor is in the defined region or moves into it,
Function 16 hides the cursor during the updating process. When Func
tion 16 ends, your program must call Function 1 (Show Cursor) to
redisplay the cursor.

Function 16 defines a region by placing the screen-coordinate
values in a four-element array. The following table defines the elements
of the array:

Array
Offset

1
2
3
4

Value

Left x-screen coordinate
Top y-screen coordinate
Right x-screen coordinate
Bottom y-screen coordinate

Function 16 is similar to Function 2 (Hide Cursor), but you can
use Function 16 for advanced applications that require faster screen
updates.

Examples Each of the following program fragments hides the cursor if it moves
into the upper-left corner of the screen.

162

In the QuickBASIC, C/QuickC, and MASM examples, notice that
the register parameters are set directly when you use Interrupt 33H.

Compare this with the interpreted BASIC example, which passes the
address of an integer array that defines the region.

Chapter 8: Mouse Function Calls

Interpreted BASIC

200 ' Conditional Off
210 '
220 DIM REGION%(4)
230 REGION%(O) - 0
240 REGION%(1) - 0
250 REGION%(2) - 64
260 REGION%(3) - 20
270 M1% - 16
280 M4% - VARPOINTER (REGION%(O» 'Versions6.25andlater
290 CALL MOUSE(Ml%. M2%. M3%. M4%)

QuickBASIC

• Conditional Off
iReg.ax - 16
iReg.ex - 0
i Reg .dx - 0
iReg.si = 64
i Reg. di - 20
Interrupt &H33. iReg. oReg

C/QuickC

/* Conditional Off */
iReg.x.ax - 16:
i Reg. x. ex - 0;
iReg.x.dx = 0:
iReg.x.si - 64;
iReg.x.di - 20;
int86(Ox33, &iReg. &oReg);

MASM

; Conditional Off
moy ax.16
xor eX,ex
moy dx.ex
moy si.64
moy di.20
int 33h

Left x
Upper y
Right x
Lower y

, Left x
, Upper y
, Right x
, Lower y

/* Left x */
/* Upper y */
/* Right x */
/* Lower y */

163

PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 19:
SET DOUBLE-SPEED THRESHOLD

Call with Ml% = 19

M4% = threshold speed in mickeys per second

Returns Nothing

Description Mouse Function 19 sets the threshold speed for doubling the cursor's
motion on the screen. This function makes it easier for you to point the
cursor at images that are far apart on the screen.

The M4% parameter defines the mouse's threshold speed. If you
specify a value ofo or if your program calls Function 0 (Mouse Reset
and Status) or Function 33 (Software Reset) to reset the mouse, Func
tion 19 assigns a default value of 64 mickeys per second. If you move the
mouse faster than the value of the M4 % parameter, cursor motion
doubles in speed. The threshold speed remains set until your program
calls Function 19 again or until Function 0 resets the mouse.

Once your program turns on the speed-doubling feature, this fea
ture is always on, but your program can effectively turn off this feature
by calling Function 19 again and setting the M4 % parameter to a speed
faster than the mouse can physically move (for example, 10000 mickeys
per second) .

Later in this chapter, you'll see that Mouse Function 26 (Set
Mouse Sensitivity) combines Function 15 (Set Mickey jPixel Ratio) and
Function 19 so that you can set the mouse-sensitivity parameters in one
function call instead of two.

Examples Each of the following program fragments sets the double-speed
threshold to 32 mickeys per second. Later, it sets the threshold to a
value that effectively turns off speed doubling.

164

Interpreted BASIC

110 ' Set Double-Speed Threshold
120 M1% ... 19
130 M4% ... 32
140 CALL MOUSE(M1%. M2%. M3%. M4%)

220 M1% - 19
230 M4% .,. 10000
240 CALL MOUSE(M1%. M2%. M3%. M4%)

QuickBASIC

, Set Double-Speed Threshold
iReg.ax = 19
iReg.dx - 32
Interrupt &H33. iReg. oReg

iReg.ax """ 19
iReg.dx '" 10000
Interrupt &H33. iReg. oReg

C/QuickC

/* Set Double-Speed Threshold */
iReg.x.ax = 19;
iReg.x.dx - 32:
int86(Ox33. &iReg. &oReg):

iReg.x.ax"" 19;
iReg.x.dx = 10000;
int86(Ox33. &iReg. &oReg);

Chapter 8: Mouse Function Calls

165

PART III: MOUSE PROGRAMMING INTERFACE

166

MASM

: Set Double-Speed Threshold
movax.19
mov dx.32
int 33h

mov ax.19
mov dx.l0000
int 33h

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 20: SWAP INTERRUPT SUBROUTINES

Call with

Returns

Ml% = 20
M2% = segment of new subroutine
M3% = new call mask
M4% = offset of new subroutine

M2% = segment of old subroutine
M3% = old call mask
M4% = offset of old subroutine

Description Mouse Function 20 sets new values for the call mask and the subroutine
address for mouse hardware interrupts. It also returns the values that
you previously specified.

A mouse hardware interrupt stops your program's execution and
calls the specified subroutine whenever one or more of the conditions
defined by the call mask occurs. When the subroutine ends, your pro
gram continues execution at the point of interruption.

The call mask is an integer value that defines which conditions
cause an interrupt. Each bit in the call mask corresponds to a specific
condition, as shown in the following table:

Mask Bit

o
1
2
3
4
5-15

Condition

Cursor position changed
Left button pressed
Left button released
Right button pressed
Right button released
Not used

To enable the subroutine for a given condition, set the corre
sponding call mask bit to 1 and pass the mask as the M3 % parameter.

To disable the subroutine for a given condition, set the corre
sponding bit to 0 and pass the mask as the M3 % parameter.

Your program can set any combination of one or more bits in the
call mask. When anyone of the indicated conditions is detected, the
mouse hardware interrupt calls the subroutine. The subroutine deter
mines which condition occurred by inspecting the bits passed in the
ex register. The indicated conditions are ignored when you set the
value of the call mask bits to o.

167

PART III: MOUSE PROGRAMMING INTERFACE

Before your program ends, be sure to restore the initial values of
the call mask and the subroutine address by calling Function O.

When the mouse software makes a call to the subroutine, it loads
the following information into the central processing unit's registers:

Register

AX

BX

ex
DX
SI

DI

Information

Condition mask (similar to the call mask except that a
bit is set only if the condition occurs)

Button state

Horizontal cursor coordinate

Vertical cursor coordinate

Horizontal mouse counts (mickeys)

Vertical mouse counts (mickeys)

NOTE: The DS register, which contains the mouse driver data segments, is
missing from this list. The interrupt subroutine is responsible for setting the DS

register as needed. Because the mouse driver loads the hardware directly, we recom
mend that you use assembly language to create your Function 20 routine so that
registers can be manipulated easily.

Using Function 20 from Within Programs

168

To use Function 20 with interpreted BASIC programs,

1. Load an assembly-language subroutine into the BASIC
interpreter's data segment. All exits from the subroutine Inust
use a FAR return instruction.

2. Pass the subroutine's entry address to Function 20 as the fourth
parameter (M4%).

3. Pass 0 in the second parameter (M2 %). This is a signal to the
mouse driver that the subroutine is in BASIC's data segment.

To use Function 20 with QuickBASIC programs,

1. Load an assembly-language subroutine into QuickBASIC's data
segment. You can load the subroutine into a string or into a
COMMON array.

2. Pass the subroutine's address to Function 20 as the fourth
parameter (M4%). The VARPTR function returns the address of
an array.

Chapter 8: Mouse Function Calls

3. Pass the segment of the subroutine in the second parameter
(M2 %). The VARSEG function returns the segment of any Quick
BASIC variable.

To use Function 20 with C or QuickC programs,

1. Use the appropriate mouse call for the memory model of your
program. Use cmouses for small-model programs, use cmousec
for compact-model programs, use cmousem for medium-model
programs, or use cmousel for large-model and huge-model
programs.

2. Pass the offset part of the subroutine's address in the fourth
parameter (M4%).

3. Pass the segment part of the subroutine's address in the second
parameter (M2%).

To use Function 20 with MASM programs,

1. Move the segment of the subroutine into the BX register, the
offset into the DX register, the call mask into the cx register,
and the mouse function number (20) into the AX register.

Examples Each of the following program fragments swaps a new interrupt sub
routine with the current subroutine. The mouse hardware interrupt
calls the new subroutine when you release the left mouse button. The
subroutine moves the mouse cursor to the middle of the screen.

Interpreted BASIC

100 ' Swap Interrupt Subroutines

290 ' Build replacement subroutine to activate Function 20
300 DIM MSUB2%(5)

, Subroutine is from this code ... 310 MSUB2%(0) - &H4B8
320 MSUB2%(l) - &HB900
330 MSUB2%(2) - &H140
340 MSUB2%(3)= &H64BA

MOV AX.4 Function 4, Set Mouse Cursor
MOV CX.320 Middle of screen
MOV DX.100 Middle of screen

(continued)

169

PART III: MOUSE PROGRAMMING INTERFACE

continued

350 MSUB2%(4)- &HCDOO
360 MSUB2%(S) - &HCB33

540 ' Swap Interrupt Subroutines

INT 33h
RETF

Mouse Interrupt
Return to BASIC

550 Ml% - 20 ' Mouse Function 20
560 M2% - 0 ' Use BASIC data segment
570 M3% - 4 • Interrupt when left button released
579 'Use lines 580-590 for mouse driver versions 6.25 and later
580 M4% - VARPTR(MSUB2%(O»
590 CALL MOUSE(MI%. M2%. M3%. M4%)
599 ' Use lines 600-620 for mouse driver versions before 6.25
600 'MTEMP% - MSUB2%(O)
610 'CALL MOUSE(MI%. M2%. M3%. MSUB2%(0»
620 'MSUB2%(O) - MTEMP%

QuickBASIC

, Swap Interrupt Subroutines

OIM msub2%(S)
COMMON msub2%()

, Build interrupt driven subroutine to activate Function 20
msub2%(0) - &H4B8 ' Subroutine is from this code ...
msub2%(I) - &HB900 MOV AX,4 Function 4, Set Mouse Cursor
msub2%(2) - &H140 MOVCX.320 Middle of .screen
msub2%(3) - &H64BA MOV OX.IOO Middle of screen
msub2%(4) -&HCDOO INT 33h Mouse Intefrupt
msub2%(S) - &HCB33 RETF Return to QuickBASIC

• Swap Interrupt Subroutines
iRegx.ax - 20 • Mouse Function 20
iRegx.es- VARSEG(msub2%(0) , Segment of msub2
iRegx.cx- 4 ' Interrupt ~hen left button released
iRegx.dx - VARPTR(msub2%(0» · Offset ofmsub2
Interruptx &H33. iRegx. oReQx

170

Chapter 8: Mouse Function Calls

C/QuickC

1* Swap Interrupt Subroutines *1

1* This is the replacement subroutine for Function 20 *1
void msub2()
(

iReg.x.ax "" 4; 1* Function 4: Set Mouse Curs'or *1
iReg.x.cx - 320; 1* Middle of screen *1
iReg.x.dx ... 100; 1* Middle of screen *1
int86(Ox33. &iReg. &oReg) : 1* Moves cursor to upper-left corner *1

1* Swap Interrupt Subroutine *1
iReg.x.ax ... 20; 1* Mouse Function 20 *1
iReg.x.cx - 4; 1* When left button is released *1
iReg.x.dx - (int) msub2; 1* Offset of msub2() into OX *1
segregs.es ... «long) msub2) » 16: /* Segment of msub2() into ES */
int86x(Ox33. &iReg. &oReg, &segregs):

MASM

Swap Interrupt Subroutines

; This is the replacement subroutine for Function 20
msub2 PROC

mov ax,4 Function 4. Set Mouse Cursor
mov cx.320 Middle of screen
mov dx,lOO Middle of screen
i nt 33h Move the cursor
ret

msub2 ENOP

(continued)

171

PART III: MOUSE PROGRAMMING INTERFACE

continued

172

Swap Interrupt Subroutines
mov ax.20 '
mov bx.SEG msub2
moves.bx
as~umees:noth1ng
mov cx.4
mov dX.OFFSET msub2
int 33h

Mouse Function 20
: Segment of sub into BX

Interrupt when left button released
Offset of sub into OX

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 21:
GET MOUSE DRIVER STATE STORAGE REQUIREMENTS

Call with M1% = 21

Returns M2% = buffer size required to save the mouse driver state

Description Mouse Function 21 returns the size of the buffer required to store the
current state of the mouse driver. You can use this function with Func
tions 22 and 23 when you want to temporarily interrupt a program that
uses the mouse in order to execute another program that also uses the
mouse, such as the Control Panel.

Example Each of the following program fragments returns the buffer size re
quired to save the mouse driver state:

Interpreted BASIC

110 t Get Mouse Driver State Storage Requirements
120 M1% ... 21
130 CAll MOUSE(M1%. M2%. M3%. M4%)
140 BUFSIZE% = M2%

QuickBASIC

• Get Mouse Driver State Storage Requirements
iReg.ax ... 21
Interrupt &H33. iReg. oReg
bufSize% - oReg.bx

C/QuickC

1* Get Mouse Driver State Storage Requirements *1
iReg.x.ax - 21:
int86{Ox33. &iReg. &oReg):
bufsize - oReg~x.bx

173

PART III: MOUSE PROGRAMMING INTERFACE

174

MASM

: Get Mouse Driver State Storage Requirements
mov ax.21
int 33h
mov bufsize.bx

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 22: SAVE MOUSE DRIVER STATE

Call with M1% = 22
M4% = pointer to the buffer

Returns Nothing

Description Mouse Function 22 saves the current mouse driver state in a buffer allo
cated by your program. You can use this function with Functions 21

and 23 when you want to temporarily interrupt a program that uses the
mous~ in order to execute another program that also uses the mouse.

Before your program calls Function 22, it should call Function 21

to determine the buffer size required for saving the mouse driver state.
It should then allocate the appropriate amount of memory.

Examples Each of the following program fragments saves the mouse driver state
in a buffer:

Interpreted BASIC

100 DIM BUF%(lOOO)

220 •
230 • Save Mouse Driver State
240 '
250 IF BUFSIZE% > 1000 THEN PRINT "Buffer not big enough" END
260 Ml% ... 22
262 M4% - VARPTR(BUF%(O»
270 CALL MOUSE(Ml%. M2%. M3%. M4%)

QuickBASIC

• Save Mouse Driver State
buf$ - SPACE$(bufs1z%)
iReg.ax - 22
iReg:dx - SAOD(buf$)
Interrupt &H33. iReg. oReg

175

PART III: MOUSE PROGRAMMING INTERFACE

176

C/QuickC

/* Save Mouse Driver State */
if «buf - malloc(bufsize» !- NULL)

(

iReg.x.ax - 22;
iReg.x.dx = (int) buf;
segread(&segregs);

/* Buf offset into OX */

segregs.es - segregs.ds; /* Buf segment into ES */
int86x(Ox33, &iReg, &oReg. &segregs);
}

MASM

; Save Mouse Driver State
mov ax.22
mov dX,ds
moves.dx
assume es:data
mov. dX,OFFSET bUf
int 33h

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 23: RESTORE MOUSE DRIVER STATE

Call with M1% = 23

M4% = pointer to the buffer

Returns Nothing

Description Mouse Function 23 restores the last mouse driver state saved by Func
tion 22. You use this function with Functions 21 and 22 when you want
to temporarily interrupt a program that uses the mouse in order to
execute another program that also uses the mouse. To restore the
mouse driver state saved by Function 22, call Function 23 at the end of
the interrupt program.

Examples Each of the following program fragments restores the state of the
mouse driver. The buffer variable contains the state previously saved by
Function 22.

Interpreted BASIC

310 ' Restore Mouse Driver State
320 '
330 Ml% - 23
334 M4% = VARPTR(BUF%(O»
340 CAll MOUSE(Ml%. M2%. M3%. M4%)

QuickBASIC

, Restore Mouse Driver State
iReg.ax - 23
iReg.dx - SADD(buf$)
Interrupt &H33. iReg, oReg

C/QuickC

1* Restore Mouse Driver State */
i Reg. x. ax - 23:
iReg~x.dx - (int)buf;
segread(~segregs); .
segregs.es - segregs.ds;
int86x(Ox33. &iReg. &oReg.

/* Buf offset into OX */

Buf segment i~to ES:*/

177

PART III: MOUSE PROGRAMMING INTERFACE

178

MASM

: Restore Mouse Driver state
mov ax.23
mov dx.ds
moves,dx
assume es:data
mov dx.OFFSET buf
int 33h

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 24:
SET ALTERNATE SUBROUTINE CALL MASK AND ADDRESS

Call with

Returns

MI% = 24

M3% = user interrupt call mask
M4% = user subroutine address

MI % = error status (-I jf error occurred)

Description Mouse Function 24 sets the call mask and address for up to three alter-
,nate user subroutines. Function 24 differs from Function 12 in two ways.
Subroutine calls using Function 24 let the called subroutine make its
own interrupt calls, and Function 24 uses more call mask bits to provide
a wider range of detectable conditions. The new bits allow detection of
Alt, etrl, and Shift key presses when you move the mouse or press a
button.

A mouse hardware interrupt stops your program and calls the
specified subroutine whenever one or more of the conditions defined
by the call mask occurs. When the subroutine ends, your program con
tinues execution at the point of interruption.

NOTE: When bits 5 through 7 are set, they require the corresponding shift
state to be true in order for other mouse events to call the user subroutine. Unless
you set bit 5, 6, or 7, or any combination of those bits, the subroutine won't be
called.

The call mask is a single-integer value that defines which condi
tions cause an interrupt to the subroutine. Each of the first 8 bits in the
call mask corresponds to a specific mouse or keyboard condition, as
shown in the following table:

Mask Bit

o
1
2
3
4
5
6
7
8-15

Condition

Cursor position changed
Left button pressed
Left button released
Right button pressed
Right button released
Shift key pressed during button press or release
Ctrl key pressed during button press or release
Alt key pressed during button press or release
Not used

179

PART III: MOUSE PROGRAMMING INTERFACE

To call the subroutine for any of the listed conditions, set the cor
responding bit(s) in the call mask to 1 and pass the mask as the M3%
parameter. One or more of the shift-key bits (bits 5, 6, and 7) must be
set in combination with one or more of the mouse activity bits (bits 0

through 4) to allow activation of the user subroutine.
To disable the subroutine for any of the listed conditions, set the

corresponding bit(s) in the call mask to 0 and pass the mask as the M3%
parameter. Failure to reset the mask results in the subroutine's execu
tion whenever the last specified mouse or keyboard condition occurs.

NOTE: None of the mouse driver versions clears the call mask when Func
tion 0 or Function 33 is called. (The only way to reset a mask created by using
Function 24 is to use another Function 24 call with the mouse activity bits portion
of the mask set to all zeros.) To work around this problem, useFunction 20 instead
of Function 24 to swap your interrupt subroutine into place. Before your program
exits, swap the original call address back into place.

Register

AX

BX

ex
DX
SI

DI

Information

Condition mask. (Similar to the call mask except that a
bit is set only if the condition has occurred. Also, only
mouse action bits 0 through 4 are affected, and shift-key
bits 5 through 15 are always set to 0.)

Button state

Horizontal cursor coordinate

Vertical cursor coordinate

Horizontal mouse counts (mickeys)

Vertical mouse counts (mickeys)

NOTE: The DS register, which contains the mouse driver data segment, is
missingfrom this list. The interrupt subroutine is responsible for setting the DS

register as needed. Because the mouse driver works directly with the hardware, we
recommend that you use assembly language to create your Function 24 routine so
that registers can be manipulated easily.

USing Function 24 from Within Programs

180

To use Function 24 with interpreted BASIC programs,

1. Load an assembly-language subroutine into the BASIC inter
preter's data segment. All exits from the subroutine must use a
FAR return instruction.

2. Pass the subroutine's entry address to Function 24 as the fourth
parameter (M4%).

Chapter 8: Mouse Function Calls

To use Function 24 with QuickBASIC programs,

1. Load an assembly-language subroutine into QuickBASIC's data
segment. You can load the subroutine into a string or into a
COMMON array.

2. Pass the subroutine's address to Function 24 as the fourth
parameter (M4 %). The VARPTR function returns the address of
an array.

To use Function 24 with C or QuickC programs,

1. Use the appropriate mouse call for the memory model of your
program. Use cmouses for small-model programs, use cmousec
for compact-model programs, use cmousem for medium-model
programs, or use cmousel for large-model and huge-model
programs.

2. Pass the offset part of the subroutine's address in the fourth
parameter (M4%). If you want to directly call the mouse inter
rupt, place the segment part of the address in the ES register.

To use Function 24 with MASM programs,

1. Pass the segment of the subroutine in the ES register, the offset
in the DX register, the call mask in the CX register, and the
mouse function number (24) in the AX register.

Examples Each of the following programs calls Function 24 to activate an
interrupt-driven subroutine for the mouse. When you press a Shift key
and the left mouse button simultaneously, the mouse cursor moves to
the upper-left corner of the screen.

Interpreted BASIC

100 I Set Alternate Subroutine Call Mask and Address.

210 • Build interrupt-driven subroutine to activate Function 24
220 DIM MSUB%(S)
230 MSUB%(O) - &H4B8
240 MSUB%{l) - &HB900

, Subroutine is from this code ...
MOV AX.4

(continued)

181

PART III: MOUSE PROGRAMMING INTERFACE

continued

2S0 MSUB%(2) = &HO
260 MSUB%(3) -&HBA
270 MSUB%(4) - &HCDOO
280 MSUB%(S) =&HCB33

MOV CX.O Left edge of screen
MOV DX.O Top edge of screen
INT 33h Mouse Interrupt
RETF Return to BASIC

380 I Set Alternate Subroutine Call Mask and Address
390 Ml% - 24 I Mouse Function 24
400 M3% ... 34 • When Shift key and left button are pressed
402 M4% ... VARPTR(MSUB%CO»
410 CALL MOUSECMl%. M2%. M3%. M4%)

QuickBASIC

, Set Alternate Subroutine Call Mask Address

DIM msub%CS)
COMMON msub%C)

I Build interrupt-driven
msub%CO) ... &H4B8
msub%(1) - &HB900
msub%(2) = &HO
msub%(3) ... &HBA
msub%(4) - &HCDOO
msub%(S) ... &HCB33

subroutine to activate Function 24
• Subroutine is from this code ..•

MOV AX.4 Function ~. Set Mouse
MOV CX.O Left edge of screen
MOV DX.O Top edge of screen
INT 33h Mouse Interrupt
RETF Return to QuickBASIC

• Set Alternate Subroutine Call Mask and Address
i Reg. ax - 24

Cursor

iReg.cx ... 34 • When. Shift key and left button are pressed
iReg.dx ... VARPTRCmsub%CO»
Interrupt &H33. iReg. oReg

182

Chapter 8: Mouse Function Calls

C/QuickC

/* Set Alternate Subroutine Call Mask and Address */

/* This is the subroutine activated by Function 24 */
void msub()
(

iReg.x.ax ... 4;
iReg.x.cx - 0;
iReg.x.dx - 0;
int86(Ox33, &iReg, &oReg);

/* Function 4: Set Mouse Cursor */
/* Left edge of screen */
/* Top edge of screen */
/* Moves cursor to upper-left corner */

/* Set Alternate Subroutine Call Mask and Address */
iReg.x.ax - 24; /* Mouse Function 24 is called */
iReg.x.cx = 34; /* when Shift key and left button are pressed */
iReg.x.dx - (int) msub; /* Offset of msub() into OX */
segregs.es - «long) msub) »16; /* Segment of msub() into ES */
int86x(Ox33. &iReg, &oReg, &segregs);

MASM

Set Alternate Subroutine Call Mask and Address

This is the subroutine activated by Function 24
msub PROC

mov ax.4
xor cx.cx
mov dx.cx
int 33h
ret

msub ENOP

Function 4. Set Mouse Cursor
Left edge of screen
Top edge of screen
Move the cursor

(continued)

183

PART III: MOUSE PROGRAMMING INTERFACE

continued

184

Set Alternate Subroutine Call Mask and Address
mov ax.SEG msub
mov es.ax
mov ax,24
mov cx.34
mov dX,OFFSET msub
tnt 33h

Segment of sub trito ES
Mouse Function 24 when

.; Shift key and left button are pressed
Offset of sub into OX

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 25:
GET USER ALTERNATE INTERRUPT ADDRESS

Call with MI% = 25

M3% = user interrupt call mask

Returns MI% = error status (-I ifno vector/mask, in which case M2%, M3%, and
M4% return 0)

M2% = user subroutine segment
M3% = user interrupt call mask
M4% = user subroutine address

Description Mouse Function 25 returns the interrupt address of the alternate
mouse user subroutine identified by the specified call mask. You can
call this function to retrieve the last alternate interrupt subroutine
address prior to calling Function 24 so that you can restore the subrou
tine address later.

The call mask is a single-integer value that defines which condi
tions cause an interrupt to the subroutine. Each of the first 8 bits in the
call mask corresponds to a specific mouse or keyboard condition, as
shown in the following list:

Mask Bit

o
1
2
3
4
5
6
7
8-15

Cundition

Cursor position changed
Left button pressed
Left button released
Right button pressed
Right button released
Shift key pressed during button press or release
etr! key pressed during button press or release
Alt key pressed during button press or release
Not used

For assembly-language programs, the subroutine address is
returned as BX:DX.

Examples Assume that Function 24 was used to set the alternate interrupt subrou
tine. Each of the following program fragments returns the interrupt
address of an alternate mouse-user subroutine.

185

PART III: MOUSE PROGRAMMING INTERFACE

186

In~preted BASIC

440 • Get User Alternate Interrupt Address
450 Ml% = 25 · Mouse Function 25
460 M3% - 34 • Same call mask
470 CALL MOUS£(Ml%, M2%. M3%. M4%)
480 CALLMASK% = M3%
490 SUBSEG% - M2%
500 SUBOFFST% - M4%

QuickBASIC

• Get User Alternate Interrupt Address
iReg.ax - 25
iReg.cx - 34 I Same call mask
Interrupt &H33, iReg. oReg
callmask% - oReg.cx'
subseg%- oReg.bx
suboff% - oReg.dx

C/QuickC

/* Get User Alternate Interrupt Address */
iReg.x.ax - 25: /* Mouse Function 25*/
iReg.x.cx =34; /* Same call mask */
int86(Ox33. &iReg. &oReg):
callmask ~ oReg.x.cx:
subseg- oReg.x.bx;
5uboff = oReg.x.dx:

MASM

: Get User Alternate Interrupt Address
mov ax.25 Mouse Function 25
mov cx.34 : Same call 'mask
int 33h
mov callmask.cx
mov subseg.bx
mov suboff,dx

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 26: SET MOUSE SENSITIVITY

Call with

Returns

M1% = 26

M2% = horizontal mickey sensitivity number
M3% = vertical mickey sensitivity number
M4% = threshold for double speed

Nothing

Description Mouse Function 26 sets mouse-to-cursor movement sensitivity by defin
ing a scaling factor for the mouse mickeys and the double-speed
threshold. For more information on the mickey, see Chapter 6, "Mouse
Programming Interface."

The sensitivity numbers range from.! through 100, where 50

specifies the default mickey factor of 1. These mickey multiplication
factors range from about Y~2 for a parameter of 5, to li4 for a parameter
of 100. The mickeys are multiplied by these factors before the mickey
to-pixel ratios (set by Function 15) are applied.

The double-speed ratio is also set to its default value by setting
M4% to 50.

This function provides a simplified approach to setting the mouse
sensitivity and double-speed ratios. The 0 through 100 range provides
an intuitive scale for speeding up or slowing down the mouse motion.

