
Compatible with MS-DOS Version 4.0

The Waite Group's

MS-DOS®
Developer's Guide

HOWARD W SAMS &_COMPANY
HAYDEN BOOKS

Related Titles

The Waite Group's MS-DOS®
Bible, Second Edition
Steven Simrin

The Waite Group's
Understanding MS-DOS®
Kate O'Day and John Angermeyer

The Waite Group's Tricks of
the MS-DOS® Masters
John Angermeyer, Rich Fahringer, Kevin
Jaeger, and Dan Shafer

The Waite Group's
Discovering MS-DOS®
KateO'Day

1'he Waite Group's MS-DOS®
Papers
The Waite Group

C Programmer's Guide to
NetBIOS
W. David Schwaderer

Portability and the C
Language
Rex Jaeschke

Hard Disk Management
Techniques for the IBM®
Joseph-David Carrabis

The Waite Group's C ++
Programming (Version 2.0)
Edited by The Waite Group

The Waite Group's Microsoft®
C Bible
Naba Barkakati

The Waite Group's Modem
Connections Bible
Carolyn Curtis, Daniel Majhor

The Waite Group's Printer
Connections Bible
Kim G. House, Jeff Marble

Micro-Mainframe Connection
Thomas Wm. Madron

IBM® PC AT User's Reference
Manual
Gilbert Held

IBM® PC & PC XT User's
Reference Manual, Second
Edition
Gilbert Held

IBM® PS/2 Technical Guide
James A. Shields and Caroline M.
Halliday

For the retailer nearest you, or to order directly from the publisher,
call 800-428-SAMS. In Indiana, Alaska, and Hawaii call 3 J 7-298-5699.

The Waite Group's

MS-DOS®
Developer's Guide

Second Edition

JOHN ANGERMEYER KEVIN JAEGER

RAJ KUMAR BAPNA NABAJYOTI BARKAKATI

RAJAGOPALAN DHESIKAN WALTER DIXON

ANDREW DUMKE JON FLEIG MICHAEL GOLDMAN

#f
HOWARD W. SAMS &.COMPANY

A Division of Macmillan, Inc.

4300 West 62nd Street

Indianapolis, Indiana 46268 USA

© 1989 by The Waite Group, Inc.

SECOND EDITION
FIRST PRINTING-1988

All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent
liability is assumed with respect to the use of the information
contained herein. While every precaution has been taken in the
preparation of this book, the publisher and The Waite Group
assume no responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of the
information contained herein.

International Standard Book Number: 0-672-22630-8
Library of Congress Catalog Card Number: 88-62227

From The Waite Group:
Development Editor: James Stockford
Technical Reviewers: Blair Hendrickson, David Blossom,

and John Ferguson
Managing Editor: Scott Calamar
Content Editors: James Stockford and Mark Haas

From Howard W. Sams & Company:
Acquisitions Editor: James S. Hill
Development Editor: James Rounds
Manuscript Editor: Diana Francoeur
Cover Artist: Kevin Caddell
Illustrator: T. R. Emrick
Indexer: Ted Laux
Technical Reviewer: Mark Adler
Compositor: Photo Comp Corporation

Printed in the United States of America

To our families

All terms mentioned in this book that are known to be
trademarks or service marks are listed below. In addition, terms
suspected of being trademarks or service marks have been
appropriately capitalized. Ho·Nard W. Sams & Company or The
Waite Group, Inc., cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

COMPAQ is a registered trademark of COMPAQ Computer
Corporation.

CompuPro is a trademark ofVyasin Corporation.
Concurrent CP/M-86, Concurrent PC-DOS, and CP/M are

registered trademarks and Concurrent DOS 286 is a
trademark of Digital Research, Inc.

IBM, PS/2, PC, and AT are registered trademarks and OS/2,
PCjr, PC-DOS, and XT are trademarks of International
Business Machines, Inc.

Intel and Above Board are trademarks of Intel Corporation.
Lotus, 1-2-3, and Symphony are registered trademarks of Lotus

Development Corporation.
Microsoft, MS-DOS, and XENIX are registered trademarks of

Microsoft Corporation.
Seattle Computers is a trademark of Seattle Computer Products,

Inc.
SideKick and Turbo C are registered trademarks of Borland

International, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.
WordStar is a registered trademark of MicroPro International

Corporation.

Summary of

Contents
Part I Coding and Programming

Chapter 1 Structured Programming 1: Tools for Structured Coding 3

Chapter 2 Structured Programming 2: The Design and Implementation
of Modular Programs 69

Chapter 3 Program and Memory Management 115

Chapter 4 Terminate-and-Stay-Resident Programming 191

Chapter 5 Real-Time Programming 245

Part II Devices

Chapter 6 Installable Device Drivers 281

Chapter 7 Using Expanded Memory 355

Chapter 8 Programming the Serial Port 4 79

Chapter 9 Programming the EGA and VGA 487

Chapter 10 Programming the Intel Numeric Processing Extension 523

Part III Recovery

Chapter 11 Disk Layout and File Recovery 575

Chapter 12 Recovering Data Lost in Memory 641

vii

MS-DOS Developer's Guide

viii

Part IV Compatibility

Chapter 13 Differences between MS-DOS Versions 653

Part V Appendixes

Appendix A Development Tools 691

Appendix B Undocumented MS-DOS Interrupts and Functions 739

Appendix C Bibliography 7 49

Appendix D ASCII Cross Reference and Number Conversions 755

Contents

Preface to the Second Edition .. . xxii

Preface to the First Edition .. . xxv

The Authors xxvii

Part I Coding and Programming

Chapter 1 Structured Programming 1: Tools for Structured Coding 3

The Need for Shorthand Statements 5
Introduction to Macros 6

LOCAL Labels 9
Macro Listing Directives 13
Macro Libraries 14
Macro Repeat Directives-RE PT 14
More about Macro Repeat Directives-IRP and IRPC 17
Macro Summary 18

Conditional Assembly 18
Relational Operators 23
Conditional Assembly Summary 24

Conditional Assembly and Macros 25
Determining Operand Types 25
Phase Errors and Other MASM Eccentricities 27
String Matching-An Example 27
Parsing Macro Arguments 30
Warnings about Conditional Assembly and Macros in

MASM 35
Structured Control Statements in Assembly Language 35

How the Structured Control Macros Work · 44

ix

MS-DOS Developer's Guide

x

Tricks and Warnings
The Pseudo case M aero

Data Macros 50
Code Macros 56

Conditional Macros
Nested Macros 59

45
49

57

More Macro Features 60
A Macro That Calls Subroutines 61

Using the STRUC Directive 64
Multiple Structures to Address Data 65
Structures as Subroutine Parameters 67

Summary 68

Chapter 2 Structured Programming 2: The Design and Implementation
of Modular Programs 69

Principles of Modular Programming 71
Designing Options 72
Designing for Functional Separation 72
Designing to Minimize the Number of Parameters

Passed 73
Designing to Minimize the Number of Calls Needed 73
Rules for Modularization 74
References 75

Implementing Modular Programs in Assembly Language 75
Definition of Parameter, Argument, Variable, and

Constant 76
Parameters and Modules 76
Parameter Passing Options 77

Passing through Registers 77
Passing through Common 78
Passing through Program Memory 78
Passing on the Stack 79
Summary of Parameter Passing Options 85

Passing Parameters by Value or Address 85
Pass by Value 85
Pass by Address 86
Protecting the Integrity of Passed Data 86

Functions versus Subroutines 87
Returning Values in Registers 87
Returning Values in Common 88
Returning Values on the Stack 88

Exception Reporting 88
Types of Coding 89

Program Code Positioning 90
Location Relative 90
Segment Relative 90
Absolute Addressing 91

Contents

Types of Program Code 91
Relocatable Code 92
Separate Data Area 93
Recursive Code 93
Reentrant Code-Local Storage Requirements 94
Local Storage on the Stack 94
The ENTER and LEAVE Instructions for Local Stack

Storage 96
Code Positioning Summary 100

Interfacing to High-Level Languages 101
The Microsoft C Calling Conventions 101
The Microsoft Pascal Calling Conventions 103
The Microsoft BASIC and FORTRAN Calling

Conventions 104
The Microsoft Segment Model 105

Allocation and Use of Local Storage in Memory 105
Introduction to MS-DOS Memory Management 108

Memory Allocation from within High-Level Languages 110
Protecting Data and Controlling the Scope of Data 110

Local Storage versus Global Storage 111
Using Segment Registers 112
Controlling the Size of Data Access

Protecting the Integrity of the Stack
Summary 114

Chapter 3 Program and Memory Management 115

MS-DOS Memory 117

112
113

MS-DOS Physical Memory Map 117
Expanded and Extended Memory 118
MS-DOS Memory Utilization 119
MS-DOS Memory Chains 121
The Program Environment Block 129

MS-DOS Processes 131
The MS-DOS Process Context 131

The Program Segment Prefix (PSP) 131
The PSP Terminate Addresses 131
The PSP's File Handle Table 132

SHOWMEM and the PSP's Environment Address Pointer 139
Functions for Manipulating the PSP 139

The MS-DOS Process File: .EXE versus .COM 140
Loading a .COM Type File 141
The .EXE Program File Format 142
The .EXE Initial Memory Allocation Block 143
The MS-DOS .EXE Process Loader 144

Overlays 146
Memory Resident Programs 14 7

Defining a R'un-Time Library 147

xi

MS-DOS Developer's Guide

xii

Loading Memory Resident Routines from the Command
Line 148

Accessing Memory Resident Routines via Int 150
Determining Whether a Memory Resident Program Is

Installed 157
Removing Memory Resident Routines 158

Function 4Bh-Load and Execute Program 160
Loading and Executing Programs via MS-DOS

(Code4BhwithAL = 0) 164
Inheritance and Control of the Child Program 165
Executing MS-DOS Commands with Function 4Bh 166
An Important Warning 166
Loading Program Overlays via MS-DOS (Code 4Bh with

AL= 3) 167
Accessing Program Overlays from the Parent

Program 168
Loading Memory Resident Programs 170
A Special Case: Part-Time Run-Time Libraries 171

Context Switching and Switching Stacks 171
Additional Considerations for Stack Switching 174

Underpinnings for Memory Residency 175
ROM-BIOS versus a Loadable BIOS 176
Interrupt versus Polled Systems 176
Patching into the Interrupt Vectors 177

REMOVE-An Integrated Program Example 180
Summary 189

Chapter 4 Terminate and Stay Resident Programming 191

Overview 193
Dealing with PC Hardware

Hardware Interrupts
Software Interrupts
The Timer Interrrupt
The Keyboard 196

194
195

196
196

The Display Hardware 198
The MDA and the CGA 199
Writing to Display Memory 199
ROM-BIOS Video Support 200

Capturing an Interrupt 201
Setting Up a Hot Key 201

Capturing Int 16h 201
Polling the Keyboard Buffer with Timer Interrupt

Int lch 202
Trapping Int 9 204
Monitoring Keyboard Status 205

An Alternative to Capturing Int 1ch 206
Managing the Display 208

Contents

Working with and around DOS 209
The DOS 1/0 Data Structure 210

The "List of Lists" 210
The System File Table 211
The Program Segment Prefix (PSP) 214
The Job File Table (JFT) 214

The BIOS Dispatcher, Int 21h 217
Character IIO Routines 218
DOS Global Variables 218

Break Processing 219
Critical Error Processing 220
Loading a Program 220
Program Termination 221

Loading and Initializing a TSR 222
Checking for DOS Version 223
Locating Resident Copies of a TSR 223
Recording the PSP Address 227
Recording the Critical Section (IN DOS) and

Critical Error Addresses 228
Capturing Interrupt Vectors 229
Checking the Display Type 231
Freeing the Environment 231
Program Termination 232

Reactivation and DOS Architecture and Services 233
Determining Whether Reactivation Is Safe 233
Stack Switching and Saving Register Contents 235
Trapping Breaks and Critical Errors 235
Dealing with DOS Global Variables 237

Background Processing Using Int 28h 238
Removing a TSR from Memory 242
Summary 243

Chapter 5 Real-Time Programming under MS-DOS 245

Overview of Real-Time Programming 247
What Is Real Time? 248
Characteristics of Real-Time Systems 248
Basic Types of Real-Time Systems 249

Unidirectional Systems 249
Bidirectional Stable Systems 250
Bidirectional Potentially Unstable Systems 251

Typical Timing Requirements and Real-Time
Solutions 252

MS-DOS for Real-Time Applications 254
How Fast Is MS-DOS? 254

MS-DOS Clock Frequencies 254
Data Transfer in MS-DOS 256
Polled Data Transfer 260

xiii

MS-DOS Developer's Guide

DMA Data Transfer 261
Interrupt-Driven Data Transfer 261
Comparison of Data Transfer Methods 262

Techniques for Writing Faster Programs 263
When to Use MS-DOS for Real-Time Applications 264

Designing Real-Time Systems Using MS-DOS 266
Simplified Home Control System-An Example 267
Polled System 270
Main Loop with Interrupts 271
Cyclic Sched1tlers 273
Deciding on a Design Method 275

Multitasking in MS-DOS 276
Multitasking Provisions in the IBM PC AT 276

Summary 277
Bibliography 278

Part II Devices

Chapter 6 Installable Device Drivers 281

Why Have Device Drivers? 284
When to Use Device Drivers 285
The Limitation of MS-DOS Being Non-Reentrant 285

Installing Device Drivers 286
The CONFIG.SYS File 288
Using ASSIGN to Replace Disk Device Drivers 291
Types of Device Drivers 291

Accessing Device Drivers from MS-DOS 292
CP/M-Style Character Device I/O 293
Device Access Using the File Control Block 293
Using File Handles for Device IIO 293
Function 44h-I/O Control for Devices 294
Configuration via the IIO Control Commands 295

IOCTL Bit 14: CTRL 295
IOCTL Bit 7: ISDEV 296
IOCTL Bit 5: BIN 296
IOCTL Bit 4: SPECL 297
The Generic I/O Control Commands 297

Direct Disk Access with Interrupts 25h & 26h 297
The Verify Switch 298
IIO Scummary 299

Writing Device Drivers 299
The Device Header 301

The Device Chain Pointer 301
The Device Header Attribute Word 301
The Strategy and Interrupt Entry Pointers 305
The Number of Units/Name Field 305

xiv

Contents

The Strategy Routine 306
The Interrupt Routine 307
The Driver Commands 311

INIT Command 312
Media Check Command 314
Build BIOS Parameter Block Command 317
Input and Output Commands 320
Nondestructive Input without Wait Command 323
Status and Flush 1/0 Commands 324
Device Open/Close and Removable Media Commands 325
Generic IOCTL Command 326
Get and Set Logical Device Commands 327

Creating the Loadable Device Driver File 327
Debugging Device Drivers 328
Displaying the Device Drivers in Your System 329

The Ubiquitous RAM Disk 335
Summary 353

Chapter 7 Using Expanded Memory 355

A History Lesson 359
LIM EMS 360

LIM EMS 3.2 361
LIM EMS 3.2 Concepts and Technology 361

Enhanced Expanded Memory Specification 362
The Window Size Limitation 362

LIM EMS 4.0 363
LIM EMS 4.0 vs LIM EMS 3.2 vs AQA EEMS 366

Compatibility Considerations 366
Technical Considerations 367

The Expanded Memory Manager 367
EMM Functions 368
Expanded Memory Manager Implementations 377

Expanded Memory Hardware and Software 378
80386 Hardware and Software 378
Software Only 379
IBM PS/2 80286 Memory Expansion Option 379

The EMS Application Program Interface 380
EMS Assembly Language Programming 380

Interrupt Conflict 381
High-Level Languages 381
Handling Error Conditions 382

Writing Programs That Use Expanded Memory 385
General Programming Guidelines 385
Using Expanded Memory in Transient Programs 387
Detecting the Presence of the EMM 387

Open Handle Method 387
Checking the EMS Specification Supported by the

EMM 388

xv

MS-DOS Developer's Guide

xvi

Determining the Amount of Expanded Memory
Available 389

Allocating Expanded Memory 389
Addressing Expanded Memory 390

Managing Logical Addresses 390
Managing Physical Addresses 391

Reading and Writing Expanded Memory 393
Two Ways to Specify Physical Pages 393

Sharing Expanded Memory among Programs 396
Executing Code in Expanded Memory 396
Freeing Expanded Memory 397

System Software 398
Transient vs Resident Programs 398
Detecting the Presence of the EMM 399
Context Management 399
Task Switching 400
Nonvolatile Storage 401
Access Control 402

Summary 402
Bibliography 403
Low-Level Interface Routines and Sample Application 404

About the Sample Application 405
A Few Coding Highlights 405

Chapter 8 Programming the Serial Port 4 79

Basics of Asynchronous Serial Communication 453
Parity and Error Detection 456
Communicating with the RS-232C Standard 456
Flow Control with XONIXOFF 457

A Programmer's View of the Serial Port 458
Interrupt-Driven Serial 1/0 460
Interrupts from the Serial Adapter 461
The 8259A Programmable Interrupt Controller 462
Programming the 8259A 464

Using MS-DOS Tools to Program the Serial Port 465
Driver, TSR, or Stand-alone Program 465
Using the BIOS for Serial Communications 466

Setting Communications Parameters Using the BIOS
Getting the Serial Port's Addresses 468

Setting Up for Interrupt-Driven Serial I/O
Handling the Interrupts from the Serial Port
Queues for the Interrpt Handler 472
Cleaning Up before Closing Shop 473

A Sample Program 4 7 4
Summary 485

469
471

466

Contents

Chapter 9 Programming the EGA and VGA 487

Monitors and EGA Capabilities 490
The Enhanced Color Display 490
Monochrome Graphics Modes 491
Installation Considerations and Presence Test 493
Memory Organization 499
Latch Registers 500

Direct Screen Writing 502
Lots of Dots 505

Using the Set/Reset Register 507
Using the EGA Write Modes 508

Reading the Bit Maps 513
EGA Color Palettes 514
The Data Rotate Register 518
VGA 256 Color Modes 519
Summary 521

Chapter 10 Programming the Intel Numeric Processing Extension 523

A Programmer's View of the NPX 526
The Data Registers in the NPX 526
Floating-Point Real Number Representation in the

NPX 527
Other Data Formats Used with the NPX 529

Short Real and Long Real Data Formats 529
Word Integer, Short Integer, and Long Integer Data

Formats 530
Packed Binary-Coded Decimal (BCD) Formats 530

Summary of Data Types 531
The Instruction Set of the NPX 532
The FWAIT Prefix 533
Addressing Modes of the NPX 535
The FINITand FFREE Instructions 537
Controlling the NPX 537
The NPX Control Word 537
The NPX Status Word 539
Exception Handling in the NPX 541

Using MS-DOS Tools with the NPX 542
Using MASM and the NPX 542
MASMs NPX Switches-Ir and le 543
NPX Data Types in MASM 544
Using DEBUG with the NPX 545

Debugging the NPX's Registers 545
Instruction Encoding Formats 546

Programming Examples for the NPX with MASM 546
The FWAITand FINIT Instructions 547
DUMP87 Routine 547

xvii

MS-DOS Developer's Guide

Using the DUMP87 Routine 559
Using the NPXfor Binary to Decimal to Binary

Conversions 559
Integer Operations 559
Floating Point Operations 5 60
The 2x Calculation 561
The 10x Calculation 561
The Decimal to Real Scaling Function 562
The Real to Decimal Scaling Function 562

Summary 571

Part III Recovery

Chapter 11 Disk Layout and File Recovery 575

Principles of File Recovery 578
Layouts of 51;1,-lnch, 40-Track, Single-Sided Floppy

Disks 579
Layouts of 51;1,-lnch, 40-Track, Double-Sided Floppy

Disks 580
Layouts of 51;1,-lnch, 80-Track, Double-Sided Floppy

Disks 581
The Boot Sector 583

Hard Disk Partition Tables 604
The Directory Sectors 605

File Name, File Type, and File Status 606
Attribute 607
Starting Cluster 608
File Size 608
The"." and" .. " Directory Entries 608

File Allocation Table (FAT) Sectors 609
Decoding the FAT Entries 612

Processing 12-Bit FAT Entries 615
Processing 16-Bit FAT Entries 617

Converting Clusters to Logical Sectors 617
An Overview of Recovery Procedures 618
Recovering Damaged Files Using CHKDSK and

RECOVER 618
Recovering Erased Files 619

The Basics 620
Recovering Erased Files the Hard Way 622
Using the RESCUE Program 623
Using Norton Utilities 638
Using Ultra Utilities 639

Summary 639

xviii

Contents

Chapter 12 Recovering Data Lost in Memory 641

Recovering from Word Processing/Text Editing Failures 648
Recovering BASIC Programs from Memory 64 7
Summary 649

Part IV Compatibility

Chapter 13 Differences between MS-DOS Versions 653

General Compatibility Recommendations 656
High-Level Language Considerations 659

MS-DOS Interrupts 660
Function Calls 661

Pe1jorming Function Calls the Standard Way 661
Performing Function Calls in Compatibility Mode 661
And Yet Another Method (MS-DOS Versions 2.00 and

Higher Only) 662
Functions Supported in Different Versions 663
Program Terminate Group 669
Standard Character Device Input/Output Group

(01h-OCh) 670
Standard File Management Group (ODh-24h,

27h-29h) 670
Standard Nondevice Functions (25h, 26h,

2Ah-2Eh) 670
Extended (General) Function Group (2Fh-38h, 4Ch-4Fh,

54h-57h, 59h-5Fh, 62h) 671
Directory Group (89h-8Bh, 47h) 671
Memory/Process Management Group (48h-4Bh) 671

