
Write . DOS
Device rivers

inC

HILLIP M ADAMS/ CLOVIS L. TONDO

Writing
DOS Device Drivers

• In

c

Phillip M. Adams
Chairman

Department of Computer Science
Nova University, Ft. Lauderdale, Florida

Clovis L. Tondo
International Business Machines Corporation

Department of Computer Science
Nova University, Ft. Lauderdale, Florida

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

IBM and PC-DOS are registered trademarks of
International Business Machines Corporation.
INTEL is a registered trademark of Intel Corporation.
Jb.TEX is a trademark of Addison-Wesley.
MS-DOS is a registered trademark of Microsoft
Corporation.
PC'IEX is a trademark of Personal 'lEX, Inc.
'lEX is a trademark of the American Mathematical Society.
TURBO C and TURBO Assembler are registered
trademarks of Borland International.
UNIX is a registered trademark of AT&T.

This book was typeset by the authors using Jb.TEX and PC'IEX
and it was printed with the Chelgraph IBX typesetter by
TYPE 2000, 16 Madrona Avenue, Mill Valley, CA 94941.

Cover illustration provided courtesy of Image Bank.
Cover design by Wanda Lubelska.

II © 1990 by PRENTICE-HALL, INC.
= A Division of Simon & Schuster == Englewood Cliffs, N.J. 07632

The publisher offers discounts on this book when ordered in bulk
quantities. For more information, write:

Special Sales/College Marketing
Prentice-Hall, Inc.
College Technical and Reference Division
Englewood Cliffs, NJ 07632

All rights reserved. No part of this book may be reproduced, in any form
or by any means, without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6

ISBN 0-13-970864-2

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Contents

Foreword

Preface

I Introduction

1 Introduction
1.1 Background
1.2 Intended Audience
1.3 Intended Benefits .
1.4 Conventions Used .
1.5 Overview of Contents

2 Fundamentals
2.1 Intel 8086/8088 Architecture

2.1.1 Memory Addressing
2.1.2 General-Purpose and Index Registers.

2.2 Segmentation and C Compiler Models
2.2.1 Tiny Model ..
2.2.2 Small Model ..
2.2.3 Medium Model .
2.2.4 Compact Model
2.2.5 Large Model ..
2.2.6 Huge Model . . .

2.3 A Closer Look at Tiny Model
2.4 Our First Tiny Model Program
2.5 Data First, Please
2.6 C Stack and Data
2.7 The C Run-Time Libraries

iii

ix

xi

1

3
4
4
5
5
6

7
7
7
8
8
9
9
9
9

10
10
10
11
22
22
23

iv

2.8 Summary
2.9 Exercises

II DOS Device Drivers

3 DOS Device Driver Fundamentals
3.1 Architected Software Interfaces

3.1.1 Software Layers. . . .
3.1.2 Information Hiding ..
3.1.3 Complexity Reduction
3.1.4 Functional Flexibility

3.2 Application Programming Interface .
3.3 Device Driver Interface.

3.3.1 DOS Device Driver Structure
3.3.2 DOS Device Driver Requests
3.3.3 'fracing An Application Request

3.4 BIOS Interface
3.5 Hardware Device Interface.
3.6 Summary
3.7 Exercises

4 A DOS Device Driver Template
4.1 DOS Makefile . .
4.2 Segment Headers
4.3 Definitions...
4.4 Global Data . .
4.5 C Environment
4.6 Commands ..
4.7 Ending Marker
4.8 Template Overview .
4.9 U sing the Template.
4.10 Summary
4.11 Exercises

5 What If It Doesn't Work?
5.1 Installing your Device Driver
5.2 Debugging your Device Driver

5.2.1 Avoiding Problems at Initialization .
5.2.2 Using visual to Find Bugs
5.2.3 Using Imbedded Debug Statements.

5.3 DOS Device Driver Debug Programs

CONT~.

24
25

27

29
29
30
31
31
31
33
34
34
44
46
47
49
49
50

53
54
57
58
59
62
64
65
66
68
68
70

71
72
73
73
74
75
84

CONTENTS

5.4 Summary
5.5 Exercises

6 DOS Character Device Drivers
6.1 Character Device Driver Headers
6.2 Character Device Driver Commands
6.3 CONSOLE Character Device Driver
6.4 Summary
6.5 Exercises

7 Disk/Diskette Fundamentals
7.1 The Jargon

7.1.1 DASD Types
7.1.2 DASD Form Factors
7.1.3 DASD Physical Layout
7.1.4 DASD Storage Capacity .

7,2 DOS View Of DASDs
7.3 DOS Disk Organization ...

7.3.1 DASD Partition Table
7.3.2 DOS Boot Record . .
7.3.3 DOS File Allocation Table
7.3.4 DOS Root Directory . .
7.3.5 DOS File System Data.

7.4 Summary
7.5 Exercises

8 DOS Block Device Drivers
8.1 Block Device Driver Headers
8.2 How DOS Finds A Block Device
8.3 Block Device Driver Commands .
8.4 RAM-DISK Block Device Driver
8.5 SHADOW Block Device Driver
8.6 Summary
8.7 Exercises

9 DOS Device Driver Test Methodology
9.1 Device Driver Debug Process ...
9.2 Device Driver Command Exercise.
9.3 Device Driver Exercise
9.4 Summary
9.5 Exercises

v

84
85

87
88
89
90
94
95

97
97
97
98
98
99
99

101
101
102
103
104
104
105
106

107
108
108
110
111
113
116
117

119
120
120
121
121
122

vi

10 DOS Device Driver Projects
10.1 n-plexing DOS Devices ...
10.2 Logical Device Concatenation.
10.3 DOS Device Espionage
10.4 CD-ROM Support For DOS Devices
10.5 Supporting New Technology .
10.6 Summary
10.7 Exercises

III DOS WORM Device Driver

11 WORM Fundamentals
11.1 DOS File System Services - A Closer Look .
11.2 DOS FAT File System
11.3 Summary
11.4 Exercises

12 WORM Device Driver Architecture
12.1 The DOS BPB In Review
12.2 IBM 3363 Device Driver Architecture .
12.3 Typical Problems with WORM Devices
12.4 Summary
12.5 Exercises

13 DOS WORM Device Driver
13.1 DOS WORM Device Driver Concept
13.2 DOS WORM Device Driver Header.
13.3 DOS WORM Device Driver Commands
13.4 DOS WORM Device Driver Control Flow
13.5 DOS WORM Device Driver Files
13.6 What If It Doesn't Work?
13.7 Summary
13.8 Exercises

A Device Driver Commands

B Device Driver Interface

C arrange Utility

D DOS API

CONTENTS

123
124
124
125
126
126
127
127

129

131
131
133
134
134

135
135
136
138
138
139

141
141
142
143
146
147
148
152
153

155

157

169

175

CONTENTS vii

E visual Utility 189

F TEMPLATE Files 213

G CONSOLE Files 241

H ROM BIOS 263

I dosJat Program 271

J RAM-DISK Files 299

K SHADOW Files 319

L WORM BIOS 341

M WORM Files 345

Index 381

Foreword

DOS is the most widely used operating system in the world, running on tens of
millions of personal computers. The key to the success of DOS is the availability
of tens of thousands of applications and the ability to run DOS on many different
IBM and IBM compatible systems with thousands of types of I/O adapters and
peripherals.

The mechanism in DOS that supports these thousands of I/O adapters and
peripherals is the DOS device driver. The DOS device driver provides the
insulating layer that allows the application developer to produce applications
independent of specific adapter or peripheral characteristics. So, in addition
to providing support for hardware, the device driver concept has enabled more
rapid development of applications.

Dr. Adams and Dr. Tondo, using their experience working with DOS as part
of the IBM Entry Systems Division team, have produced a book that greatly
simplifies the designing, developing and testing of DOS device drivers.

I know that DOS device driver developers will welcome this book.

ix

Mel Hallerman
Senior Technical Staff Member

IBM Entry Systems Division

Preface

This is a DOS device driver workbook. It contains the information necessary for
you to perform your own experiments on DOS device drivers or to design and
build your own special-purpose DOS device drivers.

The first part of the book introduces you to the vocabulary and tools
used throughout the rest of the book. The second part develops the concept,
architecture, and operational characteristics of a DOS device driver. This part
provides a methodical, hands-on approach to developing DOS device drivers
using a general DOS device driver template written in the C language. The third
part of the book walks you through the design, implementation, and debug of a
full-function write-once-read-many (WORM) device driver.

The current information on DOS device drivers requires a level of unnecessary
complication; i.e., development in Intel 8086/88 assembler language. You will
find the examples, programs, and DOS device drivers we provide here are written
entirely in the C language. This high-level language approach to DOS device
drivers allows you to focus on the problem the device driver is designed to solve
rather than on the minute details of the hardware environment supporting the
execution of DOS.

Device drivers provide an excellent means of realizing a user-defined abstrac
tion (interface) in the DOS environment. This is a much more general statement
than saying DOS device drivers provide a means of attaching both low- and
high-speed devices to your computer system. We discuss the device driver inter
face in the third part of the book, which culminates with the development of a
complete DOS device driver.

xi

xii PREFACE

We think we have contributed something to your understanding of this
fascinating topiC. We have also attempted to make your life a little easier by
providing all of the programs in this book on diskette for twenty dollars. To
order, mail a check to:

Phillip M. Adams, D.Sc., Ph.D.
Nova University
3301 College A venue
Ft. Lauderdale, Florida 33314

We thank the friends that helped us produce this book: Suann Adams, Anne
Aldous, Lynn Christensen, Joe Dalezman, Greg Doench, Larry Holmstrom, Chris
King, Phil Korn, Bruce Leung, Joan Magrabi, Steve Mackey, Darren Miclette,
Sophie Papanikolaou, Freeman Rawson, Ed Simco, Carlos Tondo, John Wait,
Yin Wong, and Eden Yount. Your assistance and unselfish donation of your
time to this project made it possible. We sincerely thank you.

PMA
CLT

Part I

Introduction

Chapter 1

Introd uction

Device drivers are an essential part of any modern-day operating system. They
implement a standard interface to all devices attached to the computer system.
In other words, device drivers provide a common mechanism for accessing
hardware devices no matter how dissimilar the devices may be.

Personal computers that execute DOS (whether PC-DOS or MS-DOS)
benefit from DOS device drivers. For example, DOS device drivers allow you to
use the same DOS commands and utilities to access your files on a variety of
devices such as diskettes, hard disks, CD-ROMs, and WORMs.

Without DOS device drivers each DOS application would need to support
every device that is not supported by your standard DOS. Therefore, as every
new device appears, each of us would have to buy a new version of our favorite
DOS applications to obtain support for the new device!

As DOS has evolved over the years, significant change has occurred in the area
of device drivers. Prior to DOS Version 2.0, the concept of a user-installed device
driver did not exist - a situation that forced many devices to go unsupported
in the early days of the personal computer.

DOS Version 2.0 provided many enhancements over previous versions. To
people versed in UNIX, DOS Version 2.0 came as welcome relief, supporting
many of the features found in UNIX. One of the most striking resemblances came
in the area of device drivers. DOS Version 2.0 adopted the UNIX input/output
philosophy of having both character and block devices. Each device class
supports a small number of device class commands, such as READ and WRITE.

DOS Version 2.0 also adopted the concept of a device-specific control
mechanism, referred to as the I/O ConTroL (IOCTL) interface. The IOCTL
interface, or device command, allows applications to provide more specific control
information to devices than is normally available through the standard READ
and WRITE commands.

3

4 CHAPTER 1. INTRODUCTION

DOS device drivers seem to be able to do almost anything. Obviously, that is
not the case. DOS device drivers perform a very specific function in a personal
computer and are required to conform to a very rigorous structure and format.
Details about the function, structure, and format of DOS device drivers are
provided in the DOS Technical Reference Manual. We have provided a condensed
version of it in the Appendix B.

1.1 Background

Writing device drivers is exciting and challenging. This book will teach you how
to design and implement your own DOS device drivers. You will be provided with
the knowledge and tools (programs) to properly analyze existing DOS device
drivers as well as those of your own design.

As you go along, you will learn the details of the DOS device driver interface.
And you will probably learn more about all aspects of your personal computer
than by reading any other book. This is because device drivers reside between
the DOS kernel and your personal computer's hardware. Therefore, the more
you learn about the DOS device driver interface, the more functional your device
driver will become. Likewise, the more you learn about the interface between
your personal computer hardware and device driver, the more powerful your
device driver will become.

With the knowledge and understanding you gain from reading this book,
running the programs, and using the tools provided, you can begin to analyze,
design, implement, and debug DOS device drivers of your choice.

1.2 Intended Audience

This book is intended for programmers who need to develop an understanding
of DOS device drivers. The book is written more as a laboratory manual than
a reference document. You should be able to read this book and work through
the examples that we provide.

The examples in this book are written in the C programming language so a
good understanding of the C programming language is necessary. Furthermore,
to experiment with the examples presented in this book you will need access to a
C compiler and an assembler for the personal computer. We have used TURBO
eVersion 2.0 and TURBO Assembler to create the examples.

Because DOS device drivers deal primarily with the characteristics of
hardware devices attached to your personal computer, it will be helpful for you
to have a working knowledge of your personal computer's hardware, including
peripheral devices. Typically you will have a hardware technical reference

1.3. INTENDED BENEFITS 5

manual that comes with your computer and describes it in great detail. You
do not need to memorize the information in your manual or even understand all
of it. But your understanding of DOS device drivers will come easily if you have
been introduced to the topic.

Because we are going to discuss the interface between DOS and the hardware
for your personal computer it will be helpful for you to have a working knowledge
of DOS as well as your personal computer. The best source of information about
DOS is the DOS Technical Reference Manual. Just as the hardware technical
reference manual provides detailed information about your computer, the DOS
Technical Reference Manual discusses DOS at a very detailed level. Once again,
you do not need to commit the contents of. the manual to memory, but you
will have an easier time understanding sections of this book if you have been
introduced to DOS concepts.

Be assured, though, that even if you have never read the hardware technical
reference manual for you personal computer or the DOS Technical Reference
Manual, you will develop a better understanding of your hardware and DOS by
reading on! As you read each part of this book and experiment with the examples
we provide, you will develop a better understanding of DOS -and device drivers.

1.3 Intended Benefits

You will derive numerous benefits from reading and thinking about the contents
of this book. For one, you will learn detailed information about DOS that is
difficult to discover by yourself. In addition, the book presents the concepts of the
hardware interface architecture in a way that is simple and easy to understand.

The most beneficial aspect of this book is that you can investigate the DOS
device driver architecture and interface in a step-by-step manner by working
through the examples presented. You can begin reading and experimenting right
from the start. By the time you complete the book, you will have developed an
understanding of device drivers as well as a complete set of operational tools
designed to assist you in your future investigations of DOS device drivers.

1.4 Conventions Used

All the programs in this book are written in C. More specifically, all the programs
in this book are written in TURBO C Version 2.0. Although TURBO C provides
enhancements to the American National Standards Institute (ANSI) standard
for the C programming language, we have attempted to conform to the ANSI
standard in the programs presented. However, due to the nature of systems
programs, specifically DOS device drivers, the direct register access feature of

6 CHAPTER 1. INTRODUCTION

TURBO C must be used.
The direct register access feature of TURBO C allows every register of the

Intel processor to be accessed directly. Direct access is accomplished by using a
set of pre-defined names that consist of an underscore followed by the capitalized
form of the name of the register; i.e., _AX, _BX, etc.

This programming language feature can be very dangerous (error-prone). For
this reason, we have limited direct register access to the sections of code that
absolutely require its use, such as in the case of servicing interrupts.

Note that although we use this feature of TURBO C, you can achieve the
same effect with any C compiler by writing assembler language programs to
accomplish the functions performed through the direct register access feature of
TURBO C. For example, the following TURBO C program statements:

_AX OxFFFF;
_BX _ex;

can be written in assembler language as in the following code fragment:

mov ax,OFFFFh
mov bx,cx

which yields the same results.
In short, we selected the TURBO C programming language to reduce the

complexity of the examples presented in this book while at the same time
minimizing the cost of materials required to experiment with the examples you
find here.

1.5 Overview of Contents

This book is organized in three parts. The first part, the one that you are reading
now, is devoted to introductory information intended to steer you through the
rest of this book.

Part II presents information about DOS device drivers. It attempts to
present the information contained in the DOS Technical Reference Manual. The
information is presented in terms of C programs and program segments that
ultimately are combined into the DOS device driver template that you can use
to develop your own DOS device drivers.

Part III expands your horizons. It attempts to solve a real-world problem by
developing, from start to finish, a DOS device driver. We implement a WORM
device driver.

Each chapter within each part summarizes the learning activities presented
in the chapter. Each chapter also includes a number of important questions that
you should be able to answer after reading the chapter.

Chapter 2

Fundamentals

The most difficult aspect of developing a DOS device driver in C is understanding
how the compiler handles the segmented architecture of the Intel series of
processors. This chapter describes the basics of the segmented architecture.

2.1 Intel 8086/8088 Architecture

The Intel 8086/8088 architecture is based on a segmented memory model and
supports thirteen 16-bit registers: four segment registers, four general-purpose
accumulators, two index registers, two pointer registers, and a flags register.

2.1.1 Memory Addressing

Each of the four 16-bit segment registers, which function somewhat like base
registers, is designated for a specific segment: one for a code segment (CS), one
for a data segment (DS), and one for a stack segment (SS) with an extra segment
(ES) register designated for data movement.

The processor uses two steps to calculate a memory address. First, it selects
the appropriate segment register and shifts the contents of the register four
positions to the left. The criteria for selecting the segment register are simple.
If the memory access is due to an instruction reference, as in the case of a jump
to a specified program location, then the processor selects the CS register. If the
memory access is due to an instruction's request for a memory operand, then
the processor selects the DS register. And if the memory reference is a result of
a stack operation, then it selects the SS register.

Second, the processor adds a segment offset to the left-shifted value of the
selected segment register. This operation yields a 20-bit address, which can

7

8 CHAPTER 2. FUNDAMENTALS

access up to one megabyte of memory.

2.1.2 General-Purpose and Index Registers

Each of the four 16-bit general-purpose accumulators AX, BX, ex, and OX can
function as two 8-bit accumulators. This is done by designating the high portion
(AH of AX) or the low portion (AL of AX) of the 16-bit accumulator.

The two 16-bit index registers are designated S1 and or. These registers are
useful in developing indexed addresses in the manipulation of data tables.

Two additional 16-bit registers are designated as pointer registers. The base
pointer (BP) register is useful in implementing high-level languages that require
activation records and recursive variable frame pointers. The stack-pointer (SP)
register functions as both a hardware and a software stack pointer.

Finally, the Intel architecture supports a 16-bit FLAGS register, which
maintains the condition codes from the previous instructions.

Note that by employing a high-level language approach to implement DOS
device drivers much of this lower-level processor architecture detail is masked
from you. This is very important because you will be able to spend more
time contemplating the details of your algorithm and less time attempting to
remember which register or instruction must be used to accomplish the task at
hand.

Suffice it to say that if you conform to the philosophy presented in this
book, you will not need to focus on the lower-level details of the processor's
architecture. By following the examples presented throughout this book you
will be able to develop your DOS device driver algorithms in C as if you were
developing any other C program.

2.2 Segmentation and C Compiler Models

You will find a number of terms associated with a segmented memory model that
you do not typically find when discussing a processor that supports a flat memory
model. Because the personal computer architecture is based on a segmented
memory model, we must define these terms and describe how they affect the
compilers of high-level languages that generate code for the personal computer.

The first concept to grasp is that the entire address space of the personal
computer - one million bytes - is not directly addressable without modifying
one or more of the segment registers: es, OS, SS, and ES. The processor is
designed to address only 64 kilobytes of memory at a time. Each 64-kilobyte
block of memory is referred to as one segment, from which we get the term
segmented memory architecture. Consequently, it is important that compilers
of high-level languages develop a uniform methodology for addressing memory.

2.2. SEGMENTATION AND C COMPILER MODELS 9

Intel proposed the concept of various memory models that the compiler could
use to generate code. In other words, Intel proposed a number of different ways
in which memory addressing could be achieved on their processors, leaving you
to instruct the compiler which form of memory addressing you would like your
program to use.

Intel designated these various memory models as small model, medium model,
large model, and huge model. Borland International introduced two other models
in their TURBO C compiler; these are called tiny model and compact model.
We will briefly discuss each of these memory models.

2.2.1 Tiny Model

Tiny model is the smallest of the memory models that the compiler can generate.
All four segment registers (CS, DS, SS, and ES) are initialized to the same value.
Therefore, you have an address space of only 64 kilobytes for your entire program
including code,· data, and local stack variables. This model uses near pointers -
16-bit values. Near pointers are also called offsets.

2.2.2 Small Model

Small model programs allow twice the addressable memory of tiny model
programs. This is accomplished by having one segment allocated to the code
and one segment allocated to the data. Therefore, the maximum size a small
model program can be is 128 kilobytes of memory. This model uses near pointers
for code references and near pointers for data references.

2.2.3 Medium Model

Medium model programs allow the code space of the program to be up to
one megabyte of memory. The compiler accomplishes this by generating far
pointers - 32-bit values - consisting of a 16-bit segment value and a 16-bit
offset value for all instruction references. The data space in a medium model
program is limited to one segment (64 kilobytes) as in the small model. This
model uses far pointers for code references and near pointers for data references.

2.2.4 Compact Model

Compact model programs are the opposite of medium model programs. In other
words, the code space is limited to one segment (64 kilobytes) of memory and
the data is allowed to occupy up to one megabyte of memory. This model uses
near pointers for code references and far pointers for data references.

10 CHAPTER 2. FUNDAMENTALS

2.2.5 Large Model

Large model programs use far pointers for both data and code references. This
allows both the code and data to occupy up to the one-megabyte addressing
limit of the processor.

2.2.6 Huge Model

Huge model is an extension of large model. Huge model allows more than one
segment of statically allocated data to be present in the program. As with the
large model programs, huge model programs employ far pointers in all cases.

2.3 A Closer Look at Tiny Model

A DOS device driver must conform to the structural architecture defined in the
DOS Technical Reference Manual. You will learn more about this topic in the
next section, but a couple of items must be discussed before we can proceed in
this section.

A DOS device driver must be a .COM file. A .COM file is a tiny model
program that does not declare a specific stack segment. Because TURBO
C includes the stack segment within the data segment of the program, it is
possible to transform a tiny model program's .EXE into a .COM file by using
the EXE2BIN utility of DOS.

A DOS device driver must have a special device driver header located at
address zero. This device driver header contains various data values and pointers.

The initialization routine of a DOS device driver is usually placed at the
end of the device driver code. This allows the device driver to release the space
required for the routine after the initialization process has completed.

The developer of a device driver must control the physical location and the
order of various components of the DOS device driver. Obviously, this is an easy
task in assembler language but not quite so easy in a high-level language such
as C.

Finally, when you use a C compiler, it is important that you understand
the assumptions the compiler makes when it compiles your code. For example,
TURBO C assumes that when you link your compiled program, you will include
the start-up module in the linking process. The start-up module is responsible
for initializing the processor registers to a specified value and establishing the C
run-time environment prior to calling the function that you have named main.

DOS device drivers have their own set of initialization criteria, criteria that in
many ways violate that of the start-up routine in TURBO C. Therefore, during
the development of the DOS device drivers in this book, we will not include the
start-up routine, and you do not need to name any of your routines main.

2.4. OUR FIRST TINY MODEL PROGRAM 11

2.4 Our First Tiny Model Program

The best way to understand what a tiny model program means is to create one,
then inspect the output of the compiler. The following program, first. c, uses
a number of features of the C programming language that we will use later in
the DOS device driver examples.

1* -*/
1* *1
1* PROGRAM Fir s t *1
1* *1
1* REMARKS First is a program that is designed to be *1
1* compiled in TINY model by the TURBO eVersion 2.0 *1
1* compiler. Once compiled the assembler output is *1
1* reviewed to identify the structure and problems that *1
1* will be encountered when developing a DOS device */
1* driver in this language. *1
1* *1
1* -*1

#include <stdio.h>

1* - - - -
1*
1* Global
1*
1*

unsigned int
unsigned char

-

- - - - - - -

Data Required

- - - - - - -

global_int;
global_byte;

For

- - - - - - - - - - - - - - - -*1
*1

This Program *1
*1

- - - - - - - - - - - - - - - -*1

12 CHAPTER 2. FUNDAMENTALS

1* -*1
1* *1
1* FUNCTION: Fun c t ion *1
1* *1
1* REMARKS : Function is a function responsible for *1
1* accessing the supplied parameters and assigning the *1
1* global data variables to the current values of the *1
1* parameters. *1
1* *1
1* -*1

Function (int param_int, char param_byte)
{

}

global_int = param_int;
global_byte = param_byte;

1* -*1
1* *1
1* FUNCTION: m a i n *1
1* *1
1* REMARKS: main is the main program function that is *1
1* responsible for initializing its local data variables *1
1* and then calling Function with them as parameters. *1
1* *1
1* -*1

void main (void)
{

}

int local_func_int;
char local_func_byte;

local_func_int = 0;
local_func_byte = 0;

2.4. OUR FIRST TINY MODEL PROGRAM 13

The program first. c declares two global variables that are visible to the
entire program. It contains a function main and another function Function,
which has two formal parameters.

You will notice that even though first. c is a very small and simple C
program, it performs the following types of operations:

• Global variable access

• Local (stack) variable access

• Parameter passing to a function

• Function parameter access

• Function invocation.

Each of the above operations is critical to the operation of a C program.
Therefore, an understanding of these items is important in the development of
DOS device drivers written in the C programming language.

first. c was compiled with TURBO eversion 2.0. We used the following
command to compile the program:

tcc -mt -y -M first.c

This command requests the TURBO C compiler to generate a tiny model
program (-mt) that includes line number information (-y) and a link/load map
(-M). The following is the link/load map created from this compilation:

Start Stop Length Name

OOOOOH 00659H 0065AH _TEXT
00660H 007E7H 00188H _DATA
007E8H 007EBH 00004H _EMUSEG
007ECH 007EDH 00002H _CRTSEG
007EEH 007EEH OOOOOH _CVTSEG
007EEH 007EEH OOOOOH _SCNSEG
007EEH 00837H 0004AH _BSS
00838H 00838H OOOOOH _BSSEND

Class

CODE
DATA
DATA
DATA
DATA
DATA
BSS
STACK

14 CHAPTER 2. FUNDAMENTALS·

Address Publics by Name

0000:0206 OGROUP@
0000:07CF emws_adjust
0000:0703 emws_BPsafe
0000:07CB emws_control
0000:0701 emws_fixSeg
0000:07B5 emws_initialSP
0000:06F5 emws_limitSP
0000:07C5 emws_nmiVector
0000:07C1 emws_saveVector
0000:0705 emws_stamp
0000:07C9 emws_status
0000:07CO emws_TOS
0000:0709 emws_version
0000:02CO _abort
0000:046F _atexit
0000:063A _brk
0000:06CF _environ
0000:060B _errno
0000:0305 _exit
0000:0208 _Function
0000:07EE _global_byte
0000:07EF _global_int
0000:02E9 _main
0000:0574 _malloc
0000:0648 sbrk
0000:0600 __ 8087

0000:06CB __ argc
0000:06CO __ argv
0000:07E6 __ atexitcnt
0000:07F2 __ atexittbl
0000:06EO __ brklvl
0000:0601 __ envLng
0000:0603 __ envseg
0000:0605 __ envSize
0000:0220 __ exit
0000:070C __ exitbuf
0000:070E __ exitfopen
0000:07EO __ exitopen
0000:06E9 __ heapbase
0000:07E2 __ heaplen

2.4. OUR FIRST TINY MODEL PROGRAM 15

0000:06F1 __ heaptop
0000:06BB __ IntOVector
0000:06BF __ Int4Vector
0000:06C3 __ Int5Vector
0000:06C7 __ Int6Vector
0000:0609 __ osmajor
0000:060A __ osminor
0000:0607 __ psp

0000:07EE __ RealCvtVector
0000:0283 __ restorezero
0000:07EE __ ScanTodVector
0000:033A __ setargv
0000:0425 __ setenvp
0000:060F __ StartTime
0000:07E4 __ stklen
0000:0609 __ version
0000:05E2 ___ brk

0000:06E5 ___ brklvl
0000:0836 ___ first
0000:06E3 ___ heapbase
0000:06E7 ___ heaptop
0000:0832 ___ last

0000:0495 ___ pull_free_block
0000:0834 ___ rover
0000:0606 ___ sbrk

16 CHAPTER 2. FUNDAMENTALS

Address Publics by Value

0000:0220 __ exit

0000:0283 __ restorezero
0000:02CO _abort
0000:0206 OGROUP@
0000:0208 _Function
0000:02E9 _main
0000:0305 _exit
0000:033A __ setargv
0000:0425 __ setenvp
0000:046F _atexit
0000:0495 ___ pull_free_block
0000:0574 _malloc
0000:05E2 ___ brk

0000:0606 sbrk
0000:063A _brk
0000:0648 _sbrk
0000:06BB __ IntOVector
0000:06BF __ Int4Vector
0000:06C3 Int5Vector
0000:06C7 __ Int6Vector
0000:06CB __ argc
0000:06CO __ argv
0000:06CF environ
0000:0601 __ envLng
0000:0603 __ envseg
0000:0605 __ envSize
0000:0607 __ psp
0000:0609 __ version
0000:0609 __ osmajor
0000:060A __ osminor
0000:060B _errno
0000:0600 __ 8087
0000:060F __ StartTime
0000:06E3 ___ heap base
0000:06E5 ___ brklvl
0000:06E7 ___ heaptop
0000:06E9 __ heapbase
0000:06EO __ brklvl
0000:06F1 __ heaptop
0000:06F5 emws_limitSP

2.4. OUR FIRST TINY MODEL PROGRAM 17

0000:07B5 emws_initialSP
0000:07C1 emws_saveVector
0000:07C5 emws_nmiVector
0000:07C9 emws_status
0000:07CB emws_control
0000:07CO emws_TOS
0000:07CF emws_adjust
0000:0701 emws_fixSeg
0000:0703 emws_BPsafe
0000:0705 emws_stamp
0000:0709 emws_version
0000:070C __ exitbuf
0000:070E __ exitfopen
0000:07EO __ exit open
0000:07E2 __ heaplen
0000:07E4 __ stklen
0000:07E6 __ atexitcnt
0000:07EE __ ScanTodVector
0000:07EE __ RealCvtVector
0000:07EE _global_byte
0000:07EF _global_int
0000:07F2 __ atexittbl
0000:0832 ___ last

0000:0834 ___ rover
0000:0836 ___ first

18 CHAPTER 2. FUNDAMENTALS

Line numbers for first.obj(first.c) segment _TEXT

41 0000:02D8
59 0000:02E9
68 0000:02FF

44 0000:02DB
64 0000:02FO

Program entry point at 0000:0100
Warning: no stack

45 0000:02El
65 0000:02F2

46 0000:02E7
67 0000:02F6

You can see from this link/load map that the compiler includes a number
of functions and variables that are not present in the original source code. The
majority of these inclusions come directly from the start-up module that the
compiler links to your C programs.

The linker produces the message Warning: no stack. This is a normal
message for a tiny model program.

Now, let's analyze the structure of this simple C program. The following
lines from the link/load map indicate that the output from the compiler begins
with the code segment, _TEXT, which starts at hex location 0000 and continues
until hex location 0659 with a length of hex 065A.

Start Stop Length Name

OOOOOH 00659H 0065AH _TEXT
00660H 007E7H 00188H _DATA
007E8H 007EBH 00004H _EMUSEG
007ECH 007EDH 00002H _CRTSEG
007EEH 007EEH OOOOOH _CVTSEG
007EEH 007EEH OOOOOH _SCNSEG
007EEH 00837H 0004AH _BSS
00838H 00838H OOOOOH _BSSEND

Class

CODE
DATA
DATA
DATA
DATA
DATA
BSS
STACK

The code segment is followed by the data segment, _DATA. _DATA contains the
initialized data values for the program. first. c does not contain any initialized
global variables, but you will find that the C start-up module does.

The segment named _BSS is the segment containing the uninitialized global
variables. This is where the two global variables from first. c can be found.
Following the _BSS segment, you will find the _BSSEND segment, which identifies
where the stack can be placed without declaring a specific STACK segment.

From this brief analysis, you can see that a problem exists in the ordering
of the segments produced by the compiler. Specifically, the data must precede
the code in a DOS device driver. This particular topic is left for discussion in
Section 2.5.

A structural problem with the output from the compiler indicates the
likelihood of a number of problems with the more detailed aspects of the code and

2.4. OUR FIRST TINY MODEL PROGRAM 19

data generated by the compiler as well. The only way to determine whether this
statement is true is to have the compiler produce assembler language output,
then inspect that output for instances that might conflict with the guidelines
specified for DOS device drivers.

first. e must be recompiled with the options required to produce assembler
language output. The following command is sufficient to accomplish this task:

tee -mt -y -e -S first.e

This command requests TURBO C to generate a tiny model program (-mt)
that includes line number information (-y), compile it only (-e), and produce
an assembler language listing (-S). The assembler language listing will be in
first. asm.

We edited first. asm to remove various debugging statements produced
by the compiler, and we have reformatted portions of the assembler language
program for readability.

20

_TEXT segment
DGROUP group

assume
_TEXT ends
_DATA segment
d@ label
d@w label
_DATA ends
_BSS segment
b@ label
b@w label
_BSS ends
_TEXT segment

Line #
_Function

push
mov
Line #
mov
mov
Line #
mov
mov

@1:
Line #
pop
ret

_Function

Line #
_main proc

push
mov
sub
push
Line #
xor
Line #
mov
Line #
push

CHAPTER 2. FUNDAMENTALS

byte public 'CODE'
_DATA,_BSS
cs:_TEXT,ds:DGROUP,ss:DGROUP

word public 'DATA'
byte
word

word public 'BSS'
byte
word

byte public 'CODE'

41
proc near
bp
bp,sp
44
ax,word ptr [bp+4]
word ptr DGROUP:_global_int,ax
45
aI, byte ptr [bp+6]
byte ptr DGROUP:_global_byte,al

46
bp

endp

59
near
bp
bp,sp
sp,2
si
64
si,si
65
byte ptr
67
word ptr

[bp-1] ,0

[bp-1]

2.4. OUR FIRST TINY MODEL PROGRAM 21

push si
call near ptr _Function
pop cx
pop cx

(02:
Line # 68
pop si
mov sp,bp
pop bp
ret

_main endp
_TEXT ends

_BSS segment word public 'BSS'
_global_byte label byte

db 1 dup (?)
_global_int label word

db 2 dup (?)

_BSS ends
_DATA segment word public 'DATA'
s(o label byte
_DATA ends
_TEXT segment byte public 'CODE'
_TEXT ends

public _gl~bal_int

public _global_byte
public _Function
public _main
end

You will notice that a group named DGROUP is defined as being the data
segment, _DATA, followed by the uninitialized data segment _BSS. However, the
code segment _TEXT is not contained in this group even though the program
can grow only to a maximum size of one segment (64 kilobytes). Furthermore,
you will see that all named variable references are preceded with the name of
the group (DGROUP) to calculate correctly the offset of the variable within the
program. However, this is not the case when references are made to locations
within the code segment (_TEXT) as indicated by the call to _Function.

Although this might seem like a lot of double-talk, it really is important
that you understand some basic concepts concerning just how the compiler is
generating code from your C program. The main reason for taking you through
this exercise is to demonstrate that the data segment must be relocated to the

22 CHAPTER 2. FUNDAMENTALS

beginning of the object file, as we will explain in the next section. Once this
has been accomplished, the references to the code segment will be incorrect
because the compiler assumes the code segment will always begin at location
zero. Therefore, we must take corrective action to resolve this problem as well.

2.5 Data First, Please

If we are to conform to the specification of a DOS device driver, we must change
the order of the segments generated by the compiler. In other words, the data
segment must be relocated to the beginning of the output file, and the code must
be moved to the end of the output file.

The following changes to the assembler output are sufficient to accomplish
the desired results:

DGROUP group
assume

_DATA,_BSS,_TEXT
ds:DGROUP,ss:DGROUP,cs:DGROUP

The changes are simple. First, the code segment (_TEXT) was included in the
data group (DGROUP). Second, the assembler is instructed that the code segment
register (CS) is assumed to be relative to the data group (DGROUP).

You can make these changes with your favorite editor. However, this type of
operation is prone to errors. That's why we developed a utility called arrange,
which performs these modifications.

arrange also modifies the code references to include the DGROUP prefix rather
than maintaining the compiler's assumption that the code segment always begins
at location zero. The source code for the arrange utility appears in Appendix C.

2.6 C Stack and Data

The stack a C program uses during execution is established by the start-up
module that is linked with the program's object module. Because the DOS
device driver is not linked with the C start-up module, some provision must be
made to support a stack during program execution. One of the best ways to
address this problem is to view it as an Interrupt Service Routine (ISR) that
must save all registers on entry and establish its own operating environment
every time it is executed.

We will establish a stack for program execution each time the DOS device
driver is executed. The stack size will be determined by the setup code contained
within the DOS device driver. Typically, a DOS device driver attempts to
minimize the usage of resident memory. Therefore, the amount of stack space
allocated from within a DOS device driver varies from a few hundred bytes to
as much as one kilobyte.

2.7. THE C RUN-TIME LIBRARIES 23

The stack size can be thought of as a very limited resource. It would be nice
to understand just what type of operations require space on this stack. In C any
time we make a function call, we use stack space to record the return address
and the parameters being passed to the function. The stack is also used when a
function declares any local variables. These variables are allocated on the stack
unless we use the static keyword to promote them to a global allocation level.

Clearly, you do not want to attempt to allocate a local array of two thousand
elements! The stack should be used for local variables, such as loop control
variables, and any large allocations should be declared as global to the entire
program. Remember, if you run out of stack space within a DOS device driver
anything can happen!

2.7 The C Run-Time Libraries

DOS device drivers are not allowed to use DOS functions or services. The reason
for this is that when a DOS device driver is executing, an application has already
requested a specific DOS function or service to be performed. DOS is attempting
to accomplish the specified DOS operation by invoking the appropriate DOS
device driver. If that device driver were to request a DOS function or service to
be performed, then DOS would have to be reentrant, which it is not. Therefore,
DOS device drivers are not allowed to use any DOS functions or services.

Later in this book (Section 8.4) you will find that specific DOS functions can
be used within a DOS device driver, but it is in your best interest right now to
simply remember not to use any DOS services!

The C run-time libraries are comprised of many functions that perform a
variety of useful and common operations. In general, C programmers attempt
to use as many of these functions as possible to reduce development time and to
improve standardization of their C code. There is one small problem with this
philosophy when developing DOS device drivers in C.

The problem encountered in DOS device drivers written in C that use the
supplied C run-time routines is that those routines might attempt to issue a
DOS request. As mentioned above, this is not allowed because DOS is not a
reentrant operating system. Therefore, the use of C run-time routines must be
limited to those functions that do not require DOS intervention. Here is a short
list of some of these routines:

• String functions (strcpy, ...)

• Memory movement (memmove, ...)

• Direct console I/O (cprintf, cput, ...)

24 CHAPTER 2. FUNDAMENTALS

As a general rule, the list of C run-time routines that you can use safely is
provided with the documentation for your C compiler. You should be aware that
this list will change from compiler to compiler. Our examples attempt to reduce
any dependencies on the C run-time routines. However, the run-time routines
that we use are safe routines that most compilers have available in their libraries.

2.8 Summary

Intel Architecture

• segment registers: CS, DS, SS, ES

• general-purpose registers: AX, BX, ex, DX

• index registers: SI, DI

C Compiler Models

• tiny model: it has one address space of 64 kilobytes and uses near pointers.

• small model: it has one segment for code and one segment for data. It
uses near pointers.

• medium model: it has one segment for data and more than one segment
for code. It uses near pointers for data and far pointers for code.

• compact model: it has more than one segment for data and one segment
for code. It uses far pointers for data and near pointers for code.

• large model: it has more than one segment for code and more than one
segment for data. It uses far pointers for both data and code references.

• huge model: it is an extension of large model. It uses far pointers for both
data and code references.

Tiny Model Programs

• To compile a tiny model program and generate assembler language output
use:

tee -mt -y -e -S filename.e

• To relocate the data segment to the beginning of the output file, use:

2.9. EXERCISES 25

arrange cmds input.asm output.asm

where the utility takes input. asm, arranges it according to cmds, and
produces output. asm

• The linker produces the message Warning: no stack. This is a normal
message for a tiny model program.

C Run-Time Libraries

• DOS is not reentrant

• Use C run-time routines that do not require DOS intervention

2.9 Exercises

Exercise 2.1 List the registers available on the Intel 8086/8088 architecture.

Exercise 2.2 Explain segmented memory model. List and explain the different
models.

Exercise 2.3 Explain the difference between near and far pointers.

Exercise 2.4 Compile first. c and generate assembler output.

Exercise 2.5 Use the arrange utility to move the data segment in front of the
code segment. Compare the two. asm files.

Exercise 2.6 Find the list of library routines that are safe - i.e., that do not
require DOS intervention - available with your C compiler.

Part II

DOS Device Drivers

Chapter 3

DOS Device Driver
Fundamentals

It is difficult to develop DOS device drivers without an understanding of the
operational characteristics of DOS. This chapter presents the most salient
features of DOS as they relate to DOS device drivers.

DOS is an operating system that has a set of layered interfaces. Each of these
interfaces has a specific function as well as a calling convention. The following
is a list of the major functional interfaces in DOS:

• Application programming interface

• Device driver interface

• Basic input/output system (BIOS) interface

• Hardware device interface.

DOS device drivers interact with each of these functional interfaces in DOS.
Therefore, it is important that you understand the functional capability as well
as the calling convention of each of these interfaces. But before we discuss
these interfaces in detail, it is worthwhile to spend a little time addressing the
more abstract notion of software classification and how it relates to architected
software interfaces.

3.1 Architected Software Interfaces

An interface represents the implementation of some abstract function or set of
functions. An architected software interface has two major components. The

29

30 CHAPTER 3. DOS DEVICE DRIVER FUNDAMENTALS

first component is the set of functional abstractions accessible via the interface.
For example, the notions concerning file management are abstractions. However,
when implemented, these abstractions become the file management interface that
allows us to create, access, and delete files.

The second component of an architected software interface is the standard
ized calling convention used to access the underlying functional abstractions.
Although there is an infinite number of ways to invoke a function in a program
ming environment, architected software interfaces represent a single (standard
ized) method of invoking the underlying function.

The DOS interfaces that we discuss in subsequent sections represent both a
select number of functions as well as a standardized method of invoking those
functions.

You might be wondering what the advantages of an architected software
interface really are. The following list represents a few of the more significant
advantages derived from such an interface:

• Software layers

• Information hiding

• Reduction of complexity

• Functional flexibility.

3.1.1 Software Layers

The definition of an interface implies a layer of software functionality. Each
layer, or interface, in DOS has a specific purpose. As we mentioned previously,
there are four major functional interfaces in DOS.

The first of these interfaces deals with the services DOS provides to the
application programs that execute in a DOS environment. These services, or
operating system functions, are very abstract or hardware-independent. For
example, an application can request that DOS create a file named myfile. There
is nothing hardware-dependent about this type of bperating system service.
This service simply indicates the high level of abstraction associated with this
particular layer of the operating system.

This is not meant to imply that an application program's request to open
myfile will not cause some detailed hardware-dependent operations to occur.
However, those hardware-dependent operations will occur only on the basis of a
request from the application programming interface layer to hardware-dependent
interface layers.

The number and content of the layers depend on the system architecture.
But is it possible to determine the appropriateness of the selected system

3.1. ARCHITECTED SOFTWARE INTERFACES 31

architecture? The answer is "Yes," and the factor used to determine the
appropriateness is referred to as the "fan-out" of the interfaces.

In other words, we can view the system architecture as a triangle with the
application program request for a DOS service located at the peak of the triangle
(Figure 3.1). The DOS services manager receives and processes the DOS service
request. Each DOS service issues subsequent requests to the DOS device drivers.
The DOS device drivers, in turn, issue requests to the BIOS layer. Finally, the
BIOS layer issues requests to the hardware itself.

The number of requests issued to subsequent layers in the system architecture
as a result of a request from a higher layer's request is termed the "fan-out."
The fan-out is visually depicted by the width of the base of the request triangle,
as indicated in Figure 3.1.

Note that as the fan-out of the request triangle decreases, the overhead
in the system increases. This is because when a layer makes a request to a
subsequent layer in the system architecture, the request has to be encoded to
conform to the calling convention of the subsequent layer. The subsequent layer
must then decode the request in order to perform the operation. As the fan-out
approaches one, the system approaches the state where it is doing nothing more
than encoding and decoding interface requests.

Therefore, by obtaining the fan-out of each DOS interface, it is possible
to determine the success of the system architecture relative to the application
programs being executed.

3.1.2 Information Hiding

In the discussion of software layers in the previous section, it is easy to see
that the application program making a request to open a file does not have to
control the hard disk adapter that controls the disk drive that contains the file.
The software layering approach allows each layer to "hide" specific details, or
information, concerning its operation from other layers in the system.

3.1.3 Complexity Reduction

The ability to functionally decompose a complex software system into software
layers or interfaces reduces the complexity of the overall system. This means
that the system can be analyzed, component by component, without attempting
to analyze the entire system at one time.

3.1.4 Functional Flexibility

In a complex system, the ability to change the implementation of a layer without
altering the architected software interface provides a great deal of functional

32 CHAPTER 3. DOS DEVICE DRIVER FUNDAMENTALS

INT 21 APPLICATION

DEVICE DRIVER RE DOS SERVICE MANAGER

DOS DEVICE DRIVER

Figure 3.1: System Request Triangle

3.2. APPLICATION PROGRAMMING INTERFACE 33

flexibility. For example, it is possible to completely rewrite a layer in the system
without affecting application programs. Furthermore, it is possible to replace
hardware components without affecting any software layers.

3.2 Application Programming Interface

The application programming interface (API) is the common name for DOS
services or functions. In particular, API refers to the INT 21 services. The
term INT 21 is used because that is the calling convention used to invoke the
appropriate DOS service or function.

The Intel 808X class of processors provides a software interrupt capability.
This capability is in the form of an interrupt instruction (INT) followed by the
interrupt number desired. Therefore, an INT 21 is simply a software interrupt
instruction that will cause the interrupt vector location to be accessed. By the
way, the 21 in this discussion is hexadecimal 21, or 33 decimal.

The DOS API provides the application programmer with a host of useful
services that would require untold hours to develop if the programmer were to
reproduce them in the application. Even if the application programmer could
reproduce these services in the application, many of the services would have to
be continually updated to reflect the changes in DOS releases. For this reason,
application programmers should attempt to use whatever features DOS provides,
and then let the company that supplies them DOS worry about making the
changes to those features!

As we mentioned above, the DOS API provides a host of useful features
that are accessible through the INT 21 interface. This interface, or calling
convention, requires the AH register of the CPU to indicate the DOS service
you are requesting. Any additional information is provided via the other CPU
registers.

The following program excerpt demonstrates how you can use one of the
services available through the DOS API.

struct DOS_struct far *dos_ptr;

_AX = Ox5200;
geninterrupt (Ox21);
dos_ptr = MK_FP (_ES, _BX);

Let's analyze what this program excerpt accomplishes.
First, the code declares dos_ptr to be a far pointer (a 32-bit pointer). This

pointer will point to a structure of type DOS_struct. For this discussion it is
not necessary to worry about the exact contents of the DOS_struct structure.

34 CHAPTER 3. DOS DEVICE DRIVER FUNDAMENTALS

Second, the AH register (the high portion of AX) is loaded with hexadecimal 52
and the AL register (the low portion of AX) is loaded with zero. The hexadecimal
52 in AH tells DOS that we are requesting the DOS service that returns the far
address of the DOS variables section.

Third, a software interrupt 21 instruction is executed. This is the instruction
that causes DOS to receive control, and it is the avenue applications take when
requesting services from the DOS API or service manager.

Finally, the DOS service is performed and DOS returns the desired address:
register ES contains the segment and register BX contains the offset. The macro
MK_FP takes the contents of these registers and builds a far pointer that is usable
by C programs.

A complete list of services available through the DOS API is provided in
Appendix D.

3.3 Device Driver Interface

The DOS device driver interface is similar to the application programming
interface. However, a number of significant differences exist; we will discuss
them in this section.

The DOS API is an interface between the application program and the DOS
service manager. The device driver interface, on the other hand, is an interface
between the DOS service manager and the BIOS or the hardware itself. This
difference is not of great significance until you realize that DOS is not a reentrant
operating system. Therefore, as the application's request progresses through the
system, from DOS API to device driver interface to BIOS and finally to the
hardware, there is less flexibility in what types of operations can be performed.

Another way to look at this is that when a request reaches the device driver
interface, it is not possible for the device driver to make a request through the
DOS API. In short, the closer the request comes to the hardware level, the less
abstraction is available to the operating software servicing the request.

The device driver interface represents, in general, the entire set of DOS device
drivers in the system. The best way to understand the device driver interface is
to dissect it.

DOS device drivers have two major characteristics: first, their structure and,
second, the device driver requests (commands) they respond to. The following
sections address these characteristics.

3.3.1 DOS Device Driver Structure

A DOS device driver is a memory-image file, .COM, that contains all the logic
required to realize the device attachment or implementation. Although the

3.3. DEVICE DRIVER INTERFACE 35

device driver file is a standard type of file, it does have one main difference.
Typically, .COM files are required to start at hexadecimal location 100. This
requirement allows DOS to create a 256-byte Program Segment Prefix (PSP) in
memory prior to loading the .COM file itself. If the .COM file were to start at
location zero, then when DOS loaded the file it would write over the PSP and
the program would not be able to operate.

DOS device drivers do not start at location Ox100. Instead, DOS device
drivers start at location zero. You might be wondering why DOS allows device
drivers, but not for .COM files in general, to start at location zero. The answer
is quite simple. DOS device drivers represent an extension to the DOS kernel.
Therefore, DOS has allocated memory and specific internal data structures
to manage the location and operation of each device driver in the system.
Furthermore, once DOS device drivers are loaded, their memory addresses do not
change. However, .COM files are constantly being loaded into memory, executed,
and then removed from memory. There is no guarantee they will occupy the same
memory locations if they are executed repeatedly.

For this reason .COM files require a more sophisticated program management
facility than do DOS device drivers. This program management facility requires
the construction and management of the PSP for each .COM file loaded in the
system. But how does DOS manage the DOS device drivers? The following list
indicates the topics we must discuss in order to answer this question.

• DOS device management

• DOS device driver headers

• DOS device driver classification

DOS Device Management

All DOS device drivers must have a DOS device driver header located at location
zero. This should sound familiar after the discussion concerning the creation of
PSPs at location zero for .COM files. The DOS device driver header is analogous
to the PSP for .COM files. DOS uses the device driver header to link all device
drivers into a singly-linked list of device drivers. Therefore, if we were to find
the head of the list of DOS device drivers we should be able to see all of the
devices in our system. More about this idea in a moment.

The DOS device driver header has a specific format. The following C
structure describes that format.