Examples Each of the following program fragments sets the mouse sensitivity to
10 and the double-speed threshold to 32:

Interpreted BASIC

110 ' Set Mouse Sensitivity
120 M1% - 26
130 M2% ... 10
140 M3% - 10
150 M4% - 32
160 CALL MOUSECM1%, M2%, M3%, M4%)

187

PART III: MOUSE PROGRAMMING INTERFACE

188

QuickBASIC

'Set Mouse Sens1tivity
iReg.ax·- 26
iReg.bx -10
1Reg.cx - 10
1Reg.dx - 32
Interrupt &H33. iReg. oReg

CIQuickC

1* Set Mouse Sensitivity *1
iReg.x.ax -26;
iReg.x.bx - 10:
iReg.x.cx .. 10;
iReg.x.dx ,;. 32;
int86(Ox33. &1Reg. &oReg);

MASM

mov ax.26
mov bx.l0
mov cx.bx
mov dx.32
tnt 33h

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 27: GET MOUSE SENSITIVITY

Call with Ml % = 27

Returns M2% = horizontal mickey sensitivity number
M3% = vertical mickey sensitivity number
M4% = threshold for double speed

Description Mouse Function 27 returns mouse-to-cursor movement sensitivity
scaling factors previously set by Function 26.

These factors range from 1 through 100, with default values of 50.

To slow the mouse-cursor speed, use Function 26 to decrease the set
ting. To increase the speed (i.e., increase the mouse sensitivity), use
Function 26 to increase the setting within the range 1 through 100.

Examples Each of the following program fragments returns the current horizon
tal and vertical mouse sensitivity settings and the double-speed
threshold sensitivity setting.

Interpreted BASIC

300 t Get Mouse Sensitivity
310 '.
320 Ml% - 27
330 CALL MOUSE(Ml%. M2%. M3%, M4%)
340 HFACTOR - M2%
350 VFACTOR - M3%
360 DFACTOR - M4%

QuickBASIC

t Get Mouse Sensitivity
iReg.ax = 27
Interrupt &H33. iReg, oReg
hfactor% - oReg.bx
vfactor% - oReg.ex
dfaetor% - oReg;dx

189

PART III: MOUSE PROGRAMMING INTERFACE

190

C/QuickC

/* Get Mouse Sensitivity */
iReg.x.ax - 27:
int86(Ox33. &iReg. &oReg);
hfactor - oReg.x.bx;
vfactor - oReg.x.ex:
dfaetor - oReg.x.dx;

MASM

: Get Mouse Sensitivity
mov ax.27
int 33h
mov hfaetor.bx
mov vfaetor, ex
mov dfactor,dx

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 28: SET MOUSE INTERRUPT RATE

Call with Ml% = 28

M2% = interrupt rate (in interrupts per second)

Returns Nothing

Description Mouse Function 28 operates only with the InPort mouse. This function
sets the rate at which the mouse driver polls the status of the mouse.
Faster interrupt rates provide better resolution in graphics applica
tions, but slower interrupt rates might let the applications run faster.

The interrupt rate is a single-integer value that defines the rate
(in interrupts per second). Integer values from 0 through 4 correspond .
to specific maximum interrupt rates, as shown in the following table:

Rate Number

o
1
2
3
4
>4

Maximum Interrupt Rate

No interrupts allowed
30 interrupts per second
50 interrupts per second
100 interrupts per sec nd
200 interrupts per se 0 d
Not defined

NOTE: If a value greater than 4 is used, the InPort mouse driver might
behave unpredictably.

Examples Each of the following program fragments sets the mouse driver inter
rupt rate to 100 interrupts per second.

Interpreted BASIC

110 • set Mouse Interrupt Rate
120 Ml% - 28
130 M2% - 3

M2%, M3%. M4%)

191

PART III: MOUSE PROGRAMMING INTERFACE

192

QuickBASIC

• Set Mouse Interrupt Rate
iReg.ax -28
iReg.bx - 3
Interrupt &H33. lReg; oReg

C/QuickC

/* Set Mouse Interrupt Rate*/
iReg.x;ax -28:
iReg.x.bx - 3:
lnt86(Ox33. &iReg. &oReg):

MASM

: Set Mouse Interrupt Rate
mov aX.28
mov bx.3
int 33h

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 29: SET CRT PAGE NUMBER

Call with Ml% = 29

M2% = CRT page for mouse cursor display

Returns Nothing

Description Mouse Function 29 specifies the number of the CRT page on which the
mouse cursor will be displayed.

For information on the number of CRT pages available in each dis
play mode your adapter supports, see the documentation that came
with your graphics adapter.

Examples The following program fragments set the CRT page number to 3.

Interpreted BASIC

110 ' Set CRT Page Number
120 M1% .. 29
130 M2% - 3 ' Page 3
140 CALL MOUSE(M1%. M2%, M3%. M4%)

QuickBASIC

, Set CRT Page Number
iReg.ax - 29
i Reg .bx .. 3
Interrupt &H33. iReg, oReg

C/QuickC

/* Set CRT Page Number */
iReg.x.ax'" 29:
iReg~x.bx - 3:

, i nt86(Ox33, &i Reg, &oReg):

MASM

; Set CRT Page Number

, Page 3

/* Page 3 */

193

PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 30: GET CRT PAGE NUMBER

Call with Ml% = 30

Returns M2% = CRT page of current mouse cursor display

Description Mouse Function 30 returns the number of the CRT page on which the
mouse cursor is currently displayed.

Examples The following program fragments return the number of the CRT page
on which the mouse cursor is currently displayed.

194

Interpreted BASIC

300 ' Get CRT Page Number
310 '
320 Ml% = 30
330 CALL MOUSE(Ml%. M2%, M3%. M4%)
340 CRTPAGE% - M2%

QuickBASIC

• Get CRT Page Number
i Reg .ax -30
Interrupt &H33, iReg. oReg
CRTPage% ... oReg.bx

C/QuickC

/* Get CRT Page Number */
iReg.x.ax ... 30;
int86(Ox33. &iReg. &oReg):
crtpage = oReg.x.bx;

MASM

: Get CRT Page Number
mov ax.30
int 33h
mov crtpage.bx

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 31: DISABLE MOUSE DRIVER

Call with

Returns

M1% = 31

M1 % = error status (-1 if error occurred)
M2% = offset of old Interrupt 33H vector
M3% = segment of old Interrupt 33H vector

Description You use Mouse Function 31 in the MOUSE OFF portion of your program
to disable the mouse driver, which subsequently disables the mouse.
When your program calls Function 31, you can restore the Interrupt
33H vector to its value before the mouse driver was enabled by using the
M2% and M3% parameters. Function 31 removes all other vectors used
by the mouse driver.

If this function can't remove all mouse-driver vectors, excluding
the Interrupt 33H vector, it returns an error of -1 for the Ml %
parameter.

Examples Each of the following program fragments disables the mouse driver
and returns the segment and offset of the old Interrupt 33H.

When your program calls Function 31 from an assembly-language
program, use ES:BX for the address of the old Interrupt 33H vector.

Interpreted BASIC

290 ' Disable Mouse Driver
300 Ml% - 31 ' Mouse Function 31
310 CALL MOUSE{Ml%, M2%. M3%. M4%)
320 ERRORSTAT% - Ml%
330 1330FF% - M2%
340 I33SEG% - M3%

QuickBASIC

INTEGER
INTEGER
INTEGER
INTEGER

(continued)

195

PART III: MOUSE PROGRAMMING INTERFACE

continued

bp AS INTEGER
s1 AS INTEGER
df AS INTEGER
flags AS INTEGER
ds AS INTEGER
es AS INTEGER

END TYPE

DECLARE SUB InterruptX (intnum%. iRegX AS RegTypeX. oRegX AS RegTypeX)

DIM iRegX AS RegTypeX
DIM oRegX AS RegTypeX

, Disable Mouse Driver
iRegX,ax. - 31
InterruptX&H33, iRegX. oRegX
errorstat% ~ oRegX,ax
i330ff% - oRegX,bx
i33seg% - oRegX.es

C/QuickC

iReg.x~ax - 31: /* Mouse Function 31 */ .
int86(Ox33, &iReg, &oReg. &segregs):
error_stat - oReg.x.ax:
i33_off - oReg.x.bx;
i33_seg - segreg.es:

MASM

~ Disable Mouse Driver
mov ax.31
int 33h
mov err_stat.ax
mov 133_off.bx
mov i33_seg.es

196

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 32: ENABLE MOUSE DRIVER

Call with Ml% = 32

Returns Nothing

Description You use Mouse Function 32 in the MOUSE ON portion of your program
to enable the mouse driver, which subsequently enables the mouse.
When your program calls Function 32, the function sets the Interrupt
33H vector to the mouse-interrupt vector and installs all other mouse
driver vectors.

Examples Each of the following program fragments enables the mouse driver:

Interpreted BASIC

110 t Enable Mouse Driver
120 M1% ... 32
130 CALL MOUSE(M1%. M2%. M3%. M4%)

QuickBASIC

t Enable Mouse Driver
i Reg. ax .. 32
Interrupt &H33~ iReg, oReg

C/QuickC

/* Enable Mouse Driver */
iReg.x.ax - 32:
int86(Ox33, &iReg, &oReg);

MASM

; Enable Mouse Driver
mov ax.32
int 33h

197

PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 33: SOFTWARE RESET

Call with M1 % = 33

Returns M1% = -1 (if mouse driver installed; otherwise, 33)

M2% = 2 (provided M1% = -1)

Description Mouse Function 33 is similar to Function 0 (Mouse Reset and Status)
except that Function 33 neither initializes the mouse hardware nor
resets other variables that are dependent on display hardware. Resets
are confined to software only.

198

Function 33 indicates a valid software reset by returning both
values. The Ml% parameter must be -1, and the M2% parameter must
be 2 for a valid reset.

Function 33 resets the mouse driver to the following default
values:

Parameter

Cursor position

Internal cursor flag

Graphics cursor

Text cursor

Interrupt call mask

Horizontal mickey-per
pixel ratio

Vertical mickey-per-pixel
ratio

Double-speed threshold

Minimum horizontal
cursor position

Maximum horizontal
cursor position

Minimum vertical cursor
position

Maximum vertical cursor
position

Value

Center of screen

-1 (cursor hidden)

Arrow

Reverse video block

All,O (no interrupt subroutine specified) *
8 to 8

16 to 8

64 mickeys per second

o

Current display-mode virtual screen
x-value minus 1

o

Current display-mode virtual screen
y-value minus 1

*This is true only for interrupt subroutines that weren't installed using Function 24.

Chapter 8: Mouse Function Calls

Examples Each of the following program fragments resets the mouse driver:

Interpreted BASIC

300 • Software Reset
310 •
320 Ml% - 33
330 CALL MOUSE(Ml%. M2%. M3%, M4%)
340 STAT1% - Ml%
350 STAT2% - M2%

QuickBASIC

• Software Reset
iReg.ax ... 33
Interrupt &H33, iReg, oReg
statl% ... oReg.ax
stat2% ... oReg.bx

CIQuickC

/* Software Reset */
iReg.x.ax = 33;
int86(Ox33. &iReg, &oReg):
statl ... oReg.x.ax;
stat2 = oReg.x.bx;

MASM

; Software Reset
mov'ax,33
i nt 33h
mov statl,ax
mov stat2.bx

199

PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 34: SET LANGUAGE FOR MESSAGES

Call with: MI % = 34

M2% = language number

Returns: Nothing

Description Mouse Function 34 operates only with the international version of
the mouse driver-it has no effect with the domestic version of the
driver. This function lets you specify the language in which messages
and prompts from the mouse driver are displayed. You can specify
the language with a single integer from the Number column of the
following table:

Number Language

0 English
1 French
2 Dutch
3 German
4 Swedish
5 Finnish
6 Spanish
7 Portuguese
8 Italian

Examples Each of the following program fragments sets the language to Dutch:

200

Interpreted BASIC

110 • Set Language for Messages
120 M1% = 34
130 M2% - 2
140 CALL MOUSE(Ml%. M2%. M3%. M4%)

QuickBASIC

, Set Language for Messages
iReg.ax-34
iReg.bx - 2
Interrupt &H33. iReg.oReg

C/QuickC

1* Set Language for Messages *1
iReg.x.ax - 34:
iReg.x.bx'" 2;
int86(Ox33, &iReg, &oReg);

MASM

; Set Language for Messages
mov ax,34
mov bx,2
int 33h

Chapter 8: Mouse Function Calls

201

PART III: MOUSE PROGRAMMING INTERFACE

MOUSE FUNCTION 35: GET LANGUAGE NUMBER

Call with: MI % = 35

Returns: M2% = the current language

Description Mouse Function 35 operates only with the international version of the
mouse driver. This function returns the number of the language cur
rently set in the mouse driver.

NOTE: The number returned in M2% represents a language (see the lan
guage table in the discussion o/Function 34). If you don't have an international
mouse driver, English (0) will always be returned.

Examples Each of the following program fragments returns the current language
number from the mouse driver:

202

Interpreted BASIC

110 • Get language Number
120 Ml% -35
130 CALL MOUSE(M1%. M2%. M3%, M4%)
140 LANGUAGE% - M2%

QuickBASIC

, Get Languag~ Number
iReg.ax .. 35
Interrupt&H33. 1Reg, oReg
language% - oReg.bx

CIQuickC

1* Get LangQage Number ~I
iReg.x.ax co 35;
int86(Ox33, &iReg, &oReg);,
language - oReg.x.bx;

MASM

; Get Language Nu~ber
.mov ax.35
int 33h
mov language,bx

Chapter 8: Mouse Function Calls

MOUSE FUNCTION 36:
GET DRIVER VERSION, MOUSE TYPE, AND IRQ NUMBER

Call with: M1 % = 36

Returns: M2% = mouse driver version number
M3% = mouse type and IRQ number

Description Mouse Function 36 returns the version number of the mouse driver,
the type of mouse the driver requires, and the number of the interrupt
request type (IRQ). In the returned value M2%, the high-order 8 bits
contain the major version number and the low-order 8 bits contain the
minor version number. For example, if you were using mouse driver
version 6.10, Function 36 would return an M2% value of 1552 (decimal),
which is equal to 0610 (hexadecimal).

The high-order 8 bits of the returned value M3% contain the
mouse type as follows:

• A value of 1 indicates a bus mouse.

• A value of2 indicates a serial mouse.

• A value of 3 indicates an InPort mouse.

• A value of 4 indicates a PS/2 mouse.

• A value of 5 indicates a Hewlett-Packard mouse.

The low-order 8 bits of the returned value M3% contain the value
for the interrupt request type as follows:

• A value of 0 indicates PS/2.

• A value ranging from 2 through 5 or the value 7 indicates a
mouse interrupt.

Examples Each of the following program fragments returns the mouse driver
version number, the mouse type, and the IRQ number:

203

PART III: MOUSE PROGRAMMING INTERFACE

204

Interpreted BASIC

110 ' Get Driver Version, Mouse Type. and IRQ Number
120 '
130 Ml% - 36
140 CALL MOUSE(M1%. M2%. M3%. M4%)
150 VERSION$ -RIGHT$("OOO" + HEX$(M2%).4)
160 MAJORVERSION% - VAL(LEFT$(VERSION$.2» 'Decimal notation
170 MINORVERSION% - VAL(RIGHT$(VERSION$.2» 'Decimal notation
180 MOUSETYPE% - M3% \ 256
190 MOUSEIRQ% ~ M3% AND &HFF

QuickBASIC

, Get Driver Version. MauseType. and IRQ Number
i Reg. ax -,36
Interrupt &H33. iReg. oReg
versionS = RIGHT$("OOO" + HEX$(oReg.bx). 4)
majorVersion% - VAL(LEFT$(version$. 2» 'Decimal notation
minorVersion% - VAL(RIGHT$(version$. 2» 'Decimal notation
mouseType%,- oReg.cx \ 256
mouseIRQ% - oReg.cx AND &HFF

C/QuickC

/* Get Driver Version, Mouse Type. and IRQ Number */
iReg.x.ax = 36:
int86(Ox33. &iReg. &oReg):
majorversion - oReg.h.bh;
minorv~rsion = oReg.h.bl;
mausetype -oReg.h.ch:
IROnum - oReg.h.c';

MASM

/* Hexadecimal~digits notation */
/* Hexadecimal-digits notation */

: Get Driver.Version, Mouse Type, and IRQ
mov ax.36
tnt 33h
mov majorversion,bh
mav minorversion,bl
mov mousetype,ch
mov IROnum.cl

Chapter 9

Sample Mouse
Programming
Interface Programs

This chapter presents mouse programming examples using inter
preted BASIC, QuickBASIC, C and QuickC, MASM, FORTRAN, and
Pascal. You will see some overlap of functionality among the programs;
however, there are significant differences in style and programming
techniques that can provide you with insight into the many ways you
can program for the mouse.

You can use two basic methods to call the mouse functions. The
MOUSE.LIB library provides subroutines for each of the major Microsoft
language products. Using this library is straightforward and self
documenting, as shown in many of these programs. A second method is
to call the mouse interrupt (Interrupt 33H) directly. Most of the
languages mentioned above provide a mechanism for calling system
interrupts. Generally, a method is also provided for passing and
retrieving register values. Calling mouse functions in this way is slightly
faster and more efficient; however, you might sacrifice some program
readability and simplicity.

Several of the programs are presented in more than one lan
guage. These programs provide a good opportunity to learn more
about how to program in unfamiliar languages. For example, if you're
learning C and you already know QuickBASIC, examine the QBTEST.BAS

205

PART III: MOUSE PROGRAMMING INTERFACE

206

and CTEST.C programs to compare how the programs use the mouse
function calls.

NOTE: For information on writing programs in Turbo Pascal, see
Appendix E, ''Making Calls from Borland Turbo Pascal Programs. "

If you look at the companion disks that come with this book, you
will find subdirectories for each language. Programming examples for
each language are contained in the subdirectories.

NOTE: This chapter contains descriptions of each of the programs listed
below; however, the actual code for some of the lengthy programs appears only on
disk. You can use your favorite text editor to view the source code for these programs
on your screen, or you can print the source code files on your printer.

\BAS

\OB

tstl. bas
batest.bas
piano.bas

qbmou.bas
qbint.bas
qbinc.bas
absolute.bas
intrrupt.bas
mouse.bas
mousedem.bas
qb12&20.bas
qb24.bas
qbtest.bas
pencil. bas

\OC&C
cmouse.c
ctest.c
1 pen. c
mous_int.c
mous_lib.c
mouh_int.c
mouh_lib.c
mscexamp.c
penc11.c
m20sub.asm

(continued)

Chapter 9: Sample Mouse Programming Interface Programs

continued

\ASM
tstl.asm
atest.asm
asmexamp.asm
tstI2&20.asm
tst24.asm

\FOR
forI.for
ftest.for
fdemo.for
subs.asm

\PAS
moushgcp.pas
initpas.asm
pasexamp.pas
subs.asm
pdemo.pas

INTERPRETED BASIC PROGRAMS
The programs in this section demonstrate the use of the mouse from
interpreted BASIC. The TST1.BAS program shows the minimum steps
required for displaying the default graphics mode cursor. The
BATEST.BAS program is the interpreted BASIC version of a program that
is presented in several languages in this chapter. The most sophisti
cated program is PIANO.BAS. This program lets you use the mouse to
play music on a simulated piano keyboard. This program also demon
strates the steps necessary to change the graphics mode cursor.

To call the mouse functions from interpreted BASIC, you must
first determine the vector address of the mouse driver. The first few
lines in each of these programs show how this address is determined.
The segment of this address is saved in the MOUSEG variable, and the
offset is saved in the MOUSE variable. After the program uses the DEF

SEG statement to set the current segment to MOUSEG, it can call the
mouse functions with the CALL statement.

The CALL statement should have the following form:

CALL MOUSE(Ml%. M2%. M3%. M4%)

207

PART III: MOUSE PROGRAMMING INTERFACE

where MOUSE is the variable that contains the offset of the BASIC entry
point into the mouse driver, and Ml %, M2 %, M3 %, and M4 % are the
names of the integer variables you chose for parameters in this call.
(Constants and non integer variables are not allowed.) All parameters
must appear in the CALL statement even if no value is assigned to one
or more of them. To ensure that the variables are integer variables, use
the percent sign (%) as part of all variable names.

See the TSTl.BAS program for a straightforward example of the
steps required to use the mouse with interpreted BASIC.

The TST1.BAS Program
The TSTl.BAS program demonstrates the steps required to activate and
display the default graphics mode cursor. To end the program, press
any key.

100'**
110 '* TST1.BAS *
120 '* *
130 '* Displays graphics-mode mouse cursor until a key is pressed *
140 '* Note: Program assumes both mouse and mouse driver are installed *
145 '**
150 I

160 ' Set and clear the display
170 SCREEN 2
180 CLS
190 '
200 • Determine mouse interrupt address
210 DEF SEG ... 0
220 MOUSEG = 256 * PEEK(207) +PEEK(206)
230 MOUSE = 256 * PEEK(205} + PEEK(204) + 2
240 OEF SEG - MOUSEG
250 •
260 · Reset mouse
270 ·Ml%'" 0
280 CALL MOUSE(Ml%. M2%. M3%. M4%)
290 •
300 • Show cursor
310 MIX - 1
320 CALL MOUSE(Ml%. M2%. M3%, M4%)
330 '
340 • Wait for any key press
350 IF INKEY$ - "" THEN GOTO 350
360 •
370 'Hide cursor

208

(continued)

Chapter 9: Sample Mouse Programming Interface Programs

continued

380 M1% - 2
390 CALL MOUSE(M1%. M2%. M3%. M4%)
400 '
410 ' Reset mouse
420 M1% - 0
430 CALL MOUSE(M1%. M2%. M3%. M4%)
440 •
450 END

The BATEST. BAS Program
The BATEST.BAS program uses Mouse Function 11 (Read Mouse Motion
Counters) to detect vertical mouse motion. The program displays a
three-line menu with one option highlighted. When Function 11 de
tects vert.ical mouse motion, the program moves the highlight up or
down the list.

In addition, this program uses Mouse Function 5 (Get Button
Press Information) to detect a button press. To select a highlighted op
tion, you simply press either mouse button. Before the program termi
nates, it displays a message stating which option you selected and which
button you pressed.

This program is presented in several languages in this chapter so
that you can compare the mouse function calls in different languages.
If you want to compare the programs, see the QBTEST.BAS, CTEST.C,

ATEST.ASM, and FTEST.FOR programs.

100 '***
110 '* BATEST.BAS
120 • *

*
*

130 '* Demonstrates use of the Microsoft Mouse from BASICA *
140 '***
150 •
160 • tlear the display
170 CLS
180 '
190 ' Determine mouse interrupt address
200 DEF SEG- 0
210 MOUSEG.- 256 ~ PEEK(207) + PEEK(206)
220 MOUSE - 256 * PEEK(205) +PEEK(204) + 2
230 OEfSEG - MOUSEG

(continued)

209

PART III: MOUSE PROGRAMMING INTERFACE

210

continued

232 IF (MOUSEG OR (MOUSE - 2» AND PEEK(MOUSE - 2) <> 207
THEN GOTO 260

234 PRINT "Mouse driver not found" : END
240 •
250 • Display instructions for user
260 PRINT "BATEST - Mouse demonstration using interpreted BASIC"
270 PRINT
280 PRINT "Use mouse to highlight a menu option."
290 PRINT "Press either button to select option. "
300 •
310 • Reset mouse and verify its existence
320 M1% -= 0
330 CALL MOUSE(M1%. M2%. M3%. M4%)
340 .
350 ' Quit if mouse wasn't found
360 IF M1% - 0 THEN PRINT "Error: Mouse not found ": END
370 .
380 ' Initialize menu pointer to first option
390 MENUPTR% - 1
400 .
410 • Initialize count of accumulated vertical mouse motion
420 MOTION% - 0
430 •
440 • Set flag to cause the menu to be updated first time through
450 WFLAG% = 1
460 •
470 ' Main loop starts here
480 WHILE 1
490
500 'Update the menu only when necessary
510 WHILE WFLAG% - 1
520 WFLAG% -= 0
530
540 ' Print first line of the menu. highlighted if selected
550 IF MENUPTR% - 1 THEN COLOR 0.7 ELSE COLOR 7.0
560 LOCATE 10, 29
570 PRINT" 1. First option
580
590 ' Print second line of. the men~. highlighted if selected
600 IF MENUPTR% - 2 THEN COLOR 0,7 ELSE COLOR 7.0
610 LOCATE 11. 29
620 ~RINT " 2. Second option "
630
640 ' P~int third line of~he menu. highlighted if selected
650 IF MENUPTR% - 3 THEN COLOR 0.7 ELSE COLOR 7,0
660. LOCATE 12, 29

(continued)

Chapter 9: Sample Mouse Programming Interface Programs

continued

670 PRINT" 3. Third option
680
690 • Be sure highlighting is turned off
700 COLOR 7. 0
710
720 • End of updating the menu
730 WEND
740
750 • Accumulate vertical mouse motion counts
760 M1% - 11
770 CALL MOUSE(M1%, M2%, M3%, M4%)
780 MOTION% - MOTION% + M4%
790
800 • Move up the menu if enough mouse motion
810 IF MOTION% > -17 THEN GOTO 880
820 MOTION% - 0
830 IF MENUPTR% <- 1 THEN GOTO 880
840 MENUPTR% - MENUPTR% - 1
850 WFLAG% - 1
860
870 'Move down the menu if enough mouse motion
880 IF MOTION% < 17 THEN GOTO 950
890 MOTION% - 0
900 IF MENUPTR% >- 3 THEN GOTO 950
910 MENUPTR% - MENUPTR% + 1
920 WFLAG% - 1
930
940 'Check if left button pressed
950 Ml% - 5
960 M2% - 0
970 CALL MOUSE(M1%. M2%. M3%, M4%)
980 IF M2% ~ 0 THEN GOTO 1030
990 PRINT "Left button used to select option". MENUPTR%
1000 END
1010
1020 'Check if right button pressed
1030 M1% - 5
1040 M2% ... 1
1050 CALL MOUSE(M1%. M2%, M3%. M4%)
1060 IF M2% - a THEN GOTO 1110
1070 PRINT "Right button used to select option",

. 1080 . END .
. 1090

1100 back until one button is pressed

211

PART III: MOUSE PROGRAMMING INTERFACE

The PIANO.BAS Program
The PIANO.BAS program creates a graphics mode piano keyboard and
lets you play the keys by mouse-cursor selection. If you want to play
notes in a lower octave, select the keys using the left mouse button. If
you want to play notes in a higher octave, select the keys using the right
mouse button.

This program demonstrates several mouse function calls. Func
tion 9 (Set Graphics Cursor Block) sets the cursor shape. Function 4
(Set Mouse Cursor Position) sets the cursor position. Function 1 (Show
Cursor) makes the cursor visible. Function 3 (Get Button Status and
Mouse Position) gets the mouse location and button status informa
tion. The program uses the block of DATA statements at the end of the
listing to create the Microsoft logo.

NOTE: Because of the length of this program, it is not listed here. The pro
gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

QUICKBASIC PROGRAMS

212

You can call mouse functions from QuickBASIC in several ways.
The programs that follow call mouse functions using the MOUSE sub
program in MOUSE.LIB and the INTERRUPT and ABSOLUTE sub
programs supplied with QuickBASIC.

The simplest programs are QBMOU.BAS, QBINT.BAS, and
QBINC.BAS. Each of these programs displays the text mode cursor and
then waits for you to press a key before terminating. In these programs,
the mouse functions are called using the MOUSE and INTERRUPT
subprograms, providing a direct comparison between the two calling
methods. The QBINT.BAS and QBINC.BAS programs differ only in the
way you make declarations to prepare for using the INTERRUPT
subprogram.

ABSOLUTE.BAS, INTRRUPT.BAS, and MOUSE.BAS are larger pro
grams that demonstrate how you can make the same mouse function
calls using CALL ABSOLUTE, CALL INTERRUPT, or CALL MOUSE. Two of

. these programs create a new graphics mode cursor.
The MOUSEDEM.BAS program presents some useful QuickBASIC

subprograms in addition to demonstrating several mouse functions.