Error Codes 672
Critical or Hard Error Codes (via Int 24h) 672
Function Call Error-Return Codes (MS-DOS Versions 2.00

and Higher Only) 672
Function Call Extended Error Information (MS-DOS

Versions 3.0 and Higher Only) 676
Error Code 677
Error Class 677
Suggested Action 678
Locus 678

Disk Formats 679
File Manipulation 680

Using File Control Blocks (FCBs) 681
MS-DOS File Handles 682

MS-DOS and the IBM Personal Computer and
IBM Personal System 2 Series 688

Similarities 688

xix

MS-DOS Developer's Guide

/Jifferences 684
Compatibility with Other Operating Systems 685

CP/M-80 685
CP/M-86 and Concurrent CPIM-86 687
Concurrent PC-DOS and Concurrent DOS-286 687
XENIX and UNIX 688
OS/2 688

Summary 688

Part V Appendixes

Appendix A Development Tools 691

Using Batch Files to Automate the Assembly Process 693
Using Batch Files for Versions of MASM Prior to

Version 5 693
Using Batch Files for MASM Versions 5 and Higher 695
Using the Microsoft MAKE Facility 699
Using Templates to Create .COM and .EXE Programs 701
Using Library Routines 721

Appendix B Undocumented MS-DOS Interrupts and Functions 739

Undocumented MS-DOS Interrupts 741
Interrupt28h (40): DOS Safe Interrupt 741
Interrupt 29h (41): Console Device Output 7 42
Interrupts 2Ah (42) through 2Dh (45): MS-DOS Internal

Routines 7 42
Interrupt 2Eh (46) Back Door to COMMAND

Processor 7 42
Interrupts 30h (48) through FFh (255) 742

Undocumented Interrupt 21h (33) Function Calls 743
Function 18h (24), 1Dh (29), 1Eh (30), 20h (32): Dummy

Functions for Compatibility with CP/M 743
Function 1Fh (31): Locate /Jisk Block Information for

Default Drive 7 43
Function 32h (50): Locate /Jisk Block Information for

Specified Drive 7 44
Function 34h (52): Get MS-DOS Busy Flag 744
Function 37h (55): Get/Set Switch Character 745
Function 50h (80): Set PSP Segment 745
Function 51h (81): Get PSP Segment 745
Function 52h (82): Get Address of the MS-DOS List

of Lists 746
Function 53h (83): Translate BIOS Parameter Block

(BPB) to Disk Block 747
Function 55h (85): Create PSP Block 747

xx

Contents

Function 58h (88): Get/Set Memory Allocation
Strategy 7 4 7

Function 60h (96): Resolve Path String to Fully Qualified
Path String 7 48

Function 63h (99) Get Lead Byte Table 748

Appendix C Bibliography 7 49

Books 751
Articles 753

Appendix D ASCII Cross-Reference and Number Conversions 755

Nonprintable ASCII Character Definitions 760
Hexadecimal to Decimal Conversion 762
Decimal to Hexadecimal Conversion 763

Index 767

xxi

MS-DOS Developer's Guide

xx ii

Preface
to the Second Edition

The Waite Group's MS-DOS Developer's Guide presents powerful programming
techniques and an in-depth examination of the MS-DOS operating system. This
edition has been newly revised to cover

• MS-DOS 4.0 compatibility, including all disk and file formats and the way
in which the file allocation table (FAT) manages hard disk partitions
greater than the 32-megabyte limit

• The LIM EMS 4.0 standard for expanded memory capacity, including its
incorporation in MS-DOS 4.0

• New material on hardware control, including EGA and VGA
programming techniques, as well as programming the serial port

• Detailed, completely updated explanation of terminate-and-stay-resident
(TSR) programming

• Updated treatment of interrupts, functions, and error codes, with new
material on undocumented functions

• Revised material on memory management, installable device drivers,
disk layout and file recovery, real-time programming, and structured
programming, with examples ofMASM 5.0 programming techniques,
as well as new tables, listings, appendixes, and an up-to-date quick
reference card

A great deal has changed since the release of the first edition of this classic
book on MS-DOS programming. At that time, MS-DOS 3.2 had just appeared,
the standard display was still the monochrome or Hercules monochrome
graphics, and the typical machine contained from 256K to 512K with a 10- or 20-
megabyte hard disk. The hot available software included WordPerfect 3.x,
dBASE III, Lotus 1-2-3 version 1.1, SideKick version 2.0, Microsoft's C com
piler version 4.0, and MASM version 4.0. AT-class machines were selling in rela
tively small numbers, the term OS/2 had not appeared, EGA displays were rare
and expensive, and Lotus/Intel/ Microsoft were about to release the LIM 3.2
Enhanced Memory Specification.

Preface

Today the MS-DOS operating system has reached its 4.0 incarnation. AT
class machines are the dominant platform, running at 10to16 megahertz with at
least 640K memory, often with 1 or 2 megabytes of EMS RAM, and hard disks
ranging from 40 to 100 megabytes. The EGA is the standard display, and IBM's
model PS/2 machines have introduced the VGA standard, similar to the EGA in
design but with better resolution. WordPerfect, dBASE, Lotus 1-2-3, and Side
Kick are still prominent in their latest versions, but the competition has stiff
ened from the likes of a revived WordStar and Microsoft Word; Paradox,
Revelation, and Oracle; Twin, Lucid, and Excel; and a host of terminate-and
stay-resident programs.

In a world of fiercely competing operating systems such as UNIX, Macin
tosh, and OS/2, MS-DOS survives partly due to its huge installed base of users
and feature-laden application programs, partly due to extensions such as Quar
terdeck's DesqView and Microsoft's Windows, and partly due to much more
powerful development software such as Microsoft's C Compiler and Macro As
sembler, both in version 5.1 states, and Borland's new Turbo C and Turbo
Assembler. But MS-DOS survives chiefly due to the army of MS-DOS program
m, rs who have matured as well as MS-DOS has aged, squeezing systems to per
formance levels that two years ago would have been unbelievable.

Acknowledgments
The Waite Group wishes first to thank the authors for their patient, knowledge
able contributions to the revision of The Waite Group's MS-DOS Developer's
Guide. Readers familiar with the first edition will recognize the huge changes
this book has seen. Thanks to Michael Goldman for a creative approach to teach
ing the use of macros and structures. Thanks to Walter Dixon for your skillful
unraveling of the I/O mysteries ofTSRs. Thanks to Raj Bapna and Raj Dhesikan
for a clear explanation of real-time programming issues. Thanks to Jon Fleig for
an exhaustive examination of the EMS standard in all its incarnations. Thanks
to N aba Barkakati for a complete lesson in communications and control of the
serial port. Thanks to Andrew Dumke for your EGA and VGA drawing in C and
your detailed explanations. Thanks to Kevin Jaeger for brilliant, accurate revi
sions of device drivers and memory managment discussions. Thanks to John An
germeyer for your care of the entire book project, your willingness to dig into
any level for any detail, and your sensitive interleaving and explanations
throughout the book.

The Waite Group wishes to thank Blair Henderson for your knowledgeable
technical reviews of the revised material. Thanks to John Ferguson for the tech
nical review of Chapter 4. Thanks to David Blossom for an excellent, detailed
review of the disk layout and recovery material. Thanks to Mark Haas for con
tent and copy editing during the development phase. Thanks to Diana Fran
coeur for deft and careful copy editing and skillful managment of the production
of this book. Thanks to Joyce Smith of Automated Business Services whose un
rivalled speed and accuracy in word processing allowed the editing to be com
pleted on schedule. Thanks to Tom Emrick whose professional eye streamlined
and clarified the art presentation. Thanks to Jim Rounds for advice and good
natured support during the turbulent conclusion of development. Thanks to Jim

xxiii

MS-DOS Developer's Guide

xxiv

Hill and Richard Swadley for pushing this project with the vision of what it
should be. Thanks to Scott Calamar for your constant, caring help during a sea
of crises. Thanks to Mitchell Waite for all that you have taught us-we have come
a long way.

-James Stockford

Preface
to the First Edition

He felt like somebody had taken the lid off life and let him look at the works.
Dashiell Hammett, The Maltese Falcon

In one sense, this book is about the technical aspects of programming in a par
ticular manner within a specific environment. In another sense, this book is
about discovery and the process of discovery.

Too often we accept the circumstances that we see before us as absolute
limits on our world. This is especially true of devices of great complexity such as
computers. What we have worked to accomplish in this book is the removal of
some of those limits and, more importantly, to give you, the reader, the confi
dence to go on to lift the barriers even further.

Some of the topics we have addressed are

• The fictitious conflict between structured programming and the use of
assembly language

• Effectively using those elusive, poorly documented, "advanced" assembly
language features, such as macros and conditional assembly

• Getting the best of two worlds by combining high-level languages with
assembly language for easy programming and readability without
sacrificing speed and compactness

• Customizing your system to take advantage of that old peripheral from
your previous system or that new gadget you like but nobody supports

• Writing your own "magic" functions like Super Key and SideKick through
the use of memory resident programs

• Accessing the power of the 8087 and 80287 math coprocessors without the
expense or limitations of high-level languages or manufacturer-specific
libraries

• Recovering valuable data after the program crashes

• Rescuing erased files that you thought were gone forever

xxv

MS-DOS Developer's Guide

xxvi

Each of these topics addresses an area that is usually left to experts, but
with the aid of this book you can become the expert. This is no empty promise,
for once you know how to learn about your system, you can continue to uncover
new mysteries.

The collection of discussions in this book is organized in a manner similar to
a compendium of articles. Each discussion is presented in its own chapter and
may be read and referenced independently of the other chapters. Each chapter
covers a topic that relates directly to program development within the MS-DOS
environment. Because of the informative nature of this book and the way it is
organized, it can also be read from beginning to end, thus yielding a greater con
fidence in your programming endeavors.

Although we assume that readers have some familiarity with the MS-DOS
operating system, with the 8086 family of microprocessors, and with assembly
language programming, this book, with its reference style, is appropriate for
computer users with a variety of programming experience.

This book is by no means a complete presentation of application develop
ment, nor do we necessarily have the "right" way to program. Rather, we have
tried to introduce some of the more immediate topics of programming that can
be readily applied to actual problems. Should you decide to pursue the study of
these topics, check the numerous references that can be found in some of the

r more specialized technical works. These references provide all the detail you de
sire, and some of them are listed in the bibliography at the end of this book.

Acknowledgments
The authors would like to thank Kim House and Robert Lafore for their many
helpful comments, criticisms, and suggestions during the editing of our man
uscript. Their valuable input helped in the fine-tuning of this book. We would
also like to thank Larry Skene for his valuable information about IBM PC-DOS.

Special thanks are also due to Alan Stacy for his valuable knowledge, re
search, and writings on networking environments for MS-DOS systems.

We would also like to thank Computer House of San Rafael, California, for
answering our many questions and providing MS-DOS for our CompuPro
system.

The Authors
JOHN ANGERMEYER is a design engineer specializing in word processing
and telecommunications software and hardware. The former technical writer is
also the coauthor of CPIM Bible, MS-DOS Primer, and Tricks of the MS-DOS
Masters.

He is the author of Chapter 10, "Programming the Intel Numeric Process
ing Extension," Chapter 11, "Disk Layout and File Recovery," Chapter 12, "Re
covering Data Lost in Memory," Chapter 13, "Differences between MS-DOS
Versions," the appendixes, and the Quick Reference Card. He is the coauthor of
Chapter 1, "Structured Programming 1: Tools for Structured Coding," and
Chapter 2, "Structured Programming 2: The Design and Implementation of
Modular Programs."

KEVIN JAEGER is a computer systems design engineer specializing in soft
ware architecture. He holds a degree in computer science and has worked in the
telecommunications, graphics display, and process control industries.

He is the author of Chapter 3, "Program and Memory Management," and
Chapter 6, "Installable Device Drivers." He is the coauthor of Chapter 2,
"Structured Programming 2: The Design and Implementation of Modular
Programs."

RAJ KUMAR BAPNA is a software engineer, with BSEE and MSCS degrees
from BITS and ITT in India. His current interests include operating systems,
software engineering, and real-time programming. He has experience in the
fields of networking, DBMS, and continuous system simulation languages. He
has worked for Intel Corporation in Hillsboro, Oregon.

He is the coauthor of Chapter 5, "Real-Time Programming."

NABAJYOTI BARKAKATI works as an electronics engineer for a well-known
research laboratory. He began his programming career in 1975, and has worked

xx vii

MS-DOS Developer's Guide

xxviii

extensively with FORTRAN, C, and several assembly languages (PDP-11,
80x86). He remains an avid programmer, primarily interested in developing
communications and graphics software on the IBM PC and the Macintosh. He
has a Ph. D in electrical engineering from the University of Maryland.

He is the author of Chapter 8, "Programming the Serial Port."

RAJAGOPALAN DHESIKAN has an M.S. from IISc, India. His areas of inter
est include networking software development and real-time programming. He
has experience working with Intel's real-time operating system, RMX, and is
currently working as a software engineer at International Software, Ltd. in
India. He is also a consultant to Intel Corporation in Hillsboro, Oregon.

He is the author of Chapter 5, "Real-Time Programming."

WALTER DIXON holds degrees in both mechanical and electrical engineering.
He is employed at General Electric Corporate Research and Development Cen
ter in Schenectady, where he works in the areas of distributed systems and com
puter networks. Mr. Dixon also teaches graduate computer science at Union
College in Schenectady. He has written more than ten device drivers for PC
DOS.

He is the author of Chapter 4, "Terminate and Stay Resident Programming."

ANDREW DUMKE is the author of an EGA-based desktop publishing pro
gram, Laser GT, and an EGA print screen utility, Laser PR, both released by
Sterling Pacific Inc. Mr. Dumke is currently a San Francisco-based fulltime
computer industry investor with interests in microcomputers. He has owned a
variety of microcomputer systems since 1978, and has programmed in C since
1983.

He is the author of Chapter 9, "Programming the EGA and VGA."

JoN FLEIG is a software engineer with ten years of experience in program
ming mainframe, personal, and minicomputers. The coauthor of a popular LIM
EMS 4.0 emulator product, he is currently developing real-time software for
controlling high-performance machine tools. He lives in Rochester, New York.

He is the author of Chapter 7, "Using Expanded Memory."

MICHAEL GOLDMAN wrote his first program in 1964 when response time
was days. He wrote his second program in 1972:While waiting for response time
to improve, he received a B.S. in physics and an M.A. in mathematics from the
University of Wisconsin. He now writes systems-level programs in C and assem
bly language in Silicon Valley. Only assembly language feeds his insatiable ap
petite for ever-faster response time.

He is the coa11thor of Chapter 1, "Structured Programming 1: Tools for
Structured Coding."

<

1 - Tools for Structured Coding

HEN hackers gather 'round their electronic campfires to discuss the mys
eries of structured programming, comments are likely to center on a small

set of language constructs like the IF-THEN-ELSE statement. A devotee of
Pascal or C may lecture on the structured benefits of a higher-level program
ming language versus those of assembly language. Heated arguments about the
use of GOTO may possibly ensue. In spite of all the earnest discussion, however,
the complete story is not being told. Such discussion is really focused only on
structured coding. As you will soon learn, structured programming is possible
in any language. Even some assembly languages support all those nifty high
level control structures. One of them is Microsoft's Macro Assembler for MS
DOS, affectionately known as MASM.

The Need for Shorthand Statements

Before beginning our presentation of high-level control structures in assembly
language, we first look at some of the advantages of higher-level languages. At
the most basic level, anything that can be done in a higher-level language also
can be done in assembly. Everything ends up at the assembly language level
anyway. What then is gained from the use of a high-level language? Terseness!
The ability to express a programming idea in a form that is readily understood
by the coder or reader. Consider that each assembly language statement more
or less corresponds to one machine instruction. On the other hand, a single
higher-level statement may expand to tens or even hundreds of machine code in
structions. (For anyone who doubts the hundreds, check a FORTRAN sub
routine call with embedded argument calculations.)

Figure 1-1 shows the same fragment coded in both FORTRAN and 8086
assembly language. This fragment computes the sum of 1 ... NUM for a given
NUM. No doubt the assembly language routine could be further optimized to
reduce either the amount of object code produced or the execution time. But no
matter how you look at it, it is easier to write the routine in FORTRAN than in
assembly. To code the assembly language routine, many more decisions need to
be made. Because of the extra work involved in assembly, coding mistakes are
more likely. I may know for a fact that the FORTRAN routine will run perfectly,
but I may still harbor doubts about the assembly routine. Why do these doubts

5

Coding and Programming

FORTRAN

SUM = 0
DO 100 I = 1, NUM

100 SUM = SUM + I

Assembly Language

loop1:

mov sum,O
mov ax,1
cmp ax,num

jg loopLend
add sum,ax
inc
jmp

loop Lend:

ax
loop1

Figure 1-1. Fortran versus assembly language.

exist? Because each line of the FORTRAN routine is an entire thought, whereas
the assembly language routine requires many lines to complete the same
thought.

In short, using higher-level constructs results in easier coding and more
reliable code. These constructs make coding less complicated, which allows the
programmer to concentrate on the logic of the program while assuming that the
actual implementation is correct. Programmers would like to have faith in their
work. Tools that support this faith make for better programmers.

Introduction to Macros

6

Assembly language coding thus would be greatly enhanced if there were a way to
create a shorthand for commonly used statements. MASM provides this with the
macro facility. Macros are "super-instructions'' that off-load to MASM a lot of the
tedious and repetitive work in assembly language programming. With macros,
programmers define blocks of assembly statements, and then, with individual ref
erences, direct MASM to include the respective blocks in the assembled program.
In this chapter we will introduce some of these macros and gradually build up your
ability to write your own tools. This will enable you to combine the execution
speed of assembly language with the power of a higher-level language.

Here are the two steps required to create and use a macro:

Step 1, Defining the Macro
;; Define
@DosCall

"Function Request" as @DosCall
MACRO
int 21h
ENDM

Step 2, Using the Macro
@DosCall

; call MS-DOS to perform function

<'-the macro call

1 - Tools for Structured Coding

What Appears in the Listing

~the macro call @Dos Call
int 21h ; call MS-DOS to perform function

When the program is assembled, the statement DosCall is replaced by the
statement int 21 h, including the comment. The listing file contains the line
DosCall as a reference, but the object file contains only the code for int 21h.
This operation is known as macro substitution or macro expansion.

Note in the previous example that the assembler inserts in the listing file a
symbol denoting the expanded macro code. In MASM version 4 and higher, a 1 is
placed on the lines pertaining to the first level of macro expansion, a 2 is used for
the second level, and so on. In MASM version 3 and prior versions, all macro
expansion lines, regardless of the level, are marked with the plus (+) character.

When processed by the assembler, the macro reference is replaced by the
code that the macro represents. The macro does not generate a CALL instruc
tion to the macro code, although macro references are sometimes referred to
that way.

Like everything else in programming, macros have to follow strict for
mulas. The form for defining macros is

mname MACRO argumenLlist

~body of the macro code

ENDM

The name of the macro is defined as mname, and argumenLlist is a list of
arguments, separated by commas. The argument list may be blank if the macro
contains no arguments (as in our example @DosCall).

This was a simple demonstration. If that were all that a macro could per
form, it would be a sorry creature indeed. Luckily, macros may be tailored by
using the arguments section. The next macro shows an example of this tailoring.

;; Define "Print Character" as PRINLCHR
@PrintChr MACRO char

mov ah,05
mov dl,&char
@DosCall
ENDM

Now, when we use this macro

@PrintChr 'A' ~the macro call

the following appears in our listing file:

@PrintChr 'A' ~the macro call

7

Coding and Programming

8

mov ah,05
mov dl,'A'

2 int 21h ; call MS-DOS to perform function

The &char in the macro has been replaced with the Win the macro call. (Yes,
we refer to using macros as calls. It's okay as long as you remember that no CALL
instruction is involved.) The number that appears at the beginning of the line is
MASM's way of informing the programmer that the code is the·result of a macro ex
pansion. Note too that the macro @PrintChr contains a reference to the previously
defined macro @DosCall, which was expanded into the int 21h statement that
@DosCall represents. MASM continues to evaluate macro calls to any level to
which they are nested until the symbol table storage area of MASM overflows. Nest
ing is another way of saying that macros may call macros that call macros and so on.

The name char in the @PrintChr macro is called a dummy argument.
Whenever the dummy argument char appears in this macro, char is replaced
with the value that was used in the call to the macro. In the @PrintChr exam
ple, replacing char means that any place in the macro that char appears, it was
replaced with the character A.

Note that any name chosen for a dummy argument is used exclusively for that
argument in the macro. Thus, if you were to choose a dummy argument with the
name AX, you would not be able to refer to the AX register in that macro!

The same warning about naming dummy arguments applies to naming the
macro itself. Should you choose to define a macro with the name add, you would
find that all references to the op-code ADD in the program would generate an
expansion of the macro add. You can even redefine MASM directives if you wish.
It is therefore very important not to create a conflict of names.

The & in front of char in the @PrintChr macro is used to append the value
of char to the string mov dl,. The & is not needed to evaluate the dummy argu
ment, which happens anyway, but to tell MASM that char is a dummy argu
ment, not just part of the larger string mov dl,char. The & operator is especially
important when dummy arguments are contained in larger strings, as this next
example demonstrates.

The Macro Definition The Macro Expansion
@Example MACRO arg @Example Y

mov dl,arg 1 mov dl,Y ~correct

mov dl,&arg 1 mov dl,Y ~correct

mov d l,argZ mov dl,argZ
mov dl,&argZ mov dl,argZ
mov dl,arg&Z 1 mov dl,YZ ~orrect

mov d l,Xarg mov dl,Xarg
mov dl,X&arg mov dl,XY ~orrect

mov dl,XargZ mov dl,XargZ
mov dl,X&argZ mov dl,XargZ
mov dl;Xarg&Z 1 mov dl,XargZ
mov dl,X&arg&Z mov dl,XYZ ~orrect

ENDM

1 - Tools for Structured Coding

Strictly speaking, the & is not required in the @PrintChr macro. MASM
was able to detect that char is a dummy argument because char stands alone
following a comma. However, it is a good habit to use & even when not required
because it highlights the dummy argument when you read the macro and it
makes clear to MASM just what is intended.