36 CHAPTER 3. DOS DEVICE DRIVER FUNDAMENTALS

struct DDH_struct
{

struct DDH - struct far *next_DDH;
unsigned int ddh_attribute;
unsigned int ddh_strategy;
unsigned int ddh_interrupt;
unsigned char ddh_name [8] ;

};

As you can see, the DOS device driver header contains five fields.

• The first field has the address of the next device driver.

• The second field has the attribute word.

• The third field has the offset for the Strategy function.

• The fourth field has the offset for the Interrupt function.

• The fifth field has the name field (character device driver) or the number
of units (block device driver).

We will discuss each of these fields is more detail in the following paragraphs.
DOS uses the first field to link to the next device driver. Because DOS

device drivers can be located anywhere in physical memory, this field must be
a far pointer (segment:offset). The first field typically is set to the value of
OxFFFFFFFF to indicate it is the only DOS device driver present in this file. If this
is not the case, then it is important that each device driver present be statically
linked together with the final device driver header containing OxFFFFFFFF in the
first field.

The second field in the DOS device driver header is the control field, or the
attribute word. This word informs DOS of the attributes, or capabilities, of this
particular DOS device driver. Table 3.1 defines the bits in the attribute word.

The attribute word of the device driver header is a critical element of the
device driver header. If this word is not properly initialized, your device driver
may be unable to respond to the DOS device driver requests.

The most important bit in the attribute word is bit 15. This bit informs
DOS that this particular device driver is either a character device driver or
a block device driver. We will discuss the distinction in "DOS Device Driver
Classification" on page 43. Suffice it to say that the distinction between these
two types of DOS device drivers is a critical factor in their operation.

The lower nibble of the attribute word identifies whether this device driver
will replace one of the internal device drivers that control the console or the
clock. This feature of DOS device drivers allows users to replace an internal or

3.3. DEVICE DRIVER INTERFACE 37

Bit # Bit Value Description

Bit 0 o - Not current standard input device
(LSB) 1 - Current standard input device
Bit 1 0- Not current standard output device

1 - Current standard output device
Bit 2 o - Not current NUL device

1 - Current NUL device
Bit 3 0- Not current clock (CLOCK$) device

1 - Current clock (CLOCK$) device
Bit 4 0-

1 - Reserved
Bit 5 0-

1 - Reserved
Bit 6 0-

1 - generic I/O Con'froL
Bit 7 0-

1 - Reserved
Bit 8 o -

1 - Reserved
Bit 9 o -

1 - Reserved
Bit 10 o -

1 - Reserved
Bit 11 0- Does not support removable media

1 - Supports removable media
Bit 12 o -

1 - Reserved
Bit 13 o - IBM format block device

1 - N on-IBM format block device
Bit 14 0- Does not support I/O Con'froL

1 - Supports I/O Con'froL
Bit 15 o - Block device
(MSB) 1 - Character device

Table 3.1: Attribute Word

38 CHAPTER 3. DOS DEVICE DRIVER FUNDAMENTALS

existing DOS device driver with one of their own choice. There is one exception.
The NUL device cannot be reassigned even though the attribute word provides
a NUL device bit.

Note that the I/O control string bit in the attribute word determines whether
the device driver can process device driver-specific control strings. These strings,
or commands, are referred to as 10CTL calls and are specific to the device driver.

The third and fourth fields in the DOS device driver header are simply offsets
into the device driver. DOS uses these offsets whenever a request is sent to the
device driver. The procedure for issuing a request to the device driver is described
in the following paragraphs.

First, DOS initializes the ES and BX registers to the address of the request that
is to be sent to the device driver. Next, DOS performs a far call to the Strategy
function of the device driver. The Strategy function entry point (address) is
built by taking the segment of the device driver header and combining it with
the value of the strategy offset contained in the device driver header.

The device driver Strategy function is responsible for saving/queueing the
request address found in the ES and BX registers. After completing this task, the
Strategy function performs a far return to DOS. DOS immediately performs a
far call to the Interrupt function of the device driver.

The device driver Interrupt function is responsible for obtaining the request
address (queued up by the Strategy function), decoding the request, and
performing the requested operation. On completion of the task, the Interrupt
function performs a far return to DOS.

The fifth field in the device driver header is referred to as the name or unit
field. If the device driver is a character device driver, then this field contains
the eight-character name of the device. If, however, the device driver is a block
device driver, then the first byte of the name field is set to the number of units
the block device driver supports and the remaining bytes of the field are not
used.

DOS Device Driver Headers

We have spent a considerable amount of time discussing the importance of the
DOS device driver headers and their contents. Wouldn't it be nice if we had a
program that could show us the real thing? Well, that is exactly what the next
program will do.

Remember the example we used to discuss the INT 21 interface? We left
undefined the type struct DOS_struct. It is now time to revisit that program
fragment and provide the required data structure definitions.

We encounter one problem in implementing a program that will display the
list of device driver headers: we don't know where the list of device driver headers

3.3. DEVICE DRIVER INTERFACE 39

begins. The program fragment on page 33 returns a far pointer to the following
structure:

struct DOS_struct
{

};

unsigned char
struct DDH_struct

reserved [34];
far *ddh_ptr;

As you can see from the definition of DOS_struct, we have a far pointer to
the beginning of the list of device driver headers, ddh_ptr. Therefore, all we
have to do is obtain the pointer to the DOS_.struct from DOS, then traverse the
linked list and visit each device driver header, printing them along the way.

The following program implements this algorithm. The program is simple,
but provides a lot of information.

/* -*/
/* */
/* PROGRAM S how D D H */
/* */
/* REMARKS Show_DDH obtains the pointer to the beginning */
/* of the DOS device driver headers and then walks the */
/* list, printing the contents of each header. */
/* */
/* NOTES tcc -M -mt -y show_ddh.c */
/* */
/* -*/

#include
#include
#include

<dos.h>
<conio.h>
<stdio.h>

40 CHAPTER 3. DOS DEVICE DRIVER FUNDAMENTALS

/* - - - - - - - - - - - - - - - - - -
/*
/* DOS Device Driver Header Structure
/*
/* - - - - - - - -

struct DDH_struct
{

};

struct DDH_struct
unsigned int
unsigned int
unsigned int
unsigned char

- - - - - - - -

-

-

- - - - - - -

far *next_DDH;
ddh_attribute;
ddh_strategy;
ddh_interrupt;
ddh_name [8];

- - - -

- -

- -

- -

- -

- -

DOS Internal Variables Block Structure

- - - - - - - - - - - - - - - - -

struct DOS_struct
{

unsigned char reserved [34];
struct DDH_struct far *ddh_ptr;

};

- - - - - - - - -*/
*/
*/
*/

- - - - - - - - -*/

- - - - - - - - -*/
*/
*/
*/

- - - - - - - - -*/

3.3. DEVICE DRIVER INTERFACE 41

1* -*1
1* *1
1* FUNCTION: P r i n t D D H *1
1* *1
1* REMARKS: Print_DDH displays the DOS Device Driver *1
1* Headers (DDHs). These are the headers *1
1* described in the DOS Technical Reference *1
1* Manual. They contain such items as the type of *1
1* device and the location of both the Strategy and the *1
1* Interrupt functions of the device driver. *1
1* *1
1* - - - - - - - - - - - - - - - -*1

void Print_DDH (struct DDH_ struct far *ddh_ptr)
{

}

unsigned int i;
struct DDH_struct far *z;

z = ddh_ptr;
while (FP_OFF (z) != OxFFFF)
{

clrscr 0;
printf ("\n\n\t\tDevice Driver Entry (%Fp)\n\n", z);

}

printf (II\tNext Device Driver %Fp\n", z->next_DDH);
printf ("\tDevice Attributes %04X\n",

printf (II\tDevice Strategy Offset

printf ("\tDevice Interrupt Offset:

printf (II\tDevice Driver Name

for (i = 0; i < 8; i++)
{

putchar (z->ddh_name [i]);
}

printf ("\n");
z = z->next_DDH;
getch 0;

z->ddh_attribute);
%04X\n" ,
z->ddh_strategy);
%04X\n" ,
z->ddh_interrupt);
") ;

42 CHAPTER 3. DOS DEVICE DRIVER FUNDAMENTALS

1* -*1
1* *1
1* FUNCTION: m a i n *1
1* *1
1* REMARKS: Main is the driver routine for the Show_DDH *1
1* code. It performs a DOS function Ox52 in order to *1
1* obtain the pointer to the DOS variables structure. *1
1* It then calls Print_DDH to display the DOS *1
1* device driver headers. *1
1* *1
1* -*1

void main (void)
{

unsigned int
unsigned int
struct DOS_struct
struct DDH_struct

clrscr 0;

_AX = Ox5200;
geninterrupt (Ox21);
bx_reg _BX;
es_reg = _ES;

es_reg;
bx_reg;
far *dos_ptr;
far *ddh_ptr;

MK_FP (es_reg, bx_reg);
(struct DDH_struct far *) &dos_ptr->ddh_ptr;

}

This program locates all device drivers in a DOS environment. It also
identifies the characteristics and capabilities of each device driver.

It becomes a simple task for you to write the strategy and interrupt addresses
on a piece of paper, execute the debug program of DOS, then set a break point
at the addresses you have just written down. This simple technique allows you
to analyze the exact sequence of operations and data flows associated with any,
or all, the DOS device drivers installed in your system.

3.3. DEVICE DRIVER INTERFACE 43

DOS Device Driver Classification

The previous two sections have given you a detailed look at the DOS device
driver environment. You have been able to compile and execute the show_DDH

program, which displays all the DOS device driver headers in your system. You
are now ready to ask, and answer, some questions concerning the output of the
show _DDH program.

The first question is "Why does the system have so many device drivers?"
We can now answer that question. No device in DOS can be accessed unless it
has a device driver associated with it. Therefore, all the communication devices
(COMl, COM2, COM3, AUX, ...), as well as the print devices (LPTl, LPT2,
LPT3, PRN, ...), must have an associated device driver header.

The next question is "Which of these device driver headers is the disk device
driver header?" The answer to this question is a little more difficult because
we must now understand the differences between character devices and block
devices.

Character devices are designed to perform variable length I/O operations.
What this means is that a character device may be able to operate on a
single character or any number of characters. Character device drivers typically
support devices such as printers, video displays, keyboards, local area networks,
and communication devices.

Each character device in 'DOS has a name. This name is assigned by the
device driver implementer and can be found in the device driver header. Each
character device has one device driver header and one name. It is possible to
load a character device driver that has the same name as a previously loaded
character device driver. In this case, the character device driver loaded last
becomes the operational device driver and the others will not be called by DOS.

Block devices are designed to perform fixed length I/O operations. Block
devices drivers typically support disk and diskette drives. Unlike character device
drivers, a block device driver in DOS does not have a name. The block device
driver is identified by a drive letter (A, B, C, ...). Block device drivers can have
units within them. In this way, a single block device driver can be responsible
for, or control, more than one disk or diskette drive.

For example, a device driver named DRIVER 1 can be responsible for four
drives or units. Therefore, DRIVER 1 will be assigned four drive letters and the
user will access these physical drives through the assigned drive letters. But how
are the drive letters and the physical drives or units associated?

The association between the drive units and the drive letters is determined by
the position of the driver in the chain of device drivers. For example, if device
driver DRIVERI is the first block device driver in the list of device drivers,
then drive letters A, B, C, and D are used to access the physical drives that
DRIVERI controls. If DRIVER2 is the second driver in the chain and it controls

44 CHAPTER 3. DOS DEVICE DRIVER FUNDAMENTALS

two physical drives, then drive letters E and F would be assigned to DRIVER2's
physical drives or units. DOS allows 26 separate drive letters (A-Z) to be assigned
in this manner.

3.3.2 DOS Device Driver Requests

In the latest version of DOS, the interface between DOS and the device driver
supports nineteen commands. The following is a list of these DOS device driver
requests (with command codes).

1. (00) Initialize

2. (01) Check Media

3. (02) Build BIOS Parameter Block (BPB)

4. (03) IOCTL Input

5. (04) Input From Device

6. (05) Input Without Waiting

7. (06) Obtain Input Status

8. (07) Flush Input Buffer

9. (08) Output To Device

10. (09) Output And Verify Data

11. (10) Obtain Output Status

12. (11) Flush Output Buffer

13. (12) IOCTL Output

14. (13) Open Device

15. (14) Close Device

16. (15) Check If Media Is Removable

17. (19) IOCTL To Device

18. (23) Get Logical Device Map

19. (24) Set Logical Device Map

3.3. DEVICE DRIVER INTERFACE 45

Each of these DOS device driver requests or commands has a specific request
format associated with it. However, a portion of the DOS device driver request is
common to all nineteen. This common portion is referred to as the DOS device
driver request header. The following C structure describes the contents of the
common portion of the DOS device driver request header.

struct REQ_struct
{

unsigned char length;
unsigned char unit;
unsigned char command;
unsigned int status;
unsigned char reserved [8] ;

};

The DOS device driver request header, REQ_struct, contains five fields. The
first field is the length, in bytes, of the request. The common portion of the
request is always 13 bytes in length: three unsigned char (three bytes), one
unsigned int (two bytes), and eight unsigned char (eight bytes).

The second field in REQ_struct is the unit. This field is used for accessing
specific units of a block device driver. Clearly, a character device driver does
not require this field because there is only one character device driver per device
driver header. However, a block device driver must use the unit field to select the
appropriate portion of code to execute in order to control the specified physical
device (unit).

The third field in REQ_struct is the DOS device driver command. The list
on page 44 identifies (in parentheses) the value used in this field for the current
DOS device driver command. The device driver decodes this field and performs
the appropriate action.

The fourth field in REQ_struct is the return status word. This field indicates
the result of the requested DOS command. The high-order bit of the status
word indicates whether an error occurred. If an error occurred, then the low
order byte of the status word contains one of the following error codes. (See
dos_dd.h in Appendix F.)

#define WRITE_PROTECT OxOO 1* Write Protect Violation *1
#define UNKNOWN_UNIT OxOl 1* Unit Not Known By Driver *1
#define NOT_READY Ox02 1* Device Is Not Ready *1
#define UNKNOWN_CMD Ox03 1* Unknown Device Command *1
#define CRC_ERROR Ox04 1* Device CRC Error *1
#define BAD_REQ_LEN Ox05 1* Bad Drive Req Struct Len *1
#define SEEK_ERROR Ox06 1* Device Seek Error *1
#define UNKNOWN_MEDIA Ox07 1* Unknown Media In Drive *1

46 CHAPTER 3. DOS DEVICE DRIVER FUNDAMENTALS

#define NOT_FOUND Ox08 1* Sector Not Found *1
#define OUT_OF_PAPER Ox09 1* Printer Out Of Paper *1
#define WRITE_FAULT OxOA 1* Device Write Fault *1
#define READ_FAULT OxOB 1* Device Read Fault *1
#define GENERAL_FAIL OxOC 1* General Device Failure *1

Bit 7 of the status word indicates the operation is complete, and bit 8
indicates the device is still busy.

The fifth field is the reserved portion of REQ_struct. Following the reserved
portion of REQ_struct is the variable portion of the data that is required for
each of the commands. For more information about the format and content of
the variable portion of the DOS device driver commands, refer to Appendix B
and dos_dd.h in Appendix F.

3.3.3 Tracing An Application Request

We are now ready to complete our discussion concerning the DOS device driver
interface. It is only appropriate that we develop a program to display the
commands issued by DOS that constitute this interface. As you might have
already guessed, this program is a further refinement of the show_DDH program
we presented earlier.

This utility is named visual because it allows you to visually inspect the DOS
device driver interface. Before we implement visual we must interpose logic
between DOS and the device drivers in the system. This is easily accomplished
by altering the device driver headers.

We developed visual to exploit some of the flexibility provided by a
standardized interface. The implementation of visual is by no means an optimal
one, but it is sufficient to illustrate the DOS device driver interface.

The algorithm embodied in visual is simple. First, visual obtains the
pointer to the list of DOS device drivers. The method employed is the same as
the one used in show _DDH.

Next, a set of internally defined DOS device driver headers is initialized
to the contents of the original device driver headers. The LPT3 device driver
header is used to provide the internal DOS block device driver with a strategy
and interrupt offset that is within the same segment as the internal DOS block
device driver.

Finally, visual terminates and stays resident in the system. After that,
visual will be invoked anytime a DOS request is made through the DOS device
driver interface. visual intercepts the request, displays the contents of the
request, invokes the original device driver with the request, displays the result of
the request, and then returns to DOS. Because visual is a terminate and stay
resident (TSR) program, you will have to reboot your machine following its use.

3.4. BIOS INTERFACE 47

The source for visual is included in Appendix E. You will find that studying
the source for visual is informative as well as thought-provoking. The power
you now have, being able to interpose your programs between DOS and the DOS
device driver interface, is considerable.

3.4 BIOS Interface

The Basic Input/Output System (BIOS) interface is the software that resides in
ROM on the system board and the associated adapter boards. BIOS provides
device level control for major I/O devices in the system. ROM modules may
be located on add-in adapter boards to provide device level control for that
particular option board.

BIOS routines enable applications to perform block or character-level
I/O operations without concern for device addressing or device operational
characteristics. Similarly, physical hardware devices may be replaced by radically
different ones without affecting the operational characteristics of the system so
long as the BIOS interface is maintained.

The goal of BIOS is to provide an operational interface to the system and to
relieve the programmer of the concerns relating to the specific characteristics of
the hardware devices. The BIOS interface insulates application programs from
the hardware and vice versa. Thus, new devices can be added to the system
without consequence as long as they conform to the BIOS interface. In this way,
the hardware devices are merely logical devices to the application programs,
and the application programs become immune to hardware modifications and
enhancements.

The calling convention for BIOS is developed using the Intel 808X software
interrupt instructions. Each BIOS routine is accessible through its own software
interrupt. The following list provides the major BIOS entry points or routines
and their associated software interrupt value. (See Appendix H.)

1. (10) Video

2. (11) Equipment Check

3. (12) Memory

4. (13) Disk/Diskette

5. (14) Communications

6. (15) Cassette

7. (16) Keyboard

48 CHAPTER 3. DOS DEVICE DRIVER FUNDAMENTALS

8. (17) Printer

9. (18) Resident BASIC

10. (19) Bootstrap

11. (lA) Time Of Day

12. (lB) Keyboard Break

13. (lC) Timer Tick

14. (lD) Video Initialization

15. (IE) Diskette Parameters

16. (IF) Video Graphics Characters.

The BIOS routines implement a register-based parameter passing scheme. In
other words, all parameters required by the BIOS routine are stored in specific
CPU registers before the appropriate software interrupt is executed. If the BIOS
routine can perform several different operations, then the specific operation is
provided in the AH register. For example, the following code fragment sets the
time of day.

_AH !;
_CX Count_MSW;
_DX Count_LSW;
geninterrupt (Ox!A);

where the variables Count_MSW and Count_LSW contain the values that define the
current time of the day. (See Appendix H.)

Another BIOS call reads the time of day. It happens to use the same BIOS
routine. Therefore, the value of AH should change. The code to perform the read
is illustrated below.

_AH = 0;
geninterrupt (Ox!A);

In general, BIOS routines raise the level of abstraction of a physical device.
Often you will find this level of interface integral in the more intelligent hardware
adapters and devices. Therefore, the application program may view these more
as abstract devices than physical ones.

The BIOS interface provides the DOS device driver implementer with a viable
alternative to directly controlling the physical hardware. Yes, the DOS device
driver can use the BIOS routines and reduce the task of implementing a device
driver that must directly control the hardware. This is, however, the choice of
the DOS device driver implementer as we will see in the next section.

3.5. HARDWARE DEVICE INTERFACE 49

3.5 Hardware Device Interface

The hardware device interface is the lowest-level interface in the system. This
interface allows software to directly control the hardware adapter or device
attached to the system. Direct control of hardware is typically accomplished
through one of two techniques.

The first of these hardware control techniques is programmed I/O. Pro
grammed I/O uses the IN and OUT instructions of the Intel 808X series to
transfer data to and from the I/O adapter or device. Because an instruction,
IN or OUT, is required to communicate with the device, the CPU must be pro
grammed to execute these instructions at the proper time. Thus we have the
term "programmed I/O."

The second control technique for hardware control is memory-mapped I/O.
This interface technique requires the hardware device to decode specific memory
addresses. Whenever these specific memory addresses are present on the address
bus, the hardware device will read from or write to the data bus and the I/O
operation is performed.

Although direct control of the hardware appears simple, it should be noted
that each hardware device has a different architecture and control structure.
Therefore, two different hardware devices can be designed to interface to the
system in the same way (programmed I/O or memory-mapped I/O) and yet
have drastically different control requirements.

The architecture of each hardware device is so different that without the
hardware technical manual for the hardware device, it is impossible to present
any further generalizations about their operation.

3.6 Summary

Architected Software Interfaces

An interface represents the implementation of some abstract function or set of
functions. An architected software interface has two major components:

• A set of functional abstractions accessible via the interface

• A standard calling convention.

Application Programming Interface

The application programming interface (API) is the common name for DOS
services or functions. It refers to INT 21 services. INT 21 is a software interrupt
instruction that accesses an interrupt vector location.

50 CHAPTER 3. DOS DEVICE DRIVER FUNDAMENTALS

Device Driver Interface

The device driver interface is an interface between the DOS service manager and
BIOS or the hardware itself.

DOS device drivers have two major characteristics:

• Device driver structure

- Device management

- Device driver headers (see show_DDH program)

- Device driver classification: character and block

• Device driver requests (see visual utility).

BIOS Interface

The BIOS interface is the software that resides in ROM and provides device level
control for major I/O devices in the system. It insulates application programs
from the hardware and vice versa. See Section 3.4 for a list of the major routines
(entry points).

Hardware Device Interface

The hardware device interface is the lowest-level interface in the system. You
can control the hardware either with programmed I/O or memory-mapped I/O.

3.7 Exercises

Exercise 3.1 What is an architected software interface? List some advantages.

Exercise 3.2 Describe the system request triangle.

Exercise 3.3 Explain Application Programming Interface.

Exercise 3.4 Explain the characteristics of DOS device drivers.

Exercise 3.5 Find the details about the attribute word in your DOS Technical
Reference Manual.

Exercise 3.6 Explain device driver headers. How can you find the address of
this linked list?

Exercise 3.7 What is the BIOS interface? List its major routines (entry
points).

3.7. EXERCISES 51

Exercise 3.8 Explain how you can pass parameters to a BIOS routine.

Exercise 3.9 Explain in detail some common techniques to control the hard
ware directly.

Chapter 4

A DOS Device Driver
Template

The intent of this chapter is to provide you with the tools you need to develop
DOS device drivers quickly, accurately, and efficiently. A simple approach to
accomplishing this goal is to develop a template for device drivers, then use and
modify the template.

The template-based DOS device driver approach in this chapter was designed
to be easily modified. In fact, the design goal of this DOS device driver was to
isolate all invariant features of the DOS device driver from the features that you
will want to modify. We use a multi-file approach to accomplish this goal.

To create a template-based DOS device driver we address the following topics:

• DOS makefile

• Segment headers

• Definitions

• Global data

• C environment

• Commands

• Ending marker.

As we discuss each topic in detail, we will present the code that goes with
each topic. Once you understand the parts of a template-based DOS device
driver, you will be able to use this method for developing your own DOS device
drivers.

53

54 CHAPTER 4. A DOS DEVICE DRIVER TEMPLATE

4.1 DOS Makefile

dos is the makefile file for the template-based DOS device driver. The make
utility uses a makefile. And the makefile contains a list of commands and
dependencies - what needs to be done and in what order - to build an
executable program. We named our makefile dos.

We create a separate directory for each device driver we work on. We copy
the template files and the makefile into the directory. We make the necessary
modification on the files and then issue

make -fdos

to initiate the device driver build process. make is available with your TURBO
C package.

Here is our makefile.

Makefile For DOS Device Driver Template Written In C

Assembler Definitions

ASM \turbo\asm\tasm
AFLAGS

TURBO C Compiler Definitions

-c Do Not Perform Link Step
-M Produce Link/Load Map
-mt Produce TINY Model Output
-S Produce Assembler Module
-y Produce Line Number Information
-Idir Place To Search For Include Files

TURBO
TFLAGS

\turbo\c\tcc
-c -M -mt -S -y -I\turbo\c\include

Linker Definitions

4.1. DOS MAKEFILE

LINK
LFLAGS

\turbo\c\tlink

List Of Required Libraries

LIBS \turbo\c\lib\cs.lib

List Of Required Include Files

DOS Device Driver Command Include File

List Of Required Object Files

Ml.0BJ TURBO C Version Assembler Header For
M2.0BJ Modified C Assembler For DOS_DATA.C
M3.0BJ Modified C Assembler For DOS_ENV.C
M4.0BJ Modified C Assembler For DOS_DRVR.C
M5.0BJ Modified C Assembler For DOS_END.C

OBJS = ml.obj m2.obj m3.obj m4.obj m5.obj

Perform DOS Device Driver Linkage

dos.sys: $ (OBJS) $ (INCS)

TINY Model

$(LINK) $(LFLAGS) ml+m2+m3+m4+m5,dos.exe,,$(LIBS);
erase m3.*
exe2bin dos.exe dos.sys

Perform DOS_HDR Assembly

m1.obj:

55

56

CHAPTER 4. A DOS DEVICE DRIVER TEMPLATE

copy dos_hdr.asm ml.asm
$(ASM) $(AFLAGS) ml.asm;

Perform DOS_DATA Compilation

m2.obj:

$(INCS) dos_data.c
$(TURBO) $(TFLAGS) dos_data.c
arrange dos.arr dos_data.asm m2.asm
erase dos_data.asm
$(ASM) $(AFLAGS) m2.asm;

Perform DOS_ENV Compilation

m3.obj:

$(INCS) dos_env.c
$(TURBO) $(TFLAGS) dos_env.c
arrange dos.arr dos_env.asm m3.asm
erase dos_env.asm
$(ASM) $(AFLAGS) m3.asmj

Perform DOS_DRVR Compilation

m4.obj:

$(INCS) dos_drvr.c
$(TURBO) $(TFLAGS) dos_drvr.c
arrange dos.arr dos_drvr.asm m4.asm
erase dos_drvr.asm
$(ASM) $(AFLAGS) m4.asmj

Perform DOS_END Compilation

m5.obj: $(INCS) dos_end.c
$(TURBO) $(TFLAGS) dos_end.c
arrange dos.arr dos_end.asm m5.asm
erase dos_end.asm
$(ASM) $(AFLAGS) m5.asmj

4.2. SEGMENT HEADERS 57

It is beyond the scope of this book to fully describe the operational
characteristics of the make program. A number of good references are available
for this utility, including a section in the TURBO C manual. Therefore, we will
discuss only a small portion of the makefile in detail.

In the dos makefile you will find the following list of statements.

Perform DOS Device Driver Linkage

dos.sys: $(OBJS) $(INCS)
$(LINK) $(LFLAGS) ml+m2+m3+m4+m5,dos.exe,,$(LIBS);
erase m3.*
exe2bin dos.exe dos.sys

This set of statements informs the make program that dos. sys depends on
the object files listed in the OBJS= statement as well as those listed in the INCS=
statement. Once the make program has processed all the prerequisite statements
to bring the object files and include files up to date, the linkage of the device
driver begins.

The DOS linker is instructed to begin the linkage process on object files ml
through m5 with the linker flags specified in the LFLAGS= statement. The linker
also uses the libraries listed in LIBS=. The resultant executable code is stored in
the file dos . exe.

The location of your TURBO C compiler and libraries is up to you. However,
you must modify LIBS= in the makefile for the make program to operate correctly.

4.2 Segment Headers

DOS device drivers require that the data segment be at location zero in the file.
Because the data segment is not at location zero we need to move it around. As
you recall, we discussed the arrange utility in Chapter 2. Our utility rearranges
the order of segments in a . asm file. See Appendix C for more information.

For completeness we include a header file, dos_hdr. asm. The file rearranges
the segments in the link file. You will notice this file contains assembler language
pseudo-operations and no assembler language instructions. In other words,
dos_hdr. asm is a passive element in the template-based DOS device driver.

Here is dos_hdr. asm.

58 CHAPTER 4. A DOS DEVICE DRIVER TEMPLATE

name
_DATA segment word public 'DATA'
_d~ label byte
_DATA ends
_BSS segment word public 'BSS'
_b~ label byte
_BSS ends
_TEXT segment byte public 'CODE'
DGROUP group _DATA,_BSS,_TEXT

assume cs:DGROUP,ds:DGROUP,ss:DGROUP
_TEXT ends

end

4.3 Definitions

The file dos_dd. h contains the C structures and definitions that describe the
entire DOS device driver environment. We include this file in the C files we use
to create the template-based DOS device driver.

In previous sections you have encountered pieces of this file. For example,
we have shown the C structure that describes the DOS device driver header. At
that time, in Chapter 3, we called it struct DDH_struct. The real structure is
struct DEVICE_HEADER_struct and it appears in dos_dd.h (Appendix F).

struct DEVICE_HEADER_struct
{

struct DEVICE_HEADER_struct
unsigned int attribute;
unsigned int dev_strat;
unsigned int dev_int;
unsigned char name_unit [8] ;

};

far *next_hdr;
/* Device Driver Attributes */
/* Pointer To Strategy Code */
/* Pointer To Interrupt Code*/
/* Name/Unit Field */

You will find this file contains all the C structures you will need to implement
a DOS device driver. You will also see that REQ_struct describes DOS requests,
commands, and packets. With those structures, developing visual was easy
(see Appendix E).

The following C structure, REQ_struct, represents the DOS device driver
command interface to pass commands around in a device driver. Each command
has a unique structure in the variable portion of the DOS request structure.

4.4. GLOBAL DATA

struct REQ_struct
{

unsigned char length;
unsigned char unit;
unsigned char command;
unsigned int status;
unsigned char reserved [8];
union
{

struct INIT_struct
struct MEDIA_CHECK_

/*
/*
/*
/*
/*

struct
struct BUILD_BPB_struct
struct I_O_struct

Length In Bytes Of Req
Minor Device Unit Number
Device Command Code
Device Status Word
Reserved For DOS

init_req;
media_check_req;
build_bpb_req;
i_o_req;

struct INPUT_NO_WAIT_struct input_no_wait_req;
struct IOCTL_struct ioctl_req;
struct L_D_MAP_struct l_d_map_req;

} req_type;
};

See Appendix F for a complete listing of dos_dd.h.

4.4 Global Data

59

*/
*/
*/
*/
*/

One of the most important aspects of a DOS device driver is the DOS device
driver header. This header must be at location zero in the. sys file, and it must
be initialized for the device driver to operate correctly. The file dos_data. c
allocates and initializes the device driver header. Note that the template
based DOS device driver is initialized as a block device driver. No particular
significance is associated with this other than when the bit is not set It indicates
a block rather than a character device driver (see Table 3.1 on page 37).

You will find that dos_data. c will have to be changed when you develop
your own character device driver. However, if you skim forward to the chapter
on character device drivers (Chapter 6) you will find the changes to this file are
minimal.

dos_data. c serves another purpose. This file contains all the globally
allocated data. It is important that you begin developing device drivers in a
systematic way. The approach we take here has proven successful for both the
programmer developing a DOS device driver and the programmer maintaining
one. By conforming to the simple code and data separation technique we use,
you will find your device drivers are reliable and easy to maintain.

Here is dos_data. c.

60 CHAPTER 4. A DOS DEVICE DRIVER TEMPLATE

1* -*1
1* *1
1* PROGRAM DOS D e vic e D r i v e r *1
1* *1
1* REMARKS This file contains the set of command *1
1* routines specified by the DOS Technical Reference *1
1* Manual. *1
1* *1
1* The following include file is required to *1
1* compile this file *1
1* DOS_DD.H *1
1* *1
1* -*1

#include 1* DOS Command Structures *1

extern
extern

void
void

far Strategy 0;
far Interrupt ();

1* Strategy Routine
1* Interrupt Routine

Allocate And Initialize DOS Device Header

- - - - - - -*1
*1
*1
*1

- - - - - - -*1

1* DOS Device Header
struct DEVICE_HEADER_struct dos_header =

{

(struct DEVICE_HEADER_struct far *) OxFFFFFFFFL,
Ox2000, 1* Non-IBM Format
(unsigned int) Strategy, 1* Strategy Function
(unsigned int) Interrupt, 1* Interrupt Function
{ 1* Unit/Name Field

OxOl, 1* Initial Number Of Units
OxOO, 1* Zero Remaining Entries
OxOO, 1* Zero Remaining Entries
OxOO, 1* Zero Remaining Entries
OxOO, 1* Zero Remaining Entries
OxOO, 1* Zero Remaining Entries
OxOO, 1* Zero Remaining Entries
OxOO 1* Zero Remaining Entries

}

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

4.4. GLOBAL DATA 61

};

1* -*1
1* *1
1* DOS Device Driver Global Data Region *1
1* *1
1* -*1

struct BPB_struct bpb =
{

};

512,
1,
1,
2,
64,
360,
OxFO,
2,
1,
1,
1L,
OL

1* Bytes Per Sector *1
1* Sectors Per Allocation Unit *1
1* Reserved Sectors *1
1* Number Of FATS *1
1* Number Of Root Dir Entries *1
1* Number Of Sectors *1
1* Media Descriptor *1
1* Number Of Sectors Per FAT *1
1* Number Of Sectors Per Track *1
1* Number Of Heads *1
1* Number Of Hidden Sectors *1
1* 32-Bit Number of Sectors *1

struct BPB_struct *bpb_ary [DEVICES] = { ° };
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

rc;
driver;
SS_reg;
SP_reg;
ES_reg;
AX_reg;
BX_reg;
CX_reg;
OX_reg;
OS_reg;
SI_reg;

1* Local Device Driver Stack

1* Function Return Code
1* Global Driver Variable
1* SS Register Variable
1* SP Register Variable
1* ES Register Variable
1* AX Register Variable
1* BX Register Variable
1* CX Register Variable
1* OX Register Variable
1* OS Register Variable
1* SI Register Variable

unsigned int local_stk [STK_SIZE];

struct REQ_struct far *r_ptr; 1* DOS Request Packet Pointer *1

62 CHAPTER 4. A DOS DEVICE DRIVER TEMPLATE

dos_data. c also contains variables that refer to machine registers and a
structure bpb of type struct BPB_struct. We describe struct BPB_struct in
Chapter 7.

4.5 C Environment

Without a doubt, the most critical portion of code in the entire template-based
DOS device d~iver is contained in the dos_env. c file (Appendix F). This file
contains the routines that are called directly by DOS whenever a DOS request
must be processed by the device driver.

The code in the dos_env . c file is critical because it receives the DOS requests
and transforms the current DOS environment, typically assembler language, into
a usable C environment. DOS_Setup accomplishes this task.

The Strategy and Interrupt functions call DOS_Setup as soon as they
receive a DOS request. DOS_Setup then saves the current operating environment
and creates a new C environment, complete with its own local stack.

Here is DOS_Setup.

1* -*1
1* *1
1* FUNCTION: DOS _ Set u p *1
1* *1
1* REMARKS DOS_Setup establishes a C environment prior to *1
1* allowing the actual device driver routines to *1
1* execute. *1
1* *1
1* INPUTS *1
1* which 0: Strategy Entry; 1 : Interrupt Entry *1
1* ES_tmp Pointer To Request Packet *1
1* DS_tmp Original OS Register Value *1
1* AX_tmp Original AX Register Value *1
1* *1
1* OUTPUTS Status Must Be Set In The Request Packet *1
1* *1
1* NOTES Register manipulations require this routine to *1
1* be compiled with the TURBO C Compiler. *1
1* *1
1* -*1

void DOS_Setup (unsigned int which,
unsigned int ES_tmp,
unsigned int DS_tmp,

4.5. C ENVIRONMENT 63

{
unsigned int AX_tmp)

_AX = _CS;
_DS = _AX;

BX_reg = _BX;
CX_reg = _CX;
DX_reg = _DX;

AX_reg = AX_tmp;
ES_reg = ES_tmp;

driver = which;

SS_reg = _SS;
SP_reg = _SP;

disable 0;
_AX = _DS;
_SS _AX;

_SP (unsigned int)
enable ();

if (driver)

1* Obtain Code Segment
1* Setup Data Segment

1* Save BX Register
1* Save CX Register
1* Save DX Register

1* Save AX Register
1* Save Request Pointer

1* Move Value From Stack

1* Save Stack Segment
1* Save Stack Pointer

1* Disable Interrupts
1* Obtain Data Segment
1* Setup New Stack
1* Set Stack Ptr Value

&local_stk [STK_SIZE];
1* Enable Interrupts

{ 1* Interrupt Entry Point *1
rc = OxOOOO; 1* Clear Return Code *1

1* DOS Request Packet Ptr *1
r_ptr = MK_FP (ES_reg, BX_reg);
if (r_ptr->command >= DOS_CMDS)
{

rc = ERROR_BIT I UNKNOWN_CMD;
}

else
{

}

1* Set Driver Comp~ete Bit *1
r_ptr->status rc I DONE_BIT;

}

else
{ 1* Strategy Entry Point

64 CHAPTER 4. A DOS DEVICE DRIVER TEMPLATE

1* Don't Save ES:BX Because It's Passed To Interrupt!! *1
}

disable 0; 1* Disable Interrupts *1
_SS = SS_reg; 1* Restore Entry Stack *1
_SP = SP_reg; 1* Restore Entry Stack Ptr *1
enable (); 1* Enable Interrupts *1

_DX DX_reg; 1* Restore DX Register *1
_ex eX_reg; 1* Restore ex Register *1
_BX BX_reg; 1* Restore BX Register *1
_AX AX_reg; 1* Restore AX Register *1

_ES ES_tmp; 1* Restore ES Register *1
_DS = DS_tmp; 1* Restore DS Register *1

}

You can see that DOS_Setup performs a number of critical operations in a
small number of lines of code. You should be aware that this function is one
of the reasons for using the tiny model in TURBO C. DOS_Setup will not work
properly if you use another compiler model.

You can also see that DOS_Setup calls another function whose address is in
the dos_cmd array. With the code written in this fashion, it is easy to isolate the
DOS device driver command functions. All these functions are in the dos_drvr . c
file (Appendix F).

A final note is in order here. Of all of the source files you will use, dos_env. c
is the most difficult one to modify. You should not need to change such functions
as DOS_Setup, Strategy, or Interrupt. If you change any of these functions,
you will have changed the entire design of the template-based DOS device driver
and you may find it difficult to debug.

4.6 Commands

The dos_drvr. c file contains all the functions for the DOS device driver
commands (Appendix F). There is one C function for each command.

All functions have the same input parameter: a far pointer to the DOS request
structure. Each function in this file performs the specified operation, then setf
the appropriate return code in the status word of the DOS request structure.

You will find that the template-based DOS device driver includes a function
stub, but no code, for each of the DOS device driver commands. Therefore,
when you begin implementing your own DOS device drivers you simply copy the

4.7. ENDING MARKER 65

template-based DOS device driver files to another directory and add the code
necessary to the stubs found in dos_drvr. c.

The Init_cmd function responds to the DOS INIT request command. The
function is part of dos_drvr . c. All DOS device drivers must respond to the DOS
INIT command to be functional. Therefore, this function is somewhat more than
a stub. Nevertheless, the Ini t_cmd function conforms to the same interface as
the rest of the functions in this file and can be viewed as representative of them.

/* -
/*
/* FUNCTION: I nit c m d
/*
/* REMARKS
/*
/* INPUTS r_ptr Pointer To Request Packet
/*
/* OUTPUTS Status Returned In Function Return Value
/*
/* - - - - - - - - - - - - - - - - -

unsigned int Init_cmd (struct REQ_struct far *r_ptr)
{

r_ptr->req_type.init_req.num_of_units = 1;

bpb_ary [0] = (unsigned int) &bpb;
r_ptr->req_type.init_req.BPB_ptr =

- - -

- - -*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

- - -*/

MK_FP (_DS, (unsigned int) bpb_ary);

r_ptr->req_type.init_req.end_ptr =

MK_FP (_DS, (unsigned int) End_code);

return OP_COMPLETE;
}

4.7 Ending Marker

When DOS issues the INIT request the device driver must respond with
its ending address. The code segment follows the data segment because we
rearranged them with the arrange utility. Therefore, the ending address of the
device driver is located somewhere within the code segment.

dos_end. c contains a C function named End_code. This file is linked last
and truly becomes the end of the code segment. It is nothing more than a place

66 CHAPTER 4. A DOS DEVICE DRIVER TEMPLATE

holder that Init_cmd uses to determine the end of the template-based DOS
device driver. Here is the function.

1* ------ -*1
1* *1
1* FUNCTION: End c 0 d e *1
1* *1
1* REMARKS End_code is a place holder for the last routine *1
1* and the last variable in the driver. *1
1* *1
1* INPUTS None *1
1* *1
1* OUTPUTS None *1
1* *1
1* NOTES End_code must be linked last! *1
1* *1
1* -*1

unsigned char end_data;

void End_code (void)
{

}

4.8 Template Overview

When you use the template to build one of the device drivers we discuss in this
book, you will create a . sys file with the arrangement we show in Table 4.l.

dos_data. c contains the device driver header: the address of the next
header, the attribute byte for this device driver, the offsets for the Strategy
and Interrupt functions, the device name (character device) or number of units
(block device), and the remaining data.

dos_env. c contains data (an array of pointers to functions, dos_cmd [],
that support DOS requests), the DOS_Setup function, and the Strategy and
Interrupt functions (Appendix F).

dos_drvr. c contains the functions to support DOS requests in the device
driver (Appendix F).

dos_end. c marks the end of the code in the device driver.

4.8. TEMPLATE OVERVIEW 67

File Description

next_hdr
attribute

dey _strat (Strategy function offset)
dos_data.c dey _int (Interrupt function offset)

name_unit

remaining dos_data. c data

dos_env. c data

DOS_Setup function
dos_env.c

Strategy function

Interrupt· function

dos_drvr.c functions to support DOS requests

dos_end.c function to mark end of device driver code

Table 4.1: Device Driver Format

68 CHAPTER 4. A DOS DEVICE DRIVER TEMPLATE

4.9 Using the Template

To develop your own DOS device driver using the template you should create a
separate directory where you will do the work. You can accomplish this with:

mkdir \my_dev

You should then copy the template-based DOS device driver source files into
my _dey directory. If the template-based DOS device driver is in a directory
template, you can copy the files from template to my _dey with the copy
command.

copy \template \my_dev

Then you should make my _ dey the current directory.

Next, you should modify the contents of the dos_drvr. c to perform the
appropriate operations when DOS requests them. Then you should invoke make
to create your new DOS device driver.

make -fdos

You may need to modify the DOS device driver header contained in
dos_data. c. If your device driver requires modifications in any other file, the
modifications should be easy.

4.10 Summary

DOS Makefile

A make utility is available with your TURBO C compiler. It uses a file that
contains a list of commands and dependencies - what needs to be done and in
what order - to build an executable program. The file that contains commands
and dependencies is commonly referred to as the makefile. The makefile for our
template-based device driver is dos. Check your compiler documentation for
details on make, and see our makefile in Section 4.1.

Segment Headers

Device drivers require the data segment at location zero. We use our arrange
utility to reorder the segments. In Section 4.2 we present a . asm file that shows
the segments after they have been rearranged. That file is dos_hdr. asm.

4.10. SUMMARY 69

Definitions

The C structures and definitions you need to implement a DOS device driver are
in the dos_dd. h file.

Global Data

See dos_data. c in Section 4.4 for a listing of global data that a device driver
requires.

C Environment

DOS sends a request to a device driver. We have to convert the request from
assembler environment to C environment before the device driver services it. We
use the DOS_Setup function (see Section 4.5) to convert requests.

Commands

In dos_drvr. c we implemented a function stub for each DOS command. Use
this file to add the code for each command you need to implement in your device
driver.

Ending Marker

The Init_cmd function needs to know where the code for the device driver ends.
We use an empty function, End_code, to mark the spot and provide the address.

Using the Template

Now you have access to a template that facilitates the creation of DOS device
drivers. This is the list of files that comprise the template:

• dos makefile (Section 4.1)

• Definitions file dos_dd. h (Section 4.3 and Appendix F)

• Global data file dos_data. c (Section 4.4 and Appendix F)

• C environment file dos_env. c (Section 4.5 and Appendix F)

• DOS commands file dos_drvr. c (Section 4.6 and Appendix F)

• Ending marker file dos_end. c (Section 4.7)

70 CHAPTER 4. A DOS DEVICE DRIVER TEMPLATE

4.11 Exercises

Exercise 4.1 What is a makefile? Why use one?

Exercise 4.2 Why should you rearrange the order of segments in a device
driver? How can you accomplish that?

Exercise 4.3 Why use the dos_dd.h file?

Exercise 4.4 List the main structures, and their contents, that are globally
available in a device driver.

Exercise 4.5 Explain how DOS_Setup converts a request from assembler to C
environment.

Exercise 4.6 What is the purpose of dos_drvr. c?

Exercise 4.7 What is the purpose of the End_ code function?

Exercise 4.8 Show in a diagram the general flow/interaction between DOS and
a device driver.

Chapter 5

What If It Doesn't Work?

We presented a template-based DOS device driver in the previous chapter.
We discussed the steps necessary develop and modify that DOS device driver.
However, we did not explain how to install the template-based DOS device driver
in your system. Furthermore, the question of what to do if the device driver does
not work was left unanswered. We address these topics in this chapter.

The template-based DOS device driver is like any other DOS device driver.
To install a device driver you must have an entry defined in the conf ig . sys file
in your system.

config.sys is the system configuration file for DOS. You can use various
commands in this file. The DOS Reference Manual discusses these commands.
The command that we are most interested in is the DEVICE= command. This
command informs DOS at initialization time that we would like to have an
installable device driver loaded and initialized. To load and initialize the
template-based DOS device driver in your system, you need the following entry
in config. sys

DEVICE=DOS.SYS

The relationship between DOS and the conf ig . sys goes something like this.
After the bootstrap process has loaded DOS into the system, DOS attempts
to open the conf ig. sys file. If the conf ig. sys file is not present, then DOS
completes its initialization process and displays the DOS prompt. If, however,
config. sys is present, then DOS processes each command line in the file.

Whenever DOS encounters a DEVICE= command in config. sys, DOS
attempts to load the specified DOS device driver into memory. Once the device
driver is loaded, DOS issues the INIT request to the device driver. This request
allows the DOS device driver to perform its initialization activities before DOS
loads the next device driver.

71

72 CHAPTER 5. WHAT IF IT DOESN'T WORK?

This is an important concept, especially when part of the DOS device driver
initialization process includes the allocation of physical memory. If another
DOS device driver were loaded prior to the INIT request being sent, then the
initializing DOS device driver would allocate the memory that is used by the next
DOS device driver. Clearly, this would have a harmful effect on the operation of
the system.

5.1 Installing your Device Driver

Whenever a new DOS device driver is installed in the system, the simplest
problems to resolve are those that affect the config. sys file.

An example of this type of problem in config. sys is the absence of the
DEVICE= statement for your DOS device driver. Every user-installable DOS
device driver must have a DEVI CE= statement in conf ig . sys. If the conf ig . sys
file is not present in your system, then you must create one with your favorite
editor or with the DOS copy command.

copy con: \config.sys
DEVICE=\DOS.SYS
ctrl-z

Press the ENTER key after each line you type in the example above. ctrl-z
indicates the end of input for the copy command. This sequence creates a
config. sys file with the DEVICE= statement for the template-based DOS device
driver.

The next common problem concerning the config. sys file is that the location
of the user-installable DOS device driver is not fully specified. In other words, in
the previous example the template-based DOS device driver is named DOS. SYS,
and it should be present in the root directory. However, if you have forgotten to
copy the DOS. SYS file from your template development directory, then DOS will
be unable to locate this device driver.

The following has proven to be a good method for maintaining a number
of user-installable DOS device drivers. First, you should create a directory at
the root-level which will contain all the drivers. Second, you should edit the
makefiles for any of your own drivers to include a statement that will copy the
driver into this directory. And third, you should edit your config. sys file to
reflect the changes you have made.

For example, let's assume that we have created the \DRIVERS directory and
have copied all the user-installable DOS device drivers into this directory. Then

DEVICE=\DRIVERS\DOS.SYS

5.2. DEBUGGING YOUR DEVICE DRIVER 73

in config. sys installs the template-based DOS device driver.
Another problem area in conf ig. sys is the DOS device driver parameters.

At system initialization time, each DOS device driver receives a pointer to the
information following DEVICE= in config. sys. If you have installed a DOS
device driver without providing a required option or parameter, then the DOS
device driver may not install or function correctly.

To avoid this problem, be aware of the operational characteristics of the
DOS device drivers you install in your system. Furthermore, make sure you
understand each of the options you specify when installing DOS device drivers
in your system.

5.2 Debugging your Device Driver

You can see that a number of points in the DOS device driver debugging process
could cause a problem. Therefore, we will discuss each of the following items
separately.

• A voiding problems at initialization

• Using visual to find bugs

• Using imbedded debug statements.

5.2.1 Avoiding Problems at Initialization

You are most helpless as a DOS device driver implementer when the DOS device
driver is being initialized. You are helpless because DOS has not completed its
initialization process, so you cannot load or execute any debugging programs
that might help if your DOS device driver does not initialize correctly.

This is the most difficult debugging process in the development of a DOS
device driver. You are unable to employ the debug programs that you would
typically use to detect and resolve a problem. You are also unable to request
any DOS services because DOS has not completed its own initialization process.
In short, this is a very difficult problem to solve. However, there are a number
of steps you can take to reduce the complexity of this problem.

These are the steps.

1. Use the template's Init_cmd function.

2. Use show_DOH to find your driver.

3. Set breakpoints with a specialized device driver debugger or hardware in
. circuit emulator.

74 CHAPTER 5. WHAT IF IT DOESN'T WORK?

4. Analyze driver and make changes.

5. Repeat steps 1 through 4.

Step 1 - You can begin the device driver initialization by using the
initialization function of the template-based DOS device driver. This function
will allow you to install your own DOS device driver. Once your DOS device
driver is installed, you can proceed with Step 2.

Step 2 - Once your DOS device driver has been installed and DOS has
completed its initialization you can execute the show_DOH program. This
program will display the location of the Strategy and Interrupt functions of
your DOS device driver. Write these addresses down. By the way, you will only
see the offsets of these functions. Therefore, you must use the segment value of
the DOS device driver header to obtain the complete address of these functions.
The segment value of the DOS device driver header for your device driver is at
the top of the screen when you run show _DOH.

Step 3 - Now you can execute your favorite DOS debug program. This will
allow you to set breakpoints at the addresses you got from show _DOH. In other
words, set the breakpoints at the location of your Strategy and Interrupt
functions. After you have set the breakpoints, issue the debug command to
continue. This allows you to begin exercising your DOS device driver.

Step 4 - Issue DOS-level commands that will cause your DOS device driver
to execute. For example, the template-based DOS device driver is a block device.
Therefore, DOS assigns a drive letter to your device driver after installing it. To
execute the device driver, you have to copy some file to the assigned drive letter.
This action will cause the previously set breakpoint to be executed and you will
return to the debugger's environment. At this point you can trace through the
operations of your DOS device driver.

Step 5 - Repeat steps 1-4 until your DOS device driver has been fully tested.

5.2.2 Using visual to Find Bugs

After the device driver initialization you can execute the visual utility, either
with or without your debug program.

