

EXTENDING DOS

EXTENDING DOS

Edited by Ray Duncan

Ray Duncan
Charles Petzold

M. Steven Baker
Andrew Schulman

Stephen R. Davis
Ross P. Nelson
Robert Moote

•TT

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn Sydney
Singapore Tokyo Madrid San Juan

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book and Addison-Wesley was aware of a trademark claim, the designations
have been printed in initial capital letters.

\

Copyright © 1990 by Ray Duncan

All rights reserved. No part of this publication may be reproduced, stored in a re
trieval system, or transmitted, in any form or by any means, electronic, mechani
cal, photocopying, recording, or otherwise, without the prior written permission
of the publisher. Printed in the United States of America. Published simulta
neously in Canada.

Production Editor: Amorette Pedersen
Manuscript Editor: Kate Lee Johnson
Technical Consultant: Andrew Schulman
Cover Design by: Copenhaver Cumpston
Illustrators: Eddie O'Brien and Kathy Turok
Set in 10.S-point Palatin0 by Benchmark Productions

ABCDEFG-Mfl-943210
First Printing, April 1990

ISBN 0-201-55053-9

Windows is a registered trademark of Microsoft Corporation. Microsoft C, MS-DOS, Presenta-
tion Manager, and Windows 386 are trademarks of Microsoft Corporation.

DESQview and QEMM-386 are trademarks of Quarterdeck Office Systems.
Paradox, Turbo C, and Sidekick are registered trademarks of Borland International.
dBASE is a registered trademark of Ashton-Tate Inc. dBASE N is a trademark of Ashton-Tate, Inc.
WordPerfect is a trademark of WordPerfect Corporation.
Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.
PC/AT, IBM, and PS/2 are registered trademarks of International Business Machines Corpora-

tion. OS/2 and PC-DOC are trademarks of International Business Machines Corporation.
NeWs is a trademark of Sun Microsystems, Inc.
AutoCAD is a trademark of Autodesk, Inc.
PARC is a trademark of Xerox Corporation.
UNIX is a trademark of AT&T Bell Laboratories.
Clipper is a trademark of Nantucket, Inc.
Apple and Macintosh are trademarks of Apple Corporation.
Compaq and SystemPro are trademarks of Compaq Computer Corporation.
CompuServe is a registered trademark of CompuServe Corporation.
Hewlett-Packard is a registered trademark of Hewlett-Packard Corporation.
INTEL is a registered trademark of Intel Corporation.
MacDraw is a registered trademark of CLARIS Corporation.
3861\Max is a trademark of Qualitas, Inc.
Phar Lap is a registered trademark of Phar Lap Software Inc. 386 IVMM and 386 IDOS ex-

tender are trademarks of Phar Lap Software, Inc.
NeXT is a trademark of NeXt, Inc.
ORACLE is a registered trademark of Oracle Corp.
Informix is a registered trademark of Informix Software, Inc.
PICK is a registered trademark of Pick Systems, Inc.
OSF/Motif is a trademark of the Open Software Foundation.
CHIPS is a registered trademark of Chips and Technologies, Inc.
Watcom is a trademark of Watcom Systems, Inc.
Instant-e is a trademark of Rational Systems, Inc.
Golden Common Lisp is a registered trademark of Gold Hill Computers, Inc.
TOPS is a registered trademarak of Sun Microsystems.
Logitech is a trademark of Logitech, Inc.
Commonview is a trademark of Glockenspiel.
Zortech C++ is a trademark of Zortech, Inc.
MetaWare, Hich-C, and Professional Pascal are trademarks of MetaWare, Inc.
LMI FORTH is a trademark of Laboratory Microsystems, Inc.
1167 and 3167 are trademarks of Weitek Corp.
68881 is a trademark of Motorola Corp.
Pocket Soft is a trademark of Pocket Soft, Inc.

Introduction

About the Contributors

Chapter 1
The IBM PC Programming Architecture
By Ross P. Nelson

IBM's First Personal Computer
The 8086 Becomes a Family
Solving Real Problems
Using Protected Mode
DOS Extenders
Intel's 32-bit Microprocessors
Operating Environments
What About OS/2?
Choosing Your Market

Chapter 2
Expanded Memory and the EMS
By Ray Duncan

Components of Expanded Memory
Obtaining Access to Expanded Memory

Table of Contents

xi

xv

1

3
5
8
13
20

21
27
28

29

31

33
35

vii

viii EXTENDING DOS

Using Expanded Memory
EMS Pitfalls for Drivers and TSRs
EMS Emulators
EMS Example Program

Chapter 3
Extended Memory and the XMS
By Ray Duncan

Reaching Extended Memory in Real Mode
The ROM BIOS Extended Memory Functions
Primitive Extended Memory Management
The eXtended Memory Specification (XMS)
LOADALL: The Back Door to Extended Memory

Chapter 4
80286-based Protected-Mode DOS Extenders
By Andrew Schulman

Why develop for the 286?
Protected-Mode MS-DOS
How does it work?
More Than One Int 21H
An In-Depth Look at the DOS/16M Toolkit
Isn't there any work involved?
Bugs!
#ifdef DOS16M: The DOS/16M Library
OS/286 and the Two-Machine Model
Performance

Programming Project
By Andrew Schulman

Exploring Protected Mode with Instant-C

Chapter 5
80386-based Protected-Mode DOS Extenders
By M. Steven Baker and Andrew Schulman

386 DOS Extenders in the Marketplace

39

44
46
49

79

81
82
88
93

100

109

110
112
116
122
124
134
146
147
154
162

169

169

193

194

32 Bits
Benefits of Using 386 Protected-Mode DOS Extenders
A 386 DOS Extender Application
Moving to 32-bit Programming
Tools for 386 DOS Extender Programming
The 386 DOS Assembly Language Interface-How It Works
Special DOS Extender Features
Hardware Requirements
Using Numeric Coprocessors with DOS Extenders
Summary

Chapter 6
The Windows Operating Environment
By Charles Petzold

Windows: A Gill for MS-DOS
Architecture and Features

A Sample Program
The Path to OS/2

Chapter 7
DESQview
By Stephen R. Davis

The DESQview API
The Clock Example
Windowing
Panels
DESQview Tasks
DESQview Processes
Memory Under DESQview
Intertask Communication
Intertask Messages
How DESQview Uses Messages
Why use DESQview?

Table of Contents ix

195
198
204
219
222
234
237
251
252
257

259

260
265
284
309

311

312
315
326
329
333
337
341
347
351
356
363

x EXTENDING DOS

Chapter 8
VCPI for EMS/DOS Extender Compatibility
By Robert Moote

Incompatibilities Between EMS Emulators and DOS Extenders
The VCPI Interface
Scenario of VCPI Use
Inside VCPI
VCPICalls
Summary

Chapter 9
The DOS Protected-Mode Interface (DPMI)
By Ray Duncan

The DPMI Interface
Using the DPMI
Summary

Chapter 10
Multitasking and DOS Extenders
By Robert Moote

Multitasking on 80286-Based PCs
Sources of Incompatibilities on 386- and 486-Based PCs
Possible Solutions
DESQview 386 and DOS Extenders
Summary

Vendor Guide

Index

365

367
372
378
383
391
395

397

398
402
404

405

406
407
409
410
415

417

421

Introduction

As we entered the latter half of the 1980s, there was a widespread sense among
PC software developers, analysts, and journalists that DOS's useful life had run
its course. Programmers were eagerly looking forward to the availability of pro
tected-mode, multitasking, virtual memory operating systems such as OS/2 and
UNIX. PC Tech Journal, in an August 1987 article entitled "The Twilight of 005,"
went so far as to say "Although it adds some new capabilities, 005 3.3, unable to
provide the multitasking capabilities promised with OS/2, may be this aging op
erating system's swan song."

In 1990, PC Tech Journal is just a memory, but DOS is still very much alive and
kicking. In fact, the prophecies of DOS's doom that were popular just a few years
back have been totally confounded. DOS accounted for nearly 11 million (61 per
cent) of the 18 million PC operating systems shipped worldwide in 1989, while
Macintosh System 6 shipments were estimated at 1.2 million (6.6 percent), UNIX
shipments approximately 440,000 (2.4 percent) and OS/2 merely 125,000 (0.7 per
cent). The installed base of DOS systems now numbers over 45 million, surpass
ing all other operating systems combined.

What happened? In part, UNIX and OS/2 simply failed to live up to their ad
vertising. The world of UNIX implementations is still splintered into multiple in
compatible variants, and has not yet delivered the much-discussed and
much-anticipated source and binary portability that was supposed to arrive with
UNIX System V. OS/2 has revealed itself to be much more difficult to program
than anyone expected; even Microsoft labored over two years to get its first

xi

xii EXTENDING DOS

graphical OS/2 application (Excel) out the door. And both systems demand
amounts of RAM, fixed disk storage, and CPU horsepower that exclude their use
on most existing PCs.

DOS, on the other hand, has made no promises it can't keep; instead, it has
evolved steadily through eight major releases without loss of backward compati
bility. DOS is simple enough to be easily understood, small enough to run well
on even the most humble 8088 machine with one floppy disk, powerful enough
to serve as a respectable networking platform, and versatile enough to handle pe
ripheral devices of every description. In this respect, the entire PC industry owes
a tremendous debt to Mark Zbikowski and Aaron Reynolds, the Microsoft pro
grammers who wrote DOS version 2.0 and were responsible for its installable de
vice drivers, hierarchical file system, stream file and device I/O, and network
hooks.

More germane to this book, DOS's simplicity has also allowed it to be ex
tended in directions never foreseen by its authors. In retrospect, the first wave of
"DOS extenders" was the class of application known as Terminate-And-Stay-Resi
dent Utilities (TSRs).·TSRs introduced novel new capabilities to the DOS environ
ment, but brought with them novel new types of problems: TSRs battling over
hardware interrupts, TSR interactions resulting in mysterious system crashes
and, of course, the notorious "RAM-cram," caused by TSRs competing for mem
ory with the very applications they were supposed to enhance.

But TSRs are old news now. This book is about the second wave of DOS ex
tenders: products and programming interfaces that allow software developers to
take advantage of the 80286, 80386, and 80486 CPUs without abandoning the
DOS installed base and distribution channels. The remedies offered range from
increased amounts of fast storage for data (EMS and XMS), to true protected
mode execution with relief of memory constraints for both code and data (286
and 386 DOS Extenders), to DOS-based multitasking environments (DESQview
and Windows). Some of these solutions can even be made to work together, by
means of the Virtual Control Program Interface (VCPI) and DOS Protected-Mode
Interface (DPMI).

We, the authors of Extending DOS, recognize that this is a rapidly changing
field, and we know that no treatment of such a diverse set of topics can be both
exhaustive and timely. We have, however, drawn on our own practical experi
ence to provide you with detailed information on the issues that we consider
most important.

Introduction xiii

We hope that this book will serve you well-both in deciding which strate
gies for extending DOS to adopt, and which to avoid-and we welcome your
comments and suggestions for future editions.

Ray Duncan
Los Angeles, California
March, 1990

About the Contributors

M. Steven Baker is the Editor of Programmer's Journal. He has written articles on
TSRs, undocumented DOS functions, serial communications, XWindow, number
crunching, and 80386 development tools. He wrote the chapter on "Safe Memory
Resident Programming" in the Waite Group's MS-DOS Papers (Howard Sams,
1988). Baker holds bachelor degrees in Architecture and Electrical Engineering
from MIT and Master's degrees in Urban Planning and Architecture from the
University of Oregon.

Stephen Randy Davis is the author of two books from M&T Publishing: DESQ
view: A Guide to Programming the DESQview Multitasking Environment, and Turbo
c: The Art of Advanced Program Design, Optimization, and Debugging. He graduated
from Rice University in Houston, Texas. Davis has worked in the defense indus
try since 1979, and heads a consulting firm, North Texas Digital Consulting, Inc.

Ray Duncan is the author of the Microsoft Press books Advanced MS-DOS Pro
gramming and Advanced OS/2 Programming, and was general editor of The MS
DOS Encyclopedia, also from Microsoft Press. He is a contributing editor to PC
Magazine and Embedded Systems Programming. Duncan received a B.A. in Chemis
try from the University of California at Riverside and an M.D. from the Univer
sity of California at Los Angeles. He is the founder and owner of Laboratory
Microsystems Inc., a vendor of Forth interpreters and compilers for microproces
sors since 1979.

Robert Moote is a co-founder and vice president of software at Phar Lap Soft
ware, Inc., and is the author of Phar Lap's 386 IDOS Extender and 386 IVMM

xv

xvi EXTENDING DOS

products. He received a B.A. in Electrical Engineering and a B.A. in Mathematics
from the University of Rochester, and has worked in the microcomputer and
minicomputer industry since 1977.

Ross Nelson is the author of The 80386 Book from Microsoft Press, as well as
several articles for BYTE and Dr. Dobb's Journal. He has a Computer Science de
gree from Montana State University, and has been involved with microcomputers
for over a dozen years. Currently Manager of Software Engineering at Answer
Software, Nelson has worked in the Silicon Valley for the last decade, including
two years at Intel Corp.

Charles Petzold is the author of the Microsoft Press books Programming Win
dows and Programming the OS/2 Presentation Manager; his latest book, The OS/2
Graphics Programming Interface, is scheduled to be published in 1990. He is a con
tributing editor to PC Magazine where he writes about OS/2 in the Environments
column, and his work appears frequently in Microsoft Systems Journal. Prior to his
writing career, Petzold worked ten years for a large insurance company, pro
gramming and teaching programming on IBM mainframes and personal com
puters.

Andrew Schulman is a contributing editor to Dr. Dobb's Journal, where he spe
cializes in writing about protected-mode programming. He has also written arti
cles for BYTE and Microsoft Systems Journal. Schulman is a software engineer
responsible for CD-ROM network programming at a large software house in
Cambridge, Massachusetts. He has ported several large applications to
DOS/16M.

Chapter 1

The IBM PC Programming Architecture

Ross Nelson

The advances in microprocessor technology during the last decade have pre
sented software developers with a dilemma. The latest generation microproces
sors from Intel-the 80386 and 80486-place mainframe potential in the hands of
a single user. But MS-DOS, the operating system on over 90 percent of the per
sonal computers using an Intel microprocessor, was designed three CPU genera
tions ago. Some of the software technology supporting MS-DOS application
development is nine years old, and the decisions which shaped that software go
back as far as 1974. In addition, the majority of the IBM-compatible PCs in use
today-regardless of the CPU they are based on-try to maintain a high degree
of hardware compatibility with the original IBM PC based on the Intel 8088.

Taking full advantage of the power of the latest Intel microprocessors would
require abandoning DOS and IBM PC compatibility altogether, but this is a lux
ury few software developers can afford. In order to maintain a presence in the
enormous DOS software market, the majority of developers must attempt to sat
isfy their customers by balancing requests for more performance and more fea
tures with the constraints of DOS and the demands of the IBM PC architecture.
This chapter will survey the possibilities for extending OOS that are inherent in
the architecture of the Intel 80x86 family of processors (see Figure 1-1), in order to
set the stage for more detailed treatments throughout the remainder of this book.

1

2 EXTENDING DOS

Figure 1-1: The Intel80x86 family tree.

8086 8088
• 16-blt processor
• 16-blt path to memory
• ,Ma address space
• Real mode only

• , 6-blt processor
---I__....011~_ • 8-blt path to memory

• , MB address space
• Real mode only

"
80186 80188

• 8086 architecture with minor
Instruction set enhancements

• Real mode only

---1__--1...._ • 80186 architecture
... • 8-blt path to memory

80286

• 16-bit processor
• 16-blt path to memory
• 16MB physical address space
.512MB virtual address space

80386 B0386SX
---' -4...._ • 32-blt processor

JIll" • , 6-blt path to memory
• 16MB physical address space
• 64-terabyte virtual address space

• 32-blt processor
• 32-blt path to memory
• 4-glgabyte physical address space
• 64-terabyte vIrtual address space

80486
• 80386 InstructIon 8et and address

space wIth minor enhancements
• On-chip cache
• Built-In numeric coprocessor

Chapter 1 The IBM PC Programming Architecture 3

IBM's First Personal Computer
When the IBM PC first appeared in 1981, it was available in two configurations: a
"low-end" system with BASIC in ROM, 16K of RAM, and a cassette port for ex
ternal storage, and a "high-end" system with a 5-1/4-inch floppy disk drive, 64K
of RAM, and a disk operating system. Although the first IBM PC may not sound
very impressive today, it set several important precedents at the time. It had an
open architecture with an extensively documented expansion bus; it was built with
off-the-shelf components and therefore could easily be cloned; and it was based on
a 16-bit CPU, leapfrogging the other personal computers of the era which were
based on 8-bit microprocessors such as the 8080, Z-80, and 6502.

The central processor processor chosen by IBM for its first PC was the Intel
8088, a slightly slower variant of the 8086. (As all the recent members of the pro
cessor family contain the numbers "86," we can reduce confusion by referring to
both the 8088 and the 8086 by the designation 8086. The processors are fully soft
ware compatible.) The 8086 supported a physical address space of 1024K, or 1
megabyte, but IBM's design restricted the operating system and application pro
grams to the first 640K of the address space, reserving the remaining 384K for use
by routines in read-only memory (ROM) and by hardware subsystems. Figure 1-2
shows how the address space was divided.

It cannot be said that the reserved portion of the address space was wasted.
The top 64K was used by the ROM BIOS (Basic Input/Output System), a set of
routines that provided a standard software interface to essential PC components
such as the video display, keyboard, and diskette controller. The ROM BIOS also
contained test routines that checked out the PC's hardware when it was turned
on or restarted, and a "bootstrap" program that initiated the loading of an operat
ing system from a diskette. The PC's video adapters-the Monochrome Display
Adapter (MDA) and Color/Graphics Adapter (CGA)-used the memory ad
dresses 080000 h to OB FFFFh for RAM refresh buffers that controlled the appear
ance of the display.

As additional subsystems and adapters were introduced, they too were as
signed ranges of memory addresses in the reserved 384K area. For example,
when the fixed disk controller was introduced in 1982, 16K was allocated for its
on-board ROM containing the fixed disk firmware. The Enhanced Graphics
Adapter (EGA), which arrived soon afterward, had 16K of on-board ROM too,
and also used the memory addresses from OAOOOOh to OAFFFFh for its video re
fresh RAM in high-resolution graphics modes. By the time the PS/2 was an-

4 EXTENDING DOS

noui1.ced in 1987, nearly every address in the upper 384K had been spoken for,
and the ROM BIOS itself had grown from 64K to 128K.

Figure 1-2: The IBM PC address space.

1024K

960K

896K

832K

768K
704K
640K

OK
Address

ROM BIOS
Reserved
Reserved
Reserved

Reserved (Video)
Reserved {Video)

System RAM

100000H

FOOOOH
EOOOOH
DOOOOH
COOOOH
BOOOOH
AOOOOH

00000
Address

Although the ROM BIOS supplied a programmatic interface to the hardware,
it provided no mechanisms for loading and executing programs, set no standards
for disk formats, and had no ability to manage peripheral devices. Those duties
fell to the operating system, and in fact the original IBM PC was announced with
no less than three different operating systems: Microsoft's MS-DOS, Digital
Research's CP IM-86, and Softech's P-System. For various reasons, MS-DOS
(marketed by IBM as PC-DOS, and usually referred to as DOS) rapidly became
the operating system of choice, and the other two operating systems never
achieved any significant base of users.

DOS proved to be another limiting factor in the evolution of personal com
puters, albeit in ways more subtle than the 640K limit. Ironically, the earliest ver
sions of MS-DOS were patterned closely after Digital Research's CPIM-80

Chapter 1 The IBM PC Programming Architecture 5

operating system, to aid developers in porting their applications from the 8-bit
8080- and Z-80-based microcomputers that preceded the IBM PC; this resem
blance underlies many problems that are still with us today. The first version of
DOS, for example, had no programmatic interface for managing memory-when
an application was loaded, it could use the entire address space in whatever
manner it chose-and the performance of the video display drivers provided by
DOS and the ROM BIOS was notoriously poor.

As a result, the halls of software development companies buzzed with PC
"folklore" on how to do things faster or better-such as how DOS used certain
undocumented locations in memory, the fastest techniques for direct control of
the video adapter, and how the serial communications controller could be
pushed beyond its documented capabilities. Many of the programs that exploited
these non-standard techniques became best-sellers, sometimes because their di
rect access to the hardware gave them a performance edge unequaled by their
competitors. This, in turn, led others to use the same hardware-dependent tech
niques, all of which would later come back to haunt the manufacturers of PC
software and hardware.

The 8086 Becomes aFamily
Intel first began shipping its second generation 16-bit microprocessor, the 80286,
in 1982. To those who were paying attention, the 80286 represented a significant
advance in the capabilities of the microprocessor, and pointed out the path that
future generations would take. It extended the physical address space from 1
megabyte to 16 megabytes. It provided for the development of secure multitask
ing systems, by including a mechanism with which one program could be pre
vented from corrupting the code or data of another. And it allowed applications
to "overcommit" memory, running in a logical address space that was much
larger than the physically available memory. It accomplished all this though a
mechanism called protected virtual address mode.

Before we discuss protected mode in more detail, however, we should
quickly review memory addressing on the 8086.

8086 Memory Addressing

On the 8086, a memory address is made up of two parts: a segment and an offset.
The 16-bit segment portion of the address, which is loaded into one of the 8086's
four segment registers (C5, D5, E5, and 55), is simply multiplied by 16 by the

6 EXTENDING DOS

hardware to specify the starting physical address of a block of memory (to make
the terminology even more confusing, such a block is also often referred to as a
segment). The offset, which is likewise a I6-bit value, determines which byte in a
block of memory, or segment, is referenced: offset 0 referring to the first byte, off
set 1 to the next, and so on. Since the offset can only take on values in the range
OOOOH through FFFFH, the largest contiguous chunk of memory that can be easily
and continuously addressed is 64K-although, since the values in segment regis
ters correspond directly to memory addresses, a program can manipulate these
values in order to use larger data structures.

The segment:offset nature of 8086 addressing is actually a remnant of an even
earlier architecture. One of the goals of the Intel designers in creating the 8086
was a simple transition from the previous generation, the Intel 8080. On the 8080,
all addresses were I6-bit values stored either in a register or as a direct reference
in an assembly language instruction. Division of the 8086's I-megabyte address
space into 64K segments allowed a straightforward emulation of the 8080's mem
ory addressing. Programs could be ported directly from the 8080 to the 8086 by
setting CS=DS=ES=SS, resulting in a single combined code and data segment and
retaining the I6-bit, 64K addressing model. New programs for the 8086 could use
32-bit addresses (both segment and offset) and access an entire megabyte.

The 8086's segmented architecture led to various styles of programming. If a
program requires no more than 64K of code and 64K of data, it can load the seg
ment registers once during its initialization, and then ignore them. This style of
application is called a small model program. The other extreme, called the large
model, requires the programmer to deal with addresses as 32-bit quantities, load
ing a segment register with a new value for nearly every memory reference.
Most 8086 high-level language compilers support both of these models. Many
support other models as well; for example, using 32-bit addresses for code but
only 16-bit references for data (medium model) or vice versa (compact model).

Protected Mode Versus Real Mode

The 80286's protected mode derives its unique capabilities from a change in the
way memory addresses are interpreted.

The 80286 CPU starts up in so-called real mode, which is basically an 8086 em
ulation mode; in this mode the 80286 forms addresses in exactly the same man
ner as an 8086. When the 80286 is switched into protected mode, however, it
interprets the contents of a segment register in a radically different way. The
value in a segment register is called a selector, and it is used by the CPU hard-

Chapter 1 The IBM PC Programming Architecture 7

ware as an index into a look-up table-called a descriptor table-which contains
24-bit physical base addresses for all the memory segments in the system.

Combination of a 24-bit base address from the look-up table with a 16-bit off
set allows the CPU to address 16 megabytes of physical memory. Furthermore,
because the same selector and offset (2CA7:0912, for example), may reference
anyone of many different physical addresses, depending on the base address in
the look-up table, the protected-mode selector:offset pair is called a virtual ad
dress. The addressing methods used by the 8086 and by the 80286 in protected
mode are contrasted in Figure 1-3.

Figure 1-3: Addressing modes contrasted.

Address space
Segment Offset

1M·.
1II

Selector
Address space

Offset
16M"

1I
,.--..

OK

8086

64K
descriptor

table

OK

80286 Protected mode

To recapitulate, a program running on the 8086, or in real mode on the 80286
(or its successors), can read or write any desired memory location at any time,
simply by loading an arbitrary value into a segment register. A real-mode operat
ing system cannot monitor or restrict an application program's access to memoI)T,
shielding one application from another, because there is no hardware support for

8 EXTENDING DOS

such restriction. A protected-mode application, however, can only "see" the mem
ory addresses that the descriptor tables permit it to see. Control over the descrip
tor tables-and thus the correspondence between values in segment registers and
physical memory addresses-is ordinarily reserved to an operating system.

The period immediately following the introduction of the 80286 represents
one of the great missed opportunities of the computer industry. If IBM and
Microsoft had taken early notice of the 80286's characteristics to the extent of re
quiring adherence to DOS 2.0's memory management techniques, discouraging
programmers from using hard-wired memory addresses and hardware I/O port
addresses in their programs, and enhancing DOS and the ROM BIOS with some
efficient and flexible video drivers, the transition between the 8086 and the pro
tected-mode operation of the 80286 might have been relatively painless. Instead,
direct hardware access techniques became even more entrenched in PC applica
tion software, and the design of DOS and the PC's hardware became a captive of
the applications' behavior.

Solving Real Problems
Since protected mode didn't really become an issue for most programmers until
several years after the PCIAT was introduced, other methods had to be used to
squeeze programs into the limited memory supported by DOS. Among these'
were overlays, expanded memory (LIM EMS memory), and the limited use of ex
tended memory by real-mode programs for storage of data.

Overlays

The first technique invented to deal with the problem of "too much program and
not enough memory" is called overlaying. It predates the personal computer by
many years, and is best suited to applications that process data in orderly stages,
or those in which one of many different possible operations is selected early in
the execution process.

An example of a program that might employ overlays is a compiler, which
operates, let us say, in three stages or passes. The first pass reads in the source
program, building the symbol table and checking for syntax errors. It creates a
tokenized form of the source for use by the next pass. The second pass operates
on the tokenized output of pass one, translating the high-level language to
pseudo-assembler output. The third pass performs optimizations and converts
the pseudo-assembler code to true object code.

Chapter 1 The IBM PC Programming Architecture 9

Let us assume that the portion of our hypothetical compiler that performs
I/O is used in all three passes, the symbol table functions are used in pass 1 and
pass 2, the parser is only used in pass I, the optimizer is only used in pass 3, and
so on. To conserve memory, the parts of the compiler might be organized as
shown in Figure 1-4. At any given time, only the code that is necessary for the
current phase of the compiler's execution is present in memory; the remainder is
stored on disk until it is needed.

Figure 1-4: Overlaid processing.

Pass 1 Pass 2 Pass 3

640~

Data Data Data Data

Tokenizer

Parser Code Generator ObJect code

Symbol table Symbol table Optimizer

Root I/O code I/O code I/O code

~
0

The portion of an overlaid program that is always resident is called the root.
The portions that replace one another in memory as execution of the program
progresses are called overlays. In the figure, the I/O code corresponds to the root;
the other routines are the overlays. The code fragments that make up an overlay
are grouped together and given an overlay name or number.

Overlays are typically built by a linker, which also generates or includes
overlay manager code to manage the overlay loading process. The simplest link-

10 EXTENDING DOS

ers, such as Microsoft LINK, create a root area and a single level of overlays.
More sophisticated linkers, such as Phoenix Technology's PLINI<86 or Pocket
Soft's .RTLINK, can create a hierarchical system of overlays, as shown in Figure
1-5. In this example, overlays 1 and 2, or 1 and 3, can be resident simultaneously.
Overlay 4 replaces all other overlays.

Overlaid programs run on any DOS system and generally require no special
programming techniques. However, use of overlays has two important draw
backs: the overlay segments must be loaded from secondary storage on disk,
which can be quite a slow process; and overlays are useful mainly for programs
with a great deal of code and relatively little data, because most overlay manag
ers cannot overlay or swap data. Programs manipulating large amounts of data,
like spreadsheets, must find other ways to expand their effective memory space.

Figure 1-5: Hierarchical overlays.

Root

Overlay 1

Overlay 3
Overlay 4

Overlay 2

Data

Expanded Memory

Lotus 1-2-3 is the archetypal spreadsheet, and it illustrates the needs of such pro
grams for large amounts of fast storage. The basic concept of a spreadsheet is
quite straightforward. The user is presented with a two-dimensional array of lo
cations, or cells, each of which can contain either data or a formula to be evalu
ated. The more cells in use, the more memory is required.

By 1984, Lotus's customers were building spreadsheet models with thou
sands of cells, and were running out of memory within the 640K confines of

Chapter 1 The IBM PC Programming Architecture 11

DOS. Lotus needed a way to add more memory to the 8088. Since the data was
accessed frequently, it was necessary to have rapid access, as close as possible to
the speed of primary memory. Disk storage was out of the question. Eventually,
Lotus worked together with Intel and Microsoft to devise a new species of fast
storage: expanded memory.

Typicall~ when you add a memory board to a computer, the RAM addresses
are fixed. For example, if you had two boards with 256K RAM each, the first
would most likely start at address OOOOOh, and the second at address 040000h. In
contrast, the memory on an expanded memory board has no fixed address. In
stead, when an expanded memory board is installed, a page frame is chosen-a
64K block within the 384K reserved area that doesn't conflict with other hard
ware, such as a video adapter or network card. Each 16K chunk, or page, of ex
panded memory can then be dynamically assigned to an address within the page
frame.

Lotus, Intel, and Microsoft also standardized a software interface for ex
panded memory boards and called it the Expanded Memory Specification, or
EMS for short. The interface is typically implemented in a software module
called an expanded memory manager, which is provided by the expanded mem
ory board's manufacturer. The manager keeps track of which pages are in use,
which may be used by a new application, and which pages are currently accessi
ble. To make use of expanded memory, an application calls the manager to re
quest the number of pages it needs, to make its expanded memory pages
available within the page frame as necessary, and finally to release its expanded
memory pages before it terminates.

The primary advantage of expanded memory is that it works in any existing
PC-compatible computer. An EMS-compatible memory board can be added to ei
ther an 8086- or 80286-based system. In newer machines with 80386 or 80486 mi
croprocessors, no special expanded memory hardware is required at all; instead,
software emulators use advanced features of these CPUs to implement the EMS
standard. The main drawback to the use of expanded memory is that it requires
special programming within the application; each page must be explicitly en
abled by a call to the expanded memory manager when the data it contains is
needed. Further discussion of expanded memory can be found in Chapter 2.

Extended Memory

The first IBM personal computer to incorporate the Intel 80286 CPU was the
PCIAT, introduced in 1984. The PCIAT had a true 16-bit bus and the capacity to

12 EXTENDING DOS

support the full 16 megabytes of RAM addressable by the 80286. The memory
above the I-megabyte boundary (called extended memory by IBM) could only be
accessed by a program running in the 80286's protected mode. Realizing that a
protected-mode operating system for the PCIAT might be a long time coming,
IBM provided real-mode programs with limited access to the extra memory and
protected mode in the form of several new ROM BIOS function calls.

The most important of the new ROM BIOS functions, Int 15h Function 87h,

places the 80286 into protected mode, copies a block of data from an address any
where in the 16-megabyte range to any other address, and returns to real mode.
This simple function might have contended with EMS as a solution to the data
storage problems of spreadsheets and similar programs, but there were a number
of obstacles to its success. First, the function was not widely publicized when the
PCIAT first appeared; most programmers had to stumble on it while reading the
ROM BIOS program listings. The function was also significantly slower than ex
panded memory; an EMS driver can access a block of memory simply by en
abling the required page, but the ROM BIOS function must change the CPU
mode twice as well as copying the data back and forth.

The most important weakness of ROM BIOS Int 15H Function 87H, however,
is that it assumes a very simple operating model: one program "owns" all of ex
tended memory. The EMS standard, by comparison, allows expanded memory to
be shared between applications, TSRs, interrupt routines, and so on. In 1988, a
standard called XMS (eXtended Memory Specification) was agreed upon to ad
dress ownership and allocation of extended memory blocks by multiple applica
tions, in a manner similar to EMS. The details of programming under the XMS
standard are covered in Chapter 3.

Although both EMS and XMS could satisfy a program's needs for large
amounts of fast storage, neither proved to be without annoyances. An applica
tion has to specifically map or move data in and out of its conventional memory.
A program has to deal somehow with data structures that don't fit into the maxi
mum block that can be copied by a single call to Int 15H Function 87H, or into a
single expanded memory page (or even the entire expanded memory page
frame). Developers of large programs began to sigh longingly, "If we could run in
protected mode, we could use all 16 megabytes as regular memory."

Chapter 1 The IBM PC Programming Architecture 13

Using Protected Mode
The "protection" in protected mode is derived from an "operating system's-eye"
view of the world. If you assume that microcomputers are just like mainframes
and minicomputers, and as they get faster and more powerful, people will want
them to do anything a mainframe or mini can do, you must plan for multitasking.

If the computer is doing many things "simultaneously"-printing one docu
ment, editing another, and updating a database, for example-you don't want a
bug in one program to affect any of the others. Protected mode isolates one pro
gram from another by not allowing direct access to any of the system resources.
A level of indirection is imposed on all memory accesses, which can be validated
by the operating system. We saw this in Figure 1-3: in protected mode, segment
registers contain special values called selectors, which point to a system resource
called a descriptor table. This table is interpreted by the CPU, but maintained by
the operating system.

Under a true protected operating system, application programming is actu
ally simplified. Selectors become just one less thing to worry about. No need to
compute addresses or do segment arithmetic; the operating system doles out se
lectors at load time, or in response to memory allocation requests. Any attempt
by an application to use an invalid or inappropriate selector results in a trap
(software interrupt) that is serviced by the operating system. The operating sys
tem may handle the trap in a variety of ways, the most common being to termi
nate the offending program.

But the lack of a DOS-compatible operating system to manage the descriptor
tables and other system resources tended to put a damper on the development of
protected-mode PC software, no matter how desirable it appeared. For those
who chose not to wait for a brand new operating system, protected mode created
a bit of a mess. Their only option was to lIse a variation on the method IBM origi
nally provided for memory transfers, that is, to run in protected mode part of the
time, and in real mode part of the time. When the application was running and
needed access to large amounts of memory, the processor would be in protected
mode; when the application needed an operating system service (opening a file,
for example), it would switch to real mode so that DOS could handle the request.

This simple-sounding solution is really quite a technical challenge, because it
requires a far deeper understanding of protected mode than an application pro
grammer would typically want or need under a true protected-mode operating

14 EXTENDING DOS

system. To get a feel for the steps involved, we must examine protected mode in
more detail.

Protected-Mode Details

The 80286 architecture assumes as an underlying model a group of cooperating
tasks, supported by a reliable kernel operating system. To prevent intentional or
inadvertent damage of one task by another, each task has a separate, local address
space and access to the system's global address space. A privilege mechanism
keeps operating system-level code and data secure from outside tampering.

As we have already seen, this entire system was made possible through one
key architectural change in the transition between the 8086 and the 80286: the use
of indirection in segment addressing. In the 8086, the contents of a segment regis
ter are simply multiplied by 16 to generate the base address of a memory seg
ment. In the 80286's protected mode, the selectors found in segment registers are
made up of three separate components, as shown in Figure 1-6.

Figure 1-6: A protected-mode selector.

15 3 2 1 o
I

Index
T RPLI

I

Table
Indicator

Requested
Privilege
Level

The two low-order bits of the selector make up the Requested Privilege Level,
or RPL. The 80286 supports four privilege levels, numbered from zero (most
privileged) to three (least privileged). Applications almost universally run at the
lowest privilege levels, and all their selectors have an RPL of three. Bit 2 of the se
lector, the Table Indicator, or TI bit, indicates whether the specified segment

Chapter 1 The IBM PC Programming Architecture 15

II Note: Ordering of bit fieLds is
II compiler dependent. Check your
II manuaL before using this struct.

1;

base_hi : 8;
type : 4;
s : 1;
dpL : 2;
present
} ar;
unused;word

};

comes from the local address space or the global address space. A value of 0 se
lects global addressing; a 1 selects local addressing. The 13 high-order bits act as
an index into a descriptor table. The descriptor table-either a Global Descriptor
Table (GDT) or a Local Descriptor Table (LDT), depending on the value of the TI
bit-eontains information about the segment, including the starting address.

Descriptors are at the heart of protected-mode operation because they fully
describe and control all aspects of their corresponding memory blocks, or seg
ments. Each descriptor contains a base (or starting) physical memory address for
its segment, the length of the segment, the privilege level required to access the
segment, and some bits that define usage attributes of the segment. A descriptor
takes up eight bytes. The C data structure used to access individual components
of the descriptor is shown below:

#pragma int16
typedef unsigned char byte;
typedef unsigned int word;
typedef unsigned long dword;
struct MEMSEG {

word Limit;
word base_Lo;
struct {
unsigned
unsigned
unsigned
unsigned
unsigned

end

Note that the base address found in a descriptor is 24 bits long, comprising the
second word of the descriptor, as well as the lower eight bits of the third word;
this allows a segment to begin anywhere in the 80286's 16-megabyte address
space. The descriptor's limit field defines the last legal offset that can be ad
dressed within the corresponding segment. In protected mode, segments are not
always 64K in size; the segment size is actually limit+1. If a program has only 20K
of code, for example, the limit of the code segment descriptor is set accordingly;
any attempt to branch beyond the bounds of the segment is automatically de
tected by the hardware, and causes a special type of interrupt called a fault. Fig
ure 1-7 shows the structure of an 80286 segment descriptor in a more
diagrammatic fashion.

16 EXTENDING DOS

Figure 1-7: The 80286 segment descriptor.

15 o

o

2

4

6

I

Limit
I

Base Address
0.. 15

I S Base Addressp DPL - Type
I T 23 .. 16

0 (Reserved)
I

The access rights (AR) byte is located in the upper half of the third word of the
descriptor. The fourth word is unused in the 80286 and must contain the value o.
The descriptor for a segment is accessed whenever a selector that points to it is
loaded into a segment register, and the access rights byte is the first thing the pro
cessor examines. The bits in the AR byte are defined as follows:

• P-Present: This bit must be set to 1 to indicate that the data for this seg
ment is actually present in memory. If P=O, a fault occurs when the selector
is loaded.

• DPL-Descriptor Privilege Level: To access a segment, the privilege level
of the executing program (called the Current Privilege Level, or CPL) must
be equal to or more privileged than the DPL. Attempts to access a descrip
tor that is more privileged than the executing code result in protection
faults.

• S-Segment: This bit is set to I, indicating a memory segment. When S=O,
the descriptor has a slightly different format and is used to define special
system constructs.

• TYPE-Type: This field defines additional attributes of the segment. Bit 3
(mask OxOS) of this field is set to 1 if the segment is an executable segment.
Any attempt to write to an executable segment causes a fault. For execut
able segments, bit 2 (mask Ox04) is set to 1 to indicate a conforming segment

Chapter 1 The IBM PC Programming Architecture 17

(that is, a segment that changes privilege according to the privilege of the
calling routine), and bit 1 (mask Ox02) is set to 1 if the segment may be
read as data, as well as executed as code. As you might expect, attempts to
read non-readable segments result in protection faults. If bit 3 is 0, the seg
ment is a data segment. In this case, bit 2 is set to 1 to indicate an expand
down segment (a special segment type for stacks) and bit 1 is set to 1 to
mark the segment as writable. If bit 1 is 0, the segment is read-only; this at
tribute is enforced via the protection mechanism as well. For both code
and data segments, bit 0 (mask Ox01) of the TYPE field is 0 if the descriptor
has never been accessed. The hardware sets bit 0 to 1 each time a selector
pointing to the descriptor is loaded into a segment register.

Descriptors are grouped into tables, two of which are necessary for the sys
tem to operate correctly. The Global Descriptor Table (GDT) contains descriptors
that are shared across the entire system, and defines the global address space of
the machine when it is in protected mode. The size and starting address of the
GDT are defined by values in a special register, GDTR, which must be initialized
before entering protected mode. Similarly, the IDTR contains the starting address
and size of the Interrupt Descriptor Table (IDT). The IDT helps the system man
age interrupts and is analogous to the set of interrupt vectors running from
0000: OOOOh to 0000: 03 FFh in real mode. In protected mode, however, the IDT is
not restricted to starting at physical address 0, and it contains 8-byte descriptors
rather than 4-byte pointers.

As described so far, the protected-mode model is defined by the GDT and
IDT, which contain descriptors that define code and data segments. These are not
sufficient, however, to support two other 80286 features previously mentioned:
multitasking, and a local address space for use by each task. In order to see how
these features are implemented, we must look at another class of descriptors,
called system descriptors. These descriptors are identified by a 0 in the S bit of the
AR byte. The two possible formats are shown diagrammatically in Figure 1-8; the
code structure is shown below:

#pragma int16
typedef unsigned char byte;
typedef unsigned int word;
typedef unsigned Long dword;
struct SYSSEG {

word Limit;
word base_La;

18 EXTENDING DOS

struct {
unsigned
unsigned
unsigned
unsigned
unsigned

word
} .,

struct GATE {
word
word
struct {
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

word
};

base_hi : 8;
type : 4;
s : 1;
dpl : 2;
present 1;
} ar;
unused;

offset;
select;

wc : 5;
unused : 3;
type : 4;
s : 1;
dpl : 2;
present 1;
} ar;
unused;

II Note: Ordering of bit fields is
II compiler dependent. Check your
II manual before using this struct.

The Present bit and DPL fields of system descriptors are used in the same
manner as in segment descriptors. The TYPE field takes one of the following val
ues, and determines which of the two descriptor formats is being used.

• 0 Invalid descriptor
• 1 Task State Segment (TSS)
• 2 Local Descriptor Table (LDT)
• 3 BusyTSS
• 4 Call gate
• 5 Task gate
• 6 Interrupt gate
• 7 Trap gate.

Descriptor types 1 through 3 have the format described by the SYSSEG struc
ture in the C code above; types 4 through 7 use the GATE structure. A gate is a
special kind of descriptor that allows transfer of control (via interrupt or subrou
tine call) between routines executing at different privilege levels. The SYSSEG de
scriptors look much like memory segments and, in fact, describe areas of
memory. Selectors pointing to these descriptors, however, cannot be loaded into
segment registers. Editing the contents of a TSS or LDT requires creation of a

Chapter 1 The IBM PC Programming Architecture 19

data segment with the same base address and limit as the system segment. This
technique is called aliasing.

Figure 1-8: 80286 system descriptors.

15 o 15 o

o

2

4

6

I

Limit
I
I

Base Address
0.• 15

I
S

P DPL - Type Base Address
0 0.. 15

I

0 (Reserved)
I

System Segment (e.g., T55)

o

2

4

6

I

Offset
I
I

Selector
I I I I I I

I
S

I I I TIT

Wordp DPL - Type 0 Count
I

0
I I I I I I
I I I I I I

0 (Reserved)
I

System Gate

The Local Descriptor Table (LOT) and Task State Segment (TSS) are critical to
the implementation of multitasking and a local address space. The LDT descrip
tor points to a descriptor table that is used when the TI bit of a selector is I, and
the LDTR register always contains the selector of the currently active LDT. Each
task has its own LDT, so that its private memory is "invisible" to all other tasks,
and the operating system changes the value in LDTR as it transfers control of the
CPU from one task to another. The TSS contains a copy of all the general and seg
ment registers for a given task. The operating system's dispatcher can switch
tasks simply by branching to a TSS. All the registers and flags belonging to the
current task are saved in its TSS, and the registers are loaded with the data saved
in the new TSS.

A full description of the multitasking capabilities of 80286 protected mode is
beyond the scope of this book; it is the addressing capabilities that concern us
here. We now have enough information to create a picture of the structures that
must be present in memory before protected-mode operation can continue.

Because protected-mode addressing is table-oriented, it is not possible for an
application to "manufacture" segment addresses, as it can on the 8086. For exam
ple, the address of the video buffer for a color monitor begins at OB8000h in most

20 EXTENDING DOS

PCs. The real-mode segment value OB800h points perfectly to the beginning of
the buffer. In protected mode, however, the selector value OB800h is an index into
descriptor 1700h of the GDT with a Requested Privilege Level of o. Only the op
erating system knows what descriptor is at that index, and any program running
at application privilege level <usually 3), and attempting to access a segment at
the highest privilege level, will cause a protection fault.

Clearl)', programs that run in protected mode must rely on the operating sys
tem to give them access to system memory and other hardware resources. "Well
behaved" real-mode applications that already do so will port easily to protected
mode. In general, the things that must be avoided include:

• the use of constant or "hard-wired" segment or selector values
• segment or selector arithmetic, or use of segment registers for "scratch"

storage
• access to memory not specifically allocated to the application by the oper-

ating system
• writing to code segments
• direct port I/O.

Note that access to the I/O ports is restricted in protected mode as well. It's
easy to see why, of course. If you assume a multitasking environment, it won't do
to have more than one program attempting to control the same device. Requests
for device input and output must be routed through the operating system, which
can ensure sequential "ownership" of the device.

DOS Extenders
When a DOS-compatible protected-mode operating system failed to arrive in a
timely fashion for the 80286, DOS extenders appeared instead. DOS extenders are
something less than an operating system, but more than a subroutine library. Es
sentially, they act like an operating system when it comes to memory manage
ment features, hiding descriptor table management the wayan operating system
would, but they have no device handlers or file system. The DOS extender passes
an application's requests for these features on to DOS.

The mechanism used to perform this digital legerdemain is called mod~

switching, and it is not something Intel had in mind when the 80286 was first cre
ated. The 80286, you may recall, was introduced in 1982, only one year after the
IBM PC. Intel assumed that the advantages of protected mode were so apparent
that everyone would convert, and real mode would become a distant memory.

Chapter 1 The IBM PC Programming Architecture 21

Besides, a transition mechanism between the two modes could jeopardize the se
curity of protected-mode operation. Intel didn't realize that almost no one would
pay any attention to protected mode until much later, when DOS applications
dominated the marketplace.

As a result, the 80286 can only be returned to real mode by resetting the pro
cessor. Fortunatel}', the designers at IBM included a mechanism to perform this
reset under software control when they created the PC/AT. They also included
an option in the BIOS that provides for the resumption of program execution at a
predetermined location after a reset, rather than always booting the operating
system and starting from scratch. The combination of these two capabilities al
lows an 80286 to run in protected mode, reset to real mode, run a specific routine,
and reenter protected mode-or vice versa. One of the main functions of a DOS
extender is to ensure that these mode transitions are properly managed.

If mode switches happened only at DOS system calls (Int 21 h), the work of a
DOS extender would be relatively straightforward; however, a number of the
events in a PC are asynchronous or interrupt-driven. For example, when one of
the keyboard's keys is pressed or released, the processor is signalled via an inter
rupt, and the interrupt handler routine for the keyboard is real-mode code lo
cated in the ROM BIOS. Similarly, DOS's date and time are updated by the
real-mode interrupt handler for a timer chip interrupt which occurs 18.2 times
per second.

The DOS extender must field all interrupts in protected mode, save the pro
cessor state, switch into real mode, reissue the interrupt so that it can be serviced
by the appropriate interrupt handler, switch back to protected mode, and resume
execution of the application. With these details taken care of, however, the appli
cation programmer is free to make use of the full protected-mode address space
and other features of the 80286. Chapter 4 covers two popular DOS extenders for
the 80286: DOS/16M and OS/286.

Intel's 32·bit Microprocessors
The lure of protected mode became even stronger in 1985, when Intel introduced
its first 32-bit microprocessor, the 80386. The 80386 was followed in 1987 by the
80386SX, a 32-bit processor with a 16-bit hardware bus, and in 1989 by the 80486,
a very fast processor with an on-chip cache and floating-point hardware. From a
software point of view, the 80386SX and 80486 are virtually undistinguishable

22 EXTENDING DOS

from the 80386. The following description of the 80386, therefore, applies to the
80386SX and 80486 as well.

Like the 80286, the 80386 supports real-mode operation, for the sake of com
patibility with DOS and its applications. It also supports all the features of 16-bit
protected mode on the 80286. But when the 80386 is running in its preferred, na
tive protected mode, it is a true 32-bit CPU with many new capabilities. All the
registers and instructions on the 80386 (with the exception of segment registers
and the instructions that manipulate them) can perform their operations 32 bits
at a time. 16-bit operations are still supported, so the 32-bit registers have new
names to distinguish them in instruction mnemonics. Table 1-1 lists the 16-bit
general register names and their 32-bit counterparts.

Table 1-1: 16- and 32-bit general registers.

80286 General Registers
AX, BX, CX, OX
5~ B~ 01, 51, IP

80386 General Registers
EAX, EBX, ECX, EOX
E5~ EBP, EDI, E51, EIP

Even more importantly, addressing capabilities are extended on the 80386
too. Though selector values remain 16-bit, using the same GOT- and LOT-based
descriptor table look-ups, the offset portion of an address is extended to 32-bits,
allowing segment sizes of up to 4,096 megabytes, or 4 gigabytes. The small model
of one code segment and one data segment now allows programs to use as much
as 8 gigabytes of memory.

Intel achieved these extensions to the programming model without sacrific
ing 80286 compatibility by making use of the reserved field in the descriptor. Fig
ure 1-9 shows the 80386 descriptor format. (For ease of comparison, the
descriptors are shown in 16-bit format. On the 80386, however, only two 32-bit
reads are required to load a descriptor, compared with the four 16-bit reads re
quired on the 80286.)

For memory-referencing descriptors, the base address portion has been ex
tended from 24 bits to 32. The limit field is now 20 bits rather than 16, and two
bits named "G" and "0" have been added.

The G bit controls the granularity of the limit field. When G=O, the limit field
has byte granularity, allowing a maximum segment size of 220, or 1 megabyte.
When G=l, the limit field has 4K or "page" granularity: each increment in the
value of the limit increases the maximum segment size by 4,096 bytes. For in
stance, a page-granular segment with limit=3 contains 16K of data.

Chapter 1

Figure 1-9: 80386 segment descriptor.

15

The IBM PC Programming Architecture 23

o

o

2

4

6

I
Limi+O.. 15

I

Base Address
0 .. 15

I S Base Addressp DPL Type
T 23.. 16

I

Base Address A Limit
G D 0 V

24..31 L 16.. 19

The D bit determines the default operand and addressing modes. When D=O,
segments behave as in 80286 protected mode, that is, instruction operands are 16
bits, and segment offsets may not exceed OF FFFh. When D=1, the default operand
size is 32 bits, and segment offsets may vary throughout the entire 4 gigabyte
range; restricted, of course, by the descriptor's limit value.

The 80386 also introduced a significant change to the familiar 8086 instruc
tion set. In the 8086 and 80286, registers can only be used as base or index regis
ters for memory references in certain combinations, which are listed in Table 1-2.
These restrictions apply in both real and protected modes.

Table 1-2: 8086/80286 addressing modes.

Operand
DISP
[BX]+DISP
[BP]+DISP
[SI]+DISP
[DI]+DISP
[BX]+[SI]+DISP
[BX]+[DI]+DISP
[BP]+[SI]+DISP
[BP]+[DI]+DISP

Description
16-bit displacement (offset)
Base register + displacement
Stack frame + displacement
Source index + displacement
Destination index + displacement
Base + index + displacement
Base + index + displacement
Stack frame + index + displacement
Stack frame + index + displacement

24 EXTENDING DOS

As you can see, the registers AX, CX, DX, and SP cannot be used in 8086 or
80286 address computations. In contrast, on the 80386, register addressing is fully
generalized, and any of the eight general registers, EAX, EBX, ECX, EDX, EB~
ESP, ES1, and EDI, may be used. The three fundamental forms of 80386 address
ing are shown in Table 1-3.

Table 1-3: 80386 addressing modes.

Operand
DISP
[REG]+DISP
[REG]+[REG*SCALE]+DISP

Description
Displacement alone (32-bits)
Base register + displacement
Base register + scaled index register + displacement

The first two 80386 addressing modes are simply generalized forms of the
original 8086 displacement and base-plus-displacement addressing modes. The
third 80386 form is like 8086 base-plus-index addressing, except that the index
register is automatically multiplied by a scale value of I, 2, 4, or 8. To illustrate,
consider the C language code fragment below and the assembler code that a
compiler might generate.

/* C Language */
int i;
Long sum, vector[400];

sum += vector[i]

; 8086/80286 assembLer
I OW?
SUM DO ?
VECTOR DO 400 * (?)

MOV
SHL
MOV
MOV
ADD
ADC

SI, I
51, 2
AX, VECTOR[SI]
OX, VECTOR[SI]+2
SUM, AX
5UM+2, OX

; get index
; scaLe for Long integers
; fetch array vaLue

; compute sum

; 80386 assembLer
I DO?
SUM DO ?
VECTOR DO 400 * (?)

MOV EAX, I ; get index
MOV EAX, VECTOR[EAX*4]; fetch indexed array value
ADD SUM, EAX ; compute sum

Chapter 1 The IBM PC Programming Architecture 25

The 8086 or 80286 version uses three registers and includes a separate opera
tion to adjust the index for the operand size. The 80386 version requires only one
register and performs the index scaling on the fly.

o If you are willing to limit your market to customers who have 80386 ma
chines, there are DOS extenders that allow you to create applications that fully
exploit the 32-bit registers, enhanced instruction set, and enormous address space
of the processor. Chapters 5 and 8 contain a discussion of these products.

The 80386 has other capabilities too; among them is a new form of address in
direction called paging. Recall that in protected mode on the 80286, a selector:off
set pair is converted to a physical address by fetching the base address from the
descriptor table and adding the offset. On the 80386, the base address and offset
are combined to form a 32-bit linear address which can then be passed through the
CPU's paging mechanism to yield the final, physical address. In effect, paging al
lows each 4K block of RAM to have its own virtual address. Figure 1-10 illus
trates a simplified version of what happens on the 80386 when paging is enabled.

The designers of the 80386 added paging to support the needs of high-perfor
mance, virtual-memory operating systems. But paging can also be put to use
serving DOS applications by emulating EMS hardware with extended memory.
Since the 80386's paging operates on 4K boundaries, four 80386 pages can be
used to simulate one EMS page. By manipulating the page tables, an EMS emwa
tor can in effect create an EMS page frame-responding to an application's EMS
mapping requests by page-table mapping linear addresses within the page frame
onto physical addresses above the I-megabyte boundary.

One 80386 =Many DOS Machines

One of the most interesting features of the 80386 is its virtual 86 (V86) mode. As
we saw earlier in the chapter, the model underlying protected mode is one of
multiple tasks sharing the resources of the processor. The state of each task, that
is, the contents of its CPU flags and registers, is stored in the TSS for a suspended
task, and in the actual machine registers when the task is running. On the 80386,
a bit named "VM" was added to the flags register. When VM=1 in an executing
task, the task is executing in virtual 86 mode, and the GDT and LDT are not used.
Instead, the selector values are multiplied by 16 (as in real mode) to generate a
linear address, which is still subject to translation via the paging mechanism.
Consequentl)', it is possible on the 80386 to run more than one real-mode pro
gram at a time in separate "V86 machines"; each program under the illusion that
it is running in the fixed, I-megabyte address space of the 8086.

26 EXTENDING DOS

Figure 1-10: Virtual address translation through paging.

16-bit selector
from segment

register

32-blt offset from Index registers
and/or machine Instruction -

Descriptor table r--+ 32-btt base address from descriptor

I
~....... ~

32-bit linear memory address

~

12-btt
page offset ~

~
Page dIrectory

!
Page table 32-bit base address from page table..

I
~

32-bit physical memory address

Chapter 1 The IBM PC Programming Architecture 27

Because the paging hardware allows the system to protect memory on a
page-by-page basis, an operating system can trap a V86 program's writes to
screen memory, possibly redirecting (remapping) the output to a "shadow"
buffer. This makes it possible to "window" real-mode applications that do not use
the DOS or ROM BIOS video drivers. The 80386 also allows an operating system
to selectively intercept a V86 application's I/O port reads and writes. The operat
ing system can then let the I/O operation proceed, divert the I/O to a different
port, or even carry out the I/O on behalf of the application. Interrupts that are
serviced by the protected-mode operating system can also be "reflected" into a
V86 machine for service by the V86 application. This global ability of an 80386
operating system or control program to monitor and control a V86 program's
I/O and memory access is known as device virtualization.

OS/2 version 2.0, Windows/386, DESQView/386, and some versions of
UNIX exploit the 80386's page tables and virtual 86 mode to run multiple DOS
applications concurrently. The major weaknesses in this scheme are that each
DOS program is confined within its V86 machine to the 640K limit, and that the
DOS programs-not being written with multitasking in mind-can't communi
cate or cooperate effectively with each other.

Operating Environments
We have seen some of the techniques by which a developer can create an applica
tion that surpasses DOS-imposed boundaries. Another possibility is to make use
of the features provided by operating environments. Operating environments are
similar to DOS extenders, but appear more like separate operating systems. They
are not complete; however, they reside "on top" of DOS and make use of DOS
services and the DOS file system.

Two of the most popular operating environments are DESQview and Win
dows. These programs are covered extensively in Chapters 6 and 7. They em
body two very different philosophies, and place very different requirements on
the developer.

DESQview, from Quarterdeck, is the simpler of the two environments. Its pri
mary advantage to the end user is multitasking. Developers get a larger task
space for their applications than would be available under DOS. DESQview
makes more memory available by managing EMS memory in a very efficient
manner. DESQview runs well on any computer with EMS hardware, or on an

28 EXTENDING DOS

80386- or 80486-based system using V86 mode and paging. Very little extra work
is required to make an application DESQview-compatible.

Windows, on the other hand, imposes a radically different "world view" on
an application. Standard DOS programs are essentially incompatible with Win
dows; applications musjt be completely redesigned to use the features Windows
provides. In return, Windows offers a great deal to the end user: a uniform
graphical interface, multitasking with transparent swapping of applications to
expanded memory, "cut and paste" of text and graphics between applications,
and more. But these features come at a price. Users will want an 80286 or faster
processor in their machine and a high resolution monitor.

Developers pay a price as well; application development time is far longer
under Windows than under DOS, and there is a steep learning curve. Applica
tions developed under Windows do, however, have some advantages that DOS
programs do not, and device independence is one of the most important. Appli
cations developed for DOS have to deal with display and printer hardware on
their own. Software developers must be aware of the popular monitors and
printers, and write the appropriate support code for their applic~tions. Windows
applications, on the other hand, will work unchanged on any hardware sup
ported by Windows device drivers.

What About OS/2?
The first version of OS/2, IBM, and Microsoft's protected-mode operating system
for the 80286, finally arrived in 1987. OS/2's road to acceptance has been long
and arduous. It would have been a difficult one even if its only obstacle had been
the lack of applications written for it, but there were additional problems as well.
A shortage of RAM chips in 1987-1988 made conversion to OS/2 prohibitively
costl)', the arrival of OS/2's graphical user interface, the Presentation Manager,
was delayed until late 1988, and the initial versions of OS/2 could not take ad
vantage of the 80386's 32-bit addressing and paging capabilities.

In 1990, OS/2's role is more clearly defined, and its future appears somewhat
brighter. Presentation Manager has been stabilized and is shipped with all ver
sions, a new file system offers much better disk performance than DOS, key ap
plications such as Microsoft Excel and Aldus Pagemaker have become readily
available, and support for 80386-specific, 32-bit applications is offered in OS/2
version 2.0. But growth in the installed base of OS/2 continues to be painfully

Chapter 1 The IBM PC Programming Architecture 29

slow. If you choose to develop for OS/2, you should view it as a strategic invest
ment of time and effort that is not likely to payoff for several years.

Choosing Your Market
Though part of DOS's popUlarity stems from sheer inertia, market dynamics
plays a part as well. In 1984, 8086/8088-based machines numbered just under
three million and accounted for 99 percent of the PC-compatible market, with 1
percent of the market owned by the 80286-based AT and its clones. Three years
later, the 1987 market share of the 8086-class machines had slipped to 69 percent,
but the total number of machines was far greater, over 10 million. The 80286 ma
chines had garnered 29 percent of the market with over four and a quarter mil
lion units, and the 80386-based computers were just trickling in at 2 percent
market share and 300,000 machines sold.

The market for 8086-class PCs is still growing, though at a slower rate. New
computers that are 8086-class machines accounted for approximately 15 percent
of total sales in 1989. But these new sales are building on a large base of existing
machines. None of these machines will ever run a protected-mode application.
Even if you choose to develop for the growing population of 80286/386/486 ma
chines, you may still find it advantageous to support the DOS market; although
the future may belong to OS/2, DOS is still the operating system of choice today.

For those who plan to continue serving the DOS market, the rest of this book
describes a number of specific tools available to help you push beyond the histor
ical limits of DOS. Table 1-4, below, outlines the options available to you, along
with their advantages and disadvantages.

Table 1-4: Current options for extending or replacing DOS.

Method
Overlay

EMS

XMS

286 DOS Extender

386 DOS Extender

Advantages
Works on any pc.

Works on any PC, no special hard
ware on 386/486 pes.
No special hardware required. Ac
cess to "unused" extended memory.
All protected-mode features avail
able. Transparent access >640K.
32-bit math and addressing. Trans
parent access >640K.

Disadvantages
Does not support "large data" applications
well. Not very fast.
Cost of memory board on 286 pes. Requires
special programming.
Requires 80286 or newer CPU. Requires spe
cial programming. Not fast.
Not compatible with OS/2. Requires 286 or
newer machine.
Not compatible with OS/2. Requires 386 or
newer machine.

30 EXTENDING DOS

Method
DESQview

Windows

OS/2

UNIX

Advantages Disadvantages
Multitasking and other features with- Not compatible with OS/'L. Requires EMS for
out special programming. best performance.
Graphical user interface. Device inde- Slow on BOB6-class machines. Steep learning
pendence. Rapidly expanding user curve.
base. Easy port to OS/2 PM.
Transparent access >640K. Multitask- Current user base very small. Steep learning
ing, graphical user interface, and net- curve. Requires at least 3 megabytes RAM.
working.
Well known/liked in academic and Small, specialized user base. Higher hard-
workstation markets. Multitasking ware and software costs. Little or no binary
and networking. Applications porta- compatibility.
ble to other UNIX systems.

Chapter 2

Expanded Memory and the EMS

Ray Duncan

Expanded memory is essentially bank-switched memory-fast storage, which
can be larger than the CPU's normal address space, and which is subdivided into
smaller chunks (called pages) that can be independently mapped in or out of the
CPU's address space on demand. As a simple approximation, you can think of
bank-switched memory as a deck of cards, where different information can be
stored on each of the cards, but only the information on the card that is currently
at the top of the deck can be read or changed.

Bank-switched memory is not exactly a new concept. It was used extensively
on Apple II and S-100 bus computers to overcome the 64K address limitations of
their CPUs, and in the earliest days of the mM PC, bank-switched memory
boards called JRAMs were sold in truckloads by a company named Tall Tree Sys
tems. But the particular type of bank-switched memory known as expanded mem
ory has been enormously successful because its sponsors defined it as a software
interface rather than in hardware.

The origins of the Lotus/Intel/Microsoft (LIM) Expanded Memory Specifica
tion (EMS) have already become somewhat apocryphal. The first EMS, devel
oped jointly by Intel and Lotus, was announced and distributed to software
developers at the Atlanta Spring Comdex in 1985. For some unknown reason this
document was given the version number 3.0. Microsoft, which was looking for a

31

32 EXTENDING DOS

way to relieve Windows' hunger for memory, quickly bought into the EMS con
cept. After some minor changes, a new specification-version 3.2-was released
as a joint effort of Intel, Lotus, and Microsoft in September of the same year.

EMS didn't become an industry standard without a few squeaks of dissent,
however. The ink was hardly dry on the EMS before some of the LIM axis' com
petitors proposed an alternative standard called the AST/Quadram/Ashton-Tate
Enhanced Expanded Memory Specification (AQA EEMS). The EEMS was a
proper superset of the original EMS, but expanded, with more flexible mapping
functions for use in multitasking environments such as DESQview. Fortunately
for software and memory board designers everywhere-who already had
enough things to worry about-the good sense of the marketplace prevailed, and
the AQA EEMS quickly faded into obscurity.

EMS version 3.2 was completely stable for about two years, and by the end of
that period it had gained remarkably broad support among both software and
hardware manufacturers. Scores of memory expansion boards appeared on the
market that could be configured as expanded memory, while the ability to exploit
expanded memory turned up in every class of software from spreadsheets to net
work drivers to pop-up notepads. And, of course, expanded memory became the
natural ally of every vendor of a RAMdisk, disk cache, or print spooler. The pro
grammers responsible for maintaining MS-DOS itself, on the other hand, were
much slower to take advantage of expanded memory. MS-DOS 4.0, released in
1988, was the first version that recognized expanded memory at all, and it used
that memory only for certain private tables and buffers.

In October, 1987, Lotus, Intel, and Microsoft released version 4.0 of the EMS.
Version 4.0 supports four times as much expanded memory as version 3.2, as
well as many additional function calls for use by multitasking operating systems.
In particular, EMS 4.0 theoretically allows an operating system to run multiple
applications at the same conventional memory addresses by paging the applica
tions in and out of expanded memory. EMS 4.0 has not yet become generally sig
nificant for software developers as of this writing, because full exploitation of its
capabilities requires hardware assistance not available on older EMS boards; the
vast majority of EMS-aware applications still relies only on the functions avail
able in EMS 3.2. Some of the characteristics of the three versions of EMS are com
pared in Table 2-1.

Chapter 2 Expanded Memory and the EMS 33

Table 2-1: Comparison of the various EMS versions. The number of
function calls shown here includes all distinct subfunctions defined in the EMS.

EMS Version
3.0

3.2
4.0

Release Date
April '85
September '85
October '87

Memory Supported
8 megabytes
8 megabytes
32 megabytes

Function Calls
14
18

58

Page Size
16K
16K
any size

Page Mapping
above 640K
above 640K
anywhere

Components of Expanded Memory
It is important not to confuse expanded memory and extended memory. Both are
frequently available on the same machine; in fact, many memory boards can be
set up to provide either expanded memory or extended memory or a mixture of
both. But extended memory can only be accessed in the protected mode of the
80286, 386, and 486 processors, whereas expanded memory can be accessed in
real mode and therefore can be installed and used on 8086/88-based machines
such as the original PC and PC/XT. If you skipped Chapter 1, it may be helpful
to go back and review the material in that chapter now, before reading on.

When you install expanded memory in your computer, you are really install
ing a closely integrated hardware/software subsystem (we'll ignore EMS emula
tors and simulators for the moment). In most cases, the hardware portion is a
plug-in board that has some of the elements of an ordinary memory board and
some of an "adapter" for a peripheral device: it has memory chips, to be sure, but
it also has I/O ports, which must be written by the CPU to make portions of that
memory addressable. On some of the more recent, highly integrated PCs based
on the Chips and Technology chip sets, the logic to control expanded memory is
located right on the system board and can be configured with the ROM BIOS
SETUP utility.

The software component of an expanded memory subsystem is called the Ex
panded Memory Manager (EMM). It is installed when the system is booted, with
a DEVICE= directive in the CONFIG.SYS file, just like a device driver. In fact, an
EMM has several of the attributes of a real character device driver: it has a device
driver header, a routine that can handle a subset of the requests that the DOS ker
nellikes to make on device drivers, and it has a logical device name. This device
name is always EMMXXXXO, regardless of who manufactured the expanded
memory board or wrote the EMM.

But the device driver aspects of an EMM are really tangential. The EMM's
main jobs are to control the expanded memory hardware, to administer ex-

34 EXTENDING DOS

panded memory as a system resource that may be used by many different pro
grams at once, and to service the function calls defined in the EMS. Programs re
quest these expanded memory functions from the EMM directly, via a software
interrupt that MS-DOS considers "reserved"; the MS-DOS kernel does not partici
pate in expanded memory management at all.

A summary of the complete EMS interface can be found in Table 2-4 at the
end of the chapter. The summary may appear bewildering at first, but for pur
poses of a typical application program, you can ignore all but the rather small
subset of EMS functions that are listed in Table 2-2. This subset is straightforward
to use and reasonably symmetric. For example, the EMS function number is al
ways placed in register AH, logical page numbers typically go in register BX, ex
panded memory handles in register DX, and so on. Control is transferred from
the application program to the EMM by executing a software Int 67H. All EMS
functions indicate success by returning zero in register AH, or failure by return
ing an error code in AH with the most significant bit set (see Table 2-5 at the end
of the chapter).

Table 2-2: Summary of the EMS functions most commonly used in application programs.

Expanded Memory Function

Get Status

Get Page Frame Address

Get Number of Expanded
Memory Pages

Allocate Pages

Map Expanded Memory Page

Release Pages

Get EMM Version

Call With

AH=40H

AH=41H

AH=42H

AH=43H
BX = number of pages

AH=44H
AL = physical page
BX = logical page
OX = EMM handle

AH=45H
OX = EMM handle

AH=46H

Returns

AH = status

AH = status
BX = page frame segment

AH = status
BX = available pages
OX = total pages

AH = status
OX = EMM handle

AH = status

AH = status

AH = status
AL= version

Chapter 2 Expanded Memory and the EMS 35

In short, the general form of an assembly language EMM function call is:

mov

int
or
jnz

ah,function

67h
ah,ah
error

; AH = EMS function number
; Load other registers
; with function-specific
; vaLues or addresses
; transfer to EMM
; test EMS function status
; jump, error detected

If you prefer to program in C, you can easily request EMS services without
resorting to assembly language by means of the i nt86 () or i nt86x () functions.
The framework for such calls is:

#incLude <dos.h>

union REGS regs;

regs.h.ah = function;

int86(Ox67, ®s, ®s);
if(regs.h.ah)

errore);

II AH = EMS function number
II Load other registers
II with function-specific
II vaLues or addresses
II transfer to EMM
II test EMS function status
II execute if error detected

The remainder of the examples in this chapter are provided in assembly lan
guage, but you should find it quite straightforward to convert these to the equiv
alent C code, using the example above as a model.

Obtaining Access to Expanded Memory
When you want to use expanded memory in one of your programs, the first step
is to establish whether the EMM is present or not. You can do this by one of two
methods: the open file method or the interrupt vector method.

The "open file" method is so called because it is based on using MS-DOS Int
21 H Function 3DH to open the EMM by its logical name-just as though it were a
character device or a file. Assuming that the open operation is successful, your
program must then make sure that it didn't open a real file with the same name

I

by accident. This unlikely possibility can be ruled out by calling the Int 21 H

Function 44H (IOCTL) subfunctions 0 (get device information) and 7 (get output
status). Finally, the program should close the EMM with Int 21 H Function 3EH to
avoid the needless expenditure of a handle-you can't do anything else with the

36 EXTENDING DOS

handle anyway. The procedure for testing for the presence of the Expanded
Memory Manager using the DOS open and IOCTL functions is illustrated below:

emmname db 'EMMXXXXO',O ; guaranteed device name for
; Expanded Memory Manager

; attempt to "open" EMM ...
mov dx,seg emmname ; DS:DX = address of EMM
mov ds,dx ; logical device name
mov dx,offset emmname
mov ax,3dOOh ; fxn. 3DH = open
int 21h ; transfer to MS-DOS
jc error ; jump if open failed

mov
mov

int
jc

and
jz

mov

int
jc
or
jz

mov
int
jc

bx,ax
ax,4400h

21h
error

dx,80h
error

ax,4407h

21h
error
al,al
error

ah,3eh
21h
error

; open succeeded, make sure
; it was not a file ...
; BX = handle from open
; fxn. 44H subfun. DOH =
; IOCTL get device info.
; transfer to MS-DOS
; jump if IOCTL call failed

; bit 7=1 if char. device
; jump if it was a file
; EMM is present, make sure
; it is available ...
; (BX still contains handle>
; fxn. 44H subf. 07H =
; IOCTL get output status
; transfer to MS-DOS
; jump if IOCTL call failed
; test device status
; if AL=O EMM not available
; now close handle ...
; (BX still contains handle>
; fxn. 3EH = close
; transfer to MS-DOS
; jump if close failed

The interrupt vector method relies on the fact that an EMM, if it is installed,
will necessarily have captured the vector for Int 67H, by placing the address of
its EMS function call entry point in the vector. An application program testing for

Chapter 2 Expanded Memory and the EMS 37

the presence of an EMM can simply fetch the contents of the vector, then deter
mine whether the segment portion of the vector points to a device driver header
that contains the logical device name EMMXXXXO. Example code for testing for
the presence of the Expanded Memory Manager by inspection of the EMM's in
terrupt vector and device driver header can be found below: .

emmint equ 67h ; Expanded Memory Manager
; software interrupt

emmname db 'EMMXXXXO' ; guaranteed device name for
; Expanded Memory Manager

xor bx,bx ; first fetch segment from
mov es,bx ; EMM interrupt vector
mov es,es:[(emmint*4)+2J

; assume ES:OOOO points
; to base of the EMM •.•

mov di,10 ; ES:DI = address of name
; fieLd in driver header

mov si,seg emmname ; DS:SI = EMM driver name
mov ds,si
mov si,offset emmname
mov cx,S ; Length of name fieLd
cLd
repz cmpsb ; compare names ••.
jnz error ; jump if driver absent

Which method you choose for detecting the presence of the EMM depends
on the type of program you are writing. For conventional application programs,
the open file method is preferred, because it is "well-behaved"-it relies only on
standard MS-DOS function calls, and is thus least likely to run into conflicts with
TSRs, device drivers, interrupt handlers, or multitasking program managers. The
interrupt vector method is considered "ill-behaved" because it involves inspec
tion of memory not owned by the program. But when you are designing a device
driver that uses expanded memory, you must employ the interrupt vector
method, for reasons that will be explained later in the chapter.

38 EXTENDING DOS

Once your program has established that an EMM is present, it should call the
EMM's "get status" function (Int 67H Function 40H) to make sure the expanded
memory hardware is present and functional. After all, the fact that the EMM it
self is installed doesn't guarantee that the associated hardware is also installed
(although most EMMs do abort their own installation if the hardware is missing).
It is also appropriate for your program to call the "get EMM version" function
(Int 67H Function 46H) at this point, to make sure that all of the EMS functions
that it intends to use are actually supported by the resident EMM.

Next, your program should call the "get number of pages" function (Int 67H

Function 42H) to determine how much expanded memory is available. This func
tion returns both the total number of physically installed pages, and the number
of pages that have not already been allocated to other programs. In most cases
the two numbers will be the same, unless your program is running under a
multitasking program manager alongside other applications that use expanded
memory, or unless TSRs or device drivers that use expanded memory have been
previously loaded.

If the number of free expanded memory pages is less than your program
needs or expects, it must decide whether to continue execution in a "degraded"
fashion or simply display an advisory message and terminate. If there are suffi
cient pages available, however, the program can proceed to call the "allocate EMS
pages" function (Int 67H Function 43H) for the necessary amount of expanded
memory. The EMM's allocation function returns an "EMS handle"-a 16-bit value
that symbolizes the program's expanded memory pages, and must be used in all
subsequent references to those pages. This handle is exactly analogous to the file
or device handles you are already accustomed to from your previous MS-DOS
programming experience.

The last step in obtaining expanded memory resources is to call the EMS "get
page frame address" function (I n t 67H Function 41 H). This function returns the
segment, or paragraph, address of the base of the EMM's page frame-the area
used by the EMM to map logical expanded memory pages into conventional
memory. The page frame address never changes after the system is booted, so
you only need to request it once, during your program's initialization code.

A typical sequence of testing EMM status, allocating some EMS pages, and
fetching the page frame address is demonstrated below:

pneeded equ

pframe dw
tpages dw

4

a
a

; number of EMS pages needed

; page frame address
; totaL EMS pages

Chapter 2

apages dw
handle dw

mov
int
or
jnz

mov
int
or
jnz
cmp
jb

mov
int
or
jnz
mov
mov
cmp
jb

mov
mov
int
or
jnz
mov

mov
int
or
jnz
mov

o
o

ah,40h
67h
ah,ah
error

ah,46h
67h
ah,ah
error
al,32h
error

ah,42h
67h
ah,ah
error
tpages,dx
apages,bx
bx,pneeded
error

ah,43h
bx,pneeded
67h
ah,ah
error
handle,dx

ah,41h
67h
ah,ah
error
pframe,bx

Expanded Memory and the EMS 39

; available EMS pages
; handle for allocated pages

; get EMS system status
; transfer to EMM
; check for EMM error
; jump, error occurred

; check EMM version
; transfer to EMM
; check for EMM error
; jump, error occurred
; make sure EMS 3.2+
; jump if EMS 3.0

; get number of EMS pages
; transfer to EMM
; check for EMM error
; jump, error occurred
; save total EMS pages
; save available EMS pages
; enough pages available?
; jump, too few pages

; allocate EMS pages
; number of pages needed
; transfer to EMM
; check for EMM error
; jump, pages not allocated
; got pages, save handle

; get page frame address
; transfer to EMM
; check for EMM error
; jump, error occurred
; save segment of page frame

Using Expanded Memory
The logical EMS pages owned by a program and associated with a particular
EMS handle are numbered 0 through n-l, where n is the total number of pages
originally allocated to that handle. In EMS 3.0 and 3.2, the pages are always 16K

40 EXTENDING DOS

in length. EMS 4.0 allows pages of other sizes to be allocated and used, but it is
best to avoid use of "nonstandard" page sizes so that your program will be com
patible with the broadest possible range of EMS hardware and software.

A program gains access to the contents of one of its expanded memory pages
by calling the "map EMS page" function (Int 67H Function 44H). The EMM
accomplishes the mapping by writing commands to the I/O ports on the ex
panded memory board; logic on the board then ties the memory chips that hold
the data for that logical page to the address and data lines of the system bus, so
that the logical page becomes visible in the CPU's normal address space.

In EMS 3.0 and 3.2, a mapped page is always made available in the EMM's
page frame, which is in turn located at unused addresses above the 640K bound
ary. The page frame is 64K long, and is divided into four 16K physical pages
numbered 0 through 3; thus, a maximum of four different logical pages can be si
multaneously accessible. This mapping process is diagrammed in Figure 2-1.

Figure 2-1: Diagram of the relationship between expanded memory and conventional memory.

Expanded Memory

Logical Page n

!
Physical Page 3 /Physical Page 2

Physical Page 1 ..---
Physlca I Page 0

,
Logical Page 0o KB

--640 Ki-

ROM 810S

EMS Page Frame

ApplicatIon Programs

MS-DOS

Conventional Memory
1024 KB

Chapter 2 Expanded Memory and the EMS 41

In EMS 4.0, an EMS 3.x-compatible page frame is supported for compatibility
reasons, but the page frame may be larger than 64K, and there may also be multi
ple page frames. EMS 4.0 also allows pages to be mapped below the 640K bound
ary on demand, if the proper hardware support is present. Again, it is best to
avoid use of these capabilities-which are peculiar to EMS 4.0-unless your pro
gram absolutely cannot be made to work without them.

Once a logical page has been mapped to a physical page, it can be inspected
and modified with the usual CPU memory instructions. When dealing with the
standard EMS 3.x page frame and page sizes, address calculations are straightfor
ward. A far pointer to a mapped page, which is composed of a segment and off
set, is built up as follows. The page frame base address returned by Int 67H
Function 41 H is already in a form that can be loaded directly into a segment regis
ter. The offset portion of the far pointer is obtained by multiplying the physical
page number (0-3) by 16,384 (4000H), and adding a logical page displacement in
the range 0-16,383 (0-3 FFFH).

For example, if the address returned by the "get page frame address" function
is DOOOH, and logical page 1 for a particular EMM handle has been mapped to
physical page 3, then the data in that logical page can be accessed at physical
memory addresses DOOO: COOOH through DOOOH: FFFFH. The process of mapping a
logical page to a physical page, calculating the memory address of the page, and
writing data to it, is demonstrated below:

pagelen equ 4000h ; standard EMS page size

pframe dw 0 ; page frame address
logpage dw 1 ; logical page number
phypage dw 3 ; physical page number
handle dw 0 ; handle for EMS pages

mov ah,44h ; map EMS page
mov bx,logpage ; logical page 1

; physical page 3
mov al, byte ptr phypage
mov dx,handle ; EMS handle
int 67h ; transfer to EMM
or ah,ah ; check for EMM error
jnz error ; jump, error occurred

42 EXTENDING DOS

; form far pointer to page
mov es,pframe ; ES = page frame segment
mov ax,pageLen ; caLcuLate offset of
muL phypage ; physicaL page in frame
mov di,ax ; Let ES:DI = page address

xor ax,ax ; now zero out the
mov cx,pageLen ; mapped page
rep stosb

This code fragment assu~es the page frame address was fetched with a call
to Int 67H Function 41 Hearlier in the program's execution, and that a valid EMS
handle was previously obtained with a call to Int 67H Function 43H.

In programs that take advantage of EMS 4.0's ability to support more than
four physical pages or more than one page frame, it may be preferable to use a
lookup technique to translate physical page numbers to far pointers. Your pro
gram can call EMS Int 67H Function 58H Subfunction DOH to get a list of the phys
ical page numbers and their physical memory addresses.

It is often helpful to think of the expanded memory owned by a program as a
sort of virtual file with a length of n*16,384 bytes (where n is the number of allo
cated EMS pages). To access a particular piece of data in the file, the program first
performs a "seek" operation to the nearest sector boundary: it divides the byte
offset of the data within the virtual file by 16,384 to find the logical page number,
and maps that logical page to a physical page. The remainder, when the byte off
set is divided by 16,384, is the offset of the data within the logical page, which
can be combined with the page frame base address and the offset of the physical
page within the page frame to form a far pointer in the manner described.

When your program is finished using expanded memory, it must be sure to
deallocate its EMS handle and logical pages by calling the "release EMS handle"
function (Int 67H Function 45H) before terminating. If it fails to do so, the ex
panded memory owned by the program will be lost and unavailable for use by
other programs until the system is restarted. MS-DOS cannot clean up a
program's expanded memory resources automatically at termination because
MS-DOS does not participate in the expanded memory management in the first
place. For the same reason, programs using EMS should contain their own criti
cal error and Control-C handlers, so they cannot be terminated unexpectedly.

A sketch of the entire process of using expanded memory in an application is
shown in Figure 2-2.

v
\

Chapter 2 Expanded Memory and the EMS 43

Figure 2-2: General procedure for expanded memory usage by an application program.

Allocated Expanded
~emory Pages

Get Page Frame
Address

~ap Extended
Memory Pages

Release Expanded
Memory Pages

Terminate

No

No

No

Continue Without
Expanded Memory

or Terminate

Yes

No
Terminate

44 EXTENDING DOS

EMS Pitfalls for Drivers and TSRs
Using expanded memory in a device driver or TSR utility is somewhat more
problematic than in a normal application program. You must concern yourself
not only with the logic of your own program, but with protecting yourself
against every possible use (and misuse) of expanded memory by other active
programs, whether they be drivers, TSRs, or applications.

When a driver or TSR gets control, the state of the system is, by nature, sensi
tive and unpredictable. In the first place, the driver or TSR was undoubtedly
called as the direct or indirect result of the user's interaction with an application
program, and that application may well be using expanded memory too. It is
crucial that any use of expanded memory by the foreground application not be
disturbed. Therefore, it is vitally important that the driver or TSR save the ex
panded memory mapping context (the association of specific logical expanded
memory pages with physical locations in the CPU's address space) at entl)T, and
restore that same context before it exits.

In each successive revision of the EMS, new functions have been defined for
saving and restoring the expanded memory subsystem state (summarized in
Table 2-3). In EMS version 3.0, Functions 47H and 48H provided all-or-nothing ca
pability on a per-handle basis. If the driver or TSR owned only one expanded
memory handle, then it could save only one mapping context at a time. In EMS
version 3.2, Function 4EH (which actually consists of four distinct subfunctions)
was added, allowing a program to selectively save and restore as many mapping
contexts as it had memory to put them in. This made things a lot easier for multi
tasking program ma~agers, since it allowed them to associate a mapping context
with each active application.

Table 2-3: Summary of the EMS functions related to
saving and restoring the expanded memory mapping context.

Expanded Memory Function Call With Returns EMS Version

Save Page Map AH=47H AH = status 3.0

DX = EMM handle
Restore Page Map AH=48H AH = status 3.0

DX = EMM handle
Save Page Map AH=4EH AH = status 3.2

AL=OOH
ES:DI = buffer

Chapter 2

Expanded Memory Function Call With Returns

Expanded Memory and the EMS 45

EMS Version

Restore Page Map

Save and Restore Page Map

Get Size of Page Map
Information
Save Partial Page Map

Restore Partial Page Map

Get Size of Partial Page
Map Information

AH=4EH
AL=OlH
DS:SI = buffer
AH=4EH
AL=02H
DS:SI = restore buffer
ES:DI = save buffer
AH=4EH
AL=03H
AH=4FH
AL=OOH
DS:SI = map list
ES:DI = buffer
AH=4FH
AL=OlH
DS:SI =buffer
AH=4FH
AL=02H
BX = number of pages

AH =status

AH = status

AH = status
AL = size (bytes)
AH = status

AH =status

AH =status
AL = size (bytes)

3.2

3.2

3.2

4.0

4.0

4.0

In EMS version 4.0, the number of expanded memory pages that can be si
multaneously mapped into. conventional memory is much larger, and the over
head of saving and restoring the complete mapping state has grown
proportionately. Consequentl)', Function 4FH was added to manipulate partial
mapping contexts. Version 4.0 also defines a host of other new functions directly
or indirectly related to page mapping, ranging from mapping of multiple pages
with one call (optionally followed by a jump or call to code within the pages) to
support for multiple sets of hardware mapping registers. These functions are in
tended primarily for use by operating systems, so we won't discuss them further here.

When you are writing a device driver or TSR, you must also concern yourself
with a difficult issue that doesn't arise in normal MS-DOS application program
ming: the lack of availability of MS-DOS services after your program is originally
installed. A device driver is allowed to use a limited number of MS-DOS I nt 21 H

functions during installation, but none at all thereafter. As for TSRs, they are typi
cally activated during a hardware interrupt (such as the reception of a keystroke),
and since the state of MS-DOS at the time of the interrupt cannot be known in ad
vance, they must rely on undocumented flags and structures to determine

46 EXTENDING DOS

whether MS-DOS function calls can be made safely. This all ~plies that your
driver or TSR should perform all the status checks it can, and acquire all the ex
panded memory resources it expects to ever need, at the time it gets loaded-be
cause interaction with the user at any later point (even to display an error
message) will be much more difficult.

One last potential problem we should mention is that the amount of stack
space available at the time your TSR or driver is invoked is indeterminate. MS
DOS itself uses three different stacks, depending on the type of function call in
progress; applications customarily have their own stacks, whose depth is totally
at the discretion of the developer; interrupt handlers often switch to their own
stacks; and last but not least, the amount of stack space required by EMS func
tions may vary from one Expanded Memory Manager (EMM) to another as well
as from version to version. The safest strategy is for your driver or TSR to always
switch to its own generously sized stack, before using any EMS functions.

EMS Emulators
From the very beginning, the Expanded Memory Specification was formulated
strictly as a software interface, without hardware dependence of any kind (other
than the assumption that the software is running on an Intel BOx86 CPU). We'll
never know whether this was just a happy accident or a stroke of genius on the
part of the original Lotus/Intel/Microsoft designers, but the payoff is the same in
any event: the nature of the Expanded Memory Specification allows expanded
memory functionality to be provided on systems that do not contain any ex
panded memory hardware at all. Programs that provide expanded memory ser
vices in the absence of expanded memory hardware are called expanded memory
emulators or simulators, and they fall into three classes: disk-based EMS emula
tors, 286 extended memory-based EMS emulators, and 386/486-specific memory
managers that export the EMS interface.

Disk-based EMS emulators, such as Turbo EMS or Above Disk, support the
EMS In t 67H interface, but store the data in allocated EMS pages in a swap file on
disk. When an application requests an EMS page to be mapped into the page
frame, the emulator reads the EMS page's data in from the swap file and makes it
available in RAM. Disk-based EMS emulators will run on any type of PC, from
the original 80BB-based model on up, but have two severe disadvantages: they
are very slow compared to true EMS based on bank-switched memory, and the
page frame is almost always located low in conventional memory rather than

Chapter 2 Expanded Memory and the EMS 47

above the 640K boundary. The unusual location of the page frame causes trouble
for some application programs that are not completely well-behaved in their use
of EMS services.

80286 extended memory-based EMS emulators are similar to disk-based EMS
emulators, in that they typically create a page frame in conventional memory
below the 640K boundary. However, these emulators are drastically faster than
disk-based emulators because they store the data in the simulated EMS pages in
extended memory rather than on disk, using ROM BIOS Int 15H Function 87H to
move the data between extended memory and the page frame when a mapping
is requested by an application program. On older PCIATs and clones, such an
extended memory-based EMS emulator may allow you to gain the benefits of
EMS without purchasing any additional hardware. However, better performance
will be obtained by reconfiguring the system's extended memory as expanded
memory when the hardware allows it, or by purchasing and plugging in a new
board that can supply true expanded memory.

A 386/486-based memory manager such as Qualitas's 386-to-the-Max,
Quarterdeck's QEMM, and Microsoft's Windows/386, implements EMS emula
tion by taking on the role of a little operating system. The memory manager itself
runs in the 386/486's 32-bit protected mode, and MS-DOS and its application
programs run under the memory manager's supervision in Virtual 86 Mode.
This arrangement gives the memory manager complete control over the address
space seen by MS-DOS and other real-mode programs; it can use the 386/486
page tables to make any 4K physical memory page appear at any address within
the Virtual 86 Machine. For example, 386-to-the-Max can remap extended mem
ory into the "holes" between video adapters and the ROM BIOS, so that device
drivers and TSRs can be loaded above the 640K boundary.

Use of Virtual 86 Mode also allows a 386/486-based memory manager.to in
tercept software interrupts, which puts it into a position to simulate EMS mem
ory without the real-mode application's knowledge or cooperation. The memory
manager uses extended memory for storage of EMS pages, and simply uses the
386/486 page tables to map the simulated EMS pages on demand into a simu
lated EMS page frame within the Virtual 86 Machine. The speed of EMS emula
tion by 386/486-based memory managers is uniformly excellent, because page
table manipulation and mode switching on 80386/486 crus is very fast. Some
memory managers provide additional capabilities as well: 386-to-the-Max actu
ally exports all three of the important software interfaces for memory manage
ment: EMS, XMS (Chapter 3), and the VCPI (Chapter 8), while Windows/386 can

48 EXTENDING DOS

set up multiple Virtual 86 Machines and perform true preemptive multitasking of
MS-DOS applications.

Programming Example: The EMSDISK.SYS Driver

In order to provide a practical example of expanded memory usage by an appli
cation program, TSR, or device driver, I've included the source code for a simple
EMS-aware RAMdisk (virtual disk) called EMSDISK.ASM. EMSDISK demon
strates the procedure for testing for the existence and functionality of expanded
memory that must be used by a driver or TSR. It contains examples of expanded
memory allocation, mapping, and the saving and restoring of mapping contexts.

For maximum portability, EMSDISK does not attempt to take advantage of
the features of EMS version 4.0; it only relies on functions that are available in
EMS version 3.2. Furthermore, EMSDISK.SYS is a simple program as device driv
ers go; it contains only the essential routines (initialization, build BPB, media
check, read, and write) that allow MS-DOS to recognize it as a valid block device.

You may find it helpful to consult a general text on MS-DOS (such as my own
book Advanced MS-DOS Programming, 2nd Edition) for further information about
device driver structure and components.

To assemble and link the file EMSDISK.ASM into the executable device
driver EMSDISK.SYS, enter the following commands:

MASM EMSDISK;
LINK EMSDISK;
EXE2BIN EMSDISK.EXE EMSDISK.SYS
DEL EMSDISK.EXE

(The Linker will display the message Warning: No Stack Segment. This warn
ing can be ignored.) To install EMSDISK, add the line:

DEVICE=EMSDISK.SYS nnnK

to your CONFIG.SYS file and reboot the system. Make sure that the DEVICE=
line for EMSDISK.SYS follows the DEVICE= line that loads your expanded mem
ory manager (such as EMM.SYS for Intel Above Boards). The logical drive identi
fier that will be assigned to EMSDISK depends 'on the number of block devices
that are already present in the system at the time EMSDISK is loaded.

The parameter nnnK on the DEVICE= directive is the desired size of the
RAMdisk in kilobytes. If this parameter is missing, or is larger than the amount
of free expanded memory, EMSDISK will use all of the expanded memory that is
available. For example, if fixed disk drive C: is currently the last·drive in your

Chapter 2 Expanded Memory and the EMS 49

system, you could create a I-megabyte virtual disk drive D: by adding the fol
lowing line to CONFIG.SYS:

DEVICE=EMSDISK.SYS 1024K

When EMSDISK is loaded, it will display a sign-on message and, under DOS
3.0 or later, its drive identifier. If EMSDISK can't find a previously loaded ex
panded memory manager, or is unable to allocate or initialize its expanded mem
ory pages, it will abort its own installation with an error message.