Chapter 9: Sample Mouse Programming Interface Programs

MOUSEDEM.BAS changes the text mode cursor and displays pop-up win
dows as it demonstrates each function.

The QB12&20.BAS and QB24.BAS programs present examples of set
ting and swapping user-interrupt subroutines by using Mouse Func
tions 12, 20, and 24. These interrupt subroutines are activated quickly
while a program is running when they detect mouse motion, mouse
button presses, or combinations of Shift key presses and mouse activity.

The QBTEST.BAS program is the three-line menu program that
detects vertical mouse motion. It is presented in several other lan
guages in this chapter for comparison purposes.

All these programs require that you load a Quick Library with the
QuickBASIC environment. Programs that use INTERRUPT or ABSOLUTE
subprograms can use the QB.QLB Quick Library supplied with Quick
BASIC. To load this file with QuickBASIC, type the following command
at the MS-DOS prompt:

OB IL OB.OLB

Programs that call the MOUSE subprogram require that the Quick
Library loaded in memory include the code found in the MOUSE.LIB
library. You can create a new Quick Library named QBMOUSE.QLB that
contains the MOUSE.LIB routines in addition to the QB.QLB routines by
typing the following command:

LINK IOU INOE MOUSE.LIB + OB.LIB.OBMOUSE.OLB.NUL.BOLB45.LIB;

NOTE: To be sure LINK finds each file, copy MOUSE.LIB, QB.LIB, and
BQLB45.LIB into your current directory.

The following command also creates a combined library that lets
your programs compile and link into stand-alone .EXE programs:

LIB OBMOUSE.LIB + MOUSE.LIB + OB.LIB;

After you create the QBMOUSE.QLB and QBMOUSE.LIB libraries, start
QuickBASIC with the following command:

OB IL OBMOUSE.OLB

When you load QBMOUSE.QLB into your QuickBASIC environment,
all QuickBASIC programs in this section will run, whether they call
the mouse functions using CALL ABSOLUTE, CALL INTERRUPT, or
CALL MOUSE.

The first three programs in this section, QBMOU.BAS, QBINT.BAS,
and QBINC.BAS, demonstrate three variations on calling the mouse

213

PART III: MOUSE PROGRAMMING INTERFACE

functions. Each program clears the screen, displays the text mode
mouse cursor, and waits for you to press a key before terminating.

The QBMOU.BAS Program

214

The QBMOU.BAS program calls the MOUSE subprogram provided in
the MOUSE.LIB library. To call this subprogram from the QuickBASIC
environment, you must build and load the QBMOUSE.QLB library as
described earlier in this section.

'**
, * OBMOU.BAS *
, * *
, * Calls mouse functions using the MOUSE subprogram *
, * *
'* To load OBMOUSE.OLB into memory with OuickBASIC. *
, * type: OB Il OBMOUSE.OLB *
'**

, Initialization
DEFINT A·Z
DECLARE SUB Mouse (ml%. m2%, m3%, m4%)
CLS
PRINT "Press any key to quit"

, Mouse Reset and Status
ml - 0
Mouse mI. m2. m3, m4

, Show Cursor
ml = 1 .
Mouse ml, m2. m3, m4

• Wait until a key is pressed
00
LOOP WHILE INKEY$ -

, Reset mouse driver
ml - 0
Mouse ml, m2. m3, m4

END

Chapter 9: Sample Mouse Programming Interface Programs

The QBIN1BAS Program
The QBINT.BAS program calls the mouse functions using the
INTERRUPT subprogram. The INTERRUPT subprogram is part of the
QB.QLB Quick Library that comes with QuickBASIC. Before you load
and run QBINT.BAS, be sure you load the QB.QLB library into the
QuickBASIC environment.

'***
, * OBINT.BAS *
'* *
, * Calls mouse functions using the INTERRUPT subprogram *
, * *
, * To load OB.OlB into memory with Ou;ckBASIC, type: *
, * OB Il OB.OlB *
'***

DEFINT A-Z

TYPE RegType
ax AS INTEGER
bx AS INTEGER
ex AS INTEGER
dx AS INTEGER
bp AS INTEGER
si AS INTEGER
di AS INTEGER
flags AS INTEGER

END TYPE

DECLARE SUB Interrupt (intnum%, iReg AS RegType, oReg AS RegType)

DIM iReg AS RegType
DIM oReg AS RegType

, Initialization
CLS
PRINT "Press any key to quit"

, Mouse Reset and Status
iReg.ax"" 0
Interrupt &H33. iReg. oReg

(continued)

215

PART III: MOUSE PROGRAMMING INTERFACE

continued

'Show Cursor
i Reg. ax - 1
InterrUpt &H33. iReg, oReg

, Wait until any key is pressed
DO
lOOP WHILE INKEY$

, Hide Cursor
i Reg .ax ... 2
Interrupt &H33, iReg. oReg

, Reset mouse
iReg.ax ... 0
Interrupt &H33, iReg, oReg

END

The QBINC.BAS Program
The QBINC.BAS program is almost identical to the QBINT.BAS program
except that you make the declarations necessary to use the INTERRUPT
subprogram by including the QB.BI file. To insert the contents of the
QB.BI file at the appropriate place in the listing, simply use the
$INCLUDE metacommand. Like QBINT.BAS, the QBINC.BAS program
requires that you load the QB.QLB library into the QuickBASIC
environment.

'***
'* OBINC.BAS *
'* *
'* Calls mouse functions using the INTERRUPT subprogram *
'* *
'* Declarations for INTERRUPT are loaded from the *
'* OB.B! file by the$INClUDE metacommand. *
'* *
'* To load OB.OlB into memory with OuickBASIC, type: *
, * OB Il OS.OlB *
'***

DEFINT A-Z

(continued)

216

Chapter 9: Sample Mouse Programming Interface Programs

continued

'$INCLUDE: 'OB.BI'

DIM iReg AS RegType
DIM oReg AS RegType

, Initialization
CLS
PRINT "Press any key to quit"

, Mouse Reset and Status
iReg.ax - 0
INTERRUPT &H33. iReg, oReg

, Show Cursor
i Reg. ax .. 1
INTERRUPT &H33, iReg, oReg

, Wait until any key is pressed
DO
LOOP WHILE INKEY$ -

, Hide Cursor
iReg.ax'" 2
INTERRUPT &H33, iReg, oReg

, Reset mouse
iReg.ax = 0
INTERRUPT &H33, iReg, oReg

END

The ABSOLUTE.BAS Program
The ABSOLUTE.BAS program demonstrates working with the mouse
from QuickBASIC 4.5 by using the CALL ABSOLUTE command. This
program employs several mouse functions. Function 0 (Mouse Reset
and Status) resets the mouse, and Function 1 (Show Cursor) makes the
cursor visible. Functions 7 (Set Minimum and Maximum Horizontal
Cursor Position) and 8 (Set Minimum and Maximum Vertical Cursor
Position) limit the cursor motion to the center of the screen. To get the
mouse status, the program 'calls Function 3 (Get Button Status and
Mouse Position). Before the program terminates, it calls Function 0
(Reset Mouse and Status) to hide the mouse cursor.

217

PART III: MOUSE PROGRAMMING INTERFACE

Before you can run the ABSOLUTE.BAS program, you must load
QB.QLB into memory by typing the following command:

oB Il oB.olB

The CALL ABSOLUTE function won't work if you don't load QB.QLB
with QuickBASIC.

You can now load and run the program. Note that the default
graphics cursor appears inside a square that marks cursor-movement
limits set by Functions 7 and 8. To end the program, press the left
mouse button.

The ABSOLUTE.BAS program was written for EGA graphics mode
(SCREEN 9). For CGA operation, change the SCREEN and LINE state
ments. You should also change the horizontal and vertical motion limits
set in the calls to Functions 7 and 8 as required for the CGA mode you set.

'***
'* ABSOlUTE.BAS *
'* 6/24/88 by Dave Tryon, Microsoft Prod~ct ~upport *

'* *
'* Demonstrates calling mouse functions using CAll ABSOLUTE *
'* *
'* To load oB.olB into memory with ouickBASIC, type: oB ILoB.oLB *
'* Assumes EGA - For eGA change SCREEN and LINE statements *
'***

, Initialization
DEFINT A-Z
DEF SEG = 0
CLS

, Get mouse driver vector
MSEG - 256 * PEEK(51 * 4 + 3) +PEEK(51 * 4+ 2)
MOUSE - 256 * PEEK(51 * 4 + 1) + PEEK(51 * 4) + 2

, Proceed if driver found

218

IF HSEG OR (MOUSE - 2) THEN
DEF SEG = MSEG
IF PEEK(MOUSE - 2) <> 207 THEN

SCREEN 9

, Function 0 Mouse Reset and Status
H1,- 0
CALL ABSOLUTE(M1, H2. M3. M4, MOUSE)

(continued)

Chapter 9: Sample Mouse Programming Interface Programs

continued

, Function 7 Limit Horizontal Motion
M1 - 7: M3 - 100: M4 - 540
CALL ABSOLUTE(M1. M2. M3. M4. MOUSE)

, Function 8 Limit Vertical Motion
M1 - 8: M3 - 50: M4 - 300
CALL ABSOLUTE(M1. M2. M3. M4. MOUSE)

• Draw box to show mouse motion range
COLOR 1
LINE (100. 50) - (540. 50)
LINE (540. 50) - (540. 300)
LINE (540. 300) - (l00. 300)
LINE (l00. 300) - (lOa. 50)

, Function I Show Cursor
M1 == I
CALL ABSOLUTE(MI. M2. M3. M4. MOUSE)

, Loop until button pressed

COLOR 7

M2 - a
WHILE (M2 == 0)

, Function 3 Get Mouse Status and Mouse Position
MI == 3
CALL ABSOLUTE(M1. M2. M3. M4. MOUSE)

• Print cursor location
LOCATE 2. 2
PRINT M3. M4

WEND

• Function 0 Reset Mouse and Status
MI - 0
CALL ABSOLUTE(MI. M2. M3. M4. MOUSE)

ELSE PRINT "Mouse Driver Not Found": END
END IF

ELSE PRINT "Mouse Driver Not Found": END
END IF

219

PART III: MOUSE PROGRAMMING INTERFACE

The INTRRUPT. BAS Program
The INTRRUPT.BAS program demonstrates working with the mouse
from QuickBASIC 4.5 by using the CALL INTERRUPT subprogram. This
program is similar in design and operation to the ABSOLUTE.BAS
program. Many of the same functions are called by INTRRUPT.BAS. In
addition, INTRRUPT.BAS calls Function 9 (Set Graphics Cursor Block)
to set a new graphics mode cursor shape.

Before you can run the INTRRUPT.BAS program, you must load
QB.QLB into memory by typing the following command:

OB Il OB.OlB

The CALL INTERRUPT subprogram won't work if you don't load QB.QLB
with QuickBASIC.

You can now load and run the program. Note that the new
graphics cursor appears inside a square that marks cursor-movement
limits set by Functions 7 (Set Minimum and Maximum Horizontal Cur
sor Position) and 8 (Set Minimum and Maximum Vertical Cursor Posi
tion). To end the program, press the left mouse button.

The INTRRUPT.BAS program was written for EGA graphics mode
(SCREEN 9). For CGA operation, change the SCREEN and LINE statements.
You should also change the horizontal and vertical motion limits set in
the calls to Functions 7 and 8 as required for the CGA mode you set.

NOTE: Because of the length of this program, it is not listed here. The pro
gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code file on your printer.

The MOUSE.BAS Program

220

The MOUSE.BAS program demonstrates working with the mouse from
QuickBASIC 4.5 by using the CALL MOUSE function. This program is
similar in design and operation to the ABSOLUTE.BAS and
INTRRUPT.BAS programs.

The MOUSE subprogram is found in the MOUSE.LIB library. To
call this subprogram from the QuickBASIC environment, you must
build and load the QBMOUSE.QLB library as described earlier in this
section.

You can now load and run the program. Note that the new
graphics cursor appears inside a square that marks the cursor
movement limits set by Functions 7 (Set Minimum and Maximum

Chapter 9: Sample Mouse Programming Interface Programs

Horizontal Cursor Position) and 8 (Set Minimum and Maximum Verti
cal Cursor Position). To end the program, press the left mouse button.

The MOUSE.BAS program was written for EGA graphics mode
(SCREEN 9). For CGA operation, change the SCREEN and LINE state
ments. You should also change the horizontal and vertical motion
limits set in the calls to Functions 7 and 8 as required for the CGA mode
you set.

'**
'* MOUSE.BAS *
'* 6/24/88 by Dave Tryon. Microsoft Product Support *
'* *
'* Demonstrates calling mouse functions using CALL MOUSE *
'* *
'* To load OBMOUSE.OLB into memory with OuickBASIC. type: *
'* OB /L OBMOUSE.OLB *
'* *
'* Assumes EGA - For CGA change SCREEN and LINE statements *
'**

, Initialization
DIM CURSOR(lS. 1) AS INTEGER
COMMON CURSOR() AS INTEGER
DECLARE SUB MOUSE (M1%. M2%. M3%. M4%)
CLS

, Define Cursor Array
CURSOR(O. 0) ... &HE1FF
CURSOR(1. 0) "" &HElFF
CURSOR(2, 0) - &HElFF
CURSOR(3, 0) ... &HE1FF
CURSOR(4. 0) "" &HElFF
CURSOR(S. 0) = &HEOOO
CURSOR(6. 0) - &HEOOO
CURSOR(7, 0) ... &HEOOO
CURSOR(8. 0) = &HO
CURSOR(9. 0) == &HO
CURSOR(10, 0) ... &HO
CURSOR(11. 0) == &HO
CURSOR(12. 0) = &HO
CURSOR(13. 0) ... &HO
CURSOR(14. 0) ... &HO
CURSOR(1S. 0) = &HO

(continued)

221

PART III: MOUSE PROGRAMMING INTERFACE

222

continued

CURSOR(O. 1) - &HlEOO
CURSOR(1, 1) - &H1200
CURSOR(2. 1) co &HI200
CURSOR(3. 1) - &HI200
CURSOR(4. 1) - &HI200
CURSOR(S. 1) =&HI3FF
CURSOR(6. 1) - &H1249
CURSOR(7. 1) - &HI249
CURSOR(8; 1) ... &HF249
CURSOR(9. 1) - &H9001
CURSOR(IO. 1) - &H900l
CURSOR(11. 1) = &H9001
CURSOR(l2. 1) &H8001
CURSOR(l3. 1) - &H8001
CURSOR(l4. 1) ... &H8001
CURSOR(lS. 1) -= &HFFFF

, Check whether mouse driver installed~-exit if not.
DEF SEG = 0
MSEG - 256 * PEEK(51 * 4 + 3) + PEEK(SI * 4 + 2)
MOUSEl - 256 * PEEK(51 * 4 + 1) +PEEK(51 * 4) + 2
IF MSEG OR (MOUSEl - 2) THEN

DEF SEG -MSEG
IF PEEK(MOUSEI - 2) <>207 THEN

SCREEN 9

, Function 0 Mouse Reset and Status
M1% - 0
CALL MOUSE(M1%. M2%. M3%. M4%)

, Function 7 Limit Horizontal Motion
MI% - 7: M3% - 100: M4% - 540
CALL MOUSE(MI%. M2%. M3%. M4%)

• Function 8 Limit Vertical Motion
MI% = 8: M3% - 50: M4% - 300
CALL MOUSE(M1%. M2%. M3%. M4%)

, Draw box to show mouse motion range
COLOR 1
LINE (100. 50)- (540. 50)
LINE (540. 50) - (540. 300)
LINE (540. 300) - (100. 300)
LINE (l00.300) - (100, 50)

(continued)

Chapter 9: Sample Mouse Programming Interface Programs

continued

, Function 9 Set Graphics Cursor Block (custom cursor)
Ml% - 9: M2% - 5: M3% - 0
CALL MOUSE(Ml%. M2%. M3%. VARPTR(CURSOR(O. 0»)

, Function 1 Show Cursor
Ml% ... 1
CALL MOUSE(Ml%. M2%. M3%. M4%)

, Loop until button pressed

COLOR 7

M2% - 0
WHILE (M2% = 0)

, Function 3 Get Button Status and Mouse Position
Ml% - 3
CALL MOUSE(Ml%. M2%. M3%. M4%)

• Print cursor location
LOCATE 2. 2
PRINT M3%. M4%

WEND

, Function 0 Reset Mouse and Status
Ml% - 0
CALL MOUSE(Ml%. M2%. M3%. M4%)

ELSE PRINT "Mouse Driver Not Found"
END IF

ELSE PRINT "Mouse Driver Not Found"
END IF

The MOUSEDEM.BAS Program
The MOUSEDEM.BAS program uses modular QuickBASIC programming
techniques to demonstrate several mouse functions. The program
makes calls to the mouse driver by calling the MouseDriver subpro
gram. The MouseDriver subprogram uses one CALL INTERRUPT to ac-
cess the mouse driver. .

This program demonstrates setting the hardware and software
text cursors using Mouse Function 10 (Set Text Cursor). The program
makes the cursor blink by setting an appropriate hardware cursor and
then sets the cursor back to the default software cursor by means of a

223

PART III: MOUSE PROGRAMMING INTERFACE

second call to Function 10. The comments in the program listing ex
plain this process in detail.

In addition to showing the use of several mouse functions,
the MOUSEDEM.BAS program presents several creative subprograms
that you may find useful. For example, the MoveFromScreen and
MoveToScreen subprograms show one way to save and restore a rectan
gular area of the text mode display.

Before you can run this program, you, must load QB.QLB into
memory by typing the following command:

OB /l OB.OlB

The CALL ABSOLUTE command won't work if you don't load QB.QLB
with QuickBASIC.

NOTE: Because of the length of this program, it is not listed here. The pro
gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

The QB12&20.BAS Program
The QB12&20.BAS program demonstrates Mouse Functions 12 (Set Inter
rupt Subroutine Call Mask and Address) and 20 (Swap Interrupt Sub
routines). Function 12 sets a user-interrupt subroutine, and Function 20
swaps this interrupt subroutine with a second subroutine. .

The program displays the text mode mouse cursor and waits until
you press a key. It lets you move the cursor around the screen, and the
cursor moves to the upper-left corner of the screen whenever you press
the right mouse button.

When you press a key, Function 20 replaces the first interrupt sub
routine with the second interrupt subroutine. Now when you release
the left mouse button, the cursor moves to the center of the screen.

To end the program, again press any key.

'*****************************.*************************~*******
. * OB12&20.BAS *
, * *
'* Demonstrates Mouse Functions 12 and 20 *
'* *
• * To load OB.OlB into memory with OuickBASIC • type: * '. OB Il OB.OlB *
'***

(continued)

224

Chapter 9: Sample Mouse Programming Interface Programs

continued

DEFINT A-Z

TYPE RegType
ax AS INTEGER
bx AS INTEGER
cx AS INTEGER
dx AS INTEGER
bp AS INTEGER
si AS INTEGER
di AS INTEGER
f1 ags AS INTEGER

END TYPE

DECLARE SUB Interrupt (intnum%. iReg AS RegType. oReg AS RegType)

DIM iReg AS RegType
DIM oReg AS RegType

DIM msub%(S). msub2%(S)
COMMON msub%(). msub2%()

, First instructions
CLS
PRINT "Test by pressing right mouse button"
PRINT "Then press enter"

, Build interrupt-driven subroutine to activate Function 12
msub%(O) - &H4B8 ' Subroutine is from this code:
msub%(l) - &HB900 MOV AX.4 Function 4. Set

msub%(2) - &HO
msub%(3) - &HBA
msub%(4) - &HCDOO
msub%(S) = &HCB33

MOV CX.O
MOV DX.O
INT 33h
RETF

Mouse Cursor Position
Left edge of screen
Top edge of screen
Mouse Interrupt
Return to QuickBASIC

• Build interrupt-driven subroutine to activate Function 20
msub2%(O) = &H4B8 ' Subroutine is from this code:
msub2%(1) - &HB900 MOV AX.4 Function 4. Set

msub2%(2) = &H140
msub2%(3) - &H64BA
msub2%(4) - &HCDOO
msub2%(S) = &HCB33

MOV CX.320
MOV DX,IOO
INT 33h
RETF

Mouse Cursor Position
Middle of screen
Middle of screen
Mouse Interrupt
Return to QuickBASIC

(continued)

225

PART III: MOUSE PROGRAMMING INTERFACE

continued

• Mouse Reset and Status
i Reg. ax .. 0
Interrupt &H33, iReg, oReg

• Show Cursor
i Reg. ax = 1
Interrupt &H33. iReg. oReg

, Set Interrupt Subroutine Call Mask and Address
iReg.ax - 12 ' Mouse Function 12
iReg.cx - 8 • Interrupt when right button pressed
iReg.dx = VARPTRCmsub%(O» • Offset of msub1
Interrupt &H33. iReg. oReg

, Wait until any key is pressed
DO
LOOP WHILE INKEY$ -

, Next instructions
CLS
PRINT "Next. test by pressing and releasing left mouse button"
PRINT "Then press Enter"

• Swap Interrupt Subroutines
iReg.ax - 20 • Mouse Function 20
iReg.bx = VARSEGCmsub2%CO» , Segment of msub2
iReg.cx .. 4 ' Interrupt when left button released
iReg.dx - VARPTR(msub2%(0» • Offset of msub2
Interrupt &H33. iReg. oReg

, Wait until any key is pressed
DO
LOOP WHILE INKEY$ - ""

• Reset mouse to deactivate the interrupt
i Reg. ax -0
Interrupt &H33. iReg. oReg

END

226 '

Chapter 9: Sample Mouse Programming Interface Programs

The QB24.BAS Program
The QB24.BAS program uses Function 24 (Set Alternate Subroutine Call
Mask and Address) to set a user-interrupt subroutine. The bytes that
compose the short subroutine are placed in the msub % () array, and the
address of the first member of that array is passed to Function 24 as the
address of the subroutine.

The program builds the subroutine, displays the mouse cursor,
and calls Function 24 to activate the subroutine. The call mask is set so
that you must press a Shift key and the left mouse button simulta
neously to cause the mouse driver to call the subroutine.

The program then enters a loop, waiting for you to press any key
before terminating. During this time, you can move the mouse cursor
around the screen. If you press a Shift key and the left mouse button,
the cursor moves to the upper-left corner of the screen.

WARNING: Shortly before the program terminates, it calls Mouse Function 0

(Mouse Reset and Status) to reset the mouse. Note that Function 0 will not deacti
vate the user-interrupt subroutine. The subroutine's address remains with the
mouse driver even though the subroutine itself is gone. Activation of the subroutine
will then most likely cause your system to crash.

'**
'* OB24.BAS
, *
'* Dem6nstrates Mouse Function 24
'* Set Alternate Subroutine Call Mask and Address
, *
'* To load OB.OlB into memory with OuickBASIC, type:
'* OB Il OB.OlB

*
*

*

'**

DEFINT A-Z

TYPE RegType
ax AS INTEGER
bx AS INTEGER
ex AS INTEGER
dx AS INTEGER
bp AS INTEGER
S1 AS INTEGER

(continued)

227

PART III: MOUSE PROGRAMMING INTERFACE

continued

di AS INTEGER
flags AS INTEGER

END TYPE

DECLARE SUB Interrupt (intnum%. iReg AS RegType. DReg AS RegType)

DIM iReg AS RegType
DIM DReg AS RegType

DIM msub%(5)
COMMON msub%()

• Build interrupt-driven subroutine to activate Function 24
msub%(O) ... &H4B8 ' Subroutine is from this code ...
msub%(l) - &HB900 MOV AX.4 Function 4. Set

msub%(2) - &HO
msub%(3) = &HBA
msub%(4) = &HCDOO
msub%(5) - &HCB33

, Display instructions
CLS

MOV CX,O
MOV DX.O
INT 33h
RETF

Mouse Cursor Position
Left edge of screen
Top edge of screen
Mouse Interrupt
Return to QuickBASIC

PRINT "Test while holding Shift key while pressing
PRINT "and releasing the left mouse button"
PRINT "Then press Enter"

, Mouse Reset and Status
i Reg. ax = 0
Interrupt &H33. iReg. oReg

, Show Cursor
iReg.ax - 1
Interrupt &H33. iReg. oReg

, Set Alternate Subroutine Call Mask and Address
i Reg. ax ... 24
iReg.cx-36 I Left button released and Shift key pressed
iReg.dx = VARPTR(msub%(O»
Interrupt &H33. iReg. oReg

, Wait until any key is pressed
00
LOOP WHILE INKEY$ -= ""

228

(continued)

Chapter 9: Sample Mouse Programming Interface Programs

continued

, Deactivate Function 24
i Reg. ax - 24
i Reg. cx ... 32
Interrupt &H33. iReg. oReg

, Reset mouse
iReg.ax - 0
Interrupt &H33. iReg. oReg

END

The QBTEST. BAS Program
The QBTEST.BAS program uses Mouse Function 11 (Read Mouse Mo
tion Counters) to detect vertical mouse motion. The program displays
a three-line menu with one option highlighted. When Function 11

detects vertical mouse motion, the program moves the highlight up or
down the list.

In addition, this program uses Mouse Function 5 (Get Button
Press Information) to detect a button press. To select a highlighted op
tion, you simply press either mouse button. Before the program termi
nates, it displays a message stating which option you selected and which
button you pressed.

This program is presented in several languages in this chapter so
that you can compare the mouse function calls in different languages.
If you want to compare the programs, see the BATEST.BAS, CTEST.C,

ATEST.ASM, and FTEST.FOR programs in this chapter.
NOTE: Because of the length of this program, it is not listed here. The pro

gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

The PENCIL.BAS Program
The PENCIL.BAS program is an enjoyable sketching program that you
can expand into a complete graphics editing package. Several mouse
functions are well demonstrated in this program, and more than one
graphics mode cursor is defined and used. Depending on the state of
the program, the cursor appears as an image of the Microsoft Mouse or
as a pencil.

This chapter also offers the PENCIL program in C and QuickC.
(See the PENCIL.C program later in this chapter.)

229

PART III: MOUSE PROGRAMMING INTERFACE

NOTE: Because of the length of this program, it is not listed here. The pro
gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

C AND QUICKC PROGRAMS
This se~tion presents a variety of mouse programming examples using
the C and QuickC languages. Most of the following programs were set
up for the medium-memory model, which is the default memory model
for QuickC. In the header of each program listing, you will find in
structions for compiling and linking under C version 5.1 and instruc
tions for the program list requirements under QuickC.

To change these programs for other memory models under C,
change all occurrences of cmousem to the function call appropriate for
the desired model. These calls are listed in several program headers.
Notice that the programs that call the mouse functions using int86xO
rather than the functions supplied in MOUSE.LIB require no change to
the function names when compiling for other memory models.

The CMOUSE.C Program

230

The CMOUSE.C program demonstrates and tests several important
mouse functions. It also shows some useful programming techniques
to help keep your mouse programs well organized. As the program
exercises these mouse functions, it displays a sequence of instructions.

The program also defines constants for the mouse functions,
making the program listing easier to follow. In addition, the #define
statements near the beginning of the program redefine these function
numbers with text labels.

As listed in the program header, the C versions of the mouse calls
in the MOUSE.LIB library are provided for all the memory models. To
change memory models, you must change all occurrences of the mouse
funCtion call to the function name for the desired model. In this pro
gram, a #define statement creates a generic mouse function call, re
quiring changes to be made only in the #define statement to affect all
mouse calls. Notice that there is only one occurrence of cmousemO in
the entire listing.

NOTE: Because of the length of this program, it is not listed here. The pro
gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

Chapter 9: Sample Mouse Programming Interface Programs

The CTEST. C Program
The CTEST.C program uses Mouse Function 11 (Read Mouse Motion
Counters) to detect vertical mouse motion. The program displays a
three-line menu with one option highlighted. When Function 11

detects vertical mouse motion, the program moves the highlight up
or down the list.

In addition, this program uses Mouse Function 5 (Get Button
Press Information) to detect a button press. To select a highlighted op
tion, you simply press either mouse button. Before the program termi
nates, it displays a message stating which option you selected and which
button you pressed.