As you recall from Chapter 4, visual allows you to see the exact DOS
requests issued to your DOS device driver. Often you can understand and
isolate a bug simply by viewing these DOS requests and your DOS device driver's
response to those requests.

You may find that a DOS request you did not implement in your device
driver is being issued to your device driver. The oversight of not implementing
all the possible requests a device driver may receive accounts for many of the
operational errors in DOS device drivers.

5.2. DEBUGGING YOUR DEVICE DRIVER 75

Another problem area in DOS device drivers that can be seen using the
visual utility is the lack of response to a specified request. In other words, you
may find that you forgot to set the appropriate status bit in the DOS request
status word. This oversight often causes DOS to retry the operation and finally
issue an error concerning the problem.

At this stage in the development of a DOS device driver, you should read the
description of the DOS device driver commands in great detail (see Appendix A
and consult your DOS Technical Reference Manual). DOS is not a very forgiving
program. You must conform to the specification defined within the DOS device
driver commands for your DOS device driver to function correctly.

5.2.3 Using Imbedded Debug Statements

The previous sections describe the use of debug programs to analyze the
operation of your DOS device driver. Although this is the preferred method
of debugging a DOS device driver it is not the only method. Your DOS device
driver can be implemented with imbedded debug statements. These statements
are usually some type of output statement, such as printf in C. However, you
must take certain precautions to imbed these statements into your DOS device
driver.

In the introductory chapters we discussed some. DOS features. In particular,
we mentioned that DOS is not reentrant. Once DOS begins processing a
command, it cannot call itself to perform another DOS function. This is an
extremely important concept. We bring this point up again because most I/O
statements in C, including printf, request DOS services. Well, you can see the
problem. DOS is already processing one request and has invoked your device
driver. We are not able to request DOS to process a second function until DOS
has completed the first one. Therefore, when using C, you cannot imbed I/O
statements in your DOS device driver.

The best way to provide imbedded debug statements is to avoid all C library
routines and create your own library. The routines you create should not rely
on DOS services. They should use only the BIOS interface level or the hardware
interface level. The following C functions in video. c appear in the CONSOLE
device driver and access only the BIOS interface level. You may find these
functions useful in the development of your own DOS device drivers. The key is
to remember that only the BIOS level interface or the hardware level interface
can be used for imbedded debug statements in your DOS device drivers (See
Section 8.4).

76 CHAPTER 5. WHAT IF IT DOESN'T WORK?

1* -*1
1* *1
1* FUNCTION: V ide 0 • c *1
1* *1
1* REMARKS Video.c contains a number of TURBO C functions *1
1* that access the video BIOS. *1
1* *1
1* -*1

#include <dos.h>

1* -*1
1* *1
1* FUNCTION: Act i v e _ p age *1
1* *1
1* REMARKS: Active_page returns the currently active page *1
1* being used by the video adapter. *1
1* *1
1* -*1

int Active_page (void)
{

unsigned char page;

_AH = OxOF;
geninterrupt (Oxl0); 1* Invoke Video BIOS *1
page = _BH;
return page; 1* Return Currently Active Page *1

}

5.2. DEBUGGING YOUR DEVICE DRIVER 77

1* - - - - - -
1*

- - - - - - - - - - - - - - - - -*1

1*
1*
1*
1*
1*
1*

void

{

}

FUNCTION:

REMARKS Goto_XY sets the cursor position to col, row.
The position is set in the current display page.

*1
*1
*1
*1
*1
*1

- - - - - - - - - - - - - - - - - - - -*1

Goto_XY (int col,
int row)

_BH = Active_page 0; 1* Set Video Display Page *1
_DH = --row; 1* Set Video Display Row Position *1
_DL = --col; 1* Set Video Column Position *1
_AH = Ox02;
geninterrupt (Ox10); 1* Invoke Video BIOS *1

1* -*1
1* *1
1* FUNCTION: Get _ c h a r *1
1* *1
1* REMARKS Get_char reads the current character at the *1
1* cursor and returns that character. *1
1* *1
1* -*1

char Get_char (void)
{

unsigned char chr;

_BH = Active_page 0; 1* Set Video Display Page *1
_AH = Ox08; 1* INT 10 Function *1
geninterrupt (Ox10); 1* Invoke Video BIOS *1
chr = _AL; 1* Current Character *1
return chr; 1* Return The Current Character *1

}

78 CHAPTER 5. WHAT IF IT DOESN'T WORK?

1* -*1
1* *1
1* FUNCTION: Get _ key *1
1* *1
1* REMARKS Get_key returns the next keystroke from the *1
I * keyboard. * I
1* *1
1* -*1

unsigned int Get_key (unsigned char mode)
{

unsigned int key;

_AH = mode; 1* INT 16 Function
geninterrupt (Ox16); 1* Invoke Video BIOS
key = _AX; 1* Keystroke From Keyboard
return key; 1* Return Key To Caller

}

*1
*1
*1
*1

1* -*1
1* *1
1* FUNCTION: Get a t t r *1
1* *1
1* REMARKS Get_attr reads the current attribute from the *1
1* active page and returns the attribute. *1
1* *1
1* -*1

char Get_attr (void)
{

unsigned char attr;

_BH = Active_page 0; 1* Set Video Display Page *1
_AH = Ox08; 1* INT 10 Function *1
geninterrupt (Ox10); 1* Invoke Video BIOS *1
attr = _AH; 1* Current Attribute *1
return attr; 1* Return The Current Attribute *1

}

5.2. DEBUGGING YOUR DEVICE DRIVER 79

1* -*1
1* *1
1* FUNCTION: Get _ X *1
1* *1
1* REMARKS Get_X returns the X position (column) of the *1
1* cursor in the current display page. *1
1* *1
1* -*1

int Get_X (void)
{

}

unsigned char col;

_BH = Active_page ();
_AH = Ox03;
geninterrupt (Ox10);
col = _DL;
return ++col;

1* Set Video Display Page
1* INT 10 Function
1* Invoke Video BIOS

1* Return Column Position Of Cursor *1

80 CHAPTER 5. WHAT IF IT DOESN'T WORK?

1* - - - - - -
1*
1*
1*

FUNCTION: Get Y

1*
1*
1*
1*

REMARKS Get_Y returns the Y position (row) of the
cursor in the current display page.

int Get_Y (void)
{

}

unsigned char row;

_BH = Active_page ();
_AH = Ox03;
geninterrupt (Ox10);
row = _DH;
return ++row;

1* Set Video Display Page
1* INT 10 Function
1* Invoke Video BIOS

1* Return Row Position Of Cursor

-*1
*1
*1
*1
*1
*1
*1

-*1

1* -*1
1* *1
1* FUNCTION: Get _ mod e *1
1* *1
1* REMARKS Get_mode gets the current video mode of the *1
1* adapter. *1
1* *1
1* -*1

unsigned char Get_mode (void)
{

unsigned char mode;

_AH = OxOF; 1*
geninterrupt (Ox10); 1*
mode = _AL; 1*
return mode; 1*

}

INT 10 Function *1
Invoke Video BIOS *1
Current Video State (Mode) *1
Return The Current Mode *1

5.2. DEBUGGING YOUR DEVICE DRIVER

1* - - - - - - - - - - - - - - - -
1*
1* FUNCTION: S e t m 0 d e
1*
1* REMARKS Set_mode sets the
1* adapter.
1*
1* - - - - - - - - - - - ~ - - - -

void Set_mode (unsigned char mode)
{

_AL = mode;

- - -

current

- - -

- - - -

video

- - - -

_AH = OxOO;
geninterrupt (Ox10); 1* Invoke Video BIOS

}

81

- - - - - - - -*1
*1
*1
*1

mode of the *1
*1
*1

- - - - - - - -*1

1* -*1
1* *1
1* FUNCTION: C I ear s c r e e n *1
1* *1
1* REMARKS Clear_screen clears the active display *1
1* page (screen) in the video adapter. *1
1* *1
1* -*1

void Clear_screen (void)
{

unsigned char mode; 1* Video Mode Of Adapter *1

mode = Get_mode 0; 1* Obtain Current Video State *1
_BH = OxOO; 1* Set Attribute To Black *1
_CX OxOOOO;
_DX = Ox184F; 1* Rows = 24, Columns = 79 *1
_AX = Ox0600; 1* Clear All 25 Rows *1
geninterrupt (Ox10); 1* Invoke Video BIOS *1
Set_mode (mode) ; 1* Restore Video Mode If Disturbed *1
Goto_XY (1, 1) ; 1* Set Cursor In Upper Left Corner *1

}

82 CHAPTER 5. WHAT IF IT DOESN'T WORK?

1* -*1
1* *1
1* FUNCTION: W r i t e c h r *1
1* *1
1* REMARKS Write_chr writes the character argument at the *1
1* current cursor position. *1
1* *1
1* -*1

void Write chr (unsigned char chr)
{

unsigned char attr;

attr Get_attr 0;
_BL attr; 1* Establish Character Color
_AL chr; 1* Move Character To AL Register
_AH OxOE; 1* Write Character To Active Page
geninterrupt (Oxl0); 1* Invoke Video BIOS

}

*1
*1
*1
*1

5.2. DEBUGGING YOUR DEVICE DRIVER 83

1* -*/
1* *1
1* FUNCTION: W r i t e _ t t .y */
1* */
1* REMARKS Write_tty writes the string argument at the */
1* cursor position. *1
1* *1
1* - - - - - - - - - - - - - - - - - - -*1

static unsigned int
static unsigned int

es_static;
bp_static;

void Write_tty (unsigned char *str)
{

}

unsigned char
unsigned char
unsigned int
unsigned char
unsigned char

x = Get_X ();
y = Get_Y ();

X' ,
y;
len;
page;
attr;

len = strlen (str);
page Active_page ();
attr = Get_attr ();

es_static
bp_static

_CX len;
_DH --y;
_DL --X;
_BH = page;
_BL attr;
_ES _DS;
_BP str;
_AX Ox1301;
geninterrupt (Oxl0);
_BP bp_static;
_ES = es_static;

1* Save ES Register (Globally)
1* Save BP Register (Globally)

1* Establish Length Of String *1
1* Establish Cursor Row Positon */
1* Establish Cursor Column Position */
1* Establish Active Video Page */
1* Establish Character Color *1
1* Set ES Register To DS Register *1
1* Establish String Offset *1
1* Write Character String *1
1* Invoke Video BIOS *1
1* Restore BP Register *1
1* Restore ES Register *1

84 CHAPTER 5. WHAT IF IT DOESN'T WORK?

5.3 DOS Device Driver Debug Programs

We have discussed a number of techniques that can be applied to debug DOS
device drivers. However, none of them included an adequate form of debugging
the DOS device driver during its initialization phase. For this type of debugging,
you have to use specialized device driver debug programs or hardware in-circuit
emulators.

For the remainder of this section we will address software debug programs
that can be used to debug DOS device drivers during their initialization phase.
A number of issues arise when discussing this topic. We will attempt to elaborate
on the critical ones.

The most important issue is how the debug program gains control of the
system before the DOS device driver is loaded and initialized. Two basic methods
can accomplish this. First, the debug program can relocate itself into high
physical memory, then set the maximum amount of memory in the system below
itself. In this way, the debug program is protected when it requests the system
to reboot itself.

Second, the debug program becomes a DOS-compatible device driver and is
loaded into the system before the DOS device driver under test. This is a simple
task: all that is required is to insert a DEVICE= statement for the debug program
into the config. sys before the DOS device driver's DEVICE= statement.

A number of other alternative approaches also produce the same response
from the system, but they are variations of the above methods. No matter
which method you use to debug the device driver, you must not request the
service of DOS. Remember, DOS cannot service the second request until the
first one has been processed!

Presenting a specialized debug program of the type we have described is,
regrettably, beyond the scope of this text. Therefore, we suggest you use the
methods we discussed earlier to debug your DOS device drivers. If those methods
are insufficient then you should investigate debug programs that meet the criteria
set forth in this section.

5.4 Summary

config.sys

You need a config. sys with a DEVICE= line to inform DOS of your device driver.
Our device driver is dos. sys. Consequently we have the line:

DEVICE=DOS.SYS

in config. sys; otherwise, DOS will not find our device driver.

5.5. EXERCISES 85

Debugging

Use the Init_cmd function to initialize your device driver. Then use show_DDH
to find your device driver in the system. Once you find your device driver and
the addresses for the Interrupt and the Strategy functions, you can use your
favorite debugger to trace your device driver.

Use the visual utility to see the exact DOS requests issued to your device
driver.

A void imbedded debug statements that invoke DOS services. A void C library
routines in general. Create your own library routines that use the BIOS interface
level. See video. c in Section 5.2.3 and the CONSOLE device driver.

5.5 Exercises

Exercise 5.1 Explain the purpose of conf ig . sys on your DOS system.

Exercise 5.2 Explain what happens during the initialization of a device driver.

Exercise 5.3 How can you find the addresses of Strategy and Interrupt
functions once your device driver has been initialized?

Exercise 5.4 What are imbedded debug statements? What kinds of statements
should you avoid in a device driver?

Exercise 5.5 We use the BIOS interface for the functions in video. c. Take a
look at those functions and add other functions you might need.

Chapter 6

DOS Character Device
Drivers

In this chapter we will use the template-based DOS device driver to implement
a completely functional DOS character device driver.

If you want to build the character device driver as we discuss it, you may
want to create a console directory. We will perform our development work
in this directory. To start, we copy the template-based device driver files into
console.

This is the list of the source files that we need to create the CONSOLE
character device driver:

• console

• console.h

We will examine the differences between the template-based DOS device
driver and the CONSOLE character device driver. From this examination,
you will see the benefits of using the template and the fundamental differences

87

88 CHAPTER 6. DOS CHARACTER DEVICE DRIVERS

between a DOS block device driver and a DOS character device driver. First,
let's review the DOS device driver headers.

6.1 Character Device Driver Headers

It is important that we understand the differences between a DOS block device
driver and a DOS character device driver. The program show_DDH displays the
following information for a block device driver :

Device Driver Entry (0070:01B6)

Next Device Driver : 0070:01CA
Device Attributes : 0840
Device Strategy Offset 05DC
Device Interrupt Offset : 0634
Device Driver Name

This is the device driver header for the drive letters A:, B:, C:, and D: in the
system that we use.

For a character device driver, show _DDH displays the following information:

Device Driver Entry (0070:016E)

Next Device Driver : 0070:0180
Device Attributes : 8013
Device Strategy Offset 05DC
Device Interrupt Offset : 05E7
Device Driver Name : CON

Note the differences between the two DOS device driver headers. The second
header has the name field filled in. This is the header for the console device and
has the name CON. Also note that the device attributes of the two DOS device
driver headers are radically different.

The DOS block device driver header attributes indicate that this device driver
can handle removable media and that the Get and Set logical device map requests
are enabled. What this means is that this device driver can handle floppy diskette
drives as well as hard disk drives.

The DOS character device driver header attributes, on the other hand,
indicate that this device driver is the device driver responsible for both the
standard input and standard output functions of the system. In other words,
this device driver controls the display and the keyboard.

It is this type of DOS character device driver that we implement in this
section. And our device driver will take the place of the existing CONSOLE
device driver in the system.

6.2. CHARACTER DEVICE DRIVER COMMANDS 89

6.2 Character Device Driver Commands

The template-based DOS device driver implemented a function for all possible
DOS requests. DOS will issue a subset of those requests to the driver when the
driver is a block device driver; DOS will issue another subset of those requests
when the driver is a character device driver. Here is the list of requests (with
command codes) that DOS may issue to the CONSOLE character device driver:

• (00) Initialize

• (03) IOCTL Input

• (04) Input From Device

• (05) Input Without Waiting

• (06) Obtain Input Status

• (07) Flush Input Buffer

• (08) Output To Device

• (09) Output And Verify Data

• (10) Obtain Output Status

• (11) Flush Output Buffer

• (12) IOCTL Output

• (13) Open Device

• (14) Close Device

• (19) IOCTL To Device

Of these requests that DOS can issue to a character device driver, some are
not applicable to the CONSOLE device driver. For example, we do not have to
Open Device or Close Device. Consequently, the CONSOLE character device
driver implements the following:

• (00) Initialize

• (04) Input From Device

• (05) Input Without Waiting

• (07) Flush Input Buffer

90 CHAPTER 6. DOS CHARACTER DEVICE DRIVERS

• (08) Output To Device

• (09) Output And Verify Data

The remaining DOS requests for the CONSOLE character device drivers are
implemented to return an unknown command status.

Now we know the scope of our task. Let's begin the implementation of the
new CONSOLE device driver for DOS.

6.3 CONSOLE Character Device Driver

The new CONSOLE character device driver will perform the same basic tasks
as the existing CONSOLE character device driver. It will receive input from
the keyboard and display it on the monitor. Whenever a program writes to the
monitor, the new driver will accept the output characters and display them on
the monitor.

The major difference between the two CONSOLE character device drivers
is that the new one will display the key in the upper right hand corner of the
monitor as well as at the current cursor location. The reason for this difference is
we want to demonstrate the implementation of a fully functional DOS character
device driver, but with some functional characteristics not found in the existing
one. This is not to imply that this is some spectacular 1Vork of art, but rather
that it is a functional and complete device driver you can implement yourself.

We have to make several modifications to the template-based DOS device
driver to turn it into the new CONSOLE device driver. Some of the files do not
change. Here is the list of all the files with information about their status.

• console - This is the makefile. It has a new include file, console. h. We
also changed the name of the device driver from dos . sys to console. sys
(Appendix G).

• console.h - This is an include file. It contains constants we need for
this device driver. We created a new file instead of changing dos_dd. h
(Appendix G).

• dos_dd.h - No change.

• dos_hdr. asm - No change.

• dos_end. c - No change.

• dos_data. c - This file contains three minor modifications. First, we
changed the device driver header to indicate a character device that is
both the standard input and the standard output device. Second, we

6.3. CONSOLE CHARACTER DEVICE DRIVER 91

changed the name/unit field of the device driver header to contain the
name of the character device, CON. Third, we eliminated the BPB-related
information in this file because it does not pertain to character device
drivers (Appendix G) .

• dos_env. c - We changed this file to indicate that it is not necessary to
have all the DOS request functions of the template present in each DOS
device driver. Therefore, only the required DOS request functions are
referenced in this file. Note that this file could have been left unchanged
(Appendix G) .

• dos_drvr. c - We changed this file extensively. The rest of this section
discusses the modifications (Appendix G).

The initialization of a DOS character device driver is different from that of
a DOS block device driver. Therefore, we changed the initialization function.
Here is the new function.

unsigned int Init_cmd (struct REQ_struct far *r_ptr)
{

}

unsigned int
unsigned int

save_x;
save_y;

Get_X 0;
Get_Y 0;

Clear_screen ();
Goto_XY (5, 5);
Write_tty ("New Console Device Driver (CON:) Installed ... ");
Goto_XY (save_x, save_y);

r_ptr->req_type.init_req.end_ptr
MK_FP (_OS, (unsigned int) End_code);

return OP_COMPLETE;

We use in Init_cmd the video routines we discussed earlier. The only
significant activity this function performs is to set the ending address of the
CONSOLE device driver.

The input function also changed. Input_cmd now tests for keystrokes in
the keyboard buffer. If Input_cmd finds a keystroke it reads it, places it in
the request buffer, increments the transfer count, and displays the character at
location (78,1) on the monitor. Here is the modified function:

92 CHAPTER 6. DOS CHARACTER DEVICE DRIVERS

unsigned int Input_cmd (struct REQ_struct far *r_ptr)
{

}

unsigned
unsigned
unsigned
unsigned
unsigned

int
int
char
int
int

i;
key;
chr;
save_x;
save_y;

for (i = 0; i < r_ptr->req_type.i_o_req.count; i++)
{

}

key = Get_key (0); 1* Obtain Next Key Stroke

if (key & OxFF) 1* Normal Mode Key Strokes
{

chr = key & OxFF;
}

else 1* Extended Function Key Strokes
{

chr = key» 8;
}

*r_ptr->req_type.i_o_req.buffer_ptr++ chr;
save_x = Get_X ();
save_y = Get_Y ();
Goto_XY (78, 1);
Write_chr (chr);
Goto_XY (save_x, save_y);

return OP_COMPLETE;

The Input_no_wai t_cmd function is similar to Input_cmd, but with one
significant difference. If the keyboard buffer is empty, then the return status
must include the BUSY bit set to indicate this situation to DOS. Here is the
function:

6.3. CONSOLE CHARACTER DEVICE DRIVER

unsigned int Input_no_wait_cmd (struct REQ_struct far *r_ptr)
{

}

unsigned int
unsigned int
unsigned char
unsigned int
unsigned int

rc;
key;
chr;
far *head_ptr;
far *tail_ptr;

head_ptr
tail_ptr

MK_FP (BIOS_DATA, KBD_HEAD);
MK_FP (BIOS_DATA, KBD_TAIL);

if (*head_ptr == *tail_ptr)
{ 1* Keyboard Buffer Empty

}

else
{

}

rc = BUSY_BIT; 1* Indicate Buffer Empty

rc = OP_COMPLETE;
key = Get_key (1);

if (key & OxFF)
{

1*
1*
1*

1*

chr = key & OxFF;
}

Characters In KBD Buffer
Indicate Characters In Buffer
Obtain Next Key Stroke

Normal Mode Key Strokes

else 1* Extended Function Key Strokes
{

chr = key» 8;
}

return rc;

93

*1
*1
*1

*1

The Input_flush_cmd function simply flushes the keyboard buffer. The
function accomplishes this task by altering the low-level BIOS data region
pointers. This is not a recommended approach, but we included it to demonstrate
various ways of using BIOS interface and hardware interface. The preferred
method would have been to invoke the BIOS keyboard function (INT 16)
requesting the next character in the buffer until the buffer is empty.

94 CHAPTER 6. DOS CHARACTER DEVICE DRIVERS

unsigned int Input_flush_cmd (struct REQ_struct far *r_ptr)
{

}

unsigned int
unsigned int

far *head_ptr;
far *tail_ptr;

head_ptr
tail_ptr

MK_FP (BIOS_DATA, KBD_HEAD);
MK_FP (BIOS_DATA, KBD_TAIL);

return OP_COMPLETE;

Finally, Output_cmd supports the requests Output To Device and Output
And Verify Data. The function accesses the data buffer and writes the character
argument to the current cursor position.

unsigned int Output_cmd (struct REQ_struct far *r_ptr)
{

}

unsigned int
unsigned char

i' ,
chr;

for (i = 0; i < r_ptr->req_type.i_o_req.count; i++)
{

Write_chr (chr);
}

return OP_COMPLETE;

Developing the new DOS CONSOLE character device driver required about
one hour of work. Most of the work involved selecting the functions to delete
within the template and modifying the remaining ones.

6.4 Summary

Character Device Driver Headers

Use the show_DDH to find the device driver headers in your system. The character
device drivers have device driver names; block device drivers use the name field

6.5. EXERCISES 95

to indicate the number of units they support.

Character Device Driver Commands

See the DOS Technical Reference Manual to find the commands DOS may issue
to a character device driver.

CONSOLE Character Device Driver

Files in the CONSOLE character device driver:

• console - It is the makefile (Appendix G).

• console. h - Contains constants and definitions for the CONSOLE driver
(Appendix G).

• dos_dd.h - No change

• dos_hdr. asm - No change

• dos_end. c - No change

• dos_data. c - Because this is a character device driver it has a name field;
the BPB-related information was eliminated (Appendix G).

• dos_env. c - Although we removed the unnecessary DOS request functions,
this file could be left unchanged (Appendix G).

• dos_drvr. c - Changed extensively (Appendix G).

6.5 Exercises

Exercise 6.1 Run show _DDH on your system. Find the character device drivers
installed. Explain the attributes of each device.

Exercise 6.2 List the commands DOS may issue to a character device driver.

Exercise 6.3 List the commands DOS may issue to the CONSOLE device
driver.

Exercise 6.4 What files do you need to implement the CONSOLE device
driver? Which template files do you have to change?

Exercise 6.5 Explain the changes in dos_drvr. c for the CONSOLE device
driver.

96 CHAPTER 6. DOS CHARACTER DEVICE DRIVERS

Exercise 6.6 Use the make utility to build the CONSOLE device driver on your
system.

Exercise 6.7 Explain the fundamental differences between character and block
device drivers. List the DOS requests that apply only to character device drivers.
List the DOS requests that apply only to block device drivers. List the DOS
requests that apply to either device driver.

Chapter 7

Disk /Diskette
Fundamentals

This chapter introduces the concepts and terminology related to secondary
storage devices. The primary storage device is the disk drive or direct access
storage device (DASD).

There are a many types of secondary storage devices. However, most of these
devices have a great deal in common. This chapter focuses on the most common
aspects of these devices and describes how DOS manages storage devices.

We begin with the vocabulary used to describe secondary storage devices.
This vocabulary is complicated by the terms DOS uses to describe various aspects
of these devices. Once we have presented the technical jargon, the rest of the
chapter will follow a "hands-on" approach to understanding the characteristics
of disks and their relationship to DOS.

7.1 The Jargon

Today's DOS-based personal computers use a number of different secondary
storage devices. Each of these secondary storage devices has its own physical
characteristics. This section presents the terminology used to describe these
features.

7.1.1 DASD Types

The different types of secondary storage devices can best be described by the
following DASD type matrix.

97

98 CHAPTER 7. DISK/DISKETTE FUNDAMENTALS

II Magnetic Media I Optical Media

Flexible Media Floppy Diskette Digital Paper
Rigid Media Hard Disk CD-ROM, WORM
Removable Media Hard Disk CD-ROM, WORM
N on-Removable Media Hard Disk
Write-Only Media WORM
Read-Write Media Diskette, Hard Disk Magneto-Optic

You can see from this matrix that there are a number of different types
of DASDs. The two major recording technologies listed in the matrix are
magnetic and optical. A number of other types of recording technologies, such
as semiconductor, are not listed in the matrix. These technologies will emerge
as costs decrease.

7.1.2 DASD Form Factors

The number of different shapes and sizes of DASDs far outnumbers the types of
DASD devices. However, the personal computer industry has been instrumental
in presenting a set of de facto standards for DASDs.

The following table presents the most popular DASD form factors adopted
by the personal computer industry.

II Full Height I Hal! Height I Third Height I
8.00" DASD Diskette

Hard Disk
5.25" DASD Diskette Diskette

Hard Disk Hard Disk
CD-ROM CD-ROM

3.50" DASD Diskette Diskette
Hard Disk

The form factor is driven primarily by how DASD is used. Reduced size
provides a number of benefits, such as reduced material costs, reduced power
consumption, and a host of others.

7.1.3 DASD Physical Layout

It is important to understand the internal characteristics of a DASD. Each of
the DASDs we have discussed has two major components. The first is the drive
and the second is the media that the drive reads and/or writes.

The drive must write the data or read the data in a specified format. The
rest of the discussion will focus on the physical data format on the media.

7.2. DOS VIEW OF DASDS 99

The media consists of one or more circular surfaces. Each surface is similar
to a standard phonograph record. The surfaces have a number of concentric
recording tracks; the read and/or read/write head of the drive must be positioned
to one of these tracks before an operation can be performed.

Each track on a surface is formatted into a number of sectors. These sectors
can vary in size from 128 bytes to 4,096 bytes. DOS is capable of handling sector
sizes of 128, 256, 512, and 1,024 bytes. The typical sector size for DOS DASDs
is 512 bytes.

A DASD must have a read and/or a read/write head associated with each
surface in the drive - unless one wishes to turn the media over on a single
headed drive. This is where we get the terms single-sided and double-sided. If
the DASD (usually a floppy diskette drive) had only one head, it was termed
a single-sided diskette drive. If two heads were present, then the DASD was
termed double-sided because both sides of the media could be accessed.

In larger devices, such as hard disks, it is very common to have multiple
surfaces. This is accomplished by having multiple pieces of circular media,
referred to as platters, contained in the same drive. Each of these platters has
two sides, or surfaces, and requires that a head be associated with each.

7.1.4 DASD Storage Capacity

The final physical characteristic of a DASD is its actual capacity. Calculating
the capacity of a DASD requires an understanding of the terms presented in the
preceding section. The following equation represents the storage capacity for a
given DASD.

Sector s Tracks
Storage = T k x S f x Sur faces

rac ur ace

The storage capacity calculation above is in terms of sectors. If you want
the results in bytes, then multiply this value by the number of bytes per sector
(sector size).

7.2 DOS View Of DASDs

The information we have presented so far has focused on the physical character
istics of DASDs. This section begins to address the logical aspects of a DASD.

The term logical means that an operating system does not attempt to support
all DASDs as separate and unique devices. Operating systems, including DOS,
attempt to support a general class of devices. DOS supports both character and
block device types, with DASDs classified as block devices.

100 CHAPTER 7. DISK/DISKETTE FUNDAMENTALS

DOS can support a myriad of DASDs by architecting an operating system
structure that accounts for the differences between the various block devices.
This structure is referred to as the BIOS Parameter Block (BPB) because it is
used by the BIOS service routines as well as DOS. The following C structure
describes the contents of a BPB.

struct BPB_struct
{

unsigned int bps; 1* Bytes Per Sector *1
unsigned char spau; 1* Sectors Per Alloc. Unit *1
unsigned int rs; 1* Reserved Sectors *1
unsigned char num_FATs; 1* Number Of FATS *1
unsigned int root_entries; 1* # Of Root Dir Entries *1
unsigned int num_sectors; 1* Number Of Sectors *1
unsigned char media_descriptor;l* Media Descriptor *1
unsigned int spfat; 1* # Of Sectors Per FAT *1
unsigned int spt; 1* # Of Sectors Per Track *1
unsigned int heads; 1* Number Of Heads *1
unsigned long hidden; 1* Number Of Hidden Sectors *1
unsigned long num_sectors_32; 1* 32-Bit Number of Sectors *1

};

The following is a list of the fields in the BPB that are related to the physiCal
characteristics of the DASD.

• Number of bytes per sector (bps)

• Number of sectors per track (spt)

• Number of heads (heads)

• Number of sectors (num_sectors)

• Number of sectors (num_sectors_32)

• Type of media (media_descriptor)

All of these items are critical values that ensure the correct operation of DOS
on various DASDs. The remainder of the entries in the BPB define a logical
partitioning or format of data on the DASD that is relevant only in a DOS
environment. The remaining entries in the BPB are discussed in the following
sections.

7.3. DOS DISK ORGANIZATION 101

7.3 DOS Disk Organization

A DASD operating in a DOS environment has the following major logical
sections.

• Partition table

• DOS boot record

• DOS file allocation table (FAT)

• DOS root directory

• DOS file system data

Each logical section of a DOS DASD is defined from fields in the BPB. For
example, the hidden field of the BPB specifies the number of sectors from the
beginning of the device that are not a part of the logical DOS block device. The
spfat field of the BPB specifies the size of the DOS File Allocation Table (FAT)
with the num_FATs indicating the number of FATs on the device.

In general, a logical DOS block device can be represented by the following
diagram.

DASD partition table
...

DOS boot record
DOS file allocation table (FAT)

Possibly second DOS FAT
DOS root directory

DOS file system data

7.3.1 DASD Partition Table

The partition table is not specific to the DOS environment. The partition table
is an architected approach that allows the main storage device to be partitioned
into multiple operating environments. In other words, the partition table makes
it possible to divide your hard disk into a DOS environment as well as a UNIX
environment. You can then activate either environment. This capability provides
you with two environments (only one is active at a time) without requiring two
separate machines.

The partition table is nothing more than a structure located on the first
sector of the DASD that provides the following information.

102 CHAPTER 7. DISK/DISKETTE FUNDAMENTALS

• The number of partitions

• The type of partitions

• The active partition

• The location of the partition

• The size of the partition

The following C structure represents the format and contents of a partition
table entry.

struct p_entry
{

unsigned char boot_ID; 1* Boot Indicator *1
unsigned char boot_HSC [3] ; 1* Head, Sec, Cyl Of Boot Rec *1
unsigned char system_ID; 1* Owning System ID *1
unsigned char end_HSC [3] ; 1* Head, Sec, Cyl Of Last Sec *1
unsigned long sector_offset; 1* Sector Offset From Phys 0 *1
unsigned long sector_length; 1* Sector Length Of Partition *1

};

The boot_HSC field of the partition table indicates the head, sector, and
cylinder of the boot record for that specific partition; the end_HSC field indicates
the head, sector, and cylinder of the end of the partition. The boot_ID field
indicates whether the partition is the active or bootable partition.

A specific DASD device can have up to four partitions. The location of the
partition table entries is specified in the following structure.

struct partition
{

};

unsigned char code [446]; 1* Boot Code For Device (Disk) *1
struct p_entry p_tbl [MAXPART]; 1* Partition Table Entries *1
unsigned int signature; 1* Valid Partition Signature *1

7.3.2 DOS Boot Record

A DOS boot record is a complete BPB that has been prep ended with a jump
instruction around the BPB and an Original Equipment Manufacturer (OEM)
identifier. OEM simply identifies the company or supplier of the DOS operating
system.

The following C structure describes the content and format of the DOS boot
record.

7.3. DOS DISK ORGANIZATION 103

struct BOOT_struct
{

unsigned char entry_point [3] ; 1* Jump To Begin. Boot Code *1
unsigned char oem [8] ; 1* OEM Name And Version *1
unsigned int bps; 1* Unsigned Chars Per Sector*1
unsigned char spau; 1* Sectors Per Alloc. Unit *1
unsigned int res_sectors; 1* Number Of Reserved Sector*1
unsigned char num_FATs; 1* Number Of FATs *1
unsigned int root_files; 1* Number Of Files Root Dir.*1
unsigned int volume_size; 1* Number Of Sectors On Vol.*1
unsigned char media_byte; 1* Media Descriptor Byte *1
unsigned int spf; 1* Number Of Sectors Per FAT*I
unsigned int spt; 1* Number Of Sees. Per Track*1
unsigned int hpc; 1* Number Of Heads Per Cyl. *1
unsigned long hidden; 1* Number Of Hidden Sectors *1
unsigned long volume_size_32; 1* 32-Bit Volume Size *1

};

The BPB portion of the DOS boot record begins with the third field. It was
discussed in Section 7.2.

7.3.3 DOS File Allocation Table

The DOS File Allocation Table (FAT) is the mechanism DOS uses to manage
DASD space. The basic concept of the FAT is that the directory entry points to
the first DOS File Allocation Unit of the file.

A DOS File Allocation Unit is typically referred to as an Allocation Unit (AU)
or, simply, a cluster. The AU represents the allocation of a specific number of
sectors to the specified file. The exact number of sectors each AU represents is
given in the spau field of the BPB. Therefore, if a file contains one byte of data
and the spau field in the BPB is eight, then the file has actually allocated eight
sectors or 4,096 bytes, assuming the sector size is 512 bytes.

In short, DOS manages disk space in terms of allocation units, or clusters,
rather than in terms of actual sectors. We can determine the actual sectors
allocated using the following equation.

sector = (AU x spau) + firsLdata_sector

Remember that the file system data DOS manages is not located at the
beginning of the disk. The file system data follows the boot record, the FAT(s),
and the root directory.

If a file requires more than one AU, then the location in the FAT (which is
pointed to by the file's directory entry) will contain the number or index of the

104 CHAPTER 7. DISK/DISKETTE FUNDAMENTALS

next AU. The last AU contains OxFFF when DOS uses 12-bit cluster numbers
and contains OxFFFF when DOS uses 16-bit cluster numbers. This scheme allows
a file to physically allocate its actual size through an AU chaining process.

It should be noted that this sequential chaining of AU s has caused a great
deal of controversy, especially in DOS environments with very large DASDs. The
controversy arises because the AU chain for a specified file must be traversed in
order for any given datum in the file to be extracted. This is a very time
consuming operation!

7.3.4 DOS Root Directory

As we mentioned in the previous section, the file directory entry points to the
beginning of the file allocation chain. Each file must have a DOS directory
entry. Because DOS is a hierarchical file system, it is possible to locate any file
by beginning the search at the root directory.

The following C structure indicates the format and content of a DOS directory
entry.

struct d_entry
{

unsigned char f_name [8] ; 1* File's Name *1
unsigned char f_ext [3] ; 1* File's Extension *1
unsigned char f_attribute; 1* File's Attribute *1
unsigned char f_res [10] ; 1* DOS Reserved Region *1
unsigned int f_time; 1* Time Last Changed *1
unsigned int f_date; 1* Date Last Changed *1
unsigned int f_FAT; 1* Starting FAT Entry *1
unsigned long f_size; 1* File's Size (bytes) *1

};

The dos_fat program presented in Appendix I uses these structures to
implement a DOS FAT traversal. The program allows you to enter the name of
a file, then watch as the program repeatedly chains through the FAT searching
for the specified file.

7.3.5 DOS File System Data

The DOS file system consists of data that has been organized by the application
programs as a stream of bytes. DOS allocates space for the specified file in terms
of clusters or allocation units (AUs). And like UNIX, DOS does not impose any
predefined file format on the files.

Predefined file format (required by some operating systems) means that you
must define the structure of your data. In other words, you might have to specify

7.4. SUMMARY 105

that the data in your file has fixed length records. Therefore, you must specify
the size of the maximum fixed-length record. From this, the operating system
deduces that each record requires this same amount of data.

You can see the potential for large amounts of wasted DASD space with this
type of predefined file format. DOS, on the other hand, allows the application
to determine the format of the file data.

7.4 Summary

DOS View of DASDs

DOS supports character and block devices. DASDs are block devices, and DOS
and BIOS use BPB to pass information about a device.

DOS Disk Organization

• Partition table

• DOS boot record

• DOS file allocation table(s) (FAT)

• DOS root directory

• DOS file system data

DASD Partition Table

The partition table is a structure located on the first sector of the DASD. It
contains

struct partition
{

};

unsigned char code [446]; 1* Boot Code For Device (Disk) *1
struct p_entry p_tbl [MAXPART]; 1* Partition Table Entries *1
unsigned int signature; 1* Valid Partition Signature *1

The structure p_entry is presented on page 102.

106 CHAPTER 7. DISK/DISKETTE FUNDAMENTALS

DOS File Allocation Table

The File Allocation Table (FAT) is the mechanism DOS uses to manage DASD
space. DOS allocates non-contiguous space for a file in a sequence of clusters, or
allocation units (AU). Each AU in the FAT has the index of the next AU for the
file. The last AU contains OxFFF when DOS uses 12-bit cluster numbers and
contains OxFFFF when DOS uses 16-bit cluster numbers.

DOS Root Directory

Each file has a DOS directory entry. Each directory entry points to the beginning
of the file allocation chain (f_FAT in d_entry, page 104). Appendix I contains
the source code for the dos_fat program. The program uses d_entry and the
FAT to locate a file.

7.5 Exercises

Exercise 7.1 Find the number of sectors, tracks, and surfaces for your DASDs,
then use the storage formula we presented in Section 7.1.4 to calculate their
capacities.

Exercise 7.2 Use a diagram to show the relation between a directory entry and
FAT for a file that has three non-contiguous AUs.

Exercise 7.3 Explain the use of BPB_struct in block devices.

Exercise 7.4 Compile the dos_fat program. Use the program to locate a file
you know exists in your system.

Chapter 8

DOS Block Device Drivers

In this chapter we introduce the concepts of DOS block device drivers. We will
use the template-based DOS device driver to implement a completely functional
DOS block device driver.

If you want to build the block device driver as we discuss it, you may want
to create a ram_disk directory. We will perform our development work in this
directory. To start, we copy the template-based device driver files into ram_disk.

This is the list of the source files that we need to create the RAM-DISK block
device driver:

We will examine the differences between the template-based DOS device
driver and the RAM-DISK DOS block device driver. First, we will review DOS
device driver headers.

107

108 CHAPTER 8. DOS BLOCK DEVICE DRIVERS

8.1 Block Device Driver Headers

It is important that we understand the differences between a DOS block device
driver and a DOS character device driver. The program show_DDH displays the
following information for a block device driver:

Device Driver Entry (0070:01B6)

Next Device Driver : 0070:01CA
Device Attributes : 0840
Device Strategy Offset 05DC
Device Interrupt Offset : 0634
Device Driver Name

This DOS device driver header is the same one that we used to illustrate
the differences between character device driver headers and block device driver
headers in Chapter 6. The important point to remember is that the block device
driver headers place the number of units they support, rather than the name of
the device, in the name/unit field of the header as in the following DOS character
device driver header.

For a character device driver, show _DDH displays the following information:

Device Driver Entry (0070:016E)

Next Device Driver : 0070:0180
Device Attributes : 8013
Device Strategy Offset 05DC
Device Interrupt Offset : 05E7
Device Driver Name : CON

The RAM-DISK, or virtual disk, device driver we implement in this chapter
creates a simple block device driver header that allows it to support only one
unit.

8.2 How DOS Finds A Block Device

The approach DOS uses to locate a specific DOS block device or drive letter is
quite different than that of the DOS character device search strategy.

DOS maintains an internal data structure referred to as the Device Parameter
Block (DPB) array. This array has an element for each DOS drive letter or DOS
block device. DOS initially creates two entries in this array, which account for
drives A: and B:. If the system supports a hard disk, then DOS creates a third
element for drive C:.

8.2. HOW DOS FINDS A BLOCK DEVICE 109

Each element of the DPB array contains vital information concerning that
specific drive. In other words, you would find the following type of information
in an element of the DPB array.

• Logical number (A: = 0, ... , Z: = 25)

• Device driver unit

• Sectors per allocation unit

• Sector size

• Type of media

• Number of FATs

• Sector number of FAT

• Sector number of data

• Sector number of root directory

• Number of sectors per FAT

• Number of allocation units

• Number of root directory entries

• Address of the device driver header

When DOS begins to install the device drivers listed in the conf ig . sys file,
it determines whether the device driver is a block device. If the device driver
is for a block device, then DOS creates a DPB for each unit the block device
driver supports. Each of these DPBs is initialized with the above information,
including the address of the newly installed block device driver header.

Whenever DOS receives a request to access a specific DOS drive, DOS can
service that request without searching through the complete DOS device driver
header list. DOS simply indexes into the DPB array and locates the appropriate
DOS device driver header address. U sing this address, DOS constructs either
the Strategy function or the Interrupt function address by accessing the DOS
device driver header's Strategy or Interrupt function offsets. Once DOS has
created the Strategy or Interrupt function address, then it performs a far call
to this address.

The approach DOS employs to find DOS block devices is an efficient
and effective one. It reduces the need to continually read and re-read vital
information from the media and reduces the initial search time required to locate
the specified device driver routines.

110 CHAPTER 8. DOS BLOCK DEVICE DRIVERS

8.3 Block Device Driver Commands

The template-based DOS device driver implemented a function for all possible
DOS requests. DOS will issue a subset of those requests to the driver when the
driver is a block device driver; DOS will issue another subset of those requests
when the driver is a character device driver. Here is the list of request (with
command codes) that DOS may issue to the RAM-DISK block device driver:

• (00) Initialize

• (01) Check Media

• (02) Build BPB

• (03) IOCTL Input

• (04) Input From Device

• (08) Output To Device

• (09) Output And Verify Data

• (12) IOCTL Output

• (13) Open Device

• (14) Close Device

• (15) Check if Media is Removable

• (19) IOCTL To Device

• (23) Get Logical Device Map

• (24) Set Logical Device Map

Of these requests that DOS can issue to a block device driver, most are not
applicable to the RAM-DISK device driver. For example, we do not have to
Check Media, Open Device, or Close Device. In fact, the RAM_DISK block
device driver has to implement only one:

• (00) Initialize

The remaining DOS requests for the RAM-DISK block device driver are
implemented to pass the requests to the installed VDISK device driver.

8.4. RAMJJISK BLOCK DEVICE DRIVER 111

8.4 RAM_DISK Block Device Driver

The RAM.J)ISK device driver is different from other device drivers that we have
presented. The uniqueness of the RAM.J)ISK device driver is neither because it
is a DOS block device driver nor because it simulates a physical disk drive by
allocating a large RAM buffer. RAM.J)ISK is unique because it demonstrates
the ability of DOS device drivers to build upon the functionality of other installed
DOS device drivers!

The RAM.J)ISK device driver is a block device driver that performs the
following functions.

• Installs if vdisk. sys is installed

• Deinstalls if vdisk. sys is not installed

• Builds DOS requests for vdisk. sys

• Issues DOS requests to vdisk. sys

The RAM.J)ISK device driver detects whether the IBM vdisk. sys (virtual
disk device driver) is installed in the system. If it is, then the RAM_DISK device
driver creates a DOS device driver request (command) to obtain the size and
functional characteristics of the installed virtual disk. This is accomplished by
issuing a Build BPB command to the vdisk. sys device driver.

The results of the Build BPB command are then copied into the RAM
disk's internal BPB structure at initialization (INIT) time. The local BPB
information is then returned to DOS indicating that DOS now has the virtual
disk installed (vdisk. sys) as well as a disk that looks exactly like the virtual disk
(ram_disk. sys). The major difference between the two installed block devices
is that only one of the block device drivers will be doing all of the work! And
that is vdisk. sys.

Although this might sound like a shell game, it does have a significant number
of uses. For example, it is possible to create a DOS block device driver using the
same concepts that will pass the device driver requests to two or more installed
device drivers. In essence, this will allow you to automatically back up one
device to any number of DOS devices (shadow write) without complex hardware
or software.

The details of the RAM_DISK device driver appear in Appendix J.
We need to make one comment about the use of a DOS service call (INT 21)

from within the RAM.J)ISK device driver. You may recall that we cautioned
against employing any of these services. It happens that a few of these DOS
services can be safely invoked from within a DOS device driver at INIT time.

112 CHAPTER 8. DOS BLOCK DEVICE DRIVERS

The following is a list of the DOS services that can be employed from within
a DOS device driver without damaging the operational integrity of the operating
system.

• (Ox01) Keyboard Input

• (Ox02) Display Output

• (Ox03) Auxiliary Input

• (Ox04) Auxiliary Output

• (Ox05) Printer Output

• (Ox06) Direct Console I/O

• (Ox07) Direct Console Input

• (Ox08) Console Input

• (Ox09) Print String

• (OxOa) Buffered Keyboard Input

• (OxOb) Check Standard Input Status

• (OxOc) Clear Keyboard Buffer

• (Ox30) Get DOS Version Number

The above DOS services should be used only during the initialization of the
DOS device driver.

We have to make a number of modifications to the template-based DOS
device driver to turn it into the new RAMj)ISK device driver. Some of the files
do not change. Here is the list of all the files with information about their status.

• ram_disk - This is the makefile. We changed the name of the device driver
from dos. sys to ram_disk. sys (Appendix J).

• dos_dd.h - No change.

• dos_hdr. asm - No change.

• dos_end. c - No change.

• dos_data. c - We added a few global variables that this driver needs
(Appendix J).

8.5. SHADOW BLOCK DEVICE DRIVER 113

• dos_env. c - We changed this file to indicate that it is not necessary to have
all the DOS request functions of the template present in each DOS device
driver. Therefore, only the required DOS request function is referenced in
this file. Note that this file could have been left unchanged (Appendix J) .

• dos_drvr. c - We changed this file to include only Unknown_cmd and
Ini t_cmd functions (Appendix J).

After we initialize the device driver, we forward any request that comes in to
vdisk. sys:

unsigned int Unknown_cmd (struct REQ_struct far *r_ptr)
{

}

v_call = MK_FP (FP_SEG (vdisk), vdisk->dev_strat);
_ES = FP_SEG (r_ptr);
_BX = FP_OFF (r_ptr);
v_call 0;

v_call = MK_FP (FP_SEG (vdisk), vdisk->dev_int);
_ES = FP_SEG (r_ptr);
_BX = FP_OFF (r_ptr);
v_call 0;

Here are the new variables for dos_data. c:

void (far *v_call) (void);
struct REQ_struct tmp_req = { 0 };
struct DEVICE_HEADER_struct far *vdisk = { 0 };

unsigned char vdisk_str [] IIVDISK II ;
unsigned char found_msg [] lI\r\nVDISK Found\r\nll

IIDriver Installed\r\n\r\n$lI;
unsigned char error_msg [] lI\r\nVDISK Not Found\r\nll

IIDriver Not Installed\r\n\r\n$lI;

8.5 SHADOW Block Device Driver

If you want to build the block device driver as we discuss it, you may want
to create a shadow directory. We will perform our development work in this
directory. To start, we copy the template-based device driver files into shadow.

This is the list of the source files that we need to create the SHADOW block
device driver.

114 CHAPTER 8. DOS BLOCK DEVICE DRIVERS

• shadow

The SHADOW device driver implements shadow writing; that is, it writes
to two devices at the same time (this is the n-plexing concept we discuss in
Chapter 10 - in this case n is 2).

The SHADOW device driver is a block device driver that allows you to write
something on drive A:, then writes a back up copy of the information on drive
B:. The only requirement is that drive A: and drive B: are identical drives. We
have this requirement because we execute the DOS command issued to drive A:,
then we change the unit number and issue the command again to drive B:.

We have to make a number of modifications to the template-based DOS
device driver to turn it into the new SHADOW device driver. Some of the files
do not change. Here is the list of all the files with information about their status.

• shadow - This is the makefile. We changed the name of the device driver
from dos. sys to shadow. sys (Appendix K).

• dos_dd.h - No change.

• dos_hdr. asm - No change.

• dos_end. c - No change.

• dos_data. c - We added a few global variables this driver needs (Ap
pendix K).

• dos_env. c - We changed this file to indicate that it is not necessary
to have all the DOS request functions of the template present in each
DOS device driver. Therefore, only functions Init_cmd, Unknown_cmd,
and Output_cmd are referenced in this file (Appendix K).

• dos_drvr. c - This file changed like dos_drvr . c in RAM_DISK. It contains
three functions: Unknown_cmd, Output_cmd, and Init_cmd. (Appendix K).

8.5. SHADOW BLOCK DEVICE DRIVER 115

We modified three functions in dos_drvr. c: Init_cmd, Unknown_cmd, and
Output_cmd.

Init_cmd appears in Appendix K. The Unknown_cmd function forwards
commands to the device driver handling drive A:. Unknown_cmd is similar to
the Unknown_cmd function in RAM-DISK:

unsigned int Unknown_cmd (struct REQ_struct far *r_ptr)
{

}

v_call = MK_FP (FP_SEG (ddh_ptr), ddh_ptr->dev_strat)j
_ES = FP_SEG (r_ptr)j
_BX = FP_OFF (r_ptr)j
v_call 0 j

v_call = MK_FP (FP_SEG (ddh_ptr), ddh_ptr->dev_int)j
_ES = FP_SEG (r_ptr)j
_BX = FP_OFF (r_ptr)j
v_call 0;

Shadow write requires that we implement two output commands: the Output
Command and the Output Verify Command. Output_cmd routes the output
request to Unknown_cmd - it writes to drive A:. If the output request succeeds,
Output_cmd changes the unit to drive B: and routes the output request again to
Unknown_cmd. Here is Output_cmd.

unsigned int Output_cmd (struct REQ_struct far *r_ptr)
{

unsigned char unit;

unit = r_ptr->unit;
r_ptr->unit = DRIVE_A;
r_ptr->status = OP_COMPLETE;

/* Initial Write To A Drive*/

if (!(r_ptr->status & ERROR_BIT))
{

}

r_ptr->unit = DRIVE_B;
r_ptr->status = OP_COMPLETE;

/* Shadow Write To B Drive */

116 CHAPTER 8. DOS BLOCK DEVICE DRIVERS

r_ptr->unit = unit;
}

8.6 Summary

How DOS Finds a Block Device

DOS uses an internal Device Parameter Block (DPB) array with information
about block devices. The array contains one element for each DOS drive letter.
Each entry in the DPB array points to the appropriate device driver header.
To access the DPB array, DOS uses the logical number for a block device and
follows the pointer to the device driver header.