EMS Example Program
; EMSDISK.ASM --- Expanded Memory RAMdisk
; Copyright (C) 1989 Ray Duncan
;
; To build:
;
;
;
;
; To install:
;
;
;
;
;
;
;
;
;
;

MASM EMSDISK;
LINK EMSDISK;
EXE2BIN EMSDISK.EXE EMSDISK.SYS
DEL EMSDISK.EXE

copy EMSDISK.SYS to the root directory of your
boot disk, then add the line

DEVICE=EMSDISK.SYS nnnK

to the CONFIG.SYS file. This line must follow
the DEVICE= line that loads the Expanded Memory
Manager. The parameter nnn is the desired
RAMdisk size in KB. If nnn is missing or zero,
all availabLe expanded memory is used.

segment public 'CODE'

assume cS:_TEXT,ds:_TEXT,es:_TEXT

org 0

maxcmd equ 24 ; maximum driver command code

cr equ Odh ; ASCII carriage return
lf equ Oah ; ASCII line feed
blank equ 020h ; ASCII space code
tab equ 09h ; ASCII tab character
eom equ '$' ; end of message signaL

emm_int equ 67h ; EMM software interrupt

50 EXTENDING DOS

psize
ssize
dsize

spp

request
rlength
unit
command
status
reserve
media
address
count
sector
request

header

rqptr

savesp
savess

availp
totalp
ownedp
pframe
handle
dosver

equ
equ
equ

equ

struc
db
db
db
dw
db
db
dd
dw
dw
ends

dd
dw
dw
dw
db
db

dd

dw
dw

dw
dw
dw
dw
dw
db

16384
512
256

psize/ssize

?
?
?
?
8 dup (?)

?
?
?
?

-1
o
strat
intr
1
7 dup (0)

?

o
o

o
o
a
o
o
o

; bytes per EMS page
; bytes per sector
; entries in root directory

; sectors per page

; request packet template
; length of request packet
; unit number
; driver command code
; driver status word
; reserved area
; media descriptor byte
; memory address for transfer
; byte/sector count
; starting sector number
; end request packet template

; device driver header
; link to next driver in chain
; driver attribute word
; "Strategy" entry point
; IIInterrupt ll entry point
; number of units, this device
; reserved area

; address of request packet

; save MS-DOS kernel1s SS:SP

; logical EMS pages available
; total EMS pages in system
; RAMdisk size in EMS pages
; segment address of page frame
; expanded memory handle
; MS-DOS major version no.

xfrsec dw
xfrcnt dw
xfrreq dw
xfraddr dd

a
o
o
a

; current sector for transfer
; sectors already transferred
; number of sectors requested
; working address for transfer

bootrec equ
jmp

array dw bpb

$
$

; BPB pointer array

; EMSDISK boot record
; phony JMP instruction

Chapter 2 Expanded Memory and the EMS 51

nop
db ' IBM 3.3' ; OEM identity field

; BIOS Parameter Block (BPB)
bpb dw ssize ; 0 bytes per sector

db 0 ; 2 sectors per cluster
dw 1 ; 3 reserved sectors
db 1 ; 5 number of FATs
dw dsize ; 6 root directory entries
dw 0 ; 8 total sectors
db Of8h ; OAH media descriptor
dw a ; OBH sectors per FAT

br- len equ $-bootrec ; length of boot record

even ; force word alignment
dw 128 dup (0)

stk equ $; local stack for device driver

;
; Driver 'strategy' routine; caLled by MS-DOS kernel with
; ES:BX pointing to driver request packet.
;
strat proc far

strat

mov word ptr cs:rqptr,bx ; save address of request packet
mov word ptr cs:rqptr+2,es
ret ; back to MS-DOS kernel

endp

;
; Driver 'interrupt' routine, called by MS-DOS kernel immediately
; after call to 'strategy' routine to process I/O request.
;
intr proc far

push ax
push bx
push cx
push dx
push ds
push es
push di
push si
push bp
mov ax,cs
mov ds,ax
mov savess,ss
mov savesp,sp

; save generaL registers

; make local data addressable

; save DOS's stack pointers

52 EXTENDING DOS

mov
mov

les
mov
xor
cmp
jle
mov
jmp

i nt r1 : or
jz
mov
mov
int
or
jnz

intr2: shl
call

les

intr3: or
mov
mov
or
jz

mov
mov
int
or
jnz

intr4: mov
mov
pop
pop
pop
pop
pop
pop
pop
pop
pop
ret

ss,ax
sp,offset stk

di,rqptr
bl,es:[di.commandJ
bh,bh
bx,maxcmd
i ntr1
ax,8003h
intr3

bx,bx
intr2
ah,47h
dx,handle
emm_int
ah,ah
.i n t rS

bx,1
word ptr [bx+dispchJ

di,rqptr

ax,0100h
es:[di.status],ax
bl,es:[di.commandJ
bl,bl
intr4

ah,48h
dx,handle
emm_int
ah,ah
intrS

ss,savess
sp,savesp
bp
si
di
es
ds
dx
cx
bx
ax

; set SS:SP to point to
; driver's local stack

; let ES:DI = request packet
; get ex = command code

; make sure it's legal
; jump, function code is ok
; set Error bit and code
; for "unknown command"

; is it init call? (function 0)
; yes, skip save of context
; fxn 47h = save page mapping
; EMM handle for this driver
; transfer to EMM
; jump if EMM error while
; saving page mapping context

; form index to dispatch table
; branch to command code routine
; should return AX = status
; restore ES:DI = request packet

; merge Done bit into status,
; store into request packet
; was this initialization call?

; yes, skip restore of context

; fxn 48h = restore page mapping
; EMM handle for this driver
; transfer to EMM
; jump if EMM error while
; restoring page mapping

; central exit point
; restore DOS kernel's stack
; restore general registers

; back to MS-DOS kernel

Chapter 2

intr5:
Les
mov
jmp

intr endp

di,rqptr
es:[di.status],810ch
intr4

Expanded Memory and the EMS 53

; catastrophic errors come here
; ES:OI = addr of request packet
; set Error bit, Done bit, and
; error code for generaL faiLure

;
; Dispatch tabLe for device driver command codes
,
dispch dw

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

init
medchk
bLdbpb
error
read
error
error
error
write
write
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error

; 0 = initiaLize driver
; 1 =media check on bLock device
; 2 = buiLd BIOS parameter bLock
; 3 = I/O controL read
; 4 = read from device
; 5 = non-destructive read
; 6 = return current input status
; 7 = fLush device input buffers
; 8 - write to device
; 9 = write with verify
; 10 = return current output status
; 11 = fLush output buffers
; 12 = I/O controL write
; 13 = device open <DOS 3.0+)
; 14 =device cLose <DOS 3.0+)
; 15 = removeabLe media <DOS 3.0+)
; 16 = output untiL busy <DOS 3.0+)
; 17 = not used
; 18 = not used
; 19 = generic IOCTL <DOS 3.2+)
; 20 = not used
; 21 = not used
; 22 = not used
; 23 = get LogicaL device <DOS 3.2+)
; 24 = set LogicaL device <DOS 3.2+)

;
; Media Check routine <command code 1). Returns code indicating
; whether medium has been changed since Last access.
,
medchk proc near

mov
xor
ret

byte ptr es:[di+14],1
ax,ax

; set "media not changed" code
; return success status

54 EXTENDING DOS

medchk endp

;
; BuiLd BPB routine (command code 2). Returns pointer to vaLid
; BIOS Parameter BLock for LogicaL drive.
;
bLdbpb proc

mov
mov
xor
ret

bLdbpb endp

near

word ptr es:[di+20J,cs ; put BPB address in packet
word ptr es:[di+18J,offset bpb
ax,ax ; return success status

;
; Read routine (command code 4). Transfers LogicaL sector(s)
; from RAMdisk storage to specified address.
;
read proc near

ca LL setup ; set up transfer variabLes

read1: mov ax,xfrcnt ; done with aLL sectors yet?
cmp ax,xfrreq
je read2 ; jump if transfer completed
mov ax,xfrsec ; get next sector number
ca LL mapsec ; and map it
jc read4 ; jump if mapping error
Les di,xfraddr ; ES:DI = requestor1s buffer
mo'} si,ax ; DS:SI = RAMdisk address
mov ds,pframe
mov cx,ssize/2 ; transfer LogicaL sector from
cLd ; RAMdisk to requestor
rep movsw
push cs ; restore local addressing
pop ds
inc xfrsec ; advance sector number
add word ptr xfraddr,ssize ; advance transfer address
inc xfrcnt ; count sectors transferred
jmp read1 ; go do another sector

read2: ; aLL sectors successfulLy
xor ax,ax ; transferred, return ok status

read3: Les di,rqptr ; get address of request packet
mov bx,xfrcnt ; poke in actual transfer count
mov es:Cdi.countJ,bx ; (i n case an error aborted

Chapter 2

ret

read4: mov
jmp

read endp

ax,800bh
read3

Expanded Memory and the EMS 55

; the transfer early)

; come here if mapping error,
; return read fault error code

;
; Write (command code 8) and Write with Verify (command code 9)
; routine. Transfers logical sector(s) from specified address
; to RAMdisk storage.
;
write proc near

ca II setup ; set up transfer variables

write1: mov ax,xfrcnt ; done with all sectors yet?
cmp ax,xfrreq
je write2 ; jump if transfer completed
mov ax,xfrsec ; get next sector number
ca II mapsec ; and map it
jc write4 ; jump if mapping error
mov di,ax ; ES:DI = RAMdisk address
mov es,pframe
lds si,xfraddr ; DS:SI = requestor's buffer
mov cx,ssize/2 ; transfer logical sector from
cld ; requestor to RAMdisk
rep movsw
push cs ; restore local addressing
pop ds
inc xfrsec ; advance sector number
add word ptr xfraddr,ssize ; advance transfer address
inc xfrcnt ; count sectors transferred
jmp write1 ; go do another sector

write2: ; all sectors successfully
xor ax,ax ; transferred, return ok status

write3: les di,rqptr ; get address of request packet,
mov bx,xfrcnt ; poke in actual transfer count
mov es:[di.count],bx ; (in case an error aborted
ret ; the transfer early)

write4: mov ax,800ah ; mapping error detected,
jmp write3 ; return write fault error code

write endp

56 EXTENDING DOS

;
; Dummy routine for command codes not supported by this driver.
;
error

error

proc

mov
ret

endp

near

ax,8103h ; return error code 3
; indicating 'unknown command'

;
; Map into memory a LogicaL "disk" sector from the EMS
; pages aLLocated to the RAMdisk.
;
; CaLL with: AX = LogicaL sector number
;
; Returns:
;
;
;
;
;

CY = cLear if no error
AX = offset within EMS page frame
AX,CX,DX destroyed

CY = set if EMM mapping error
AX,CX,DX destroyed

;
mapsec proc

mov
mov
div
push
mov
mov
mov
int
or
jnz
pop
mov
muL
cLc
ret

maps1: add
stc
ret

mapsec endp

near

dx,O
cx,spp
cx
dx
bx,ax
ax,4400h
dx,handLe
'emm_i nt
ah,ah
maps1
ax
cx,ssize
cx

sp,2

; divide sector no. by sectors
; per page, to get EMS page number
; now AX=EMS page,DX=reL. sector
; save sector within page
; ex <- EMS page number
; fxn 4400h = map phys. page 0
; EMM handLe for this driver
; transfer to EMM
; test for EMM error
; jump, EMM error detected
; get reLative sector in page
; relative sector * size =
; offset into EMS LogicaL page
; return CY=cLear for no error
; back to caLler

; EMM mapping error detected
; cLear stack and return CY=set
; to indicate error

Chapter 2

;

Expanded Memory and the EMS 57

; Set up to perform Read or Write subfunction by copying
; requestor's buffer address, starting sector, and sector
; count out of request packet into LocaL variabLes.
;
setup

setup

proc

push
push
mov
mov
mov
mov
les
mov
mov
mov
pop
pop
ret

endp

near

es
di
ax,es:[di.sector]
xfrsec,ax
ax,es:[di.count]
xfrreq,ax
di,es:[di.address]
word ptr xfraddr,di
word ptr xfraddr+2,es
xfrcnt,O
di
es

; save request packet address

; initiaLize starting sector

; initiaLize sectors requested

; initiaLize requestor's
; buffer address

; initiaLize transfer count
; restore request packet address

;
; Initialization routine, caLLed at driver load time. Returns
; address of 'init' label to MS-DOS as start of free memory, so
; that memory occupied by 'init' and its subroutines is recLaimed.
;
init proc near

in i t 1 : mov ax,3000h ; fxn 30h = get DOS version
int 21h ; transfer to MS-DOS
mov dosver,al ; save major version number

init2: xor ax,ax ; check if EMM driver present
mov es,ax ; if EMM is present, address in
mov bx,emm_int*4 ; vector points to EMM driver.
mov es,es:[bx+2] ; now ES:OOOO = EMM header
mov di,10 ; ES:DI = addr of device name
mov si,offset emm_name ; DS:SI = name to match
mov cx,8 ; Length of device name
cld
repz cmpsb ; compare EMM name
jz init3 ; jump if name matched
mov dx,offset msg1 ; if name didn't match,
jmp abort ; driver is absent, exit

init3: mov ah,40h ; fxn 40h = get EMM status

58 EXTENDING DOS

int emm_int ; transfer to EMM
or ah,ah ; check for EMM error
jz init4 ; jump, driver is OK
mov dx,offset msg2 ; EMM is non-functional,
jmp abort ; error message and exit

init4: mov ah,46h ; fxn 46h = get EMM version
int emm_int ; transfer to EMM
or ah,ah ; check for EMM error
jz init5 ; jump, no error

init45: mov dx,offset msg3 ; error occurred, display
jmp abort ; error message and exit

init5: cmp al,030h ; must be version 3.0+
jae init6 ; jump if version is OK
mov dx,offset msg6
jmp abort ; wrong EMM version, exit

init6: mov ah,41h ; fxn 41h = get page frame
int emm_int ; transfer to EMM
or ah,ah ; check for EMM error
jnz init45 ; error occurred, exit
mov pframe,bx ; save page frame segment

mov ah,42h ; fxn 42h = get no. of pages
int emm_int ; transfer to EMM
or ah,ah ; check for EMM error
jnz init45 ; error occurred, exit
mov totalp,dx ; save total EMS pages
mov availp,bx ; save available EMS pages
mov ownedp,bx ; default allocated=available
or bx,bx ; any pages available?
jnz init7 ; yes, proceed
mov dx,offset msg4 ; no pages left, exit
jmp abort

init7: ; get KB from DEVICE= Line
Les di,rqptr ; ES:DI = request packet
lds si,es:[di+18J ; DS:SI = CONFIG.SYS text

init71: Lodsb ; scan for end of driver name
cmp al,bLank
ja init71 ; Loop whiLe within name
dec si ; point to delimiter and
caLL atoi ; convert KB size parameter
push cs ; make our data addressable
pop ds
or ax,ax ; size parameter missing?

Chapter 2

jz
mov
mov
shr
and
jz
inc

init73: cmp
ja
mov

init74: mov
mov
int
or
jz
mov
jmp

init8: mov
call
ca II
jnc
mov
jmp

init74
dx,ax
cx,4
ax,cl
dx,Ofh
init73
ax

ax,availp
init74
ownedp,ax

ah,43h
bx,ownedp
emm_int
ah,ah
init8
dx,offset msgS
abort

handle,dx
makebpb
format
init9
dx,offset msg7
abort

Expanded Memory and the EMS 59

; yes, use available pages
; save copy of KB
; divide KB by 16 to get
; requested EMS pages
; round up needed?
; jump if multiple of 16 KB
; round up to next page

; requested> available?
; yes, use available
; no, save requested pages

; fxn 43h = allocate pages
; no. of pages to request
; transfer to EMM
; check for EMM error
; jump if allocation OK
; allocation failed, display
; error message and exit

; save EMM handle for pages
; set up BIOS Parameter Block
; format the RAMdisk
; jump if format was OK
; error during formatting,
; display error and exit

init9: call
les
mov
mov
mov
mov
mov
xor
ret

;

signon ; display driver sign-on message
di,cs:rqptr ; restore ES:DI=request packet
word ptr es:[di.addressJ,offset init ; set address of
word ptr es:[di.address+2J,cs ; end of driver
byte ptr es:[di+13J,1 ; driver has 1 logical unit
word ptr es:[di+20J,cs ; address of BPB array
word ptr es:[di+18J,offset array
ax,ax ; return success status

; EMM initialization failed, display error message and abort
; installation of the EMSDISK device driver.
,
abort: push

mov
mov
int
mov
pop
int

dx
ah,9
dx,offset ermsg
21h
ah,9
dx
21h

; save error message address
; fxn 9 = dispLay string
; address of error heading
; transfer to MS-DOS
; fxn 9 = display string
; address of error description
; transfer to MS-DOS

60 EXTENDING DOS

les di,cs:rqptr ; restore ES:DI=request packet
mov word ptr es:[di.addressJ,O ; set break address
mov word ptr es:[di.address+2J,cs ; to start of driver
mov byte ptr es:[di+13J,O ; set logical units = 0
xor ax,ax ; but return success status
ret

init endp

;
; Set up total sectors, sectors per cluster, and sectors per FAT
; fields of BIOS Parameter Block according to size of RAMdisk.
;
makebpb proc near

mov ax,ownedp
mov cx,spp
mul cx
mov bpb+8,ax

mov cx,2
makeb1: mov ax,bpb+8

mov dx,O
div cx
cmp ax,4086
jna makeb2
shl cx,1
jmp ma keb1

makeb2: mov byte ptr bpb+2,cl
mov dx,ax
add ax,ax
add ax,dx
shr ax,1
mov dx,O
mov cx,ssize
div cx
or dx,dx
jz makeb3
inc ax

makeb3: mov bpb+Obh,ax
ret

makebpb endp

; calc RAMdisk total sectors,
; update BIOS parameter block

; calc sectors per cluster
; try this cluster size ...
; divide total sectors by
; sectors per cluster.
; resulting clusters < 4087?
; yes, use it
; no, sec/cluster*2
; try again

; sectors per cluster into BPB
; now AX = total clusters
; clusters*1.5 = bytes in FAT

; bytes in FAT/ bytes/sector
; = number of FAT sectors

; any remainder?
; no,jump
; round up to next sect~r

; FAT sectors into BPS
; done with BPB now

;
; Format RAMdisk. First write zeros into all sectors of reserved

Chapter 2 Expanded Memory and the EMS 61

; area, FAT, and root directory. Then copy phony boot record to
; boot sector, initialize medium ID byte at beginning of FAT, and
; place phony volume label in first sector of root directory.
; Returns Carry = clear if successful, Carry = set if failed.
,
format proc near

fmt1:
mov
cmp
je
push
mov
mov
int
pop
or
jnz
mov
xor
mov
xor
cld
rep
inc
jmp

bx,O
bx,ownedp
fmt2
bx
ax,4400h
dx,handle
emm_int
bx
ah,ah
fmt9
es,pframe
di,di
cx,psize/2
ax,ax

stosw
bx
fmt1

; first clear RAMdisk area
; done with all EMS pages?
; yes, jump
; save current page number
; fxn 4400h = map phys. page 0
; EMM handle for this driver
; transfer to EMM
; restore page number
; if bad mapping give up
; <should never happen)
; set ES:DI = EMS page

; page length in words
; fill page with zeros

; increment page and loop

fmt2:
mov
call
jc
mov
mov
mov
mov
rep
mov
ca II
jc
mov
mov
mov
mov
mov
mov
xor
mul
add
ca II

ax,O
mapsec
fmt9
di,ax
es,pframe
si,offset bootrec
cx,br_len

movsb
ax,1
mapsec
fmt9
di,ax
es,pframe
al,byte ptr [bpb+OahJ
es:[di],al
word ptr es:[di+1J,-1
al,byte ptr [bpb+5J
ah,ah
word ptr [bpb+ObhJ
ax,word ptr [bpb+3J
mapsec

; copy phony boot sector
; map in logical sector 0

; jump if mapping error
; ES:DI = sector 0

; DS:SI = boot record
; CX = length to copy
; transfer boot sector data
; map in logical sector 1
; <first sector of FAT)
; jump if mapping error
; ES:DI = sector 1

; put media descriptor byte
; into FAT byte 0, force
; bytes 1-2 to FFH
; first directory sector =
; no. of FATS * length of FAT
; plus reserved sectors

; map in directory sector

62 EXTENDING DOS

fmt9:

jc
mov
mov
mov
mov
rep
clc
ret

stc
ret

fmt9
di,ax
es,pframe
si,offset volname
cx,vn_len

movsb

; jump if mapping error
; copy volume label to
; first sector of directory

; return CV = clear,
; format was successfuL

; return CY = set,
; error during format

format endp

;
; DispLay sign-on message, LogicaL voLume (if DOS 3.0 or Later),
; amounts of instalLed, avaiLabLe, and aLLocated expanded memory.
;
signon proc

Les
mov
add
mov

mov
mov
muL
mov
mov
caLL

mov
mov
mul
mov
mov
ca LL

mov
mov
muL
mov
mov
ca LL

mov
mov

near

di,rqptr
aL,es:[di+22J
al,'A'
dcode,aL

ax,totaLp
dx,16
dx
cx,10
si,offset kbins
itoa

ax,availp
dx,16
dx
cx,10
si,offset kbavaiL
itoa

ax,ownedp
dx,16
dx
cx,10
si,offset kbasn
itoa

ah,9
dx,offset ident

; ES:DI = request packet
; get drive code from header,
; convert it to ASCII, and
; store into sign-on message

; format KB of EM instaLLed

; pages * 16 = KB

; convert KB to ASCII

; format KB of EM avaiLabLe

; pages * 16 = KB

; convert KB to ASCII

; format KB assigned to RAMdisk

; pages * 16 = KB

; convert KB to ASCII

; fxn 9 = dispLay string
; address of program name

Chapter 2 Expanded Memory and the EMS 63

int 21h ; transfer to MS-DOS

mov dx,offset dos2m ; check DOS version, if
cmp dosver,2 ; DOS 2 can't know drive
je sign1
mov dx,offset dos3m ; if DOS 3 can display drive

sign1: mov ah,9 ; display KB of EMS memory
int 21h ; installed, available, assigned
ret ; back to caller

signon endp

;
; Convert ASCII string to 16-bit binary integer. Overflow
; is ignored. Conversion terminates on first illegal character.
;
; Call with:
;
;

DS:SI = address of string
where 'string' is in the form
[whitespace][sign][digits]

;
; Returns:
;

AX
DS:SI

= result
= address+1 of terminator

;
atoi proc near ; ASCII to 16-bit integer

push bx ; save registers
push ex
push dx
xor bx,bx ; initialize forming answer
xor cx,cx ; initialize sign flag

atoi1: lodsb ; scan off whitespace
cmp al,blank ; ignore leading blanks
je atoi1
cmp al,tab ; ignore leading tabs
je atoi1

cmp al,'+' ; proceed if + sign
je atoi2
cmp al, '_I ; is i t - sign?
jne atoi3 ; no, test if numeric
dec cx ; was - sign, set flag

atoi2: lodsb ; get next character

atoi3: cmp al,'O' ; is character valid?
jb atoi4 ; jump if not '0' to '9'

64 EXTENDING DOS

cmp al,'9'
ja atoi4 ; jump if not '0' to '9'
and ax,Ofh ; isolate lower four bits
xchg bx,ax ; multiply answer x 10
mov dx,10
mul dx
add bx,ax ; add this digit
jmp atoi2 ; convert next digit

atoi4: mov ax,bx ; result into AX
jcxz atoiS ; jump if sign flag clear
neg ax ; make result negative

atoi5: pop dx ; restore registers
pop cx
pop bx
ret ; back to ca II er

atoi endp

;
; Convert 16-bit binary integer to ASCII string.
;
; Call with: AX = 16-bit integer
; DS:SI = buffer to receive string,
; must be at least 6 bytes long
; CX = radix
;
; Returns: DS:SI = address of converted string
; AX = length of string
;
itoa proc near ; convert binary int to ASCII

add si,6 ; advance to end of buffer'
push si ; and save that address
or ax,ax ; test sign of 16-bit value,
pushf ; and save sign on stack
jns itoa1 ; jump if value was positive
neg ax ; find absolute value

i toa1 : cwd ; divide value by radix to
div cx ; extract next digit
add dl,'O' ; convert remainder to ASCII
cmp dl,'9' ; in case converting to hex
jle itoa2 ; jump if in range 0-9
add dl,'A'-'9'-1 ; correct digit if in range A-F

itoa2: dec si ; back up through buffer

Chapter 2 Expanded Memory and the EMS 65

mov [si],dl ; store this character
or ax,ax ; value now zero?
jnz itoa1 ; no, convert another digit
popf ; original value negative?
jns itoa3 ; no, jump
dec si ; yes,store sign into output
mov byte ptr [si],'-'

itoa3: pop ax ; calculate length of string
sub ax,si
ret ; return to ca II e r

itoa endp

;
; Miscellaneous data and text strings used only during
; initialization, discarded afterwards to save memory.

cr,lf
, KB assigned to RAMdisk.'
cr,lf,eom

cr,lf,lf
'EMSDISK Expanded Memory RAMdisk 1.1'
cr,lf
'Copyright (C) 1989 Ray Duncan'
cr,lf,lf,eom
'RAMdisk will be drive'
'X. '
cr,lf,lf
byte

,
ident

dos3m
dcode

dos2m
kbins

kbavail

kbasn

db
db
db
db
db
db
db
db
labe l
db
db
db
db
db
db

cr,lf,
KB expanded memory installed.'

KB expanded memory available.'

'EMMXXXXO',O ; logical device name for
; expanded memory manager

ermsg

msg1

msg2

msg3

db
db
db

db
db

db
db

db

cr,lf
'EMSDISK installation error:'
cr,lf,eom

'expanded memory manager not found.'
cr,lf,eom

'expanded memory not functionaL.'
cr,Lf,eom

'expanded memory manager error.'

66 EXTENDING DOS

db cr,lf,eom

msg4 db
db

'no expanded memory pages available.'
cr,lf,eom

msg5 db
db

'expanded memory allocation failed.'
cr,lf,eom

msg6 db
db

'wrong expanded memory manager version.'
cr,lf,eom

msg7 db
db

'unable to format RAMdisk.'
cr,lf,eom

volname db
db
db
dw
dw
db

vn_len equ

'EMSDISK
08h
10 dup (0)
o
1441h
6 dup (0)
$-volname

; phony volume label
; volume label attribute byte
; reserved
; time = 00:00:00
; date = February 1, 1990

_TEXT ends

end

Table 2-4: The EMS Programming Interface.

Function EMS Version Parameters Results if Successful*

AH=OOHAH=40H3.0EMS Function 40H
Get Status
Note: This function should only be used after an application has established that the expanded memory
manager is in fact present.

AH=41H3.0 AH=OOH
BX = segment base of page

frame
Note: The page frame is divided into four 16K pages. In EMS 4.0, pages may be mapped to other locations
than the page frame.

EMS Function 41H
Get Page Frame Address

EMS Function 42H
Get Number of Pages

3.0 AH=42H AH=OOH
BX = unallocated pages
DX = total pages

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5. .

Chapter 2 Expanded Memory and the EMS 67

Function EMS Version Parameters Results if Successful*

AH=OOH
OX = EMM handle

3.0 AH=43H
BX = pages to allocate

(must be nonzero)
Note: The pages allocated by this function are always 16K. Zero pages may not be allocated.

EMS Function 43H
Allocate Handle and Pages

EMS Function 44H 3.0 AH = 44H AH = DOH
Map Expanded Memory Page AL = physical page

BX = logical page
OX = EMM handle

Note: In EMS 4.0, if this function is called with BX = -1, the specified physical page is unmapped.

EMS Function 45H 3.0 AH = 45H AH = DOH
Release Handle and Expanded OX = EMM handle
Memory Pages
EMS Function 46H 3.0 AH = 46H . AH = DOH
Get EMS Version AL = EMS version
Note: The version number is returned in binary coded decimal (BCD) format, with the integer portion in
the upper 4 bits of AL and the fractional portion in the lower 4 bits.

AH=OOHEMS Function 47H 3.0 AH = 47H
Save Page Map OX = EMM handle
Note: This function saves the mapping state only for the 64K page frame defined in EMS 3.x.

EMS Function 48H 3.0 AH = 48H AH = DOH
Restore Page Map OX = EMM handle
Note: This function restores the mapping state only for the 64K page frame defined in EMS 3.x.

EMS Function 49H 3.0
Reserved
EMS Function 4AH
Reserved

3.0

EMS Function 4BH
Get Number of Active Handles

3.0 AH=4BH AH=OOH
BX = number of active

handles
Note: The maximum number of active handles is 255.

AH=OOH
BX = number of pages

AH=4CH
OX = EMM handle

3.0EMS Function 4CH
Get Number of Pages for
Handle
Note: The maximum number of pages which may be allocated to a handle is 512 in EMS 3.x and 2,048 in
EMS 4.0.

"'Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

68 EXTENDING DOS

Function EMS Version Parameters Results if Successful*

AH=OOHAH=4DH
ES:DI = buffer address

3.0
BX = number of active

handles
and page information in

buffer
Note: The buffer is filled in with a series of dword (32-bit) entries, one per active EMM handle. The first
word of an entry contains the handle, and the second word contains the number of pages allocated to that
handle.

EMS Function 4DH
Get Pages for All Handles

EMS Function 4EH 3.2 AH = 4EH AH = OOH
Subfunction OOH AL = OOH and mapping information in
Save Page Map ES:DI = buffer address buffer
Note: The size of the buffer required by this function can be obtained with EMS Function 4EH Subfunc
tion 03H.

AH=OOHEMS Function 4EH 3.2 AH = 4EH
Subfunction 01H AL = 01H
Restore Page Map DS:SI = buffer address
Note: The mapping information in the buffer must be prepared by a previous call to EMS Function 4EH
Subfunction OOH or 02H.

AH=OOH
and mapping information in

buffer pointed to by
ES:DI

3.2 AH=4EH
AL=02H
DS:SI = buffer containing

mapping information
ES:DI = buffer to receive

mapping information
Note: The mapping information in the buffer pointed to by DS:SI must be prepared by a previous call to
EMS Function 4EH Subfunction OOH or 02H. The size of the buffers required by this function can be ob
tained with EMS Function 4EH Subfunction 03H.

EMS Function 4EH
Subfunction 02H
Save and Restore Page Map

EMS Function 4EH 3.2 AH = 4EH
Subfunction 03H AL = 03H
Get Size of Page Map
Information

AH=OOH
AL = buffer size (bytes)

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

Chapter 2 Expanded Memory and the EMS 69

Function EMS Version Parameters Results if Successful*

AH=OOH
and buffer pointed to by

ES:OI filled in with
mapping information

4.0 AH=4FH
AL=OOH
OS:SI = map list
ES:OI = buffer to receive

mapping state
Note: The map list contains the number of mappable segments in the first word, followed by the segment
addresses of the mappable memory regions (one segment per word). EMS Function 4FH Subfunction 02H
can be called to obtain the size of the buffer to receive the mapping information.

EMS Function 4FH
Subfunction OOH
Save Partial Page Map

EMS Function 4FH 4.0 AH = 4FH AH = OOH
Subfunction OIH AL = 01H
Restore Partial Page Map OS:SI = address of buffer

containing mapping
information

Note: The buffer containing the mapping information must be prepared by a previous call to EMS Func
tion 4FH Subfunction OOH.

EMS Function 4FH
Subfunction 02H
Get Size of Partial Page Map
Information

4.0 AH=4FH
AL=02H
BX = number of pages

AH=OOH
AL = buffer size (bytes)

AH=OOH4.0 AH=SOH
AL=OOH
ex = number of pages
ox = EMM handle
OS:SI = address of buffer

containing mapping
information

Note: The buffer contains a series of dword entries which control the pages to be mapped. The first word
of each entry contains the logical page number, and the second word contains the physical page number.
If the logical page is -1 the physical page is unmapped.

EMS Function SOH
Subfunction OOH
Map Multiple Pages by
Number

EMS Function SOH 4.0 AH = SOH
Subfunction OIH AL = OIH
Map Multiple Pages by ex =number of pages
Address ox =EMM handle

05:51 = address of buffer
containing mapping
information

AH=OOH

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

70 EXTENDING DOS

Function EMS Version Parameters Results if Successful*

Note: The buffer contains a series of dword entries which control the pages to be mapped. The first word
of each entry contains the logical page number, and the second word contains the physical segment ad
dress. If the logical page is -1, the physical page is unmapped.

EMS Function 51H 4.0 AH = 51H AH = OOH
Reallocate Pages for Handle BX = new number of pages BX = pages owned by

OX = EMM handle handle
Note: If the requested number of pages is zero, the handle is still active and its allocation can be changed
again at a later time.

AH=52H
AL=OOH
OX = EMM handle

4.0 AH=OOH
AL = attribute

o=volatile
1 = nonvolatile

Note: A non-volatile memory handle and the contents of the expanded memory pages which are allocated
to it are maintained across a system restart using Ctrl-Alt-Oel.

EMS Function 52H
Subfunction OOH
Get Handle Attribute

AH=OOHEMS Function 52H 4.0 AH = 52H
Subfunction 01H AL = 01H
Set Handle Attribute BL = attribute

0= volatile
1 =nonvolatile

OX = EMM handle
Note: If the system does not support non-volatile handles, an error is returned.

EMS Function 52H 4.0 AH = 52H AH = OOH
Subfunction 02H AL = om AL = handle attribute
Get Attribute Capability capability

o= volatile only
1 =volatile and non

volatile
AH=OOH
and buffer contains 8-byte

handle name

4.0 AH=53H
AL=OOH
OX = EMM handle
ES:OI =buffer address

Note: A handle's name is initialized to 8 zero bytes when it is allocated or deallocated.

EMS Function 53H
Subfunction OOH
Get Handle Name

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

Chapter 2 Expanded Memory and the EMS 71

Function EMS Version Parameters Results if Successful*

AH=OOH4.0 AH=53H
AL=OIH
OX = EMM handle
OS:SI = address of 8-byte

handle name
Note: The bytes in a handle name need not be ASCII characters. The default name for a handle is 8 zero
bytes. The name of a non-volatile handle will be preserved across a warm boot.

EMS Function 53H
Subfunction OIH
Set Handle Name

EMS Function 54H 4.0 AH = 54H AH = OOH
Subfunction OOH AL = OOH AL = number of active
Get All Handle Names ES:OI = buffer address handles

and handle name
information in buffer

Note: The buffer is filled with a series of 10-byte entries. The first two bytes of an entry contain an EMM
handle, and the next eight bytes contain the handle's name. The maximum size of the returned informa
tion is 2,550 bytes.

EMS Function 54H
Subfunction 0IH
Search for Handle Name

4.0 AH=54H
AL=OIH
OS:SI = address of 8-byte

handle name

AH=OOH
DX = EMM handle

EMS Function 54H
Subfunction 02H
Get Total Handles

4.0 AH=54H
AL=02H

AH=OOH
BX = number of handles

AH=OOH4.0 AH=55H
AL = 0 to map by physical

page numbers, 1 to map
by physical page segments

OX = EMM handle
OS:SI = buffer address

Note: The buffer pointed to by DS:SI is formatted as:
dword far pointer to jump target
byte number of pages to map before jump
dword far pointer to map list

The map list consists of dword entries; one per page to be mapped. The first word of an entry contains the
logical page number, and the second word contains a physical page number or segment (depending on
the value in AL).

EMS Function 55H
Subfunctions OOH and 0IH
Map Pages and Jump

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

72 EXTENDING DOS

Function EMS Version Parameters Results if Successful*

AH=OOH4.0 AH=56H

AL = 0 to map by physical
page numbers, 1 to map
by physical page segments

OX = EMM handle
OS:SI = buffer address

Note: The buffer pointed to by DS:SI is formatted as:
dword far pointer to call target
byte number of pages to map before call
dword far pointer to call map list
byte number of pages to map before return
dword far pointer to return map list
8 bytes reserved

Both map lists consist of dword entries; one per page to be mapped. The first word of an entry contains the
logical page number, and the second word contains a physical page number or segment (depending on
the value in AL).

EMS Function 56H

Subfunctions OOH and OIH

Map Pages and Call

EMS Function 56H

Subfunction 02H
Get Stack Space Required for
Map Page and Call

4.0 AH=56H

AL=02H

AH=OOH

BX = stack space required
(bytes)

AH=OOHEMS Function 57H 4.0 AH = 57H

Subfunction OOH AL = OOH

Move Memory Region 05:51 = buffer address
Note: The buffer pointed to by DS:SI controls the move operation and is formatted as:

dword region length in bytes
byte source memory type (0 =conventional, 1 =expanded)
word source memory handle
word source memory offset
word source memory segment or logical page number
byte destination memory type (0 =conventional, 1 =expanded)
word destination memory handle
word destination memory offset
word destination memory segment or logical page number

The maximum length of a move is 1 megabyte. If the length exceeds a single page, consecutive pages
supply or receive the data. Overlapping addresses are handled correctly.

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

Chapter 2 Expanded Memory and the EMS 73

Function EMS Version Parameters Results if Successful*

AH=OOHEMS Function 57H 4.0 AH = 57H
Subfunction OIH AL = OIH
Exchange Memory Regions DS:SI = buffer address
Note: The format of the buffer controlling the exchange operation is the same as for EMS Function 57H
Subfunction OOH. The maximum length of an exchange is 1 megabyte. Consecutive pages are used as re
quired. Source and destination addresses may not overlap.

AH=OOH
CX = number of entries in

buffer
and address information

placed in buffer
Note: The returned information in the buffer consists of dword entries, one per mappable page. The first
word of an entry contains the page's segment base address, and the second contains its physical page
number. The entries are sorted in order of ascending segment addresses.

EMS Function 58H 4.0 AH = 58H
Subfunction OOH AL = OOH
Get Addresses of Mappable ES:DI = buffer address
Pages

EMS Function 58H 4.0 AH = 58H
Subfunction OIH AL = OIH
Ge~ Number of Mappable
Pages

AH=OOH
CX = number of mappable

pages

AH=OOH
and hardware configuration

information in buffer

EMS Function 59H 4.0 AH = 59H
Subfunction OOH AL = OOH
Get Hardware Configuration ES:DI = buffer address
Note: The format of the information returned in the buffer is:

word size of raw expanded memory pages (paragraphs)
word number of alternate register sets
word size of context save area (bytes)
word number of register sets assignable to DMA channels
word DMA operation type (0 = DMA can be used with alternate register sets, 1 = only one

DMA register set available)

Note: Raw memory pages may have a size other than 16K.

EMS Function 59H
Subfunction OIH
Get Number of Raw Pages

4.0 AH=59H
AL=OIH

AH=OOH
BX = number of free raw

pages
OX = total raw pages

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

74 EXTENDING DOS

Function EMS Version Parameters Results if Successful·

AH=OOH
OX = EMM handle

AH=SAH
AL=OOH
BX =number of 16K pages

4.0EMS Function SAH
Subfunction OOH
Allocate Handle and Standard
Pages
Note: Allocation of zero pages with this function is not an error.

AH=OOH
OX = EMM handle

EMS Function SAH 4.0 AH = SAH
Subfunction 01H AL =01H
Allocate Handle and Raw BX =number of raw pages
Pages
Note: Raw memory pages may have a size other than 16K. Allocation of zero pages is not an error.

EMS Function SBH 4.0 AH =SBH AH = OOH
Subfunction OOH AL = OOH BL = current alternate
Get Alternate Map Registers register set, or zero if

alternate set not active
ES:OI = address of alternate

map register set save
area (if BL = 0)

Note: The address of the save area must be specified in a previous call to EMS Function SBH Subfunction
01H, and the save area initialized with a previous call to EMS Function 4EH Subfunction OOH.

EMS Function SBH 4.0 AH =SBH AH =OOH
Subfunction OIH AL =01H
Set Alternate Map Registers BL =alternate map register

set number, or zero
ES:DI = address of map

register context save
area (if BL = 0)

Note: The buffer address specified in this call is returned by subsequent calls to EMS Function SBH Sub
function OOH. The save area must be initialized by a previous call to EMS Function 4EH Subfunction OOH.

EMS Function SBH 4.0 AH =SBH AH = OOH
Subfunction 02H AL =02H OX = size of buffer required
Get Size of Alternate Map (bytes)
Register Save Area

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

Chapter 2 Expanded Memory and the EMS 75

Function EMS Version Parameters Results if Successful*

EMS Function SBH 4.0 AH = SBH AH = OOH
Subfunction 03H AL =03H BL = alternate map register
Allocate Alternate Map set number, or zero if no
Register Set alternates available
Note: The contents of the currently active map registers are copied into the newly allocated alternate map
registers.

EMS Function 5BH 4.0 AH = 5BH
Subfunction 04H AL = 04H
Deallocate Alternate Map BL = alternate map register
Register Set set number
Note: The current alternate map register set cannot be deallocated.

AH=OOH

EMS Function 5BH 4.0 AH = 5BH
Subfunction 05H AL = 05H
Allocate DMA Register Set

AH=OOH
BL = DMA register set

number, or 0 if none
available

AH=OOH4.0 AH=5BH
AL=06H
BL = alternate map register

set number
DL =DMA channel

number
Note: If a DMA channel is not assigned to a specific register set, DMA for that channel will be mapped
through the current register set.

EMS Function 5BH
Subfunction 06H
Enable DMA on Alternate Map
Register Set

EMS Function 5BH
Subfunction om
Disable DMA on Alternate
Map Register Set

4.0 AH=5BH
AL=07H
BL = alternate map register

set number

AH=OOH

EMS Function 5BH
Subfunction 08H
Deallocate DMA Register Set

4.0 AH=5BH
AL=08H
BL =DMA register set

number

AH =OOH

EMS Function 5CH
Prepare Expanded Memory
Manager for Warm Boot

4.0 AH=5CH AH=OOH

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

76 EXTENDING DOS

Function EMS Version Parameters Results if Successful*

Note: This function affects the current mapping context, the alternate register set in use, and any other
hardware dependencies that would ordinarily be initialized when the system is reset.

EMS Function SOH 4.0 AH = SOH AH = OOH
Subfunction OOH AL = DOH BX:CX = access key (if first
Enable EMM Operating BX:CX = access key (if not call)
System Functions first call)
Note: Enables EMS Functions S9H, SBH, and SOH (this is the default condition). An access key is returned
on the first call to either Subfunction OOH or OIH of EMS Function SOH. This key must be used in subse
quent calls to either subfunction.

EMS Function SOH 4.0 AH = SOH
Subfunction OIH AL = OIH
Disable EMM Operating BX:CX = access key (if not
System Functions first call)
Note: Disables EMS Functions S9H, SBH, and SOH.

AH=OOH
BX:CX = access key (if first

call)

AH=OOHEMS Function SOH 4.0 AH = SOH
Subfunction 02H AL = om
Release Access Key BX:CX =access key
Note: A new access key will be returneu. by the next call to EMS Function SOH Subfunction DOH or OIH.

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

Table 2-5: Expanded Memory Manager standardized error codes.
The error codes 90H and above are only supported in EMS version 4.0.

Error Code
BOH

8IH
82H
83H
84H
8SH
86H
87H

8BH

B9H

Meaning
Internal error in expanded memory manager software (may indicated cor
rupted memory image of driver)
Malfunction in expanded memory hardware
Memory manager busy
Invalid handle
Function not defined
Handles exhausted
Error in save or restore of mapping context
Allocation request specified more pages than are physically available in sys
tem; no pages were allocated
Allocation request specified more pages than are currently available; no pages
were allocated
Zero pages cannot be allocated

Chapter 2

Error Code
8AH
8BH
8CH
8DH

8EH

8FH
90H
91H
92H

93H

94H
95H
96H
97H

98H
99H
9AH

9BH

9CH

9DH

9EH
9FH

AOH
A1H
A3H
A4H

Expanded Memory and the EMS 77

Meaning
Requested logical page is outside range of pages owned by handle
Illegal physical page number in mapping request
Page mapping hardware-state save area is full
Mapping context save failed; save area already contains context associated
with specified handle
Mapping context restore failed; save area does not contain context for specified
handle
Subfunction parameter not defined
Attribute type not defined
Feature not supported
Source and destination memory regions have same handle and overlap; re
quested move was performed, but part of the source region was overwritten
Specified length for source or destination memory region is longer than actual
allocated length
Conventional memory region and expanded memory region overlap
Specified offset is outside logical page
Region length exceeds 1 megabyte
Source and destination memory regions have same handle and overlap; ex
change cannot be performed
Memory source and destination types are undefined
Error code currently unused
Alternate map or DMA register sets are supported, but specified alternate reg
ister set is not supported
Alternate map or DMA register sets are supported, but all alternate register
sets are currently allocated
Alternate map or DMA register sets are not supported, and specified alternate
register set is not zero
Alternate map or DMA register sets are supported, but the alternate register
set specified is not defined or not allocated
Dedicated DMA channels not supported
Dedicated DMA channels are supported, but specified DMA channel is not
supported
No handle found for specified name
Handle with same name already exists
Invalid pointer passed to function, or contents of source array corrupted
Access to function denied by operating system

Chapter 3

Extended Memory and the XMS

Ray Duncan

Extended memory is the term for RAM storage at addresses above the I-megabyte
boundary on 80286-, 80386-, and 80486-based pes. This distinguishes such mem
ory from conventional memory, which is at addresses below 1 megabyte, or ex
panded memory, which is essentially bank-switched memory divided into pages
that can be mapped into the conventional memory address space (expanded
memory is discussed in Chapter 2). A sketch of the relationship between conven
tional memory and extended memory is shown in Figure 3-1.

If you own a PC/AT clone of almost any brand, you probably have at least a
small amount of extended memory in your system. These days, such clones typi
cally arrive with 1 megabyte or more of RAM installed on the motherboard, of
which 512K or 640K starts at address 0, and the remainder begins at 1 megabyte.
In addition, if you have purchased an add-in memory board for an AT-class ma
chine, that board can probably be configured either as extended memory, ex
panded memory, or a combination of both.

Thus, extended memory is a readily available resource, and protected-mode
operating systems such as OS/2 and UNIX can effectively use all the extended
memory you can plug into your machine for execution of programs and storage
of data. MS-DOS and its client programs, on the other hand, can gain access to
this memory only with great difficulty. Why? The reason is neither complicated

79

80 EXTENDING DOS

nor obscure. It is because MS-DOS runs on 80286/386/486 CPUs in real mode-a
sort of 8086/88 emulation mode-which has important implications for the way
addresses are generated.

Figure 3-1: Relationships between conventional and extended memory.

16 MB .--------

Extended
Memory

Conventional
Memory

1 MB 1-0-----------___
ROM 810S

ROM BASIC
Video buffers

640 Kt----------__

MS-DOS and
its applications

o K '----------'--'

Programmers think in terms of segments, selectors, and offsets, but the CPU
views memory as a simI,le, linearly addressed array of bytes. In real mode, the
CPU selects a particular memory location by shifting the contents of a segment
register left four bits and adding it to a 16-bit offset, forming a 20-bit physical ad
dress. But extended memory lies (by definition) above the I-megabyte boundary
(1 OOOOOH), so all physical addresses that correspond to extended memory have at
least 21 significant bits. In other words, real-mode programs can't "see" extended
memory because they simply can't generate the appropriate addresses.

There are ways around this seemingly impenetrable addressing barrier, how
ever, as we all know from our own daily experience. We've all got RAMdisks,
disk caches, print spoolers, and TSRs that ostensibly run in real mode but are

Chapter 3 Extended Memory and the XMS 81

able to exploit extended memory when it is present. The eXtended Memory Spec
ification (XMS), which was released in 1988 as a collaborative effort of Microsoft,
Intel, Lotus, and AST Research, was designed to bring all such programs into
harmony: it defines a software interface for extended memory access comparable
to the role of the LIM EMS for expanded memory.

Unfortunately, it will not suffice to simply describe the XMS and be done
with it, as we could safely do for EMS in Chapter 2. By the tinle the XMS ap
peared, 80286-based PCs had been on the market for four years, and other meth
ods of extended memory access and management had already evolved and were
in common use. Today's software developer who wishes to write programs that
are extended memory-aware, and that will be compatible with the widest possi
ble range of other software, faces a rather complex situation, as we shall see in
this chapter.

Reaching Extended Memory in Real Mode
The first thing to understand about using extended memory is that there is no
free lunch: a program does (with two bizarre exceptions, to be explained later in
this chapter) need to be running in protected mode in order to read and write
memory locations above the I-megabyte boundary. And moving safely from real
mode to protected mode and back again is a nontrivial chore.

The first step, getting into protected mode from real mode, is not all that dif
ficult. Simply set the PE (protect enable) bit in the CPU's machine status word
(known as MSW on the 80286, CRO on the 80386 and 80486). Unless the other re
quired housekeeping has been done, though, your program will just crash imme
diately. As we saw in Chapter 1, certain data structures and CPU registers must
be initialized for protected-mode execution that have no meaning in real mode.
For example, your program must set up a global descriptor table (GOT) that con
trols protected-mode memory mapping, segment types, and access rights; load
the address of the table into the CPU's GOT pointer register; and finally, load all
segment registers with valid selectors that refer to the GOT.

Assuming that your program manages to enter protected mode properly, and
read or write the data in extended memory that it is interested in, it must then re
turn to real mode to continue its main line of execution. After all, your program
needs to be able to invoke MS-DOS to read or write files and interact with the
user, but MS-DOS will be quite confused if your program calls it in protected
mode.

82 EXTENDING DOS

Faced with this challenge, your first inclination might be to haul down your
handy Intel 80286 Programmer's Reference and look up the machine instruction
that switches the CPU from protected mode to real mode. Surprisingly enough,
there is no such instruction. When the 80286 was designed, the Intel engineers
never dreamed that somebody would ever want to make a transition from the
clearly superior protected mode back to dull old real mode! Luckily, there is an
escape hatch, however undesirable it may sound: if the CPU is halted and re
started, it restarts in real mode.

On 80286-based PC/AT class machines, the actual technique used by the
ROM BIOS (and hence by VDISK and most other extended-memory-aware pro
grams) to return to real mode is as follows: a "magic" value is stored into a re
served memory location, the contents of the stack and general registers are saved
in other reserved memory locations, a special command is sent to the keyboard
controller, and the CPU is halted. The keyboard controller, in its own good time,
recognizes the command and responds with a signal that resets the CPU.

After the reset by the keyboard controller, the CPU begins execution at
FFFF: OOOOH, as usual, and enters the ROM BIOS Power-Up-Self-Test (POST) se
quence. The POST checks for the "magic" value that was saved in RAM earlier,
recognizes that the machine is waking up from an intentional halt, restores the
stack and registers, and returns control to the previously executing program
rather than continuing with the ROM bootstrap. The turnaround time on this
process can be on the order of several milliseconds, and it has been aptly charac
terized by Microsoft's Gordon Letwin as "turning off the car to change gears."

Things aren't quite so bad on 80286-based PS/2 or 80386/486-based ma
chines. 80286-based PS/2s have special hardware support that allows a faster
reset cycle (though the CPU still needs to be halted to accomplish it). 80386/486
based machines, on the other hand, can accomplish the switch back to real mode
by simply clearing the PE bit in CRO, and don't need to halt the CPU at all. This is
because by the time the 80386 was being designed, it was becoming obvious that
MS-DOS and the programs that run under it weren't going to disappear.

The ROM BIOS Extended Memory Functions
Luckily, even from the earliest days of the PC/AT, MS-DOS programmers who
wish to use extended memory for data storage have never needed to worry too
much about the details of protected-mode programming and mode transitions.
The PC/AT ROM BIOS provides two functions that give access to extended

Chapter 3 Extended Memory and the XMS 83

= 87H
= number of words to move
= segment:offset of global descriptor table

memory in a hardware-independent manner: Int 15H Function 87H, which copies
a block of data from any location in conventional or extended memory to any
other location, and Int 15H Function 88H, which returns the amount of extended
memory installed in the system. The parameters and results of these two func
tions are outlined below:

Int 15H Function BBH-Get Extended Memory Size

Call with:
AH = 88H
Returns:
AX = amount of extended memory (in KB)

Int 15H Function B7H-Move Extended Memory Block

Call with:
AH
CX
ES:SI
Returns:
If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status

01H
02H
03H

if RAM parity error
if exception interrupt error
if gate address line 20 failed

When In t 15HFunction 87 is called, registers ES:SI point to a partially filled
in global descriptor table (GDT), with room for six descriptors (see Figure 3-2).
The first descriptor is a dummy and corresponds to a null selector in the range
0000-0003H. Null selectors get special treatment from the hardware in protected
mode; they are safe values that you can always load into a segment register as
long as you don't try to address anything with them.

84 EXTENDING DOS

Figure 3-2: The descriptor table used by ROM BIOS Int 1SH Function 87H.

Dummy

Maps this table

Maps source of move
operation

Maps destination of
move operation

Maps ROM BIOS code

Maps ROM BIOS stack

28H

20H

18H

10H

08H

OOH

30H

Byte Offset

Table 3-1: The portions of the global descriptor table for Int 1SH
Function 87H that must be initialized by the calling prograln.

Byte(s) Contents
OOH-OFH reserved (should be 0)
10H-11H segment length in bytes (2*CX-1 or greater)
12H-14H 24-bit linear source address
1SH access rights byte (always 93H)
16H-17H reserved (should be 0)
18H-19H segment length in bytes (2*CX-1 or greater)
1AH-1CH 24-bit linear destination address
1DH access rights byte <always 93H)
1EH-2FH reserved (should be 0)

Two of the descriptors supply the source and destination addresses of the
memory block that the program is asking the ROM BIOS to move on its behalf.

Chapter 3

The descriptors must be initialized with base addresses, an appropriate length,
and an "access rights" byte of 93H. The remaining three descriptors are used by
the ROM BIOS to provide addressability to its own code, data, and stack while it
is executing in protected mode. The calling program itlitializes these to zero, and
the ROM BIOS takes care of the remaining necessary initialization of the table be
fore it switches the CPU into protected mode.

The most important thing you need to notice about the descriptor table is
that the addresses you place in it are 24-bit linear byte addresses-numbers from
OOOOOOH to FFFFFFH-rather than the more familiar segment:offset pairs. As we
have already said, to convert the latter into the former, you merely shift the seg
ment left 4 bits and the~ add the offset. The three bytes of a li~ear address are
stored in their natural order, with the least significant byte at the lowest address.

The easiest way to cope with extended memory in an application program is
to encapsulate the Int 15H Function 87H function calls inside MASM subroutines
with more sensible parameters. The source file EXTMEM.ASM, shown below,
contains two such routines for use with small model C programs: GETXM and
PUTXM. These procedures are called with source and destination addresses and a
length in bytes. The conventional memory address is assumed to be a normal far
pointer <segment and offset), while the extended memory address is a linear,
physical address.

; EXTMEM.ASM --- Routines to transfer data between
; conventional and extended memory.
; For use with small model C programs.
; Copyright (e) 1989 Ray Duncan
;
; Assemble with: MASM IZi IMx EXTMEM;

DGROUP group - DATA

- DATA segment word pubLic 'DATA'

gdt db 30h dup (0) ; global descriptor table

- DATA ends

_TEXT segment word public 'CODE'

assume cs:_TEXT,ds:DGROUP

args equ [bp+4J ; offset of arguments, small model

86 EXTENDING DOS

source equ
dest equ
len equ

;

word ptr args
word ptr source+4
word ptr dest+4

; GETXM copies data from extended memory to conventional memory.
;
; status = getxm(unsigned long source, void far *dest, unsigned len)
;
; Status is zero if move successful, nonzero if move failed:
; 1 = parity error, 2 = exception interrupt error, 3 = gate A20 failed
;

public
proc

push
mov
push
push

_getxm
near

bp
bp,sp
si
di

; set up stack frame

; protect register variables

; OS: SI points to GOT
mov si,offset OGROUP:gdt

; store access rights bytes
mov byte ptr [si+15hJ,93h
mov byte ptr [si+1dhJ,93h

mov
mov
mov
mov

mov
mov
mul
add
adc
mov
mov

mov
mov
mov

shr
mov
int

ax,source
[si+12hJ,ax
ax,source+2
[si+14hJ,al

ax,dest+2
dx,16
dx
ax,dest
dx,O
[si+1ahJ,ax
[si+1chJ,dl

ex, len
[si+10h],cx
[si+18h],cx

cx,1
ah,87h
15h

; store source address
; into descriptor

; destination segment * 16

; + offset -> linear address

; store destination address
; into descriptor

; store length into source
; and destination descriptors

; convert length to words
; Int 15H Fxn 87h = block move
; transfer to ROM BIOS

Chapter 3 Extended Memory and the XMS 87

mov al,ah ; form status in AX
cbw

pop di ; restore registers
pop si
pop bp
ret ; back to caller

_getxm endp

;
; PUTXM copies data from conventional memory to extended memory.
;
; status = putxm(void far *source, unsigned long dest, unsigned len>
;
; Status is zero if move successful, nonzero if move failed:
; 1 = parity error, 2 = exception interrupt error, 3 = gate A20 failed
;

public _putxm
_putxm proc near

push bp ; set up stack frame
mov bp,sp
push si ; protect register variables
push di

; DS: SI points to GDT
mov si,offset DGROUP:gdt

; store access rights bytes
mov byte ptr [si+15hJ,93h
mov byte ptr [si+1dhJ,93h

mov
mov
mov
mov

mov
mov
mul
add
adc
mov
mov

mov
mov

ax,dest
[si+1ahJ,ax
ax,dest+2
[si+1chJ,al

ax,source+2
dx,16
dx
ax,source
dx,O
[si+12hJ,ax
[si+14hJ,dl

cx,len
[si+10hJ,cx

; store destination address
; into descriptor

; source segment * 16

; + offset -> linear address

; store source address
; into descriptor

; store length into source
; and destination descriptors

88 EXTENDING DOS

mov [si+18hJ,cx

shr cx,1 ; convert Length to words
mov ah,87h ; Int 15H Fxn 87h = bLock move
int 15h ; transfer to ROM BIOS

mov aL,ah ; form status in AX
cbw

pop di ; restore registers
pop si
pop bp
ret ; back to caLLer

_putxm endp

- TEXT ends

end

GETXM and PUTXM do all the necessary housekeeping required by the ROM
BIOS, converting addresses as necessary and placing the addresses, lengths, and
access right bytes into the descriptor table. Both routines return a false flag if the
move was successful, or a true flag if it failed. In the latter case, the value of the
flag is 1 if there was a memory parity error, 2 if an interrupt exception occurred,
or 3 if extended memory could not be accessed due to a problem with the A20 ad
dress line.

Primitive Extended Memory Management
You've probably noticed the major flaw in the extended memory functions sup
ported by the ROM BIOS: while they let you access any location in extended
memory quite freely, they do not make any attempt to arbitrate between two or
more programs or drivers that are using extended memory at the same time. For
example, if both an application program and a RAMdisk use the ROM BIOS
functions to put data in the same area of extended memory, no error is returned
to either program, but the data of one or both programs may be destroyed.

Since neither IBM nor Microsoft came up with any standard scheme for the
cooperative use of extended memory by DOS programs during the first few
years of the PCIAT's existence, third-party software developers were left to their
own devices. Eventually, almost all of them settled on one of two methods for ex-

Chapter 3 Extended Memory and the XMS 89

tended memory management, which we may call the "VDISK method" and the
"Int ISH method."

VDISK.SYS is a fairly conventional RAMdisk installable device driver that
IBM has been supplying with PC-DOS since version 3.0. Fro·m the beginning,
VDISK was capable of using either conventional or extended memory to create a
virtual disk drive and, in the most recent versions, can make use of expanded
memory as well. The source code for VDISK has always been included in the PC
DOS retail package, so it has (for better or worse) become a model for the imple
mentation of many other companies' RAMdisks.

When VDISK is loaded, it allocates extended memory to itself from the 1
megabyte boundary, upwards, and saves information about the amount of ex
tended memory it is using in two places: in a data structure located in
conventional memory and found via the I nt 19H vector, and in a data structure
located in extended memory at the I-megabyte boundary. If additional copies of
VDISK are loaded (to create additional logical RAMdisk drives), they look at
each of these areas to determine the amount and location of extended memory
still available, then update them to reflect any additional extended memory they
have reserved for their own use.

Applications which adopt the VDISK method of extended memory manage
ment merely need to inspect and update the Int 19H and extended memory indi
cators in the same manner as VDISK itself. Unfortunately, in actual practice,
some applications update only the I nt 19H area and some update only the ex
tended memory area. This means that if you adopt the VDISK technique in your
own applications, you must program very defensively and check both areas. If
the two indicators differ, you must assume that the lesser amount of extended
memory is available, then update both allocation signatures to be correct and
consistent for any programs that are loaded after yours.

The Int 15H method of extended memory management is much less compli
cated. The application calls Int 15H Function 88H first to find out how much ex
tended memory is available, then "hooks" the Int 15H vector to intercept calls by
other programs. When the program sees a subsequent call to Int 15H Function
88H, it returns a reduced value that reflects the amount of extended memory it is
using (passing all other Int 15H calls onward to the original owner of the inter
rupt vector). In this way, the program can deceive subsequently loaded applica
tions into believing that the extended memory it is using does not exist.

In summary, the VDISK method allows extended memory to be allocated up
ward from the I-megabyte boundar)', and the Int 15H method allows extended

90 EXTENDING DOS

memory to be allocated downward from the top. Both management methods are
in common use, so you must take both into account in your own programs if you
intend to use extended memory at all.

The VDISK Indicators

Now we can examine the specific details of how the VDISK memory manage
ment approach works.

VDISK takes over the I nt 19H vector, which normally contains the address of
the ROM BIOS routine to reboot the system, and points it to an Int 19H handler
within itself. This new handler does nothing more than transfer control to the
original handler, so its presence does not affect the system's operation at all.
However, a program can fetch the segment portion of the I nt 19H vector, assume
that it points to the beginning of a VDISK driver if one is loaded, and use it to de
termine whether a VDISK driver is, in fact, present. If a VDISK driver is loaded,
its name and the address of the first free (unallocated) extended memory can be
found at fixed offsets from its base.

The exact memory addresses to be inspected may vary from one version of
VDISK and PC-DOS to another, but you can extract the necessary information
from the VDISK.ASM source file that is included on the IBM PC-DOS distribu
tion disks. As an example, suppose we placed the line:

DEVICE=VDISK.SYS IE

in the CONFIG.SYS file for a PC-DOS 3.3 system and rebooted. (The IE switch
directs VDISK to use extended memory.) During system initialization VDISK
would display a message advising that it had created a 64K RAMdisk (the de
fault size) on logical drive F. We then inspect the Int 19H vector, and find that it
contains the address 1BF3: 008EH. Figure 3-3 contains a hex dump of addresses
1BF3: OOOOH through 1BF3: 003 FH-the first 64 bytes of the VDISK driver.

Bytes OOH through 11 Hare the VDISK device driver header, which contains
information about the driver's entry points, capabilities, and other information of
interest to the MS-DOS kernel. In this example, bytes 12H through 2BH are the ini
tial portion of a volume label that VDISK places in the root directory of its
RAMDISK. As you can see, the label contains the string "VDISK," and the PC
DOS version number. Finally, bytes 2CH through 2EH contain the linear address of
the first free byte of extended memory: 110000H in this example (1MB + 64K,
since VDISK is using the 64K starting at 1 megabyte).

Chapter 3 Extended Memory and the Xlv1S 91

Figure 3-3: The first 64 bytes of the VDISK device driver for PC-DOS 3.3.

VDISK device
driver header

I

0 11 2 3 4 5 6 7 8 9 A B C D E F
1BF3:0000 00 00 E7 19 00 08 A9 00 D4 00 01 00 00 00 00 001
1BF3:0010 00 001156 44 49 53 4B 20 20 56 33 2E 33 28 00 001
1BF3:0020 00 00 00 00 00 00 00 00 00 60 86 091100 00 11\EO
1BF3:0030 18 70 00 08 00 21 1C 45 00 00 00 00 10 10 00 08

VDISK volume
label

Linear address of first
free extended memory

Now let's take a look at the VDISK allocation information stored in extended
memory. Figure 3-4 contains a hex dump of addresses 1OOOOOH through 10003FH,
in other words, the first 64 bytes at the I-megabyte boundary. This memory is
part of the first logical sector of VDISK's RAMdisk storage, so VDISK makes it
look like the boot sector of a normal MS-DOS block device. Offsets 00H-02H con
tain zero to show that the disk is not bootable, bytes 03H-OAH are the "OEM iden
tity field" and contain the string "VDISK3.3," and bytes OBH-1 DH are the "BIOS
Parameter Block" (BPB) from which MS-DOS can calculate the locations of the
FAT, root directory, and so on.

The two bytes at offset 01 EH and 1FH are the ones we are particularly inter
ested in here. By studying the source code for VDISK, we find that these two
bytes are treated as a WORD field, and contain the address of the first free ex
te~ded memory in kilobytes. In this particular case, the word contains 0440H
(1088), which is again 1MB (1024K) + 64K.

The responsibilities of a program that wants to use the VDISK method for ex
tended memory management are now more clear. It must first find the total
amount of extended memory available by calling Int 15H Function 88H (this pro
tects it against programs that use the I nt 15H management method). It must then
inspect the Int 19H vector to determine whether the vector points to the base of a
previously loaded VDISK driver.

92 EXTENDING DOS

Figure 3-4: The first 64 bytes ofextended memory when VDISK is loaded.