LOCAL Labels

So far, the macros we have used have been confined to generating simple assem
bly instructions. However, let's assume that we want to design a macro to choose
between the smaller of two numbers and to place that result into another loca
tion. Such a macro might look something like this:

min MACRO result,first,second
mov &result,&first
cmp
j l
mov

order_ok:
ENDM

&first,&second
order _ok
&result,&second

When we invoke min, it produces the proper code, but we have a problem:
Even though the macro evaluates perfectly, it can be used only once. Because
the label order _ok can be defined only once in a program, when the macro is
used in two places MASM complains that Symbol is multidefined.

We can make a small change in the macro to allow us to specify a label pa
rameter in addition to the others:

min MACRO result,first,second,order_ok
mov &result,&first
cmp
j l
mov

order_ok&:
ENDM

&first,&second
&order_ok
&result,&second

When we invoke the new min, as shown in the following example, we can
specify the name to be used for the jump label. Now min can be reused again
when needed, but we still have to think of a new name for the jump label each
time. However, the actual name is quite unimportant to us because the label is
private to the min function.

min ax,bx,cx,jmp1 +--the macro call

mov ax,bx
cmp bx,cx
jl jmp1
mov ax,cx

jmp1:

9

Coding and Programming

10

There's a better way to create a new name each time that min is called.
MASM provides the LOCAL directive for just this purpose. When MASM en
counters LOCAL, a unique label is automatically generated for that name. To
put it another way, it's as if the LOCAL parameter were included in the MACRO
parameter list, but MASM filled in the actual argument. A word of caution.
LOCAL statements must be placed directly after the MACRO definition line!
After the LOCAL directive is included, the new min macro appears like this:

min MACRO result,first,second
LOCAL order_ok
mov
cmp
j l
mov

order_ok:
ENDM

&result,&first
&first,&second
order_ok
&result,&second

When we invoke min this time, the expanded listing appears as shown in
the following example. The value of order _ok has been replaced by ? ?0000.
Every time we call it, order _ok is replaced by a new value generated by MASM.

min ax,bx,cx ; first call
mov ax,bx
cmp bx,cx

1 j l ??0000
mov ax,cx

??DODO:
min ax,bx,cx ; second call
mov ax,bx
cmp bx,cx
j l ??0001
mov ax,cx

??0001:

Of course, it is still possible to encounter a label conflict if you decide to use
labels that begin with ? ? . If you avoid using labels beginning with ? ? , you can
call the min macro as many times as you like.

The use of LOCAL labels is not restricted to jump addresses alone.
LOCAL labels can also be used with data, as the following macros demonstrate.
In this case the macros are used to insert text strings into the data segment and
simultaneously create a reference to the string in the code segment. By compar
ing the source code with the macro expansion in Listing 1-1, you can see how
much clearer it is to use macros.

Listing 1-1 also contains a few other useful macros to ease the task of writ
ing .EXE programs. Once you define these macros, you need never again worry
about getting the syntax of .EXE programs correct!

1 - Tools for Structured Coding

Listing 1-1. Hello World Program

; ***
; M A C R 0 D E F I N I T I 0 N S E C T I 0 N

; ***
;
@Dos Call MACRO

int
ENDM

;

21h ; call MS-DOS function

@InitStk MACRO ; define stack size
stk_seg SEGMENT stack

DB 32 dup ('stack ')
stk_seg ENDS

ENDM
;
@InitPrg MACRO segment

ASSUME ds:segment
start:

mov ax,segment
mov ds,ax
mov es,ax
ENDM

;
@Finis MACRO

mov

;

@Dos Call
ENDM

@DisStr MACRO
mov

;

mov
@Dos Call
ENDM

@TypeStr MACRO
LOCAL

cod_seg ENDS
daLseg SEGMENT
saddr DB
daLseg ENDS
cod_seg SEGMENT

@Di sStr
ENDM

ax,4COOh

string
dx,offset
ah,09h

string
saddr

string,'$'

saddr

string

; initialize data segment

; main entry point

; set up data segment
; set up extra segment

; terminate process

; display string from memory

; define and display a string
; set up a local label
; stop code segment
; change to data segment
; define string in data segment
; stop data segment
; return to code segment
; display string

continued

11

Coding and Programming

12

Listing 1-1. continued

;
;

; ***
; P R 0 G R A M S E C T I 0 N

; ***
;

@InitStk ; set up stack
cocLseg SEGMENT ; define code segment
main PROC FAR ; main Cand only) procedure

ASSUME cs:cocLseg ; assign code segment to CS
register

@InitPrg daLseg ; initialize data segment
@TypeStr 'Hello world!' ; say "hi" to the folks at home
@Finis ; terminate program

main ENDP ; end procedure
cocLseg ENDS ; end code segment

END start ; end program and ...
; define starting address

You can enter the program exactly as it appears and then assemble and run
it. The words Hello world! are displayed. Not a very impressive outcome in it
self, but if the macros used are stored in an include file, writing .EXE programs
becomes much easier. Let's look at the expanded program listing, shown in List
ing 1-2.

Listing 1-2. Macro Expansion for Hello World Program

; ***
; P R 0 G R A M S E C T I 0 N

; ***
;

@InitStk ; set up stack
stk_seg SEGMENT stack

DB 32 dup ('stack ')

stk_seg ENDS
cocLseg SEGMENT ; define code segment
main PROC

ASSUME
FAR
cs:cocLseg

; main Cand only) procedure
; assign code segment to CS

register
@InitPrg dat_seg
start:

1 mov

; initialize data segment
; main entry point

ax,dat_seg

1 - Tools for Structured Coding

mov ds,ax ; set up data segment
mov es,ax ; set up extra segment

@TypeStr 'He L Lo world!' ; say "hi" to the folks at home
cod_seg ENDS ; stop code segment
daLseg SEGMENT ; change to data segment
??0000 DB 'He L Lo world!','$' ; define string ...
daLseg ENDS ; stop data segment

1 cod_seg SEGMENT ; return to code segment
2 mov dx,offset ??0000
2 mov ah,09h
3 int 21h ; call MS-DOS function

@Finis ; terminate program
mov ax,4C00h ; terminate process

2 int 21h ; call MS-DOS function
main ENDP ; end procedure
cod_seg ENDS ; end code segment

END start ; end program and ...

The first point to notice is that the use of the LOCAL saddr in the
@TypeStr macro worked fine as a label for the data statement. When using la
bels with data, do not use the colon(:). Next, notice how the macro expansion
uses the reserved word segment in the macro @lnitPrg. No problem! Remem
ber that the dummy argument names in the argument list override any other
MASM definitions.

Note that a number oflines weren't included in the listing file. For one ex
ample, the statement ASSUME ds:data_seg is missing from @lnitPrg. The
statement was assembled, but MASM suppressed the complete expansion.

Both of these exceptions occur because of the way MASM processes
macros. The default condition suppresses listing source lines that do not gener
ate code. The ASSUME statement is a MASM directive and generates no code
of its own; therefore it is not listed. On the other hand, the ENDS segment end
directives are listed and produce no code either. There are still mysteries in
MASM for all of us to ponder.

Please don't take the code presented as a model for good programming. Al
though the idea of using macros for the prelude and postscript of .EXE pro
grams is a good one, it is poor practice to embed the names of important symbols
in the macros themselves. If the name of the data segment were other than
daLseg, unnecessary confusion would be created within the program. Either
@TypeStr should be passed the name daLseg as an argument, or @lnitPrg
should always assume that the data segment is daLseg.

Macro Listing Directives
If you wish to see the complete listing of a macro, place the MASM directive
. LALL in the assembly file. Then generate a . LST file, and compare it with the

13

Coding and Programming

14

original listing in our example. You will see that the ASSUME ds:data_seg is
now shown. To change the listing mode back, use the .XALL directive. This re
stores MASM to the default mode. If you wish to suppress all macro expansions,
use the .SALL directive.

Macro Libraries
The term macro library is actually something of a misnomer. Macro libraries are
not really libraries at all in the sense that Microsoft LINK or Microsoft LIB
would understand. Macros must be included at compile time because they are
directives for MASM and MASM only. LINK and LIB do not know what to do
with them. Instead, macro libraries are really include files. They can be defined
in a separate file, called MYLIB.MAC or STANDARD.MLB or whatever (you
can choose any valid file name you like) and included in the assembly by placing
an include directive in the source file, such as:

INCLUDE C:\MASM\LIB\STANDARD.MLB

The rules regarding the file name and drive specification are the same as
for the rest of the system. Within the listing file, lines obtained from an include
file begin with a C, just as macro expansion lines begin with a+ (in versions of
MASM below 4.0) or with a macro expansion level number. Of course, if you have
a large library and don't want to clutter your . LST file with macro definitions,
turn off the listing with the .XLIST directive before the include and then turn
the listing back on with .LIST after the include.

The use of macro libraries provides justification for the next macro direc
tive introduced. Although you very rarely define a macro in a program and then
want to "undefine" it (you would just delete it!), you quite commonly may in
clude a macro library for the purpose of using just a few of the defined macros.
The rest of those macro definitions take up valuable storage space in the MASM
symbol table and macro storage area. The way to recover this space is with the
PURGE directive. PURGE allows you to remove definitions for specified
macros. To remove the macros defined in our previous example, we would issue
the directive:

PURGE @DosCall,@lnitStk,@InitPrg,@Finis,@DisStr,@TypeStr

This frees all the space occupied by the macm definitions and leaves us with a
clean slate.

Macro Repeat Directives-REPT
Another macro facility provided by MASM is the ability to loop through a block
of macro code. Three loop varieties are provided, each with specific uses.

For our first example, let's assume that we wish to create an area in the
data segment for handling files. We use the file handle method of accessing files,

1 - Tools for Structured Coding

and, because we may want to use more than one file, we write our routine to give
unique names to each block.

file_head MACRO fnum
fi le_hand_&fnum dw ? ; file handle
fi le_nmax_&fnum db 49 ; maximum size of file name
f i le_n len_&fnum db ? ; actual length of file name
fi le_name_&fnum db 50 dup (?) ; file name buffer

ENDM

Why didn't we use the LOCAL directive for fnum? Because the labels are
not local to the macro itself. They must be accessed from other parts of the pro
gram to set the file name, access the file handle, etc. This macro could still be
improved. What if we want to use two files at once, say, in a file-to-file copy pro
gram? We would need to callfile_head twice:

file_head
file_head 2

; 1st file block
; 2nd file block

Instead, we can writefile_head to define as many blocks as we need, using
the REPT directive. The macros appear in Listing 1-3.

Listing 1-3. Define File Access Block

fcnt = 0 ; initialize and define symbol
fi le_head2 MACRO fnum
fi le_hancL&fnum dw ? ; file handle
fi le_nmax_&fnum db 49 ; maximum size of file name
fi le_nlen_&fnum db ? ; actual length of file name
fi le_name_&fnum db 50 dup (?) ; file name buffer

ENDM
fi le_head MACRO fnum

REPT fnum ; repeat block "fnum" times
fi le_head2 %fcnt ; create block #"fcnt"

fcnt = fcnt + 1
ENDM ; end of repeat block
ENDM ; end of file-head macro

As the expansion in Listing 1-4 demonstrates, when we call thefile_head
macro, it calls macrofile_head2 twice, each time using a different value offnum.
Of course, this macro expansion with the default listing status doesn't show the
intermediate calls tofile_head2. However, we can see the effects of the REPT in
the two file control blocks that were created. Notice that the REPT directive
must be terminated with ENDM, just like the MACRO directive. All repeat

15

Coding and Programming

16

blocks must end with ENDM. Another ENDM must also appear at the end of
each macro definition.

Listing 1-4. Define File Access Block Macro Expansion

fi Le_head 2
3 fi Le_hand_O dw ? ; file handle
3 f i Le_nmax_O db 49 ; maximum size of file name
3 f i Le_n Len_O db ? ; actua L Length of file name
3 f i Le_name_O db 50 dup (?) ; file name buffer
3 f i Le_ hand_ 1 dw ? ; file handle
3 file_nmax_1 db 49 ; maximum size of file name
3 file_nlen_1 db ? ; actual Length of file name
3 f i Le_name_ 1 db 50 dup (?) ; file name buffer

In addition to the REPT directive, we also used a counter. Counters are
symbols that have a numeric value. They must be defined using the equate (=)
operator so that they may be changed. (In MASM, equ is used to define static
symbols that are never changed, whereas an equal sign(=) is used to define dy
namic symbols that have values which may be changed.) The counter used with
the Jile_head macros is Jent. The counter Jent is incremented for each pass in
Jile_head. But why were the labels inJile_head2, Jile_hand_o, etc., rather than
inJile_hand_Jent? How did the nameJent get replaced with its value? The an
swer is in the percent sign(%) operator precedingJent in the call toJile_head2.
The percent sign forces the replacement of a symbol with its numeric value. Be
cause we used the percent sign, we needed two macros. Ifwe had tried to evalu
ate and substitute Jent in a single macro, as with:

REPT fnum
file_hand_&%fcnt dw ?

; repeat block "fnum" times
; file handle

the operation would fail, resulting in the symbol:

file_hand_fcnt dw ? ; file handle

The percent sign operator (%) operates only on macro arguments in a macro
call! In addition, the symbol's value must be an absolute (nonrelocatable)
constant.

Another important aspect of our macros is that the counter Jent is ini
tialized outside the macro block. This is because we don't want to reset Jent to
zero each time we callJile_head (which would cause duplicate labels). However,
Jent must be initialized somewhere, or the statement:

fcnt = fcnt + 1

would cause the error message Symbol not defined.

1 - Tools for Structured Coding

More about Macro Repeat Directives-IRP and IRPC

MASM supports two other macro repeat directives in addition to the REPT di
rective. These directives are IRP (indefinite repeat) and IRPC (indefinite re
peat character). Neither really repeats indefinitely. Instead, each one repeats as
long as arguments remain in the argument list. Listing 1-5 shows a simple re
peat macro called tesLmac that is designed to add items to the data segment.

Listing 1-5. Simple IRP Repeat Macro and Expansion

test_mac MACRO args ; define "test_mac"
IRP dummy,<&args>
db dummy ; add item
ENDM ; end of "IRP"
ENDM ; end of "test_mac"

test_mac 'one' <-1st call

2 db 'one' ; add item
test_mac <'two','three','four'> <-2nd call

2 db 'two' ; add item
2 db 'three' ; add item
2 db 'four' ; add item

On each pass through the repeat block, the next value in the argument list
is used for the value of dummy. By using the IRP directive, we were able to use
one macro call to do the work of three. On the second call to tesLmac, the IRP
block repeated the db once for each of the three strings in the argument list.

We've also introduced two special symbols for macros, the angle bracket
(< and >) operators. The tesLmac expects only one argument, but we want to
send it a list of arguments. The angle brackets accomplish this by making the
text inside of them into a single literal. So 'two', 'three', 'four' becomes one argu
ment rather than three. However, MASM does not send the angle brackets to
the receiving macro. Inside tesLmac, args has the value 'two', 'three', 'four', not
<'two', 'three', 'four'>. This is why additional angle brackets were added in the
IRP directive.

This reasoning does not apply to strings! The quotes that enclose strings
are not stripped, and adding an extra layer really confuses things. Ifwe use the
define byte statement as

db 'dummy' ; add item

MASM evaluates the line as

2 db 'dummy' ; add item

17

Coding and Programming

which would give us quite a few dummies but not what we want. We could force
the use of the actual argument through

db '&dummy' ; add item

but MASM would be trying to evaluate

2 db "one" ; add item

This causes a special error known as Text area read past end. This error
also occurs if you accidentally create an endless recursive macro call. Essen
tially, MASM runs out of places to store all the symbols in use. Beware! This
error message repeats endlessly until you abort MASM by pressing Control-C.

Macro Summary
From what you've learned, you can see that macros use a type of programming
shorthand. Thus, once you've defined a block of code, you may include it repeat
edly through a simple macro call. You've seen that macros are defined with a
MACRO statement that gives the macro its name, and optionally provides for
macro arguments. The macro definition is then ended with an ENDM state
ment. After the definition has been completed, the macro call is made using the
macro's name, followed by any parameters the macro requires.

You've also seen how MASM can generate unique labels using the LOCAL
directive and how repeat directives are used. Your knowledge of repeat direc
tives and some of their uses is expanded in the next section.

The Microsoft Programmer's Reference Manual for the MS-DOS Operat
ing System contains macro definitions for each of the system calls. In addition, it
also contains some general macros for common tasks, such as moving a string.
This manual is a good place to study the use of macros and gain some additional
experience in structuring macros. You will find the following three tables use
ful. Table 1-1 summarizes the macro directives that MASM uses, Table 1-2 lists
the special macro operators, and Table 1-3 summarizes macro listing directives.

We're halfway to our structured control macros now. To complete the job of
creating macros for structured control, we need to control just when and what is
.assembled into the program. That is the topic of the next section.

Conditional Assembly

18

When writing assembly language programs, it would be nice to be able to op
tionally include certain sections of code. When using macros, it also would be
nice to be able to choose different code depending on the arguments passed to
the macro. MASM provides these capabilities through the use of conditional
assembly.

When can conditional assembly work for you? Assume that you are writing
a rather large program, and, like most large programs, it has some bugs. You

1 - Tools for Structured Coding

Table 1-1. Macro Directives

Directive Variable

mname MACRO parameter _list

ENDM

EXITM

LOCAL symboLlist

PURGE macro_list

REPT expression

Explanation

MACRO DEFINITION
Signals the start of a macro definition
block; parameter _list defines the
dummy arguments to be used within
the block.
END MACRO
Signals the end of a MACRO definition
or of a REPT, IRP, or IRPC repeat
block. Required!

EXIT MACRO
Exits a macro expansion when
encountered. Used most often with
conditional assembly.

LOCAL SYMBOL
Defines the symbols in symboLlist as
unique symbols to the assembler.
Expanded into ??xxxx where xxxx is a
hexadecimal number.

PURGE MACRO DEFINITION
Deletes the definitions of the macros
listed in macro_list.

REPEAT
Repeats the block of instructions
between REPT and ENDM expression
number of times.

IRP dummy, <parameter Jist> INDEFINITE REPEAT

IRPC dummy, string

Repeats the block of instructions
between IRP and ENDM for each
value in the parameter _list, replacing
dummy with the value of the
parameter on each expansion.

INDEFINITE REPEAT CHARACTER
Repeats the block of instructions
between IRPC and ENDM for each
character in the string, replacing
dummy with the character on each
expansion.

decide to place some debugging statements in the program to let you know what
is happening. However, once the program seems to be running right, you want
to remove the statements so that the program executes more smoothly. Of
course, because the program probably contains still more bugs, back go the de
bugging statements. Adding and deleting statements can get rather tedious.
Conditional assembly can be used to solve this problem. Listing 1-6 shows the
effect of a switch called "DEBUG" on the statements in a conditional assembly
block. A good deal of the program has been edited and the .SALL switch used to

19

Coding and Programming

20

suppress some of the @TypeStr macro expansion. Our interest lies only in those
lines related to conditional assembly.

Table 1-2. Special Symbols for Macros

Symbol

&argument

;; comment text

!char

%symbol

<text>

Explanation

Concatenates dummy arguments or symbols with text.
Especially required to substitute dummy arguments within
quoted strings.
Indicates a macro comment. These comments are never listed in
the macro definition.
Indicates that the next character is a literal. Used to include&,
%, etc., in macro expansions where these symbols would
otherwise be interpreted as special.

Used to convert a symbol or optionally an expression to a
number in the current radix.
The angle brackets (< and >) are used to define the text
between them as a literal. Everything within the brackets may
be passed as a single argument to a macro.

Table 1-3. Listing Directives for Macros

Directive

.XALL

.LALL

. SALL

. LIST

. XLIST

Explanation

List source and object code for macro expansions, except source
lines that do not generate code. The default condition is .XALL.
List all lines for macro expansions, except comments preceded
by two semicolons (;;) .
List none of the code produced by macro expansion .
List source lines. Reverses .XLIST but does not change the
state of macro listing as determined by .XALL, .LALL, or
.SALL .
Suppress all listing. Overrides all other directives.

Listing 1-6. DEBUG Statements Conditional Assembly-FALSE

FALSE

TRUE

DEBUG

@TypeStr
IF
@TypeStr

; Part A--Source Listing
EQU 0

EQU OFFFFh

EQU FALSE

'hello world!'
DEBUG +-begin conditional block

'Hi - I made it to this point in the program'

1 - Tools for Structured Coding

END IF <-end conditional block

; Part B--MASM Listing

@TypeStr 'hello world!'
mov dx,of f set ??0000
mov ah,09h
int 21h ; call ms-dos function

END IF

This example was assembled with the value of the DEBUG switch set to
FALSE. As a result, all that appears of the conditional block in the MASM list
ing is the END IF statement after the @TypeStr expansion. That is how MASM
indicates that there was a conditional block there but that it wasn't assembled.
When the value of the DEBUG switch is changed to TRUE, MASM produces a
different program, as shown in Listing 1-7.