RAM_DISK Block Device Driver

Files in the RAM-DISK block device driver:

• ram_disk - It is the makefile (Appendix J).

• dos_dd.h - No change

• dos_hdr.asm - No change

• dos_end. c - No change

• dos_data. c - The template file already indicates it is a block device driver.
We added some global variables RAM-DISK uses (Appendix J).

• dos_env. c - We modified the array of pointers to functions (dos_cmd [])
because RAM-DISK uses only two functions: Ini t_cmd and Uilknown_cmd
(Appendix J).

• dos_drvr. c - We use only two functions: Ini t_cmd and Unknown_cmd
(Appendix J).

SHADOW Block Device Driver

Files in the SHADOW block device driver:

• shadow - It is the makefile (Appendix K).

• dos_dd.h - No change

• dos_hdr.asm - No change

8.7. EXERCISES 117

• dos_end. c - No change

• dos_data. c - We added a few global variables this driver needs (Ap
pendix K).

• dos_env. c - We modified the array of pointers to functions (dos_cmd [])
because SHADOW uses only three functions: Ini t_cmd, Unknown_cmd,
and Output_cmd (Appendix K).

• dos_drvr. c - We use only three functions: Ini t_cmd, Unknown_cmd, and
Output_cmd (Appendix K).

8.7 Exercises

Exercise 8.1 Run show_DDH on your system. Find the block device drivers
installed. Explain the attributes of each driver.

Exercise 8.2 List the commands DOS may issue to a block device driver.

Exercise 8.3 Explain DPB. When does DOS create it? How does DOS use it?

Exercise 8.4 What files do you need to implement the RAM~ISK device
driver? Which template files do you have to change?

Exercise 8.5 We could have left dos_data. c unchanged in the RAM_DISK
device driver. How would you handle the extra global variables the driver needs?

Exercise 8.6 Explain the changes in dos_drvr. c for the RAM~ISK device
driver.

Exercise 8.7 Use the make utility to build the RAM.J)ISK device driver on
your system.

Chapter 9

DOS Device Driver Test
Methodology

We have developed a couple of device drivers in this text so far. However, we have
not yet proposed a formalized device driver test methodology. So, we propose
such a methodology now, and we attempt to demonstrate its use and potential
benefits.

Our device driver test methodology is based on a bottom-up approach that
consists of the following three phases.

1. Device driver debug process

2. Device driver command exercise

3. Device driver exercise.

The device driver debug process normally starts with ad hoc testing. Ad
hoc testing is a type of testing where the programmer checks random parts of
the code without following every possible path available in the program. Ad
hoc testing ensures that your driver is functionally stable through frequently
executed program paths.

The next step exercises the driver with specific DOS requests. This is the
second-level testing.

The third-level testing uses DOS API service requests in an exhaustive
manner and in a combinatorial sequence.

The three phase test methodology reduces the number of errors in the DOS
device drivers you implement and improves their level of functional conformance.

119

120 CHAPTER 9. DOS DEVICE DRIVER TEST METHODOLOGY

9.1 Device Driver Debug Process

The most important step in this device driver test methodology is to ensure the
device driver can be correctly installed in a DOS environment. If the device driver
can be correctly installed it is because it conforms to the structural characteristics
of DOS device drivers and that it can process the DOS initialization request. If
we derive the driver from the template-based device driver we presented earlier,
then we meet both requirements.

The more we test a device driver, the better are the chances we will find fewer
errors. However, the ad hoc device driver testing that is typically performed on
DOS device drivers is only the first step in the test methodology proposed here.
Ad hoc testing is not a substitute for a formalized, repeatable test scenario.

The ad hoc testing process can incorporate many of the techniques described
in Chapter 5. Those techniques allow you to develop a DOS device driver and
monitor all aspects of the DOS device driver request/response dialog.

Once you complete the ad hoc device driver testing, you are ready to begin
the more sophisticated device driver command interface testing. We describe
this type of testing next.

9.2 Device Driver Command Exercise

It is difficult to force DOS to issue a specific device driver request to a device
driver. Typically, the ad hoc testing attempts to force DOS to issue such requests
to the device driver under test. This is attempted by invoking DOS commands,
such as copy, chkdsk, and the like.

Invoking DOS commands to test a driver places the actual device driver
requests in a secondary role. The primary role in this type of testing is the
execution of DOS applications that use the device driver under test, and not the
requests the device driver is processing.

A production device driver must be exercised in conformance with the DOS
device driver command interface definition. Therefore, this test methodology
requires that the test application be able to create a specific DOS request and
issue it directly to the DOS device driver under test. Furthermore, the test
application must verify that the DOS device driver responds correctly to the
DOS request.

It is easy to develop such a test application. For example, on several occasions
we have used the show_DDH program to gather information about device drivers
loaded in the system. If we run show _DDH, we can obtain the addresses of the
Strategy and Interrupt functions of the device driver under test. Then we can
create a DOS request structure, initialize it to the desired DOS device driver
command, set the ES and BX registers to the address of the DOS request structure.

9.3. DEVICE DRIVER EXERCISE 121

Finally we can perform a far call to the Strategy function, then perform a far
call to the Interrupt function.

The above technique allows the test application to simulate the DOS service
manager without involving DOS directly. With this approach we can issue every
defined DOS request to the device driver under test and review the response to
that request. We can then analyze the device driver's response to determine if
it conforms to the DOS device driver specifications.

If the device driver conforms with the DOS device driver specifications, then
this phase of the test methodology is complete. However, if the DOS device
driver does not conform, then you have isolated the input to the driver and the
response from the driver that is in error. With this information, you can change
the DOS device driver and begin the test procedure again.

9.3 Device Driver Exercise

The device driver testing we just discussed cannot account for error conditions
caused by the order of the requests and application interfacing conflicts.
Therefore, the final phase of testing in the device driver test methodology involves
DOS API-initiated device operations.

DOS API-initiated device operations is a set of DOS device driver requests
that are issued as a result of DOS API service requests. The approach is to
create a test application that requests all DOS API services that can cause DOS
to issue a device driver request. This test application then executes these DOS
API services in an exhaustive manner as well as in a combinatorial sequence.

The incorporation of this form of DOS device driver testing ensures that your
DOS device driver is functionally stable (ad hoc testing), conforms with the DOS
device driver specification (second-level testing), and is not sensitive to ordering
or context (third-level testing).

If you submit your DOS device driver to the level of testing we described in
this chapter, you will produce a DOS device driver that is better tested than
most device drivers available today.

9.4 Summary

Device Driver Testing

1. Install the device driver.

2. Perform ad hoc testing to verify the driver is functionally stable.

3. Perform second-level testing. Issue DOS request directly to the device
driver under test.

122 CHAPTER 9. DOS DEVICE DRIVER TEST METHODOLOGY

4. Perform third-level testing. Use DOS API service requests to issue device
driver requests in an exhaustive manner as well as in a combinatorial
sequence.

9.5 Exercises

Exercise 9.1 Install the CONSOLE device driver. Perform ad hoc and
command exercise testing. Then use DOS API-initiated device operations to
test the device driver.

Chapter 10

DOS Device Driver
Projects

In this chapter we present suggestions for DOS device driver projects. The
projects follow the same implementation techniques we used to develop the
template-based device driver.

Many projects are possible. Here is a representative set of DOS device drivers.

• n-plexing devices

• Logical device concatenation

• Device espionage

• CD-ROM support

• New technology support.

Each of the proposed projects has a practical as well as a theoretical basis.
A device driver that can solve the age-old problem of providing a single logical
device view of multiple physical devices would certainly be useful as well as
having its theoretical merits.

The concept of DOS device driver leveraging is also exploited in two of the
proposed projects. Device driver leveraging means the DOS device driver does
not implement functions that already exist in other DOS device drivers. The
device driver simply constructs a DOS request and simulates the function DOS
performs when issuing the DOS request to the other DOS device driver.

With these projects we intend to present some general design and imple
mentation guidelines you might find useful when you develop your own device
drivers.

123

124 CHAPTER 10. DOS DEVICE DRIVER PROJECTS

10.1 n-plexing DOS Devices

The concept of n-plexing physical devices is not a new one. Most implementa
tions of the n-plexing concept are restricted to the case where n is 2. In other
words, duplex operations.

Many applications of n-plexing capability can be found, especially at the DOS
device driver level rather than at the application level. For example, in systems
that require some level of redundancy it is important to have the shadow write
capability that is implied in duplex operations to a device.

Another useful application of this capability is related to the duplication
industry. It would be nice to have a standard application write to one specific
device and have n exact copies made at the same time. Without such a device
driver, the application has the responsibility of issuing writes to n devices.

In more advanced use of an n-plexing the DOS device driver would write
to both a local disk and a remote disk at the same time. In other words, it
is possible for the n-plexing DOS device driver to write to its local disk drive
while at the same time propagating a copy of the same data to a remote disk
via a local area network or a mainframe host connection. This sort of capability
allows automatic backups.

The issues that surround this type of implementation are not overwhelming.
For example, the n-plexing device driver must be able to find the DOS device
driver headers of other DOS device drivers in the system. This is not difficult -
remember the show_DOH example. We can use the same concept during the
initialization phase of a DOS device driver.

Once we locate the device driver headers for the target device drivers then
it is easy to route the DOS requests to the n target DOS device drivers. You
will find this approach provides a great deal of flexibility, yet it is simple to
implement.

10.2 Logical Device Concatenation

Have you ever had a device that is large enough? This device driver project will
not solve the problem of capacity completely, but will ease it. The general idea
is that n physical devices are logically concatenated through a single DOS device
driver.

There must be a number of applications for this type of DOS device driver.
We made this statement because companies have gone to great lengths to provide
a DOS command that provides similar function. Namely, the DOS command
join. This command allows a physical device to be joined to the logical file
structure of another device, resulting in a common file system view of the physical
devices.

10.3. DOS DEVICE ESPIONAGE 125

A logical device concatenation driver provides a single DOS drive letter that
represents the entire set of physical devices, or any subset desired. This allows
you to forget about separate drive letters forever. In fact, it is possible to create
the DOS device driver that allows the format process to occur on the collection
of physical devices.

The technical issues related to this DOS device driver are similar in nature
to the issues for n-plexing devices. One of the issues omitted in that section
concerns the elimination of DOS drive letters for the specific physical devices.
In other words, once the controlling DOS device driver is installed you would
not like any DOS requests to go directly to the physical devices without coming
through this DOS device driver. Therefore, it is necessary to eliminate the
original DOS drive letters and maintain only the one representing the collection
of physical devices.

We can use a number of techniques to achieve the above effect in the system.
However, most of them require some features that are specific to a DOS version.
Consequently, we will not attempt to present their details.

10.3 DOS Device Espionage

Considerable discussion has centered around "viruses" and various damaging
programs. It is possible to combat a significant amount of potentially damaging
influence by developing and installing a device driver that performs a special
type of espionage.

It is possible to write a device driver to monitor the operations of all the
DOS device drivers in the system. Because these device drivers are the software
portal to the outside, it is reasonable to assume that if the proper monitoring
techniques are applied, then the system achieves a greater level of security.

These are the types of operations that such a device driver monitor could do.

• Elimination of TSR disk writes

• Data integrity (read after write)

• Elimination of device driver hooking.

Each of these items can be implemented by a DOS device driver. This is
not to imply that by implementing these three items your system immediately
becomes secure. The intention is to provide you with a small list of representative
operations that can be added to, and will collectively improve, the security of
your system.

126 CHAPTER 10. DOS DEVICE DRIVER PROJECTS

10.4 CD-ROM Support For DOS Devices

CD-ROMs provide a very inexpensive form of long-term mass storage. However,
a number of very difficult problems are associated with the use of CD-ROMs in
DOS-based systems.

The first technical issue CD-ROMs present is how to access the data on
the CD-ROM. The CD-ROM has roughly 600 megabytes of data organized
in a CD-ROM standard format. This format is alien to the DOS file format.
Therefore, there is difficulty in treating the CD-ROM simply as a write-protected
disk drive.

The next technical issue relates to the physical format of the data contained
on the CD-ROM. The typical CD-ROM has data written in 2048-byte sectors.
Therefore, under a DOS FAT system it is possible to access only 128 megabytes
of the CD-ROM, even if the logical format of the data on the CD-ROM permitted
access. The 128 megabytes is computed by multiplying the maximum number
of allocation units in DOS (64K) by the size of the allocation unit (2K).

Although DOS allows the allocation unit to be larger than 2048 bytes, it is
difficult to increase this value for a CD-ROM. The problem that occurs is this:
if the allocation unit is increased beyond the 2K value, then an allocation unit
could contain both the end of a file as well as the start of another file. As the
allocation unit approaches a larger value, it is theoretically possible for complete
files to be contained within one allocation unit as well as the start and end of
other files. Clearly, DOS is not capable of addressing the complex allocation
unit decoding required to resolve this issue without the support of an intelligent
device driver.

10.5 Supporting New Technology

The last area of DOS device driver projects is the leading edge. This area includes
the development of DOS device drivers that support new technology. For
example, the small computer system interface (SCSI) adapters are continually
in need of a DOS device driver to control them.

Another new technology that has not received a reasonable amount of DOS
device driver support is the write-once-read-many (WORM) optical disks. These
devices provide large quantities of mass storage, but can only be written once.
Therefore, the current directory update operations of DOS must be buffered or
physically chained to different sectors on the WORM.

In each of these cases it is important to remember that the DOS device driver
is responsible for compensating for the idiosyncrasies of the attached device or
adapter. Therefore, as new technology emerges there will always be a need for the
development of DOS device drivers to support that technology. Furthermore, the

10.6. SUMMARY 127

more effectively the DOS device driver addresses the new technology, the more
successful the technology will become.

10.6 Summary

DOS Device Driver Projects

• n-plexing DOS devices - write to one device and have the same information
copied to n devices

• Logical device concatenation - logically concatenate a number of physical
devices with a device driver allowing access to the devices using one name

• DOS device espionage - a device driver that monitors the operations of all
the DOS device drivers in the system

• CD-ROM support for DOS devices - inexpensive form of long-term mass
storage

• Supporting new technology - SCSI, WORM, etc.

10.7 Exercises

Exercise 10.1 Select one of the device driver projects we have suggested and
implement it.

Part III

DOS WORM Device
Driver

Chapter 11

WORM Fundamentals

We have discussed several DOS device drivers in Part II. Now we present
the concepts, design, and implementation of a full-function Write-Once-Read
Many (WORM) DOS device driver for the IBM 3363 WORM and its associated
adapter.

WORM devices have a number of interesting characteristics that have forced
operating systems, in particular device drivers, to take a new look at classical
device models. It is for this reason that we include a WORM device driver in
this text. The ability to develop a full-function WORM device driver utilizing
the methodology we presented in previous chapters demonstrates the robustness
of the method. Furthermore, the flexibility inherent in the method allows new
technology to be addressed in new ways.

The fundamental concept of WORM technology is that any given sector on
the media may be written only once. Typically, the process of writing data to
a sector of a WORM device is accomplished by a process termed obliteration.
In other words, a laser in the WORM device actually obliterates or damages
portions of the surface of the media. The results of this process are permanent,
and any attempt to write over the data will result in the destruction of both the
original data and the new data.

Although the operating principles of a WORM device are easy to understand
it is difficult to grasp the overall impact of WORM devices on the system's
software without a detailed analysis.

11.1 DOS File System Services - A Closer Look

The incorporation of any secondary storage device or new mass-storage technol
ogy into an operating environment is dictated largely by the file system services

131

132 CHAPTER 11. WORM FUNDAMENTALS

and architecture. The DOS environment is no exception. Therefore, before we
attempt to develop a DOS device driver for the IBM 3363 WORM we must
understand the relationship between the DOS file system services and the DOS
device driver commands.

In the previous chapters we focused on the DOS device driver command
interface. The intent was to present the information about DOS device drivers
in a self-contained and manageable way. However, new technology, such as
WORM, often affects the entire operating environment. The potential of such
affects forces us to review the technology with respect to every abstract interface
in the operating environment.

It is important to analyze all file-related DOS services prior to embarking on
the development of a DOS device driver for a new device. And it is relatively
simple to develop a complete set of programs, such as the one that follows, that
invoke a specific DOS service.

You recall that an application program requests DOS services via the
interrupt Ox21 interface. The DOS services we are interested in are the ones
that will ultimately invoke a DOS device driver to gain access to a specific
device. As an example, the following program (dos_del) uses DOS services to
delete the file f 00 • txt.

#include
#include

#define

void main 0
{

int

<stdio.h>
<dos.h>

DELETE_FILE Ox41

union REGS
struct SREGS
char

ret;
regs;
sregs;
*filename

regs.h.ah DELETE_FILE;

"foo.txt";

regs.x.dx (unsigned int) filename;
sregs.ds = _DS;
ret = intdosx (®s, ®s, &sregs);

11.2. DOS FAT FILE SYSTEM

}

if (regs.x.cflag)
{

printf ("Operation Failed - Status %04X\n", ret);
}

else
{

printf ("Operation Succeeded\n");
}

133

We will use dos_del to determine the relationship between the DOS services
interface and the DOS device driver command interface when we try to delete a
file. Here is the order of events:

• Create f 00 • txt

• Execute the visual utility

• Execute dos_del to delete foo. txt

• Reboot the system to remove the visual utility

11.2 DOS FAT File System

If you executed dos_del (presented in the previous section), you noticed output
commands being issued to the device driver. The purpose of these write
operations is the topic of this section.

During the execution of dos_del you noticed commands used to determine
the existence and location of the file foo. txt. After locating the file, DOS
performs the following operations (not necessarily in this order).

• Erase file (update DOS directory)

• Free space (update FAT number 1)

• Free space (update FAT number 2)

If you execute visual and begin to perform file operations, such as copy
and erase, you will notice a number of device driver output commands to low
numbered sectors. These output operations are related primarily to the DOS
directory updates as well as the File Allocation Table (FAT) management.

It should be obvious that if a WORM device is treated the same as a magnetic
device in the DOS operating environment, then the entire DOS directory and
FAT will become corrupted due to sector rewrites! Therefore, a DOS device
driver that supports a WORM device must resolve this problem. We address
this problem in the next chapter.

134 CHAPTER 11. WORM FUNDAMENTALS

11.3 Summary

• Interrupt Ox21 provides DOS file services

• DOS file system services may issue many device driver commands

• visual verifies the DOS device driver commands that are executed for a
single DOS file service

11.4 Exercises

Exercise 11.1 List the file service commands available in DOS.

Exercise 11.2 Run visual. Then run dos_del and identify the commands
executed.

Exercise 11.3 Choose a storage device you are familiar with and find out which
DOS file services you can invoke for that device.

Exercise 11.4 Before reading the next chapter, consider how you would solve
the rewrite problem in a WORM file allocation table.

Chapter 12

WORM Device Driver
Architecture

The previous chapter described the problem that WORM device drivers must
overcome when dealing with classical file system directories. The tendency has
been to develop very complex file systems to accommodate WORM devices. The
major problem with developing yet another file system is that the new file system
is alien to most operating systems. This situation typically prohibits the user
from using standard commands while accessing the WORM device.

Either the device driver must compensate for the WORM device's peculiari
ties and conform to the operating environment's perception of the Direct Access
Storage Device (DASD), or a completely new file system environment must be
developed, including the commands to manage that environment. The architec
tural approach we present in this chapter achieves operating system conformance
at the device driver level. This approach allows all DOS commands to function
properly without exceptions.

12.1 The DOS BPB In Review

The most important question a developer faces during the design of a DOS device
driver for a new device is "How should the device appear to DOS?" In other
words: "How does DOS perceive the device when viewing it through the new
device driver?" DOS develops its perception of the device from the information
provided in the DOS BIOS Parameter Block (BPB) in the DOS device driver.

In the case of the IBM 3363 WORM, the information required to construct
the DOS BPB comes from the specification of the device itself - the IBM 3363
Optical Disk Drive hardware technical reference manual. Here is a summary of

135

136 CHAPTER 12. WORM DEVICE DRIVER ARCHITECTURE

this type of information.

Capacity
Track Size
Sector Size
N umber of Heads
Number of Tracks
Sectors/Track

200,000,000
11,776

512
1

17,100
23

bytes
bytes
bytes

Although it would be nice to define a DOS BPB that fully describes the
capacity of the IBM 3363 WORM, the BPB would not allow for any type of
free sector management. Because DOS will continue to write and rewrite the
same sector multiple times, the device driver must implement some type of sector
reallocation algorithm - and that requires media space. Therefore, the DOS
BPB must not define the actual capacity of the IBM 3363 WORM.

The WORM device driver attempts to give DOS the perception of a 32-
megabyte magnetic storage device. The rest of the sectors on the IBM 3363
WORM constitute the free sector pool that is used for reallocation of previously
written sectors. In other words, the DOS BPB defined in the device driver
accounts for only the first 32 megabytes of storage space on the IBM 3363 WORM
with the remainder being managed by the device driver on an as-needed basis.
Table 12.1 illustrates this architecture.

12.2

WORM Boot Record
WORM File Allocation Table

WORM Root Directory

WORM Data Space

WORM Reallocation Sectors

T
32 MB

+ 168 MB

~
Table 12.1: WORM information

IBM 3363 Device Driver Architecture

We started to address the design of the device driver for the IBM 3363 WORM
in the previous section. However, we did not discuss the free space management

12.2. IBM 3363 DEVICE DRIVER ARCHITECTURE 137

algorithms. These algorithms are the heart of the device driver. Another way
to look at it is to view DOS as managing the first 32 megabytes of the WORM,
and the free space management algorithms embedded in the device driver as
managing the remaining 168 megabytes of space.

Numerous methods can be applied to the space management of write
once media. Each of these methods provides its own set of advantages and
disadvantages. If we were developing this device driver for production use, we
would typically conform to a development process that is similar to the following
one.

• Perform market research

• Develop marketing requirements

• Develop initial design points

• Perform marketing/development review

• Develop defined product

Although each step is crucial to the success of a product, we take the liberty
to simply state our assumptions, then develop the product without a great deal
of fuss. The following list represents the major assumptions and/or design points
this WORM device driver attempts to address.

• Demonstrate device driver design flexibility

• Functionally emulate a read/write disk drive

• Minimize device driver implementation effort

• Minimize optical media usage

The optical media free space (sector) management algorithms realize, in
part, the above design goals while maintaining simplicity in the design and
implementation of the device driver. To accomplish this, we modified the
read and write operations of the device driver to include a level of processing
indirection. This level of processing indirection allows reads and writes of
physical sector locations to be transformed into reads and writes of sectors other
than the ones specified.

The concept of inserting a level of processing indirection is not new. This
concept is used in all memory mapping hardware to transform logical addresses
into physical addresses. And that is the approach we take in this device driver.
The application,' or DOS itself, specifies a particular physical sector to read
or write. To the device driver this is not a physical sector, but a logical one.

138 CHAPTER 12. WORM DEVICE DRIVER ARCHITECTURE

Therefore, the driver performs a table look-up to determine which physical sector
it should read or write.

But, where is the look-up table stored? The device driver augments
the optical media characteristics of the WORM with the magnetic media
characteristics of floppy diskettes. This unique combination of mass-storage
media characteristics allows the device driver to save the table on magnetic
media while fully using the optical media for data storage.

Although it is simple to develop a WORM device driver, we have tried to
demonstrate a more powerful concept: a device driver can create an abstract
device from the devices present in the system.

12.3 Typical Problems with WORM Devices

You have become aware of a number of problems that WORM devices pose.
However, some problems are more subtle than others. For example, a file that
is created in the root directory will alter the FATs as well as the root directory.
Both the FATs and the root directory are located at the beginning of the DOS
disk. Therefore, it is easy to track the additions and deletions made to root-level
items by watching the contents of the first few sectors of the media.

What happens when subdirectories are allowed in the file system? Subdirec
tories are nothing more than files that have been allocated from the data portion
of the disk and contain directory entries. An entry can again be a directory. This
means that subdirectories can appear anywhere on the media. Therefore, it is
impossible to tell from the sector location whether you are accessing a file or a
directory.

For this reason many WORM device drivers and file managers provide only
a flat file system. A flat file system has only one level. In other words, if you
specify that subdirectories are not allowed and that all operations must occur in
the root directory, then you have created a flat file system.

Our device driver fully supports all aspects of the DOS file system. It allows
the full use of subdirectories, as well as the root directory, without limitations.

12.4 Summary

We covered the specifications for the IBM 3363 WORM and the design of the
WORM device driver. We follow the template we described in Chapter 4. Our
device driver solution stores the look-up table on floppy diskettes to avoid FAT
updates on the WORM device.

12.5. EXERCISES 139

12.5 Exercises

Exercise 12.1 List the device specifications for the IBM 3363 WORM.

Exercise 12.2 Explain how you will use the BPB with a WORM device.

Exercise 12.3 Explain how we propose to solve the write-once problem when
supporting FATs. Develop other possible solutions.

Chapter 13

DOS WORM Device
Driver

The previous chapters have provided information about the operating environ
ment as well as the operating characteristics of WORM devices. The operating
system's perception of the WORM device is defined by the WORM device driver.

We can apply numerous design and implementation strategies to WORM
devices. We offer one approach that demonstrates the robustness of the DOS
device driver implementation philosophy presented in this book, rather than the
full exploitation of WORM device technology.

Our design approach has a number of interesting characteristics that may be
found in the device drivers we outlined earlier. This chapter collects a number
of useful concepts and demonstrates how they might be combined into a device
driver that addresses new technological problems.

13.1 DOS WORM Device Driver Concept

The basic concept of the WORM device driver is to present the WORM device to
the operating system as a 32-megabyte magnetic device. This is accomplished by
creating on the diskette drive a read-write file that represents the current state
of the optical media. In other words, whenever the driver rewrites the optical
surface, it updates the diskette file to indicate the actual optical sector in use.

We use the following algorithm to read from the WORM device.

141

142 CHAPTER 13. DOS WORM DEVICE DRIVER

Break operation into single sectors
For each sector do

Read the magnetic file indexed by sector number
Obtain actual sector number from magnetic file

Read actual sector from optical media

We use the following algorithm to write to the WORM device.

Break operation into single sectors
For each sector do

Read the magnetic file indexed by sector number
Obtain actual sector number from magnetic file
If sector is not written then

Write the currently addressed optical sector
If sector is written then

Find a free (blank) optical sector
Update the magnetic file to indicate the change

Write the data in the selected free optical sector

This algorithm gives us full use of the optical surface while the device appears
to be a standard read/write media. The algorithm is analogous to the algorithms
used in defective sector reallocation.

Note that the low-level access to the floppy diskette drive and the IBM 3363
WORM drive is through the BIOS interface. Appendix H describes the BIOS
interface for the floppy disk drive while Appendix L describes the BIOS interface
for the IBM 3363 WORM drive.

13.2 DOS WORM Device Driver Header

The device driver header we use for the WORM device driver is the same one
we provided in the template (Chapter 4). Remember, the template includes a
device driver header that specifies a block device in the attribute word of the
header. The WORM device driver is attempting to present itself to DOS as a
magnetic block device which allows us to use the template header.

The file dos_data. c indicates what the DOS device driver header looks like.
Here is the dos_header structure.

13.3. DOS WORM DEVICE DRIVER COMMANDS

struct DEVICE_HEADER_struct dos_header =
{

(struct DEVICE_HEADER_struct far *) OxFFFFFFFFL,
Ox2000, /* Non-IBM Format
(unsigned int) Strategy, /* Strategy Function
(unsigned int) Interrupt, /* Interrupt Function
{ /* Unit/Name Field

OxOl, /* Initial Number Of Units
OxOO, /* Zero Remaining Entries
OxOO, /* Zero Remaining Entries
OxOO, /* Zero Remaining Entries
OxOO, /* Zero Remaining Entries
OxOO, /* Zero Remaining Entries
OxOO, /* Zero Remaining Entries
OxOO /* Zero Remaining Entries

}

};

143

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Once again we capitalize on the benefits of the template-based approach to
writing DOS device drivers.

13.3 DOS WORM Device Driver Commands

The DOS WORM device driver is a block device driver. Consequently, it
does not require any of the character device driver commands. Furthermore,
a number of the standard DOS device driver commands are not necessary in
this implementation. Therefore, the DOS device driver command processing
functions in dos_drvr. c have been reduced to the following list.

• (00) Initialize

• (01) Check Media

• (02) Build BPB

• (04) Input From Device

• (08) Output To Device

This list of commands must be augmented with the following functions.

• Unknown_cmd

144 CHAPTER 13. DOS WORM DEVICE DRIVER

• Check_sector

The Unknown_ cmd function processes DOS device driver commands that are
not implemented by the device driver. Which_sector reads the diskette and
determines the actual optical sector to be used in the operation. Check_sector
checks an optical sector. If the optical sector has been written, the function
Check_sector attempts to reallocate that sector prior to execution of the actual
write operation. Finally, Send_ command sends the constructed command block
to the IBM 3363 WORM device through the BIOS interface.

The use of these additional functions is best illustrated by analyzing the
Input_cmd and Output_cmd functions. Here is the Input_cmd function.

1* -*1
1* *1
1* FUNCTION: I n put _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Input_cmd (struct REQ_struct far *r_ptr)
{

unsigned int i· ,
unsigned int rc;
unsigned int cnt;
unsigned long sec;

cnt = r_ptr->req_type.i_o_req.count;
if (cnt > 127) 1* > 64 Kbytes
{

}

r_ptr->req_type.i_o_req.count 127;
cnt = 127;

if «sec> bpb.num_sectors) I I

13.3. DOS WORM DEVICE DRIVER COMMANDS

}

{

}

«sec + cnt) > bpb.num_sectors»

r_ptr->req_type.i_o_req.count = OxOOOO;
return (STATUS_SNF);

for (i = 0, rc = 0; i < cnt; i++, sec++)
{

rc 1= Send_command (r_ptr->req_type.i_o_req.buffer_ptr,
Which_sector (sec), 1, READ_3363);

}

if (rc != STATUS_NO_ERROR)
{

}

rc = Xlate_error (rc);
r_ptr->req_type. i_o_req. count

return rc;

OxOOOO;

145

In Output_cmd we use the function Check_sector to allow the reallocation
of the optical sector, if necessary, prior to the actual sector write operation. Here
is the Output_cmd function. "

1* -*1
1* *1
1* FUNCTION: 0 u t put _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Output_cmd (struct REQ_struct far *r_ptr)
{

unsigned int i;
unsigned int rc;
unsigned int cnt;

146 CHAPTER 13. DOS WORM DEVICE DRIVER

}

unsigned long sec;

cnt = r_ptr->req_type.i_o_req.count;
if (cnt > 127) 1* > 64 Kbytes
{

}

r_ptr->req_type.i_o_req.count 127;
cnt = 127;

if «sec> bpb.num_sectors) II

{

}

«sec + cnt) > bpb.num_sectors))

r_ptr->req_type.i_o_req.count = OxOOOO;
return (STATUS_SNF);

for (i = 0, rc = 0; i < cnt; i++, sec++)
{

}

rc 1= Send_command (r_ptr->req_type.i_o_req.buffer_ptr,
Check_sector (sec), 1, WRITE_3363);

if (rc != STATUS_NO_ERROR)
{

rc = Xlate_error (rc);
r_ptr->req_type. i_o_req. count OxOOOO;

}

return rc;

13.4 DOS WORM Device Driver Control Flow

The control flow and general operation of the DOS WORM device driver are
identical to that of the template-based device driver. The only twist added
to the device driver is that DOS is tricked into thinking that the device it is
addressing is something other than what it is.

You will find that the technique of representing device characteristics
differently than the actual characteristics of the device is very useful. In fact,

13.5. DOS WORM DEVICE DRIVER FILES 147

for most new technologies that are unknown to existing operating systems this
technique is the only way to integrate these technologies into the operating
environment.

The other technique we use in this device driver is the combination of two or
more physical device characteristics to achieve the desired results. In short, it
was necessary to have a read/write media that could store the logical-to-actual
sector transformation table. We accomplished that by using the diskette drive.
Clearly, any read/write media, including RAM, would have achieved the same
results.

The important point to remember is that you are the one that creates the
implementation of the abstract device being accessed. Only your imagination
limits how that can be accomplished.

13.5 DOS WORM Device Driver Files

We must make a number of modifications to the template-based DOS device
driver to turn it into the new WORM device driver. Some of the files do not
change. Here is the list of all the files, with information about their status.

• worm - This is the makefile. We changed the name of the device driver
from dos. sys to worm. sys (Appendix M).

• dos_dd.h - No change.

• dos_hdr. asm - No change.

• dos_end. c - No change.

• dos_data. c - We added a few global variables this driver needs (Ap
pendix M).

• dos_env. c - We changed this file to indicate that it is not necessary to
have all the DOS request functions of the template present in each DOS
device driver. Therefore, only functions lni t_cmd, Media_check_cmd,
Build_bpb_cmd, lnput_cmd, Output_cmd, and UnknoWll_cmd are referenced
in this file (Appendix M).

• We created a new file, worm. h, which contains definitions for the WORM
device driver (Appendix M).

• dos_drvr. c - This file contains six functions that implement commands:
lni t_cmd, Media_check_cmd, Build_bpb_cmd, lnput_cmd, Output_cmd,
and Unknown_ cmd.

The file dos_drvr. c also contains the ancillary functions Which_sector,
Check_sector, and Send_command. (Appendix M).

148 CHAPTER 13. DOS WORM DEVICE DRIVER

13.6 What If It Doesn't Work?

The most difficult challenge you will face if the DOS WORM device driver does
not work is to isolate the device that is responsible for the error condition. In
general, accesses to the magnetic disk through the BIOS interrupt Ox13 are quite
reliable. It is usually the new device or the combination of device operations that
cause the problem.

It is important to follow the problem determination process presented in
Chapter 5. You remember that you must analyze each component in the system
separately and convince yourself that they work properly before attempting to
analyze the entire device driver.

For this particular device driver both the diskette drive and the IBM 3363
WORM must be exercised separately. It is easy to exercise the diskette drive.
You can employ any of the following techniques.

• Perform DOS operations to the A: drive

• Use the disk BIOS function stand-alone

• Use disk utilities you may have available

• Write your own test programs

It is far more difficult to test the IBM 3363 WORM device. The first step is
to run the IBM-supplied diagnostics. However, running the diagnostics will not
allow you to sequence through the IBM 3363 commands that the DOS WORM
device driver is sending to the IBM 3363. Some type of stand-alone test program
is required to perform this type of test. The following example is a rudimentary
form of such a program.

13.6. WHAT IF IT DOESN'T WORK? 149

1* -*1
1* *1
1* PROGRAM T s t 3 3 6 3 *1
1* *1
1* REMARKS This program exercises the IBM 3363 Optical *1
1* Disk BIOS. *1
1* *1
1* -*1

#include
#include
#include

<dos.h>
<stdio.h>
<string.h>

#define BUF_SIZE 512

unsigned char
unsigned char
void

filename [64];
rw_buf [BUF_SIZE];
(far *bios_ptr) (void);

unsigned int i' ,

}

for (i = 0; i < BUF_SIZE; i++)
{

rw_buf [i] = Ox3535;
}

main 0
{

unsigned int seg;
unsigned int ofs;
unsigned int far *i_ptr;

unsigned char ah_reg;
unsigned char aI_reg;
unsigned char dh_reg;
unsigned char dl_reg;
unsigned int cx_reg;
unsigned int es_reg;
unsigned int bx_reg;

150 CHAPTER 13. DOS WORM DEVICE DRIVER

unsigned char ah_ret;
unsigned char aI_ret;
unsigned char bh_ret;
unsigned char bl_ret;
unsigned char ch_ret;
unsigned char cl_ret;
unsigned char dh_ret;
unsigned char dl_ret;

i_ptr = MK_FP (Ox0040, OxOOBO);
ofs *i_ptr++;
seg = *i_ptr;

for (; ;)
{

printf (lI\nDo You Wish To Quit (yIn)? II);
scanf (" %c", filename);
printf ("\n");
if «*filename 'y')

,y,))
II

{

}

else
{

(*filename

break;

Set_Buffer 0;
printf (lI\nEnter Command Code (Hex) II);
scanf (" %X", &ah_reg);

printf (lI\nEnter Block Count (Hex) ");
scanf (" %X", &al_reg);

printf (lI\nEnter Track Address (Hex) II);
scanf (" %X", &cx_reg);

printf (lI\nEnter Sector Address (Hex) ");
scanf (" %X", &dh_reg);

printf (lI\nEnter Drive Address (Hex) II);

13.6. WHAT IF IT DOESN'T WORK?

seanf (" %X", &dl_reg);

_ES
_BX
_CX
_DH
_DL
_AH
_AL

ah_ret
aI_ret
bh_ret
bl_ret
eh_ret
el_ret
dh_ret
dl_ret

_DS;
(unsigned int) rw_buf;

es_reg;
bx_reg;
ex_reg;
dh_reg;
dl_reg;
ah_reg;
aI_reg;

_AH;
_AL;
_BH;
_BL;
_CH;
_CL;
_DH;
_DL;

printf ("\n\t\tBIOS Return Values\n\n");
printf ("\tAH %02x\tAL %02x\n" , ah_ret,
printf ("\tBH %02x\tBL %02x\n" , bh_ret,
printf (lI\tCH %02x\tCL %02x\n" , eh_ret,
printf ("\tDH %02x\tDL %02x\n" , dh_ret,

}

}

printf (IIProgram Complete\n");
}

151

aI_ret);
bl_ret);
el_ret);
dl_ret);

This program has proven invaluable during the development of the DOS
WORM device driver for the IBM 3363. Although it is not very elegant, it is
flexible enough to allow the user of an IBM 3363 WORM to fully exercise its
command list.

If all else fails you will find that you must resort to a software debugger or
hardware debugger to uncover your more subtle nemesis.

152 CHAPTER 13. DOS WORM DEVICE DRIVER

13.7 Summary

DOS WORM Device Driver Commands

We use five commands to implement the WORM device driver.

• (00) Initialize

• (01) Check Media

• (02) Build BPB

• (04) Input From Device

• (08) Output To Device

We also included the function Unknown_cmd in dos_drvr. c and three ancillary
routines: Which_sector, Check_sector, and Send_command. See Appendix M.

DOS WORM Device Driver Files

Files in the WORM block device driver:

• worm - This is the makefile (Appendix M).

• dos_dd.h - No change.

• dos_hdr. asm - No change.

• dos_end. c - No change.

• dos_data. c - We added a few global variables this driver needs (Ap
pendix M).

• dos _ env . c - We modified the array of pointers to functions (dos _ cmd []) .
. WORM uses six functions: Init_cmd, Media_check_cmd, Build_bpb_cmd,

Input_cmd, Output_cmd, and Unknown_cmd (Appendix M).

• worm. h - This file contains definitions for the WORM device driver
(Appendix M).

• dos_drvr. c - We use six functions and three auxiliary routines. The
functions are Init_cmd, Media_check_cmd, Build_bpb_cmd, Input_cmd,
Output_cmd, and Unknown_cmd (Appendix M).

13.8. EXERCISES 153

13.8 Exercises

Exercise 13.1 List the commands the WORM device driver supports.

Exercise 13.2 Run tst_3363 to exercise each individual command in the
WORM device driver.

Exercise 13.3 Explain the major changes we made in the template device
driver files to create the WORM device driver.

Appendix A

Device Driver Commands

This is a summary of DOS device driver commands. The command field appears
in the request header. We discussed the structure REQ_struct on page 45. One
of the members of that structure is command and the command is a small number
that tells DOS the type of service requested. In Table A.1 cd identifies character
device commands and bd, block device commands; other commands apply to
either type of driver.

Consult your DOS Technical Reference Manual for details.

155

156 APPENDIX A. DEVICE DRIVER COMMANDS

Value I Description

00 Initialize
bd 01 Check Media
bd 02 Build BPB

03 IOCTL Input
04 Input From Device

cd 05 Input Without Waiting
cd 06 Obtain Input Status
cd 07 Flush Input Buffer

08 Output To Device
09 Output And Verify Data

cd 10 Obtain Output Status
cd 11 Flush Output Buffer

12 IOCTL Output
13 Open Device
14 Close Device

bd 15 Check If Media Is Removable
19 IOCTL To Device
23 Get Logical Device Map
24 Set Logical Device Map

Table A.l: DOS Device Driver Commands

Appendix B

Device Driver Interface

DOS uses a request header to pass information to a device driver. We use the
structure REQ_struct to hold the information. The first five fields are fixed (we
discussed them on page 45). The union req_type holds the variable part of
the request. It is variable because different commands require different kinds of
information. In the next few pages we will show you request headers for various
commands - they represent a small set from Appendix A. First, here is the full
structure for the request header.

struct REQ_struct
{

unsigned char
unsigned char
unsigned char
unsigned int
unsigned char
union
{

struct
struct
struct
struct
struct
struct
struct

} req_type;
};

length; 1* Length In Bytes Of Req *1
unit; 1* Minor Device Unit Number *1
command; 1* Device Command Code *1
status; 1* Device Status Word *1
reserved [8] ; 1* Reserved For DOS *1

INIT_struct init_req;
MEDIA_CHECK_struct media_check_req;
BUILD_BPB_struct build_bpb_req;
I_O_struct i_o_req;
INPUT_NO_WAIT_struct input_no_wait_req;
IOCTL_struct ioctl_req;
L_D_MAP_struct l_d_map_req;

157

158 APPENDIX B. DEVICE DRIVER INTERFACE

IN IT Command - input values

• IN IT command uses the structure IN IT _struct to hold the variable part
of REQ_struct.

• See INIT_struct in dos_dd.h (Appendix F).

• The variable part of the structure REQ_struct follows the variable
reserved.

• XX identifies input values you do not have to supply and output values
DOS does not provide; the other input values you must supply.

length 1234 length in bytes of header plus variable data
unit XX minor device number (block devices only)
command 00 command code
status XX status after execution
reserved XX

num_of_units 01 number of units
end_ptr 1234:5678 ending address of the driver
BPB_ptr 1234:5678 pointer to arguments to initialize
drive_num 01 driver number
config_err XX config.sys error flag

APPENDIX B. DEVICE DRIVER INTERFACE 159

INIT Command - output values

• IN IT command uses the structure INIT _struct to hold the variable part
of REQ_struct.

• See INIT_struct in dos_dd.h (Appendix F).

• The variable part of the structure REQ_struct follows the variable
reserved.

• XX identifies input values you do not have to supply and output values
DOS does not provide; the other input values you must supply.

length 1234 length in bytes of header plus variable data
unit XX minor device number (block devices only)
command 00 command code
status 00 status after execution
reserved XX

num_of_units 01 number of units
end_ptr 1234:5678 ending address of the driver
BPB_ptr 1234:5678 pointer to arguments
drive_num 01 driver number
config_err 00 config.sys error flag

160 APPENDIX B. DEVICE DRIVER INTERFACE

CHECK MEDIA Command - input values

• CHECK MEDIA command uses the structure MEDIA_CHECK_struct to
hold the variable part of R.EQ_struct.

• See MEDIA_CHECK_struct in dos_dd.h (Appendix F).

• The variable part of the structure REQ_struct follows the variable
reserved.

• XX identifies input values you do not have to supply and output values
DOS does not provide; the other input values you must supply.

length 1234 length in bytes of header plus variable data
unit 01 minor device number (block devices only)
command 01 command code
status XX status after execution
reserved XX

media_byte 01 media descriptor from DOS
return_info XX returns information about media
return_ptr XXXX:XXXX pointer to previous volume id

APPENDIX B. DEVICE DRIVER INTERFACE 161

CHECK MEDIA Command - output values

• CHECK MEDIA command uses the structure MEDIA_CHECK_struct to
hold the variable part of REQ_struct.

• See MEDIA_CHECK_struct in dos_dd.h (Appendix F).

• The variable part of the structure REQ_struct follows the variable
reserved.

• XX identifies input values you do not have to supply and output values
DOS does not provide; the other input values you must supply.

length 1234 length in bytes of header plus variable data
unit 01 minor device number (block devices only)
command 01 command code
status 00 status after execution
reserved XX

media_byte 01 media descriptor from DOS
return_info 55 returns information about media
return_ptr 1234:5678 pointer to previous volume id

162 APPENDIX B. DEVICE DRIVER INTERFACE

Build BPB Command - input values

• Build BPB command uses the structure BUILD_BPB_struct to hold the
variable part of REQ_struct.

• See BUILD_BPB_struct in dos_dd.h (Appendix F).

• The variable part of the structure REQ_struct follows the variable
reserved.

• XX identifies input values you do not have to supply and output values
DOS does not provide; the other input values you must supply.

length 1234 length in bytes of header plus variable data
unit 01 minor device number (block devices only)
command 02 command code
status XX status after execution
reserved XX

media_byte 01 media descriptor from DOS
buffer_ptr 1234:5678 buffer address (transfer address)
BPB_table XXXX:XXXX pointer to BPB table

APPENDIX B. DEVICE DRIVER INTERFACE 163

Build BPB Command - output values

• Build BPB command uses the structure BUILD_BPB_struct to hold the
variable part of REQ_struct.

• See BUILD_BPB_struct in dos_dd.h (Appendix F).

• The variable part of the structure REQ_struct follows the variable
reserved.

• XX identifies input values you do not have to supply and output values
DOS does not provide; the other input values you must supply.

length 1234 length in bytes of header plus variable data
unit 01 minor device number (block devices only)
command 02 command code
status 00 status after execution
reserved XX

media_byte 01 media descriptor from DOS
buffer_ptr 1234:5678 buffer address (transfer address)
BPB_table 1234:5678 pointer to BPB table

164 APPENDIX B. DEVICE DRIVER INTERFACE

INPUT Command - input values

• INPUT command uses the structure I_O_struct to hold the variable part
of REQ_struct.

• See I_O_struct in dos_dd.h (Appendix F).

• The variable part of the structure REQ_struct follows the variable
reserved.

• XX identifies input values you do not have to supply and output values
DOS does not provide; the other input values you must supply.

length 1234 length in bytes of header plus variable data
unit 00 minor device number (block devices only)
command 04 command code
status XX status after execution
reserved XX

media_byte 01 media descriptor from DOS
buffer_ptr 1234:5678 pointer to buffer
count XXXX byte / sector count
start_sector 1234 starting sector number
vol_id_ptr 1234:5678 pointer to volume id
start_sector_32 12345678 32-bit starting sector

APPENDIX B. DEVICE DRIVER INTERFACE 165

INPUT Command - output values

• INPUT command uses the structure I_O_struct to hold the variable part
of REQ_struct.

• See I_O_struct in dos_dd.h (Appendix F).

• The variable part of the structure REQ_struct follows the variable
reserved.

• XX identifies input values you do not have to supply and output values
DOS does not provide; the other input values you must supply.

length 1234 length in bytes of header plus variable data
unit 00 minor device number (block devices only)
command 04 command code
status 00 status after execution
reserved XX

media_byte 01 media descriptor from DOS
buffer_ptr 1234:5678 pointer to buffer
count 1234 byte / sector count
start_sector 1234 starting sector number
vol_id_ptr 1234:5678 pointer to volume id
start_sector_32 12345678 32-bit starting sector

166 APPENDIX B. DEVICE DRIVER INTERFACE

INPUT NO WAIT Command - input values

• INPUT NO WAIT command uses the structure INPUT_NO_WAIT_struct
to hold the variable part of REQ_struct.

• See INPUT_NO_WAIT_struct in dos_dd.h (Appendix F).

• The variable part of the structure REQ_struct follows the variable
reserved.

• XX identifies input values you do not have to supply and output values
DOS does not provide; the other input values you must supply.

length 1234 length in bytes of header plus variable data
unit XX minor device number (block devices only)
command 05 command code
status 00 status after execution
reserved XX

I media_byte XX byte read from device

APPENDIX B. DEVICE DRIVER INTERFACE 167

INPUT NO WAIT Command - output values

• INPUT NO WAIT command uses the structure INPUT_NO_WAIT_struct
to hold the variable part of REQ_struct.

• See INPUT_NO_WAIT_struct in dos_dd.h (Appendix F).

• The variable part of the structure REQ_struct follows the variable
reserved.

• XX identifies input values you do not have to supply and output values
DOS does not provide; the other input values you must supply.

length 1234 length in bytes of header plus variable data
unit XX minor device number (block devices only)
command 05 command code
status 00 status after execution
reserved XX

55 byte read from device

Appendix C

arrange Utility

Here is the source listing for the arrange utility.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include "calls.h" 1* function call prototypes

#define MAXCMDS 100 1* maximum number of cmds
#define MAXLINE 100 1* maximum number of char

char *progname; 1* name of this program

1* arrange: utility to arrange segments in a .asm file
void main(int argc, char *argv[])
{

char *cmds[MAXCMDS];
FILE *fp_cmds, *fp_in, *fp_out;

progname = argv[O];
if (argc != 4)

allowed
in a line

Error (IIUsage: %s cmds input output", progname);
if ((fp_cmds = fopen(argv[l] , "r")) == NULL)

Error ("Cannot open command file %S", argv[l])j
if ((fp_in = fopen(argv[2] , "r")) == NULL)

Error ("Cannot open input file %S", argv[2]);
if ((fp_out = fopen(argv[3] , "W")) == NULL)

169

*1

*1
*1

170

}

APPENDIX C. ARRANGE UTILITY

Error ("Cannot open output file %s", argv[3]);

Read_Cmds (cmds, MAXCMDS, fp_cmds);
Run_Cmds (cmds, fp_in, fp_out);

1* Read_Cmds: read command file into an array of pointers *1
void Read_Cmds(char *cmds[], int limit, FILE *fp_cmds)
{

}

int nl = 0; 1* number of lines
char line [MAXLINE] ;

while (fgets (line, MAXLINE, fp_cmds))
{

}

cmds[nl] = strdup (line);
if (!cmds[nl])

1* allocate space for line *1

Error ("strdup failed at line %s", line);
if (++nl >= limit)

Error ("Read_Cmds: too many commands", '"');

cmds[nl] = NULL;

1* Run_Cmds: run the commands accumulated in the array cmds *1
void Run_Cmds(char *cmds[], FILE *fp_in, FILE *fp_out)
{

}

char line[MAXLINE];

while (fgets (line, MAXLINE, fp_in))
{

}

Apply_Cmds (cmds, line);
fputs (line, fp_out);

APPENDIX C. ARRANGE UTILITY 171

1* Apply_Cmds: apply commands in cmds[] to contents of line *1
void Apply_Cmds(char *cmds[], char *line)
{

}

int i;
char *p;

for (i = 0; P = cmds[i]; i++)
{

}

}

case's' :
Substitute (++p, line);
break;

default:
Error ("Unknown command %s", p);
break;

1* Error: print error message and terminate the program
void Error(char *sl, char *s2)
{

}

fprintf (stderr, "%s: ", progname);
fprintf (stderr, sl, s2);
exit (1);

172 APPENDIX C. ARRANGE UTILITY

1* Substitute: substitute first string in line by the second *1
void Substitute(char *s, char *line)
{

}

char *p;
int i, slen;
char delimiter = *s;
char source [MAXLINE], target [MAXLINE], tmpstr[MAXLINE];

for (i = 0, s++; *s != '\n' && *s != delimiter; i++)
source[i] = *s++;

source[i] = '\0';
if «slen = strlen (source)) <= 0)

Error ("Line %s, source cannot be empty", s);
for (i = 0, s++; *s != '\n' && *s != delimiter; i++)

target[i] = *s++;
target[i] = '\0';
for (p = strstr (line, source); p; p strstr (p+l, source))
{

}

strcpy (tmpstr, p+slen);
strcpy (p, target);
strcat (p, tmpstr);

APPENDIX C. ARRANGE UTILITY 173

The arrange utility expects three arguments:

• the file name that contains the substitute commands

• the input file

• the output file

For example, in the dos makefile for the template we use

arrange dos.arr dos_data.asm m2.asm

to arrange the segments in dos_data. asm. The file m2. asm contains the
modifications.