This program is presented in several languages in this chapter so
that you can compare the mouse function calls in different languages.
If you want to compare the programs, see the BATEST.BAS, QBTEST.BAS,

ATEST.ASM, and FTEST.FOR programs in this chapter.
NOTE: Because of the length of this program, it is not listed here. The pro

gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

The LPEN.C Program
The LPEN.C program uses Mouse Function 14 (Light Pen Emulation
Mode Off) to turn off light pen emulation.

When the mouse is initialized by calling Mouse Function 0

(Mouse Reset and Status), light pen emulation is turned on. This pro
gram resets the mouse and enters a loop, displaying the light pen status
returned by Function 4 (Set Mouse Cursor Position) of the BIOS video
interrupt. The AX, BX, CX, and DX registers are displayed constantly so
that you can watch the effects of emulating the light pen by pressing
both mouse buttons.

If you press any key, the program exits the first loop. The light
pen emulation is then turned off and a second loop is entered. Again,
the registers are displayed as the program continuously gets the light
pen position information from the BIOS. To end the program, again
press any key.

NOTE: The BIOS function that returns the light pen information isn't set
up for VGA, but only for eGA and EGA. With VGA, you'll see a difference in the
returned value of the AX register when the light pen emulation is on or off;
however, the returned position information remains constant.

231

PART III: MOUSE PROGRAMMING INTERFACE

/**
* LPEN.C *
* *
* Demonstrates use of light pen emulation from C 5.1 *
* and QuickC. First. emulation is on. Press both mouse *
* buttons to emulate pen down. Press any key to turn *
* off emulation. Registers returned from BIOS Function 4. *
* Interrupt 10H, are displayed (Get Light Pen Position). *
* *
* Note: The BIOS Function 4. Interrupt 10H. doesn't *
* return the light pen position for VGA. It's *
* designed to work with CGA and EGA only. *
* *
* This program uses int86() to call the mouse driver. *
* *
* Microsoft C 5.1: *
* cl 1 pen. c *
* *
* QuickC: *
* Program List (not required) *
* Note: Program assumes mouse driver and mouse installed *
**/

#include <stdio.h>
#include <stdlib.h>
#include <dos.h>
#include <graph.h>

maine)
{

232

union REGS iReg,oReg;
struct SREGS segregs;

/* Mouse Reset and Status */
iReg.x.ax =0 0;
int86(Ox33. &iReg. &oReg);

/* Show Cursor */
iReg.x.ax = 1;
int86(Ox33.&iReg. &oReg):

/* Display message */

printf("\n\nLight Pen Emulation Mode On. Status ... \n");

(continued)

Chapter 9: Sample Mouse Programming Interface Programs

continued

whil e (I kbhi to)
{

iReg.h.ah - 4:
int86(Ox10, &iReg, &oReg):

/* Get Light Pen Position *1

printf("\rAX: %.4X BX: %.4X ex: %.4X DX: %.4X" ,
iReg.x.ax,1Reg.x.bx,iReg.x.cx.iReg.x.dx):

getch() :

/* Light Pen Emulation Mode Off */
iReg.x.ax .,. 14;
int86(Ox33, &iReg, &oReg);

/* Display message */
printf("\n\nLight Pen Emulation Mode Off. Status •.. \n");

while (!kbh1t(»
{

iReg.h.ah - 4:
int86(Ox10, &iReg, &oReg);

1* Get Light Pen Position */

printf("\rAX: %.4X BX: %.4X ex: %.4X DX: %.4X",
iReg.x.ax,iReg.x.bx.iReg.x.cx,iReg.x.dx);

getch();

1* Mouse Reset and Status *1
iReg.x.ax = 0;
int86(Ox33. &iReg, &oReg);

The MOUS_IN1C, MOUS_LlB.C,
MOUH_IN1C, and MOUH_LlB.C Programs

The MOUS_INT.C, MOUS_LIB.C, MOUH_INT.C, and MOUH_LIB.C

programs demonstrate the differences between calling mouse func
tions using the int86xO function and using the mouse calls provided in
the MOUSE.LIB library. MOUH_INT.C and MOUH_LIB.C also show the
differences required for using the Hercules Graphics Card. All of these
programs produce almost identical results.

Functions 7 (Set Minimum and Maximum Horizontal Cursor
Position) and 8 (Set Minimum and Maximum Vertical Cursor Position)

233

PART III: MOUSE PROGRAMMING INTERFACE

limit the cursor motion to the middle of the screen. Function 9 (Set
Graphics Cursor Block) sets a new graphics mode cursor, shaped like
a pointing hand. As you move the cursor around the middle of the
screen, Function 3 (Get Button Status and Mouse Position) continu
ously gets the mouse position, which is displayed in the upper-left cor
ner of the screen. To end the program, press either mouse button.

NOTE: Because of the length of these programs, they are not listed here. The
programs are included on the disks that come with this book. You can use your
favorite text editor to view the source code for the programs on your screen, or you
can print the source code on your printer.

The MSCEXAMP.C Program
The MSCEXAMP.C program demonstrates several common mouse
functions and a subroutine that checks whether the mouse driver is in
stalled. The defaul t graphics mode cursor is displayed, and its· motion is
limited by calls to Mouse Functions 7 (Set Minimum and Maximum
Horizontal Cursor Position) and 8 (Set Minimum and Maximum Verti
cal Cursor Position). To end the program, press the left mouse button.

This program is set up for a medium-memory model, which is the
default for QuickC. To change it to any other model for C version 5.1,

globally change all occurrences of cmousem to the appropriate call for
the desired model. You'll also need to change the lAM option on the
CL command line for the new model.

1**
* MSCEXAMP.C

*
* Demonstrates use of the Microsoft Mouse from C 5.1
* and QuickC. It checks to see that the mouse driver was
* installed, displays a graphics mode cursor, and limits
* mouse cursor motion to the middle of the scr~en.

* * cmousem() is for medium-memory model (QuickC default).
* For other memory models, replace cmousem() with the
* appropriate function:
* cmouses() - C small model
* cmousec() - Ccompact model
* cmousem() - C medium model
* cmousel() C large or huge model

*
* Microsoft C 5.1:

234

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

(continued)

Chapter 9: Sample Mouse Programming Interface Programs

continued

* cl lAM mscexamp.c -link mouse *
* *
* QuickC: *
* Program List MSCEXAMP.C. MOUSE.LIB *
**/

#include <stdio.h>
#include <dos.h>
#include <graph.h>

void chkdrv();

maine)
{

int mI. m2. m3. m4;

chkdrv(); /* Check for mouse driver

ml - 0; /* Initialize mouse
cmousem(&ml. &m2. &m3. &m4);

if (ml -- 0)
{

printf("Microsoft Mouse NOT found");

*/

*/

exit (-1); /* Exit. if mouse not found */
}

_setvideomode(_HRESBW);

ml = 4; /* Function ca 11 4 */
m3 .. 200; /* Set mouse position at */
m4 .. 100; /* center of the screen */
cmousem(&ml. &m2. &m3. &m4) ;

ml .. 7; /* Function call 7 */
m3 .. 150; /* minimum horizontal value */
m4 450; /* maximum horizontal value */
cmousem(&ml. &m2. &m3. &m4) ;

ml = 8; /* Function call 8 */
m3 - 50; /* minimum vertical value */
m4- ISO; /* maximum vertical value */
cmousem(&ml. &m2. &m3. &m4) :

(continued)

235

PART III: MOUSE PROGRAMMING INTERFACE

continued

printf("Graphics cursor limited to center of the screen.\n"):
printf("Press the left button to EXIT.");

mI - 1: /* Function 1. Show Cursor */
cmousem(&mI, &m2, &m3, &m4):

m2 - 0:
while (m2 !- 1)

{

mI - 3:

/* Loop until left mouse
/* button is pressed

cmousem(&mI, &m2, &m3, &m4):
}

mI - 2: /* Function 2, Hide Cursor */
cmousem(&mI. &m2, &m3, &m4):

_setvideomode(_DEFAULTMODE):

void chkdrv ()
{

unsigned long address;
unsigned char first_byte:

union REGS inregs, outregs:
struct SREGS segregs;

/* Structures to contain */

/* register values for intdosx */

inregs.x.ax - Ox3533; /* Get interrupt vector for Ox33 */
intdosx (&inregs, &outregs, &segregs);
address = (((long) segregs.es) « 16) + (long) outregs.x.bx
first_byte - (unsigned char) * (long far *) address;

/* Be sure vector isn't 0 and first instruction isn't iret */
if «address -- OL) :: (first_byte -- OxCF»
{

}

printf ("\nThe Mouse Driver must be installed to use this program");
exit ();

The PENCIL.C Program

236

The PENCIL.C program is an enjoyable sketching program that you
can expand into a complete graphics editing package. Several mouse
functions are well demonstrated in this program, and more than one

Chapter 9: Sample Mouse Programming Interface Programs

graphics mode cursor is defined and used. Depending on the state of
the program, the cursor appears as an image of the Microsoft Mouse
or as a pencil.

This chapter also offers the PENCIL program in QuickBASIC
(See the PENCIL.BAS program earlier in this chapter.)

This program uses Mouse Function 20 (Swap Interrupt Subrou
tines) to set an interrupt-driven user subroutine. Function 20 swaps
subroutines, which is acceptable even if the subroutine is the only one
being used. Function 24 (Get Alternate Subroutine Call Mask Address)
could have been used also.

In the header of the program listing, you will find a list of the
mouse functions used in the program, as well as the commands used
to build the program under C version 5.1 or QuickC.

NOTE: Because of the length of this program, it is not listed here. The pro
gram is included on, the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

The M20SUB.ASM Program
The M20SUB.ASM program provides the interrupt-driven subroutine
named NewMouseHardwareSub for the PENCIL.C program. This sub
routine returns the current status of the mouse in four C variables,
each of which is declared EXTRN in this listing.

PENCIL uses Mouse Function 20 (Swap Interrupt Subroutines) to
set this subroutine. The call mask passed causes this subroutine to acti
vate when you release the right mouse button.

;**
;* M20SUB.ASM *
:* *
;* MASM subroutine for C/QuickC program PENCIL.C *
;* *
;* _NewMouseHardwareSub: *
;* Description: Passes the mouse variables to the C routine *
;* when a mouse interrupt occurs

;* This code is to be linked with PENCIL
;* Example:
;* masm IMl m20sub;
:* cl lAM pencil.c m20sub.obj -link mouse

*
*
*
*
*
*

;**

(continued)

237

PART III: MOUSE PROGRAMMING INTERFACE

continued

EXTRN _ButtonState:WORO Mouse button state
EXTRN _HorizCursCoord:WORO
EXTRN _VertCursCoord:WORO
EXTRN _MouseConditionBits:WORO

Current horizontal cursor position
Current vertical cursor position
Condition that occurred resulting in
a call to this routine

code SEGMENT para public 'code'
assume cs:code
public _NewMouseHardwareSub

_NewMouseHardwareSub PROC far
push OS

Far procedure
Save current data segment
Save condition mask push AX

mov AX.SEG _ButtonState
mov OS.AX
pop AX
mov _MouseConditionBits.ax
mov_ButtonState.BX
mov _HorizCursCoord.CX
mov _VertCursCoord.OX
pop OS
RET

Load data segment

Restore condition mask
Pass condition to C routine
Pass 'button state to C routine
Pass cursor coordinates to C routine

Restore data segment
Far return

_NewMouseHardwareSub ENOP

code ENOS
end E~d of NewMouseHardwareSub

MASM PROGRAMS

238

The programs in this section demonstrate calls to several mouse func
tions from MASM. The TSTl.ASM program is a simple program that
shows the basics of activating and displaying the standard default
graphics cursor. Other programs show the use of mouse functions that
provide flexible, creative programming from the MASM environment.
For example, the TST12&20.ASM program demonstrates how you can
use more than one interrupt subroutine in your programs to respond
quickly to mouse activity.

Making mouse function calls from MASM is similar to making
mouse function calls from high-level languages. The most important dif
ference is the use of the AX, BX, ex, and DX registers (instead of the Ml,

M2, M3, and M4 integer variables) followed by a call to Interrupt 33H.

Parameters passed to and received from the mouse functions use these
registers. They correspond directly with the four integer variables.

Chapter 9: Sample Mouse Programming Interface Programs

In addition to the AX, BX, ex, and DX registers, some mouse func
tion calls use the ES, DI, and SI registers. For example, Function 12 (Set
Interrupt Subroutine Call Mask and Address) requires all four regis
ters. (For more information on Function 12, see Chapter 8, "Mouse
Function Calls.")

The TST1.ASM Program
The TSTl.ASM program resets the mouse, sets the graphics adapter to
64o-by-200 black-and-white mode, and displays the standard graphics
nlode cursor at the center of the screen.

To end this program, press any key. The cursor disappears and
the video mode returns to 80-by-25 text mode.

Program: TSTl.ASM

Description: Demonstrates the mouse in graphics mode

To Run: MASM TSTl;
LINK TSTl;
TSTl

Note: Program assumes mouse and mouse driver are installed .

.. -----------~----------.-~--------------------------- ----.-----,

.MODEL LARGE

.STACK lOQh

.CODE

start:
; Set 640 x 200 two-color graphics mode
xor aX,ax
int lOh

; Mouse Reset and Status
xor ax.ax
i nt 33h

(continued)

239

PART III: MOUSE PROGRAMMING INTERFACE

continued

Show Cursor
mov aX,l
int 33h

: Wait for a key press, allowing testing of mouse
mov ah,8
int 2lh

: Reset the mouse
xor aX,ax
int 33h

: Set 80 x 25 text mode
mov aX,3
int lOh

: Exit to MS-DOS
mov aX,4COOh
int 21h

END start
END

The ATEST.ASM Program

240

The ATEST.ASM program uses Mouse Function 11 (Read Mouse Motion
Counters) to detect vertical mouse motion. The program displays a
three-line menu with one option highlighted. When Function 11

detects vertical mouse motion, the program moves the highlight up
or down the list.

In addition, this program uses Mouse Function 5 (Get Button
Press Information) to detect a button press. To select a highlighted op
tion, you simply press either mouse button. Before the program termi
nates, it displays a message stating which option you selected and which
button you pressed.

This program is presented in several languages in this chapter so
that you can compare the mouse function calls in different languages.
If you want to compare the programs, see the BATEST.BAS, QBTEST.BAS,

CTEST.C, and FTEST.FOR programs in this chapter.
NOTE: Because of the length of the ATEST.ASM program, it is not listed here.

The program is included on the disks that come with this book. You can use your
favorite text editor to view the source code for the program on your screen, or you
can print the source code on your printer.

Chapter 9: Sample Mouse Programming Interface Programs

The ASMEXAMP.ASM Program
The ASMEXAMP.ASM program demonstrates several mouse functions
and checks carefully for the mouse driver. Functions 7 (Set Minimum
and Maximum Horizontal Cursor Position) and 8 (Set Minimum and
Maximum Vertical Cursor Position) limit the mouse cursor position to
the middle section of the screen. In addition, Function 3 (Get Button
Status and Mouse Position) detects when you press the left button, at
which time the program terminates .

. _------------------- ... ------------------------ ... -----------------,
Program: ASMEXAMP.ASM

Description: Demonstrates Mouse Functions 0, I, 2, 3, 4, 7,
and 8. Displays graphics mode cursor and
checks for installation of the mouse driver.

To Run: MASM ASMEXAMP;
LI NK ASMEXAMP;
ASMEXAMP

:-------~---

data segment public 'data'
msgO db "Mouse driver not installed","$"
msgl db "Mouse not found","$"
msg2 db "Graphics cursor limit at center of the screen",Odh,Oah

db "Press the left mouse button to EXIT","$"
data ends

code segment public 'code'

start:
assume cs:code, ds:nothing. es:nothing

mov ax.seg data
mov ds ,ax
assume ds:data

;Set OS to the
:data segment

: Check if mouse dri~er installed
mov ax, 03533h ;Get Int 33H vector
int 21h :by calling Int 21H.
mov ax, es
or ax, bx
jz not installed
cmp byte ptr es:[bx], OCFh
jne

;Check segment and offset of
;Int 33H. If 0 then driver
:is not installed.
;Also, if IRET then driver is
:not installed.

(continued)

241

PART III: MOUSE PROGRAMMING INTERFACE

continued

not_l nstall ed:
mov dx. offset msgO
mov ah, 09h
int 21h
mov ax. 4C01h
int 21h

check_mouse:
xor ax. ax
int 33h
or ax. ax
jnz mouse_ok

; Mouse not found
mov dx. offset msg1
mov ah. 09h
int 21h
mov ax. 4C01h
int 21h

mouse_ok:
mov ax.0006h
i nt 10h

mov ,ax. 4
mov ex. 200
mov dx. 100
int 33h

mov ax, 7
mov ex. 150
mov dx. 450
int 33h

mov ax. 8
mov ex, 50
mov dx, 150
i nt 33h

mov aX.1
int 33h

242

;Me5sage 0
:Output message to screen

;Exit

:1nitialize mouse

;15 mouse installed?
:Then continue

:Message 1
:Output message to screen

:Exit

:Set up for 640 x 200 resolution
:graphies mode (CGA mode 6)

:Function 4
;M3 .. 200
;M4 .. 100
:Set Mouse Cursor POSition

:Funetion 7
;M3 = 150
;M4 ... 450
:$et Minimum and Maximum Horizontal
;Cursor Position

:Funetion 8
;M3 .. 50
;M4 = 150
:$et Minimum and Maximum Vertical
:Cursor Position

:Show cursor

(continued)

Chapter 9: Sample Mouse Programming Interface Programs

continued

mov dx. offset msg2 ;Get exit message
mov ah. 09h :Output message to screen
int 21h

around:
mov ax. 3 :Function 3
int 33h :Get Button Status and Mouse Position

test bx. OOOlh ;Left button pressed?
jz around ;Branch if left button NOT pressed

xor ax. ax ;Function 0
int 33h ;Mouse Reset and Status

mov ax. 0OO3h ;Set up 80 x 25 character text mode
int lOh

mov ax.04COOh :Normal exit
int 21h

code ends
end start

The TST12&20.ASM Program
The TST12&20.ASM program demonstrates Mouse Functions 12 (Set
Interrupt Subroutine Call Mask and Address) and 20 (Swap Interrupt
Subroutines) .

Function 12 sets the first user-interrupt subroutine. This subrou
tine, which is activated when you press the right mouse button, uses
Function 4 to set the cursor position at the upper-left corner of the
screen. You can test this action by moving the cursor around the screen
and occasionally pressing the right mouse button. To begin testing
Function 20, press any key.

Function 20 swaps user-interrupt subroutines. In this program,
the second subroutine replaces the first, causing the mouse cursor to
act differently. Now when you press the left mouse button, the cursor
moves to the middle of the screen. To test this action, move the cursor
around the screen and press the left mouse button. To terminate the
program, press any key.

243

PART III: MOUSE PROGRAMMING INTERFACE

._------.------------------------------------_._--_._.--.---.---.
Program: T5T12&20.A5M

Description: Demonstrates Mouse Functions 12 and 20.

To Run: MASM T5T12&20;
LI N K T5T12&20:
TST12&20

Note: Program assumes mouse and mouse driver are installed .

. _---_.---------------.~--.

. MODEL LARGE

.STACK 100h

.CODE

; This is the subroutine activated by Function 12
msub PROC

mov ax.4 Function 4, Set Mouse
xor cx,cx Left edge of screen
mov dx,cx Top edge of screen
int 33h Move the cursor
ret

msub ENOP

; This is the replacement subroutine for Function 20
msub2 PROC

mov ax.4 Function 4. Set Mouse
mov cX,320 Middle of screen
mov dx.100 Middle of screen
int 33h Move the cursor
ret

msub2 ENOP

; Set up OS for the data segment
start: mov ax.@DATA

244

mov ds.ax

: Mouse Reset and Status
xor aX,ax
int 33h

; Show Cursor
mov ax.1
int 33h

Cursor

Cursor

(continued)

continued

Chapter 9: Sample Mouse Programming Interface Programs

; Set Interrupt Subroutine Call Mask and Address
mov aX,SEG msub
mov eS,ax Segment of sub into ES
mov ax.12 Mouse Function 12
mov cx.8 Interrupt when right button
mov dX,OFFSET msub Offset of sub into OX
i nt 33h

: Wait for a key press, allowing testing of mouse
mov ah.8
int 21h

: Swap Interrupt Subroutines
mov ax.20 Mouse Function 20

Offset of sub into BX

pressed

mov bX,SEG msub2
mov cx,4
mov dX,OFFSET msub2
int 33h

Interrupt when left button released
Segment of sub into OX

: Wait for a key press, allowing testing of mouse
mov ah,8
int 21h

: Reset the mouse to deactivate the interrupt
xor aX,ax
int 33h

: Exit to MS-DOS
mov ax.4COOh
int 21h

ENO start
END

The TST24.ASM Program
The TST24.ASM program demonstrates Mouse Function 24 (Set Alter
nate Subroutine Call Mask and Address). Function 24 is similar to
Function 12 (Set Interrupt Subroutine Call Mask and Address) in the
way it sets a user-interrupt subroutine. However, unlike Function 12,

this function allows activation of the subroutine based on Shift key
status at the time of the detected mouse activity. In this case, the mouse
cursor moves to the upper-left corner of the screen only when you press
a Shift key and the left mouse button simultaneously.

245

PART III: MOUSE PROGRAMMING INTERFACE

Program: TST24.ASM

Description: Demonstrates Mouse Function 24.

To Run: MASM TST24;
LINK TST24:
TST24

Note: Program assumes mouse and mouse driver are installed .

. MODEL LARGE

.STACK IOOh

.CODE

: This is the subroutine activated by Function 24
msub PROC

mov ax.4 Function 4. Set Mouse
xor cx,cx Left edge of screen
mov dx.cx Top edge of screen
int 33h Move the cursor
ret

msub ENDP

: Set up OS for the data segment
start: mov ax.@DATA

mov ds.ax

: Mouse Reset and Status
xor aX,ax
int 33h

: Show Cursor
mov ax.!
int 33h

: Set Interrupt Subroutine Call Mask and Address
mov ax.SEG msub
mov
mov

es.ax
ax.24

Segment of sub into ES
Mouse Function 24

Cursor

mov
mov

cx.34
dx.OFFSET msub

When Shift key and left button pressed
Offset of sub into OX

int 33h

(continued)

246

continued

Chapter 9: Sample Mouse Programming Interface Programs

; Wait for a key press. allowing testing of mouse
mov ah.8
int 21h

: Deactivate Function 24
mov ax.24
mov cx.32
int 33h

; Reset the mouse
xor ax.ax
int 33h

; Exit to MS-DOS
mov ax.4COOh
int 21h

END start
END

FORTRAN PROGRAMS
The following programs demonstrate calling mouse functions from
FORTRAN 4.1. The shortest program is FORI.FOR, which simply displays
the default text mode cursor and waits for you to press either mouse
button before the program terminates. The FDEMO.FOR program sets a
high-resolution graphics mode and displays a new cursor shaped like a
mouse. The FTEST.FOR program is the FORTRAN version of the three
line menu that appears in several languages in this chapter.

The best way to program the mouse from FORTRAN is by calling
the MOUSEL subroutine in the MOUSE.LIB library. When you are link
ing the programs, be sure to link with the MOUSE.LIB file. Each pro-
gram uses the MOUSEL call. .

In the header of each program listing, you will find the compile
and-link command line used to create each executable module.

The FOR1.FOR Program
The FORI.FOR program resets the mouse, displays the cursor, and waits
until you press either mouse button. When the program detects a but
ton press, it hides the cursor and terminates.

247

PART III: MOUSE PROGRAMMING INTERFACE

248

This program shows the basic method of programming the
mouse from FORTRAN. Each mouse function is called using the
MOUSEL subroutine provided in the MOUSE.LIB library. You must link
this library file with FORl.FOR for the program to run.

**
* FORI. FOR *
* *
* Short example of calling mouse functions from FORTRAN 4.1 *
* *
* Compile using large model (default). and link with MOUSE.LIB *
* Example: fl IFPc forl.for -link mouse *
**

PROGRAM FORI

INTEGER*2 MI. M2. M3. M4

* Display short message for user
WRITE (*,*) 'Press either mouse button to quit'

* Mouse Reset and Status
Ml = 0
CAll MOUSEL (MI. M2. M3. M4)

* Show Cursor
Ml ... I
CAll MOUSEL (Ml,'M2. M3, M4)

100 CONTINUE

* Get Button Status and Mouse Position
Ml ... 3
CALL.MOUSEL (Ml.M2. M3. M4)

* loop until either button is pressed
M2 .. MOD(M2. 4)
IF(M2 .EO. 0) GOTO 100

* Mouse Reset and Status
Ml ... 0
CALL MOUSEL (MI. M2. M3. M4)

STOP
END

, "

Chapter 9: Sample Mouse Programming Interface Programs

The FTEST.FOR Program
The FTEST.FOR program uses Mouse Function 11. (Read Mouse Motion
Counters) to detect vertical mouse motion. The program displays a
three-line menu with one option highlighted. When Function 11

detects vertical mouse motion, the program moves the highlight up
or down the list.

In addition, this program uses Mouse Function 5 (Get Button
Press Information) to detect a button press. To select a highlighted op
tion, you simply press either mouse button. Before the program termi
nates, it displays a message stating which option you selected and which
button you pressed.

This program is presented in several languages in this chapter so
that you can compare the mouse function calls in different languages.
If you want to compare the programs, see the BATEST.BAS, QBTEST.BAS,

CTEST.C, and ATEST.ASM programs in this chapter.
NOTE: This program uses the ANSI.SYS escape-code sequences to clear the

screen, locate the cursor, and set the character attributes. You must load the
ANSI.SYS file into memory, or these escape-code sequences will display strange
looking characters and the menu won't function correctly. ANSI.SYS is loaded at
system boot-up from a command in the CONFIG.SYS file. For more information,
see your MS-DOS documentation.

NOTE: Because of the length of the FTEST.FOR program, it is not listed here.
The program is included on the disks that come with this book. You can use your
favorite text editor to view the source code for the program on your screen, or you
can print the source code on your printer.

The FDEMO.FOR Program
The FDEMO.FOR program shows one method of programming graphics
mode mouse functions using FORTRAN. The MASM program SUBS.ASM

supplies some important subroutines for this program. You must link
SUBS.ASM and the MOUSE.LIB library with FDEMO.FOR for proper
operation.

The INTEGER*2 array named MCURSOR holds the mask data for
redefining the graphics mode mouse cursor. Mouse Function 9 (Set
Graphics Cursor Block) sets the new cursor shape, and the mask re
defines the cursor to look like a mouse-whiskers, tail, and all.

This program also demonstrates the operation of Mouse Function 16

(Conditional Off), which defines a rectangular region of the display that
hides the mouse cursor. The cursor remains visible unless you move it

249

PART III: MOUSE PROGRAMMING INTERFACE

into the defined part of the screen. To see how this works, move the
cursor to the upper-left corner of the screen.

NOTE: Because of the length ofFDEMO.FOR, it is not listed here. The pro
gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

PASCAL PROGRAMS
The programs in this section demonstrate how you can program the
mouse from Microsoft Pascal. A procedure named mousel is provided in
the MOUSE.LIB library for making calls from Pascal. Notice that this is
the same routine called from FORTRAN. The languages share the same
parameter-passing and procedure-calling mechanisms.

All these program examples use assembly-language procedures.
In addition, the following routines set the graphics modes and check
for mouse driver installation.

The MOUSHGCP.PAS Program

(*

The MOUSHGCP.PAS program demonstrates programming the mouse
for the Hercules Graphics Card. You must link this program with the
INITPAS.OB] objectmodule and the MOUSE.LIB library for prope~
operation.

This program first calls the GRAF assembly routine to set the Her
cules graphics mode (720 by 348 pixels). The program calls mouse func
tions to reset the mouse, show the cursor, and check for button press
information. When you press a button, the program resets the mouse
driver and sets the Hercules Graphics Card back to text mode.