Listing 1-7. DEBUG Statements Conditional Assembly-TRUE

; MASM Listing

DEBUG EQU TRUE

@TypeStr "hello world!"
mov dx,offset ??0001
mov ah,09h

2 int 21h ; call ms-dos function
IF DEBUG
@TypeStr 'Hi - I made it to this point in the program'

mov dx,offset ??0002
mov ah,09h

2 int 21h ; call ms-dos function
END IF

This time, the debugging statements are included. MASM also includes in
the listing the line that caused the statements to be assembled. If you would like
to see all conditional assembly directives in the listing file, whether or not they
evaluate TRUE or FALSE, use the .LFCOND (list false conditions) directive.
You can later suppress the listing of FALSE conditions with the .SFCOND
(suppress false conditions) directive. Basically, a conditional assembly block

21

Coding and Programming

22

begins with some type of IF statement (see Table 1-4 for a complete listing) and
terminates with an END IF statement.

A common use of TRUE/FALSE switches in conditional assembly occurs
in systems programming (programming the operating system of a computer). If
you have a copy of the source assembly for your computer, take a quick look at it.
You will most likely find that conditional assembly has been used extensively.
Conditional assembly allows the designer to write one operating system and,

Directive

IF

IFE

ELSE

ENDIF

IF1,IF2

IFDEF
IFNDEF

IFB
IFNB

IFIDN
IFDIF

Table 1-4. Conditional Assembly Directives

Variable

expression

expression

symbol
symbol

<argument>
<argument>

<str1>,<str2>
<str1>,<str2>

Explanation

IF TRUE
If expression evaluates to a nonzero number,
the statements in the conditional block are
assembled.
IF FALSE

· If expression evaluates to 0, the statements in
the conditional block are assembled.
ELSE
If the conditional assembly directive evaluates
FALSE (does not assemble the conditional
block), the alternative statements in the
ELSE block are assembled. Terminates the
IFxxxx block but must be followed by ENDIF.
Only valid after an IFxxxx statement.
END of IF BLOCK
Terminates an IFxxxx block or ELSE block.
IF MASM PASS 1, IF MASM PASS 2
Assembles the conditional block if the MASM
assembler is in the pass indicated. See text for
the relationship of IFl and IF2 to IFDEF and
IFNDEF.
IF symbol DEFINED
IF symbol NOT DEFINED
Evaluates whether symbol is defined or
declared external. IFNDEF is the opposite of
IFDEF. See text for relationship to assembler
passes.
IF argument BLANK
IF argument NOT BLANK
Evaluates whether the argument is blank.
Used with macro arguments to see whether
an argument has been provided. IFNB is
the opposite of IFB. The angle brackets
are required.
IF strl IDENTICAL TO str2
IF strl DIFFERENT FROM str2
Evaluates whether string strl is identical to
string str2. IFDIF is the opposite ofIFIDN.
The angle brackets are required.

1 - Tools for Structured Coding

through the use of conditional assembly "switches," to configure the system to a
particular set of equipment. These switches, like the DEBUG switch in our ex
ample, can cause the proper system to be generated (proper configuration to be
made) for a given type, number, or configuration of memory, boards, pe
ripherals, drivers, and so forth.

For the purposes of the MASM assembler, any expression that evaluates to
zero, or has a value of zero, is considered to be FALSE. A nonzero expression is
considered TRUE. The value FFFF (hexadecimal) is commonly used for the
symbol TRUE. This allows TRUE to be used in any bit operation. For example,
the bitwise AND of 0001 and 1000 is 0000 so that, although both are true, the
AND of them would be false. Remember that MASM uses the same operators
for both logical and bit operations.

Relational Operators
In addition to using symbols with preassigned values or arithmetic expressions,
MASM supports relational operators, which may be used to control conditional
assembly statements. Relational operators are those that express the relation
ship between two values. Less than, greater than, equal to, and not equal to are
all examples of relational operators.

These operators allow such things as range checking and special actions
and in fact support what amounts to a programming language. Through the use
of relational operators, you can create quite complex program structures that
automatically adjust themselves to a particular environment (for example, siz
ing a data area to fit a reserved area of memory). However, when using relational
operators, MASM doesn't always do the expected thing.

If you are used to working with signed integers, you may think of OFFFFh
and -1 as the same value. With some exceptions, MASM also uses the values
interchangeably. Although earlier versions of MASM had some problems deal
ing with negative numbers, the newer versions (1.2 and later) do know that -1 is
equal to OFFFFh. However, when comparing the magnitude of two numbers,
MASM treats them differently. A simple test illustrates:

True
False

True
False

FFFF
0000
FFFF
0000

dw
dw
dw
dw

1 gt -1
1 gt OFFFFh
-1 ge OFFFFh
-1 gt OFFFFh

Obvious

65535, not -1
-1=-1

-1 not gt -1

What is demonstrated here is that MASM considers OFFFFh to be a posi
tive number, 65535 to be exact, except when it is being compared with -1, at
which time OFFFFh is treated as -1. Confusing as this is, forewarned is
forearmed.

The full list of relational operators in MASM appears in Table 1-5. An ex
ample use of these operators is contained in the structured coding macros ap
pearing at the end of this chapter. Table 1-6 shows the listing directives for
conditional assembly. ,

23

Coding and Programming

24

Operator

EQ
NE
LT
LE
GT
GE
NOT
AND
OR
XOR
FALSE

TRUE

Table 1-5. Relational and Logical Operators
for Conditional Assembly

Syntax

exp1 EQexp2

exp1 NE exp2
exp1 LTexp2
exp1 LE exp2
exp1 GTexp2
exp1 GE exp2
NOT exp
exp1 AND exp2
exp1 OR exp2
exp1 XOR exp2
(0000 hex)

(FFFF hex)

Explanation

TRUE if exp1 equals exp2
TRUE if exp1 not equal to exp2
TRUE if exp1 is less than exp2
TRUE if exp1 is less than or equals exp2
TRUE if exp1 is greater than exp2
TRUE if exp1 is greater than or equals exp2
TRUE if exp FALSE, else FALSE
TRUE only if both exp1 and exp2 are TRUE
TRUE if either exp1 or exp2 is TRUE
TRUE if exp1 equals logical NOT of exp2
For IF TRUE, any ZERO expression is
FALSE
For IF TRUE, any NONZERO expression is
TRUE

Table 1-6. Listing Directives for Conditional Assembly

Directive

. LFCOND

.SFCOND

.TFCOND

. LIST

. XLIST

Explanation

List conditional assemblies that evaluate to FALSE condition .
Suppress listing of conditional assemblies that evaluate to FALSE
condition. The default setting is .SFCOND.
Toggles the listing of FALSE conditional assembly as determined by
the MASM IX switch. Operates independently of the .LFCOND and
.SFCOND switches .
List source lines. Reverses .XLIST but does not change the state of
conditional assembly listing as determined by .LFCOND, .SFCOND,
or .TFCOND.
Suppress all listing. Overrides all other directives .

Conditional Assembly Summary
From a quick overview of conditional assembly, we see how it is possible to con
trol which code is included in the assembled program. So far, we have investi
gated the use of conditional assembly to ease the task of including optional code.
But we have only scratched the surface. Only one of the ten possible forms of
conditional operators was used in our examples. What of the rest of these opera
tors? They are intended primarily for use with macros. To that topic, we now
turn.

1 - Tools for Structured Coding

Conditional Assembly and Macros

Although conditional assembly is frequently used with explicitly defined
switches, conditional assembly's greatest potential is realized when it is com
bined with the MASM macro facility. There are a number of features of condi
tional assembly that are intended specifically for operation with the macro
facility. Let's lay some groundwork to explain the possibilities of these features.

Macros may be classified into two groups. First, there are those macros
designed to create a definite structure depending upon some input, where the
structure is well defined and the input is of an expected class. The file_head
macro, designed to insert a file definition block, is an example of this classifica
tion of macro.

The second class of macro is intended to generate a structure that is de
pendent on information that is unavailable to programmers or that they con
sider trivial and desire to ignore. These macros often must be able to process
many classes of arguments and must determine the argument's class. At other
times, these macros may maintain private data or counters in order to release
the programmer from bookkeeping chores. The structured control macros con
tained in the last part of this chapter are prime examples of the latter. Of course,
some overlap usually exists between these classes of macros.

To explain further, in one type of macro, the programmer uses the macro
facility to avoid some typing or other drudge work. In the other type, the pro
grammer uses the macro facility as a kind of higher-level structure, depending
on the assembler to supply the missing information. The programmer inten
tionally hides the details of implementation for the purpose of simplifying the
programming job.

One example of a higher-level macro is using macros to simplify the use of
assembler mnemonics. Although most of the 8086 processor's instructions may
be used with either register or memory operands, quite a number do not allow
immediate operands. The PUSH instruction is one example, although the
186/188 and 286 do allow pushing immediate data onto the stack.

It is quite simple to design a pus hi (push immediate) macro that transfers
the desired argument to a register and pushes the register. However, if a macro
were to be used to implement a more general push operation, it is not only desir
able that the macro be able to push immediate data, but also desirable that the
macro be able to decide whether such an operation is even required. In other
words, the programmer would use a general pseudo-opcode that would apply to
all cases. The pseudo-opcode would actually be a macro that would evaluate the
operands and generate either a standard or extended instruction as required.

The first step in being able to write such a general-purpose macro is to be
able to determine just what the macro operands are. MASM provides a number
of special-purpose operators to accomplish this task.

Determining Operand Types
In the 8086/8088 environment there are four basic types of operands. These are
register, immediate, memory, and addresses. For those that are data oriented, a

25

Coding and Programming

26

number of subtypes are possible. Registers include the special cases of the ac
cumulator (general register A) and the segment registers. All three data types
may be subclassified as either 8-bit or 16-bit data. Addresses may be either near
(offset only) or far (offset and segment).

How do we go about distinguishing among all these types? We use the
MASM operators . TYPE and TYPE. Table 1-7 shows the results of using these
operators with various classes of operands.

Table 1-7. The .TYPE and TYPE MASM Operators

Rules for .TYPE and TYPE

Operator

. TYPE bits 5 and 7

. TYPE bits 0 through 2

TYPE used with data variable

TYPE used with program label

Result

8x
2x
Ox
xO
xl
x2
01
02
04
08
10
xx
FFFF
FFFE

Defined external
Defined local
Invalid reference
Absolute mode
Program related
Data related
Byte variable
Word variable
Double word variable
Quad word variable
Ten-byte variable
Structure of size xx
Near program label
Far program label

.TYPE and TYPE Examples

Variable Type .TYPE Definition TYPE Definition

Immediate 20 Defined local 0 Invalid
Register 20 Defined local 0 Invalid
Data label 22 Defined local x Number of bytes
Near label 21 Defined local FFFF Near label
Far label 21 Defined local FFFE Far label
MASM op-code 00 Invalid 0 Invalid
Nonsense 00 Invalid 0 Invalid

Some further examples may be constructed. Although . TYPE recognizes
the names of the various registers, it does not recognize a register construct
such as [BX] or ARRAY[BXJ[SIJ. Single character constants, such as A, are
recognized as locally defined variables by the . TYPE operator.

Nothing recognizes a forward reference during the first pass of the as
sembler. IFDEF returns a not defined result, . TYPE returns an invalid, and
TYPE returns a zero length. Only one rule may be applied to forward refer
ences: Avoid them if at all possible.

1 - Tools for Structured Coding

Phase Errors and Other MASM Eccentricities
An important warning is associated with the use of MASM operators. MASM is
a two-pass assembler that assigns values to symbols on the first pass and then
evaluates the symbols on the second pass. Program labels and data labels are
symbols. Their values are determined during the first pass and then used during
the second pass to generate the code.

Consider the following chain of events. If a forward reference occurs,
MASM does not recognize the label on the first pass and is not able to determine
its type. Attempting to reference this symbol produces the error message Sym
bol is not defined. MASM encounters this error when processing the first pass
but suppresses it and continues the assembly. MASM is able to cover up by as
suming the type of the symbol from the context in which the symbol appears. If
this guess is wrong, MASM may end up producing the message Phase error be
tween passes, or MASM may shorten the instruction and place NOP instruc
tions after it as place holders.

There are two ways that phase errors may be avoided during normal use of
MASM. In the majority of cases, MASM is able to determine the operand type
from the context. Programmers rarely jump to locations in the data segment
and don't usually add program addresses. For those special cases where MASM
makes a wrong guess, the programmer may set the assembler straight by using
the PTR (pointer) override operator. With PTR the programmer may explicitly
specify the type of a forward reference so that MASM does not guess incorrectly.

However, by attempting to produce multipurpose instructions with
macros, we greatly increase the chance of guessing wrong in these cases. If our
multipurpose instruction is intended to be able to process any operand class, ex
act meaning becomes more difficult to determine from context. In addition, al
though the use of PTR may aid in some of these cases (as we shall see in the
@PushOp macro), its use defeats the purpose of using macros to relieve the pro
grammer of burdensome detail.

By examining how a wrong guess produces a phase error, we may more
easily avoid its occurrence. Because phase errors are the result of certain sym
bols (such as labels) changing value between passes, it is important that macros
produce the same amount of code on each pass. This preserves the values of
those labels located after the macro and is also why MASM pads shortened in
structions with NOP instructions. Program labels generated by the macros
must also remain constant from pass one to pass two.

String Matching-An Example
Unfortunately, the . TYPE operator's readiness to recognize immediate oper
ands as well as registers, etc., greatly reduces its usefulness in detecting the
type of a macro operand. Because it is especially useful to know whether an ar
gument to a macro is a register, we must construct a method for determining
this. Knowing whether the argument is a register usually is useful only when

27

Coding and Programming

28

combined with the implicit assumption that if it's not a register and not a defined
memory reference, the argument is assumed to be an immediate data reference.

A common use of conditional assembly with the IRP or IRPC directives is
matching. The purpose in these cases is to see whether a macro argument is a
member of some set. In this case, string matching is used to solve the problem of
determining whether an argument is a register. Because all that the . TYPE op
erator can determine is that registers are both locally defined and absolute, a
string-matching macro is used to explicitly check for a register name. The ?reg
macro shown in Listing 1-8 accomplishes this function.

Listing 1-8. Register Name Match ?reg Macro

FALSE EQU
TRUE EQU

0
OFFFFh

,,
;; **** ?REG - Test to see if an argument is a register
,,
?reg MACRO
?isr8 =
?isr16 =

arg
FALSE
FALSE

IRP
IFIDN
?isr16
EXITM
END IF

reg,<ax,bx,cx,dx,bp,sp,si,di,cs,ds,es,ss>
<&®>,<&arg>
= TRUE

ENDM ;; end IRP section
,, If match then stop here

IF (?isr16)
EXITM
END IF

,, If not match yet, try the rest
IRP reg,<ah,bh,ch,dh,al,bl,cl,dl>
IFIDN <&®>,<&arg>
?isr8 TRUE
EXITM
END IF
ENDM ;; end IRP section

,, If match then stop here
IF (?i sr8)
EXITM
ENDIF

,, If not match yet, try uppercase
IRP reg,<AX,BX,CX,DX,BP,SP,SI,DI,CS,DS,ES,SS>
IFIDN <&®>,<&arg>
?isr16 = TRUE
EXITM

1 - Tools for Structured Coding

ENDIF
ENDM ;; end IRP section

,, If match then stop here

,, If

IF (?isr16)
EXITM
ENDIF

not match
IRP
IFIDN
?isr8
EXITM
ENDIF
ENDM
ENDM

yet, try the rest
reg,<AH,BH,CH,DH,AL,BL,CL,DL>
<&®>,<&arg>

TRUE

,, end IRP section
,, end macro definition

The heart of this macro, as with any matching macro, consists of the three
lines:

IRP reg,<ax,bx,cx,dx,bp,sp,si,di,cs,ds,es,ss>
IFIDN <&®>,<&arg1>
?isr16 % TRUE

These lines may be interpreted as performing the following function:

For reg equals ax to ss do ...
If reg equals the argument arg . . .

The argument is a register!

There are two interesting points to note here. One, it is necessary to ex
plicitly check for the register name in both lower- and uppercase. The IFIDN
conditional assembly directive compares strings for an exact match. Even with
the extra effort, the ?reg macro is not foolproof. It does not match a register
name that has one uppercase character and one lowercase character ("aL," for
example). Second, two separate checks are performed: one for 16-bit registers
and one for 8-bit registers. In the current implementation, having separate
checks doesn't gain us anything, but it will be used in the next example.

The ?reg macro has two additional syntax elements. One is the EXITM
exit macro directive. This directive is used to stop processing of the ?reg macro
when a match is found.

Less obvious is the use of the double ampersand in the IFIDN statement.
According to the Microsoft MASM manual, the user must "supply as many am
persands as there are levels of nesting." This rather laconic pronouncement
doesn't do justice to the complexity of the problem. The "levels of nesting"
doesn't apply to how many blocks deep the reference occurs but rather to how
many blocks deep the definition occurs. Thus, arg1 gets away with only one&,
whereas reg, which is defined in a nested block, requires the double ampersand,
&&. Microsoft does not state whether there is a limit to the allowed number of

29

Coding and Programming

30

nesting levels or the number of ampersands that may be required. In cases
where multiple ampersands seem indicated, the extra effort of trying a few ex
amples to ensure proper operation is worth it.

The demonstration of the ?reg macro in Listing 1-9 shows that this macro
does function as expected. Do note that the register bP, which MASM would
recognize, is rejected by ?reg. This could be construed as a coercive argument
for consistency in typing.

Listing 1·9. Test of the ?reg Register Name Match Macro

?reg ax ; is "AX" a register?
FFFF dw ?isr16 -TRUE

?reg cs ; is "CS" a register?
FFFF dw ?isr16 -TRUE

?reg zork ; is "ZORK" a register?
0000 dw ?isr16 -FALSE
0000 dw ?isr8 -FALSE

?reg 01234h ; is "1234" a register?
0000 dw ?isr16 -FALSE
0000 dw ?isr8 -FALSE

?reg bP ; is "BP" a register?
0000 dw ?isr16 -FALSE-case change
0000 dw ?isr8 -FALSE

Parsing Macro Arguments
With a macro that can recognize register names, you can now implement a gen
eral PUSH macro, which we'll call @PushOp (push operand). (Note: We consid
ered the name pusha for "push all," but PUSHA is a defined op-code in the Intel
186, 188, and 286 chips. Its use as a macro could restrict upward compatibility.
Of course, you can always implement the PUSHA instruction via a pusha macro
for 8086 or 8088 processors and be ahead of the game.)

As mentioned previously, it is necessary to make some assumptions about
the operand type in those cases where it is not defined and not a register. In the
@PushOp macro, we assume that unknown operands are immediate data refer
ences. @PushOp references the macro ?reg, and ?reg must be included in the
program for@PushOp to function. See Listing 1-10 for the @PushOp macro.

@PushOp makes use of the ?reg macro's ability to distinguish between
16-bit and 8-bit registers. Because the PUSH instruction does not accept an
8-bit register, the IRPC macro directive is used to obtain the first character
of the register name. @PushOp then appends an x to form the name of the 16-bit

1 - Tools for Structured Coding

Listing 1-10. @PushOp Generalized PUSH Macro

,, **** @PushOp Generalized Push Operand Macro
If the operand is defined then it may be one of:

,, register
,, data reference
,,
,, If the operand is NOT defined, then it will be assumed to
,, be an immediate reference.
@PushOp MACRO arg

.SALL
IF DEF &arg ,, operand IS defined

?argtyp = .type &arg ,, ••. then get type
IF ((?argtyp and 3) EQ 2) ,, operand is DATA

?argsiz = ((type &arg) + 1)/2 ,,
?argoff = 0 ,,

get size in words
set offset to 0

REPT ?argsiz ,, repeat each word
?argadd = word ptr &arg + ?argoff ;; get type ptr
.XALL
push
• SALL

?argadd

?argoff = ?argoff + 2
ENDM

END IF
IF ((?argtyp AND 3) EQ 1)

@PushlmOff &arg
ENDIF
IFE C?argtyp and 3)

?reg &arg
IF (?i sr16)

.XALL
push &arg
.SALL

ELSE
IF (?i sr8)

IRPC chr1,&arg1
.XALL
push
.SALL

EXITM
ENDM

&&chr1&&x

,, push memory direct

,, next word of data

,, operand is PROGRAM
,, ... push Label offset

,, operand is ABSOLUTE

,, operand is REGISTER 16

,, push direct

,, operand is REGISTER 8

,, save short register

continued

31

Coding and Programming

32

Listing 1-10. continued

ELSE
@Pushlm &arg

ENDIF
ENDIF

END IF
ELSE

@Pushlm &arg
END IF
ENDM

,, assume immediate
,, ••• push immediate

,, ••• push immediate

,, end macro definition

register, which PUSH accepts. Nate that the use of double ampersands is re
quired again in this statement and that they are required on both sides of the
dummy argument since string concatenation occurs at each end.

For those cases that are assumed to be immediate data, the @Pushbn
macro is called. This macro is more complicated than absolutely necessary be
cause it assumes that no registers are available for use in transferring the imme
diate data to the stack. Instead, the macro uses the base pointer (BP) to address
the stack. After saving the BP and AX on the stack, @Pushlm slides the imme
diate data under the AX contents, swapping it with the contents of the old BP.
After restoring the BP contents to its previous location in the BP, the macro re
trieves the contents of the AX by popping them off the stack. The @Pushlm
macro is shown in Listing 1-11.

Listing 1-11. @Pushlm Immediate Data PUSH Macro

,, **** @Pushlm Immediate Data Push Macro
@Pushlm MACRO arg

.XALL
push bp ,, save base pointer
mov bp,sp ,, move stack pointer to BP
push ax ,, save accumulator
mov ax,&arg ,, get immediate data
xchg [bpJ,ax ,, swap old BP and immediate
mov bp,ax ,, restore old BP from AX
pop ax ,, restore accumulator
.SALL
ENDM ,, end macro definition

data

This rather convoluted operation also may be adapted to swapping items
on the stack. However, playing with the stack can be dangerous. If your compu-

1 - Tools for Structured Coding

ter supports interrupts, this operation should be done only with the interrupts
disabled so that the integrity of the stack is preserved.