Disk is not
bootable OEM Identity Field

ABC D E F

C3
1A

331 80 00 01 01 001
~~~~~~~~~~~~0~1 00 00 O~140 041

CA 33 CO F3 AA 59 E2
F7 26 51 00 2D 1A 00

100000
100010
100020
100030

BIOS Parameter
Block

Address of the
first free extended

memory (in
kilobytes)

If a VDISK driver is already resident, the new program must inspect the
fields within the driver itself and the boot block at the I-megabyte boundary to
determine the starting address of available extended memory, using the higher of
the two if they are inconsistent. It must then decide how much memory to re
serve for itself, and update the two fields just mentioned to reflect that amount of
allocated extended memory.

If no VDISK driver is present in the system, the program can take the easy
way out and hook the Int 15H vector to use the Int 15H method of memory man
agement. Alternatively, it can pretend that it is a VDISK, pointing the Int 19H
vector to something that appears to be a VDISK driver header, and creating a
phony boot block at 1 megabyte. In either case, the program must also install its
own Control-C (Int 23H) and critical-error (Int 24H) handlers so that it cannot be
terminated unexpectedly.

Regardless of the allocation method used, the program must be careful to exit
gracefully, so that it removes all evidence of its presence, and any extended mem
ory it used is not orphaned. If the Int 15H vector was captured, the vector must
be restored to point to the previous owner; if the VDISK indicators were modi
fied, they must be returned to their proper state to "release" the memory. This can
be quite tricky if another driver or TSR has allocated some extended memory to
itself after the application program in question.



Chapter 3 Extended Memory and the XMS 93

The eXtended Memory Specification (XMS)
The VDISK and Int 15H management methods described have serious
weaknesses. First, neither method is immune to non-cooperating applications
that simply switch into protected mode, find the size of extendeq memory by
reading and writing it directly, and then use it all without regard to other, pre
viously loaded programs. Second, neither management technique is dynamic;
both allocate memory in a first-in-Iast-out manner. If a program terminates out of
order, that program's extended memory is not available for use by other pro
grams until all the extended memory that was allocated afterward by other ap
plications is also released. Finally, MS-DOS does not participate in the expanded
memory management, so it cannot "clean up" a program's expanded memory re
sources if the program terminates unexpectedly.

During 1988 (four years after the introduction of the PCIAT), two long over
due proposals for a more sophisticated, cooperative use of extended memory
under DOS appeared. One of the proposals, the Virtual Control Program Inter
face, is applicable only to 80386/486-based systems, and is discussed in more de
tan in Chapter 8. The other is the eXtended Memory Specification (XMS), which
was a collaborative effort of Microsoft, Intel, AST Research, and Lotus Corp.

The XMS defines a software interface for 80286-, 80386-, and 80486-based PCs
that allows real-mode application programs to use extended memory, as well as
certain areas of conventional memory not ordinarily managed by MS-DOS, in a
cooperative and hardware-independent manner. The XMS defines functions calls
that allocate, resize, and release memory blocks of three basic types:

• upper memory blocks (UMBs) at addresses between 640K and 1024K
(1MB)

• the so-called "high memory area" (HMA) at addresses between 1024K and
1088K (more about this later)

.. extended memory blocks (EMBs) from addresses above 1088K.

The XMS also provides hardware-independent control over the CPU's ad
dress line A20, which must be enabled to read or write extended memory. A sum
mary of the XMS fu~ctions can be found in Table 3-2, and a complete description
of the XMS programming interface can be found in Table 3-5 at the end of this
chapter.



94 EXTENDING DOS

Table 3-2: Summary offunctions defined by the
Microsoft/lntel/Lotus/AST eXtended Memory Specification (XMS).

Function Description

Driver information
OOH Get XMS version

High memory area management
0IH Allocate high memory area
02H Free high memory area

A20 line management
03H Global enable A20 line
04H Global disable A20 line
OSH Local enable A20 line
06H Local disable A20 line
07H Query A20 line state

Extended memory block (EMB) management
08H Query free extended memory
09H Allocate extended memory block
OAH Free extended memory block
OBH Move extended memory block
OCH Lock extended memory block
ODH Unlock extended memory block
OEH Get handle information
OFH Resize extended memory block

Upper memory block (UMB) management
10H Allocate upper memory block
IIH Free upper memory block

Using XMS Support

An installable device driver that implements the XMS is called an eXtended
Memory Manager (XMM). The prototype XMM provided by Microsoft, named
HIMEM.SYS, is installed by adding a DEVICE= line to the CONFIG.SYS file, and
rebooting the system. HIMEM.SYS accepts two optional switches on the DE
VICE= line that loads the driver:



Chapter 3 Extended Memory and the XMS 95

• /HMAMIN=n specifies the minimum number of kilobytes in the
high memory area (HMA) that a program may
use (0-63, default = 0).

• /NUMHANDLES=n sets the maximum number of XMS handles that
may be active at anyone time (0-128, default =
32).

A program can determine whether any XMM is available by setting AX to
4300H and executing an Int 2FH. If the driver is present, the value SOH is returned
in AL; if the driver is absent, AL is returned unchanged or with some other value.
For example:

mov ax,4300h ; 4300H = get install status
int 2fh ; call driver
cmp a l. SOh ; status = installed?
je present ; yes, driver is present
jmp absent ; no, driver is absent

This differs from the convention used by the MS-DOS extensions PRINT,
SHARE, ASSIGN, and APPEND, which are also accessed via Int 2FH (using other val
ues in AH, of course). These return AL = FFH if they are already installed.

After a program has established that the XMS driver is available, it obtains
the entry point of the driver by executing Int 2FH with AX = 4310H. The entry
point is returned in registers ES:BX and must be saved in a variable:

xmsaddr dd ? ; receives entry point

word ptr

ax,4310h
2fh
word ptr

mov

mov
int
mov

; get address of XMS
; driver entry point .•.
; func. 43H subf. 10H
; invoke driver

xmsaddr,bx
; save far pointer

xmsaddr+2,es
; to entry point ...

Once the entry point is in hand, the program enters the driver by a far call,
without further resort to Int 2FH. A particular XMS function is selected by the
value in AH; other parameters are passed in registers. At least 256 bytes of stack
space should be available when your program requests an XMS function. The
general form of the call is:



96 EXTENDING DOS

xmsaddr dd ? ; receives entry point

; request XMS function ...
mov ah,function ; AH = function number

; Load other registers with
; function-specific vaLues

caLL [xmsaddr] ; indirect far ca LL to driver

Most XMS functions return a status in register AX: 0001 H if the function suc
ceeded, or OOOOH if the function failed. In the latter case, an error code is also re
turned in register BL with the high bit set (see Table 3-6 at the end of the chapter).
Other results are also passed back in registers.

A typical program's use of an XMM to manage extended memory is shown
in the following li~t:

1. Establish presence of the XMM using Int 2FH. If the XMM is not present, the
program must determine whether it can continue without extended memory,
or attempt to allocate extended memory using the VDISK or Int 15H meth
ods described earlier in this chapter.

2. Allocate one or more extended memory blocks with XMS Function 09H. The
XMM returns a handle for each allocated block. (An extended memory block
handle, like a file handle, is an arbitrary number, and its value has no direct
relationship to the memory block's location).

3. Copy data between conventional memory and extended memory using XMS
Function OSH. This function requires a parameter block that specifies the
source and destination addresses in terms of a handle and a 32-bit offset. If a
handle is nonzero, it refers to an allocated extended memory block, and the
offset is from the base of that block. If the handle is zero, then conventional
memory is being addressed, and the 32-bit offset position contains a far
pointer in standard Intel format.

4. Before terminating, the program releases its extended memory block han
dle(s) with XMS Function OAH, so that the corresponding memory can be re
~sed by other programs.

A code skeleton for the complete process of detecting the XMS driver, obtain
ing its entry point, allocating extended memor)T, and releasing extended memory
is listed below:



Chapter 3

reqsize equ 64 ; KB extended memory to allocate

xmm dd a ; far pointer to XMM entry point
total dw a ; total KB ext. memory avail.
largest dw a ; size of largest block in KB
handle dw a ; extended memory block handle

movpars equ $ ; XMS Function aBH param block
move len dd a ; length to move in bytes
shandle dw a ; source handle
soffset dd a ; source offset or far pointer
dhandle dw a ; destination handle
doffset dd a ; dest. offset or far pointer

mybuf db 256 dup (?) ; contains data to be moved to
; extended memory block

bufsize equ $-mybuf ; length of data to be moved

mov
int
cmp
jne

mov
int
mov
mov

mov
ca II
mov
mov
cmp
jb

mov
mov
ca l L
or
jz
mov

ax,43aah
2fh
aL,8ah
error

ax,431ah
2fh
word ptr xmm,bx
word ptr xmm+2,es

ah,8
xmm
total,dx
largest,ax
dx,reqsize
error

ah,9
dx,reqsize
xmm
ax, ax
error
handLe,dx

; check if XMM present
; using multiplex interrupt
; status = installed?
; no, proceed

; XMM available, request
; entry point via multipLex
; interrupt and save it

; get available extended memory
; transfer to XMM
; save totaL KB avaiLabLe
; save largest free block
; enough memory?
; insufficient memory, jump

; function 9 = aLlocate block
; DX = block size desired in KB
; transfer to XMM driver
; alLocation successful?
; jump if allocation failed
; save extended memory handle



98 EXTENDING DOS

; set up param block for move
; from 'mybuf' to ext. memory

mov shandle,D ; zero out source handle
mov word ptr soffset,offset mybuf ; source' address in
mov word ptr soffset+2,seg mybuf ; conventional memory
mov ax,handle ; destination handle for
mov dhandle,ax ; extended memory block
mov word ptr doffset,O ; destination 32-bit offset
mov word ptr doffset+2,O ; within extended memory block
mov word ptr movelen,bufsize; length of data to move
mov word ptr movelen+2,D

mov ah,Dbh ; function D8H = move data
mov si,offset movpars ; OS:SI = param block address
call xmm ; transfer to XMM driver
or ax,ax ; any error?
jz error ; jump if error occurred

mov
mov
ca II
or
jz

ah,Oah
dx,handle
xmm
ax,ax
error

; function OAH = release block
; OX = extended memory handle
; transfer to XMM driver
; any error?
; jump if error occurred

As an alternative to using XMS Function D8H, the program can "lock" its ex
tended memory block with XMS Function DCH, obtaining the current physical
base address of the block. The program can then use Int 15H Function 87H to
move data in or out of extended memory. When the program is finished with an
access to extended memory, it unlocks its block again with XMS Function DDH, al
lowing the XMM to move the allocated block around in order to coalesce free
blocks and satisfy other allocation requests.

The High Memory Area

If you follow the trade press, you may remember a certain amount of publicity
and claims of increased performance surrounding the release of Microsoft Win
dows version 2.1, which was concurrently-by a strange coincidence-renamed
Windows/286. In its press releases, Microsoft stated that it had "found" an extra
64K of memory to put Windows kernel code in, and this allowed Windows to
run much faster because it drastically reduced the amount of segment swapping.
This mysterious 64K of memory, which Microsoft dubbed the "high memory
area" (HMA), is actually the first 64K of extended memory, less 16 bytes. But how
can it be possible for Windows/286, which is a real-mode program, to execute
code out of extended memory?



Chapter 3 Extended Memory and the XMS 99

The answer is clever, yet extremely simple. Recall the scheme by which phys
ical addresses are generated in real mode: the contents of a segment register are
shifted left four bits and added to a 16-bit offset. On an 8086/88 machine, if the
result overflows the 20-bit addresses supported by the CPU, the address simply
wraps; i.e., the upper bits are discarded. For example, an 8086/88 will interpret
the address FFFF: FF FFH as 0000: FFEFH. Of course, 80286- and 80386/486-based
PCs can support larger physical addresses (24 bits and 32 bits respectively), but
this is ordinarily not apparent when MS-DOS is running, because these machines
have special hardware to disable the most significant address lines in real mode,
making them behave more like a classic 8086/88-based PC.

Now imagine the consequences if your program is running on an 80286
based PC and you enable the A20 line to allow the generation of 21-bit physical
addresses, and then place the value FFFFH in one of the segment registers. When
FFFFH is shifted left four bits and added to a 16-bit offset, the result is in the range
FFFFOH-10FFEFH. In other words, enabling the A20 line allows the first 65,520
bytes of extended memory to be addressed without leaving real mode.

The XMS specification bears on the discovery of the HMA in two ways. First,
it provides a hardware-independent method of enabling or disabling the A20 line.
This eliminates the need for programs to write directly to the ports that control
the A20 line (possibly interfering with each other, especially in the case of inter
rupt handlers), and ensures that the toggling of the A20 line is always done in the
most efficient way. Second, it arbitrates the use of the high memory area between
competing programs.

The management of the high memory area is not very complex, since the
HMA is so small, and it is always allocated as a unit. A device driver or TSR pro
gram that uses the HMA should store as much of its code there as possible, since
the remainder will simply be lost for use by other programs. If the driver or TSR
cannot exploit nearly all of the HMA, it should leave it available for use by subse
quently loaded programs. The user can enforce such good behavior with th~

/HMAMIN switch, which causes allocation requests for the HMA to fail if they
are smaller than the specified value. .

Device drivers and TSRs must not leave the A20 line permanently turned on.
Although it might seem difficult to believe, some applications rely on the wrap
ping of memory addresses at the I-megabyte boundary, and ~ill overwrite the
HMA instead if the A20 line is left enabled. Similarly, intefrupt vectors must not
point directly into the HMA, since the A20 line will not necessarily be enablGd at
the time that the interrupt is received, so the code that comprises the interrupt



100 EXTENDING DOS

handler might not be visible. If the HMA is still available when a normal applica
tion runs, the application is free to use as much or as little of the HMA as it
wishes, with the following restrictions:

• Far pointers to data located in the HMA cannot be passed to MS-DOS
since MS-DOS normalizes pointers in a manner that invalidates HMA ad
dresses.

• Disk I/O directly into the HMA by any method is not recommended. The
behavior of some clone disk controllers-when handed addresses that fall
within the HMA-may vary.

An application that finds the HMA available and allocates it must also be
sure to release it before terminating. Otherwise, the HMA will be unavailable for
use by any other program until the system is restarted.

LOADALL: The Back Door to Extended Memory
There are two methods by which programs can obtain access to data in extended
memory while the CPU is in real mode. The first of these methods, which relies
on placing the special value FFFFH in a segment register along with manipulation
.of the bus's A20 address line, has already been described in the section on the
High Memory Area. Unfortunately, this technique only provides access to the first
65,520 bytes of extended memory. The second method, which employs the
80286's undocumented LOADALL instruction, can be used to reach any location
in extended memory.

To understand how LOADALL can provide this magical capability, we must
first recall how the Intel CPUs generate physical memory addresses. In real
mode, the contents of a segment register is shifted left by four bits (i.e., multi
plied by 16) and added to a 16-bit offset to form a 20-bit physical address. In pro
tected mode, an additional layer of address indirection is added. The upper 13
bits of the segment register are used as an index into a descriptor table-a special
data structure that is manipulated by the operating system and interpreted by
the hardware-and a 24-bit physical memory address is generated by combining
a base address from a descriptor with a 16-bit offset.

Fortunately, while the explanation in the preceding paragraph is correct and
useful in the abstract, it~is not a complete description of how the CPU produces
physical memory addresses. Imagine the penalty in CPU cycles and execution
time if the CPU actually had to perform a 4-bit shift on the contents of a segment
register each time a program referenced memory in real mode! Worse yet, try to



Chapter 3 Extended Memory and the XMS 101

envision the cost in CPU cycles and bus traffic if the CPU had to fetch a 24-bit
physical address from a descriptor each time a program accessed memory in pro
tected mode! By looking in the Intel manuals, however, we can see that the cost
of a memory reference in protected mode is usually the same as in real mode (un
less a segment register is also being loaded, as in the case of "far" JMPs and
CALLs), which is a clue that something else must be going on.

This something else turns out to involve the existence of a set of shadow regis
ters on the CPU chip called descriptor caches-one for each segment register.
Whenever a segment register is loaded with a POP or MOV instruction, the CPU
calculates (in real mode) or fetches (in protected mode) the true physical base ad
dress and length of the designated memory segment, and caches these values in
the associated shadow register. Subsequently, each time the segment register is
referenced by an instruction that accesses memory, the CPU simply adds the base
address from the descriptor cache to the offset specified in the instruction to
quickly form the final physical memory addtess.

The essential action of the LOADALL instruction is to initialize the contents
of every CPU register and flag including the descriptor caches we have just been
discussing from a 102-byte table stored in a specific format at physical memory
address 00800H (see Tables 3-3 and 3-4). It seems that the original intent of the
LOADALL instruction was only to aid in CPU testing, which is why it was never
included in any Intel manuals. But since LOADALL allows arbitrary physical
base addresses to be forced into the shadow registers, it can also be exploited by
a real-mode application program to read or write memory locations that would
not otherwise be addressable.

The LOADALL instruction is not supported by the Microsoft Macro Assem
bler, but you can include its op-code (OFH OSH) in your programs with DB state
ments. LOADALL must be used with great caution though. If an interrupt occurs
after you execute LOADALL, but before you complete the access to extended
memory, the interrupt handler may load the segment register and thus change
the contents of the associated descriptor cache, and your extended memory read
or write will go astray. Therefore, interrupts must be blocked throughout the exe
cution of code that relies on LOADALL. Furtherlnore, the 102 bytes starting at
address 00800H lie within memory controlled by MS-DOS, so you must carefully
save and restore this area.

Assuming LOADALL is used cautiously, can it be used safely? That is, can
we expect a program containing the LOADALL instruction to run correctly and
reliably on a range of DOS versions, PC clone brands, and hardware configura-



102 EXTENDING DOS

tions? The answer, at least on 80286-based PCs, seems to be a qualified yes.
Microsoft uses LOADALL in the RAMDRIVE.SYS virtual disk driver supplied
with Windows and the OEM versions of MS-DOS, and also uses it in the DOS
compatibility environment of OS/2, so we can predict (given Microsoft's close re
lationship with Intel) that LOADALL isn't likely to vanish from future steppings
of Intel's 80286 chips. For the same reason, the 80286 CPUs from second sources.
such as AMD and Harris will be obligated to support LOADALL indefinitely.

On 80386- or 80486-based PCs, the answer is not so clear-cut. The Intel 80386
and 80486 CPUs do not have a LOADALL instruction, so execution of LOADALL
triggers an invalid op-code exception. In order for programs containing LOADALL
to run properly, the ROM BIOS must field the exception, examine the instruction
that caused the interrupt, and emulate the action of LOADALL if necessary.
High-quality ROM BIOSes (such as those found on Compaq 80386 and 80486 ma
chines) can be relied on in this area but other companies' ROM BIOSes are not as
predictable, which is one of several reasons why OS/2 doesn't run on many
PC/AT clones.

Table 3-3: The data structure used by the undocumented 80286
LOADALL instruction. This structure must always be located at physical
memory address 00800H, and is used to initialize all CPU registers and flags.

Memory Access CPU Register
0800-080SH none
0806-0807H MSW (Machine Status Word)
0808-081SH none
0816-0817H TR Register (Task Register)
0818-0819H CPU Flags Word
081A-081BH IP Register (Instruction Pointer)
081C-081DH LDTR Register (Local Descriptor Table Register)
081E-081FH OS Register
0820-0821H 55 Register
0822-0823H CS Register
0824-082SH ES Register
0826-0827H 01 Register
0828-0829H 51 Register
082A-082BH BP Register
082C-082DH SP Register
082E-082FH BX Register
0830-0831H DX Register
0832-0833H CX Register



Chapter 3 Extended Memory and the XMS 103

Memory Access
0834-0835H
0836-083BH
083C-0841H
0842-0847H
0848-084DH
084E-Q853H
0854-Q859H

085A-085FH
0860-Q865H

CPU Register
AX Register
ES Descriptor Cache
CS Descriptor Cache
55 Descriptor Cache
DS Descriptor Cache
GDTR (Global Descriptor Table Register) Cache
LDTR· (Local Descriptor Table Register) Cache
IDTR (Interrupt Descriptor Table Register) Cache
TSS (Task State Segment) Descriptor Cache

*See Table 3-4 for the format of the fields for the descriptor cache, GDTR cache, LDTR cache, and IDTR
cache.

Table 3-4: The format of the 6-byte fields in the LOADALL data structure which
are used to load the C5, D5, E5, and 55 descriptor caches, GDTR cache, LDTR cache, and IDTR cache.

Offset
0-2

3

4-5

Contents
24-bit segment base address, with least significant byte at lowest address, and most
significant byte at highest address
Access rights byte for CS, OS, ES, and SS descriptor caches; 0 for GDTR, LDTR, and
IDTRcaches
16-bit segment size

Table 3-5: The XMS Programming Interface

Function Parameters Results if Successful Results if Unsuccessful

BL = error code
AX = OOOOHAH=OOH AX = XMS version

BX = XMM (driver) version
DX = HMA indicator

OOOOH if no HMA
OOOlH if HMA exists

Note: Version numbers are binary coded decimal (BCD). The value returned in OX is not affected by any pre
vious allocation of the HMA by another program.

XMS Function OOH
Get XMS Version

XMS Function 01H AH = OIH
Allocate High Memory DX = HMA bytes
Area (HMA) needed (driver or

TSR)orOFFFFH
(application
program)

AX = OOOIH AX=OOOOH
BL = error code



104 EXTENDING DOS

Function Parameters Results if Successful Results if Unsuccessful

Note: The maximum HMA allocation is 65,520 bytes. The base address of the HMA is OFFFF:OOIOH. If an ap
plication fails to release the HMA before it terminates, the HMA becomes unavailable to other programs until
the system is restarted.

XMS Function 02H
Free High Memory Area
(HMA)

AH=02H AX = OOOlH AX = OOOOH
BL = error code

XMS Function 03H AH = 03H AX = OOOlH AX = OOOOH
Global Enable A20 Line BL = error code
Note: This function should only be used by programs that have successfully allocated the HMA. The A20 line
should be disabled before the program releases control of the system.

XMS Function 04H AH = 04H AX = 0001H AX =OOOOH
Global Disable A20 Line BL = error code
Note: This function should only be used by programs that have successfully allocated. the HMA.

XMS Function 05H AH = 05H AX = 0001H AX = OOOOH
Local Enable A20 Line BL = error code
Note: This function should be used by programs that do not own the HMA. The A20 line should be disabled
before the program releases control of the system.

AX = 000lHXMS Function 06H AH = 06H
Local Disable A20 Line
Note: This function should be used by programs that do not own the HMA.

AX = OOOOH
BL = error code

XMS Function om AH = 07H If A20 line is enabled
Query A20 Address Line AX = 0001 H
Status If A20 line is disabled

AX = OOOOH
BL=OOH

AX=OOOOH
BL = error code

AX=OOOOH
BL = error code

AH=08H AX = largest free
extended memory
block (KB)

OX = total free extended
memory (KB)

Note: The size of the HMA is not included in the returned values, even if it is not in use.

XMS Function 08H
Query Free Extended Mem
ory

XMS Function 09H AH = 09H AX = 000lH
Allocate Extended Memory OX = requested block OX = EMB handle
Block (EMB) size (KB)
Note: An EMB block length of zero is explicitly allowed.

AX=OOOOH
BL = error code



Chapter 3 Extended Memory and the XMS 105

Function Parameters Results if Successful Results if Unsuccessful

BL = error code
AX = OOOOHAX = 000lHAH=OAH

OX = EMB handle
XMS Function OAH
Free Extended Memory
Block (EMB)
Note: If an application fails to release its extended memory before it terminates, the memory becomes un
available for use by other programs until the system is restarted.

AX=OOOOH
BL = error code

XMS Function OBH AH = OBH AX = 000lH
Move Extended OS:SI = segment:offset
Memory Block (EMB) of parameter block
Note: Parameter block format:

dword length of block (bytes)
word source EMB handle
dword source offset
word destination EMB handle
dword destination offset.

If source and/or destination handle is zero, the corresponding offset is assumed to be a normal far pointer.
The EMB need not be locked. The state of the A20 line is preserved.

AX = OOOOH
BL = error code

XMS Function OCH AH = OCH AX =0001 H
Lock Extended OX = EMB handle OX:BX = 32-bit linear address of
Memory Block (EMB) locked block

Note: This function is intended for use by programs which enable the A20 line and then access extended
memory directly. Lock calls may be nested.

AX=OOOOH
BL = error code

AX = OOOlHXMS Function ODH AH = OOH
Unlock Extended OX = EMB handle
Memory Block (EMB)
Note: After an EMB is unlocked, the 32-bit linear address returned by any previous lock call becomes invalid
and should not be used.

XMS Function OEH
Get EMB Handle
Information

AH=OEH
OX = EMB handle

AX =OOOlH
BH =lock count (0 if block not

locked)
BL = number of handles still

available
OX = block size (KB)

AX = OOOOH
BL =error code

AX=OOOOH
BL = error code

AX =OOOlHAH=OFH
BX = new block size

(KB)

OX = EMB handle
Note: Blocks may not be resized while they are locked.

XMS Function OFH
Resize Extended
Memory Block (EMB)



106 EXTENDING DOS

Function Parameters Results if Successful Results if Unsuccessful

.AX =OOOlH
BX = segment base of allocated

block
OX = actual block size (para

graphs)

AH=lOH
OX = requested block

size (paragraphs)

AX =OOOOH
BL = error code
OX = size of

largest avail
able block
(paragraphs)

Note: Upper memory blocks are always paragraph aligned. The A20 line need not be enabled to access an
UMB.

XMS Function lOH
Allocate Upper
Memory Block (UMB)

XMS Function IlH AH = IlH AX = 000lH
Free Upper Memory Block OX = segment base of
(UMB) block

AX=OOOOH
BL = error code

Table 3-6: XMS error codes.

Value
80H
81H
82H
8EH
8FH
90H
91H
92H
93H
94H
AOH
AIH
A2H
A3H
A4H
ASH
A6H
A7H
A8H
A9H
AAH
ABH
ACH

Meaning
Function not implemented
VOISK device driver was detected
A20 error occurred
General driver error
Unrecoverable driver error
High memory area does not exist
High memory area already in use
OX is less than /HMAMIN= parameter
High memory area not allocated
A20 line still enabled
All extended memory is allocated
Extended memory handles exhausted
Invalid handle
Invalid source handle
Invalid source offset
Invalid destination handle
Invalid destination offset
Invalid length
Invalid overlap in move request
Parity error detected
Block is not locked
Block is locked
Lock count overflowed



Chapter 3

Value
ADH
BOH
BIH
B2H

Meaning
Lock failed
Smaller UMB is available
No UMBs are available
Invalid UMB segment number

Extended Memory and the XMS 107





Chapter 4

80286-based Protected-Mode DOS Extenders

Andrew Schulman

Several software manufacturers sell products that allow programs written for
MS-DOS to access up to 16 megabytes of memory, in contrast to the 640K limit of
MS-DOS. Unlike EMS or XMS, the memory access these products provide is
transparent, in that "normal" pointers can be used. Programs developed with
these products continue to use MS-DOS, but run in the "protected mode" of the
80286 and higher Intel microprocessors. We refer to these products as 80286
based protected-mode DOS extenders.

Lotus 1-2-3 Release 3 is one example of a program that uses an 80286-based
protected-mode DOS extender, Rational Systems' DOS/16M. Other products that
employ DOS/16M include AutoCAD Release 10.0 (AutoDesk), the TOPS net
work (Sun/TOPS), Informix SQL and Informix 4GL (Informix), Glockenspiel C++
(ImageSoft), and Rational Systems' own Instant-C. DOS/16M is planned for in
clusion in the next release of Ashton-Tate's dBASE IV. DOS extenders-once ob
scure boutique items-have moved into the mainstream, and even the forefront,
of commercial PC software development.

By 80286-based, we mean software that requires at least an IBM PC/AT or
compatible, and that runs in 16-bit protected mode. Programs such as the MS
DOS version of Lotus 1-2-3 Release 3 also run on PC-compatible computers with
Intel 80386 or 80486 CPUs. Just as these 32-bit protected-mode processors can

109



110 EXTENDING DOS

lower themselves by emulating the real-mode 8088, so too can they emulate the
16-bit protected mode native to the 80286.

Why develop for the 2861
The 80286 is on the way out. Even Intel, which designed the 286, is running ads
that flatly state, "It just doesn't make sense to buy another 286-based personal
computer," and that encourage you to "invest in the future, not in the past."

While Intel may have ulterior motives in downplaying the 286 (several other
companies now produce 286 chips), the company's ads are right. You probably
shouldn't buy a 286-based computer. So why produce 286-based software?

Because right now, if you are developing software to run under real-mode
MS-DOS, you are producing 8088-based software. 286-based protected-mode
software may not sound "cutting edge," but it is way ahead of where most PC
software is today. Without some form of protected-mode operating environment,
such as OS/2 or a DOS extender, even the fastest 80486 can only be used as a fast
8088. Without protected mode, the new machines are all dressed up with no
where to go. Protected mode junks 8088 compatibilit~

Why not go straight to 386-based protected mode? Doesn't developing for a
286-based DOS extender repeat the mistake that Microsoft and IBM apparently
made when they developed OS/2 forthe 286 instead of the 386?

It all depends on your application. If you can guarantee that your potential
custo~ers have 386 computers, then 32-bit protected mode is the way to go. Oth
erwise, the 16-bit protected mode of the 286 is a better base. While there are still
only two million 386-based PCs currently in use worldwide, there are about
twelve million 286-based PC/ATs and compatibles.

After all, why is there so little 80386-dependent software for all the 80386
hardware that the computer trade press is urging we buy? Because of compatibil
ity. As long as there are XTs and ATs out there, software vendors are rightly hesi
tant to lock themselves solely into a 386 market.

By using a 286-based protected-mode DOS extender like DOS/16M, you cut
yourself off from customers with XTs, but not from customers with ATs. Thus, 16
bit 286-based DOS extenders appear to be a good compromise between the desire
for software to finally catch up with hardware, and the desire not to be locked in
to the small (though rapidly growing) 386 market.

In many ways, a DOS extender combines the best of both wo!lds: continued
access to MS-DOS (Int 21H) and BIOS services, but with the ability to develop



Chapter 4 80286-based Protected-Mode DOS Extenders 111

multi-megabyte programs and use the native protection capabilities of the Intel
microprocessors, which lie fallow in real mode.

Focusing on Rational Systems' DOS/16M, which provides up to 16 mega
bytes of memory while running under MS-DOS 3.x and higher, this chapter
shows you how to reap the benefits of DOS extenders. First, it shows how a 286
based DOS extender works, and how to port programs from real mode to this
protected-mode MS-DOS hybrid, with a minimum of changes. (Often, this barely
merits being called a port, since in many cases the 286-based DOS extender ver
sion of your program can use the same .OB] files as the real-mode version.) Fi
nally, it shows how to eliminate protection violations and how to improve
performance.

Since the primary benefit of a DOS extender is access to multi-megabytes of
memory, very large programs have the most to gain from using a DOS extender.
{Though programs with a small amount of code, but very large data require
ments, clearly also benefit.} Such large programs are frequently written in C, so
this chapter contains a number of sample programs in C.

On the other hand, when you port to protected mode, the few thorny areas
tend to be confined to a small part of the program written in assembler, so we use
assembler examples as well.

Rational Systems also makes a protected-mode integrated development envi
ronment, Instant-C, which runs under DOS/16M. We use Instant-C examples in
an appendix to this chapter; its interactive style provides a convenient base for
exploring protected mode, and its price is substantially less than that of
DOS/16M. While not intended as a substitute for DOS/16M, it can run most of
the sample code in this chapter.

This chapter also examines Eclipse Computer Solutions' OS/286, which pro
vides many of the same capabilities as DOS/16M. Most of the programs in this
chapter can also be compiled for OS/286. But there are important differences be
tween DOS/16M and OS/286. One key difference is that DOS/16M is much eas
ier to use than OS/286, while OS/286 is much cheaper than DOS/16M. In
addition to applications like CadKey 3 Plus, OS/286 is incorporated in a number
of programming languages, such as Golden Common Lisp (Gold Hill), Lahey
Fortran 77L-EM/16, and the Lattice 80286 C Development System.

Most of the changes required when porting your program from real mode to
a protected-mode DOS extender are also required when porting to OS/2. In fact,
most of the principles involved in programming for a 286-based DOS extender
apply to any 16-bit protected-mode environment, including OS/2.



112 EXTENDING DOS

While this chapter emphasizes porting code from real-mode MS-DOS to a
protected-mode DOS extender, a different scenario involves porting a mainframe
application, which, without a DOS extender or other protected-mode environ
ment, would never be able to run on a PCIAT. Such ports should be far simpler
than those described hel'e.

Protected-Mode MS-DOS
To demonstrate how programming for a 286-based DOS extender differs from
"normal" DOS programming, it is useful to construct a program that manipulates
a large amount of data. One of the touted benefits of DOS extend:ers is that they
break the 640K barrier, so we need to see how difficult it is to get at this extra
memory, and what special steps are involved.

The following C program builds a linked list as large as available memory. It
allocates nodes and adds them to the linked list until the C memory-allocation
function rna lloc () returns NULL, indicating that memory is exhausted. The pro
gram prints out the number of nodes in the list and how many bytes of memory
it has allocated. It then walks back through the list, using the free() function to
deallocate the nodes:

/*
LI5T.C

Microsoft C 5.1 real mode:
cl -AL -Ox -W3 list.c

DOS/16M protected mode:
; use same OBJ file; just relink and postprocess
link /noe/map \16m\preload \16m\crtO_16m \16m\pml list,list,list;
\16m\makepm list
\16m\splice list.exe list.exp \16m\loader.exe

OS/286 protected mode:
; use same OBJ file; just relink and postprocess
link /noe/map list,list,list,\os286\llibce.lib;
\os286\express list
\os286\bind -0 list.exe -l \os286\tinyup.exe \

-k \os286\os286.exe -i list.exp

Turbo C real mode:
tcc -m l list

DOS/16M Turbo C version:
; use same OBJ file; just relink and postprocess



Chapter 4 80286-based Protected-Mode DOS Extenders 113

tLink /m \16m\tc\preLoad \16m\tc\cOL List \16m\tc\pmL \
\16m\tc\setargv \16m\tc\mem_16m,List,List,\tc\Lib\cL;

\16m\makepm -stack 8192 List
\16m\spLice List.exe List.exp \16m\Loader.exe

to run:
LIST [node size]

output on 2meg Compaq:
rea L mode: 527k
DOS/16M: 1692k
OS/286: 1372k

*/

#incLude <stdLib.h>
#incLude <stdio.h>
#incLude <maLLoc.h>
#incLude <time.h>

typedef struct node {
unsigned Long num;
void *data;
struct node *next;
} NODE;

main(int argc, char *argv[])
{

NODE *p, *q;
time_t t1, t2;
unsigned Long nodes = 0;
unsigned nodesize = (argc > 1) ? atoi(argv[1]) 512;

time(&t1);

/* aLLocate Linked List that consumes aLL avaiLabLe memory */
for (q = NULL; ; q->next = p)
{

p = q;

if «q = maLLoc(sizeof(NODE») == NULL)
break;

if «q->data = maLLoc(nodesize» == NULL)
{

free(q);
break;

}

q->num = nodes++;
if «nodes % 1000) -- 0)



114 EXTENDING DOS

printf("%lu nodes: %lu seconds\n", nodes, time(&t2) - t1);
}

printf("%lu nodes: %lu seconds\n", nodes, time(&t2) - t1);
printf("Allocated %uK\n fl , (nodes * (sizeof(NODE)+nodesize» » 10);

/* in reverse order, deallocate the nodes */
for ( ; p != NULL; P = q)
{

q = p->next;
if (p->num != --nodes)

printf(fllist corrupt: nodes=%lu num=%lu\n", nodes, p->num);
free(p->data);
free(p);

}

/* zero nodes remaining indicates success */
return nodes;

}

When this program is compiled for real-mode MS-DOS, using large model
(which manipulates far pointers), and run on an IBM PC/AT with two mega
bytes of memory, the program allocates about 550K, oblivious to the presence of
more memory in the machine. This real-mode version can be compiled with
Microsoft C 5.1, for example, using the following command-line:

cl -AL -Ox -W3 list.c

The c l driver program first runs the C compiler to produce LIST.OBI, and
then runs the Microsoft linker to produce LIST.EXE.

Surprisingly, to make a protected-mode version of the same program, we can
use the exact same LIST.OBI that the compiler produced for real mode. These are
the commands to produce a DOS/16M version of LIST.EXE, using the object
module LIST.OBI:

Link /noe/map \16m\preLoad \16m\crtO_16m \16m\pmL List,List,List;
\16m\makepm list
\16m\splice list.exe list.exp \16m\loader.exe

Since this protected-mode LIST.EXE uses the same LIST.OBI as the real-mode
LIST.EXE, it is a little difficult to believe that it behaves any differently. Neverthe
less, it does. On the same 286 machine with 2 megabytes of memor~ the
DOS/16M version of LIST.EXE allocated 1692K, more than three times as much
as in real mode. On a machine with more memory, the protected-mode program



Chapter 4 80286-based Protected-Mode DOS Extenders 115

allocates an even longer (up to 16 megabytes) linked list, whereas in real mode it
is always stuck at around 550K.

With the same .OB] as in real mode, it's obvious that no additional code has
been written to access extended memory. Contrast this to DOS extensions such as
EMS or XMS, which also provide access to more memory, but which do so indi
rectly. As explained in Chapters 2 and 3, in order to allocate expanded memory
with EMS or extended memory with XMS, you need to make separate calls to
these memory managers. In real mode, for example, the C memory-allocation
function rna LLoe () cannot allocate out of EMS or XMS memory.

And allocation is just the beginning. When using memory in a high-level lan
guage, you would like to use a simple pointer dereference. But EMS requires that
you map the logical page to a physical page, and XMS requires that you move
from extended to conventional memory, before you can access memory allocated
using these specifications.

In contrast, LIST.C freely uses, say, p->num, without knowing whether it is in
extended or conventional memory. In fact, with a DOS extender, this distinction
nearly disappears: it's all just memory.

This is big memory, but not virtual memory (VM). Here is one of several im
portant differences between a DOS extender and a genuine operating system
such as OS/2. Rational Systems does offer VM as an add-on to DOS/16M. But as
built here, while LIST.EXE uses all available memory, it doesn't expand onto your
hard disk, as it would under OS/2.

Note also that slightly different coding of LIST.C could have produced in
compatibilities with protected mode. LIST.C uses the t; me ( ) function to calculate
how long memory allocations take in protected versus real mode. (It takes about
the same amount of time per allocation.) Now if, instead of calling ti me ( ), we
peeked at low-memory BIOS location 46CH, this could, depending on how we
formed the pointer, generate a protection violation under a DOS extender. Later
on, we will see why this is so, and will show how you can safely peek directly at
absolute physical locations under a protected-mode DOS extender.

In the three lines used to produce the DOS/16M version of LIST.EXE, we first
used the standard Microsoft linker to relink LIST.OB] along with some additional
.OB] files supplied with DOS/16M. The resulting file, LIST.EXE, is then run
through a postprocessor, MAKEPM.EXE, that (as its name implies) makes a pro
tected-mode (PM) executable from a real-mode executable. The output from this
process is LIST.EXP. The extension .EXP designates a protected-mode executable.

Now, how do we run one of these .EXP files?



116 EXTENDING DOS

On the one hand, it would seem that we can't run it simply by typing its
name on the DOS command line, since this is a protected-mode program,
whereas MS-DOS is a real-mode operating system. On the other hand, DOS/16M
is not an environment like DESQview or Windows: the user of a program built
with a DOS extender does not go out and buy a special run-time shell.

Instead, from DOS you run a small (38K) program supplied with DOS/16M,
called LOADER.EXE, which manages the interface between MS-DOS and pro
tected mode.

But wait a minute-you don't want the users of your program to have to run
some other program first just in order to run yours. To solve this problem, all
DOS extenders provide a program that binds the loader/kernel together with
your program, so that users can run your program from the DOS command line,
simply by typing its name. In DOS/16M, this binder is SPLICE.EXE. In our ex
ample, SPLICE binds LIST.EXP together with LOADER.EXE to form LIST.EXE.

The file sizes involved are fairly reasonable. Whereas the real-mode LIST.EXE
produced by Microsoft C 5.1 is 12K, protected-mode LIST.EXP is 13K; when
SPLICE merges this with the 38K LOADER.EXE, the resulting protected-mode
LIST.EXE is 51K: not bad for a program that has the convenience of MS-DOS
without its restrictions.

How does it work?
It may seem rather odd to be reading about protected mode in a book on MS
DOS. After all, this is the sort of discussion usually found in books on OS/2 or on
the Intel 286/386 architecture.

The strange thing about DOS extenders is that they provide a way to take ad
vantage of the large address space and protection mechanism discussed in Chap
ter I, all the while employing the services of real-mode MS-DOS.

This interface between MS-DOS and protected mode can be made to sound
magical. In fact, the mechanism is rather simple.

Let's look behind the scenes and see how this works. In the remainder of this
section, it is important to emphasize that we are talking about what a DOS ex
tender like DOS/16M does, not what you have to do. All you have to do is more
or-less blindly follow the three steps-relink, postprocess, splice-and the DOS
extender takes care of the rest. "The rest" is what we will now proceed to relate.

A protected-mode loader like DOS/16M's LOADER.EXE starts off running in
real mode under MS-DOS. The loader constructs a global descriptor table (GDT),



Chapter 4 80286-based Protected-Mode DOS Extenders 117

local descriptor table (LDT), and interrupt descriptor table (IDT) for your pro
gram, switches the machine into protected mode, and then spawns your pro
gram. By setting up the IDT, the loader sets up interrupt handlers for MS-DOS
(Int 21H) and BIOS services (lnt 10H, lnt 16H, etc.). Whenever your program
makes a DOS or BIOS request, the OOS/16M kernel's handler catches it and acts
either as a front end to, or as a replacement for, the corresponding interrupt ser
vice routine in real mode. When your program exits, DOS/16M puts the com
puter back into real mode and exits back to DOS.

A DOS extender is not an operating system. In contrast to OS/2, a DOS ex
tender exists simply to provide the minimal facilities for running your DOS pro
gram in protected mode. Thus, the descriptor tables need serve only your
program; running only one task simplifies things considerably (though this is
one of the important differences between DOS/16M and OS/286, which we will
discuss later).

Protected-mode descriptor tables can be built in real mode (in fact, the GDT
must be built in real mode, which is why 286 and 386 machines boot up in real
mode, even though their "native" mode is protected); the GDT register (GDTR)
and IDT register (IDTR) are each loaded with six bytes containing the size and
physical base address of the corresponding table, and the LDT register (LDTR) is
loaded with a selector to the LDT. For example:

19dt fword ptr gdt_desc ; load GDT
lidt fword ptr idt_desc ; load lOT
lldt ax ; load LOT

Now that there is a GDT, the computer can be put into protected mode by
setting the bottom bit of the machine status word (MSW), using the following in
structions (the imp clears the 286 instruction pipeline):

smsw ax ; store MSW
or al, 1 ; set protected-mode bit
lmsw ax ; load MSW
imp $+2 ; clear pipeline

The machine is now in protected mode, and the DOS extender can spawn
your protected-mode program.

The IDT is crucial to the operation of a DOS extender. It serves the same pur
pose in protected mode as the low-memory interrupt vector table in real mode,
except that the IDT is composed of eight-byte gates, descriptors used to control
access to code segments. In building an lOT for your program, a DOS extender
most importantly includes a descriptor for Int 21 H. This descriptor points not to the



118 EXTENDING DOS

real-mode entry point for Int 21 H(which could be MS-DOS itself or some other
program that has hooked Int 21H, such as Sidekick), but to the DOS extender's
protected-mode Int 21H handler. Thus, a DOS extender hooks Int 21H by setting
up an interrupt gate in a protected-mode IDT, rather than by calling Int 21H

AH=25H (Set Vector) or directly poking the low-memory interrupt vector table.
The original Int 21 Hvector in the real-mode interrupt vector table is left alone.

Whenever your protected-mode program issues an Int 21 H (to open a file,
say, or to allocate memory), the DOS extender catches it, checks the function re
quest in the AH register, and acts either as a replacement for, or as a front end to,
real-mode MS-DOS. The DOS extender can service the request itself, or it can
modify it, switch the machine back into real mode, resignal the Int 21H (in
DOS/16M this is called a passdown interrupt), modify the return value, and
switch the machine back into protected mode. This happens "inside" the Int in
struction, without your program's knowledge.

This procedure works much like normal interrupt chaining, in which a pro
gram that has hooked an interrupt also passes it along to the previous owner.
The difference here is that a CPU mode switch takes place before passing the in
terrupt down the chain.

You might have doubts about switching the machine from protected down to
real mode. Switching from real to protected mode isn't a problem, and on a 386
switching from protected back to real mode is a simple matter as well, but the
286 is like a cat that knows how to climb up a tree but doesn't know how to get
back down: it doesn't allow for switching back into real mode. The only way to
make the transition is by resetting the chip. DOS extenders on the 286 use the
same weird, but effective, "triple fault" technique for switching into real mode
that Microsoft uses in the OS/2 compatibility box. One way to force a triple fault
is to issue an Int 3H after setting the IDT limit to zero.

Can this really take place quickly enough? As measured by DOS/16M's
PMINFO utility, while a 16 MHz Compaq 386 can switch back and forth between
real and protected mode over 7,000 times per second, an 8 MHz IBM PC/AT can
only switch about 1,200 times per second. But this is more than adequate for
most applications. A program that needed to telecommunicate at 9600 baud on
an IBM AT could avoid the costly gear shift, using several techniques docu
mented in the DOS/16M and OS/286 manuals.

Getting back to our protected-mode program, when it finally exits back to
DOS with Int 21 HAH=4CH, it is actually exiting back to the DOS extender. The



Chapter 4 80286-based Protected-Mode DOS Extenders 119

DOS extender cleans up its descriptor tables, puts the machine back into real
mode, and exits back to the "real" MS-DOS.

So that is how protected-mode programs can be run from the DOS command
line and use DOS services. But the Int 21 Hprogram interface is not sufficient.
The same mechanism used with Int 21 H is also used for BIOS services such as
the keyboard (Int 16H) and video (Int 10H). Programmers can use the same
mechanism to communicate with other real-mode services (for example, the
mouse, the DESQview API, or NetBIOS), or to call functions in a real-mode li
brary (for example, a graphics library that requires conversion to run in protected
mode, but for which you lack source code).

Even this is insufficient. Only the rarest well-behaved DOS program uses just
DOS and BIOS calls. The IN and OUT instructions don't present a problem, since,
for example, port 20H is as valid in protected as in real mode. But most applica
tions peek and poke various well-known memory locations. So a second tech
nique allows protected-mode programs to use many protected-mode selectors as
though they were well-known real-mode segment addresses. For instance, pro
tected-mode selector B800H can be made to correspond to real-mode physical ad
dress B8000H. Similar to bimodal pointers used in OS/2 device drivers, these are
referred to as transparent addresses by OOS/16M.

Now, isn't this all a kludge? In one way it certainly is, since MS-DOS was
never intended to be called from protected mode. On the other hand, numerous
programs piggyback In t 21 H. By providing system services via interrupts, and
by allowing complete flexibility in getting and setting the interrupt vectors, MS
DOS provides a powerful mechanism for patching and extending itself. DOS ex
tenders are merely using this aspect of the PC architecture.

DOS extenders treat MS-DOS as a place to plug in an installable memory
management system. This is possible because of the interrupt-based architecture
of PC system services. The existence of the MS-DOS Set Vector function means
that such services, including Int 21 H itself, are assumed to be replaceable, patch
able, and chainable. (Remember, though, that the DOS extender plugs in its re
placements by setting up a protected-mode IDT.)

To examine the interface a DOS extender provides between protected mode
and MS-OOS, and to show that the DOS extender does its work, not through li
braries or startup code, but at a much lower level, we can run a small assembler
program under the DOS/16M debugger, Instant-D.

This program, FILEREAD.ASM, merely reads its own source code from disk
and displays it on stdout; it can be assembled with the Microsoft assembler



120 EXTENDING DOS

(MASM) or Turbo assembler (TASM), linked with a DOS/16M module (PRE
LOAD.OB}) that contains placeholders for the GOT, IDT, and other segments,
and then run through the MAKEPM utility. The resulting program,
FILEREAD.EXP, is 368 bytes. The source code can also be used for a real-mode
version or for an Eclipse OS/286 version:
; fileread.asm
;
; real-mode version:
; masm -Zi fileread;
; link leo fileread;
; cv fileread
;
; DOS/16M version:
; masm -Zi fileread;
; link leo \16m\asm\preload fileread,fileread;
; \16m\makepm fileread
; \16m\d fileread
;
; 05/286 version (within CP environment):
; \os286\cp
; masm -Zi fileread;
; link Ico/map fileread,fileread,fileread;
; \os286\express -nS9 -wb fileread
; \os286\symtab fileread
; load fileread

dosseg
.model small

.stack

.data
fname db "fileread.asm", 0

.code
start: mov dx, dgroup .

mov ds, dx

; to allocate memory under DOS, first shrink down image
; not needed for DOS extender, but doesn't hurt

mov ah, 4ah
mov bx, 100h
int 21h ; ignore any errors here

mov ah, 48h
mov bx, 100h
int 21h
jc error

; allocate buffer



Chapter 4 80286-based Protected-Mode DOS Extenders 121

mov di, ax ; di = buffer selector

mov ah, 3dh ; open file
mov al, 0
mov dx, offset fname
i nt 21h
jc error
mov si, ax ; si = file handle

mov bx, si
mov ah, 3fh ; read file into buffer
mov cx, 1000h
push ds
mov ds, di
mov dx, 0
i nt 21h
pop ds
ic error

mov cx, ax ; ax = count of bytes read
mov ah, 40h
mov bx, 1 ; write buffer to stdout
push ds
mov ds, di
mov dx, 0
int 21h
pop ds
ic error

mov ah, 3eh ; close file
mov bx, si
int 21h
jc error

mov ah, 49h ; free buffer
mov es, di
i nt 21h
ic error

mov al, OOh ; program succeeded
imp short fini

error: mov al, 01h ; program failed

fi ni : mov ah, 4ch ; exit to DOS
i nt 21h

end start



122 EXTENDING DOS

It is hard to see how this constitutes a DOS extender program: it makes no
calls to a special API. That is largely the point of using a DOS extender.

But running under the DOS/16M debugger shows that something unusual is
happening behind the scenes. After this program allocates a buffer with the stan
dard MS-DOS function Int 21H AH=48H, we can examine the segment of the
buffer returned in AX, which this program then stores in DI. Right away we can
see something different from normal MS-DOS: the segment number is 90H, which
would never be returned by Function 48H under normal circumstances. This num
ber 90H is a protected-mode selector. Instant-D provides a command that allows
us to see the selector's physical base address, size, and other attributes:

>sel di
90: linear 1.ABFC.0, limit FFF, data, NotRefd

This data segment is located above the first megabyte of memory, at physical
address 1ABFCOH. The last legal offset within the segment (the limit) is 4095
(F FFH). One important note: if you are running on a 386 with a control program
like 386MAX or QEMM, the selector command does not display an absolute
physical address, but instead shows a linear address based on 386 paging.

In real mode, the highest possible absolute address is FFFFFH, or at best
10 FFE FHif the A20 line is enabled with a utility like Microsoft's HIMEM.SYS. The
absolute address 1ABFCOH is way beyond the normal reach of MS-DOS.

After opening the file and calling Int 21H AH=30H to read its contents into the
buffer, we can examine the selector again:

>sel di
90: linear 1.ABFC.0, limit FFF, data

The NotRefd attribute has gone away, indicating that this block of memory
has now been accessed. We can also examine the segment directly:

>db di:O
0090:0000 = 3B 20 20 20 20 20 20 20 ,
0090:0008 = 66 69 6C 65 72 65 61 64 fileread
0090:0010 = 2E 61 73 60 00 OA 3B 00 .asm ;

Thus, Int 21 HFunction 3FH really has read from a file into an extended-mem
ory buffer, without us doing anything besides relinking and postprocessing.

More Than One Int 21 H
The DOS/16M debugger has a command to display entries from the protected
modeIDT:



Chapter 4 80286-based Protected-Mode DOS Extenders 123

>di 21
21: RM = OEC4'06C3, PM = 0070:076D

This shows that there are two interrupt service routines for Int 21 H. The dis
play interrupt command shows both the real-mode interrupt vector and the pro
tected-mode interrupt gate. Instant-D uses the notation xxxx'xxxx to indicate
real-mode addresses; xxxx:xxxx is used solely for protected-mode addresses.
Here, the real-mode vector is the same as it was before DOS/16M took over. The
protected-mode gate catches all Int 21 H requests made by the protected-mode
program. Some of these are serviced entirely in protected mode, and some are
passed to the real-mode interrupt service routine (ISR).

Again, this is not all that different from the normal operation of MS-DOS. On
a normal PC with a few TSRs loaded, every time a program issues an Int 21 H,

several different ISRs see it. The only difference here is that the first of these ISRs
runs in protected mode.

Under what circumstances is an In t 21 Hrequest serviced entirely in pro
tected mode, and when is it passed down to real-mode MS-DOS?

In the case of memory allocation (AH=48H), it depends on DOS/16M's alloca
tion strateg)T, and on how much extended memory is available. If the DOS/16M
strategy is "prefer extended," and if there is sufficient extended memory, the re
quest can be handled entirely in protected mode. On the other hand, if the
DOS/16M strategy is "force low," or if there is insufficient extended memory, the
request must be subcontracted out to real-mode MS-DOS.

For file I/O, all Int 21 Hrequests must be passed down to MS-DOS, because
the DOS extender rightly knows nothing about the file system.

The DOS extender, however, cannot simply pass file I/O requests through to
real mode. The example FILEREAD.ASM shows why: the buffer we want to use
is located in extended memor)T, and MS-DOS doesn't really know how to access
extended memory (a DOS extender just makes it look as if it did). In this pro
gram, even the tiny string containing the filename is located in extended mem
ory, at 198740H:

>sel ds
88: linear 1.9874.0, limit FFFF, data

In any event, even if the physical addresses were in low memory, DOS/16M
would still have to translate the program's protected-mode selectors into real
mode segment numbers for MS-DOS.



124 EXTENDING DOS

When a protected-mode program requests a DOS file read (AH=3FH), on en
trance to the DOS extender's I nt 21 Hhandler DS:DX holds a protected-mode ad
dress. After switching to real mode in preparation for resignaling the In t 21 H, the
selector in DS must be changed to a real-mode segment number (note that it can't
be changed while the CPU is still in protected mode, since that would involve
loading segment registers with values that are probably invalid in protected
mode). After returning from the old Int 21H, but before putting the processor
back in protected mode, DS must be restored. The offset in DX doesn't change.'
This is all that is required if DS happens to contain a selector that corresponds to
an address in the first megabyte of memory.

But if DS corresponds to extended memory, it has no simple translation to a
real-mode segment. A DOS extender maintains a buffer in low memory and,
when reading from a file, will, behind the scenes, pass the low-memory buffer to
MS-DOS for I/O, and then copy this buffer back into your extended-memory
buffer. For writing to a file, the process is reversed: the DOS extender first copies
your extended-memory buffer into low memory and then invokes the real-mode
service. Your program is unaware that this is taking place. Since this process only
occurs when extended-memory buffers are passed to real-mode services, and
since the time required for file I/O is an order of magnitude greater than that re
quired for the memcpy (REP MOVSB), there is hardly any performance penalty.

To summarize, a DOS extender allows MS-DOS to be called from protected
mode by installing a protected-mode Int 21 Hhandler, which does the following:

• puts the CPU into real mode
• performs various protected- to real-mode translations
• invokes the old real-mode Int 21 H

• performs real- to protected-mode translation
• returns to protected mode.

Real-mode MS-DOS thinks it is talking to a normal program, and a protected
mode program thinks that MS-DOS knows how to handle its requests. The DOS
extender sits in the middle, lying out of both sides of its mouth.

An In-Depth Look at the DOS/16M Toolkit
Because it examined an assembler program, the preceding discussion failed to
answer one question: in the more realistic scenario of porting a C program to "Ex
tended DOS," how is the real-mode output from the C compiler, particularly the
real-mode code linked in from the C standard library, made to work in protected



Chapter 4 80286-based Protected-Mode DOS Extenders 125

mode? This seems almost as magical as performing DOS calls with protected
mode selectors to extended-memory buffers.

For the most part, a 286-based protected-mode DOS extender relies on your
existing real-mode tools: same compiler, same libraries, same linker. To explain
how real-mode .OBI, .LIB, and .EXE files are massaged for protected mode, we
need to once more go over the three steps involved in producing the DOS/16M
version of LIST.EXE from the real-mode LIST.OBI produced by the standard
Microsoft C compiler:

Link /noe/map \16m\preLoad \16m\crtO_16m \16m\pmL List,List,List;
\16m\makepm List
\16m\spLice List.exe List.exp \16m\Loader.exe

First, we linked in some additional .OBI modules supplied with DOS/16M.
286-based DOS extenders generally support several different programming lan
guages and compilers. DOS/16M supports Microsoft C, Turbo C, Watcom C, Lat
tice C, Microsoft Fortran, Zortech C++, Logitech Modula-2, as well as assembler
(which, as we've seen, requires minimal support).

In the case of Microsoft C 5.1, the DOS/16M module CRTO_16M.OBI replaces
the default Microsoft startup code (CRTO.OBI), and PRELOAD.OBI provides
placeholders for your program's GDT, lOT, and other selectors. Other modules
are substitutes for the surprisingly few parts of the Microsoft function library
that would generate a GP fault in protected mode.

For example, the i nt86() family of functions is important to low-level PC
programming in C, but because the Intel Int instruction accepts only immediate
values (MOV AX, 5Ch followed by Int AX is illegal: you must say Int 5Ch),

Microsoft implements i nt86() by assembling the Int instruction while the pro
gram is running: three bytes of code are assembled on the stack and then CALL
ed. But this constitutes executing data, which is illegal in protected mode.

Also, when using int86x() or intdosx(), it is very easy to load a segment
register with an uninitialized segment number: in real mode, an unused bogus
value in ES doesn't cause a problem, but in protected mode, the simple act of
loading an invalid value into ES, even if you don't intend to use it, instantly
causes a GP fault.

For these reasons, one of the modules provided by DOS/16M replaces
Microsoft's version of i nt86x() with one that works in protected mode. The re
placement looks up the interrupt in the lOT (which in DOS/16M-based pro
grams is always at segment 10H), pushes the interrupt handler's address on the
stack, and does an IRET. Before loading segment registers, the i nt 86x ( ) and the



126 EXTENDING DOS

i ntdosx () functions use the Intel LAR instruction to make sure the segment regis
ters contain valid values.

With this fix, i nt86x () can work in protected mode. And this is one of the
more substantial changes that a DOS extender needs to make to a real-mode C li
brary. It illustrates the minimal changes needed to get even low-level PC code
running under a DOS extender, and is a good indication of the type of changes
you may need to make to your own code. The low-level DOS and BIOS interface
routines provided with Microsoft C 5.1, such as _dos_findfirst() and
_bi os_d ; s k( ), operate in protected mode without modification.

The few DOS/16M object modules, together with real-mode libraries and
your program's object modules, can be passed to a DOS linker s~ch as LINK.EXE
or PLINK.

There is one problem with DOS/16M's use of the DOS linker: what if your
program's code exceeds one megabyte? DOS linkers can't handle this much code,
except as overlays. DOS/16M therefore allows you to link a huge executable as
though it were using overlays. This is merely to make the program acceptable to
LINK; the overlay structure is flattened again by MAKEPM.

Another way to avoid the one-megabyte limitation of LINK is to use Phar
Lap's LinkLoc, which can link programs directly for 286 protected mode. When
using LinkLoc with DOS/16M, there is no need to use MAKEPM, since LinkLoc
already assigns protected-mode selectors for addresses.

MAKEPM.EXE: A Postprocessor

If you are using the DOS linker, the next step is to run the DOS/16M MAKEPM
utility, which prepares executables for protected mode. Its screen output, shown
in Figure 4-1, shows what MAKEPM does.

The MAKEPM display says that it has relocated real-mode segment refer
ences to protected-mode selectors. If you were to examine the file LIST.EXE be
fore passing it to MAKEPM, you might find code such as:

4EF4:0091 CALLF 4EF4:0434

After running MAKEPM, in the file LIST.EXP, this same piece of code be
comes:

0080:0091 CALLF 0080:0434



Chapter 4 80286-based Protected-Mode DOS Extenders 127

Using the relocation table in LIST.EXE, MAKEPM locates all inter-segment
references <segment fixup locations) and, without altering the offset portion,
patches the segment to refer instead to a protected-mode selector.

Figure 4-1: MAKEPM screen output.

C:'BOOK>'16M'"akepM list
DOS~16" Protected "ode Run-TiMe Uersion 3.69
Copyright (C) 1987,1988,1989 by Rational SysteMs, Inc.

"AKEP" -- Convert DOS .EXE prograM to Protected "ode~16"B Capability.

Reading LIST.EXE into 14 K bytes MeMory.
Finding segMent references.

Analyzing 119 segMent fixup locations.
Sorting segMent references.
19 segMents in use (8888 to 8898)

Relocate real Mode segMent references to protected Mode selectors.
Uriting protected Mode executable file LIST.EXP.

Stack size 888 (2848) bytes. SS == DS.
GDT Max selector FFF8.

Constructing syMbol table froM LIST. MAP.
Sorting 137 sYMbols

Uriting debugging inforMation to LIST.DBG.

The number 4EF4H in the real-mode executable depends entirely on where
this program is loaded in memory. Loading on a different machine, with a differ
ent version of DOS or with a different mix of TSRs running, would result in a dif
ferent segment number. But in the protected-mode .EXP file, the selector 0080

will never change. Selectors, remember, are logical rather than physical units. The
physical base address for the selector may well change from one run of the pro
gram to the next, but the selector itself remains fixed. This extra level of indirec
tion greatly eases debugging.

Since MAKEPM takes an already compiled and linked executable and trans
forms it, it is a postprocessor, a mechanical translator.

The Microsoft linker has an option, IFARCALLTRANSLATION, which re
lates to the operation of MAKEPM. With far-call translation, when the linker sees
an inter-segment reference in which the source and target are the same, such as:

4EF4:0091 CALLF 4EF4:0434

it is· able to translate the far I long call into a nearI short call:
4EF4:0091 NOP
4EF4:0092 PUSH CS
4EF4:0093 CALL 0434



128 EXTENDING DOS

This is no longer a segment fixup location, so MAKEPM has nothing to do
here. The resulting protected-mode executable runs faster since this block of code
is no longer loading a value into the CS register. Loading segment registers
even redundantly loading them with the same values as their current value-is
expensive in protected mode, so far-call translation can be a useful protected
mode optimization (though explicitly using the near keyword is even better).

MAKEPM has many command-line options to alter the run-time configura
tion of a DOS/16M program. These can give a program more memory to run,
speed up its performance, or help with debugging. Recall that if we simply ran
MAKEPM on the LIST program, without any options, the resulting executable
was able to allocate 1696K of memory on a 2-megabyte Compaq 286. By tweak
ing MAKEPM, we can get 1772K, almost another lOOK:

\16m\makepm -gdt Ox400 -buffer 2048 List

By default, MAKEPM creates a 64K GDT for your program. This program
doesn't use t~e transparent selectors that account for much of the GOT's size, so
\ve use the -gdt switch to allocate a smaller GOT, freeing up more memory for
the linked list. Furthermore, DOS/16M, by default, creates an 8K low-memory
buffer for I/O transfer with MS-DOS. A program that does a lot of file I/O would
get better performance by making the buffer larger. But our sample program
does no file I/O whatsoever, so we can reduce the buffer size. In a genuine pro
gram, this would be a time/space trade-off.

Another MAKEPM option, -mfl, forces all memory allocation to take place in
the lower 640K. This is extremely useful if you want to port an application to pro
tected mode solely for debugging or protection purposes. By using the -mfl op
tion from MAKEPM, together with the DOS/16M function call D16MemSt rategy

(MTransparent), and occasional calls to D16ReaLPtr(), you can get the advan
tages of hardware-enforced protection, even for programs that don't require ex
tended memory.

SPLICE.EXE, Packages, and Transparency

In order to take the EXP file produced by MAKEPM and run it from the DOS
command line, you must use the DOS/16M SPLICE utility. In earlier releases of
DOS/16M, SPLICE merely took your protected-mode program and DOS/16M's
kernel/loader (LOADER.EXE) and merged them. But since the kernel/loader is a
separate executable, this opened up the possibility for splicing in alternate load
ers. For example, DOS/16M provides WINLOAD.EXE, which can be used to cre-



Chapter 4 80286-based Protected-Mode DOS Extenders 129

ate protected-mode executables for Windows/286 (they won't load under Win
dows/386, though).

SPLICE has evolved into a utility for merging several different .EXP files, to
gether with a protected-mode loader, into one protected-mode MS-DOS execut
able. Since DOS/16M, like other DOS extenders, does not provide concurrent
tasks, what does it mean when several different .EXP files are run together? One
of the .EXP files is your application program; the others are what Rational Sys
tems calls packages. In addition to such add-ins as the VM and overlay managers,
packages allow transparent access to those software interrupts which are other
wise unsupported by the DOS/16M kernel.

In order to provide transparent protected-mode access to a real-mode service,
the DOS/16M kernel must know about the service. Thus, DOS/16M knows
about the individual functions provided by Int 21 H. But what if you want to use
some other real-mode service, such as the Microsoft mouse driver (Int 33H) or
NetBIOS (Int 5CH), knowledge of which is not hard-wired into the DOS/16M
kernel? You could use the DOS/16M function library to non-transparently man
age protected- to real-mode translation each time you use the software interrupt,
but a better way would be to use the DOS/16M function library to write a sepa
rate application, a package, which takes over the interrupt and provides other
applications transparent access to it in the same way that transparent access is
provided for Int 21 H.

DOS/16M currently comes with packages for the mouse, for those Int 10H

functions not supported by the DOS/16M kernel (for example, palette manipula
tion and character generator), and for NetBIOS.

Packages enable DOS/16M capabilities to be extended without adding over
head to the kernel. Future releases will enable you to build your own packages,
and build applications that consist of several cooperating programs that share the
same address space. Note that packages are not linked together with your applica
tion: they are spliced together after link-time and after MAKEPM postprocessing.
Thus, the memory model, compiler, and so on, used to build the package are ir
relevant to your application.

DOS/16M packages are another instance of the DOS extender emphasis on,
above all, transparency. James Smith, in The IBM PC/AT Programmer's Guide, ob
serves that "Something is transparent if it is really there but seems not to be."
Somewhat reminiscent of early MS-DOS's relationship to CP/M, DOS extenders
want you to have to break as few of your habits, bad or otherwise, as possible.
DOS extenders represent a clean break from the 8088, without breaking from MS-



130 EXTENDING DOS

DOS. Contrast this to OS/2, which requires a totally different programming
world view.

Both approaches-the "Extended DOS" emphasis on transparency, and the
OS/2 emphasis on making a complete break with the past-make perfect sense.

BANNER.EXE

At this point, we have this strange beast, a protected-mode executable that runs
from real-mode MS-DOS. When we start the program from the DOS command
line, it displays a brief copyright message:

C:\BOOK>list
DOS/16M Protected Mode Run-Time Version 3.69
Copyright (C) 1987,1988,1989 by Rational Systems, Inc.

This is useful during development so you know which version of the execut
able you are running (though it is usually obvious: the DOS/16M version is the
one that doesn't produce Fatal error: out of memory messages), but your users
probably don't need to see this message. For example, Lotus 1-2-3 Release 3 does
not display this message. To turn the message off, you can use the DOS/16M
BANNER utility:

banner list off

D.EXE

Using the DOS/16M debugger with an assembler program, as we did earlier,
does not show D.EXE in its true light, since this is a source-level debugger (see
Figure 4-2). In addition to the usual features found in CodeView and Turbo De
bugger, and the selector and display interrupt commands we've already used, In
stant-D provides commands such as those shown in Table 4-1.

Table 4-1: Instant-D commands.

Command
absolute
cpu
files
freelist
imr
opt
snap
where

Description
Display absolute physical address for selector and offset
Display the MSW on 286 machines, or eRO on 386s
List all open files
Display DOS/16M extended-memory free list
Display the Interrupt Mask Register
Set DOS/16M run-time options
Record top of stack to a file
Displays absolute address, source file, and any protected-mode aliases for
a symbol



Chapter 4 80286-based Protected-Mode DOS Extenders 131

Figure 4-2: Instant-D, the DOS/16M source level debugger.

{

p = p->next:
nodes++:
}

prlntf("'n%lu nodes'n", nodes):
prIntf("ExtAuaI1: %lu'n", D16ExtAuall(»:
prIntf("LouAuaI1: %lu'n", D16LouAuall(»:

If (nodes2 != nodes)
prlntf("<nodes2 %lu> <nodes %lu>'n", nodes2, nodes):

88: linear 4.5988.B, 11"lt 1FF, code
98: linear 4.B8A2.B, 11"lt FFFF, data
AB: linear 4.9721.B, 11"lt 1FFF, data
98: linear 4.B8A2.B, 11"lt FFFF, data

Several other Instant-D commands are crucial in porting programs to pro
tected mode. The sampler command, for instance, controls Instant-D's built-in
performance monitoring facility. This facility can help you radically improve t~e

performance of your protected-mode program. The backtrace command is useful
when your program GP faults. By tracing back along the call chain, you can find
out where your program went wrong. (Instant-D also implements a visual back
trace in which Ctrl-PgUp displays the caller's code.)

In addition to displaying real-mode addresses as xxxx'xxxx, and protected
mode addresses as xxxx:xxxx, Instant-D also accepts input in this form (for exam
ple, bp 1234 15678 sets a breakpoint on that real-mode address), and &xxxxxx is
used to refer to absolute addresses.

A final important feature of Instant-D is the ability to invoke it from within
your program. For example:

if <fp == NULL)
D16CallDebug(Ubacktrace U); II how did I get here?

This programmatic interface to the debugger is such a good idea that it is sur
prising more debuggers don't provide it.



132 EXTENDING DOS

PMINFO.EXE and RMINFO.EXE

The DOS/16M toolkit includes a number of useful utilities that you can distrib
ute to customer sites along with your executable.

PMINFO is somewhat like Norton's SI, for protected mode: in addition to the
amount of extended memory available to DOS/16M programs and the memory
transfer rate, PMINFO measures the all-important protected/real switch rate-
both the maximum number of round-trip switches that occur per second, and the
number of microseconds required for one switch, broken into its real-to-protected
(up) and protected-to-real (down) components-and indicates which of several
different switch techniques DOS/16M will use on the particular machine.

Figures 4-3 and 4-4 show PMINFO output, first for an 8 MHz ffiM AT, then
for a 16 MHz Compaq 386. This shows that, as mentioned earlier, an ffiM AT
(286) can switch about 1,200 times per second, while a Compaq 386 can switch
over 7,000 times per second.

On a 386 computer, if Qualitas's famous memory manager 386-to-the-Max is
loaded, PMINFO holds a surprise: the switch rate drops from over 7,000 round
trips per second, to around 2,00D-not much better than a 286.

Figure 4-3: PMINFO display for an 8 MHz IBM AT.

C:'1611>pMinfo
Protected 110de and Extended l1eMory PerForMance l1easureMent -- 3.62

Copyright 1988 by Rational SysteMs, Inc.

DOS MeMory Extended MeMory CPU is 8.8 MHz 88286.

648
181

2.5 (1.8)

1536
1535
1536

2.5 (1.8)

K bytes configured (according to BIOS).
K bytes available for DOS/1611 prograMS.

(DOS/1611 MeMory range 1824K to 2568K)
I1B/sec uord transfer rate (uait states).

Overall cpu and MeMory perforMance (non-floating point) for typical
DOS prograMS is 1.88 tiMes and 811Hz IBM PC/AT.
Protected/Real suitch rate =1237/sec (887 usec/suitch, 428 up + 379 doun),
using DOS/1611 suitch Mode 9 (AT).

Since PMINFO is itself a DOS/16M program, it can be used as a basic test of
a configuration's ability to run your program. If PMINFO fails (possible mes
sages include Protected mode failure, Not enough extended memory, Computer must
hav~ 80286 or 80386 CPU, and Protected mode requires VCPI within Virtual 8086), the



Chapter 4 80286-based Protected-Mode DOS Extenders 133

solution is often extremely simple, such as getting the new VCPI-compatible ver
sion 4.0 of CEMM (Compaq expanded-memory manager). The issue of software
incompatibilities is discussed in Chapter 8.

Figure 4-4: PMINFO display for a 16 MHz Compaq 386.

C:\I)pMinfo
Protected node and Extended neMory PerforMance MeasureMent -- 3.72

Copyright 1988, 1989 by Rational SysteMs, Inc.

DOS MeMory Extended MeMory CPU is 16.8 nHz 88386.

648
442

3.& (2.8)
7.7 (2.8)
7.6 (B.B)

15.2 (B.8)

1824
1186

3.& (2.B)
7.7 (2.8)
7.6 (B.8)

15.2 (8.8)

K bytes configured (according to BIOS).
K bytes available for DOS~16" prograMS.
"B~sec yord transfer rate (Yait states).
"B~sec 32-bit transfer rate (Yait states).
"B~sec Yord transfer rate [Static ColUMn].
"B~sec 32-bit transfer rate [Static ColUMn].

Ouerall cpu and MeMory perforMance (non-floating point) for typical
DOS prograMs is 2.75 +-.22 tiMes an &nHz IBn PC~AT.

Protected~Real suitch rate = 7328~sec (136 usec~syitch, 75 Up + 61 doyn),
using DOS~16" suitch Mode 3 (386).

Sometimes, though, PMINFO detects a hardware incompatibility. The BIOS
in a few AT clones was designed solely for real-mode compatibility; no one was
thinking about protected mode at the time. These clones are incompatible in their
handling of the protected-to-real-mode shutdown switch as well as in their han
dling of the A20 line, and will have the same problem running OS/2 as they have
running DOS/16M or OS/286. For DOS/16M, there is often a simple work
around that uses SET DOS16M= in the DOS environment.

The RMINFO utility is similar to PMINFO, but stops just short of switching
into protected mode. RMINFO reports the presence of other extended-memory
users (such as VDISK, XMS, and VCPI), indicates whether DOS/16M would use
triple faulting to switch back to real mode from protected mode, indicates how
DOS/16M will handle the A20 line while switching modes, and also tells
whether any DOS/16M TSRs are loaded (DOS/16M is already running).



134 EXTENDING DOS

Isn't there any work involved?
At this point it should be clear that most real-mode DOS code will work, as is,
under a 286-based protected-mode DOS extender. All you do is add a few extra
.OB} modules, link, and run the executable through a mechanical translator.

The best way to port a DOS program to a 286-based DOS extender is just to do
it. Construct a new batch file or make file, link the DOS/16M-provided .OB}s
with your present .OB} modules, and see if it runs. This is the point at which the
typical software engineer asks, "Where's the work?"

The likelihood is that such a simply ported program will run for a while, but
will eventually break one of protected mode's rules, and be terminated with a
protection violation (GP fault). These rules include:

• Don't peek or poke memory not owned by your task.
Example: *<<unsi gned long fa r *) Ox0000046C)

• Don't execute data.
Example: Microsoft's i nt86x<)

• Don't move data into code segments.
Example: MOV CS: foo, AX

• Don't misuse segment registers.
Example: using ES as a scratchpad register

• Don't perform real-mode address arithmetic.
Example: pointer normalization

You now have work to do: fixing the code so that it runs in protected mode.
In practice, two areas tend to require the most work when you convert to a DOS
extender: storing data in a code segment, and performing address arithmetic.

Impure Code

Protected mode forbids storing into a code segment. Normally, this is a wonder
ful feature: it prevents overwriting-code bugs. Furthermore, making sure that a
code segment contains only executable code (pure code) allows it to be shared by
tasks in a multitasking environment.

But what if your program deliberately stores data in a code segment?
It seems that almost any .ASM file you pick will contain at least one instance

of this. Now, using a CS: override in the source for a MOV does not cause a GP fault,
because reading from a code segment is permissible:

mov ax, cs:request



Chapter 4 80286-based Protected-Mode DOS Extenders 135

But using a CS: override in the destination for a MOV, writing into a code seg
ment, definitely causes a GP fault:

mov cs:request, ax

Unfortunately, the use of CS as a storage area is not always so explicit. For ex
ample, assembler that uses the SEGMENT and ASSUME directives can easily
construct "impure code" without using an explicit CS: override:

_TEXT segment public 'CODE'
assume CS:_TEXT, DS:_TEXT

" ...
mov request, ax

Code that uses the new directives, such as DOSSEG and .CODE, is less likely
to contain impure code, but is still possible:

286
dosseg
model large
.code

request dw ?
start:

mov request, 1234h
end start

Fortunately, the Microsoft assembler (MASM) has an option to check for im
pure code. If you put the .286 directive at the top of a source file, and use the op
tion -p when you assemble, MASM locates all lines containing an impure
memory reference. Borland's Turbo assembler (TASM) provides the same feature,
with the warning CS override in protected mode.

Having located all such places in your code, you have to ask why data is
being stored in a code segment. Often, it's simply unnecessar)T, and can easily be
fixed. The previous example could be rewritten so that it works in both protected
and real mode, simply by putting the data where it belongs, in the data segment:

.286
dosseg
.model large
.data

request dw ?
.code

start:
mov request, 1234h
end start



136 EXTENDING DOS

Sometimes, however, it really does make sense to keep data in a code seg
ment. For example, an interrupt service routine (ISR) generally must have at least
one variable accessible from CS, since this is the only segment register whose
value is known when the ISR is invoked.

The easiest way to make such code work in a DOS extender is to read the
data from the code segment with a CS: override, and write data into the code seg
ment using an "alias" selector.

If you are at all familiar with OS/2 programming, you may know about the
function DosCreateCSALias(), which creates a selector that points to the same
absolute address as a given data selector, but is executable.

DOS extenders also have "alias" selectors and, in addition to the function
D16Seg CSA Li as ( ), the DOS/16M library (which we'll discuss in more detail
later) also has D16SegDSA Lias (), which creates a selector that points to the same
absolute address as a given code selector, but is writable. That is exactly what we
need here.

To avoid the overhead of allocating and cancelling the alias each time we
need to use it, which will probably be in an ISR, we create the alias during initial
ization and store the alias in the segment to which the alias points. At invocation,
we read the alias out of CS:alias and then move the alias into DS (remembering,
of course, to save and restore the previous value in DS). Before exiting, we cancel
the selector.

The two DOS/16M functions used here expect to be called from a high-level
language, and have the following C prototypes:

void far *D16SegDSAlias (void (far *pm_codeptr)(»;
int D16SegCancel (void far *pm_dataptr);

The following example is in assembler, because while this issue has fre
quently come up in assembler subroutines fop C programs (for example, in the
Greenleaf telecommunications library), one usually llas no occasion to call these
functions from C. To call the DOS/16M functions from assembler, the parameters
are pushed on the stack and cleared off afterwards:

; a.asm
.286
pubLic _init, _subr, _fini

ifdef DOS16M
extrn _D16SegDSAlias : far
extrn _D16SegCancel : far

endif



Chapter 4 80286-based Protected-Mode DOS Extenders 137

A_TEXT segment public 'CODE'
assume CS:A_TEXT, DS:ATEXT

foo
alias

dw ?
dw ?

; the data we're interested in
; the alias for code segment

_D16SegDSAlias
; alias SEG is now in DX
; remember to save OS
; move alias for CS into OS
; store alias sel in alias seg!
; restore DS

_init
ifdef

else

endif

proc far
DOS16M

push bx
push A_TEXT
push 0
call far ptr
add sp, 4
push ds
mov ds, dx
mav alias, dx
pop ds
pop bx

push ds
mov ax, A_TEXT
mov ds, ax
mov alias, ax
pop ds

; for portability, pretend we need
; an alias in real mode too

ret
_init endp

proc far
push ds
mov ax, cs:alias
mov ds, ax
mov foo, 1234h
pop ds
ret
endp

; okay to read from CS
; put alias for CS into OS
; do the work!

_fini
ifdef

endif

proc far
OOS16M

push bx
push word ptr cs:alias
push 0
call far ptr _D16SegCancel
add sp, 4
pop bx

ret



138 EXTENDING DOS

_fini endp

end

This example could be called from a C program such as the following
(though reme~b~r that subr() would probably be part of an interrupt handler):

1* c~c *1
extern void init(void), subr(void), fini(void);
maine)
{

i nt i;
init();
for (i=O; i<10000; i++)

subr();
fini();

II simulate real work

}

For the functions D16DSAlias() and D16SegCancel(), we need to link with
the DOS/16M function library (which is provided as C source code):

if not exist \16m\dos16lib.obj cl -AL -Ox -Gs2 -c \16m\dos16lib.c
masm -ml -DDOS16M a;
cl -AL -Ox -c c.c
link Inoe \16m\mscS.1\preload \16m\mscS.1\crtO 16m c a \

\16m\mscS.1\pml \16m\dos16lib,c,c;
makepm c
splice c c \16m\loader.exe

Notice that the C module is unchanged for protected mode and that the over
head of creating and cancelling the alias is confined to infrequently-called parts
of the program.

The ability to create a DS alias is not unique to DOS/16M. OS/286 has a sim
ilar "create data window" function in its "extended segment services" (Int 21H
AX=E801 H). Note, however, that in OS/286, every code selector by default comes
with its own matching data window.

Address Arithmetic

In addition to impure code, the other issue that comes up repeatedly when you
port to protected mode is address arithmetic. Aspects of real-mode address arith
metic include adding a length to a pointer to compute the next pointer, perform
ing a carry from the offset to the segment portion of an address, and relying on a
simple conversion from segment:offset pointers to absolute physical addresses.



Chapter 4 80286-based Protected-Mode DOS Extenders 139

Some large applications implement their own dynamic code loaders, virtual
memory managers, or overlay schemes; some object-oriented programs support
"persistent objects" which can be written out to disk and later read back in (per
haps on a different machine). All of these use address arithmetic to perform ad
dress relocations or fixups. When reading objects (code or data) in from disk,
pointers can be computed simply by adding an offset to a base "load address."
Pointers are stored on disk as offsets from location zero.

It is often said that protected mode forbids any form of address arithmetic.
After all, the selectors in addresses returned by malloc() are just "magic cook
ies," bearing no relation to their underlying physical addresses.

In fact, certain forms of address manipulation are the same as in real mode,
and, should you need it, there is even the potential for a kind of protected-mode
address arithmetic.

First, the useful FP_SEG (), FP_OF F(), and MK_FP() macros all still work in 16-
bit protected mode (though they are totall~ different in 32-bit protected mode):

typedef unsigned WORD;
typedef unsigned long DWORD;
typedef void far *FP;
#ifdef LVALUE
#define FP_SEG(fp) (*«WORD *)&(fp) + 1»
#define FP_OFF(fp) (*«WORD *)&(fp»)
#else
#define FP_OFF(fp) «WORD)(fp»
#define FP_SEG(fp) «WORD)«DWORD)(fp»> 16»
#endif
#define MK_FP(a,b) «FP)«(DWORD)(a)« 16) I (b»)

For example:
extern char far *foo;
WORD sel = FP_SEG(foo);

or:
extern WORD -psp;
struct PSP far *psp-ptr = MK_FP(_psp, 0);

Here, however, the similarity to real mode ends. For example, the following,
which uses the "LVALUE" form of the macros, makes no sense in protected mode:

FP_SEG(foo)++;

In real mode, adding 1 to a segment value describes a physical location one
paragraph (16 bytes) higher in memory, and is equivalent to adding 10H (16) to
the segment offset. In protected mode, there is no such carry from the offset into



140 EXTENDING DOS

the segment, and while adding 1 to a selector is permissible (the preceding code
does not cause a GP fault), dereferencing the resulting pointer definitely does not
produce the expected results, and on some systems (such as OS/2) even gener
ates a protection violation.

Code written for real mode often relies on the ability to convert between a
real-mode pointer and its underlying physical address:

#define PTRTOABS(fp) (DWORD) «FP_SEG(fp) « 4) + FP_OFF(fp»
#define ABSTOPTR(abs) (MK_FP«DWORD) (abs) » 4, (abs) & OxOF»

It was mentioned earlier that real-mode segments overlap, so that 0000: 046C
and 0040: 006C are equivalent. To reliably compare two real-mode pointers for
equalit}T, the pointers thus must be "normalized." The preceding macros can be
bundled together in real mode to reduce pointers to canonical form, so that their
offset is always less than 16:

#define NORMALIZE(fp) (ABSTOPTR(PTRTOABS(fp»)
#define CMP_PTR(fp1,fp2) (NORMALIZE(fp1) == NORMALIZE(fp2»

But this doesn't make any sense in protected mode. Instead, you can think of
protected-mode pointers as already "normalized." To compare two pointers for
equalit}T, just compare them:

#define CMP_PTR(fp1,fp2) «fp1) == (fp2»

To see if one pointer is located within the same segment as another pointer,
real-mode code generally manipulates their underlying absolute addresses. But
since the underlying absolute address is of almost no importance in protected
mode, and since the only meaningful item you can look at is the selector, this
comparison ~ecomes:

#define SAME_SEG(fp1,fp2) (FP_SEG(fp1) == FP_SEG(fp2»

In short, certain operations that are required in real mode because of overlap
ping segmentation are simply unnecessary in protected mode.

How much does this buy us? A fair amount, but there is still a problem. The
MS-DOS memory-allocation function (Int 21 H AH=48H) can allocate blocks of
memory larger than 64K. This function is passed the number of 16-byte para
graphs to be allocated, and returns the initial segment of the entire block. With a
16-bit parameter, a one-megabyte block can potentially be allocated. In real
mode, this is a fiction, but in protected mode it is a very real possibility. In either
mode, with a 16-bit offset, any given segment or selector can at most address
64K. How, then, do you jump from one segment or selector to the next?



Chapter 4 80286-based Protected-Mode DOS Extenders 141

If you use your compiler's huge model, the segment arithmetic is taken care
of for you. But programs that do their own relocations and fixups don't use huge
model; they do the arithmetic themselves. Even some programs that do use the
slower huge model rely on the ability to convert between huge and far pointers.

An example of code that relies on the ability to jump from one memory seg
ment to the next, using some fixed increment, is Microsoft's own heapwalk()
and heapchk() functions. As is, these functions do not work in a program pre
pared for DOS/16M. But they can be made to work by linking in a tiny object
module, HDIFF.OBJ, which comes from the OS/2 Microsoft C libraries, and
which is included with the DOS/16M toolkit.

So what increment is used in DOS/16M to jump from one 64K block to the
next? The following small program investigates this. It calls the Microsoft C func
tion _dos_a llocmem(), which is a C front-end to Int 21 HAH=48H. The program
allocates AOOOH paragraphs (640K), and then loops 10 times, each time increment
ing the segment portion of a pointer and printing out the base address and limit
(size - 1) of the segment. Two DOS/16M functions, D16SegLi mi t () and D16Abs
Address(), are called to get this information. The program uses the FP_SEG()
macro from Microsoft's dos.h, and prints the far pointer using the p r i nt f ( )

U%FpU mask:

#include <stdio.h>
#include <dos.h>
#include Udos16.h"

main()
{

char far *fp = NULL;
unsigned seg;

_dos_allocmem(OxAOOO, &seg);
for (FP_SEG(fp)=seg; FP_SEG(fp) < seg+10; FP_SEG(fp)++)

pri ntf (" FP=%Fp LIMIT=%04X ABS_ADDR=%08lX\n l'
,

fp, D16SegLimit(fp), D16AbsAddress(fp»;
_dos_freemem(seg);

}

The output of this DOS/16M program indicates there really is a protected
mode segment arithmetic, but that it is quite different from real mode. Even the
segment numbers themselves are different from anything seen in real mode:

FP=OOBO:OOOO LIMIT=FFFF ABS_ADDR=00150CFO
FP=OOB1:0000 LIMIT=FFFF ABS_ADDR=00150CFO
FP=OOB2:0000 LIMIT=FFFF ABS_ADDR=00150CFO



142 EXTENDING DOS

FP=OOB3:0000 LIMIT=FFFF ABS_ADDR=00150CFO
FP=OOB4:0000 LIMIT=FFFF ABS_ADDR=00150CFO
FP=OOB5:0000 LIMIT=FFFF ABS_ADDR=00150CFO
FP=OOB6:0000 LIMIT=FFFF ABS_ADDR=00150CFO
FP=OOB7:0000 LIMIT=FFFF ABS_ADDR=00150CFO
FP=OOB8:0000 LIMIT=FFFF ABS_ADDR=00160CFO
FP=OOB9:0000 LIMIT=FFFF ABS_ADDR=00160CFO

The program is able to increment the segment portion of the address using
FP_SEG(fp)++, but what does that mean? The physical address 150CFOH, first of
all, bears no relation to the segment numbers and, furthermore, doesn't even
change until we get to segment B8H. When the absolute address does change, it
jumps by 64K.

In contrast, a real-mode version of this program might produce output some-
thing like this:

FP=4309:0000 LIMIT=0010 ABS_ADDR=00043090
FP=430A:OOOO LIMIT=0010 ABS_ADDR=000430AO
FP=430B:OOOO LIMIT=0010 ABS_ADDR=000430BO

FP=5309:0000 LIMIT=0010 ABS_ADDR=00053090
FP=530A:OOOO LIMIT=0010 ABS_ADDR=000530AO

In real mode, adding one to the segment value takes us to the next para
graph. Thus, there are no abrupt quantum jumps as in protected mode, but it
does require a large increment of 1000H (4096) to move from one 64K block to the
next. This just reflects the tiny address space available in real mode.

That it has taken eight segment numbers for the physical base address to
change in protected mode is no accident. This will be explained when we exam
ine the protected-mode data structures in detail using Instant-C, but the bottom
three bits of a protected-mode selector have special meaning. To ignore these bits
we must increment a selector by 2A 3, or 8. This is the minimum increment to
move from one 64K block to the next in a protected mode "huge" allocation.
While DOS/16M uses the minimum increment of 8, OS/2, for example, uses an
increment of 16.

OS/2 provides a function, DosGetHugeShift(), which returns a left-shift
count which, applied to the number 1, produces the segment-arithmetic incre
ment. In current releases of OS/2, DosGetHugeShi ft () returns 4 (1 « 4 = 16).
Since DosGetHugeShi ft () is a "Family API" function for use in dual-mode exe-



Chapter 4 80286-based Protected-Mode DOS Extenders 143

cutables, we could write our own DOS/16M-specific version. This uses the
DOS/16M function i spm() to make sure the machine is in protected mode:

USHORT APIENTRY DosGetHugeShift(PUSHORT puShift)
{

*puShift = (_is_pm(» ? 3 : 12;
return 0;

}

We can apply all this to the problem of address relocation. If you have real
mode code that stores pointers on disk with something like:

extern void far *base;
DWORD disk-ptr = PTRTOABS(fp) - PTRTOABS(base);

(where base is the starting position for the workspace that is being saved to disk),
and then reads them back in with something like:

FP ptr = ABSTOPTR(base + disk_ptr);

(where base is now the new "load address") in protected mode you will instead
have to save pointers on disk in a way that preserves the distinction betw~en the
segment and offset:

DWORD disk_ptr;
WORD huge_shift;
DosGetHugeShift(&huge_shift);
disk-ptr = MK_FP«FP_SEG(fp) - FP_SEG(base» » huge_shift,

FP_OFF(fp»i

For example, if the base address is 00A8: 0000 and we are storing the pointer
ooco: FEDC to disk, in real mode this could be stored in normalized form as
27EDCH, but in protected mode, if the huge_shi ft is 3, we would store 3FEDCH. To
read this back in, we would use:

FP ptr = MK_FP(FP_SEG(base) + (FP_SEG(disk_ptr) « huge_shift),
FP_OFF(disk_ptr»;

If you are porting a program that does fixups or address relocation to pro
tected mode, there are actually several possible solutions.

First, you can see if the code is still necessary under protected mode. Perhaps
you have implemented your own overlay manager. After all, you may be using
overlays or dynamic linking just to get around the DOS 640K limit. But remem
ber, DOS/16M and OS/286 provide big memory but not virtual memory. Don't
be too hasty to get rid of overlays, just because your computer has 4 megabytes.
Users may have only 1 or 2 megabytes. But if you know that your users will have



144 EXTENDING DOS

sufficient physical memory on their computers, you may be able to eliminate
overlays entirely. Or you may want to use DOS/16M's overlay manager or VM
manager instead.

Second, you can avoid use of Int 21 HAH=48H to allocate more than 64K at a
time. Code that performs address fixups might then require two passes, however.

Third, you can rely on the structure of protected-mode selectors and use the
"huge shift."

Limits to Transparency

Aside from real-mode coding practices that must be changed for protected mode,
a few other strictly MS-DOS programming practices might not work transpar
ently under a DOS extender:

• using unsupported software interrupts
Example: Int 5CH (NetBIOS)

• using undocumented DOS calls
Example: I nt 21 HAH=52H ("get DOS pointer table")

• using unsupported absolute memory locations
Example: *( (unsigned long far *) Ox46C)

Don't be alarmed by this list. Unsupported simply means that the DOS ex
tender doesn't provide transparent access. You can still do all this, but you do
have to take some extra steps.

For example, we mentioned earlier that if the sample program LIST.C had
been coded slightly differently, it could have caused a protection violation. In
stead of calling the C time () function, the code could have slightly more effi
ciently-and considerably less portably-peeked at the BIOS data location 46CH:

#define TICKS() *«unsigned long far *) Ox46c) II OOOO:046C
#define SECONDS() (TICKS() I 18)
/ / ...
unsigned long t1 = SECONDS();

If a program executes this code in protected mode, it is terminated with a GP
fault (Int ODH):

C:\BOOK>list
DOS/16M Protected Mode Run-Time Version 3.73
Copyright (C) 1987,1988,1989 by Rational Systems, Inc.

DOS/16M: Unexpecte~Interrupt=OOOD at 0088:0049
code=OOOO ss=OOAO ds=OOAO es=OOOO
ax=0200 bx=046C cx=0012 dx=001A sp=1A48 bp=1A76 si=0082 di=1AAO



Chapter 4 80286-based Protected-Mode DOS Extenders 145

In the register dump, ES:BX is 0000: 046CH. The CPU generated a GP fault
when we tried to dereference this pointer. DOS/16M's Int OOH handler caught
the fault and shut down the application, just as OS/2 would do (OS/2 displays a
similar register dump when an application GP faults). Note that even in the event
of extremely serious bugs, the program does not crash or hang the machine; it
exits cleanly back to the operating system.

Protected mode forbids you to peek or poke any memory not owned by your
task. So how do you examine well-known memory locations on the PC? We saw
earlier that DOS/16M provides a large number of "transparent" selectors where,
for example, protected-mode selector B800H corresponds to real-mode segment
B800H. These transparent selectors are mapped into your task's address space, so
you can freely peek or poke their corresponding absolute physical addresses.

Why, then, didn't peeking at 46CH work? Apparently, selector 0 is not a trans
parent selector. Under Instant-D, the debugger displays this message:

Interrupt 00 is a general protection exception.
Null selector.

In protected mode, any selector < 8 references descriptor zero in either the
GDT or LDT, and is considered the null selector. Any number less than eight
(usually zero) can be loaded into a segment register, but attempting to derefer
ence the resulting pointer causes a GP fault. This way, protected mode provides
support for the high-level language concept of a null pointer. But this also means
that selector 0 can't be used as a transparent selector to the 64K starting at mem
ory location zero.

This is not such a big loss. There is no point in directly reading the low-mem
ory real-mode interrupt vector table in protected mode. And the next block of
memory, t~e BIOS data area beginning at paragraph 40H, is transparently han
dled by DOS/16M selector 40H.

By using "pointer normalization" on the real-mode address (which is illegal
for a protected-mode address), we can access the tick count through selector 40H
instead of illegally trying to dereference selector 0:

#define TICKS() *«unsigned long far *) Ox40006CL) II 0040:006C
#define SECONDS() (TICKS() I 18)
II •••
unsigned long t1 = SECONDS();

Now it works. And this code works just as well in real mode, so it doesn't re
quire #ifdef 00S16M.



146 EXTENDING DOS

The same principle applies in assembler. For example, to check if any key has
been pressed, on a PC you might say:

xar bx, bx
maves, bx
mav ax, es:[41AhJ
cmp ax, es:[41ChJ

But in order to run under DOS/16M also, this must be changed to:

mav bx, 40h
maves, bx
mav ax, es:[1AhJ
cmp ax, es:[1ChJ

While this change isn't necessarily portable to other DOS extenders (Eclipse's
OS/286, for instance, does not provide seleCtor 40H as a built-in transparent se
lector), all DOS extenders do provide some mechanism for creating a protected
mode selector and setting its physical base address. While the resulting selector is
not transparent, it does provide access to a location in memory. In DOS/16M,
you would use the functions D16PratectedPtrC) or D16SegAbsaluteC), and in
OS/286 you would use the "extended segment service" I nt 21 HAX=E803H ("create
real window"), which we will use when we talk more about OS/286. In the above
example, the selector returned from· this service would then be used rather than
the constant 40H.

In keeping with known rules of software engineering, you will probably
spend 95 percent of your time porting a few lines of code to protected mode,
while the vast majority of the code will take no time at all.

Bugs!
One other item must be added to the list of things that could cause a DOS pro
gram to GP fault in protected mode: code that ought never to have worked in the
real-mode version of your program, but somehow did.

For example, if you run the following tiny program in real mode and forget
the command-line argument, it prints out a zero:

1* BAD.C *1
#include <stdlib.h>
#include <stdia.h>
mainCint argc, char *argv[J)
{

printfC"%d\n", ataiCargv[1J»;
}



Chapter 4

C:\BOOK>bad 100
100
C:\BOOK>bad
o

B0286-based Protected-Mode DOS Extenders 147

But in protected mode, forgetting the command-line argument causes a pro
tection violation:

C:\BOOK>bad
DOS/16M Protected Mode Run-Time Version 3.73
Copyright (C) 1987,1988,1989 by Rational Systems,Inc.

DOS/16M: Unexpected Interrupt=OOOD at 0080:12EC
code=OOOO ss=OOAO ds=OOOO es=OOAO
ax=OOOO bx=OOOO cx=0012 dx=OOOO sp=17AO bp=17AC si=OOOO di=17

The protected-mode response is actually the correct one. In real mode, the
program works by accident. There is almost a magical quality to real mode: prac
tically nothing is illegal, so almost any operation does something and conse
quently many things work even though they ought not to. In protected mode,
fewer operations are legal. This is a case where limitations and restrictions actu
ally help by hindering.

DOS/16M or OS/2 versions of a program often flush out problems. Whereas
the behavior of a buggy real-mode program often depends on the current con
tents of uninitialized memor)T, a protected-mode program usually does not ex
hibit such seemingly nondeterministic behavior.

#ifdef DOS16M: The DOS/16M Library
The DOS/16M library provides a small but powerful set of functions for memory
management and interrupt handling in protected mode, and is provided in
source form (DOS16LIB.C and DOS16.H) along with OOS/16M and Instant-e.
Functions that make up the library are shown below:

Access Protected-Mode Selectors
D16AbsAddress
D16GetAccess
D16SegUmit

Return absolute address of protected-mode pointer
Return access-rights byte of protected-mode pointer
Return limit of protected-mode pointer

Allocate Protected-Mode Selectors
D16ProtectedPtr
D16RealPtr

Create protected-mode pointer from real-mode pointer
Create real-mode pointer from protected-mode pointer



148 EXTENDING DOS

D16SegAbsolute
D16SegCSAlias
D16SegDSAlias
D16SegDataPtr
D16SegTransparent
D16MemAlloc
D16HugeAlloc

Create protected-mode selector for absolute address
Create executable alias, e.g., for data segment
Create read/write data alias, e.g., for code segment
Create data selector, base is offset of another pointer
Create transparent selector to real-mode segment
Allocate a data segment
Huge-model allocator; can allocate blocks> 1 megabyte

Alter Protected-Mode Selectors
D16SegProtect
D16SegRealloc
D16SegResize
D16HugeResize
D16SetAccess
D16SegCancei
D16MemFree
D16MemStrategy

Query Functions
D16ExtAvail
D16LowAvail
D16isDOS16M
_is_pm

Interrupt Handling
D16IntTransparent
D16Passdown
D16Passup
D16pmGetVector
D16pmInstall
D16rnn(;etVector
D16rmInstall
_intflag

Calling Real-mode Code
D16rmInterrupt
D16rmRCall

Set segment to be read-only or read/write
Set segment allocation to current strategy
Set segment size
Huge-model reallocator
Set selector access-rights byte
Cancel a protected-mode selector
Free a protected-mode segment and cancel its selector
Set memory-allocation strategy, e.g., MTransparent