* Programmer:
* Eric Fogelin
* June 1. 1987

*
* Purpose:
* Using Microsoft Pascal to program mouse support for the Hercules
* Monochrome Graphics Card (HGC).

*
* Arguments:

(continued)

250

Chapter 9: Sample Mouse Programming Interface Programs

continued

* Limits:
* Must link with MOUSE.LIB and INITPAS.OBJ to resolve mouse function
* calls and HGC display routine references.

*
* Make fi 1 e:

*
* moushgcp.obj: moushgcp.pas
* pasl moushgcp;
* pas2;

*
* initpas.obj: 1n1tpas.asm
* masm initpas.asm;

*
* moushgcp.exe: moushgcp.obj initpas.obj
* link moushgcp + initpas ••• mouse.lib;

*
* History:
* 6/1/87 - Created
*)

program mouse_hgc;

(* External references to mouse library and HGC screen routines *)

procedure mousel (vars mI. m2. m3. m4:word);extern;
procedure GMODE;extern;
procedure TMODE;extern;

var
adsbyte: ads of char;
mI. m2. m3. m4: word;
videomode: char;

(* 32-bit pOinter. segment and offset *)

(* Standard mouse parameters *)

(* Used to save/restore video mode *)

begin

(* Point to byte which holds Video BIOS mode *)

adsbyte.s 16#0000;
adsbyte.r := 16#0449:

(* Save current screen mode value *)

videomode := adsbyte A
:

(* Put HGC into graphics mode using modified Hercules INIT.ASM routine *)
GMODE;

(continued)

251

PART III: MOUSE PROGRAMMING INTERFACE

continued

end.

(* Put byte value of 6 to direct graphics mouse cursor to HGC page 0 *)

adsbyte A :- chr(6):

(* Reset mous~ driver. HGC 720 x 348 resolution is recognized *)

ml:- 0:
mousel (m!. m2. m3. m4);

(* Turn on default graphics mouse cursor *)
ml := 1;
mousel (m!. m2. m3. m4);

(* Loop until either mouse button pressed *)

repeat
ml :- 3:
mousel (mI. m2. m3. m4);

until (m2 <> 0):

(* Reset mouse driver *)

ml := 0:
mousel (m}. m2. m3. m4):

(* Set HGC back to text mode *)
TMODE:

(* Restore state of Video BIOS mode value *)

adsbyte A :- videomode:

The INITPAS.ASM Program
The INITPAS.ASM module provides support code for the MOUSHGCP.PAS

program. The gmode procedure sets the 6845 CRT controller for the 720-
by-348 graphics mode of the Hercules Graphics Card. The tmode pro
cedure sets Hercules text mode.

NOTE: Because of the length of this program, it is not listed here. The pro
gram is included on the disks that come with this book. You can use your favorite
text editor to view the source code for the program on your screen, or you can print
the source code on your printer.

The PASEXAMP.PAS Program

252

The PASEXAMP.PAS program demonstrates several mouse functions. It
also checks that you installed the mouse driver before it tries to reset
the driver. Mouse Functions 0 (Mouse Reset and Status) and 1 (Show

Chapter 9: Sample Mouse Programming Interface Programs

Cursor) reset the mouse and show the cursor. Function 4 (Set Mouse
Cursor Position) is used to set the cursor position. In addition, Func
tions 7 (Set Minimum and Maximum Horizontal Cursor Position) and
8 (Set Minimum and Maximum Vertical Cursor Position) limit cursor
motion to the middle part of the screen.

The program enters a loop, using Mouse Function 3 (Get Button
Status and Mouse Position) to check continuously for a press of the left
mouse button. To end the program, press the left mouse button.

NOTE: You must assemble and link the SUBS.ASM assembly-language
module with this program for proper operation. You must also link the MOUSE. LIB

library to satisfy the mouse function calls.

{--_oJ
{ PASEXAMP.PAS - Mouse functions and Microsoft Pascal }
{ }
{ Program enters graphics mode, displays default }
{ cursor, limits its range of motion, and quits when }
{ the left mouse button is pressed. }
{ }
{ Make Fil e: }
{ }
{ pasexamp.obj: pasexamp.pas }
{ pa s 1 pasexamp: }
{pas2 }
{ }
{ pasexamp~exe: pasexamp.obj subs.obj }
{ link pasexamp subs", .. \mouse: }
{ }

{--~-------------------~--------------------------------oJ

program mtest (output):

proceduremousel(vars ml, m2, m3, m4:word):extern:
procedure chkdrv:extern:
procedure graf;extern;

var
ml. m2, m3. m4: word:

begin {demo}
chkdrv: {Check mouse driver. If not}

{i nsta 11 ed. exit. }
{Installed. initialize mouse}

m3, m4):

(continued)

253

PART III: MOUSE PROGRAMMING INTERFACE

continued

if (m1 .. 0) then
writeln('Microsoft Mouse NOT found')

else
begin

m1 :- 4: {Function call 4. set mouse}
m3 :- 200: {horizontal position }
m4 :-100: {vertical position }
mousel(mI. m2. m3. m4):

ml :- 7; {Function call 7. set mouse}
m3 :- 150: {minimum horizontal position}
m4 :- 450; {maximum horizontal posit; on}
mousel (ml. m2, m3. m4);

m1 :- 8; {Function call 8. set mouse
m3 :- 50: {minimum vertical posit; on
m4 :- 150; {maximum vertical position
mousel(ml. m2. m3. m4):

graft {Change into graphics mode }

writeln('Graphics cursor limited to center of the screen. ');
writeln('Press the left mouse button to EXIT.');

m1 :- 1; {Function call 1
mousel(mI. m2. m3. m4): {show mouse cursor

m2 : ... 999; {Dummy value for loop
repeat {until left button pressed

m1 :-3: {Function call 3
mousel(mI. m2. m3. m4); {get current mouse status}

until m2 :- 1: {Left mouse button pressed }

m1 :- 0: {Reset motise driver
mousel(mI. m2. m3. m4):

end

end. {demo}

The SUBS.ASM Program

254

The SUBS.ASM program module provides the graf and chkdrv subrou
tines for the PASEXAMP.PAS program. The graf subroutine sets a high
resolution graphics mode (640-by-200 pixels, 2-color), and chkdrv checks
that you installed the mouse driver.

Chapter 9: Sample Mouse Programming Interface Programs

The code in this module is identical to that in the SUBS.ASM

module for the FORTRAN examples. Also, the parameter-passing con
ventions for Microsoft Pascal and Microsoft FORTRAN are the same.
This explains why both languages call the same procedure (mousel)

from the MOUSE.LIB library.

:**
;* SUBS.ASM
; *
:* MASM subroutines for PASCAL program PASEXAMP.PAS
; *
;* graf - Set 640 x 200. 2-color graphics mode
:* chkdrv - Check that mouse driver is installed
; *
;* See PASEXAMP.PAS program for information on linking.
: *

*
*
*
*
*
*
*
*
*

;**

mdata segment byte public 'data'

msg db "Mouse Driver NOT installed","$"

mdata ends

mcode segment para public 'CODE'
assume cs:mcode

public graf

: graf - Set 640 x 200, 2-color graphics mode

graf proc far
push bp
mov ax, 06h ;Change to graphics
int 10h ;mode by calling
pop bp ;Int IOH service
ret

graf endp

: chkdrv Check that mouse driver is installed

public chkdrv

(continued)

255

PART III: MOUSE PROGRAMMING INTERFACE

continued

chkdrv proc far
push bp
push es

mov ax, 03533h :Get lnt 33H
int 21h ;by calling Int 21H
moy ax, es ; Check segment and
or ax, bx ;offset of lnt 33H
jnz NotInstalled ;vector if 0 or IRET
cmp byte ptr es:[bx],Ocfh :mouse driver not instal1ed
jne back ;Ex1t

Notlnstalled:
moy aX,seg mdata ;Set up OS to
mov ds.ax :point to data segment
mov dx, offset msg :Get message
mov ah. 09h ;out to screen
int 21h
pop es
pop bp
mov ax.04cOlh ;Function code for
int 21h ;end process

back:
pop es
pop bp
ret

chkdrv endp

mcode ends
end

The PDEMO.PAS Program

256

The PDEMO.PAS program demonstrates several mouse functions.
Mouse Function 0 (Mouse Reset and Status) initializes the mouse.
Function 9 (Set Graphics Cursor Block) sets a new graphics mode cur
sor shape. In addition, Function 16 (Conditional Off) defines an area
of the screen that hides the mouse. If you move the cursor to the upper
left part of the screen, Function 16 causes the mouse cursor to disap
pear. Mouse Function 3 (Get Button Status and Mouse Position) waits
for you to press the left mouse button. When the left button is pressed,
the program terminates.

Chapter 9: Sample Mouse Programming Interface Programs

(---oJ
(POEMO.PAS - Mouse functions and Microsoft Pascal }
(}

(Program checks that mouse driver was installed. }
(displays a graphics cursor. and hides the cursor }
(if it moves into the upper-left part of the screen. }
(Program ends when left mouse button is pressed. }
(}

{ Make Fil e: }
(}
(pdemo.obj: pdemo.pas }
{ pasl pdemo; }
{pas2 }
(}

{ pdemo.exe: pdemo.obj subs.obj }
(link pdemo subs •.•.. \mouse: }
(}

{---oJ

program mtest(output):

procedure mousel(vars ml.m2,m3.m4:word):extern:
procedure chkdrv:extern:
procedure graf:extern;

var
ml.m2.m3.m4:word;
Cursor array [0 •• 31]of word:
bound : array [0 .. 3] of word;
ptradd : array [1 .. 2] of word:
i. j : integer:

begin

for i :- 0 to 15 do cursor[i] .= 16#ffff:
Cursor[16] :- 16#8000;
Cursor[17] 16#EOOO:
Cursor[18) 16#F800;
Cursor[19] 16#FEOO: {Initialize cursor array}
Cursor[20] 16#0800;
Cursor[21] 16#OCOO;
Cursor[22] :~ 16#0600;
Cursor[23] := 16#0300:
for j :-24. to31do Cursor[j] := 16#0000;

(continued)

257

PART III: MOUSE PROGRAMMING INTERFACE

continued

end.

258

chkdrv:

m1 :- 0:

{Check for mouse
{driver installation
(Function call 0

mousel(m1,m2.m3.m4): {Initialize mouse
if (m1 = 0) then (No, output message

writeln('Microsoft Mouse NOT found')
else

begin

graf:

m1:=9:
m2:-1;
m3:-1:

{Yes, demo Function 9}
{ and Function 16 }
{set to graphics mode}

{Function call 9

{ set graphics cursor}

ptradd[l] :- (ads Cursor).r: {offset of the array}
ptradd[2] := (ads Cursor).s: {segment of the array}
mousel(m1,m2.m3.ptradd[1]):

writelnC'Mouse cursor will disappear within this area. '):
writeln('Press the right mouse button to EXIT ');

m1 :- 1:
mousel(m1,m2.m3,m4);

m1 := 16;
bound[O] := 0:
bound[l] :- 0:
bound[2] :- 390:
bound[3] := 25;

{Function callI
{ show mouse cursor

{Funct ion ca 11 16 }

{Left x coordinate }

{Upper y coordinate }

{Right x coordinate }

{Lower y coordinate }

ptradd[l] :- (ads bound). r: {offset of the
ptradd[2] :- (ads bound).s; {segment of the
mousel(ml,m2,m3.ptradd[I]):

m2 :- 999:
repeat

{Dummy value for loop}
{until... }

array}
array}

ml :== 3: {Function call 3, get}
mousel(mI. m2. m3, m4): {current mouse status}

until m2 2: {Left button pressed}

ml :-0: {Reset mouse driver
mousel(m1, m2. m3, m4 }:

end

Chapter 10

Writing Mouse
Programs for
IBM EGA Modes

If your application program includes mouse support for IBM enhanced
graphics modes D, E, F, and 10, your program must interact with the IBM

Enhanced Graphics Adapter (EGA) through the new video interrupt
functions provided in the mouse driver. You can simplify this program
ming by using a special library, the Microsoft EGA Register Interface li
brary (EGA.LIB), which is included on the disks that come with this
book. Or, if you are programming in a language that can call inter
rupts, the language can call the video interrupt functions directly.

To prevent unnecessary problems when using EGA graphics,
follow this rule: If your program will modify the EGA registers and if
it uses the mouse, then use the EGA Register Interface library. If your
program will not modify the EGA hardware directly, you won't need to
use the EGA.LIB library.

The EGA hardware uses several write-only registers to control the
many EGA display attributes. However, without the new video interrupt
functions, the mouse driver would be unable to keep track of the con
tents of these special registers, and it would be impossible to correctly
update the mouse cursor position and shape when these registers were
altered. .

The EGA Register Interface lets your program write to and read
from write-only registers on the EGA by keeping shadow maps, or

259

PART III: MOUSE PROGRAMMING INTERFACE

working copies, of the registers. This capability is required for
interrupt-driven graphics such as the cursor update code in the
mouse driver.

THE EGA REGISTER INTERFACE LIBRARY
The Microsoft EGA Register Interface library consists of nine functions
that you can call from MASM programs or from programs written in
high-level languages such as Microsoft QuickBASIC, C, QuickC,
FORTRAN, and Pascal. These functions do the following:

• Read from or write to one or more of the EGA write-only
registers.

• Define default values for EGA write-only registers or reset the
registers to these default values.

• Check whether the EGA Register Interface is present and if so,
return its version number.

How the Interface Library Works
Current versions of the mouse driver install the EGA Register Interface
library if the driver detects an EGA installed in the system. The inter
face maintains shadow maps of the EGA write-only registers, which lets
application programs read these registers. The shadow maps are up
dated whenever your program calls one of the interface functions to set
a register; therefore, the shadow maps always contain the last values
written to the registers. When your program calls one of the interface
functions to read a register, the function call returns the value stored
in the shadow map.

The code in the interface intercepts mode-change calls to the
ROM BIOS (Interrupt lOH with AH = 0) and updates the shadow maps
and default register tables accordingly.

Calling the Library from MASM Programs·

260

To call EGA Register Interface functions from a MASM program, do the
following:

1. Load the AX, BX, CX, DX, and ES registers (as required) with the
parameter values.

2. Execute software Interrupt 10H.

Chapter 10: Writing Mouse Programs for IBM EGA Modes

Values returned by the EGA Register Interface functions are
placed in the registers.

NOTE: When called from MASM programs, Functions F2, F3, F4, F5, and F7

expect ES:BX to be a table pointer. These functions are discussed in detail later in
this chapter ..

MASM Example
Use the following instructions to set the palette registers to the values
in the my table array:

my table db OOh.01h.02h.03h.04h.OSh.14h.07h
db 38h.39h.3ah.3bh.3ch.3dh.3eh.3fh

mov ax. ds
mov eSt ax :Set ES to the data segment
mov bx. offset my table :Now ES:BX ~-> my table
mov ex. 0010h :Starting at reg 0 for 16
mov dx. 18h :18H - attribute ehip
mav ah. Of3h ;F3H = write register range
int 10h :Exeeute the interrupt

Calling the Library from High-Level Language Programs
You can call EGA Register Interface functions from QuickBASIC, C,
QuickC, FORTRAN, and Pascal programs by linking the programs with
the EGA.LIB library. This library provides several calls that match the
parameter passing and memory-model requirements of each language.

For all these languages, the EGA Register Interface call requires
four integer parameters: E1, E2, E3, and E4. The following table shows
how these parameters correspond to the registers listed in the function
descriptions later in this chapter:

Parameter Register

El AH
E2 BX
E3 CX
E4 DX

261

PART III: MOUSE PROGRAMMING INTERFACE

262

When your program calls the EGA Register Interface, the register
copies the parameters into the corresponding registers, calls the video
interrupt, and copies the returned register values back into the
parameters.

For Function FA, the value returned in the ES register is placed
in the E4 parameter. The way the parameters are passed to the EGA
Register Interface determines how the ES register is loaded. Those calls
that use short parameter addresses (EGAS, cegas, and cegam) copy the DS
register into ES. Those calls that use long parameter addresses (EGAL,
cegac, and cegal) copy the segment part of the address pointed to by E2

into the ES register.

Calling from QuickBASIC
To call the EGA Register Interface library from QuickBASIC programs,
use the EGAS subprogram. For functions requiring a table, pass the first
element of an integer array or pass the address of a string using the
SADD function.

To access EGA.LIB from within the QuickBASIC environment,
create a Quick Library that contains EGA.LIB. For example, the follow
ing command combines the QB.QLB, MOUSE.LIB, and EGA.LIB libraries
into a composite Quick Library named QBNEW.QLB:

LINK IOU INOE MOUSE.LIB+EGA.LIB+OB.LIB.OBNEW.OLB.NUL.BOLB45.LIB:

To load this new Quick Library with QuickBASIC, enter the following
command:

OB IL OBNEW.OLB

Alternately, you can create the equivalent library file QBNEW.LIB by
entering,

LIB OBNEW.LIB+MOUSE.LIB+EGA.LIB+OB.LIB:

This lets your programs compile and link into .EXE programs, which
you can run from the MS-DOS prompt.

QuickBASIC example The following example prints the version number
of the EGA Register Interface:

, Get version number of EGA Register Interface

OEFINT A-Z

(continued)

Chapter 10: Writing Mouse Programs for IBM EGA Modes

continued

el - &HFA
e2 - 0

'Interrogate driver

CALL egas~e1. e2. e3. e4)

IF e2 <> 0 THEN
PRINT "EGA Register Interface found. version":
DEF SEG - e4
majorVersion - PEEK(e2)
minorVersion = PEEK(e2 + 1)
DEF SEG
PRINT USING "flfL.fI#": majorVers; on: mi norVersi on

ElSE
PRINT "EGA Register Interface not found"

END IF

Calling from C and QuickC
To call the EGA Register Interface library from C programs, use the
cegas function for small-model programs, the cegam function for
medium-model programs, the cegac function for compact-model pro
grams, or the cegal function for large-model programs. For functions
requiring a table, pass a pointer to the name of a character array or a
pointer to the array pointer.

To call the EGA Register Interface library from the QuickC pro
gramming environment, use the cegam function (the C function for
medium-model programs) and add EGA.LIB to the program list. For
functions requiring a table, pass a pointer to the name of a character
array or a pointer to the array pointer.

C example In a small-model C program (versions 3.0 and later), the fol
lowing example restores the default settings for the EGA registers:

int ah. bx. ex. dx:

ah -OxF6; /* Restore default settings */
eegas(&ah. &bx. &ex. &dx);

Calling from FORTRAN
To call the EGA Register Interface library from FORTRAN programs,
use the EGAL subprogram. For functions requiring a table, pass the first
element of an integer array (packed 2 bytes per integer).

263

PART III: MOUSE PROGRAMMING INTERFACE

264

FORTRAN example The EGA.FOR program calls EGAL to access the EGA

Register Interface and uses Function FA to interrogate the driver. If the
EGA Register Interface is present, its version number is displayed.

You must link this program with EGA.LIB so that you can use the
EGAL call, and you must link this program with IPEEK.OB] so that you
can use the IPEEK function.

* EGA. FOR

* *
* Example of calling the EGA Register Interface from *
* FORTRAN

*
* Compile using large model (default), and link with
* IPEEK.OBJ and EGA. LIB

*
* Example: f1 IFPc ega.for ip~ek;obj -link ega
**

PROGRAM EGA

INTEGER*2 El. E2. E3. E4
INTEGER*2MAJVER. MINVER

* Interrogate Driver
E1 -f/FA
E2- 0
CALL EGAL (El. E2.E3, E4)

* Check results
IF(E2 ~EQ. 0) GOTO 100

* Get the version numbers
. MAJVER ~ IPEEK(E4; E2)

E2 ... 12 + 1
MINVER- IPE~K(E4~ E2)

* Print the returned versi~n number
WRITE(*.lO) MAJVER, MINVER

10 FORMAT(lX.'EGA Regi~ter Interface found. Version

(continued)

Chapter 10: Writing Mouse Programs for IBM EGA Modes

continued

* We're done
GO TO 900

100 CONTINUE

* EGA Register Interface wasn't found
WRITE(*.*) 'EGA Register Interface not found.'

900 CONTINUE
END

You must assemble and link the IPEEKASM file with the EGA.FOR

program. The IPEEK function lets a FORTRAN program get a byte from
any location in memory.

Function: IPEEK

Description: Called from EGA. FOR to get a byte from
any location in memory.

Example: BYTVAL = IPEEK(SEG, OFS)

To assemble: MASM IPEEK:

.MODEL LARGE

.CODE

public IPEEK

IPEEK proc

Standard entry
PUSH BP
MOV BP.SP
PUSH ES

Load address. then load contents of first parameter into AX
LES BX.DWORD PTR[BP+ 10]
MOV AX,ES:[BX]

(continued)

265

PART III: MOUSE PROGRAMMING INTERFACE

266

continued

Save fi rst pa rameter .on stack (the segment for. I PEEK)
PUSH AX

Load address. then load contents of second parameter into AX
LES BX.DWORD PTR[BP + 6]

Load the registers with the parameters
MOV BX. ES: [BX] Offset into BX
POP ES : Segment into ES

Peek at the byte
MOV Al.ES:[BX]

Zero theh1gh byte of AX
XOR AH.AH

Clean up and exit
POP .ES
POP BP
RET 8.

All done
IPEEKendp
END

Calling from Pascal
To call the EGA Register Interface library from Pascal programs, use
the EGAS procedure if the argument addresses are in the program's
data segment (short addresses). If the arguments are in another seg
ment (long addresses), use -the EGAL procedure. For functions requir
ing a table, pass a pointer to the first element of an integer array
(packed 2 bytes per integer).

Pascal example In a Pascal program with long argument addresses,
include the following statement to declare EGAL as an external
procedure:

PROCEDURE.EGAL
(VARS El.E2. E3. E4:INTEGER);
EXTRN;

Chapter 10: Writing Mouse Programs for IBM EGA Modes

Once the procedure is declared, include the following statements
to restore the default settings for the EGA registers:

E1 :- 246 (*Function number is 246 - F6 (hexadecima1)*)
EGAL (El. E2. E3. E4)

Considerations When Calling ROM BIOS Video, Routines
You need to be aware of certain considerations when your program
uses the EGA Register Interface library. The EGA Register Interface li
brary intercepts only those calls to the ROM BIOS video routines that
change the screen mode (Interrupt lOH, AH = 0, AL = 13h or less). It
does not intercept any other ROM BIOS video routine calls. However,
any other ROM BIOS video routine calls should restore all registers, so
using them is no problem.

A call to Interrupt lOH to set the color palette (AH = OBh) is an ex
ception to this rule. You should use EGA Register Interface Function F5

(Write Register Set) to set the color palette. For more information
about Function F5, see "EGA Register Interface Functions" later in this
chapter.

Attribute Controller Registers
Before your application program uses the Attribute Gontroller regis
ters (input/output address 3COh) in one of the new Interrupt lOH calls,
the program must set the Address or Data register flip-flop to the Ad
dress register. It does this by performing an input from input/output
port 3BAh or C3DAh. The flip-flop is always reset to this state when the
program returns from the Interrupt lOH call. (Note: The version of
EGA.LIB included with this book sets the Address or Data register flip
flop to the Address register automatically.)

An interrupt routine that accesses the attribute chip always leaves
the flip-flop set to the Address register when the program returns from
the interrupt call. Therefore, if your application program sets the flip
flop to the Data register and expects the flip-flop to remain in this
state, the program must disable interrupts between the time it sets the
flip-flop to the Data register state and the last time the flip-flop is
assumed to be in this state.

Sequencer Memory Mode Register
When the Sequencer Memory Mode register (input/output address
3C5h, Data register 4) is accessed, the sequencer produces a glitch on

267

PART III: MOUSE PROGRAMMING INTERFACE

268

the CAS lines that can cause problems with video random-access
memory (VRAM). As a result, your application program cannot use the
EGA Register Interface to read from or write to this register. Instead,
use the following procedure to alter this register:

1. Disable the interrupts.

2. Set Synchronous Reset (bit 1) in the Sequencer Reset
register to o.

3. Read from, write to, or modify the Sequencer Memory
Mode register.

4. Set Synchronous Reset (bit 1) in the Sequencer Reset
register to 1.

S. Enable the interrupts.

Input Status Registers
Your application program cannot use the EGA Register Interface to
read Input Status registers 0 (input/output address 3C2h) and 1 (input/
output address 3BAh or 3DAh). If the program must read these registers,
it should do so directly.

Graphics Controller Miscellaneous Register
When the Graphics Controller Miscellaneous register (input/output
address 3CFh, Data register 6) is accessed, a glitch on the CAS lines
occurs that can cause problems with video random-access memory
(VRAM). As a result, your application program should not use the EGA

Register Interface to read from or write to this register.
EGA Register Interface Function F6 (Revert to Default Registers)

doesn't alter the state of the Graphics Controller Miscellaneous regis
ter. Use the following procedure to alter this register:

1. Disable the interrupts.

2. Set Synchronous Reset (bit 1) in the Sequencer Reset
register to o.

3. Read from, write to, or modify the Graphics Controller
Miscellaneous register.

4. Set Synchronous Reset (bit 1) in the Sequencer Reset
register to 1.

S. Enable the interrupts.

Chapter 10: Writing Mouse Programs for IBM EGA Modes

EGA Register Interface Functions
The following table shows the number and the name of each function
described in detail in this chapter:

Function
Number (Hex)

FO
Fl
F2
F3
F4
F5
F6
F7
FA

Function Name

Read One Register
Write One Register
Read Register Range
Write Register Range
Read Register Set
Write Register Set
Revert to Default Registers
Define Default Register Table
Interrogate Driver

NOTE: Function calls F8H, F9H, and FBH through FFH are reserved.
Each function description includes the following:

• The parameters required to make the call (input) and the
expected return values (output)

• Any special considerations regarding the function

If the function description doesn't specify an input value for a
parameter, you don't need to supply a value for that parameter before
making the call. If the function description doesn't specify an output
value for a parameter, the parameter's value is the same before and
after the call.

NOTE: The EGA Register Interface doesn't check input values, so be sure that
the values you load into the registers are correct before making a call.

269

PART III: MOUSE PROGRAMMING INTERFACE

FUNCTION FO: READ ONE REGISTER

Call with

Returns

Examples

270

Function FO reads data from a specified register on the EGA.

AH FOh
BX Pointer for pointer/data chips:

BH = 0
BL = pointer

Ignored for single registers
DX Port number:

AX:

Pointer/data chips
OOh: CRT Controller (3B4h for monochrome modes;

3D4h for color modes)
08h:Sequencer(3C4h)
lOh: Graphics Controller (3CEh)
I8h: Attribute Controller (3COh)

Single registers
20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3B4h for monochrome

modes; 3D4h for color modes)
30h: Graphics 1 Position register (3CCh)
38h: Graphics 2 Position register (3CAh)

Restored
BH: Restored
BL: Data
DX: Restored
All other registers restored

The following example saves the contents of the Sequencer Map Mask
register in myvalue:

myval ue db ' ,?

movah. OfOh
. mov· bx. 0002h

mov, dx., 0008h
i nt lOh
movmyvalue~. bl

:FO- read one register
:BH -0 / BL ~ map mask index
;DX ,... sequencer
:Call the interrupt
:Save the value

Chapter 10: Writing Mouse Programs for IBM EGA Modes

The following example saves the contents of the Miscellaneous
Output register in myvalue:

myvalue db ?

mov ah, OfOh :FO - read one register
mov dx, 0020h :DX - miscellaneous output register
int lOh :Call the interrupt
mov myvalue, bl :Save the value

271

PART III: MOUSE PROGRAMMING INTERFACE

FUNCTION Fl: WRITE ONE REGISTER

Call with

Returns

272

Function FI writes data to a specified register on the EGA.
When your application program returns from a call to Function

FI, the contents of the BH and DX registers are not restored. If you want
to save and restore these registers, you must instruct your application
program to do so.