For those cases that attempt to push program locations on the stack, we
assume that the programmer desires to save the actual offset of the label. Thus,
the @PushlmOffmacro was created to push the offset of the label as immediate
data. It differs from the @Pushlm macro solely in its use of the instruction

mov ax,offset &arg

as opposed to the simple move that appears in @Pushlm. See Listing 1-12 for
the @PushlmOffmacro.

Listing 1-12. @PushlmOffOffset of Immediate Data
PUSH Macro

;; **** @PushlmOff Offset of Immediate Data Push Macro
@PushlmOff MACRO arg

.XALL
push bp ,, save base pointer
mov bp,sp ,, move stack pointer
push ax ,, save accumulator

to BP

mov ax,off set &arg ,, get offset of immediate data
xchg [bp],ax ,, swap old BP and immediate data
mov bp,ax ,, restore old BP from AX
pop ax ,, restore accumulator
.SALL
ENDM ,, end macro definition

The last discrete case that @PushOp recognizes is an attempt to push
memory data onto the stack directly. Here the difficulty lies in the fact that the
stack accepts only 16-bit data. By using the PTR override directive, you can
convince MASM to save the desired data one word at a time. @PushOp contains
a loop that repeats the operation for each word of the data element being saved,
incrementing the address by two on each pass. Thus double word, quad word,
ten-byte, and structured variables may be saved onto the stack.

Finally, note that the @PushOp macro still does not process any refer
ences that contain complex addressing (such as 2[BPJ, etc.). If it proves neces
sary, you can implement such checks by using the IRPC macro directive to
check the argument for brackets, base plus index addressing, and base plus off
set addressing.

The final test of the @PushOp macro appears in Listing 1-13, which shows
the code that results from a few example calls of the @PushOp macro.

This expansion shows everything as expected. The last operation in the
listing, where @PushOp is used on a quad word variable, may not be clear. Each

33

Coding and Programming

Listing 1-13. Example Expansion of@PushOp Generalized
PUSH Macro

daLseg SEGMENT
datq dq 4040414142424343h
daLseg ENDS

start:
@PushOp ax ; genera L register save

1 push ax
@PushOp cs ; segment register save

push cs
@PushOp al ; short register save •••

2 push ax ••• ; becomes general reg.
@PushOp 01234h ; word constant save

2 push bp
2 mov bp,sp
2 push ax
2 mov ax,01234h
2 xchg [bpJ,ax
2 mov bp,ax
2 pop ax

@PushOp 'A' ; byte constant save
2 push bp
2 mov bp,sp
2 push ax
2 mov ax,'A'
2 xchg [bpJ,ax
2 mov bp,ax
2 pop ax

@PushOp start ; program Label offset save
2 push bp
2 mov bp,sp
2 push ax
2 mov ax,offset start
2 xchg [bpJ,ax
2 mov bp,ax
2 pop ax

@Push Op datq ; quad word variable save
2 push ?argadd ; 1st word
2 push ?argadd ; 2nd word
2 push ?argadd ; 3rd word
2 push ?argadd ; 4th word

34

1 - Tools for Structured Coding

push has the same argument. What isn't visible from this trimmed listing is that
each line has a relocatable address, 0000 for the first word, 0002 for the second
word, and so forth. Unfortunately, we can't squeeze a 132-column listing into this
book, so you'll just have to try it out if you want to check on it.

This example is especially useful because it demonstrates one area where
macros are nearly always preferred over subroutines. When dealing with stack ma
nipulations (as in @Pushlm and @PushlmOfj), macros are able to perform the op
eration without "worrying" about the effects of the CALL instruction on the stack.
This is especially important when placing or removing data from the stack because
a subroutine cannot alter the top of the stack and return without causing major
problems.

Warnings about Conditional Assembly and Macros in MASM
When using macros, we tend to forget that macros generate in-line code and not
calls to routines. Although this has the advantages of generating fast code and of
freeing us from some restrictions in using the stack, production of in-line code
results in larger code. As a designer, your responsibility is to judge when a
macro, with its quick execution, is called for and when a subroutine, with its
space-saving ability and greater structure, is called for. Generally, use macros
when the code is small and time is critical, or when you need to configure the
routine to the individual circumstance. Use subroutines when the code is larger,
is of a general nature that can be reused, or would be convenient to have in one
place (so that it can be verified easily).

Another confusing issue with macros concerns the use of symbols. You re
member that symbols are defined through the use of the equ or = operators. These
symbols are then evaluated by MASM and replaced by their values. It sometimes
happens that we programmers forget that macro arguments are not symbols and
vice versa. According to the MASM manual, macro arguments are replaced by the
actual parameters using one-for-one text substitution. Macro arguments may be
created by one macro and, using the text substitution ability, passed as a complete
text string to another macro. This is not possible with symbols. Indeed, symbols
may only be assigned text values using the equ operator, which does not allow them
to be modified. The = operator only allows symbols to be given numeric values or
TYPE attributes. An example of this limitation, and of one way to overcome it, ap
pears in our presentation of structured control statements that follows.

Structured Control Statements in Assembly Language

Now that we have all of the tools necessary to build our structured control state
ments, let's do it. The most common and useful control statements are shown in
Table 1-8.

The statements in Table 1-8 are those that are used most frequently to im
plement structured control in structured programming. Some languages have
an abundance of them; others have few. It was only recently that FORTRAN
gained use of the IF-THEN-ELSE structure in FORTRAN-77. Out-of-the
box assemblers almost never have these structures implemented for coding

35

Coding and Programming

36

Table 1-8. Structured Control Statements

Statement Structure

IF-THEN IF <condition> (execute if condition TRUE)
ENDIF

IF-THEN-ELSE IF <condition> (execute if condition TRUE)
ELSE (execute if condition FALSE)
ENDIF

DO-WHILE WHILE <condition> (execute if condition TRUE)
END_ WHILE

REPEAT-UNTIL REPEAT (execute if condition FALSE)
UNTIL <condition>

FOR-DO FOR <var> = <begin> to <end> (execute for each integer
value of var between begin and end, inclusive,
incrementing or decrementing var by one each loop)
END_FOR

CASE-OF-<var> CASE <var> OF
<case A> (execute if var= A)
<case B> (execute if var= B)

<case N> (execute if var= N)
<default> (execute if no match)
END_CASE

purposes, even though many support IF-THEN-ELSE for conditional assem
bly. The reason is simple: Assemblers are supposed to be at a lower level than
high-level languages. Because we have decided that these structures can make
our programming life easier, we can implement them, using the tools that we've
just learned about.

There is one structure that we have left out. This is the CASE statement.
The structure that we have presented is taken from PASCAL syntax but is nev
ertheless similar to that used in C and other languages. The problem with the
CASE statement is that you must check the key variable var against each case
that appears in the list. If the initial statement and the cases are not contained in
the same macro, you can't know what the key variable was. Remember that
MASM does not allow strings to be used with the = symbol assignment operator.

You can create a variation of a CASE statement by listing all the possible
cases and their destination labels as arguments to one macro. This pseudo case
macro is discussed in a following section of this chapter.

The complete listing for the rest of the definitions of our structured control
macros appears in Listing 1-14. Note the heavy use of macro comments(;;) to
save room in the macro storage areas. These macros generate many symbols.
They may be used in any legal order to a theoretical limit of 89 nesting levels.
However, MASM runs out of storage long before that. limit is reached. No initial
ization is required. All symbols are self-initializing.

1 - Tools for Structured Coding

Listing 1-14. Structured Control Macros

PAGE 50,132 ; set Listing to full screen

;;***
;; M A C R 0 D E F I N I T I 0 N S

;;***
,,
FALSE EQU
TRUE EQU
,,

0
OFFFFh

; define "FALSE"
; define "TRUE"

;;** @TestSym ******************************* SUPPORT MACRO *****
,, Test to see if nesting Level has been defined. If not,
,, then set "?SYMDEF" to initialize the counter for that Level.
,, ALL processes normally on Pass #1 start counters at O.
,, ALL symbols must be reset on the beginning of Pass #2.
,, Note that "?p2sw ••• " symbols stand for "Phase 2 SWitch".
,, Check that nesting Level 10 is first Level to be re-init.
,, Note: The value of 10 is chosen for the initial Level to
,, reserve 2 digits for the nesting Level.
,,
@TestSym MACRO

IF1
IFNDEF

?p2sw&p1&p2
?symdef

ELSE
?symdef

END IF
END IF
,,
IF2
IF

?p2sw&p1&p2
IF

p1,p2
,, if 1st pass then check for defined

&p1&p2
= TRUE ,, set pass two redefine switch
= FALSE ,, cause counter initialization

TRUE ,, a L Low counter increment
,, end symbol definition check
,, end 1st pass check

,, if 2nd pass then reinitialize
(?p2sw&p1&p2) ;; if not reinitialized then
= FALSE ;; clear 2nd pass redefine switch
(?p2sw&p1&10) ;; ••• and check Level 10 for init

.ERR ;; exit with error message
%OUT @TestSym macro: &p1 nesting Level not closed
%OUT on 2nd pass
ENDIF ;; end Level 10 for init check

?symdef = FALSE ,, force reinitialize of counter
ELSE

?symdef = TRUE ,, allow counter increment

continued

37

Coding and Programming

38

Listing 1-14. continued

END IF ,, end "if not reinitialized" check
END IF ,, end 2nd pass check
ENDM ,, end macro definition

,,
;;** @ZeroSym ******************************* SUPPORT MACRO *****
;; Initialize the nesting sequence counter on 1st use
@ZeroSym MACRO p1,p2
&p1 &p2 0

ENDM
,,
,, ** @IncSym ******************************* SUPPORT MACRO *****
,, Increment nesting sequence counter
@IncSym MACRO p1,p2
&p1&p2 &p1&p2 + 1

ENDM
,,
,, ** @DecSym ******************************* SUPPORT MACRO *****
,, Decrement nesting sequence counter
@DecSym MACRO p1,p2
&p1&p2 = &p1&p2 - 1

ENDM
,,
,, ** @MakeJmp2 ***************************** SUPPORT MACRO *****
,, Insert actual JMP instruction and destination into code
@MakeJmp2 MACRO p1,p2,p3

jmp &p1&p2&p3
ENDM

,,
,, ** @MakeJmp ****************************** SUPPORT MACRO *****
,, Reformat symbols for evaluation for JMP instruction
@MakeJmp MACRO p1,p2,p3
??tmp = &p3&p2

,,

@MakeJmp2 p1,p2,%??tmp
ENDM

,, ** @MakeJmplabel2 ************************ SUPPORT MACRO *****
,, Insert actual JMP destination Label into code
@MakeJmplabel2 MACRO p1,p2,p3
&p1&p2&p3:

ENDM
,,
,, ** @MakeJmplabel ************************* SUPPORT MACRO *****
,, Reformat symbols for evaluation of JMP destination Label
@MakeJmplabel MACRO p1,p2,p3

1 - Tools for Structured Coding

??tmp

,,

&p3&p2
@MakeJmpLabel2 p1,p2,%??tmp
ENDM

,, ** @IfTrue ******************** STRUCTURED CONTROL MACRO *****
,, Structured "IF" Macro - IF True
@IfTrue MACRO p1

LOCAL iftrue
j &p1
IFNDEF

?iLLevel
ELSE

if true
?i L Leve L

,, jump to "IF" section of code
,, set up new Level of nesting

?iLLevel
END IF

= 10

?iLLevel + 1

@TestSym ?if_nest,%?if_Level
IF (?symdef)
@IncSym ?if_nest,%?if_Level
ELSE
@ZeroSym ?if_nest,%?if_Level
END IF

,, set up new sequence #

,, Insert jump to "ELSE" or "IF NOT" section into code
@MakeJmp ?if_,%?if_Level,?if_nest

iftrue:
ENDM

,,
,, ** @IfElse ******************** STRUCTURED CONTROL MACRO *****
,, Structured "ELSE" macro
@IfElse MACRO

IFNDEF ?if_Level
; ERROR - "@IfELse" without opening "@IfTrue" statement

EXITM
ENDIF
IF (?if_level LT 10)

; ERROR - "@IfELse" without opening "@IfTrue" statement
EXITM
END IF

,, Gene rate "@If E Lse" code

,,

@IncSym ?if_nest,%?if_Level
@MakeJmp ?if_,%?if_Level,?if_nest
@DecSym ?if_nest,%?if_Level
@MakeJmpLabel ?if_,%?if_Level,?if_nest
@IncSym ?if_nest,%?if_Level
ENDM

,, ** @IfEnd ********************* STRUCTURED CONTROL MACRO *****

continued

39

Coding and Programming

40

Listing 1-14. continued

;; Structured "END" macro for use with '~IfTrue"
@If End MACRO

IFNDEF ?if_level
; ERROR - "@If End" without opening "@If True" statement

EXITM
END IF
IF C?if_level LT 10)

; ERROR - "@IfEnd" without opening "@IfTrue" statement
EXITM
ENDIF

,, Generate "@IfEnd" Label
@MakeJmpLabel ?if_,%?if_Level,?if_nest

?if_Level = ?if_Level - 1
ENDM

,,
,, ** @DoWhile *******************STRUCTURED CONTROL MACRO*****
,, Structured "DO_WHILE" macro
@DoWhile MACRO p1,p2,p3

LOCAL i ft rue
IFNDEF ?do_Level ,, set up new Level of nesting

?do_ Level = 10
ELSE

?do_ Level
ENDIF

= ?do_Level + 1

,, Set up new sequence number for nesting Level
@TestSym ?do_nest,%?do_Level
IF (?symdef)
@IncSym ?do_nest,%?do_Level
ELSE
@ZeroSym ?do_nest,%?do_Level
END IF

,, Insert top-of-Loop Label for jump
@MakeJmpLabel ?do_,%?do_Level,?do_nest

,, Insert condition check into code
cmp &p1,&p3

,, Jump to "DO_WHILE_TRUE" section of code
j&p2 if true

,, Step to next Label in sequence
@IncSym ?do_nest,%?do_Level

,, Insert end-of-Loop jump into code
@MakeJmp ?do_,%?do_Level,?do_nest

,, Begin the "DO_WHILE_TRUE" section of code
if true:

ENDM

1 - Tools for Structured Coding

,,
,, ** @DoExit ******************** STRUCTURED CONTROL MACRO*****
,, Structured "DO_EXIT" macro for use with "@DoWhile"
@DoExit MACRO
,, Insert end-of-Loop jump into code

@MakeJmp ?do_,%?do_level,?do_nest
ENDM

,,
,, ** @DoEnd ********************* STRUCTURED CONTROL MACRO *****
,, Structured "DO_END" macro for use with "@DoWhi Le"
,, @DoEnd macro generates the code for a structured ENDDO
@DoEnd MACRO

IFNDEF ?do_level
; ERROR - "@DoEnd" without opening "@DoWhile" statement

EXITM
ENDIF
IF C?do_level LT 10)

; ERROR - "@DoEnd" without opening "@DoWhile" statement
EXITM
ENDIF

,, Back step to previous label in sequence
@DecSym ?do_nest,%?do_Level

,, Generate jump to beginning-of-Loop
@MakeJmp ?do_,%?do_Level,?do_nest

,, Step to next Label in sequence
@IncSym ?do_nest,%?do_level

,, Generate "@DoEnd" Label
@MakeJmpLabe l ?do_,%?do_ Leve L, ?do __ nest

?do_level = ?do_level - 1
ENDM

,,
,, ** @Repeat ******************** STRUCTURED CONTROL MACRO *****

Structured "@Repeat" macro
,, @Repeat generates the code for a structured REPEAT-UNTIL
@Repeat MACRO

IFNDEF ?rep_Level ,, set up new level of nesting
?rep_ level = 10

ELSE
?rep_ Leve L

ENDIF
?rep_Level + 1

,, Set up new sequence number for nesting Level
@TestSym ?rep_nest,%?rep_level
IF (?symdef)
@IncSym ?rep_nest,%?rep_level
ELSE

continued

41

Coding and Programming

42

Listing 1-14. continued

@ZeroSym ?rep_nest,%?rep_Level
END IF

,, Insert top-of-Loop Label for jump
@MakeJmpLabel ?rep_,%?rep_Level,?rep_nest
ENDM

,,
,, **@Until********************* STRUCTURED CONTROL MACRO*****
,, Structured "@Unti L" macro for use with "@Repeat"
@Until MACRO p1,p2,p3

LOCAL iftrue
IFNDEF ?rep_level

; ERROR - "@Until" without opening "@Repeat" statement
EXITM
ENDIF
IF C?rep_Level LT 10)

; ERROR - "@Until" without opening "@Repeat" statement
EXITM
END IF

,, Insert condition check into code
cmp &p1,&p3

,, Jump to "@Until" .TRUE. section of code
j&p2 if true

,, Insert beginning-of-Loop jump into code
@MakeJmp ?rep_,%?rep_Level,?rep_nest

iftrue:
?rep_ Level

ENDM
,,

= ? rep_ Leve L - 1

,, **@For *********************** STRUCTURED CONTROL MACRO *****
,, Structured "@For" macro. Use of this macro as follows:
,,
,,
@For

@For

MACRO
LOCAL
LOCAL
IFNDEF

?for _Level
ELSE

?for _Level
ENDIF

counter,begin,end,dir,step

p1,p2,p3,p4,p5
first
if true
?for_Level
= 10

,, set up new Level of nesting

= ?for_Level + 1

,, Set up new sequence number for nesting Level
@TestSym ?for_nest,%?for_Level
IF (?symdef)
@IncSym ?for_nest,%?for_Level

1 - Tools for Structured Coding

ELSE
@ZeroSym ?for_nest,%?for_Level
ENDIF

,, Insert counter initialization into code - (bypass 1st step)
mov &p1,&p2 ; initialize Count
jmp first ; begin FOR Loop

,, Insert top-of-Loop Label for jump
@MakeJmpLabel ?for_,%?for_Level,?for_nest

Insert step calculation into code - check for proper step at
,, same time

IFIDN
inc
ELSE
IFIDN
dee
ELSE

<p4>,<+>
&p1

<p4>,<->
&p1

; increment count

; decrement count

ERROR - Improper Step Specification in "@For" Statement
EXITM
ENDIF
END IF

first: ; check for continuation
,, Insert condition check into code

cmp &p1,&p3 ; reached end yet?
,, Jump to "FOR.._TRUE" section of code

IFIDN <p4>,<+>
jl iftrue ; no - continue FOR Loop
ELSE
jg
END IF

if true
;; default to "-" step
; no - continue FOR Loop

,, Step to next Label in sequence
@IncSym ?for_nest,%?for_Level

,, Insert end-of-Loop jump into code
@MakeJmp ?for_,%?for_Level,?for_nest

iftrue:
ENDM

,,
,, ** @ForEnd ******************** STRUCTURED CONTROL MACRO *****
,, Structured "FOR.._END" macro for use with "FOR"
,, @ForEnd generates the code for a structured FOR Loop
@ForEnd MACRO

IFNDEF ?for_level
; ERROR - "@ForEnd" without opening "FOR" statement

EXITM
ENDIF
IF (?for_Level LT 10)

continued

43

Coding and Programming

44

Listing 1-14. continued

; ERROR - "@ForEnd" without opening "FOR" statement
EXITM
END IF

,, Back step to previous label in sequence
@DecSym ?for_nest,%?for_level

,, Generate jump to beginning-of-loop
@MakeJmp ?for_,%?for_level,?for_nest

,, Step to next label in sequence
@IncSym ?for_nest,%?for_level

,, Generate "FOREND" label
@MakeJmpLabel ?for_,%?for_level,?for_nest

?for_level = ?for_level - 1
ENDM

;;***

How the Structured Control Macros Work
The complexity of these macros results from the need to support nested control
structures. Consider the example illustrated in Figure 1-2. Each IF-THEN
ELSE structure requires three jump statements with three unique labels.
Because we cannot use symbols to store the unique labels generated by the
LOCAL directive, we must resort to creating our own labels from counters.
This provides the direct control required for the task.

For single levels of nesting, a simple counter would suffice. In Figure 1-2,
note how the IF-THEN-ELSE associated with condition buses the labels in the
sequence 3,4,5. This would be easy to implement because the labels are used in
the same order in both jump instructions and destination labels. However, a
simple counter becomes "confused" as soon as we nest the control structures. A
glance at the sequence oflabels for all three IF-THEN-ELSE statements shows
a distressing lack of order. This problem is overcome by using a separate counter
for each nesting level.

Unique labels are ensured by including three pieces of information in each
label. First, there is an identifier for the type of structure, such as ?if_us, dv_,
and ?rep_. The question marks are used to reduce conflicts with user-defined
symbols or labels. The second piece of information is the nesting level, which is
used to distinguish between label number n at one nesting level and label num
ber n at another nesting level. Lastly, the value of the counter is included to
provide a unique label for each jump at a particular nesting level.

For comparison, Listing 1-15 shows these unique three-part labels as gen
erated by our structured control macros. The first two digits of the number are

1 - Tools for Structured Coding

CONTROL STRUCTURE ASSEMBLY LANGUAGE

j(a) 1-1:

IF (condition a)-{
jmp 1-2:

L_1: (a) true starts

j(b) 1-3:

IF (condition b)-{
jmp 1-4:

L_3: (b) true code

ELSE
jmp 1-5:

L_4: (b) false code

ENDIF L_5: (a) true ends
jmp 1-6:

ELSE L-2: (a) false starts

j(c) 1-7:

IF (condition c)-{ jmp 1-8:
L_7: (c) true code

jmp 1-9:
ELSE

L_8: (c) false code)

ENDIF L_9: (a) false ends

ENDIF L_6:

Figure 1-2. IF control structure and corresponding
assembly language.

the nesting level, which starts at 10 so that two digits are always reserved for
the nesting level. This prevents level one, counter eleven (1-11) from being con
fused with level eleven, counter one (11-1).