Return bytes of extended memory available
Return bytes of DOS-managed memory available
Return true if running under DOS/16M
Return true if CPU in protected mode

Install protected-mode BIOS interrupt handlers
Set protected-mode interrupt to resignal in real mode
Set real-mode interrupt to resignal in protected mode
Get protected-mode interrupt vector
Set protected-mode interrupt vector
(;et real-mode interrupt vector
Set real-mode interrupt vector
Set CPU interrupt-enabled flag

Real-mode interrupt, set real-mode segment registers
Real-mode far call, set real-mode segment registers



Chapter 4

Miscellaneous
D16MoveStack
D16ToReal
D16ToProtected
D16SelReserve
D16TermFunction
D16CallDebug

80286-based Protected-Mode DOS Extenders 149

Switch location of the CPU stack
Switch CPU to real mode
Switch CPU to protected mode
Reserve selectors to be used for D16HugeResize
Install callback function for program termination
Programmatic interface to Instant-D debugger

Some of these functions are similar to functionality provided at different lev
els in OS/2. D16SegCSAl i as, which creates an executable (CS) alias selector for a
data segment, is similar to OS/2's DosCreateCSAlias. D16SegAbsolute, which
can map any absolute physical address into the user's address space, is like a
more powerful version of OS/2's Vi oGetPhysBuf (which is limited to addresses
from AOOOOH to BFFFFH). Whereas only OS/2 device drivers are allowed total ac
cess to the entire range of absolute addresses (via the PhysToUVi rt DevH lp),

under DOS/16M, any "normal" application can call D16SegAbsolute.

The DOS/16M interrupt-handling functions are most useful when you write
real-mode ISRs. In a DOS extender, Int 21 H AH=25H and AH=35H work with pro
tected-mode ISRs, so DOS code that installs, for example, a divide-by-zero inter
rupt handler or a critical error handler, does not have to be changed.
Furthermore, DOS/16M classifies most real-mode interrupts as "auto-passup," so
they are automatically resignaled in protected mode. To establish real-mode in
terrupt handlers that do not cause a mode switch (this is what you would need in
the case mentioned earlier of 9600 baud asynch communications on an IBM AT),
you need D16rmlnstall() and D16rmGetVector(). The functions D16pm

Insta II () and D16pmGetVector() are in most cases identical to protected-mode
Int 21 HAH=25H and AH=35H, except that the DOS/16M functions are useful when
installing interrupt handlers for processor exceptions such as Int ODH, the GP
fault (see "Stalking GP Faults," Part I, Dr. Dobb's Journal, January 1990).

Many of the DOS/16M functions allocate selectors in the GDT. For example,
D16SegAbsolute does not allocate any memory, but it must use a selector.
DOS/16M sets the selector's base address to point to an absolute memory loca
tion. Likewise, D16SegCSA l ; as must allocate a selector: DOS/16M copies a data
segment's selector into the new selector, and then changes the new selector's ac
cess-rights byte so that it is executable.

While protected mode on a 286 offers a large address space, the descriptor ta
bles are themselves just data segments and can therefore be no larger than 64K in



150 EXTENDING DOS

16-bit protected mode. Consequently, selectors are a limited resource. You must
therefore be prepared for calls like D16SegCSA lias and D16SegAbso lute to fail.

Some of these functions are used in the following program, NB.C, which tests
whether NetBIOS (a semi-portable network communications protocol) is loaded.
NetBIOS (Int 5CH) is a typical real-mode service for which DOS extenders do not
provide transparent access. The function netbi os_loaded() places an invalid
command in a NetBIOS control block (NCB), puts the address of the NCB in
ES :BX, and generates Int 5CH. On return from Int 5CH, if the retcode field in the
NCB is set to ERROR_INVALID_COMMAND, NetBIOS is present.

Since NetBIOS runs in real mode, the address expected in ES:BX must be a
real-mode address. The protected-mode version of NB.EXE can't simply allocate
an NCB and put its address in ES:BX. Instead, the NCB must be allocated in low
memory and, when Int 5CH is resignaled in real-mode, ES must contain a real
mode segment.

Under DOS/16M, NB.C tries to allocate a "transparent" selector and, failing
that, tries to allocate a low-memory selector. Fields of the NCB are set and tested
using the protected-mode pointer, but its real-mode equivalent is passed to Net
BIOS. Since the Int instruction in protected mode invokes a protected-mode in
terrupt, and since DOS/16M installs protected-mode handlers for only the most
important interrupts, NB.C uses D16rmlnterrupt(), which invokes a real-mode
interrupt, and sets the real-mode segment registers:

1*
NB.C -- test for presence of NetBIOS

MSC 5.1:
cl -AL -Ox nb.c

DOS/16M:
cl -AL -DDOS16M -c -Zi nb.c
link preload crtO_16m pml nb dos16lib Imap/noe/co,nb;
makepm nb
splice nb nb

DOS/16M with NETBIOS package:
; with packages, don't compile with -DDOS16M
cl -AL -c -Zi nb.c
link \16m\preload \16m\crtO_16m \16m\pml nb Imap/noe/co,nb;
makepm nb
splice nb.exe \16m\packages\net5c.exp nb.exp \16m\loader.exe

Instant-C:



Chapter 4

*1

_CodeView = 1;
_struct_alignment = 1;
#defineg DOS16M
#load dos16lib.c
#load nb.c
#run

80286-based Protected-Mode DOS Extenders 151

#if ! defined(M_I86CM) && ! defined(MI_86lM)
#error "Requires large data pointers"
#endif

#pragma pack(1)

#include <stdlib.h>
#include <stdio.h>
#include <dos.h>
#ifdef DOS16M
#include "dos16.h"
#endif

typedef enum { preferext, preferlow, extended, low, transparent
} STRATEGY;

typedef enum { FALSE, TRUE } BOOl;
typedef unsigned char BYTE;
typedef char far *FP;
typedef unsigned WORD;
typedef unsigned long DWORD;

#define MK_FP(seg,ofs) «FP)«(DWORD)(seg)« 16) I (ofs»)

typedef struct {
BYTE command, retcode, lsn, num;
FP buffer;
WORD len;
BYTE callname[16J, name[16J;
BYTE rto, sto;
FP postrtn;
BYTE lananum, cmdcplt;
BYTE reserved[14J;
} NCB;

#define NETBIOS_INT OxSC
#define INVALID_COMMAND Ox7F
#define ERROR_INVALID_COMMAND Ox03

BOOl netbios_loaded(void);
void netbios_request(NCB far *ncb);



152 EXTENDING DOS

FP alloc(WORD size, STRATEGY strat);
void dealloc(FP fp);
FP getvect(WORD intno);

BOOl trans = TRUE;

void fail(char *s) { puts(s); exit(1); }

maine)
{

BOOl net = netbios_loaded();
puts(net ? "NetBIOS loaded" : "NetBIOS not loaded");
return !net; II MS-DOS ERRORlEVEl 0 = success

}

BOOl netbios_loaded(void)
{

if (! getvect(NETBIOS_INT»
return FALSE;

else
{

BOOl ret;
NCB far *ncb = (NCB far *) alloc(sizeof(NCB), transparent);
if (ncb == NUll)
{

if «ncb = (NCB far *) alloc(sizeof(NCB), low» -- NUll)
fail("cannot allocate low-memory pointer");

else
trans = FALSE;

}

ncb->command = INVALID_COMMAND;
netbios_request(ncb);
ret = (ncb->retcode == ERROR_INVALID_COMMAND);
dealloc«FP) ncb);
return ret;

}

}

void netbios_request(NCB far *ncb)
{

#ifdef DOS16M
NCB far *real_ncb = (trans) ? ncb D16RealPtr(ncb);
D16REGS r;
r.es = FP_SEG(real_ncb);
r.bx = FP_OFF(real_ncb);
1* signal interrupt in real mode, set real-mode segment regs *1
D16rmInterrupt(NETBIOS_INT, &r, &r);

#else



Chapter 4 80286-based Protected-Mode DOS Extenders 153

union REGS r;
struct SREGS s;
s.es = FP_SEG(ncb);
r.x.bx = FP_OFF(ncb);
int86x(NETBIOS_INT, &r, &r, &s);

#endif
}

1* INT 21H AH=35H in pmode returns pmode interrupt vector *1
1* to get real-mode vector, call D16rmGetVector *1
FP getvect(WORD intno)
{

#ifdef DOS16M
INTVECT iv;
return D16rmGetVector(intno, &iv) ? MK_FP(iv.sel, iv.off)

#else
return _dos_getvect(intno);

#endif
}

(FP) 0;

{ free(fp); }

{ D16MemFree(fp); }

FP alloc(WORD size, STRATEGY strat)
{

#ifdef DOS16M
STRATEGY old = D16MemStrategy(strat); 1* set allocation strategy *1
FP fp = D16MemAlloc(size); 1* can't use calloc here! *1
1* can't use calloc, but must zero out structure *1
1* could also use MAKEPM -INITOO option *1
if (fp) memset(fp, 0, sizeof(NCB»; 1* large-model memset *1
D16MemStrategy(old); 1* restore previous strategy *1
return fp;

#else
return calloc(1, size);

#endif
}

#ifdef DOS16M
void dealloc(FP fp)
#else
void dealloc(FP fp)
#endif

There is no single DOS/16M call to allocate out of low memory. Instead, you
first call D16MemStrategy() to set the DOS/16M memory-allocation strateg)T,
then allocate memory, and then restore the previous allocation strategy. To move
a block of memory from, for example, extended to low memory, call D16Mem
Strategy(), then call D16SegRealloc(), which compares the segment's alloca-



154 EXTENDING DOS

tion with the current strategy. The DOS/16M allocation strategies are prefer-ex
tended, prefer-low, force-extended, force-low, transparent, and transparent-stack.

Note that after setting the strategy, NB.C does not call C memory manage
ment routines such as malloc() or calloc(). These functions allocate out of
pools of storage, and are not affected by the DOS/16M allocation strategy until
the next time they happen to call DOS to add to their pools. To guarantee that al
location requests reflect the current strategy, D16MemA lloc () is called instead.

While NB.C manages to isolate the differences between real and protected
modes inside subroutines like ne t bi 0 s_reques t () and a II 0 c ( ), clearly this
code is nonetheless heavily dependent on DOS/16M.

This same code can run under DOS/16M, without explicitly using the
DOS/16M libra~ and without any #ifdef DOS16M code. All we do is splice in
the NET5C package supplied with DOS/16M:

splice nb.exe packages\net5c.exp nb.exp

While packages provide an elegant way to completely isolate changes for
protected mode, packages themselves must be written using the DOS/16M li
brary, so they don't eliminate the need to know about the OOS/16M functions.
Behind the scenes, the NET5C.EXP package uses D16pmlnsta II () to install a
protected-mode interrupt handler for Int 5CH, and to install a handler for Net
BIOS "post" <asynchronous callback) routines. The Int 5CH handler itself uses
such DOS/16M routines as D16RealPtr() and D16rmlnterrupt(). The result is
that In t 5CHis handled almost as transparently as is In t 21 H.

In addition to using the NET5C package, the header to NB.C indicates yet an
other way to run the program in protected mode: using the Instant-C develop
ment environment. All the DOS/16M functions can be called from within
Instant-C, and, as we will see later on, Instant-e provides an excellent environ
ment in which to work with the DOS/16M library and explore protected-mode C
programming in general.

08/286 and the Two-Machine Model
It is important that we look at another DOS extender: OS/286, from Eclipse Com
puter Solutions, formerly A. I. Architects. Most code ported to DOS/16M also
runs under OS/286, but there are a number of important differences between the
two products.

Whereas Rational Systems' first product was Instant-e, and OOS/16M was
an outgrowth of this work, A. I. Architects started out as a hardware compan)',



Chapter 4 80286-based Protected-Mode DOS Extenders 155

making the HummingBoard, a 386 protected-mode coprocessor for PCs. The
best-known client for the HummingBoard is Gold Hill, makers of LISP systems
for the PC. Unlike other 386 accelerator boards that replace the PC's CPU, the
HummingBoard is used in addition to the native CPU, much like a math or graph
ics coprocessor.

This experience with running a protected-mode processor alongside an exist
ing real-mode processor is the basis for Eclipse's DOS extender products. Even
when OS/286 runs on a single processor, switching it between real and protected
mode, the OS/286 model is: DOS extender as coprocessor.

One of the OS/286 architects, Fred Hewett, explained this in a paper, "DOS
Extenders and the Two-Machine Model":

It is useful to think of the 286 (or 386) as two distinct microprocessors
sharing a single package. The core of a DOS extender is a communication
system between the two machines.... Interestingly, in the initial implemen
tation of OS/x86, the real-mode processor and the protected-mode proces
sor were physically different chips. The real-mode chip was the 80x86 of a
PC, and the protected-mode processor was a 386 on an add-in card. The ar
chitecture of OS/x86, which began with a true two-processor mode, reflects
the dual nature of the 286 and 386 processors.

In this model, the real-mode machine is used for I/O and user interface,
while the protected-mode machine is used for memory and task management.

The two machines communicate via "real procedure calls" (RPC), a name in
tentionally similar to the "remote procedure calls" used in networking. The ma
chines do not share address space, even when inhabiting the same processor:
we've seen several times that protected-mode selectors have no meaning in real
mode, and that real-mode segment values have no meaning in protected mode.
(Transparent or bimodal selectors only look like an exception to this rule.) Since
the real- and protected-mode address spaces are disjoint, the two modes can be
viewed as a very local area network. Pointers cannot be shared between the two
modes, any more than they can be shared between two nodes on a network; com
munication must be by value, not by reference. Thus, RPC is an excellent model
for the address translation performed by a ooS extender.

But aside from having a perhaps more thought-out philosophical outlook on
DOS extenders than does ooS/16M, how does the two-machine model of
OS/286 relate to actual differences between the two products?



156 EXTENDING DOS

In some ways, of course, it doesn't. When implemented on a single processor,
for example, OS/286's RPC is no different from D05/16M's interrupt chaining
with a mode switch. Interrupts are used for inter-mode communication.

At least one crucial respect of OS/286 differs substantially from DOS/16M:
OS/286 maintains a rigid separation between your protected-mode application
on the one hand, and the OS/286 kernel on the other. We've already seen that
DOS/16M runs your application at the same protection level as the kernel (Ring
0), and that D05/16M uses the GDT, rather than an LDT, for your application's
selectors. In contrast, the OS/286 kernel uses the GDT and runs in Ring 0, while
your task has its own LDT and runs in Ring 3.

In a multitasking operating system such as OS/2, the distinction between the
kernel on the one hand and applications on the other is crucial. But what about in
the world of DOS extenders, where only one task is running, and where the ker
nel exists largely in order to run this one task? Is the distinction between kernel
and task still useful?

Several trade-offs are inherent in OS/286's use of Ring 3 and the LDT. Be
cause of the decision to use Ring 3 for applications and Ring 0 for the kernel,
some operations involved with interrupt handling become more difficult or more
time-consuming for DOS applications ported to protected mode. In an informal
test, a program generated 200,000 software interrupts in 23 seconds in real mode,
32 seconds under DOS/16M, and 51 seconds under OS/286.

OS/286 is much closer to the architecture of a genuine protected-mode oper
ating system such as OS/2, while DOS/16M is much closer to DOS. (Even the
names reflect this.) While porting to OS/286 probably involves more work than
porting to DOS/16M, you might find that it puts you closer to the goal of OS/2
compatibility (if that is, in fact, your goal). While not an 05, OS/286 has more of
a bona fide kernel than DOS/16M.

5till, this helps explain why OS/286 is generally less convenient to work with
than DOS/16M, and why it is larger and a bit slower: OS/286 has "more architec
ture" than DOS/16M. There are also all sorts of issues involving privilege transi
tions, gates, and the protected-mode TSS, all of which are important, but none
that we need to discuss here.

Another aspect of OS/286's clear demarcation between kernel and applica
tion is that the OS/286 kernel is loaded as a separate T5R. OS/286 is a little more
akin to an environment than is DOS/16M. Before running OS/286 executables,
one first runs the OS286.EXE TSR. This can be bound into OS/286 executables,
but they then become extremely large. Once the kernel has been installed, execut-



Chapter 4 80286-based Protected-Mode DOS Extenders 157

abIes can be run using a loader called UP.EXE, or by running a bound executable
which includes UP.EXE, or by using a custom loader. The OS/286 manual de
votes an entire chapter to writing your own loader, which can communicate with
the OS/286 kernel. Finally, OS/286 comes with a combined command processor
and debugger, C~ which runs under the kernel, and which can load and run both
real-mode and protected-mode executables.

This brings up one interesting benefit to OS/286's architecture. Because
OS/286 uses the LOT, the OOS EXEC function in OS/286 (Int 21 HAH=4BH) is able
to spawn protected-mode .EXP files: the kernel owns the GOT, each task gets its
own LDT, and parent and child tasks can share selectors in the GDT. In contrast,
DOS/16M, which uses the GOT for everything, has less opportunity for handling
more than one protected-mode task.

OS/286 does not support full multitasking, however. Instead, it just supports
"task management" a la MS-DOS, where4 a parent can spawn a child task but
must wait for it to complete.

Of course, DOS also has an unofficial form of multitasking: the TSR.
DOS/16M supports Int 21H AH=31H ("terminate and stay resident") in protected
mode, allowing you to write protected-mode T5Rs. While every ooS/16M task
gets its own loader and GDT, there is also limited communication between
DOS/16M tasks using Int 15H. OS/286 also allows you to create protected-mode
TSRs, but Int 21 HAH=31 Hcan only be called from a custom version of the loader.
Again we see various trade-offs between the two D05 extender architectures.

Another important difference is that whereas Rational Systems currently only
produces a 286-based product, Eclipse produces not only OS/286, but also
OS/386 and OS/386 HB (HummingBoard)-see Chapter 5 for more information.
The compatibility between these products is very high. All share the same man
ual. The OS/286 API is directly based on 05/386, and in fact the functions
needed to write your own loader bear such names as OS386_Get_GDT() and
OS386_Create_Task(), even when used in OS/286. The Eclipse extensions to
DOS were designed around 32-bit values. While each Eclipse product has its own
kernel (OS286.EXE versus OS386.EXE), the tools that communicate with each
kernel are identical. Thus, EXPRE5S.EXE, CP.EXE, and ~EXE in OS/286 are
identical to the versions included with OS/386. This is a major advantage to
keeping the kernel separate from utilities that talk directly to your application.

At this point, we had better discuss these utilities. Just as we did with
DOS/16M, to take the LIST program and prepare it for OS/286, we can start with
the same LIST.OBJ as in real mode. The next steps are:



158 EXTENDING DOS

link /noe/map list,list,list,\os286\llibce;
\os286\express list
\os286\bind -0 list.exe -l \os286\tinyup.exe \

-k \os286\os286.exe -i list.exp

Whereas DOS/16M provides loose .OBI modules for you to link in with your
application, OS/286, during installation, makes a copy of your real-mode library
and adds in its .OBI modules. To link, you simply specify this .LIB rather than
use the one that came with the compiler.

An important point is that the resulting executable will still run in real mode.
The OS/286 .OBI modules simply correct flaws in the real-mode libraI}', but
don't otherwise tie it to protected mode or to OS/286. In contrast, some of the
DOS/16M .OBI modules prevent the executable from running in real mode, be
cause the LINK output is just meant as preparation for MAKEPM.

At this stage, whereas for OOS/16M you run the MAKEPM utility, for
OS/286 you run EXPRESS. EXPRESS takes a well-behaved DOS application and
its .MAP file and, like MAKEPM, translates segments to selectors, producing an
.EXP file. So the sole job of the OS/286 replacement .OBI modules is to make a
DOS executable well behaved. Some compiler libraries (for example, MetaWare
High C) don't require patching; Microsoft C appears to be the most ill-behaved,
as it requires the most patches.

While OS/286, DOS/16M, and 32-bit DOS extenders all produce protected
mode executables with an .EXP extension, this extension is about all the files
have in common. There is unfortunately no common protected-mode executable
file format.

The .EXP file produced by EXPRESS can, as stated earlier, be run in several
ways. The OS/286 equivalent of SPLICE is the BIND utility, which must be pur
chased separately from Eclipse.

The OS/286 API has two levels. One, already mentioned, allows you to write
custom loaders by communicating with the Eclipse kernel. As noted earlier,
while bearing the prefix "05386_ ," these are also used in OS/286, and include:

Initializing and Loading
OS386_Init_Machine
OS386_Create_Task

Real Procedures and Signals
0S386_Declare_RPC

Boot protected mode
Load a task

Assign ASCIIZ name to real-mode procedure



Chapter 4

05386_Delete_RPC
05386_Generate_Signal

Information Services
05386_Get_Exit_Code
05386_Get_Protected_Machine
05386_Get_GDT
05386_Get_LDT
05386_Get_Segment_Info
05386_Get_Task_ID
OS386_Get_Version

Debugging Calls
OS386_Read_Mem
05386_Write_Mem
05386_Step_Task
05386_Task_Control

80286-based Protected-Mode DOS Extenders 159

Remove a real-mode procedure
Call real-mode procedure from protected mode

Get exit code
Get processor type
Get Global Descriptor Table selector
Get Local Descriptor Table selector
Look at descriptor
Get a task ID
Get OS/x86 version

Read protected memory
Write protected memory
Step task
Step, suspend, start, or kill task

The other level has roughly the same functionality as the OOS/16M library,
though it uses the Int 21 Hinterface rather than the C language far-call interface
used by the DOS/16M library. The Eclipse extensions to Int 21H include:

Real Procedure Calls
AH=EOH
AH=EIH

Initialize real procedure
Issue real procedure call

Interrupts, Heap Management, and Signals
AH=E2H Set real procedure signal handler
AH=E3H Issue real interrupt
AH=E4H AL=OOH Chain to real-mode handler
AH=E4H AL=02H Set protected-mode task gate
AH=E4H AL=03H Remove protected-mode task gate
AH=E5H AL=OOH Heap management strategy
AH=E5H AL=OlH Force heap compaction
AH=E6H Issue real procedure signal from protected mode

Extended Segment Services

AH=E7H
AH=E8H AL=OOH

Create code segment
Create data segment



160 EXTENDING DOS

AH=E8H AL=OlH

AH=E8H AL=02H
AH=E8H AL=03H
AH=E8H AH=06H
AH=E9H AL=OlH,02H

AH=E9H AL=OSH
AH=E9H AL=06H

AH=EAH
AH=ECH
AH=EDH

Create data window/alias

Create real segment
Create real window/alias
Create shareable segment
Change segment parameters (code/data)

Change segment parameters (adjust limit)
Change segment parameters (base address)

Allocate multiple windows (huge segments)
Block transfer
Get segment or window descriptor

/* "issue real interrupt" */
/* interrupt number */

Some of these calls are used in the following modifications to the program
NB.C, which allocated a low-memory protected-mode selector (possibly a trans
parent one) and issued a real-mode Int 5CH, to test if NetBIOS is present. The
upper half of the program is unchanged; only the alterations for OS/286 are
shown here:

#ifdef OS286
/* given protected-mode pointer, returns physical base address */
DWORD prot2abs(FP fp)
{

union REGS r;
r.h.ah = OxED; /* "get segment or window information" */
r.h.al = Ox02; /* real segment */
r.x.bx = FP_SEG(fp);
intdos(&r, &r);
return (r.x.cflag) ? OL (DWORD) MK_FP(r.x.si, r.x.bx);

}

#endif

void netbios_request(NCB far *ncb)
{

#ifdef OS286
typedef struct { WORD ax,bx,cx,dx,flags,si,di,ds,es; } MACHINE_STATE;
MACHINE_STATE state, *pstate = &state;
union REGS r;
struct SREGS s;
DWORD absaddr;
segread(&s);
r.h.ah = OXE3;
r.h.al = NETBIOS_INT;
r.x.dx = FP_OFF(pstate);
s.ds = FP_SEG(pstate);
r.x.bx = 0; /* don't need any return registers */
/* now set up registers for real-mode interrupt */
absaddr = prot2abs(ncb);



Chapter 4

state.es = absaddr » 4;
state.bx = absaddr & OxOF;
intdosx(&r, &r, &s);

#endif
}

FP getvect(WORD intno)
{

80286-based Protected-Mode DOS Extenders 161

1* okay for OS/286: returns address of protected-mode surrogate */
return _dos_getvect(intno);

}

FP alloc(WORD size, STRATEGY strat)
{

#ifdef 05286
union REGS r;
r.x.cx = 0;
r.x.dx = size;
/* use lIextended segment service":

either IIcreate real segment ll or IIcreate data segment ll *1
if (strat == low) r.x.ax = OXE802;
else if (strat == extended) r.x.ax = OXE800;
else return (FP) 0; 1* not supported */
intdos(&r, &r);
return (r.x.cflag) ? (FP) 0 : MK_FP(r.x.ax, 0);

#endif
}

#ifdef 05286
/* use standard DOS call, even for segments allocated with

lIextended segment services ll */
void dealloc(FP fp) { _dos_freemem(FP_SEG(fp»; }
#endif

As with DOS/16M, we test for the presence of NetBIOS by putting an invalid
command in a NetBIOS control block (NCB). This control block must be in low
memory, because NetBIOS runs in real mode. The function all oc () uses an
OS/286 "extended segment service" to allocate a segment whose physical base
address is in low memory. After setting up the low-memory NCB using the pro
tected-mode pointer, the function netbi os_request () is called to put the real
mode address of the NCB in ES:BX, switch to real mode, issue an Int 5CH, and
switch back to protected mode. To do this in DOS/16M, we called D16rm-
Interrupt (). In OS/286, we use the "issue real interrupt" service. This expects
the address of a MACHINE_STATE block in D5:DX. The fields of the MACHINE_STATE
block hold register values destined for real mode. To get the real-mode address of



162 EXTENDING DOS

the NCB to place in the ES:BX fields of the MACHINE_STATE block, we call the
function prot2abs() which, in turn, uses the OS/286 "get segment or window
information" service. Finally, we deallocate the low-memory segment using the
Microsoft·C _dos_freemem() call, which performs an Int 21 H AH=49H.

Once this is substituted for the #i fdef DOS16M sections of NB.C, the program
can be prepared for OS/286 with the following commands:

cl -AL -Ox -G2 -c -DOS286 nb.c
link Imap nb,nb,nb,\os286\llibce:lib;
express nb

Lattice Cand "Extended Family Mode"

It is also important to mention OS/286's forthcoming inclusion in the Lattice
80286 C Development System. OS/286 is already bundled with a number of
other languages, including Gold Hill Lisp and Lahey Fortran.

Lattice will be using the DOS extender as part of its "Extended Family Mode"
for portability between MS-DOS and OS/2. Microsoft has dubbed a small subset
of the OS/2 API the "Family API": OS/2 API functions that can be called under
either OS/2 or MS-DOS. Lattice is using the larger address space available.under
the OS/286 DOS extender to extend the range of OS/2 functionality that can also
be used under MS-OOS.

The output of this process is not a .EXP file. Since family-mode applications
already include a real-mode stub loader, which loads a protected-mode OS/2 ex
ecutable in DOS and connects it to real-mode API simulator functions, this same
mechanism can be extended to run an OS/2 executable in protected-mode MS
DOS. Lattice's LBIND utility, which attaches a stub loader to an OS/2 executable,
can be used to attach a 005 extender loader (similar to OS/286's UP.EXE) to an
"Extended Family Mode" application.

Lattice president David Schmitt argues that this is the future for 286 ma
chines: "The 80286 is just too weak for OS/2. On the other hand, the 80286 is too
strong for 005."

Performance
There are two reasons for concern about the performance of programs that run
under a 286-based protected-mode DOS extender. First, precisely because it is
protected, protected mode is, at a raw level, inherently slower than real mode. We
saw earlier that the LES ex instruction requires more clocks in protected than in



Chapter 4 80286-based Protected-Mode DOS Extenders 163

real mode. As Table 4-2 shows, the same is true for any 286 instruction that loads
segment registers. This penalty is especially severe for large models.

Table 4-2: 286 performance.

Instruction Real Protected
CALLF 13+ 26+m
INT 23+ '(40;78)+m ; loads CS

IRET 17+ (31,55)+m

JMP FAR 11 +m 23+
LES etc. 7 21
MOVseg 5 19
POPseg 5 20
RETF 15+m 25+m,55

The second reason to worry about prot~cted-modeperformance is the notori
ously expensive protected-to-real mode switch on the 286. Since a DOS extender
very frequently switches into real mode (not only to service explicit OOS and
BIOS requests from your program, but also to handle external interrupts from the
clock, keyboard, network adapter, and so on), one might think such a program
would be unusable on a 286.

In fact, the protected-mode version of a large piece of commercial software
generally performs better than the real-mode version. The reason is not difficult
to find. Contrary to the often noted time/space trade-off in software, in many
programs that are cramped for space~ there is no such trade-off. giving the program
more space makes it faster. This is particularly true for programs that use over
lays or some form of virtual memory (VM). When a program doesn't have to
spend all its time inside the VM manager (which is pure overhead), it is able to
get some actual work accomplished. A program that doesn't have a time/space
trade-off usually performs better in protected mode than in real mode.

On machines with souped up "pow~ruser" CONFIG.SYS files, the real-mode
version may still perform better than the DOS extender version. Interestingl~

though, the performance of the DOS extender version is largely insensitive to any
installed speedup and caching utilities. Thus, rather than advise users to install
various utilities to improve your program's performance, ·you can provide the
possibility of simplified configuration by using a DOS extender.

In one piece of commercial software with its own built-in VM, the vastly in
creased headroom brought about by DOS/16M did introduce one major prob
lem: while the VM "garbage collector" was not getting called anywhere as



164 EXTENDING DOS

frequently as under real mode, when it did eventually get called, it had enormous
amounts of garbage to mark and sweep, and would take forever. To cope with
the larger memory available in protected mode, the garbage collector had to be
rewritten to operate incrementally.

On a related issue, one also needs to be concerned about badly behaved heaps.
The memory-management routines in PC compiler run-time libraries such as
MSC 5.1 were not written to handle megabytes of memory. Microsoft's startup
code, in fact, establishes an upper bound of 20 heaps. The DOS/16M and OS/286
startup codes change this to a larger number, but the heap routines themselves
do not expect to be handling huge lists.

The LIST.C program presented at the beginning of this chapter defaults to
creating 512-byte nodes, but if we tell it to create much smaller nodes, the pro
gram performs more calls to rna II 0 C ( ). When the list gets very large, the perfor
mance of the heap code totally falls apart. Allocating six-byte nodes, it takes the
real-mode version only one second to allocate the first 22,000 nodes, but allocat
ing the last 1,000 nodes takes 185 seconds. This seems pretty badly behaved, but
the disparity between the early allocations and the later allocations is even worse
in protected mode: whereas the first 75,000 nodes can be allocated in 72 seconds,
allocating the last 1,000 nodes (6K) takes ten minutes!

When memory is finally exhausted, the protected-mode version has allocated
80,000 nodes in 1,700 seconds (45 nodes/second), and the real-mode version has
allocated only 25,000 nodes in 500 seconds (50 nodes/second), so the overall per
formance per node is about the same. But in protected mode, it's that last 10 min
utes that kills you. This is definitely something to plan for.

Returning to normal behavior, Table 4-3 shows run-time and allocation fig
ures for the LIST program, using 512-byte nodes, and running on three different
machines:

Table 4-3: Run-time and allocation figures for LIST.

DOS/16M Real Mode

Maehine alloe see k/see alloe see k/see
IBM PCIAT 8 MHz (2 meg) 1714K 22 77 454K 5 90
Compaq 386/20e (4 meg) 3240K 16 202 500K 2 250
PS/2 Model 80 (6 meg) 5575K 31 179 505K 2 253

Mainly, this shows that the real-mode version is, as expected, oblivious to the
amount of memory installed on a machine. On the PS/2 Model 80 with 6 mega-



Chapter 4 80286-based Protected-Mode DOS Extenders 165

bytes of memory, the DOS/16M version allocates more than 10 times as much
memory as the real-mode version. And remember, the source code for the two
versions is identical. But these throughput figures do also show that this
DOS/16M version consistently allocates fewer kilobytes per second than the real
mode version.

While this toy program is hardly representative of the large applications that
are likely to use a DOS extender, and while large protected-mode applications are
likely to be faster than their real-mode version, it is still useful to look at the LIST
program and ask, where is it spending its time?

The DOS/16M debugger sampler command controls a built-in performance
monitor. In addition to showing the amount of time spent in each function, the
performance monitor also reveals time spent in protected versus real mode, as
well as the number of mode switches and interrupts, and provides a complete
census of DOS calls.

On the IBM AT, the LIST program spends about 3/4 of its time in protected
mode and 1/4 in real mode. The program does about 3,300 mode switches, al
most all of them to service Int 21 H requests. The most frequently-called DOS re
quest is Int 21H AH=4AH (realloc), which accounts for over seven seconds of
run-time! Microsoft's internal routines amalloc() and memO() account for over
90 percent of the time spent in user code.

In addition, the LIST program itself displays the elapsed time for each 1,000
nodes it allocates. This display, together with our discussion of badly-behaved
heaps, indicates that the program spends the bulk of its time allocating the last
few nodes: time seems to pass more slowly toward the end.

This suggests that one way to optimize this program is to tinker with
DOS/16M's allocation strategy. For example, we can force the program to use
only extended memory, either by calling D16MemStrategy() at the beginning of
the program, or, if we want to a avoid coding in DOS/16M dependencies, by
using a MAKEPM option to "force extended":

makepm -mfx list

On the IBM AT, the DOS/16M version now allocates only 1268K, but this is
still three times as much as in real mode. Meanwhile, the run time is slashed from
22 to nine seconds. Pretty good for throwing one MAKEPM switch, but the loss
of almost SOOK on a two-megabyte machine is probably unacceptable. We need a
way to maintain this performance, while still allowing low-memory allocations.



166 EXTENDING DOS

One way is to keep the change that forces extended-memory allocations, but
to switch· over to low memory when extended memory is exhausted. This does
require inclusion of "dos16. h" and use of the DOS/16M librar)T, but actual
pointer handling remains unchanged. The changed code inside the allocation
loop now reads:

if CCq->data = mallocCnodesize» == NULL)
{

D16MemStrategyCMForceLow);
1* try again *1
if CCq->data = mallocCnodesize» == NULL)
{

1* exhausted all memory in the machine *1
freeCq);
break;

}

printfCtrSwitched to low memory!\n tr );
}

The new throughput figures for the program, alongside those for the original
DOS/16M and real-mode versions, are shown in Table 4-4.

Table 4-4: Throughput figures for LIST.

Machine alloc sec klsec Original Real Mode
IBM PC/AT 8 MHz (2 meg) 1708K 13 131 77 90
Compaq 386/20e (4 meg) 3201 12 266 202 250
PS/2 Model 80 (6 meg) 5566 30 185 179 253

On both the two-megabyte and four-megabyte computers, the DOS/16M
version now not only allocates far more memory than the real-mode version, but
is also faster. Clearly, this optimization plays an important role on computers
where low memory is a significant percentage of total memory on the machine.

Benefits and Limitations of 286-based DOS Extenders

In conclusion, it would be useful to review the advantages and disadvantages of
286-based protected-mode DOS extenders, compared with each of: 640K MS
DOS, 386-based DOS extenders, and OS/2.

MS-DOS

The advantages of DOS/16M and OS/286 over "plain vanilla" MS-DOS are
pretty obvious: access to up to 16 megabytes of memory versus access to 640K of



Chapter 4 80286-based Protected-Mode DOS Extenders 167

memory, and hardware-assisted memory protection versus a total absence of
rules. Because of the larger real estate available in protected mode, large applica
tions may also run faster in protected mode than in real mode.

But 286-based DOS extenders have a number of disadvantages you should be
aware of. Users must have an IBM AT, or better, to run a DOS-extended program.
8088-based PCs are definitely on the way out, but the XT is still dominant in Eu
rope. Furthermore, for small programs, protected mode can be slower than real
mode, and switching between protected and real mode on a 286 machine may be
too slow for some applications.

One other disadvantage of a DOS extender is that the vastly increased re
sources suddenly available, with very little work, may seem like a license to write
really bad code. Limitations aren't always such a bad thing; a lot of programs out
there would benefit from having some stringent limitations placed on them.

386·based DOS Extenders

DOS/16M and OS/286 have three primary advantages over 32-bit DOS extend
ers like OS/386 and Phar Lap's 3861 DOS-Extender (which are discussed in detail
in the following chapter). First, programs developed with DOS/16M and OS/286
can run on IBM PC/ATs or other 286-based PC compatibles, whereas 32-bit DOS
extenders require 386-based or higher computers. Second, because 32-bit applica
tions generally use a linear address space with very little segmentation, they do
not have the debugging advantages of highly segmented 16-bit protected-mode
programs. Third, moving from 16-bit real mode based on the 8088 to 16-bit pro
tected mode based on the 80286, requires fewer changes to your source code than
moving all the way to 32-bit protected mode.

The advantages of 32-bit protected mode over 16-bit protected mode are tre
mendous: anyone who has seen the code produced by 32-bit C compilers never
wants to go back to 16-bit code. Make no mistake, 32-bit code is the wave of the
future. Furthermore, while 286-based protected mode offers 16 megabytes of
physical memory, any individual item cannot be larger than 64K, unless you re
sort to huge model. In contrast, 32-bit protected mode allows objects as large as
four gigabytes. And while the lack of segmentation when using a single linear
address space in 32-bit protected mode means you lose some debugging advan
tages, in general, most £,C programmers would be happy if they never saw an
other segment.



168 EXTENDING DOS

OS/2

Finally, what about OS/2? There seem to be three reasons to use DOS/16M or
OS/286 rather than OS/2. First, porting to a 286-based DOS extender may take
only days or weeks, in contrast to an OS/2 port, which may take months, or even
involve a total rewrite of your program. Second, with a DOS extender you do not
have to convince your users to buy a new operating system: ooS/16M and
OS/286 work with the MS-DOS 3.x they already have. Finall)', in contrast to
OS/2, 286-based DOS extenders perform reasonably on 286 machines. One ad for
the Glockenspiel C++ compiler reports that in one test, the OS/2 version took
2.45 minutes as opposed to 45 seconds under the DOS extended version.

But the ease of working with DOS extenders, and their raw performance ad
vantages, should not blind us to the benefits of OS/2. In fact, the reason it takes
so much work to port to OS/2 is that the benefits are so great. In addition to the
large address space and memory management offered by 005 extenders, OS/2
offers virtual memory, multitasking, inter-process communications, graphics, and
windows. A program such as Lotus 1-2-3/G (the OS/2 Presentation Manager
version of 1-2-3) simply could not be written without such facilities.

The ability to do several things at once largely diminishes the importance of
raw throughput figures: while the DOS/16M version of a product takes only 45
'seconds to do something for which the OS/2 version requires 2.45 minutes, on
the other hand let's not forget that during those 45 seconds, you can't do anything
else. It's strictly one thing at a time in the world of DOS extenders (though
DOS/16M does support traditional DOS pseudo-multitasking techniques such as
TSRs, and both OS/286 and DOS/16M programs can run inside the DESQview
multitasker).

Of course, not every application needs OS/2's advanced features, and you
can't always go on to something else while the compiler is taking 2.45 minutes to
compile your program. Where OS/2 might be perfect for one application, a DOS
extender, or perhaps even real-mode MS-DOS itself, might be right for another.
Actually, all these different environments complement each other rather nicely.
There is no one perfect operating system, any more than there is one perfect pro
gramming language, or one true method for brewing tea. Perhaps in the future
we will see a loose merger of real-mode MS-:DOS, 286- and 386-based protected
mode MS-DOS, and OS/2, with developers able to freely use whichever one is
appropriate for the job at hand.



















































Chapter 5

80386-based Protected-Mode DOS Extenders

M. Steven Baker and Andrew Schulman

In the PC arena, new hardware outstrips software. It is common to find 80386
computers used merely as fast XT machines, because the truly powerful features
of this CPU are unavailable in the real mode used by the venerable MS-DOS op
erating system. But as long as speed and power spur marketing, the developer
can't neglect the powerful features of the 80386 and 80486 crus, even in the DOS
marketplace.

386-based protected-mode DOS extenders grew out of the need to take ad
vantage of the more powerful features of 80386 computers, without forgoing M5
DOS. 386 DOS extenders allow large applications to run under DOS until (if ever)
a true 386 operating system displaces DOS.

These 386 DOS extenders set up a bridge to the DOS environment and put
the 80386 chip into protected mode so that both the larger memory space and the
full 386 instruction set are available. To an end user, an application built with a
DOS extender can look like any other DOS program. When the user executes the
program, control passes invisibly to the 386 DOS extender, which loads and runs
the application in protected mode. Such a protected-mode application can trans
parently invoke real-mode DOS or BIOS services: 386 DOS extenders use essen
tially the same mechanism as was explained in detail in Chapter 4 (though a 386
DOS extender has the option of running DOS and BIOS in Virtual 8086 mode

193



194 EXTENDING DOS

rather than in real mode). The application built with a DOS extender is likely to
be much faster and have more features than a comparable DOS program, and it
is often difficult or impossible to build a comparable real-mode OOS program.

In early 1987, when 386 DOS extenders were first introduced, many industry
watchers predicted their demise within two years. Even the software developers
who were marketing DOS extenders thought they had only a narrow "window of
opportunity," as DOS would presumably soon be replaced by a true protected
mode operating system. By fall 1987, it seemed that MS-DOS, and DOS extend
ers, would have a much longer life, perhaps up to five years. Now, a few years
later, 386 DOS extenders are solidly entrenched in the PC developer's market.
MS-DOS, suitably extended, remains the operating system standard for the IBM
microcomputer world, and the number of high-end commercial applications
built with 386 DOS extenders continues to grow.

The best-known 32-bit DOS extender is Phar Lap Software's 3861 DDS-Ex
tender. Applications built using the Phar Lap DOS extender include Interleaf
Publisher (IBM), Mathematica (Wolfram Research), and AutoCAD 386 (Au
todesk). In addition, Phar Lap defined the EASY OMF-386 format for 32-bit ob
ject files, and produces the industry-standard tools 386 1ASM and 3861 LINK,
used even with their competitors' DOS extenders.

While this chapter deals primarily with Phar Lap's 3861 oo5-Extender, we
will also examine 05/386 from Eclipse Computer Solutions. We have already
said a good deal about the Eclipse product in Chapter 4 since, as noted there,
OS/286 and OS/386 are tightly coupled. We will also briefly examine X-AM from
Intelligent Graphics Corporation (IGC). While IGC is not currently marketing X
AM, it is incorporated in a number of important applications, including the
dBase-compatible database manager FoxBase+/386 (Fox Software).

386 DOS Extenders in the Marketplace
The high-end CAD market on the PC is dominated by versions of applications in
corporating 386 DOS extenders. These math-intensive, memory-intensive prod
ucts benefit significantly from the 386 programming features made available by
DOS extenders. The vendors in this market are compelled to offer 386 versions in
order to remain competitive.

386 DOS extenders may be found in other graphics- and numerics-intensive
applications ranging from symbolic math packages such as Mathematica to high-



Chapter 5 80386-based Protected-Mode DOS Extenders 195

; move p into an index register
; dereference the index register
; sign-extend AL into AX

end page printing programs such as Interleaf Publisher. Both of these products
were ported from the UNIX workstation platform to DOS.

386 DOS extenders also appear in database products-most notably Para
dox/386 and FoxBase+/386. A number of program development environments
employ 386 DOS extenders, including Smalltalk-80/386 (ParcPlace), Common
Lisp CLOE-386 (Symbolics), Laboratory Microsystems UR/Forth and APL-PLUS
II (STSC).

Certainly, other schemes such as EMS can provide partial solutions to DOS
memory limits. But 386 DOS extenders solve both memory and speed problems
simply and directly. When your application outgrows memory space or needs a
performance boost, it's time to consider 32-bit programming.

32 Bits
How is a 386-based protected-mode DOS extender different from the 286-based
extenders we examined in Chapter 4? Remember that these 286 extenders, while
based on AT class machines, can also run on the 386 and 486. Since a purely 386
based extender has the obvious disadvantage of addressing a smaller share of the
market, what advantages does it have over a 286-based DOS extender?

All the advantages of using the 386's native mode can be summed up in the
single phrase 32 bits. If you have heard this phrase bandied about in the trade
press, but ·have never seen a sample of 32-bit code, then you are in for a treat.
Once you've used 32-bit code, you will never want to go back to the 16-bit code
you've been using.

Let us take a somewhat contrived C function and examine the way it might
be implemented, first using 16-bit code, and then using 32-bit code:

int foo<char *p)
{

char *q;
q = p;
return *q;

}

Were you to compile this in small model (16-bit pointers) with a typical 16-bit
MS-DOS compiler such as Borland's Turbo C, the resulting assembly output
might look something like this:
mov si, word ptr _p
mov aL, byte ptr [siJ
cbw



196 EXTENDING DOS

This assembly language implementation closely matches the higher-level C
representation. It is hard to improve on this code.

Unfortunately, most commercial software (word processors, spreadsheets,
database managers, telecommunications programs, etc.) require more data space
than the 64K maximum allowed by small model. Thus, commercial PC software
is frequently compiled with the compact or large model, using 32-bit (four-byte)
pointers in a 16-bit environment. Using, for example, another typical 16-bit DOS
compiler (Microsoft C 5.1), the large-model implementation of foo<) looks like
this:

mov ax, word ptr _p ; move bottom half of p into AX
mov dx, word ptr _p+2 ; move top half of p into OX
mov word ptr _q, ax ; move AX into bottom half of q
mov word ptr _q+2, dx ; move OX into top half of q
les bx, dword ptr [_qJ ; load far pointer into ES:BX
mov al, byte ptr es:[bxJ ; dereference ES:BX
cbw ; sign-extend AL into AX

What happened? Why did three simple C constructs swell into seven assem
bly-language statements? An inherent inefficiency of 16-bit code is revealed: 32
bit quantities such as longs (dwords) and far pointers are moved piecemeal, 16
bits (two bytes) at a time. Remember that these 32-bit quantities are the rule
rather than the exception in commercial software. Also remember that running
this code on the fastest 386 or 486 CPU will not make it transfer more than two
bytes at a time. To do that, you need 32-bit protected mode: not just protected
mode, mind you, but 32-bit protected mode, since a 286-based DOS extender,
even running on a 386 machine, is still very much a 16-bit beast.

Now for a breath of fresh air. Here is how foo<) is implemented in flat model
(four-byte pointers) by one 32-bit C compiler, Watcom C 7.0/386, that produces
code suitable for a 386 DOS extender:

mov eax, _p ; move p into extended AX (EAX) register
movzx eax, byte ptr [eax] ; dereference EAX, zero-extend into EAX

These two lines of 32-bit code illustrate many of the advantages of using a
386 machine as it was meant to be used, in protected mode, not as a fast 8088.

First of all, we see that, once one decides to use the full 32-bit registers on the
386 (such as EAX instead of AX), 32-bit quantities can obviously be MOVed into
them in one fell swoop.

Second, having 32-bit registers opens the possibility of keeping 32-bit quanti
ties in registers rather than on the stack.



Chapter 5 80386-based Protected-Mode DOS Extenders 197

Third, since the 386 allows dereferencing of almost any register, instead of
only the old base (BX and BP) and index registers (SI and DI), a construct such as
[EAX] can be used, instead of having to do something like MOV BX, AX followed
by [BX]. This more flexible use of registers helps with the notorious "too few reg
isters" problem faced by compiler writers.

Fourth, note how the LES BX instruction disappeared when we switched to
32-bit protected mode. In fact, all mention of segmentation disappeared entirely.
Again, this provides a sharp contrast with a 286-based protected-mode version,
which not only requires the LES BX instruction, but which additionally exacts a
stiff penalty for its use, as noted in Table 4-2 in the previous chapter. Throughout
this chapter, we will see that 32-bit protected-mode allows you to largely forget
about segmentation.

Fifth, the 386 supports many new instructions, such as MOVZX in the exam
ple on the preceding page.

With all the advantages exhibited in this tiny example, it is not surprising
that 32-bit code can easily execute much faster than comparable 16-bit code on
the exact same hardware. The massive waste involved in using 386s as "fast" XTs
should now be clear.

It should also be clear that, to reap these benefits, we cannot simply cannibal
ize the output of a 16-bit compiler as we did when using 286-based DOS extend
ers. Unless you are writing entirely in assembly language, using a 386 DOS
extender requires that you switch to a 32-bit compiler, such as MetaWare High C
386, Watcom C/386, NDP Pascal-386, or Lahey FORTRAN F77/L32.

Now, it is true that the full 32-bit registers can be used in real mode as well.
Few standard MS-DOS compilers provide an option to generate 80386 instruc
tions (for example, Microsoft C has a -G2 switch to generate 286 instructions, but
no equivalent -G3 switch), but, in parts of your program that will only run on a
386 or 486, you could include statements such as the following, which reads the
four-byte BIOS timer count into EAX:

xor ax,ax
mov es,ax
mov eax, es:[46ChJ

; zero ax
; mov 0 into ES
; dereference dword ptr OOOO:046C into EAX

There are at least two limitations to this approach, however.
Multitasking software such as Windows or the OS/2 compatibility box,

which use only the bottom 16 bits of the registers to save a program's context,
can wreak havoc with real-mode programs that use 32-bit registers.



198 EXTENDING DOS

Second, when using 386 instructions in real mode, we are still stuck with the
640K limit of MS-DOS, and the one-megabyte limit of real mode itself. The bene
fit of 32-bit processing in 386 protected mode is not simply greater speed, but far
greater space as well.

32-bit protected mode removes not only the 640K DOS barrier, but also the
equally important 64K limit on segment size. Since 32-bit registers can be used as
base and index registers, the near pointers loaded into these registers can use up
to 32 bits for addressing memory. This in tum means that the maximum index
within a memory segment is no longer FFFFH (64K), but FFFFFFFFH (four
gigabytes).

Benefits of Using 386 Protected-Mode DOS Extenders
We have seen that, once a DOS extender opens up the power of the 80386/80486
CPU, a number of key features are available to the programmer. Let's now dis-
cuss the following benefits more systematically: .

• large memory spaces for code and data
• powerful 32-bit instructions
• virtual memory options
• highly-optimizing compilers
• faster numerics using Weitek math coprocessors.

Wide Open Spaces

While the 8088 microprocessor used in the original IBM PC could address only 1
megabyte of physical memory, the 80386 and 80486 CPUs can access much larger
memory spaces-up to 4 gigabytes. Typical 80386 AT and PS/2 style machines
support up to 16 megabytes of physical memory, but some of the new EISA 80486
computers (for example, Compaq SystemPro) can support up to 256 megabytes
of physical memory.

In this context, the 640K DOS memory limit is a barrier to developing large
applications for the PC, or moving large applications to the PC. With the 640K
DOS limit, large PC programs that depend on overlays and swapping code or
data to disk are prevented from taking advantage of the larger memory capacity
of the 386/486 PCs. Furthermore, the segmented architecture of 80X86 real mode
still limits code and data segments to 64K, so 80386 instructions that would ac
cess memory without the inconvenience of 64K segment limits can't be used. The



Chapter 5 80386-based Protected-Mode DOS Extenders 199

instructions include all the memory indirect and indexing instructions that use
registers such as EBX with values greater than 64K, the maximum value of BX.

Because 32-bit protected mode breaks this 64K segment barrier in addition to
the 640K DOS barrier, the most common memory model is a flat one (analogous
to real-mode "tiny" model used in .COM files), in which all segment selectors
point to the same block of memory-up to four gigabytes of 32-bit address space,
with no segments. In a high-level language such as C, a 32-bit near pointer is a
four-byte quantity. This in tum means that you almost never have to deal with
segmented far pointers: once loaded, DS and CS can stay constant.

While it is no longer needed for an application's data and code, however, seg
mentation may be used to implement sharing and to enforce protection. In a DOS
extender, segments are sometimes needed to use real-mode services. When you
do need to specify a segment as well as an offset, the resulting far pointer is a six
byte quantity (an FWORD).

On those rare occasions when you have to change a segment register, the
same penalty applies to 386 instruction times as we found in 286 protected mode
(see Table 4-2).

32·bit Instructions

The 80386/486 microprocessors are full 32-bit CPUs that feature instruction sets
much closer in power to the CPUs used in minicomputers than to older micro
processors like the 8086:

• Register and memory access is widened to 32 bits. 16-bit registers such as
BX, BP, IP, and FLAGS, have been extended to 32-bit registers such as EBX,
EBP, EIP, and EFLAGS.

• All 32-bit registers, except ESP, can be used as either base or index registers
for memory addressing.

• A scaling factor (2, 4, or 8) can be applied to an index register for memory
addressing.

• Two additional segment registers (FS and GS) have been added for ad
dressing memory. Additional control registers (CRO, CR2, CR3), test regis
ters (TR6, TR7), and debug registers (DRO, DRl, DR2, DR3, DR6, DR7)
have been added.

• String instructions can now operate on double words (4 bytes).
• Instructions are available for converting an 8-bit or 16-bit operand to 32 or

64 bits (CWDE, CDQ, MOVSX, MOVZX).



200 EXTENDING DOS

• Bit manipulation instruction~ are added for testing, setting, and scallI~.ing

bits (BT, BTC, BTR, BTS, BSF; BSR).
• The signed multiply (IMUL) instruction has a more general form that al

lows the use of any register for a destination.
• The LEA instruction is enhanced to perform fast integer multiplication.
• Instructions are added to set or clear bytes based on condition codes in the

flags register (SETcc).
• 386 shift instructions support 32-bit and 64-bit shifts (SHLD, SHRD).

These instructions are available in 386 real mode as well as in protected
mode. But in order to use the features of the 80386 within real-mode 005, the de
veloper would have to provide two versions of an application-one for the 8086
and one for the 80386. The preferred scheme would be to have the program sense
the presence of the 80386 at runtime and use the faster 386 instructions available.
To be most beneficial, the 80386 instructions would need to be programmed as
in-line code. Only a few 80386 instructions can justify such effort in real mode.
These instructions include MOVSD (double word move) and DIV and IDIV (long
integer divide).

The true power of the 386 instruction set can be realized only when a pro
gram is targeted directly for 32-bit protected mode. Instructions now operate on
32-bit registers as well as the 8-bit and 16-bit registers of earlier Intel chips. The
IDIV and DIV instructions were the slowest instructions on the 8086. In support
ing the four-byte data type such as "long" in C, and INTEGER in Fortran, subrou
tines for addition, subtraction, division, and multiplication needed to be called.
On the 80386, these subroutines can be replaced with single in-line instructions.
In terms of clock cycles, long division shows the greatest benefit in execution
speed. A long divide library routine is one place where using these 386 instruc
tions in real mode justifies the effort to detect the 80386.

In the earlier Intel CPUs, memory could be addressed using the BP and BX
registers as base pointers, and 51 and DI registers for indexing. The BX register
defaulted to addressing the data segment (D5), and the BP register defaulted to
the stack segment (55) for local (dynamic) storage. The 80386 makes memory ad
dressing more general: any 32-bit register can be used as a base register. And all
eight 32-bit registers, except ESP, can be used for indexing. In addition, a "scaling"
factor of 2, 4, or 8 can be applied to any register used for indexing when referenc
ing memory. This is a very attractive feature for indexing arrays of words (2-byte
integers), double words (4-byte long integers and reals), quad words (8-byte dou-



ChapterS 80386-based Protected-Mode DOS Extenders 201

ble precision reals), and some multidimensional arrays. These addressing modes
are well suited to the needs of high-level languages. In the following examples,
note that the notation 12CedxJ is equivalent to Cedx+12J:

mov esi, CeaxJ ; using EAX as a base register

mov eax, 12Cedx] ; using EDX as base with displacement

mov eax, Cecx + edx*4J ,. using ECX as base pointer and
; EDX as an index register with scaling

mov eax, 256Cesp + edx*8J ; using ESP as base, EDX as index with
; a dispLacement <stack segment)

The string instructions now support forms that operate on up to 32 bits at a
time, and can use the EAX register rather than AX. These instructions include
LODSD, STOSD, MOVSD, CMPSD, and SCASD. The MOVSD (move double
from [ESI] to [EDI]) instruction executes in the same time as the earlier MOVSW
(move word from [ESI] to [EDI]). When used with the REP (repeat) prefix opera
tor for block moves, MOVSD is another instruction that is valuable to use in real
mode and justifies the effort to detect the 386 chip. Since the ECX register is used
for the loop counter, large blocks (up to 4 gigabytes) can be moved at one time:

cld ; set forward direction for bLock move
mov ecx, 28000h ; count of doubLe words to move
mov esi, source ; point to source
mov edi, destination; and destination
rep movsd ; and move them

Several instructions are available for converting one operand size to a larger
one. CWDE (convert word to dword, extended) sign-extends AX into EAX. CDQ
(convert dword to quadword) sign-extends EAX into EDX:EAX. MOVSX is a
more general form that sign-extends a byte or a word into a 16-bit or 32-bit regis
ter. MOVZX is a similar instruction that zero-extends into a wide register from ei
ther register or memory.

Six instructions are added to operate on bits in either registers or memory. BT
(bit test) can be used to determine the setting of any arbitrary bit. For simple bit
testing, the AND (logical) instruction can execute faster. But the BTC (bit test and
complement), BTR (bit test and reset), and BTS (bit test and set) instructions com
bine bit testing with bit setting, clearing, and complementing, and are useful for
implementing semaphores. BSF (bit scan forward) and BSR (bit scan reverse) find
the first set bit (value of 1) in a bit stream. These instructions can be very useful
when working on bit arrays, including graphics routines and allocation schemes



202 EXTENDING DOS

for memory or disk space. A key feature is that these instructions can operate on
bitmaps as large as 4 gigabits in length.

Several enhancements handle integer multiplication. IMUL (signed multipli
cation) is no longer limited to only the EAX register; any register can be the desti
nation, providing greater flexibility. The fastest execution improvement is a new
form of the LEA (Load Effective Address) instruction using scaled index address
ing that performs fast integer multiplication in registers. This LEA form is limited
to multiplications by small integers (2,3,4,5,8, and 9). However, this instruction
executes in two clock cycles-far faster than either multiply or shift instruc
tions-so a couple of LEA instructions can still exeCute faster than one regular
multiply. The following example converts hours in the CH register to minutes in
the EAX register:

; the traditional method
mov eax,60
mu l ch

; using fast small integer multiplies
movzx eax,ch ; start with hours
lea eax,[eax+eax*4J ; x 5 use some fast integer multiplies
lea eax,[eax*4J ; x 20
lea eax,[eax+eax*2J ; x 60

A large group of SETcc (set byte on condition code) instructions are added to
set or clear bytes based on boolean conditions. All conditions supported by the
JMP instructions are allowed. These instructions provide a way to set logical vari
ables, without using conditional JMPs that empty the prefetch instruction queue:

; the traditional method
xor edx,edx ; assume boolean variable is false
or eax,eax ; test EAX for non-zero
jz next ; if zero, this JMP flushes the prefetch queue
inc edx ; set EDX to true
next:

; using SETcc instruction
xor edx,edx ; assume this boolean variable is false
or eax,eax ; and test for non-zero in EAX
setnz dl ; set flag DL=true if EAX is non-zero



Chapter 5 80386-based Protected-Mode DOS Extenders 203

Paging and Virtual Memory

Along with the segmented memory management also found in 286-based pro
tected mode, the 386 provides the ability to use paging, in which physical mem
ory is tiled with 4K pages to form a linear address space. The use of paging .and
segmentation combines the best of both memory-management techniques; such a
combination is not unique to the 386, and is described in many standard text
books on computer architecture.

Using the hardware paging capabilities of the 80386/486, Phar Lap's
3861 DOS-Extender has a virtual-memory option, 3861 VMM (Virtual Memory
Manager). As under more powerful operating systems like UNIX and OS/2, the
amount of memory available for an application is limited by available disk space
rather than by physical memory in the machine. The virtual.memory feature al
lows you to run memory-hungry applications on 386 machines configured with
relatively small amounts of physical memory. In one high-end technical publish
ing program ported from a workstation environment (Interleaf Publisher), the
original version for the 386 required a minimum of 5 megabytes of physical
memory to run. The same program incorporating the Phar Lap Virtual Memory
Manager needs only a 2-megabyte machine.

Of course, you incur a performance penalty when you use virtual memory. If
the entire application will not fit in physical memory, inevitably, some code or
data is paged to a disk file. Depending on the organization of the program, code
and data are automatically brought into memory as needed from disk. The less
swapping that takes place, the faster the program executes. A program targeted
for operation under a virtual memory manager will benefit from up-front plan
ning and design to minimize swapping.

In addition, paging itself can also slow down memory access. Although the
80386 has a built-in, on-chip cache (the translation lookaside buffer-TLB) of the
32 most-recently-used page table entries to speed memory access, that represents
only 128K of memory. Intel's simulations suggest that this should accommodate
about 98 percent of normal memory access, but this depends on the code. If a
page table entry is not in the cache, the 386 must read two double-word entries
from the page translation table in memory before it can access the actual memory
location of interest.



204 EXTENDING DOS

Optimizing Compilers

In addition to the language compilers moved up to the 386 from the DOS world,
a number of highly optimizing compilers have been ported to the 386 from mini
computers and the UNIX workstations. Because the 80386 is a full 32-bit micro
processor, minicomputer vendors have been able to retarget their compilers to
this CPU. These include the Numeric Data Processor (NDP) series from Micro
Way (retargeting Green Hills compilers), and compilers from Silicon Valley Soft
ware (SVS) and Language Processors, Inc. (LPI).

Many of these compilers have a mainframe rather than a PC "feel." For in- '
stance, NDP FORTRAN-386 and SVS FORTRAN-386 are more likely to be used
for porting an application "down" from the VAX to the 386, than for porting an
application "up" from the PC.

Because these compilers run on the 386, both local and global optimizations
are possible that would be difficult or impossible within DOS memory limits. The
execution speed of the code generated from these optimizing compilers is most
noticeable for math-intensive CAD and scientific applications.

Many compilers perform local optimizations within a function. However,
global optimization across an entire source file requires keeping in memory (usu
ally a tree structure) information concerning the entire source file's code. This
tree structure can require large amounts of memory as the source file size grows.
Under DOS' 640K limits, even local optimizations can be limited-unless the
compiler pages its own tree structures to disk (MetaWare pages to disk in its DOS
compilers). Global optimization on large Fortran source code files, for example,
can become very difficult under DOS memory limits. With virtual memory on
workstations, and now on 386 DOS extenders, compiler vendors are able to per
form more complex local and global optimizations.

Not all 386 compilers are targeted for use with a ooS extender, though. A
number of 386 compilers are designed to generate code for UNIX or other operat
ing systems. For example, Intel itself markets compilers such as C-386/486 and
FORTRAN-386, but these generate code for embedded applications, not for DOS
extenders.

A386 DOS Extender Application
Many of the benefits of 386 DOS extenders, as well as some of the mechanics of
compiling, linking, and running a 32-bit protected-mode DOS application, are il
lustrated in the following C program, which can produce a very large bitmap of



ChapterS 80386-based Protected-Mode DOS Extenders 205

prime numbers, using the Sieve of Eratosthenes. The Sieve has a bad name due to
its overuse in computer benchmarking, but this sieve is a little more interesting
than most: it uses a bitmap rather than an array of integers; the bitmap is dense,
in that multiples of the first two primes, 2 and 3, are neither computed nor
stored.

The end result is a program that, running under the Phar Lap 3861 DOS-Ex
tender on a 16 MHz Compaq Deskpro 386,· takes only seven seconds to find the
78,498 primes <= 1,000,000, using a 41K bitmap. Since this sieve algorithm runs
in linear time, and since the bitmap size also progresses linearly, you can extrapo
late the time and space required to find p(n), the number of primes <= n, for any
n. For instance, to find p(100,OOO,OOO) would take about 700 seconds and require
a 4-megabyte bitmap (however, 80386/486 machines with static RAM caches will
execute the sieve non-linearly for smaller values of n).

1*
SIEVE.C
Author: Andrew Schulman, February 1990
*1

#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>
#include <math.h>
#include <limits.h>
#include <time.h>

#include Itbitmap.h lt

#define N(x)

void fail(char *s)

«x) I 3) II exclude multiples of 2 and 3

{ puts(s); exit(1); }

main(int argc, char *argv[J)
{

BITMAP map;
FILE *f;
double dsize;
clock_t t1, t2;
float runtime;
ULONG i, j, n, primes, size, sqrt_size, map_size;

, int incr, jincr;

if (argc 2)
failCltsyntax: [run386J sieve <x>tI);



206 EXTENDING DOS

if «dsize = strtod(argvC1J, 0» 5)
return 1;

II estimate number of primes, using Legendre formula (1778)
printf("Prime Number Theorem estimates: %.Of primes <= %.Of\n",

floor(dsize I (log(dsize) - 1.08366», dsize);

if (dsize ULONG_MAX)
fail(IInumber too large");

size = (ULONG) dsize;
map_size = N(size) + 1;
if (! (map = make_bitmap(map_size»)

fail(IIInsufficient memory");
printf("bitmap: %lu bytes\n", bytes(SIZE(map»);

II set composites
sqrt_size = sqrt(dsize);
t1=clock();
for (i=5, incr=4, n=1; i<=sqrt_size; i+=(incr=6-incr), n++)

if (BIT_OFF(map, n» II bit clear -> prime
for (j=i, jincr=incr; j<=size/i; j+=(jincr=6-jincr»

SET_TRUE(map, N(i*j»; II bit set -> composite

II count primes
II printf("2 3 II);

for (i=5, incr=4, n=1, primes=2; i<=size; i+=(incr=6-incr), n++)
if (BIT_OFF(map, n»
{

primes++;
II printf("%lu ", i);

}

runtime=(t2=clock(»-t1;

printf("\n%lu primes <= %lu\n", primes, size);
printf("%.2f seconds\n", runtime/CLOCKS_PER_SEC);

puts("Saving bitmap file PRIMES.DAT");
f = fopen(IIprimes.dat", "wb");
fwrite(&size, sizeof(ULONG), 1, f);
fwrite(map; 1, bytes(SIZE(map», f); II write out entire bitmap
fclose(f);

}

The file BITMAP.H provides a BITMAP data type and a set of operations to
set and test bits:



Chapter 5

1* BITMAP.H *1

typedef unsigned long ULONG;
typedef unsigned char BYTE;

#ifdef HUGE_MAP
II only required for 16-bit code
#define ALLOC halloc
#define FREE hfree
typedef BYTE huge *BITMAP;
#else
#define ALLOC calloc
#define FREE free
typedef BYTE *BITMAP;

80386-based Protected-Mode DOS Extenders 207

#define SIZE(map)
#define index(c)
#define mask(c)
#define BIT_ON(map,c)
#define BIT_OFF(map,c)
#define SET_TRUE(map,c)
#define SET_FALSE(map,c)
#define free_bitmap(map)

(*«ULONG *) map»
«(c) » 3) + sizeof(ULONG»
(1 « «c) & Ox07»
(map[;ndex(c)] & mask(c»
(! BIT_ON(map,c»
map[;ndex(c)] 1= mask(c)
map[;ndex(c)] &= mask(c)
FREE(map)

void set_true(BITMAP map, ULONG c) { SET_TRUE(map,c); }

ULONG bytes(ULONG size)
{

return (size·» 3) + «size & Ox07) ? 1
}

BITMAP make_bitmap(ULONG size)
{

BITMAP map;
if (map = (BITMAP) ALLOC(bytes(size), 1»

SIZE(map) = size;
return map;

}

0) + sizeof(ULONG);

To compile this program for a 386 DOS extender using Watcom C 7.0/386,
use the following DOS command line:

wcl386 -3r -mf -Oaxt -fpc sieve.c

The WCL386 driver program will first run the Watcom C compiler,
WCC386.EXE (and the back-end code generator 386WCG.EXE), and will then in
voke the linker, 386LINK.EXE (which you must purchase separately from Phar



208 EXTENDING DOS

Lap, and place somewhere on the DOS PATH). The resulting program,
SIEVE.EXP, requires a 386 DOS extender. Phar Lap's DOS extender is contained
in the loader program RUN386.EXE, and this can either be bound together with
SIEVE.EXP to form SIEVE.EXE (assuming you have purchased a redistribution li
cense from Phar Lap), or can be invoked from the DOS command line:

C:\EXTDOS>run386 sieve 30000000
Prime Number Theorem estimates: 1859537 primes <= 30000000
bitmap: 1250005 bytes
1857859 primes <= 30000000
Estimate off by 1678 (0.090319%)
233.000000 seconds

To compile the program using MetaWare High C 1.6, the command line is:

hc386 sieve.c

The HC386 driver first invokes the High C compiler, HCD386P.EXE, and then
386LINK. The Microsoft linker LINK.EXE cannot be used to produce 386 DOS ex
tender applications. Note that, in contrast to the 286-based DOS extenders dis
cussed in Chapter 4, no postprocessor (such as MAKEPM) is required.

Eclipse OS/386 can run Phar Lap executables. To distinguish these .EXP files
from executables produced by another 32-bit linker, Lahey LINK-EM/32 (sup
plied with Lahey FORTRAN F77L-EM/32), Eclipse recommends renaming the
file with a .PLX extension. There are two variants of Eclipse OS/386: a uni
processor (UP) version, and a version using Eclipse's HummingBoard (HB)
coprocessor. You can purchase a program to bind these OS/386 runtimes with
the protected-mode executable to form a stand-alone DOS executable.

Now, this program can also be compiled with any other DOS C compiler. For
example, a real-mode, large-model Microsoft C 5.1 version can be compiled and
linked using the following DOS command line:

cL -AL -Ox sieve.c
But the resulting program has a fundamental limitation in real-mode MS

DOS: the 64K segment limit means that the bitmap must be less than 64K; this in
turn means that, at most, this real-mode SIEVE.EXE can be used to find
p(1,600,OOO).

In order to work around this limitation in real-mode MS-DOS, the program
can be recompiled to use a "huge" pointer for the bitmap:

cL -AL -DHUGE_MAP -Ox sieve.c



Chapter 5 80386-based Protected-Mode DOS Extenders 209

But this only provides the program with an amount of memory less than
640K. Furthermore, huge pointers, while largely transparent to the programmer,
impose a penalty in execution time.

It is interesting to note that, in order to take advantage of the larger address
space available under one of the 286-based protected-mode DOS extenders dis
cussed in the preceding chapter, the program still requires huge pointers. That is
the only wa}T, for example, to apply the benefits of DOS/16M or OS/286 to this
program. One of the key differences between 286- and 386-based DOS extenders
is that, while both break the 640K DOS barrier, only 386-based extenders also
break the 64K segment barrier.

Since SIEVE.C can be compiled and linked for so many other environments,
what makes it a 386 DOS extender program? In addition to removing space limi
tations, compiling this as a 32-bit application also produces an enormous jump in
performance. Table 5-1 shows execution times for different versions of the SIEVE
program, running on a 16 MHz Compaq 386 with 2 megabytes of memory:

Table 5-1: Execution times for a bitmap sieve.

Seconds

x p(x) Bitmap Size MSC51 Large MSC51 Huge DOS/16M Huge High C-386
100,000 9,592 4K 2 2 2 <1
1,000,000 78,498 41K 21 21 23 7

10,000,000 664,579 416K N/A* 237 270 76

30,000,000 1,857,859 1.2M N/A N/A 827 236

*N/A-Insufficient memory

This comparison shows that, with identical source code and hardware, the
32-bit sieve runs more than three times faster than the 16-bit sieve. While this
program is atypical in that it performs no I/O, its extensive manipulation of four
byte pointers and large data arrays are typical of most programs that one would
consider porting to the 386.

Since all these programs were run on the same 386 machine, this test under
lines the fact that running a program on a 386 does not make it a 386 program. To
make good use of the 386 machine sitting on your desk, you need 32-bit software.

In order to remove as many restrictions as possible when running this code
with 16-bit instructions, all indices were made unsigned longs (ULONG), and the
printf() U%lu" mask was used. But in 32-bit code, a plain unsigned int would
work equally well, as would the p r ; n t f ( ) II %U If mask, since an ; ntis the same as



210 EXTENDING DOS

a long in 32-bit C. si zeof(int) and sizeof(unsigned) are each 4, not 2. Like
wise, si zeof(void *) is 4. (Note that the DOS-specific construct si zeof(void

near *) is also 4, and that si zeof (vo; d far *) is 6.)
Likewise, the all-important ANSI C identifier, si ze_t, which is the unsigned

type of the result of the s i zeof () operator and the type used by function param
eters that accept the size of an object, is a four-byte quantity.

That has many ramifications for programming in 32-bit C. C standard library
functions such as malloc(), fwrite(), and strncpy() all take size_t parame
ters, and s t r len () returns a s i ze_t. These standard library functions deal in
quantities between 0 and UINT_MAX. In the 16-bit code generated by MS-DOS
compilers such as Microsoft C, UINT_MAX is OxFFFF (65,535), yielding the familiar
64K limit on PC array lengths, string lengths, and malloc blocks. But in 32-bit
code, UI NT_MAX is Ox FFFFFFFF, or 4,294,967,295: the magical upper "limit" of four
gigabytes. In the native mode of the 386, this is the upper bound on array
lengths, string lengths, and rna lloc() blocks: hardly a limit at all.

Using the SIEVE program to build a 1.2 megabyte bitmap to represent all
prime numbers <= 30,000,000, we could save this entire bitmap to disk in one call
to fwr i te( ):

FILE *f = fopen("primes.dat", "wb")i
fwrite(&size, sizeof(ULONG), 1, f)i
fwrite(map, 1, bytes(SIZE(map», f)i II write out entire bitmap
fclose(f)i

This code would not work reliably when using an MS-DOS compiler such as
Microsoft C or Turbo C. The third parameter to fwri te() is a si ze_t num_i tems,

yet we are passing in an uns i gned long; in addition, huge pointers cannot be reli
ably passed to standard-library functions. This is an example of how 16-bit mode
forces the programmer to remember low-level aspects of the machine architec
ture. In contrast, 32-bit mode allows a far more "forgetful" style of programming,
in which many more things work the way you wish they worked: passing a 1.2
megabyte buffer to fwr; te () works just fine. "Normal" objects in 32-bit program
ming are true huge objects, without any of the limitations of what Microsoft calls
huge objects.

How does this call to fwri te() actually work in a 32-bit DOS extender?
Under MS-DOS, the C function fwrite() must eventually call Int 21H AH=40H

(Write File or Device). A 32-bit DOS extender supports the Int 21 Hinterface, even
for objects that MS-DOS can't handle. We saw in Chapter 4 how a 16-bit DOS ex
tender skillfully creates the illusion of an MS-DOS that can handle objects in ex-



ChapterS 80386-based Protected-Mode DOS Extenders 211

tended memory. A 32-bit DOS extender must support not only this fiction, but
also the fiction of an MS-DOS that can handle objects whose size is greater than
64K. Standard references to the MS-DOS programmer's interface carry the fol
lowing description for the DOS wr i t e function:

Int 21H Function 40H
Write File or Device
ex = handle
CX = number of bytes to write
DS:DX = segment:offset of buffer area

In a subtle but important difference, the manuals for Phar Lap 3861 DOS-Ex
tender, Eclipse OS/386, and IGC XAM show the following description:

Int 21H AH=40H
Write File or Device
ex = handle
ECX = number of bytes to write
DS:EDX = segment:offset of buffer area

The mention of the 32-bit ECX and EDX registers instead of the 16-bit ex and
OX registers is crucial. In its underlying implementation, this eventually calls the
"real" Int 21 H Function 40H, and so breaks up large requests into a series of
smaller requests, and moves daJa from extended memory to conventional mem
ory, But this is all transparent to the programmer, particularly the programmer
using the standard library functions in a high-level language.

As noted later on, though, file I/O might be slower under a DOS extender
than in real mode. In order to correct this, you might need to make sure that the
DOS extender doesn't break your large fwri te() call into many tiny DOS calls.
The e function setvbuf () is useful here, as are the Phar Lap command-line
switches -MINIBUF and -MAXIBUF, which control the size of the low-memory
data buffer used for DOS function calls. A program like SIEVE.EX~ which writes
a large amount of data at one time, should allocate a large I/O buffer:

run386 -minibuf 32 -maxibuf 48 sieve 30000000

On occasion, you may have to be aware of small differences between the in
terface provided by a 32-bit DOS extender and that provided by MS-DOS, or be
tween the different DOS extenders. The best example is Int 21 HAH=48H (Allocate
Memory Block). Real-mode MS-DOS expects in BX the number of 16-byte para
graphs of m~mory needed. (Since BX can hold values up to 65,535, this means
that Int 21 HAH=48H can be used to allocate 16 * 65,535 bytes at once, which is the
basis for real-mode huge pointers.) Eclipse OS/386 mimics the OOS interface, ex-



212 EXTENDING DOS

pecting in EBX the number of paragraphs needed, but Phar Lap 3861 DOS-Ex
tender instead expects in EBX the number of 4K pages an application needs!
Code generated by a compiler should detect which environment it is running
under and pass the proper parameters.

Adding 80386 Bit Test Instructions

Once we've decided to make SIEVE.C a 32-bit program, there are further im
provements we can make. For example, the bitmap operations in SIEVE.C are
typical of testing, setting, and resetting bits in C. To set a bit (turn it on), which
the sieve program does a lot, you need:

#define index(bit) (bit » 3)
#define mask(bit) (1 « (bit & 7»
#define SET_TRUE(map,c) map[index(c)] 1= mask(c)

C compilers such as Watcom 386 and MetaWare High C take SET_TRUE
(map,c) and have to turn it into:

mov eax, _map
mov edx, _c
mov ebx, edx
shr ebx, 3
mov cl, dl
and cl, 7
mov dl, 1
shl dl, cl
or 4[ebx+eax], dl

This is better than 16-bit code, but is still not a very efficient way to operate
ona bitmap.

As you may recall from our earlier discussion of the 386 instruction set, the
Intel 80386, like the Motorola 680xO family, has a set of bit test instructions. These
are perfect for graphics, for implementing large sets, for semaphores, or for ma
nipulating any sort of bitmap. Not exactly RISC! BT does a bit test, BTS sets a bit
true, BTR resets a bit to false, BSF scans for the first set bit, and so on. The call
SET_TRUE(map, c) could be implemented with:

mov esi, _map
mov eax, _c
bts [esi], eax

Such a CISC instruction takes longer to execute than a simple instruction like
NOW or AND. But it's faster than the MOV/SHR/AND/SHL/OR series shown
earlier, and certainly takes less room.



Chapter-S 80386-based Protected-Mode DOS Extenders 213

The bit test instructions also work in 16-bit code on a 386. But in 32-bit mode,
since a 4-byte register can be used to hold the offset into the bitmap, the instruc
tions handle maps with up to 4 gigabits (536 megabytes).

This is all well and good, but how can we get the compiler to use the 386 bit
test instructions? If we were to code these as functions in a separate assembler
module, any performance gain from using the bit test instructions would proba
bly be lost in function-call overhead. However, many 386 C compilers come with
a facility for in-line assembler. For example, the Watcom C #pragma aux facility
can be used to describe a symbol's attributes, such as how a function receives it
parameters, how it returns a value, and what registers its modifies. This makes it
easy to tell the compiler how to generate code for a particular symbol. The fol
lowing three lines tell the Watcom compiler to use the BTS instruction whenever
it sees a call to set_t rue ( ):

void set_true(BITMAP map, ULONG bit);
#define BTS_ESI_EAX OxOF OxAB Ox06
#pragma aux set_true = BTS_ESI_EAX parm [esi] [eax] ;

This tells Watcom 386 that the block of code named set_t rue takes its pa
rameters in ESI and EAX, but does not create an actual function set_true(). In
stead, the call set_true(map, c) will now generate the following code:

mov esi, _map
mov eax, _c
bts [esi], eax

How much of a difference does this make to the performance of the sieve
program? Whereas the Watcom 386 version took 74 seconds to find p(10,OOO,OOO)
using standard C bit operations, a version that uses the 386 bit instructions takes
67 seconds: another 10 percent shaved off a program that was already three times
faster than its 16-bit equivalent. A386 replacement for BITMAP.H follows:

1* BTMAP386.H *1

#i f !defi ned(_WATCOMC_) II ! defi ned (_386_)
#error BTMAP386.H requires Watcom C 7.0/386
#endif

typedef unsigned long ULONG;
typedef unsigned char BYTE;

#define ALLOC(x,y)
#define FREE(x)
typedef BYTE *BITMAP;

calloc(x,y)
free(x)



214 EXTENDING DOS

void set_false(BITMAP map, ULONG bit);
void set_true(BITMAP map, ULONG bit);
ULONG test_bit(BITMAP map, ULONG bit);
1* 386 bit test instructions *1
Ndefine BTR_ESI_EAX OxOF OxB3 Ox06
#define BTS_ESI_EAX OxOF OxAB Ox06
Ndefine BT_ESI_EAX OxOF OxA3 Ox06

Ndefine PUSHF Ox9C
#define POP_EAX Ox58
#define AND_EAX_1 Ox25 Ox01 OxOO OxOO OxOO
#define MOV_EAX_CARRY PUSHF POP_EAX AND_EAX_1

#pragma aux set_false = BTR_ESI_EAX parm [esi] [eax] ;

#pragma aux set_true = BTS_ESI_EAX parm [esi] [eax] ;

#pragma aux test_bit = BT_ESI_EAX MOV_EAX_CARRY \
parm [esi] [eax] value [eax] ;

1* skip past 32-bit ULONG size header *1
#define SIZE(map) (*«ULONG *) map»
#define BIT_ON(map, i) test_bit(map, (i)+32)
#define BIT_OFF(map, i) (! BIT_ON(map, i»
Ndefine SET_TRUE(map, i) set_true(map, (i)+32)
#define SET_FALSE(map, i) set_false(map, (i)+32)
#define free_bitmap(map) FREE(map)

II ... identical to tail of BITMAP.H

Here, we used Watcom C 7.0/386 because it is the most convenient for this
task. For large commercial applications, however, you may find that MetaWare
High C 386 is a more appropriate tool.

Virtual Memory

Another obvious 386 feature to use is virtual memory. Since the test machine
we've been using has only two megabytes of memory, but a lot of free disk space,
it would seem that this would be a perfect opportunity to try out the virtual
memory option available with 386 DOS extenders. Unfortunately, though, a sieve
is the worst possible test for virtual memory, since the program runs through the
entire bitmap for every prime number found. While this implementation is fine if
the entire bitmap is in memory, it would cause serious thrashing if any part of the
bitmap was located on disk.



Chapter 5 80386-based Protected-Mode DOS Extenders 215

The following program, PRIMES.C, is a better demonstration of virtual mem
ory under a 386 DOS extender. The program reads in the bitmap file
PRIMES.DAT that was saved by the SIEVE program, and can be run on a 386
computer with less memory than the machine which created the PRIMES.DAT
file. The program allows the user to type a '?' to query the prime-number bitmap,
a 'V' to see virtual-memory statistics, or a 'Q' to quit. The following example not
only shows the difference a little virtual memory can make, but also shows the
mechanics of using Phar Lap's 3861 VMM:

C:\BOOK>run386 primes
Insufficient memory

C:\BOOK>run386 -vm \pharlap\vmmdrv primes
;;; A LOT OF DISK ACTIVITY",
> ? 99998000099
9998000099 is not prime
Prime factors: 99989 99991
> v
VM active for 36 seconds
Page faults: 248
Pages written to swap file: 245
Reclaimed pages: 105
Application physical pages: 175
Application VM pages: 316
Swap file pages: 146
> ? 1000000000061
1000000000061 is prime
> q

When we tried to run PRIMES without benefit of virtual memory, the pro
gram complained and exited back to DOS. But with the virtual-memory man
ager, the program's call to ca lloc<) succeeds. 3861 VMM is enabled by using the
-vm flag on the DOS command line to RUN386. In the distribution version of an
application, the VM driver would be bound together with the DOS extender and
the application itself into a single .EXE file, and so would be invisible to the user.
For example, Mathematica and DR/Forth both have 386 IVMM built into their
executables.

In this session, the PRIMES program allocated 316 4K pages of memoI)T, of
which only 175 were located in physical memory. Thus, 141 pages of memory
were located on disk in a swap file. The application must make a special system
call to 3861 VMM in order to find these statistics, since in normal operation VM is
invisible to the programmer. In the following source code for PRIMES.C, note



216 EXTENDING DOS

that we allocate memory for the ~itmap using the same make_bi tmap() function
used in SIEVE.C; this function in turn calls ca lloc(), which succeeds even
though there isn't adequate physical memory to satisfy the request. There is a
strong resemblance between VM and a government's ability to freely print paper
money! Of course, here too there is no such thing as a free lunch, and VM opens
the possibility of slower execution time than code using only physical memory.

In the following code, note that Int 21 HAX=2520H is used to get VM statistics.
As will be explained later, the interface to Phar Lap's API replaces MS-DOS's Int
21H AH=25H. Both MetaWare High C-386 and Watcom C/386 support a 32-bit ex
tended version of the Microsoft C i nt dos () and i nt86 () functions for invoking
software interrupts:

1*
PRIMES.C
Author: Andrew Schulman, February 1990
*1

#include <stdlib.h>
#include <stdio.h>
#include <float.h>
#include <math.h>
#include <limits.h>
#include <dos.h>

typedef enum { FALSE, TRUE } BOOl;

void fail(char *5) { puts(s); exit(1); }

#include IIbitmap.h ll

#define N(x) «x) / 3) II exclude multiples of 2 and 3

II don't test double for equality: DBl_EPSIlON in <float.h>
#define EQ(x,y) «(x) - (y» < DBl_EPSIlON)

BOOl is-prime(double x);
void prime_factors(double x);
void vm_stats(void);
void help(void);

BITMAP map;
UlONG size;



Chapter 5

maine)
{

char buf[SOJ, *s=buf;
double d;
FILE *f;
UlONG map_size;

80386-based Protected-Mode DOS Extenders 217

if (! (f = fopen(Uprimes.dat U, Urb U»)
fail(Urequires PRIMES.DAT U);

fread(&size, sizeof(UlONG), 1, f);
fread(&map_size, sizeof(UlONG), 1, f);
if (! (map = make_bitmap(size»)

fail(UInsufficient memoryU);
fseek(f, 4, SEEK_SET);
fread(map, 1, bytes(map_size), f);
for (;;)
{

printf(U> U);
gets(s);
if (strlen(s+2) > DBl_DIG)
{

printf("Number too large\n U);
continue;

}

switch (toupper(*s»
{

case '?' :
d = strtod(s+2,O);
if (is-prime(d» printf(II%.Of is prime\n U, d);
else
{

printf(U%.Of is not prime\n", d);
prime_factors(d);

}

break;
case 'Q'
case 'V'
default

}

}

}

void help(void)
{

fclose(f); exit(1);
vm_stats(); break;
help(); break;

puts("? [xJ is x prime? if not, show prime factors U);
puts(uQ quit");
putS("V -- virtual memory stats");

}



218 EXTENDING DOS

BOOl is_prime(doubLe x)
{

ULONG i, n, Lx, sqrt_x;
int incr;

if (x <= (doubLe) size)
{

Lx = x;
if «Lx == 2) I I (Lx == 3» return TRUE;
if «Lx % 2) && (Lx % 3) && BIT_OFF(map, N(Lx») return TRUE;
eLse return FALSE;

}

eLse
{

if (EQ(fmod(x,2),O) I I EQ(fmod(x,3),O» return FALSE;
sqrt_x = sqrt(x);
for (i=5, incr=4, n=1; i<=sqrt_x; i+=(incr=6-incr), n+~)

if (BIT_OFF(map, n) && EQ(fmod(x,i),O» return FALSE;
II stiLL here -- primes are residue
return TRUE;

}

}

void prime_factors(doubLe x)
{

ULONG i, n;
int incr;
printf(IIPrime factors: II);
whiLe (! EQ(x,1»
{

if (isJ)rime(x» { printf("%.Of\n", x); return; }
if (EQ(fmod(x,2),O» { printf( fl 2 fI); x 1= 2; }
if (EQ(fmod(x,3),O» { printf( fl 3 II); x 1= 3; }
eLse for (i=5, incr=4, n=1; i <= x; i+=(incr=6-incr), n++)

if (BIT_OFF(map, n) && EQ(fmod(x,i),O»
{

printfC"%Lu II, i);
x 1= i;

}

}

printf(fI\n fl
);

}

void vm_statsCvoid)
{

ULONG buf[25J;
union REGS r;

#ifdef __WATCOMC__
r.x.edx = buf;



ChapterS 80386-based Protected-Mode DOS Extenders 219

r.x.ebx = 0; II don't reset VM stats
r.x.eax = Ox2520;

lIelse
r.x.dx = (unsigned) (void *) buf;
r.x.bx = 0;
r.x.ax = Ox2520;

#endif
intdos(&r, &r);
if (buf[OJ) II VM is present
{

printf("VM active for %lu seconds\n", buf[11J);
printf("Page faults: %lu\n", buf[12J);
printf("Pages written to swap file: %lu\n", buf[13J);
printf("Reclaimed pages: %lu\n", buf[14J);
printf("Application physical pages: %lu\n", buf[5J);
printf("Application VM pages: %lu\n", buf[15J);
printf("Swap file pages: %lu\n", buf[16J);

}

else
puts("VM not present");

}

Moving to 32·bit Programming
The preceding examples have shown that, if you are to have a PC background,
then making the transition to 386 programming largely involves forgetting all the
tricks you've learned to get around DOS and its real-mode limitations. Forget
about dealing with objects in chunks smaller than 64K; forget about distinguish
ing between near and far memory; forget about distinguishing between different
memory models; pretty much forget about segmentation. Under VM, forget
about available memory (but you had better be aware of disk space, and of the
cost of using it!).

You're likely to use a high-level language for the bulk of your development
efforts. C is a popular development tool; from the outset of 386 DOS extender de
velopment, 386 C compilers have been readily available. MetaWare High C was
the first available C compiler targeted for 386 DOS extenders; the High C 386
start-up code detects all three DOS extender runtimes and responds accordingly.
Therefore, MetaWare High C-386 can be used for development targeted to work
with any of the DOS extenders.

Most development work is likely to depend on the high-level language that
the developer or team feels most comfortable with. If the primary programming
task is porting a large application from a workstation, minicomputer, or main-



220 EXTENDING DOS

frame environment, it makes sense to choose the 386 compiler that most closely
corresponds with the mainframe compiler. Note that most FORTRAN 386 com
pilers support some idiosyncratic mixture of VAX and IBM mainframe anachro
nisms. Several 386 compiler vendors are from the UNIX marketplace, so their
products are likely to support UNIX nuances and anomalies. If the application is
being moved from the DOS world, better DOS compatible libraries are generally
available from vendors moving up from the DOS marketplace. Those unusual
programs to be written from scratch allow the most flexibility in choosing 386 de
velopment tools.

One major consideration in developing with C on the 80386 is that the widths
of various data types are different from the widths of equivalent DOS counter
parts. As noted earlier, on the 386, the; nt (integer) data type is now a full 32 bits
wide, comparable to the long data type under 8086 DOS C compilers. A side ben
efit is that code from the UNIX and minicomputer world which assumed that an
; nt was 32 bits wide will port quite easily to the 386.

If the major part of a programming project is in a high-level language (Ada,
C, Pascal, or Fortran, for example), porting to the 386 DOS extenders can be a rel
atively painless task. High-level language compiler vendors have complied with
protected-mode restrictions by modifying their libraries for protected mode, and
can shield the programmer from much of the changes wrought by memory and
hardware protection. Such problems are more likely to arise in small sections of a
large application that have traditionally been hand-coded in assembly language.
Assembly language may have been used for the following reasons:

• faster execution speed
• smaller memory space requirements
• the need to communicate directly with video or other hardware
• the need to interface with existing real-mode libraries.

A reasonable strategy is to minimize assembly language usage and focus on
the best algorithms at the compiler language level. A parallel routine in C that
operates slowly can always be replaced at a later phase with a faster hand-coded
80386 assembly language function.

Although useful and sometimes necessary, interfacing with real-mode librar
ies will commonly create more problems than are solved. Although real proce
dure call (RPC-analogous to, but not to be confused with, remote procedure call
in networking) and signal mechanisms are available with DOS extenders (the
05/386 RPC mechanism is quite elegant), a steep learning curve is involved in



ChapterS 80386-based Protected-Mode DOS Extenders 221

coming up to speed with these special DOS extender features. H source code for
real-mode libraries is available (whether in assembly language or a high-level
language), it is almost always preferable to revise and recompile or reassemble
the source code expressly for the 386/486.

When programming in 386/486 protected mode, the developer must disci
pline the casual programming style typical of programming under DOS. Access
to physical memory is no longer direct. Memory protection is enabled, and seg
ment registers must be used with more care. Segment registers can no longer be
used for arithmetic. Any value loaded into a segment register must now be a le
gitimate selector. As noted in Chapter 1, a selector represents an index to an entry
in a local or global descriptor table. These descriptors hold information about the
segment type, length, privilege level, and base address. Without paging, the base
address is the actual physical address in memory. With paging enabled, yet an
other level of logical-to-physical address translation takes place. In any event, ac
tual addresses are no longer directly accessible to a program.

In addition, a code segment (selector) is marked read-only/executable and
usually can't be written to. Actually, 386 DOS extenders support a data selector
alias for the code segment that does allow such programming practices.

A selector will also have a limit (size), which, if exceeded, can cause a mem
ory protection violation. Even the stack can cause a memory protection violation
if not enough stack space has been allocated and marked in the descriptor table.

This opens the question of how to handle memory-mapped video and graph
ics under a 386 OOS extender. For speed, high-end applications often choose to
write directly to video memo~ bypassing the ROM and video ROM BIOS. Both
text and graphics modes are often handled in this way. Because of memory pro
tection issues in protected mode, video memory cannot be accessed at an abso
lute physical address, as it is under OOS. Under DOS extenders, a selector that
points to the actual block of video or graphics memory must be used. All of the
DOS extenders provide some built-in mechanism to readily address video mem
ory. This mechanism is usually a hard-wired selector pointing to a chunk of video
RAM. Also, extended functions provided by the DOS extenders allow allocating
a memory segment for any block of physical memory. These functions provide a
scheme to handle most atypical video and graphic card options.

Access to the interrupt vector tables and hardware can be more problematic
than in simple DOS programming. The interrupt vector table is internal to the
DOS extender. To install a replacement interrupt handler requires using a 386



222 EXTENDING DOS

DOS extender function. There can be two interrupt handlers for each hardware
interrupt:

• a real-mode handler that gains control when DOS is executing in lower
memory

• a protected-mode handler that gains control when the program is operat
ing in protected. mode and the DOS extender is active.

DOS extenders all support some way to pass the real-mode interrupt up to a
protected-mode interrupt handler and some way to pass interrupts from pro
tected mode down to a real-mode handler. DOS extenders can also provide fea
tures to install dual interrupt handlers, which operate in both situations. Dual
interrupt handlers provide the best interrupt response, because the DOS extender
does not have to perform a switch from real to protected mode in order to pro
cess an event. The most common use for dual interrupt handlers would be a se
rial device that generated many interrupts (graphics tablet, plotter, and
high-speed modem. A dual interrupt handler could be set up to share a common
data buffer in low memory to maximize response time. On fast 80386 machines,
dual interrupt handlers are less necessary.

Tools for 386 DOS Extender Programming
All three 386 DOS extenders include a debugger, utility programs, and examples
of their use to create and execute protected-mode 386 programs. All three emu
late DOS and the BIOS to a substantial degree. For most conventions, the Eclipse
and Phar Lap extenders are similar enough to be used somewhat interchange
ably. The three runtimes support four different executable file formats (Phar Lap
supports both an old and a new EXP executable). From the programmer's per
spective, it would be preferable if the three runtimes were closer together in their
DOS and BIOS emulation and EXE file fonnats, and in the way they handle other
hardware issues (the Weitek chip, for example).

Choosing a386 DOS Extender

Most programmers would rather choose 80386 compilers and development tools
without being forced to make a choice of development and runtime environ
ments at the same time. Unfortunately, with the exception of a few compilers
such as MetaWare High C-386, choosing a 386 compiler locks a programmer into
its associated DOS extender and debugger.



Chapter 5 80386-based Protected-Mode DOS Extenders 223

Let's take a typical application and divide the time spent on various tasks.
You might spend 20 percent on planning and design, 40 percent on program
ming, and 40 percent on debugging. When you decide on a runtime environ
ment, you are also choosing a debugger and technical support. Because of
software differences among them, a debugger from one vendor will not work in
another 386 environment.

There is one disadvantage to the near-absence of segmentation in 32-bit pro
tected-mode; it makes debugging fairly difficult. While page-level protection is
still available when using the 386 as a linear address space, it does not provide
nearly as adequate protection as segment-based protection in 16-bit protected
mode. While the 386 provides a new set of registers for debugging, to date actual
debugging facilities for 386-based DOS extenders are more primitive than under
real-mode DOS, 286-based extended DOS, or OS/2. One of the benefits of 16-bit
protected mode's extensive use of segmentation is the support it provides for de
bugging: many software developers might use OS/2 and 286-based DOS extend
ers for this, if for nothing else.

Phar Lap 386/008 Extender

Phar Lap markets 3861 DOS Extender (RUN386), a 386 assembler, linker, librar
ian, and debugger package (3861 ASM/LINK), a symbolic debugger
(3861 DEBUG), and tools for embedded applications (LinkLoc). Phar Lap has
been the traditional supplier for the assembler and linker used for 386 develop
ment under DOS. Phar Lap defined the 386 object module (EASY-OMF) most
commonly used under DOS. EASY-OMF is an extension of the Intel OMF-86 ob
ject module, in which some fields are extended to 32 bits for the 80386. An EASY
OMP object module is denoted by a comment record at the start of the file
containing "80386." With the exception of Lahey FORTRAN F77/L32, all 386
compilers can generate Phar Lap 386 object files and are supplied with Phar Lap
compatible libraries. (The Lahey compiler uses the Microsoft 32-bit object module
format, and requires the Lahey linker, L32.)

Phar Lap's assembler and linker are provided in two forms under DOS: a
real-mode version, and a protected-mode version that runs under DOS on an
80386 with more than 1 megabyte of extended memory. The protected-mode ver
sion operates much faster but is otherwise equivalent to the real-mode version.
FASTLINK, the protected-mode version of 386LINK, can link larger programs.
3861 DEBUG is very similar to Microsoft's SYMDEB and supports symbolic de
bugging at the assembly language level.



224 EXTENDING DOS

RUN386, the 386 DOS extender, supports a number of switches and options,
and automatically senses the presence of other programs using extended mem
ory (RAMdisks, EMS emulators, and so on). RUN386 supports the Virtual Con
trol Program Interface (VCPI) drafted with Quarterdeck Systems to allow
multiple 386 programs to cooperate, averting the chaos that characterizes TSRs
under DOS. RUN386 supports calls from protected mode to real mode. Phar Lap
was the first vendor to support virtual memory for 386 applications, and, as
noted earlier, a number of commercial products already incorporate the Phar Lap
Virtual !Memory Manager (386 IVMM). Another interesting aspect of 386 IDOS
Extender is its support for protected-mode TSRs: when a protected-mode pro
gram makes a TSR system call (e.g., Int 21H AH=31H), both the protected-mode
program and RUN386 stay resident in memory.

Phar Lap developed and supports two different EXP file formats:

• the original EXecutable Protected mode (EXP)
• a P3 format EXP, which now supports a packed mode that creates smaller

executable file sizes.

Although RUN386 can load a Relocatable EXecutable (IGC's REX) file (Phar
Lap wrote the assembler/linker originally used by all three vendors), it cannot,
in general, execute REX programs because of differences in the Phar Lap and IGC
runtime environments.

The Phar Lap runtime is a flat memory model with several hardwired seg
ment selectors for memory mapping. For example, a program CS is set to OCH,
and DS and ES are set to 14H-all pointing to the same block of physical mem
ory. There are also hardwired select~rs for the video refresh buffer, the lower 1
megabyte of memory, and the program's environment block and program seg
ment prefix (PSP). These are listed in Table 5-5 (Phar Lap and Eclipse LDT hard
wired selectors), later in this chapter.

Normally, both RUN386 and your application run at ring 0 (most privileged).
This allows complete machine control from within your application. RUN386 can
turn paging on or off. With paging enabled, RUN386 can also use memory below
640K for 386 applications. The Phar Lap DOS extender uses about lOOK of low
memory aside from DOS, leaving about SOOK of low memory, plus any extended
memory above 1 megabyte available for protected-mode use. This DOS extender
makes the largest quantity of memory available for 386 programs. This can be a
consideration for machines with relatively low memory (2 megabytes).



Chapter 5 80386-based Protected-Mode DOS Extenders 225

DOS protected-mode function calls are reasonably similar to normal DOS
calls, with a few exceptions. Of course, registers are 32-bits wide instead of 16
(EAX versus AX). DOS GetVersi on (AH=30H) is used to return information about
the runtime. The DOS Get Vector (AH=35H) and Set Vector (AH=25H) calls are not
supported, but are replaced with DOS extender calls. FCB-type file I/O calls are
not supported. Memory management and EXEC calls are slightly different from
their DOS counterparts. The Weitek math chip is supported by mapping it into a
64K block of memory pointed to by segment register FS.

Phar Lap provides a set of system calls via Int 21 AH=25H. Since this MS-DOS
function to set interrupt vectors was likely to be changed anyway for 32-bit pro
tected mode, Phar Lap chose to use this as the interface to all Phar Lap system
services. These services include support for protected- and real-mode interrupt
handling, memory management, intermode communication (calling real-mode
procedures from protected mode), and virtual memory. A service is chosen with a
function number in the AL register. Below is a listing of the various functions:

Interrupt Handling

AH=25H AL=02H
AH=25H AL=03H
AH=25H AL=04H
AH=25H AL=05H
AH=25H AL=06H
AH=25H AL=07H
AH=25H AL=OCH

Me~ory Management

AH=25H AL=08H
AH=25H AL=09H