AH FIh
BL Pointer for pointer/data chips

or
Data for single registers

BH Data for pointer/ data chips (ignored for single registers)
DX Port number:

AX:

Pointer/data chips
ooh: CRT Controller (3B4h for monochrome modes; 3D4h

for color modes)
08h:Sequencer(3C4h)
lOh: Graphics Controller (3CEh)
I8h: Attribute Controller (3COh)

Single registers
2oh: Miscellaneous Output register (3C2h)
28h: Feature Control register (3B4h for monochrome

modes; 3D4h for color modes)
30h: Graphics 1 Position register (3CCh)
38h: Graphics 2 Position register (3CAh)

Restored
BL: Restored
BH: Not restored
DX: Not restored
All other registers restored

Chapter 10: Writing Mouse Programs for IBM EGA Modes

Examples The following example writes the contents of myvalue into the CRT

Controller Cursor Start register:

myvalue db 3h

mov ah. Oflh Fl - write one register
mov bh. myvalue BH - data from myvalue
mov bl. OOOah BL - cursor start index
xor dx. dx OX - crt controller
int lOh Call the interrupt

The following example writes the contents of myvalue into the
Feature Control register:

myvalue db 2h

mov ah. Oflh
mov bl. myvalue
mov dx. 0028h
i nt lOh

Fl - write one register
BL - data from myvalue
OX - feature control register
Call the interrupt

273

PART III: MOUSE PROGRAMMING INTERFACE

FUNCTION F2: READ REGISTER RANGE

Call with

Returns

Example

274

Function F2 reads data from a specified range of registers on the EGA.
(A range of registers is several registers on a single chip that have con
secutive indexes.) This call makes sense only for the pointer/data chips.

AH F2h

CH Starting pointer value
CL Number of registers (must be> 1)
DX Port number:

ooh: CRT Controller (3B4h for monochrome modes; 3D4h for
color modes)

OSh:Sequencer(3C4h)
lOh: Graphics Controller (3CEh)
Ish: Attribute Controller (3COh)

ES:BX Points to a table of one-byte entries (l~ngth = value in CL).
On return, each entry is set to the contents of the corre
sponding register.

AX: Restored
BX: Restored
CX: Not restored
DX: Restored
ES: Restored
All other registers restored

The following example saves the contents of the Attribute Controller
Palette registers in paltabl£:

paltable db 16 dup (1)

mov ax, ds

moves. ax
mov bx, offset paltable
mov ah. Of2h

. mov ex. OOlOh

mov dx. 0018h

intl0h

Assume paltable in
data segment
ES - data segment
ES:BX = paltable address
F2 - read register range
CH - start index of 0
CL - 16 registers
to read
OX - attri bute
controller
Call the interrupt

Chapter 10: Writing Mouse Programs for IBM EGA Modes

FUNCTION F3: WRITE REGISTER RANGE

Call with

Returns

Example

Function F3 writes data to a specified range of registers on the EGA. (A
range of registers is several registers on a single chip that have consecu
tive indexes.) This call makes sense only for the pointer/data chips.

AH F3h
CH Starting pointer value
CL Number of registers (must be> 1)
DX Port number

ooh: CRT Controller (3B4h for monochrome modes; 3D4h for
color modes)

OSh:Sequencer(3C4h)
lOh: Graphics Controller (3CEh)
ISh: Attribute Controller (3COh)

ES:BX Points to a table of one-byte entries (length = value in CL).
Each entry contains the value to be written to the corre
sponding register.

AX: Restored
BX: Not restored
CX: Not restored
DX: Not restored
ES: Restored
All other registers restored

The following example writes the contents of cursloc into the CRT
Controller Cursor Location High and Cursor Location Low registers.

cursloc db 01h. OOh

mov ax. ds

moves. ax
mov bx. offset cursloc
mov a h. Of3h'

movcx. Oe02h

xor dx. dx
int lOh

Cursor at page
offset OlOOh

Assume cursloc in
data segment
ES - data segment
ES:BX - cursloc address
F3 - write register
range
CH - start index of 14
CL - 2 registers to
write
DX.- crt·controller
Call the interrupt

275

PART III: MOUSE PROGRAMMING INTERFACE

FUNCTION F4: READ REGISTER SET

Call with

Returns

276

Function F4 reads data from a set of registers on the EGA. (A set of regis
ters is several registers that might or might not have consecutive in
dexes and t~at might or might not be on the same chip.)

AH = F4h
CX = Number of registers (must be> 1)
ES:BX Points to table of records with each entry in the following

format:

AX:

Byte 0: Port number
Pointer/data chips

ooh: CRT Controller (3B4h for monochrome modes;
3D4h for color modes)

08h: Sequencer (3C4h)'
lOh: Graphics Controller (3CEh)
18h: Attribute Controller (3COh)

Single registers
20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3B4h for monochrome

modes; 3D4h for color modes)
30h: Graphics 1 Position register (3CCh)
38h: Graphics 2 Position register (3CAh)

Byte 1: Must be zero
Byte 2: Pointer value (0 for single registers)
Byte 3: EGA Register Interface fills in data read from

register specified in bytes 0 through 2

Restored
BX: Restored
CX: Not restored
ES: Restored
All other registers restored

Example

Chapter 10: Writing Mouse Programs for IBM EGA Modes

The following example saves the contents of the Miscellaneous Output
register, Sequencer Memory Mode register, and CRT Controller Mode
Control register in results:

outvals dw 0020h
db 0
db ?

dw 0008h
db 04h
db ?

dw OOOOh
db 17h

db ?

Miscellaneous Output register
o for single registers
Returned value

Sequencer
Memory Mode register index
Returned value

CRT Controller
Mode Control register index
Returned value

results db 3 dup (1)

mov ax. ds

moves. ax
mov bx. offset outvals
mov ah. Of4h
mov cx, 3

Assume outvals in
data segment
ES - data segment
ES:BX - outvals address
F4 - read register set
Number of entries in
outvals

int lOh Get values into outvals
mov s i. offset outva 1 s +3 : Move the returned

; values from outvals
mov di. offset results to results
mov c~. 3 3 values to move
cld Makemovesforward

movloop: movsb

addsi. 3
loop movloop

Move one value from outvals
to results
Skip to next source byte
Get next byte

277

PART III: MOUSE PROGRAMMING INTERFACE

FUNCTION F5: WRITE REGISTER SET

Call with

Returns

278

Function F5 writes data to a set of registers on the EGA. (A set of regis
ters is several registers that might or might not have consecutive in
dexes and that might or might not be on the same chip.)

AH = F5h
CX = Number of registers (must be> 1)
ES:BX Points to table of values with each entry in the following

format:

AX:

Byte 0: Port number
Pointer/data chips

ooh: CRT Controller (3B4h for monochrome modes;
3D4h for color modes)

08h:Sequencer(3C4h)
Ioh: Graphics Controller (3CEh)
18h: Attribute Controller (3COh)

Single registers
20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3B4h for monochrome

modes; 3D4h for color modes)
30h: Graphics 1 Position register (3CCh)
38h: Graphics 2 Position register (3CAh)

Byte 1: Must be zero
Byte 2: Pointer value (0 for single registers)
Byte 3: Data to be written to register specified in bytes 0

through 2

Restored
BX: Restored
CX: Not restored
ES: Restored
All other registers restored

Example

Chapter 10: Writing Mouse Programs for IBM EGA Modes

The following example writes the contents of outvals to the Miscella
neous Output register, Sequencer Memory Mode register, and CRT

Controller Mode Control register:

outvals dw 0020h Miscellaneous Output register
db 0 o for single registers
db Oa7h Output value

dw 0OO8h Sequencer
db 04h Memory Mode register index
db 03h Output value

dw OOOOh CRT Controller
db 17h Mode Control register index
db Oa3h Output value

mov ax, ds Assume outvals in
data segment

mov es, ax ES - data segment
mov bx, offset outvals ES:BX - outvals address
mov ah. Of5h F5 - write register set
mov ex, 3 Number of entries in

outvals
1 nt lOh Call the interrupt

279

PART III: MOUSE PROGRAMMING INTERFACE

FUNCTION F6: REVERT TO DEFAULT REGISTERS
Function F6 restores the default settings of any registers your applica
tion program changed through the EGA Register Interface. The default
settings are defined in a call to Function F7.

Call with AH = F6h

Returns All registers restored
NOTE: If your program makes a call to Interrupt 10H, Function 0, to set the

display mode, the default register values change to the BIOS values for the selected
mode.

Example The following example restores the default settings of the EGA

registers:

280

Chapter 10: Writing Mouse Programs for IBM EGA Modes

FUNCTION F7: DEFINE DEFAULT REGISTER TABLE

Call with

Returns

Function F7 defines a table that contains default values for any pointer /
data chip or single register. If you define default values for a pointer /
data chip, you must define them for all registers within that chip.

WARNING: Function F7 sets the default values for all registers within a
chip. You must know what to set in all affected registers to prevent unwanted
results. Some combinations of register settings might cause physical damage to the
EGA adapter or the monitor.

AH F7h
CX VGA Color Select Flag:

5448h: Allows the EGA Register Interface to recognize byte off
set 14h of the table pointed to by ES:BX as the value for the
VGA color select register.

DX Port number:
Pointer/data chips

ooh: CRT Controller (3B4h for monochrome modes; 3D4h
for color modes)

08h:Sequencer(3C4h)
lOh: Graphics Controller (3CEh)
18h: Attribute Controller (3COh)

Single registers
20h: Miscellaneous Output register (3C2h)
28h: Feature Control register (3B4h for monochrome

modes; 3D4h for color modes)
30h: Graphics I Position register (3CCh)
38h: Graphics 2 Position register (3CAh)

ES:BX Points to a table of one-byte entries. Each entry contains the

AX:

default value for the corresponding register. The table
must contain entries for all registers.

Restored
BX: Not restored
DX: Not restored
ES: Restored
All other registers restored

281

PART III: MOUSE PROGRAMMING INTERFACE

Examples The following example defines default values for the Attribute
Controller:

282

OOh; 01h. 02h. 03h. 04h. OSh. 06h. 07h
10h, Uh. 12h. I3h, I4h, ISh. 16h. 17h
OSh. OOh. Ofh. OOh, OOh

mov ax. ds Assumeattrdflt in
data segment

mov es, ax ES - data segment
mov bx. offset attrdflt ES:BX - attrdflt

address
mov ah, Of7h F7 - define default

register table
xor eX,ex No VGA eol or sel ect reg; ster
mov dx. 00lSh OX ... attribute

controll er
int 10h Call the interrupt

The following example defines a default value for the Feature
Control register:

featdflt db OOh

mov ax, ds Assume featdfltin
data segment

mov es. ax ES -data segment
mov bx. offset featdflt ES:BX - featdflt

address
mov ah. Of7h F7 - define ~efault

mov dx, 0028h
register

int lOh Call the

Chapter 10: Writing Mouse Programs for IBM EGA Modes

FUNCTION FA: INTERROGATE DRIVER

Call with

Returns

Function FA interrogates the mouse driver and returns a value that
specifies whether the mouse driver is present.

AH FAh
BX 0

AX Restored
BX 0 if mouse driver is not present
ES:BX Points to EGA Register Interface version number, if present:

Byte 0: Major release number
Byte 1: Minor release number (in l/lOoths)

The following example interrogates the mouse driver and displays the
result:

gotmsg db "EGA Register Interface found". Odh, Oah. "$"

nopmsh db "EGA Register Interface not found". Odh. Oah. "$"

revmsg db "Revision $"

crlf db Odh. Oah. "$"

ten db 10

xor bx. bx
mov ah. Ofah
i nt iOh
or bx. bx
jnz found
may dx. offset nopmsg

mov ah, 09h
int 21h
jmp continue

found: may dx, offset gotmsg

mov ah. 09h
int 21h
mov dx. offset revmsg

Must be 0 for this call
FA - interrogate driver
Interrogate!
BX = 0 ?

Branch if driver present
Assume nopmsg in data
segment
9 == print string
Output not found message
That·s all for now

Assume gotmsg in data
segment
9 = print string
Output found message
Assume reymsg in data
segment

(continued)

283

PART III: MOUSE PROGRAMMING INTERFACE

284

continued

mov ah. 09h
int 21h
mov dl. es:[bx]
add dl. "0"
mov ah. 2
i nt 21h

mov dl. " "
mov ah. 2
int 21h
mov al. es:[bx +
xor ah. ah
idiv ten
mov bx. ax·
mov dl. al
add dl. "0"
mov ah. 2
int 21h
mov dl. bh
add dl. "0"

. mov ah; 2
int 2lh

1]

mov dx. offset crlf

mov ah. 09h
int 21h

continue:

9 - print string
Output "revision"
DL - major release number
Convert to ASCII
2 - display character
Output major release
number
DL- "."
2 = display character
Output a period
AL - minor release number
AH == 0
AL - 10ths. AH - 100ths
Save AX in BX
DL - 10ths
Convert to ASCII
2 - display character
Output minor release 10ths
DL ... lOOths
Convert to ASCII
2 - display character
Output minor release
lOOths
Assume crlf in data
segment
9 = print string
Output end of line
The end

PART IV

Appendixes
Appendix A: Mouse Command Line Switches

Appendix B: Domestic Mouse Driver Messages

Appendix C: Mouse Menu Messages

Appendix D: Linking Existing Mouse Programs
with MOUSE.LlB

Appendix E: Making Calls from Borland Turbo
Pascal Programs

Appendix F: Using the Mouse with the Hercules
Graphics Card

Appendix G: ASCII Character Set

Appendix A

Mouse Command
Line Switches

This appendix describes the mouse command line switches you can use
to customize the operation of the Control Panel and the mouse driver.

CONTROL PANEL SWITCHES
The Control Panel (CPANEL.EXE), which is included with the Microsoft
Mouse, is a memory-resident program that lets you adjust the mouse
sensitivity level-the ratio of cursor movement to actual mouse move
ment. (For information on using the Control Panel, see Chapter 4,

"Moving the Mouse," in your Microsoft Mouse User's Guide.)
Whenever you invoke the Control Panel, the CPANEL program

reserves memory for the area of the screen the Control Panel overlays.
The amount of memory required depends on the type of display
adapter you use and the complexity of the image the Control Panel
overlays. You can change the Control Panel's default size for the overlay
buffer by using a command line switch to change the amount of
memory reserved by the Control Panel. If your system beeps when you
activate the Control Panel, however, the screen buffer is too small and
you must increase the size of the buffer.

Use one of the following command line switches to change the
size of the buffer, depending on the type of display adapter installed in
your system:

287

PART IV: APPENDIXES

Use This Switch

ICn
lEn
IHn
IMn
IAn

For This Display Adapter

IBM Color/GraphicsAdapter
IBM Enhanced Graphics Adapter
Hercules Graphics Card
IBM Monochrome Adapter
AT&T 6300 Display Adapter

The n placeholder is a number ranging from 0 through 9. The
larger the number, the larger the screen overlay buffer. If you do not
specify a switch and a number, the default switch and number (/E7)
are used.

The size of the buffer required depends on the screen mode that
the Control Panel overlays. For example, screens displayed in the en
hanced graphics modes require a larger Control Panel overlay buffer
than screens displayed in the text modes do.

In general, you should specify a value ranging from 0 through 4

if the Control Panel will overlay only text screens. If the Control Panel
will overlay graphics screens, you should specify a value ranging from
5 through 9.

The following table shows how many bytes of memory are oc
cupied by the Control Panel and buffer for each switch setting:

Switch
Setting 1M /H IA Ie IE
0 9712 14240 14992 9360 9360
1 9760 14288 15040 9456 9456
2 9808 14336 15088 9552 9552
3 9856 14384 15136 9744 9744
4 9904 14432 15184 10128 10128
5 9952 14480 15232 11872 19088
6 10000 14528 15280 12128 19344
7 10048 14576 15328 14768 29168
8 10096 14624 15376 15024 29424
9 10144 14672 15424 15280 29680

Using a Control Panel Switch
You use a Control Panel switch to specify the- size of the overlay buffer
when you load the Control Panel into memory. If the Control Panel is
already in memory, you must first remove it from memory.

288

Appendix A: Mouse Command Line Switches

To remove the Control Panel from memory, type cpanel off.
To specify the size of a screen buffer when you load the Control

Panel, type cpanel followed by the appropriate switch.
For example, to specify the largest possible screen buffer for the

area the Control Panel overlays on a CGA system, you would type
cpaneljC9.

MOUSE DRIVER SWITCHES
You use mouse driver command line switches to do the following:

• Specify the mouse sensitivity.

• Set the interrupt rate (for the InPort mouse only).

• Tell the mouse driver the type and location of the Microsoft
Mouse installed in your system so that the driver can bypass its
usual procedure for determining mouse hard'Yare
configuration.

• Disable the mouse driver or remove it from memory.

USing a Mouse Driver Switch
You can add mouse driver command line switches to the mouse com
mand lines in the AUTOEXEC.BAT or CONFIG.SYS file, or you can type
mouse and the command line switches at the MS-DOS prompt. If you
type one or more switches at the MS-DOS prompt, you must leave a space
between mouse and each switch.

The following sections describe how to use the mouse driver com
mand line switches.

Specifying Mouse Sensitivity
Use the following command line switches to set mouse sensitivity levels:

Use This Switch

/Snnn
/Hnnn
/Vnnn
/Dnnn

To Set

Horizontal and vertical sensitivity
Horizontal sensitivity only
Vertical sensitivity only
Double-speed threshold

The nnn placeholder is a number ranging from 0 through 100.

289

PART IV: APPENDIXES

290

The switches for horizontal and vertical sensitivity are interpreted
in the same manner as a Control Panel setting is interpreted. The
double-speed-threshold switch determines the threshold speed for
doubling the cursor's motion on the screen. Setting a double-speed
threshold makes it easier to move the cursor to widely separated images
on the screen. For example, the following command sets the vertical
sensitivity to 20 and the double-speed threshold to 32:

MOUSE IV20 1032

You can also use Mouse Function 19 to build this feature into an appli
cation program. For more information on Function 19, see Chapter 8,

"Mouse Function Calls."

Setting the Interrupt Rate for the InPort Mouse
~fyou use an InPort mouse, you can use one of the following command
line switch settings to specify the interrupt rate for the mouse:

Switch Setting

IRO
IR1
IR2
IR3
IR4

Interrupt Rnte

Disabled
30 Hz (default)
50Hz
100Hz
200Hz

Specifying the Type and Location of the Mouse
The comma~d line switches described in this section do the following:

• They direct the mouse driver to bypass its usual search to deter
mine the mouse hardware configuration.

• They look for a specific type of Microsoft mouse at a specific
input/output port.

You will find this feature useful if:

• The mouse driver has trouble determining which port the
mouse is connected to, given your system's configuration.

• More than one InPort device is connected to your computer.

• You want to decrease the time required to load the mouse
driver.

Appendix A: Mouse Command Line Switches

The following table lists each switch you can use to tell the mouse
driver to look for a specific mouse hardware configuration:

Use This Switch To Look For

IB Bus or InPort mouse at primary InPort address
III InPort mouse at primary InPort address
112 InPort mouse at secondary InPort address
ICI Serial mouse on COMI
IC2 Serial mouse on COM2

NOTE: At this time, the PS/2 mouse port doesn't have a switch.

Disabling or Removing the Mouse Driver
If necessary, you can disable the mouse driver or remove it from
memory. However, before you disable or remove the mouse driver, you
must remove the Control Panel from memory and you must also end
any mouse menu program you are using in addition to any other TSR

program you loaded after you loaded the mouse menu.
To remove the Control Panel from memory, type cpanel off.
To end a Microsoft Expert mouse menu program, type filename

off. (Filename is the name of the Expert mouse menu program.)
To end a mouse menu program that you wrote yourself, type

menu off.
To disable or remove the mouse driver from memory, type

mouse off.
When you type mouse off, one of the following actions occurs:

• If your mouse driver is MOUSE.SYS, it is disabled.

• If your mouse driver is MOUSE.COM, it is removed from
memory.

291

AppendixB

Domestic Mouse
Driver Messages

This appendix lists the messages that the domestic mouse driver might
display. It also describes possible causes of the messages and the actions
you can take in response to them.

Invalid parameter

You typed an invalid parameter in a command line switch. For more
information on command line switches, see Appendix A, "Mouse Com
mand Line Switches."

Driver not installed-Internal Error 1

Insufficient space was found to load the interrupt service routine. If
you receive this message, please call Microsoft Product Support.

Driver not installed-Microsoft Mouse not found

The mouse hardware was not found on the system in which the mouse
driver attempted to install itself. A hardware component in your com
puter might be defective.

Driver not installed-interrupt jumper missing

A jumper on the bus card of a bus or InPort mouse is missing. You need
to verify that the jumper has been installed. You might also need to
select another interrupt position.

293

PART IV: APPENDIXES

294

Driver not installed-multiple interrupt jumpers found

The mouse driver detected multiple interrupt jumpers on an InPort
mouse. You need to verify that only one jumper block is present on the
interrupt select jumper.

MSX Mouse driver installed

The driver for an MSX mouse on an MSX system was installed. No action
is required.

Mouse driver installed

The installation of the mouse driver was successful. No action is
required.

Switch values passed to existing mouse driver

Command-line switch values were. passed to the existing driver when
you reran MOUSE.COM from the MS-DOS prompt. No action is required.

Existing mouse driver enabled

The previously loaded mouse driver was enabled when you reran
MOUSE.COM from the command line while a mouse driver was present.
No action is required.

Existing mouse driver removed from memory

An existing mouse driver was removed from memory. No action is
required.

Existing mouse driver disabled

An existing mouse driver was disabled, but the driver was not unloaded
from memory. No action is required.

Mouse driver not installed

You used the mouse off command line, but no mouse driver was
installed.

Mouse driver installed, cannot change port (Ii, Ic, and Ib invalid)

The mouse driver was successfully installed to use either an InPort
port, a serial port, or a bus port. Once the driver has been successfully
installed, you can't use the command-line switch to change the port.

Appendix B: Domestic Mouse Driver Messages

Mouse driver already installed

You are trying to install another copy of MOUSE.SYS on top of an exist
ing one. Check your CONFIG.SYS file and modify it to load only one
copy of the driver.

Unable to disable Mouse driver-Control Panel is active

You can't disable the mouse driver when Control Panel is active. Dis
able Control Panel by entering cpanel off with the appropriate path
name at the MS-DOS prompt. You can now unload the mouse driver.

Unable to disable Mouse driver-Mouse Menu is active

You can't unload the mouse driver while a mouse menu is active in the
system. Type menu off to disable the mouse menu.

295

AppendixC:

Mouse Menu
Messages

This appendix lists the messages that the MENU program and the
MAKEMENU utility might display, along with descriptions of possible
causes and the actions you can take in response to them.

nnnn error(s) detected

This message informs you how many errors MAKEMENU detected while
attempting to process the .DEF file.

nnnn symbol(s) used

After successfully converting the .DEF file, MAKEMENU presents this
message telling you how many symbols were used in the .DEF file.

xxxxxx before BEGIN

The first statement in your .DEF file must be a BEGIN statement. Correct
the .DEF file and run MAKEMENU again.

Cannot use system reserved label: xxxxxx

One of the labels in the .DEF file is reserved for use by MAKEMENU.

Change each occurrence of the specified label in the .DEF file and run
MAKEMENU again.

Cannot use system reserved parameter: xxxxxx

One of the parameters in the .DEF file is reserved for use by
MAKEMENU. Change each occurrence of the specified parameter
in the .DEF file and run MAKEMENU again.

297

PART IV: APPENDIXES

298

Close quote missing

A statement in the .DEF file contained an item missing a closing quota
tion mark. Correct the .DEF file and run MAKEMENU again.

Conversion completed

The MAKEMENU utility has finished creating a loadable menu file. No
action is required. The MS-DOS system prompt appears after
MAKEMENU displays this message.

Error-Invalid statement: xxxxxx

The statement didn't have a label, the statement's label didn't end with
a colon (:), the statement had an invalid parameter, or a syntax error
occurred. Be sure that all statements (except the BEGIN statement and
statements within menu and pop-up subroutines) are labeled. Also, be
sure that each label is followed by a colon. Check the statement syntax
for correct use of commas and spaces.

Error-Label already used: xxxxxx

The same label was used to name more than one statement. Be sure
that the labels are unique for each statement.

Error-Label not found: xxxxxx

A label specified for a parameter did not exist. Be sure that the state
ments have labels and that the labels are correct.

Extra colon after label: xxxxxx

MAKEMENU detected an extra colon after one of the labels. You can
use only one colon after a label. Correct the .DEF file and run
MAKEMENU again.

Illegal function call at address nnnn

A TYPE or an EXECUTE statement had too many parameters, a SELECT

statement defined the item-selection area outside the menu, or a
SELECT or an OPTION statement had quotation marks placed in
correctly. Use the correct number of parameters, redefine the item
selection area, or ensure that double-quotation marks are used correctly
to designate text strings.

Invalid statement

MAKEMENU detected an invalid statement in the .DEF file. Correct the
.DEF file and run MAKEMENU again.

Appendix C: Mouse Menu Messages

Keyboard emulation off

The mouse menu program is no longer running. No action is required.

Keyboard emulation on

The mouse menu program is running. No action is required.

xxxxxx-Label pointer not found

One of the statement parameters refers to a label that does not exist in
the file. Correct the .DEF file and run MAKEMENU again.

Label previously used

You used the same label twice in the same program. Correct the .DEF

file and run MAKEMENU again.

Menu installed

You started up a mouse menu program, and it is running. No action is
required. Use the mouse menu as usual.

Must run under DOS 2.00 or later

You cannot use MAKEMENU with a version of MS-DOS earlier than 2.00.

Name of file to convert:

YQu typed makemenu to create a loadable mouse menu file. Type in a
mouse menu filename without the .DEF extension.

OPTION statement before MENU statement

You can use OPTION statements only within a MENU/MEND subroutine.
Correct the .DEF file and run MAKEMENU again.

Program too large

The size of the mouse menu .DEF file will cause the resulting .MNU file
to be larger than the maximum size of 57 KB. Reduce the size of the
.DEF file.

Too many symbols (user-defined labels)

Your .DEF file used more than 967 symbols. (MAKEMENU allows 1,000

symbols. However, MAKEMENU uses 33, so only 967 are available to the
user.) Correct the .DEF file and run MAKEMENU again.

299

AppendixD

Linking Existing
Mouse Programs
with MOUSE.LIB

If you have a high-level language program that links with an earlier
version of the Microsoft Mouse library, you might need to modify the
program to link it with the new MOUSE.LIB library on the disks that
come with this book.

The new MOUSE.LIB library works in the same way as did previ
ous mouse libraries except that the new library has the following new
features:

• New Mouse Functions 24,25,26,27,28,29,30,31,32,33,34,
35, and 36.

• You must pass the fourth parameter (M4%) of Mouse
Function 9 by reference instead of by value.

• Mouse Function 16 requires four parameters instead of five.

If your program doesn't call Functions 9 or 16, you can link it with
the new MOUSE.LIB library without modification.

If your program calls Functions.g or 16, you must modify the pro
gram so that it conforms with the new interface definitions before you
can link it with the new MOUSE.LIB.

301

AppendixE

Making Calls from
Borland Turbo
Pascal Programs

To call mouse functions from a program in Borland Turbo Pascal, use
the following procedure, which passes the correct parameters to the
mouse driver. Include this procedure in your code, and then call the
mouse functions by passing values into this procedure.