Here are the contents of dos . arr that we use.

s/DGROUP group _DATA,_BSS/DGROUP group _DATA,_BSS,_TEXT/
s/assume cs:_TEXT/assume cs:DGROUP/
s/dw @/dw DGROUP:@/
s/dw _Init_cmd/dw DGROUP:_Init_cmd/
s/dw _Media_check_cmd/dw DGROUP:_Media_check_cmd/
s/dw _Build_bpb_cmd/dw DGROUP:_Build_bpb_cmd/
s/dw _Ioctl_input_cmd/dw DGROUP:_Ioctl_input_cmd/
s/dw _Input_cmd/dw DGROUP:_Input_cmd/
s/dw _Input_no_wait_cmd/dw DGROUP:_Input_no_wait_cmd/
s/dw _Input_status_cmd/dw DGROUP:_Input_status_cmd/
s/dw _Input_flush_cmd/dw DGROUP:_Input_flush_cmd/
s/dw _Output_cmd/dw DGROUP:_Output_cmd/
s/dw _Output_verify_cmd/dw DGROUP:_Output_verify_cmd/
s/dw _Output_status_cmd/dw DGROUP:_Output_status_cmd/
s/dw _Output_flush_cmd/dw DGROUP:_Output_flush_cmd/
s/dw _Ioctl_output_cmd/dw DGROUP:_Ioctl_output_cmd/
s/dw _Dev_open_cmd/dw DGROUP:_Dev_open_cmd/
s/dw _Dev_close_cmd/dw DGROUP:_Dev_close_cmd/
s/dw _Remove_media_cmd/dw DGROUP:_Remove_media_cmd/
s/dw _Ioctl_cmd/dw DGROUP:_Ioctl_cmd/
s/dw _Unknown_cmd/dw DGROUP:_Unknown_cmd/
s/dw _Get_l_d_map_cmd/dw DGROUP:_Get_l_d_map_cmd/
s/dw _Set_l_d_map_cmd/dw DGROUP:_Set_l_d_map_cmd/
s/offset _/offset DGROUP:_/
s/offset @/offset DGROUP:@/

Appendix D

DOS API

This is a summary of DOS API (Application Programming Interface). To use a
DOS function, load the Function value in AH (unless otherwise noted), load other
registers as indicated, and issue INT 21. The Function values are in hexadecimal.
Please see your DOS Technical Reference Manual for details.

Input Output
Function Registers Registers Description

00 program terminate
CS points to PSP

01 keyboard input
AL character from standard input device

02 display output
DL character

03 auxiliary input
AL character from auxiliary device

04 auxiliary output
DL character

05 printer output
DL character

175

176 APPENDIX D. DOS API

Input Output
Function Registers Registers Description

06 direct console I/O
OL OxFF for console input
OL OxOO-OxFE for console output

AL depends on OL
07 direct console input without echo

AL character from standard input device
08 console input without echo

AL character from standard input device
09 print string

OS segment for character string
OX offset for character string

OA buffered keyboard input
OS segment for input buffer
ox offset for input buffer

OB check standard input status
AL OxFF if character is available
AL OxOO if character is not available

oe clear kbd buffer and invoke kbd function
AL function number

OD disk reset
OE select disk

OL drive number
AL total number of drives

OF open file
os segment for unopened FeB
ox offset for unopened FeB

AL OxOO if file opened
AL OxFF if file not opened

10 close file
os segment for opened FeB
ox offset for opened FeB

AL OxOO if file is found
AL OxFF if file not is found

APPENDIX D. DOS API 177

Input Output
Function Registers Registers Description

11 search for first entry
OS segment for unopened FeB
ox offset for unopened FeB

AL OxOO if matching filename found
AL OxFF if matching filename not found

12 search for next entry
OS segment for unopened FeB
ox offset for unopened FeB

AL OxOO if matching filename found
AL OxFF if matching filename not found

13 delete file
os segment for unopened FeB
ox offset for unopened FeB

AL OxOO if file deleted
AL OxFF if file not found

14 sequential read
OS segment for opened FeB
ox offset for opened FeB

AL OxOO if read successfully completed
AL OxO 1 if EO F (no data read)
AL Ox02 if DTA too small (read canceled)
AL Ox03 if EO F (partial record read)

15 sequential write
OS segment for opened FeB
ox offset for opened FeB

AL OxOO if write successfully completed
AL OxOl if diskette is full (write canceled)
AL Ox02 if DTA too small (write canceled)

16 create file
OS segment for unopened FeB
ox offset for unopened FeB

AL OxOO if file created
AL OxFF if file not created

178 APPENDIX D. DOS API

Input Output I
Function Registers Registers Description

17 rename file
os segment for a modified FeB
ox offset for a modified FeB

AL OxOO if file renamed
AL OxFF if file not renamed

19 current disk
AL current default drive

lA set disk transfer address
os segment for disk transfer address
OX offset for disk transfer address

IB allocation table information
OS segment for media descriptor byte
BX offset for media descriptor byte
ox number of allocation units
AL number of sectors/allocation unit
ex size of physical sector

Ie allocation table info for a device
OL drive number

os segment for media descriptor byte
BX offset for media descriptor byte
ox number of allocation units
AL number of sectors/allocation unit
ex size of physical sector

21 random read
os segment for an opened FeB
ox offset for an opened FeB

AL OxOO if read successfully completed
AL OxOl if EOF (no data read)
AL Ox02 if DTA too small (read canceled)
AL Ox03 if EOF (partial record read)

22 random write
os segment for opened FeB
ox offset for opened FeB

AL OxOO if write successfully completed
AL OxOl if diskette is full (write canceled)
AL Ox02 if DTA too small (write canceled)

APPENDIX D. DOS API 179

Input Output
Function Registers Registers Description

23 file size
DS segment for unopened FeB
DX offset for unopened FeB

AL OxOO if the directory entry found
AL OxFF if the directory entry not found

24 set relative record field
DS segment for opened FeB
DX offset for opened FeB

25 set interrupt vector
DS segment for interrupt handling routine
DX offset for interrupt handling routine
AL interrupt number

26 create new program segment
DX segment number for new segment

27 random block read
DS segment for opened FeB
DX offset for opened FeB
ex number of records to read

AL OxOO if read successfully completed
AL Ox01 if EOF (no data read)
AL Ox02 if DTA too small (read canceled)
AL Ox03 if EOF (partial record read)
ex actual number of records read

28 random block write
DS segment for opened FeB
DX offset for opened FeB
ex number of records to write

AL OxOO if write successfully completed
AL OxO 1 if diskette is full
AL Ox02 if DTA too small
ex actual number of records written

180 APPENDIX D. DOS API

Input Output
Function Registers Registers Description

29 parse filename
OS segment for command line to parse
S1 offset for command line to parse
ES segment for portion of memory (target)
01 offset for portion of memory (target)
AL bit value to control parsing

AL OxOO if no global filename characters
AL OxOI if global filename characters
AL OxFF if driver specified is invalid
OS segment first character after filename
S1 offset first character after filename
ES segment first byte of formatted FCB
01 offset first byte of formatted FCB

2A get date
AL day of the week
CX year
OH month
OL day

2B set date
CX year
OH month
OL day

AL OxOO if date was valid
AL OxFF if date was not valid

2C get time
CH hour
CL minutes
OH seconds
OL hundredths

2D set time
CH hour
CL minutes
OH seconds
OL hundredths

AL OxOO if time was valid
AL OxFF if time was not valid

APPENDIX D. DOS API 181

Input Output
Function Registers Registers Description

2E set/reset verify switch
AL OxOO to set verify OFF
AL OxO 1 to set verify ON

2F get disk transfer address (DTA)
ES segment for current DTA
BX offset for current DTA

30 get DOS version number
BX OxOOOO
ex OxOOOO
AL major version number
AH minor version number

31 terminate process and remain resident
AL return code
DX memory size in paragraphs

33 ctrl-break check
AL OxOO to request current state
AL OxO 1 to set the current state
DL OxOO to set the current state OFF
DL Ox01 to set the current state ON

DL OxOO the current state is OFF
DL Ox01 the current state is ON

35 get vector
AL interrupt number

ES segment for interrupt handling routine
BX offset for interrupt handling routine

36 get disk free space
DL drive number

BX available clusters
DX clusters/ driver
ex bytes / sector
AX OxFFFF if drive number is invalid
AX number of sectors per cluster

182 APPENDIX D. DOS API

Input Output
Function Registers Registers Description

38 return country-dependent information
DS segment for 32-byte memory area
DX offset for 32-byte memory area
AL function code

AX error code if carry flag is set
DS segment country data if flag not set
DX offset country data if flag not set

39 create subdirectory (mkdir)
DS segment for an ASCIIZ string
DX offset for an ASCIIZ string

AX error code if carry flag is set
3A remove subdirectory (rmdir)

DS segment for an ASCIIZ string
DX offset for an ASCIIZ string

AX error code if carry flag is set
3B change current directory (chdir)

DS segment for an ASCIIZ string
DX offset for an ASCIIZ string

AX error code if carry flag is set
3C create a file (creat)

DS segment for an ASCIIZ string
DX offset for an ASCIIZ string
ex attribute of the file

AX error code if carry flag is set
AX 16-bit handle if carry flag is not set

3D open a file
DS segment for an ASCIIZ string
DX offset for an ASCIIZ string
AL access code

AX error code if carry flag is set
AX 16-bit handle if carry flag is not set

3E close a file handle
BX file handle returned by open or create

AX error code if carry flag is set

APPENDIX D. DOS API 183

Input Output
Function Registers Registers Description

3F read from a file or device
BX file handle
DS segment for buffer address
DX offset for buffer address
ex number of bytes to read

AX error code if carry flag is set
AX number of bytes read

40 write to a file or device
BX file handle
DS segment for data address
DX offset for data address
ex number of bytes to write

AX error code if carry flag is set
AX number of bytes written

41 delete a file from a directory
DS segment for an ASCIIZ string
DX offset for an ASCIIZ string

AX error code if carry flag is set
42 move file read write pointer

ex distance (offset) to move (high)
DX distance (offset) to move (low)
AL method of moving
BX file handle

AX error code if carry flag is set
DX new location if carry not set (high)
AX new location if carry not set (low)

43 change file mode
DS segment for an ASCIIZ string
DX offset for an ASCIIZ string
ex attribute
AL function code

AX error code if carry flag is set
ex current attribute of file

184 APPENDIX D. DOS API

Input Output
Function Registers Registers Description

44 I/O control for devices (IOCTL)
os data or segment for buffer
ox data or offset for buffer
ex number of bytes to read or write
BX file handle
BL drive number
AL function value

AX error code if carry flag is set
AX error code if OxFF
AX number of bytes transferred

45 duplicate file handle
BX file handle

AX error code if carry flag is set
AX new file handle if carry flag not set

46 force a duplicate of a handle
BX existing file handle
ex second file handle

AX error code if carry flag is set
47 get current directory

OS segment for a 64-byte user memory area
SI offset for a 64-byte user memory area
OL drive number

AX error code if carry flag is set
OS segment for full path name
S1 offset for full path name

48 allocate memory
BX number of paragraphs of memory request

AX error code if carry flag is set
AX AX:O points to allocated memory block
BX size of largest block, if allocation fails

49 free allocated memory
ES segment for the block to be returned

AX error code if carry flag is set

APPENDIX D. DOS API 185

Input Output
Function Registers Registers Description

4A modify allocated memory blocks
ES segment for the block
BX new request block size in paragraphs

AX error code if carry flag is set
BX maximum pool size if call fails

4B load or execute a program
DS segment for an ASCIIZ string
DX offset for an ASCIIZ string
ES segment for parameter block
BX offset for parameter block
AL function code

AX error code if carry flag is set
4C terminate a process

AL return code
4D get return code of a subprocess

AX return code
4E find first matching file

DS segment for an ASCIIZ string
DX offset for an ASCIIZ string
ex attribute

AX error code if carry flag is set
4F find next matching file

(function uses DTA from previous call)
AX error code if carry flag is set

54 get verify setting
AL OxOO if verify is OFF
AL OxO 1 if verify is ON

186 APPENDIX D. DOS API

Input Output
Function Registers Registers Description

56 rename a file
os segment for an ASCIIZ old name
ox offset for an ASCIIZ old name
ES segment for an ASCIIZ new name
OI offset for an ASCIIZ new name

AX error code if carry flag is set
57 get/set a file's date and time

AL OxOO if get date and time
AL Ox01 if set date and time
BX file handle
ex time to be set if AL=Ox01
OX date to be set if AL=Ox01

AX error code if carry flag is set
ex time received if AL=OxOO
OX date received if AL=OxOO

59 get extended error
BX OxOOOO (version 3.00 and 3.10)

AX extended error code
BH error class
BL suggested action
eH locus

5A create unique file
OS segment for an ASCIIZ path name
OX offset for an ASCIIZ path name
ex attribute

AX error code if carry flag is set
OS segment for string with filename
OX offset for string with filename

5B create a new file
OS segment for an ASCIIZ path name
OX offset for an ASCIIZ path name
ex attribute

AX error code if carry flag is set

APPENDIX D. DOS API 187

Input Output
Function Registers Registers Description

5C lock/unlock file access
AL OxOO to lock
AL Ox01 to unlock
BX file handle
CX offset high
ox offset low
SI length high
OI length low

AX error code if carry flag is set
62 get program segment prefix address

BX segment address of executing process

Function codes with four hexadecimal digits must be loaded in the AX register.

Input Output
Function Registers Registers Description

5EOO get machine name
OS segment for buffer for computer name
OX offset for buffer for computer name

AX error code if carry flag is set
OS segment for buffer with computer name
OX offset for buffer with computer name
CH OxOO if name not defined
CH not OxOO if name/number defined
CL NETBIOS name number for the name

5E02 set printer
BX redirection list index
CX length of setup string
OS segment for printer setup buffer
SI offset for printer setup buffer

AX error code if carry flag is set

188 APPENDIX D. DOS API

Input Output
Function Registers Registers Description

5E03 get printer
BX redirection list index
ES segment for printer setup buffer
D1 offset for printer setup buffer

AX error code if carry flag is set
ex length of data returned
ES segment for buffer with setup string
D1 offset for buffer with setup string

5F02 get redirection list entry
BX redirection index
DS segment for 128-byte local device name
SI offset for 128-byte local device name
ES segment for 128-byte network name
D1 offset for 128-byte network name

AX error code if carry flag is set
BH bit 0 is 0 if device is valid
BH bit 0 is 1 if device is not valid
BL device type
ex stored parm value
DS segment for ASCIIZ local device name
SI offset for ASCIIZ local device name
ES segment for ASCIIZ network name
D1 offset for ASCIIZ network name

5F03 redirect device
BL Ox03 if printer device
BL Ox04 if file device
ex value to save for caller
DS segment for ASCIIZ device name
SI offset for ASCIIZ device name
ES segment for destination network path
D1 offset for destination network path

AX error code if carry flag is set
5F04 cancel redirection

DS segment for ASCIIZ device name or path
SI offset for ASCIIZ device name or path

AX error code if carry flag is set

Appendix E

visual Utility

Here is the source listing for the visual utility.

1* -*1
1* *1
1* PROGRAM Vis u a 1 *1
1* *1
1* REMARKS Visual is a program that interposes itself *1
1* between DOS and the device drivers in the system. *1
1* Once installed VISUAL displays the device driver *1
1* requests and the results for that request. *1
1* *1
1* NOTES tcc -mt -y -M visual.c *1
1* *1
1* -*1

#include
#include
#include
#include
#include
#include

#include

#define
#define
#define

<dos.h>
<bios.h>
<alloc.h>
<stdio.h>
<stdlib.h>
<string.h>

TRUE
FALSE
MAX_NEW

OxOl
OxOO
Ox05

189

190 APPENDIX E. VISUAL UTILITY

#define Oxl00

1* -
1*
1* Program's "New" Device Headers (Replaces Old)
1*
1* -

struct new_dh_struct
{

dh; struct DEVICE_HEADER_struct
void (far * drv_ptr) 0;

};

1* -

1*
1* DOS Internal Variables Block Structure
1*
1* - - - - - - - - - - - - - - - - - - -

struct DOS_struct
{

unsigned char reserved [34];
struct DEVICE_HEADER_struct far *ddh_ptr;

};

- - - - -*1
*1
*1
*1

- - - - -*1

- - - - -*1
*1
*1
*1

- - - - -*1

APPENDIX E. VISUAL UTILITY 191

1* -*1
1* *1
1* Array Of "New" Device Headers *1
1* To Replace Block Device Headers *1
1* *1
1* -*1

void far Driver_0O 0;
void far Driver_01 0;
void far Driver_02 0;
void far Driver_03 0;
void far Driver_04 0;

struct new_dh_struct new_dh_ary [MAX_NEW]
{

{ 1* 00 *1
{

MK_FP (0, 0), 1* Next Device Header *1
OxOOOO, 1* Attribute *1
FP_OFF (Driver_0O), 1* Strategy Routine *1
FP_OFF (Driver_0O) 1* Interrupt Routine *1

},

Driver_0O
},
{ 1* 01 *1

{

MK_FP (0, 0) , 1* Next Device Header *1
OxOOOO, 1* Attribute *1
FP_OFF (Driver_01), 1* Strategy Routine *1
FP_OFF (Driver_01) 1* Interrupt Routine *1

},

Driver_01
},
{ 1* 02 *1

{

MK_FP (0, 0) , 1* Next Device Header *1
OxOOOO, 1* Attribute *1
FP_OFF (Driver_02), 1* Strategy Routine *1
FP_OFF (Driver_02) 1* Interrupt Routine *1

},

Driver_02
},

192 APPENDIX E. VISUAL UTILITY

{ 1* 03 *1
{

MK_FP (0, 0), 1* Next Device Header *1
OxOOOO, 1* Attribute *1
FP_OFF (Driver_03), 1* Strategy Routine *1
FP_OFF (Driver_03) 1* Interrupt Routine *1

},

Driver_03
},
{ 1* 04 *1

{

MK_FP (0, 0), 1* Next Device Header *1
OxOOOO, 1* Attribute *1
FP_OFF (Driver_04), 1* Strategy Routine *1
FP_OFF (Driver_04) 1* Interrupt Routine *1

},

Driver_04
}

};

APPENDIX E. VISUAL UTILITY 193

1* -*1
1* *1
1* Miscellaneous Program Data Regions (Global Data In General) *1
1* *1
1* -*1

char *cmd_ary [] =

{

"INIT 1* Device Driver Command 0 *1
II MEDIA CHK" , 1* Device Driver Command 1 *1
II BUILD BPB" , 1* Device Driver Command 2 *1
"IOCTL INP" , 1* Device Driver Command 3 *1
II INPUT 1* Device Driver Command 4 *1
"IN NOWAIT", 1* Device Driver Command 5 *1
"INP STAT ", 1* Device Driver Command 6 *1
"INP FLUSH II , 1* Device Driver Command 7 *1
II OUTPUT II 1* Device Driver Command 8 *1
II OUT VERFY" , 1* Device Driver Command 9 *1
"OUT STAT ", 1* Device Driver Command 10 *1
II OUT FLUSH II , 1* Device Driver Command 11 *1
"IOCTL ~UTil, 1* Device Driver Command 12 *1
"DEV OPEN ", 1* Device Driver Command 13 *1
"DEV CLOSE II , 1* Device Driver Command 14 *1
"RM MEDIA 1* Device Driver Command 15 *1
II res 16 1* Device Driver Command 16 *1
" res 17 1* Device Driver Command 17 *1
II res 18 1* Device Driver Command 18 *1
II IOCTL 1* Device Driver Command 19 *1
II res 20 1* Device Driver Command 20 *1
II res 21 1* Device Driver Command 21 *1
II res 22 1* Device Driver Command 22 *1
"GET LDMAP , 1* Device Driver Command 23 *1
"SET LDMAP , 1* Device Driver Command 24 *1
II res 25 II 1* Device Driver Command 25 *1
II res 26 II 1* Device Driver Command 26 *1

};

194

char
{

};

APPENDIX E. VISUAL UTILITY

"-------------------------------"
" Input : Output "
"-------------------------------"
" Length "
"-------------------------------"
" Unit "
"-------------------------------"
" Command:

"-------------------------------"
" Status "
"-------------------------------"
" 1st Field: "
"-------------------------------"
" 2nd Field: " ,
" ------------------------------"
" 3rd Field: "
"-------------------------------"
" 4th Field: " , " _______________________________ tl

,
" 5th Field: "
"-------------------------------"

APPENDIX E. VISUAL UTILITY 195

/* -*/
/* */
/* Global Program Data Region (Continued) */
/* */
/* - - - - - - - - - - - - - - - - - -*/

unsigned int stack [MAX_STK] ; /* Driver Stack Area */
unsigned int flag [MAX_NEW] ; /* Strategy/lntrpt Flag */
unsigned int driver; /* Global Driver Variable */

unsigned int SS_reg; /* SS Register Variable */
unsigned int SP_reg; /* SP Register Variable */
unsigned int ES_reg; /* ES Register Variable */
unsigned int AX_reg; /* AX Register Variable */
unsigned int BX_reg; /* BX Register Variable */
unsigned int CX_reg; /* CX Register Variable */
unsigned int DX_reg; /* DX Register Variable */
unsigned int DS_reg; /* DS Register Variable */

/* Array Of DOS Requests */
struct REQ_struct far *req_ary [MAX_NEW];

196 APPENDIX E. VISUAL UTILITY

1* -*1
1* *1
1* FUNCTION: Dis P I a y _ r e que s t *1
1* *1
1* REMARKS: Display_request displays the DOS request header *1
1* and associated data on the screen for each DOS call *1
1* to the RCD device driver. *1
1* *1
1* - - - - - - - - - - - - - - - - -*1

void Display_request (struct REQ_struct far *req_ptr,

{

unsigned int
unsigned int
unsigned int

if (io_flag)
{

for (i =
{

1;

gotoxy

unsigned int io_flag)

i' ,
x;
y;

i < 22; i++)

(49, i) ;
cputs (req_display [(i-1)]);

}

x = 60;
}

else
{

x = 70;
}

gotoxy (x, 4);
cprintf ("%02X", req_ptr->length);

gotoxy (x, 6);
cprintf ("%c", ('A' + req_ptr->unit»;

gotoxy (x, 8);
cprintf ("%s", cmd_ary [req_ptr->command]);

gotoxy (x, 10);
cprintf ("%02X", req_ptr->status);

APPENDIX E. VISUAL UTILITY

switch (req_ptr->command)
{

197

case INIT: 1* Device Driver INIT *1
gotoxy (50, 12);
cprintf (" Units II);
gotoxy (x, 12);
cprintf ("%02X",

req_ptr->req_type.init_req.num_of_units);

gotoxy (50, 14);
cprintf (IIEnd Addr");
gotoxy (x, 14);
cprintf ("%Fp", req_ptr->req_type.init_req.end_ptr);

gotoxy (50, 16);
cprintf ("BPB Ptr");
gotoxy (x, 16);
cprintf ("%Fp", req_ptr->req_type.init_req.BPB_ptr);

gotoxy (50, 18);
cprintf ("Drive #");
gotoxy (x, 18);
cprintf ("%02X",

req_ptr->req_type.init_req.drive_num);

gotoxy (50, 20);
cprintf ("ConfigErr");
gotoxy (x, 20);
cprintf ("%04X",

req_ptr->req_type.init_req.config_err);

break;

case MEDIA_CHECK 1* Device Driver MEDIA CHK *1
gotoxy (50, 12);
cprintf ("MediaByte");
gotoxy (x, 12);
cprintf ("%02X",

req_ptr->req_type.media_check_req.media_byte);

gotoxy (50, 14);

198

cprintf (IIMedia Chk");
gotoxy (x, 14);
cprintf ("%02X",

APPENDIX E. VISUAL UTILITY

req_ptr->req_type.media_check_req.return_info);

gotoxy (50, 16);
cprintf ("Vol IDPtr");
gotoxy (x, 16);
cprintf ("%Fp",

req_ptr->req_type.media_check_req.return_ptr);

break;

case BUILD_BPB 1* Device Driver BUILD BPB *1

case
case
case
case
case

gotoxy (50, 12);
cprintf ("MediaByte");
gotoxy (x, 12);
cprintf ("%02X",

req_ptr->req_type.build_bpb_req.media_byte);

gotoxy (50, 14);
cprintf ("BufferPtr");
gotoxy (x, 14);
cprintf ("%Fp",

req_ptr->req_type.build_bpb_req.buffer_ptr);

gotoxy (50, 16);
cprintf ("BPBTblPtr");
gotoxy (x, 16);
cprintf ("%Fp",

req_ptr->req_type.build_bpb_req.BPB_table);

break;

INPUT 1* Device Driver INPUT
OUTPUT : 1* Device Driver OUTPUT
IOCTL_INPUT 1* Device Driver IOCTL INP
IOCTL_OUTPUT : 1* Device Driver IOCTL OUT

*1
*1
*1
*1

OUTPUT_VERIFY : 1* Device Driver OUT VERIFY *1
gotoxy (50, 12);
cprintf ("MediaByte");
gotoxy (x, 12);

APPENDIX E. VISUAL UTILITY

cprintf (1I%02X II ,
req_ptr->req_type.i_o_req.media_byte);

gotoxy (50, 14);
cprintf (IIBufferPtr ll);
gotoxy (x, 14);
cprintf (II%Fpll,

req_ptr->req_type.i_o_req.buffer_ptr);

gotoxy (50, 16);
cprintf (IIXferCount ll);
gotoxy (x, 16);
cprintf (1I%04X II , req_ptr->req_type.i_o_req.count);

gotoxy (50, 18);
cprintf (IIStartSect ll);
gotoxy (x, 18);

199

if (req_ptr->req_type.i_o_req.start_sector
{

OxFFFF)

}

else
{

}

cprintf (1I%08IX II ,
req_ptr->req_type.i_o_req.start_sector_32);

cprintf (1I%04X II ,
req_ptr->req_type.i_o_req.start_sector);

gotoxy (50, 20);
cprintf (IIVol IDPtr ll);
gotoxy (x, 20);
cprintf (II%Fpll, req_ptr->req_type.i_o_req.vol_id_ptr);

break;

case IOCTL 1* Device Driver IOCTL *1
gotoxy (50, 12);
cprintf (IIMajorFunc ll);
gotoxy (x, 12);
cprintf (1I%02XII,

req_ptr->req_type.ioctl_req.major_func);

200

gotoxy (50, 14);
cprintf ("MinorFunc");
gotoxy (x, 14);
cprintf ("%02X",

APPENDIX E. VISUAL UTILITY

req_ptr->req_type.ioctl_req.minor_func);

gotoxy (50, 16);
cprintf ("SI RegVal ll

);

gotoxy (x, 16);
cprintf ("%04X", req_ptr->req_type.ioctl_req.SI_reg);

gotoxy (50, 18);
cprintf ("01 RegVal");
gotoxy (x, 18);
cprintf (1%04X", req_ptr->req_type.ioctl_req.DI_reg);

gotoxy (50, 20);
cprintf (IIRequstPtr");
gotoxy (x, 20);
cprintf (II %Fp II ,

req_ptr->req_type.ioctl_req.ioctl_req_ptr);

break;

case GET_L_D_MAP 1* Device Driver GET LD Map *1
case SET_L_D_MAP 1* Device Driver SET LD Map *1

gotoxy (50, 12);
cprintf ("Unit Code");
gotoxy (x, 12);
cprintf (1%02X",

req_ptr->req_type.l_d_map_req.unit_code);

gotoxy (50, 14);
cprintf ("Cmnd Code");
gotoxy (x, 14);
cprintf (1I%02X",

req_ptr->req_type.l_d_map_req.cmd_code);

gotoxy (50, 16);
cprintf (IIStatus II);
gotoxy (x, 16);
cprintf ("%04X",

APPENDIX E. VISUAL UTILITY

}

}

break;

case DEV_OPEN
case DEV_CLOSE:
case INPUT_FLUSH
case INPUT_STATUS
case OUTPUT_FLUSH:
case REMOVE_MEDIA:
case OUTPUT_STATUS
case INPUT_NO_WAIT

break;

default :
break;

getch 0;

1* Device Open Command
1* Device Close Command
1* Character Devices Only
1* Character Devices Only
1* Character Devices Only
1* Removable Media

201

*1
*1
*1
*1
*1
*1

1*
1*

Character Devices Only *1
No Wait Input--Char Only *1

202 APPENDIX E. VISUAL UTILITY

1* -*1
1* *1
1* FUNCTION: Com m 0 n _ d r i v e r *1
1* *1
1* REMARKS: Common_driver processes all DOS requests from *1
1* each of the respective drivers (00 - 04). *1
1* Each driver calls Common_driver with its driver *1
1* number. This is used as the index into the common *1
1* driver tables. *1
1* *1
1* -*1

void Common_driver (unsigned int driver,

{

int
int
void
void

unsigned int ES_reg,
unsigned int BX_reg)

x' ,
y;

struct REQ_struct

(far * Strategy_rtn) ();
(far * Interrupt_rtn) ();
far *req_ptr;

x = wherex 0;
y = wherey 0;

if (flag [driver] 0)
{

}

else
{

flag [driver]++;
req_ary [driver] = MK_FP (ES_reg, BX_reg);

Strategy_rtn = MK_FP (FP_SEG (

_ES = ES_reg;
_BX = BX_reg;
Strategy _rtn 0;

new_dh_ary [driver] .dh.next_hdr),
new_dh_ary [driver] .dh.dev_strat);

flag [driver] = 0;
req_ptr = req_ary [driver];

APPENDIX E. VISUAL UTILITY

}

}

ES_reg = FP_SEG (req_ptr);
BX_reg = FP_OFF (req_ptr);
Display_request (req_ptr, TRUE);
Interrupt_rtn = MK_FP (FP_SEG (

_ES = ES_reg;

new_dh_ary [driver].dh.next_hdr),
new_dh_ary [driver] .dh.dev_int);

_BX = BX_reg;
Interrupt_rtn ();
Display_request (req_ptr, FALSE);

gotoxy (x, y);

203

204 APPENDIX E. VISUAL UTILITY

1* - - - - - -
1*

- -*1

1* FUNCTION: DOS _ Set u p
1*
1*
1*
1*

REMARKS: DOS_Setup transforms O/S dependent requests to
character and block devices.

1* INPUTS
1*
1*
1* OUTPUTS
1*
1*

CX Contains Type «Ox80 Is Character)
ES:BX Is Pointer To Request Packet

Status
RETF

Must Be Set In The Request Packet
Must Be Used To Return From Strategy

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

1* -*1

void DOS_Setup (unsigned int which,
unsigned int ES_tmp,
unsigned int DS_tmp,
unsigned int AX_tmp)

{

_AX = _CS; 1* Obtain Code Segment *1
_DS = _AX; 1* Setup Data Segment *1

BX_reg = _BX; 1* Save BX Register *1
CX_reg = _CX; 1* Save CX Register *1
DX_reg = _DX; 1* Save DX Register *1

AX_reg = AX_tmp; 1* Save AX Register *1
ES_reg = ES_tmp; 1* Save Request Pointer *1

driver = which; 1* Move Value From Stack *1

SS_reg = _SS; 1* Save Stack Segment *1
SP_reg = _SP; 1* Save Stack Pointer *1

disable 0; 1* Disable Interrupts *1
_AX = _OS; 1* Obtain Data Segment *1
_SS = _AX; 1* Setup New Stack *1

1* Set Stack Pointer Value *1
_SP = (unsigned int) &stack [MAX_STK];
enable 0; 1* Enable Interrupts *1

APPENDIX E. VISUAL UTILITY 205

disable 0; 1* Disable Interrupts *1
_SS = SS_reg; 1* Restore Entry Stack *1
_SP = SP_reg; 1* Restore Entry Stack Ptr *1
enable 0; 1* Enable Interrupts *1

_DX = DX_reg; 1* Restore DX Register *1
_ex = eX_reg; 1* Restore ex Register *1
_BX BX_reg; 1* Restore BX Register *1
_AX = AX_reg; 1* Restore AX Register *1

_ES = ES_tmp; 1* Restore ES Register *1
_DS = DS_tmp; 1* Restore DS Register *1

}

206 APPENDIX E. VISUAL UTILITY

1* -*1
1* *1
1* FUNCTION: D r i v e r _ ° X *1
1* *1
1* REMARKS: Driver_OX accepts all DOS requests for the *1
1* first block device driver in the device header *1
1* chain (X is in the range 0-4). *1
1* *1
1* -*1

void far
{

}

void far
{

}

void far
{

}

void far
{

}

void far
{

}

Driver_00 (void)

Driver_Ol (void)

Driver_02 (void)

Driver_03 (void)

Driver_04 (void)

APPENDIX E. VISUAL UTILITY 207

/* -*/
/* */
/* FUNCTION: P r i n t _ H D R */
/* */
/* REMARKS Print_HDR displays (prints) the contents of the */
/* currently addressed device header. */
/* */
/* -*/

void Print_HDR (struct DEVICE_HEADER_struct far *hdr_ptr)
{

}

char
unsigned int

tmp_str [32];
i;

printf ("\n\t\t* * * D e vic e H e a d e r * * *");
printf ("\n\t\t (A d d res s : %Fp)\n\n", hdr_ptr);
printf (IINext Header\t: %Fp\n", hdr_ptr->next_hdr);
printf (IIAttribute\t: %04X\n", hdr_ptr->attribute);
printf (IIStrategy Addr\t: %Np\n", hdr_ptr->dev_strat);
printf ("Interrupt Addr\t: %Np\n", hdr_ptr->dev_int);
printf ("Name/Unit Bytes\t: II);
for (i = 0; i < 8; i++)
{

}

tmp_str [i] = hdr_ptr->name_unit.char_ary [i];
printf ("%02X ", hdr_ptr->name_unit.char_ary [i]);

printf ("\t");
tmp_str [8] = '\0';
printf ("%s\n", tmp_str);

208

1*
1*

APPENDIX E. VISUAL UTILITY

- -*1

1* FUNCTION: C h e c k H D R
*1
*1
1 1

1*
1*
1*
1*
1*
1*
1*
1*

REMARKS: Check_HDR checks the current device header to *1
see if it is a block device driver. *1

If so, it unlinks it from the device header chain and *1
links in one of the new device headers that allow this*1
program to process the requests prior to passing them *1
on to the original device driver. *1

*1
- -*1

void Check_HDR (struct DEVICE_HEADER_struct far *hdr_ptr)
{

1* Device Header Pointers *1
struct DEVICE_HEADER_struct far *tmp_ptr;
struct DEVICE_HEADER_struct far *LPT3_ptr;

printf (lI\n\n\t\t\tC h e c k _ H D R\n");

tmp_ptr = hdr_ptr;
while (FP_OFF (hdr_ptr) != OxFFFF)
{

if «hdr_ptr->name_unit.int_ary [0]
(hdr_ptr->name_unit.int_ary [1]
(hdr_ptr->name_unit.int_ary [2]
(hdr_ptr->name_unit.int_ary [3]

{

}

#ifdef DEBUG
Print_HDR (hdr_ptr);

#endif

}

hdr_ptr = tmp_ptr;
while (FP_OFF (hdr_ptr) != OxFFFF)
{

if «hdr_ptr->attribute & Ox0800) &&
(driver < MAX_NEW))

Ox504C) &&
Ox3354) &&
Ox2020) &&
Ox2020))

APPENDIX E. VISUAL UTILITY 209

}

}

{

}

tmp_ptr->next_hdr = hdr_ptr;
tmp_ptr->attribute = hdr_ptr->attribute;
tmp_ptr->dev_strat = hdr_ptr->dev_strat;
tmp_ptr->dev_int = hdr_ptr->dev_int;
tmp_ptr->name_unit.int_ary [0] =

hdr_ptr->name_unit.int_ary [0];
tmp_ptr->name_unit.int_ary [1] =

hdr_ptr->name_unit.int_ary [1];
tmp_ptr->name_unit.int_ary [2] =

hdr_ptr->name_unit.int_ary [2];
tmp_ptr->name_unit.int_ary [3] =

hdr_ptr->name_unit.int_ary [3];

if (FP_SEG (hdr_ptr) == FP_SEG (LPT3_ptr))
{

}

else
{

}

hdr_ptr->dev_strat = (FP_OFF (LPT3_ptr) + OxOB);
hdr_ptr->dev_int = hdr_ptr->dev_strat;
LPT3_ptr->name_unit.char_ary [1] = OxEA;
LPT3_ptr->name_unit.int_ary [1] =

FP_OFF (new_dh_ary [driver] .drv_ptr);
LPT3_ptr->name_unit.int_ary [2] =

FP_SEG (new_dh_ary [driver] .drv_ptr);

hdr_ptr->dev_strat = (FP_OFF (hdr_ptr) + OxOB);
hdr_ptr->dev_int = hdr_ptr->dev_strat;
hdr_ptr->name_unit.char_ary [1] = OxEA;
hdr_ptr->name_unit.int_ary [1] =

FP_OFF (new_dh_ary [driver].drv_ptr);
hdr_ptr->name_unit.int_ary [2] =

FP_SEG (new_dh_ary [driver].drv_ptr);

driver++;

hdr_ptr = hdr_ptr->next_hdr;

210 APPENDIX E. VISUAL UTILITY

1* -*1
1* *1
1* FUNCTION: Fin d _ b 1 k _ d e v *1
1* *1
1* REMARKS Find_blk_dev finds block device drivers in the *1
1* device header chain and swaps them out for new *1
1* device header elements. *1
1* *1
1* -*1

void Find_blk_dev (void)
{

}

unsigned int es_reg;
unsigned int bx_reg;
struct DOS_struct far *dos_ptr;
struct DEVICE_HEADER_struct far *hdr_ptr;

clrscr 0;

_AX = Ox5200;
geninterrupt (Ox21);
bx_reg _BX;
es_reg = _ES;

dos_ptr = MK_FP (es_reg, bx_reg);
hdr_ptr =

(struct DEVICE_HEADER_struct far *) &dos_ptr->ddh_ptr;

APPENDIX E. VISUAL UTILITY 211

1* -*1
1* *1
1* FUNCTION: m a i n *1
1* *1
1* REMARKS Main is the main driver routine for visual. *1
1* After it runs it Terminates and Stays Resident *1
1* (TSR) . *1
1* *1
1* -*1

void main (void)
{

}

int ij

printf ("\n\t\tBlock Device Headers\n")j
for (i = OJ i < driverj i++)
{

}

Print_HDR (&new_dh_ary [i] .dh)j
Print_HDR (new_dh_ary [i] .dh.next_hdr)j

_heaplen = OxlOj
_stklen = OxlOOOj
keep (OxOOOO, Ox2000)j 1* terminate and stay resident *1

212 APPENDIX E. VISUAL UTILITY

The file dos_dd.h appears in Appendix F. The only difference is that we
modified DEVICE_HEADER_struct:

struct DEVICE_HEADER_struct
{

};

struct DEVICE_HEADER_struct
unsigned int attribute;
unsigned int dev_strat;
unsigned int dev_int;
union
{

far *next_hdr;
/* Device Driver Attributes */
/* Pointer To Strategy Code */
/* Pointer To Interrupt Code*/

unsigned char char_ary [8];/* Name/Unit Field */
unsigned int int_ary [4]; /* Integer Version Of Name */

} name_unit;

Appendix F

TEMPLATE Files

We discussed the template files in Chapter 4 and we showed some of them.
Now we present the complete versions for dos_dd.h, dos_env. c (page 222), and
dos_drvr. c (page 229).

Here is the source listing for dos_dd.h.

1* - - - - - - - - - - - - - - - - - - -*1
*1

DOS D e vic e D r i v e r H e a d e r *1
1*
1* PROGRAM
1*
1* REMARKS

*1
This file contains the structures and manifests *1

1* required by a DOS Device Driver. *1
1*
1* - - - - - - - - - - - - - - - - -

*1
- -*1

1* - - - - - - - - - - - - - - - - - -*1
*1
*1
*1

1*
1* Miscellaneous Device Driver Symbolic Constants
1*
1* - - - - - - - - - - - - -*1

#define DOS_CMDS
#define STK_SIZE
#define DEVICES
#define OP_COMPLETE

25
512
1
OxOOOO

213

1* Number Of DOS Commands *1
1* DOS Device Drive Stack *1
1* Number Of Block Devices *1
1* No Errors Return Code *1

214 APPENDIX F. TEMPLATE FILES

1* -*1
1* *1
1* Device Attribute Field Definitions *1
1* *1
1* -*1

#define CHAR_DD
#define IOCTL_SUP
#define NON_IBM
#define REMOVABLE
#define GET_SET
#define CLOCK_DD
#define NUL_DD
#define STDOUT_DD
#define STDIN_DD
#define GEN_IOCTL

Ox8000
Ox4000
Ox2000
Ox0800
Ox0040
Ox0008
Ox0004
Ox0002
Ox0001
Ox0001

1* Character Device Driver *1
1* IOCTL Supported *1
1* Non-IBM Format (Block) *1
1* Removable Media (Block) *1
1* Get/Set Logical Device *1
1* Current Clock Device *1
1* Current NUL Device *1
1* Current Standard Output *1
1* Current Standard Input *1
1* Generic IOCTL If Block DD*I

Device Driver Structure For DOS Device Drivers

struct DEVICE_HEADER_struct
{

struct DEVICE_HEADER_struct
unsigned int attribute;
unsigned int dev_strat;
unsigned int dev_int;
unsigned char name_unit [8] ;

};

far *next_hdr;
1* Device Driver Attributes *1
1* Pointer To Strategy Code *1
1* Pointer To Interrupt Code*1
1* Name/Unit Field *1

APPENDIX F. TEMPLATE FILES 215

1* -*1
1*
1* Device Status Word Format
1*

*1
*1
*1

1* - - - - - - - - - - - - - - -*1

#define ERROR_BIT
#define ERROR_NUM
#define DONE_BIT
#define BUSY_BIT

Ox8000
OxOOFF
OxOl00
Ox0200

1*
1*
1*
1*

Error Bit Mask
Error Number Mask
Device Operation Done
Device Busy (Not Done)

1* - - - - - - - - - - - - - - - -- - - -
1*
1* Device Error Codes Contained In The Device Status Word
1*
1* - - - - - - - - - - - - - - - - - -

#define WRITE_PROTECT OxOO 1* Write Protect Violation
#define UNKNOWN_UNIT OxOl 1* Unit Not Known By Driver
#define NOT_READY Ox02 1* Device Is Not Ready
#define UNKNOWN_CMD Ox03 1* Unknown Device Command
#define CRC_ERROR Ox04 1* Device CRC Error
#define BAD_REQ_LEN Ox05 1* Bad Drive Req Struct Len
#define SEEK_ERROR Ox06 1* Device Seek Error
#define UNKNOWN_MEDIA Ox07 1* Unknown Media In Drive
#define NOT_FOUND Ox08 1* Sector Not Found
#define OUT_OF_PAPER Ox09 1* Printer Out Of Paper
#define WRITE_FAULT OxOA 1* Device Write Fault
#define READ_FAULT OxOB 1* Device Read Fault
#define GENERAL_FAIL OxOC 1* General Device Failure

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

216 APPENDIX F. TEMPLATE FILES

1* -*1
1* *1
1* Device Driver Command Codes *1
1* *1
1* - - - - - - - - - - - - - - - - - - -*1

#define INIT 0 1* Initialize Device *1
#define MEDIA_CHECK 1 1* Check For Correct Media *1
#define BUILD_BPB 2 1* Build A BIOS Parm Block *1
#define IoCTL_INPUT 3 1* IoCTL Input Requested *1
#define INPUT 4 1* Device Read Operation *1
#define INPUT_No_WAIT 5 1* No Wait Input (Char only)*1
#define INPUT_STATUS 6 1* Character Devices Only *1
#define INPUT_FLUSH 7 1* Character Devices Only *1
#define OUTPUT 8 1* Device Write Operation *1
#define OUTPUT_VERIFY 9 1* Device Write/Verify oper *1
#define OUTPUT_STATUS 10 1* Character Devices Only *1
#define OUTPUT_FLUSH 11 1* Character Devices Only *1
#define IoCTL_oUTPUT 12 1* IoCTL Output Requested *1
#define DEV_oPEN 13 1* Device Open Command *1
#define DEV_CLoSE 14 1* Device Close Command *1
#define REMOVE_MEDIA 15 1* Removable Media *1
#define RESERVED_1 16 1* Reserved Command 1 *1
#define RESERVED_2 17 1* Reserved Command 2 *1
#define RESERVED_3 18 1* Reserved Command 3 *1
#define IoCTL 19 1* Generic IoCTL *1
#define RESERVED_4 20 1* Reserved Command 4 *1
#define RESERVED_5 21 1* Reserved Command 5 *1
#define RESERVED_6 22 1* Reserved Command 6 *1
#define GET_L_D_MAP 23 1* Get Logical Drive Map *1
#define SET_L_D_MAP 24 1* Set Logical Drive Map *1

APPENDIX F. TEMPLATE FILES 217

1* -
1*
1* IN IT Variable Portion Of Request Header
1*
1* -

struct INIT_struct
{

unsigned char num_of_units; 1* Number Of Units *1
unsigned char far *end_ptr; 1* Ending Address Of Driver *1
unsigned char far *BPB_ptr; 1* Pointer To Init Arguments*1

1* Set To BPB Array On Exit *1
unsigned char drive_num; 1* Driver Number
unsigned int config_err; 1* config.sys Error

};

1* -
1*
1* MEDIA_CHECK Variable Portion Of Request Header
1*
1* - - - - - - - - - - - - - - - - -

struct MEDIA_CHECK_struct
{

*1
flag *1

unsigned char media_byte; 1* Media Descriptor From DOS*I
unsigned char return_info; 1* Return Information *1
unsigned char far *return_ptr; 1* Pointer To Previous VOLID*I

};

1* - - - -
1*
1* BUILD_BPB Variable Portion Of Request Header
1*
1* - - - -

struct BUILD_BPB_struct
{

unsigned char media_byte; 1* Media Descriptor From DOS*I
unsigned char far *buffer_ptr; 1* Pointer To Buffer *1
struct BPB_struct far *BPB_table; 1* Pointer To BPB Table *1

};

218 APPENDIX F. TEMPLATE FILES

1* -*1
1* *1
1* IOCTL_INPUT Variable Portion Of Request Header (3) *1
1* INPUT Variable Portion Of Request Header (4) *1
1* OUTPUT Variable Portion Of Request Header (8) *1
1* OUTPUT_VERIFY Variable Portion Of Request Header (9) *1
1* IOCTL_OUTPUT Variable Portion Of Request Header (12) *1
1* *1
1* ------ -*1

struct I_O_struct
{

unsigned char media_byte; 1* Media Descriptor From
unsigned char far *buffer_ptr; 1* Pointer To Buffer
unsigned int count; 1* Byte/Sector Count
unsigned int start_sector; 1* Starting Sector Number
unsigned char far *vol_id_ptr; 1* Pointer To Volume ID
unsigned long start_sector_32; 1* 32-Bit Starting Sector

};

1* -
1*
1* INPUT_NO_WAIT Variable Portion Of Request Header
1*
1* -

struct INPUT_NO_WAIT_struct
{

unsigned char byte_read;
};

1* Byte Read From Device

DOS*I
*1
*1
*1
*1
*1

APPENDIX F. TEMPLATE FILES 219

/* -*/
/* */
/* IOCTL Variable Portion Of Request Header (19) */
/* */
/* -*/

struct IOCTL_struct
{

unsigned char major_func; /* Function (Major) */
unsigned char minor_func; /* Function (Minor) */
unsigned int SI_reg; /* Contents Of SI Register */
unsigned int DI_reg; /* Contents Of DI Register */

/* Pointer To Request Packet*/
unsigned char far *ioctl_req_ptr;

};

/* -*/
/* */
/* GET_L_D_MAP Variable Portion Of Request Header (23) */
/* */
/* SET_L_D_MAP Variable Portion Of Request Header (24) */
/* */
/* - - - - - - - - ------- - - - - - - - - - - -*/

struct L_D_MAP_struct
{

unsigned char unit_code; /* Input - Unit Code */
/* Output- Last Device Used */

unsigned char cmd_code; /* Command Code */
unsigned int status; /* Status Word */
unsigned long reserved; /* DOS Reserved */

};

220 APPENDIX F. TEMPLATE FILES

1* -*1
1* *1
1* Request Header Structure For Device Drivers *1
1* (Static & Variable) *1
1* *1
1* -*1

struct REQ_struct
{

unsigned char length; 1* Length In Bytes Of Req *1
unsigned char unit; 1* Minor Device Unit Number *1
unsigned char command; 1* Device Command Code *1
unsigned int status; 1* Device Status Word *1
unsigned char reserved [8] ; 1* Reserved For DOS *1
union
{

struct INIT_struct init_req;
struct MEDIA_CHECK_struct media_check_req;
struct BUILD_BPB_struct build_bpb_req;
struct I_O_struct i_o_req;
struct INPUT_NO_WAIT_struct input_no_wait_req;
struct IOCTL_struct ioctl_req;
struct L_D_MAP_struct l_d_map_req;

} req_type;
};

APPENDIX F. TEMPLATE FILES 221

1* -*1
1* *1
1* BIOS Parameter Block (BPB) For Fixed/Removable Disks *1
1* *1
1* -*1

struct BPB_struct
{

unsigned int bps; 1* Bytes Per Sector *1
unsigned char spau; 1* Sectors/Allocation Unit *1
unsigned int rs; 1* Reserved Sectors *1
unsigned char num_FATs; 1* Number Of FATS *1
unsigned int root_entries; 1* # Of Root Dir Entries *1
unsigned int num_sectors; 1* Number Of Sectors *1
unsigned char media_descriptor;l* Media Descriptor *1
unsigned int spfat; 1* # Of Sectors Per FAT *1
unsigned int spt; 1* # Of Sectors Per Track *1
unsigned int heads; 1* Number Of Heads *1
unsigned long hidden; 1* Number Of Hidden Sectors *1
unsigned long num_sectors_32; 1* 32-Bit Number of Sectors *1

};

222 APPENDIX F. TEMPLATE FILES

Here is the source listing for dos_env. c.