The condensed source corresponds exactly to that presented in Figure 1-2.
By taking a close look, you will see that the expanded macros created the same
structure as the assembly language section in Figure 1-2.

Because of the three-part labels, each type of structured control macro has
to maintain a set of counters. This set includes a counter symbol to indicate the
current nesting level. In order to generalize the task of maintaining these coun
ters, we have created the following macros: testsym, zerosym, incsym, and dec
sym. These macros are passed their arguments, which they then append to
create each counter, consisting of the type identifier (?if_) and the current nest
ing level.

Tricks and Warnings
When the time comes to create the actual jump instructions or jump destination
labels, we use the macros mkjmp, mkjmp2, mklbl, and mklbl1. The actual la
bels consist of the type identifiers and numbers. The only way to evaluate a sym
bol to its numeric value in MASM is through the percent sign operator (%),

45

Coding and Programming

1
3

1
3

3
3

3

3
3

1
3
1

3
3

46

Listing 1-15. Nested IF-THEN-ELSE Structure

; Condensed Source Code

@IfTrue e
@IfTrue e
@If Else
@If End

@If Else
@IfTrue e
@If Else
@If End

@If End

@IfTrue e
je ??0000
jmp ?iL100

??0000:
; execute if condition

@IfTrue e
je ??0001
jmp ?iL110

??0001:
; execute if condition

@If Else
jmp ?iL111

?iL110:
; execute if condition

@If End
?iL111:

@If Else
jmp ?iL101

?if_ 100:
; execute if condition

@IfTrue e
je ??0002
jmp ?iL112

??0002:
; execute if condition

@If Else
jmp ?if_ 113

?iL112:

; Expanded Listing

(a) is true

(b) is true

(b) is not true

Ca) is not true

Cc) is true

condition (a)
condition Cb)
"else" for condition Cb>
end of condition Cb>
"else" for condition Ca>
condition Cc)
"else" for condition (c)
end of condition (c)
end of condition Ca>

condition Ca)

condition (b)

"else" for condition (b)

end of condition (b)

"else" for condition Ca>

condition (c)

"else" for condition Cc>

' ~

1 - Tools for Structured Coding

; execute if condition (c) is not true
@If End end of condition (c)

3 ?iL113:
@If End end of condition (a)

3 ?iL101:

which is valid only when applied to an argument of a macro call. We want to eval
uate the symbol defined by the two pieces of the counter, such as:

mkjmp2 p1,p2,%&p3&p2

However, the MASM manual informs us that the ampersand operator(&)
may not be used in macro calls. We are thus required to create a temporary vari
able and use that.

??tmp = &p3&p2
mkjmp2 p1,p2,%??tmp

This brings up an interesting point. The first form, which contains the am
persands in the macro call, does work. Choosing to use a "hidden" feature in
volves trading off ease of use against future compatibility or even future
support. In addition, you must always ask whether an unsupported or illegal
feature can be depended on to perform consistently. The resolution of this di
lemma is left up to the reader.

The authors used this illegal feature in a program that generates no code
but solves the famous "Towers of Hanoi" problem in a recursive manner. In addi
tion to gaining generality, our method of creating counter symbols from their
various parts allows creation of new counters as needed. These counters must be
initialized before use, or the first attempt to increment or decrement them re
sults in a Symbol is not defined error. Using the IFDEF conditional operator, a
check is made to see whether initialization is required on each use of a symbol.

Initialization brings up yet another warning associated with MASM. As we
have stated, MASM is a two-pass assembler that defines symbols on the first
pass and uses them on the second. This implies that symbol definitions are pre
served from pass one to pass two. Thus, when MASM begins its second pass, all
of the counters from pass one are defined already and contain their last value. If
the symbols are not reinitialized at the beginning of the second pass, a phase
error results because the starting counter values are different.

Now, IFDEF is required to initialize the symbols on the first pass because
we have no idea just how many counters we will require, but the use ofIFDEF is
insufficient for the second pass. We have solved this problem by creating the
?p2sw ... symbols, which are checked on the second pass to see whether the
counters must be reset to their zero values. The name is derived from Phase 2

47

Coding and Programming

48

SWitch. This checking process also provides an opportunity to check that the
nesting levels are at the outermost level, indicating that the IF-IFEND,
DOWHILE-DOEND, etc., are properly paired.

Listing 1-16 contains sample expansions for the structured control macros
defined above. As you can see, we have suppressed those portions of the expan
sion that do not produce code or jump labels. If you want to see the workings of
these macros in more detail, use the . LALL directive. Use only a short example
because many steps are involved in processing these macros. The number of
steps also explains why the time required to assemble a program increases.
Don't expect fast assemblies with these macros, just fast coding.

3

Listing 1-16. Expanded Use of Structured Control Macros

@IfTrue e
je ??0000
jmp ?i L 100

??0000:
; Execute if true

@If Else
3 jmp ?iL101
3 ?iL100:

; Execute if not true
@If End

3 ?iL101:

; ---
@DoWhile ax,Le,bx

3 ?do_100:
1 cmp ax,bx
1 j Le ??0001
3 jmp ?do_101

??0001:
; Execute while ax <= bx

@DoExi t
3 jmp ?do_101

; Break out of code
@Do End

3 jmp ?do_ 100
3 ?do_101:

; ---
@Repeat

3 ?rep_100:
; Execute until condition met

@Unti L ax,e,bx
cmp ax,bx
je ??0002

1 - Tools for Structured Coding

3 jmp ?rep_ 100
??0002:

; ---

1
3

@For
mov
jmp

?for_100:
inc

ax,10,20,+
ax, 10
??0003

ax

; initialize count
; begin FOR Loop

; increment count
??0003: ; check for continuation

cmp ax,20 ; reached end yet?
1
3

??0004:

j L
jmp

??0004 ; no -
?for_101

; Execute for ax = 10 to 20 by 2's
@For End

3 jmp ?for_ 100
3 ?for_101:

The Pseudo Case Macro

continue FOR Loop

The last macro that we present in this chapter is the pseudo case macro, shown
in Listing 1-17. Because the macro must have "foreknowledge" of the structures
that it supports, we don't consider this a structured control statement. Our case
macro functions more like a dispatch block, something like FORTRAN's com
puted GOTO.

@Case

Listing 1-17. Pseudo case Macro Definition

MACRO key,case_List,jmp_Labels
??tmp_ 1 = 0
IRP match,<&case_List> ,, sequence through cases

??tmp_1 = ??tmp_1 + 1 ,, set index number
cmp key,&&match ; case match?
??tmp_2 = 0
IRP retl,<&jmp_Labels> sequence through jumps

??tmp_2 = ??tmp_2 + 1
IF (??tmp_1 EQ ??tmp_2)

je &&&retl
EXITM

END IF
ENDM

ENDM
ENDM

,, unti L index matches

; Yes!

,, end condition check
,, end 2nd IRP block
,, end 1st IRP block
,, end macro definition

49

Coding and Programming

This macro does provide a good example of the ability to parse two lists simul
taneously. The outer loop, irp match,< &case_list>, sequences through the ele
ments in the case list, whereas the inner loop, irp retl,<&jmp_labels>, selects
the corresponding jump label. This technique may also be used to implement
substitution macros.

In substitution macros, the outer loop sequences through elements of a list
and looks for a match. Once a match is found, say, at the xth element, the macro
enters the inner loop and sequences to the xth element of that list. One possible
use of this would be to implement a jump-on-not-condition macro where these
lected jump would be replaced by its opposite. Once again, remember that addi
tional ampersands are required in nested macro blocks.

The expansion of the @Case macro in Listing 1-18 gives the expected re
sults. The programmer is responsible for ensuring that the same number of ele
ments appears in each list. Otherwise, an invalid control structure could be
created.

Listing 1-18. Pseudo @Case Macro Expansion

@Case al,<' A' ,'B' ,'C' ,'D'>,<subA,subB,subC,subD>
2 cmp a L, 'A' ; case match?
3 je sub A ; yes!
2 cmp a L, 'B' ; case match?
3 je subB ; yes!
2 cmp al,'C' ; case match?
3 je subC ; yes!
2 cmp al,'D' ; case match?
3 je subD ; yes!

subA:
jmp merge

subB:
jmp merge

subC:
jmp merge

subD:
jmp merge

default:
merge:

Data Macros

50

Macros can be used to generate data or code. The ideas and methods are the
same in either case, but for instructional purposes we'll start by looking at
macros that generate only data.

The simplest example of an instruction to MASM that generates data is

1 - Tools for Structured Coding

TenBytes DB 10 DUP 4 ; reserve 10 bytes with the
; number 4 in them

This instruction is of limited use, since it is more likely that we want a se
quence of numbers as in an indexing set. As an example, let's reserve N words of
data with the set of the numbers from 1 to N as follows:

@FirstTry MACRON
NUMB = 0

REPT N
NUMB = NUMB+1
DW NUMB
ENDM

ENDM

,, define macro with parameter N
,, initialize the number
,, repeat the following N times
,, increment index
,, define word with NUMB
,, end REPT command
,, end macro

Note that we have an ENDM for every MACRO directive. The first vari
able, NUMB, is set to a value using= instead of EQU in order to allow changing
the value within the REPT block.

The REPT directive is a looping structure like do ... while in higher-level
languages. It repeats the action between the REPT and the ENDM N times. In
this case, it increments NUMB and then creates a word with that number. (Just
bear in mind that you are programming MASM to create constants that will be
assembled. You are not programming the computer to loop at execution time.)

If we put the First Try macro definition at the top of our program and then
use it in our data segment with N equal to 4, we have

@Fi rstTry 4

which rrieans that MASM will assemble four words of numbers from 1 to 4.
This is a pretty boring example of the use of macros, so let's make it more

interesting by creating a table of binary-coded decimal numbers that could serve
as a look-up table for hex to BCD translation.

@BCDtable MACRO N
NUMB = 0
HIGHBYTE

REPT N
= 0

NUMB = NUMB+1
IF (NUMB GT 9)
NUMB = 0

,, define macro with parameter N
,, initialize the numbers

,, repeat the following N times
,, increment index

HIGHBYTE = HIGHBYTE + 10H
ENDIF
IF (HIGHBYTE GT 90H)
EXITM
ENDIF

BCDNUMB = (NUMB OR HIGHBYTE)
DW BCDNUMB ;; define word with NUMB

51

Coding and Programming

52

ENOM
ENOM

,, end REPT command
,, end macro

This is a bit more sophisticated but nothing too surprising for an experi
enced programmer. Before we do a line by line analysis of these directives (we
use the term "directive" to indicate that it is an instruction to MASM and not to
the CPU), let us look at the result when we put this in our assembly program
with the parameter N set at 20:

38 @BCOtable 20
39 0004 0001 2 ow BCONUMB ;
40 0006 0002 2 ow BCONUMB ;
41 0008 0003 2 ow BCONUMB ;
42 OOOA 0004 2 ow BCONUMB ;
43 oooc 0005 2 ow BCONUMB ;
44 OOOE 0006 2 ow BCONUMB ;
45 0010 0007 2 ow BCONUMB ;
46 0012 0008 2 ow BCONUMB ;
47 0014 0009 2 ow BCONUMB ;
48 0016 0010 2 ow BCONUMB ;
49 0018 0011 2 ow BCONUMB ;
50 001A 0012 2 OW BCONUMB ;
51 001C 0013 2 ow BCONUMB ;
52 001E 0014 2 ow BCONUMB ;
53 0020 0015 2 ow BCONUMB ;
54 0022 0016 2 ow BCONUMB ;
55 0024 0017 2 ow BCONUMB ;
56 0026 0018 2 ow BCONUMB ;
57 0028 0019 2 ow BCONUMB ;
58 002A 0020 2 ow BCONUMB ;

The first column is the line of our assembly listing, the second column is
the address offset from the beginning of the module, and the third column is
what we wanted-a table of BCD numbers from 1to20.

Let us now go through the macro line by line. First we initialize two vari
ables. NUMB will cycle through the digits from 1 to 9, for the low byte, while
HIGHBYTE will have the high-order byte. The REPT directive governs the re
mainder of the macro. Within the repeat block the first thing we do is increment
the NUMB variable. Then, we have counted to 10, and, if so, we reset NUMB to
0 to start the cycle again. Then we add lOh to HIGHBYTE, thereby increment
ing the tens digit of the BCD number. Then we end the IF statement.

Next we check to see if we've built a BCD number bigger than one word
can hold and, if so, quit the macro. Penultimately, we create the BCD number by
bit ORing the ones digit with the tens digit. Finally, we create the word with the
desired BCD number. The first ENDM ends the REPT loop; the second one
ends the macro. We need a label to refer to this list of BCD numbers. We don't

1 - Tools for Structured Coding

want to type a label every time we use the macro, so we'll use the substitute op
erator & to have MASM make our label for us:

@BCDtable MACRO N ,, define macro with parameter N
,, define a label BCD1to&N label word

NUMB = 0
HIGHBYTE = 0

REPT N
NUMB = NUMB+1

IF (NUMB GT 9)
NUMB = 0

,, initialize the numbers

,, repeat the following N times
increment index

HIGHBYTE = HIGHBYTE + 10H
END IF
IF (HIGHBYTE GT 90H)
EXITM
END IF

BCDNUMB = (NUMB OR HIGHBYTE)
DW
ENDM

ENDM

BCDNUMB ,, define word with NUMB
,, end REPT command
,, end macro

Now the list file shows our macro as follows:

31' @BCDtable 20
32 0004 BCD1to20 label word ;define a label
33 0004 0001 2 DW BCDNUMB ;
34 0006 0002 2 DW BCDNUMB ;
35 0008 0003 2 DW BCDNUMB ;
etc.

The & in the macro definition told MASM to substitute the value of N used
in the macro invocation. But still we're not satisfied (we never are!). Having only
one label for the list of BCD numbers will force us to use an index to access the
list, since there is only one access point. What we would like is a label for every
item. The expression operator % will enable us to take the value of each of our
numbers and use it as part of a label. We rewrite our macro as the two macros
shown here:

@BCD

,,

MACRO NAME,NUMBER

BCDof&NAME DW NUMBER
ENDM

@BCDtable MACRO N
NUMB
INDEX

= 0
= 0

,, NAME for label,
,, ••• NUMBER for the data
,, define word with bed NUMBER
,, end macro

,, define a macro with parm. N
,, initialize the numbers

53

Coding and Programming

54

= 0 HIGHBYTE
REPT N ,, repeat the following N times
INDEX = INDEX + 1
NUMB = NUMB + 1

IF (NUMB GT 9)
NUMB = 0

,, increment index

HIGHBYTE = HIGHBYTE + 10H
END IF
IF CHIGHBYTE GT 90H)
EXITM
END IF

BCDNUMB = (NUMB OR HIGHBYTE)
@BCD %INDEX,BCDNUMB

ENDM
ENDM

,, INDEX for label
,, BCDNUMBER for data
,, end REPT command
,, end macro

Now when we look at the listing file, we find that each byte in our table of
BCD numbers has an appropriate label for our use, as shown in the following:

@BCDtable 20
0004 0001 3 BCDof1 DW BCDNUMB ; define word with bed NUMBER
0006 0002 3 BCDof2 DW BCDNUMB ; define word with bed NUMBER
0008 0003 3 BCDof3 DW BCDNUMB ; define word with bed NUMBER
OOOA 0004 3 BCDof4 DW BCDNUMB ; define word with bed NUMBER

We can create sophisticated tables in this way. If we have a formula such as
(N * M)l((P+Q) MOD T), we can let MASM create our table for us instead of
doing it by hand and typing in the results.

We should check for overflow by including in our macro code something like
the following

IFE CBCDNUMB LE OFFFFh)
DW BCDNUMB
ELSE
%OUT ERROR IN @BCD MACRO

,, bigger than a word can hold?
,, ok, small enough for a word

The OUT writes your message to the screen at assembly time-in this case
ERROR IN @BCD MACRO.

So far, we have always used parameters as individual items separated by
commas. It is also possible to have a set of items be a single parameter to the
macro for repetitive data creation. For example, if we want to set up a list of
strings of messages to display, we could code a macro set as follows:

@OptDisp MACRO OptType,Options ,, OptType = Label,
,, ••• Options = List

1 - Tools for Structured Coding

OptType&List
ENDM

db Options
,, end macro

Then we could use it in the data segment as follows:

@OptDisp LineSpeed,<'1200sqJ,'2400','4800'>

LineSpeed will be substituted in the label, and each string in the angle brackets
will be put in a db directive, just as if we'd typed in

LineSpeedList db '1200'
db '2400'
db '4800'

This is of limited use, since to access a string we have to rely on the knowl
edge that each string is 4 characters long. Much more often we have variable
length strings terminated by an ASCII zero. So here is a macro to make such
strings:

@Makelist MACRO Name2,messag
MESSAGE&Name2 db
ENDM

CR,LF,messag,CR,LF,O

,,
@OptDisp MACRO Options ;; OptType

Name3 = 0
IRP msg,<Options>
Name3 = Name3 +1
@Makelist %Name3,msg
ENDM

ENDM ;; end macro

Label, Options

We can use the strings in the data segment as follows:

@OptDisp <'Error','Waiting','Computing'>

List

Each string in the angle brackets will be put in a db directive, as shown in
the following listing fragment:

OD OA 45 72 72 6F 72
OD OA 57 61 69 74 69

@OptDisp <'Error','Waiting','Computing'>
3 MESSAGE1 db CR,LF,'Error',CR,LF,O
3 MESSAGE2 db CR,LF,'Waiting',CR,LF,0

OD OA 43 6F 6D 70 75 3 MESSAGE3 db CR,LF,'Computing' ,CR,LF,0

The instructive point in this macro is that we have used the literal-text
operator (< >) in an IRP (Indefinite RePeat) directive to repeat the string crea
tion as many times as necessary to use up our strings. Still, we are left with the

55

Coding and Programming

problem of how to access this list of strings. We need a list of addresses. The fol
lowing macro provides the answer.

@MakeList MACRO Name2,messag
MESSAGE&Name2 db
ENDM

,,
@MakeNames MACRO Names

dw MESSAGE&Name5
ENDM

,,

CR,LF,messag,CR,LF,O

,, end REPT

@OptDisp MACRO Options ,, OptType = label, Options= list
Name3 = 0

IRP msg,<Options>
Name3 = Name3 +1
@MakeList %Name3,msg
ENDM

Name4 = 0
MessageList Label WORD

REPT Name3
Name4 = Name4 +
@MakeNames %Name4
ENDM

ENDM
,, end REPT
,, end macro

When the macro is used in the data section, we get the same result as if we
had typed

@OptDisp <'Error','Waiting' ,'Computing'>
MESSAGE1 db CR,LF,'Error',CR,LF,O
MESSAGE2 db CR,LF,'Waiting',CR,LF,0
MESSAGE3 db CR,LF,'Computing',CR,LF,0
MessageList Label WORD
dw MESSAGE1
dw MESSAGE2
dw MESSAGE3

There is much more that we can do with macros to generate data, but we
have given you a good idea of the possibilities. The same techniques can be used
to generate code as well as data. Let's move on to code macros.

Code Macros

56

Macros are a very powerful way of getting the assembler to do some program
ming for you. Just as you can write a BASIC program to make the computer do

1 _J Tools for Structured Coding

work for you, so you can write a MACRO program to make the assembler pro
gram, MASM, do some of the tedious aspects of programming for you. A simple
example of what we mean is the following macro designed to write a character to
a file:

@WritToFil MACRO ,, define macro
mov ah,40h ,, DOS function to write to a file
int 21h ,, DOS call
ENDM ,, end macro

Now, instead of retyping the MOV and INT instructions whenever we want to
write a character to a file, we can use WritToFil where we would otherwise have
written the code.

Macros vs Subroutines

You can do the same thing with a subroutine that you do with a macro, but
making short pieces of code into subroutines is inefficient. The difference between
a macro and a subroutine is that the macro inserts the desired code right where the
macro is placed in the source file, while a subroutine resides elsewhere and we have
to jump to that location to execute the code. In other words, use of macros to create
repetitive in-line code avoids the execution overhead involved in calling and return
ing from subroutines.

We use a macro instead of a subroutine for the same reason we call someone
on the phone for a short conversation instead of going across town to visit-the
time lost in going to another location isn't justified by the brevity of our task. Thus,
code macros tend to be very short because they add to the size of the program every
time they are used. If they get too long, they should be recoded as a subroutine.
How long is too long? That depends on the overhead needed to invoke the sub
routine, on how often you use the function, and on the relative value of memory
versus speed for your application.

Macros are faster because they don't require saving registers, pushing pa
rameters, etc., but a lot of repetitions of short macros can take up space in your
obj_ect and executable files. Make the code a macro at first, and if it seems to be
getting out of hand, recode it as a subroutine. Later we'll see how you can even code
the subroutine call as a macro.