Procedure Mouse (Var ml. m2. m3. m4. m5 : integer);

Var
CpuReg: record of

AX. BX. CX. OX. BP.
Sl, 01, OS. ES. FLAGS: integer;

end:

begin {mouse}

if ml >- 0 then
begin

CpuReg.AX := ml:
CpuReg.BX :- m2;
CpuReg.CX :- m3:

{load parameters }
{ into appropriate}
{ registers}

(continued)

303

PART IV: APPENDIXES

304

continued

if (m! - 9) or (m! .. 12) or (m! -= 20)
or (m! ... 22) or (m!- 23) or (m!'" 24) then
begin

CpuReg.DX :- ofs
CpuReg.ES :- seg

end:

else if m! ... 16
begin

CpuReg.CX :-m2:
CpuReg.DX :- m3:
CpuReg.SI :== m4:
CpuReg.DI :- m5;

end;
else

CpuReg.DX :- m4;

intr ($33. CpuReg);

m1 := CpuReg.AX;
m2 :- CpuReg.BX;
m3 :~ CpuReg.CX;
m4 := CpuReg.DX:

if (m! .. 20) then
m2:= CpuReg.ES:

end;

end: {mouse}

(m4); {m4 - pointer of
(m4); { the address of

{ the user array
{ or subroutine

{Left x coordinate}
{Upper y coordinate}
{Right x coordinate}
{Lower y coordinate}

{Call mouse driver
{ at Interrupt 33H

{Return values back}
{ to parameters }

{Speci al returns

AppendixF

Using the Mouse
with the Hercules
Graphics Card

Before you use the Hercules Monochrome Graphics Card with a
program that has built-in mouse support, you must do the following:

1. Put the Hercules card into graphics mode. (If necessary, see
the documentation that came with your Hercules card).

2. If the Hercules card is using CRT page 0, store a 6 in memory
location 40H:49H. If the Hercules card is using CRT page 1, store
a 5 in memory location 40H:49H.

3. Call Mouse Function 0 to set the mouse cursor boundaries and
CRT page number to the appropriate values.

If you are using Microsoft C and MSHERC.COM or Microsoft
QuickBASIC and QBHERC.COM, you should follow the steps in this
order:

1. If the Hercules card is using CRT page 0, store a 6 in memory
location 40H:49H. If the Hercules card is using CRT page 1, store
a 5 in memory location 40H:49H.

2. Call Mouse Function 0 to set the mouse cursor boundaries and
CRT page number to the appropriate values.

3. Put the Hercules card into graphics mode. (If necessary, see
the documentation that came with your Hercules card).

305

AppendixG

ASCII Character Set
This appendix provides tables for the ASCII standard character set,
the IBM extended character set, and the line-drawing characters in the
extended character set. In addition, the section at the end of this
appendix discusses how you can use ASCII characters and extended
keyboard-scan codes with the TYPE statement.

ASCII TABLES
Figures G-l and G-2 show all 256 characters of the IBM extended charac
ter set supported by most computers that run MS-DOS. The figures show
the characters in four columns; each character is followed by its corre
sponding code in decimal and hexadecimal. Many compatible printers
print the full character set; if you're not sure about your printer, check
its manual.

307

PART IV: APPENDIXES

The ASCII Standard Character Set
Figure G-1 shows the first 128 characters (codes 0 through 127) of the
ASCII standard character set.

ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex

0 00 <space> 32 20 (iv 64 40 96 60
G 1 01 ! 33 21 A 65 41 a 97 61
e 2 02 34 22 II 66 42 b 98 62

• 3 03 # 35 23 C 67 43 c 99 63

• 4 04 $ 36 24 D 68 44 d 100 64

'" 5 05 % 37 25 E 69 45 c 101 65

• () 06 & 38 26 F 70 46 f 102 66
7 07 39 27 G 71 47 g 103 67

a 8 08 40 28 H 72 48 h 104 68
0 9 09 41 29 I 73 49 105 69
~ 10 OA * 42 2A J 74 4A J 106 6A
d 11 Oll + 43 2ll K 75 4ll k 107 6ll
9 12 OC 44 2C L 76 4C 1 108 6C
) 13 (1) 45 2D M 77 41) m 109 6D
~ 14 OE 46 2E N 78 4E n 110 6E
~ 15 OF 47 2F 0 79 4F 0 111 6F
~ 16 10 0 48 30 P 80 50 P 112 70
~ 17 11 1 49 31 Q 81 51 q 113 71
t 18 12 2 50 32 R 82 52 114 72
!! 19 13 3 51 33 S 83 53 115 73 , 20 14 4 52 34 T 84 54 116 74
§ 21 15 5 53 35 U 85 55 u 117 75

22 16 6 54 36 V 86 56 v 118 76
t 23 17 7 55 37 W 87 57 w 119 77
t 24 18 8 56 38 X 88 58 x 120 78
.!. 25 19 9 57 39 y 89 59 y 121 79
-+ 26 lA 58 3A Z 90 SA z 122 7A
+- 27 III 59 3ll I 91 5ll 123 7ll

28 lC < 60 3C \ 92 5C 124 7C
-++ 29 11) 61 3D I 93 5D 125 7D
... 30 IE > 62 3E 1\ 94 5E 126 7E
y 31 IF 63 3F 95 SF II 127 7F

Figure G-l. The ASCII standard character set.

308

Appendix G: ASCII Character Set

The IBM Extended Character Set
Figure G-2 shows the IBM extended character set (codes 128 through
255).

ASCII Dec Hex ASCII· Dec Hex ASCII Dec Hex ASCII Dec Hex

C; 12H HO a 160 AO L 192 CO a 224 EO
U 129 Hl i 161 Al -L 193 Cl f3 225 El
e t30 H2 6 162 A2 T 194 C2 r 226 E2
a 131 H3 U 163 A3 r 195 C3 1(" 227 E3
a 132 H4 ii 164 A4 196 C4 L 22H E4
it 133 H5 N 165 AS + 197 C5 (J 229 E5
a 134 H6 166 A6 F 19H C6 ~ 230 E6
9 135 H7 167 A7 Ir 199 C7 ,. 231 E7
e 136 HH l 16H AH l!: 200 CH ~ 232 EH
e 137 H9 169 A9 If 201 C9 e 233 E9
e t3H HA 170 AA db 202 CA n 234 EA
i 139 HU 1 171 AU lr' 203 CU S 235 EU 2:

i 140 HC 1 172 AC I~ 204 CC 00 236 EC l

i 141 HD 173 AD 205 CD cp 237 ED
A 142 HE « 174 AE JL 206 CE € 23H EE lr
A 143 HF » 175 AF :!: 207 CF n 239 EF
E 144 90 176 UO lL 20H DO - 240 FO
Ie 145 91 mm 177 Ul T 209 Dl ± 241 Fl
If. 146 92 ~~~ 17H U2 1r 210 D2 ~ 242 F2
6 147 93 I 179 U3 IL 211 D3 ~ 243 F3
0 14H 94 ~ IHO U4 b 212 D4 r 244 F4
0 149 95 9 IHl us F 213 D5 J 245 F5
U 150 96 ~I HQ 136 IT" 214 D6 246 F6
U 151 97 11 IH3 U7 * 215 D7 ~ 247 F7
Y 152 9H ; IH4 UH =f 216 DH 24H FH
6 153 99 ~I IH5 U9 J 217 D9 249 F9
ti 154 9A II IH6 UA r 21H DA 250 FA
¢ 155 9U 11 IH7 UU I 219 DU j 251 FU
£ 156 9C :!J IHH UC • 220 DC " 252 FC
¥ 157 9D J1 IH9 UD I 221 DD 253 FD
I? 15H 9E d 190 UE I 222 DE 254 FE
f 159 9F 1 191 UF • 223 DF 255 FF

Figure G-2. The IBM extended character set.

309

PART IV: APPENDIXES

Line-drawing Characters
Figure G-3 shows the four sets of line-drawing characters in the IBM

extended character set.

205 186
196 "

186

II II

203 210

201r II 11187 214r- T ~183

204 L ~L ~ 185 199~ + -1 182

I II I
206 215

200L JL ~188 211L JL ~189
202 208

196
179

I
205 179

I
194 209

2181 T 1 191 213r T 1 184 "

195~ + -i~o 198~ + ==1 181

197 216

192 L ~ .-J 217 ~ ~190
193 207

Figure G-3. Line-drawing characters in the extended character set.

310

Appendix G: ASCII Character Set

USING THE TYPE STATEMENT
The remaining sections list the following:

• The functions of the ASCII control characters and the
extended-keyboard-scan codes when you use them with the
TYPE statement

• The key sequences that can't be simulated by using the TYPE

statement

NOTE: The output characteristics listed for particular key functions are for
mouse menus running at the MS-DOS level. Therefore, standard applications might
not interpret all keyboard operations in the same way. Applications that reprogram
or directly access the keyboard or applications that bypass the MS-DOS system facili
ties for keyboard input might not function correctly with mouse menus.

Using ASCII Control Characters with the TYPE Statement
The following table lists the function of each ASCII control character
when you use it with the TYPE statement:

ASCII Code Key Equivalent ASCII Code Key Equivalent

0 none 16 Ctrl-P
1 Ctrl-A 17 Ctrl-Q
2 Ctrl-B 18 Ctrl-R
3 Ctrl-C 19 Ctrl-S
4 Ctrl-D 20 Ctrl-T
5 Ctrl-E 21 Ctrl-U
6 Ctrl-F 22 Ctrl-V
7 Ctrl-G 23 Ctrl-W
8 Backspace 24 Ctrl-X
9 Tab 25 Ctrl-Y

10 Line Feed 26 Ctrl-Z
11 Ctrl-K 27 Esc
12 Ctrl-L 28 Ctrl-\
13 Enter/Return 29 Ctrl-]
14 Ctrl-N 30 Ctrl-/\
15 Ctrl-O 31 Ctrl-_

311

PART IV: APPENDIXES

Using Extended-Keyboard-Scan Codes with the TYPE Statement

312

Extended-keyboard-scan codes have two components: a character code
(which is always 0) and a scan code (for example, 0,75). The following
tables list the scan codes you can use with the TYPE statement and the
character code 0 to simulate specific keys. (You can't use standard or
extended ASCII characters as extended-keyboard-scan codes.)

Simulating Direction and Editing Keys
The following table lists the scan codes you can use with the TYPE

statement to simulate direction and editing keys:

Keys Scan Code

Ctrl-End 117
Ctrl-Home 119
Ctrl-Ieft-arrow key 115
Ctrl-PgDn 118
Ctrl-PgUp 132
Ctrl-PrtSc 114
Ctrl-right-arrow key 116
Delete 83
End 79
Down-arrow key 80
Home 71
Insert 82
Left-arrow key 75
PgDn 81
PgUp 73
Right-arrow key 77
Shift-Tab 15
Up-arrow key 72

NOTE: Your computer might offer additional codes. Refer to the technical
documentation for your particular computer.

Appendix G: ASCII Character Set

Simulating Function Keys and Set Key Combinations
The following table lists the scan codes you can use with the TYPE
statement to simulate the function keys and set key combinations:

Keys Scan Code Keys Scan Code

F1 59 Alt-O 129
F2 60 Alt-1 120
F3 61 Alt-2 121
F4 62 Alt-3 122
F5 63 Alt-4 123
F6 64 Alt-5 124
F7 65 Alt-6 125
F8 66 Alt-7 126
F9 67 Alt-8 127
FlO 68 Alt-9 128
Shift-F1 (F11) 84 Alt-- 130
Shift-F2 (F12) 85 Alt-= 131
Shift-F3 (F13) 86 Alt-A 30
Shift-F4 (F14) 87 Alt-B 48
Shift-F5 (F15) 88 Alt-C 46
Shift-F6 (F16) 89 Alt-D 32
Shift-F7 (F17) 90 Alt-E 18
Shift-F8 (F18) 91 Alt-F 33
Shift-F9 (F19) 92 Alt-G 34
Shift-FlO (F20) 93 Alt-H 35
Ctrl-F1 (F21) 94 Alt-I 23
Ctrl-F2 (F22) 95 Alt:J 36
Ctrl-F3 (F23) 96 Alt-K 37
Ctrl-F4 (F24) 97 Alt-L 38
Ctrl-F5 (F25) 98 Alt-M 50
Ctrl-F6 (F26) 99 Alt-N 49
Ctrl-F7 (F27) 100 Alt-O 24
Ctrl-F8 (F28) 101 Alt-P 25
Ctrl-F9 (F29) 102 Alt-Q 16
Ctrl-F10 (F30) 103 Alt-R 19
Alt-F1 (F31) 104 Alt-S 31
Alt-F2 (F32) 105 Alt-T 20
Alt-F3 (F33) 106 Alt-U 22
Alt-F4 (F34) 107 Alt-V 47
Alt-F5 (F35) 108 Alt-W 17
Alt-F6 (F36) 109 Alt-X 45
Alt-F7 (F37) llO Alt-y 21
Alt-F8 (F38) 111 Alt-Z 44
Alt-F9 (F39) 112
Alt-F10 (F40) 113

313

Special Characters
" " (double quotation marks)

simulating 70
specifying keys with 70
use in MENU statement 32
use in OPTION statement 61
use in statements 28,47
use in TEXT statement 34

% (percent sign), use in
parameter names 115

+ (plus sign), for drawing corners
64

, (comma)
use in statements 27, 47
use in TYPE statement 40

- (minus sign/hyphen), for
drawing horizontal lines 35,
64

... (ellipsis), use in statements 47
: (colon), use in statement labels

27,47
; (semicolon), to specify

comments 30
= (equal sign), for drawing

horizontal lines 35, 64
[] (brackets), use with parameters

47
: (vertical-line character), for

drawing lines 35, 64
3270 (IBM 3270 All-Points

Addressable Graphics
Adapter) 84-85, 108

A
ABSOLUTE.BAS program 217-19
action commands

EXECUTE 25, 39, 78
flow of actions, Mouse Menu

programs 37-39
NOTHING 26, 32, 41
TYPE 26, 40-41

active disk, changing with
MATCH 42

adapters. See specific adapter names;
see also video display adapters

addresses
alternate subroutine

getting 185-86
setting 179-84

Index

addresses (continued)
interrupt subroutine

replacing existing 106-7
setting 107,151-57
setting new values for 167 -72

Address register flip-flop,
setting 267

Allen, Paul 5
Alt key combinations 71, 107
/ AM option, changing 234
ANSI.SYS escape-code

sequences 249
Apple Lisa personal computer 4
Apple Macintosh personal

computer 4
arrow cursor 92, 103
arrow keys, simulating with mouse

17,71,73-74,312
ASCII code

control characters, using with
TYPE (table) 311

extended-keyboard-scan codes,
using with TYPE (tables)
312,313

graphics characters 65, 68
IBM extended character set

35,309
line-drawing characters 64, 310
MATCH statement, character

limit in 54
standard character set

(table) 308
text file 43
use in labels 27
use to specify keys 40, 70
value of character 97

ASCII Corporation 6
ASMEXAMP.ASM program

241-43
assembly language. See MASM
ASSIGN command 25, 31
ASSIGN statement 48-49
AT&T 6300 Display Adapter, use

with CPANEL.EXE 288
ATEST .ASM program 240
Attribute Controller registers 267
attribute parameter

introduction 28-30
MATCH statement 41-42,54
MENU statement 58
POPUP statement 64

Index

Augment computer 4
AutoCAD 19
AUTOEXEC.BAT file 20, 101, 289

B
background color

attribute parameter value
29-30, 54, 77

gray, black equivalence 29
inverting 94, 97, 147-48
menus 77
setting 93

backspace
with Alt, unable to simulate 73
ASCII code equivalent 311

BATEST.BAS program 209-11
BEGIN command 25, 26, 30-31
BEGIN statement

described 50-51
DOSOVRLY75

BIOS. See ROM BIOS
bold attribute parameter 28
bold symbolic value 54, 58
borders

automatically generating 57
drawing 35, 64, 68-69

Borland Turbo Pascal, making
calls from 303-4

brackets [], use with parameters
47

buffer
click-ahead 104
for Control Panel 287-89
getting size required, driver state

storage 173-74
keyboard 17, 46, 70, 79-80
saving mouse driver state in

175-76
type-ahead 104

bus mouse, type value for 203-4
buttons

call mask bits, for conditions 185
changing values of 49
choosing items in menu with 32
controlling light pen states with

158
double-clicking 79
feedback function 104, 110
left button 55-56, 64-65, 77, 78,
. 131-36

315

Microsoft MOlJse Programmer's Reference

buttons (continued)
number of times pressed 99, 104,

131-33
number of times released 99,

104,134-36
overview 99 -100
press information 131-33,

209-11,229
release information 134-36
right button 38-39, 42, 60, 131,

134,153
state 99
status 104,126-28,131-36

c
CALL ABSOLUTE command,

QuickBASIC 217-19
CALL INTERRUPT subprogram,

QuickBASIC 220, 223
call mask

bits, setting 106
clearing 180
dehmlt value 116
defined 105
getting alternate interrupt

subroutine address 185-86
replacing existing value 106-7,

167-72
restoring previous values 107,

167-72
setting alternate subroutine 107,

179-84,227-29,245-47
setting interrupt subroutine

151-57,224-26,243-45
swapping interrupt subroutine

167-72,180,224-26,243-45
CALL MOUSE function,

QuickBASIC 220
CALL statement format,

interpreted BASIC 207-8
case sensitivity, in statements 47
cegac, cegal, cegam, cegas

functions, C 262, 263
CGA See IBM Color/Graphics

Adapter
Change Directory submenu,

DOSOVRLY74
character cells, virtual screen

84-85, 90, 91, 96
characters

ASCII (see ASCII code)
attributes

changing with cursor mask
96-97,147

changing with text cursor 96
preserving with screen mask

96,147
data format for, text mode 97

316

characters (continued)
emulating with KBD program

79-80
line-drawing 64, 310
strings of

simulating with TYPE 40-41
specifying with MATCH 41-42,

54-55
click-ahead buffer 104
CLS, simulating with mouse 74
CMOS processor 6
CMOUSE.C program 230
cmousec, cmousel, cmouses calls 153,

169,181
cmousem call 153, 169, 181, 230, 234
colon (:), use in statement labels

27,47
color

attri bute parameter value
29-30, 54, 77

inverting 94, 97
look-up tables 95
menus 29-30, 77
mouse pointer 58
palette, setting with EGALIB

267,278-79
setting 93, 141

COLOR program 77
COLORDEF file 76
comma (,)

use in statements 27, 47
use in TYPE statement 40

command line switches
control panel

for display adapters (table) 288
overview 287 -88
using 288-89

mouse driver
disabling 291
overview 289
removing 291
setting interrupt rate, InPort

mouse 290'
specifying mouse sensitivity

289-90
specifying mouse type,

location 290-91
commands. See also individual

command names
action 37-41
event 30-31
menu subroutine 31-33
MS-DOS

executing with DOSOVRLY
mouse menu 74-76

pop-up subroutine 33-35
prohibited words in 27
syntax conventions 26-28, 47
(table) 25-26

comments in mouse menu
statements, defined 30

Conditional Off function 103, 122,
162-63

condition mask 180
CONFIG.SYS file 20, 101, 249, 289
control characters. See ASCII code
Control key combinations 40, 71,

107
Control Panel

interrupting mouse program to
use 173

overlay buffer
changing default size 287-88
specifying size 289

removing from memory 289, 291
switches

for display adapters 288
overview 287 -88
using 288-89

when introduced 9
coordinates. See cursor,

coordinates; screen
coordinates

CPANEL.EXE. See Control Panel
Cprogram

calling EGALIB from 263
changing cursor color in 95
checking availability of video

modes in 86
compiling and linking under 5.1

230
hiding mouse cursor in 89-90
sample programs

CMOUSE.C 230
CTEST.C231
LPEN.C 231-33
M20SUB.ASM 237-38
MOUH_INT.C,

MOUH_LIB.C 233-34
MOUS_INT.C, MOUS_LIB.C

233-34
MSEXAMP.C 234-36
PENCIL.C 236-37

using with Hercules Graphics
Card 305

CRT page numbers
default value 116
getting 194
and Hercules Graphics Card 305
overview 105
setting 193

CTEST.C program 231
Ctrl-C, simulating 42
cursor

arrow 92
bleeding 94
blinking 223
color 94, 141, 147-48

cursor (continued)
controlling 103-4, 110
coordinates

getting 136-38,131-36
overview 90, 91
setting 129-30
setting minimum, maximum

137-40
creating 93
CRT page number (see CRT

page numbers)
default values 116, 198
in defined menu area 66
displaying 102-3,122-23
graphics (see graphics cursor)
half-square 92
hand-shaped 141-46,234
hardware text

defined 92
overview 98
selecting 147
setting 223

hiding 89, 92, 105, 124-25,
162-63,249

hotspot
defined 95
defining 96
values 141

internal flag
changing value 99
current value 122
decrementing 124
default value 116
described 99
incrementing 122
restoring value 124

mask (see cursor mask)
mask bit 94
Microsoft Mouse 229, 237, 249
minimum/maximum horizontal

coordinates 137, 233-34,
235-36,241-43,253-54

minimum/maximum vertical
coordinates 139,233-34,
235-36,241-43,253-54

movement
double-speed threshold

164-66, 187-90, 289-90
limiting to middle half of

screen 137, 139, 217, 241
mickey count 51,149-50
sensitivity numbers 187 -90

pixels 92-95
position

default value 116
conditions interfering with

new 129
at last button press 131
at last button release 134
setting at middle of screen 130

cursor (continued)
remaining on screen when

program ends 124
scan lines

number of, and display adapter
98

specifying line numbers 147
shape 92, 103, 141
software text

defined 92
displaying 224
overview 96-98
selecting 147
setting 223

speed
doubling 164-66
halving 160-61
increasing 189
setting 160
slowing 189

square 92
turning offl03
underscore 92

cursor mask
bit 94
defined 93
graphics, and screen mask

interaction
effect on screen bit 94
in modes 4, 5 93-94
in modes E, D 94-95
used to build cursor 141

passing 141
text, and screen mask

interaction 96-98, 147

D
Data register flip-flop, setting 267
decimal value, screen colors 54, 58
default

language number 202
setting restored, 116, 198-99

.DEF extension 43

.DEF source files 76-80
Define Default Register Table

function 281-82
demonstration programs, mouse

menu 76-80
Disable Mouse Driver function

195-96
disabling mouse driver 291
display adapters. See video-display

adapters
display attributes

defined 28
foreground, background colors

29-30
inverse value 33, 58, 75
MENU statement value 58

Index

Display Write III 9
Doodle 7
DOS. See MS-DOS
DOSOVRLYMouse Menu

program 74-76
double quotation marks (<< ")

simulating 70
specifying keys with 70
use in MENU statement 32
use in OPTION statement 61
use in statements 28, 47
use in TEXT statement 34

double-speed threshold
getting 189-90
setting 164-66, 187 -88
switch 289-90

DROP.DEF file 76
drop-down menus, creating 77 -78
DROP program 77-78
Dutch language support 109,

200-201
Dvorak,John C. 10

E
EGA See IBM Enhanced Graphics

Adapter
EGAFOR program 264-66
EGALIB. See Microsoft EGA

Register Interface library
EGAL procedure

FORTRAN 263-64
Pascal 266

EGA Register Interface library. See
Microsoft EGA Register
Interface library

EGAS procedure
FORTRAN 262
Pascal 266

ellipsis (...), use in statements 47
Enable Mouse Driver function 197
ending Mouse Menu program 45
End key, simulating 40
Engelbart, Doug 3-4
English language support 109, 200,

202
Enter key, simulating 73, 74
equal sign (=), for drawing

horizontal lines 35, 64
error messages

issuing 102
MAKEMENU error 44
mouse driver, domestic 293-95
mouse driver, international

200-201
mouse menu 297 -99

Esc key, simulating 73
event commands

ASSIGN 25, 31
BEGIN 25, 30-31

317

Microsoft Mouse Programmer's Reference

EXECUTE command 25, 39, 78
EXECUTE statement 52-53, 75
EXECUTEl, EXECUTE2

programs 78
EXECUTEl.DEF,

EXECUTE2.DEF files 76
.EXE programs, compiling and

linking into 262
extended-keyboard-scan codes,

using with TYPE 312-13

F
Fl through flO keys, extended-

keyboard-scan codes 313
FDEMO.FOR program 249-50
Finnish language support 109,200
FORI.FOR program 247-48
foreground colors

attribute parameter value
29-30,54, 77

blinking 29
inverting 94,97,147-48
menus ii
setting 93

foreign-language mouse support
first 9
functions 111, 200-202
overview 109
switch designators 109

FORTRAN
calling EGALIB from 263-66
calling functions from 4.1

247-50
sample programs

FDEMO.FOR 249-50
FORI.FOR 247-48
FTEST.FOR 249

using MOUSE.LIB 20
free-floating cursor 19
French language support 109,200
FTEST.FOR program 249
functions, mouse. See mouse

G
Gates, Bill 5
German language support 109,

200
Get Button Press Information

function 99-100,104,131-33
Get Button Release Information

function 99-100,104,134-36
Get Button Status and Mouse

Position function 100, 104,
126-28

Get CRT Page Number function
105,194

Get Driver Version, Mouse Type,
and IRQ Number function
102,203-4

318

Get Language Number function
109,202

Get Mouse Driver State Storage
Requirements function
173-74,175

Get Mouse Sensitivity function
103,189-90

Get User Alternate Interrupt
Address function 185-86

graphics characters. See ASCII
code

Graphics Controller
Miscellaneous register 268

graphics cursor
changing, sample program 212
default 208-9
default value 116
defined 92
defining 141, 229
displaying default 208-9,

234-36
hand-shaped 141-46, 234
hotspot, defined 95
mouse shape 249
screen, cursor masks interaction

in modes 4, 5 93-94
in modes E, 10 94-95

setting new shape 220
size with different modes 92

graphics modes
default graphics cursor 208-9
demonstrating mouse in 239-40
described 90-91
with Hercules Graphics Card

305
mode 4 91, 93-94
mode 5 90, 91, 92, 93-94
mode 6 90, 92, 94
mode 10 90, 92, 94-95, 259
mode 11 90, 92
mode 12 90, 92
mode 1391, 193
mode D 93, 259
mode E 90, 92, 94-95, 259
mode F 90, 92, 94, 259
programming for EGA 259-84
sample program for 217-19
vs text mode 85

H
hand-shaped cursor 141-46,234
hardware text cursor

defined 92
overview 98
selecting 147

Hawley,jack S. 4
Hercules Graphics Card (HGC)

command line switch, use with
CPANEL.EXE 288

Hercules Graphics Card (HGC)
(continued)

first mouse software support 8
sample programs using 233-34,

250-52
using mouse with 305
virtual screen coordinates

permitted 90
Hewlett-Packard mouse, type value

for 203-4
HGC. See Hercules Graphics Card
Hide Cursor function

changing internal cursor flag 99
drawing in graphics mode 105
during region updating 162-63
Function 2 call description

124-25
using during mode changes 92,

105
high-level language programs,

calling EGALIB from
261-67

highlight, menu/message box 66
Home key, simulating 40
horizontal lines, drawing 35, 64
horizontal movement sensitivity

ASSIGN statement parameter
48-49

BEGIN statement parameter 31,
50-51

getting factor 189-90
setting 187 -88
switches 289-90

hotspot, cursor
defined 95
defining 96
values 141

hyphen (-), for drawing horizontal
lines 35

IBM Color/Graphics Adapter
(CGA)

command line switch, use with
CPANEL.EXE 288

first mouse software support 8
number of lines in cursor 98
sample graphics mode program,

changing for 218, 220
screen-mode characteristics

84-85, 91, 108
IBM Enhanced Graphics Adapter

(EGA)
color look-up tables 95
command line switch, use with

CPANEL.EXE 288
first mouse software support 8
graphics mode sample programs

217-19,220

IBM Enhanced Graphics
Adapter (EGA) (continued)

light pen information 231
number of lines in cursor 98
screen-mode characteristics

84-85,108
writing programs for EGA

modes (see Microsoft EGA
Register Interface library)

IBM enhanced graphics modes,
mouse support for 259

IBM extended character set'
(table) 309

IBM Monochrome Display
Adapter (MDA)

command line switch, use with
CPANEL.EXE 288

number of lines in cursor 98
screen-mode characteristics

84-85,108
IBM Multi-Color Graphics Array

(MCGA), screen mode
characteristics 84-85, 108

IBM Multiplan 80
IBM PC/AT 8
IBM personal computer 6
IBM PS/2 computer 10, 291
IBM Video Graphics Array (VGA)

color look-up tables 95
light pen information 231
not supported by BASICA 87 -88
screen-mode characteristics