1* -*1
1* *1
1* PROGRAM DOS D e vic e D r i v e r *1
1* *1
1* REMARKS This file contains the set of command *1
1* routines specified by the DOS Technical Reference *1
1* Manual. *1
1* *1
1* The following include file is required to *1
1* compile this file *1
1* DOS_DD.H *1
1* *1
1* -*1

#include
#include

1* - - -
1*
1*
1*
1*

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

- -

<dos.h>
"dos_dd.h"

- -*1
*1

DOS Device Driver Routine Declarations *1
*1

- - - - - - - - - -*1

unsigned Init_cmd 0; 1* INIT Command *1
unsigned Media_check_cmd 0; 1* MEDIA_CHECK Command *1
unsigned Build_bpb_cmd (); 1* BUILD_BPB Command *1
unsigned Ioctl_input_cmd (); 1* IOCTL Input Command *1
unsigned Input_cmd (); 1* INPUT Command *1
unsigned Input_no_wait_cmd (); 1* INPUT No Wait Command*1
unsigned Input_status_cmd (); 1* INPUT Status Command *1
unsigned Input_flush_cmd (); 1* INPUT Flush Command *1
unsigned Output_cmd (); 1* OUTPUT Command *1
unsigned Output_verify_cmd (); 1* OUTPUT Verify Command*1
unsigned Output_status_cmd (); 1* OUTPUT Status Command*1
unsigned Output_flush_cmd (); 1* OUTPUT Flush Command *1
unsigned Ioctl_output_cmd (); 1* IOCTL Output Command *1
unsigned Dev_open_cmd (); 1* DEVICE Open Command *1
unsigned Dev_close_cmd (); 1* DEVICE Close Command *1
unsigned Remove_media_cmd 0; 1* REMOVABLE Media Com. *1
unsigned Ioctl_cmd (); 1* GENERIC IOCTL Command *1

APPENDIX F. TEMPLATE FILES 223

extern unsigned Get_l_d_map_cmd ();I* GET Logical Device Map *1
extern unsigned Set_l_d_map_cmd ();I* SET Logical Device Map *1
extern unsigned Unknown_cmd (); 1* UNKNOWN Command Default *1

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

DOS Device Driver Global Data Region

- - - - -*1
*1
*1
*1

- -*1

unsigned rc; 1* Function Return Code *1
unsigned driver; 1* Global Driver Variable *1
unsigned SS_reg; 1* SS Register Variable *1
unsigned SP_reg; 1* SP Register Variable *1
unsigned ES_reg; 1* ES Register Variable *1
unsigned AX_reg; 1* AX Register Variable *1
unsigned BX_reg; 1* BX Register Variable *1
unsigned CX_reg; 1* CX Register Variable *1
unsigned DX_reg; 1* DX Register Variable *1
unsigned DS_reg; 1* DS Register Variable *1
unsigned S1_reg; 1* S1 Register Variable *1

1* Local Device Driver Stack *1
extern unsigned local_stk [STK_S1ZE];

1* DOS Request Packet Pointer *1
extern struct REQ_struct far *r_ptr;

224 APPENDIX F. TEMPLATE FILES

unsigned (*dos_cmd [DOS_CMDS]) (struct REQ_struct far *r_ptr) =
{

};

Init_cmd,
Media_check_cmd,
Build_bpb_cmd,
Ioctl_input_cmd,
Input_cmd,
Input_no_wait_cmd,
Input_status_cmd,
Input_flush_cmd,
Output_cmd,
Output_verify_cmd,
Output_status_cmd,
Output_flush_cmd,
Ioctl_output_cmd,
Dev_open_cmd,
Dev_close_cmd,
Remove_media_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Ioctl_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Get_l_d_map_cmd,
Set_l_d_map_cmd

1* INIT Command *1
1* MEDIA_CHECK Command *1
1* BUILD_BPB Command *1
1* IOCTL Input Command *1
I * INPUT Command * I
1* INPUT No Wait Command *1
1* INPUT Status Command *1
1* INPUT Flush Command *1
I * OUTPUT Command * I
1* OUTPUT Verify Command *1
1* OUTPUT Status Command *1
I * OUTPUT Flush Command * I
1* IOCTL Output Command *1
1* DEVICE Open Command *1
1* DEVICE Close Command *1
1* REMOVABLE Media Commmand *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* GENERIC IOCTL Command *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* GET Logical Device Map *1
1* SET Logical Device Map *1

APPENDIX F. TEMPLATE FILES 225

1* -*1
1* *1
1* FUNCTION: DOS _ Set u p *1
1* *1
1* REMARKS DOS_Setup establishes a C environment prior to *1
1* allowing the actual device driver routines to *1
1* execute. *1
1* *1
1* INPUTS *1
1* which 0: Strategy Entry; 1 : Interrupt Entry *1
1* ES_tmp Pointer To Request Packet *1
1* DS_tmp Original DS Register Value *1
1* AX_tmp Original AX Register Value *1
1* *1
1* OUTPUTS Status Must Be Set In The Request Packet *1
1* *1
1* NOTES Register manipulations require this routine to *1
1* be compiled with the TURBO C Compiler. *1
1* *1
1* -*1

void DOS_Setup (unsigned int which,
unsigned int ES_tmp,
unsigned int DS_tmp,
unsigned int AX_tmp)

{

_AX _CS; 1* Obtain Code Segment *1
_DS _AX; 1* Setup Data Segment *1

BX_reg = _BX; 1* Save BX Register *1
CX_reg = _CX; 1* Save CX Register *1
DX_reg = _DX; 1* Save DX Register *1

AX_reg AX_tmp; 1* Save AX Register *1
ES_reg ES_tmp; 1* Save Request Pointer *1

driver = which; 1* Move Value From Stack *1

SS_reg _SS; 1* Save Stack Segment *1
SP_reg _SP; 1* Save Stack Pointer *1

disable 0; 1* Disable Interrupts *1

226

}

APPENDIX F. TEMPLATE FILES

_AX = _OS;
_SS _AX;

_SP (unsigned int)
enable ();

if (driver)

1* Obtain Data Segment
1* Setup New Stack
1* Set Stack Ptr Value

&local_stk [STK_SIZE];
1* Enable Interrupts

{ 1* Interrupt Entry Point *1
rc = OxOOOO; 1* Clear Return Code *1

1* DOS Request Packet Ptr *1
r_ptr = MK_FP (ES_reg, BX_reg);
if (r_ptr->command >= DOS_CMOS)
{

rc = ERROR_BIT I UNKNOWN_CMO;
}

else
{

}

1* Set Driver Complete Bit
r_ptr->status rc I DONE_BIT;

}

else
{ 1* Strategy Entry Point

1* Don't Save ES:BX Because It's Passed To Interrupt!!
}

disable 0;
_SS = SS_reg;
_SP = SP_reg;
enable 0;

_OX = OX_reg;
_CX = CX_reg;
_BX = BX_reg;
_AX = AX_reg;

_ES = ES_tmp;
_OS = DS_tmp;

1*
1*
1*
1*

1*
1*
1*
1*

1*
1*

Disable Interrupts
Restore Entry Stack
Restore Entry Stack Ptr
Enable Interrupts

Restore OX Register
Restore CX Register
Restore BX Register
Restore AX Register

Restore ES Register
Restore OS Register

*1

*1
*1

*1
*1
*1
*1

*1
*1
*1
*1

*1
*1

APPENDIX F. TEMPLATE FILES 227

1* -*1
1* *1
1* FUNCTION: S t rat e g y *1
1* *1
1* REMARKS: Strategy is the routine that is called by the *1
1* Operating System when this device is requested to *1
1* perform some activity (typically READs and WRITEs). *1
1* *1
1* INPUTS ES:BX Pointer To Request Packet *1
1* *1
1* NOTES Register manipulations require this routine to *1
1* be compiled with the TURBO C Compiler. *1
1* *1
1* -*1

void far Strategy (void)
{

#ifdef DEBUG
geninterrupt (Ox03);

#endif

}

228 APPENDIX F. TEMPLATE FILES

1* -*1
1* *1
1* FUNCTION: I n t err u p t *1
1* *1
1* REMARKS Interrupt is the routine that is called by the *1
1* Operating System immediately after the Strategy *1
1* routine has been called. Interrupt is responsible *1
1* for performing the work required to accomplish the *1
1* requested operation. *1
1* *1
1* INPUTS ES:BX Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Must Be Set In The Request Packet *1
1* RETF Must Be Used To Return From Interrupt *1
1* *1
1* NOTES Register manipulations require this routine to *1
1* be compiled with the TURBO C Compiler. *1
1* *1
1* -*1

void far Interrupt (void)
{

#ifdef DEBUG
geninterrupt (Ox03);

#endif

}

APPENDIX F. TEMPLATE FILES 229

Here is the source listing for dos_drvr. c.

1* -*1
1* *1
1* PROGRAM DOS D e vic e D r i v e r *1
1* *1
1* REMARKS This file contains the set of command *1
1* routines specified by the DOS Technical Reference *1
1* Manual. *1
1* *1
1* The following include file is required to *1
1* compile this file *1
1* DOS_DD.H *1
1* *1
1* -*1

DOS Device Driver Required Includes I Constants

#include
#include
#include

"dos_dd.h"
<dos.h>
<string.h>

extern void End_code (void);
extern struct BPB_struct bpb;

1* DOS Command Structures *1
1* DOS Specific Definitions *1
1* C String Library Prototypes *1

extern struct BPB_struct *bpb_ary [DEVICES];

230 APPENDIX F. TEMPLATE FILES

1* -*1
1* *1
1* FUNCTION: I nit _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Init_cmd (struct REQ_struct far *r_ptr)
{

}

r_ptr->req_type.init_req.num_of_units = 1;

bpb_ary [0] = (unsigned int) &bpb;
r_ptr->req_type.init_req.BPB_ptr =

MK_FP (_DS, (unsigned int) bpb_ary);

r_ptr->req_type.init_req.end_ptr =
MK_FP (_DS, (unsigned int) End_code);

return OP_COMPLETE;

APPENDIX F. TEMPLATE.FILES 231

1* - - - - - -
1*

- -*1
*1

1* FUNCTION: M e d i a _ c h e c k _ c m d *1
1*
1* REMARKS
1*

*1
*1
*1

1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* - - - - - - - - - - - - - - - - - -*1

unsigned int Media_check_cmd Cstruct REQ_struct far *r_ptr)
{

r_ptr->req_type.media_check_req.return_info = 1;

return OP_COMPLETE;
}

1* -*1
1* *1
1* FUNCTION: B u i 1 d _ b P b _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Build_bpb_cmd Cstruct REQ_struct far *r_ptr)
{

r_ptr->req_type.build_bpb_req.BPB_table &bpb;

return OP_COMPLETE;
}

232 APPENDIX F. TEMPLATE FILES

1* -*1
1* *1
1* FUNCTION: I 0 c t 1 _ i n put _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int
{

return UNKNOWN_CMD;
}

1* -*1
1* *1
1* FUNCTION: I n put _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Input_cmd (struct REQ_struct far *r_ptr)
{

return OP_COMPLETE;
}

APPENDIX F. TEMPLATE FILES 233

1* -*1
1* *1
1* FUNCTION: I n put _ n 0 _ w a i t _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Input_no_wait_cmd (struct REQ_struct far *r_ptr)
{

return UNKNOWN_CMD;
}

1* - - - - - -
1*
1*
1*

FUNCTION: I n put _ s tat u s _ c m d

- - - - - - - -*1
*1
*1
*1
*1
*1
*1
*1

1*
1*
1*
1*
1*
1*
1*

REMARKS

INPUTS

OUTPUTS

r_ptr

Status

Pointer To Request Packet

Returned In Function Return Value *1
*1

- - - - - -*1

unsigned int Input_status_cmd Cstruct REQ_struct far *r_ptr)
{

return UNKNOWN_CMD;
}

234 APPENDIX F. TEMPLATE FILES

1* - - - - - -
1*

- - - - - - - - - - - - - - - - - - -*1

1*
1*
1*
1*
1*
1*
1*
1*

FUNCTION:

REMARKS

INPUTS

OUTPUTS

I n put _ flu s h _ c m d

r_ptr Pointer To Request Packet

Status Returned In Function Return Value

*1
*1
*1
*1
*1
*1
*1
*1
*1

1* - - - - - - - - - - - - - - - - - -*1

unsigned int Input_flush_cmd (struct REQ_struct far *r_ptr)
{

return OP_COMPLETE;
}

1* -*1
1* *1
1* FUNCTION: 0 u t put _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Output_cmd (struct REQ_struct far *r_ptr)
{

return OP_COMPLETE;
}

APPENDIX F. TEMPLATE FILES 235

1* -*1
1* *1
1* FUNCTION: 0 u t put _ v e r i f Y _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Output_verify_cmd (struct REQ~struct far *r_ptr)
{

return OP_COMPLETE;
}

1* -*1
1* *1
1* FUNCTION: 0 u t put _ s tat u s _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Output_status_cmd (struct REQ_struct far *r_ptr)
{

return UNKNOWN_CMD;
}

236

1* - - - - - -
1*

APPENDIX F. TEMPLATE FILES

1*
1*

FUNCTION: Out put _ flu s h _ c m d

- - - - - - - -*1
*1
*1
*1
*1
*1
*1
*1

1*
1*
1*
1*
1*
1*
1*

REMARKS

INPUTS

OUTPUTS

r_ptr

Status

Pointer To Request Packet

Returned In Function Return Value *1
*1

- - - - - -*1

unsigned int Output_flush_cmd (struct REQ_struct far *r_ptr)
{

return OP_COMPLETE;
}

1* - - - - - -
1*
1*
1*

FUNCTION: I 0 c t 1 _ 0 u t put _ c m d

- - - - - - - -*1
*1
*1
*1
*1
*1
*1
*1

1*
1*
1*
1*
1*
1*
1*

REMARKS

INPUTS

OUTPUTS

r_ptr

Status

Pointer To Request Packet

Returned In Function Return Value *1
*1

- - - - - -*1

unsigned int Ioctl_output_cmd (struct REQ_struct far *r_ptr)
{

return UNKNOWN_CMD;
}

APPENDIX F. TEMPLATE FILES 237

1* -*1
1* *1
1* FUNCTION: 0 e v _ 0 pen _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Dev_open_cmd (struct REQ_struct far *r_ptr)
{

return OP_COMPLETE;
}

1* -*1
1* *1
1* FUNCTION: 0 e v _ c los e _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* - - - - - - - - - - - - - - - - - - -*1

unsigned int Dev_close_cmd (struct REQ_struct far *r_ptr)
{

return OP_COMPLETE;
}

238

1* - - - - - -
1*
1* FUNCTION:
1*
1* REMARKS
1*
1* INPUTS
1*
1* OUTPUTS
1*
1*

APPENDIX F. TEMPLATE FILES

- -*1
*1

Rem 0 v e m e d i a _ c m d *1
*1
*1
*1

r_ptr Pointer To Request Packet *1
*1

Status Returned In Function Return Value *1
*1

- -*1

unsigned int Remove_media_cmd (struct REQ_struct far *r_ptr)
{

return UNKNOWN_CMDj
}

1* - - - - - -
1*
1* FUNCTION:
1*
1* REMARKS
1*
1* INPUTS
1*
1* OUTPUTS
1*
1*

- -*1
*1

I 0 c t 1 _ c m d *1
*1
*1
*1

r_ptr Pointer To Request Packet *1
*1

Status Returned In Function Return Value *1
*1

- - - - - - - - - - - - - - - - -*1

unsigned int Ioctl_cmd (struct REQ_struct far *r_ptr)
{

return UNKNOWN_CMDj
}

APPENDIX F. TEMPLATE FILES 239

1* - - - - - -
1*

- - - - - - - - - - - - - - - - - - -*1

1*
1*
1*
1*
1*
1*

FUNCTION:

REMARKS

INPUTS

OUTPUTS

Get _ 1 _ d _ map _ c m d

r_ptr Pointer To Request Packet

Status Returned In Function Return Value

*1
*1
*1
*1
*1
*1
*1
*1
*1

1*
1*
1* -*1

unsigned int Get_l_d_map_cmd (struct REQ_struct far *r_ptr)
{

return OP_COMPLETE;
}

1* - - - - - -
1*

- - - - - - - - - - - - - - - - -*1

1*
1*
1*
1*
1*
1*
1*
1*

FUNCTION:

REMARKS

INPUTS

OUTPUTS

Set _ 1 _ d _ map _ c m d

r_ptr Pointer To Request Packet

Status Returned In Function Return Value

*1
*1
*1
*1
*1
*1
*1
*1
*1

1* - - - - - - - - - - - - - -*1

unsigned int Set_l_d_map_cmd (struct REQ_struct far *r_ptr)
{

return OP_COMPLETE;
}

240 APPENDIX F. TEMPLATE FILES

1* -*1
1* *1
1* FUNCTION: U n k now n _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* - - - - - - - - - - - - - - - - -*1

unsigned int Unknown_cmd (struct REQ_struct far *r_ptr)
{

return UNKNOWN_CMD;
}

Appendix G

CONSOLE Files

We discussed the CONSOLE device driver in Chapter 6 where we have showed
some of the files. Now we present the complete versions for console (the makefile
for the device driver); console. h (page 245); dos_data. c (page 246); dos_env. c
(page 248); and dos_drvr. c (page 255). The remaining files we use in the
console makefile have not changed - they remain as they appear in Chapter 4
and Appendix F.

Here is the source listing for the console makefile.

Makefile For DOS Device Driver Template Written In C

Assembler Definitions

ASM \turbo\asm\tasm
AFLAGS

TURBO C Compiler Definitions

-c Do Not Perform Link Step
-M Produce Link/Load Map
-mt Produce TINY Model Output
-S Produce Assembler Module
-y Produce Line Number Information

241

242 APPENDIX G. CONSOLE FILES

-Idir Place To Search For Include Files

TURBO
TFLAGS

\turbo\c\tcc
-c -M -mt -S -y -I\turbo\c\include

Linker Definitions

LINK \turbo\c\tlink
LFLAGS

List Of Required Libraries

LIBS \turbo\c\lib\cs.lib

List Of Required Include Files

DOS Device Driver Command Include File

INCS = dos_dd.h

List Of Required Object Files

M1.0BJ
M2.0BJ
M3.0BJ
M4.0BJ
M5.0BJ
VID.OBJ

TURBO C Version Assembler Header For TINY Model
Modified C Assembler For DOS_DATA.C
Modified C Assembler For DOS_ENV.C
Modified C Assembler For DOS_DRVR.C
Modified C Assembler For DOS_END.C
BIOS interface routines

OBJS = m1.obj m2.obj m3.obj m4.obj m5.obj video.obj

Perform DOS Device Driver Linkage

console.sys: $(OBJS) $(INCS)

APPENDIX G. CONSOLE FILES

$(LINK) $(LFLAGS) ml+m2+m3+m4+m5+video, \
console.exe,,$(LIBS);

erase m3.*
exe2bin console.exe console.sys

Perform DOS_HDR Assembly

m1. obj:

dos_hdr.asm
copy dos_hdr.asm ml.asm
$(ASM) $(AFLAGS) ml.asm;

Perform DOS_DATA Compilation

m2.obj:

$(INCS) dos_data.c
$(TURBO) $(TFLAGS) dos_data.c
arrange dos.arr dos_data.asm m2.asm
erase dos_data.asm
$(ASM) $(AFLAGS) m2.asm;

Perform DOS_ENV Compilation

m3.obj:

$(INCS) dos_env.c
$(TURBO) $(TFLAGS) dos_env.c
arrange dos.arr dos_env.asm m3.asm
erase dos_env.asm
$(ASM) $(AFLAGS) m3.asm;

Perform DOS_DRVR Compilation

m4.obj: $(INCS) dos_drvr.c
$(TURBO) $(TFLAGS) dos_drvr.c
arrange dos.arr dos_drvr.asm m4.asm
erase dos_drvr.asm
$(ASM) $(AFLAGS) m4.asm;

243

244 APPENDIX G. CONSOLE FILES

Perform DOS_END Compilation

m5.obj: $(INCS) dos_end.c
$(TURBo) $(TFLAGS) dos_end.c
arrange dos.arr dos_end.asm m5.asm
erase dos_end.asm
$(ASM) $(AFLAGS) m5.asm;

video.obj: video.c
$(TURBo) $(TFLAGS) video.c
arrange dos.arr video.asm tmp.asm
erase video.asm
rename tmp.asm video.asm
$(ASM) $(AFLAGS) video.asm;

APPENDIX G. CONSOLE FILES 245

Here is the source listing for console. h.

1* - - - - - - -
1*

-*1
*1

CON SOL E D D H E A D E R F I L E *1 1*
1*
1*
1*
1*
1*

PROGRAM

REMARKS
*1

This file contains the local structures and *1
defines required by the new CONSOLE Device Driver. *1

*1
- - - - - - - - - - - - -*1

#define BIOS_DATA Ox40 1* BIOS Data Segment Value *1
1* KBD Buffer Head Offset *1
1* KBD Buffer Tail Offset *1

#define KBD_HEAD OxlA
#define KBD_TAIL OxiC

246 APPENDIX G. CONSOLE FILES

Here is the source listing for dos_data. c.

1* - - - - - - - - - - - - - - - -*1
1* *1
1* PROGRAM DOS 0 e vic e 0 r i v e r *1
1* *1
1* REMARKS This file contains the set of command *1
1* action routines specified by the DOS Technical *1
1* Reference Manual. *1
1* *1
1* The following include files are required to *1
1* compile this file *1
1* OOS_DO.H *1
1* CONSOLE.H *1
1* *1
1* -*1

#include
#include

"dos_dd.h"
"console.h"

extern void far Strategy ();
extern void far Interrupt ();

1* - - - - - - - - -
1*

-

1* Allocate And Initialize
1*
1* - - - - - - - -

DOS

- - -

1* DOS Command Structures *1
1* Local Defines *1

1* Strategy Routine
1* Interrupt Routine

- - - -

Device Header

-*1
*1
*1
*1

- - - - - - - - - - - - - -*1

1* DOS Device Header *1
struct DEVICE_HEAOER_struct dos_header =
{

(struct DEVICE_HEADER_struct
Ox8003,
(unsigned int) Strategy,
(unsigned int) Interrupt,
{

'C' ,
'0' ,
'N' , , ,
, ,

far *) OxFFFFFFFFL,
1* CHR, STOIN, STDOUT
1* Strategy Function
1* Interrupt Function
1* Unit/Name Field
1* "CON "

APPENDIX G. CONSOLE FILES 247

, ,
, ,
, ,

}

};

/* ------- - - - - - - - - - - - - - - - - - - -*/
/* */
/* DOS Device Driver Global Data Region */
/* */
/* ------- ------ -*/

unsigned int rc; /* Function Return Code */
unsigned int driver; /* Global Driver Variable */
unsigned int SS_reg; /* SS Register Variable */
unsigned int SP_reg; /* SP Register Variable */
unsigned int ES_reg; /* ES Register Variable */
unsigned int AX_reg; /* AX Register Variable */
unsigned int BX_reg; /* BX Register Variable */
unsigned int CX_reg; /* CX Register Variable */
unsigned int DX_reg; /* DX Register Variable */
unsigned int DS_reg; /* DS Register Variable */
unsigned int S1_reg; /* S1 Register Variable */

/* Local Device Driver Stack */
unsigned int local_stk [STK_S1ZE] ;

struct REQ_struct far *r_ptr; /* DOS Request Packet Pointer */

248 APPENDIX G. CONSOLE FILES

Here is the source listing for dos_env. c.

1* - - - - - - - - - - - - - -*1
1* *1
1* PROGRAM DOS D e vic e D r i v e r *1
1* *1
1* REMARKS This file contains the set of command *1
1* action routines specified by the DOS Technical *1
1* Reference Manual. *1
1* *1
1* The following include files are required to *1
1* compile this file *1
1* DOS_DD.H *1
1* CONSOLE.H *1
1* *1
1* -*1

#include
#include

#include

DOS

"dos_dd.h"
"console.h"

1* DOS Command Structures *1
1* Local Defines *1

Device Driver Required Includes I Constants

<dos.h> 1* DOS Specific Definitions *1

APPENDIX G. CONSOLE FILES 249

/* -*/
/* */
/* DOS Device Driver Routine Declarations */
/* */
/* - - - - - - - - - -*/

extern
extern
extern
extern
extern
extern
extern

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

unsigned Init_cmd (); /* INIT Command */
/ * INPUT Command * /
/* INPUT No Wait Command*/
/* INPUT Flush Command */
/ * OUTPUT Command * /

unsigned Input_cmd ();
unsigned Input_no_wait_cmd ();
unsigned Input_flush_cmd ();
unsigned Output_cmd ();
unsigned Output_verify_cmd
unsigned Unknown_cmd 0;

(); /* OUTPUT Verify Command*/
/* UNKNOWN Command Default */

DOS Device Driver Global Data Region

- - - - - - - - -*/
*/
*/
*/

- - - - - - - - -*/

unsigned rc; /* Function Return Code
unsigned driver; /* Global Driver Variable
unsigned SS_reg; /* SS Register Variable
unsigned SP_reg; /* SP Register Variable
unsigned ES_reg; /* ES Register Variable
unsigned AX_reg; /* AX Register Variable
unsigned BX_reg; /* BX Register Variable
unsigned CX_reg; /* CX Register Variable
unsigned DX_reg; /* DX Register Variable
unsigned DS_reg; /* DS Register Variable
unsigned SI_reg; /* SI Register Variable

/* Local Device Driver Stack
extern unsigned local_stk [STK_SIZE];

/* DOS Request Packet Pointer
extern struct REQ_struct far *r_ptr;

250 APPENDIX G. CONSOLE FILES

unsigned (*dos_cmd [DOS_CMOS]) (struct REQ_struct far *r_ptr) =
{

};

Init_cmd,
Unknown_ cmd,
Unknown_cmd,
Unknown_ cmd,
Input_cmd,
Input_no_wait_cmd,
Unknown_cmd,
Input_flush_cmd,
Output_cmd,
Output_verify_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_ cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_ cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd

1* INIT Command *1
1* MEDIA_CHECK Command *1
1* BUILD_BPB Command *1
1* IOCTL Input Command *1
I * INPUT Command * I
1* INPUT No Wait Command *1
1* INPUT Status Command *1
1* INPUT Flush Command *1
1* OUTPUT Command *1
1* OUTPUT Verify Command *1
1* OUTPUT Status Command *1
I * OUTPUT Flush Command * I
1* IOCTL Output Command *1
1* DEVICE Open Command *1
1* DEVICE Close Command *1
1* REMOVABLE Media Commmand *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* GENERIC IOCTL Command *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* GET Logical Device Map *1
1* SET Logical Device Map *1

APPENDIX G. CONSOLE FILES 251

1* -*1
1* *1
1* FUNCTION: DOS _ Set u p *1
1* *1
1* REMARKS DOS_Setup establishes a C environment prior to *1
1* allowing the actual device driver routines to *1
1* execute. *1
1* *1
1* INPUTS *1
1* which 0: Strategy Entry; 1 : Interrupt Entry *1
1* ES_tmp Pointer To Request Packet *1
1* DS_tmp Original DS Register Value *1
1* AX_tmp Original AX Register Value *1
1* *1
1* OUTPUTS Status Must Be Set In The Request Packet *1
1* *1
1* NOTES Register manipulations require this routine to *1
1* be compiled with the TURBO C Compiler. *1
1* *1
1* -*1

void DOS_Setup (unsigned int which,
unsigned int ES_tmp,
unsigned int DS_tmp,
unsigned int AX_tmp)

{

_AX = _CS; 1* Obtain Code Segment *1
_DS = _AX; 1* Setup Data Segment *1

BX_reg = _BX; 1* Save BX Register *1
CX_reg = _CX; 1* Save CX Register *1
DX_reg = _DX; 1* Save DX Register *1

AX_reg = AX_tmp; 1* Save AX Register *1
ES_reg = ES_tmp; 1* Save Request Pointer *1

driver = which; 1* Move Value From Stack *1

SS_reg = _SS; 1* Save Stack Segment *1
SP_reg = _SP; 1* Save Stack Pointer *1

disable (); 1* Disable Interrupts *1

252

}

APPENDIX G. CONSOLE FILES

_AX = _OS;
_SS = _AX;

_SP = (unsigned int)
enable 0;

if (driver)

1* Obtain Data Segment
1* Setup New Stack
1* Set Stack Ptr Value

&local_stk [STK_SIZE];
1* Enable Interrupts

{ 1* Interrupt Entry Point *1
rc = OxOOOO; 1* Clear Return Code *1

1* DOS Request Packet Ptr *1
r_ptr = MK_FP (ES_reg, BX_reg);
if (r_ptr->command >= DOS_CMOS)
{

rc = ERROR_BIT I UNKNOWN_CMD;
}

else
{

}

1* Set Driver Complete Bit
r_ptr->status = rc I DONE_BIT;

}

else
{ 1* Strategy Entry Point

1* Don't Save ES:BX Because It's Passed To Interrupt!!
}

disable ();
_SS = SS_reg;
_SP = SP_reg;
enable 0;

_OX = OX_reg;
_CX = CX_reg;
_BX = BX_reg;
_AX = AX_reg;

_ES = ES_tmp;
_OS = DS_tmp;

1*
1*
1*
1*

1*
1*
1*
1*

1*
1*

Disable Interrupts
Restore Entry Stack
Restore Entry Stack Ptr
Enable Interrupts

Restore OX Register
Restore CX Register
Restore BX Register
Restore AX Register

Restore ES Register
Restore OS Register

*1

*1
*1

*1
*1
*1
*1

*1
*1
*1
*1

*1
*1

APPENDIX G. CONSOLE FILES 253

1* -*1
1* *1
1* FUNCTION: S t rat e g y *1
1* *1
1* REMARKS: Strategy is the routine that is called by the *1
1* Operating System when this device is requested to *1
1* perform some activity (typically READs and WRITEs). *1
1* *1
1* INPUTS ES:BX Pointer To Request Packet *1
1* *1
1* NOTES Register manipulations require this routine to *1
1* be compiled with the TURBO C Compiler. *1
1* *1
1* -*1

void far Strategy (void)
{

#ifdef DEBUG
geninterrupt (Ox03);

#endif

}

254 APPENDIX G. CONSOLE FILES

1* -*1
1* *1
1* FUNCTION: I n t err u p t *1
1* *1
1* REMARKS Interrupt is the routine that is called by the *1
1* Operating System immediately after the Strategy *1
1* routine has been called. Interrupt is responsible *1
1* for performing the work required to accomplish the *1
1* requested operation. *1
1* *1
1* INPUTS ES:BX Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Must Be Set In The Request Packet *1
1* RETF Must Be Used To Return From Interrupt *1
1* *1
1* NOTES Register manipulations require this routine to *1
1* be compiled with the TURBO C Compiler. *1
1* *1
1* -*1

void far Interrupt (void)
{

#ifdef DEBUG
geninterrupt (Ox03);

#endif

}

APPENDIX G. CONSOLE FILES 255

Here is the source listing for dos_drvr. c.

1* -*1
1* *1
1* PROGRAM DOS D e vic e D r i v e r *1
1* *1
1* REMARKS This file contains the set of command *1
1* action routines specified by the DOS Technical *1
1* Reference Manual. *1
1* *1
1* The following include files are required to *1
1* compile this file *1
1* DOS_DD.H *1
1* CONSoLE.H *1
1* *1
1* -*1

#include
#include

#include
#include
#include

DOS

extern void

"dos_dd.h"
"console.h"

1* DOS Command Structures *1
1* Local Defines *1

Device Driver Required Includes I Constants

<dos.h>
<bios.h>
<string.h>

End_code ();

1* DOS Specific Definitions *1
1* C BIOS liD Definitions *1
1* C String Library Protos *1

256 APPENDIX G. CONSOLE FILES

1* -*1
1* *1
1* FUNCTION: I nit _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Init_cmd (struct REQ_struct far *r_ptr)
{

}

unsigned int
unsigned int

save_x;
save_y;

Get_X 0;
Get_Y 0;

Clear_screen 0;
Goto_XY (5, 5);
Write_tty (IINew Console Device Driver (CON:) Installed ... 11);

Goto_XY (save_x, save_y);

r_ptr->req_type.init_req.end_ptr
MK_FP (_DS, (unsigned int) End_code);

return OP_COMPLETE;

APPENDIX G. CONSOLE FILES 257

1* -*1
1* *1
1* FUNCTION: I n put _ c m d *1
1* *1
I * REMARKS * I
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Input_cmd (struct REQ_struct far *r_ptr)
{

}

unsigned int i;
unsigned int key;
unsigned char chr;
unsigned int save_x;
unsigned int save_y;

for (i = 0; i < r_ptr->req_type.i_o_req.count; i++)
{

}

key = Get_key (0); 1* Obtain Next Key Stroke

if (key & OxFF) 1* Normal Mode Key Strokes
{

chr = key & OxFF;
}

else 1* Extended Function Key Strokes
{

chr = key» 8;
}

*r_ptr->req_type.i_o_req.buffer_ptr++ chr;
save_x = Get_X ();
save_y = Get_Y ();
Goto_XY (78, 1);
Write_chr (chr);
Goto_XY (save_x, save_y);

return OP_COMPLETE;

258 APPENDIX G. CONSOLE FILES

1* -*1
1* *1
1* FUNCTION: I n put _ n 0 _ w a i t _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Input_no_wait_cmd (struct REQ_struct far *r_ptr)
{

unsigned
unsigned
unsigned
unsigned
unsigned

head_ptr
tail_ptr

int rc;
int key;
char chr;
int far *head_ptr;
int far *tail_ptr;

MK_FP (BIOS_DATA, KBD_HEAD);
MK_FP (BIOS_DATA, KBD_TAIL);

if (*head_ptr == *tail_ptr)
{ 1* Keyboard Buffer Empty

}

else
{

rc = BUSY_BIT; 1* Indicate Buffer Empty

rc = OP_COMPLETE;
key = Get_key (1);

if (key & OxFF)
{

1* Characters In KBD Buffer
1* Indicate Characters In Buffer
1* Obtain Next Key Stroke

1* Normal Mode Key Strokes

chr = key & OxFF;
}

else 1* Extended Function Key Strokes *1
{

chr key» 8;
}

APPENDIX G. CONSOLE FILES 259

}

return rc;
}

1* - - - - - -
1*

- - - - - - - - - - - - - - - - - - -*1

1*
1*
1*
1*
1*
1*
1*
1*

FUNCTION:

REMARKS

INPUTS

OUTPUTS

I n put _ flu s h _ c m d

r_ptr Pointer To Request Packet

Status Returned In Function Return Value

*1
*1
*1
*1
*1
*1
*1
*1
*1

1* - - - - - - - - - - - - - -*1

unsigned int Input_flush_cmd (struct REQ_struct far *r_ptr)
{

}

unsigned int
unsigned int

far *head_ptr;
far *tail_ptr;

head_ptr = MK_FP (BIOS_DATA, KBD_HEAD);
tail_ptr = MK_FP (BIOS_DATA, KBD_TAIL);

return OP_COMPLETE;

260 APPENDIX G. CONSOLE FILES

1* -*1
1* *1
1* FUNCTION: 0 u t put _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Output_cmd (struct REQ_struct far *r_ptr)
{

}

unsigned int i;
unsigned char chr;

for (i = 0; i < r_ptr->req_type.i_o_req.count; i++)
{

chr = *r_ptr->req_type.i_o_req.buffer_ptr++;

Write_chr (chr);
}

return OP_COMPLETE;

APPENDIX G. CONSOLE FILES 261

1* -*1
1* *1
1* FUNCTION: 0 u t put _ v e r i f Y _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Output_verify_cmd (struct REQ_struct far *r_ptr)
{

return OP_COMPLETE;
}

1* -*1
1* *1
1* FUNCTION: U n k now n c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Unknown_cmd (struct REQ_struct far *r_ptr)
{

return UNKNOWN_CMD;
}

Appendix H

ROM BIOS

This is a summary of ROM BIOS. The numbers, interrupt numbers, and values
for AH (in parentheses) are in hexadecimal.

Consult your hardware technical reference manual for details.

Interrupt Input Output
Number Registers Registers Description

5 print screen
8 time of day
9 keyboard services
10 video services

AH set video mode (00)
AL video type

10 video services
AH set cursor size (01)
CH start row
CL end row

10 video services
AH set cursor position (02)
DH row
DL column
BH video page

263

264 APPENDIX H. ROM BIOS

Interrupt Input Output
Number Registers Registers Description

10 video services
AH read cursor position (03)
BH video page

DH current row
DL current column
CH start row for cursor size
CL end row for cursor size

10 video services
AH read light pen position (04)

AH light pen state
DH row number in text mode
DL column number in text mode
CH raster line in graphics mode
BX pixel column in graphics mode

10 video services
AH set· display page (05)
BH display page desired

10 video services
AH scroll page up (06)
AL number of lines to scroll
CH row number upper left window
CL column number upper left window
DH row number lower right window
DL column number lower right window
BH display attributes for window

10 video services
AH scroll page down (07)
AL number of lines to scroll
CH row number upper left window
CL column number upper left window
DH row number lower right window
DL column number lower right window
BH display attributes for window

10 video services
AH read character and attribute (08)
BH display page desired

AL character read
AH attribute for character read

APPENDIX H. ROM BIOS 265

Interrupt Input Output
Number Registers Registers Description

10 video services
AH write character and attribute (09)
BH display page desired
AL character
BL attribute
ex times to write character and attribute

10 video services
AH write character (OA)
BH display page desired
AL character
BL foreground color
ex times to write character

10 video services
AH set color palette (OB)
BH background or border or palette
BL color or palette

10 video services
AH write pixel (OC)
AL palette color
DX raster line desired
ex pixel column desired

10 video services
AH read pixel (OD)
DX raster line desired
ex pixel column desired

AL palette color
10 video services

AH write character as tty (OE)
AL character
BL foreground color

10 video services
AH get video mode (OF)

AH characters per line
AL current video mode
BH current display page

266 APPENDIX H. ROM BIOS

Interrupt Input Output
Number Registers Registers Description

10 video services
AH write string (13)
AL attribute/ color / cursor position
ES segment for character string
BX offset for character string
CX number of characters in the string
BH display page desired
BL attribute or color
DH start row
DL start column

11 equipment check
AX -equipment information

12 memory available
AX memory available in lK units

13 disk services
AH reset disk (00)
DL drive number

AH error number if carry flag is set
13 disk services

AH get disk status (01)
DL drive number

AL status returned
13 disk services

AH read disk sectors (02)
AL number of sectors to read
DL drive number
DH head number
CH lower 8 bits of cylinder number
CL upper 2 bits of cylinder number
ES segment for data transfer area
BX offset for data transfer area

AH status returned

APPENDIX H. ROM BIOS 267

Interrupt Input Output
Number Registers Registers Description

13 disk services
AH write disk sectors (03)
AL number of sectors to write
OL drive number
OH head number
CH lower 8 bits of cylinder number
CL upper 2 bits of cylinder number
ES segment for data transfer area
BX offset for data transfer area

AH status returned
13 disk services

AH verify disk sectors (04)
AL number of sectors to verify
OL drive number
OH head number
CH lower 8 bits of cylinder number
CL upper 2 bits of cylinder number

AH status returned
13 disk services

AH format tracks (05)
OL drive number
OH head number
CH lower 8 bits of cylinder number
CL upper 2 bits of cylinder number
ES segment for format table
BX offset for format table

AH status returned
13 disk services

AH get drive parameters (08)
OL drive number

OL highest drive number
OH highest head number
CH lower 8 bits of cylinder number
CL upper 2 bits of cylinder number

13 disk services
AH initialize drive characteristics (09)

268 APPENDIX H. ROM BIOS

Interrupt Input Output
Number Registers Registers Description

13 disk services
AH read (long) sectors (OA)
AL number of sectors to read
DL drive number
DH head number
CH lower 8 bits of cylinder number
CL upper 2 bits of cylinder number
ES segment for data transfer area
BX offset for data transfer area

AH status returned
13 disk services

AH write (long) sectors (OB)
DL drive number
DH head number
CH lower 8 bits of cylinder number
CL upper 2 bits of cylinder number
ES segment for data transfer area
BX offset for data transfer area

AH status returned
13 disk services

AH seek (OC)
DL drive number
DH head number
CH lower 8 bits of cylinder number
CL upper 2 bits of cylinder number

AH status returned
13 disk services

AH reset disk (OD)
DL drive number

AH status returned
13 disk services

AH drive ready test (10)
DL drive number

AH status returned
13 disk services

AH recalibrate disk (11)
DL drive number

AH status returned

APPENDIX H. ROM BIOS 269

Interrupt Input Output
Number Registers Registers Description

13 disk services
AH diagnostics (14)

AH status returned
13 disk services

AH get disk type (15)
OL drive number

AH status returned
ex total sectors in fixed disk
ox total sectors in fixed disk

13 disk services
AH disk status (16)
OL drive number

AH status returned
13 disk services

AH set disk type (17)
OL drive number
AL diskette type

AH status returned
14 serial port services

AH initialize serial port (00)
AL serial port parameter
ox serial port desired

AH line status returned
AL modem status returned

14 serial port services
AH send one character (01)
AL character
ox serial port desired

AH status returned
14 serial port services

AH receive one character (02)
ox serial port desired

AL character received
AH line status returned

14 serial port services
AH get serial port status (03)
ox serial port desired

AL status returned
AH serial port parameter

270 APPENDIX H. ROM BIOS

Interrupt Input Output
Number Registers Registers Description

16 keyboard services
AH read for next character (00)

AL character
AH scan code for character

16 keyboard services
AH check next character (01)

AL character
AH scan code for character

16 keyboard services
AH get shift status (02)

AL shift status
17 printer services

AH print a character (00)
AL character
OX printer number

AH printer status
17 printer services

AH initialize printer (01)
OX printer number

AH printer status
17 printer services

AH get printer status (02)
OX printer number

AH printer status
18 activate ROM BASIC
19 re boot from disk
1A time of day services

AH read system clock (00)
AL new day indicator
ex high-order word of clock value
DX low-order word of clock value

1A time of day services
AH set system clock (01)
ex high-order word of clock value
DX low-order word of clock value

1C timer tick

Appendix I

dos_fat Program

We mentioned the dos_fat program in Chapter 7. Now we present the complete
source for the program. It consists of two files: dos_fat.h and dos_fat. c
(page 277). The main program appears at the end of dos_f at . c.

Here is the source listing for the dos_fat. h.

1* - - - - - -
1*
1* PROGRAM
1*
1* REMARKS

DOS FAT H e a d e r F i I e

This file contains all of the DOS FAT
1*
1*
1*
1*

program structure definitions used in the
DOS_FAT.C program.

1* -

1* - - - - - - - - - - - - - - - - -
1*
1* DOS Application Programming Interface Constants
1*

- - - - -*1
*1
*1
*1
*1
*1
*1
*1
*1

-*1

1* -

#define TMP_BUF_SIZE
#define FAT_BUF_SIZE

512 1* Buffer Size Required For API
512 1* Buffer Size Required For FATs

271

272 APPENDIX 1. DOS_FAT PROGRAM

#define BYTE unsigned char 1* Define Unsigned Character *1
#define WORD unsigned int 1* Define Unsigned Word *1
#define DWORD unsigned long 1* Define Unsigned Double-Word *1

#define TRUE 1
#define FALSE 0
#define MAXPART 4 1* Maximum Partitions On A Disk *1

#define SECSIZE 512 1* # Of Bytes Per Sector *1
#define DIRESIZE sizeof (struct d_entry)
#define DIRSPSEC (SECSIZE/DIRESIZE) 1* # Dir. Entries/Sector *1

#define DIREND OxOO 1* DOS Filename Status *1
#define ROOTDIR 0 1* Root Directory Cluster *1
#define FIRSTCLUSTER 2 1* First Data Cluster In File *1

#define VOLUME Ox08 1* Volume Bit In Attribute Field *1
#define NULL OxOOOO 1* Null Pointer Value *1

#define DOS_UNUSED 0 1* System ID - Unused Partition *1
#define DOS_FAT12 1 1* System ID - 12-bit FATs *1
#define DOS_FAT16 4 1* System ID - 16-bit FATs *1
#define DOS_EXTPAR 5 1* System ID - Extended DOS Partitn *1
#define DOS_40PAR 6 1* System ID - 4.0 >32Mb Partition *1

#define FATENTRY union FAT_union

1* -*1
*1
*1
*1

1*
1* File Attributes And State Definitions
1*
1* - - - - - - - - - - - - - - -*1

#define R_O Ox01 1* Read Only File Attribute *1
#define HIDDEN Ox02 1* Hidden File Attribute *1
#define SYSTEM Ox04 1* System File Attribute *1
#define VOLUME Ox08 1* Volume Entry Attribute *1
#define SUBDIRECTORY Ox10 1* Subdirectory Entry Attribute *1
#define ARCHIVE Ox20 1* Archive Entry Attribute Bit *1
#define UNUSED OxOO 1* Directory Entry Never Used *1
#define ERASED OxE5 1* Directory Was Used But Erased*1
#define DIRECTORY Ox2E 1* Directory Entry Is A Direct. *1

APPENDIX 1. DOS_FAT PROGRAM 273

1* -*1
1* *1
1* Hardware Specific Disk Device Parameters *1
1* *1
1* -*1

struct device_info
{

BYTE drives; 1* Number Of Drives On System *1
WORD heads; 1* Number Of Heads On Device *1
WORD cylinders; 1* Number Of Cylinders On Device *1
WORD sectors; 1* Number Of Sectors On Device *1

};

1* -*1
1* *1
1* DOS Boot Record Layout Or Structure Definition *1
1* *1
1* -*1

struct BOOT_struct
{

};

BYTE
BYTE
WORD
BYTE
WORD
BYTE
WORD
WORD
BYTE
WORD
WORD
WORD
DWORD
DWORD

entry_point [3];1* Jump To Beginning Of Boot Code *1
oem [8]; 1* OEM Name And Version *1
bps;
spau;
res_sectors;
num_FATs;

volume_size;
media_byte;
spf;
spt;
hpc;
hidden;

1* Bytes Per Sector *1
1* Sectors Per Allocation Unit *1
1* Number Of Reserved Sectors *1
1* Number Of FATs *1
1* Number Of Files In Root Directry *1
1* Number Of Sectors On Volume *1
1* Media Descriptor Byte *1
1* Number Of Sectors Per FAT *1
1* Number Of Sectors Per Track *1
1* Number Of Heads Per Cylinder *1
1* Number Of Hidden Sectors *1

volume_size_32; 1* 32-Bit Volume Size *1

274 APPENDIX I. DOS_FAT PROGRAM

1* -*1
1* *1
1* DOS Fixed Disk Partition Table Entry Structure *1
1* *1
1* -*1

struct p_entry
{

BYTE boot_ID; 1* Boot Indicator *1
BYTE boot_HSC [3] ; 1* Head, Sec, Cyl Of Boot Record*1
BYTE system_ID; 1* Owning System ID *1
BYTE end_HSC [3]; 1* Head, Sec, Cyl Of Last Sector*1
DWORD sector_offset; 1* Sector Offset From Phys 0 *1
DWORD sector_length; 1* Sector Length Of Partition *1

};

1* -*1
1* *1
1* DOS Fixed Disk Partition Table Structure *1
1* *1
1* -*1

struct partition
{

};

BYTE code [446]; 1* Boot Code For Device (Disk) *1
struct p_entry p_tbl [MAXPART];I* Partition Table Entries *1
WORD signature; 1* Valid Part. Signature OxAA55 *1

APPENDIX 1. DOS_FAT PROGRAM 275

1* -*1
1* *1
1* File Allocation Table (FAT) Structure/Union *1
1* *1
1* -*1

union FAT_union
{

};

struct
{

unsigned int
} fat_16;

struct
{

unsigned int
unsigned int

} fat_12_lo;

struct
{

unsigned int
unsigned int

} fat_12_hi;

16;

12;
4;

4· ,
12;

1* -*1
1* *1
1* DOS File System Directory Structure Definition *1
1* *1
1* -*1

struct d_entry
{

BYTE f_name [8] ; 1* File's Name *1
BYTE f_ext [3] ; 1* File's Extension *1
BYTE f_attribute; 1* File's Attribute *1
BYTE f_res [10] ; 1* DOS Reserved Region *1
WORD f_time; 1* Time Last Changed *1
WORD f_date; 1* Date Last Changed *1
WORD f_FAT; 1* Starting FAT Entry *1

276 APPENDIX 1. DOS-F'AT PROGRAM

1* File's Size (In Bytes)
};

1* -*1
1* *1
1* Miscellaneous DOS File System Structure *1
1* *1
1* ------- - - - - - - - - - - - - - - - - - - -*1

struct file_system
{

BYTE drive; 1* Physical Drive Of File System *1
BYTE partition; 1* Partition Of File System *1
DWORD start; 1* Sector # Of Partition Start *1
DWORD base; 1* Base Sector # Of Master Boot *1
BYTE bpFAT; 1* # Of Bits Per FAT Number *1
BYTE spau; 1* Sectors Per Allocation Unit *1
WORD res_sectors; 1* Number Of Reserved Sectors *1
BYTE num_FATs; 1* Number Of FATs *1
WORD root_files; 1* Number Of Files In Root Directory*1
WORD spf; 1* Number Of Sectors Per FAT *1
DWORD hidden; 1* Number Of Hidden Sectors *1

WORD fps; 1* Number Of FATs Per Sector *1
DWORD FAT_rba; 1* RBA Of First FAT Sector *1
DWORD DIR_rba; 1* RBA Of First Directory Sector *1
DWORD DATA_rba; 1* RBA Of First Data Sector *1

DWORD FAT_loaded; 1* Currently Loaded RBA Of FAT *1

WORD FAT_size; 1* Number Of Sectors For FATs *1
WORD DIR_size; 1* Number Of Sectors For DIR *1
DWORD VOL_size; 1* Number Of Sectors For Volume *1

BYTE *FAT_ptr; 1* Pointer To The Buffered FAT *1
};

APPENDIX 1. DOS..FAT PROGRAM

Here is the source listing for dos_fat. c.

1* - - - - - - - - - - - - - - - -
1*
1* PROGRAM : D 0 S F A T F i

1*
1* - - - - - - - - - - - - -

#include "dos_fat.h"
#include <dos.h>
#include <bios.h>
#include <conio.h>
#include <stdio.h>
#include <string.h>

struct device_info
struct file_system
struct d_entry
unsigned char
unsigned char
unsigned char
unsigned char

d_i;
f_s;
entry;
*tmp_buf;
boot_device;
filename [80];
big_buf [2048];

-

1

-

277

- - - - - - - - - - - - - -*1
*1

e S y s t e m *1
*1

- - - - - - - - - - - - - -*1

278 APPENDIX 1. DOSYAT PROGRAM

1* -*1
1* *1
1* FUNCTION: Pro c e s s L B A *1
1* *1
1* REMARKS Process_LBA performs a read or write operation *1
1* from/to the specific logical sector of a DOS *1
1* FAT-based file system. *1
1* *1
1* INPUTS cmd Disk Command *1
1* drive Disk Drive Number *1
1* count Number Of Sectors *1
1* b_ptr Buffer Pointer *1
1* rba Relative Block Address *1
1* *1
1* OUTPUTS: status Return Status *1
1* *1
1* -*1

unsigned int Process_LBA (unsigned int
unsigned int drive,
unsigned int count,

cmd,

{

void *b_ptr,
unsigned long rba)

unsigned int rc;
unsigned int cyl;
unsigned int head;
unsigned int sector;

cyl = «rba I d_i.sectors) I d_i.heads);
head = «rba I d_i.sectors) % d_i.heads);
sector = «rba % d_i.sectors) + 1);

#ifdef PRINT_DATA
printf (IIProcess_LBA - RBA : %08lx\n", rba);

#endif

}

rc = biosdisk (cmd, drive, head, cyl, sector, count, b_ptr);
if (rc != OxOOOO)
{

rc = OxFFFF; 1* Recalibration Of Diskette Here *1
}

return rc;

APPENDIX 1. DOS.-FAT PROGRAM

1* -
1*
1* FUNCTION: I nit _ F S

1*
1* REMARKS Init_FS reads the boot sector and establishes
1* various values in the file system structure (f_s).