AH=25H AL=OAH
AH=25H AL=13H
AH=25H AL=14H
AH=25H AL=15H
AH=25H AL=16H
AH=25H AL=18H

Get protected-mode interrupt vector
Get real-mode interrupt vector
Set protected-mode interrupt vector
Set real-mode interrupt vector
Set interrupt to always gain control in protected mode
Set real- and protected-mode interrupt vectors
Get hardware interrupt vectors (IRQD-15)

Get segment linear base address
Convert linear to physical address
Map physical memory to end of segment
Alias segment descriptor
Change segment access rights or USE16/USE32 flag
Get segment access rights and USE16/USE32 flag
Free all memory owned by LDT
Specify handler for moved segments

Real-mode Communications

AH=25H AL=ODH
AH=25H AL=OEH

Get information for real-mode function call
Call real-mode procedure, stack-based



226 EXTENDING DOS

AH=25H AL=OFH
AH=25H AL=lOH
AH=25H AL=llH
AH=25H AL=l7H

Virtual Memory (VMM)

AH=25H AL=19H
AH=25H AL=lAH
AH=25H AL=lBH
AH=25H AL=lDH
AH=25H AL=lEH
AH=25H AL=lFH
AH=25H AL=20H
AH=25H AL=21H
AH=25H AL=22H
AH=25H AL=23H
AH=25H AL=24H
AH=25H AL=25H

Miscellaneous
AH=25H AL=OlH
AH=25H AL=12H
AH=25H AL=26H
AH=25H AL=C3H
AH=25H AL=COH
AH=25H AL=CIH
AH=25H AL=C2H
AH=30H EBX="PHAR"

Convert protected-mode address to MS-DOS
Call real-mode procedure, register-based
Invoke real-mode software interrupt
Get information on DOS data buffer

Get additional memory error information
Lock pages in memory
Unlock pages
Read page-table entry
Write page-table entry
Exchange two page-table entries
Get virtual memory statistics
Limit program's extended memory usage
Specify alternate page-fault handler
Specify out-of-swap-space handler
Install page-replacement handlers
Limit program's conventional memory usage

Reset 386 IDOS-Extender data structures
Load program for debugging
Get configuration information
Execute program
Allocate MS-DOS memory block
Release MS-DOS memory block
Modify MS-DOS memory block
Get 386 IDOS-Extender version

The majority of 386 compilers run under, and generate code to operate using
Phar Lap's DOS Extender. These include products from MetaWare, SVS, Micro
Way, Alsys, and Watcom.

Eclipse Computer Solutions 05/386

Eclipse Computer Solutions markets two DOS extenders: OS/386, designed for
386 machines and their Hummingboard 80386/80387 coprocessor boards, and
OS/286, a 16-bit DOS extender, already discussed in Chapter 4.



Chapter 5 80386-based Protected-Mode DOS Extenders 227

Eclipse's Developer's Kit includes the OS/386 kernel, a symbolic debugger,
and several utility programs. Eclipse's OS/286 supports a multiple segmented
memory model on the 286, allowing applications to break the 640K memory bar
rier under DOS. The same memory map is supported on the OS/386 runtime,
along with the more common flat, unsegmented memory model. For develop
ment purposes, the kernel is installed as a TSR (which can be removed from
memory when not needed). This speeds the loading of protected-mode programs
during both development and testing. The kernel runs at ring 0 (most privi
leged), while your protected-mode program runs at ring 3 (least privileged). The
I/O privilege level (IOPL) for applications is set at 3 so that your application can
input and output to hardware ports.

The OS/386 DOS extender's support of vePI allows programs to run under
Quarterdeck's DESQview 386, which provides multitasking capabilities. vePI
adherence also provides for compatibility with other conforming DOS extender
applications. The resident OS/386 kernel can be configured to use only about
60K of the lower 640K DOS memory space, freeing more memory for other real
mode applications and TSRs. Memory management features include multiple
heaps, automatic compaction, and control over where the protected-mode com
ponent of the kernel is loaded-below or above the I-megabyte boundary. Mem
ory management service functions allow access to page tables, selection of low or
high memory heaps, and control over compaction. Interrupt handlers can be eas
ily chained to real-mode handlers or shared between parent and child tasks. A
supplied setup program tunes the OS/386 DOS extender runtime for optimum
performance on 386 machines.

Eclipse's protected-mode programs use the file extension .EXP (EXecutable
Protected mode) for both 16-bit .and 32-bit programs. Unfortunately, this is the
name Phar Lap adopted for their default executable files even though Eclipse's
and Phar Lap's files have different structures. Eclipse can run the Phar Lap 32-bit
files, using either the .PLX (Phar Lap eXtended) or·.EXP extension. A strength of
the Eclipse product is its support for both 80286 and 80386/486 protected-mode
DOS.

Among the three runtime environments, OS/386 offers the closest emulation
of DOS and BIOS. The OS/386 manual describes both compatible and slightly in
compatible DOS calls supported. Primary variances from DOS are with FCB I/O
calls (records are limited to 16K), DOS memory allocation, and EXEC calls. Oth
erwise, all DOS calls are fully supported, except that 32-bit registers are used.



228 EXTENDING DOS

A number of extended DOS calls are supported for calling real-mode proce
dures, setting arbitrary interrupt vectors, creating code and data segments, get
ting segment information, and doing block transfers to low memory. These
services are invoked with Int 21 Hwith AH ranging from EOH to EDH, and are iden
tical to those listed in the section of Chapter 4 on OS/286 and the Two-Machine
Model~an indication of the strong ties between OS/286 and OS/386.

As an option, Eclipse provides a demand-paged virtual-memory version of
the 05/386 TSR. This is similar to the Phar Lap virtual-memory manager dis
cussed earlier. In addition to its normal transparent operation, the Eclipse virtual
memory option adds the following extended functions to the 9S/386 Int 21 H

programming interface:

• AH=EBH AL=OOH

• AH=EBH AL=02H

• AH=EBH AL=03H

• AH=EBH AL=04H

• AH=EBH AL=OSH

• AH=EBH AL=06H

• AH=EBH AL=07H

Get a page table entry (PTE) by linear address
Get a page table entry (PTE) by 16-bit segment:offset
Free mapped pages
Get a page table entry (PTE) by 32-bit segment:offset
Map pages
Lock pages in memory
Unlock pages.

The Eclipse debugger, Command Processor (CP), is a command shell that can
execute DOS-like built-in commands and batch files, as well as be used as an as
sembly language symbolic debugger. The shell includes a history command and
a built-in command line editor using key bindings similar to the standard
EMACS editor defaults. The shell has a macro processor that allows invoking a
batch file of macros to make the debugger or shell look similar to SYMDEB, and
other user interfaces are only a macro file away. A utility converts a link map or
object file into a symbol file suitable for use with C~ providing symbolic debug
ging. During development, execution of a 386 program is preceded by UP (uni
processor) or, if using Eclipse's 386 coprocessor, by HB (HummingBoard), on the
DOS command line.

05/386 supports a real procedure call (RPC) mechanism that facilitates com
munication with real-mode routines, such as graphics and communications, lo
cated in low memory. RPCs allow 386 applications to use the extensive real-mode
libraries until 386 versions of the libraries are available. This OS/386 RPC mecha
nism allqws RPCs to be written in either C or assembly language, and is dis
cussed at length later in this chapter.



ChapterS 80386-based Protected-Mode DOS Extenders 229

Currently, the 80386 compilers that support the OS/386 runtime and produce
32-bit code are MetaWare High C-386 and Professional Pascal-386, Watcom
C/386, and Lahey FORTRAN F77/L32. The Lahey 32-bit linker and librarian are
supplied for development along with several other utilities.

IGC X-AM Development Environment

IGC offers two families of 80386 system products-VM/386 (a multitasking con
trol program similar to Microsoft Windows/386 and Quarterdeck DESQview)
and X-AM, their 386 DOS extender. Although the IGC X-AM (eXtended Address
Mode) runtime, called VM/RUN, doesn't implement virtual memory, the overall
design is based on creating virtual machines with complete protection of the op
erating system from damage by an errant program.

The other DOS extenders run DOS in real mode and 386 applications in pro
tected mode. VM/RUN puts the entire system in protected mode and runs the
DOS kernel in lower memory in the virtual 8086 mode. VM/RUN provides a
completely flat memory model for the system, with applications loaded at the 32
megabyte address. No hardwired segments are used. Monochrome screen video
memory is mapped at offset BOOOOH, and BIOS data at 400H-their actual physi
cal addresses. All of this is done with paging. Because paging cannot be turned
off, the IGC runtime can exhibit an Intel bug in older 386 machines that occurs
only when 387 instructions are executing and paging is enabled (see the later dis
cussion under Hardware Requirements).

VM/RUN is the largest DOS extender (200K) and takes up the most memory.
Mter it is loaded and has allocated buffers for I/O, EXECing other applications
and TSRs, memory below 640K is pretty much used up. These memory protec
tion features are justified for VM/386; the necessity for these features in the sin
gle-tasking X-AM system, however, is arguable. X-AM supports the Weitek math
chip, memory-mapped up high in the 386 address space, at the same location.
UNIX vendors chose on the 386.

Of the three DOS extenders, VM/RUN provides the weakest emulation of
DOS. VM/RUN doesn't support a number of system calls, or supports them dif
ferently than DOS does. On startup, X-AM passes a global data structure (GOA)
with system information to your application. (MetaWare High C-3861.6 provides
an include file, GOA.H, for accessing this structure.)

X-AM requires a REX (Relocatable EXecutable) file extension for 386 pro
grams. The REX file can be generated by the Phar Lap 386 linker and includes re
location information. The runtime consists of four REX files and a main loader



230 EXTENDING DOS

file (VMRUN.COM). The VM/RUN REX files must be available along the current
path. For debugging, a special debug REX file must be substituted for one of
these standard X-AM REX runtime files. The main COM file is a program loader
used to make profiles for the executable 386 program. Similar to a feature found
in UNIX, the loader uses arg[O] (the name of the command invoked) under DOS
3.x to determine the REX file to load. A utility supplied with the runtime concate
nates these files into a single executable for distribution. But during development
this then requires an additional Il0K loader file with the same name as your 386
REX application file. This makes more sense under UNIX, where multiple links
(with different names) to the same physical file can exist. Under DOS during the
development stage, each one of your REX programs carries this extra file around.

Under VM/RUN, the stack is completely protected and doesn't grow in size.
You use a utility program to set the maximum stack size in executable programs.
During development, the first execution of a program will typically crash with a
stack protection fault until the stack size is increased. The X-AM assembly lan
guage debugger is the weakest of the three DOS extenders. VM/RUN does not
currently incorporate the VCPI interface, nor recognize when other programs are
using extended memory.

Some of the items in the IGC VM/RUN Global Data Area (GDA) may be use
ful to your program. These include the PSP address, the data transfer address
(DTA), the application start address, pointers to interrupt tables, the code and
data selector for the application, available high and low memory, stack parame
ters, and pointers to other data structures. These other data structures in tum
contain pointers to the GOT, lOT, page directory tables, an asynchronous termi
nal profile block for the COM ports, and a variety of internal data fields and
working areas used by VM/RUN itself.

An entry in the GDA (GDA_SERV) points to a routine that provides a variety
of extended services to VM/RUN. These extended functions can also be accessed
from an application. X-AM does not use software interrupts for this interface. In
stead, the AH register is loaded with AOH, AL is loaded with a subfunction num
ber, and then EAX is loaded from the 386's CRO register. Rather than overwrite
the con;tents of EAX, MOV EAX,CRO is a privileged instruction in Ring 3 protected
mode and in Virtual 8086 mode, and causes a trap which allows X-AM to gain
control. For example, to get the address of the GOA, an application running
under XAM would do the following:

gdaptr dd 0
, ...



Chapter 5

mov eax, OA007h
mov eax, crO
mov gdaptr, edx

80386-based Protected-Mode DOS Extenders 231

; subfunction 7: get GDA address
; invoke extended function
; the GDA pointer is returned in EDX

A list of these extended functions is shown below:

Interrupt Handling
AH=AOH AL=04H

Memory Management

AH=AOH AL=OlH
AH=AOH AL=05H
AH=AOH AL=06H

Issue a soft IRET from Virtual 8086 mode

Move memory
Load a real address from a virtual address
Relocate a memory block

Real-mode Communications
AH=AOH AL=08H
AH=AOH AL=09H
AH=AOH AL=OAH

Miscellaneous

AH=AOH AL=OOH
AH=AOH AL=02H
AH=AOH AL=03H
AH=AOH AL=07H

Call a 386 process from a Virtual 86 process
Restart a 386 process from a Virtual 86 process
Call a virtual 86 routine from a 386 process

Initialize GDA from Virtual 86
Transfer from Virtual 8086 to 386
Exit Virtual 86 and return to VM/RUN in real mode
Get GDA address

Limitations and Trade-offs

Each of the 386 DOS extenders has a certain amount of overhead associated with
it. In terms of memory used by the DOS extender, the difference is about SOaK
from smallest memory needs (Phar Lap) to largest (IGC's X-AM). On 386 ma
chines with limited installed memory (2 megabytes, for example), this difference
can represent a sizable chunk of potential program and data space.

The DOS extenders are not ideal candidates for fast file I/O. Whenever a
DOS call is made by a protected-mode application, the machine state is saved
twice-once by the OOS extender and once by the underlying DOS system. Also,
under normal circumstances, file I/O is handled by the real DOS and BIOS down
low in physical memory, and block moved by the OOS extender to your
program's disk buffers in high memory. This additional block move and save will
impose a performance penalty on file I/O. Therefore, it is best to minimize DOS



232 EXTENDING DOS

file calls and perform file I/O in large chunks if possible. These are good recom
mendations even in real-mode programs.

When programs operate in protected mode, memory protection has its bene
fits and costs. From a development standpoint, some programming errors that
are often overlooked or missed when using DOS show themselves quite dramati
cally as memory protection violations. These include null pointer assignments,
bad pointer values that exceed the limits of the data selector, and writing care
lessly into code segments. Depending on the runtime, the OOS extender system
may actually crash and reboot as a result of the processor exception. This is par
ticularly true of stack violations. In any case, a crashed DOS extender makes for
difficult debugging.

Another limit is that the debuggers supplied or available from the 386 DOS
extender vendors are primitive by current PC programming standards. All three
DOS extender debuggers are, at best, symbolic debuggers at the assembly lan
guage level. Some of the compiler vendors (SVS and Watcom) either bundle a
high-level language debugger with their compiler or make one available as an
optional product. These language debugging tools are certainly an improvement
over stepping back in time to assembly language debugging.

Assembly Language

Assembly language tools for the 386 have traditionally been supplied by Phar
Lap, as part of its "80386 Software 'Development Series." Its 3861 ASM/LINI<
package includes an assembler, a linker, a librarian, and a mini-debugger. The
Phar Lap assembly language tools generate EASY-OMP objeCt modules, which
are supported by most 386 compiler vendors.

Microsoft MASM 5.0+ can also be used to assemble 80386 code, and gener
ates a different (Microsoft extension) 386 object module format. Microsoft does
not offer a linker or librarian to handle 386 object files. Eclipse bundles with
OS/386 a 386 linker and librarian written ~y Lahey Computer Systems, which
handles both Microsoft and Phar Lap 386 object modules. The Lahey librarian
can also convert Phar Lap libraries to their own 386 Lahey library format. These
tools are the same language utilities supplied with Lahey F77/LEM-32 (their 386
FORTRAN development system).

MetaWare bundles with their High C 386 and Professional Pascal 386 a useful
binary dump utility (BD.EXE) that handles both Phar Lap and Microsoft 386 ob
ject modules, and that can convert from one object module format to the other.



ChapterS 80386-based Protected-Mode DOS Extenders 233

High-Leve/Languages
In 1987, MetaWare High C-386 and Professional Pascal-386 were the first compil
ers available for the 386 DOS extender environment. In fact, 386 DOS extender
development depended on the availability of MetaWare High C-386, which was
used for generating parts of the runtimes, assemblers, linkers, librarians, and de
buggers that make up these environments. Table 5-2 shows the wide range of
high-level languages that are now available for developing 386 DOS extender ap
plications.

Table 5-2: Programming languages for 386 DOS extenders.

Language
ADA:

APL:

BASIC:

C:

C++:

COBOL:
FORTH:
FORTRAN:

USP:

Vendor
Alsys
RRSoftware
Telesoft
STSC,lnc.
dyadic
Language Processors, Inc.
Silicon Valley Software
TransEra Corp.
MetaWare
MicroWay, Inc.
OASYS (Green Hills)
Silicon Valley Software
Watcom Systems, Inc.
INTEl<
MicroWay, Inc.
Language Processors, Inc.
Laboratory Microsystems (LMI)
Lahey Computer Systems
Language Processors, Inc.
MicroWay, Inc.
OASYS (Green Hills)
OTG Systems, Inc.
Science Applications (SAIC)
Silicon Valley Software
Symbolics, Inc.

Product
Alsys Ada 386
386/ADA
Telesoft-Ada
APL-PLUSn
dyalog APL/386
LPI Basic
SVS 386/BASIC PLUS
HTBasic
HighC-386
NOPC-386
C-386
SVS 386/C
Watcom C /386
C++
NOPC++
LPICobol
UR/FORTH
F77L-EM/32
LPIFORTRAN
NOP FORTRAN-386
FORTRAN-386
FIN77/386
SVS FORTRAN-386
SVS 386/FORTRAN
CLOE-386



234 EXTENDING DOS

Language
PASCAL:

PL/I:
PROLOG:

SMALLTALK:
SPITBOL:

Vendor
MetaWare
MicroWay, Inc.
OASYS (Green Hills)
Science Applications (SAlC)
Silicon Valley Software
Language Processors, Inc.
Epsilon
Expert Systems Int'l Inc.
.ParcPIace Systems
Catspaw

Product
Professional Pascal-386
NDP PascaI-386
Pascal-386
SVS PascaI-386
SVS 386/Pascal
LPIPL/I
MProlog
Prolog-2
Smalltalk-80/386
Spitbol-68K/386

The 386 DOS Assembly Language Interface-How It Works
DOS and the PC ROM BIOS, combined, provide operating system services in five
general areas:

• the file system
• I/O (keyboard, screen, printer, etc.)
• memory management
• processor management
• other information (clock, critical errors, etc.).

In addition, real-mode DOS can be bypassed if you install an interrupt hand
ler to replace or enhance some OOS or BIOS facilit}r.

A DOS extender can be perceived as a protected-mode version of DOS. Pro
grams running under a DOS extender are provided services similar to those pro
vided to a program running in real mode. From the perspective of the
protected-mode application, the operating system looks like a 32-bit M5-00S.
The DOS extender, in turn, looks like an application to the actual DOS operating
system located in low memory. 386 DOS extenders generally pass file manage
ment, I/O, and other information requests on to OOS. The results returned from
DOS are passed back through the DOS extender to the application. Processor and
memory management, however, except memory allocation in the lower 640K, are
handled solely in protected mode by the DOS extender.

To use protected mode, software must first set up the prerequisite memory
management tables, including segmentation and paging tables, if paging is en
abled. The memory management tables are the global (GDT), the local (LDT),
and the interrupt descriptor tables (lOT), discussed in Chapters 1 and 4.



Chapter 5 80386-based Protected-Mode DOS Extenders 235

In addition, some gateway or bridge to DOS must be constructed-this is the
task of the 386 DOS extenders. These control programs set up the required mem
ory management structures, including a gateway to DOS and other operating
system and hardware services, load a 386 program into memory, and start it. In
general, these runtime extenders set up an emulation of the DOS and BIOS call
ing conventions, using I NT instructions. They intercept DOS calls, transform
them for passing to the real DOS kernel that sits in low memory, pass the call to
the real DOS and BIOS, and pass the returned information back to your 386 pro
gram. The subtle differences between one DOS extender and another lie in this
emulation of DOS and BIOS that your application sees, and in special features
for instance, the DOS extender can allow a 386 protected-mode program to call
an 8086 real-mode procedure (say, a graphics routine or a TSR) sitting down in
low memory, or load other 80386 programs.

DOS extenders appear like DOS to a 386 application. If DOS or BIOS services
need to be called directly from an application, the DOS or BIOS emulation pro
vided by the DOS extender needs to be understood. DOS calls are still made by
loading a function in register AH and executing an Int 21 H. The primary differ
ence is that the registers used are now a full 32 bits wide. The most common mis
take is to forget that most pointers need to be a full 32 bits to point at an object.

The sample code below illustrates a simple assembly language function to
emulate the UNIX clock routine. This function calls the DOS GetTime function
and returns the number of 1/100 seconds since midnight. The assembly language
code uses a few fast 80386 instructions for zero-extending a register (MOVZX)
and small integer multiplies (LEA). This routine can be used with most 386 com
pilers that expect the results of a function in the EAX register. This particular
function has been used to time the code generated by various compilers for
speed of execution. The name might need to be changed depending on the com
piler chosen: some C compilers emit C function symbols with a leading under
score; most Fortran compilers expect uppercase names without underscores.

; CLOCK.ASM
; A clock function for NDP C-386, LAHEY F77-EM/32, SVS 86/FORTRAN, etc.
; returns 1/100 seconds since midnight as a long.
; assemble with either Phar Lap 3861ASM or Microsoft ASM
; C calling convention
;
; extern long clock();
; long t;
; t = clock();



236 EXTENDING DOS

.386 ; required to generate 32-bit code/data

; It is important when linking to F77L-EM/32 program units that data
; segments your assembly code uses have class name 'DATA' in order
'; to link correctly. You must also use the GROUP directive to
'; include the data in DGROUP. DS and ES are set to DGROUP by the
; FORTRAN code, and must be set that way on return. Your code segment

" must also be included in CGROUP and include the directive:
; ASSUME DS:DGROUP, CS:CGROUP

dataseg segment dword
dataseg ends
,
codeseg segment para public use32
assume cs:codeseg, ds:dataseg
,

'public _clock

align 4

_clock proc near
mov ah,2ch
Int 21H

; mov eax,60
; mul 'ch

movzx eax,ch
lea eax,[eax+eax*4]
lea eax,[eax*4J
lea eax,[eax+eax*2]

;
movzx ecx,cl
add eax,ecx
lea eax,[eax+eax*4J
lea eax,[eax*4J
lea eax,[eax+eax*2J

;
movzx ecx,dh
add eax,ecx
lea eax,[eax+eax*4]
lea eax,[eax*4J
lea eax,[eax+eax*4J
movzx ecx,dl
add eax,ecx

;
ret

_clock endp

codeseg ends
end

; align location counter

; DOS Get Time function
; CH=hour, CL=min, DH=sec DL=hundredths
; USING LEA INSTEAD OF MUL
; FOR FAST INTEGER MULTIPLY
; start with hours
; x 5
; x 20
; x 60

; zero top of register
; now add in minutes
; x 5 use some fast integer multiplie$
; x 20
; x 60

; add in'seconds
; x 5 use some fast integer multiplies
; x 20
; x 100

; now add in hundredths of seconds



ChapterS 80386-based Protected-Mode DOS Extenders 237

Special DOS Extender Features
A number of special features are provided by the various 386 DOS extenders, in
cluding the following:

• writing directly to video memory
• writing into code segments
• installing interrupt handlers (real and protected mode)
• real-mode procedure calls (RPCs)
• virtual memory and page locking extensions.

In general, these features or options are implemented differently depending
on the DOS extender runtime.

Writing Directly to Video Memory

All three DOS extenders discussed in this chapter provide the capability to write
directly to memory-mapped video for fast screen output. Both Phar Lap and
Eclipse provide hardwired selectors that point to the default video RAM (BOOOH

or B800H are typical). IGC uses the linear model so that video RAM is addressed
at an offset corresponding to its physical address (BOOOOH. or B8000H). Both Phar
Lap and Eclipse, however, support extended DOS function calls to map any
physical address to a selector (segment). This mechanism is the most general one
and will handle almost any memory-mapped device (standard video, high reso
lution TMS34010 graphics cards, network cards, and SCSI adapters).

When a protected-mode program is loaded into memory, the Phar Lap and
Eclipse DOS extenders set up a number of hardwired segments (see Table 5-3).
These selector values are different, since by default, Phar Lap runs application
programs at ring 0, and Eclipse runs applications at ring 3. The lower 2 bits of the
selector value indicate the protection level, so these selector values are the same
after screening off the lower two bits.

Table 5-3: Phar Lap and Eclipse LDT hardwired selectors.

A readable/writable data segment that points to the DOS program seg
ment prefix (PSP) for the program.
Code selector pointing to the load image. A readable/executable code
segment that points to the program. The initial selector value loaded in
the CS register.

OOOFHOOOCH

Phar Lap Segment Eclipse Segment Description
Selector Selector
0004H



238 EXTENDING DOS

Data window on the load image. A readable/writable data segment
that points to the program segment. This is the selector value initially
loaded into the OS, SS, ES, FS, and GS registers (note FS exception later).
Screen. A readable/writable data segment that points to physical screen
memory. This selector can be used by programs that write directly to
screen memory for speed. The base address and limit of this selector are
automatically updated by the DOS extender when BIOS system calls to
change the video mode (Int lOlf, Function O) are made.
Program segment prefix. A readable/writable selector that is a dupli
cate of the descriptor that points to the program's PSP.
Pointer to environment. A readable/writable data selector that points to
the DOS environment block for the program.
Base memory. A readable/writable data segment that maps the entire
first megabyte of memory used by DOS.
Weitek. A readable/writable selector that maps the memory space used
by the Weitek 1167 (or 3167) numeric coprocessor. If the 1167 is present,
this selector is initialized and the FS register is loaded with this selector
value (003Clf for Phar"Lap). If the Weitek coprocessor is not present,
the base and limit for this selector are both set to zero, and the FS regis
ter contains the same selector value as OS.
Monochrome video. A readable/writable data selector that maps onto
the monochrome video refresh buffer at BOOO:O.
Color video. A readable/writable data selector that maps onto the color
video refresh buffer at B800:0.

OOB8lf

OOBOH

002FH

0037li

003FH

0027li

OOlFH

003CH

0024lf

002Clf

0034lf

OOlClf

Phar Lap Segment Eclipse Segment Description
Selector Selector
0014lf OOl7li

The following listing provides sample code that writes ~irectly to video
memory in text mode, using the appropriate protected-mode address for each of
the three environments. Graphics can be handled in a similar manner:

; SCREEN.ASM - Screen test program
; Based on the examples provided with Phar Lap 3861ASM/LINK
;
; This program illustrates directly accessing screen memory when
; running in 386 protected mode. Writes to screen memory in the
; text mode. Senses the DOS extender runtime dynamically and uses
; the appropriate address as follows:
; Phar Lap 001Ch:O
; EcLipse 001Fh:O But 001Ch:O will also work
; IGC DS:OBOOOOh for Monochrome, else DS:OB8000h
;



Chapter 5

.386

; Some useful equates
CR equ Odh
LF equ Oah

IGC_ENV equ 1
PL_ENV equ 2
AI_ENV equ 3

; Screen defines
SCR_HEIGHT equ 24
SCR_WIDTH equ 80
NORMAL equ 00700h

; Screen Memory Selectors and
PL_SCREEN equ 01CH
AI_SCREEN equ 01Fh

MONO_OFFSET equ OBOOOOh
COLOR_OFFSET equ OB8000h

; Special characters
ULCORNER equ OC9H
URCORNER equ OBBH
LLCORNER equ OC8H
LRCORNER equ OBCH
DVLINE equ OBAH
DHLINE equ OCDH

dseg segment public byte 'DATA'

80386-based Protected-Mode DOS Extenders 239

; generate 386 code

; Screen height
; Screen width
; Normal attribute byte

Offsets
; Phar Lap selector
; Eclipse selector

; for IGC
;

; Double upper left corner
; Double upper right corner
; Double lower left corner
; Double lower right corner
; Double vertical line
; Double horizontal line

scr_offset dd 0 ; offset to screen
env db 0 ; storage for XDOS type
_osmajor db 0 ; storage for DOS version
_osminor db 0
err_msg db 'Do not know what DOS Extender we are runni ng! 1

db CR,LF,'$'

; The line table
LINE_WIDTH equ 50
LINE_CNT equ 5

line_tab
db
db
db

label byte
ULCORNER,(LINE_WIDTH - 2) dup (DHLINE),URCORNER
DVLINE,(LINE_WIDTH - 2) dup (I I),DVLINE
DVLINE



240 EXTENDING DOS

db Screen test program for 386 protected mode
db DVLINE
db DVLINE, (LINE_WIDTH - 2) dup (' '), DVLINE
db LLCORNER,(LINE_WIDTH - 2) dup (DHLINE),LRCORNER

dseg ends

?STACK

?STACK

segment
db
ends

dword stack 'STACK'
8*1024 dup (?) ; The default stack of 8K.

DGROUP group dseg,?STACK

cseg segment dword public 'CODE'
CGROUP group cseg

assume cs:CGROUP,ds:DGROUP

_start_ proc near
ca II discover_env
or eax,eax ; did we get back something
jnz short xdos_okay

;
mov ax,4C01h ; return error code and exit
int 21 h·

;
xdos_okay:

cmp al,IGC_ENV
jne short try_pharlap

;
int 11h ; get equipment
and al,00110000b ; screen off video
cmp al,30h ; are we on MONO screen
mov scr_offset,MONO_OFFSET
xor ax,ax
je short clr- screen

;
mov scr_offset,COLOR_OFFSET
jmp short clr_screen

;
try_pharlap:

cmp al,PL_ENV
jne short try_aia

;
mov ax,PL_SCREEN ; Screen memory selector
mov es,ax ; to ES.
jmp short clr_screen



Chapter 5

,
try_aia:

cmp
jne

;

a l,AI_ENV
short exit

80386-based Protected-Mode DOS Extenders 241

mov ax,AI_SCREEN
mov es,ax

,
clr_screen:

cld ; Set forward direction
mov ax,NORMAL + I I ; Clear the screen.
mov ecx,SCR_HEIGHT*SCR_WIDTH
mov edi,scr_offset ; point to start of screen
rep stosw ;

edi,(SCR_WIDTH-LINE_WIDTH) * 2 ; Bump EDI to next line

edi,scr_offset
edi,SCR_WIDTH-LINE_WIDTH ; EDI to address screen mem
edi,«SCR_HEIGHT-LINE_CNT)/2)*(SCR_WIDTH*2)

;
write- screen:

mov
mov
mov

mov
add
add

loop1: mov

loop2: lodsb
stosb

inc

dec
jne

add

dec
jne

exit: mov
int

ax,NORMAL
edx,LINE_CNT
esi,offset line_tab

ecx,LINE_WIDTH

edi

ecx
loop2

edx
loop1

ax,04COOh
21h

; Load normal attrib into AH,
; line count in EDX, pointer
; to first text line into ESI

; Load line width into ECX

; Move next text character to
; screen with normal attrib

; Increment screen to next char
; i.e., skip attribute byte
; Decrement char count and
; loop if not zero.

; Decrement line count and loop
; if not zero.

; Exit the program.
;

";
;
;

discover_env
determine which DOS extender we are running under
uses EAX, EBX, EDX
env returned in EAX

,
discover_env:



242 EXTENDING DOS



ChapterS 80386-based Protected-Mode DOS Extenders 243

For the most part, coding in 80386 assembly language varies only slightly
from 8086 practices. In the code above, all the PUSH and POP instructions use the
full 32-bit registers. These are preferred over their 16-bit counterparts for two rea
sons: First, a slight speed penalty is paid for non-aligned memory access on the
386. Second, whereas the instruction for the full 32-bit register PUSH and POP (for
example, PUSH EAX) is a single-byte op-code. The equivalent 16-bit PUSH (such as
PUSH AX) requires an additional prefix size override byte in "USE32" code, and
this increases program code size while providing no benefits.

The listing also illustrates how simple DOS calls are made from 32-bit code.
Note that all pointers (for example, the pointer to the string passed to the
pri nt_stri ng function) are loaded into 32-bit registers, because the value of the
pointer might be greater than the 64K limit of the OX register. The di scover_env
routine determines which DOS extenaer the program is runinf under.

To assemble, link, and run this program under Phar Lap 3861 DOS-Extender,
use the following set of OOS commands:

386asm screen
386link screen
run386 screen

As noted earlier, once you purchase a redistribution package from Phar Lap,
you could bind RUN386.EXE and SCREEN.EXP together to form SCREEN.EXE
that can be run directly from the DOS command line.

For Eclipse OS/386, you would use still use Phar Lap's assembler and linker,
but would normally give the executable a .PLX extension. The 05/386 TSR
(OS386.EXE) must already have been loaded:

os386
386asm screen
386link -exe screen.plx screen
up screen

Purchasers of a redistribution package can bind UP.EXE and SCREEN.EXP
together to form an Eclipse SCREEN.EXE. This still requires that the 05386.EXE
TSR be loaded separately, however. For complete transparency to the end-user,
OS386.EXE can also be bound into SCREEN.EXE, though this results in a bloated
file. During development, another way to run SCREEN with 05/386 is under the
CP command processor:

os386
cp
screen



244 EXTENDING DOS

Finally, for IGC X-AM, you need to produce a relocatable 386 executable,
using the 386LINK -RELEXE option, and a renamed copy of the IGC DOS ex
tender (VMRUN.COM):

386asm screen
386link -relexe screen screen
copy vmrum.com screen. com
screen

Writing Into Code Segments

Another capability that is sometimes needed is the ability to write into code seg
ments. DOS extenders provide either system calls or a selector mechanism to
alias a code segment with a data segment selector.

Both the Phar Lap and the Eclipse DOS extenders use hardwired overlapping
segments for the initial code and data segments. The actual selectors would be
identical, except that Phar Lap applications normally run at ring 0, and 05/386
applications run at ring 3. The last 2 bits of the selector indicate the CPL (current
protection level) so that 05/386 selectors will have these bits turned on. Eclipse
creates an alias data selector for each code selector, using the code selector XOR 8.
This same mechanism also works with the initial hardwired code and data seg
ments set up by the Phar Lap DOS extender. The code fragment below outlines
this scheme under both Phar Lap and Eclipse DOS extenders:

push ds
mov ax,cs
xor ax,8
mov ds,ax

pop ds

; save the DS register
; get our code selector
; and convert to data selector alias

; now write into our code segment

; and restore our data selector

Installing Interrupt Handlers in Real and Protected Mode

Interrupts on the 80386/486 fall into three categories:

• hardware interrupts generated by an external hardware event
• software interrupts (commonly used for DOS and BIOS system services)
• processor exceptions generated by the 386/486 chip when memory protec

tion or other programming errors (divide by zero, for example) are de
tected.



ChapterS 80386-based Protected-Mode DOS Extenders 24S

All three types of interrupts are handled in a similar manner by the DOS ex
tenders. When an interrupt occurs in protected mode, the DOS extender always
gains control unless your application has taken over an interrupt vector. Depend
ing on the interrupt type, the DOS extender may switch the processor to the real
mode (or virtual 8086 mode under IGC) and reissue the interrupt as a software
interrupt. When the real-mode interrupt handler (a hardware interrupt, for ex
ample) is finished, the DOS extender switches back to protected mode and re
turns to the protected-mode code that was executing when the interrupt
occurred. The overhead required for a 386 DOS extender to switch from pro
tected to real mode (and from real to protected mode) can range as high as 150
microseconds. Installation of a VePI-compatible EMS emulator can also raise the
switch time (for example, one EMS emulator raised the round-trip switch time on
a 16 MHz Compaq 386 from 134 ms. to 552 ms.). Faster 25 and 33 MHz machines
have lower overhead.

On occasion, an application program may require control over one of the in
terrupt vectors. When operating in protected mode, the interrupt table is not di
rectly accessible. In general, a program cannot get interrupt addresses by reading
them from the interrupt descriptor table (IDT), nor can your application take
over interrupts by writing to the interrupt table. But all of the DOS extenders
support installing custom interrupt handlers. The actual function call mechanism
varies from one implementation to another. Both Phar Lap and Eclipse run DOS
in the real mode. Therefore, these runtimes support installing both a protected
mode and a real-mode interrupt handler. If dual handlers are installed, a shared
data and variable buffer must be used from low (below 640K) memory. Writing
interrupt code for both real- and protected-mode handlers accessing a shared
data buffer can get a bit complicated.

Eclipse emulates DOS calls for handling protected-mode interrupt vectors
using standard functions with 32-bit register conventions (set interrupt vector
with AH=25H and get vector with AH=35H). As shown earlier in Table 5-2, Phar Lap
uses extended function calls (set protected-mode vector with AH=2504H and get
vector with AX=2502H). Both Phar Lap and Eclipse also provide extended func
tions to get and set interrupt handler which gain control in real mode, protected
mode, or both.

The IGC runtime handles interrupts differently from the other runtimes. Be
cause IGC runs DOS in the virtual 8086 mode, all interrupts are received by IGC
protected-mode handlers (which may pass them to a virtual 8086 DOS handler).
VM/RUN initially passes a global data structure (GDA) to a protected-mode ap-



246 EXTENDING DOS

plication upon execution. The GDA contains pointers to two tables of interrupt
vector intercepts-GOA_INTEL (the 32 lowest vectors reserved by Intel) and
GOA_HINT (the remaining high interrupt vectors). GOA_HINT points to a table con
taining two dword entries for each interrupt vector. The first entry is a flat ad
dress pointing to a routine to be executed before interrupt processing takes place,
and the second entry is a a similar flat address pointing to a routine to be exe
cuted after interrupt processing completes. A non-zero value in either slot defines
an active interrupt handler (really an intercept). GOA_INTEL points to a similar
table for the 32 Intel-reserved interrupts, but only the first dword entry can be ac
tive. Any intercept routines installed in these tables are actually CALLed by the
IGC runtime and must use a near return (RET) instruction. No extended function
calls are available to set values in these tables; an application program must ex
plicitly add and remove table entries.

Under the Eclipse DOS extender, an application runs at the least privileged
ring 3 (386/486 protection level) and the Eclipse runtime operates at the most
privileged level of ring O. Processor exception interrupts can only be vectored to a
ring 0 handler. Using this scheme, the Eclipse runtime handles all processor ex
ception interrupts and passes only software and hardware interrupts to any user
installed interrupt handler.

In contrast, the Phar Lap DOS extender runs both an application and the
DOS extender at ring 0 (most privileged). Therefore, any user-installed interrupt
handler must be prepared to handle processor exceptions if the Phar Lap han
dlers are replaced. Since hardware and processor exception interrupts overlap on
the PC, this can pose additional programming difficulties. By default, the Phar
Lap DOS extender relocates the hardware interrupts IRQO-7 (Int OS-OFH) to Int
7SH-7FH so hardware interrupts no longer conflict with processor exceptions. The
hardware interrupts are remapped by reprogramming the Programmable Inter
rupt Controller (8259 PIC chip). By default, the BIOS Pr; ntScreen handler (Int
05) is also relocated to Int BOH. This scheme improves compatibility, particularly
for user-installed protected-mode handlers, since hardware interrupts can be
handled separately from processor exceptions.

For most interrupt vectors of interest under Eclipse and Phar Lap runtimes,
the address obtained by a GetVector function call is the address of a protected
mode surrogate for the curre'nt real-mode handler. The surrogate takes an inter
rupt received while the processor is in the protected mode and passes the
interrupt down to a real-mode handler.



Chapter 5 80386-based Protected-Mode DOS Extenders 247

The code below illustrates functions that can be used to install an interrupt
handler in protected mode under both Phar Lap and Eclipse DOS extenders:

segment dword public 'CODE'
ends

; VECTOR.ASM
.386
CODE
CODE

DATA segment dword public 'DATA'

extrn
extrn

env:byte
_gda:dword

;flag to indicate which DOS extender
;dd storage for IGC GDA structure

DATA ends

IGC_ENV
PL_ENV
AI_ENV

equ 1
equ 2
equ 3

public

cseg
CGROUP

segment dword public 'CODE'
group cseg,CODE

assume cs:CGROUP,ds:DATA

get_vector
get an interrupt vector in protected mode";

;
;
;
;

Entry:
Exit:

AL = vector number
ES:EBX contains old vector
carry flag is clear if OKAY

;
proc
cmp
jne

env,AI_ENV
short get_pl

iis it OS/386?

i
mov
int
clc
ret

ah,35h
21h

iget vector address call
ito ES:EBX

cmp env,PL_ENV iis it Phar Lap?
jne short get_none

;
mov
mov
int
ret

cl,al
ax,2502h
21h

;Phar Lap uses CL for vector
;Get protected-mode interrupt



248 EXTENDING DOS

;
stc
ret
endp

;otherwise, it's IGC

"
set- vector

; set an interrupt vector in the protected mode
;
; Entry: DS:EDX = CS:IP for interrupt routine
; AL = interrupt number to set
; Exit: carry flag is c lea r if OKAY
;

proc
cmp
jne

env,AI_ENV
short set_pl

;is it OS/386'?

env,PL_ENV ;is it Phar Lap'?
short set_none

;
mov
int
clc
ret

set_pl:
cmp
jne

;
mov
mov
int
ret

;
set- none: stc

ret
set_vector endp

cseg ends

end

ah,25h
21h

cl,al
ax,2504h
21h

;set vector address call

;Phar Lap uses CL for vector
;Set protected-mode interrupt

;otherwise, it's IGC

Real Procedure Calls (RPCs)

Both Eclipse and Phar Lap support a mechanism to call real-mode libraries using
real procedure calls. These RPC mechanisms are recommended only when source
code to the real-mode procedures is not available. If source code is available, a
better approach is to convert the real-mode code to run in the protected mode.
This RPC mechanism is commonly used to incorporate real-mode libraries or
functions that are not yet available in the protected mode (graphics and serial
communications, for example). The RPC mechanism can also be used to access



Chapter 5 80386-based Protected-Mode DOS Extenders 249

undocumented DOS functions and make system calls to another program, such
as a network driver or SCSI device installed in memory at boot time.

In practice, a protected-mode RPC stub copies passed parameters off the
stack. These variables are passed through a data (transaction) buffer with an indi
cation of what function to call (usually a table entry number) and block moved to
the RPC stub in low memory. The RPC stub in low memory recreates the stack
with suitable variables, loads the CPU registers with proper values, executes the
call, and passes any results back up to the protected-mode RPC stub. This feature
can always be implemented by a programmer using the 386 DOS extender mem
ory block move functions, but the DOS extenders provide this simple interface.

OS/386 has an elegant RPC mechanism that also supports sending signals
from real mode up to protected mode. The Eclipse RPC scheme uses a series of
very sophisticated macros to simplify the use of RPCs by programmers. Two ex
tended functions handle real-mode procedure calls. Under OS/386, a function
call is made to first initialize an RPC library (Int 21 HAH=OEOH) and return an RPC
handle. This function takes the RPC name (pointed to by DS:EDX) which may be
an executable file that will be loaded by the DOS extender in the real mode. Sev
eral different RPC libraries can be initialized using this scheme, each given a
unique RPC handle. Calls to real-mode libraries use this RPC handle for issuing
the call to the proper procedure (Int 21 H AH=OE1 H). Macros provided by Eclipse
simplify the process of passing parameters of different types, parameter counts,
and invoking the proper real-mode procedure from a library. For the developer,
this design dramatically simplifies problems encountered when using RPCs
under OS/386. The transaction buffer for passing parameters for RPCs is limited
to 4K, but this size should be ample for most real-mode procedures.

Note that inter-machine communication over a network is the model for
Eclipse intermode. In fact, the term RPC is borrowed from the networking term
"remote procedure call." As explained in the section in Chapter 4 on OS/286 and
the Two-Machine Model, the two modes of the 80x86 can be viewed as two ma
chines residing on a very local area network: that is, real mode and protected
mode can communicate, but do not share address space. Just as pointers cannot
be passed between machines on a network, pointers cannot be passed between
the two modes on an 80x86. For this reason, any pointer parameters used in
RPCs must be converted to pass by value.

The Phar Lap DOS extender has several extended functions for use in calling
real-mode procedures and issuing real-mode interrupts. A mechanism is also
provided to call protected-mode procedures from the real mode in an applica-



250 EXTENDING DOS

tion. The intermode call buffer can vary in size from 0 to 64K bytes and is allo
cated from conventional memory below 640K. In comparison with the 05/386
scheme, the Phar Lap mechanism is more bare bones, and requires the developer
to handle the RPC parameters more directly. Two extended function calls are
supported for calling real-mode RPCs. These functions differ only in the way that
segment registers are set up for the real-mode procedure. One function sets the
D5 register to the same value as C5 (Int 21 HAX=250EH) and allows placing values
in all of the general registers before invoking the real mode procedure. The sec
ond function (Int 21 H AX=251 OH) adds support for setting arbitrary values in all
of the segment registers.

Virtual Memory and Page Locking Extensions

Both Phar Lap and Eclipse support a demand-paged virtual'memory option. Pro
grams operating under a virtual memory manager (VMM) can access memory
space for code and data that is larger than available physical memory in the com
puter. Unused sections of the applications code and data are paged to a disk
swap file and automatically brought into memory when needed. If virtual mem
ory is used, certain chunks of code may need to be locked into memory. For ex
ample, hardware interrupt routines and the 005 critical error interrupt handler
must of necessity not be paged to disk. A programmer might also want to lock
specific code modtiles used frequently within an application into memory. Both
the Phar Lap and Eclipse virtual memory options support a number of extended
function calls to control the virtual memory manager. Extended calls allow lock
ing and unlocking pages in memory, freeing physical memory pages, getting
memory statistics, and controlling extended and conventional memory use.

Memory allocation schemes may need to be handled differently by your ap
plication under a virtual memory manager. A program using VMM should allo
cate only the quantity of memory actually needed for the application. Allocating
chunks of unnecessary memory only increases the size of the swap file used for
paging. Ultimately, the available disk space for this swap file determines the
available memory for your DOS extender application with VMM. When using a
high-level language (C, Pascal, or Fortran, for example), memory allocation is
generally handled by the runtime libra~

Most virtual memory schemes use a variation on the least-recently used
(LRU) algorithm for choosing memory to page to disk. The LRU design pre
sumes that memory pages most recently used by an application are most likely to
be referenced again soon. The least recently used chunks of memory are paged to



Chapter 5 80386-based Protected-Mode DOS Extenders 251

disk when memory space is needed. Implementing a true LRU system on the 386
can be expensive in CPU time since each page reference would need to be time
stamped. The most common approximation uses a count of how frequently a
page is accessed by scanning the page tables at certain time intervals. The Phar
Lap virtual memory manager supports two different page replacement algo
rithms-least frequently used and not used recently. The Phar Lap VMM also al
lows installing a custom page replacement handler written by the developer.

Hardware Requirements
Three types of the 386/486 chip set are suitable for use with 386 DOS extenders.
The 80386 is the original microprocessor Intel developed to follow its 80286. The
80386 has both an internal and an external 32-bit wide data bus. Memory can be
read and written in 32-bit chunks.

Starting in 1989, Intel began to ship, in quantit)r, an 80386SX CPU that sup
ports the 80386 instruction set, but has only a 16-bit wide external bus. This SX
chip allows less expensive circuit board design, but at a reduction in perfor
mance. Memory access is limited to 16-bit chunks, and the available SX
motherboards do not support use of the fast Weitek math coprocessors.

The latest entry from Intel is the 80486, which can be considered a fast 386 for
most applications. A primary goal of the 80486 design was software compatibility
with the 80386. The 80486 CPU has an on-chip cache unit, and the numerics
coprocessor (80387) has been incorporated within the CPU. Only a few instruc
tions were added, three of which (INVD, WBINVD, and INVLPG) are used for invali
dating parts of the on-chip caching unit, and do not affect application software
development. The other new instructions are BSWAP (byte swap), XADD (atomic ex
change and add), and CMPXCHG (atomic compare and exchange).

In order to take advantage of the development possibilities provided by 386
DOS extenders, a PC must have an 80386 or 80486 CPU, along with some mem
ory above the 640K that DOS normally uses. A bare minimum configuration
would be a 386 machine with 2 megabytes of physical memory. A machine
equipped with 4 megabytes of physical memory, however, would be a more use
ful development platform, especially for debugging. The memory capacity of a
development machine should be easily expandable for future enhancement.

A development machine should also support both the Intel 80387 and the
Weitek math coprocessor. The ideal arrangement for the 386 is separate sockets
for each math chip. Daughter boards are available that plug into the extended



252 EXTENDING DOS

math coprocessor 121-pin socket found on many 80386 PCs. These daughter
boards provide separate sockets for both Intel and Weitek math chips. For the
newer 80486 PCs with the Intel math coprocessor on-chip, a socket is needed
only for the Weitek 4167 math chip. Either the 80386 with daughter board or the
80486 with a socket for the Weitek 4167 math chip will allow the development
and testing of math-intensive applications for both the Intel and Weitek families
of math chips.

Paging might need to be turned off on some older 386/387 machines in order
to prevent a hardware lockup, due to a bug in the B stepping 16 and 20 MHz
80386 chips that occurs only when 80387 instructions are executing and paging is
enabled. Many 80386 EMS emulators (such as Compaq's CEMM, Quarterdeck's
QEMM, or Qualitas' 386-to-the-Max) employ paging, so this problem can show
up even in what seems like real mode (actuall)T, Virtual 8086 mode).

Another feature of older 386s is the widely-publicized multiply (MUL) bug
discovered in mid-1987. Phar Lap's RUN386.EXE tests for this bug at startup,
and will exit back to DOS with an error message on machines with older 386
chips. The preferred solution is to upgrade the 386 chip; a temporary work
around is to use Phar Lap's CFIG386 utility to force 386 IDDS-Extender to run
anyway:

C:\>cfig386 run386.exe ~nomul

Using Numeric Coprocessors with DOS Extenders
Although PC software has supplanted many applications (word processing,
spreadsheets, databases, and others) from the minicomputer and mainframe
world, numerics (math-intensive) applications have traditionally remained in the
realm of the big machine. H a simulation takes 100 minutes of CPU time on a
VAX, it can take forever on a PC. Fast, 32-bit microprocessors (Intel 80386 and
Motorola 68020) alone are not sufficient to make the PC competitive with larger
machines. The 32-bit microprocessors provide the ability to address large blocks
of memory, but most mainframes and minicomputers have floating-point acceler
ators that speed math-intensive applications. Microcomputers need fast floating
point coprocessors if they are to move numerics-intensive applications off the
mainframe.

The ability to produce fast numeric applications was a design goal of the
386/486 chip family. The origina180386 supported three math chips:



ChapterS 80386-based Protected-Mode DOS Extenders 253

• 80287 coprocessor (Intel)
• 80387 coprocessor (Intel)
• 1167 chip set (Weitek).

Toda}T, the 386/ 486 family also supports the following:

• 80387SX coprocessor (Intel-for 80386SX machines)
• 83087 (Cyrix-a faster 80387)
• 80C387 (Integrated Information Technology-a faster 80387)
• 3167 coprocessor (Weitek-a 121-pin implementation of the 1167)
• 4167 coprocessor (Weitek-for the 80486).

Intel Coprocessors

Since the 80386 chip was available long before any working 387 chips, Intel de
cided to support the 80287 (the math chip originally designed to work with the
80286) as a stopgap measure. Of course, the 80386/80287 combination is a serious
mismatch. While the 80386 chip is running at 20, 25 or 33 MHz, the 80287 is typi
cally clocked at the AT bus speed (8 or 10 MHz), less than half the speed of the CPU.

The 80287 only provided minimal support for transcendentals, requiring soft
ware subroutines for sine, cosine, and so on. The 80287 support is more general,
allowing faster in-line code to be generated by optimizing compilers.

In order to correspond with the IEEE 754 floating-point standard, of which
they are a strong supporter, Intel dropped 80387 support for some minor features
of the 80287.

The 80287 and 80387 generally execute the same instructions in the same
number of clock cycles, but the 80387 is clocked at 16-33 MHz, versus the 7-12
MHz of the 80287.

The 80386SX machines require a special80387SX chip that reduces numerics
performance because all memory access is limited to 16-bit chunks.

Cyrix manufactures an 83087 math chip that is a direct replacement for the
Intel 80387. This chip executes a number of instructions (notably double precision
and transcendentals) faster than the Intel chip. From a software standpoint, this
chip looks like a faster 387. lIT manufactures an 80C387, a similar direct replace
ment for the Intel 80387, although it also provides some enhanced instructions.

The Intel 80486 directly incorporates the 80387 as an on-chip floating-point
unit, without the need for a separate coprocessor.



254 EXTENDING DOS

Weitek Coprocessors

An original weakness of the 80386 was that the speed of the Intel math
coprocessors (originally the 80287) was not competitive with the floating-point
accelerators available for minicomputers and workstations. Weitek, a Silicon Val
ley manufacturer of high-end math, vector, and graphics processors, worked
with Intel to design an 80386 interface to their workstation math chip set. Intel
and Weitek jointly financed the Weitek interface development.

The Weitek WTL 1167 is a high-performance floating-point coprocessor for
the 80386. The Weitek chip is more like a vector processor than an ordinary math
coprocessor. Most better 80386 machines support both the 80387 and Weitek
math chips by means of the Extended Math Coprocessor (EMC) socket, a 121-pin
superset of the 80387 socket. The original Weitek 1167 chip set consists of three
chips: the 1164 multiplier, the 1165 ALU, and the 1163 80386 interface chip, which
also contains the register file. The first two chips form the core of the floating
point accelerators used in Sun, Apollo, and other workstations. The 1167 chip set
is available on a small board that plugs into the 121-pin EMC socket, usually with
a socket for the 80387. Weitek also manufactures the 3167 (Abacus), a single-chip,
121-pin implementation of the 1167 with some internal speed improvements. The
3167 is available in 20, 25, and 33 MHz versions. Weitek also makes a 4167 math
chip for the 80486 (note that the 486 already includes an on-chip 387). In the past,
Weitek and Intel have not considered the 1167 and 3167 to be in competition with
the 80387; the 1167 was designed to provide faster numerics performance for
high-end applications.

Commonly available 80386 machines that support the Weitek math
coprocessors with the Extended Math Coprocessor socket include Acer, ALR,
AT&T, Compaq, Dell, Everex, H~ Micronics, NCR, Olivetti, Tandy, and Wyse. A
MicroChannel card featuring the Weitek 1167 for the IBM PS/2 Models 70 and 80
is also available from MicroWay.

I To be efficient at math-intensive applications, language compilers must gen-
erate in-line code to achieve the fastest execution speed. Because of the way the
Weitek math coprocessor is mapped on the 80386 (the Phar Lap and Eclipse con
vention versus the UNIX convention, discussed below), compilers supporting the
Weitek chip must choose to generate in-line code for either one method or the
other. The Weitek convention cannot be auto-sensed at runtime because inordi
nate amounts of patching would be required.



Chapter 5 80386-based Protected-Mode DOS Extenders 255

Handling large math-intensive applications depends on both a fast math
coprocessor for floating-point numbers and fast integer and array indexing oper
ations. Although the 80387 chip works under real-mode DOS, the Weitek math
chips are fully supported only in protected mode.

The Weitek 1167 (and 3167) is memory mapped into the 80386 address
space-it masquerades as a 64K block of memory in the 80386's physical memory
space. On the PC, its physical address is usually OCOOOOOOOH; however, support
ing software usually maps these addresses elsewhere. There are currently two
conventions for mapping the Weitek on the PC in protected mode:

• The Phar Lap convention maps the Weitek to FS:O (segment register FS).
• The UNIX convention maps the Weitek starting at linear address

OFFCOOOOOH.

If the paging capabilities of the 80386 are used, the Weitek chip can also be
mapped to that notorious 64K block that begins at the address just below 1 mega
byte in the virtual 8086 mode for standard DOS programs. Compaq has adopted
this scheme for mapping the Weitek chip for real-mode applications, but only a
handful of development tools support the Weitek chip under real-mode DOS.
MetaWare High C and the Lahey DOS FORTRAN (F77L) compiler support
Weitek chips under real mode.

Compaq and Weitek have defined a standard for user detection of the pres
ence of the Weitek chip using BIOS Int 11H, and other manufacturers have fol
lowed Compaq's lead. The I nt 11 HBIOS routine (Equipment Check) returns EAX
with bit 24 set- to 1 if a Weitek chip is present. If page tables have been set up so
that the device is addressable from DOS real mode, bit 23 is also set to 1. Presence
of the Weitek chip can also be tested in hardware, and initializing the 1167 re
turns a revision number code. Would that the 80286 and 80386 could each be que
ried for its revision level!

All the 386 DOS extenders now support the Weitek chip. Phar Lap and
Eclipse Computer Solutions employ the same convention for mapping the
Weitek chip, using segmentation to FS:O. IGC implements the UNIX convention,
using paging. 386 DOS extenders automatically sense the presence of a Weitek
chip, using the Compaq BIOS call or hardware tests. This removes the burden
from the programmer.

The Weitek 1167, 3167, and 4167 chips provide the four basic math functions,
plus: negation, absolute value, comparison/ testing, data movement, and format
conversion functions. The Weitek 1167, 3167, and 4167 each have 32 single-preci-



256 EXTENDING DOS

sion floating-point registers (wsO-ws31) that can also be combined and used as 16
double-precision-floating point ~egisters,along with control and status registers.
Single-precision math functions take substantially less time than double-preci
sion functions. Transcendental functions are handled by a software subroutine li
brary provided by Weitek.

The Weitek registers are also mapped in the same 64K memory block. There
fore, context save and restore can use the fast 80386 REP MOVSD (move double
word) instruction to copy or replace a block of register values. Instructions are
executed by MOV instructions to this memory block. Weitek provides a set of
macros for instruction mnemonics. The instructions are mapped for speed in vec
tor operations so that multiplying an array in memory with an array in the
Weitek registers can also make use of the same fast MOVSD instruction---except
that now we point to a memory location for the Weitek multiply instruction. The
lower 16 bits of the address encode the Weitek instruction type and both the
source and destination registers. For example, the WS_MUL instruction would start
at physical address OC0000800H, with an offset for the Weitek registers to be ma
nipulated. The following sample instruction sequence multiplies each element of
a floating point array VECTOR in 80386 memory into the corresponding ele
ments in Weitek registers ws10 through ws29:

mov ecx,20 iLoad the number of eLements in array
mov esi,offset vector ipoint to array in memory
mov edi,offset ws_muLtCt10J ipoint to WFMUL address for ws10
rep movsd ;do the multipLy into WTL registers

Although the compilers available to support the Weitek 1167 generate fast
numeric code, hand coding crucial low-level routines using these vectorizing fea
tures can yield significant speed improvements. For math-intensive applications
such as CAD, the typical speed improvement using the Weitek chip, compared
with the 387, can be from 30 to 100 percent.

When considering using the Weitek math chip, keep three items in mind:

• The Weitek chip is much faster at single-precision than double-precision
math.

• The divide instruction takes much longer than the multiply instruction.
• Transcendental functions are slower because they are coded as software

subroutines.



Chapter 5 80386-based Protected-Mode DOS Extenders 257

If all your numerics code is double-precision transcendentals, using a Weitek
chip will not provide as dramatic an improvement over the 80387 as it will with
code containing lots of single-precision matrix manipulations.

Summary
In this chapter, we have showed that 32-bit protected mode is the key to tapping
the power of 386 PC-compatible machines that would otherwise be used merely
as "fast" 8088s. 386-based DOS extenders provide this key, without giving up MS
pas compatibility. Many commercial programs are already using 386-based DOS
extenders. As the installed base of 386 computers grows, 32-bit code will be used
more extensively since most software developers must remain committed to the
still-:dominant XT and AT marketplace.

Even with the many features of the 386 that were discussed in this chapter,
two crucial features were barely mentioned: the 386's hardware support for
multitasking, and its Virtual 8086 mode. Because 386 DOS extenders exist in
order to run one program at a time in 32-bit protected mode, these features of the
386 were not relevant here. In the next two chapters, we discuss two products,
Microsoft Windows and Quarterdeck DESQview, that run particularly well on
the 386, using its hardware support for multitasking and for multiple 8086 virtual
machines.





Chapter 6

The Windows Operating Environment

Charles Petzold

The extensions to MS-DOS discussed in previous chapters were devised mainly
to provide additional memory to DOS programs beyond the 640K ceiling that re
sults from the limitations of real mode and the memory architecture of the PC.

Microsoft Windows is different. Windows is first and foremost a graphical
windowing environment that runs under DOS. While Windows provides exten
sive memory management (including the use of protected mode in Version 3.0),
you don't want to write a Windows program solely to solve your memory prob
lems. In fact, on a system with 640K memory, a Windows program has access to
less physical memory than ordinary DOS programs, due to the overhead of the
Windows environment.

You should write a Windows program if you want to make use of the consis
tent user interface that Windows provides; if you want to draw graphics and for
matted text on video displays and printers, using a device-independent graphics
interface; and if you want to get a taste of what programming for the OS/2 Pre
sentation Manager is like while targeting your program toward a wider market
than OS/2 currently commands.

The memory management in Windows must be viewed as icing on the Win
dows cake. It is necessary because of the large memory requirements and multi
tasking nature of Windows, but hardly a reason to program for the environment.

259



260 EXTENDING DOS

.In the pages ahead, we will look at the major features of Windows and exam
ine a sample Windows program. Windows is a big system, and this discussion is
hardly exhaustive. However, it should help you decide if Windows is the right al
ternative for your application. Additional information on Windows program
ming can be found in the Microsoft Windows Software Development Kit (the
primary source) and several books on the subject.

Windows: AGUI for MS-DOS
Microsoft Windows is a graphical user interface (Gill) for MS-DOS. It is designed
to run programs specifically written for the Windows operating environment.
Programs written for Windows share the video display and other resources of the
personal computer.

Multiple programs running under Windows each occupy a rectangular win
dow on the display. The programs are characterized by a consistent user interface
containing objects such as menus, buttons, and scrollbars. Windows programs
can make extensive use of graphics and formatted text in a device-independent
manner. Windows provides multitasking (of the non-preemptive, cooperative
sort) and allows data to be exchanged among Windows programs.

Windows can also run many programs written for MS-DOS, but these pro
grams cannot take advantage of the Windows interface or graphics. In many
cases, DOS programs must run in a full-screen mode under Windows and will
not be windowed or multitasked.

A History of Windows

Windows was first announced by Microsoft in November, 1983 and released two
years later, in November, 1985, as version 1.01. Almost no one uses Windows 1.01
anymore, but current Windows users might find it an interesting historical curi
osity. Windows 1.01 used tiled windows rather than the more common overlap
ping windows, and could be run in 320K of memory from two floppy disk drives.

In 1987, Microsoft extensively revised the "look and feel" of Windows, pri
marily to make it visually consistent with the forthcoming OS/2 Presentation
Manager. In particular, overlapped windows replaced tiled windows, and an eas
ier keyboard interface was added to menus and dialog boxes. Windows 2.0 was
released in November, 1987, almost a year before the first version of the OS/2
Presentation Manager was ready.



Chapter 6 The Windows Operating Environment 261

In 1988, Windows 2.1 split into two products; the standard product became
known as Windows/286. While it could still run on 8088 machines, Microsoft
now recommended a 286. Windows/386 took advantage of the Virtual-86 mode
of the 386 microprocessor to tame those DOS programs that wrote directly to the
video display and hence could not be windowed or multitasked under previous
versions of Windows.

Windows/286 and Windows/386 will merge into one Windows product
when Microsoft releases Windows 3.0 in early 1990. Windows 3.0 contains a
number of enhancements to earlier versions.

In particular, Windows 3.0 can take advantage of 286-compatible protected
mode when running on machines using the 286 or 386 microprocessors. This
gives Windows and Windows applications access to up to 16 megabytes of mem
ory. Windows 3.0 also includes enhancements to the application program inter
face (API), a revamped shell that makes increased use of color and icons, as well
as an attractive three-dimensional visual design.

Windows 3.0 can run in three distinct modes: real mode, standard mode, and
386 enhanced mode. Real mode requires 512K of conventional memory. Standard
mode requires a 286 microprocessor and at least 256K of extended memory.
Under standard mode, Windows 3.0 runs Windows applications in 286 protected
mode. The 386 enhanced mode-which allows Windows to take advantage of
386 paging-requires a 386 microprocessor and at least 1 megabyte of extended
memory.

Windows as a GUI

Windows is a graphical user interface, and is thus part of a tradition that began at
Xerox Palo Alto Research Center (PARC) in the mid-1970s, entered the mass mar
ket with the ill-fated Apple Lisa (introduced in 1983) and the much more success
ful Macintosh (1984), and continues with the OS/2 Presentation Manager and
UNIX-based systems such as X-Windows, Sun NeWS, aSF/Motif, and NeXT.

As the name implies, a graphical user interface provides facilities that assist
programs in implementing a user interface and displaying graphics. The re
searchers at PARC considered the user interface to be a crucial part of a program
because it is where man and machine meet. Programs that run under GUIs are
often visually oriented and highly interactive.

The customary distinction between user input and program output is blurred
in a Gill because graphical objects on the screen are used to obtain user input.
That is, the screen itself serves as an input medium rather than simply echoing



262 EXTENDING DOS

keyboard input back to the user. Manipulating objects on the screen requires the
use of a pointing device such as a mouse. Windows, and many Windows applica
tions, also have a keyboard interface that duplicates everything you can do with
a mouse, but using a mouse is easier for many chores.

Because the windowing and user interface code is built into the system, pro
grams written for a GUI can achieve a high degree of consistency in their use of
common interface objects such as menus, scrollbars, and dialog boxes. This al
lows users to learn additional programs more easily after learning one.

Although a GUI-like windowing interface can be implemented in character
mode, the support of graphics can extend the functionality of many programs
considerably. For example, word processing programs can use WYSIWYG ("what
you see is what you get") screen displays that mimic printer output. Database
programs can allow graphics to be stored in database files along with text and
numbers. Spreadsheet programs can use different fonts and display graphs.

While much of Windows is devoted to the support of the user interface and
graphics, Windows also includes support for non-preemptive multitasking,
memory management, RS-232 communications, and sound.

Windows and MS-DOS

Windows is often referred to as an operating environment because it is not in itself
a full operating system. However, when Windows runs on top of MS-DOS it as
sumes much of the application support usually associated with operating systems.

Windows handles multitasking, memory management, user input through
the keyboard and mouse, graphics output to the screen and printer, RS-232 serial
communications, and sound, all without any help from MS-DOS and with very
little help from the system BIOS. When Windows is running, DOS is relegated to
what it does best: file I/O, other disk operations (such as changing the current di
rectory), and a few minor chores (like maintaining the current date and time).

For these DOS services, a Windows program uses either Int 21 h or normal C
library functions that translate into Int 21 h calls. For everything else, a Windows
program uses function calls provided by Windows.

Windows can also run many programs written for MS-DOS. These are re
ferred to in the Windows literature as standard applications but many Windows
programmers call them old applications or old apps. Old applications are divided
into two categories: good old apps can run in a window and be multitasked, while
bad old apps cannot. (The word "badlt is not pejorative in this sense. Many of the
best programs written for MS-DOS are bad apps when it comes to Windows.)



Chapter 6 The Windows Operating Environment 263

A good old application is a character-mode program that uses DOS and BIOS
services rather than directly accessing hardware. Windows intercepts many of
these DOS and BIOS calls and translates them into Windows functions. For ex
ample, when a DOS program makes BIOS video output calls to write text to the
screen, Windows translates these calls into Windows functions that display a
graphical rendering of the text in a window.

Bad applications are those that make use of graphics or directly access the
machine's hardware. These programs must run in a full-screen mode. Windows
suspends all programs currently running under Windows and removes most of
itself from memory to give the DOS program as much memory space as possible.

When Windows is taking advantage of the 386 microprocessor, the distinc
tion between good old apps and bad apps is blurred. By using the Virtual-86
mode of the 386 microprocessor, Windows can window and multitask many bad
applications, even those that use graphics. However, performance of these pro
grams is often necessarily degraded.

If you want, you can write your DOS programs so they can run in a window
under any version of Windows. The basic rules are: don't use a lot of memory,
and do use DOS and BIOS services rather than directly accessing hardware.
However, it is rare for DOS programmers to consider windowing compatibility.
It's simply not an issue.

DOS programs that themselves take advantage of protected mode are a spe
cial case. Windows 3.0 has some support for these programs, based on the mode
in which Windows is running (real mode, standard mode, and 386-enhanced
mode, as discussed earlier). Table 6-1 shows the ways that a DOS program can
use protected mode and extended memory and still run under Windows..

Table 6-1: Allowed use of protected mode and extended memory by DOS programs.

Windows 3.0 Mode
Real
Standard
386-Enhanced

Interface Available to DOS Application
XMS
XMS and DOS Protected Mode Interface (DPMI)
DOS Protected Mode Interface

Windows does not itself have XMS support. This must be provided exter
nally to Windows using the HIMEM.SYS driver included in the Windows retail
package. The DOS Protected Mode Interface (DPMI) is provided by Windows
when Windows is running in protected mode. DPMI is discussed in Chapter 9.



264 EXTENDING DOS

Programming Requirements

To program for Windows, you need a PC capable of running Windows with ade
quate performance. This is a 286- or 386-based personal computer with a hard
disk and at least 640K of memory (preferably a megabyte or two). An EGA is ad
equate; a VGA is better. Strictly speaking, a mouse is not required for running
Windows and many Windows applications, but you'll need a mouse to test your
programs. You should also have a printer or two if you intend to write programs
that print.

You will need a copy of Windows, of course, and some additional software.
Although it is possible to write a Windows program in Pascal or assembly lan
guage, most programmers write them in C. C offers the greatest flexibility in han
dling pointers and structures, both of which show up quite a bit in Windows
programming. Many C compilers do not provide the special support required for
Windows programs. For this reason, you'll probably want to use Microsoft C 6.0.

You will also need the Microsoft Windows Software Development Kit (SDK).
The SDK contains:

• a programmer's guide
• documentation of the Windows function calls
• the header files that declare all the Windows function calls
• import libraries necessary-for linking Windows programs
• tools for creating icons, mouse pointers, dialog box templates, and fonts
• a version of the CodeView debugger suitable for debugging Windows pro

grams.

Commitments and Trade-offs

Learning how to program for Windows requires a big commitment of time and
energy. If you have no prior experience programming for a graphical user inter
face, the learning curve can be steep. Most programmers cite a six-month period
before they become adept at Windows programming.

Moreover, there is no middle ground between programming for MS-DOS
and programming for Windows. There is no such thing as a program that makes
use of some Windows functions but is not an all-out Windows program.

Much of what you may have learned when programming for DOS in not ap
plicable in Windows. You can forget about using Int 10h to write to the video
display; you can forget about using In t 16h to read keystrokes; you can forget
about 25 lines of 80 columns each; you can forget about using C functions such as



Chapter 6 The Windows Operating Environment 265

getch and printf; you can forget about directly accessing hardware; and you
can forget about intercepting interrupts.

Instead, you'lileam how to:

• make use of the Windows function calls
• structure your program to properly process messages from the Windows

environment
• cooperate with the system and other Windows applications in your use of

the processor, memory, and other resources
• write programs that run the same on a variety of hardware platforms
• use graphics in an attractive and meaningful manner
• design a program for the user's convenience rather than your own.

Like it or not, the graphical user interface has established itself as the stan
dard computer interface for the 1990s. Continuing your programming career
through this decade means that sooner or later you must come to grips with GUI
programming and master it. You can pay your dues now or pay them later. Win
dows provides an excellent opportunity to pay them now.

Architecture and Features
If your programming experience is limited to traditional environments such as
MS-DOS or UNIX, a graphical user interface such as Windows may come as a big
shock. Windows is so different from conventional environments that it influences
the very structure of your programs. You will abandon a traditional top-down
structure and adopt a more object-oriented structure. Indeed, Windows has often
been characterized as an object-oriented environment with an event-driven or mes
sage-driven architecture.

The Object Called a "Window"

A Windows program creates one or more objects known as windows. Visually, a
window is a rectangular area on the screen. The window receives user input from
the keyboard and the mouse, and displays graphical program output. There are
three general styles of windows: overlapped, pop-up, and child.

A Windows program generally uses an overlapped style for its main applica
tion window. An overlapped window usually has most or all of the window
parts shown in Figure 6-1.



266 EXTENDING DOS

Figure 6-1: The parts ofan overlapped window.

System
menu icon

Sizing border

Titlebar

Ie Edit Search

runes Roman 8Point Font

Times Roman 10 Point Font

Times Roman 12 Point Font

Times Roman 14 Point Font

faragraph l1ocu"ment Help

Minimize/
L......+-~-Maximize

icon

Times Roman 18 Point Fom '-----+--tI______ Menu bar

Times Roman 24 Point FontProgram's
client area - 11------+

Scrollbars

A titlebar across the top of the window identifies the program. A user can
move a window by grabbing the titlebar with the mouse and dragging the win
dow to another location on the screen. To the left of the titlebar is the system
menu icon. Clicking this icon with the mouse causes a menu to be displayed that
lists several standard options, such as moving, sizing, or closing the window.

To the right of the titlebar are minimize and maximize icons. Clicking the
minimize icon c~uses the program to be displayed as a small icon on the bottom
of the screen. Clicking the maximize icon causes the window to expand to fill the
entire screen.

Below the titlebar is the program's main top-level menu bar. Smaller pop-up
menus are usually invoked from each item on the top-level menu. Surrounding
the window is a sizing border. A user can change the size of a window by grab
bing the sizing border with the mouse and dragging it. Scrollbars are often lo
cated within the sizing border on the right and bottom of the window.

Within the sizing border and scrollbars and below the program's menu is the
window's client area. This is the area of the window in which the program dis
plays its output. All the other areas of the window are collectively referred to as
non-client areas.



Chapter 6 The Windows Operating Environlnent 267

The second style of window is the pop-up window. Pop-up windows are gen
erally used for short-lived windows that a program may create, such as the dia
log box shown in Figure 6-2. A pop-up window usually has a fixed size. The
window mayor may not have a titlebar and system menu icon. Pop-up windows
do not have minimize and maximize icons.

Figure 6-2: A pop-up window used as a dialog box.

••file Edit ~earch ~harader faragraph Document Help

Times Roman 8Paint Font

Times Romdn 10 Point Font

Times Roman 12 Point

Times Roman 14 Po·

T+mes Roman 18 P

--------.
=.. ronts

...-Fo_nt_tla_m~e: --.I_I
,--ITm_I_Rm_~~ -----,II_1

••

Times Roman 24 Point Font
I
II

The third style of window is the child window. Child windows are generally
used for small controls that take the form of buttons, text entry fields, list boxes,
edit fields, and scrollbars. Most often, these appear on the surface of a dialog box,
as shown in Figure 6-2. A Windows program can also place child window con
trols on the client area of an overlapped window.

The Window Procedure and Messages

Everything that appears on the Windows screen is a window. The user interacts
with these windows. The architecture of a Windows program parallels this visual
architecture.

Every window has an associated window procedure, which is a function that
may be located either in the program that creates the window or somewhere in
Windows itself. The window procedure is responsible for displaying the window
on the screen and for processing keyboard and mouse input from the user.



268 EXTENDING DOS

Windows informs a window of interesting events that affect the window by
sending the window messages. This may sound excessively abstract. What it re
ally means is that Windows calls the window procedure, passing information
about the message as parameters. Think about it for a moment: you are undoubt
edly accustomed to writing programs that make calls to the operating system to
perform various services. In the case of Windows, the operating environment
makes calls to functions (window procedures) that are located in your program.

What are these interesting events that take the form of messages? User input
certainly qualifies as an interesting event and; indeed, keyboard and mouse input
messages are among the most important in Windows.

What if you grab an overlapped window's sizing border with the mouse and
change the size of a window? Is that important to the window? You bet it is, and
Windows has a message to tell an overlapped window when its size has been
changed. Of course, when a window's size is changed, it's a good idea for the
window to redraw itself, so another message indicates when a window needs re
painting.

The various messages that a window procedure receives are identified by
numbers, but the Windows header file defines handy identifiers that allow a pro
gram to refer to them by name. These identifiers have a prefix of WM, which
stands for window message.

For example, WM_KEYUP, WM_KEYDOWN, and WM_CHAR are keyboard messages.
WM_LBUTTONDOWN (the "L" stands for "left") and WM_MOUSEMOVE are mouse mes
sages. The WM_SIZE message indicates a window's size has changed, WM_PAINT

indicates that the surface of the window needs repainting, and WM_COMMAND indi
cates that the user has selected something from the program's menu. WM_CREATE

is the first message a window procedure receives when the window is created;
WM_DESTROY is the last message received when the window is destroyed.

When a Windows program begins execution, Windows creates a message
queue for the program. This message queue is used to store messages to all the
windows that the program creates. The program retrieves messages from this
message queue and dispatches them to the appropriate window procedure. Most
of the messages stored in the message queue are for keyboard or mouse input.
These messages are said to be posted to the message queue. Other messages are
sent directly to the window procedure from Windows.

Window procedures can also communicate among themselves, using mes
sages. For example, dialog boxes very often contain a pushbutton or two.. The
pushbutton receives WM_LBUTTONDOWN and WM_LBUTTONUP messages when the



Chapter 6 The Windows Operating Environment 269

user clicks the button with the mouse. The pushbutton responds by sending the
window procedure for the dialog box window a WM_COMMAND message, indicating
that the button has been pressed.

This organization of code into window procedures lends itself well to a high
degree of modularity and encapsulation. A window that has a distinct appear
ance and performs a very specific function (such as a pushbutton) can be com
pletely defined by a window procedure. Such window procedures are located in
Windows rather than application code.

We said earlier that every window is associated with a window procedure.
More precisely, every window that a program creates is based on a window class.
The window class identifies the window procedure that processes messages to
the window. This concept allows many different windows to be created, based on
the same window class. For example, the pushbuttons in all Windows programs
are based on the same window class and hence use the same window procedure.

The non-preemptive form of multitasking that Windows supports is also
based on messages. If a Windows program attempts to retrieve a message from
its message queue and the message queue is empt)', Windows switches control to
a program that has unprocessed messages in its queue.

The Application Program Interface

The application program interface (API) of Windows 3.0 consists of about 550
functions that Windows programs may call. These functions have descriptive
names using mixed upper- and lowercase, such as CreateWindow and Check

Menultem. All the Windows functions are declared in a large header file named
WINDOWS.H, which is included in the Windows Software Development Kit.
Near the top of every Windows program is the statement:

#include <windows.h>

This includes the WINOOWS.H header file in the compilation.
Generally, a program uses these Windows functions the same way it uses C

library functions in a normal C program. There are some important differences,
however. First, all the Windows functions are defined with the keywords far and
pasca t. Second, with one oddball exception, all pointers passed as parameters to
Windows functions must be far pointers. The function templates in WIN
DOWS.H defines all the Windows functions in this way; the C compiler performs
any pointer conversion for you, so you usually don/t have to worry about it.



270 EXTENDING DOS

The WINDOWS.H header file also defines over 70 data structures used in
Windows function calls and messages, and about 1,500 defined identifiers of nu
meric constants. For example, the message identifiers discussed above are all de
fined in WINDOWS.H.

One important part of the API is the concept of the handle. A handle is a num
ber that refers to an object. For example, in MS-DOS programming, a file handle
is a number that refers to an open file. In Windows programming, many other
objects are identified by handles. Generally, you create (or obtain access to) an ob
ject by calling a Windows function. The function returns a handle to the object.
You then use the handle to refer to the object in other function calls. When you're
finished using the object, you destroy (or release) it, at which time the handle be
comes invalid.

For example, when a program creates a window by calling CreateWindow,
the function returns a handle to the window. This is the most important handle in
Windows. You use this handle to refer to the window when calling functions that
affect the window.

Another important handle is the handle to a device context. The device context
is the drawing surface of a window or other output device such as a printer. You
need a device context to use graphics on an output device. In the sample pro
gram described later in this chapter, you'll also encounter an instance handle (a
handle that refers to the program itself), a handle to a menu, a handle to an icon,
a handle to a mouse cursor, and a handle to a brush (which is a pattern used to
fill an enclosed graphical area).

Although it is not strictly part of the API, Windows programmers often use a
variable naming convention that involves prefacing a variable name with a low
ercase abbreviation of the data type, such as lpsz for a long pointer to a string
terminated with a zero byte. Many of the structures defined in WINOOWS.H
have field names that use this variable naming convention.

The software interface between a Windows program and the Windows oper
ating environment is unusual for MS-DOS: first, unlike some other DOS
windowing libraries, a Windows executable does not contain any code for imple
menting the Windows function calls. All these functions are in Windows itself.
Second, unlike the case of MS-DOS and the ROM BIOS, a Windows program
does not call a Windows function through a software interrupt provided in a
binding library.

Instead, when you compile and link a Windows program, the calls to the
Windows functions remain unresolved far calls. Windows resolves these calls to



Chapter 6 The Windows Operating Environment 271

the Windows functions when the program is loaded into memory to run. This
process is known as dynamic linking.

Dynamic Linking

Dynamic linking is an important architectural component of Windows. It is the
process of resolving a function call from a program to the actual function located
in a dynamic link library (DLL). Windows itself is mostly composed of several dy
namic link libraries.

A dynamic link library is a file that contains functions that programs or other
dynamic libraries may use. Like program files, a Windows dynamic link library
file has a filename extension of .EXE.

Each function in a dynamic link library that can be called from outside the
module is said to be exported. The dynamic link library's .EXE file contains a table
that lists all the exported functions. Functions can be exported either by name
(that is, the name of the function) or by ordinal, a positive number that uniquely
identifies the function within the module.

When a program contains a call to a function in a dynamic link library, that
function is said to be imported to the program. The program's .EXE file contains a
table of all imported functions. The functions are identified by a module name
(which is the filename of the dynamic link library without the .EXE extension)
and either the function name or its ordinal. Dynamic link libraries also often
make use of imported functions.

When you run a Windows program, Windows examines the list of imported
functions in the program's .EXE file. It then locates the dynamic link libraries that
have exported these functions, and resolves the far calls by linking the program
code with the DLL code.

One of the big advantages of dynamic linking is that it allows Windows to
make more efficient use of memory. If two Windows programs require the same
function in the same dynamic link library, the DLL code can be shared between
the two programs. It is not necessary for all the DLL code that a program requires
to be loaded into memory at once. Parts of the dynamic link library can remain
on disk until needed.

When you run LINK to create an executable Windows program, you make
use of an import library included in the Windows Software Development Kit. For
each Windows function a program can call, the import library identifies the mod
ule containing that function and its name or, more commonly, its ordinal number.
(The ordinal numbers are preferred because they require less space in the .EXE



272 EXTENDING DOS

file.) LINK uses this information to create the imported functions table in the
program's .EXE file.

The three major dynamic link libraries included in Windows are: KERNEL,
USER, and GO!. KERNEL contains the tasking and memory management func
tions, USER contains the windowing and user interface functions, and GDI con
tains the Windows Graphics Device Interface functions.

You can create your own Windows dynamic link libraries. This is a conve
nient way to share code that may be required by several different programs. Dy
namic link libraries can also be products in themselves, to provide extensions to
the Windows interface.

Dynamic linking is one of several architectural features developed for Win
dows that later found their way into OS/2.

The New EXE format

We have mentioned tables in the .EXE file. If you're familiar with the format of
the MS-DOS .EXE file, you may be wondering where these tables are located.

Although Windows executables and dynamic link libraries retain the
filename extension of .EXE, the files are actually a different format, called the
"New Executable" format. The New Executable format is an extension of the MS
DOS .EXE format, because the New Executable file begins with the MS-DOS .EXE
header and (optionally) a non-Windows MS-DOS program. Commonly, a Win
dows .EXE file contains an MS-DOS program that simply displays the message
This program requires Microsoft Windows and then terminates. This is why you see
this message when you attempt to execute a Windows program on the DOS com
mandline.

The New Executable format also has a second header section, which contains
an extensive amount of information that Windows uses for dynamic linking and
memory management. For example, an MS-DOS .EXE file simply contains a bi
nary image of an entire program. In the New Executable format, each code and
data segment in the program is separate, and identified in a table in the second
header section.

Like dynamic linking, the New Executable format is also used in OS/2, al
though in a slightly different format.

Real-Mode Memory Management

Memory management has always been one of the strong points of Windows,
even prior to the use of protected mode in Windows 3.0. Memory can be tight in



Chapter 6 The Windows Operating Environment 273

a graphical user interface, particularly when multitasking is also supported. As
programs are started up and terminated, memory can become fragmented. It is
therefore necessary for Windows to move blocks of memory in order to consoli
date free space.

We will first examine how Windows handles memory in real mode, which is
still an option when running Windows 3.0. Even under real mode, Windows im
plements many features that are more common to protected mode. Specifically,
Windows can do the following:

• share program (and dynamic link library) code and read-only data be
tween multiple copies of the same program (multiple copies of the same
program are called instances)

• move code and data segments in memory to consolidate free memory
space

• discard code and read-only data segments from memory (based on a least
recently-used algorithm), and later reload them from the .EXE file when
necessary.

While these features are expected in protected mode, they are not easy to im
plement in real mode. It requires a lot of tricky code in Windows, cooperation
from the programmer, some special C compiler switches, more cooperation from
the programmer, the new .EXE file format, and still more cooperation from the
programmer.

All memory management in Windows is based on segments, which (as in 16
bit protected mode) are blocks of memory that can range in size from 1 byte to
64K. A segment can be classified as fixed (cannot be moved in memory), moveable
(movement is allowed to consolidate free memory space), or discardable (can be
discarded from memory if necessary). Discardable segments are always also
moveable.

The global heap (which is all the memory that Windows commands) is organ
ized as shown in Figure 6-3.

Fixed segments are allocated from the bottom up. Discardable segments are
allocated from the top down. Moveable segments are allocated above the fixed
segments. If a new fixed segment must be allocated, and no space is available at
the bottom of memory, then Windows will move the moveable segments up in
memory to consolidate free space.



274 EXTENDING DOS

Figure 6-3: The organization ofglobal memory in Windows.

Top of Memory

Discardable
Segments

J
Free Memory

1
Moveable
Segments

1
Fixed Segments

Bottom of Memory

It is highly recommended that Windows programs be compiled for either
small model (one code and one data segment) or medium model (multiple code
segments and one data segment). Because the program has only one data seg
ment in both these models, only near (16-bit offset) pointers are required by the
program to access data in that segment. These near pointers can be stored in the
data segment, and they remain valid if the data segment is moved. This allows
the program's data segment to be moveable.

If a program is compiled for compact or large model, the data segments must
be fixed in memory. This is not recommended because it doesn't fully cooperate
with Windows' memory management.

You must be careful not to store any far (32-bit segment and offset) pointers
to other moveable segments, because the pointers can become invalid if the other
segment is moved.

Of course, if programs were allowed only one data segment, they could not
use more than 64K of data. For this reason, Windows supports the allocation of
additional data segments outside the program's own data segment. That these al
located data segments can also be moveable does not, at first, seem possible
under real mode. For example, if a program allocates a block of memory outside
its data segment, it must store a far pointer to that segment. H Windows then
moves the allocated segment in memoI'}', the pointer is no longer valid.



Chapter 6 The Windows Operating Environment 275

To avoid this problem, Windows defines its own memory management func
tions. The memory allocation function does not return a pointer. Instead, it re
turns a handle, which is simply a number that uniquely refers to the allocated
segment. The Gl oba l All oc function shown below allocates a block of moveable
memory lK in length. The handle is stored in the variable hMemory:

hMemory ~ GlobalAlloc (GMEM_MOVEABLE, 1024) ;

Windows maintains a table in a fixed area of memory that contains these
handles and the segment addresses of the memory blocks. When the segment is
moved, Windows changes the entry in this table.

If the program wishes to access the allocated segment, it must call Gl oba l

Lock to lock the segment in memory. The function call returns a long pointer to
the segment:

lpMemory = GlobalLock (hMemory) ;

When a program calls Gl oba l Lo ck, the memory block is temporarily fixed in
memory, and Windows cannot move it. When the program is finished accessing
the memol)T, it calls the Globa lUn lock function:

GlobalUnlock (hMemory) ;

Following this function call, Windows is free to move the block of memory
again. The next time the program calls GlobalLock, the pointer returned may
well be different.

When the program is entirely finished using the segment, and no longer
needs it, the segment can be freed:

GlobalFree (hMemory) ;

It is recommended that a Windows program call GlobalLock only when ac
cessing a block of memory, and Globa lUnlock when it is finished accessing the
memory. This should be done in the course of processing a single message. For
example, a word processing program might allocate a block of memory to store
the document. It would only need to lock the block when changes are being
made to the document (usually on receipt of WM_CHAR messages from the key
board or WM_COMMAND messages from the menu) or when accessing the document
for other reasons (such as updating the screen during a WM_PAINT message or
when printing).

Several other functions (most notably GlobalRealloc and GlobalSize) are
available to change and obtain the size of an allocated segment.



276 EXTENDING DOS

Windows does not require you to allocate only moveable segments using
GlobalAlloc. You can use the GMEM_FIXED flag to allocate a segment that is al
ways fixed in memory. In this case, Gl oba l All 0 c returns the segment address of
the allocated segment.

A GMEM_DISCARDABLE flag also exists for allocating a discardable segment.
Windows is free to discard this segment from memory when it is unlocked. A
segment that has been discarded by Windows is indicated by a NULL return
value from GlobalLock. Usually a program does not use discardable segments
unless the data in the segment can be regenerated easily. However, it is possible
for a program to implement its own swapping with discardable segments. If you
pass the address of a function in your program to the GlobalNotify function,
Windows calls the function whenever it is about to discard a discardable seg
ment. You can then save the contents of the memory block to disk.

Windows also includes an analogous collection of memory allocation func
tions named LocalAlloc, LocalLock, LocalUnlock, LocalReAlloc, LocalSize,

Loca l Free, and Loca lNot i fy. These functions do for the local heap (the memory
that can be allocated from the program's data segment) what the other functions
do for the global heap. The organization of memory in the local heap is the same
as the organization of the global heap, except that we're speaking now of mem
ory blocks, and not segments. If necessary, Windows can expand the program's
data segment up to 64K to accommodate a larger local heap.

Making use of these local memory allocation functions is much less impor
tant than using the global memory allocation functions, but they exist if you
want to make efficient use of local memory. You can still use C memory alloca
tion functions like rna lloc if you wish. The special Windows libraries cause
rna lloc to behave like Loca lA lloc called with the LMEM_F IXED parameter.

So far, we've seen how Windows is able to move data segments in memory. If
you use small or medium model, do not save any long pointers in static memory,
and use the global memory allocation functions, as recommended, then you are
cooperating with Windows' memory management.

Code segments in Windows are generally moveable and discardable. If a
code segment is discarded, Windows can reload it from the .EXE file when
needed. (Windows always maintains an area in memory equal in size to the larg
est code segment of all the programs running under Windows. Thus, reloading
the code segment never fails for space reasons.) Obviously, storing variables in a
discardable code segment or writing self-modifying code leads to problems and
is not recommended.



Chapter 6 The Windows Operating Environment 277·

A medium model program contains multiple code segments. Functions in
one code segment must make far calls to functions in the other code segments.
All intersegment calls in a program are listed in a table in the .EXE file. Interseg
ment calls between two moveable code segments are handled by a small piece of
intermediate code that Windows creates. This piece of code is called a thunk.

Thunks are located in a fixed area of memory. Any intersegment calls from
one code segment are resolved to call a thunk. The thunk then branches to the ac
tual function in the target code segment. When Windows moves the target code
segment in memory, it adjusts the thunks accordingly. The thunk code also sets a
flag whenever the thunk is called. This indicates that a particular code segment
has been used. Windows uses these flags for implementing its least-recently-used
algorithm to determine what code segments are candidates for discarding when
memory gets low.

These thunks also take care of code segments that may be discarded from
memory, or that haven't yet been loaded. When Windows discards a code seg
ment from memory, it alters the thunk to call a function that reloads the segment
from the disk file into memory. Windows then restores the thunk to its normal
state and branches through the thunk again to jump to the function.

Calls from a program to a dynamic link library (DLL) are also handled
through thunks. In addition, DLL entry points contain code to save the
program's data segment (DS) address, load OS with the segment address of the
DLL's own data segment, and restore the program's OS on exit from the function.
When Windows moves a OLL data segment in memory, it must adjust the func
tion prologues of its exported functions accordingly.

A Windows dynamic link library can call a function in a program. This occurs
whenever Windows sends a message to a program's window procedure. The
window procedure cannot directly load the program's OS, because multiple in
stances of the program may be running, and they will have different data seg
ments. This little problem is handled by another type of thunk, which is unique
to each instance of the program. The thunk loads DS with the instance's data seg
ment address and then branches to the window procedure.

It is possible that a program may call a function in a Windows DLL, which
then calls another function in another Windows OLL, which then allocates some
memory that requires that the code segment in the previous DLL be moved or
discarded. In this case, when the second OLL returns control to the first DLL, the
code segment is gone. To compensate for this, Windows performs a trick called
"walking the stack." When moving or discarding a code segment, it checks the



278 EXTENDING DOS

stack to see if the code segment has been called. Windows can then adjust return
addresses to the new location of the code segment, or to code that reloads the
code segment in memory when it's required.

All of this may sound to you like either an extraordinary feat of software en
gineering or a horrible kludge. It is both. Windows memory management is ugl)T,
confusing, and the primary source of bugs in Windows applications. Yet, it
works, and nothing else in the MS-DOS world comes close to Windows in the so
phistication of its real-mode memory management.

Expanded and Extended Memory Support

Beginning with version 2.0, Windows began directly supporting the
Lotus/Intel/Microsoft Expanded Memory Specification version 4.0 (LIM EMS
4.0), which is discussed in detail in Chapter 2.

EMS 4.0 establishes a "bank line" in memo~ above which memory is paged.
With a full hardware implementation of EMS 4.0, this bank line is at the 256K
mark in MS-DOS memory, which usually falls somewhere in the global heap of
Windows.

EMS support is mostly transparent to Windows applications. Each Windows
application (including its code segments, data segment, and additional memory
allocated using the GLoba LA LLoc function) is allocated from EMS 4.0 pages, if