84-85,108
infinite loops 53
INITPAS.ASM program 252
INITPAS.OBJ object module 250
InPort mouse

first 9
setting interrupt rate 191-92
switch settings (table) 290
type value for 203-4

input/ output operations,
introduction 19, 90

Input Status register 268
input value 115
Ins key, simulating 73
int86xO function 233-34
Intel 8255 Programmable

Peripheral Interface 6
internal cursor flag

changing value 99
current value 122
decrementing 124
default value 116
described 99
incrementing 122
restoring value 124

international mouse driver
first 9
functions 111, 200-202

international mouse driver
(continued)

overview 109
switch designators 109

interpreted BASIC
CALL statement format 207-8
sample programs

BATEST.BAS 209-11
PIANO.BAS 212
TST1.BAS 208-9

testing for video modes in 87-88
Interrogate Driver function

283-84
Interrupt lOH

BIOS values, changing default
to 280

calling EGA LIB from MASM
programs 260

changing screen mode 267
hiding cursor 89-90
using, overview 88

Interrupt 33H
calling from MASM 238
using, overview 16,20-21
vector

restoring to previous value
195-96

setting to mouse-interrupt
vector 197

verifying where pointing 102
interrupt handlers

installing 106-7
overview 105
setting alternate call mask,

address 179-84
setting call mask, address 151-57
specifying 106
swapping into place 167-72, 180
writing 106-7

interrupt rate, InPort mouse
setting with Function 28 191-92
switch settings 290

interrupt request type. See IRQ
number

INTERRUPT subprogram
calling from QuickBASIC

215-16
QB.Bl file 216-17

INTRRUPT.BAS program 220
Inverse attribute parameter 28, 33
inverse symbolic value 54, 58
IRQ (interrupt request type)

number 203-4
Italian language support 109, 200

K
KBD program 79-80
KBD.DEF file 76
keyboard

bufferI7,46,70,79-80

Index

keyboard (continued)
emulation with mouse 73, 74,

79-80
mapping 17-18

keys

L

ASCII code and equivalents 311
combinations that can't be

simulated 71
simulation

sample program for 73-74
with TYPE 40, 70, 312, 313

symbolic 70

labels
guidelines 27
introduction 26-27
prohibited words 27
syntax conventions 27, 47

language support, international
mouse driver

first 9
functions 111,200-202
overview 109
switch designators 109

/L command line switch 109
Life program 7
light pen emulation mode

conflict with mouse 108
offfunction 108, 159, 231-33
on function 107 -8, 158

Lotus 1-2-39
LPEN.C program 231-33
Lu, Cary 13

M
Ml % through M4%, placeholder

variables 115, 117
M20SUB.ASM program 237-38
MAKEMENU utility 27, 43-44, 73
MAKEMENU.EXE compiler 7
MASM

calling EGALIB from 260-61
ES:BX as table pointer 261
making function calls with,

overview 238-39
sample programs

ASMEXAMP.ASM 241-43
ATEST .ASM 240
TSTl.ASM 239-40
TSTl2&20.ASM 243-45
TST24.ASM 245-47

SUBS.ASM program 249
MATCH command 26, 41-43
MATCH statement 54-56, 60
MCGA See IBM Multi-Color '

Graphics Array
MDA See IBM Monochrome

Display Adapter

319

Microsoft Mouse ProgrOiTHT'lei' 5 Refeience

memory
allocating for mouse menu

programs 46
Control Panel 288

MEND command 26, 32
MEND statement 57
MENU command 26, 32, 35
MENU.COM program 7, 46
menus, creating

with MENU and POPUP,
differences 35

multiple-column 33-37, 63-65
single-column 31-33

\MENUS directory 76
MENU statement 57 -59
menu subroutine commands

31-33
message boxes

creating 34, 36-37, 63-65
color values 29-30
example 65
highlight 66

messages
issuing error 102
MAKEMENU error 44, 297
mouse driver, domestic 293-95
mouse driver, international

200-201
mouse menu 297-99

mickey
count 51,149-50
default value 116
defined 100
double-speed threshold

getting 189-90
setting 164-66, 187-88

ratio to pixel
default value 116, 160
setting 160-61

Microsoft Bus Mouse 6, 291
Microsoft EGA Register Interface

library (EGA.LIB)
calling from high-level language

programs
C programs 263
FORTRAN 263-66
parameters required 261-62
Pascal 266-67
QuickBASIC 262-63

calling from MASM programs
260-61

calling ROM BIOS video
routines 267 -68

damaging register settings 281
functions

FO: Read One Register 270-71
Fl: Write One Register 272-73
F2: Read Register Range 274
F3: Write Register Range 274
F4: Read Register Set 276-77

320

Microsoft EGA Register Interface
library (EGA.LIB) functions
(continued)

F5: Write Register Set 267,
278-79

F6: Revert to Default Registers
268,280

F7: Define Default Register
Table 281-82

FA: Interrogate Driver 283-84
reserved 269
(table) 268
how it works 260
register range, defined 274
register set, defined 276
restoring default settings, EGA

registers 263, 280
shadow maps 259-60 .
when to use 250

Microsoft Expert mouse menu
program

ending 291
when introduced 9

Microsoft Macro Assembler. See
MASM

Microsoft Mouse User's Guide 287
Microsoft Multiplan 80
Microsoft Paintbrush 9, 19
Microsoft Product Support 108,

293
Microsoft Windows 19
Microsoft Word 5, 19, 43
Microsoft Works 19
minus sign (-), for drawing

horizontal lines 64
.MNU files 43
MOUH_INT.C, MOUH_LIB.C

programs 233-34
MOUS_INT.C, MOUS_LIB.C

programs 233-34
mouse

actions
defining 50-51
described 17-18

buttons (see buttons)
cursor, overview 92-98 (see also

cursor)
disabling 195-96
driver (see mouse driver)
enabling 197
functions

088, 102, 116-21, 124, 198, 227,
305

192,99,102-3,122-23,141
292,99,103,105,124-25,162
3100,104,126-28
4 103, 129-30
5 99-100, 104, 131-33, 209
699-100,.104,134-36
7103,122,129,137-38

mouse, functions (continued)
8103, 122, 129, 139-40
992,93,96,103,141-46,301
10 92, 97, 103, 147-48
11100,104,149-50,209-11
12106-7,151-57,179
13107,158
14108,159
15 100, 103, 160-61, 164
16103, 122, 162-63, 301
19103, 160, 164-66
20106,107,167-72
21173-74
22175-76
23175,177-78
24106,107,179-84,301
25 185-86, 301
26100,103,160,164,187-88,

301
27103, 189-90, 301
28 191-92, 301
29 105, 193, 301
30 105, 194, 301
31195-96, 301
32197,301
33 122, 124, 198-99, 301
34109,200-201,301
35109,202,301
36 102, 203-4, 301
calling from Borland Turbo

Pascal 303-4
categorized 109-11
introduction 19, 113-15, 205
listed 114
parameter names 115

hardware interrupts 151, 167
hardware, software status 88, 102,

116-21
Hercules Graphics Card, using

with 305
initializing 116-17,256
interrupt rate 191-92
light pen, conflict with 108
motion, minimum resolution

84-85,90
pointer 64, 116
position feedback 104, 110, 126
programming interface

programs, sample
C, QuickC 230-38
FORTRAN 247-50
interpreted BASIC 207-12
MASM238-47
PASCAL 250-58
QuickBASIC 212-30

programming overview 15-21
reading stcrtus of99-100
reset and status function 88, 102,

116-21,237
resetting and activating

subroutine 227

mouse, functions (continued)
sensitivity

getting 189-90
overview 100
setting 187-88
switches 289-90

specifying type, location (table)
290-91

threshold speed 164-66
type, checking for 203-4
unit of distance (see mickey)

MOUSE.BAS program 220-23
MOUSKCOM device driver 7, 20,

101,291
MOUSEDEM.BAS program

223-24
mouse driver

buffer size, driver state storage
173-74

checking cursor position 122
checking installation 102-3,

252-54
command line switches 289-91
communicating with, from

within program 19-21
default values 116, 198
disabling 195-96, 291
driver control, feedback

functions (list) 109-10
driver state

getting storage requirements
173-74

restoring 177 -78
saving 175-76

enabling 197
international version 9, 109,

200-202
interrogating 283-84
loading 101
messages

domestic 293-95
international 200-202

mouse position feedback 104
overview 15-16
programming interface,

overview 19-21
removing 291
resetting software, hardware

116-21
resetting software only 198-99
switches

overview 289
setting interrupt rate for

InPort mouse 290
specifying mouse sensitivity

289-90
specifying type, location of

mouse 290-91
testing for 102-3

mouse driver (continued)
vectors

determining address 207
installing 197
removing 195-96

version number, checking for
102,203

MouseDriver subprogram,
QuickBASIC 223

mouse event trapping 78
mouse evolution

early 3-4
Microsoft

first generation 6-8
major releases (table) 12
second generation 8-9
third generation 10-11

Mouse House 4
MOUSE.LIB library

calling MOUSE subprogram 213,
214

features, new version 301
linking with existing mouse

programs 301
mousel procedure 247, 250, 255
in original mouse package 7
using, overview 16, 20

mousel procedure
FORTRAN 247, 255
Pascal 250, 255

mouse menus
application 80
borders for 35, 57, 64, 68-69
color 29-30,77
commands

action 37 -41
event 30-31
MATCH 41-43
menu subroutine 31-33, 57
pop-up subroutines 33-37, 64
(table) 25-26

creating 18, 43-44
differing results from MENU,

POPUP commands 35
dimensions, determining 57
drop-down 77 -78
ending 45, 46
highlight 66
introduction 16-18
items in

choosing 32, 57
defining 61-62,68-69
defining selection areas for

66-67
keyboard mapping 17 -18,

73-74, 79-80
memory allocation 46
messages 297 -99
MS-DOS commands, choosing

with 74-76

mouse menus (continued)
multi-level 78

Index

multiple-column 33-37, 63-65
pop-up (see pop-up menus)
program flow 37 -39
removing 32, 58
running 45
sample programs

COLOR 77
demonstration 76-80
DOSOVRLY74-76
DROP 77-78
EXECUTE1, EXECUTE2 78
KBD79

single-column 31-33
source files 43-44
starting program not in current

directory 45
statements (see statements)
subroutines

BEGIN statement effect on 50
commands 31-35
defining menu items in 61-62
executing with MATCH 54-55
first statement in 57-59
pop-up (see pop-up

subroutines)
testing 44-45
title, defining 68-69

Mouse Reset and Status function
88, 102, 116-21, 124, 198

MOUSE subprogram, calling from
QuickBASIC 213, 214

MOUSE.SYS device driver 7, 20,
101,291

MOUSHGCP.PAS program
250-52

movement parameters 31, 50-51
movement-sensitivity parameters

31,50-51
MPIBM.DEF file 80
MPMS.DEF file 80
MSCEXAMP.C program 234-36
MS-DOS 2.0 8
MS-DOS commands

executing with DOSOVRLY
74-76

MS-DOS prompt 289
MSHERC.COM 305
Multimate 3.31 9
Multiplan (IBM) 80
Multiplan (Microsoft) 80
multiple-column pop-up menus

33-37,63-65

N,O
Nishi, Kay 6
normal attribute parameter 28
normal symbolic value 54, 58

321

Microsoft Mouse Programmer's Reference

Notepad program 7
NOTHING command 26, 32, 41
NOTHING statement 60
numeric parameters 28
OPTION commands 26, 32
OPTION statement 61-62
output value 115

p
palette registers, setting in

MASM261
Palo Alto Research Center

(PARC) 4
parameters

ASSIGN statement 48
attribute

MATCH statement 54
MENU statement 58
overview 28-30
POPUP statement 64

BEGIN statement 48, 50-51
bold 30
btbtn

ASSIGN statement 48
BEGIN statement 51

button 31, 49, 50
column

MATCH statement 54
MENU statement 58
POPUP statement 63
SELECT statement 66

comma, used with 27-28
default values 116
dnmov

ASSIGN statement 48
BEGIN statement 51

EGA.LIB register
correspondence 261-62

EXECUTE statement 52
foreground, background colors

29-30
hsen

ASSIGN statement 48
BEGIN statement 51

input value not specified 115
introduction 27 -29
inverse 30
italic, use in 47
key, TYPE statement 70
label

EXECUTE statement 52
MATCH statement 54
MENU statement 57
POPUP statement 63
TYPE statement 70

length, SELECT statement 66
lfbtn, lfmov

ASSIGN statement 48
BEGIN statement 51

322

parameters (continued)
Ml%-M4% 115, 117
MATCH statement 54-55
MENU statement 57-58
movement31,49,50
movement sensitivity 31, 50
nomatch 55
normal 30
numeric 28
OPTION statement 61
output value not specified 115
placeholder 115, 117
pointer

OPTION statement 61
SELECT statement 66

POPUP statement 63-64
redefining 48-49
rounding values of 129
row

MATCH statement 54
MENU statement 58
POPUP statement 63
SELECT statement 66

rtbtn, rtmov
ASSIGN statement 48
BEGIN statement 51

SELECT statement 66
statements without 27
string

MATCH statement 54
TEXT statement 68

text, OPTION statement 61
TEXT statement 68
title, MENU statement 57
TYPE statement 70
upmov, vsen

ASSIGN statement 48
BEGIN statement 51

Pascal
calling EGA.UB from 266-67
sample programs

INITPAS.ASM 252
MOUSHGCP.PAS 250-52
PASEXAMP.PAS 252-54
PDEMO.PAS 256-58
SUBS.ASM 254-56

using MOUSE.LIB 20, 250
PASEXAMP.PAS program 252-54
PC Paintbrush 8
PDEMO.PAS program 256-58
PENCIL.BAS program 229-30
PENCIL.C program 236-37
pencil cursor 229
PEND command 26, 35
PEND statement 63-65
PEN function 158, 159
percent sign (%), use in

parameter names 115
physical-screen coordinates 9
PIANO.BAS program 212
piano keyboard, simulating 212

Piano program 7
pipe (:), for drawing lines 35, 64

.pixel
color 93-94
defined 84
even-number correspondence

91,93
groups

8-by-891
8-by-16 92, 93
16-by-891
16-by-16 92, 93

invisible location 95
movement 90, 91, 100
number

in graphics cursor 92
in hardware cursor 98
on screen 84-85
in text character cell 91

one-to-one correspondence 90,
93

setting ratio to mickey 100, 116,
160

plus sign (+), for drawing corners
64

pointer parameter
OPTION statement 32, 61
SELECT statement 35, 66

POPUP command 26, 34, 35
pop-up menus

borders 68-69
defining item selection areas in

66-67
defining title and text 68
displaying, WS.DEF prograam 60
example 64-65
highlight in 66
multiple-column 33-37, 63-65
single-column 31-33,57-59,

63-65
POPUP statement 63-65
pop-up subroutines

defining item selection areas
66-67

defining pop-up menu
appearance 68-69

first statement in 63-64
for message boxes 34,36-37,

63-65
for multiple-column menus

33-34, 63-65
PEND command 63-65
POPUP command 34, 63-65
sample 35-37, 64-65
SELECT command 35, 66-67
TEXT command 34-35, 64

Portuguese language support 109,
200

product support. See Microsoft
Product Support

PS/2 mouse, type value for 203-4

Q
QB.Bl file 216-17
QB.QLB Quick Library

INTERRUPT subprogram 215,
216

loading with QuickBASIC 213
QBl2&20.BAS program 224-26
QB24.BAS program 227-29
QBHERC.COM 305
QBINC.BAS program 216-17
QBINT.BAS program 215-16
QBMOU.BAS program 214
QBMOUSE.LIB library 213
QBMOUSE.QLB library 213, 214
QBNEW.LIB library 262
QBNEW.QLB 262
QBTEST.BAS program 229
QuickBASIC

calling EGA.LIB from 262-63
calling INTERRUPT 215-16
calling MOUSE 213, 214
crash warning 227
loading QB.QLB 213
modular programming

techniques 223
sample programs

ABSOLUTE.BAS 217-19
INTRRUPT.BAS 220
MOUSE.BAS 220-23
MOUSEDEM.BAS 223-24
PENCIL.BAS 229-30
QBl2&20.BAS 224-26
QB24.BAS 227-29
QBINC.BAS 216-17
QBINT.BAS 215-16
QBMOU.BAS 214
QBTEST.BAS 229

starting 213
testing for video modes in 86
use with Hercules Graphics Card

305
use with MOUSE.LIB, overview

213
version 4.5, CALL MOUSE

function 220
QuickC

calling EGA.LIB from 263
default memory model 230, 234
sample programs

CMOUSE.C 230
CTEST.C231
LPEN.C 231-33
M20SUB.ASM 237-38
MOUH_INT.C,

MOUH_LIB.C 233-34
MOUS_INT.C, MOUS_LIB.C

233-34
MSCEXAMP.C 234-36
PENCIL.C 236-37

QuickC (continued)
use with MOUSE.LIB, overview

20
quotation marks. See double

quotation marks

R
reading the mouse 99-100
Read Mouse Motion Counters

function 100, 104, 149-50
Read One Register function

270-71
Read Register Range function 274
Read Register Set function 276-77
region array, defining on screen

162-63
register range, defined 274
registers

Attribute Controller 267, 282
Attribute Controller Palette 274
CRT Controller Cursor Location

High 275
CRT Controller Cursor Location

Low 275
CRT Controller Cursor Start 273
CRT Controller Mode Control

277,279
damaging adapter with settings

281
defining default table 281-82
Feature Control 273, 282
Graphics Controller

Miscellaneous 268
Input Status 268
Miscellaneous Output 271, 277,

279
range of, defined 274
reading, on EGA 270-71
reading range of, on EGA 274
reading set of, on EGA 276-77
Read One 270-71
restoring default settings, EGA

280
Revert to Default 280
Sequence Map Mask 270
Sequence Memory Mode

267-68,277,279
Sequence Reset 268
set of, defined 276
Write One 272-73
writing to, on EGA 272-73
writing to range, on EGA 275
writing to set, on EGA 278-79

register set, defined 276
relative mouse motion, tracking

104
removing mouse driver from

memory 291
Restore Mouse Driver State

function 175, 177-78

Index

Revert to Default Registers
function 280

Roark, Raleigh 5-6
ROM BIOS

communicating with video
adapter using 102

EGA.LIB considerations
Attribute Controller registers

267
Graphics Controller

Miscellaneous register 268
Input Status register 268
Sequencer Memory Mode

register 267-68
and Interrupt 10H 88
interrupt routines unable to call

106
key sequences suppressed in 71
light pen information 231

RS-232 serial port 6
running mouse menu program 45

5
SADD function 262
sample programs

menu
application mouse menus 80
COLOR 77
DOSOVRLY74-76
DROP 77-78
EXECUTE1, EXECUTE2 78
KBD79-80
SIMPLE 73-74

mouse programming interface
ABSOLUTE.BAS 217 -19
ASMEXAMP.ASM 241-43
ATEST ASM 240
BATEST.BAS 209-11
CMOUSE.C 230
CTEST.C231
FDEMO.FOR 249-50
FORI.FOR 247-48
FTEST.FOR 249
INITPAS.ASM 252
INTRRUPT.BAS 220
LPEN.C 231-33
M20SUBASM 237-38
MOUH_INT.C,

MOUH_LIB.C 233-34
MOUS_INT.C, MOUS_LIB.C

233-34
MOUSE.BAS 220-23
MOUSEDEM.BAS 223-24
MOUSHGCP.BAS 250-52
MSCEXAMP.C 234-36
PASEXAMP.PAS 252-54
PDEMO.PAS 256-58
PENCIL.BAS 229-30
PENCIL.C 236-37

323

~.~!crosoft ~,,~ouse Programmer's Reference

sample programs, mouse
programming interface
(continued)

PIANO.BAS 212
QBl2&20.BAS 224-26
QB24.BAS 227-29
QBINC.BAS 216-17
QBINT.BAS 215-16
QBMOU.BAS 214
QBTEST.BAS 229
SUBSASM 254-56
TSTl.ASM 239-40
TSTl.BAS 208-9
TSTl2&20ASM 243-45
TST24.ASM 245-47

Save Mouse Driver State function
175-76

scan codes. See extended
keyboard-scan codes

scan lines 98
screen

buffer, switches to change size
287-89

characters, data format 97
mask (see screen mask)
mask bit 94
modes

changing 105, 124
and Hercules Graphics Card

305
supported by mouse (tables)

84-85,108
testing for 85-88
text vs graphics 85
unsupported, using 108
virtual (see virtual screen)

screen coordinates
array 162
display adapters (table) 84-85
getting

cursor's current 126-28
cursor's previous 131-36

MATCH statement, starting 54
setting

cursor's 129-30
cursor's minimum/maximum

horizontal 137-38
cursor's minimum/maximum

vertical 139-40
virtual screen, overview 88-91

screen mask
bit 94
defined 93
and graphics cursor mask

interaction
effect on screen bit 94
in modes 4,593-94
in modes E, D 94-95
used to build cursor 141

passing 141
and text cursor mask interaction

96-98,147

324

SCREEN statements, changing for
CGA218

SELECT command 26, 35
SELECT statement 66-67
semicolon (;), to specify

comments 30
Sequencer Memory Mode register
. 267-68
Sequencer Reset register 268
serial mouse, type value for 203-4
Set Alternate Subroutine Call

Mask and Address function
106,107,179-84

Set CRT Page Number function
105,193

Set Double-Speed Threshold
function 103, 160, 164-66

Set Graphics Cursor Block
function 92,93,103,141-46

Set Interrupt Subroutine Call
Mask and Address function
106-7,151-57,179

set key combinations, simulating
with TYPE 313

Set Language for Messages
function 109, 200-201

Set Mickey/Pixel Ratio function
100, 103, 160-61, 164

Set Minimum and Maximum
Horizontal Cursor Position
function 103, 122, 129,
137-38

Set Minimum and Maximum
Vertical Cursor Position
function 103, 122, 129,
139-40

Set Mouse Cursor Position
function 103, 129-30

Set Mouse Interrupt Rate function
191-92

Set Mouse Sensitivity function 100,
103, 160, 164, 187-88

Set Text Cursor function 92, 97,
103,147-48

SETVID.BAS program 86-87
shadow maps, EGA.LlB 259-60
Shaiman, Steve 8, 13
Shift key combinations

extended-keyboard-scan codes
313

and Function 24107, 179-84
not able to be simulated 71

Show Cursor function 92, 99,
102-3,122-23,141

Show Partner program 9
Simonyi, Charles 5
SIMPLE mouse menu program

73-74
simulating keystrokes

arrow keys 17, 41, 71, 73-74, 312
CLS41,74

simulating keystrokes (continued)
Ctrl-C 41, 42
Ctrl-D 41
direction keys 312
editing keys 312
End 41
Enter key 41, 73, 74
Esc key 73
function keys 313
Home 41
Ins 73
set key combinations 313
Spacebar 40,71

single-column pop-up menus
31-33,57-59,63-65

sketching programs
PENCIL.BAS 229-30
PENCIL.C 236-37

Software Reset function 122, 124,
198-99

software text cursor
default value 116
defined 92
overview 96-98
selecting 147

source files
creating Mouse Menu 43-44
.DEF43
error messages 44, 293-99
for mouse menu programs on

disks 80
for sample programs on disks 76
WS.DEF 55-56,60,65,80

. Spacebar, simulating 40, 71
Spanish language support 109, 200
speed-doubling, cursor 164-66
square cursor 92, 103
stand-alone .EXE programs 213
Stanford Research Institute 4
statements

ASSIGN 48-49
BEGIN

described 50-51
DOSOVRLY75

comments 30
EXECUTE 52-53
first, in program 30
format 26-30
labels 26-27,47
MATCH 54-56
MEND 57-59
MENU 57-59
NOTHING 60
OPTION 61-62
parameters (see parameters)
PEND 63-65
POPUP 63-65
SELECT 66-67
syntax conventions 47

statements (continued)
TEXT

described 68-69
line-drawing characters in 64

TYPE (see TYPE statement)
string matching 54
string parameter

introduction 28
MATCH statement 54
TEXT statement 68

Strong, David 5
submenus, creating hierarchy of

74-76
subroutines, mouse functions for

connecting to (list) 110
SUBS.ASM program

described 254-56
linking to MOUSE.LIB 249
providing subroutines for

PASEXAMP.PAS 253
support, product. See Microsoft

Product Support
supported video modes (table) 108
Swap Interrupt Subroutines

function 106, 107, 167 -72,
180

Swedish language support 109, 200
switch designators, language 109
switches. See Control Panel; mouse

driver
symbolic keys 40
SYM.DEF file 80
Symphony program 80
syntax conventions, statements 47

T
terminate-and-stay-resident (TSR)

program 101, 107
testing

for mouse driver 102-3
mouse menu program 44-45

TEXT command 26, 34-35
text cursors

default value 116
defined 92
overview 96-98
selecting 147

text mode
data format for screen characters

97
described 91
display, saving rectangular

area 224
vs graphics mode 85

text parameter, OPTION
statement 32, 61

TEXT statement
described 68-69
including line-drawing

characters in 64

title parameter, MENU statement
57

TSTl.ASM program 239-40
TST1.BAS program 208-9
TST12&20.ASM program 243-45
TST24.ASM program 245-47
type-ahead buffer 104
TYPE command 26, 40-41
TYPE statement

described 70-71
key sequences not simulated

with 71
sample 59
using ASCII control characters

with (table) 311
using extended-keyboard-scan

codes with (tables) 312,313

u
upper-ASCII line-drawing

characters 64
user-installed interrupt

subroutines
crashing system with 227
disabling 116
getting alternate subroutine

address 185-86
installing 106-7
overview 105
QuickBASIC sample programs

224-26,227-29
setting alternate call mask,

address 179-84, 227-29,
245-47

setting call mask, address
151-57, 224-26, 243-45

specifying 106
swapping into place 167 -72, 180,

224-26,243-45
writing 106-7

v
VARPTR function 152, 168
VARSEG function 168
VC.DEF file 80
vertical-line character (I), for

drawing lines 35, 64
vertical movement sensitivity

ASSIGN statement parameter
48-49

BEGIN statement parameter 31,
50-51

getting factor 189-90
setting 187-88
switches 289-90

VGA. See IBM Video Graphics
Array

video control functions (list) 110

Index

video-display adapters. See also
specific adapters

attribute parameters 28, 54, 58,
64

command line switches (table)
288

first mouse software for 8
foreground, background color

values (table) 29
screen modes

changing 105
for Hercules Graphics Card

305
(tables) 84-85, 108
testing for 85-88, 103

text vs graphics 85
types, and number of cursor

lines 98
video modes

changing 105
and Hercules Graphics Card 305
supported by mouse (table) 108
testing for 85-88
text vs graphics 85
unsupported, using 108
video-display adapters (table)

84':"'85
video paging 105
video random-access memory

(VRAM) , problems with 268
virtual screen

in graphics modes 90-91
minimum size 88
overview 88-90
resolution 137, 139
in text modes 91

VisiCalc 80
VMAX% variable 139

W,X
Wall Street Journal 11
WordS tar 44, 55, 80
Write One Register function

272-73
Write Register Range function 275
Write Register Set function

278-79
WS.DEF file 55-56, 60, 65, 80
Xerox Alto computer 4
Xerox Star personal computer 4

325

The manuscript for this book was prepared and submitted to Microsoft
Press in electronic form. Text files were processed and formatted using
MicrosoftVVord.

Cover design by Greg Hickman
Cover photography by Ed Lowe
Interior text design by Darcie S. Furlan
Principal typography by Lisa G. Iversen

Text composition by Microsoft Press in New Baskerville with display
in Avant Garde Demi, using the Magna composition system and the
Linotronic 300 laser imagesetter.

..

ISBN 1-55615-191-8

52995

9 781556 151910