Conditional Macros
The code macro example given is fairly straightforward, so let's dress it up a
little. Suppose that for debugging we would like to write our characters to
the screen instead of to a file. We could rewrite the macro as follows:

@WritToFil MACRO EKOFLAG ,, define INCHRIF with
,, ••• argument EKOFLAG

57

Coding and Programming

58

IFIDN <EKOFLAG>,<EKO> ,, if argument EKOFLAG is
;; IDENTICAL to
,, the 3 Letters EKO, assemble
,, next Line

mov ah,06h ,, DOS function to write to
,, standard output

ELSE ,, if EKOFLAG is NOT IDENTICAL
,, to the 3 Letters EKO,
,, assemble the next Line

mov ah,40h ,, DOS func. to write to a file
int 21 h ,, DOS ca LL
ENDM ,, end macro

In this case, MASM looks at the argument EKOFLAG to determine
whether to insert mov ah,06h or mov ah,40h, as shown in the following:

@WritToFil EKO ; MASM substitutes MOV AH,06 & INT 21H here

; because the argument is identical to EKO
@WritToFil NOEKO ; MASM substitutes MOV AH,40H & INT 21H here

; because the argument is NOT identical to EKO

Note that instead of NOE KO in the preceding example we could have used
PHU BAH or anything else, since the important thing is that the argument not
be EKO. The spelling of our parameter is highly arbitrary. This leaves open the
possibility that we could forget our odd spelling and mistakenly write
@WritToFil ECHO. This would give us no screen echo because we wrote ECHO
instead of EKO. We can eliminate this error possibility by limiting ourselves to
either EKO or NOE KO as follows:

@WritToFil MACRO EKOFLAG ,, define INCHRIF with argument
,, ... EKOFLAG

IFIDN <EKOFLAG>,<EKO> ,, if EKOFLAG = EKO, assemble
,, next Line

mov ah,06h ,, DOS function to write to
,, ... standard output

ELSE ,, otherwise ...
IFIDN <EKOFLAG>,<NOEKO> ,, if EKOFLAG = NOEKO, assemble .••
mov ah,40h ,, DOS func. to write to a file
ELSE ;; if argument doesn't match

,, ... either then
.ERR ,, generate an assembly error
ENDIF ,, end condition testing
int 21h ,, DOS call
ENDM ,, end macro

1 - Tools for Structured Coding

Nested Macros

The macros we have been defining use the DOS function to write characters to
the standard output or to a file. But we may want to check to see if a key has
been struck to interrupt the output, and, if not, we continue on. DOS function
OB hex will check to see if a key has been struck, returning AL = OFF hex if a
character is available and AL = 00 if a character is not available. We can write a
macro chkchr and then call it from our macro WritToFil as follows:

@ChkChr MACRO ,, define macro @ChkChr
,, check standard input
,, DOS ca LL

,,

mov
int
ENDM

ah,OBh
21h

,, end macro

@WritToFil MACRO WAITFLAG,EKOFLAG ;; 2 arguments

bye:

LOCAL bye ,, define a dummy address
IFNB <WAITFLAG> ,, if field for WAITFLAG is not

@ChkChr
cmp
je
ENDIF
IFIDN
MOV

ELSE
IFIDN
MOV
ELSE
.ERR

END IF
int

ENDM

,,

,,
al,O ,,
bye ,,

,,
<EKOFLAG>,<EKO> ,,
AH,06h ,,

,,
,,

blank, assemble the
••. fol Lowing
see if a character is waiting
al = 0 => no character waiting
if no character, continue on
end condition testing
if EKOFLAG = EKO, assemble
DOS function to write to
.•. standard output
otherwise ...

<EKOFLAG>,<NOEKO> ;; if EKOFLAG = NOEKO, assemble
AH,40h ,, DOS func. to write to a file

,, if a rg. doesn't match either
,, generate an assembly error
,, end condition testing

21h ,, DOS ca LL

,, end macro

This newest version of WritToFil has several features to discuss. The LO
CAL directive tells MASM that the label bye is a dummy label that MASM is to
replace with a different label every time the macro is invoked within a program.
This is to avoid the problem of the same label being used twice in one program,
which would generate an assembly error. MASM will assemble the macro using
? ?0000 the first time in a module, ? ?0001 the second time the macro is used, etc.,
through ? ? FFFF (hex), should you care to invoke the macro 65,536 times in one
program. The LOCAL directive must be the very first thing after the MACRO
directive-not even comments can be placed before it! The IFNB WAITFLAG
tells MASM to assemble the next three lines only ifthe argument WAIT-FLAG

59

Coding and Programming

60

is Not Blank. Otherwise, the code is not included and the first line assembled
will be one of the IFIDN governed lines. This gives us the option of generating
code that will either write output or just check the keys and go on if nothing is
there. The IFNB checks for the existence of WAITFLAG, not for spelling, so we
could invoke the macro by any of the following

@WritToFil WAIT,EKO
@WritToFil WAITE,EKO
@WritToFil NoWate,EKO
@WritToFil FOOBAH,EKO

and still generate code that does not wait for input. Note also that we have
nested our macros, one macro invoking another.

More Macro Features

Instead of using only the WAITFLAG to determine whether to assemble the
code for writing, we might also make it a global option that we can choose at as
sembly time. For example, we might like it to check for a key if we're debugging
or if the WAIT FLAG is set, but not wait otherwise. While we are extending this
macro, we'll throw in some other new stuff. The new macro definition is

@WritToFil MACRO WAITFLAG,EKOFLAG
LOCAL bye ;; define a dummy address
,, macro to get a character from the standard input
;; 2 arguments: WAITFLAG & EKOFLAG determine whether to
;; wait for a character and whether to echo the input
.XCREF

x = 0
IFNDEF DEBUG
x = 1
END IF
IFNB <WAITFLAG>

,,
,,
,,
,,
,,
,,
,,

suppress cross-referencing of local
••• labels, etc.
x will be our indicator
if parameter DEBUG is not defined,
flag = 1
end condition testing
if the field for WAITFLAG is not blank

x = 2 ,, flag = 2
ENDIF ,, end condition testing
IF Cx EQ 1) or Cx eq 2) ,, if either DEBUG is not

;; defined, or WAITFLAG is not
;; blank

@ChkChr ,, see if a character is waiting
cmp al,O ,, al = 0 => no character waiting
je bye ,, if no character, continue on
ENDIF ,, end condition testing
IFIDN <EKOFLAG>,<EKO> ;; if EKOFLAG = EKO,

;; ••• assemble next line
mov ah,06h ;; DOS func. to write to standard output

1 - Tools for Structured Coding

bye:

ELSE ;; otherwise •••
IFIDN <EKOFLAG>,<NOEKO> ;; if EKOFLAG = NOEKO, assemble
mov ah,40h ,, DOS function to write to a file
ELSE ,, if argument doesn't match either then

.ERR ; ••• generate an assembly error
%OUT Error in @WritToFil MACRO - EKOFLAG not found

END IF
END IF
int

.CREF
ENDM

21h

,, end condition testing
,, end condition testing

DOS call

,, restore cross-referencing
,, end macro

Now at assembly time we can use the Id option to define DEBUG:

MASM myprgm,,,; /dDEBUG

and all the invocations of WritToFil will generate code to check for input.
We have used a flag (with= instead of equ since we redefine it in the next

two IF statements) to determine whether we wait for a character. Instead of (x
eq 1) or (x eq 2), we could have coded x gt 0 or x NE 0, since any value other than
our initial value of 0 is valid. Note that we also added a few new directives. The;;
tells MASM the comment should not be in the assembly listing. The .XCREF
saves assembly time and cross-reference listing space by telling MASM not to
clutter up our cross-reference listing with the names used only in the macro.
The .CREF restores cross-referencing, or it would be off for the rest of the list
ing. We have also added the %OUT directive, which will write to the screen the
error message given. Although there is plenty more that we could do to this
macro, it has become pretty fearsome, so we'll leave it here and encourage you
to experiment with additional features.

A Macro That Calls Subroutines

One of the more powerful uses for macros is as a generalized subroutine call,
similar to the subroutine calls in higher-level languages. The task is to push
some parameters on the stack and call the subroutine. Pretty simple, except
that to be of general use the macro needs to accommodate a variable number of
parameters, and it needs to allow for variable-size parameters (byte, word, dou
ble word, quad word, and 10-byte floating point). To handle these requirements,
we use the . TYPE and TYPE operators (note the period before the first opera
tor). Using . TYPE allows the macro to handle a register such as BX as well as a
data word or byte. Using. TYPE x returns a byte with the bits set according to
the following scheme:

Bit 0 = 1 if xis code related, 0 otherwise

Bit 1 = 1 if xis data related, 0 otherwise

61

Coding and Programming

62

Bit 5 = 1 if xis defined, 0 otherwise
Bit 7 = 1 if x is external, 0 local or public

All other bits are zero

For example, if xis data related, defined, and local, then .TYPE x returns
00100010b (22 hex); i.e., bit 1 is set, and bit 5 is set. Since we want to allow the
use ofregisters (which are code related) as parameters, we will use the . TYPE
operator to tell us if we have data-related parameters. Since we have to handle
data for differing lengths differently, we use the TYPE operator, which returns
the byte length of its argument, for example:

TYPE N = 1 if Nis a byte
TYPE N = 2 if N is a word
TYPE N = 4 if N is a double word
TYPEN
TYPEN
TYPEN
TYPEN
TYPEN

= 8 if Nis a quad word
= 10 if N is a ten-byte word (e.g., floating point)
= xx if N is an xx-byte structure,
= FFFF if N is a near program label
= FFFE if N is afar program label

The following macro illustrates the use of the TYPE and. TYPE directives:

@FcnCall MACRO Fnctn,ParmList
IRP N,<ParmList2>
BYTELENGTH = TYPE N

IF CC.TYPE N) NE 22H)
push N
ELSE

IF CBYTELENGTH EQ 2)
push N
ELSE

IF CBYTELENGTH

mov ah,O
mov
push
ELSE

al,N
ax

EQ 1)

,, subroutine & parameter List
,, indefinite repeat (see below)
,, get length in bytes of the
,, ••• "PUSHed" items
,, is N data-related and defined?
,, no, assume 16-bit register
,, otherwise, it's data •••
,, so, if 2-byte parameter
,,
,,

,,
,,
,,
,,

then just push it
otherwise, •••
;; if 1-byte parameter,
••• assume AX is available
clear upper part of AX
make parameter a word
••• so we can push it

,, otherwise, •••
IF CBYTELENGTH EQ 4) ,, if 4-byte parameter,

,, push 1st and push
push
ELSE

word ptr N
word ptr N + 2

IF CBYTELENGTH EQ 8)
push word ptr N

,, ••• 2nd words
,, otherwise, •••
,, if 8-byte parameter,
,, push 1st,

1 - Tools for Structured Coding

push word ptr N + 2 ,, 2nd,
push word ptr N + 4 ,, 3rd, and
push word ptr N + 6 ,, 4th words
ELSE ,, otherwise,

IF (BYTE LENGTH EQ 10) ,, if 10-byte pa ram.,
push word ptr N ,, push 1st,
push word ptr N + 2 ,, 2nd,
push word ptr N + 4 ,, 3rd,
push word ptr N + 6 4th, and
push word ptr N + 8 ,, 5th words
ELSE
.ERR
END IF

END IF
END IF

END IF
END IF

END IF
call Fnctn
ENDM ,, end IRP
ENDM ,, end macro

The nice thing about this macro is that we don't have to specify in advance
how many parameters we wish to send to the subroutine until we call it. We
could call one routine with three parameters and another routine with two pa
rameters, for example:

@FcnCall Fcn1,<word1,word2,byte3>
@FcnCall Fcn2,<word1,byte3>

We could have a virtually unlimited number of parameters for any subroutine
call we wish.

There are numerous deficiencies in the macro. Some of these deficiencies
are that we haven't covered all the possible values of BYTELENGTH, such as
those for program labels or structures; we rather blithely assumed that the AX
register was available for our 1-byte parameter, etc. There are fixes for many of
these deficiencies-a loop based on BYTE LENGTH might handle every possi
ble length of data-but other problems would remain and we haven't even looked
at the inverse macro we should write to pop the data for the called routine! The
example served to illustrate the TYPE and . TYPE directives, but we need
something better for a real general-purpose function calling routine. Before
continuing with this macro, we take a short diversion to introduce the important
subject of structures.

63

Coding and Programming

Using the STRUC Directive

64

Structures are assembler directives that enable you to build complex data for
mats composed of bytes, words, etc., in ways that make them much more mean
ingful and accessible to you. They are very similar to C structures and Pascal
records. They differ in that indexing is harder in MASM, and nesting is not al
lowed. For an example that we can use in a parameter-passing macro, let's sup
pose you are writing a program that does mathematical routines. Here's a
structure you might create:

MathNumbers STRUC
Boolean1 DB CO> ; byte
Boolean2 DB CO) ; byte
Shortlnteger1 DW (Q) ; word
Shortlnteger2 DW CO) ; word
Longlnteger1 DD CO) ; 1 double word
Longlnteger2 DD CO) ; double word
Float1 DT CO) ; ten-byte word (for 8087)
Float2 DT CO) ; ten-byte word (for 8087)
MathNumbers ENDS

MathNumbers defines a type of structure. STRUC and ENDS delimit the
beginning and end of the structure definition. We can now use MathNumbers to
declare some data as in the following:

TrueFalse MathNumbers
MaxMinShort MathNumbers
MaxMinlong MathNumbers
e MathNumbers

Listlength = 100
Mathlist MathNumbers

<1,0,,,,,,>
<,,32767,-32768,,,,>
<,,,,2147483647,-2147483648,,>
<,,,,,,,2.718281828>

Listlength dup <,,,,,,,>

Space is reserved for 104 numbers. At 34 bytes/number, this is 3536 bytes
for our list of numbers. The structures are initialized first to 0 in the definition of
the structure and then reset to various values in the data section. Structures can
be considered as a user-defined data directive. The names of the structure ele
ments are converted by MASM to byte displacements from the beginning of the
structure. You can now refer to the numbers in a structure by the field names,
just as you might in C or Pascal. For example,

cmp MaxMinShort.Shortinteger1,ax

is equivalent to

cmp [MaxMinShort + 2J,ax

1 - Tools for Structured Coding

As an example, if we wish to scan the entire list of numbers for the first
floating-point number less than 0, we would code

mov di,MathList ; get address of List
mov cx,ListLength ; Length of List for Looping
mov bx,CTYPE TrueFalse) ; Length of structure

CmpLup: cmp [diJ.Float1,0 ; floating point number> 0?
j L ExitLup ; no, search done
add di,bx ; point to next structure
Loop CmpLup ; scan entire List of members

ExitLup: •••

Multiple Structures to Address Data
One very useful feature of using structures is that you can rearrange or add to
the structure definition at any time and the names you gave the elements will be
automatically updated when you reassemble. For example, let's change the pre
ceding M athList structure so that it interchanges the Boolean and floating point
numbers and adds the element LibraryPtr.

MathNumbers STRUC
Float1 DT (Q) ; ten-byte word (for 8087)
Float2 DT (Q) ; 1 ten-byte word (for 8087)
Shortlnteger1 DW (Q) ; word
Shortlnteger2 DW (Q) ; word
Longlnteger1 DD (Q) ; double word
Longlnteger2 DD (Q) ; double word
Boolean1 DB (Q) ; byte
Boolean2 DB (Q) ; byte
LibraryPtr DD (?) ; double word
MathNumbers ENDS

The advantage of using structure names in our code is that, after reassem
bly of all the code and data elements, our new structure definition [di].Float1
still points to the first of the floating point numbers, even though we've rear
ranged the data. So, code that refers to data by structure name needn't be re
written. Note, however, that if we have data in our file using the old structure
definitions, then we must realign the existing data to conform to our new struc
ture. Rearranging the structure doesn't rearrange the existing data, only the
relative positions declared for it. We have to ensure that the actual data corre
sponds to the data structure declaration.

Unlike C structures, MASM structures cannot contain other structure
definitions (there's no reason they couldn't, so maybe a later version of MASM
will allow it). However, there is no reason a structure can't contain the address of

65

Coding and Programming

66

another structure, which is why we included LibraryPtr in the structure. Sup
pose we have another structure called Library defined as follows:

Library STRUC
FloatLib DD (Q) ; pointer to floating point Lib.
ShortintLib DD (Q) ; pointer to short integer Lib.
LonglntLib DD (Q) ; pointer to Long integer Lib.
BooleanLib DD (Q) ; pointer to Boolean Lib.
Library ENDS

We can now set up a set of library routines with their addresses organized
in the structures, for example:

AddLibs Library
SubLibs Library
MultLibs Library

<FloatAdd,ShortAdd,LongAdd,BooleanAdd>
<FloatSub,ShortSub,LongSub,BooleanSub>
<FloatMult,ShortMult,LongMult,BooleanMult>

This combination of structures might be used as shown in the following
code segment:

Lds si,MathList[bx] ; addr of particular structure
push ds ; save address of data structure
push si
Lds si,LibraryPtr ; addr of Library addresses
ca LL [ds:siJ.LonglntLib ; go do operation

The appropriate pointers have been loaded into the structures either at as
sembly time or at run time. The beauty of using a structure address to pass pa
rameters and pointers to subroutines is that the calling code is always the same,
regardless of how many additions to the structure you have to make in the life of
the program. By putting into the structure pointers to other data structures, we
make it unnecessary for the program code to have too much knowledge of the
details of the data and/or operations involved. This "data hiding" is developed
and employed much more in object-oriented programming languages such as
C++ or Smalltalk, but you can do almost the same thing with the proper use of
structures. You can also apply a structure you define to a data set that you had
no hand in creating. For example, the first 22 bytes of the PSP (program seg
ment prefix) that MS-DOS puts at the beginning of executable files could be ac
cessed via the following structure:

PSP STRUC
INT32 DB 2 DUP (?) ; 2 bytes
MemSize DW (?) ; word
Reserved DB (?) ; byte
DOS Call DB 5 DUP (?) ; 5 bytes

1 - Tools for Structured Coding

TermVctr
Brea kV ctr
ErrorVctr
PSP ENDS

DW
DW
DW

2 DUP (?)
2 DUP (?)
2 DUP (?)

; 2 words
; 2 words
; 2 words

The PSP can now be accessed as in the following code fragment:

mov di,O ; PSP begins at offset zero
push cs ; PSP segment is in cs
pop ds ; PSP segment -> ds
mov si,[diJ.MemSize ; program mem. size -> extra

Structures as Subroutine Parameters

seg.

We introduced structures as a way of simplifying the task of writing a gener
alized subroutine calling procedure. Let's return to this problem. The best way
to pass parameters to a subroutine is via a structure address. As an example,
let's pass to our subroutine the data in one of the elements of the math list de
fined in our discussion of structures. Addresses are always the segment and off
set. So the macro to make subroutine calls and pass parameters is now simple:

@FcnCall MACRO Fnctn,StrucAddr ; subroutine & structure addr.
push offset StrucAddr
push segment StrucAddr
call Fnctn

It sometimes happens that you need to assemble an instruction that the as
sembler will not handle. This came up in one of the earlier versions of MASM
with a bug that would not assemble a particular type of jump instruction. This
problem also will crop up if you are working on a new processor before MASM
has been rewritten to accommodate the new instructions. One way of solving
this problem uses macros to assemble data that would be the same as the op
code from the Intel handbook, like the following macro that creates a short jump
instruction.

@JmpShort MACRO destin
db OEBh ; first byte of jump instruction
n = destin - * ; calc distance to jump
IFE (n LE 255) ; too big for a byte?

db n ; distance to jump
ELSE

.ERR ; generate an assembly error
%OUT Error in @JumpShort macro.

ENDIF
db

ENDM

90h
; end condition testing
; 3rd byte of short jump
; instruction

67

Coding and Programming

This example was chosen for simplicity. To make more complex instruc
tions, you need more complex macros. As a word of encouragement, note that
people have made full cross-assemblers using little more than this method.

Summary

68

Our presentation of the world of MASM macros, conditional assembly, and
structures is completed. From the examples contained in this chapter, we hope
that you have gained a feel for the design and use of the usually frustrating,
often complex, but ultimately rewarding features of the Microsoft Macro
Assembler.

In this chapter, we have presented a variety of examples of each feature,
from the simple to the complex, so that some measure of the usefulness of these
features has been conveyed. By using these examples and doing some experi
mentation on your own, you can define the boundary between the possible and
the impossible in the MASM assembler.

But you shouldn't lose sight of the reason for exploring macros and condi
tional assembly. We contend that the proper use of these features can help you
program in a more organized manner, thus enhancing the readability and re
liability of your programs and reducing the amount of time you spend debugging
your programs. We hope that the examples presented, along with friendly tips,
comments, and some warnings, have given you a sense of how to apply these two
features to advance your programming skills.

2 - Design and Implementation of Modular Programs

~ HE discussion in Chapt~r 1 focused on the t~ols of structured program[ilij mmg as they can be apphed to the MASM environment. In Chapter 2, we
present the methods of structured programming as they apply to MS-DOS and
the 8086/8088.

Our presentation consists of two separate yet interrelated topics. These
topics deal with the design of modular programs in assembly language and with
the implementation of that design using MASM, macros, and whatever else may
be at hand. Both these topics affect the writeability, readability, :reliability, and
maintainability of your programs. In short, these methods, separately and to
gether, can be used to structure your programs to produce better programs.

Principles of Modular Programming

When impartial analysis is made of assembly language programs, the most glar
ing deficiency usually discovered is lack of recognizable structure. Despite the
best intentions of most assembly language programmers, their programs tend
to be intricately connected, unwieldy conglomerations of code that require al
most divine insight to fully understand. This statement is not intended as a
slight upon these dedicated people. The lack of structure is the result of their
having to simultaneously deal with a large number of details. There are two di
rections in which to approach this problem. One is to simplify the code, replac
ing long complicated instruction sequences with more understandable
structures. The techniques developed in Chapter 1 go a long way toward reliev
ing the burden of detail implicit in assembly language programming. However,
the programmer is still left to cope with a sometimes staggering number of func
tional details.

The way out of this rat's maze is to apply the same techniques that rescued
higher-level languages a decade ago. The concepts of decomposition and modu
lar design should be applied to assembly language programming. These con
cepts, referred to under the collective heading of structured design, allow the
programmer to segment the total programming task so that he or she need only
deal with a manageable number of details at one time. This is the topic for our
next discussion.