possible. When Windows switches from one Windows application to another, it
makes EMS 4.0 calls to page out the first application's pages, and page in the sec
ond application's pages.

Windows locates dynamic link library data and resources below the bank
line. This allows the DLL data to be shared among all Windows applications. Ad
ditional shared data segments that a dynamic link library may need must be allo
cated with a special GLoba LA LLoc flag: GMEM_NOT_BANKED. Thunks and other data
structures that must be present in a fixed area of memory at all times are also lo
cated below the bank line. Dynamic link library code, however, can be located
above the bank line. In this case, multiple copies of the code can exist in several
applications' EMS pages.

Windows programs can transfer data among themselves using the clipboard
or dynamic data exchange (DDE). In these cases, Windows copies the data from
one application's EMS pages to another. Programs that share memory in other
ways, however, should use the GMEM_NOT_BANKED flag to allocate memory below
the bank line.



Chapter 6 The Windows Operating Environment 279

In many ways, the support of protected mode in Windows 3.0 simplifies
memory management. The various techniques used in previous versions of Win
dows to emulate protected-mode features are not required. The code to imple
ment these techniques must still be present in Windows, however, because
Windows 3.0 can be run in real mode.

Contrary to popular belief, Windows does not normally swap data segments
to disk. The disk activity that occurs under Windows is due to the loading and re
loading of code segments and read-only resources (such as fonts). When running
in the 386 enhanced mode, however, Windows 3.0 uses the 386 paging mecha
nism to swap data areas.

Keyboard and Mouse Input

All user input in Windows comes through the keyboard and the mouse. A Win
dows program obtains this input through messages that are posted to the
application's message queue. Keyboard and mouse messages are always directed
to a particular window, and only one window procedure receives each message.

The window that receives keyboard input messages is the focus window, also
called the window with input focus. Only one window can have the focus at any
time. The user can shift focus from one application window to another, using the
mouse or the Alt-Escape or Alt-Tab keys. In a dialog box, the user can shift the
focus among control windows using the mouse, the Tab key, or arrow keys.

A window is responsible for indicating to the user that it has the input focus.
For example, a word processing program will indicate that it has the input focus
by displaying a small caret. (In other environments, the caret would be called a
cursor, but that word is reserved in Windows for the bitmapped image represent
ing the mouse.) Child window controls in a dialog box indicate they have the
input focus in various ways. For example, a pushbutton displays a dotted outline
around the text when it has the input focus.

Windows defines several keyboard messages, the most important of which
are WM_KEYDOWN, WM_KEYUP, and WM_CHAR. The WM_KEYDOWN and WM_KEYUP mes
sages occur whenever a key is pressed and released. The key is identified by a
virtual key code. A virtual key code is defined in WINDOWS.H for every key on
the keyboard. The WM_CHAR message is generated whenever a key (first indicated
by a WM_KEYDOWN message) and the state of the shift keys generate an ASCII char
acter code. The message identifies the ASCII code.

A window procedure receives mouse messages whenever the mouse cursor
is positioned over the window. Pressing and releasing the left mouse button gen-



280 EXTENDING DOS

erates WM_LBUTTONDOWN and WM_LBUTTONUP messages. Similarly, the right mouse
button generates WM_RBUTTONDOWN and WM_RBUTTONUP messages. Moving the
mouse results in a WM_MOUSEMOVE message.

A Windows program can "capture the mouse" to continue receiving mouse
input even when the mouse cursor leaves the window. For example, if you press
a mouse button with the cursor positioned over a pushbutton, the pushbutton
changes appearance to indicate that it has been pressed. If you keep the mouse
button down and move the mouse cursor outside the pushbutton window, the
window returns to normal. The pushbutton knows when the mouse cursor has
left its window, because it captured the mouse.

Child Window Controls

We mentioned earlier that the architecture of a Windows program often parallels
the user's visual perception of the screen. For example, a dialog box usually con
tains a number of input devices such as text entry .fields, list boxes, scrollbars,
and buttons of various sorts. The dialog box is a window, and each of these input
devices is also a window. These are called child window controls, or control win
dows, or simply controls. Although controls most often appear in dialog boxes,
they may also appear on the client area of a window.

Windows includes several predefined controls. These controls are predefined
because Windows registers window classes for them. The window procedures
are located in a Windows dynamic link library. Placing one of these controls on
the client area of your window involves calling create~i ndow to create a window
based on one of these preregistered classes. (It's even easier when you use con
trols on a dialog box. You need only define the size and placement of the controls
in a dialog box template.) The window procedure then receives messages from
the controls when the user interacts with them. The window procedure can also
send messages to the controls.

The Static window class is very simple because windows based on this class
ignore user input and send no messages. This window class displays windows
that consist of text strings, frames, and filled rectangles.

The Button window class supports a variety of buttons, including radio but
tons, check boxes, and pushbuttons. Each of these buttons has a distinctive ap
pearance and contains some text.

Radio buttons are used to indicate one of several possible options, much like
the buttons on car radios. The button displays a small circle and some text. Sev-



Chapter 6 The Windows Operating Environment 281

eral radio buttons are grouped together. Clicking one radio button with the
mouse selects that button (indicated by a filled-in circle) and deselects all the others.

Check boxes indicate program options. They consist of a square and some
text. Clicking the check box with the mouse puts an X in the square. Clicking
again removes it.

A pushbutton is a rectangle with text inside. Clicking the button usually indi
cates that the program should respond in some way. Pushbuttons are often used
to dismiss dialog boxes.

You can also "press" a button using the Space Bar on the keyboard if the but
ton currently has the input focus. Whenever a button is pressed, it sends a mes
sage to its parent window (usually the window that created the control)
indicating this.

The Scrollbar window class supports vertical and horizontal scrollbars often
used by applications (such as word processing programs) that display a part of a
larger document in the window. By clicking various parts of the scrollbar, you
can move the document within the window.

Windows based on the Edit window class are editable text-entry fields, both
in singleline or multiline formats. A multiline edit control actually has much of
the functionality of a rudimentary editor. The Windows NOTEPAD program is
little more than a multiline edit control occupying the program's client area.

The Listbox window class supports a scrollable list of text strings. The user
can select one (or, in some cases, more than one) text string using the mouse.
Listboxes are commonly used for selecting a file to load into memory.

The Combobox window class is one of the enhancements to Windows 3.0. A
combobox is a combination of an edit control and a listbox. The listbox is nor
mally hidden until the user presses a little button to the right of the edit field.

In addition, you can create your own controls. If the window procedure for a
custom control is located in a dynamic link library, it can be shared among multi
ple applications.

Graphics Device Interface (GDI)

The API of any graphical environment must include a graphics programming
language. In Windows, this is known as the Graphics Device Interface, or GDI.
GDI is a device-independent graphics programming language. What this means
is that you use the same function calls for any graphics output device (including
video displays and printers) for which a Windows device driver is present. You



282 EXTENDING DOS

do not need to know the particulars of the output device; the device driver does
all the translation for you.

Conceptually, a program draws graphics on device context, which is a drawing
surface associated with a graphics output device. For drawing on the video dis
play, a window procedure can obtain a device context for the window by calling
Beg; nPa; nt (during the WM_PAINT message) or GetDC (during other messages).
These functions return a handle to the device, which is passed as a first parame
ter to the GDI functions.

For printer or plotter graphics, a program obtains a device context by calling
CreateDC. This same function can be used for creating device contexts not di
rectly associated with an actual output device. These are the memory device con
text (useful for working with bitmaps) and the metafile device context (for
creating a metafile).

The device context stores attributes that determine how the GDI drawing
functions operate on the device. For example, one attribute is the color and style
of the "pen" used to draw lines.

By default, all coordinates passed to GDI drawing functions are in units of
pixels relative to the upper left-hand comer of the output device. However, a
program can set an alternative mapping mode to draw in units of inches, millime
ters, or arbitrary coordinates. The program can also set the coordinate origin any
where relative to the surface of the output device.

GDI supports five basic graphics primitives:

• lines
• filled areas
• text
• bitmaps
• regions

Use the MoveTo and L; neTo functions to draw a straight line. The MoveTo func
tion sets the beginning of the line, and Li neTo sets the end of the line. The Po ly

Li ne function draws a series of connected straight lines, and the Arc function
draws a curved line defined by the circumference of an ellipse. All lines are
drawn using an object called a pen. The pen defines the color of the line, its
width, and its style (whether it is solid, or composed of various dashes or dots).

Windows also has several functions for filling enclosed. areas. The Rectang le

function draws a rectangle, RoundRect draws a rectangle with rounded corners,
Ell ipse draws an ellipse, Chord and Pi e draw sections of an ellipse, and Po ly-



Chapter 6 The Windows Operating Environment 283

9 0 n fills the area enclosed by a polyline. GDI fills the area using an object called a
brush. A brush is defined by a color and a style (such as solid or consisting of sev
eral variations of hatch marks).

The standard text output function is called TextOut. The text begins at a
specified location on the output device. By default, a program that draws text
uses the Windows system font, which is a variable-pitch font in Windows 3.0 and
a fixed-pitch font in earlier versions. A program can select a different font for the
output device (depending on what the output device supports) and obtain text
metrics for that font. These metrics provide information about the dimensions of
the font.

Bitmaps are rectangular arrays of pixels used for storing complex images.
The BitBlt and StretchBlt functions can copy a bitmap from one device con
text to another. The StretchBl t function can stretch or compress a bitmap to
change its size. These functions actually perform much more than simple copies:
they can render a source (the bitmap) on a destination surface combined with a
brush in any of 256 possible bit-wise combinations.

A region is a combination of rectangles, polygons, and ellipses. Regions can be
filled, outlined, inverted, or used for clipping.

Graphics attribute and drawing functions may be saved in metafiles. These
are binary coded representations of GDI functions. Metafiles can be stored in
memory or on disk.

Resources

A .EXE file (either a program or a dynamic link library) almost always contains
code and data segments, but it may also· contain another type of segment known
as a resource segment. Resources are read-only data that are stored in the .EXE file
and loaded into memory when required. Resources are shared among multiple
instances of a program.

For example, a program's icon (which is actually a small bitmap) is stored as
a resource. So are any customized mouse cursors you may create. Resources also
include menu templates (used to define a program's menu), dialog box templates
(used to define the layout of a program/s dialog boxes), keyboard accelerators
(which translate certain keystrokes into menu commands), and fonts.

Interprocess Communication

To allow users to transfer data from one program to another, Windows supports
a form of shared memory known as the clipboard.



284 EXTENDING DOS

Generally, Windows programs that work with documents have an item on
the top-level menu called Edit. The Edit submenu usually has several options, in
cluding Cut, Copy, and Paste. The Cut option removes a selected area of a docu
ment and copies it to the clipboard. The Copy option copies the selected area to
the clipboard without removing it from the document. Paste copies data from the
clipboard to the document.

Windows defines several clipboard data formats. The three most common are
ASCn text, bitmaps, and metafiles. In addition, programs can define their own
clipboard formats for storing data during cut-and-paste operations. This allows a
user to copy a selection from one instance of a particular word processing pro
gram to another instance without losing formatting.

An increasingly popular form of inter-process communication under Win
dows is Dynamic Data Exchange or DDE. DDE is a protocol rather than a specific
feature of Windows. It is based on the Windows messaging system and hence re
quires v~ry little in the way of additional support from Windows.

Two programs are involved in a DDE transaction. A program called the client
wants data that may be available from another program. The program that has
the data is known as the server. A DDE transaction begins when the client broad
casts a message to all windows running under Windows asking if they can sup
ply data identified by some keywords. A program responding affirmatively with
a message to the client becomes a server. The server can either give the client the
data and end the transaction, or keep the client informed when the data changes.

Any software manufacturer who writes a program that can perform DDE
server functions would tell buyers of that program the keywords required to ac
cess its data. The user can then use these keywords in any Windows application
that supports DDE, perhaps in a macro language or directly in a spreadsheet or
word processing field.

One popular demonstration of DDE involves a Windows server application
that receives broadcast stock quotations via special radio hardware. A
spreadsheet program can establish a DDE link and keep a spreadsheet and bar
graph updated with the latest stock quotes.

ASample Program
The best way to understand what Windows programming is all about is to exam
ine in gory detail a complete, working Windows program.



Chapter 6 The Windows Operating Environment 285

Time: 112:001

The CLOCK7 program, shown running under Windows in Figure 6-4, shows
the current time, using a simulated seven-segment LCD display. The time is up
dated every second. (For purposes of the non-color illustration, the program
shows white numbers on a black background; the program actually displays red
numbers on a black background.)

Figure 6-4: The CLOCK7 program running under Windows.

The menu bar has two items: Set and Format. When you select the Set option,
CLOCK7 displays a drop-down menu with three options: Set Alarm, Exit, and
About Clock7. The Set Alarm option displays the dialog box shown in Figure 6-5.
You can enter a time, and when that time occurs, CLOCK7 displays a message
box with the words "Wake up! Wake up! Wake up!" The Exit option exits the pro
gram. The About Clock7 option displays a dialog box with some information
about the program.

Figure 6-5: The CLOCK7 dialog box for setting the alarm.

Set Alarm

(hr:min In 24-hour format)

Alarm

OOn

@> Off

I I



286 EXTENDING DOS

When you select the Format item, CLOCK7 displays a drop-down menu that
lets you switch between a 12-hour format and a 24-hour format. The current se
lection is indicated by a check mark.

CLOCK7 illustrates many of the concepts discussed above, including win
dow creation, message handling, resources, and graphics. If you don't under
stand all the workings of this program at first encounter, don't worry about it.
That's normal. Windows programming is not something that can be picked up in
an hour or two.

The Source Files

Programs for Windows are generally constructed from several different files. The
six files required for CLOCK7 are fairly standard. You'll have similar files for al
most every Windows program you write.

The CLOCK7 MAKE file is shown below:

#------------------
# CLOCK7 make file
#------------------
clock7.obj : clock7.c clock7.h

cl -c -Gsw -W2 -Zp clock7.c

clock7.res : clock7.rc clock7.h clock7.ico
rc -r clock7

clock7.exe : clock7.obj clock7.def clock7.res
link clock7, /align:16, NUL, /nod slibcew slibw, clock7
rc clock7.res

Windows programmers often use the MAKE utility (supplied with the
Microsoft C Compiler) to simplify compilation and linking of the various source
code files to create the executable. If you have the source code files shown here,
and the Microsoft C Compiler and Windows Software Development Kit installed,
you can create CLOCK7.EXE by executing:

MAKE CLOCK7

The CLOCK7 MAKE file is not only a convenient way to create
CLOCK7.EXE; it also shows how the other five files contribute to the executable.

A MAKE file consists of several sections (in the case of CLOCK7, three) that
begin with a left-justified line showing a target file, a colon, and one or more de-



Chapter 6 The Windows Operating Environment 287

pendent files. If any of the dependent files has been modified more recently than
the target files, MAKE runs the indented commands that follow.

The first section of CLOCK7 indicates that CLOCK7.0BJ is created from
CLOCK7.C, shown below:

1*---------------------------------------------------------------
ClOCK7.C -- Seven-Segment CLock Program for Microsoft Windows

Programmed by CharLes PetzoLd
---------------------------------------------------------------*1

#incLude <windows.h>
#incLude <stdLib.h>
#incLude <string.h>
#incLude <time.h>
#incLude "clock7.h"
#define ID_TIMER 1

Long FAR PASCAL WndProc (HWND, WORD, WORD, lONG) ;
BOOl FAR PASCAL ALarmDLgProc (HWND, WORD, WORD, lONG) ;
BOOl FAR PASCAL AboutDlgProc (HWND, WORD, WORD, lONG) ;
void DispLayTime (HDC, struct tm *, BOOl) ;
void DispLayDots (HDC) ;
void DrawDigit (HDC, int, int, int) ;

BOOl bALarmOn = FALSE ;
int iHour, iMin ;

int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance,
lPSTR LpszCmdParam, int nCmdShow)

{

static char szAppName [] = "CLock7" ;
HWND hwnd ;
MSG msg ;
WNDClASS wndcLass;

if (!hPrevInstance)
{

wndclass.styLe = o ;
wndcLass.LpfnWndProc = WndProc ;
wndcLass.cbCLsExtra = o ;
wndcLass.cbWndExtra = o ;
wndcLass.hInstance = hlnstance ;
wndcLass.hIcon = loadIcon (hInstance, szAppName) ;
wndcLass.hCursor = loadCursor (NUll, IDC_ARROW) ;
wndcLass.hbrBackground = GetStockObject (BLACK_BRUSH) ;
wndcLass.lpszMenuName = szAppName ;
wndcLass.lpszCLassName = szAppName ;



288 EXTENDING DOS

RegisterClass (&wndclass) ;
}

hwnd = CreateWindow (szAppName, II window class name
"Seven-Segment Clock", II window caption
WS_OVERLAPPEDWINDOW & II window style

-WS_THICKFRAME & -WS_MAXIMIZEBOX,
CW_USEDEFAULT, II initial x position
CW_USEDEFAULT, II initial y position
CW_USEDEFAULT, II initial x size
CW_USEDEFAULT, II initial y size
NULL, II parent window handle
NULL, II window menu handle
hlnstance, II program instance handle
NULL) ; II creation parameters

ShowWindow (hwnd, nCmdShow) ;
UpdateWindow (hwnd) ;

while (GetMessage (&msg, NULL, 0, 0»
{

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}

return msg.wParam ;
}

long FAR PASCAL WndProc (HWND hwnd, WORD message, WORD wParam, LONG lParam)
{

static BOOL b24Hour = FALSE ;
static FARPROC lpfnAlarmDlgProc, lpfnAboutDlgProc ;
static HANDLE hlnstance ;
static HMENU hMenu ;
LPCREATESTRUCT lpcrst ;
HDC hdc ;
long lTime ;
PAINTSTRUCT ps ;
POINT pt ;
RECT rect ;
struct tm *datetime ;

switch (message)
{

case WM_CREATE:
lpcrst = (LPCREATESTRUCT) lParam ;
hlnstance = lpcrst->hlnstance ;

lpfnAlarmDlgProc = MakeProclnstance (AlarmDlgProc, hlnstance) ;



Chapter 6 The Windows Operating Environment 289

LpfnAboutOLgProc = MakeProclnstance (AboutOLgProc, hlnstance) ;

hdc = GetOC (hwnd) ;
SetMapMode (hdc, MM_HIENGLISH) ;
pt.x = 4000;
pt.y = -1000 ;
LPtoOP (hdc, &pt, 1) ;
ReleaseOC (hwnd, hdc) ;

rect.left = o ;
rect.top = o ;
rect.right = pt.x ;
rect.bottom = pt.y ;
AdjustWindowRect (&rect,

TRUE)
WS_OVERLAPPEOWINOOW & -WS_THICKFRAME,
;

MoveWindow (hwnd, lpcrst->x, lpcrst->y, rect.right - rect.left,
rect.bottom - rect.top, FALSE) ;

hMenu = GetMenu (hwnd) ;
SetTimer (hwnd, IO_TIMER, 1000, NULL) ;
return 0 ;

case WM_COMMANO:
switch (wParam)

{

case IOM_HOUR12:
CheckMenuItem (hMenu, IOM_HOUR12, MF_CHECKEO) ;
CheckMenuItem (hMenu, IOM_HOUR24, MF_UNCHECKEO) ;
b24Hour = FALSE ;
return 0 ;

case IOM_HOUR24:
CheckMenuItem (hMenu, IOM_HOUR12, MF_UNCHECKEO) ;
CheckMenuItem (hMenu, IOM_HOUR24, MF_CHECKEO) ;
b24Hour = TRUE ;
return 0 ;

case 10M_ALARM:
OialogBox (hlnstance, IfAlarmBox lf

, hwnd,
lpfnAlarmOlgProc) ;

return 0 ;

case 10M_ABOUT:
OialogBox (hlnstance, IfAboutBox lf

, hwnd,
lpfnAboutOlgProc) ;

return 0 ;



290 EXTENDING DOS

case 10M_EXIT:
SendMessage (hwnd, WM_ClOSE, 0, Ol) ;
return 0 ;

}

break ;

case WM_TIMER:
time (&lTime) ;
datetime = localtime (&lTime) ;

if (datetime->tm_hour -- iHour && datetime->tm_min -- iMin
&& bAlarmOn -- TRUE)

{

bAlarmOn = FALSE ;
MessageBox (hwnd, "Wake Up! Wake Up! Wake Up!",

"Alarm", MB_OK I MB_ICONASTERISK) ;
}

hdc = GetDC (hwnd) ;
DisplayTime (hdc, datetime, b24Hour) ;
ReleaseDC (hwnd, hdc) ;
return 0 ;

case WM_PAINT:
time (&lTime) ;
datetime = localtime (&lTime) ;

hdc = BeginPaint (hwnd, &ps) ;
DisplayTime (hdc, datetime, b24Hour) ;
DisplayDots (hdc) ;
EndPaint (hwnd, &ps) ;
return 0 ;

case WM_DESTROY:
KillTimer (hwnd, 10 TIMER) ;
PostQuitMessage (0) ;
return 0 ;

}

return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BOOl FAR PASCAL AlarmDlgProc (HWND hwnd, WORD message, WORD wParam, lONG lParam)
{

static BOOl blocalAlarmOn ;
static char szAlarmTime[10J = "12:00" ;
char szParseTime[10J ;

switch (message)



Chapter 6 The Windows Operating Environment 291

{

case WM_lNlTDlALOG:
SendDLgltemMessage (hwnd, lDD_ALARMTlME, EM_LlMlTTEXT, 6, OL) ;
SetDLgltemText (hwnd, lDD_ALARMTlME, szALarmTime) ;
CheckRadioButton (hwnd, lDD_ALARMON, lDD_ALARMOFF,

bALarmOn ? lDD_ALARMON lDD_ALARMOFF);
bLocaLALarmOn = bALarmOn ;
return TRUE ;

case WM_COMMAND:
switch (wParam)

{

case lDD_ALARMON:
case lDD_ALARMOFF:

bLocaLALarmOn = (wParam == lDD_ALARMON) ;
CheckRadioButton (hwnd, lDD_ALARMON, lDD_ALARMOFF,

wParam) ;
return TRUE ;

case lDOK:
GetDLgltemText (hwnd, lDD_ALARMTIME, szALarmTime, 10) ;
strcpy (szParseTime, szALarmTime) ;
iHour = atoi (strtok (szParseTime, 11:11» ;
iMin = atoi (strtok (NULL, II :11» ;

if (iHour < 0 I I iHour > 23 I I iMin < 0 I I iMin > 59)
{

MessageBox (hwnd, IITime is not vaLid!lI, NULL,
MB_OK I MB_lCONEXCLAMATION) ;

SetFocus (GetDLgltem (hwnd, IDD_ALARMTIME» ;
return TRUE ;
}

bALarmOn = bLocaLALarmOn ;
EndDiaLog (hwnd, TRUE) ;
return TRUE ;

case lDCANCEL:
EndDiaLog (hwnd, FALSE) ;
return TRUE ;

}

break ;
}

return FALSE ;
}

BOOL FAR PASCAL AboutDLgProc (HWND hwnd, WORD message, WORD wParam, LONG LParam)



292 EXTENDING DOS

{

switch (message)
{

case WM_INITDIAlOG:
return TRUE ;

case WM_COMMANO:
switch (wParam) ;

{

case lOOK:
case IOCANCEl:

EndOialog (hwnd, 0) ;
return TRUE ;

}

break ;
}

return FALSE ;
}

void OisplayTime (HOC hdc, struct tm *datetime, BOOl b24Hour)
{

SetMapMode (hdc, MM HIENGlISH) ;
SetWindowOrg (hdc, 0, 1000) ;

if (!b24Hour)
if «datetime->tm_hour %= 12) -- 0)

datetime->tm_hour = 12 ;

DrawOigit (hdc, 100, 100, datetime->tm_hour I 10 != 0 ?
datetime->tm_hour I 10 : 10) ;

OrawOigit (hdc, 700, 100, datetime->tm hour % 10) ;
OrawOigit (hdc, 1500, 100, datetime->tm_min I 10) ;
OrawOigit (hdc, 2100, 100, datetime->tm_min % 10) ;
OrawOigit (hdc, 2900, 100, datetime->tm_sec I 10) ;
OrawOigit (hdc, 3500, 100, datetime->tm_sec % 10) ;
}

void DrawOigit (HOC hdc, i nt x, int y, int iOigit)
{

static BOOl bSegmentOn[11J[7J = { 1, 0, 1, 1, 1, 1, 1, II 0
0, 0, 0, 0, 1, 0, 1, II 1
1, 1, 1, 0, 1, 1, 0, II 2
1, 1, 1, 0, 1, 0, 1, II 3
0, 1, 0, 1, 1, 0, 1, II 4
1, 1, 1, 1, 0, 0, 1, II 5
1, 1, 1, 1, 0, 1, 1, II 6
1, 0, 0, 0, 1, 0, 1, II 7
1 , 1, 1, 1, 1, 1, 1, II 8



Chapter 6 The Windows Operating Environment 293

1, 1, 0, 1, 1, 0, 1, I I ·9
0, 0, 0, 0, 0, 0, o } ; II blank

static int iSegmentType[7J = { 0, 0, 0, 1, 1, 1, 1 } ;
static LOGBRUSH logbrBlack = { BS_SOLID, RGB(O,O,O), o } ;
static LOGBRUSH logbrRed = { BS_SOLID, RGB(255,0,0), 0 } ;
static POINT ptSegOrigin[7J = { 0, 800, 0, 400, 0, 0, 0, 400,

400, 400, 0, 0, 400, 0 } ;
static POINT ptSegment[2J[6J = { 25, 0, 75, 50, 325, 50,

375, 0, 325,-50, 75, -50,
0, 25, 50, 75, 50, 325,
0, 375, -50,325, -50, 75 } ;

HBRUSH hbrBlack, hbrRed ;
int iSeg ;

hbrBlack = CreateBrushIndirect (&logbrBlack) ;
hbrRed = CreateBrushIndirect (&logbrRed) ;
SaveDC (hdc) ;
OffsetWindowOrg (hdc, -x, -y) ;

for (iSeg = a ; iSeg < 7 ; iSeg++)
{

SaveDC (hdc) ;
OffsetWindowOrg (hdc, -ptSegOrigin[iSegJ.x, -ptSegOrigin[iSegJ.y) ;
SelectObject (hdc, bSegmentOn[iDigitJ[iSegJ ? hbrRed : hbrBlack) ;
Polygon (hdc, ptSegment[iSegmentType[iSegJJ, 6) ;
RestoreDC (hdc, -1) ;
}

SelectObject (hdc, GetStockObject (BLACK_BRUSH» ;
RestoreDC (hdc, -1) ;
DeleteObject (hbrBlack) ;
DeleteObject (hbrRed) ;
}

void DisplayDots (HDC hdc)
{

static LOGBRUSH logbrRed ={ BS_SOLID, RGB(255,0,0), 0 } ;
HBRUSH hbrRed ;

hbrRed = CreateBrushIndirect (&logbrRed) ;
SelectObject (hdc, hbrRed) ;

Ellipse (hdc, 1250, 350, 1350, 250) ;
Ellipse (hdc, 1250, 750, 1350, 650) ;
Ellipse (hdc, 2650, 350, 2750, 250) ;
Ellipse (hdc, 2650, 750, 2750, 650) ;
SelectObject (hdc, GetStockObject (BLACK_BRUSH» ;



294 EXTENDING DOS

OeleteObject (hbrRed) ;
}

CLOCK7.C requires the CLOCK7.H file shown below:

1*----------------------
CLOCK7.H header file

----------------------*1
#define IOM_HOUR12 1
#define IOM_HOUR24 2
#define 10M_ALARM 3
#define 10M_EXIT 4
#define 10M_ABOUT 5

#define IOO_ALARMTIME 10
#define IOO_ALARMON 11
#define IOO_ALARMOFF 12

The compiler flags shown in CLOCK7 are normal for compiling a Windows
program. In particular, the -Gsw switch (which is actually two switches, -Gs and
-Gw) inhibits stack checks and causes the compiler to create a special prologue
on far functions necessary for loading the program's data segment on entry to a
window procedure.

The second section of the CLOCK7 make file shows that CLOCK7.RES (a
compiled resource file) is created from CLOCK7.RC (the resource script shown
below), CLOCK7.H, and CLOCK7.ICO by running the RC.EXE resource compiler
included with the Windows Software Development Kit.

1*---------------------------
CLOCK?RC resource script

---------------------------*1
#include <windows.h>
#include I c l oc k7.h"

Clock? ICON clock?ico

Clock7 MENU
{

POPUP "&Set"
{

MENUITEM "&Set Alarm ..... ,
MENUITEM SEPARATOR
MENUITEM "E&xit",
MENUITEM SEPARATOR
MENUITEM "A&bout Clock? .. ",



Chapter 6

}

POPUP II&Format ll
{

MENUITEM 11&12 Hour ll ,
MENUITEM 11&24 Hour ll ,
}

}

The Windows Operating Environment 295

IDM_HOUR12, CHECKED
IDM_HOUR24

AlarmBox DIALOG 20, 20, 160, 100
STYLE WS_POPUP I WS_DLGFRAME

{

CTEXT IISet Alarm ll -1, 0, 12 160, 8
CTEXT lI(hr:min in 24-hour format)1I -1, 0, 24, 160, 8
ICON IIClock?1I -1, 8, 8, 0, 0
LTEXT IITime: 1I -1, 3, 50, 20, 8
EDITTEXT IDD_ALARMTIME, 56, 48, 32, 12, ES_AUTOHSCROLL
GROUPBOX IIAlarm ll -1, 96, 36, 32, 36,
RADIOBUTTON 1I0nll IDD_ALARMON, 100, 46, 24, 12, WS_GROUP
RADIOBUTTON 1I0ff ll IDD_ALARMOFF, 100, 58, 24, 12
DEFPUSHBUTTON IIOK II lOOK, 32, 80, 32, 14, WS_GROUP
PUSHBUTTON IICancel ll IDCANCEL, 96, 80, 32, 14, WS_GROUP
}

AboutBox DIALOG 20, 20, 160, 80
STYLE WS_POPUP I WS_DLGFRAME

{

CTEXT IIClock?1I -1, 0, 12, 160, 8
ICON IIClock?1I -1, 8, 8, 0, 0
CTEXT IISeven-Segment Clock ll -1, 0, 36, 160, 8
CTEXT IIProgrammed by Charles Petzold ll -1, 0, 48, 160, 8
DEFPUSHBUTTON IIOK II lOOK, 64, 60, 32, 14, WS_GROUP
}

CLOCK7.ICO is a binary file containing an image of the program's icon. Fig
ure 6-6 shows CLOCK7.ICO as it appears in the SDKPAINT program supplied
with the Windows Software Development Kit. The icon is simply a "figure 8."

The third section of the CLOCK7 make file shows that CLOCK7.EXE is cre
ated from CLOCK7.0BJ, CLOCK7.RES, and CLOCK7.DEF (the module defini
tion file shown below). This involves running the LINK.EXE linker with the
special C libraries. The last parameter indicates the CLOCK7.DEF file. The
RC.EXE resource compiler is then run again to add the compiled resources to
CLOCK7.EXE.



296 EXTENDING DOS

;-----------------------------------
; CLOCK7.DEF moduLe definition fiLe
;--------------~--------------------

NAME

DESCRIPTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE
STACKSIZE
EXPORTS

CLOCK7

'Seven-Segment CLock Program for Microsoft Windows'
WINDOWS
'WINSTUB.EXE'
MOVEABLE
MOVEABLE MULTIPLE
1024
4096
WndProc
ALarmDLgProc
AboutDLgProc

Figure 6-6: The CLOCK7.ICO file shown in SDKPAINT.

•Ealette HotSpot

•
@ Color

o Screen

o Inverse

Le~ Right
_c:::::Jc:::::J

Resource Type :ICON
Target Device :4-Plane
Colors :16
ImageSize :32x32 pixels

The CLOCK7.C File

CLOCK7.C contains all the source code for the program. It begins by including
the WINDOW5.H header file:

#incLude windows.h



Chapter 6 The Windows Operating Environment 297

Also included are a few normal C header files and CLOCK7.H. CLOCK7.C
has three global variables defined near the top of the file: bA La rmOn, i Hour, and
i Mi n. These indicate the time for the alarm.

CLOCK7 calls some 40 different Windows functions, and much of this dis
cussion will concentrate on what these function calls do.

The WinMain Function

Just as main() is the entry point to a conventional C program, a function called
Wi nMai n is the entry point to a Windows program. CLOCK7's Wi nMai n function
is fairly standard. Similar code appears in almost every Windows program.

Wi nMai n has four parameters: the first (hInstance) is called an instance han
dle. This is a number that uniquely identifies the program in Windows. It is
equivalent to a "task ill" or "process ill" in other operating systems. The second
parameter is hPrevInstance, the instance handle of the most previously exe
cuted instance of the program still running under Windows. If no other copy of
the program is running under Windows, hPrevInstance equals NULL (0).

The lpszCmdParam parameter to WinMain is not used in CLOCK7. This is a
zero-terminated string that contains any parameters passed to the program on a
command line. The last parameter (nCmdShow) is a number that indicates whether
CLOCK7 is to be displayed initially as a normal window or as an icon.

The first job for Wi nMa i n is registering a window class for the program's win
dow. This requires setting the fields of a structure of type WNDCLASS (a structure
defined in WINDOWS.H) and passing a pointer to the structure to the
RegisterClass function. Because all instances of the same program can share
the same window class, this need only be done if hPrevInstance is not equal to
NULL.

The two most important fields of the WNDCLASS structure are the second and
the last. The second field is LpfnWndProc, which is set to the function WndProc,

the window procedure to be used for all windows based on this window class.
The last field is LpszClassName, the name of the window class. This is set to the
string "Clock7' (stored in szAppName).

The WNDCLASS structure also defines the icon, cursor, background color, and
menu to be used for all windows based on this window class. The LoadIcon

function loads the icon from the resource segment of the CLOCK7.EXE file and
returns a handle to the icon. CLOCK7's icon is defined by the name "Clock7" in
the CLOCK7.RC resource script.



298 EXTENDING DOS

The LoadCursor function loads one of the standard Windows mouse cursors
(the arrow cursor) and returns a handle to the cursor. This cursor appears when
the mouse is positioned over CLOCK7's window. The GetStockObject function
returns a handle to a solid black brush pattern. The lpszMenuName field is set to
the name of the program's menu (in this case, "Clock7") as defined in the
CLOCK7.RC resource script.

After CLOCK7 registers the window class, it can create a window by calling
CreateWindow. The first parameter indicates the window class, the second pa
rameter is the text that will appear in the window's titlebar, and the third param
eter defines the style of the window, using identifiers from WINDOWS.H,
beginning with the WS ("window style") prefix. The most common window style
is WS_OVERLAPPEDWINDOW. This identifier is actually a combination of several
other WS identifiers, each of which is a bit flag indicating one of the components
of the application's window. CLOCK7 doesn't have a sizing border or maximize
box, so these bit flags are eliminated by a bitwise AND operation with the inverses
ofWS_THICKFRAME and WS_MAXIMIZEBOX.

CreateWindow returns a handle to the window. CLOCK7 uses this handle in
the next two function calls:

The ShowWi ndow call displays the window on the screen. The first parameter
is hwnd, and the second is nCmdShow, the last parameter to WinMain. The value of
nC.mdShow depends on whether the program was run normally, or loaded to be
displayed initially as an icon. The call to UpdateWi ndow instructs the window to
paint itself.

Wi nMai n then enters the standard Windows message loop. The message loop
consists of calls to GetMessage, TranslateMessage, and Di spatchMessage in a
whi le loop. GetMessage retrieves the next message from the program's message
queue and stores the message in a structure of type MSG. Trans lateMessage per
forms some keyboard translation, and Di spatchMessage sends the message to a
window procedure for processing.

GetMessage returns a non-zero value for every message except one: a special
message named WM_QUIT. WM_QUIT indicates that the program is terminating.
The program drops out of the message loop and WinMain ends, ending the pro
gram. (We'll discuss how the WM_QU ITmessage gets into the message queue later.)

The WndProc Window Procedure

It is unusual for a C program to contain a function that is not directly called from
the program. Yet this is the case with the function named WndProc. WndProc is the



Chapter 6 The Windows Operating Environment 299

window procedure for CLOCK7's application window. The function is called
from Windows when sending messages to that window.

A window procedure has four parameters. These parameters are the first four
fields of the MSG structure used in Wi nMa into retrieve messages from the message
queue and dispatch them to a window procedure.

The first parameter, hwnd, is the handle to the window that is to receive the
message. In CLOCK7, this is the same value returned from CreateWi ndow. When
multiple windows are based on the same window class (and hence use the same
window procedure) this parameter allows the window procedure to identify the
particular window receiving the message.

The second parameter to WndProc is named message. This is a number that
identifies the message. All the messages have constant identifiers defined in WI N
DOWS. H, beginning with the prefiX WM ("window message"). The last two param
eters (wParam and lParam) are called message parameters. These parameters
provide more information about particular messages. Their values, and how they
are interpreted, depend on the message they accompany.

Programmers who write for Windows often use a swi tch and case construc
tion to process messages sent to the window procedure. CLOCK7 processes five
messages: WM_CREATE, WM_COMMAND, WM_TIMER, WM_PAINT, and WM_DESTROY (each
of which is described below). Generally, after processing a message, the window
procedure returns zero.

WndProc receives many more messages besides these five, but it doesn't pro
cess any of them. Any message that a window procedure chooses to ignore must
be passed to DefWi ndowProc for default processing. This occurs near the bottom
of WndProc in CLOCK7.C.

Calling DefWi ndowProc for all unprocessed messages is important. In partic
ular, this function processes all messages involving non-client areas of the win
dow. For example, the WM_NCPAINT message instructs the window procedure to
paint the non-client areas of the window, such as the titlebar and the sizing bor
der. WndProc doesn't want to bother with this job, so it passes the message on to
DefWi ndowProc. DefWi ndowProc also processes keyboard and mouse input to the
non-client areas. This is how a program's menu can be functional without requir
ing any code to handle keyboard and mouse input to the menu.

Local variables defined in the window procedure can be either static or auto
matic. The static variables are those that must retain their values between mes
sages. You can use automatic variables for anything that is required only during
the course of a single message.



300 EXTENDING DOS

The WM_CREATE Message

The WM_CREATE message is the first message the window procedure receives. This
is usually a good time to perform window initialization.

The WM_CREATE message is sent to the window procedure when the program
calls CreateWi ndow in Wi nMai n to create the window: control passes from Wi n
Main to the CreateWindow function in Windows, to WndProc in CLOCK7 to pro
cess WM_CREATE, back to Windows to finish the CreateWi ndow call, and then back
to WinMain. By the time CreateWindow returns, WndProc has already processed
the WM_CREATE message.

During the WM_CREATEmessage, the lParam parameter to the window proce
dure is a long pointer to a structure of type CREATESTRUCT. This structure con
tains all the data passed as parameters to the CreateWi ndow function. WndProc
casts l Pa ram to an LPCREATESTRUCT type (defined in WINDOWS.H as a long
pointer to a structure of type CREATESTRUCT) and stores it in a variable named
lpcrst. WndProc then obtains the hlnstance handle from this structure. The next
two lines of code in WndProc require a little background:

We discussed earlier how Windows is able to move a code segment in mem
ory even if the segment contains a function that is called from outside the seg
ment with a far call. There are three such functions in CLOCK7. The first is
WndProc, which is called from Windows whenever Windows sends it a message.
The other two are AlarmD 19Proc and AboutD 19Proc, which are dialog box proce
dures (very similar to window procedures) for the two dialog boxes.

Windows must create a thunk for the window procedures and dialog box
procedures. This thunk is located in a fixed area of memory. The thunk sets the
correct data segment address for the instance of the program and branches to the
actual function in the moveable segment.

The calls to MakeProclnstance during the WM_C REA T E message create the
thunks for the dialog box procedures. The addresses of the two dialog box proce
dures are passed as parameters to theMakeProclnstance function. The function
returns the address of the thunk. WndProc saves these addresses in static memory
for later use when invoking the dialog boxes.

The next job for WM_CREATE is somewhat messy. Usually, an application win
dow has a sizing border that the user can drag to change the size of the window.
CLOCK7, however, has a window with a fixed size, with a client area four inches
wide by one inch high.



Chapter 6 The Windows Operating Environment 301

When CLOCK7 creates the window in Wi nMai n by calling CreateWi ndow, the
CW_USEDEFAULT identifier is used to specify that Windows is responsible for ini
tially positioning and sizing the window. This default size and position can be
overridden by a call to MoveWi ndow.

The size of the window, however, must be specified in units of pixels, so the
four inch by one inch size must be converted to pixels. The size in pixels will be
different; depending on the type of video adapter, so the conversion must be
done in a device-independent manner.

To do this, WndProc first obtains a device context for the window by calling
GetDC. This is the normal way to obtain a device context when processing a mes
sage other than WM_PAINT. WndProc then sets the mapping mode of the device
context to MM_HIENGLISH using the SetMapMode function. This causes the device
context to have logical coordinates of 0.001 inches.

WndProc sets the two fields of a POINT structure named pt to the desired size
of the client window in units of 0.001 inches. The x field is set to 4000 and the y

field is set to -1000. (The minus sign is required because of a different vertical ori
entation between MM_HIENGLISH units and pixels.) This POINT structure is passed
to LPtoDP, which converts logical points (in units of MM_HIENGLISH) to device
points (pixels). The device context is then released by calling ReleaseDC.

Now we have the size of the client area in units of pixels, and we're almost
there. What the MoveWi ndow function requires is the size and position of the
whole window, not just the client area. This is the job of AdjustWindowRect,

which can convert a client area position and size specified in a RECT (rectangle)
structure to a full window position and size. The MoveWi ndow function then posi
tions and sizes the window.

There are two more much smaller jobs left for the WM_CREATE message. Get

Menu obtains a handle to the window's menu. This is stored in a static variable
and later used when processing WM_COMMAND messages. The SetTimer function
sets the Windows timer. The third parameter, of 1000, indicates that Windows
should post a WM_TIMER message to the window procedure once every 1,000 mil
liseconds, or one second.

The WM_COMMAND Message

A window procedure receives a WM_COMMAND message when the user selects an
option from the program's menu. What really happens is that DefWindowProc

handles all keyboard and mouse input to the menu, and then sends the window
a WM_COMMAND message when the user selects an option.



302 EXTENDING DOS

The menu is defined as a template in CLOCK7.RC, the resource script file.
The template begins with the name of the menu (in this case "Clock7") and the
MENU keyword. This name was assigned to the lpszMenuName field of the
WNDCLASS structure prior to calling Reg; sterC lass in rna; n(). That's how the
menu becomes part of the CLOCK7 window.

The menu template is fairly self-explanatory. The POPUP keyword is for an
item on the main menu bar that invokes a pop-up menu. The pop-up menu is de
fined by a series of MENUITEM statements that list the options on the pop-up
menu. An ampersand (&) in the text string of each item specifies which letter is to
be underlined and used for the menu's keyboard interface.

All the items a user can select for a program command are associated with an
identifier beginning with the prefix IDM, which stands for "ID for a Menu item."
These identifiers are defined in CLOCK7.H. When the user selects one of these
items, the window procedure receives a WM_COMMAND message with the wParam

parameter set to the value of the identifier. Generally, a window procedure uses
another sw; tch and case construction to process menu selections, based on the
value of wParam.

The first two menu items processed in the WM_COMMAND section of WndProc are
IDM_HOUR12 and IDM_HOUR24, which indicate the user has selected the "12 Hour"
or "24 Hour" time format, respectively. The program must place a check mark
next to the selected option and remove the check mark from the other option.
WndProc does this by calls to CheckMenultem. It then sets the static variable
b24Hour to FALSE or TRUE, depending on which option the user selected.

A wParam value of 10M_ALARM indicates that the user has selected the "Set
Alarm" option. The program must respond by displaying a dialog box. This is the
job of the D; a logBox function. The "AlarmBox" parameter refers to the name of
the dialog box template defined in the CLOCK7.RC resource script. The lpfn

AlarmDlgProc is the address returned from the MakeProclnstance call in
WM_CREATE. This is the address of the thunk for the AlarmOlgProc function in
CLOCK7.C. The 0; a logBox function does not return until the dialog box has
been dismissed.

Similarly, a wPa ram value of I DM_ABOUT means that the user wants to see the
program's "About" dialog box. The call to D; a logBox specifies the "AboutBox"
template and the thunk for the AboutDlgProc dialog procedure.

Finally, a wParam value of IDM_EXIT indicates that the user has selected the
"Exit" option. WndProc does something very strange in response to this message:
it calls SendMessage to send itself a WM_CLOSE message. This means that WndProc



Chapter 6 The Windows Operating Environment 303

is called recursively. But it doesn't process the WM_CLOSE message! DefWindow

Proc, however, does, and it responds to the WM_CLOSE message by calling
DestroyWindow to destroy the window. The DestroyWindow call sends Wnd

Proc a WM_DESTROY message, which WndProc processes.

The Dialog Box Procedures

Now is a good time to take a brief break from WndProc and examine the two dia
log box procedures in CLOCK7.C. These are ALarmD LgProc, for the user to set the
alarm, and AboutDLgProc, to display the program's About box.

The appearance of the dialog boxes is defined in dialog box templates in
CLOCK7.RC. Each control in the dialog box is defined by a keyword, such as
CTEXT for centered text and EDlTTEXT for an edit control. The dialog box and
each control have four numbers associated with them that indicate the placement
of the upper left-hand comer of the window and the size of the window. These
special dialog box units are based on the height and width of the default system
font. Using these coordinates allows the dialog box to be approximately the same
shape and size regardless of the resolution of the video display.

A dialog procedure is structured similarly to a window procedure, but with
an important difference: whenever the dialog procedure processes a message, it
returns TRUE. Otherwise, it returns FALSE. The dialog procedure does not call
DefWi ndowP roc.

About 0 LgProc is the simplest ,?f the two dialog procedures. The dialog box
contains some text and a pushbutton labeled "OK." When the user presses the
pushbutton, it generates a WM_COMMAND message (just like a menu). The value of
wPa ram is a number associated with the button in the dialog box template defined
in the resource script. In this case, the button generates a wParam value of lDOK,

an identifier defined in WINDOWS.H as 1. The dialog box also generates a
WM_COMMAND message with wParam equal to lDCANCEL (the value 2) if the user
presses the Escape key. In either case, AboutDLgProc calls EndDiaLog to dismiss
the dialog box.

AlarmDlgProc is more complex. Besides some text, it contains five controls: a
text entry field (for entering an alarm time), two radio buttons (labeled "On" and
"Off"), and two pushbuttons ("OK" and "Cancel"). AlarmDLgProc performs some
initialization during the WM_lNlTDlALOG message: the edit control is limited to six
characters, and is initialized with a time stored in the szALarmTime variable. One
of the two radio buttons is set, depending on the value of bA l a rmO n.



304 EXTENDING DOS

The WM_COMMAND message indicates that one of the two radio buttons or two
pushbuttons has been pressed. For the two radio buttons, AlarmDlgProc stores
the new state of the button. For the "OK" pushbutton, AlarmDlgProc obtains the
time the user entered, parses it to obtain the hour and minute, and possibly dis
plays a message box if the time is not valid. It ends the dialog box by calling End

Di a log. For the "Cancel" button, AlarmD 19Proc only ends the dialog box.

The WM_ TIMER Message

Now let's return to WndProc to continue examining the messages.
The third message that WndProc processes is WM_TIMER. The WM_TIMER mes

sages in CLOCK7 are initiated by a call to SetTimer during the WM_CREATE mes
sage. Windows posts a WM_TIMER message to CLOCK7's message queue once per
second.

WM_TIMER processing begins with calls to the C timeC) and localtimeC)

functions. If the bA l a rmOn variable is set, and the time matches the time set by the
user in the dialog box, CLOCK7 calls the MessageBox function to display a mes
sage box with the text "Wake Up! Wake Up! Wake Up!".

It then obtains a device context handle by calling GetDC, calls the Display

Ti me function (described shortly) in CLOCK7.C, and releases the device context
handle with a call to Re leaseDC.

The WM_PAINT Message

The first WM_PAINT message occurs during the UpdateWindow call in WinMain.

This instructs the window procedure to paint its client area. Thereafter, a
WM_PAINT message occurs whenever part of the window has become invalid and
must be repainted. This could occur when the program is minimized and then
redisplayed, or if part of the window has been obscured by another window and
is then moved into full view.

CLOCK7 processes the WM_PAINT message similarly to the WM_TIMER mes
sage. It obtains the time by calling timeC) and localtimeC), obtains a device
context handle by a call to Beg i n Pa in t, updates the display with calls to
DisplayTime and DisplayDots, and then ends WM_PAINT processing with a call
to EndPai nt.



Chapter 6 The Windows Operating Environment 305

The Drawing Functions

Toward the end of CLOCK7.C are the three functions the program uses to draw
the clock: OisplayTime, OrawOigit, and OisplayOots.

WndProc calls the OisplayTime function while processing the WM_TIMER and
WM_PAINT messages. The Oi splayTime function calls SetMapMode to set the map
ping mode for the device context, using the MM_HIENGLISH constant so that all co
ordinates passed to GDI functions are in units of 0.001 inch. Coordinates on the
horizontal x axis increase to the right, and coordinates on the vertical y axis in
crease going up.

By default, however, the origin of the device context-the point (O,O)-is po
sitioned at the upper right comer of the window. This is a little clumsy because
all the coordinates within the window have negative y values. It is preferable to
have the origin at the lower left corner of the window so that the window can be
treated as if it were an upper right quadrant of a Cartesian coordinate system.
The SetWi ndowOrg call in Oi sp layTi me does this.

OisplayTime then calls OrawOigit six times, once for each of the six digits.
The second and third parameters are the x and y coordinates of the lower left cor
ner of the digit relative to the lower left corner of the window. For example, the
lower left corner of the first digit is 100 units (1/10 inch) from the left side and
bottom of the window. The last parameter is the digit to display. OisplayTime

obtains these from the C tm structure containing the current time. If the first digit
is zero, Oi splayTime sets the parameter to 10, indicating a blank.

OrawOi gi t draws one digit on the window. Like a seven-segment LED dis
play, each digit is composed of seven segments-three horizontal segments and
four vertical segments. A number of variables are defined in OrawOi gi t to make
the job a bit easier. The bSegmentOn array contains seven zeroes and ones for each
of the digits athrough 9 that indicate whether a particular segment should be il
luminated or not (and la, indicating the digit should be blank). The order of the
seven segments is: the three horizontal segments from top to bottom, then the
four vertical segments-top left, top right, bottom left, and bottom right.

The i SegmentType array contains seven ones and zeroes for the seven seg
ments. A zero means that the segment is horizontal, and a one means the seg
ment is vertical. The ptSegOri g; n variable is an array of seven POINT structures
that indicate the lower left corner of each segment, relative to the lower left cor
ner of the digit. The ptSegment array contains the six points that define the out-



306 EXTENDING DOS

line of a horizontal segment, and the six points that define the outline of a verti
cal segment, all relative to the lower left corner of the segment.

DrawDi gi t begins by creating two brushes, a black brush and a red brush.
These brushes are used to fill the segment. A segment that is illuminated must be
colored red; a segment that is not illuminated must be colored black, the same
color as the background of the window. (DrawDigi t draws the black segments as
well as the red segments to effectively erase the previous digit.)

The SaveDC function saves all the attributes of the device context. When all
the drawing is complete, the RestoreDC call restores the saved attributes. This is
necessary because DrawDi gi t alters the window origin attribute and must return
it to normal in preparation for the next DrawDi gi t call.

When Di sp layTi me calls DrawDi gi t, the origin of the device context is at the
lower left corner of the window. The OffsetWindowOrg function moves the ori
gin to the lower left corner of the digit to be displayed, based on the second and
third parameters to DrawDig it.

DrawDi gi t then loops through the seven segments. Once again, a call to
SaveDC saves the attributes of the device context. The origin is then adjusted
again for the particular segment based on the POINT structure in the ptSeg

Or i gin array. Now the origin is at the lower left comer of the segment in the
digit. Based on the value of bSegmentOn, the SelectObject function selects ei
ther the red brush or the black brush in the device context. The Polygon function
uses the six points in ptSegment to draw the segment and fill it with the brush.
RestoreDC then restores the saved attributes of the device context (in particular,
the device context origin) in preparation for the next segment.

The function cleans up by calling SelectObject to select the default black
brush in the device context, RestoreDC to restore the device context to its default
attributes, and DeleteObject to delete the two brushes.

The final drawing function in CLOCK7.C is Di splayDots, which displays the
colon between the hour and minutes, and between the minutes and seconds. The
function is called by WndProc only during processing of the WM_PAINT message.
(It could be called from the WM_TIMER message, but it's not necessary because the
dots never change position.)

Di splayDots creates a solid red brush and selects it into the device context.
Four Ell ipse functions draw the four dots. The second and third parameters to
Ell ipse are the x and y coordinates of the upper left corner of the dot; the fourth
and fifth parameters are the x and y coordinates of the lower right comer.



Chapter 6 The Windows Operating Environment 307

Dis p layDot s cleans up by selecting the default black brush back into the de
vice context, and deleting the red brush.

The WM_DESTROY Message

We have examined all the messages except WM_DESTROY. The WM_DESTROY mes
sage is the last message the window procedure receives. A window procedure
usually takes this opportunity to do some clean-up work.

Examining in a little detail where the WM_DESTROY message comes from can
be helpful in understanding how messages work, and the importance of Def

Wi ndowProc.

When you use the keyboard or mouse to select the Close option from the sys
tem menu, all keyboard and mouse activity takes place outside the client area.
Window procedures usually ignore this activity because it involves messages that
the window procedure can pass on to DefWi ndowProc for default processing.

When DefWi ndowProc determines that the user has selected Close from the
system menu, it sends the window a WM_SYSCOMMAND message with wParam set to
SC_CLOSE. WndProc ignores this message and passes it on to DefWi ndowProc.

DefWi ndowProc responds by sending the window a WM_CLOSE message. WndProc

ignores this message also and passes it on to DefWindowProc. DefWindowProc re
sponds to the WM_CLOSE message by calling DestroyWi ndow. DestroyWi ndow de
stroys the window after sending it a WM_DESTROY message.

Why all this activity if WndProc is ignoring these messages? The window pro
cedure doesn't have to ignore the messages. If it wants, it can intercept the
WM_SYSCOMMAND or WM_CLOSE message in WndProc and prevent the program from
terminating when the user selects Close from the system menu. The window pro
cedure is being kept informed of what is going on even if it chooses to let Def

Wi ndowProc handle the messages.
The user can also exit the program by selecting the Exit option from

CLOCK7's Set menu. As we saw earlier, this generates a WM_COMMAND message
with wParam equal to IDM_EXIT, and WndProc responds by sending itself a
WM_CLOSE message, just as DefWi ndowProc does when it receives a WM_SYS

COMMAND message with wParam set to SC_CLOSE.

WndProc responds to the WM_D·ESTROY message by cleaning up. The only
clean-up required in CLOCK7 is to stop the timer by calling Ki IITimer. WndProc

then calls PostQui tMessage. This function places a WM_QUIT message in the
program's message queue.



308 EXTENDING DOS

When the GetMessage call in Wi nMai n retrieves WM_QUIT from the message
queue, GetMessage returns zero. This causes WinMain to drop out of the whi le

loop and exit, terminating the program.

The CLOCK7.DEF Module Definition File

The only file we haven't discussed yet is CLOCK7.DEF, the module definition
file. The module definition file contains information that LINK uses to create the
CLOCK7.EXE executable. Most of the uppercase words in the CLOCK7.DEF file
are keywords recognized by LINK.

The NAME line gives the program a module name, which is the same name as
the program. The DESCRIPTION line is embedded in the CLOCK7.EXE file; this is
generally a copyright notice. The EXETYPE is given as WINDOWS. (Module defini
tion files are also used in OS/2 programming.)

The STUB line indicates a file of WINSTUB.EXE, a small DOS program in
cluded in the Windows Software Development Kit. The WINSTUB.EXE program
simply displays the message This program requires Microsoft Windows and termi
nates. As mentioned earlier, the new executable format used for Windows pro
grams begins with a header section that is the same as the MS-DOS .EXE format.
The header could be followed by a non-Windows DOS program, which is speci
fied in the WINSTUB statement.

The CODE statement in the CLOCK7.DEF file indicates that the program's
code segment is MOVEABLE. This is normal. The DATA statement indicates that the
program's data segment is also MOVEABLE. The MULTIPLE keyword means that
each instance of the program gets its own data segment.

The HEAPSIZE statement specifies the size of the area in the program's data
segment allocated for a local heap. This is really a minimum size, because Win
dows can expand the data segment if necessary. The STACKSIZE statement speci
fies the size of the stack, and 4K is normal for Windows programs.

Finally, the EXPORTS statement lists all the window procedures and dialog
procedures in the CLOCK7 program. This is a requirement of Windows memory
management. LINK stores the addresses of these functions in CLOCK7.EXE so
that Windows can adjust the thunks to load the program's data segment address
in the DS register when Windows calls the window procedure.



Chapter 6

The Path to OS/2

The Windows Operating Environment 309

Microsoft Windows forms the basis of the OS/2 Presentation Manager. Or maybe
it doesn't. It depends on how you look at it.

Similarities and Differences

A Windows program certainly looks and feels a lot like a Presentation Manager
program. It is one of the goals of Microsoft to maintain a consistent user interface
between Windows and the Presentation Manager.

We have already mentioned several architectural components of Windows
(namely, dynamic linking and the New Executable format) that have found their
way into OS/2. Much of the overall architecture of Presentation Manager is
based on Windows. The concepts of message procedures and messages are the
same, and much of Presentation Manager windowing and user interface is based
on Windows.

However, not one Presentation Manager function call is exactly the same as a
corresponding Windows function call. At the very least, the function call name is
different, and the parameters and data structures are often different as well. The
Presentation Manager Graphics Programming Interface (GPI) is quite different
from the Windows Graphics Device Interface (GDI).

Conversion from Windows to Presentation Manager

If you spend time writing a Windows program, eventually you will probably
want to convert it to the OS/2 Presentation Manager. A real conversion requires
that you go through the source files, sometimes on a line-by-line basis, and
change the Windows code to corresponding Presentation Manager code.

Although it may seem as if this is equivalent to learning a whole new envi
ronment and completely rewriting the program, it's really not. If you already
know Windows programming, learning Presentation Manager is not very diffi
cult. Also, you've already spent a lot of effort in designing the user interface of
the program, and this can be carried over into the Presentation Manager version.
However, you may want to take advantage of some special OS/2 features (such
as multiple threads), and this will require some restructuring of the code.

If you desire only that your Windows program run under Presentation Man
ager, that is not nearly as difficult. Micrografx has a product called Mirrors that is
basically a collection of dynamic link libraries that translate Windows functions
into Presentation Manager functions. It appears likely that OS/2 2.0 will allow



310 EXTENDING DOS

running Windows applications directly in the Presentation Manager session
using a similar technique.

In a longer time frame, you will be able to write single-source graphical pro
grams that can be compiled for multiple platforms, such as Windows, Presenta
tion Manager, and the Apple Macintosh. This will involve the use of an
object-oriented language such as C++, and class libraries that provide a platform
independent interface to the particular graphical environment. At that time, pro
gramming directly to the Windows or Presentation Manager API will probably
become as unusual as assembly language programming has become in recent
years.



Chapter 7

DESQview

Stephen R. Davis

Like Windows, DESQview from Quarterdeck Office Systems is a DOS-compati
ble operating environment capable of executing one or several DOS programs si
multaneously in a windowed environment.

DESQview can operate like a switcher by allowing the user to pop up a new
DOS program at any time. The user first taps the "DESQ key" (usually defined as
the Alt key, but user-selectable to anything desired) and then selects the applica
tion from the menu that appears. The new application appears immediately in a
window over the old applications. The user may move or resize the window, ei
ther with the mouse or from the keyboard, to allow windows in the background
to remain visible. He may also "zoom" the window out to fill the screen, com
pletely hiding any background windows.

As with Windows, applications in the background continue to execute. A
user may start a compilation, for example, and then pop up an editor to begin
work on another source file in the foreground while the compilation completes.
This is the famous "compiling in the background" capability.

DESQview runs as a shell over DOS. In this way, programs continue to "see"
the familiar DOS interface, as much as possible. This keeps DESQview compati
ble with the vast majority of DOS applications. In fact, the DESQview-DOS com
bination looks enough like DOS that the user can bring up Windows within a

311



312 EXTENDING DOS

DESQview window (this is not true of Windows/386). Another advantage of this
approach is that DESQview can hope to remain compatible with each new ver
sion of DOS. DESQview currently supports 2.0 through 4.x, and Quarterdeck is
committed to supporting future versions as they are released.

DESQview adds capabilities to DOS beyond multitasking, for programs that
care to use them. DESQview defines a series of service calls known as the Appli
cations Program Interface (API). The API does not hide the basic DOS services,
but serves as an extension of these capabilities. The API provides support for:

• character-based windowi.ng
• multitasking
• pointers (such as the mouse)
• timers (both time duration and time of day)

• panels
• interprocess communication.

DESQview must have these capabilities for its own use. Through the API,
DESQview makes these abilities available to application programs as well.
DESQview even allows programs to control or limit capabilities normally pro
vided through DESQview's pop-up menus. For example, a program can prevent
the user from closing it prematurely from DESQview.

DESQview, as shipped from Quarterdeck, arrives on a single floppy disk
within one spiral bound manual. The standard offering includes DESQview it
self, a driver to load DESQview into memory above 640K, and a utility for load
ing drivers and TSRs into this high memory area to conserve conventional
memory. Quarterdeck also offers, as a separate product, QEMM386, an EMS 4.0
emulator for 80386-based PCs. Although this driver may be used alone, it is de
signed specifically to be used with DESQview. Quarterdeck sells the two prod
ucts together in a package known as DESQview386.

For the programmer interested in writing programs to access the DESQview
API, Quarterdeck offers an assortment of tools. There are API Toolkits for C, Pas
cal, and Clipper, as well as the API Debugger, to aid in the development of such
programs. There is also the Panel Design Tool, which allows the programmer to
design windows the same way one might draw a picture with PC Paint; once
complete, these windows are then incorporated directly into the user application.

The DESQview API
Broadly speaking, three types of programs execute under DESQview:



Chapter 7 DESQview 313

• DESQview oblivious programs, which are totally unaware of DESQview's
presence

• DESQview aware programs, which are aware of DESQview's presence, but
do not rely on it

• DESQview specific programs, which make use of DESQview's features
through its API.

DESQview Oblivious Programs

DESQview oblivious programs are programs originally written for DOS. Since
they know nothing of DESQview and multitasking, they do not expect other pro
grams to be executing in the same machine simultaneously. Such programs ex
pect to have total control of the computer, including all of its memory. As long as
they are well behaved, DESQview has little trouble compelling them to coexist
with their neighbors. If, however, they are "antisocial," there may be limitations.

The most common example of antisocial behavior occurs in the area of dis
play output. In order to force the output of a normally full-screened program into
a window, DESQview intercepts DOS and BIOS calls. Requests for video output
are filtered and cropped into the appropriate window. However, to enhance
video display speed, the nlajority of DOS programs do not output via DOS or the
BIOS, preferring instead to write directly to screen memory. Being unaware of the
physical boundaries of its window, such a program tends to write allover the
display, including on top of the windows of other programs.

DESQview provides special programs called loaders for many of these of
fenders. These loaders are automatically executed when the user starts the pro
gram from the Open menu. The loader is given control after the program is
loaded into memory but before it is allowed to start. The loader can then "reach
into" the application and patch the output section so that its output may be
windowed. Of course, in order to do this, the loader must have specific knowl
edge about the application. Each application must have its own unique loader.

On an 80386-based processor, DESQview can window screen-writing appli
cations whether a loader exists or not. On these machines, DESQview uses the
page mapping capabilities of the chip to allocate a different virtual display to
each ill-behaved application. The application unknowingly writes to this virtual
memory instead of the real video adapter. Periodically, a DESQview demon col
lects these virtual displays and paints them into the windows of the real video
memory. This process is known as virtualizing the application's display.



314 EXTENDING DOS

However, if a loader does not exist for the program, and if the base processor
is not an 80386 or better, then it is not possible for DESQview to window its out
put. Such programs can only execute in the foreground and only in full-screen
mode. Zooming such an application into a window or switching it into the back
ground suspends it.

A further problem with programs built to execute under DOS is that the .EXE
file does not contain enough information for a multitasking environment. For ex
ample, DOS normally hands over all available memory to each new program as
it begins. This is fine if you assume that no new program will start until this pro
gram has completed, which is true under DOS. But in a multiprogram environ
ment, this assumption is not valid. In addition, if the program requires a loader,
or must be virtualized in order to be windowed properly, this information must
also be recorded.

To adapt DOS .EXE files to its own use, DESQview can use the same .PIF file
used by Windows. Over the years, however, DESQview has added to the basic
.PIP file, extending it into what Quarterdeck calls the .DVP (DesqView PiO file.
DESQview supplies .DVP files for the most common applications. These .DVP
files can be created in the event one does not exist for a particular program, or ed
ited to match the user's tastes at any time from the DESQview menu.

DESQview Aware Programs

The second category of software, DESQview aware programs, includes such best
sellers as Paradox, dBASE and WordPerfect. These programs acknowledge that
they may not be the only task executing on the machine, and that they should re
frain from dangerous or unfriendly tricks. For example, they use the BIOS clock
instead of CPU timer loops to mark time, and they use the BIOS services rather
than providing their own, as much as possible. However, such programs must
still be able to write directly to screen memory. To allow these programs to exe
cute within a DESQview window, DESQview provides shadowing capability.

The api_shadow() API call is built so that if DESQview is not present, DOS
returns the call with no ill effect. If, however, DESQview is loaded, the system
call returns the segment address of a logical display area to which the application
can write. This allows displays to be virtualized on any CPU type.

DESQview Specific Programs

The final category of programs, DESQview specific programs, makes direct use
of DESQview via the API. A DESQview specific program must first check that



Chapter 7 DESQview 315

DESQview is present and, if not, must terminate. The program can be set up so
that DESQview is not apparent or accessible to the user (except for the copyright
notice, which must appear when DESQview is initiated).

The DESQview API interfaces to C programs written by users through two
.OBI files included in the separate DESQview API C Library. (Separate libraries
are also available for assembly language, Pascal, or Clipper programs.) Users
must link these object files together with the objects from their own source files
during the link step.

The API C Library defines 200 functions. In order to make the purpose of
each function easier to remember, the functions are grouped into 12 categories,
depending on what type of object the function accesses. The first three letters of a
function's name indicate what category it belongs to. For example, functions be
ginning with "win_" act on windows; those beginning with "key_" read the key
board; and those beginning with "ptr_" access the pointing device (mouse).

To better see how a programmer goes about writing a DESQview specific ap
plication, we can examine the same simple clock program that appeared in the
discussion of Windows in Chapter 6, rewritten DESQview-style. Although a sim
ple application, CLOCK is written in such as way as to make best use of the
DESQview API. That is, CLOCK is constructed the way a much larger DESQview
application would be. An examination of its features should teach the reader
much about the DESQview API.

The Clock Example
Figure 7-1 shows a screen image of the CLOCK program executing. Since DESQ
view is not graphically oriented, it is difficult to generate displays such as analog
clocks with sweeping second hands or the large "LED mimicking" windows typi
cal of Windows. CLOCK's display is a single character-mode line encased within
a window carrying the title "Clock."

Figure 7-1: The Clock window.

~CIOCk I
~B6:52:45 p



316 EXTENDING DOS

In the middle of the window is the time, which updates every second. Imme
diately to the right of the time is the AM/PM indicator. Selecting this field tog
gles the display between 12-hour and 24-hour mode. Since DESQview supports
but does not assume the presence of a mouse, a field may be selected by either a)
clicking on it, b) using the cursor keys to move the cursor over to it and pressing
Enter, or c) pressing the "select key" for that field (in this case S for "switch").

Just to the left of the time appears an asterisk. Selecting this field (either by
clicking on it or by pressing the * key) opens the "Set Alarm" window shown in
Figure 7-2. Although this window appears virtually identical to the first, the time
(initially 00:00:00) does not update automatically. Instead this window waits for
the user to enter an alarm time. Selecting the asterisk in this window closes the
window, sets the alarm, and returns the user to the clock window.

Figure 7-2: The Set Alarm window.

[set=AlarM
* 18:88:88 P I

When the prescribed alarm time arrives, CLOCK opens a brightly colored
Alarm window and beeps the speaker repeatedly at 2-second intervals (shown in
Figure 7-3). Since CLOCK is designed to execute in the background, the Alarm
window must automatically bring CLOCK to the foreground to ensure it is visi
ble. Pressing Escape or clicking on the Alarm window removes the window and
restores CLOCK to the background. The alarm may be disabled before it expires
by reselecting the asterisk in the CLOCK window.

Figure 7-3: The Alarm window.

ECIOCk
~[CIOCk

AlarM!

II

II

The source code for the DESQview specific CLOCK.C program appears on
the following page:



Chapter 7 DESQview 317

I*DESQview include file*1

I*CLOCK - this program displays a small clock on the screen.
The user can position the clock anywhere on the screen
desired using the DESQview menu. Display is in 12-hour
format. Selecting the AlP indicator switches the
clock to 24 hour format and back. Selecting the '*'
button opens a new window to allow the user to set an
alarm. The clock continues to run while the alarm is
being set and when alarm window appears (clock update
runs as its own task). The alarm may be disabled by
deselecting the '*' button.*1

#include <stdio.h>
#include <stdlib.h>
#include <dos.h>
#include <string.h>
#include Ifdvapi.h lf

I*prototypes for locally declared procedures*1
void main (void);
void program_body (void);
void alarmonoff (ulong panhan, ulong panelwin,

ulong timalarm, ulong panelkey);
void definealarm (ulong panhan);
void setalarm (ulong timalarm, struct timstruct *alarmtime);
void declarealarm (ulong panelwin);
int beep (void);
int ticktock (void);
void ourtime (struct timstruct *asciitime);
void bcd2asc (char *string, char bcdnum);
void updatetime (ulong panelwin, struct timstruct *asciitime);

I*minimum API version required is DESQview 2.00*1
#define required Ox200

I*this is the clock panel which
contains the description of our
clock windows*1

I*the length of the panel*1extern int lclockwin;

I*panels containing the alarm and clock windows - built with
the Panel Design Tool*1

extern char clockwin[];

#define FLD_ALARM 01
#define FLD_HOURS 02
#define FLD_MINUTES 03
#define FLD_SECONDS 04
#define FLD_AMPM 05

I*the clockwin panel defines the
following fields*1

I*the alarm select field*1
l*hours*1
l*minutes*1
l*seconds*1
I*AM/PM indicator*1



318 EXTENDING DOS

I*global flags and structures*1
struct timstruct {

char hourl:3J;
char min[3J;
char sec[3J;
char afternoon;
};

I*structure to hold current time*1

I*'A' -> AM, 'pi - > PM*I
1*'*' -> 24 hour mode*1

struct timstruct currenttime;
struct timstruct alarmtime =

{"OO", "00", "00",

struct panelmsg {
char fldid;
int length;
char data;
} .,

struct windowmsg {
ulong windowhandle;
};

int mode24;

I*currently displayed time*1
I*last alarm time*1

'A'}; I*initial alarm time*1

I*message from the panel*1
I*field number*1
I*length of data*1

I*message to ticktock subtask*1
I*handle of window to write to*1

1*1 -> we are in 24 hour mode;
o -> we are in 12 hour mode*1

I*main - standard pattern for all DESQview programs 
check to make sure that DESQview is present; if
not generate error message; otherwise, proceed*1

void main (void)
{

int version;

version = api_init();
if (version < required)

printf ("This program requires DESQview %d.%02d or later.\n",
required » 8, required & Oxff);

else {
I*tell DESQview what extensions to enable

and then start real application*1
api_level (required);
program_body();

}

I*if DESQview present (even if wrong version), shut it down*1
if (version)

api_exit();
}

I*program body - open up the clock panel built with the Panel



Chapter 7 DESQview 319

Design Tool. Define the necessary objects
and then sit in a loop waiting on messages*1

void program_body (void)
{

ulong panhan;
ulong panelwin;
ulong panelkey;

ulong timalarm;
ulong tskhan;
ulong malhan;
ulong obqhan;

I*the handle for the CLOCKWIN panel*1
I*window handle for the clock*1
I*keyboard handle for clock panel -

used to read select fields*1
I*timer handLe used for alarm*1
I*handle of clock update subtask*1
l*maiLbox handle of subtask*1
I*handle returned from object queue*1

#define STACKSIZE 1000
char taskstack [STACKSIZEJ; I*stack for the update time task 

notice that this MUST be declared
on a stack that is permanent*1

struct windowmsg message; I*message to send to subtask*1

I*first order of battle is to open the panel file and display the
clock panel - this will put a cLock on the screen*1

panhan = pan_newel;
if (!pan_open (panhan, clockwin, lcLockwin»

if (!pan_appLy (panhan, win_me(), "CLOCK", 5,
&panelwin, &panelkey» {

I*start the ticktock task and send it a message with the
window handLe to start the clock ticking*1

tskhan = tsk_new (ticktock, taskstack, STACKSIZE,
"", 0, 0, 0);

maLhan = mal_of (tskhan);
message.windowhandle = panelwin;
mal_write (malhan, (char *)&message, sizeof message);

I*define the alarm clock timer*1
timalarm = tim_newel;

I*now wait in an infinite loop for input from:
- keyboard user cLicked a field; execute command
- alarm : alarm has gone off; put up alarm message*1

for (;;) {
I*now wait for an event to occur*1
obqhan = obq_read();
if (obqhan == panelkey) I*keyboard input*1

alarmonoff (panhan, panelwin,
timalarm, paneLkey);



320 EXTENDING DOS

if (obqhan == timalarm) I*alarm timer*1
declarealarm (panelwin);

}

}

}

I*alarmonoff - interpret the clock window's select field input*1
void alarmonoff (ulong panhan, ulong panelwin,

ulong timalarm, ulong panelkey)
{

struct panelmsg *panelinput;
int inputlength;

I*read the message from the clock's panel manager*1
key_read (panelkey, &(char *)panelinput, &inputlength);

I*field number 5 switches between 12 and 24 hour mode*1
if (panelinput -> fldid == FLD_AMPM) {

mode24 = (panelinput -> data == 'VI);

I*update the clock in this task for instant response*1
ourtime (&currenttime);
updatetime (panelwin, &currenttime);

}

I*field number 1 sets/clears the alarm;
N -> clear the alarm, Y -> set the alarm*1

if (panelinput -> fldid == FLD_ALARM)
if (panelinput -> data == 'N')

tim_close (timalarm); I*stop the timer*1
else {

definealarm (panhan); I*set the alarm*1
setalarm (timalarm, &alarmtime);

}

}

I*definealarm - put up the alarm set panel where the user
may enter the alarm time*1

void definealarm (ulong panhan)
{

ulong alarmwin, alarmkey;
struct panelmsg *alarminput;
int inputlength;

I*first, open the ALARM panel to display Alarm Set window*1
if (!pan_apply (panhan, win_me(), "ALARM", 5,

&alarmwin, &alarmkey» {



Chapter 7

}

}

DESQview 321

/*update the window to the previous alarm time ... */
updatetime (alarmwin, &alarmtime);

/* ... and position the cursor for time entry*/
fld_cursor (alarmwin, FLO_HOURS);

/*now waif for the user to update the time fields*/
for (;;) {

key_read (alarmkey, &(char *)alarminput, &inputlength);
switch (alarminput -> fldid) {

/*selecting fields 2 thru 5 just
fills values into the alarm time*/

case FLO_HOURS:
strncpy (alarmtime.hour, &alarminput -> data, 2);
break;

case FLO_MINUTES:
strncpy (alarmtime.min, &alarminput -> data, 2);
break;

case FLO_SECONDS:
strncpy (alarmtime.sec, &alarminput -> data, 2);
break;

case FLO_AMPM:
alarmtime.afternoon = alarminput -> data;
break;

/*selecting field 1 removes the alarm window and
returns control to the main program*/

case FLO_ALARM:
win_free (alarmwin);
return;

}

}

/*setalarm - start the alarm timer*/
void setalarm (ulong timalarm, struct timstruct *alarmtime)
{

ulong settime;
int hours, mins, secs;

/*convert the hours, minutes, and seconds into time since
midnight*/

hours = atoi (alarmtime -> hour);
mins = atoi (alarmtime -> min);
secs = atoi (alarmtime -> sec);



322 EXTENDING DOS

I*if PM, add 12 to the hour (donlt make result> 24)*1
if (alarmtime -> afternoon == IPI)

hours += 12;
hours %= 24;

I*convert the entire thing into 1/100ths of seconds since
midnight and set the alarm to go off at that time*1

settime = ««hours * 60L) + mins) * 60L) + sees) * 100L;
tim_write (timalarm, settime);

}

I*declarealarm - alarm has gone off; open an alarm window and
display alarm message*1

void declarealarm (ulong panelwin)
{

ulong beeptaskhan;
char stack [400J;

char *msg = ..
int length;

Alarm! .. .,

I*push ourselves into the foreground so user can see us*1
app_gofore (win_me (»;

I*start a subtask beeping every 2 seconds*1
beeptaskhan = tsk_new (beep, stack, sizeof stack, .... , 0, 0, 0);

I*display a simple alarm message - user acknowledges with Escape
or by clicking on it with the mouse*1

length = strlen (msg) - 1;
win_disperor (panelwin, msg, length, 1, length, 0, 0);

I*stop that infernal racket - kill the beeping task and
unqueue any sound*1

tsk_free (beeptaskhan);
api_sound (0, 0);

I*now push ourselves back into the background •.. *1
app_goback (win_me (»;

I* ... and deselect the alarm set button to show no alarm pending*1
fld_type (panelwin, FLD_ALARM, FLT_DESELECT);

}

I*beep - a subtask to beep every two seconds when alarm goes off*1
int beep (void)
{

for (;;) {



Chapter 7

}

}

api_sound (1000, 9);
api_sound ( 0, 27);

DESQview 323

1*1000 Hz for .5 (9/18.2) sec*1
l*siLence for 1.5 secs*1

I*ticktock - smaLL subtask used to constantLy update the cLock*1
int ticktock (void)
{

ulong winhandle; I*handle of window to update*1
ulong timpause; I*handle of timer to delay with*1
struct windowmsg *winmessage;
int messagelength;

I*first read the message sent to us with the handLe of the
window to which we should write the time*1

maL_read (maL_me(), &(char *)winmessage, &messageLength);

I*save the clock window handle locally*1
winhandle = winmessage -> windowhandle;

I*now define an update timer*1
timpause = tim_new();

I*sit in a loop - *1
for (;;) {

1* - start the timer for 1 second and wait for it to expire*1
tim_addto (timpause, 100);
tim_read (timpause);

1* - when it does, (re)display the time*1
ourtime (&currenttime);
updatetime <winhandle, &currenttime);

}

}

I*ourtime - get the current time into an ASCII structure*1
void ourtime <struct timstruct *asciitime)
{

union REGS regs;

I*use the BIOS Get-Time-of-Day caLL to quickly get the time*1
regs.h.ah = Ox02;
int86 (Ox1A, &regs, &regs);

I*set afternoon flag and round the hour off if in 12 hour mode
<notice that arithmetic on BCD is slightly strange)*1

asciitime -> afternoon = 1*1;



324 EXTENDING DOS

if (!mode24) {
asciitime -> afternoon = 'A';
if (regs.h.ch > Ox12) {

asci itime -> afternoon = "P';
if «(regs.h.ch -= Ox12) & Oxf) > Ox09)

regs.h.ch -= 6;
}

}

I*convert the BCD to ASCII strings*1
bcd2asc (asciitime -> hour, regs.h.ch);
bcd2asc (asciitime -> min, regs.h.cl);
bcd2asc (asciitime -> sec, regs.h.dh);

}

l*bcd2asc - convert a BCD number into an ASCII string*1
void bcd2asc (char *string, char bcdnum)
{

}

*string++
*string++
*string

= (bcdnum »4) + '0'; I*upper digit*1
= (bcdnum & OxOf) + '0'; I*now the lower digit*1
= '\0';

I*updatetime - update the time display by writing the time to
the hours, minutes, second and AM/PM fields of
the specified panel window*1

void updatetime (ulong panelwin, struct timstruct *asciitime)
{

I*write the time into fields 2 thru 4*1
fld_write (panelwin,.FLD_HOURS, asciitime -> hour, 2);
fld_write (panelwin, FLD_MINUTES, asciitime -> min, 2);
fld_write (panelwin, FLD_SECONDS, asciitime -> sec, 2);

I*and put up the AM/PM indicator into field 5*1
fld_write (panelwin, FLD_AMPM, &asciitime -> afternoon, 1);

}

The first attribute that distinguishes this from a non-DESQview specific pro
gram is the appearance of: #i nc lude ffdvapi . hff . This include file defines the con
stants commonly used in API calls. It also contains the prototype definitions for
the API functions. Two versions of the file are supplied with the API C Library:
one that supports the Kernighan and Ritchie standards and another that supports
the more stringent ANSI C typing standards (available in versions 1.1 and later of
the C Library).

The API interface functions are contained in two object files also supplied
with the API C Library: APIl.OBJ and API2.0BJ, which must be linked with the



Chapter 7 DESQview 325

user's object files. Versions for the major C compilers are included, but adapting
to other C compilers should be simple, since the source code to both object files is
provided. Linking these object files in can be handled either specifically, as with
this Microsoft C example:

LINK USER.OBJ+API1.0BJ+API2.0BJ"/ST:32768

or, in languages that support MAKE or Project files as in this Turbo C project file:

API1.0BJ API2.0BJ
USER.C
LIB\CL.LIB

These object files are quite small, since they only provide the interface be
tween the user's high level language and the API, which is a permanent part of
DESQview and always present. The API itself remains a part of the operating
system and not the application.

All pointers in the DESQview API are far pointers (32-bit). It would be possi
ble to carefully define all pointers to be of a far type; however, the functions pro
vided in the API libraries carry far addresses as well. Therefore, Quarterdeck
strongly advises all developers programming for the API to compile only under
the large memory model. Most C compilers allow compiling under the large
memory model. Under Turbo C, select Large under the Options/Com
piler/Model menu and specify the Large C library in the project file, as in the ex
ample above. Under Microsoft C, use the / AL switch.

In addition, structures under DESQview are assumed to be packed on byte
boundaries. Any module that exchanges a structure with the API should specify
byte alignment. Under Turbo C, select Byte alignment from the Options/Com
piler/Code Generation menu. Under Microsoft, specify /Zp on the compile line.
(If your compiler does not support byte alignment, you can get around this by
declaring all structure members to be integers, and packing the bytes yourself.)

The ma i n() for CLOCK follows the pattern for all DESQview-specific pro
grams:

#include "dvapi.h"

I*main - standard pattern for all DESQview programs 
check to make sure that DESQview is present; if
not, generate error message; otherwise, proceed*1

void main (void)
{

int version;



326 EXTENDING DOS

version = api_init();
if (version < required)

printf ("This program requires DESQview %d.%02d or later.\n",
required » 8, required & Oxff);

else {
I*tell DESQview what extensions to enable

and then start real application*1
api_level (required);
program_body();

}

I*if DESQview present (even if wrong version), shut it down*1
if (version)

api_exit();
}

I*program body - do the actual work here*1
void program_body (void)
{ .

}

Since DESQview does not have an .EXE format that distinguishes DESQview
specific programs from others, CLOCK must first check to make sure that DESQ
view is present before continuing. Even if DESQview is present, CLOCK should
make sure that it is a current enough version to support the functions used
within the program. CLOCK requires version 2.00 or better, and so tests for this.
The ap i_in it () service call is designed to return the version number if the pro
gram is executing under DESQview and return a 0 if it is not.

Windowing
Generally, the first thing a program wants to do upon starting is open a window
on the screen. Sometimes this is not necessary, since DESQview automatically
opens the first window when the program begins. But even then, the application
cannot be sure how large the window is, where it is placed or what the default
color scheme might be (these things are specified in the .DVP file, which is sub
ject to change by the user). Therefore, even if the application uses the default
window, it will probably want to place, size, and color the window itself.

Thus, a typical program begins as follows:

ulong windowhandle;
char windowname[J = {"Main Process"};

/*Open initial window, then position, size and draw it*1



Chapter 7 DESQview 327

windowhandle = win_new(windowname, sizeof windowname - 1, 10, 10);
win_move (windowhandle, 1, 1);
win_attr (windowhandle, 1);
win_unhide (windowhandle);
win_redraw (windowhandle);

The first call, that to wi n_new ( ), creates a window bearing the name "Main
Process" in the upper left corner of the border. This window has a border (the de
fault), and is 10 columns wide by 10 rows high. Since the DESQview API is not
C-based and does not subscribe to the "null terminates strings" rule, it is neces
sary to give the len~h of the window's name (minus the null on the end) as well
as the name itself (this is true of all strings passed to the API).

DESQview is designed around character mode. This is why the window size
information is based on columns and rows and not on pixels. The box that out
lines a window is constructed using the special block graphics characters. A win
dow may contain graphics information, requiring the video adapter to be in a
graphics mode; however, even in graphics mode, DESQview draws and positions
its character-based windows.

Notice that what is returned from the wi n_new() call is a long i nt (u long is
defined in DVAPI.H as an unsigned long int). This identifier is not unlike the
file handles with which C manipulates files. The long i nt returned from
wi n_new() will be used by the remainder of the program to identify that win
dow. Since a program may have several windows open at time, these identifiers
serve to keep them straight. In DESQview nomenclature, the new window is an
object, and the identifier is the handle of that object (hence the variable name
wi ndowhand le).

As we will see, handles exist for other types of objects. For example, key
board input is handled through a keyboard object. Each type of object is manipu
lated by its own type of API function. To distinguish the various types of API
calls, the first three letters of the function name refer to the type of object the
function manipulates. Thus, wi n_ calls are for window objects and key_ calls for
keyboard objects. We will see several other types of objects as we proceed. An ob
ject handle may be a pointer to a structure DESQview uses to describe the object,
but the programmer should simply think of it as a tag or identifier. A program
should never try to access the object directly by using the handle as an address.

The next window call, that to win_move ( ), positions our new window at row
I, column 1; that is, the upper left-hand comer of the display. The wi n_a t t r ( )
call selects the color scheme. Up to 16 different color schemes may be defined,



328 EXTENDING DOS

and these may be defined differently for eGA, monochrome, and EGA/VGA
adapters, to best utilize the colors and shades available for each screen.

The final two calls, wi n_unhi deC) and wi n_redrawC) are interesting. All win
dows are created "hidden" (the default window created when the application was
first started is unhidden by DESQview before the application is given control). A
hidden window is invisible. Even making it unhidden, however, is not sufficient
to make it appear on the display. Calls to wi"_ functions change the window ob
ject in memory, but not on the screen. It is not until the wi "_redrawC) API call
that the screen is actually "redrawn" onto the display. Although this may seem
odd, there are several good reasons for this.

First, just as an architect does not generally want the public to see the frame
holding up a building, the programmer does not want the user to see all the win
dow manipulations going on behind the scenes to make the final display. If the
window were visible as soon as it was created in our example, the user would
first see the window created in some unknown location, then redrawn in the
upper left-hand corner, but with the wrong color pattern, and finally redrawn yet
again with the correct color scheme. It is better that these window manipulations
go on behind the scenes so that the user only sees the window appear once, after
it is ready.

Another reason concerns execution speed. Video memory is generally very
slow, since the CPU must compete with the video adapter for access. Redrawing
the window each time before it is actually ready wastes time. It is faster to make
all the adjustments before writing the window to display memory a single time.

A third reason is related to response times. Consider, for a moment, a pro
gram with three different drop-down menus used for different command types.
Each of these menus would normally be implemented as a separate window. The
program could wait until the user clicked onto a menu bar option before creating
the menu window and unhiding it. If we assume that the user will click on each
menu bar option at least once, a more attractive option presents itself. The appli
cation can create all of the menu windows when it is first started. When the user
decides to select a menu bar option, all the application must do to make it visible
is to unhide and redraw it. When the user is finished with a menu, the program
hides it again, where it remains ready for the next time it is needed. Although
building all menus at once slows down program initialization a bit, this makes
the program respond very rapidly to user input. Users expect programs to take a
certain amount of time to start, but they like to see commands executed quickly.



Chapter 7 DESQview 329

The only major win_API calls that do not require win_redraw() are the
printf-type functions, such as wi n...,pri ntf () .

The window that is automatically opened for the application, sometimes
called the default window, is initially sized and positioned by information in the
.DVP used to open the application. This window may be manipulated the same
as any other window. Its handle is returned from the wi n_me() API call. For ex
ample, to resize its initial window, an application might do the following:

uLong defauLtwindow;

defauLtwindow = win_me();
win_resize (defauLtwindow, num_rows, num_eoLs);
win_redraw (defauLtwindow);

We should note at this point that windows opened by DESQview are differ
ent than those opened by add-on windowing libraries. As we have already seen,
the code to manipulate DESQview windows is part of the environment, and not
part of the application. Although this makes the application dependent on
DESQview, it also means that the application can be considerably smaller.

Even more important, applications can do much more with DESQview win
dows. For example, a window opened with a wi n_new() call can be manipulated
by the user using the normal Resize and Move menu commands. (The applica
tion may prevent this from happening with the win_disaLLow() API call.) Fur
ther, an application may push a window in front of or behind other windows,
even if they belong to other applications. In our sample program, since CLOCK
does not specifically forbid it, the user can put the clock window anywhere on
the screen.

The concept of handles associated with objects is an important one in DESQ
view. DESQview relies heavily on them. For example, all input and output under
DESQview is through object handles. This is why both a window object and a
keyboard object must be opened automatically at program initiation: DESQview
converts calls to BIOS screen and keyboard routines into wi n_ calls to the default
window object, and key_ calls to the default keyboard object. In this way, a
DESQview oblivious program that performs a printf() actually performs a
wi n...,pri ntf (wi n_me(» in a roundabout way.

Panels
A DESQview application tends to have many windows: a window for each dif
ferent menu, a window for different types of data, and so on. It is possible for the



330 EXTENDING DOS

application to create and manipulate each of these windows using discrete wi n_

API calls. However, this might result in a confusingly large number of wi n_calls
to set things up properly, and changing a menu or output window might prove
difficult. Quarterdeck has made window generation much easier by providing a
separate utility known as the Panel Design Tool.

The Panel Design Tool allows the programmer to "draw" windows using a
MacDraw or PC Paint type of interface. The programmer draws out a box, sets
such properties as border type and color from menu bars across the top, and
types in any text that should appear within the window. DESQview calls a win
dow generated in this way a panel. Each panel is given an eight-character name
so that it may be identified easily. Once they are completed, the Panel Design
Tool combines up to 255 panels into what is known as a panel file.

Panel files may have either of two formats: they may be a separate binary file
that the program reads at execution time, or they may take the form of a .OB} file,
which the programmer simply links in with the application at link time. The lat
ter method is usually more convenient.

Both the Clock and Set Alarm windows within CLOCK are implemented as
panels within a Panel File known as CLOCKWIN. The CLOCKWIN.OB} gener
ated by the Panel Design Tool must be linked together with CLOCK.OB}, just like
the API1.OB} and API2.0B} files. CLOCKWIN.OB} defines two global labels that
CLOCK needs: clockwin and lclockwin. clockwin is the address of the panel
file in memory and l c l 0 ckw i n is its length.

To make a panel window appear on the screen, the program must first ac
quire the handle of an empty panel object using the pan_new() call. Opening the
panel file using the pan_open ( ) API call makes the individual panels available
for display. Applying the panel using the pan_apply() API call displays the win
dow. In CLOCK it looks like:

extern char clockwin[J;

extern int lclockwin;

ulong panhan;
ulong panelwin;
ulong panelkey;

!*this is the clock panel that
contains the description of our
clock windows*!

!*the length .of the panel*!

!*the handle for the CLOCKWIN panel*!
!*window handle for the clock*1
!*keyboard handle for clock panel -

used to read select fields*!

panhan = pan_newel;
if (!pan_open (panhan, clockwin, lclockwin»



Chapter 7 DESQview 331

if (!pan_apply (panhan, win_me(), "CLOCK", 5,
&panelwin, &panelkey»

Notice that if either the pan_open() or the pan_apply() function returns a
non-zero value, the function was not successful and the program should termi
nate (the value returned is indicative of the problem encountered). Also notice
that pan_app ly() returns the handle of a window object. The window opened by
a panel may be further manipulated just like any other window, using this han
dle. In addition, pan_apply() returns the handle of the keyboard object that the
application should read to receive input from the window.

You cannot only paint fixed text into windows using the Panel Design Tool,
but also define variable text areas known as fields. Each field within a panel win
dow carries a number. You can output to these fields via their field numbers. This
is the way CLOCK handles output. In both the Clock and Alarm Set windows,
the fields are numbered as in Figure 7-4.

Figure 7-4: Field defionitions for Clock and Set Alarm panels.

* 00:00:00 P

L!:kLfield #5
Cfield#4

field #3
~----field #2

--------field #1

Output to these fields is via the f ld_wri te() API call. #defi nes can be used
to make the meaning of the different fields clearer. In the case of CLOCK, these
defines look like this:

I*the clockwin panel defines the
following fields*1

#define FLO_ALARM 01 I*the alarm select field*1
#define FLD_HOURS 02 l*hours*1
#define FLO_MINUTES 03 l*minutes*1
#define FLO_SECONOS 04 l*seconds*1
#define FLD_AMPM 05 I*AM/PM indicator*1

For example, when it is time to display the current time from the structure
as ci i time into a window, CLOCK uses the following function:

I*updatetime - update the time display by writing the time to
the hours, minutes, seconds and AM/PM fields of



332 EXTENDING DOS

the specified panel window*1
void updatetime (ulong panelwin, struct timstruct *asciitime)
{

I*write the time into fields 2 thru 4*1
fld_write (panelwin, FLO_HOURS, ascii time -> hour, 2);
fld_write (panelwin, FLO_MINUTES, asciitime -> min, 2);
fld_write (panelwin, FLO_SECONOS, asciitime -> sec, 2);
I*and put up the AM/PM indicator in field 5*1
fld_write (panelwin, FLO_AMPM, &asciitime -> afternoon, 1);

}

The final argument to fld_write() is simply the length of the string sup
plied in the third argument.

Fields give panels their true power. Panels are more than just a method to de
fine windows quickly without coding many series of boring wi n_ calls. Panels
allow you to separate the form of an application from its function. When CLOCK
outputs the time to fields 2 through 5, it does not know or care where they are in
the window. If you wanted to move (or remove) fields within the Clock or Set
Alarm windows, you would simply redraw the screen using the Panel Design
Tool, and relink. It would not be necessary to change the C program at all.

The CLOCK program is probably too simple to seriously consider going to
the trouble; however, large, real-world applications change continuously: New
windows may be added, requiring existing windows to be redesigned in order to
make room. Changing existing source code to accommodate such format changes
requires programmer time plus expensive retesting, and invites errors. Panels
allow you to restructure the output of a program using the Panel Design Tool
without the need to change the application code, resulting in considerable sav
ings in cost and time.

Another problem addressed by panels is that of multiple versions. Some
companies offer several versions of the same program. This may be to support
different human languages, different price tags, or different levels of user sophis
tication (for example, while the instructor version of some test administering
software might have a "Show Correct Answer" menu option, the student version
most certainly would not).

While generating modified versions of software from the original is not con
ceptually difficult, it is a process full of pitfalls. Adding conditional compilation
statements or commenting out sections of code invites programming problems.
The Panel Design Tool allows you to code an application once. You can then cre
ate different versions of the application by changing the panel file. Reduced ver
sions use panels with fields missing or replaced. Thus, in our example above, the



Chapter 7 DESQview 333

student can't "Show Correct Answer," not because the code won't allow it, but be
cause the panel does not display the option to do so. Of course, the entire panel
may be rearranged so that it is not obvious to the student that the missing field
was ever present.

DESQview Tasks
Of course, the DESQview API also supports multitasking., Before discussing
multitasking, we need to define two very important terms: task and process. A
task in DESQview is a single-execution thread; that is, a path the CPU takes
through the program. A related concept is that of process. A process is the total of
all memory areas unique to a program. Thus, a single-tasked application consists
of a single task (one execution thread) within a single process (the application's
code, data, and window memory).

A simple analogy is a wood with several trails. The process corresponds to
the wood itself: the trees and the area they cover. There are multiple trails that
people may take through the woods, just as there are many logical paths through
an application. A task corresponds to a hiker strolling along one of these trails.

It is not always clear when multitasking is useful. CLOCK could be imple
mented in a single task; however, it would be difficult to accept user input, in
cluding setting the alarm time, and still update the time reliably every second.
Therefore, CLOCK consists of two tasks: one to accept user input and a second
independent task that simply puts up the time every second. Even when the first
task is blocked, awaiting input, the second task ticks reliably on.

Starting a new task in DESQview is handled with the tsk_new<) API call
shown below. The parent task must supply the address of the function where the
subtask is to begin, the location of its stack, and the name and size of its initial
window. In this example, the subtask begins with the function ti cktock<). It is
allocated STACKSIZE bytes of stack, and given a window of size NUMBER_ROWS by
NUMBER_COlS, bearing the label "Subtask." The value returned from tsk_new<) is
the task handle that is used to identify the task in future API calls.

ulong taskhandle;
int ticktock <void);
char stack [STACKSIZE];
char windowname[] = {lfSubtask lf };

taskhandle = tsk_new <ticktock, stack, STACKSIZE,
windowname, sizeof windowname - 1,
NUMBER_ROWS, NUMBER_COlS);



334 EXTENDING DOS

Notice that a task's stack must be a section of memory that will remain un
touched by any other task. It may be returned from a ma lloc () call or defined as
a fixed global array; however, any stack checking code that may be inserted by
the compiler may have difficulty with a stack segment that is different from the
main task's. Most notabl}T, Microsoft C has a problem in this area. This can be ad
dressed by defining the subtask's stack within the main task's stack (as CLOCK
does). In this case, it must be declared in a function that does not return as long as .
the subtask is executing, since returning would surrender the memory space for
other uses.

If a task is to operate silently in the background, it may not need a window.
This is also true if the task intends to operate on a window that has already been
opened by another task. In either case, you may specify a window size of zero
rows by zero columns and no window will be opened on the screen when the