1*
1* INPUTS none
1*
1* OUTPUTS f_s File System Structure Initialized
1*
1* -

unsigned int Init_FS (unsigned int c,
unsigned int h,
unsigned int s)

{

unsigned int
unsigned long
struct BOOT_struct

rc;
vol_size;
*b_ptr;

rc = biosdisk (Ox02, f_s.drive, h, c, s, 1, tmp_buf);
if (rc != OxOO)
{

- -

rc = biosdisk (Ox02, f_s.drive, h, c, s, 1, tmp_buf);
if (rc != OxOO)
{

#ifdef PRINT_DATA
printf ("Init_FS - biosdisk Failed (rc)

#endif
return OxFFFF;

}

}

d_i.drives = 1;
d_i.heads = b_ptr->hpc;

%x\n", rc);

-

279

-*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

-*1

vol_size = «b_ptr->volume_size == 0) ? b_ptr->volume_size_32
: b_ptr->volume_size);

280 APPENDIX I. DOSYAT PROGRAM

d_i.cylinders = «(vol_size / b_ptr->spt) / b_ptr->hpc} + 1};
d_i.sectors = b_ptr->spt;

#ifdef PRINT_DATA
printf ("Drives : %02x\tHeads : %02x\t"

"Cyls : %02x\tSecs : %02x\n",
d_i.drives, d_i.heads, d_i.cylinders, d_i.sectors);

#endif

f_s.spau = b_ptr->spau;
f_s.res_sectors = b_ptr->res_sectors;
f_s.num_FATs = b_ptr->num_FATs;
f_s.root_files = b_ptr->root_files;
f_s.spf = b_ptr->spf;
f_s.hidden = b_ptr->hidden;

f_s.FAT_rba = (f_s.base + f_s.hidden + f_s.res_sectors);
f_s.DIR_rba = (f_s.FAT_rba + (f_s.num_FATs * f_s.spf)};
f_s.DATA_rba = (f_s.DIR_rba + «f_s.root_files+DIRSPSEC-1) /

f_s.vaL_size
f_s.FAT_size
f_s.DIR_size

DIRSPSEC)};
vol_size;
f_s.DIR_rba - f_s.FAT_rba;
f_s.DATA_rba - f_s.DIR_rba;

#ifdef PRINT_DATA
printf (IIf_s.spau : %02x\t\tf_s.res_sectors : %04x\n",

f_s.spau, f_s.res_sectors);
printf (IIf_s.num_FATs : %02x\tf_s.root_files : %04x\n",

f_s.num_FATs, f_s.root_files);
printf (IIf_s.spf : %04x\t\tf_s.hidden : %08lx\n",

f_s.spf, f_s.hidden);
printf (IIf_s.FAT_rba : %08lx\tf_s.DIR_rba : %08lx\n",

f_s.FAT_rba, f_s.DIR_rba);
printf (IIf_s.DATA_rba %08lx\n\n",

f_s.DATA_rba);
printf ("f_s.VaL_size %08lx\tf_s.FAT_size: %04x\t"

"f_s.DIR_size %04x\n",
f_s.VaL_size, f_s.FAT_size, f_s.DIR_size);

#endif

return OxOO;
}

APPENDIX 1. DOSYAT PROGRAM 281

1* -*1
1* *1
1* FUNCTION: Get _ F i 1 e _ S Y s t e m *1
1* *1
1* REMARKS Get_File_System checks for a valid file system. *1
1* *1
1* INPUTS drive Device File System Is On *1
1* rba Sector Offset Of File System *1
1* p_base Partition's Base Sector Location *1
1* *1
1* OUTPUTS OxOO If Successful *1
1* OxFF If Otherwise *1
1* *1
1* *1
1* -*1

unsigned int Get_File_System (unsigned int
unsigned long
unsigned int

drive,
rba,
p_base)

{

unsigned int rc;
unsigned int p_num;
unsigned int cyl;
unsigned int head;
unsigned int sec;
unsigned char *c_ptr;
unsigned long ep_off;
struct partition *p_ptr;
struct p_entry *pe_ptr;

if (drive & Ox80)
{

rc = biosdisk (Ox02, drive, OxOO, OxOO, OxOl, OxOl,
tmp_buf);

if (rc != OxOO)
{

return OxFFFF;
}

282 APPENDIX I. DOSYAT PROGRAM

(unsigned char *) p_ptr = tmp_buf;
if (p_ptr->signature != OxAA55)
{

return OxFFFF;
}

for (p_num = 0; p_num < MAXPART; p_num++)
{

}

pe_ptr = &(p_ptr->p_tbl [p_num]);
if (pe_ptr->boot_ID == Ox80)
{

break;
}

if (p_num == MAXPART)
{

return OxFFFF;
}

switch (pe_ptr->system_ID)
{

case DOS_UNUSED
case DOS_EXTPAR
{

return OxFFFF;
}

case DOS_FAT12
case DOS_FAT16
case DOS_40PAR
{

f_s.drive = drive;
f_s.partition = p_base + p_num;
f_s.start = rba + pe_ptr->sector_offset;
f_s.base = rba;
if (pe_ptr->system_ID == DOS_FAT12)
{

}

f_s.bpFAT = 12;
f_s.fps = 342;

APPENDIX 1. DOSYAT PROGRAM

}

else
{

}

}

else
{

}

f_s.bpFAT = 16;
f_s.fps = 256;

c_ptr = &(pe_ptr->boot_HSC [0]);
head = *c_ptr;
sec (*(c_ptr + 1) & Ox3F);
cyl (*(c_ptr + 1) & OxCO);
cyl (*(c_ptr + 2) I (cyl « 2));

if (Init_FS (cyl, head, sec))
{

return OxFFFF;
}

break;

default
{

return OxFFFF;
}

f_s.drive = OxOO;
f_s.partition = 0;
f_s.start = OxOOOOOOOOL;
f_s.base = OxOOOOOOOOL;
f_s.bpFAT = 12;
f_s.fps = 342;

cyl = 0;
head = 0;
sec = 1;
if (Init_FS (cyl, head, sec))
{

return OxFFFF;
}

283

284 APPENDIX 1. DOSYAT PROGRAM

}

#ifdef PRINT_DATA
printf (IIf_s.drive : %02x\t\tf_s.partition : %02x\n",

f_s.drive, f_s.partition);
printf (IIf_s.start : %OBlx\tf_s.base %OBlx\n",

f_s.start, f_s.base);
printf (lI f_s.bpFAT : %02x\t\tf_s.fps %04x\n",

f_s.bpFAT, f_s.fps);
#endif

return OxOO;
}

APPENDIX 1. DOSYAT PROGRAM 285

1* -*1
1* *1
1* FUNCTION: Goo d _ C 1 u s t e r *1
1* *1
1* REMARKS Good_Cluster returns an indication whether the *1
1* cluster is valid. *1
1* *1
1* INPUTS cluster The Allocation Unit Number *1
1* *1
1* OUTPUTS TRUE If Cluster Is Valid *1
1* FALSE If Cluster Is Invalide *1
1* *1
1* -*1

unsigned int
{

Good_Cluster (unsigned int cluster)

if «cluster < FIRSTCLUSTER) II
«f_s.bpFAT == 16) && (cluster> OxFFF8» I I
«f_s.bpFAT == 12) && (cluster> OxOFF8»)

{

return FALSE;
}

else
{

return TRUE;
}

}

286 APPENDIXLDOS~ATPROGRAM

1* -*1
1* *1
1* FUNCTION: N ext _ C 1 u s t e r *1
1* *1
1* REMARKS Next_Cluster returns the next cluster number in *1
1* the file allocation chain indicated by the *1
1* specified cluster. *1
1* *1
1* INPUTS cluster Current File Allocation Cluster *1
1* *1
1* OUTPUTS next Next File Allocation Cluster *1
1* *1
1* -*1

unsigned int
{

Next_Cluster (unsigned int cluster)

unsigned int
unsigned int
unsigned int
unsigned long
unsigned long
union FAT_union

l_cluster = cluster;
if (f_s.bpFAT == 12)
{

rc;
n_cluster;
fat_pos;
fat_rba;
l_cluster;
*f_ptr;

l_cluster = «l_cluster * 3) I 2);
fat_pos = (l_cluster % SECSIZE);
fat_rba = (f_s.FAT_rba + (l_cluster I SECSIZE));
if (f_s.FAT_loaded != fat_rba)
{

}

f_s.FAT_loaded = fat_rba;
rc = Process_LBA (Ox02, boot_device, 1,

f_s.FAT_ptr, fat_rba);

if (cluster & 1)
{

}

APPENDIX I. DOSYAT PROGRAM

}

else
{

}

else
{

}

I_cluster = (I_cluster * 2);
fat_pos = (I_cluster % SECSIZE);
fat_rba = (f_s.FAT_rba + (I_cluster / SECSIZE));
if (f_s.FAT_Ioaded != fat_rba)
{

}

f_s.FAT_Ioaded = fat_rba;
rc = Process_LBA (Ox02, boot_deviGe, 1,

f_s.FAT_ptr, fat_rba);

if (!Good_Cluster (n_cluster))
{

n_cluster = OxFFFF;
}

#ifdef PRINT_DATA

287

printf (IINext_Cluster - cluster: %04x %d\tnext : %04x %d\n ll
,

cluster, cluster, n_cluster, n_cluster);
#endif

return n_cluster;
}

288 APPENDIX I. DOS-FAT PROGRAM

1* -*1
1* *1
1* FUNCTION: Rea d _ C Ius t e r *1
1* *1
1* REMARKS Read_Cluster reads the file data indicated by *1
1* the specified cluster number into the supplied *1
1* buffer. *1
1* *1
1* INPUTS cluster Current File Allocation Cluster *1
1* b_ptr Buffer Address *1
1* *1
1* OUTPUTS: status Indicator Of Function Success *1
1* *1
1* -*1

unsigned int Read_Cluster (unsigned int cluster,

{

unsigned int
unsigned long
unsigned long

rc;
rba;
I_cluster;

I_cluster = cluster;

unsigned
unsigned
unsigned

if (Good_Cluster (cluster))
{

char *b_ptr,
char clstr_sec,
char count)

rba = (((I_cluster - FIRSTCLUSTER) * f_s.spau) +

}

else
{

}

f_s.DATA_rba);
rba += clstr_sec;
rc = Process_LBA (Ox02, boot_device, count, b_ptr, rba);
if (rc)
{

rc = OxFFFF;
}

rc OxFFFF;

APPENDIX I. DOS-F'AT PROGRAM 289

#ifdef PRINT_DATA
printf (IIRead_Cluster - cluster: %04x %d\trba %08lx %ld\n",

cluster, cluster, rba, rba);
#endif

return rc;
}

290 APPENDIX I. DOS_FAT PROGRAM

1* -*1
1* *1
1* FUNCTION: P r i n t D I R *1
1* *1
1* REMARKS Print_DIR prints the directory entry *1
1* information that is pointed to by the parameter. *1
1* *1
1* INPUTS entry Print_DIR Caller's ID (Location) *1
1* d_ptr Pointer To Directory Entry *1
1* *1
1* OUTPUTS: None No Status Returned *1
1* *1
1* -*1

unsigned int Print_DIR (unsigned int
struct d_entry

{

}

unsigned int i;

printf (IIPrint_DIR : %02d\n ll
, entry);

printf (lI\tFilename : II);
for (i = 0; i < 8; i++)
{

printf (II%C Il
, d_ptr->f_name [i]);

}

printf (lI\tExtension: II);
for (i = 0; i < 3; i++)
{

printf (II%C Il
, d_ptr->f_ext [i]);

}

printf (lI\n\tAttribute: %02x\tFile FAT: %04x\n ll
,

d_ptr->f_attribute, d_ptr->f_FAT);
printf (lI\tFile Size: %08lx\n ll

, d_ptr->f_size);

APPENDIX 1. DOS_FAT PROGRAM 291

1* -*1
1* *1
1* FUNCTION: Fin d _ E n try *1
1* *1
1* REMARKS Find_Entry finds the directory entry for the *1
1* specified filename. *1
1* *1
1* INPUTS cluster Current File Allocation Cluster *1
1* d_ptr Pointer To Directory Entry *1
1* *1
1* OUTPUTS status Indicator Of Function Success *1
1* d_ptr Updated Contents Of Directory *1
1* *1
1* -*1

unsigned int Find_Entry (unsigned int
struct d_entry

{

unsigned int rc;
unsigned int i;
unsigned int j;
unsigned int k;
unsigned int found;
unsigned char *src;
unsigned char *dst;
unsigned char *fc_ptr;
struct d_entry *fd_ptr;

#ifdef PRINT_DATA
Print_DIR (1, d_ptr);

#endif

if (cluster == ROOTDIR)
{

for (i
{

cluster,
*d_ptr)

rc Process_LBA (Ox02, boot_device, 1, tmp_buf,
(f_s.DIR_rba + i));

if (rc)
{

return OxFFFF;
}

292 APPENDIX 1. DOS..FAT PROGRAM

for (fc_ptr = tmp_buf;

{

fc_ptr < tmp_buf + SECSIZE;
fc_ptr += DIRESIZE)

if (*fc_ptr == DIREND)
{

return OxFFFF;
}

fd_ptr = (struct d_entry *) fc_ptr;

#ifdef PRINT_DATA
Print_DIR (2, fd_ptr);

#endif

}
}

}

if (!(fd_ptr->f_attribute & VOLUME»
{

}

src = fd_ptr->f_name;
dst = d_ptr->f_name;
for (j = 0, found = TRUE;

j < 11; j++)
{

}

if (*(src + j) != *(dst + j»
{

}

found = FALSE;
break;

if (found)
{

}

for (j = 0;
j < sizeof(struct d_entry);
*(dst + j) = *(src + j++»;

return cluster;

APPENDIX 1. DOS.PAT PROGRAM

else
{

while (Good_Cluster (cluster»
{

for (k = 0; k < f_s.spau; k++)
{

rc = Read_Cluster (cluster, tmp_buf, k, 1);
if (rc != OxOOOO)
{

return OxFFFF;
}

for (fc_ptr = tmp_buf;

{

fc_ptr < (tmp_buf + SECSIZE);
fc_ptr += DIRESIZE)

if (*fc_ptr == DIREND)
{

return OxFFFF;
}

fd_ptr = (struct d_entry *) fc_ptr;

#ifdef PRINT_DATA
Print_DIR (3, fd_ptr);

#endif

293

294

}

}

}

}

}

APPENDIX 1. DOS-.FAT PROGRAM

if (!(fd_ptr->f_attribute & VOLUME»
{

}

src = fd_ptr->f_name;
dst = d_ptr->f_name;
for (j 0, found = TRUE;

j < 11; j++)
{

}

if (*(src + j) != *(dst + j»
{

}

found = FALSE;
break;

if (found)
{

}

for (j = 0;
j < sizeof(struct d_entry);
*(dst + j) = *(src + j++»;

return cluster;

cluster = Next_Cluster (cluster);

return OxFFFF;

APPENDIX 1. DOS-FAT PROGRAM 295

1* -*1
1* *1
1* FUNCTION: Fin d _ F i len a m e *1
1* *1
1* REMARKS Find_Filename parses the specified filename *1
1* and the repeated invocation of Find_Entry descends *1
1* the file hierarchy. *1
1* *1
1* INPUTS name Pointer To Desired Filename *1
1* *1
1* OUTPUTS cluster Cluster Number Of The Filename *1
1* *1
1* -*1

unsigned int Find_Filename (unsigned char
struct d_entry

{

unsigned int i;
unsigned int rc;
unsigned int cl;
unsigned char *ptr;
unsigned char *c_ptr;

for (c_ptr = n_ptr; *c_ptr;
*c_ptr++ = «(*c_ptr >= 'a') && (*c_ptr <= 'z')) ?

(*c_ptr - 'a' + 'A') : (*c_ptr)))

for (ptr = n_ptr, cl = ROOTDIR, i
{

for (; *ptr == '\\'; ptr++)

0; *ptr; i++)

for (c_ptr d_ptr->f_name; c_ptr < (d_ptr->f_name + 8);
*c_ptr++ = , ')

for (c_ptr d_ptr->f_ext; c_ptr < (d_ptr->f_ext + 3);
*c_ptr++ = , ')

for (c_ptr = d_ptr->f_name;
«*ptr != '.') && (*ptr != '\\') && *ptr);
*c_ptr++ = *ptr++);

296 APPENDIX 1. DOSYAT PROGRAM

if (*ptr == '.')
{

}

ptr++;
for (c_ptr = d_ptr->f_ext; «*ptr != '\\') && *ptr);

*c_ptr++ = *ptr++)

rc = Find_Entry (cl, d_ptr);
if (rc == OxFFFF)
{

#ifdef PRINT_DATA
printf (IIFind_Filename - Entry Not Found\n");

#endif

break;
}

}

rc = «i == 0) ? OxFFFF rc);

return rc;
}

APPENDIX 1. DOSYAT PROGRAM 297

1* -*1
1* *1
1* FUNCTION: I nit i ali z e *1
1* *1
1* REMARKS Initialize initializes the variables required *1
1* for execution. */
1* */
1* INPUTS None *1
1* *1
1* OUTPUTS Zero If Operation Successful */
1* Not If Operation Fails *1
1* *1
1* -*1

unsigned int
{

Initialize (void)

}

unsigned int rc;

tmp_buf = big_buf;
f_s.FAT_ptr (big_buf + TMP_BUF_SIZE);

boot_device Ox80;
Get_File_System (boot_device, OxOL, OxO);

f_s.FAT_loaded = f_s.FAT_rba;
rc = Process_LBA (Ox02, boot_device, 1, f_s.FAT_ptr,

f_s.FAT_rba);

return rc;

298 APPENDIX 1. DOS-FAT PROGRAM

1* -*1
1* *1
1* FUNCTION: M a i n *1
1* *1
1* REMARKS Main controls the overall operation of the *1
1* DOS_FAT file system program. *1
1* *1
1* INPUTS None *1
1* *1
1* OUTPUTS Various DOS FAT Tracing Is Displayed *1
1* *1
1* -*1

void main (void)
{

}

Initialize 0;

do
{

}

printf (IIEnter Filename: II);
gets (filename);
Find_Filename (filename, &entry);
Print_DIR (0, &entry);

while (strlen (filename) > 0);

Appendix J

RAM_DISK Files

We discussed the RAMJ)ISK device driver in Chapter 8 where we have showed
parts of the files. Now we present the complete versions for ram_disk (the
makefile for the device driver); dos_data. c (page 303); dos_env. c (page 306);
and dos_drvr. c (page 313). The remaining files we use in the ram~disk makefile
have not changed - they remain as they appear in Chapter 4 and Appendix F.

Here is the source listing for the ram_disk makefile.

Makefile For DOS Device Driver Template Written In C

Assembler Definitions

ASM \turbo\asm\tasm
AFLAGS

TURBO C Compiler Definitions

-c Do Not Perform Link Step
-M Produce Link/Load Map
-mt Produce TINY Model Output
-S Produce Assembler Module
-y Produce Line Number Information
-Idir Place To Search For Include Files

299

300 APPENDIX J. RAM.JJISK FILES

\turbo\c\tcc TURBO
TFLAGS -c -M -mt -S -y -I\turbo\c\include

Linker Definitions

LINK \turbo\c\tlink
LFLAGS

List Of Required Libraries

LIBS \turbo\c\lib\cs.lib

.#
List Of Required Include Files

DOS Device Driver Command Include File

List Of Required Object Files

M1.0BJ
M2.0BJ
M3.0BJ
M4.0BJ
M5.0BJ

TURBO C Version Assembler Header For TINY Model
Modified C Assembler For DOS_DATA.C
Modified C Assembler For DOS_ENV.C
Modified C Assembler For DOS_DRVR.C
Modified C Assembler For DOS_END.C

OBJS = m1.obj m2.obj m3.obj m4.obj m5.obj

Perform DOS Device Driver Linkage

ram_disk.sys: $(OBJS) $(INCS)
$(LINK) $(LFLAGS) m1+m2+m3+m4+m5, \

ram_disk.exe,,$(LIBS);

APPENDIX J. RAM-DISK FILES 301

erase m3.*
exe2bin ram_disk.exe ram_disk.sys

Perform DOS_HDR Assembly

m1.obj:

dos_hdr.asm
copy dos_hdr.asm ml.asm
$(ASM) $(AFLAGS) ml.asm;

Perform DOS_DATA Compilation

m2.obj:

$(INCS) dos_data.c
$(TURBO) $(TFLAGS) dos_data.c
arrange dos.arr dos_data.asm m2.asm
erase dos_data.asm
$(ASM) $(AFLAGS) m2.asm;

Perform DOS_ENV Compilation

m3.obj:

$ (INCS) dos_env.c
$(TURBO) $(TFLAGS) dos_env.c
arrange dos.arr dos_env.asm m3.asm
erase dos_env.asm
$(ASM) $(AFLAGS) m3.asm;

Perform DOS_DRVR Compilation

m4.obj:

$(INCS) dos_drvr.c
$(TURBO) $(TFLAGS) dos_drvr.c
arrange dos.arr dos_drvr.asm m4.asm
erase dos_drvr.asm
$(ASM) $(AFLAGS) m4.asm;

302 APPENDIX J. RAMJJISK FILES

Perform DOS_END Compilation

m5.obj: $ (INCS) dos_end.c
$(TURBO) $(TFLAGS) dos_end.c
arrange dos.arr dos_end.asm m5.asm
erase dos_end.asm
$(ASM) $(AFLAGS) m5.asm;

APPENDIX J. RAM.IJISK FILES 303

Here is the source listing for dos_data. c.

1* -*1
1* *1
1* PROGRAM DOS D e vic e D r i v e r *1
1* *1
1* REMARKS This file contains the set of command *1
1* routines specified by the DOS Technical Reference *1
1* Manual. *1
1* *1
1* The following include file is required to *1
1* compile this file *1
1* DOS_DD.H *1
1* *1
1* -*1

#include 1* DOS Command Structures *1

extern
extern

void
void

far Strategy ();
far Interrupt ();

1* Strategy Routine
1* Interrupt Routine

Allocate And Initialize DOS Device Header

- - - - - - -*1
*1
*1
*1

- - - - - - -*1

1* DOS Device Header
struct DEVICE_HEADER_struct dos_header =
{

(struct DEVICE_HEADER_struct far *) OxFFFFFFFFL,
Ox2000, 1* Non-IBM Format
(unsigned int) Strategy, 1* Strategy Function
(unsigned int) Interrupt, 1* Interrupt Function
{ 1* Unit/Name Field

Ox01, 1* Initial Number Of Units
OxOO, 1* Zero Remaining Entries
OxOO, 1* Zero Remaining Entries
OxOO, 1* Zero Remaining Entries
OxOO, 1* Zero Remaining Entries
OxOO, 1* Zero Remaining Entries
OxOO, 1* Zero Remaining Entries

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

304 APPENDIX J. RAMJJISK FILES

OxOO 1* Zero Remaining Entries
}

};

1* -*1
1* *1
1* DOS Device Driver Global Data Region *1
1* *1
1* -*1

struct BPB_struct bpb =
{

0
};

struct BPB_struct *bpb_ary [DEVICES] = { 0 };

unsigned int rc; 1* Function Return Code *1
unsigned int driver; 1* Global Driver Variable *1
unsigned int SS_reg; 1* SS Register Variable *1
unsigned int SP_reg; 1* SP Register Variable *1
unsigned int ES_reg; 1* ES Register Variable *1
unsigned int AX_reg; 1* AX Register Variable *1
unsigned int BX_reg; 1* BX Register Variable *1
unsigned int CX_reg; 1* CX Register Variable *1
unsigned int DX_reg; 1* DX Register Variable *1
unsigned int DS_reg; 1* DS Register Variable *1
unsigned int SI_reg; 1* SI Register Variable *1

1* Local Device Driver Stack *1
unsigned int local_stk [STK_SIZE] ;

struct REQ_struct far *r_ptr; 1* DOS Request Packet Pointer *1

APPENDIX J. RAMJJISK FILES 305

1* -*1
1* *1
1* RAM_DISK variables *1
1* *1
1* -*1

void (far *v_call) (void);
struct REQ_struct tmp_req = { 0 };
struct DEVICE_HEADER_struct far *vdisk = { 0 };

unsigned char vdisk_str [] "VDISK" ;
unsigned char found_msg [] "\r\nVDISK Found\r\n"

"Driver Installed\r\n\r\n$";
unsigned char error_msg [] "\r\nVDISK Not Found\r\n"

"Driver Not Installed\r\n\r\n$";

306 APPENDIX J. RAM-DISK FILES

Here is the source listing for dos_env. c.

1* - - - - - - - - - - - - - - - - - - -*1
1* *1
1* PROGRAM DOS D e vic e D r i v e r *1
1* *1
1* REMARKS This file contains the set of command *1
1* routines specified by the DOS Technical Reference *1
I * Manual. * I
1* *1
1* The following include file is required to *1
1* compile this file *1
1* DOS_DD.H *1
1* *1
1* -*1

#include
#include

<dos.h>
"dos_dd.h"

DOS Device Driver Routine Declarations

extern unsigned Init_cmd ();
extern unsigned Unknown_cmd ();

1* INIT Command *1
1* UNKNOWN Command Default *1

APPENDIX J. RAM_DISK FILES 307

DOS Device Driver Global Data Region

- - - - - - - - -*/
*/
*/
*/

- - - - - -*/

extern unsigned rc; /* Function Return Code
extern unsigned driver; /* Global Driver Variable
extern unsigned SS_reg; /* SS Register Variable
extern unsigned SP_reg; /* SP Register Variable
extern unsigned ES_reg; /* ES Register Variable
extern unsigned AX_reg; /* AX Register Variable
extern unsigned BX_reg; /* BX Register Variable
extern unsigned eX_reg; /* ex Register Variable
extern unsigned DX_reg; /* DX Register Variable
extern unsigned DS_reg; /* DS Register Variable
extern unsigned S1_reg; /* S1 Register Variable

/* Local Device Driver Stack
extern unsigned local_stk [STK_S1ZE];

/* DOS Request Packet Pointer
extern struct REQ_struct far *r_ptr;

308 APPENDIX J. RAMJJISK FILES

unsigned (*dos_cmd [DOS_CMDS]) (struct REQ_struct far *r_ptr) =
{

};

Init_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_ cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd

1* INIT Command *1
1* MEDIA_CHECK Command *1
1* BUILD_BPB Command *1
1* IOCTL Input Command *1
I * INPUT Command * I
1* INPUT No Wait Command *1
1* INPUT Status Command *1
1* INPUT Flush Command *1
I * OUTPUT Command * I
1* OUTPUT Verify Command *1
1* OUTPUT Status Command *1
I * OUTPUT Flush Command * I
1* IOCTL Output Command *1
1* DEVICE Open Command *1
1* DEVICE Close Command *1
1* REMOVABLE Media Commmand *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* GENERIC IOCTL Command *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* GET Logical Device Map *1
1* SET Logical Device Map *1

APPENDIX J. RAMJJISK FILES 309

1* -*1
1* *1
1* FUNCTION: DOS _ Set u p *1
1* *1
1* REMARKS DOS_Setup establishes a C environment prior to *1
1* allowing the actual device driver routines to *1
1* execute. *1
1* *1
1* INPUTS *1
1* which 0: Strategy Entry; 1 : Interrupt Entry *1
1* ES_tmp Pointer To Request Packet *1
1* DS_tmp Original DS Register Value *1
1* AX_tmp Original AX Register Value *1
1* *1
1* OUTPUTS Status Must Be Set In The Request Packet *1
1* *1
1* NOTES Register manipulations require this routine to *1
1* be compiled with the TURBO C Compiler. *1
1* *1
1* -*1

void DOS_Setup (unsigned int which,
unsigned int ES_tmp,
unsigned int DS_tmp,
unsigned int AX_tmp)

{

_AX = _CS; 1* Obtain Code Segment *1
_DS = _AX; 1* Setup Data Segment *1

BX_reg = _BX; 1* Save BX Register *1
CX_reg _CX; 1* Save CX Register *1
DX_reg = _DX; 1* Save DX Register *1

AX_reg = AX_tmp; 1* Save AX Register *1
ES_reg = ES_tmp; 1* Save Request Pointer *1

driver = which; 1* Move Value From Stack *1

SS_reg = _SS; 1* Save Stack Segment *1
SP_reg = _SP; 1* Save Stack Pointer *1

disable 0; 1* Disable Interrupts *1

310

}

APPENDIX J. RAM-DISK FILES

_AX = _OS;
_SS _AX;

_SP (unsigned int)
enable ();

if (driver)

1* Obtain Data Segment
1* Setup New Stack
1* Set Stack Ptr Value

&local_stk [STK_SIZE];
1* Enable Interrupts

{ 1* Interrupt Entry Point *1
rc = OxOOOO; 1* Clear Return Code *1

1* DOS Request Packet Ptr *1
r_ptr = MK_FP (ES_reg, BX_reg);
if (r_ptr->command >= DOS_CMOS)
{

rc = ERROR_BIT I UNKNOWN_CMD;
}

else
{

}

1* Set Driver Complete Bit *1
r_ptr->status = rc I DONE_BIT;

}

else
{ 1* Strategy Entry Point *1

1* Don't Save ES:BX Because It's Passed To Interrupt!! *1
}

disable 0;
_SS = SS_reg;
_SP = SP_reg;
enable 0;

_OX = OX_reg;
_CX = CX_reg;
_BX = BX_reg;
_AX = AX_reg;

_ES = ES_tmp;
_OS = DS_tmp;

1*
1*
1*
1*

1*
1*
1*
1*

1*
1*

Disable Interrupts *1
Restore Entry Stack *1
Restore Entry Stack Ptr *1
Enable Interrupts *1

Restore OX Register *1
Restore CX Register *1
Restore BX Register *1
Restore AX Register *1

Restore ES Register *1
Restore OS Register *1

APPENDIX J. RAMJJISK FILES 311

1* -*1
1* *1
1* FUNCTION: S t rat e g y *1
1* *1
1* REMARKS: Strategy is the routine that is called by the *1
1* Operating System when this device is requested to *1
1* perform some activity (typically READs and WRITEs). *1
1* *1
1* INPUTS ES:BX Pointer To Request Packet *1
1* *1
1* NOTES Register manipulations require this routine to *1
1* be compiled with the TURBO C Compiler. *1
1* *1
1* -*1

void far Strategy (void)
{

#ifdef DEBUG
geninterrupt (Ox03);

#endif

}

312 APPENDIX J. RAMJJISK FILES

1* -*1
1* *1
1* FUNCTION: I n t err u p t *1
1* *1
1* REMARKS Interrupt is the routine that is called by the *1
1* Operating System immediately after the Strategy *1
1* routine has been called. Interrupt is responsible *1
1* for performing the work required to accomplish the *1
1* requested operation. *1
1* *1
1* INPUTS ES:BX Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Must Be Set In The Request Packet *1
1* RETF Must Be Used To Return From Interrupt *1
1* *1
1* NOTES Register manipulations require this routine to *1
1* be compiled with the TURBO C Compiler. *1
1* *1
1* -*1

void far Interrupt (void)
{

#ifdef DEBUG
geninterrupt (Ox03);

#endif

}

APPENDIX J. RAMJJISK FILES 313

Here is the source listing for dos_drvr. c.

1* - - - - - - - - - - - -*1
1* *1
1* PROGRAM DOS D e vic e D r i v e r *1
1* *1
1* REMARKS This file contains the set of command *1
1* routines specified by the DOS Technical Reference *1
I * Manual. * I
1* *1
1* The following include file is required to *1
1* compile this file *1
1* DOS_DD.H *1
1* *1
1* -*1

DOS Device Driver Required Includes I Constants

#include
#include
#include

"dos_dd.h"
<dos.h>
<string.h>

1* DOS Command Structures *1
1* DOS Specific Definitions *1
1* C String Library Prototypes *1

extern void End_code (void);
extern struct BPB_struct
extern struct BPB_struct

bpb;
*bpb_ary [DEVICES];

314 APPENDIX J. RAMJJISK FILES

#define END_OF_CHAIN OxFFFF 1* End Of D.D.H. List *1
#define SEARCH_SIZE 30 1* Search Length For VDISK *1
#define TRUE 1 1* Value Of Logical TRUE *1
#define FALSE 0 1* Value Of Logical FALSE *1

void (far *v_call) (void);
unsigned char vdisk_str [] ;

unsigned char found_msg [] ;

unsigned char error_msg [] ;

struct REQ_struct tmp_req;

extern
extern
extern
extern
extern
extern struct DEVICE_HEADER_struct far *vdisk;

DOS Internal Variables Block Structure

- - - - - - - - -*1
*1
*1
*1

struct DOS_struct
{

unsigned char
struct DEVICE_HEADER_struct

};

- - - - - - - - -*1

reserved [34];
far *ddh_ptr;

APPENDIX J. RAMJJISK FILES 315

1* -*1
1* *1
1* FUNCTION: U n k now n _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Unknown_cmd (struct REQ_struct far *r_ptr)
{

}

v_call = MK_FP (FP_SEG (vdisk), vdisk->dev_strat);
_ES = FP_SEG (r_ptr);
_BX = FP_OFF (r_ptr);
v_call 0;

v_call = MK_FP (FP_SEG (vdisk), vdisk->dev_int);
_ES = FP_SEG (r_ptr);
_BX = FP_OFF (r_ptr);
v_call 0;

316 APPENDIX J. RAMJJISK FILES

1* -*1
1* *1
1* FUNCTION: I nit _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Init_cmd (struct REQ_struct far *r_ptr)
{

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned int
unsigned int
struct DOS_struct
struct DEVICE_HEADER_struct

_AX = Ox5200;
geninterrupt (Ox21);
bx_reg _BX;
es_reg = _ES;

i;
found;
far *c_ptr;
far *s_ptr;
far *t_ptr;
es_reg;
bx_reg;

far *dos_ptr;
far *v_ptr;

dos_ptr = MK_FP (es_reg, bx_reg);
v_ptr = (struct DEVICE_HEADER_struct far *)

&dos_ptr->ddh_ptr;

for (found = FALSE;

{

«!found) && (FP_OFF (v_ptr) != END_OF_CHAIN));
v_ptr = v_ptr->next_hdr)

for (i = 0, c_ptr = (v_ptr->name_unit + 8);
«!found) && (i < SEARCH_SIZE));
i++, c_ptr++)

{

APPENDIX J. RAMJJISK FILES

{

}
}

}

for (s_ptr = vdisk_str, t_ptr = c_ptr;
«*s_ptr) && (*s_ptr == *t_ptr));
s_ptr++, t_ptr++);

if (l(*s_ptr))
{

}

found = TRUE;
vdisk = v_ptr;

if (found)
{ 1* Send Command On To VDISK

}

else
{

tmp_req.length = sizeof (struct BUILO_BPB_struct);
tmp_req.unit = 0;
tmp_req.command = BUILO_BPB;
tmp_req.status = 0;
tmp_req.req_type.build_bpb_req.media_byte = OxFE;

for (i = 0, t_ptr = (unsigned char far *) &bpb,
(struct BPB_struct far *) s_ptr =

tmp_req.req_type.build_bpb_req.BPB_table;
i < sizeof (struct BPB_struct);
*t_ptr++ = *s_ptr++, i++);

bpb_ary [0] = (unsigned int) &bpb;
r_ptr->req_type.init_req.num_of_units = 1;
r_ptr->req_type.init_req.end_ptr =

MK_FP (_CS, (unsigned int) End_code);
r_ptr->req_type.init_req.BPB_ptr =

MK_FP (_CS, (unsigned int) bpb_ary);

_ox = (unsigned int) found_msg;
_AH = 9;
geninterrupt (Ox21);

1* VDISK Not Installed

317

318

}

}

APPENDIX J. RAMJJISK FILES

1* Do Not Install Driver *1
_DX = (unsigned int) error_msg;
_AH = 9;
geninterrupt (Ox21);

r_ptr->req_type.init_req.num_of_units = 0;
r_ptr->req_type.init_req.BPB_ptr = MK_FP (0, 0);
r_ptr->req_type.init_req.end_ptr = MK_FP (_CS, 0);

return OP_COMPLETE;

Appendix K

SHADOW Files

We discussed the SHADOW device driver in Chapter 8 where we have showed
parts of the files. Now we present the complete versions for shadow (the makefile
for the device driver); dos_data.c (page 323); dos_env.c (page 326); and
dos_drvr. c (page 333). The remaining files that we use in the shadow makefile
have not changed - they remain as they appear in Chapter 4 and Appendix F.

Here is the source listing for the shadow makefile.

Makefile For DOS Device Driver Template Written In C

Assembler Definitions

ASM
AFLAGS

\turbo\asm\tasm

TURBO C Compiler Definitions

-c Do Not Perform Link Step
-M Produce Link/Load Map
-mt Produce TINY Model Output
-S Produce Assembler Module
-y Produce Line Number Information
-Idir Place To Search For Include Files

319

320 APPENDIX K. SHADOW FILES

\turbo\c\tcc TURBO
TFLAGS -c -M -mt -S -y -I\turbo\c\include

Linker Definitions

LINK \turbo\c\tlink
LFLAGS

List Of Required Libraries

LIBS \turbo\c\lib\cs.lib

List Of Required Include Files

DOS Device Driver Command Include File

INCS = dos_dd.h

List Of Required Object Files

M1.0BJ
M2.0BJ
M3.0BJ
M4.0BJ
M5.0BJ

TURBO C Version Assembler Header For TINY Model
Modified C Assembler For DOS_DATA.C
Modified C Assembler For DOS_ENV.C
Modified C Assembler For DOS_DRVR.C
Modified C Assembler For DOS_END.C

OBJS = ml.obj m2.obj m3.obj m4.obj m5.obj

Perform DOS Device Driver Linkage

shadow.sys: $(OBJS) $(INCS)
$(LINK) $(LFLAGS) ml+m2+m3+m4+m5, \

APPENDIX K. SHADOW FILES

shadow.exe,,$(LIBS);
erase m3.*
exe2bin shadow.exe shadow.sys

Perform DOS_HDR Assembly

m1.obj:

dos_hdr.asm
copy dos_hdr.asm ml.asm
$(ASM) $(AFLAGS) ml.asm;

Perform DOS_DATA Compilation

m2.obj:

$(INCS) dos_data.c
$(TURBO) $(TFLAGS) dos_data.c
arrange dos.arr dos_data.asm m2.asm
erase dos_data.asm
$(ASM) $(AFLAGS) m2.asm;

Perform DOS_ENV Compilation

m3.obj:

$(INCS) dos_env.c
$(TURBO) $(TFLAGS) dos_env.c
arrange dos.arr dos_env.asm m3.asm
erase dos_env.asm
$(ASM) $(AFLAGS) m3.asm;

Perform DOS_DRVR Compilation

m4.obj: $(INCS) dos_drvr.c
$(TURBO) $(TFLAGS) dos_drvr.c
arrange dos.arr dos_drvr.asm m4.asm
erase dos_drvr.asm
$(ASM) $(AFLAGS) m4.asm;

321

322 APPENDIX K. SHADOW FILES

Perform DOS_END Compilation

m5.obj: $(INCS) dos_end.c
$(TURBO) $(TFLAGS) dos_end.c
arrange dos.arr dos_end.asm m5.asm
erase dos_end.asm
$(ASM) $(AFLAGS) m5.asm;

APPENDIX K. SHADOW FILES 323

Here is the source listing for dos_data. c.

/* - - - - - - - - - - - - -*/
/* */
/* PROGRAM DOS D e vic e D r i v e r */
/* */
/* REMARKS This file contains the set of command */
/* routines specified by the DOS Technical Reference */
/ * Manual. * /
/* */
/* The following include file is required to */
/* compile this file */
/* DOS_DD.H */
/* */
/* -*/

#include "dos_dd.h" /* DOS Command Structures */

extern
extern

void
void

far Strategy 0;
far Interrupt ();

/* Strategy Routine
/* Interrupt Routine

Allocate And Initialize DOS Device Header

- - - - - - -*/
*/
*/
*/

- - - - - - -*/

/* DOS Device Header
struct DEVICE_HEADER_struct dos_header =
{

(struct DEVICE_HEADER_struct far *) OxFFFFFFFFL,
Ox2000, /* Non-IBM Format
(unsigned int) Strategy, /* Strategy Function
(unsigned int) Interrupt, /* Interrupt Function
{ /* Unit/Name Field

Ox01, /* Initial Number Of Units
OxOO, /* Zero Remaining Entries
OxOO, /* Zero Remaining Entries
OxOO, /* Zero Remaining Entries
OxOO, /* Zero Remaining Entries
OxOO, /* Zero Remaining Entries
OxOO, /* Zero Remaining Entries

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

324 APPENDIX K. SHADOW FILES

OxOO 1* Zero Remaining Entries
}

};

1* -*1
1* *1
1* DOS Device Driver Global Data Region *1
1* *1
1* -*1

struct BPB_struct bpb =
{

0
};

struct BPB_struct *bpb_ary [DEVICES] = { 0 };

unsigned int rc; 1* Function Return Code *1
unsigned int driver; 1* Global Driver Variable *1
unsigned int SS_reg; 1* SS Register Variable *1
unsigned int SP_reg; 1* SP Register Variable *1
unsigned int ES_reg; 1* ES Register Variable *1
unsigned int AX_reg; 1* AX Register Variable *1
unsigned int BX_reg; 1* BX Register Variable *1
unsigned int CX_reg; 1* CX Register Variable *1
unsigned int DX_reg; 1* DX Register Variable *1
unsigned int DS_reg; 1* DS Register Variable *1
unsigned int SI_reg; 1* SI Register Variable *1

1* Local Device Driver Stack *1
unsigned int local_stk [STK_SIZE];

struct REQ_struct far *r_ptr; 1* DOS Request Packet Pointer *1

APPENDIX K. SHADOW FILES 325

1* -*1
1* *1
1* SHADOW variables *1
1* *1
1* -*1

void (far *v_call) (void);
struct REQ_struct tmp_req { 0 };
struct DEVICE_HEADER_struct far *ddh_ptr = { 0 };

unsigned char
unsigned char

unsigned char

com_str []
found_msg []

error _msg []

"COM1 ";
"\r\nDDH Found\r\n"
"Driver Installed\r\n\r\n$";
"\r\nDDH Not Found\r\n"
"Driver Not Installed\r\n\r\n$";

326 APPENDIX K. SHADOW FILES

Here is the source listing for dos_env. c.

1* - - - - - - - - - - - - - -*1
1* *1
1* PROGRAM DOS D e vic e D r i v e r *1
1* *1
1* REMARKS This file contains the set of command *1
1* routines specified by the DOS Technical Reference *1
1* Manual. *1
1* *1
1* The following include file is required to *1
1* compile this file *1
1* DoS_DD.H *1
1* *1
1* -*1

#include
#include

<dos.h>
"dos_dd.h"

DOS Device Driver Routine Declarations

- - - - - - - -*1
*1
*1
*1

extern unsigned Init_cmd ();
extern unsigned output_cmd ();
extern unsigned Unknown_cmd ();

- - - - - -*1

1* INIT Command *1
1* OUTPUT Command Function *1
1* UNKNOWN Command Default *1

APPENDIX K. SHADOW FILES 327

- - - - - - - - -*1

DOS Device Driver Global Data Region
*1
*1
*1

- - - - - -*1

extern unsigned rc; 1* Function Return Code *1
extern unsigned driver; 1* Global Driver Variable *1
extern unsigned SS_reg; 1* SS Register Variable *1
extern unsigned SP_reg; 1* SP Register Variable *1
extern unsigned ES_reg; 1* ES Register Variable *1
extern unsigned AX_reg; 1* AX Register Variable *1
extern unsigned BX_reg; 1* BX Register Variable *1
extern unsigned CX_reg; 1* CX Register Variable *1
extern unsigned DX_reg; 1* DX Register Variable *1
extern unsigned DS_reg; 1* DS Register Variable *1
extern unsigned S1_reg; 1* S1 Register Variable *1

1* Local Device Driver Stack *1
extern unsigned local_stk [STK_S1ZE];

1* DOS Request Packet Pointer *1
extern struct REQ_struct far *r_ptr;

328 APPENDIX K. SHADOW FILES

unsigned (*dos_cmd [DOS_CMDS]) (struct REQ_struct far *r_ptr) =
{

Init_cmd, 1* INIT Command *1
Unknown_cmd, 1* MEDIA_CHECK Command *1
Unknown_cmd, 1* BUILD_BPB Command *1
Unknown_cmd, 1* IOCTL Input Command *1
Unknown_cmd, 1* INPUT Command *1
Unknown_cmd, 1* INPUT No Wait Command *1
Unknown_cmd, 1* INPUT Status Command *1
Unknown_cmd, 1* INPUT Flush Command *1
Output_cmd, 1* OUTPUT Command *1
Output_cmd, 1* OUTPUT Verify Command *1
Unknown_cmd, 1* OUTPUT Status Command *1
Unknown_cmd, I * OUTPUT Flush Command *1
Unknown_cmd, 1* IOCTL Output Command *1
Unknown_cmd, 1* DEVICE Open Command *1
Unknown_cmd, 1* DEVICE Close Command *1
Unknown_cmd, 1* REMOVABLE Media Commmand *1
Unknown_cmd, 1* UNKNOWN Command Default *1
Unknown_cmd, 1* UNKNOWN Command Default *1
Unknown_cmd, 1* UNKNOWN Command Default *1
Unknown_cmd, 1* GENERIC IOCTL Command *1
Unknown_cmd, 1* UNKNOWN Command Default *1
Unknown_cmd, 1* UNKNOWN Command Default *1
Unknown_cmd, 1* UNKNOWN Command Default */
Unknown_cmd, 1* GET Logical Device Map *1
Unknown_cmd 1* SET Logical Device Map *1

};

APPENDIX K. SHADOW FILES 329

1* -*1
1* *1
1* FUNCTION: DOS _ Set u p *1
1* *1
1* REMARKS DOS_Setup establishes a C environment prior to *1
1* allowing the actual device driver routines to *1
1* execute. *1
1* *1
1* INPUTS *1
1* which 0: Strategy Entry; 1 : Interrupt Entry *1
1* ES_tmp Pointer To Request Packet *1
1* DS_tmp Original DS Register Value *1
1* AX_tmp Original AX Register Value *1
1* *1
1* OUTPUTS Status Must Be Set In The Request Packet *1
1* *1
1* NOTES Register manipulations require this routine to *1
1* be compiled with the TURBO C Compiler. *1
1* *1
1* -*1

void DOS_Setup (unsigned int which,
unsigned int ES_tmp,
unsigned int DS_tmp,
unsigned int AX_tmp)

{

_AX _CS; 1* Obtain Code Segment *1
_DS _AX; 1* Setup Data Segment *1

BX_reg _BX; 1* Save BX Register *1
CX_reg _CX; 1* Save CX Register *1
DX_reg _DX; 1* Save DX Register *1

AX_reg AX_tmp; 1* Save AX Register *1
ES_reg ES_tmp; 1* Save Request Pointer *1

driver which; 1* Move Value From Stack *1

SS_reg _SS; 1* Save Stack Segment *1
SP_reg _SP; 1* Save Stack Pointer *1

disable 0; 1* Disable Interrupts *1

330

}

APPENDIX K. SHADOW FILES

_AX = _OS;
_SS _AX;

_SP (unsigned int)
enable ();

if (driver)

1* Obtain Data Segment
1* Setup New Stack
1* Set Stack Ptr Value

&local_stk [STK_SIZE];
1* Enable Interrupts

{ 1* Interrupt Entry Point *1
rc = OxOOOO; 1* Clear Return Code *1

1* DOS Request Packet Ptr *1
r_ptr = MK_FP (ES_reg, BX_reg);
if (r_ptr->command >= DOS_CMOS)
{

rc = ERROR_BIT I UNKNOWN_CMO;
}

else
{

}

1* Set Driver Complete Bit
r_ptr->status = rc I DONE_BIT;

}

else
{ 1* Strategy Entry Point

1* Don't Save ES:BX Because It's Passed To Interrupt!!
}

disable ();
_SS = SS_reg;
_SP = SP_reg;
enable 0;

_OX = OX_reg;
_CX = CX_reg;
_BX = BX_reg;
_AX = AX_reg;

_ES = ES_tmp;
_OS = DS_tmp;

1*
1*
1*
1*

1*
1*
1*
1*

1*
1*

Disable Interrupts
Restore Entry Stack
Restore Entry Stack Ptr
Enable Interrupts

Restore OX Register
Restore CX Register
Restore BX Register
Restore AX Register

Restore ES Register
Restore OS Register

*1

*1
*1

*1
*1
*1
*1

*1
*1
*1
*1

*1
*1

APPENDIX K. SHADOW FILES 331

/* -*/
/* */
/* FUNCTION: S t rat e g y */
/* */
/* REMARKS: Strategy is the routine that is called by the */
/* Operating System when this device is requested to */
/* perform some activity (typically READs and WRITEs). */
/* */
/* INPUTS ES:BX Pointer To Request Packet */
/* */
/* NOTES Register manipulations require this routine to */
/* be compiled with the TURBO C Compiler. */
/* */
/* -*/

void far Strategy (void)
{

#ifdef DEBUG
geninterrupt (Ox03);

#endif

}

332 APPENDIX K. SHADOW FILES

1* -
1*
1* FUNCTION: I n t err u p t
1*
1* REMARKS
1*
1*
1*
1*
1*
1* INPUTS
1*
1* OUTPUTS
1*
1*
1* NOTES
1*
1*
1*

Interrupt is the routine that is called by the
Operating System immediately after the Strategy
routine has been called. Interrupt is responsible
for performing the work required to accomplish the
requested operation.

ES:BX

Status
RETF

Pointer To Request Packet

Must Be Set In The Request Packet
Must Be Used To Return From Interrupt

Register manipulations require this routine to
be compiled with the TURBO C Compiler.

void far Interrupt (void)
{

#ifdef DEBUG
geninterrupt (Ox03);

#endif

}

-*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

-*1

APPENDIX K. SHADOW FILES 333

Here is the source listing for dos_drvr. c.

1* - - - - - - - - - - - - - -*1
1* *1
1* PROGRAM DOS 0 e vic e 0 r i v e r *1
1* *1
1* REMARKS This file contains the set of command *1
1* routines specified by the DOS Technical Reference *1
1* Manual. *1
1* *1
1* The following include file is required to *1
1* compile this file *1
1* DOS_DD.H *1
1* *1
1* -*1

DOS Device Driver Required Includes I Constants

#include
#include
#include

"dos_dd.h"
<dos.h>
<string.h>

End_code (void);
BPB_struct bpb;

1* DOS Command Structures *1
1* DOS Specific Definitions *1
1* C String Library Prototypes *1

extern void
extern struct
extern struct BPB_struct *bpb_ary [DEVICES];

334

#define END_OF_CHAIN
#define TRUE
#define FALSE
#define DRIVE_A
#define DRIVE_B

void

OxFFFF
1
o
o
1

unsigned char
unsigned char
unsigned char
struct REQ_struct

APPENDIX K. SHADOW FILES

1* End Of D.D.H. List
1* Value Of Logical TRUE
1* Value Of Logical FALSE
1* Unit Value For Drive A:
1* Unit Value For Drive B:

(far *v_call) (void);
com_str [];
found_msg [];
error_msg [];
tmp_req;

extern
extern
extern
extern
extern
extern struct DEVICE_HEADER_struct far *ddh_ptr;

DOS Internal Variables Block Structure

- - - - - - -*1
*1
*1
*1

struct DOS_struct
{

unsigned char
struct DEVICE_HEADER_struct

};

- - - - - - - - -*1

reserved [34];
far *ddh_ptr;

APPENDIX K. SHADOW FILES 335

1* -*1
1* *1
1* FUNCTION: U n k now n _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Unknown_cmd (struct REQ_struct far *r_ptr)
{

}

v_call = MK_FP (FP_SEG (ddh_ptr), ddh_ptr->dev_strat);
_ES = FP_SEG (r_ptr);
_BX = FP_OFF (r_ptr);
v_call 0;

v_call = MK_FP (FP_SEG (ddh_ptr), ddh_ptr->dev_int);
_ES = FP_SEG (r_ptr)j
_BX = FP_OFF (r_ptr);
v_call 0;

336 APPENDIX K. SHADOW FILES

1* -*1
1* *1
1* FUNCTION: 0 u t put _ c m d *1
1* *1
1* REMARKS Output_cmd performs a shadow or duplex write to *1
1* drives A: and B:. This command is used to process *1
1* both the OUTPUT command as well as the *1
1* OUTPUT_VERIFY command. *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Output_cmd (struct REQ_struct far *r_ptr)
{

}

unsigned char uni t ;

unit = r_ptr->unit;
r_ptr->unit = DRIVE_A;
r_ptr->status = OP_COMPLETE;

if (!(r_ptr->status & ERROR_BIT»
{

}

r_ptr->unit = DRIVE_B;
r_ptr->status = OP_COMPLETE;

r_ptr->unit unit;

1* Initial Write To A Drive*1

1* Shadow Write To B Drive *1

APPENDIX K. SHADOW FILES 337

1* -*1
1* *1
1* FUNCTION: I nit _ c m d *1
1* *1
I * REMARKS * I
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Init_cmd (struct REQ_struct far *r_ptr)
{

unsigned char
unsigned char
unsigned char
unsigned char
unsigned int
unsigned int
unsigned int
struct DOS_struct
struct DEVICE_HEADER_struct
struct DEVICE_HEADER_struct

_AX = Ox5200;
geninterrupt (Ox21);
bx_reg = _BX;
es_reg = _ES;

i;
found;
far *s_ptr;
far *t_ptr;
es_reg;
bx_reg;
com_seg;

far *dos_ptr;
far *v_ptr;
far *com_ptr;

dos_ptr = MK_FP (es_reg, bx_reg);
v_ptr = (struct DEVICE_HEADER_struct far *) &dos_ptr->ddh_ptr;
com_ptr = v_ptr;

338 APPENDIX K. SHADOW FILES

for (found = FALSE;

{

}

«!found) && (FP_OFF (com_ptr) != END_OF_CHAIN));
com_ptr = com_ptr->next_hdr)

for (s_ptr = com_ptr->name_unit, t_ptr = com_str;
«*t_ptr) && (*s_ptr == *t_ptr));
s_ptr++, t_ptr++);

if (! (*t_ptr))
{

found = TRUE;
com_seg = FP_SEG (com_ptr);

}

for (found = FALSE;

{

}

«lfound) && (FP_OFF (v_ptr) l= END_OF_CHAIN));
v_ptr = v_ptr->next_hdr)

if «l(v_ptr->attribute & CHAR_DD)) &&
(FP_SEG (v_ptr) == com_seg))

{

}

found = TRUE;
ddh_ptr = v_ptr;

APPENDIX K. SHADOW FILES

}

if (found)
{ 1* Send Command On To VDISK

1* Original Device Driver

}

else
{

}

bpb_ary [0] = (unsigned int) &bpb;
r_ptr->req_type.init_req.num_of_units = 1;
r_ptr->req_type.init_req.end_ptr =

MK_FP (_CS, (unsigned int) End_code);
r_ptr->req_type.init_req.BPB_ptr =

MK_FP (_CS, (unsigned int) bpb_ary);

_OX = (unsigned int) found_msg;
_AH = 9;
geninterrupt (Ox21);

1* DOH Not Found
1* Do Not Install Driver

_ox = (unsigned int) error_msg;
_AH = 9;
geninterrupt (Ox21);

r_ptr->req_type.init_req.num_of_units = 0;
r_ptr->req_type.init_req.BPB_ptr = MK_FP (0, 0);
r_ptr->req_type.init_req.end_ptr = MK_FP (_CS, 0);

return (OP_COMPLETE);

339

Appendix L

WORM BIOS

This is a summary of the WORM BIOS. The values for AH (in parentheses) are
in hexadecimal. All other values are in decimal. You can access the WORM
BIOS with a far call to Ox04BO.

Consult your IBM 3363 Optical Disk Drive hardware technical reference
manual for details.

Input Output
Registers Registers Description

AH selective drive reset (20)
DL drive address 0 - 7

AH status returned
AL adapter status

AH read sense (21)
DL drive address 0 - 7

AH status returned
AL adapter status

AH read attribute data (22)
DL drive address 0 - 7

AH status returned
AL adapter status

AH read verify normal ECC correction (23)
DL drive address 0 - 7
DH sector address 0 - 22
ex track address 0 - 17099
AL block count 1 - 128

AH status returned
AL adapter status

341

342 APPENDIX L. WORM BIOS

Input Output
Registers Registers Description

AH sector recovery (24) - 1 sector
AL block count - must be set to 1
AH sector recovery (25) - 2 sectors
AL block count - must be set to 1
AH no retry (26)
AL maximum block count is 128
AH no retry with sector recovery (27)
AL block count - must be set to 1
AH no retry with sector recovery (28)
AL block count - must be set to 1
AH read normal (29)
DL drive address 0 - 7
DH sector address 0 - 22
ex track address 0 - 17099
AL block count 1 - 128
ES segment for read/write area
BX offset for read/write area

AH status returned
AL adapter status

AH sector recovery (2A) - 1 sector
AL block count - must be set to 1
AH sector recovery (2B) - 2 sectors
AL block count - must be set to 1
AH no ECC correction (2C)
AL maximum block count is 128
AH no ECC correction with sector recovery (2D)
AL block count - must be set to 1
AH no ECC correction with sector recovery (2E)
AL block count - must be set to 1
AH no retry (2F)
AL maximum block count is 128
AH no retry with sector recovery (30)
AL block count - must be set to 1
AH no retry with sector recovery (31)
AL block count - must be set to 1

APPENDIX L. WORM BIOS 343

Input Output
Registers Registers Description

AH write normal (32)
OL drive address 0 - 7
OH sector address 0 - 22
ex track address 0 - 17099
AL block count 1 - 128
ES segment for read/write area
BX offset for read/write area

AH status returned
AL adapter status

AH seek normal (33)
OL drive address 0 - 7
ex track address 0 - 17099

AH status returned
AL adapter status

AH test seek (34)
AH run diagnostic command (35)
OL drive address 0 - 7

AH status returned
AL adapter status

AH read suppress normal (36)
OL drive address 0 - 7
OH sector address 0 - 22
ex track address 0 - 17099
AL block count 1 - 128
ES segment for read/write area
BX offset for read/write area

AH status returned
AL adapter status

AH sector recovery (37) - 1 sector
AL block count - must be set to 1
AH sector recovery (38) - 2 sectors
AL block count - must be set to 1
AH normal demark command (39)
OL drive address 0 - 7
OH sector address 0 - 22
ex track address 0 - 17099
AL block count 1 - 128

AH status returned
AL adapter status

344 APPENDIX L. WORM BIOS

Input Output
Registers Registers Description

AH demark recovery (3A)
AL maximum block count is 128
AH sector recovery (3B) - 1 sector
AL block count - must be set to 1
AH sector recovery (3D) - 2 sectors
AL block count - must be set to 1
AH demark recovery with sector recovery (3E)
AL block count - must be set to 1
AH read track address (3F)
DL drive address 0 - 7

AH status returned
AL adapter status
ex track address

AH adapter reset (40)
DL drive address 0 - 7
AH read adapter status (41)
DL drive address 0 - 7

AH status returned
AL adapter status

AH read scan (42)
DL drive address 0 - 7
DH sector address 0 - 22
ex track address 0 - 17099
AL block count 1 - 128

AH status returned
AL adapter status

AH sector recovery (43) - 1 sector
AL block count - must be set to 1
AH sector recovery (44) - 2 sectors
AL block count - must be set to 1

Appendix M

WORM Files

We discussed the WORM device driver in Chapter 13 where we have shown parts
of the files. N ow we present the complete versions for worm (the makefile for
the device driver); dos_data. c (page 349); dos_env. c (page 352); dos_drvr. c
(page 359); and worm.h, a new include file (page 376). The remaining files we
use in the worm makefile have not changed - they remain as they appear in
Chapter 4 and Appendix F.

Here is the source listing for the worm makefile.

Makefile For DOS Device Driver Template Written In C

Assembler Definitions

ASM \turbo\asm\tasm
AFLAGS

TURBO C Compiler Definitions

-c
-M
-mt
-S
-y

Do Not Perform Link Step
Produce Link/Load Map
Produce TINY Model Output
Produce Assembler Module
Produce Line Number Information

345

346 APPENDIX M. WORM FILES

-Idir Place To Search For Include Files

TURBO
TFLAGS

\turbo\c\tcc
-c -M -mt -S -y -I\turbo\c\include

Linker Definitions

LINK \turbo\c\tlink
LFLAGS

List Of Required Libraries

LIBS \turbo\c\lib\cs.lib

List Of Required Include Files

DOS_DD.H
WORM.H

DOS Device Driver Command Include File
DOS WORM Device Driver Include File

INCS = dos_dd.h worm.h

List Of Required Object Files

M1.0BJ
M2.0BJ
M3.0BJ
M4.0BJ
M5.0BJ

TURBO C Version Assembler Header For TINY Model
Modified C Assembler For DOS_DATA.C
Modified C Assembler For DOS_ENV.C
Modified C Assembler For DOS_DRVR.C
Modified C Assembler For DOS_END.C

OBJS = ml.obj m2.obj m3.obj m4.obj m5.obj

Perform DOS Device Driver Linkage

worm.sys: $(OBJS) $(INCS)

APPENDIX M. WORM FILES

$(LINK) $(LFLAGS) ml+m2+m3+m4+m5,worm.exe,,$(LIBS);
erase m3.*
exe2bin worm.exe worm.sys

Perform DoS_HDR Assembly

m1.obj:

dos_hdr.asm
copy dos_hdr.asm ml.asm
$(ASM) $(AFLAGS) ml.asm;

Perform DOS_DATA Compilation

m2.obj:

$(INCS) dos_data.c
$(TURBo) $(TFLAGS) dos_data.c
arrange dos.arr dos_data.asm m2.asm
erase dos_data.asm
$(ASM) $(AFLAGS) m2.asm;

Perform DoS_ENV Compilation

m3.obj:

$(INCS) dos_env.c
$(TURBO) $(TFLAGS) dos_env.c
arrange dos.arr dos_env.asm m3.asm
erase dos_env.asm
$(ASM) $(AFLAGS) m3.asmj

Perform DoS_DRVR Compilation

m4.obj: $(INCS) dos_drvr.c
$(TURBo) $(TFLAGS) dos_drvr.c
arrange dos.arr dos_drvr.asm m4.asm
erase dos_drvr.asm
$(ASM) $(AFLAGS) m4.asm;

347

348 APPENDIX M. WORM FILES

Perform DOS_END Compilation

m5.obj: $(INCS) dos_end.c
$(TURBO) $(TFLAGS) dos_end.c
arrange dos.arr dos_end.asm m5.asm
erase dos_end.asm
$(ASM) $(AFLAGS) m5.asm;

APPENDIX M. WORM FILES 349

Here is the source listing for dos_data. c.

1* -*1
1* *1
1* PROGRAM DOS D e vic e D r i v e r *1
1* *1
1* REMARKS This file contains the set of command *1
1* routines specified by the DOS Technical Reference *1
1* Manual. *1
1* *1
1* The following include files are required to *1
1* compile this file *1
1* DOS_DD.H *1
1* WORM.H *1
1* *1
1* -*1

#include
#include

extern
extern

"dos_dd.h"
"worm.h"

1* DOS Command Structures *1
1* WORM Header File *1

void
void

far Strategy ();
far Interrupt ();

1* Strategy Routine
1* Interrupt Routine

350 APPENDIX M. WORM FILES

Allocate And Initialize DOS Device Header

- - - - - - -*1
*1
*1
*1

- - - - - - -*1

1* DOS Device Header
struct DEVICE_HEADER_struct dos_header =
{

(struct DEVICE_HEADER_struct far *) OxFFFFFFFFL,
Ox2000, 1* Non-IBM Format
(unsigned int) Strategy, 1* Strategy Function
(unsigned int) Interrupt, 1* Interrupt Function
{ 1* Unit/Name Field

OxOl, 1* Initial Number Of Units
OxOO, 1* Zero Remaiuing Entries
OxOO, 1* Zero Remaining Entries
OxOO, 1* Zero Remaining Entries
OxOO, 1* Zero Remaining Entries
OxOO, 1* Zero Remaining Entries
OxOO, 1* Zero Remaining Entries
OxOO 1* Zero Remaining Entries

}

};

1* -*1
1* *1
1* DOS Device Driver Global Data Region *1
1* *1
1* -*1

struct BPB_struct bpb =
{

Ox200, 1* Bytes Per Sector *1
OxOl, 1* Sectors Per Allocation Unit *1
OxOl, 1* Reserved Sectors *1
OxOl, 1* Number Of FATS *1
OxOl00, 1* Number Of Root Dir Entries *1
OxFOOO, 1* Number Of Sectors *1
OxFO, 1* Media Descriptor *1
OxOl00, 1* Number Of Sectors Per FAT *1
1, 1* Number Of Sectors Per Track *1

APPENDIX M. WORM FILES

};

1,
1L,
OL

1* Number Of Heads
1* Number Of Hidden Sectors
1* 32-Bit Number of Sectors

351

struct BPB_struct *bpb_ary [DEVICES] = { 0 };

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

rc;
driver;
SS_reg;
SP_reg;
ES_reg;
AX_reg;
BX_reg;
CX_reg;
DX_reg;
DS_reg;
SI_reg;

1* Local Device Driver Stack

1* Function Return Code
1* Global Driver Variable
1* SS Register Variable
1* SP Register Variable
1* ES Register Variable
1* AX Register Variable
1* BX Register Variable
1* CX Register Variable
1* DX Register Variable
1* DS Register Variable
1* SI Register Variable

unsigned int local_stk [STK_SIZE];

struct REQ_struct far *r_ptr; 1* DOS Request Packet Pointer *1

unsigned char
unsigned char
unsigned char
unsigned char

unsigned int
unsigned int
unsigned int

reg_ah;
reg_al;
reg_dh;
reg_dl;

reg_cx;
reg_es;
reg_bx;

1* AH Register - Command *1
1* AL Register - Block Count *1
1* DH Register - Sector Number *1
1* DL Register - Drive Number *1

1* CX Register - Track Number *1
1* ES Register - Buffer Segment *1
1* BX Register - Buffer Offset *1

unsigned char mag_buf [512]; 1* Temp. Sector Buffer *1
1* Disk Information *1 struct INFo_struct disk_info = { 0 };

352 APPENDIX M. WORM FILES

Here is the source listing for dos_env. c.

1* - - - - - - - - - - - -*1
1* *1
1* PROGRAM DOS D e vic e D r i v e r *1
1* *1
1* REMARKS This file contains the set of command *1
1* routines specified by the DOS Technical Reference *1
1* Manual. *1
1* *1
1* The following include file is required to *1
1* compile this file *1
1* DOS_DD.H *1
1* *1
1* -*1

#include
#include

extern
extern
extern
extern
extern
extern

<dos.h>
"dos_dd.h"

DOS Device Driver Routine Declarations

unsigned Init_cmd ();
unsigned Media_check_cmd ();
unsigned Build_bpb_cmd ();
unsigned Input_cmd ();
unsigned Output_cmd ();
uns igned Unknown_ cmd ();

1* INIT Command *1
1* MEDIA_CHECK Command *1
1* BUILD_BPB Command *1
I * INPUT Command * I
I * OUTPUT Command * I

1* UNKNOWN Command Default *1

APPENDIX M. WORM FILES 353

- - - - - - - - -*1

DOS Device Driver Global Data Region
*1
*1
*1

- - - - - - - - -*1

extern unsigned rc; 1* Function Return Code
extern unsigned driver; 1* Global Driver Variable
extern unsigned SS_reg; 1* SS Register Variable
extern unsigned SP_reg; 1* SP Register Variable
extern unsigned ES_reg; 1* ES Register Variable
extern unsigned AX_reg; 1* AX Register Variable
extern unsigned BX_reg; 1* BX Register Variable
extern unsigned CX_reg; 1* CX Register Variable
extern unsigned DX_reg; 1* DX Register Variable
extern unsigned DS_reg; 1* DS Register Variable
extern unsigned S1_reg; 1* S1 Register Variable

1* Local Device Driver Stack
extern unsigned local_stk [STK_S1ZE];

1* DOS Request Packet Pointer
extern struct REQ_struct far *r_ptr;

354 APPENDIX M. WORM FILES

unsigned (*dos_cmd [DOS_CMOS]) (struct REQ_struct far *r_ptr) =
{

};

Init_cmd,
Media_check_cmd,
Build_bpb_cmd,
Unknown_cmd,
Input_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Output_cmd,
Output_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd,
Unknown_cmd

1* INIT Command *1
1* MEDIA_CHECK Command *1
1* BUILD_BPB Command *1
1* IOCTL Input Command *1
I * INPUT Command * I
1* INPUT No Wait Command *1
1* INPUT Status Command *1
1* INPUT Flush Command *1
I * OUTPUT Command * I
1* OUTPUT Verify Command *1
1* OUTPUT Status Command *1
I * OUTPUT Flush Command * I
1* IOCTL Output Command *1
1* DEVICE Open Command *1
1* DEVICE Close Command *1
1* REMOVABLE Media Command *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* GENERIC IOCTL Command *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* UNKNOWN Command Default *1
1* GET Logical Device Map *1
1* SET Logical Device Map *1

APPENDIX M. WORM FILES 355

1* -*1
1* *1
1* FUNCTION: DOS _ Set u p *1
1* *1
1* REMARKS DOS_Setup establishes a C environment prior to *1
1* allowing the actual device driver routines to *1
1* execute. *1
1* *1
1* INPUTS *1
1* which 0: Strategy Entry; 1 : Interrupt Entry *1
1* ES_tmp Pointer To Request Packet *1
1* DS_tmp Original DS Register Value *1
1* AX_tmp Original AX Register Value *1
1* *1
1* OUTPUTS Status Must Be Set In The Request Packet *1
1* *1
1* NOTES Register manipulations require this routine to *1
1* be compiled with the TURBO C Compiler. *1
1* *1
1* - - - - - - - - - - - - - - - - - -*1

void DOS_Setup (unsigned int which,
unsigned int ES_tmp,
unsigned int DS_tmp,
unsigned int AX_tmp)

{

_AX _CS; 1* Obtain Code Segment *1
_DS _AX; 1* Setup Data Segment *1

BX_reg _BX; 1* Save BX Register *1
CX_reg _CX; 1* Save CX Register *1
DX_reg _DX; 1* Save DX Register *1

AX_reg AX_tmp; 1* Save AX Register *1
ES_reg ES_tmp; 1* Save Request Pointer *1

driver = which; 1* Move Value From Stack *1

SS_reg _SS; 1* Save Stack Segment *1
SP_reg _SP; 1* Save Stack Pointer *1

disable 0; 1* Disable Interrupts *1

356

}

APPENDIX M. WORM FILES

_AX = _OS;
_SS = _AX;

_SP = (unsigned int)
enable 0;

if (driver)

1* Obtain Data Segment
1* Setup New Stack
1* Set Stack Ptr Value

&local_stk [STK_SIZE];
1* Enable Interrupts

{ 1* Interrupt Entry Point *1
rc = OxOOOO; 1* Clear Return Code *1

1* DOS Request Packet Ptr *1
r_ptr = MK_FP (ES_reg, BX_reg);
if (r_ptr->command >= DOS_CMOS)
{

rc = ERROR_BIT I UNKNOWN_CMO;
}

else
{

}

1* Set Driver Complete Bit
r_ptr->status = rc I DONE_BIT;

}

else
{ 1* Strategy Entry Point

1* Don't Save ES:BX Because It's Passed To Interrupt!!
}

disable ();
_SS = SS_reg;
_SP = SP_reg;
enable ();

_OX = OX_reg;
_CX = CX_reg;
_BX = BX_reg;
_AX = AX_reg;

_ES = ES_tmp;
_OS = DS_tmp;

1*
1*
1*
1*

1*
1*
1*
1*

1*
1*

Disable Interrupts
Restore Entry Stack
Restore Entry Stack Ptr
Enable Interrupts

Restore OX Register
Restore CX Register
Restore BX Register
Restore AX Register

Restore ES Register
Restore OS Register

*1

*1
*1

*1
*1
*1
*1

*1
*1
*1
*1

*1
*1

APPENDIX M. WORM FILES 357

1* -*1
1* *1
1* FUNCTION: S t rat e g y *1
1* *1
1* REMARKS: Strategy is the routine that is called by the *1
1* Operating System when this device is requested to *1
1* perform some activity (typically READs and WRITEs). *1
1* *1
1* INPUTS ES:BX Pointer To Request Packet *1
1* *1
1* NOTES Register manipulations require this routine to *1
1* be compiled with the TURBO C Compiler. *1
1* *1
1* -*1

void far Strategy (void)
{

#ifdef DEBUG
geninterrupt (Ox03);

#endif

}

358 APPENDIX M. WORM FILES

1* -*1
1* *1
1* FUNCTION: I n t err u p t *1
1* *1
1* REMARKS Interrupt is the routine that is called by the *1
1* Operating System immediately after the Strategy *1
1* routine has been called. Interrupt is responsible *1
1* for performing the work required to accomplish the *1
1* requested operation. *1
1* *1
1* INPUTS ES:BX Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Must Be Set In The Request Packet *1
1* RETF Must Be Used To Return From Interrupt *1
1* *1
1* NOTES Register manipulations require this routine to *1
1* be compiled with the TURBO C Compiler. *1
1* *1
1* -*1

void far Interrupt (void)
{

#ifdef DEBUG
geninterrupt (Ox03);

#endif

}

APPENDIX M. WORM FILES 359

Here is the source listing for dos_drvr. c.

1* -*1
1* *1
1* PROGRAM DOS D e vic e D r i v e r *1
1* *1
1* REMARKS This file contains the set of command *1
1* routines specified by the DOS Technical Reference *1
1* Manual. *1
1* *1
1* The following include files are required to *1
1* compile this file *1
1* DOS_DD.H *1
1* WORM.H *1
1* *1
1* -*1

#include
#include
#include
#include

DOS Device Driver Required Includes I Constants

"dos_dd.h"
<dos.h>
<string.h>
"worm.h"

1* DOS Command Structures *1
1* DOS Specific Definitions *1
1* C String Library Prototypes *1
1* WORM Header File *1

360 APPENDIX M. WORM FILES

1* -*1
1* *1
1* FUNCTION: I nit _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Init_cmd (struct REQ_struct far *r_ptr)
{

}

r_ptr->req_type.init_req.num_of_units = 1;

bpb_ary [0] = (unsigned int) &bpb;
r_ptr->req_type.init_req.BPB_ptr =

MK_FP (_DS, (unsigned int) bpb_ary);

r_ptr->req_type.init_req.end_ptr =

MK_FP (_DS, (unsigned int) End_code);

Disk_BIOS (GET_PARAMS, OxOO, OxOO, OxOO, OxOO, OxOO,
&disk_info);

return OP_COMPLETE;

APPENDIX M. WORM FILES 361

1* - - - - - -
1*

- - - - - - - - - - - - - - - - - - -*1

1*
1*
1*
1*
1*
1*
1*
1*

FUNCTION:

REMARKS

INPUTS

OUTPUTS

M e d i a _ c h e c k _ c m d

r_ptr Pointer To Request Packet

Status Returned In Function Return Value

*1
*1
*1
*1
*1
*1
*1
*1
*1

1* - - - - - - - - - - - - - - - - - -*1

unsigned int Media_check_cmd (struct REQ_struct far *r_ptr)
{

}

unsigned int rc;

rc = Send_command (MK_FP (OxOOOO, OxOOOO), 0, 0, READ_SENSE);

if (rc != STATUS_NO_ERROR)
{

}

else
{

}

rc = (STATUS_ERROR I UNKNOWN_MEDIA);
r_ptr->req_type.media_check_req.return_info

rc = STATUS_NO_ERROR;
r_ptr->req_type.media_check_req.return_info

MEDIA_UNCHANGED;

r_ptr->req_type.media_check_req.return_ptr = liND NAME ";

return rc;

362 APPENDIX M. WORM FILES

1* -*1
1* *1
1* FUNCTION: B u i 1 d _ b P b _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Build_bpb_cmd (struct REQ_struct far *r_ptr)
{

r_ptr->req_type.build_bpb_req.BPB_table = &bpb;

return OP_COMPLETE;
}

APPENDIX M. WORM FILES 363

1* -*1
1* *1
1* FUNCTION: I n put _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Input_cmd (struct REQ_struct far *r_ptr)
{

unsigned int i;
unsigned int rc;
unsigned int cnt;
unsigned long sec;

cnt = r_ptr->req_type.i_o_req.count;
if (cnt > 127) 1* > 64 Kbytes
{

}

r_ptr->req_type. i_o_req. count 127;
cnt = 127;

if «sec> bpb.num_sectors) II

{

}

«sec + cnt) > bpb.num_sectors»

r_ptr->req_type.i_o_req.count = OxOOOO;
return (STATUS_SNF);

for (i = 0, rc = 0; i < cnt; i++, sec++)
{

}

rc 1= Send_command (r_ptr->req_type.i_o_req.buffer_ptr,
Which_sector (sec), 1, READ_3363);

364

}

{

}

APPENDIX M. WORM FILES

rc = Xlate_error (rc);
r_ptr->req_type.i_o_req.count = OxOOOO;

return rc;

APPENDIX M. WORM FILES 365

1* -*1
1* *1
1* FUNCTION: 0 u t put _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* -*1

unsigned int Output_cmd (struct REQ_struct far *r_ptr)
{

unsigned int i;
unsigned int rc;
unsigned int cnt;
unsigned long sec;

cnt = r_ptr->req_type.i_o_req.count;
if (cnt > 127) 1* > 64 Kbytes
{

}

r_ptr->req_type. i_o_req. count 127;
cnt = 127;

if «sec> bpb.num_sectors) II

{

}

«sec + cnt) > bpb.num_sectors))

r_ptr->req_type.i_o_req.count = OxOOOO;
return (STATUS_SNF);

for (i = 0, rc = 0; i < cnt; i++, sec++)
{

}

rc 1= Send_command (r_ptr->req_type.i_o_req.buffer_ptr,
Check_sector (sec), 1, WRITE_3363);

366

}

{

}

APPENDIX M. WORM FILES

rc = Xlate_error (rc);
r_ptr->req_type.i_o_req.count OxOOOO;

return rc;

1* -*1
1* *1
1* FUNCTION: U n k now n _ c m d *1
1* *1
1* REMARKS *1
1* *1
1* INPUTS r_ptr Pointer To Request Packet *1
1* *1
1* OUTPUTS Status Returned In Function Return Value *1
1* *1
1* - - - - - - - - - - - - - - - - -*1

unsigned int Unknown_cmd (struct REQ_struct far *r_ptr)
{

return UNKNOWN_CMD;
}

APPENDIX M. WORM FILES 367

/* -*/
/* */
/* FUNCTION: Sen d _ com man d */
/* */
/* REMARKS Send_command initiates the command specified */
/* by the input parameters through the IBM 3363 */
/* adapter BIOS. */
/* */
/* */ INPUTS b_ptr Pointer To The Buffer
/* */ sec The Specified Sector Number
/* */ cnt The Number Of Sectors To Transfer
/* */ cmd The Specified Command
/* */
/* OUTPUTS: Status Returned In Function Return Value */
/* */
/* - - - - - - - - - - - - - - -*/

unsigned int Send_ command (unsigned char far *b_ptr,

{

unsigned long sec,
unsigned int cnt,
unsigned char cmd)

unsigned int trk; /* Track Number */
unsigned int far *i_ptr; /* Far Pointer To Integer */
void (far *bios_ptr) (void); /* 3363 BIOS Entry Pointer */

i_ptr MK_FP (Ox0040, OxOOBO);
reg_bx = *i_ptr++;
reg_es = *i_ptr;
bios_ptr = MK_FP (reg_es, reg_bx);

reg_ah = cmd;
reg_dl = DEVICE_ID;
trk = (sec / SEC_PER_TRK);

trk;

/ * CDB Command
/* Initialize ID In CDB
/* Track Number

reg_cx
reg_dh
reg_al

(unsigned char) (sec % SEC_PER_TRK);
cnt; /* Number Of Blocks

FP_SEG (b_ptr);
FP_OFF (b_ptr);

368 APPENDIX M. WORM FILES

_BX reg_bx;
_ex reg_cx;
_DH reg_dh;
_DL reg_dl;
_AH reg_ah;
_AL reg_al;

bios_ptr 0;

reg_ah = _AH;
reg_al = _AL;
reg_dh = _DH;
reg_dl _DL;
reg_cx _ex;
reg_bx _BX;

return reg_ah;
}

APPENDIX M. WORM FILES 369

1* -*1
1* *1
1* FUNCTION: W h i c h _ sec tor *1
1* *1
1* REMARKS Which_sector reads the diskette drive and *1
1* returns the actual sector number required for the *1
1* IBM 3363 operation. *1
1* *1
1* INPUTS sec The Logical Sector Number Requested *1
1* *1
1* OUTPUTS sec The Actual Sector Number Required *1
1* *1
1* -*1

unsigned long Which_sector (unsigned long sec)
{

}

unsigned int cyl;
unsigned int head;
unsigned int sector;
unsigned int mag_sec;
unsigned int mag_byte;

mag_sec = (FP_OFF (sec) » 7) + 1;
mag_byte = (FP_OFF (sec) && Ox7F) « 2;

cyl = ((mag_sec I disk_info.max_secs) I disk_info.max_heads);
head = ((mag_sec I disk_info.max_secs) %

disk_info.max_heads);
sector = ((mag_sec % disk_info.max_secs) + 1);

Disk_BIOS (READ_DISK, OxOO, head, cyl, sector, 1, mag_buf);

return *((unsigned long *)(&mag_buf [mag_byte]));

370 APPENDIX M. WORM FILES

1* -*1
1* *1
1* FUNCTION: C h e c k _ sec tor *1
1* *1
1* REMARKS Check_sector checks whether the specified *1
1* sector has already been written to. *1
1* If so, it allocates a new sector and returns it. *1
1* Otherwise, it returns the specified sector number. *1
1* *1
1* INPUTS sec The Logical Sector Number Requested *1
1* *1
1* OUTPUTS sec The Actual Sector Number Required *1
1* *1
1* -*1

unsigned long Check_sector (unsigned long sec)
{

unsigned long i' ,
unsigned char found;
unsigned int cyl;
unsigned int head;
unsigned int sector;
unsigned long actual;
unsigned int mag_sec;
unsigned int mag_byte;

actual = Which_sector (sec);

Send_command (MK_FP (0, 0), actual, 1, READ_SCAN);
if (!((reg_ah == OxOB) && ((reg_cx & OxFF) == 0)))
{

for (i = actual, found = 0;

{

}

((i < MAX_SECTORS) && (!found));
i += 128)

Send_command (MK_FP (0, 0), actual, 128, READ_SCAN);
if (reg_ah == OxOB)
{

found++;
actual = (actual + (reg_cx & OxFF));

}

APPENDIX M. WORM FILES

}

}

mag_sec = (FP_OFF (actual) » 7) + 1;
mag_byte = (FP_OFF (actual) && Ox7F) « 2;

cyl = «mag_sec / disk_info.max_secs) /
disk_info.max_heads);

head = «mag_sec / disk_info.max_secs) %
disk_info.max_heads);

sector = «mag_sec % disk_info.max_secs) + 1);

Disk_BIOS (READ_DISK, OxOO, head, cyl, sector, 1,
mag_buf);

*«unsigned long *) (&mag_buf [mag_byte])) = actual;
Disk_BIOS (WRITE_DISK, OxOO, head, cyl, sector, 1,

mag_buf);

return actual;

371

372 APPENDIX M. WORM FILES

1* - - - - - -
1*
1* FUNCTION: X 1 ate _ err 0 r
1*
1* REMARKS
1*
1* INPUTS r_ptr

u_ptr
a_ptr
d_ptr

Pointer To Request Packet
1*
1*
1*
1*

Pointer To Units Array Element
Pointer To Adapters Array Element
Pointer To DevHlp Entry Point

1* OUTPUTS: Status Returned In Function Return Value
1*
1*

unsigned int Xlate_error (unsigned int error_num)
{

switch (error_num)
{

case IBM_SUCCESS
return STATUS_NO_ERROR;

case IBM_ADAPTER_BSY :
return STATUS_BUSY;

case IBM_INVALID_CNT
case IBM_INVALID SEC
case IBM_INVALID_TRK
case IBM_INVALID_DRV
case IBM_TRK_OVERFLW

return STATUS_SNF;

case IBM_INVALID_CMD :
return STATUS_BAD_CMD;

case IBM_INT_TIMEOUT :
return STATUS_NOT_READY;

case IBM_CMD_FAILED :
case IBM_SENSE_FAIL :
case IBM_DMA_CROSSED :

return STATUS_GENERAL;

-*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

-*1

APPENDIX M. WORM FILES 373

default:
return STATUS_GENERAL;

}
}

374 APPENDIX M. WORM FILES

1* -*1
1* *1
1* FUNCTION: Dis k BID S *1
1* *1
1* REMARKS: Disk_BIOS allows the C function to directly *1
1* call the disk BIOS (INT Ox13) that exists in ROM. *1
1* *1
1* INPUTS cmd Disk Command *1
1* drive Disk Driver Number *1
1* head Disk Head Number *1
1* track Disk Track Number *1
1* sector Disk Sector *1
1* count Number Of Sectors *1
1* b_ptr Buffer Pointer *1
1* *1
1* OUTPUTS status Return Status Defined As Follows *1
1* OxOO Operation Successful *1
1* OxOl Bad Command *1
1* Ox02 Address Mark Not Found *1
1* Ox04 Record Not Found *1
1* Ox05 Reset Failed *1
1* Ox07 Driver Parameter Activity Fail *1
1* Ox09 Attempt DMA Across 64Kb *1
1* OxOB Bad Track Flag Detected *1
1* Oxl0 Bad ECC On Disk Read *1
1* Oxll ECC Corrected Data Error *1
1* Ox20 Controller has Failed *1
1* Ox40 Seek Operation Failed *1
1* Ox80 Attachment Failed To Respond *1
1* OxBB Undefined Error Occurred *1
1* OxFF Sense Operation Failed *1
1* *1
1* - - - - - - - - - - - - - -*1

unsigned int Disk_BIOS (unsigned int cmd,
unsigned int drive,
unsigned int head,
unsigned int track,
unsigned int sector,
unsigned int count,
void far *b_ptr)

{

APPENDIX M. WORM FILES

}

unsigned int rc;
CL_reg;
CH_reg;
DL_reg;
DH_reg;

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char far *c_ptr;

if (cmd != Ox08)
{

}

else
{

}

sector = «sector & Ox003F) I «track & Ox0300) » 2));
track = (track & OxOOFF);
_AX FP_SEG (b_ptr);
_ES _AX;
_BX FP_OFF (b_ptr);
_DL drive;
_DH = head;

CL sector;
CH track;

-AL count;
_AH cmd;
geninterrupt (Ox13);
rc = _AX;

_DL = drive;
_AH = cmd;
geninterrupt (Ox13);
rc = _AX;
DL_reg _DL;
DH_reg _DH;
CL_reg _CL;
CH_reg _CH;
c_ptr = b_ptr;
*c_ptr++ DL_reg;
*c~ptr++ = DH_reg;
*c_ptr++ = CL_reg;
*c_ptr = CH_reg;

return rc » 8;

375

376 APPENDIX M. WORM FILES

Here is the source listing for worm. h.

/* - - - - -
/*

- - - - - - - - - - - - - - - - -*/
*/

/* PROGRAM
/*

W 0 R M D D H e a d e r */

/* REMARKS
/*

*/
This file contains the structures and manifests */

required by a DOS Device Driver. */
/* */
/* - - - - - - - - - - - - - - - - - - -*/

extern void
extern void

far Strategy ();
far Interrupt ();

/* Strategy Routine
/* Interrupt Routine

extern void End_code ();
extern struct BPB_struct bpb;
extern struct BPB_struct *bpb_ary [DEVICES];

extern unsigned char reg_ah; /* AH Register - Command
extern unsigned char reg_ali /* AL Register - Block Count
extern unsigned char reg_dh; /* DH Register - Sector Number
extern unsigned char reg_dl; /* DL Register - Drive Number

extern unsigned int reg_cx; /* CX Register - Track Number
extern unsigned int reg_es; /* ES Register - Buffer Segment
extern unsigned int reg_bx; /* BX Register - Buffer Offset

*/
*/
*/
*/

*/
*/
*/

extern unsigned char mag_buf [512];
extern struct INFO_struct disk_info;

/* Temp. Sector Buffer */
/* Disk Params Struct */

APPENDIX M. WORM FILES 377

IBM 3363 Device Driver Support Function Prototypes

extern unsigned long Which_sector (unsigned long sec);
extern unsigned long Check_sector (unsigned long sec);
extern unsigned int Xlate_error (unsigned int error_num);

extern unsigned int Send_command (unsigned char far *b_ptr,
unsigned long sec,
unsigned int cnt,
unsigned char cmd);

extern unsigned int Disk_BIOS (unsigned int cmd,
unsigned int drive,
unsigned int head,
unsigned int track,
unsigned int sector,
unsigned int count,
void far *b_ptr);

378 APPENDIX M. WORM FILES

1* -*1
1* *1
1* Disk Parameter Information Structure *1
1* *1
1* -*1

struct INFO_struct
{

};

uns igned char
unsigned char
unsigned char
unsigned char

num_drives;
max_heads;
max_sees;
max_tracks;

1* -------

1*
1* Request Packet Return Status Definitions
1*
1* - - - - - - - - - - - - - - - - - - -------

#define STATUS_DONE DONE_BIT
#define STATUS_BUSY BUSY_BIT
#define STATUS_NO_ERROR OP_COMPLETE
#define STATUS_ERROR ERROR_BIT
#define STATUS_W_PROT (STATUS_ERROR WRITE_PROTECT)
#define STATUS_BAD_UNIT (STATUS_ERROR UNKNOWN_UNIT)
#define STATUS_NOT_READY (STATUS_ERROR NOT_READY)
#define STATUS_BAD_CMD (STATUS_ERROR UNKNOWN_CMD)
#define STATUS_DATA (STATUS_ERROR CRC_ERROR)
#define STATUS_SNF (STATUS_ERROR NOT_FOUND)
#define STATUS_GENERAL (STATUS_ERROR GENERAL_FAIL)
#define STATUS_UNCERTAIN (STATUS_ERROR UNCERTAIN)

#define RESET_3363 Ox20 1* 3363 Selective Reset
#define READ_SENSE Ox21 1* 3363 Read Sense Command
#define READ_VERIFY Ox23 1* 3363 Read Verify Command
#define READ_3363 Ox29 1* 3363 Read Block Command
#define WRITE_3363 Ox32 1* 3363 Write Block Command
#define READ_SCAN Ox42 1* 3363 Read Scan Command

#define MAX_SECTORS 393300L 1* Maximum # Of Sectors
#define BLOCK_SIZE 512 1* Number Of Bytes/Block

-*1
*1
*1
*1

-*1

*1
*1
*1
*1
*1
*1

*1
*1

APPENDIX M. WORM FILES 379

#define SEC_PER_TRK 23 /* Sectors Per Track */

#define DEVICE_ID OxOO /* Logical Unit Of WORM */
#define READ_DISK Ox02 /* Read Disk Command */
#define WRITE_DISK Ox03 /* Write Disk Command */
#define GET_PARAMS Ox08 /* Get Disk Parameters Cmd */
#define UNSURE_MEDIA OxOO /* Unsure About Media */
#define MEDIA_UNCHANGED Ox01 /* Sure About Media */

#define IBM_SUCCESS O:x:OO /* Successful Command */
#define IBM_INVALID_CMD Ox01 /* Invalid Command */
#define IBM_INVALID_DRV Ox02 /* Invalid Drive */
#define IBM_INVALID_TRK Ox03 /* Invalid Track */
#define IBM_INVALID_SEC Ox04 /* Invalid Sector */
#define IBM_INVALID_CNT Ox05 /* Invalid Block Count */
#define IBM_ADAPTER_BSY Ox07 /* Adapter Busy */
#define IBM_INT_TIMEOUT Ox08 /* Interrupt Timeout */
#define IBM_DMA_CROSSED Ox09 /* DMA Crosses 64K Boundary */
#define IBM_SENSE_FAIL OxOA /* Sense Failed */
#define IBM_CMD_FAILED OxOB /* Command Failed */
#define IBM_TRK_OVERFLW OxOC /* Maximum Track Overflow */

Index

-c compile only 19
-M generate link/load map 13
-rot tiny model 13
-S assembler language listing 19
-y line number information 13
.COM file 10, 34
20-bit address 7
8-bit accumulators 8
_AX 6
_BSS segment 18, 21
_BSSEND segment 18
_BX 6
_DATA segment 18, 21
_TEXT segment 18, 21
"fan-out," interface 31

ad hoc testing 119, 120
AH register 8, 34, 48, 175
AL register 8, 34
Allocation Unit 103
American National Standards In

stitute 5
ANSI 5
API 33,175
arrange utility 22, 25, 57, 65, 169
arrange utility, usage 173
assembler language listing 19
assembler language output 19
attribute word 36, 37
AU 103, 104, 106
AX register 8, 34, 187

base pointer 8

381

Basic Input/Output System 29
BIOS 29
BIOS interface 47
BIOS interface routines 75
BIOS Parameter Block 44
BIOS Parameter Block (BPB) 100
BIOS, ROM 263
BIOS, WORM 341
block device driver 3, 107
block device driver commands 110
block devices 43
boot record, DOS 102
BOOT _struct 103
BP register 8
bpb 62
BPB 44, 100, 102, 103, 105, 111,

135
BPB_struct 62, 100
Build_bpb_crod function 147
BUILD_BPB_struct 162, 163
BX register 8, 34, 38, 120

C compiler models 8
C environment 62, 69
C programming language 4
C run-time libraries 23
CD-ROM 126
character device driver 3, 87
character device driver commands

89
character devices 43
cluster 103
code segment 18, 22

382

code segment register 7
command exercise 120
commands, block device driver 110
commands, character device driver

89
commands, DOS 45, 155
commands, dos_drvr. c 64
compact mode19, 24
compile a program 13
complexity reduction 31
config. sys file 71, 72, 73, 84
CONSOLE device driver 90,95
console makefile 90, 95, 241
console.h 90,95, 245
console. sys 90
copy command 72
CS code segment register 7, 22
CX register 8

d_entry 104
DASD 97, 98, 103
DASD capacity 99
DASD partition table 101
DASD partitions 102
DASD storage capacity 99
DASD types 97
data segment 10, 18, 21
data segment register 7
DDH_struct 36, 58
debug programs 84
debug statements 75
device driver exercise 121
device driver format 67
device driver header 10, 35, 88,

108
device driver leveraging 123
device driver template 53
DEVICE= 71, 72, 73
DEVICE_HEADER_struct 58, 212
DGROUP 21, 22
D I register 8
direct register access 5

directory entry 104
DOS 3

INDEX

DOS API operations 121, 175
DOS boot record 102
DOS commands 45, 155
DOS directory entry 104
dos linker 57
dos makefile 54
DOS services 112
DOS Technical Reference Manual

4, 95
dos.arr 173
dos_cmd array 64, 66, 116, 117,

152
dos_data. c 59, 66, 67, 68, 69, 90,

95, 112, 114, 116, 117,
142, 147, 152, 246, 303,
323, 349

dos_dd. h 45, 46, 58, 59, 69, 90,
95, 112, 114, 116, 147,
152, 213

dos_del program 132
dos_drvr. c 64, 66, 67, 69, 91, 95,

113, 114, 115, 116, 117,
143, 147, 152, 229, 255,
313, 333, 359

dos_end. c 65, 66, 67, 90, 95, 112,
114, 116, 117, 147, 152

dos_env. c 62, 66, 67, 69, 91, 95,
113, 114, 116, 117, 147,
152, 222, 248, 306, 326,
352

dos_fat program 104, 106
dos_fat. c 277
dos_fat.h 271
dos_hdr. asm 57, 90, 95, 112, 114,

116, 147, 152
DOS_Setup function 62, 64, 66, 67
OOS_struct 39
DPB array 108, 109, 116
driver initialization services 112
OS data segment register 7

INDEX

DX register 8

End_ code function 65, 69
ES extended segment register 7,

34, 38, 120
EXE2BIN 10
exercise, command 120
exercise, device driver 121
extra segment register 7

far pointer 9, 33
FAT 101, 103, 104, 106, 133
first. asm 19
first. c 11
FLAGS register 8
frame pointer 8
Function 13
functional flexibility 31

general-purpose registers 8, 24
global data 59

hardware stack pointer 8
header, device driver 88, 108
headers, segment 57
huge model 9, 10, 24

I/O Control 3
I_O_struct 164, 165
IBM 3363 Optical Disk Drive 341
imbedded debug statements 75
index registers 8, 24
information hiding 31
Init_cmd function 65,66,69, 73,

85,91,113,114,115,147
IN IT _struct 158, 159
initialization routine 10
initialization services, DOS 112
Input_cmd 144
Input_cmd function 91,92, 147
Input_flush_cmd function 93, 94
Input_no_wai t_cmd function 92,

93

383

INPUT_NO_WAIT_struct 166, 167
instruction reference 7
INT 21 33, 111, 175
interface "fan-out" 31
interfaces, layered 29
interrupt 21 34
Interrupt function 38, 62, 66, 67,

74, 85, 109, 121
Interrupt Service Routine (ISR)

22
10CTL interface 3

join command 124

large model 9, 10, 24
layered interfaces 29
layers, software 30
leveraging, device driver 123
line number information 13
link/load map 13
linker 57
local variables 23
logical device concatenation 124

main 10, 13
make utility 54, 68, 96, 117
makefile 54
Media_check_cmd function 147
MEDIA_CHECK_struct 160, 161
medium model 9, 24
memory address 7
memory-mapped I/O 49
MS-DOS 3

n-plexing devices 124
near pointers 9
no stack warning 18, 25

offset value 9
offsets 9
operand reference 7
Output_cmd 145

384

Output_cmd function 94, 114, 115,
116, 147

p_entry 102
partition 102, 105
partition structure 102
partition table entry 102
partition table, DASD 101
PC-DOS 3
pointer registers 8
primary storage device 97
programmed I/O 49
PSP Program Segment Prefix 35

RAM-DISK device driver 111
ram_disk makefile 112, 116, 299
ram_disk. sys 111, 112
reentrant code 23
REQ_struct 45, 58, 155, 157, 158,

159, 160, 161, 162, 163,
164, 165, 166, 167

req_type 157
ROM BIOS 263
root directory 104

SCSI 126
second-level testing 119, 121
secondary storage devices 97
sector size 99
sectors 99
segment headers 57
segment registers 7, 24
segment relocation 22
segment value 9
segment, what is 8
segmented architecture 7
SHADOW device driver 114
shadow makefile 114, 116, 319
shadow. sys 114
show_DOH program 74, 85, 88, 94,

108
show _DOH source program 39

SI register 8
small model 9, 24
software interface 29

INDEX

software interface, advantages 30
software layers 30
software stack pointer 8
SP stack pointer register 8
SS stack segment register 7
stack operation 7
stack pointer 8
stack segment 10
STACK segment 18
stack segment register 7
stack size 22
start-up module 10, 18
storage capacity, DASD 99
Strategy function 38,62,66,67,

74, 85, 109, 121
system request triangle 32

tcc invoking 13, 19, 24
template, device driver 53
template, using the 68, 69
terminate and stay resident 46
testing, ad hoc 119, 120
testing, second-level 119, 121
testing, third-level 119, 121
third-level testing 119, 121
tiny model 9, 10, 11, 13, 19, 24
transform .EXE to .COM 10
TSR46
TURBO Assembler 4
TURBO C 4,13

uninitialized global variables 18
union req_type 157
Unknown_cmd function 113, 114,

115, 147

vdisk.sys 111, 113
video. c 75, 85
visual utility 46, 74, 85, 133, 189

INDEX

warning no stack 18, 25
WORM 131, 136
WORM BIOS 341
WORM commands 143, 152
WORM device driver ix, 6, 126
WORM device driver concept 141
worm makefile 147, 152, 345
WORM, Check_sector 144, 152
WORM, Input_cmd 144
WORM, Output_cmd 145
WORM, Send_command 144, 152
WORM, Unknown_cmd 143, 152
WORM, Which_sector 143, 152
worm.h 147, 376
worm. sys 147

385

Writing DOS
Device Drivers in C

PHILLIP M. ADAMS / CLOVIS L. TONDO

Phillip M. Adams and Clovis L. Tondo (author of Prentice Hall's The C Answer
Book) have developed a DOS device driver workbook that will enable users to
perform experiments on DOS device drivers or design and build special-purpose
device drivers.

Writing DOS Device Drivers in C introduces the reader to the appropriate
vocabulary and tools before developing device driver concepts, architecture, and
operational characteristics. This methodical , hands-on approach uses a general
DOS device driver template written in the C language - a high-level language
approach that allows the reader to focus on the problem the device driver is
designed to solve rather than on the minute details of the hardware environment.

The book also contains step-by-step " tours" of the designing , implementation , and
debugging of a number of full-function device drivers.

\

" Dr. Adams and Dr. Tondo, using their experience working with DOS as part of the
IBM Entry Systems Division team, have produced a book that greatly simplifies
the designing, developing, and testing of DOS device drivers. I know that DOS
device driver developers will welcome this book."

-from the Foreword by Mel Hallerman, Senior Technical Staff Member, IBM Entry
Systems Division

PRENTICE HALL
Englewood Cliffs, N.J. 07632

ISBN 0-13-970864-2

U1U m llJ IIIll lIJlLlLlllm a 0 n n 0

() 1 :::') (?)' ()!J <:~ {~ '~:U:i, :;;;::~: ,;:~:n- .. n li!::U- '!:;;~lf

1..l.!F::ITII···![i DF'·JICF DF::1'·...IFI?:::)
·1!··1 C:

LANGUAGES