task is started. This is the case with the ti cktock() function in CLOCK.

Invoking a subtask via tsk_new() is very similar to calling a function, except
that control returns to the caller before the subtask completes. If we look at our
"hiker in the woods" model, calling a normal function is similar to a hiker taking
a side path off the main trail. This side path winds around, perhaps taking side
paths of its own, before eventually returning to the main trail via the function re
turn. No matter what happens in the side path, progress down the main trail is
suspended until the hiker returns from the side path. Spawning a subtask is as if
the hiker splits in two. The original hiker is allowed to continue down the main
trail while the clone simultaneously sets off along the side path.

Tasks can terminate in one of three ways. If the program aborts for any rea
son, all of its tasks are automatically terminated. Alternatively, if a subtask at
tempts to return from its highest-level function (the one named in the tsk_new ()

call), DESQview terminates it. Conceptually, this is identical to a single-tasked
program returning from ma; n() to the operating system. Finally, a task may be
aborted at any time via the tsk_free() call. The tsk_free() call requires the
task handle returned from the tsk_new() call that created it. Freeing a task's ob
ject kills the task. (A task may acquire its own handle using the t s k_me ( ) API call
if it needs to kill itself.)

Of course, there is only one CPU, so the two tasks don't actually make prog
ress simultaneously. One task proceeds a few steps along the program trail, or
until the next time it must wait for input, and then the second task gets a turn to
proceed. Still, it is easier for the programmer to train several hikers individuall}T,
each in a single job, than to train one hiker task to do it all.



Chapter 7 DESQview 335

DESQview uses a preemptive tasking algorithm to decide which task gets
control of the CPU at any given time. That is, scheduling is based on the hard
ware clock. Each task is allowed to execute for a certain number of clock ticks
the task's time slice-before control is wrestled from it and given to the next task
in line.

A task normally executes for a complete time slice, but it may give up the re
mainder of its time slice if it runs out of things to do. For example, a program
suspends itself any time it reads the keyboard. Suspended tasks do not receive
any CPU time. A task may also have its time slice taken away from it if it polls
the keyboard more than a given number of times in a single time slice (this time
is specified in the .DVP file). A DESQview specific program can pass control on
without suspending itself using the api-pause() API call.

DESQview recognizes three types of tasks: the foreground task, the back
ground tasks, and interrupt handlers. All background tasks are given the same
time slice. The foreground task is given a different time slice. The defaults are
nine clock ticks for the foreground task and three for each background task, but
the user can change these both at Setup and from the DESQview menu. Giving
the foreground task more time results in livelier keyboard response at the ex
pense of background tasks. Foreground and background tasks are scheduled in a
"round-robin" fashion. DESQview may suspend a foreground or background
task to schedule an interrupt task immediately to service a hardware interrupt.

As we noted already, tasks within the same process share the same code and
data space. Such tasks appear as functions within a single executable file and are
bound together at link time. This must be so, since the argument to tsk_new() is
the address of the function that is to begin the subtask. Thus, tasks "know" about
each other. They have access to all the same functions and all the same global
variables. Both of these facts present their own problems.

Access to common global variables brings with it certain problems in a multi
tasking environment. Since the programmer cannot be sure when the hardware
alarm will strike and the task will lose control, a task cannot write to a location
that another task may write to, and expect the value to stay unchanged. This is
true whether the location is in RAM or on disk.

To illustrate, suppose that your bank uses an accounting program with two
tasks, task A and task B, both of which use a global variable customer_ba lance.
Suppose also that task A decides it is time to credit the daily interest to your sav
ings account. Task A dutifully loads your balance into the global variable and cal
culates your new balance. Before it can write this balance back out to disk,



336 EXTENDING DOS

however, task A:s time slice is up and control is passed to task B. As luck would
have it, task B's job is to credit a deposit that has just arrived. Task B reads some
other person's account into customer_ba lance, adds the deposit, and writes the
result back out to disk. When task A eventually gets control back, it continues
with its write operation, writing the contents of customer_balance into your
savings account. Unfortunately for both you and the bank, the content of custo
me r_ba lance now has nothing to do with the real balance in the savings account.

The problem here is that task A and task B use the same fixed memory loca
tion, customer_ba lance. Solving the problem in this case is quite simple. There
is no reason to locate customer_ba lance in global memory. If both task A and
task B are modified to declare customer_ba lance locally, the conflict does not
occur. While both tasks might continue to refer to a variable customer_ba lance,

since it is now declared locally, it no longer refers to the same location in memory.
A similar problem arises with functions shared by subtasks. Suppose, for ex

ample, that the global variable in the above example is only accessed from a sin
gle function, say update_ba la~ce<). We might think that no conflict is possible;
that is not the case, however, since update_ba lance <) might be executed by both
task A and task B at the same time. To return to our hiker analogy briefl}T, up

date_ba lance<) is simply a stretch of trail that two hikers might walk along at
the same time. In this case, we say that the function update_ba lance<) is not re
entrant; that is, it cannot be reentered while another task is in the function.

It is interesting to note that DOS itself is not reentrant; two different tasks
may not execute DOS service calls at the same time. DESQview must be careful
to control tasks entering and exiting DOS to preclude this from happening. (It is
widely known that DOS actually consists of two parts: calls with numbers below
DSH, and those above. These two sections are mutually reentrant, in that one pro
gram may be executing one of the lower DOS calls while another is executing a
call from the upper range.)

If a task attempts to make a DOS call and DESQview detects that a second
task is already in the middle of such a call, the calling task must be suspended.
When the second task is subsequently given control, it will eventually complete
its DOS call. As it exits DOS, DESQview unsuspends the first task, allowing it to
continue into DOS the next time it is scheduled.

The ANSI.SYS device driver provided with DOS is not reentrant either. In'
this case the solution is much simpler, however: DESQview comes with a reen
trant version of ANSI.SYS called ANSI.COM, which can be installed within an
application window.



Chapter 7 DESQview 337

As an aside, tasks that are part of the same executable file share a single pro
cess and, therefore, share the same .DVP file. It is not possible to specify that one
such task writes directly to screen memory and should be virtualized, while an
other task does not.

In addition, the user controls multiple tasks of the same program together.
Selecting a window of one task brings the windows of all tasks that are part of
the same program to the foreground together. It is not possible for the user to
suspend one task without affecting the rest. If, for example, a program opens a
menu controlled by another task, the user should not be able to select the menu
separately from the program that created it. As far as the user is concerned, all
task windows are part of the same program.

DESQview does allow a type of parent task that can be handled individually.
DESQview calls it an application. A normal task belongs to the parent task which
created it. Acting on the parent task (by selecting it or closing it, for example) af
fects all of its subtasks. A newly spawned application task doesn't belong to a
parent task. It becomes its own parent and can be operated on independently.

Take the example of a spreadsheet program. All the drop-down menus are
handled by normal subtasks since they are part of the application. Suppose, how
ever, that the program allowed multiple spreadsheets to be worked on at one
time. This would best be handled by spawning the same code as separate appli
cations, one for each spreadsheet. This would allow the user to manipulate the
spreadsheets separately. The user could bring one spreadsheet to the foreground,
leaving another in the background; zoom a spreadsheet on top of the other win
dows in the background; even close a spreadsheet from the DESQview menu.

A new application is spawned using the app_new() API call, whose argu
ments are identical to those of tsk_new(). The app_new() call returns a task han
dle just like that returned from tsk_new(). The user has the illusion that the
applications are completely independent programs, even though they share the
same code and data space. The only exception to this rule is that if DESQview
must write an application to disk, it must write all applications within the same
process to disk. It is the process that the applications share which actually gets
written.

DESQview Processes
Just as a task can spawn a subtask in the same process, so can a task spawn a
subtask in a different process. This is analogous to the DOS or UNIX exec call, in



I*set to Ox0097*1
I*program title - pad with blanks*1
I*maximum memory required [kbytesJ*1
I*minimum memory required [kbytesJ*1
I*start command [ASCIIZJ*I
I*default drive in ASCII

338 EXTENDING DOS

which one program can execute another program. DESQview handles this using
the app_start() API call. Unlike the DOS exec() command, the argument to
app_start() is the address of the .DVP structure for the process.

ulong taskhandle;
struct DVP processDVP;

taskhandle = app_start (&processDVP,
sizeof processDVP);

A task created by the app_start () call is completely independent from the
task that started it. The two tasks share neither code nor data. Their windows are
independent-one may be brought to the foreground and the other left in the
background. The two tasks may be swapped out to disk or terminated indepen
dently. Because they occupy different processes, the two tasks are like completely
separate programs.

The ti cktock() function could be written as a separate process. To do so, we
would create a separate TIKTOK.C file containing a ma i n( ) that first checked for
the presence of DESQview and then called ti cktock(). Any functions that
ti cktock() shared with the rest of CLOCK would be repeated in TIKTOK. We
would then compile CLOCK, generating a CLOCK.EXE without ti cktock() and
a TIKTOK.EXE with only ticktock(). When CLOCK performed the
app_start() call, DESQview would load TIKTOK.EXE into a separate memory
area and start it.

.The .DVP structure provided to app_start() may be initialized by reading a
.DVP file into a buffer from the disk. Alternativel~ the necessary data may be
hard-coded in the source program using the C structure that appears in the ex
ample below. It is not necessary to supply a .DVP structure when starting a new
task, since each subtask remains in the same process. With app_start(), how
ever, we are not only creating a new hiker, we are building a whole new wood.
Notice that it is not necessary to specify the name of the executable file to
app_start() since this is contained in the .DVP structure along with the rest of
the information.

struct DVP {
unsigned reserved1;
char title [30J;
unsigned maxmem;
unsigned minmem;
char command [64J;
char drive;



Chapter 7

char
char
char
char
char
char
char
char
char
char
unsigned
char
char
char

char

directory [64J;
params [64J;
screenmode;
numpages;
firstvect;
lastvect;
rows;
cols;
yloc;
xloc;
reserved2;
sharedprog [64J;
sharedata [64J;
controlbyte1;

controlbyte2;

DESQview 339

<blank for none>*1
I*default directory [ASCIIZJ*I
I*parameters to command [ASCIIZJ*I
I*initial screen mode <0 - 7>*1
I*number of video pages*1
I*first interrupt vector to be saved*1
I*last interrupt vector to be saved*1
I*no. rows in logical window*1
I*no. columns in logical window*1
I*initial row position*1
I*initial column position*1
I*system memory - overridden later*1
I*name of shared program [ASCIIZJ*I
I*name of shared data*1
I*control byte 1 -

Ox80 - writes directly to screen
Ox40 - foreground only
Ox20 - uses 8087
Ox10 - accesses keyboard buffer
Ox01 - swappable*1

I*control byte 2 -
Ox40 - uses command line params
Ox20 - swaps interrupt vectors*1

char startkeys [2J;
char scriptsize [2J;
unsigned autopause;

char disablecolormap;
char swappable;
char reserved3 [3J;
char closeonexit;
char keyfloppy;

char DVPformat;

char sharesmem;
char physrows;
char physcols;
unsigned expandedmem;
char controlbyte3;

I*DESQview 1.00 extensions*1
I*starting keys from menu*1
I*size of script file [bytesJ*1
·I*pause after this many keyboard

requests in one clock tick*1
1*1 -> disable color mapping*1
1*1 -> application is swappable*1

1*1 -> close on exit*1
1*1 -> key floppy required*1

I*DESQview 2.00 extensions*1
1*00 -> DV 1.2 and later,

01 -> DV 2.00 and later,
02 -> DV 2.20 and later*1

1*1 -> uses shared system memory*1
I*no. rows in initial physical window*1
I*no. cols in initial physical window*1
I*amount of avail EMS [kbytesJ*1
I*control byte 3 -

Ox80 - automatically assign pos
Ox20 - honor max memory value
Ox10 - disallow close command
Ox08 - foreground only when graphics



340 EXTENDING DOS

char kb~conflict;

char graphicspages;
unsigned systemmem;
char initmode;

Ox04 - don't virtualize*1
I*keyboard conflict (normally 0)*/
I*no. of graphics pages*1
I*system memory size*1
I*initial video mode - default Oxff*1

char

char

char
char

};

serialports;

controlbyte4;

protect level;
reserved4[19J;

I*DESQview 2.20 extensions*1
I*serial port usage -

-1 -> use all serial ports,
o -> uses no serial ports,
1 -> uses port 1,
2 -> uses port 2*1

I*control byte 4 -
Ox80 automatically close on exit,
Ox40 - swappable if not using ports,
Ox08 - virtualize text,
Ox04 - virtualize graphics,
Ox02 - share CPU in foreground,
Ox01 - share EGA when zoomed*1

I*degree of protection*1

Reading a .DVP file in from disk is straightforward..DVP files are most eas
ily created using the Add a Program option under the DESQview Open menu
option. AII.DVP files are created in the \DV directoI)T, but once there, they can be
copied anywhere desired. Of course, it is also possible to read the default .DVP
file in the above structure and then change some value, such as the initial direc
tory, before executing the app_sta rt () call.

The fact that the processes share neither code nor data space grants them a
level of independence that is not possible with simple tasks. In the interest of sav
ing memory, however, it is sometimes desirable that two processes share some
code. This is possible using shared programs.

Shared programs are executable files specified in the .DVP file. Normally, a
shared program is a loader used to make a DESQview oblivious program adapt
able to a multitasking environment; however, shared programs have a unique
property: befor~ a shared program is loaded, DESQview checks to see if a copy is
already resident in memory. If so, the already resident version is used again. The
shared program stays in memory as long as at least one program that uses it is
still executing. When the last program that loaded the shared program termi
nates, the shared image is unloaded from memory.



Chapter 7 DESQview 341

Although this is a long way from Dynamic Link Libraries (DLLs), a form of
DLL can be implemented using shared libraries. For example, you might put
common library routines into a shared program where they can be accessed from
several processes, reducing the size of each process.

Memory Under DESQview
As we have seen, DOS loads itself as low as possible in memory. The first several
hundred bytes are consumed by the interrupt table and BIOS data areas, then
come DOS, its buffers, and any device drivers. Finally, any terminate-and-stay
resident (TSR) programs that the user has loaded appear. Any memory between
the last TSR and the end of conventional memory is available for the application
program's use under simple DOS.

When the user executes DESQview, DOS loads it into this' memory area, as it
would any other program. On a system with 640K or less of conventional mem
ory, and without any expanded or extended memory, DESQview consumes
roughly 150K (depending on configuration) of conventional memory; however,
when either extended or EMS 4.0 memory is available, DESQview attempts to
repay this memory penalty in several ways.

First, DESQview can increase the size of conventional ooS memory by not
ing that this area ends at 640K only because this is where the memory space re
served for video adapters begins. On machines equipped with either CGA or
monochrome display adapters, actual video RAM does not begin until some 64
to 96K later. On PCs equipped with capable EMS 4.0 memory (or an 80386 or
80486 with QEMM386), DESQview can map memory into the region between
640K and the beginning of video memory to increase the space available to user
programs. (Some EMS 4.0 cards do not support mapping memory into these
lower ranges.)

In addition, DESQview comes with a special loader, XDX, which can load the
vast majority of DESQview into memory above video RAM. This memory comes
primarily from two sources. For pes equipped with an 80286 and extended
memory DESQview supplies a driver to tack the first 64K of extended memory
(the HMA area) onto the end of the first megabyte. (This same function is han
dled by QEMM386 on 80386- and 80486-based machines.)

Even within the first megabyte there are several unclaimed areas. The blocks
of address space claimed by the BIOS ROM, the hard disk ROM, and other plug
in cards, sit like islands surrounded by unused address regions. OnPCs



342 EXTENDING DOS

equipped with capable EMS 4.0 memoI}', the separately available QRAM driver
can map memory into these areas. (Similar magic is performed by QEMM50/60
on the PS/2 models 50 and 60 and by QEMM386 on 80386- and 80486-based
PCs.) XDX can reduce DESQview's overhead in conventional memory to less
than 10K.

Since DOS programs must be in contiguous memory, DESQview cannot use
any of the leftover upper memory for programs. To make this space available to
the user, DESQview includes LOADHI.SYS and a LOADHI.COM. LOADHI.SYS
allows the user to load small device drivers into this upper region, while
LOADHI.COM does the same for TSRs. A separate FILES.COM and BUFF
ERS.COM allow the user to do the same for the DOS file and buffer spaces. In
this way, the user can reduce the number of drivers loaded in conventional mem
ory,leaving more for application programs.

These regions are represented graphically in Figure 7-5.
Once loaded into memory, DESQview consists of more than just DV.EXE.

DESQview also builds a series of tables in an area called common memory. Com
mon memory is located immediately above the low portion of DESQview, in the
lower MOK. In addition to internal tables, DESQview stores objects and inter
process messages here. This memory area, like DESQview itself, is never re
mapped and so is available to all programs. The user may adjust the size of this
area at setup time, but it is fixed once DESQview is loaded.

Every time a process is started, DESQview assigns it its own region of mem
ory known as process memory. Process memory includes the program's code and
data areas, the script buffers used to hold any scripts defined for the program,
the context save area, where the CPU's registers are stored when the task is not
executing, and the process' system memory. System memory is used to hold win
dow buffers, panels, and messages between tasks in the same process.

One process may wish to share its system memory with another process. This
is the case, for example, when one program wants to write into another
program's window. To do this, you may include a "*" in the "Shared Program
Pathname" field of the .DVP file menu. This causes DESQview to allocate system
memory from an area called shared system memory. This area is kept immediately
above common memory, and is available to all programs. (Any program that has
a shared program also uses shared system memory.) Shared system memory
starts out zero length and grows as processes require it.



Chapter 7 DESQview 343

Figure 7-5: The first megabyte of memory, showing areas where XDV might load DV.

fr----~~~~--~~~~-:;-----~

BIOS ROM

EMS Page Frame

Available Memory
Area

Hard Disk ROM

Available Memory
Area

Video Memory

Program Memory

Lower Portion
Of DESQview

DOS

810S Data &:
Interrupt Vectors

Figure 7-6 represents a single DOS application as it appears in memory.
When a program is executed, its .DVP file indicates how much memory it re

quires. DESQview could load the program low in memory and then set the end
of memory value kept in the BIOS area to the end of the memory range dedicated
\0 that program. This approach has two problems, however. First, few DOS pro
grams ever check to see where this upper boundary is. If insufficient memory is
available when they execute under DOS, they either simply do not load or else
they crash. Second, most EMS 4.0 cards map the upper range of conventional



344 EXTENDING DOS

memory, and not the lower range. Since DESQview wants as much of the appli
cation within EMS's mappable area, as we shall see, it is better to load the pro
gram as high as possible.

Figure 7-6: DESQview memory areas.

- -
VIdeo Memory

Program's
Code &: Data

~-----------

System Memory

Shared System Memory
~ - - - - - - _.- - --

Common Memory
~-----------

Lower Portion Of
DESOview

DOS

8105 Data &
Interrupt Vectors

Process
Memory

Therefore, when the user starts a program, DESQview allocates its process
memory as high as it can in the lower 640K. The first program loads immediately
below the video adapter memory at the end of conventional memory. The second



Chapter 7 DESQview 345

application is generally loaded below the first, and so on. All of the programs
loaded into conventional memory continue to execute.

When the user attempts to load a program and DESQview determines that
not enough conventional memory is left, DESQview attempts to free up memory
by swapping out applications. Starting with the oldest application, and continu
ing with successively newer applications, DESQview continues to write the pro
cess memory of each application out until enough memory exists to load the new
application. The user has some control over swap devices, but DESQview gener
ally goes in order of decreasing speed. EMS 3.2 memory is the preferred swap de
vice. If EMS 3.2 memory is not available, DESQview then begins swapping
applications to a swap file on the disk. Applications that have been swapped out
are "frozen" and do not continue to execute in the background; however, the user
may switch them back into the foreground and, thus, back into conventional
memoI]', at any time.

DESQview has much more flexibility with the loading of programs when
EMS 4.0 memory can replace conventional memory in the lower 640K range.
With today's machines, this generally involves disabling memory above some
limit, via a switch on the motherboard.

DESQview uses the ability of EMS 4.0 boards to define multiple page frames
of differing size and locations to map memory into any memory areas left un
populated up to the beginning of video memory (this is the same process used to
fill gaps in the memory space above video RAM). Rather than swap applications
out to a swap device, DESQview can simply remap new memory pages into
lower memory to make memory available for each new application. Since EMS
memory can be remapped quickly, applications that have been mapped out of
the lower 640K may be mapped back in to execute. Figure 7-7 represents this pro
cess graphically.

This slightly changes the approach DESQview takes in loading programs into
memory. When it is time to load the first program, DESQview reserves as much
EMS memory as indicated by the .DVP file and maps it immediately below video
RAM. The program is then loaded and started in this area. When it is time to load
the second program, DESQview repeats the process, again mapping the required
amount of memory immediately below video RAM. Thus, each application occu
pies roughly the same logical address space in conventional memory. Of course,
the first program must be mapped out of this space in order for the second to be
mapped in. This makes it impossible for the two applications to access each
other's memory directly. Expressed another way, a task in one process cannot ac-



346 EXTENDING DOS

cess memory in a different process. Processes do share the lower memory areas,
including DOS and DESQview (including command memory and any shared
system memory).

Figure 7-7: Multitasking with EMS 4.0 memory.

ROM 810S

Upper
Memory Range

Video Memory

Process
#1

Common Memory

Lower Portion
Of DESQvlew

DOS

810S Data &:
Data + Interrupts

Process
#2

Process
#3

Single applications larger than the EMS 4.0 page frame cause some problems,
since they cannot be completely mapped out and must be swapped instead.

When an EMS 4.0 emulator is installed in an 80386- or 80486-based machine,
all of available memory becomes swappable. This, in part, is why Quarterdeck
bundles QEMM386 together with DESQview in the DESQview386 package. With



Chapter 7 DESQview 347

DESQview386, it is not necessary to disable motherboard memory. In addition,
since there is no limit to the size of the EMS page frame, it is not possible for an
application to be larger than the page frame and, therefore, unmappable. (An ap
plication may be too large to fit into the remaining 640K at all, of course.)

With DESQview386, the user may load as many applications as can be held
in available memory. A 2-megabyte machine can execute four or five normal
sized applications simultaneously, before memory is exhausted. Once available
memory is depleted, applications are swapped to disk as needed.

DESQview386 can use some of the protection features of the 80386 processor
as well. For example, if the user desires, DESQview386 can trap any attempt by
an application to write memory outside of its own process. Except for these pro
tection features, DESQview386 treats 80386 memory as EMS 4.0 memory.

Intertask Communication
When we started as programmers, especially if we started with BASIC, our pro
grams tended to be one large monolithic whole with little or no internal struc
ture. Eventually we came to see the advantage in dividing our programs up into
functions. This allowed us to break a problem down into a series of smaller prob
lems, each of which could be dealt with separately, with a resulting savings in
time. As soon as we broke our programs into functions, however, the problem
arose of how these functions should communicate.

The first solution was simply to use the same techniques for communicating
that had worked between blocks of code before. One function simply leaves
some value in a global variable so that the other function can conveniently find it
there when it is called. Soon we discovered that this was not the ideal means of
communication. While global variables are fast, it is generally far better to forgo
the speed for the increased control and safety of passing data to and from func
tions via arguments. This is the primary means of communication between func
tions in a single-tasked environment.

In some multitasking environments, it is possible to pass arguments to tasks
in exactly the same way as they are passed to simple functions. Unfortunately,
this is not the case in DESQview. The tsk_new<) API call accepts the address of a
function that takes no arguments and returns nothing (the fact that in the proto
type this function is of type Int is a throwback to K&R-in fact, the function
should have been declared to be of type va; d).



348 EXTENDING DOS

In the absence of function arguments, the question arises of how we should
communicate between tasks within a single process. Our first response might be
to drop back to past experience and simply use global variables again. The parent
task can store a value into a global variable before starting the subtask. Once the
subtask is started, it examines the location to find the data. This works for data
that is set once and does not change thereafter, but what about changing data?

If more than a single value is to be communicated, the two tasks must agree
on some sort of protocol. They may agree on what constitutes "no data," which
can then be stored into the location once data has been read out, as an indication
that it is now available to hold new data. If this is not possible, a second location
may be used as an access flag. For example, a flag value of zero might corre
spond to "no data," while a nonzero flag indicates data is waiting to be accessed.

If the communication is two-way, in that both tasks can write into the loca
tion, data may get overwritten and lost in the following way: the parent task
reads the location and checks that it is currently set to "no data." Before it can
write its data into the location, however, its time slice comes to an end. When the
other task starts its time slice, it reads the same location and also sees that it con
tains the "no data" value. This second task then writes its data. Now when the
first task gets control back, it continues with the write operation that was sus
pended before, overwriting the second task's data. (This is very similar to the
customer_ba lance problem discussed earlier.)

The loss of data due to its being overwritten by another task is known as a
data collision. In some applications, the occasional loss of a data word is insignifi
cant, but for the majority of programs this is a serious problem. For these pro
grams, a section of code where such a data collision might occur is known as a
critical region. The specific operation-in this example the reading and writing of
a variable in memory-is called the critical operation.

There are several ways to avoid data collisions. Noticing that the problem
only arises when two or more tasks write to the same location offers one solution.
Often, we can split communications into two separate paths. In this case, the par
ent task might use the location datato to send information to the subtask while
the subtask might use the next location, da ta f rom, to send information in the op
posite direction. If each task reads both locations but only writes to one of them,
the collision is avoided.

Often it is not possible to agree on a protocol or divide the global data up in
such a way as to guarantee that a collision will not occur. This is usually the case



Chapter 7 DESQview 349

when more than two tasks are potentially involved, or when critical regions arise
around objects other than memory locations.

Suppose, for instance, that one application decides it needs to send output to
the printer. While it is printing, another task detects an alarm condition and de
cides to print the warning message. If access to the printer is not controlled, what
appears on the printer will be a mix of the output of the two tasks, and the alarm
warning may be illegible. Thus, the print operation represents a critical region be
tween these two tasks. These types of critical regions cannot be protected with
"no data" type protocols, since they do not represent memory locations and can
not be read.

It is clear from our examples that collisions occur 'because the one task is so
unfortunate as to get rescheduled during a critical operation. The most obvious
solution then is for a task to disable rescheduling before beginning a critical oper
ation, and only reenable it after it has completed the operation.

In DESQview, the api_beginc() API call ("beginc" stands for "begin critical
operation") disables rescheduling. Once rescheduling has been disabled, a task is
assured that it will retain control until it either reenables scheduling via an
api_endc () API call or performs a system call that suspends the task. (If DESQ
view left scheduling disabled when the task suspended itself, the system would
hang forever, since no one would be allowed to run.)

Wrapping a critical region in api_begi nc () and api_endc () calls is a com
mon ploy. It appears to be fairly straightforward and so is very popu1ar with pro
grammers new to multitasking. What they quickly realize, however, is that it is
often a very unsatisfactory solution. One problem is that leaving rescheduling off
for long periods adversely affects the performance of the system-imagine, for
instance, if rescheduling were disabled for the entire time it took to print a letter,
just so another print operation could not start. If the critical operation takes very
long to perform, the user notices the system halt and lurch as rescheduling is
turned on and off.

A worse problem with this approach is that it is voluntary. A task might come
along and access the controlled memory location or device without disabling re
scheduling first. Such a violation is not easily detected. Suppose, for example,
that the print warning message modu1e in the above example printed without
disabling rescheduling. Module testing is not likely to reveal the problem. It is
not until another task decides to begin printing just after an alarm starts printing
that the user begins complaining of lo~t warning messages on the system. Rare



350 EXTENDING DOS

collisions around data variables resulting in incorrect bank balances or a crashing
system are even worse and even more difficult to find.

A task may violate this protocol unintentionally as well. A function called
while scheduling is disabled may inadvertently reenable it by performing a
seemingly innocuous system call-any DOS call can result in the task being sus
pended and scheduling reenabled, for instance. While the programmer may have
the best of intentions, it is difficult to make absolutely sure that rescheduling re
mains disabled over a large segment of code.

Still, reading data out of a global variable or flag, checking it, setting it, and
storing right back does not take very long, and it should not require very many
instructions. Therefore, protecting access to such common memory locations by
disabling rescheduling temporarily is an acceptable practice.

Larger critical areas may be protected by a flag, often called a lock. The idea is
to assign a flag to each critical operation. Before entering the critical section of
code, the program checks the flag. If the flag is clear, it is safe to proceed into the
critical section. The task then sets the lock to ward off other tasks that may at
tempt to enter and continue on. Once the task is finished, it clears the flag and
proceeds. Obviously, the checking and setting of the flag is itself a critical opera
tion and must be protected with an api_begi nc () call. In DESQview, such an op
eration is as follows:

int latchvar;
void latch (void)
{

for (;;) {
api_beginc ();
if <latchvar -- 0)

break;
api_endc ();
api_pause ();

}

latchvar = 1;
api_endc ();

}

void unlatch (void)
{

latchvar = 0;

I*disable scheduler*!
I*if latch clear ... *!
!* continue; else •.. *!
I* reenable scheduler ... *!
I* and give up control*1

I*set latch and return*!

}

This approach to collision avoidance is much better than the simple disable
rescheduling approach. Here, tasks not attempting to enter the critical region are



Chapter 7 DESQview 351

not affected. While a task that is attempting to print might be suspended for a
long time waiting for another to finish, all of the tasks that are not trying to print
are not affected. The system continues to execute smoothly. However, a ne'w
problem arises with this approach. Requesters are not granted access in the order
in which they request it.

Suppose, for example, that three tasks all attempt access to the printer. Task A
requests the latch and is granted it. Task B and then task C request the latch but
must wait. When task A completes printing and clears the latch, there is no guar
antee that task B will get control next, even though its request preceded that of
task C. The order in which tasks Band C are granted access is completely ran
dom. In fact, if task A restored the latch but then decided to print again before its
time slice was completed, it would be granted clearance by the cleared flag before
either task B or task C could "wake up" and grab it.

An even worse problem is common to all of these solutions. They all rely
upon the fact that the several tasks involved all have access to some global vari
able. With tasks that share the same process memory this is true, but for tasks in
different processes, this cannot be the case. Processes do not share code or data
segments. For these types of tasks, DESQview offers a different communications
path: intertask messages.

Intertask Messages
The principle behind intertask messages is simple. The sending task simply bun
dles up the information to be transmitted in a locally defined structure and mails
it to the other task using a ma l_wri te() DESQview API call. The message is cop
ied into a mailbox maintained for the other task in system memory (messages be
tween tasks in separate processes are saved in common memory). These
mailboxes can hold a number of messages in a first-in-first-out queue. The receiv
ing task may read these messages out of its mailbox at any time by executing a
ma l_read ( ) API call. Each subsequent ma l_read ( ) call returns the next message.
If the mailbox queue is empty, mal_read() suspends the caller until a message
appears. If a task does not wish to be suspended, it may poll the mailbox first,
using the ma l_s i zeof () call. This call returns the number of messages in the
queue. If the count is nonzero, the task can ma l_read () the mailbox without
'being suspended.

Intertask messages avoid most of the intertask communication problems in
herent in other communications paths. First, all access to common locations is



352 EXTENDING DOS

controlled by the operating system, making data collisions impossible. When a
task sends a message, it is copied out of its space. Like a variable passed to a
function by value, any subsequent changes it makes to the message buffer are not
copied to the sender. Second, tasks do not have to wait to send messages. A task
may send a message and continue, even if other messages are already queued up
for the task to work off. Third, the order of requests is retained. If task A sends a
message before task B, then task A:s message gets processed first, despite the ran
domness of task scheduling.

Finally, intertask messages, like function calls, represent a "point to point"
communication path. That is, when task A sends a message to task B, it is clear
where the message is going and who will receive it. It is not possible that some
task C might come along and intentionally or unintentionally interfere with this
communication path. Not only is this important to the programmer writing the
program, it is equally important to the person who must come along years later
and maintain the program. This can make a very large difference in the ability to
maintain large programs.

When a task is started, along with the default window and keyboard objects
that DESQview opens, it also opens a default mailbox object. The handle of the
default mailbox associated with any task can be returned from the rna l_of ( ) API
call. A task may know its own mailbox handle by executing the ma l_me ( ) call.

In our CLOCK program, the function program_body<) starts the subtask
ti cktock() to update the time in the Clock window. In order for ti cktock() to
write to this window, however, it must have the windows handle. Pro
gram_body() could have simply stored the Clock window handle in a global
variable, which ti cktock<) could then have accessed. Instead, program_body<)
stores the handle into the structure "message" and sends it to ti cktock< )'s mail
box as in the following code segment:

ulong panelwin;
ulong malhan;
struct windowmsg message;

I*window handle for the clock*1
I*mailbox handle of subtask*1
I*message to send to subtask*1

tskhan = tsk_new <ticktock, taskstack, STACKSIZE,
.... , 0, 0, 0);

malhan = mal_of <tskhan);
message.windowhandle = panelwin;
mal_write (malhan, <char *)&message, sizeof message);

For its part, ti cktock<) reads the message immediately upon starting, as in
the following:



Chapter 7

ulong winhandle;
struct windowmsg *winmessage;
int messagelength;

DESQview 353

I*read the message with the window handle*1
mal_read (mal_me(), &(char *)winmessage, &messagelength);
winhandle = winmessage -> windowhandle;

Notice that the message is copied out of the sender's memory area and into
system memory when it is sent. The caller is free to reuse that space as soon as
control is returned from the ma l_w r i t e () call. It is not copied into the receiver's
Inemory area, however. Instead the receiver is given a pointer to the message in
DESQview's memory. This is why the second argument to ma l_read() is not the
address of a message buffer but "a pointer to a pointer" to a message (the cast
( cha r *) is only so the call matches the prototype declaration}. The data in the
message stays valid until the next time the task performs a mailbox read. There
fore, ti cktock() copies the data out of the message and into local, safe storage.

(Incidentally, CLOCK also uses a global variable communication path when
ti cktock() stores the current time in the currentt ime structure, which is subse
quently used within the parent task. It is valid here since the parent task never
writes this structure, thus precluding any chance of collision.}

This point-to-point message scheme means that both the sender and receiver
must know the mailbox's handle. A task can always find its own handle, using
ma l_me ( ). A parent task can always find the default mailbox of any of its sub
tasks by using the ma l_of () API call on the task's handle.

However, a task may open up additional mailboxes using a ma l_new() call,
and these are not associated with the task handle. To solve this problem, a task
may assign any mailbox a name using ma l_name ( ). Any other task can then find
the handle of this mailbox by looking up its name via the maL _ f ; n d () call.
This can considerably enhance the readability of the resulting code considerably.
For example, ti cktock() could name its mailbox "Update Clock Display." Then
any task that wanted its display updated on a regular basis could send a message
to the Update Clock Display mailbox.

This is very common in applications fraught with collision problems, such as
a database. If every task in the program can access the database, controlling all
the locks necessary to avoid database contention can become a real problem. It is
easier to name one task as the database engine and allow it to perform all reads
and writes, acting as a form of traffic cop to avoid data collisions. This database
engine may even be in a separate process-in fact, this process may not even be



354 EXTENDING DOS

on the same machine! Assigning the mailbox for this task a name like "Database"
allows each of the other tasks to find its handle in order to make requests. The in
tent is clear to even the most casual reader what a task sending requests to a
mailbox named Database is trying to do.

Of course, the database must be able to answer the requests. The requesting
task can simply store the mailbox handle where it expects its answer in the re
quest message, but this is not necessary. If a task receives a message, calling the
ma l_addr() API function returns the mailbox handle of the task that sent the
message, so it is possible to reply to messages even if you do not otherwise know
from where they came.

The overhead of copying large messages into system (or common) memory
during the ma l_wri te () may become objectionable. DESQview does allow mes
sages to be passed by reference with the ma l_subf rom() call. That is, when the
receiving task receives a message address, it is, in fact, pointing directly at the
message in the calling task.

This can be very dangerous, however. First, the calling task may not reuse the
message space until the receiving task is through with it. For this reason, some
protocol must be established for returning the buffer to the originating task.

Second, the receiving task must have access to this memory. This is no prob
lem for tasks within the same process; however, for tasks in other processes, this
is a real probl~m. Such a task would receive a logical address to a region that may
not be mapped into memory when the task is. Since how the processes are
mapped is a function of the hardware type and configuration, this is the type of
problem that might not appear during development, only showing up on user's
equipment.

This problem can be avoided by using shared system memory, that is, speci
fying a "*" in the .DVP for each process and then allocating memory from this
area in which to build the message via the api--getmem() API call. Since shared
system memory comes out of the lower 640K, however, there is not enough room
for truly large messages. In systems with EMS memo~ it is just as simple to allo
cate a block of expanded storage in which to build the message. The handle for
this EMS storage can then be inserted into a normal message and sent to the
other process. This process then maps the EMS memory into its page frame and
accesses the message directly. This allows messages to be built up to the size of
available EMS memory.

Notice that. either way, the sending task may continue to access the memory
area, even as the receiving task is using it, as long as a protocol is established to



Chapter 7 DESQview 355

avoid collisions. In fact, this is exactly the same collision problem as that pre
sented by global variables between tasks. Passing EMS handles or pointers to
shared system memory allow processes to establish the same common memory
communication path available to tasks, but brings with it identical problems.

Avoiding access by multiple tasks to global variables only eliminates the data
collisions. The intertask messages we have seen so far cannot solve non-data col
lisions such as those that might arise around devices. We have already seen how
we can use a lock variable to control access between tasks within the same pro
cess. The same method could be applied to tasks in different processes if we first
allocate a small section of shared system memory and pass its address to all of
the tasks requiring access via messages. Mailboxes provide a better solution,
however.

In some message-based operating systems, control to such a critical region
can be controlled in the following way. The parent task first creates a "lock mail
box" and sends it a single dummy message known as a semaphore. Any task that
desires entry into the critical region must first read the semaphore from the mail
box. Once the task has read the message, it may continue. Once it has left the crit
ical section, it must then send a dummy message back to the mailbox to restore
the semaphore. If a second task reads the mailbox while the first task is in the
critical region, the semaphore message is not there (having been read by the first
task) and the second task is suspended. When the first task returns the sema
phore, the second task is unsuspended and allowed to proceed.

Similar in concept to simple locks, semaphore mailboxes have the same ad
vantages that normal intertask messages have over global variables: tasks are not
rescheduled needlessly, requests are processed in order, tasks need not be in the
same process, and so on. Under DESQview, however, two tasks may not actually
read the same mailbox. Therefore, DESQview defines two special API calls to
allow mailbox semaphores to be established: mal_lock() and mal_unlock().
The first task to perform a mal_lock() API calion a mailbox is allowed to pass.
Subsequent tasks that attempt to mal_lock() the mailbox are suspended until
the first task performs a ma l_un lock(). (Actually, the first task may ma l_lock()
a mailbox multiple times; the lock is not cleared until the same number of
mal_unlock()s have been performed.) The same mailbox may not be used as a
normal message mailbox and a semaphore mailbox; once a task has locked a
mailbox, it may no longer read it or send it a message.



356 EXTENDING DOS

How DESQview Uses Messages
In our discussion of messages it may have struck you that reading a mailbox ob
ject is a lot like reading the keyboard under DOS using BIOS calls. Performing a
BIOS read command of the keyboard suspends the calling program until a key
arrives. A program can simply poll the keyboard to see if a key is present to
avoid being suspended. And finally, keystrokes arriving from the keyboard are
queued up into the keyboard input buffer. This is not very surprising since the
keyboard queue is designed to handle exactly the same problem as message
mailboxes: communication between two independent entities. In this case, how
ever, the two entities are the single ooS task and the user.

DESQview encounters the same problem as DOS with almost all of its
Input/Output paths. It is not very surprising, then, that DESQview uses inter
task messages for the majority of its communication with application software. A
task that performs a key_read() of the keyboard object is merely reading a mes
sage from keyboard mailbox. Every time the user strikes a key, DESQview places
the key into a message and sends it to a keyboard object.

DESQview generally uses the position of a task's windows to decide which
keyboard object gets the message. DESQview sends keyboard messages to the
task that has the window nearest the foreground. Usually this is the foreground
window (the window marked with a double border). Thus, the foreground task
"hears" the keyboard and the others do not.

Just as DESQview can send keystroke messages to a keyboard object, an ap
plication task can rna l_wri te() a message to another task's keyboard object just
as it might to the task's mailbox object. The mechanism is exactly the same. The
effect on the receiving task is as if the user had typed in whatever the sending
task sent.

In fact, DESQview itself sometimes sends messages other than simple key
strokes to a keyboard object. The reader may have noticed that the pan_apply()

API call used to display a panel in CLOCK returned not only the window handle
used to manipulate the panel's window but also the handle of a keyboard object.
This keyboard handle allows a task to input from a panel as well as output to it.
DESQview handles the actual user input, the manipulation of the mouse, cursor
keys, and so on. There are several modes of operation for panels, but in the most
common mode, the application task receives a message containing simply the
field number followed by what the user entered in that field.



Chapter 7 DESQview 357

Panel Messages

There are three types of fields under DESQview: output fields, input fields, and
select fields. The user may not enter data into output fields. The user may enter
free text into an input field. When the user presses the Enter key, DESQview
sends a message containing the field number along with the contents of the entire
field, and moves the cursor to the next input field. Special flags allow the mes
sage to be sent as soon as tJ,le user exits the field (even without pressing Enter), to
automatically convert everything to uppercase, to right justify input, and so on.
DESQview does not support a flag to allow only numerical input to a field.

The users may select a select field by clicking on it with the mouse, by plac
ing the cursor on the field and pressing Enter, or by entering the special "select"
character defined for the field. No other form of input is possible. To inform the
user when a select field is properly pointed at, DESQview changes its color to the
"pointed at" color. When the field is selected, it changes again to the "selected"
color. Reselecting an already selected field, causes it to deselect, reverting back to
the "normal" color. When a select field is selected, DESQview sends a message
containing the field number and a "Y"; when the field is deselected, DESQview
sends the same message with an "N".

Referring back to our CLOCK program, the defi nea larm() function, which
reads the alarm clock input, appears as follows:

/*definealarm - put up the alarm set panel where the user
may enter the alarm time*/

void definealarm (ulong panhan)
{

ulong alarmwin, alarmkey;
struct panelmsg *alarminput;
int input length;

/*first, open the ALARM panel to display Alarm Set window*/
if (!pan_apply (panhan, win_me(), IIALARM II , 5,

&alarmwin, &alarmkey» {

/*update the window to the previous alarm time ••. */
updatetime (alarmwin, &alarmtime);

/* ••• and position the cursor for time entry*/
fld_cursor (alarmwin, FLO_HOURS);

/*now wait for the user to update the time fields*/
for (;;) {

key_read (alarmkey, &(char *)alarminput, &inputlength);



358 EXTENDING DOS

switch (alarminput -> fldid) {

I*selecting fields 2 thru 5 just
fills values into the alarm time*1

case FLD_HOURS:
strncpy (alarmtime.hour, &alarminput -> data, 2);
break;

case FLD_MINUTES:
strncpy (alarmtime.min, &alarminput -> data, 2);
break;

case FLD_SECONDS:
strncpy (alarmtime.sec, &alarminput -> data, 2);
break;

case FLD_AMPM:
alarmtime.afternoon = alarminput -> data;
break;

I*selecting field 1 removes the alarm window and
returns control to the main program*1

case FLD_ALARM:
win_free (alarmwin);
return;

}

}

}

}

Applying the Set Alarm panel returns the keyboard object handle ala rmkey.
The next two calls simply update the time display in the Set Alarm window to
the previously entered alarm time and position the cursor at the beginning of the
time field to simplify entering the time. The function then begins reading mes
sages from the panel. When the user enters data into any of the input fields,
DESQview generates a message containing the one or two ASCII characters en
tered. These are dutifully copied into the structure alarmtime. Definealarm()
responds to a message from field 1, the asterisk, by removing the panel from dis
play with wi n_free() and returning to the caller.

Input fields are a powerful part of panels. The application program is spared
the difficulty of writing code to handle arrow keys, mouse movement, deletes,
overstrikes and the rest. The resulting program is smaller and easier to write, but
there is a further advantage. All program written using panels for input have the
same "look and feel." In a given situation, pressing the Tab key, for example, has a
predictable result, no matter what the application. If you wonder what that look



Chapter 7 DESQview 359

and feel is, try popping up the DESQview menu-all of the DESQview windows
are panels.

Notification Messages

DESQview can sometimes send messages to a task's mailbox object as well.
When a task displays a window on the screen, normally, the user is allowed to
move it, resize it, and scroll it at will. For some applications, this is unacceptable.
In this case, the task may disable these functions for the particular window. In
other cases, it is enough that DESQview inform the application task that its win
dows are being manipulated. This is called turning on notification for a particular
window and is handled via the W; "_not; fy() call. The notification flags are de
fined in Table 7-1 below.

Table 7-1: Notification types available for DESQview windows.

Type Notify On
NTF_HMOVE. The window is moved horizontally
NTF_VMOVE The window is moved vertically
NTF_HSIZE The window is resized horizontally
NTF_VSIZE The window is resized vertically
NTF_HSCROLL The window is scrolled horizontally
NTF_VSCROLL The window is scrolled vertically
NTF_CLOSE * The window is closed
NTF_HIDE * The window is hidden
NTF_HELP Help is selected from the DESQview menu
NTF_POINTER A message is sent to an application
NTF_FORE * The window is brought to the foreground
NTF_BACK * The window is brought to the background
NTF_VIDEO * Video adapter changes mode
NTF_CUT Cut is requested
NTF_PASTE Paste is requested
NTF_DVKEY * DESQview key is entered
NTF_DVDONE * DESQview menu is closed
* indicates notification sent no matter where mouse points

Once a notification event is enabled with W; "_not; fy(), DESQview sends a
message to the default mailbox object of the task that opened the window if: a)
the notification event occurs, and b) the mouse pointer is pointing to the window.
(For those notification events marked with an asterisk, the second requirement is
not necessary.)



360 EXTENDING DOS

This is sometimes a very useful capability. For example, a DESQview-specific
word processor might want to be informed if the user attempts to close it from
the DESQview menu. When the close message arrives, the editor can then ask the
user whether it should save the file being edited before the application is termi
nated and the edits lost. (In addition, the word processor might disable notifica
tion of the Close Window command when the file has not been changed, such as
immediately after a save. Closing the program at this point will not lose data.
The program might then reenable notification of the Close command when the
buffer has been changed and data could be lost.)

An even more interesting notification event is the Help event. With notifica
tion of this event enabled, the application receives a message whenever the user
enters the Help command on the DESQview menu. This knowledge lets a user
application add its own Help capability to that of DESQview.

Messages to Other Object Types

Besides using the keyboard and mailbox objects, DESQview uses two other object
types to communicate with the user application: the pointer object and the timer
object.

The pointer object is the interface between the program and the "pointing de
vice." The location of the mouse pointer is indicated by a white diamond on the
screen. The pointing device might be a mouse, but DESQview also supports
something known as a "keyboard mouse." When using the keyboard mouse,
pressing the "mouse key" causes the diamond to appear on the screen. It can then
be moved about with the arrow keys. Pressing the mouse key once more returns
the arrow keys to their normal use.

After creating a pointer object using the pt r_new ( ) API function, an applica
tion must associate that pointer with a window, using the pt r_open ( ) call. Doing
so informs DESQview that pointer messages should be sent to that object when
ever the pointer is within that window. DESQview normally generates a message
whenever the mouse moves enough to cause the mouse pointer to change rows
or columns. An application cannot determine mouse resolution finer than a row
or a column. The message received contains the row and column of the mouse,
plus the status of both the left and right mouse buttons.

The pt r_addto () API call can set flags associated with the pointer object. For
example, one flag tells DESQview that the application is not interested in mouse
movement, but only in mouse clicks. In this case, DESQview only sends a mes
sage when the user clicks either or both mouse buttons. Other flags control



Chapter 7 DESQview 361

whether a message is sent both when the mouse buttons are pressed and released
or simply when they are pressed, whether the screen location should be screen
relative or window relative, and whether the mouse diamond should be visible
or invisible. These flags are outlined in Table 7-2.

Table 7-2: Pointer flags.

Flags
PTF_CLICKS
PTF_UPDOWN
PTF_RELSCR
PTF_MULTI

PTF_BACK
PTF_NOTTOP
PTF_HIDE

Description
Only report pointer clicks (default is to report mouse movement as well)
Generate message both on press and release(default is press only)
Rowand column are screen-relative (default is window-relative)
Multiclick messages (accumulate rapid clicks and report them together
instead of individually)
Generate messages even when app is in background
Generate messages even when window is not top-most in application
Hide pointer diamond when in window

Normally only the top window of the top-most application receives pointer
messages. This keeps the user from selecting a menu option when a submenu has
been opened on top of it. An application can specify, however, that a task wants
to receive pointer messages even if it is not the top-most window. In fact, a win
dow can indicate that it wants to receive pointer messages even if its application
is not top-most; that is, it is executing in the background. Of course, no matter
what is selected, the application only receives messages when the pointer is
within a visible portion of its associated window.

Notice that although our CLOCK program accepts mouse input, since it per
forms all input through the panel, it can allow DESQview to handle the mouse.
CLOCK, therefore, does not open a pointer object itself.

The final object type is the timer object. As the name implies, user applica
tions use this object type to measure or delay specific lengths of time. A timer ob
ject is first created with a t i m_new() API call. It may then be set to go off either

. for a specific time of da~ using the t i rn_w r i t e () function, or after a given dura
tion, using the tim_addto() call. Once a timer object is set, a task may then read
the object using tim_read().

Just as with any other object, reading an empty timer object results in the call
ing task being suspended. When the timer expires, DESQview sends a message
to the object, and the task is unsuspended. The task does not continue execution
until the next time it is scheduled. A task may "peek" into a timer object to see
how much time is left with a separate API call.



362 EXTENDING DOS

CLOCK uses both forms of timer object. The ti cktock() function delays for
one second at a time between updates of the clock window, while setalarm()

sets a timer object to expire at the user-selected alarm time. A portion of ti ck
tock() appears below:

ulong timpause;

timpause ;: tim_newel;
for (;;) {

I*start a 1 second timer and wait for it to expire*1
tim_addto (timpause, 100);
tim_re·ad (timpause);

}

With so many different types of objects about, servicing them all could get
quite confusing. Consider, for example, a program that poses a question "to the
user and awaits input. Suppose that, just to be user friendly, this program puts
up a help screen if the user selects Help or if there is no input for 10 seconds. To
do this, the task must read three different objects: the keyboard object from where
input is to come; a timer object, which will go off after 10 seconds; and the default
message object, where DESQview will send a message if the user selects Help.

The task cannot simply read any of these objects, since doing so suspends the
task until a message appears in the object read, irrespective of what might hap
pen to the others. The task could poll each of the objects using the _si zeof ()
calls in a loop, rescheduling after each pass via an api...,pause() call to allow
other tasks a chance to execute. As soon as _s i zeof () returns a nonzero count
for any of the objects, the task can then read it out without fear of being sus
pended.

This isn't a very clean solution, and it wastes CPU time. The task must re
peatedly be scheduled to run even though all that is likely to happen is that it
will check three empty queues and then give up control again. It would be better
if the task could suspend itself until a message appeared in any of its objects.

For this, DESQview defines a special object known as the object queue. The ob
ject queue is simply a queue of object handles. Unlike other object types, a task
has only one object queue. (It is created automatically when the task is started,
and may not be deleted with an obq_free(), nor can new ones be added with an
obct...new() call.) Every time a task creates a new object (or has one created for it;



Chapter 7 DESQview 363

for example, when it applies a panel), the object is added to the object queue's
list. Whenever a message is sent to any of these objects, the handle of that object
is placed in the object queue.

Reading the object queue via an obq_read() suspends the calling task. When
a message appears in any of the task's objects, the handle of the object is returned
from the ob~read() call. This handle is then compared with the handles re
turned from the previous _new() calls to determine which object has received the
message. Objects may be prioritized under DESQview 2.20 and later, so that cer
tain objects go to the front of the list to be serviced even when other handles are
already queued up.

CLOCK reads the object queue when waiting for either keyboard input from
the Clock panel or for the alarm timer when the alarm clock expires. The code to
do that appears below:

for (;;) {
I*now wait for an event to occur*1
obqhan = obq_read();
if (obqhan == panelkey) I*keyboard input*1

alarmonoff (panhan, panelwin,
timalarm, panelkey);

if (obqhan == timalarm) I*alarm timer*1
declarealarm (panelwin);

}

This is the normal structure of a DESQview specific task with multiple in
puts.

Why use DESQview?
As a DOS-based multitasking environment, DESQview has its limitations. It does
allow the user to run DOS extender programs that are compatible with the Vir
tual Control Program Interface (VCPI), but otherwise provides no support for
single programs larger than 640K comparable to the memory management in
Microsoft Windows. It does not run in protected mode on 286 CPUs, so it cannot
take advantage of extended memory on 286-based machines. And its character
mode-based windows and panels are not as attractive as the graphics-mode dis
plays of Windows.

But weighed against these drawbacks, DESQview provides an elegant object
oriented model of communication, both between application tasks and between
applications and the multitasking environment. The DESQview API is straight-



364 EXTENDING DOS

forward and easy to learn. The DESQview Panel Design Tool allows rapid devel
opment of uniform but highly adaptable windows for information display and
data entry. Most importantly, DESQView's overhead is low and its hardware re
quirements are small. Applications run under DESQview retain 90 percent of
their performance on plain non-multitasking DOS, DESQview occupies a scant
200K of RAM (including DOS), and can (unlike Windows) be used effectively on
8086/88 machines.

In short, DESQview is an environment capable of ushering programmers into
the next generation of DOS-based application software, without giving up sup
port for the last generation of software and the huge existing base of 8086/88
basedPCs.



Chapter 8

VCPI for EMS/DOS Extender Compatibility

Robert Moote

VCPI (Virtual Control Program Interface) is a program interface that allows EMS
emulators and DOS extenders to coexist on an 80386- or 80486-based PC. The in
terface is defined as an extension to EMS 4.0; it consists of a set of calls provided
by the EMS emulator and used by the DOS extender. Without the cooperation
made possible by the VCPI interface, a user could not run an extended DOS ap
plication on a machine with an EMS emulator installed.

From the typical PC user's point of view, there is little need to understand or
even know about VCPI; the whole purpose of the interface is to allow programs
to cooperate without the knowledge of, or intervention by, the user. Software de
velopers creating protected-mode applications using a DOS extender, on the
other hand, should at least be aware of the existence of VCPI, because it means
they need to test their products in two environments (DOS, and DOS with an
EMS emulator providing VCPI). An understanding of VePI is important to soft
ware developers who wish to provide or use the VCPI interface directly in their
products; this applies chiefly to developers of EMS emulators and DOS extend
ers, since the interface is tailored specifically for those two classes of program.
For any programmer, an examination of the VePI interface can yield some inter
esting insights into the compatibility problems encountered by protected-mode
software running under DOS.

365



366 EXTENDING DOS

vePI support is included in most popular DOS extender and EMS emulator
products. Tables 8-1a through 8-1c list products that provide vePI support. Table
8-1d lists products for which VePI support has been announced in new releases
due out in the first quarter of 1990. These products should be available by the
time this book is published.

There are two primary sources of conflict between EMS emulators and DOS
extenders. Both types of program switch the processor to protected mode, and
both typically allocate much or all of available extended memory (memory above
1 megabyte>. Most of the VePI interface is devoted to providing a means for co
operation in these two areas, and most of the discussion here is directly con
cerned with one or botll of these problems.

In this chapter, we will look first at the contention that arises between EMS
emulators and DOS extenders for extended memory and protected mode. Next,
we will discuss the interface itself and examine an example of a ooS extender
that uses the interface to run under an EMS emulator. Finally, we will scrutinize
the internals of the interface to see what makes vePI work.

Table 8-1a: EMS emulators supporting VCPI.

Product Name
386-to-the-Max
CEMM
HPEMM386
HPEMM486
QEMM-386

Company
Qualitas, Inc.
Compaq Computer Corporation
Hewlett Packard
Hewlett Packard
Quarterdeck Office Systems

Table 8-1b: General-purpose DOS extenders supporting VCPI.

16-bit
16-bit
32-bit

DOS/16M
OS/286
05/386

Product Name Type Company
3861 DOS-Extender 32-bit Phar Lap Software, Inc.
DBOS/386 32-bit SaHord Software Marketing LTD., for use only with Fortran

programs compiled with FTN77/386 from the same company.
Rational Systems, Inc.
Eclipse Computer Solutions, Inc.
Eclipse Computer Solutions, Inc.

Table 8-1c: Proprietary DOS extender technology supporting VCPI.

Product Name
Professional ORACLE

Company
Oracle Corporation



Chapter 8 VCP] for EMS/DOS Extender Compatibility 367

Table 8-1d: Ql1990 EMS emulators with vep] support.

Product Name
ALL CHARGE 386

HI386

Turbo EMS

Company
All Computers, Inc.

RYBS Electronics, Inc.

Merrill and Bryan

Incompatibilities Between EMS Emulators and DOS Extenders
Both EMS emulators and DOS extenders are available for 286-, 386-, and 486
based pes. To see how conflicts arise, let's review how these products work.

DOS extenders allow large applications to run under DOS by making it pos
sible for them to run in protected mode. A DOS extender provides a protected
mode environment on top of the standard DOS environment, and also directly
allocates extended memory for use by the application program. While implemen
tation details differ, this process is fundamentally the same on a 286 machine as
on a 386 or 486.

EMS emulators are software-only products that tum extended memory into
expanded memory. An EMS emulator directly allocates a chunk of extended
memory and makes it look like expanded memory to programs making EMS
calls. On 286 PCs, this is done by using the BIOS Block Move (Int 15h Function
87h) call to physically copy memory contents as EMS pages are mapped in. On
386/486 machines, the emulator uses the protected mode of processor operation
to take advantage of the hardware paging capabilities of the chip, thereby avoid
ing costly memory copying operations.

On any machine there is contention for extended memory. Without VCPI, a
user who runs both extended DOS applications and EMS-sensitive applications is
forced to either reboot the machine between applications in order to install and
deinstall the EMS emulator, or partition extended memory by configuring the
EMS emulator to allocate some extended memory and leave some free. Neither
approach is desirable, since both are inconvenient for the user.

On 386 and 486 PCs, additional conflicts arise out of the need of both the
EMS emulator and.the DOS extender to use protected mode. The only way to run
an extended DOS application is to turn off the EMS emulator or deinstall it. If the
emulator is turned off, the memory in the EMS memory pool cannot be used, and
the computer must be rebooted to remove the emulator.

VCPI is designed to solve both the extended memory contention problems
and the protected-mode conflicts. Since VCPI is 386/486-specific, we cannot use



368 EXTENDING DOS

it for compatibility on 286 PCs. The reasons for this choice are: 1) protected-mode
conflicts do not exist on 286s, and 2) EMS emulators are not popular on the 286,
due to the overhead required for memory copying; most 286 EMS users install
add-in hardware EMS boards instead.

Protected-Mode Conflicts

EMS emulators for 386- or 486-based PCs operate in protected mode and use V86
mode to run DOS and DOS-based applications. Using V86 mode allows the EMS
emulator to utilize the paging capability of the processor, while still permitting
standard 8086 DOS programs to execute. When an EMS emulator is installed, the
processor runs primarily in V86 mode. When an interrupt occurs, the EMS emu
lator control software gains control in protected mode; it then chooses whether to
service the interrupt in protected mode (for EMS system calls), or "reflect" the in
terrupt back to V86 mode for normal processing by the DOS or BIOS interrupt
handler.

When the processor runs in V86 mode, it always operates at privilege level 3,
the least privileged level. Software executing above privilege level 0 cannot exe
cute certain instructions, including instructions to access the system registers
(control registers, debug registers, and so on). Thus, when an EMS emulator
switches the processor to V86 mode, a DOS extender cannot subsequently gain
control of the machine and switch to protected mode for its own purposes. Any
attempt to switch to protected mode results in a processor exception, which
passes control to the EMS emulator's protected-mode exception handler.

Since an unaided switch to protected mode is not possible, extended DOS ap
plications cannot run on a 386 or 486 PC with an EMS emulator installed. Recall
that 286-specific DOS extenders can also run on 386/486 systems; they still run in
protected mode, but differ from 386/486 DOS extenders by supporting 16-bit
rather than 32-bit execution. While the protected mode compatibility problem is
restricted to operation on 386/486 PCs, all DOS extenders, including 286-specific
products, are affected.

The most important service that VCPI provides is, therefore, a means for a
DOS extender to switch between V86 mode and protected mode. This service ac
tually involves more than just switching processor modes. Since both the EMS
emulator and the DOS extender provide protected-mode environments, the
mode switch must also be accompanied by a switch to the appropriate environ
ment. The DOS extender uses several VCPI calls to initialize its own protected
mode environment, making this mode and environment switching possible.



Chapter 8 VCPI for EMS/DOS Extender Compatibility 369

Extended Memory Allocation

Before we examine the problem of memory contention between DOS extenders
and EMS emulators, let's see how DOS programs allocate extended memory.

MS-DOS is an 8086 program, and can only address memory below 1 mega
byte. For this reason, no DOS services exist to allocate extended memory. Ex
tended memory is an important resource used not only by EMS emulators and
DOS extenders, but also by popular products such as RAM disk drivers, disk
cache programs, and XMS drivers. Programs must mark their usage of extended
memory to prevent corruption by another program attempting to use the same
memory. Two common techniques exist for allocating extended memory: top
down and bottom-up.

Top-down memory allocation obtains memory from the end of extended
memory, down. The program· allocating extended memory hooks the BIOS Get
Extended Memory Size call (Int 15H Function SSH) and reduces extended mem
ory size accordingly. Suppose that a program needs 1 megabyte of extended
memory, and is executing on a machine with 3 megabytes of extended memory
(4 megabytes of total memory): it installs an Int 15H handler that returns 2 mega
bytes (rather than 3) when the BIOS Get Extended Memory Size call is made. The
program has effectively allocated extended memory between 3 and 4 megabytes.

Bottom-up memory allocation takes extended memory, starting at 1 mega
byte, and grows up. The bottom-up technique is an older, more complicated
method first used by the IBM VDISK driver. The extended memory usage is
marked in two locations. A program using bottom-up allocation must hook Int

19H, the reboot interrupt. At a specific offset in the segment at which the Int 19H

interrupt vector points, the program places an ASCII signature identifying the
owner of the interrupt as a VDISK driver. At a second offset in the same segment
is a value specifying the amount of extended memory the program uses.

The second location at which a program using bottom-up allocation marks its
memory usage is a data structure called a boot block (remember, this method was
first used by a RAM disk product). The boot block data structure is always
placed in memory at 1 megabyte. Among other information, it contains a signa
ture identifying it as a VDISK, and a value indicating its usage of extended memory.

Regardless of which technique a program uses, it must respect allocations al
ready made by other programs. The top of extended memory must be obtained
by calling the BIOS Get Extended Memory Size function. The bottom of extended
memory is calculated by checking for a VDISK signature and extended memory



370 EXTENDING DOS

usage in both the Int 19H handler and the boot block at 1 megabyte. Cautious
programs print a warning message and use the larger of the two bottom-up val
ues if they differ, or if a VDISK signature is found in one location but not in the
other.

Most or all currently available EMS emulators, DOS extenders, disk cache
programs, and XMS drivers use top-down extended memory allocation. Most
RAM disk drivers use the bottom-up allocation technique.

Both top-down and bottom-up allocation permit multiple programs to allo
cate extended memory. However, both techniques suffer from the same restric
tion: for each technique, only the last program to allocate extended memory can
dynamically modify the amount of memory allocated. For example, if program A
uses top-down allocation to take memory from 3 megabytes to 4 megabytes, and
program Blater uses top-down allocation to obtain memory from 2 megabytes to
3 megabytes, program A cannot increase (or decrease) its usage of extended
memoI)', because it is no longer first in the In t 15Hhandler chain.

Figure 8-1 shows an example of memory allocation on a machine with 8
megabytes of memory and four active programs using extended memory. One
program, a RAM disk, uses bottom-up allocation to obtain memory from 1 to 1.5
megabytes. Three programs have allocated extended memory with the top-down
method: first (and therefore last in the Int 15H handler chain), a disk cache using
memory from 7 to 8 megabytes; next, an EMS emulator with an EMS memory
pool from 4 to 7 megabytes; and last, a DOS extender. In addition to making calls
to the EMS emulator to obtain memory from the EMS memory pool, the DOS ex
tender directly allocates extended memory between 2 and 4 megabytes. Extended
memory from 1.5 to 2 megabytes, which is still unused, could be allocated by a
fifth program using either top-down or bottom-up allocation. Alternatively, ei
ther the DOS extender or the RAM disk could choose to increase its memory allo
cation, since they are the last programs installed using their respective allocation
methods. In practice, a RAM disk rarely changes its memory allocation dynami
cally, but a DOS extender is quite likely to do so.

With these techniques for allocating extended memory in mind, we can con
sider contention problems between EMS emulators and DOS extenders. Since the
available allocation methods are not dynamic, an EMS emulator grabs all of its
memory when it is installed. If the user configures the emulator to take all avail
able extended memory (the default for most products), none is then available for
a subsequent extended DOS application. A DOS extender can, of course, allocate



Chapter 8 VCPI for EMS/DOS Extender Compatibility 371

EMS memory; but there is no service in the EMS interface to get the physical ad
dress of allocated memory-information that is needed by the DOS extender.

Figure 8-1: Extended memory allocation.

8 MB

7 MB

4 MB

2 MB

1.5 MB

MB

o

Disk Cache

EMS
Memory

Pool

DOS Extender

Unused Memory

RAM Disk

Physical Memory

VCPI, therefore, includes services both to allocate EMS memory and obtain
its physical address directly, and to obtain physical addresses for memory allo
cated through the standard EMS interface. Since a user can configure an EMS em
ulator to take all, some, or none of the available extended memory, a DOS
extender should be capable of both allocating extended memory directly and



372 EXTENDING DOS

using EMS memory (and, of course, other sources of memory such as conven
tional DOS memory and XMS memory). The DOS extender can then obtain the
maximum amount of available memory regardless of how the user configures
the EMS emulator.

The VCPllnterface
vePI consists of a set of services provided by the EMS emulator (the server) and
used by the DOS extender (the client). Technically, a VePI server is any program
that provides both the EMS 4.0 and the vePI interface, and a vePI client is any
program that makes vePI calls. In this chapter, we use the term server inter
changeably with EMS emulator, and client with DOS extender.

Table 8-2 lists the calls provided by a vePI server. Some calls are provided in
V86 mode onl~ some in both V86 and protected modes, and one (a mode switch)
only in protected mode. V86-mode calls are made via the standard EMS' Int 67H

interface, with an EMS function number of DEH in register AH, and a vePI func
tion number in register AL. The client makes VePI calls in protected mode with a
far procedure call to an entry point in the server. The server's protected-mode
entry point is obtained during the interface initialization process. As with V86
mode calls, protected-mode VePI calls set register AH to DEH and pass a vePI
function number in AL.

Table 8-2: vep] call summary.

Function Number Modes
Available

Initialization
OOh V86

Olh V86

02h V86

Function Name

VCPI Presence Detection

Get Protected Mode Interface

Get Maximum Physical
Memory Address

Description

Used to detect the presence of an EMS em
ulator that provides the VCPI interface.

Allows the server to initialize portions of
the client's system tables to facilitate com
munication between client and server in
protected. mode.

Returns the physical address of the high
est 4K memory page the server will ever
allocate.



Chapter 8

Functi9n Number Modes
Available

Function Name

VCPI for EMS/DOS Extender Compatibility 373

Description

MemoryAllocation
03h V86, Prot

04h V86, Prot

OSh V86, Prot

06h V86

System RegisterAccess
07h V86

08h V86

09h V86

Interrupt Controller Management
OAb V86

Get Number of Free 4K Pages

Allocate a 4K Page

Free a 4K Page

Get Physical Address of 4K
Page in First Megabyte

ReadCRO

Read Debug Registers

Load Debug Registers

Get 8259A Interrupt Vector
Mappings

Determines how much memory is avail
able.
Allocates a page of memory.

Frees a previously allocated page of mem
ory.
Translates a linear address in the server's
memory space to a physical address.

Obtains value in the CRO register.

Obtains values in the six debug registers.

Loads specified values into the debug reg
isters.

Obtains the interrupt vectors used to sig
nal hardware interrupts.

OBh

Mode Switching
OCh

OCh

V86

V86

Prot

Set 8259A Interrupt Vector
Mappings

Switch From V86 Mode to
Protected Mode

Switch From Protected Mode
to V86 Mode

Notifies the server that the client has repro
grammed the interrupt controllers to use
different interrupt vectors.

Allows the client to switch to protected
mode and set up its own environment.

Allows the client to switch back to execu
tion in V86 mode in the server's environ
ment.

The calls are grouped into five distinct categories. Only the memory alloca
tion calls, and the call to switch from protected mode to V86 mode, are available
when the client is executing in protected mode. The same VCPI function number,
OCH, is used for the mode switch call in both directions. This duplicate use of a
function number is not ambiguous, since only two processor modes-V86 and
protected-are supported by VCPI.



374 EXTENDING DOS

Interface Initialization

When a DOS extender begins execution, it detects the presence of a VePI server
by: 1) checking for the presence of an EMS driver, 2) allocating an EMS page to
turn the EMS emulator on if it is off, thus causing it to switch the processor to
V86 mode, and 3) making the vePI presence detection call (Function OOH). The
EMS emulator must be turned on to enable the VePI interface.

During initialization, the client makes the Get Protected Mode Interface call
(Function 01 H). This call sets up the conditions that make it possible for the
server to switch between its own environment and that of the client, and for the
client to make calls to the server from protected mode. The Get Interface call also
returns the server's protected-mode entry point for VePI calls. We will examine
this call in more detail in the section Inside ·VCPI, later in this chapter.

The client may optionally choose to use Get Maximum Physical Memory Ad
dress (Function 02H) during initialization. This call is provided for clients who
need to know in advance the physical address of the highest memory page that
will ever be allocated, so they can initialize their memory management data
structures.

Memory Allocation

Memory is allocated in units of 4K pages under VCPI. Notice this is the page size
used by the 386/486 hardware paging unit, not the 16K page size used by the
EMS interface. The EMS memory pool is a contiguous chunk of extended mem
ory allocated by the emulator when it is installed. The memory pool can be
thought of as an array of 16K EMS pages (see Figure 8-2). Each 16K page is fur
ther subdivided into four 4K pages (which are aligned on 4K physical address
boundaries, a requirement of the processor's paging unit). Memory can be allo
cated in the EMS memory pool in two ways: 1) by making EMS calls to allocate
memory in 16K units, or 2) by making VePI calls to allocate memory in 4K units.

A VCPI client can choose to use either or both of the above allocation meth
ods to obtain memory from the EMS emulator. The vePI allocation calls are pro
vided for clients who prefer the page size units used by the hardware, or who
want to allocate memory in protected mode without the overhead of mode
switching. Memory allocated with VCPI calls is required to be in the processor's
memory address space (excluding, for example, hardware expanded memory
boards).



Chapter 8 .VCPI for EMS/DOS Extender Compatibility 375

vePI includes calls to allocate (Function 04H) and free (Function OSH) a single
4K page of physical memory. The number of free 4K pages available can be ob
tained via Function 03H. These calls can be made in both V86 and protected
mode. Allocated pages are identified by their physical address rather than an ar
bitrary "handle"; clients must deal in physical memory addresses since they set
up their own protected-mode environment, including page tables mapping allo
cated memory.

Figure 8-2: The EMS memory pool.

n • 16K .-.---------

(n-1) • 16K 1-----------

EMS 16K Page

•
•
•

vePI 4K PAGE

~------------

-------------

EMS 16K Page

EMS 16K Page-------------

o '------------

32 K 1---------___

28 K

24 K

20 K

16 K1---------__



376 EXTENDING DOS

The Get Physical Address of 4K Page in First Megabyte call (Function 06H) is
provided for clients using the EMS interface to allocate memory. The client allo
cates an EMS page and maps it into the EMS page frame in the usual way. It then
calls Function 06H to obtain the physical address of each of the four 4K pages that
make up the EMS page. This call gives the client the ability to allocate EMS mem
ory with standard EMS calls. Unlike the VCPI allocation calls, both the EMS calls
and the Get Physical Address VCPI call can be made only in V86 mode, since, of
course, the server's environment must be in effect for the server to translate a lin
ear address to a physical address.

Figure 8-3 compares the two methods for allocating physical pages. It shows
a physical address space, in which all extended memory is used for the EMS
memory pool. On the left side of the diagram, the VCPI Allocate 4K Page call al
locates a single 4K memory page and obtains its physical address. On the right
side, EMS calls allocate a 16K EMS page and maps it into the EMS page frame in
the DOS memory space. Then the VCPI Get Physical Address function obtains
the physical address of one of the 4K pages in the 16K EMS page.

System Register Access

The system registers of the 386/486 processors (CRO, CR2, CR3, GDTR, LDTR,
IDTR, TR, the test registers, and the debug registers) cannot be directly stored or
loaded in V86 mode; any attempt to do so results in a processor exception. VCPI
clients do not need access to most of these registers in V86 mode; seve~al of them
are useful only in protected mode, and are loaded as part of the environment
switch that is performed when a mode switch is requested. The interface does
support V86 mode access to some of the system registers.

Read CRO (Function 07H) is provided to give the client the ability to examine
the CRO register, which is not normally accessible in V86 mode. This call exists
primarily for historical reasons; many clients do not use it, and the low 16 bits of
eRO can, in any case, be read directly in V86 mode with the SMSW instruction.

The Read Debug Registers and Load Debug Registers calls (Functions 08H

and 09h) allow the client to read and write the processor debug registers in V86
mode. The debug registers are used to set up to four code breakpoints and/or
data watchpoints in application programs, and to determine the source of a
debug exception. Most 386-specific debuggers use these debug registers.

Since DOS extenders support application programs that run partially in pro
tected mode and partially in real mode, debuggers for extended DOS applica
tions must be capable of setting breakpoints and watchpoints in real-mode code



Chapter 8 VCPI for EMS/DOS Extender Compatibility 377

as well as protected-mode code. While a client could always access the debug
registers directly by first switching to protected mode, it is often more convenient
to read and write debug registers in V86 mode when debugging real-mode code.

Figure 8-3: Allocating EMS memory.

Allocate a 16K page
and map It to EMS
page frame with
EMS calls

Use vePI function 06h
to obtain physical
address of ~K page
within allocated 16K
page

Ion

d

o

EMS EMS

16K Memory Allocat

1 Metho

----------- }+---- -----------:=------------

T Pool

MB

T EMS Page

64K ------------ , ........---------- - J JI"""

1
------------

Frame

640K

vePI
AllocatIon
Method

Use vePI functIon O.h
to allocate a "K page
and obtaIn ft' phy,Ical
addresl

Physical Address Space

Interrupt Controller Management

DOS extenders must handle all interrupts that occur when their protected-mode
environment is in effect. Hardware interrupts are often processed slightly differ
ently than software interrupts, so the DOS extender typically needs to know



378 EXTENDING DOS

which interrupt vectors are used for hardware interrupts. If the standard DOS
hardware interrupt vectors are still in effect, some DOS extenders relocate I RQO

IRQ7 to make it easier to distinguish between hardware interrupts and processor
exceptions.

The Get and Set 8259A Interrupt Vector Mappings calls (Functions OAH and
OSh) give the client the ability to determine which interrupt vectors are used for
hardware interrupts. In real mode, vectors 08h-OFH are used for IRQO-IRQ7, and
vectors 70h-77H are used for IRQ8-IRQ15. Because interrupts 08H-OFH are also
used for processor exceptions, some protected-mode control programs repro
gram the interrupt controllers to use different interrupt vectors for hardware in
terrupts. The Get 8259A Mappings call allows the client to determine which
vectors are used for hardware interrupts.

If the standard vector mappings are still in effect, the client is permitted to re
program the interrupt controllers and make the Set 8259A Mappings call to in
form the server of the new vector mappings. If the interrupt controllers have
already been reprogrammed, the client is not permitted to modify the mappings.

Mode Switching

A DOS extender must perform mode switches to V86 mode and back again every
time an interrupt occurs, whether it is a hardware interrupt, a processor excep
tion, or a software interrupt such as a DOS or BIOS system call. Mode switches
are made with the VePI calls Switch From V86 Mode to Protected Mode and
Switch From Protected Mode to V86 Mode. These calls use the same function
number (you can think of Function OCH as the mode switch function).

The mode switch calls do more than just switch processor modes; they also
switch between the server's and the client's environments. This switching of en
vironments is what really makes VePI work; it allows both server and client to
behave as if they "own" the machine.

Scenario of vePI Use
As an example of how a DOS extender uses the VePI interface, let's take a look at
some of the actions performed to execute the simple protected-mode assembly
language program shown below. The program just makes two ooS calls: one to
print the message "Hello world!" and the second to terminate.



Chapter 8 VCPI for EMS/DOS Extender Compatibility 379

;
; This is a complete protected mode program. It is built with the
; Phar Lap assembler and linker commands:
; 386asm hello.asm
; 386link hello.obj
;
; It is IIbound ll with Phar Lap's 386lDOS-Extender as follows:
; bind386 run386b.exe hello.exp
;
; This creates a HELLO.EXE file, which is run in the standard DOS fashion:
; hello
;

cseg
start

assume cs:cseg,ds:dseg
segment byte public use32 'code'
proc near
mov ah,09h ; Print hello world
lea edx,hellomsg
int 21h

start
cseg

mov
int
endp
ends

ax,4COOh
21h

; exit to DOS

dseg segment dword public use32 'data'
hellomsg db 'Hello world!',ODh,OAh,'$'
dseg ends

sseg segment dword stack use32 'stack'
db 8192 dup (?) .

sseg ends

end start

Figure 8-4a shows the initialization phase of the DOS extender. The client de
termines that the VePI interface is present by using Function OOH as part of the
detection sequence described earlier. It then calls Function OAH (Get 8259A Inter
rupt Vector Mappings) to obtain the interrupt vectors used to signal hardware in
terrupts, so it can set up appropriate protected-mode interrupt handlers for each
of the 256 interrupts.

Next, Get Protected Mode Interface (Function 01 H) is called to initialize the
page table mappings for up to the first 4 megabytes of the client's linear address
space, and to get the protected-mode entry point in the EMS emulator. The DOS
extender then completes the setup of the page table mappings for the rest of its
protected-mode linear address space, and initializes its system data structures



380 EXTENDING DOS

(GDT, LDT, lOT, and so on). In this example, the memory for the system tables is
allocated from the EMS memory pool, to minimize use of conventional DOS
memory. This is done by allocating and mapping in EMS pages, and using VePI
Function 06H to obtain physical addresses for the 4K pages within each allocated
EMS page. (The DOS extender is unlikely to allocate memory with the Allocate
4K Page call during initialization because it is not yet prepared to switch to pro
tected mode, so it has no way to initialize memory for which it has only a physi
cal address.)

Figure 8-4a: DOS extender initialization phase.

Server·s
Protected
Mode
EnvIronment

Server
Interface

Initialization

Run extended
DOS application

from DOS
command prompt

Client
Interface

Initialization

Server
memory

management

VCPI
function 06h
(get physical
addresses of

allocated Et.4S memory)

Initialize rest of To fl •
client protected

mode environment 8-4b

Key:

B



Chapter 8 VCPI for EMS/DOS Extender Compatibility 381

With the above processing completed, the DOS extender is now prepared to
switch to protected mode and load the application program. Figure 8-4b shows
the program loading phase. First, the DOS extender uses VePI Function OCH to
switch to protected mode. It then allocates memory in which to load the program
by making repeated calls to Allocate 4K Page (Function 04H).

The application program is then loaded into the allocated memory. The file
I/O to read the program in from disk is done with DOS Int 21 H function calls.
The software interrupt causes control to pass to the DOS extender's protected
mode Int 21 Hhandler. This handler switches to V86 mode and reissues the inter
rupt to DOS, taking care of buffering data appropriately.

Figure 8-4b: Program loading phase.

fig. 8- 4c

To

VCPI
function OCh

(switch to
protected mode)

Int 21 h
function 3Fh

(read file)

Server
memory
allocator

Allocate segment
descriptors and

physical memory
pages

Load
program

Server
mode and

environment
switch

fIg. 8-4a
From

V86
Mode

Client's
protected

mode program
loader

Server'.
Protected
Mode
Environment

cnent's
Protected
Mode
Environment



382 EXTENDING DOS

Figure 8-4c shows the application program execution phase. The DOS 'ex
tender passes control to the application's entry point in protected mode. The ap
plication issues an Int 21 Hto print the "Hello world!" string. This invokes the
DOS extender protected-mode Int 21 H handler, which copies the string to a
buffer located in the first 640K, where it can be addressed by DOS. The handler
then switches back to V86 mode and reissues the In t 21 Hso DOS can process the
call. After the DOS function completes, control returns to the application, in pro
tected mode.

Figure 8-4c: Program execution phase.

From
fig. 8-4b ~

• Hello World"
program
execution

Client's
Protected
Mode
Environment

Server's
Protected
Mode
Environment

Server mode and
environment swItch

VCPI func. OCh
(switch to
V86 mode) Server

memory
management

VCPI func. OSh
(free 4K page)

Cnent'.
pgm. terminate

handler ----- "'--T---
Real mode portIon
of cllent·s Int 21 h

handler

VCPI func. OCh
(switch to
prot. mode)

Int 21 h
function 09h
(print string)

Real mode portion
of cllent·s Int 21 h

handler

va6
Mode



Chapter 8 VCPI for EMS/DOS Extender Compatibility 383

Finally, the application makes the DOS program terminate call, which is han
dled in the same fashion as the earlier print string call. The OOS extender gets
control from DOS in V86 mode after the application program terminates. The cli
ent then frees physical memory that was allocated to the application program.
VCPI memory is returned to the server with VCPI Function OSH, conventional
memory is freed by calling DOS, and so on. After completing its cleanup, the
DOS extender calls the OOS terminate function to exit back to the DOS command
prompt.

Inside VCPI
Both EMS emulators and DOS extenders, when run independently, "own" the
machine; that is, they control the system tables (GOT, LOT, IDT, TSS, and page ta
bles) required for operation when the processor is in protected mode. Each pro
gram expects to see its own protected-mode environment (environment refers to
the set of system tables listed above) when it is active.

Under VCPI, the server always has control while the processor is executing in
V86 mode. When the client calls the server to switch from V86 to protected mode,
the server must give control to the client in the client's protected-mode environ
ment. Conversel}', when the client requests a switch back to V86 mode, the server
must switch back to its own protected-mode environment before passing control
to the client in V86 mode.

Environment Correspondence

Switching between two protected-mode environments is a tricky operation. Some
correspondence between the two environments is required for the switch to be
possible. The Get Protected Mode Interface call (Function 01 H) allows the server
to initialize two key aspects of the client's environment: the page table mappings
for up to the first 4 megabytes of the client's linear address space, and descriptor
table entries for up to three segments in the client's GOT.

The server initializes some or all of the client's Oth page table (linear ad
dresses from 0 to 4 megabytes). The interface requires the server to duplicate the
first megabyte of its own address space in the client's page table. This linear ad
dress space duplication provides the basis for communication between the server
and client in protected mode. It also gives the client the ability to access the V86
one-megabyte address space from protected mode when the client's environment
is active.



384 EXTENDING DOS

The three segments the server creates in the client's GDT are used for com
munication between client and server when the client's environment is active.
The first segment must be used as a code segment. The second and third may be
used in any way the server desires; typically, at least one is used as a data seg
ment. The server locates all three segments in the linear address region shared by
the server and the client, since the server has no knowledge of the rest of the
client's linear address space.

Address Space Organization

Figure 8-5 demonstrates one possible memory configuration in a VCPI environ
ment. Keep in mind that this example is a simplified diagram and does not accu
rately depict memory organization under actual EMS emulators or DOS
extenders; it leaves out information that does not relate directly to operation
under VCPI. This diagram can help us understand how the relationships be
tween the server's and client's environments make VCPI work.

The physical address space in the example is 4 megabytes in size. The first
megabyte has the usual DOS configuration: 640K of RAM memory, with the
BIOS ROM and video memory located above 640K. The entire 3 megabytes of ex
tended memory is allocated by the EMS emulator (with the top-down allocation
method) as a memory pool for EMS memory.

At any given moment, either the server's or the client's address space is in ef
fect. As we saw in Chapter I, the page tables are used to map the linear address
space into the physical address space. Since the CR3 register contains the physi
cal address of the page directory, modifying CR3 selects a linear address space by
switching to a different set of page tables.

The linear address space set up by the EMS emulator is shown in the left half
of the diagram. The first megabyte is given the identity mapping: linear ad
dresses equal physical addresses. Linear addresses up to 2 megabytes are used to
map the server's code and data segments. Addresses from 2 to 5 megabytes are
used for additional data, such as a memory management area and the system ta
bles (GDT, IDT, and TSS). In this example, the server does not use an LOT. In ad
dition to a system segment for the TSS, the GDT contains the server's code and
data segments. The GOT itself is, of course, located in the linear aqdress space; it
is shown as a separate structure in the figure to minimize the tangle of arrows.

All of the linear region containing the server's code and data, including sys
tem tables, is mapped to physical memory in the EMS memory pool. The server's



Chapter 8 VCPI for EMS/DOS Extender Compatibility 385

page tables, mapped by CR3 directly in physical memory rather than in the linear
address space, are also placed in the EMS memory pool.

The client's linear address space is on the right side of the diagram. As re
quired by the interface, the client maps linear addresses from 0 to 1 megabytes
exactly as they are mapped in the server's address space. In this example, the
server has initialized the client's page table such that the two linear address
spaces are identical up to 2 megabytes. The server's code and data segments are
located above 1 megabyte in the server's address space, and are mapped identi
cally in both environments.

Figure 8-5: Example ofenvironment relationships.

6 MB

Application DATA
Program CODE

5 WB Code and
Data

Client's
LOT

CR3

Additional
Server
Data

Server's
System Client's

Registers Code and
Data

EMS
TSS Memory

Pool
2 ~B

DATA Server's
CODE Code and Server's

Data Code and
Data

1 ~B 1 MB
Server's BIOS. VIdeo, vePI DATA

GOT Etc.
VCPI CODE

0 0 0Server's PhysIcal Client's
Unear Cnent'. GOTAddres. LInearAddress Space AddressSpace

Space



386 EXTENDING DOS

In this example, the ooS extender uses linear addresses from 2 megabytes to
4 megabytes to map its own code and data segments, including its GDT, LDT,
IDT, and TSS. Linear addresses from 4 megabytes to 6 megabytes contain the pro
tected-mode application's code and data. The GDT contains six segments: the
system segments for the client's LDT and TSS, the client's code and data seg
ments, and the vePI code and data segments. The server initializes the vePI seg
ments in the client's GDT when the client makes the Get Protected Mode
Interface call.

The linear region containing the client's code, data, and system tables, and
the application's code and data, is mapped to physical memory in the EMS mem
ory pool. The client's page tables are likewise allocated. in the EMS memory pool.

It is instructive to consider how a real-world configuration might complicate
the situation shown in the example. As you read the following (by no means
comprehensive) list of likely differences, try to visualize how each item changes
Figure 8-5.

• The 64K of memory directly above 1 megabyte is mapped by the server to
physical memory from 0 to 64K; this is for compatibility with DOS pro
grams, which rely on the address space wrapping at 1 megabyte that oc
curs when address line 20 is disabled, as is normally the case under DOS.

• A disk cache and a RAM disk are installed; they each use some extended
memory, leaving less available for the EMS memory pool.

• The EMS emwator is configured to "backfill" unused address space in the
region between 640K and 1 megabyte. This extra memory is used to load
TSRs and device· drivers, keeping them out of the 640K DOS memory.
Some linear regions in the server's address space between 640K and 1
megabyte are now mapped to physical memory in the EMS memory pool,
rather than given the identity mapping.

• The EMS page frame, also located between 640K and 1 megabyte, points to
some allocated and mapped EMS pages in the memory pool.

• The client's GDT contains several code and data segments, at least two of
which map V86 code and data located in the first 640K of the linear ad
dress space.

• The client's LDT has segments to map the application program's PSP and
DOS environment variables in the first 640K of the linear address space.



Chapter 8 VCPI for EMS/DOS Extender Compatibility 387

• The physical memory allocated for the application's code and data seg
ments (client linear addresses from 4 to 6 megabytes) comes partially from
the EMS memory pool, and partially from physical memory below 640K.

• The OESQview386 multitasker is installed. The first 150K of the linear ad
dress space has the identity mapping, but linear addresses between 150K
and 640K are mapped to physical memory in the EMS memory pool be
cause more than one virtual machine is active.

Switching Between Environments

Switching from the server's environment to the client's (or back again) requires
the following operations:

• Reloading CR3, the page directory base register, which switches from the
server's linear address space to the client's.

• Reloading GOTR, the register containing the GOT linear base address and
limit.

• Reloading LOTR, the register containing the LOT segment selector. This
selector references an LDT system segment descriptor in the client's GDT.

II Reloading TR, the register containing the segment selector for the TSS sys
tem segment descriptor in the GDT. Before loading TR, the "task busy" bit
in the TSS segment descriptor must be cleared, since the instruction that
loads TR sets the task busy bit, and generates a processor exceptio~ if the
busy bit was previously set.

• Reloading IDTR, the register containing the IDT linear base address and
limit.

The server has limited flexibility in its choice of the order in which to perform
these operations. CR3 must be loaded first, since all the other register values have
relevance only in the context of the client's linear address space. LDTR and TR
must be loaded after loading GOTR, since they reference segment descriptors in
the GOT. IDTR may be loaded at any point after loading CR3. Note, however,
that interrupts must remain disabled for the duration of this operation, since the
segment registers all contain selectors referencing the server's GDT-so interrupt.
handlers (which save and restore the contents of segment registers) must not be
permitted to execute.

The VCPI call to switch from V86 mode to protected mode passes to the
server the linear address of a data structure containing the client's system register
values, and the protected-mode entry point in the client (see the VCPI call de-



388 EXTENDING DOS

scriptions). This VePI call is implemented in the example below. The environ
ment switch is accomplished with just a few instructions, but the logic is complex
enough to be worth a close look.

;
; This protected-mode code fragment switches from the server's environment
; to the client's environment and transfers control to the client. This is
; part of the processing performed when the client makes the VCPI call
; Switch From V86 Mode to Protected Mode.
; The code can be assembled with the Phar Lap assembler as follows:
; 386asm switch.asm
;

!
;

;

;

;

;
;

;

;

;

; The following requirements must be met by the server before calling this
; routine to transfer control to the client:

1. This routine and the current stack must both be located within the
linear address region that is mapped identically by both server
and client.

2. OS must be loaded with a selector for a writable data segment whose
base address is zero and whose limit is 4 GB.

3. Interrupts must be disabled. This routine is required to transfer
control to the client with interrupts still disabled.

4. On entry to this routine, all general registers contain the values
they had when the client issued the Switch to Protected Mode call.
This routine can modify only EAX, ESI, and the segment registers.

;

.prot ; enable assembly of privileged instructions
assume cs:cseg

cseg segment byte public use32 'code'
switch proc far

;
; Format of the data structure to which ESI points on entry to this routine
;
SWSTR

SWSTR

struc
SW_CR3 dd ? ; client's CR3 value
SW_GOTOFFS dd ? ; offset of client's GDTR value
SW_IOTOFFS dd ? ; offset of client's IOTR value
SW_LOTR dw ? ; client's LOTR value
SW_TR dw ? ; client's TR value
SW_EIP dd ? ; entry point in client
SW_CS dw ?
ends

mov
mov
mov

eax,[esiJ.SW_CR3
cr3,eax
eax,[esiJ.SW_GOTOFFS

; load CR3 to switch to client's linear
; address space
; set up client's GOT



; set up client's lOT

; set up client's LOT
; set EAX = linear base address of
; client's GOT
; index to client's TSS descriptor

Chapter 8

19dte
mov
l idte
lldt
mov
mov
push
mov
and
add
pop
and
l tr
jmp

switch endp
cseg ends

end

VCPI for EMS/DOS Extender Compatibility 389

pword ptr [eax]
eax,[esi].SW_IOTOFFS
pword ptr [eax]
[esi].SW_LOT~

eax,[esi].SW_GOTOFFS
eax,2[eax]
ebx
bx,[esi].SW_TR
ebx,OFFF8h
eax,ebx
ebx
byte ptr S[eax],not 2 ; clear task busy bit in TSS descr.
[esi].SW_TR ; set up client's TSS
pword ptr [esi].SW_EIP ; jump to client's entry point

The first operation the code performs is reloading CR3, which sets up the
client's page tables, thus switching to the client's linear address space (the right
hand side of Figure 8-5). Since an entry requirement of the routine is a OS seg
ment with a base address of zero and a limit of 4 gigabytes, the linear address in
ESI is used as a direct offset in the (assumed) OS data segment. For this operation
to succeed, the code and any data it references (including its stack) must be lo
cated in the linear region (0 - 2 megabytes in our example) mapped identically in
the server's and client's address spaces. Recall that the VCPI call Switch to Pro
tected Mode requires the data structure passed in by the client to reside in the
first megabyte; this guarantees it can be accessed in either address space.

After switching to the client's address space, and before setting up the rest of
the client's environment, we must be careful to avoid any operation that refer
ences a linear address above the linear region shared by the server and client.
This includes loading segment registers; the GOTR still contains the address of
the server's GOT, which is no longer accessible because it is not in the shared lin
ear region. Likewise, interrupts cannot be permitted, since the IDT is also no
longer mapped.

You may be wondering how the processor can execute code or access data if
the GOT is unavailable. The answer lies in the way the processor addresses seg
ments in protected mode. The segment descriptor in the GOT or LOT is read
only when a segment register is loaded with a selector; the processor keeps the
segment's linear base address, limit, and access rights in an internal cache regis-



390 EXTENDING DOS

ter, so it doesn't have to constantly reference the GOT or LOT. Thus, if we don't
attempt to reload a segment register, we can continue to use existing server seg
ments, provided they are located in the shared linear address region.

The second and third operations load the GDTR and IOTR registers. These
registers contain the linear base address and limit of the client's GOT and lOT. It
may seem reasonable to enable interrupts at this point, since the client's page ta
bles, GDT, and lOT are all in effect, but in fact, this isn't possible. To see why, con~
sider how a typical interrupt handler operates. It saves registers it plans to
modify-including segment registers-on the stack, processes the interrupt, re
stores the saved register values, and returns. The trouble arises when the handler
reloads segment registers with saved values: the saved values are selectors that
reference descriptors in the server's GOT, but the current GOT is the client's
GOT.

Next, the LDTR register is loaded. Since the LOTR register contains a seg
ment selector that references a system segment descriptor in the client's GOT, it
must be loaded after loading GOTR.

Next, the TR register is loaded. This register contains a segment selector ref
erencing a TSS descriptor in the GOT. The LTR instruction sets the task busy bit
in the TSS descriptor, and requires that the busy bit be clear before the instruction
is executed. The server must therefore clear the busy bit in the descriptor before
loading TR. The tricky part of this operation arises because the client's GDT is
not located in the shared linear space. The server, however, has the linear base
address of the client's GDT available-it is part of the 6-byte value loaded into
GOTR. This requirement to clear the task busy bit is the reason the code needs a
OS segment with a limit of 4 gigabytes-the server has no control over where the
client locates its GOT in the linear address space.

Finally, the code transfers control by jumping to the client's protected-mode
entry point. For reasons noted above, the client must reload all segment registers,
including setting up its own stack, before re-enabling interrupts.

Memory Allocation in Protected Mode

Apart from the call to switch back to V86 mode, the only VePI calls the client can
make from protected mode are memory allocation calls. These calls are provided
in protected mode for program performance. In fact, performance and the conve
nience of 4K page size units are the only reasons the Allocate 4K Page and Free
4K Page calls are provided at all, since the client can also obtain memory by mak-



Chapter 8 VCPI for EMS/DOS Extender Compatibility 391

ing an EMS allocate call, mapping EMS 16K pages ~to the EMS page frame, and
using VePI Function 06h to obtain physical addresses of the allocated memory.

When the client makes a VePI call in protected mode, the server gets control
with the client's environment in effect. The only knowledge the server has of the
environment is the portion of the linear address space the server initialized when
the client made the Get Interface call, and the three segment descriptors the
server set up in the client's GDT. Depending on the architecture of the server pro
gram, this may be sufficient to service the VePI request If not, the server must
switch to its own protected-mode environment, service the call, and then switch
back to the client's environment to return the result to the client.

VCPI Calls
The VePI calls are shown in Table 8-3, ordered by function number. Each call de
scription includes the input and output parameters for the call and a brief sum
mary of its functionality. Except where noted, all calls can be made only in V86
mode. More complete call details can be found in the VePI specification.

Table 8-3: VePI calls.

Function Input Parameter Output Parameter

AX =DEOOh If VCPI present:
AH=O
BL = VCPI minor version number, in binary
BH = VCPI major version number, in

binary
If VCPI n~t present:
AH = nonzero

Note: The presence detection call is made after checking for the presence of an EMS emulator and allocat
ing one EMS page to make sure the EMS driver is turned on and has switched the processor to V86 mode.

Get Protected Mode AX = DEOlh AH = 0
Interface ES:DI = pointer to client's Oth page DI = advanced to first uninitialized page

table table entry in client's page table
DS:SI = pointer to three descriptor EBX = offset of server's entry point in

table entries in the client's GOT protected mode code segment

VCPI Presence
Detection



392 EXTENDING DOS

Function Input Parameter Output Parameter

Note: When the client makes the Get Interface call, the server initializes a portion of the client's Oth page
table, which maps linear addresses from 0 to 4 megabytes in the client's address space. The server is re
quired to map linear addresses from 0 to 1 megabyte exactly as they are mapped in the server's address
space. The server also initializes up to three descriptor table entries in the client's GOT. The first of these
three descriptors is required to be a code segment; the server returns its entry point in this code segment,
to be used for making vePI calls from protected mode. This segment and address space initialization lays
the groundwork that makes switching between server and client environments, and communication in
protected mode, possible.

Get Maximum AX = OE02h AH = 0
Physical Memory EDX = physical address of highest 4K page
Address server will allocate
Note: The client uses this call during initialization to determine the largest physical page address the
server can allocate. Some clients use the information for memory management; it is convenient to set up a
segment map·ping the entire physical address space, so physical pages can be read and written directly.

Get Number of Free 4K AX = DE03h AH = 0
Pages EOX = number of free 4K pages
Note: The Get Number of Free Pages call returns the current number of unallocated 4K pages in the
server's memory pool. This call can be made in both protected mode and V86 mode.

Allocate a 4K Page AX = DE04h If success:
AH=O
EDX = physical address of 4K page
If failure:
AH = nonzero
EDX = unspecified

Note: The client makes this call to allocate a page of memory. This call can be made in both protected
mode and V86 mode.

If success:AX=DE05h
EDX = physical address of

previously allocated 4K page
AH=O
If failure:
AH = nonzero

Note: The Free Page call is used to free a page of memory allocated via Function 04H. The client is re
quired to free all allocated memory before exiting. This call must not be used to free memory allocated
through the EMS interface. The Free Page call can be made in both protected mode and V86 mode.

Free a 4K Page

Get Physical Address AX = DE06h If success:
of 4K Page in First ex = page number (linear address AH = 0
Megabyte of page shifted right 12 bits) EDX = physical address of 4K page

If invalid page number:
AH = nonzero

Note: The client uses this call primarily to obtain the physical addresses of memory allocated through the
EMS interface and mapped into the EMS page frame. If the allocated memory is to be used in protected
mode, the client needs the physical address so it can map the page in its own page tables.



Chapter 8 VCPI for EMS/DOS Extender Compatibility 393

Function Input Parameter Output Parameter

AX=DE07H AH=O
EBX = CRO value

Note: The Read CRO call returns the current value in the CRO register.

ReadCRO

Read Debug Registers AX = DE08h AH = a
ES:DI = pointer to array of 8

DWORDs, DRO first in array,
DR4 and DRS not used

Note: The client makes this call to obtain the current debug register values.

Load Debug Registers AX = DE09h AH = a
ES:DI = pointer to array of 8

DWORDs, DRO first in array,
DR4 and DRS not used

Note: The client uses this call to load the debug registers with the specified values.

Get 8259A Interrupt AX = DEOAh AH = a
Vector Mappings BX = interrupt vector for IRQO

ex = interrupt vector for IRQ8
Note: This call returns the interrupt vectors generated by the 82S9A interrupt controllers when a hard
ware interrupt occurs.

AH=OAX=DEOBh
BX = interrupt vector for IRQO
CX = interrupt vector for IRQ8
Interrupts disabled

Note: The client uses this call to inform the server that it has reprogrammed the interrupt controllers to
use different interrupt vectors. The client is required to disable interrupts before reprogramming the inter
rupt controllers, and to make this call before re-enabling interrupts.
The client is permitted to perform this operation only if the standard DOS hardware interrupt vectors
(08h - OFH for IRQO - IRQ7, 70H - 77H for IRQ8 - IRQ15) are in effect before the client reprograms the in
terrupt controller.
If the client reprograms the interrupt controllers, it is required to restore the original vector mappings and
inform the server with this call before terminating.

Set 8259A Interrupt
Vector Mappings

Switch From V86 Mode AX = DEOCh GDTR, IDTR, LDTR, TR loaded with
to Protected Mode ESI = linear address below 1 client's values

megabyte of data structure Interrupts disabled
specified below Control transferred to specified FAR entry

point in client
Interrupts disabled EAX, ESI, OS, ES, FB, GS unspecified

Note: The data structure at which ESI points on input to this call is organized as shown in Table 8-4.
The server switches to the client's environment by loading the processor's system registers with the
client's values, and then transfers control to the specified entry point in the client. Care is required when
switching environments; the section Inside VCPI, early in this chapter, contains an example implementa
tion of this call.



394 EXTENDING DOS

Function Input Parameter Output Parameter

GDTR, IDTR, LDTR, TR loaded with
server's values

Interrupts disabled
SS:ES~DS, ES, PS, GS loaded with

specified values
Control transferred to specified FAR entry

point in client
EAX. unspecified

08H

OCH
OEH
10H

Switch From Protected AX. = DEOCh
Mode to V86 Mode Interrupts disabled

DS = segment with a base address
of 0 and a limit at least as large
as the address space initialized
by the server when the Get
Protected Mode Interface call
was made.

SS:FSP must be in linear memory
below 1 megabyte, and points to
the data structure described in
Table 8-5.

Note: The data structure on the top of the stack is organized as shown in Table 8-5.
The server switches to its own protected-mode environment by loading the processor's system registers
with its own values, and then passes control to the client in V86 mode with the segment registers loaded
with the values in the data structure on the stack. The data structure is organized so that the server can
switch to V86 mode and· load the client's registers with a single lRETD instruction. The server must initial
ize the EFLAGS value, since it controls the IOPL setting in V86 mode. This call can be made only from pro
tected mode.

Table 8-4: Data structure for switch to protected mode.

Offset Description
OOH (DWORD) client's CR3 value
04H (DWORD) linear address below 1 megabyte of 6-byte variable containing

client's GDTR value
(DWORD) linear address below 1 megabyte of 6-byte variable containing
client's IDTR value
(WORD) client's LDTR value
(WORD) client's TR value
(PWORD) protected-mode entry point in client

Table 8-5: Data structure for switch to V86 mode.

Offset Description
OOH (QWORD) FAR return address from procedure call (not used)
08H (DWORD) client's V86-mode EIP value
OCH (DWORD) client's V86-mode CS value
lOH (DWORD) reserved for EFLAGS value
14H (DWORD) client's V86-mode ESP value
18H (DWORD) client's V86-mode SS value
lCH (DWORD) client's V86-mode ES value



Chapter 8

Offset
20H
24H
28H

VCPI for EMS/DOS Extender Compatibility 395

Description
(DWORD) client's V86-mode DS value
(DWORD) client's V86-mode FS value
(DWORD) client's V86-mode GS value

Summary
When programs use resources not managed by the operating system under
which they run, potential conflicts arise. In the case of DOS extenders and EMS
emulators, the non-DOS resources used by both are extended memory and the
protected mode of processor execution. The VCPI interface is designed to resolve
the contention for these two resources.

VCPI can be thought of as an extension of EMS 4.0 for the 386/486, and con
sists of a set of services used by a DOS extender. The EMS emulator, which is in
stalled first (usually when the PC starts up), is the provider of the VCPI interface.
When an extended DOS application is run, the VCPI-aware DOS extender detects
the presence of the interface and uses VCPI calls to allow it to switch to protected
mode and allocate memory owned by the EMS emulator.

Most popular EMS emulators, and most DOS extenders used to create pro
tected-mode DOS applications, now support VCPI. PC users can install EMS em
ulators on their 386 and 486 machines and run extended DOS applications
without worrying about conflicts-in fact, without even being aware of any po
tential resource contention problems or of the existence of VCPI. While VCPI
solves only one specific compatibility problem, it is a valuable technology be
cause of the large (and growing) popularity of both EMS emulators and extended
DOS application programs.





Chapter 9

The DOS Protected-Mode Interface (DPMI)

Ray Duncan

The DOS Protected Mode Interface (DPMI) has as its primary goal the "safe" exe
cution of DOS extender protected-mode applications within DOS-based multi
tasking environments. It addresses the problems of contention for system
resources such as extended memory, the descriptor tables that control protected
mode addressing, the processor's debug registers, the interrupt subsystem, and
the video display adapter that inevitably arise when two or more high-perfor
mance protected-mode applications are executing in the absence of a true pro
tected-mode operating system.

In some respects, a DPMI "server" program is similar to a vePI server, in that
it provides mode-switching and extended memory management services to client
programs. But unlike a VePI server, a DPMI server runs at a higher privilege
level than its clients using the hardware to enforce a "kernel/user" protection
model. This allows a DPMI server to support demand paged virtual memory and
maintain full control over client programs' access to the hardware via device
virtualization. Furthermore, the DPMI's functions for memory and interrupt
management are much more general than those in the VePI. The VePI was origi
nally designed for ease of implementation in EMS emulators such as Qualitas's
386-to-the-MAX, and requires a 386 or 486 CPU, whereas the DPMI may also be
implemented on an 80286.

397



398 EXTENDING DOS

The prototype of the DPMI was developed by Microsoft for Windows version
3.0, with input from Lotus and Rational Systems, as part of a general effort to en
hance Windows' performance by allowing true Windows applications to run in
extended memory. Microsoft then decided to involve the other manufacturers of
EMS emulators, DOS extenders, and other multitasking environments to make
sure DPMI could serve as an adequate platform for all DOS-based software that
uses protected mode and extended memory. In February 1990, an ad-hoc com
mittee composed of Microsoft, Intel, Borland, Eclipse, IBM, IGC, Lotus, Phar Lap,
Quarterdeck, and Rational Systems took charge of the DPMI specification and
began the process of recasting it as a vendor-independent, industry-wide standard.

As this book goes to press, the DPMI is still in a period of transition, and it is
likely that the interface will undergo many additional changes before the DPMI
reaches its final form. Consequentl)" this chapter will only describe the DPMI at a
functional level, and will not include detailed programming information.

The DPMllnterface
The function calls supported by the DPMI fall into seven general categories, as
shown on pages 400-402. Let's look at each of these groups a little more closely.

The LDT Management functions allow a program to manipulate its own Local
Descriptor Table. It can allocate and free selectors, inspect or modify the descrip
tors that are associated with allocated selectors, map real-mode addresses onto
protected-mode selectors, and obtain a read/write data selector ("alias") for an
executable selector. Functions are also provided that allow a program to lock
down segments for performance reasons, or to prevent segments that contain in
terrupt handlers from being paged out to disk.

Interestingly, access to descriptors is provided at two levels of abstraction. A
program can construct a descriptor in a buffer, setting all the various fields ex
plicitly, then copy the selector into the descriptor table as a unit. Alternatively, a
program can call individual functions to set a descriptor's base address, limit,
and access-rights byte in separate operations. Note that access to the Global De
scriptor Table (GDT) is not provided, so that the DPMI server can protect itself
from protected-mode applications and isolate those applications from each other
to any extent it wishes.

The DOS Memory Management functions basically provide a protected-mode
interface to the real-mode MS-DOS Int 21H Functions 48H (Allocate Memory
Block), 49H (Free Memory Block), and 4AH (Resize Memory Block). Using these



Chapter 9 The DOS Protected-Mode Interface (DPMI) 399

functions, a protected-mode program can obtain memory below the 640K limit,
which it can use to exchange data with MS-DOS itself, TSRs, ROM BIOS device
drivers, and other real-mode programs that are not capable of reaching data in
extended memory or interpreting protected-mode addresses.

The Extended Memory Management functions are roughly the equivalent of the
DOS Memory Management functions, but allocate, resize, and release blocks of
physical memory above the 1-megabyte boundary. The functions are low-level in
that they do not allocate selectors or build descriptors for the extended memory
blocks; the program must allocate selectors and map the memory onto the selec
tors with additional DPMI calls. When the DPMI server is a 386/486 control pro
gram with paging enabled, the extended memory blocks are always allocated in
multiples of 4K.

The Page Management functions allow memory to be locked or unlocked for
swapping on a page by page basis, in terms of the memory's linear address.
These functions provide control of the system's virtual memory management at a
finer granularity than that afforded by the segment lock and unlock functions al
ready mentioned under LDT Management services. If the DPMI server is running
on a 286, or is running on a 386/486 but does not support demand paging, the
Page Management group of functions have no effect.

The first six Interrupt Management functions listed on page 401 allow pro
tected mode programs to intercept software or hardware interrupts that occur in
real mode or protected mode, or install handlers for processor exceptions and
faults (such as divide by zero and overflow) that are issued on interrupts 0

through 1FH. Normally, the handlers for real-mode interrupts and faults must be
located in locked memory below the 640K boundary, although it is possible to
transfer control at interrupt time to a handler in extended memory by means of a
real-mode Call-Back (see below). The last three Interrupt Management functions
allow a process to enable or disable its own servicing of hardware interrupts,
without affecting the interrupt status of the system as a whole. The DPMI server
implements this by trapping the process's execution of CLI and STI, and main
taining a "virtual interrupt" flag on a per-process basis.

The Translation Services provide a mechanism for cross-mode procedure call
ing. In particular, a protected-mode program can transfer control to a real-mode
routine by either a simulated far call or a simulated interrupt. Parameters may be
passed to the real-mode routine in registers (by initializing a structure similar to
that used by the C ; nt86C) function), on the stack, or both. When a 32-bit pro
tected-mode program calls a 16-bit real-mode procedure, the DPMI function will



400 EXTENDING DOS

perform the appropriate copying and truncation of stack parameters, and even
supply the real-mode stack itself if necessary. The Translation Services also allow
a protected-mode program to declare an entry point (called a Real-Mode· Call
Back) which can be invoked by a real-mode program. This would be useful, for
example, in the case of the Microsoft Mouse driver, which can be configured to
notify an application program whenever the mouse is moved or a button is
pressed or released.

The Miscellaneous Services include a function to get the version of the DPMI
supported by the DPMI server, and a function to convert an arbitrary physical
memory address into a linear (paged) memory address. The version function
should be called by a DPMI client during its initialization, to make sure that all
the DPMI services that it needs are really available. The address conversion func
tion allows a protected-mode program to reach a memory-mapped I/O device
whose physical address lies above the I-megabyte boundary. If the DPMI server
is running on a 286 machine, or on a 386/486 machine with paging disabled, the
returned linear address is the same as the physical address. In any case, once the
linear address is obtained, the program must still allocate a selector and map the
linear address to the selector.

The following list contains the DPMI services exported to protected-mode
DOS extender applications. The grouping of services shown here is for conve
nience of discussion in this chapter, and is not the same as the grouping found in
the DPMI Specification.

LDT Management Services

OOOOH Allocate LDT Selector
OOOlH Free LDT Selector
0002H Map Real Mode Segment to Selector
0003H Get Next Selector Increment Value
0004H Lock Selector Memory
0005H Unlock Selector Memory
0006H Get Selector Base Address
0007H Set Selector Base Address
0008H Set Selector Limit
0009H Set Selector Access Rights
OOOAH Create Code Segment Alias Selector
OOOBH Get Descriptor
OOOCH Set Descriptor
OOODH Allocate Specific LOT Selector



Chapter 9

DOS Memory Management Services
OIOOH Allocate DOS Memory Block
OlOlH Free DOS Memory Block
Ol02H Resize DOS Memory Block

Extended Memory Management Services
OSOOH Get Free Memory Information
OSOlH Allocate Memory Block
OS02H Free Memory Block
OS03H Resize Memory Block

Page Management Services
0600H Lock Linear Region
0601H Unlock Linear Region
0602H Mark Real Mode Region as Pageable
0603H Relock Real Mode Region

The DOS Protected-Mode Interface (DPMI) 401

Interrupt Management Services
0200H Get Real Mode Interrupt Vector
0201H Set Real Mode Interrupt Vector
0202H Get Processor Exception Handler Vector
0203H Set Processor Exception Handler Vector
0204H Get Protected Mode Interrupt Vector
0205H Set Protected Mode Interrupt Vector
0900H Get and Disable Virtual Interrupt State
0901H Get and Enable Virtuallhterrupt State
0902H Get Virtual Interrupt State

Translation Services
0300H
0301H
0302H
0303H
0304H
030SH
0306H

Simulate Real Mode Interrupt
Call Real Mode Procedure with Far Return Frame
Call Real Mode Procedure with Interrupt Return Frame
Allocate Real Mode Call-Back Address
Free Real Mode Call-Back Address
Get State Save Addresses
Get Raw CPU Mode Switch Addresses



402 EXTENDING DOS

Miscellaneous Services
0400H Get DPMI Version
0800H Physical Address Mapping

Using the DPMI
A crucial point to understand with regard to the DPMI is that-like the VCPI-it
is an interface intended for use by DOS extenders only; under normal circum
stances, DPMI functions would never be called directly by an application pro
gram. Proper use of the DPMI functions requires an understanding of
protected-mode machine resources that lies far outside the scope of normal appli
cation programming. It is the DOS extender's job to build upon the DPMI func
tions to provide a protected-mode application with memory, addressability, and
"transparent" access to such OOS and ROM BIOS functions as the application
might need.

DPMI functions are invoked by executing an Int 31 H, with a function num
ber in register AX. Other parameters typically are also passed in registers, al
though a few DPMI functions require data in structures that are pointed to by
DS:SI or ES:DI. DPMI functions indicate success by clearing the carry flag, or an
error by setting the carry flag; other results are usually returned in registers.

The scenario for loading and initialization of a DOS extender under the
DPMI is similar to the sequence described in Chapter 8 for DOS extenders run

ning under the VCPI. A DOS extender is initially loaded in real mode on 286 ma
chines, or in virtual 86 mode on 386/486 machines. Before using any Int 31H

functions, it must check for the existence of the DPMI by executing an Int 2 FH

with the value 1687H in AX. If a DPMI server is present, the following values are
returned:

• AX =0
• BX =Flags (bit 0 =1 if 32-bit programs supported)
• CL = Processor type (02H=80286, 03H=80386, 04H=80486)
• DH = DPMI major version number
• DL = DPMI minor version number
• SI =number of paragraphs required for OOS extender private data
• ES:DI = DPMI mode switch entry point

The DOS extender can then call the entry point whose address was returned
in ES:DI to switch the CPU from real mode or virtual 86 mode into protected



Chapter 9 The DOS Protected-Mode Interface (DPMI) 403

mode. Upon return from the mode switch call, the CPU is in protected mode; CS,
DS, and SS have been loaded with valid selectors for 64K segments that map to
the same physical memory as the original real-mode values in CS, DS, and SS; ES
contains a selector that points to the program's PSP with a 256-byte segment
limit; FS and GS contain zero (the null selector) if the host machine is a 80386 or
80486; and all other registers are preserved.

Having gotten this far, the DOS extender is in a position to use DPMI services
to construct the protected-mode environment that will be used by the actual ap
plication program. It must allocate extended memory segments to hold the
application's code, data, and stacks, and allocate selectors that will be used by the
application to execute in and/or address those memory segments. It can then
read the application's code and data from disk into the newly created segments,
and perform any necessary relocations. If the DOS extender chooses to use mem
ory below the 640K boundary, it can mark that memory as pageable to reduce the
total demand for physical memory. In most cases, the DOS extender will also
supply the application with selectors that address vital structures such as the
PSP, environment block, ROM BIOS data area, and video refresh buffers.

Before transferring control to the application, the DOS extender must install
its own handlers for any software interrupts that will be executed by the applica
tion (such as the MS-OOS In t 21 Hor the ROM BIOS video driver In t 10H). The
DOS extender's processing of such software interrupts may range from very sim
ple to very complex. For example, the In t 21 H character input and output func
tions can mostly be passed right through to DOS; the DOS extender needs to do
little else than switch to real mode before calling DOS, and switch back to pro
tected mode upon DOS's return. Other functions, such as file input and output,
may also require the DOS extender to translate addresses or copy data between
the application's buffers and other buffers below the 640K boundary for DOS's
benefit. And some Int 21 H functions, such as the DOS memory management
functions, must be replaced by the DOS extender entirely.

In addition to whatever handling the DOS extender provides for Int 21 H

functions requested by the application program, the DPMI also filters all Int 21 H

calls. When the DOS extender or its application executes an Int 21H with AH=4CH

(the standard DOS termination function), the DPMI traps the interrupt and re
leases all of the program's protected-mode resources. The DPMI then "passes
down" the termination function to the real-mode owner of Int 21 H, so that DOS
can clean up the program's real-mode resources such as file and device handles
and memory blocks below the 640K boundary.



404 EXTENDING DOS

Summary
The DPMI is a second-generation descendant of the VCPI, in that it provides a
means for protected mode DOS extender applications to run cooperatively in the
presence of 386/486 memory managers, multitaskers, and control programs. It
resolves some problems related to device virtualization, inter-task protection,
and demand paging that were technically difficult or impossible to address in the
VCPI because of the VCPI's original design.

In one way, the DPMI can be viewed as a substrate for the multitasking, pro
tected-mode, easily programmed version of DOS that did not materialize in
OS/2. If the DPMI is eventually subsumed into DOS itself, the future of desktop
computing may take quite a different course than the one currently envisioned
by either UNIX or OS/2 partisans. In the meantime, inclusion of the DPMI in
Windows 3.0 assures it will rapidly achieve a very large installed base, and
makes it likely that the DPMI will become an attractive target for vendors of DOS
extenders and other 286/386/486-aware software in a fairly short period of time.



Chapter 10

Multitasking and DOS Extenders

Robert Moote

Multitaskers that run on top of DOS, such as DESQview 386 and Windows 3.0,
are available for all types of PCs, from 8088-based machines on up. On PCs that
are based on the newer 80286, 80386, and 80486 processors, these multitaskers
can run in protected mode and take advantage of extended memory, device
virtualization, and V86 mode to run more applications at a time and to prevent
the applications from interfering with each other. But when multitaskers use
these advanced chip features, they are assuming much of the role of a true pro
tected-mode operating system, and they can come into conflict with DOS extend
ers which also rely on these advanced CPU characteristics.

Some conflicts between multitaskers and DOS extender applications can be
resolved through the VCPI interface that was discussed in Chapter 8. For exam
ple, VCPI-aware DOS extenders can run under DESQview 386. However, be
cause VCPI does not permit DESQview to perform hardware virtualization, there
are some limitations on running extended DOS applications under DESQview.

Although Windows 3.0 does not support VCPI, extended DOS applications
can be run under Windows when it is operating in real mode, or in standard
mode with some limitations. Current DOS extenders cannot run under Windows
3.0 in its enhanced mode.

405



406 EXTENDING DOS

The DPMI interface provided in Windows 3.0 theoretically allows a DOS ex
tender to attain full compatibility with Windows. The existence of this interface
(described in Chapter 9), and the fact that industry leaders have established a
committee to endorse the interface, gives some hope that future releases of DOS
extender products will be able to cooperate with all multitaskers which take full
advantage of the capabilities of the 80386 and 80486 CPUs. But the benefits of
DPMI are as yet unproven, and there are currently no DOS extenders that are ca
pable of using it.

In this chapter, we will examine in some detail the compatibility problems
that arise when a DOS extender runs under a multitasker, and describe the kind
of interface that is necessary for multitaskers to provide complete hardware isola
tion to DOS extenders. We will also look at the interim solution used by DESQ
view 386 for execution of DOS extenders: a combination of VCPI support and
certain restrictions on the DOS extender's actions.

Multitasking on 80286·Based PCS
On 286 machines, a multitasker is obligated to run DOS programs in real mode
because there is no V86 mode on a 286 processor. Extended or expanded memory
is used for swapping tasks that are not currently active. True hardware
virtualization is not possible, because real-mode programs run at privilege level
0, the most privileged level of the processor.

Since the multitasker executes applications in real mode, DOS extenders that
are loaded under the multitasker are free to take control of the machine and run
in protected mode. There are potential problems with contention for extended
memory and relocation of hardware interrupt vectors, but these problems can
usually be solved at the user level by configuring the multitasker and/or the ex
tended DOS application appropriately. And on 286 machines, hardware
virtualization for DOS extenders is no more (or less) difficult than it is for any
DOS application.

Existing DOS extenders are compatible with most 286-specific multitaskers,
including Windows 3.0 operating in its real mode or standard mode, and the
problems that do exist on 286 machines are a subset of the more general compati
bility issues faced on 386/486 machines. Consequently, the remainder of this
chapter is concerned only with compatibility on the 386 and 486. The memory
contention and hardware interrupt problems just mentioned are discussed below



Chapter 10 Multitasking and DOS Extenders 407

in the context of the 386/486; the possible solutions identified can also be applied
to 286-specific products.

Sources of Incompatibilities on 386- and 486-Based pes
The conflicts between EMS emulators and DOS extenders examined in Chapter 8
-use of V86 mode and memory sharing-are also a source of compatibility
problems between DOS extenders and multitaskers. In addition, a new class of
problems is introduced due to the nature of the services provided by multi
taskers. Since a multitasker runs several programs simultaneously, each of which
thinks it owns the machine, the multitasker must virtualize the hardware and
prevent programs from interfering with each other. The most obvious shared
hardware resource is the displa)', but other examples are the keyboard, mouse,
and communication ports. For the multitasker to be able to virtualize hardware,
it must be in control of the machine at all times.

Recall that the VCPI interface works by allowing each of the cooperating pro
grams (the EMS emulator and the DOS extender) to set up its own environment
while it executes. This environment separation is what makes adding VCPI sup
port to existing products (which are written assuming they own the machine) rel
atively straightforward. Conversel)', the multitasker's requirement that its
environment always be active is the reason implementation of an interface per
mitting DOS extenders and multitaskers to cooperate is a difficult task.

V86 Mode

Most multitaskers, including DESQview 386 and Windows 3.0 enhanced mode,
use the V86 processor mode because of its technical advantages for multitasking
real-mode applications. As noted in Chapter 8, this prevents a DOS extender (or
any other program that wishes to switch to protected mode) from gaining control
of the machine. The cooperation of the multitasker is necessary if the DOS ex
tender is to be able to switch to protected mode. The multitasker can choose to
provide the vePI interface, but that solution leaves other problems unaddressed,
as we shall see.

Memory Sharing

The problem of extended memory allocation, discussed in Chapter 8, also exists
in a multitasking environment. However, with a multitasker the problem is com
pounded by the requirement for multiple programs to obtain memory concur-



408 EXTENDING DOS

rently. The multitasker needs the ability to limit the memory consumption of any
one program, so that a single program cannot prevent all others from executing
by grabbing all the memory. Thus, in a multitasking environment, a DOS ex
tender should only obtain memory from the multitasker.

A second memory issue is implementation of virtual memory. Both OOS ex
tenders and multitaskers commonly provide virtual memory services, but it is in
efficient to have two levels of memory virtualization active simultaneously. For
good performance, a DOS extender and a multitasker should cooperate such that
one, but not both, provides virtual memory services.

Hardware Virtualization

386-specific multitaskers use V86 mode and the processor's I/O permission bit
map to virtualize the hardware when running standard real-mode DOS pro
grams. Because programs running in V86 mode always run at the least privileged
level of the processor, the multitasker can arrange to get control when any pro
gram executes an I/O instruction, attempts to access a system register, or at
tempts to read from or write to a portion of the memory space (such as the video
memory) which the multitasker wants to protect. The multitasker can let each
program think it has direct control of the hardware, but still prevent simulta
neously executing programs from interfering with each other.

When a DOS extender runs in V86 mode, it runs at privilege level 3 like any
other program, so it poses no special problems to a multitasker. But ooS extend
ers and their applications run primarily in protected mode, not in V86 mode.
Furthermore, the DOS extender expects to be in control of the machine when it is
executing in protected mode-it has its own GOT, LOT, lOT, and page tables. If
the multitasker allows the DOS extender to execute in this way-for instance, if
the multitasker provides VePI-then the multitasker is unable to virtualize di
rect hardware access by the DOS extender or the protected-mode application pro
gram. For complete compatibility it is therefore desirable that the OOS extender
not set up its own protected-mode environment, but rather function within the
environment created by the multitasker.

A second problem for virtualization is that DOS extenders always run at
privilege level 0 (the most privileged level) in protected mode, and often also run
the application program at level o. While it is possible for the multitasker to pro
vide memory address space virtualization to level 0 programs, it cannot prevent
level 0 code from performing direct hardware I/O or accessing system registers.



Chapter 10 Multitasking and DOS Extenders 409

Therefore, it is also necessary that both the DOS extender and the application
program run at a less privileged level than the multitasker's kernel.

Hardware Interrupts

The original IBM PC design (based on the 8088) used interrupt levels 08h-OFh for
the eight hardware interrupts IRQO through IRQ7, in spite of the fact that Intel
had reserved interrupt levels 0-1 FH for processor exceptions. Those interrupts
were, in fact, used for processor exceptions on the later 286, 386, and 486 proces
sors. When the 286-based AT was introduced, eight more hardware interrupts
were added (IRQ8-IRQ15); these were assigned to interrupt levels 70h-77h, a
choice which does not cause any additional compatibility problems. Many multi
taskers and DOS extenders reprogram the interrupt controller chip to reassign
I RQO- I RQ7 so there is no ambiguity about the source of an interrupt. Multitaskers
often also relocate IRQ8-IRQ15 to aid in virtualizing hardware interrupts.

It is clearly not acceptable for both the multitasker and a DOS extender run
ning under the multitasker to reprogram the interrupt controller. The two pro
grams must cooperate so that only the multitasker relocates interrupts, and the
multitasker must inform the DOS extender which interrupt vectors are used for
hardware interrupts.

Possible Solutions
For multitaskers and DOS extenders to coexist in a 386/486-based environment,
they must cooperate using an explicit software interface.

A partial solution that permits limited compatibility is implementation of the
VCPI interface in the multitasker. A DOS extender can run in such an environ
ment, but the multitasker is unable to virtualize the hardware for extended DOS
applications. This can be an acceptable restriction for many users' requirements.
The VCPI solution is provided by DESQview 386; we will examine it more
closely below.

A better solution that solves all the compatibility problems entails the defini
tion of a new interface, to be provided by multitaskers and used by DOS extend
ers. One such interface is DPMI, recently defined by Microsoft in collaboration
with several software and hardware vendors, and included in Windows 3.0.

The salient characteristic of DPMI, or of any interface designed to solve DOS
extender/multitasker compatibility, is the requirement for the DOS extender to
run both in the multitasker's environment, and at a lesser privilege level (higher



410 EXTENDING DOS

ring number) than the multitasker. This gives the multitasker the ability to
virtualize hardware accesses performed by an extended DOS application.

Services provided by DPMI include mode switching, memory management,
segment management, hardware and software interrupt control, and manage
ment of processor exceptions. Ideall)', the interface should include sufficient ser
vices to allow DOS extenders to continue to support all currently provided
functionality for protected-mode application programs. DPMI comes reasonably
close to meeting this ideal.

DPMI is not currently supported by DOS extenders because the interface has
only recently been documented, and considerable work is required to re-engineer
existing DOS extender products to use DPMI. All current DOS extender products
set up their own protected-mode environment under the assumption that they
can control the machine in protected mode. Recall that the VCPI interface was
designed to permit that assumption to remain valid, so that the interface would
not be difficult to implement. Changing that assumption so that a DOS extender
can control the machine and provide its own protected- mode environment when
executed under plain-vanilla DOS, but use the DPMI interface and run at a lesser
privilege level when a multitasker is installed, will require a substantial rewrite
of the DOS extender.

DPMI offers the potential for full compatibility between multitaskers and ex
tended DOS applications. However, due to the magnitude of the conversion task,
it is unclear how soon DOS extender developers will include DPMI support in
their products.

DESQview 386 and DOS Extenders
DESQview 386 is capable of multitasking extended DOS applications because it
cooperates with the VCPI interface. The QEMM-386 EMS emulator distributed
with DESQview provides VCPI, and DESQview uses VePI to inform the DOS ex
tender where hardware interrupts are mapped. DESQview also preserves the 32
bit general registers and the debug registers across a context switch, obviously a
necessity for the multitasking of 32-bit programs.

The goal of allowing extended DOS applications to run under DESQview is
achieved by this choice. Recall there are two multitasking compatibility problems
not adequately addressed by vePI: memory sharing between applications, and
hardware virtualization. The memory sharing problem is solved by requiring the
DOS extender to follow specific memory allocation conventions. Hardware



Chapter 10 Multitasking and DOS Extenders 411

virtualization is not possible, and this results in some restrictions on how ex
tended DOS applications can be run under DESQview.

Memory Allocation

A typical DOS program attempts to allocate all available memory, under the as
sumption that it is the only active program on the system. Protected-mode ex
tended DOS applications are no exception. DESQview simultaneously runs
multiple memory-hungry programs by limiting the amount of memory available
to each program. It does this by intercepting DOS and EMS memory allocation
calls to make it appear to the application as if less memory exists than is actually
the case.

Protected-mode vePI calls to allocate and free memory cannot be filtered by
DESQview since they do not require a transition through V86 mode where the
DESQview environment is active. An extended DOS application could poten
tially bypass the memory restrictions placed by a user on a DESQview window
and allocate all available EMS memo~ thereby preventing applications in other
windows from obtaining enough memory to run.

There are two solutions to this problem4 The first is for the DOS extender to
allocate all EMS memory via EMS calls in V86 mode rather than with VePI calls
in protected mode. Since memory allocation is now performed in V86 mode,
DESQview is able to intercept the calls and limit memory consumption.

The second solution requires the voluntary cooperation of the DOS extender.
During initialization, the DOS extender makes the EMS Get Number of Pages call
(Int 67H Function 42H). If DESQview is not present, this call returns the total
amount of free memory in the EMS memory pool. If the program is running
under DESQview, the returned value reflects the user-imposed memory limita
tions for that window. The DOS extender then deliberately limits its allocation of
vePI memory to the amount returned by the EMS call.

Both methods work, and all DOS extender products that support vePI im
plement one of these two solutions. While neither approach is elegant, either
achieves the practical goal of solving the memory contention problem.

Hardware Virtualization

DESQview is unable to prevent an extended DOS application from directly ac
cessing hardware devices. The most commonly used hardware resource is the
display; many programs write directly to the video memory, or to VGA registers,
for performance reasons. (Program access to the display, or to any hardware de-



412 EXTENDING DOS

vice, via DOS or BIOS calls can be virtualized, since the DOS or BIOS call is ser
viced in V86 mode and can be intercepted by DESQview). Protected-mode pro
grams that write directly to the display must be run in full-screen mode. Other
tasks can be run simultaneously, but they must run in the background and not in
a window on the display.

Resolving contention for the keyboard and mouse is usually not a problem
almost all extended DOS application programs use the real-mode mouse driver
and the BIOS to perform I/O to those devices, and these are accessed through
software interrupts that can be monitored by DESQview. Likewise, disk I/O is
nearly always performed with DOS system calls, which are handled in V86 mode
where they can be virtualized.

A significant percentage of extended DOS applications perform I/O directly
to the serial communication ports. This can cause conflicts-but even in V86
mode where I/O can be virtualized it's hard to envision a situation where two
programs can productively perform I/O over the same comm port. The same is
true of most special-purpose hardware that can be added to a PC-it usually
only makes sense for one program to use it at a time.

It is possible to imagine pathological cases that could not be run in protected
mode under DESQview. For example, if a protected-mode application programs
the keyboard controller chip to turn off the keyboard, you probably would not
want to run it in a DESQview window. But such socially unacceptable behavior is
the exception rather than the rule-practically speaking, the only restriction on
multitasking protected-mode programs under DESQview is that they must be
run in full-screen mode if they write directly to the display.

Multitasking Two Protected-Mode Programs

It's instructive to consider what actually happens when DESQview multitasks
two extended DOS applications. Let's suppose the user opens window A and
window B, and wants to run an extended DOS application simultaneously in
each window. Figure 10-1 shows how control is passed between DESQview and
the two applications. DESQview and QEMM set up a V86 mode environment in
which DOS and other real-mode code can run, and a protected-mode environ
ment which is used by DESQview and QEMM for performing system-level activ
ities. Each DOS extender has real-mode code that runs in the V86 environment,
and protected-mode code that runs in the protected-mode environment set up by
the DOS extender. VCPI calls are used by the DOS extender to switch between
V86 mode and its own protected-mode environment.



Chapter 10 Multitasking and DOS Extenders 413

All communication between the programs is performed in V86 mode, which
is the environment they all have in common. The control flow between programs,
shown as arrows in Figure 10-1, is accomplished primarily with interrupts--ei
ther hardware interrupts, or software interrupts such as DOS and BIOS system
calls. The direction of the arrows shows the flow of control when the interrupt
o~curs; as with any interrupt, control is returned along the same path after the in
terrupt handler completes.

Suppose application A is fired up first. DOS extender A starts running in V86
mode, then uses the vePI services provided by QEMM to switch to its protected
mode environment, where it loads and runs application A. As hardware inter
rupts occur, or as DOS or BIOS calls are made by the application, the DOS
extender fields them and uses the VePI services to switch back to V86 mode,
where it reissues the interrupt to pass control to the real-mode handler. Most of
these interrupts are processed directly by DOS or the BIOS. However, some are
handled entirely, or at least filtered, by DESQview and QEMM. For example,
DESQview filters the timer tick hardware interrupt so it can monitor elapsed
time and switch tasks when a program's time slice has expired.

Eventually the user presses the DESQview hot key and instructs DESQview
to start up application B. DOS extender B runs application B in protected mode
exactly as described for application A, with the important difference that DOS ex
tender B provides a protected-mode environment that is completely disjoint from
DOS extender A:s protected-mode environment. After application B has run for a
while, its time slice expires. A timer tick interrupt occurs, and DOS extender B
switches to V86 mode and reissues the interrupt. DESQview gets control and de
cides to switch control back to application A. It "returns" to DOS extender A from
the keyboard interrupt for the hot key, which was the last event seen by DOS ex
tender A before the user started application B running.

Thus, each application runs until it terminates, gives up control implicitly by
execution of a software interrupt for a DOS or BIOS service, its time slice expires,
or some other hardware interrupt (including those caused by keyboard entries)
occurs. Any of these events can result in DESQview transferring control of the
machine from one application to the other. At any given moment, code is running
in one of four environments: the V86 mode environment controlled by DESQ
view/QEMM, DOS extender A's protected-mode environment, DOS extender B/S

protected-mode environment, or DESQview/QEMM/s protected-mode environ
ment.



414 EXTENDING DOS

This seems complex on the surface, but an underlying simplicity is actually
present. At any moment, only one protected-mode environment is active. The
program controlling that environment-either DESQview/QEMM, DOS ex
tender A, or DOS extender B-can act as if it controls the machine, and as if no
other protected mode environment exists. The VePI interface is used to switch
between environments as necessary. Each DOS extender has no knowledge of the
other DOS extender, or of DESQview; as far as it's concerned, it's just using the
VePI interface to switch between V86 mode and its own protected-mode envi
ronment.

Figure 10-1: Multitasking extended DOS applications with VCPI.

VCPI Client A
Protected-Mode
Environment

Direct +-----4

Hardware I/O

V86 Mode

Extended DOS
Application A

DOS Extender A

1

DOS
and 810S

1

1

Extended DOS
Application 8

1
DOS Extender 8

VCPI Client 8
Protected-Mode
Environment

Direct
Hardware I/O

VCPI Server
Protected-Mode
EnVironment

DESQview 386
and

QEMM-386

DESQview doesn't need to treat the extended DOS applications any differ
ently from normal DOS applications; it simply passes control to each program in
V86 mode, and the fact that the program later uses the vePI interface to switch



Chapter 10 Multitasking and DOS Extenders 415

to its own protected-mode environment has no relevance to the multitasking as
pect of DESQview. All this environment switching activity can occur without no
ticeable overhead because the switching is accomplished with a very small piece
of code, as was demonstrated in Chapter 8.

As noted previously, the primary problem with the VCPI solution is the in
ability of the multitasker to virtualize hardware access. This is depicted in Figure
10-1 by the arrows at the top of the diagram showing the extended OOS applica
tions performing direct hardware I/O. Since that I/O is performed in the context
of a protected-mode environment controlled by a DOS extender, DESQview can
not make any provision to trap the I/O and virtualize it.

Summary
Compatibility between multitaskers and DOS extenders is an as yet unresolved
problem that is currently receiving a lot of attention from developers. The two
main solutions being seriously considered by developers are: 1) providing the
VCPI interface in the multitasker, and 2) defining a new interface to be provided
by the multitasker and used by the 005 extender.

VCPI support in the multitasker is a good short-term answer that yields im
mediate compatibility with existing extended DOS applications. The VCPI solu
tion is available today in DESQview 386. However, VCPI does not permit the
multitasker to virtualize direct hardware access by an extended DOS application.
This results in restrictions on how applications can run under the multitasker, no
tably the requirement that an application which performs direct screen I/O must
run in full-screen mode, rather than in a window on the display.

In the longer term, an interface that makes hardware virtualization possible
is highly desirable. The DPMI interface provided in Windows 3.0 is one possibil
ity. DPMI may well become an industry standard, if DOS extender vendors
choose to implement DPMI support in their products. However, even if DPMI is
universally adopted, extended DOS applications capable of using the DPMI in
terface are still some time away from market. This is due to the time required for
a DOS extender vendors to re-engineer their products to add DPMI support, and
for applications developers to re-release their products after incorporating a DOS
extender with DPMI support.





Vendor Guide

Documents and Specifications

The VCPI interface is available from Phar Lap Software, Inc., 60 Aberdeen Ave
nue, Cambridge, MA 02138, (617) 661-1510, or Quarterdeck Office Systems, 150
Pico Boulevard, Santa Monica, CA 90405, (213) 392-9851.

Extended

The eXtended Memory Specification (XMS) version 2.0 is available from
Microsoft Corporation, Box 97017, Redmond, WA 98073, (206) 882-8080.

The Lotus/Intel/Microsoft Expanded Memory Specification (EMS) version
4.0 is available from Intel Corporation, 5200 N. E. Elam Young Parkway, Hills
boro, OR 97124.

The DESQview API Toolkit is available from Quarterdeck Office Systems, 150
Pico Boulevard, Santa Monica, CA 90405, (213) 392-9851.

Memory Managers and EMS Emulators

386-to-the-Max Professional version 4.07 (386MAX
) is available from Qualitas,

Inc., 7101 Wisconsin Avenue, Suite 1386, Bethesda, MD 20814, (301) 907-6700.
QEMM-386 is available from Quarterdeck Office Systems, 150 Pico Boule

vard, Santa Monica, CA 90405, (213) 392-9851.
CEMM-386 is a product of Compaq Computer Corp., 20555 SH249, Houston,

TX 77070, (800) 231-0900.

417



418 EXTENDING DOS

Turbo EMS is a product of Merrill & Bryan Enterprises, Inc., 9770 Carroll
Center Road, Suite C, San Diego, CA 92126, (619) 689-8611.

The source code and executable driver for HIMEM.SYS, Microsoft's imple
mentation of the XMS, is available for downloading from several sources, includ
ing the Microsoft SIG on CompuServe.

Multitasking Environments and DOS-compatible Multitasking Operating Systems

DESQview 386 is a product of Quarterdeck Office Systems, 150 Pico Boulevard,
Santa Monica, CA 90405 (213).392-9851.

Windows is a product of Microsoft Corporation, Box 97017, Redmond, WA
98073, (206) 882-8080.

VM/386 is a product of Intelligent Graphics Corporation (IGC), 4800 Great
America Parkway, Santa Clara, CA 95054, (408) 986-1431.

PC-MOS/386 is a product of The Software Link, 3577 Parkway Lane,
Norcross, GA 30092, (404) 448-5465.

Concurrent DOS 386 is a product of Digital Research Inc., 70 Garden Court,
Montere~CA 93940, (800) 443-4200.

DOS Extenders

3861 DOS-Extender and 3861 VMM are available from Phar Lap Software, Inc., 60
Aberdeen Avenue, Cambridge, MA 02138, (617) 661-1510.

OS/286, OS/386, and OS/386-HB are available from Eclipse Computer Solu
tions, Inc., One Intercontinental Way, Peabody, MA 01960, (508) 535-7510.

DOS/16M is available from Rational Systems, Inc., 220 North Main St., Na
tick, MA 01760, (508) 653~6006.

X-AM was developed by Intelligent Graphics Corporation, 4800 Great Amer
ica Parkway, Santa Clara, CA 95054, (408) 986-1431, but is not currently being
marketed.

OTG Systems, P. O. Box 239, Clifford, PA 18413 (717-222-9100), markets a 386
DOS Extender that is only supported by their Fortran FTN77/386 development
system.

Extended DOS Programming Tools

Alsys, Inc. (Ada)

67 South Bedford St.
Burlington, MA 01803

(617) 270-0030

Catspaw (SPITBOL)

P. O. Box 1123
Salida, CO 81201
(719) 539-3884

Digitalk, Inc. (Smalltalk)

9841 Airport Blvd.
Los Angeles, CA 90045
(213) 645-1082



Vendor Guide 419

Epsilon (Prolog) Microsoft Corporation (C, R. R. Software, Inc. (Ada)

Kurfurstendamm 188, 0-1000 Windows SDK) 2317 International Lane,

Berlin IS, W. Germany Box 97017 Suite 212

FAX: (49) 30 88 23 594 Redmond, WA 98073 Madison, WI 53704

(206) 882-8080 (608) 244-6436

Expert Systems (Prolog) MicroWay, Inc. (C, C++, FOR- Silicon Valley Software (BASIC,

7 W. Way, Unit 14 TRAN, Pascal) C, FORTRAN, Pascal)

Botley, Oxford OX2-0JB Cordage Park, Building 20 1710 South Amphlett Boulevard,

England Plymouth, MA 02360 Suite 100

FAX: (44) 86 52 50 270 (508) 746-7341 San Mateo, CA 94402

(415) 572-8800

INTEK (C++) OASYS (C, C++, FORTRAN, STSC, Inc. (APL)

1400 112th Avenue, SE Pascal) 2115 East Jefferson Street

Bellevue, WA 98004 230 Second Avenue Rockville, MD 20852

(208) 455-9935 Waltham, MA 02154 (301) 984-5123

(617) 890-7889

Laboratory Microsystems, Inc. OTG Systems, Inc. (FORTRAN) Symbolics (LISP)

(Forth) P. O. Box 239 #8 New England Executive Park

12555 West Jefferson Blvd., Suite 202 Clifford, PA 18413 Burlington, MA 01803

Los Angeles, CA 90066 (717) 222-9100 (617) 621-7500

(213) 306-7412

Lahey Computer Systems, Inc. ParcPlace Systems (Smalltalk) Telesoft (Ada)

(FORTRAN) 1550 Plymouth Street 5959 Cornerstone Court West

P. O. Box 6091 Palo Alto, CA 94043 San Diego, CA 92121

Incline Village, NV 89450 (800) 822-7880 (619) 457-2700

(800) 548-4778

Language Processors, Inc. (LPI) Phar Lap Software TransEra Corporation (BASIC)

(BASIC, COBOL, FORTRAN, PL/I) (386 IASM/LINK, LinkLoc) 3707 North Canyon Road

959 Concord Street 60 Aberdeen Avenue Provo, UT 84604

Framingham, MA 01701 Cambridge, MA 02138 (801) 224-6550
(508) 626-0006 (617) 661-1510

Lattice (C) Quarterdeck Office Systems Watcom Systems, Inc. (C)
2500 South Highland Avenue (DESQview API Toolkit) 415 Phillip Street
Lombard, IL 60148 150 Pico Boulevard Waterloo, Ontario
(BOO) 444-4309 Santa Monica, CA 90405 Canada N2L 3X2

(213) 392-9851 (519) 886-3700

MetaWare Inc. (C, Pascal) Rational Systems, Inc. (C) Whitewater Group (Actor)
2161 Delaware Ave 220 North Main St. 600 Davis Street
Santa Cruz, CA 95060 Natick, MA 01760 Evanston, IL 60201
(408) 429-6382 (508) 653-6006 (708) 328-9386





32-bit code, 195-198,219-222
8OC387 math chip (lIT), 253
83D87 math chip (Cyrix), 253
386 enhanced mode, 261
3861 ASM (Phar Lap), 194,232
3861 DEBUG debugger (Phar Lap),

223
386lD05-Extender (Phar Lap), 194,

223-226
and CFIG386, 252
coprocessor support by, 255
paging with, 203
and VCPI, 366

386LINK linker (Phar Lap), 194, 207
208,223

386-to-the-Max EMS emulator
(Qualitas),47, 252, 397

3861 VMM (Phar Lap), 203, 215-216,
224

386WCG.EXE code generator
(Watcom),207

8080 microprocessor (Intel), 6
8086/8088 microprocessors. See

Intel 8086/8088 microprocessors
80286 microprocessor. See Intel

80286 microprocessor
80287 coprocessor (Intel), 253
80386 microprocessor. See Intel

80386 microprocessor
80386SX microprocessor (Intel), 21,

251
80387 coprocessor. See Intel 80387

microprocessor
80387SX coprocessor (Intel), 253

80486 microprocessor (Intel), 21,
251,254

A20 address line, 93-94, 99
Above Disk EMS emulator, 46
Absolute command (Instant-D), 130
Access protected-mode selectors

functions (DOS/16M), 147
Access-rights byte, 16, 18, 189
ADA for 80386 DOS extenders, 233
Add-in memory boards, 79
Addresses and addressing

CPU computation of, 100-101
for descriptor segments, 15
with DOS extenders, 134, 138-

144
DPMI conversion functions for,

400
in first IBM PC, 3-4
Intel 8086, 5-7, 23
Intel 80286,5-7,23
Intel 80386, 22, 24-25
VePI organization of, 384-386
See also Memory and memory

management
Alarm clock

DESQview program for, 315
326

WINDOWS program for, 284
308

Aliases, 19, 136-137, 221
ALL CHARGE 386 EMS emulator,

367

Index

Allocate a 4KPage function (VCPI),
373,375-376,381,390,392

Allocate Alternate Map Register Set
function (EMS), 75

Allocate DMA Register Set function
(EMS), 75

Allocate Extended Memory Block
function (XMS), 94, 96, 104

Allocate Handle and Pages func
tion (EMS), 67

Allocate Handle and Raw Pages
function (EMS), 74

Allocate Handle and Standard
Pages function (EMS), 74

Allocate High Memory Area func
tion (XMS), 94, 103

Allocate Pages function (EMS), 34
Allocate protected-mode selectors

functions (DOS/16M), 147-148
Allocate Upper Memory block func

tion (XMS), 94, 106
Alter protected-mode selectors

functions (DOS/16M), 148
AND instruction (80386),201
ANSI driver with DESQview, 336
API. See Application program inter-

face
Api_begincO call (APD, 349-350
Api_endcO call (API), 349
Api_getmemO call (API), 354
Api_initO call (API), 326
Api_pauseO. call (API), 335
Api_shadowO call (API), 314
APL for 80386 DOS extenders, 233

421



422 EXTENDING DOS

Application program interface
DESQview, 312-315, 324
Windows, 269-271

Applications, DESQview, 337
App_newO call (API), 337
App_startO call (API), 338, 340
AR (access-rights) byte, 16, 18, 189
ArcO function (Windows) 282
ASCII strings, conversion of, 63-65
Assembly language and 80386 port-

ing, 220-221
AST/Quadram/Ashton-Tate En

hanced Expanded Memory Spec
ification, 32

Attributes
selector, 190-191
Window drawing, 282

AutoCAD 386, DOS extender in, 194

Background DESQview tasks, 335
Backtrace command (Instant-D),

131, 175
Bank lines with EMS, 278
Bank-switched memory, 31
BANNER.EXE utility (DOS/16M),

130
Base addresses

for descriptor segments, 15
with Intel 80386, 22

BASIC for 80386 DOS extenders, 233
BD.EXE utility, 232
BeginPaintO function (Windows),

282
Binary dump utility for 80386, 232
Binary files for DESQview panels,

330
BIND utility (05/286), 158
BIOS Parameter Block, VDISK, 91
BIOS services

with DOS extenders, 117, 119
for extended memory func

tions, 82-88
in first IBM PC, 3-4

Bit manipulation instructions with
80386,200,212-214

BitBlt() function (Windows) 283
Bitmaps, 205-208, 283
Block graphics characters for API, .

327 .
Boot blocks, 369
Boot sector, VDISK, 91
Bootstrap program in ROM BIOS, 3
Bottom-up memory allocation, 369-

370

BPB (BIOS Parameter Block),
YDISK,91

Breakpoints with Instant-D, 131
BROWSE.C program, 184-185
BSF instruction (80386), 201, 212
BSR instruction (80386), 201
BSWAP instruction (80486), 251
BTC instruction (80386), 201
BTR instruction (80386), 201, 212
BTS instruction (80386), 201, 212
BUFFERS.COM file (DESQview),

342
Bugs

and DOS extenders, 146-147
with MOL instruction, 252

Build BPB routine in EMS program,
54

Button window class, 280

C-386/486 compiler (Intel), 204
C compilers and programs

and DOS extenders, 124-125,
233

for Window programs, 264
C++ for DOS extenders, 233
Caches

with 80386, 203
with 80486, 251
and DOS extenders, 163

CADs, DOS extenders for, 194
Calling real-mode code functions

(DOS/16M), 148
CEMM for YCPI, 366
CFIG386 utility (Phar Lap), 252
CGA, memory address for, 3
Check boxes, 281
Child windows, 267, 280-281
ChordO function (Windows), 282
Classes, window, 269
Clients

VCPI,372
window, 266, 284

Clipboard with Windows, 278, 283
284

CLOCK program
for DESQview, 315-326
for DOS extenders, 235-236

CLOCK7 program, 284-308
CLOCKWIN panel file, 330
Closing

ofEMM,35
of windows, 303, 307

CMPSD instruction (80386), 201
CMPXCHG instruction (80486), 251

COBOL for 80386 DOS extenders,
233

Code segments
with DOS extenders, 134-138,

221,244
and protection faults, 20
in Windows, 276, 279
writing to, 244

Collisions, data, with DESQview,
348-355

Combobox windows, 281
Command Processor debugger

(Eclipse), 157, 228
Common memory, DESQview, 342
Compact model for Windows, 274
Compatibility

with DESQview,311-312
with DOS extenders, 115
and EMS pages, 40-41
and Intel 80386, 22
and Intel 80486, 251
and PMINFO, 133
vs. power, 1
and protected mode, 13, 110
and quick environments, 172
See also Portability and porting;

Virtual Control Program
Interface

Compilers, DOS extenders in, 171
Conforming segments, 16-17
Control-e handlers

for EMS, 42
for VDISK, 92

Controls, window, 280-281,303-304
Conversion

of ASCII strings and integers,
63-65

of operandi with 80386, 201
Coprocessors

with DOS extenders, 251-257
OS/286 as, 155

Copy option (Windows), 284
CP (Command Processor) debug

ger (Eclipse), 157,228
CP/M-86 operating system, 4
CPU, resetting of, for real-mode ac-

cess, 82, 118
Cpu command (Instant-D), 130
CR3 with YCPI, 387, 389
CreateDCO function (Windows),

282
CreateWindowO function (Win

dows), 288,298,301
Critical-error handlers



for EMS, 42
for VDISK, 92

Critical regions, 348-351,355
CRTO_16M.OBJ file (Microsoft C),

125
Cut option (Windows), 284
CWDE instruction (80386),201

Dbit,23
D.EXE debugger (DOS/16M), 130
D16AbsAddressO function

(DOS/16M), 141,177
#D16ExtAvailO function (Instant

C), 173
#D16LowAvailO function (lnstant

C), 173
D16MemAllocO function

(DOS/16M), 154
D16MemStrategyO function

(DOS/16M), 153, 165, 169
D16pmGetVectorO function

(DOS/16M), 149
D16pmInstallO function

(DOS/16M), 149, 154
D16ProtectedPtrO function

(DOS/16M), 146
D16RealPtrO function (DOS/16M),

154
D16rmGetVectorO function

(DOS/16M), 149
D16rmInstallO function

(DOS/16M), 149
D16rmInterruptO function

(DOS/16M), 150, 154
D16SegAbsoluteO function

(DOS/16M), 146,149-150,177,
188-189

D16SegCancel() function
(DOS/16M), 138, 178

D16SegCSAliasO function
(DOS/16M), 136,149-150

D16SegDSAliasO function
(DOS/16M), 136,138

D16SegLimitO function
(DOS/16M), 141

D16SegProtectO function (lnstant
C), 183

D16SegReallocO function
(DOS/16M), 153-154

Data
collisions of, 348-355
execution of, 134
and overlays, 10

Data segments with Windows, 274,
279

Data selector alias with 80386, 221
Data type widths with 80386, 220
DBASE I~ DOS extender with, 109
DBOS/386 DOS extender, 366
DDE (dynamic data exchange), 278,

284
Deallocate Alternate Map Register

Set function (EMS), 75
Deallocate DMA Register Set func

tion (EMS), 75
Debuggers and debugging

80386-based,199,223,232
API, 312
Command Processor, 228
Instant-D, 119, 122-123, 130-

131, 165
for OS/286, 159
VCPI registers for, 376-377
with VM/RUN, 229-230

Default operand and addressing
modes, Intel 80386, 23

Default windows, DESQview, 329
#defineg command (Instant-C), 173
DefWindowProcO function (Win-

dows), 299, 307
Descriptor Privilege Level bit (AR

byte), 16, 18
Descriptors and descriptor tables,

13,17
caches for, 101
with DOS extenders, 149-150
index into, 15,221
Intel 80386, 23
and protected mode, 7-8, 187-

191
and real mode, 117-118
for XMS, 84-85
See also Global Descriptor

Table; Interrupt Descrip
tor Table; Local Descrip
tor Table

DESQview operating environment
(Quarterdeck), 27-28, 311
and 32-bit code, 197
advantages and disadvantages

of, 30
API for, 312-315
and DOS extenders, 410-415
memory under, 341-347
messages with, 351-363
and OS/386, 227
panels in, 329-333

Index 423

processes in, 337-342
program using, 315-326
tasks in, 333-337, 347-355
uses of, 363-364
and VCPI, 409
windows with, 326-329

Device contexts, 282, 270
Device drivers

EMMas,33
and EMS, 44-46
for VDISK, 90-91
XMS information functions for,

94
Device virtualization, 27
Dialog box procedures with Win

dows, 303-304
Direct hardware access

and DESQview, 313-314, 412
with DOS extenders, 119,221,

237-244
and protected mode, 8,20
trapping of, 27
and Windows, 263-265

Disable DMA on Alternate Map
Register Set function (EMS), 75

Disable EMM Opening System
Functions function (EMS), 76

Discardable segments, 273-274, 276
Disk-based EMS emulators, 46
Dispatch table for EMS program, 53
DispatchMessageO function (Win-

dows),298
Display routine in EMS program,

62-63
DIY instruction (80386), 200
DLL (dynamic linking libraries),

271-272,277
DOS calls

with DESQview, 336
with DOS extenders, 144, 235,

243,245
DOS extenders, 20-21

286-based. See Intel 80286
based protected-mode
DOS extenders

386-based. See Intel 80386-
based protected-mode
DOS extenders

DPMI for. See DOS Protected
Mode Interface

and multitasking, 405-415
VCPI for. See Virtual Control

Program Interface



424 EXTENDING DOS

DOS Protected-Mode Interface, 397,
409-410

functions for, 398-402
use of, 402-404
and Windows, 263

DOS/16M DOS extender (Rational
Systems), 109-111

debugger for, 119, 122-123, 130
131

libraries for, 136-138, 147-154
memory allocation with, 112-

116
vs. OS/286, 186
packages for, 129
and segment arithmetic, 141

142
toolkit for, 124-133
and VCPI, 366

_dos_allocmemO function (C),
169

DosCreateC:SAliasO function
(OS/2), 149

DosGetHugeShiftO function
(OS/2), 142

DOSSEG directive, 182
Double-precision math functions

with coprocessors, 256
DPL bit (AR byte), 16, 18
DPMI. See DOS Protected-Mode In-

terface
Drawing with Wmdows, 305-307
Drivers. See Device drivers
Dual interrupt handlers with 80386,

222
DvapLh file (DESQview), 324
.DVP files (DESQview),314, 338-

340,343
Dynamic data exchange, 278, 284
Dynamic linking, 271-272, 277

EASY-OMF modules, 194, 223, 232
Edit windows, 281, 284
EEMS (Enhanced Expanded Mem-

ory Specification), 32
EGA, memory address for, 3
EllipseO function (Wmdows), 282
EMB (extended memory blocks)

with XMS, 93-94
EMM (Expanded Memory Man

ager),33
EMS. See Expanded Memory Speci

fication
EMSDISK.SYS driver program, 48

66

Emulators, EMS, 46-66, 365-366
Enable DMA on Alternate Map Reg

ister Set function (EMS), 75
Enable EMM Operating System

Functions function (EMS), 76
Error checking in protected mode,

177-178
Error codes

EMS, 76-77
XMS,106-107

Error handling routine in EMS pro
gram, 59-60

Events, window, 268
Exchange Memory Regions func

tion (EMS), 73
.EXE files for Windows, 272
EXEC function (DOS) and OS/286,

157
.EXP files

for 386 IDOS Extender, 224
merging of, 129
OS/286,158
OS/386,227
running of, 115-116

Expand down segments, 17
Expanded memory, 10-11

access to, 35-39
and conventional memory, 40
vs. extended memory, 79
Windows support for, 278-279
See also Expanded Memory

Specification
Expanded Memory Manager, 33
Expanded Memory Specification,

11,31-32
access to, 35-39
advantages and disadvantages

of, 29
components of, 33-35
and DESQview,341-346
vs. DOS extenders, 115
with drivers and TSRs, 44-46
emulators of, 46-66, 365-366
error codes for, 76-77
programming interface for, 66-

76
use of, 39-43
with VCPI, 365-366, 374-377
Windows support for, 278

Expansion bus, 3
Exported Window functions, 271
EXPRESS.EXE (05/286), 157-158
Extended memory, 11-12, 79-80

access to, 81-82

BIOS functions for, 82-88
contention for. See DOS Pro-

tected-Mode Interface
and DESQview, 341
for EMS emulators, 47
vs. expanded, 33
LOADALL instruction for, 100-

103
management of, 88-92
Windows support for, 278-279
See also EXtended Memory

Specification (XMS)
Extended memory blocks with

XMS,93-94
EXtended Memory Manager, 94-96
EXtended Memory Specification

(XMS), 12, 81,93-100
advantages and disadvantages

of, 29
vs. DOS extenders, 115
error codes for, 106-107
programming interface for, 103-

105
and Windows, 263

Extended segment services,
OS/286,159-16O

EXTMEM.ASM program, 85-88

/FARCALLTRANSLATION option
(Microsoft), 127

FASTLINK linker (Phar Lap), 223
Faults, protection, 15, 17, 20

and DOS extenders, 134
and Instant-C, 174-175
and Instant-D, 131

Fields with DESQview panels, 331
332

File management
with DOS extenders, 123,211,

231-232
operating system for, 4

FILEREAD.ASM program, 119-122
Files command (Instant-D), 130
FILES.COM file (DESQview), 342
Filling window functions, 282-283
Fixed segments, 273-274, 276
Floating-point coprocessors. See

Coprocessors
Focus windows, 279
Fonts, system, 283
Foreground DESQview tasks, 335
Formatting of RAMdisk, 60-62
FORTH for 80386 DOS extenders,

233



Fortran for 80386 DOS extenders,
220,233

FORTRAN-386 compiler (NOP and
SVS),204

FORTRAN F77L compiler (Lahey),
197,223,229,232
coprocessor support by, 255
DOS extender in, 171

FoxBase+/386, DOS extender for,
195

FP_OFFO macro with DOS extend
ers,139

FP_$EGO macro with DOS extend
ers, 139, 141-142

Free a 4K Page function (VCPD,
373,383,390,392

Free Extended Memory Block func
tion (XMS), 94,96, 105

Free High Memory Area function
(XMS), 94, 104

Free Upper Memory Block function
(XMS), 94, 106

Freelist command (Instant-D), 130
FWORDs, 199, 199
FwriteO function with 32-bit C, 210-

211

G bit, 22
Gates, 18, 117
Gateways, 005-to-80386, 235
GCLisp (Gold Hill), DOS extender

for, 195
GOA (Global Data Area) and

VM/RUN, 230, 245-246
GDI (Graphics Device Interface),

272,281-283
GDT. See Global Descriptor Table
Get 8259A Interrupt Vector Map

pings function (VCPD, 373, 378
379,393

Get Addresses of Mappable Pages
function (EMS), 73

Get All Handle Names function
(EMS), 71

Get Alternate Map Registers func
tion (EMS), 74

Get Attribute Capability function
(EMS), 70

Get EMB Handle information func
tion (XMS), 94, 105

Get EMS Version function (EMS),
34,67

Get Extended Memory Size func
tion (XMS), 83

Get Handle Attribute function
(EMS), 70

Get Handle Name function (EMS),
70

Get Hardware Configuration func
tion (EMS), 73

Get Maximum Physical Memory
Address function (VCPI), 372,
374,391

Get Number of Active Handles
function (EMS), 67

Get Number of Expanded Memory
Pages function (EMS), 34

Get Number of Free 4K Pages func
tion (VCPD, 373, 375, 392

Get Number of Mappable Pages
function (EMS), 73

Get Number of Page for Handle
function (EMS), 67

Get Number of Pages function
(EMS), 66,411

Get Number of Raw Pages function
(EMS), 73

Get Page Frame Address function
(EMS), 34,38, 66

Get Pages for All Handles function
(EMS), 68

Get Physical Address of 4K Page in
First Megabyte function (VCpn,
373,376,380,392

Get Protected Mode Interface func
tion (VCpn, 372, 374, 379, 383,
386,391

Get Size of Alternate Map Register
Save Area function (EMS), 74

Get Size of Page Map Information
function (EMS), 45, 68

Get Size of Partial Page Map Infor
mation function (EMS), 45, 69

Get Stack Space Required for Map
Page and Call function (EMS), 72

Get Status function (EMS), 34, 66
Get Total Handles function (EMS),

71
Get XMS Version function (XMS),

94, 103
GetDCO function (Windows), 282,

301
GetMessageO function (Windows),

298,308
GetStockObjectO function (Win

dows},298
GetVector function (DOS), 225
GetVersion function (DOS), 225

Index 425

GETXM routine for XMS, 86-87
Global addresses in protected

mode, 14-15
Global Data Area and VM/RUN,

230
Global Descriptor Table, 15, 17,81

with DOS extenders, 116-117,
234

and DPMI, 398
examination of, 187-189
for extended memo~84
and Instant-C, 185-186
and multitasking, 408
and OS/286, 156
register for, 17
with VCPI, 384-387, 389-390
in virtual 86 mode, 25

Global Disable A20 Line function
(XMS), 94, 104

Global Enable A20 Line function
(XMS), 94, 104

Global heap, 273-274
Global optimization with 80386, 204
GlobaWlocO function (Windows),

275-276
GlobalFreeO function (Windows),

275
GlobalLockO function (Windows),

275
GlobalNotifyO function (Win

dows),276
GlobalSizeO function (Windows),

275
GlobalUnlockO function (Win

dows),275
Goldworks (Gold Hill), DOS ex

tender for, 195
GP faults. See Protection faults
GPI (Graphics Programming Inter

face), 309
Graphical user interface, 260-265
Graphics with 80386, 221

See also Windows operating en
vironment and windows

Graphics Device Interface, 272, 281
283

Graphics Programming Interface,
309

GUI (graphical user interface), 260
265

Handles
with API, 270
for DESQview objects, 327, 331



426 EXTENDING DOS

EMS, 38-39, 42
with Windows, 275

Hard-wired segments, 20
Hard-wired selectors, 237-238
Hardware interrupts and interrupt

handlers
with 80386-based DOS extend

ers, 244-248
DPMI management functions

for, 399
and extended memory, 406
and multitasking, 409
with VCPI, 373, 377-378

Hardware virtualization, 408-409,
411-412

HB (HummingBoard) coprocessor
(Eclipse), 208, 226-229

HC386 driver (MetaWare),208
HCD386~EXE compiler (Meta

Ware), 208
HDIFEOBJ module (DOS/16M)

with DOS extenders, 141
Headers

for CLOCK7.C program, 294
forEMM,33

Heap management
and DOS extender perfor

mance, 164
OS/286,159
with Windows, 273-278

HeapchkO function (C), 141
HeapwalkO function (C), 141, 172
Hewett, Fred, 155
HI386 EMS emulator (RYBS Elec

tronics),367
High-level languages for 80386 sup

port, 233-234
High memory area with XMS, 93

94,98-100
HIMEM.SYS driver, 94, 263
HMA (high memory area) with

XMS,93-94,98-100
HPEMMx86 (Hewlett Packard)

EMS emulator, 366
Hummingboard coprocessor

boards (Eclipse), 208,226-229

IBM PC, first, 3-5
Icons for windows, 266
IDIV instruction (80386), 200
IDT. See Interrupt Descriptor Table
Imported Window functions, 271
Impure code with DOS extenders,

134-138

Imr command (Instant-D), 130
IMUL instruction (80386), 200, 202
In-line assembly with 80386, 213
Indexes

with 80386, 200-201
into descriptor tables, 15, 185,

221
into selector table indicator, 185

Indirection with segments, 14
Information services, OS/286, 159
Initialization functions

in EMS program, 57-59,65-66
OS/286,158
VCPI,372,374,379-380

Input focus, 279
Instance handlers, 270, 273, 297
Instant-e, 109, 111

DOS extender program using,
169-192

Instant-D debugger, 119, 122-123,
130-131

Int 03H for triple faults, 118
Int ODH handler, 175
Int IlH for coprocessor detection,

255
Int 15H

and expanded memory, 367
and extended memory, 83,89

92,369
and shared memory, 12

Int 19H and VDISK, 89-92
Int 21H

with DOS extenders, 117-119,
123, 211-212

for DPMI, 398, 403
for EMM access, 35
MS-DOS, 211-212
and OS/286, 159-160
and OS/386, 228
with VCPI, 381-382

Int2FH
for DPMI, 402
and XMM, 95-96

Int 31H for DPMI, 402
Int67H

for EMM, 34, 36-38
for handle releasing, 42
for pages, 41-42
for V86 node, 372

Int860 function
and DOS extenders, 125-126,

216
with EMS, 35

Int86xO function with EMS, 35

IntdosxO functions, 125-126
Intel 8080 microprocessor, 6
Intel 8086/8088 microprocessors

addressing modes for, 23
in first IBM PC, 3
market for, 29
memory addressing by, 5-6

Inte18Ox86 family tree, 2
Intel 80286 microprocessor

addressing modes for, 23
EMS emulators for, 47
and extended memory, 11-12
general registers in, 22
introduction of, 5
LOADALL instruction for, 100-

103
market for, 29
multitasking with, 406-407
protected-mode instructions

for, 178-187
real mode vs. protected mode

in, 6-8
Intel B0286-based DOS extenders,

109
advantages and disadvantages

of, 29
and bugs, 146-147
and Int 21H, 122-124
library for, 147-154
market for, 110-112
operation of, 116-122
performance of, 162-168
porting to, 134-146
and protected-mode MS-DOS,

112-116
toolkit for, 124-134
and two-machine model, 154

162
Intel 80287 coprocessor, 253
Intel 80386 microprocessor

addressing modes fOf, 24
EMS emulators for, 47
market for, 29
and pfotected mode, 21-27

InteI80386-based protected-mode
DOS extenders
and 32-bit programming, 195

198,219-222
vs. 80286-based, 167, 209
advantages and disadvantages

of, 29, 198-204
applications fOf, 204-219
assembly language interface

for, 234-236



coprocessors for, 251-257
direct hardware access with,

237-244
hardware requirements for, 251-

252
interrupt handlers for, 244-248
market for, 194-195
and multitasking, 407-410
and RPCs, 248-250
tools for, 222-234
and yirtual memory, 250-251

Intel80386SX microprocessor, 21,
251

Intel 80387 coprocessor
with 80386, 253-254
support for, 251
vs. Weitek coprocessors, 256

Intel 80387SX coprocessor, 253
Intel 80486 microprocessor, 21, 251,

254
Interactive C, 170-171
Interleaf Publisher, DOS extender

in, 194-195, 203
Interprocess communications for

Windows, 283-284
Interrupt Descriptor Table, 17

with DOS extenders, 117, 122-
123,234

examination of, 187
and multitasking, 408
register for, 17, 387, 389
with VCPI, 384-385, 387, 389

Interrupt vector method for EMM
access, 36-37

Interrupts and interrupt handling
functions
with 80286-based DOS extend

ers, 21, 118, 123, 144, 148
149 .

with 80386-based DOS extend
ers, 216,221, 225,227,244
248

and DESQview tasks, 335
DPMI management functions

for, 399, 401, 403
and EMS emulation, 47,51-53
and extended memory, 406
fault. See Protection faults
and high memory area, 99
and LOADALL instruction, 101
and multitasking, 409
for OS/286, 159
table for, 17
with VCPI, 373, 377-378, 390

with X-AM, 231
Intertask communication and mes-

sages, DESQview, 348-355
INVD instruction (80486), 251
INVLPG instruction (80486), 251
I/O

and protection faults, 20
and V86 mode, 27
See also File management; Mes-

sages
IspmO function (DOS/16M), 143

Kernel, OS/286, 156-157
KERNEL link library (Windows),

272
Key_readO call (API), 356
Keyboard

with DOS extenders, 119
messages for, 268
with Windows, 279-280

LAR instruction (80286), 178-180
Large model, 6

for DESQview, 325
for Windows, 274

Lattice C, OS/286 in, 162, 171
LBIND utility (Lattice), 162
LOT. See Local Descriptor Table
LEA instruction (80386), 200, 202
Least-recently used algorithm with

virtual memory, 25D-251
Letwin, Gordon, 82
Libraries

for DESQview, 315
[X)S/16M, 147-154
dynamic linking, 271-272, 277
real-mode, 248-250

LIM EMS. See Expanded Memory
Specification

Limit field
for descriptors, 15
granularity of, 22

Lines, drawing of, 282
LineToO function (Windows), 282
LINK linker (Microsoft)

with DOS extenders, 126, 208
for overlays, 10
with Windows, 271-272

LINK-EM/32 linker (Lahey), 208
Linkers and linking

of DESQview object files, 325
with DOS extenders, 126, 208,

223
dynamic, with Windows, 271

272

Index 427

and Instant-C, 191-192
for overlays, 9-10
with Windows, 271-272

LinkLoc linker (Phar Lap), 126, 223
LISP

for 80386 DOS extenders, 233
DOS extender in, 171

LIST program, 112-114
Listbox windows, 281
LLIBCE.LIB (Instant-C), 172-173
#load command (Instant-C), 172
Load Debug Registers function

(VCPI), 373, 376, 392
LOADALL instruction (80286), 100

103
LoadCursorO function (Windows),

298
LOADER.EXE loader (DOS/16M),

116-117
Loaders

DESQview, 313-314,341-342
protected-mode, 116-117

LOADHI.SYS loader, 342
Loading functions, OS/286, 158
#loadlib command (Instant-C), 182
Local addresses in protected mode,

14-15
Local Descriptor Table, 15

with DOS extenders, 117, 156
157,234

DPMI management function
for, 398, 400

editing of, 18-19
examination of, 187, 189-190
index into, 185
for multitasking, 19,408
register for, 387-390
in V86 mode, 25
with VCPI, 384-387, 389-390

Local Disable A20 Line function
(XMS), 94, 104

Local Enable A20 Line function
(XMS), 94, 104

Local heap management with Win
dows,276

Local optimization with 80386, 204
LocaltimeO function (Windows),

304
Lock Extended Memory Block func

tion (XMS), 94,98, 105
Locking

for critical operations, 350, 355
of pages with DOS extenders,

250-251



428 EXTENDING DOS

of segments, 275
LODSD instruction (80386),201
Logical device name for EMM, 33
Logical pages, EMS, 34,39-40,42
Long division with 80386, 200
Lookup technique for EMS page

translation, 42
Lotus 1-2-3

DOS extender with, 109
expanded memory for, 10-11

Lotus/Intel/Microsoft Expanded
Memory Specification. See Ex
panded Memory Specification

Low memory, DOS/16M allocation
of, 153

LRU (least-recently used) algorithm
with virtual memory, 250-251

LSL instruction (80286), 178-180, 183

Machine status word, 81-82, 117
#make command (Instant-C), 191
MAKE utility (Microsoft) with Win-

dows,286
MAKEPM.EXE postprocessor

(DOS/16M), lIS, 126-128, 165,
185

MakeProcInstanceO function (Win-
dows),300

Mal_addrO call (API), 354
Mal_findO call (API), 353
Mal_IockO call (API), 355
Mal_meO call (API), 352-353
Mal_nameO call (API), 353
Mal_newO call (APD, 353
Mal_of0 call (API), 352-353
Mal_readO call (API), 351, 353
Mal_sizeofO call (API), 351
Mal_subfromO call (API), 354
Mal_unlockO call (API), 355
Mal_writeO call (APD, 351, 353-354,

356
Map Expanded Memory Page func

tion (EMS), 34, 40, 67
Map Multiple Pages by Address

function (EMS), 69
Map Multiple Pages by Number

function (EMS), 69
Map Pages and Call function

(EMS), 72
Map Pages and Jump function

(EMS), 71
Mapping mode, GDI, 282
Market considerations, 29-30, 194

195

MASM (Microsoft)
for 80386 code, 232
code checking by, 135

Math coprocessors. See
Coprocessors

Mathematica, DOS extender for, 194
MDA, memory address for, 3
Media check routine for EMS pro-

gram,53-54
Medium model for Windows, 274,

277
Memory and memory management

with 32-bit code, 198
by 3861 DOS Extender, 225, 227
with DESQview, 341-347, 411
by DPMI, 398, 401
and dynamic linking, 271
in first IBM PC, 3
limited, methods to overcome,

8-13
in protected mode, 8, 112-122
protection of, by paging, 27
sharing of, and multitasking,

407-408
with VCPI, 373-376, 390-391
by Wmdows,.259-260, 272-278
by X-AM, 231
See also Addresses and address

ing; Expanded memory;
Extended memory

Memory device context, 282
Menu bar for windows, 266
Merging of .EXP files, 129
Messages

DESQview,351-363
keyboard and mouse, 279-280
window, 267-269

Metafile device context, 282-283
MetaWare High C compiler

binary dump utility for, 232
command line for, 208
coprocessor support by, 255
for DOS extenders, 197,219,

222,233
intdosO and int860 support by,

216
and 05/386, 228

Meyer, Bertrand, 178
Mirrors (Micrografx), 309
MK_FPO macro with DOS extend-

ers,139
Mode switching, 20-21, 373,378
Module definition files, 296,308

Mouse
DOS/16M support for, 129
messages for, 268
for Windows, 264, 279-280

Move Extended Memory Block
function(~S),83,94,96, 105

Move Memory Region function
(EMS), 72

Moveable segments, 273-274, 276
277

MoveToO function (Windows), 282
MoveWindowO function (Win

dows),301
MOVSD instruction (80386),200-

201,256
MOVSW instruction (80386),201
MOVSX instruction (80386),201
MOVZX instruction (80386), 197,

201
MUL instruction (80386), bug in, 252
Multiplication instructions, Intel

80386,200,202,252
Multitasking

and 32-bit code, 197
compatibility of. See DOS Pro

tected-Mode Interface
and DESQview, 27-28, 314, 335

336, 346-347
and DOS extenders, 156-157,

405-415
Intel 80286 for,S
and protected mode, 13-14
system descriptors for, 17-18
and Windows, 262, 269

NB.C program
for DOS/16M, 150-154
for OS/286, 160-161

NOP (Numeric Data Processor), 204
NETSC package (DOS/16M), 154
NetBIOS, programs to test for, 150-

154, 160-161
New Executable format, 272
Non-elient areas in windows, 266
Notification messages, DESQview,

359-360
Null pointers in protected mode,

145
Null selectors in protected mode, 83
Numeric coprocessors. See

Coprocessors
Numeric Data Processor (Micro

Way), 204



.OB} files
for DESQview panels, 330
with DOS extenders, 125, 158

Objects
DESQview, 327, 331, 351-363
and Windows, 265

Obq_freeO call (API), 362
Obq_newO call (API), 362
Obq_read0 call (API), 363
Offsets, 5-6
Open architecture, 3
Open file method for EMM access,

35-36
Operating environments, 27-28
Operating system for file manage

ment,4
Opt command (Instant-D), 130
Optimizing compilers with Intel

80386,204
Ordinals, exporting of Window

functions by, 271
OS/2 operating system, 28-29

advantages and disadvantages
of, 30

and DOS extenders, 111, 115,
156,168

and Windows, 309-310
OS/286 DOS extender, 111, 154-158

in compilers, 171
vs.DOS/16M,186
functions for, 158-162
and Lattice C, 162
memory allocation "Yith, 112

114
and YCPI, 366

05/386 DOS extender, 194, 226-229
coprocessor support b~ 255
and RPCs, 249
and YCPI, 366
versions of, 208

Overlapped windows, 265-266
Overlays, 8-10,29, 143-144

P bit (AR byte), 16, 18
P-system operating system

(Softech), 4
P3 format EXP file, 224
PaCkages, DOS/16M, 129
Pages and paging

and DOS extenders, 203, 234,
250-252

DPMI management functions
for, 399, 401

for expanded memory, 11, 31,
33-34,38,40-41,45

granularity of, 22
by Intel 80386, 25-27
locking of, 250-251
and multitasking, 408
with RUN386, 224
and VM/RUN, 229

Pan_applyO function (API), 330-
331,356

Panel Design Tool, 312, 330
Panels, DESQview, 329-333, 357-359
Pan_newO function (API), 330
Pan_openO function (API), 330-331
Paradox/386, DOS extender for, 195
Pascal for 80386 DOS extenders, 234
Pascal keyword and Instant-C, 182
Passdown interrupts, 118
Paste option (Windows), 284
PE bit (MSW) for mode switching,

81-82
Peeking and DOS extenders, 119,

134, 144-145
Pens, drawing, 282
Performance of DOS extenders, 162

168,209
Physical pages, EMS, 42
PhysToUVirtDevHlp function (In-

stant-C), 189
PieO function (Windows), 282
.PIF files with DESQview, 314
Pixels with GDI, 282
PL/I for 80386 DOS extenders, 234
PLINK linker (DOS) with DOS ex-

tenders, 126
PLINK86 linker (Phoenix Technol

ogy),10
.PLX files, 208, 227
PMINFO.EXE utility (DOS/16M),

132-133
Pointers

with DESQview, 360-361
with DOS extenders, 134, 139

140
Poking and DOS extenders, 119,

134, 145
PolygonO function (Windows), 282-

283
PolyLineO function (Windows), 282
Pop-up windows, 267
Port I/O and protection faults, 20
Portability and porting

and 32-bit programming, 219
222

Index 429

and DOS extenders, 134-146,
156,220-221

and EMS emulation, 48
and GOT, 188
Instant-D for, 131
and operating system develop

ment,5
and PROTMODE.ASM, 182
See also Compatibility

POST (Power-Dn-Self-Test), 82
Posting of messages, 268
Postprocessors, 115, 126-128, 165,

185
Power-On-Self-Test, 82
PRELOAD.DB} file (Microsoft C),

125
Prepare Expanded Memory Man

ager for Warm Boot function
(EMS), 75

Present bit (AR byte), 16, 18
Presentation Manager, 28,260,309-

310
Prime numbers programs, 204-219
PRIMES.C program, 215-219
Privilege levels

gates for, 18
in protected mode, 14
for segments, 15
for selectors, 185-186
in V86 mode, 368

Procedures, window, 267-269
Processes and process memory,

DESQview, 337-342,344-345
Processor exception handlers, 244

248
Professional ORACLE and YCPI,

366
Professional Pascal (MetaWare)

for 80386 support, 232-233
and OS/386, 228

Programming architecture, 1-2
and 80x86 microprocessors, 5-

8,21-27
and DOS extenders, 20-21
of first IBM PC, 3-5
and markets, 29-30
and memory limitation, 8-12
and operating environments,

27-28
and OS/2, 28-29
and protected mode, 13-20

Programming interfaces
DESQview, 312-315, 324
EMS, 66-76



430 EXTENDING DOS

"CPI, 372-378, 391-394
Windows, 269-271
XMS, 103-105

Prolog for 80386 DOS extenders, 234
Prot2absO function (OS/286), 162
Protected mode

and 32-bit microprocessors, 21
27

descriptor tables in, examina
tion of, 187-191

and extended memory, 12, 79
Intel 80286 instructions for, 178

187
Intel 80386 interrupt handler

for, 222
linker for, 191-192
memory allocation with, 112

122
and multitasking, 13-14,412-

415
operation of, 14-20
and OS/286, 156
vs. real mode, 6-8, 114-115
switching to, 21, 81-82, 118, 163
"CPI for conflicts in, 367-368

Protected virtual address mode, 5
Protection faults, IS, 17, 20

and DOS extenders, 134
and Instant-C, 174-175
and Instant-D, 131

Protection of memory by paging, 27
PROTMODE.ASM file, 179-184, 187
Ptr_addtoO call (API), 360
Ptr_newO call (API), 360
Ptr_openO call (API), 360
Pushbuttons, 268-269, 281, 304
PUTXM routine for XMS, 87-88

QEMM (Quarterdeck), 47, 346-347,
366,410,412-414

Query A20 Line State function
(XMS), 94, 104

Query Free Extended Memory func
tion (XMS), 94, 104

Query functions (DOS/16M), 148
Queues

DESQview object, 362-363
message, 268, 279

Radio buttons, 280-281,304
RAM disk, 48, 370
RAMDRI"E.SYS driver, 102
Range checking, protected-mode,

176

Read CRO function ("CPI), 373, 376,
392

Read Debug Registers function
("CPI), 373, 376, 392

Read-only segments, 17
Reading

in EMS program, 54-55,57
from files in protected mode,

124
Real mode

3861 DOS Extender communica
tion functions for, 225-226

and extended memol)T, 80-82,
93-100

high memory area access in, 99
Intel 80386 interrupt handler

for, 222
libraries for, 220-221, 248-250
vs. protected mode, 6-8
switching of, 21, 81-82, 118, 163
and Windows, 261,272-278
X-AM communication func-

tions for, 231
Real procedure calls with DOS ex

tenders
80286-based, 155, 158-159,248

250
80386-based, 228

Reallocate Pages for Handle func-
tion (EMS), 70

RectangleO function (Windows), 282
Reentrant functions, 336
Refresh buffers for video, 3
Regions, drawing, 283
RegisterClassO function (Win-

dows),297
Registers

Intel 80286, 22
Intel 80386, 22, 199

Release Access Key function (EMS),
76

Release Handle and Expanded
Memory Pages function (EMS),
67

Release Pages function (EMS), 34
Relocatable EXecutable files, 224,

229
I Requested Privilege Level, 14

Resetting of CPU for real-mode ac
cess, 82, 117-118

Resize Extended Memory Block
function (XMS),94, 105

Resources, window, 283

Restore Page Map function (EMS),
44-45,67-68

Restore Partial Page Map function
(EMS), 45, 69

REX (Relocatable EXecutable) files,
224,229

RMINFO.EXE utility (DOS/16M),
133

ROM in first IBM PC, 3-4
See also BIOS services

Root overlay areas, 9
RoundRectO function (Windows),

282
RPC. See Real procedure calls with

DOS extenders
RPL (Requested Privilege Level), 14
.RTLINK linker (Pocket Soft), 10
RUN386 package (Phar Lap), 223-

224,252

S bit (AR byte), 16
Sampler command (Instant-D), 131
#save command (Instant-C), 175
Save and Restore Page Map func-

tion (EMS), 45, 68
Save Page Map functions (EMS),

44,67-68
Save Partial Page Map function

(EMS), 45, 69
SaveDCO function (Windows), 306
#savemod command (Instant-C),

172
Scaling factors with Intel 80386, 199-

200,202
SCASD instruction (80386), 201
Schmitt, David, 162
Scrollbars, window, 266, 281
SDK (Software Development Kit)

for Windows, 264
Search for Handle Name function

(EMS), 71
Sectors setup routine in EMS pro-

gram, 60
Segment bit (AR byte), 16
Segment:offset addressing, 6
Segment registers

with DOS extenders, 134, 141,
199,221

EMS page frame address in, 41
Segments, 5-6

and 32-bit code, 197-199
addressing of, in protected

mode, 14
arithmetic on, 20, 134, 138-144



with DOS extenders, 1~4-138,
221,223,234,244

and protection faults, 20, 134,
138-144

in Windows, 273-274, 276-279
Selectors, 6-7, 13

addresses for, 127
attributes of, 190-191
components of, 14-15, 185
with DOS extenders, 150, 221
and Instant-C, 185-187
and LDT, 189-190

Semaphores with DESQview, 355
Servers

VCPI,372
window, 284

Set 8259AInterrupt Vector Map
pings function (VCPI), 373, 378,
393

Set Alternate Map Registers func
tion (EMS), 74

Set Handle Attribute function
(EMS), 70

Set Handle Name function (EMS),
71

SETcc instructions with 80386, 202
SetMapModeO function (Windows)

301
SetTimerO function (Windows) 301,

304
Setvbuf() function (C), 211
SetVector function (DOS), 225
SetWindowOrgO function (Win-

dows) 305
SGDT instruction (80286), 178, 181,

187
Shadow registers, 101
Shadowing with DESQview, 314
Shared programs, DESQview, 340
Shared system memory, DESQview,

342,354
ShowWindowO function (Win-

dows) 298
SlOT instruction (80286), 178, 181
SIEVE.C program, 204-215
Signals, OS/286, 159
Simulators, EMS, 46-49
Single-precision math functions

with coprocessors, 256
Size_t identifier with 32-bit C, 210
SldtO function (Instant-C), 190
SLOT instruction (80286), 178, 181
Small model, 6

with Intel 80386,22

for Windows, 274
Smalltalk for 80386 DOS extenders,

234
Smith, James, 129
Snap command (Instant-D), 130
Software Development Kit for Win-

dows,264
Software interrupts and handlers

DOS extender support for, 216,
244-248

OPMI management functions
for, 399, 403

and EMS emulation, 47
Spitbol for 80386 DOS extenders,

234
SPLICE.EXE binder, 116, 128-130
Spreadsheets, expanded memory

for, 10-11
Standard mode, Windows for, 261
Static window class, 280
STOSD instruction (80386), 201
Strategy routine for EMS program,

51
StretchBltO function (Windows) 283
String instructions with 80386, 199,

201
Swapping of memory with DESQ

view, 345
Switch From Protected Mode to

V86 Mode function (VCPI), 373,
378,393

Switch From V86 Mode to Pro
tected Mode function (VCPD,
373,378,381,389,393

System descriptors, 17-18
System fonts, 283
System memol)', OESQview, 342
System register access functions,

VCPI, 373, 376-377

Table Indicator, 14-15, 19, 185
Task State Segment, 18-19,384-385,

387
Tasks, OESQview, 333-337, 347-355
TASM (Borland), code checking by,

135
Test routines in BIOS, 3
Testing of functions, Instant-e for,

170
Text, drawing of, 283
Thunks with Windows, 277-278, 300
TI (Table Indicator), 14-15, 19, 185
Tim_addtoO call (API), 361
TimeO function (Windows) 304

Index 431

Timer objects with DESQview,361-
362

Tim_newO call (APD, 361
Tim_readO call (API), 361
Titlebars for windows, 266
Top-down memory allocation, 369-

370
TR register with VCPI, 387, 390
TranslateMessageO function (Wm

dows) 298
Translation services, DPMI, 399-401
Transparency and DOS extenders,

144-145
Transparent addresses, 119
Transparent protected-mode access,

129
Transparent selectors, 186-187
Traps

for invalid selectors, 13
and paging, 27

Triple fault technique, 118
Tsk_freeO function (API), 334
Tsk_meO function (APD, 334
Tsk_newO function (API), 333-335,

337,347
TSRs

386 IDOS Extender support for,
224

and DOS/16M, 157
and EMS, 44-46

TS5 (Task State Segment), 18-19,
384-385, 387

Turbo EMS emulator, 46, 367
Two model machine and OS/286,

154-162
TYPE bit (AR byte), 16-18
Type checking, protected-mode, 176

UMB (upper memory blocks) with
XMS,93-94

Undocumented DOS calls, 144
Uniprocessor, 05/386 version, 208
UNIX systems, 30
Unlock Extended Memory Block

function (XMS), 94, 105
UP (uniprocessor) OS/386 version,

208
U~EXE loader (OS/286), 157
Upper memory blocks with XMS,

93-94
USER link library, 272

V86 mode. See Virtual 86 mode
Variables

with multitasking, 335-336



432 EXTENDING DOS

with windows, 270, 299
VCPI Presence Detection function

(VCP!), 372, 374, 391
VDISK, 89-92, 369
VERR instruction (80286), 178-180
Versions

DESQview panels, 332
DPMI,400
EMS, 34,38

VERW instruction (80286), 178-179,
181, 183

Video
with DOS extenders, 119, 221,

237-244
memory addresses for, 3

Virtual 86 mode
with DESQview, 411-413
and EMS emulation, 47-48
Intel 80386,25-27
and multitasking, 407-408
switching to and from, 378
and VCPI, 368
and Windows, 263

Virtual addresses, 7
Virtual Control Program Interface,

365-366
calls for, 372-378, 391-394
and DESQview, 363, 410-411,

413-415
vs. DPMI, 397
for extended memory manage

ment,93
incompatibilities resolved by,

367-372
with multitasking, 409
operation of, 383-391
05/386 support of, 227
and RUN386, 224
use of, 378-383

Virtual key codes, 279
Virtual memory with DOS extend

ers
80286-based, 115, 163-164
80386-based, 203, 214-219,224

228,250-251
Virtual Memory Manager (Phar

Lap), 203, 215-216,224
Visual backtrace command (Instant-

D), 131
VMbit,25
VM/386 control program (IGC), 229
VM/RUN (IGC), 229-230, 245-246

Watcom C compiler, 197

command line for, 207
intdosO and int860 support by,

216
and OS/386, 228

WBINVD instruction (80486), 251
WCC386.EXE compiler (Watcom),

207
WCL386 program (Watcom), 207
Weitek coprocessors, 225, 251-257
Where command (Instant-D), 130
Win_attrO function (API), 327
Win_disallowO function (API), 329
Windows operating environment

(Microsoft) and windows, 28,
259
and 32-bit code, 197
advantages and disadvantages

of, 30
API for, 269-271
components of, 265-267
controls for, 280-281,303-304
with DESQview, 326-329
and DPMI, 398,406
dynamic linking of, 271-272
and expanded memory, 32, 47
and extended memory, 98-99
and GDI, 281-283
and GUI, 260-265
input for, 279-280
interprocess communication

for, 283-284
memory support for, 278-279
and OS/2, 309-310
procedures and messages for,

267-269
real-mode memory manage

ment by, 272-278
sample program using, 284-308

WINDOWS.H header file, 269-270,
296-297

WINLOAD.EXE file (DOS/16M),
128-129

WinMainO function (Windows) 287-
288,297-298

Win_meO function (API), 329
Win_moveO function (API), 327
Win_newO function (API), 327, 329
Win_notifyO function (API), 359
Win_redrawO function (API), 328-

329
Win_unhideO function (API), 328
WM_CHAR message (Windows),

268,275,279

WM_CLOSE message (Windows),
303,307

WM_COMMAND message (Win
dows), 268-269, 275, 289-292,
301-304

WM_CREATE message (Windows),
268,288-289,300-301

WM_DESTROY message (Win
dows),268,290,307-308

WM_INITDIALOG message (Win
dows),291-292

WM_KEYDOWN message (Win
dows), 268, 279

WM_KEYUP message (Windows),
268,279

WM_LBUTTONDOWN message
(Windows), 268,280

WM_LBUITONUP message (Win
dows), 268, 280

WM_MOUSEMOVE message (Win
dows), 268, 280

WM_PAINT message (Windows),
275,282,290,304-305

WM_QUIT message (Windows),
298,307

WM_RBUTTONDOWN message
(Windows), 280

WM_RBUITONUP message (Win
dows),280

WM_SIZE message (Windows), 268
WM_SYSCOMMAND message

(Windows), 307
WM_TIMER message (Windows),

290, 301, 304-305
WndProcO function (Windows) 288

289,298-299
Writable segments, 17
Writing

to code segments with DOS ex
tenders, 244

in EMS program, 55-57
to files ~n protected mode, 124

XADD instruction (80486),251
X-AM development environment

(IGC),229-232
XDX loader (DESQview), 341
XMM (EXtended Memory Man

ager), 94-96
XMS. See EXtended Memory Speci

fication (XMS)

Z-80 microprocessor and portabil
ity, 5




	Table of Contents
	Introduction
	About the Contributors
	Chapter 1 The IBM PC Programming Architecture
	Chapter 2 Expanded Memory and the EMS
	Chapter 3 Extended Memory and the XMS
	Chapter 4 80286-based Protected-Mode DOS Extenders
	Programming Project
	Chapter 5 80386-based Protected-Mode DOS Extenders
	Chapter 6 The Windows Operating Environment
	Chapter 7 DESQview
	Chapter 8 VCPI for EMS/DOS Extender Compatibility
	Chapter 9 The DOS Protected-Mode Interface (DPMI)
	Chapter 10 Multitasking and DOS Extenders
	Vendor Guide
	Index