71

Coding and Programming

72

Designing Options
Modular design and decomposition refer to the process of breaking a large
problem into smaller, more manageable, subproblems. The first design step is
deciding where to draw the lines between these subproblems.

In order to derive the maximum benefits from the use of modular program
ming, each subproblem or module must have a single entry and a single exit.
The flow of control in a program then may be readily traced. At any place in
the module it should be possible to look at the module's entry point and say, "I
know the values of registers X, Y, and Z at this point because they are specified
as ... ,"and then trace the operation of the module without worrying about the
intrusion ofrogue program flows. The single exit ensures that when a module is
invoked, the flow of control returns to the point of invocation. For this reason,
modular programs are nearly always implemented with a CALL-RET
structure. ,,

Using multiple RET statements in a module does not violate this rule of
single exit because all the RET instructions return to the same point. Similarly,
jumping to a common RET at the end of a module does not add to the structure
of the module but adds only code and complexity. On the other hand, jumping
into or out of a module is strictly against the rules, for it negates the greatest
advantage of modular programming: clean, maintainable program structure.

There is an exception to the rule of not jumping into a module. This arises
when jump tables are used to decide the flow of control within a program. A
jump table is used by pushing a return address of the stack, calculating the in
dex of the desired jump address in the table, and performing a jump through
memory. An example of this technique appears in the device driver program list
ings given in Chapter 6.

When practicing modular decomposition, you will find that a number of al
ternatives present themselves. Before we are able to intelligently choose, we
must know the alternatives. The goal is to choose among alternatives those that
give the most workable design.

Designing for Functional Separation
When approaching a problem in the design stage, the first alternative chosen
should be functional decomposition, that is, the breaking up of a problem into
small, manageable, functional units where each unit performs a complete, read
ily identifiable task.

There are many ways of determining what should be contained in a task.
Some common examples are units that perform an explicit function, such as ob
taining the square root of a number; units that perform all operations relating to
a specific device, such as disk or keyboard I/O; units that perform a common
group of actions at a specific time, such as initializing data areas; and units that
are related in sequence or their use of common data elements, such as reading
and converting keyboard data to integers.

In today's world of high-level language programming, value judgments
often are made about which is the best method to use for segmenting programs.

2 - Design and Implementation of Modular Programs

In assembly language programming, we usually cannot afford to be so critical.
Each of the preceding methods listed gives at least a starting point for breaking
up the problem. Often, you find that some modules are related by one set of cri
teria and other modules by another set. As long as each module encompasses a
section of code that can be readily understood (usually of two pages or less),
you're off to a great start.

Designing to Minimize the Number of Parameters Passed
Sometimes, you find that after defining the modules for your program, you have
created something unwieldy. This is often the case when a module requires ac
cess to an extensive amount of data in order to accomplish its task. This might
easily occur if you're writing an integrated package that supports many options.
The module must accept many different variables to know the state of the pro
gram at a given time. If this happens and you find yourself with a module that
accepts a large number of parameters, you must then ask two questions.

First, are you attempting to perform more than one function in that mod
ule? Does the module require parameters that are used in unrelated sections of
the module? If either applies, you must segment the module again. Second, are
you cutting across functional lines? Are the calling module and the called module
actually part of the same function? If so, put them together even if the result
looks too large. Try to segment them again in a different way.

Segmenting modules across functional lines often occurs when the pro
grammer notices that two sections of code are identical or strongly similar. The
programmer then attempts to create from them a single module. This is not
modular programming because the resulting module has no functional cohesion.

If you find that you can do nothing to avoid using many common data refer
ences or passing scores of parameters, go back to the original design and check
to see if you have specified the problem correctly.

Designing to Minimize the Number of Calls Needed
One of the great advantages of modular programming is that the main-level pro
gram can often be constructed to read as a sequence of procedure calls. This en
hances understanding of the program because the reader can become familiar
with its basic flow and operation after reading only a page or two of code.
However, this feature can also have drawbacks. One of the most overquoted sta
tistics of programming is that typical programs spend 90 percent of their execu
tion time in 10 percent of the code. The implications are that if this 10 percent
contains a large number of chained procedure calls, the amount of time spent in
program flow control can be a handicap to a program with severe time
constraints.

Before giving up on modularizing your programs, examine just what these
time-related statements mean. First, most programs spend the majority of ex
ecution time waiting for something to be entered from the keyboard. Once a key
has been typed, the required functions are not usually time-consuming in a way
that humans think of time. The difference between 100 microseconds and 100

73

Coding and Programming

74

milliseconds (a 1000 times difference) is not going to be noticeable to the average
user.

Contrary to some beliefs, the actual mechanism of the CALL-RET pair is
not overly time-consuming. When compared to the jump instructions, the
CALL takes about 30 to 50 percent longer and the RET averages 1 cycle longer.
Only when the overhead of pushing parameters, saving registers, and what is
euphemistically called housekeeping is considered, do modular programs begin
to look slow by comparison. In addition, because the modules of a modular pro
gram are usually more general than their unstructured counterparts, modules
may use memory or stack references with greater frequency. The additional
time required by effective address calculations may result in the body of the
module executing more slowly than a linearly coded specific routine.

The advantages of housekeeping and generality are that the module may
be used virtually anywhere in the program. When writing nonmodular pro
grams, you may spend hours attempting to discover whether a register is in use,
or worse, just what its contents are supposed to be. In modular programming,
the programmer is not concerned with which registers are currently in use as
long as the called module takes its parameters off the stack and saves the entire
register set on entry. With these kinds of advantages, it makes sense to use
these modular techniques initially to speed coding and then rework the program
to remove bottlenecks.

For those areas that are speed-sensitive, the best recommendation is to se
lectively mainline the code. If a module is referenced only in the speed-sensitive
section of the code, the module may be included "in-line" within the calling mod
ule. If other sections use the module, it may be copied to the calling module and
fit into place. Because the main calling module grows larger, you should add
comments that mark the included module as a block of its own. A future reader
may then read the comments to determine the module's function and skip past it
to resume reading the main code.

Rules for Modularization

We can summarize the more notable concepts of modular programming in the
following rules:

• Divide and conquer. Divide the problem into smaller functional tasks,
each one independent of the others except for its necessary parameters.

• Single entry- single exit. The module should have only one entry point
where all calls begin. It should return control to the point in the program
flow where control was invoked. (The return address may be modified as
discussed in the following section on parameter passing.)

• KISS-keep it sweet and simple. Avoid complexity in coding. Handle
complex logic in a well-documented way that explains each step and why
it was designed that way.

• Hide details. Confine the details of register usage, local data structure,
etc., to the internals of the modules. Don't let a module's implementation
spill over into the rest of the program.

2 - Design and Implementation of Modular Programs

• If a module uses a particular variable, make that variable a
documented parameter. Document all effects that a module has on global
data.

• Plan for error detection and the actions to be taken if errors occur.
Responsibility for exception processing, as it is known, must be assigned
to the individual modules. Normally, lower-level modules report errors to
the calling module. The responsibility for decisions about those errors
normally is reserved to the upper-level modules.

References

What we have presented here has been a quick overview of the concepts of struc
tured programming and modular design. We do not have the space to provide a
full treatment of the subject. However, a wealth of literature is available. If your
goal is to be a software professional, purchase some of these books and read
them. The following titles are classic works on the subject and reflect a small
sample of the excellent professional-level works available.

DeMarco, T. Structured Analysis and System Specification. New York:
Yourdon, 1978.

Kane, G., D. Hawkins and L. Leventhal. 68000 Assembly Language Program
ming, Berkeley: Osborne/McGraw-Hill, 1981.

Tausworthe, R.C. Standardized Development of Computer Software. Part I.
Englewood Cliffs, N.J.: Prentice-Hall, 1977.

Yourdon, E. U., and L.L. Constantine. Structured Design. Englewood Cliffs,
N.J.: Prentice-Hall, 1977.

Yourdon, E. U. Techniques of Program Structure and Design. Englewood
Cliffs, N.J.: Prentice-Hall, 1975.

Implementing Modular Programs in Assembly Language

So far, we have been speaking in the abstract about modules, parameter pass
ing, and other such terms. Now is the time to begin relating this information to
the concrete world of MS-DOS, MASM, and 8086 assembly language.

Modules in the MASM environment are best handled by the MASM PROC
directive. We have been using this all along as a method of defining the entry and
exit points of the program. We now extend its use to define the boundaries of the
individual modules. PROC is used by MASM to define a label in the code and to
give that label either a near or far attribute. This attribute is used to generate
both the correct type of CALL instruction and the correct type of RET instruc
tion. A detailed presentation of these types of instructions is given in a later sec
tion, "Types of Coding." What we are concerned with here is that the PROC

75

Coding and Programming

76

directive is a convenient way to denote a block of code with a single unique entry
and constant exit that forms the basis of the module.

Definition of Parameter, Argument, Variable, and Constant
We have been tossing around the words parameter, argument, and variable like
so many ping-pong balls. For the most part they have had interchangeable
meanings. Now we need to start drawing some distinctions (although some will
undoubtedly call this splitting hairs). After this chapter, we can all return to our
slothful ways, but for the moment we need to be clear-headed and clear
thinking.

The dictionary sense of parameter is "a characteristic element." In com
mon use, parameter is a reference to any piece of data used by a module that is
not totally contained within that module. Why the added words, reference to?
Because a parameter is not the data itself nor even an address of the data.
Rather a parameter is a place holder (the characteristic element). For example,
consider the equation Y + 1. No module can be written to evaluate that equation
because Y is not a value! Y is a parameter that is replaced by an actual value
when it is time to evaluate it. The actual value is called an argument.

We still have not defined variables. Strictly speaking, variables are regis
ter or memory locations that hold a piece of changeable data. In the preceding
example, Y is also a variable because it changes to fit the required circum
stances. Thus, parameters are automatically variables (but not vice versa).

To recap, if a data object can be modified, it is a variable. If that variable is
required for a module to perform its task, it's also a parameter. The argument is
the actual value that the variable takes on when the module is invoked.

We also need to consider the special case of constants. A constant is a data
object whose value never changes. In assembly language, constants can appear
in two ways. They may be part of the immediate data for an instruction (as in
mov al,4), or they can be located in memory like other data. When constants are
placed in memory, they differ from variables solely because they are only read,
never written.

Can a parameter also be a constant? If the constant is of the memory type,
unequivocally yes. But you encounter a problem when you try to use immediate
data constants as parameters. Immediate data may not be passed by itself to a
subroutine. Immediate data must be contained in something, either a register,
memory location, or the stack. In higher-level languages, the compiler takes
care of converting constants to locations. In assembly language you have to do it
yourself.

Parameters and Modules
We have determined that a parameter is any data that a module requires to ac
complish its task and that is located outside the module. We have also deter
mined that parameters are by definition variables. This brings up the second
great strength of modules. Because the inputs to a module are variables, they

2 - Design and Implementation of Modular Programs

may be changed to fit the specific case at hand. This gives great generality to
modules, enabling them to be reused in many places and in many programs.

In reality, parameters are an optional component of modular program
ming. You can have a module that accepts no outside parameters and operates
solely on internal data. A simple routine to beep the console would have no pa
rameters. A more common example is a simple routine to read numbers from the
keyboard. Although the number reading routine would return a value, that rou
tine would not necessarily need any arguments passed to it.

In combination, requiring input parameters and producing output values
form four types of modules:

1. Modules that accept no inputs and produce no outputs.
2. Modules that accept inputs and produce no outputs.
3. Modules that accept no inputs and produce outputs.
4. Modules that accept inputs and produce outputs.

We typically call the first two types, which produce no output data, sub
routines, and the last two types, which do produce output data.functions. Note
that no distinction is made as to whether they require input parameters, al
though as a programmer, you are aware of the difference.

Parameter Passing Options
For those routines, be they subroutines or functions, that accept input param
eters, the problem of passing data to them must be resolved. When program
ming in a high-level language, the programmer typically has no choice in the
matter. In assembly language, many options exist. We have presented all op
tions for consideration, although the use of some is strongly discouraged.

Passing through Registers
The most common method for passing data in assembly language programming
is via the registers. Instant accessibility and high speed make them prime candi
dates for this task, for no matter what the program environment, registers are
always an op-code away. Nearly all MS-DOS function calls pass their data in this
manner. Short assembly language routines that interface to MS-DOS often use
the same registers to manipulate data as those required by the MS-DOS func
tions they call. It makes sense to create a parameter in the same register that
MS-DOS expects it.

One disadvantage of this method is that there are a limited number ofregi
sters. If you have a routine that-requires more variables than you have registers,
you're in trouble. Newer microprocessors have fewer restrictions than older
ones, but the number of registers is still finite. In addition, if you ever think of
porting your code, that is, moving it from one type of processor to another, a
situation in which the two processors could share the same register set is very
unlikely. You could end up redesigning all the module interfaces.

Another drawback is that you must continually keep track of the use to
which each register is put. This game of "who's on first" can tire even the most

77

Coding and Programming

78

dedicated bit pusher. Especially frustrating is the case when you decide that
register X is free and code your module accordingly. Later you decide you can
use the same module in another place, only register X is no longer free. So
PUSH goes X, in goes the value, the call is made, and POP goes X. Whoops, X
contained a returned value. Let's see, what's free now? And so it goes.

A practical limitation of passing parameters in registers is that the infor
mation is usually limited to 16 bits, the size of the largest register. Because most
variables tend to be either bytes or words, size isn't a big problem. When the
data to be passed exceeds the size of a register, the calling routine may pass the
address of the data instead. Of course, the called routine must know what type of
data is being pointed to in order to use it properly. MS-DOS function calls use
this pass-by-address technique whenever they require large amounts of data.

Passing through Common
The next choice for most progrl!mmers is using a prearranged data area. We use
prearranged in the sense that both the calling and called routine have "agreed"
that their data is passed in some area of general memory. Routine A knows to
put last month's receipts in the area labeled FOO, and routine B knows to go look
for them in FOO. FOO is then known as a common area.

Passing through common has at least one thing going for it. Within the
physical limits of your computer, you can put as much data as you want into
memory. Passing through common puts an end to the shell game of free regis
ters and allows data of any size, from one byte to kilobyte buffers, to be passed.

In addition, passing through common makes the data available to any mod
ule that needs it. This is a great advantage when the data in question is being
passed from a high-level module through many intervening modules to a low
level module. Each module doesn't have to handle data that it does not use.

On the negative side, depending on common memory can restrict the gen
erality and reusability of the modules. Consider a series of modules designed to
read and write files. If the modules are coded to use a common block of memory
for a data buffer, having two files open at the same time can be a problem. If the
program were designed to do a compare, the program would have to copy one set
of data from the buffer into a storage area to prevent the buffer from being over
written. Granted, the example is simplistic, but we trust that the implications
are clear.

The last drawback to common memory results from one of its strengths.
Because the area is available to any module, it is in a way "fair game." Protecting
the data from accidental destruction is nearly impossible. This is not normally a
great risk (unless program errors are common) but becomes a factor in the con
sideration of reentrant programming (covered in a subsequent section, "Types
of Coding").

Passing through Program Memory
Passing through program memory is a variant of passing data through common
data memory. The differences are, one, the data resides in program space (code
segment); and, two, the location of the data is determined by the CALL instruc
tion because the data is located directly after the call.

2 - Design and Implementation of Modular Programs

The called routine takes the return address off the stack, uses that as a
pointer to the memory area, adds the size of the memory area to the return ad
dress, and places it back on the stack. When the routine returns to the calling
program, the return address is the first location after the data area.

This seems convenient until we consider that the 8086 is specifically de
signed for separate code and data areas. Passing through program memory re
quires that the code segment and the data segment be set to the same value, as
the return address is code-segment relative.

The worst problem with this method of passing data is that it requires ma
nipulation of the stack in what comes very close to being self-modifying code.
One rule that you should always remember is never, never modify program
memory! If you succumb to the temptation, you will find that your program be
comes nearly impossible to debug without expensive hardware logic analyzers.

Passing on the Stack
The method used by most high-level languages for implementing procedure calls
is passing the data on the stack. In this method all required parameters are
pushed onto the stack before the call is made. After the call is made, the calling
routine accesses the data without removing it. The designers of the 8086 family
encouraged this method by providing the BP (base pointer) register. The BP has
the wonderful feature of addressing its operands relative to the stack segment.
This means that by setting the value of the BP to the proper location the con
tents of the stack may be addressed using indexed addressing.

What is the proper location to load into the BP? This is not the SP (stack
pointer) itself because the SP is pointing to the return address on the stack. The
data actually starts at either location SP + 2 or location SP + 4. Why plus two or
plus four? Because for near procedure calls, the processor stores only the cur
rent offset (instruction pointer) on the stack (2 bytes), whereas for far procedure
calls, the processor stores the offset and the code segment on the stack (4 bytes).
The called routine may be coded to start access at the proper location (depend
ing on the type ofroutine) by using the following addressing:

NEAR
mov bp,sp
mov <1st arg>,[bp+2J
mov

FAR
mov bp,sp

<1st arg>,[bp+4J

Note that ifthe contents of the BP register must be saved, as is normally
the case, the called routine must also push the BP onto the stack, changing the
address of the first parameter to [BP + 4] for near routines and to [BP + 6] for
far routines. One means of avoiding this change in addresses is to give the calling
routine the responsibility for saving the BP, before the parameters are placed on
the stack. However, for compatibility reasons this is not recommended. Instead,
the structure shown in Listing 2-1 is the preferred method of passing param
eters. Using this structure, which has been adopted by many high-level lan
guages, will assist you in producing portable, reusable routines. These routines

79

Coding and Programming

80

can be gathered into a "toolkit" that may be used in many places to reduce your
coding burden and increase your productivity.

When the called routine returns, the parameters that were pushed onto
the stack must now be removed. The calling routine can remove the parameters
by either POPping them from the stack or by simply adding the size of the
stored parameters to the SP register, as in add SP,N, where N is the number of
bytes occupied by the parameters. This method, shown in Listing 2-1, effec
tively cuts off the stack at the original location. Alternatively, the called routine
may be assigned the responsibility of clearing the stack via the RET N instruc
tion, where N is again the number of bytes occupied by the parameters. In ei
ther method, Nis equal to the number of words PUSHed times two.

The difference between these two methods is that when the RET Nin
struction is used, the routine must be called with exactly the proper number of
parameters. If there are not N bytes of parameters, the RET N instruction will
misalign the stack and crash the system. Alternatively, if the calling routine
clears the stack by using the add sp,N instruction, then each call to the target
routine may pass a different number of parameters. As long as the caller clears

push

push
push
ca LL
add

<myproc> PROC
push
mov

Listing 2-1. Passing Parameters on the Stack

; The Calling Procedure

<argumenLN> ; push Last argument

<argumenL2> ; push second argument
<argument_1> ; push first argument
<myproc> ; ca LL procedure
sp,<2N> ; clear stack

; The Called Procedure

NEAR
bp
bp,sp

; near calling example
; save old BP
; reference point in stack

mov <dummy>,[bp+4] ; access to first parameter
mov <dummy>,[bp+6] ; access to second parameter

mov <dummy>,[bp+2+2NJ ; access to Last parameter

mov
pop
ret

<myproc> ENDP

sp,bp
bp

; restore SP
; discard saved BP
; return to caller

2 - Design and Implementation of Modular Programs

up properly, there will be no problem. (Of course, this dodges the issue of
whether the called routine can make use of a different number of parameters
being supplied from call to call.)

This seems like a lot of extra coding, what with PUSHes, MOVes, POPs,
etc., in place of a simple call. This is one place to put our knowledge of macros to
use and write a simple macro to perform these chores. The macros in Listing 2-2
help the calling program maintain the stack during parameter passing. Sim
ilarly, the macros in Listing 2-3 assist the called program in accessing and re
turning parameters on the stack. All registers used in these macros must be
wordlength because the PUSH and POP instructions do not operate on 8-bit
registers.

,, ****
@Push Im

,, ****
@Ca L LS
?count

?count

Listing 2-2. @CallS and @FCallS Macros for Parameters
on the Stack

@Push Im Macro: Push Immediate Data through BP register
MACRO arg
mov cs:mem._16,&arg
push cs:mem._16
ENDM
CALL SUBROUTINE Macro: ca L Ls name,<arg1,arg2, •.• >
MACRO routine_name,arg_List
= 0
IRP argn,<&arg_List>
push &&argn ; push parameters
= ?count +
ENDM
@Push Im %?count ; push number of parameters
ca LL &routine_name ; ca LL routine
add sp,2*(1+?count) ; clear stack
ENDM

;; ****CALL FUNCTION Macro: @FCcallS name,<arg1,arg2, ••• >,ret
@FCaLLS MACRO routine_name,arg_List,return_val
?count 0

IRP argn,<&arg_List>
push &&argn ; push parameters

?count ?count +
ENDM
@Push Im %?count ; push number of parameters
ca LL &routine_name ; ca LL routine
pop &return_va L ; get returned value
IF ?count ,, if nonzero
add sp,2*?count ; clear stack
ENDIF
ENDM

81

Coding and Programming

82

Listing 2-3. @Accept, @RetVal, and @CRet Macros for Taking
and Returning Parameters on the Stack

;; **** @RetVal Macro: @RetVal register
@RetVal MACRO return_value

mov [bp+4J,return_value ; return word result
ENDM

,, ****@Accept Macro: pnum,<reg1,reg2, ••• >
@Accept MACRO reg_list

push bp ; save base pointer
mov
mov

?count =
IRP

?count =
push
mov
ENDM
ENDM

, , **** @CRet
@CRet MACRO

IRP
pop
ENDM
pop
ret
ENDM

bp,sp
&pnum,[bp+4]
0
reg,<®_list>
?count + 1

; set BP to access parameters
; get number of parameters

&® ; save register for new value
&®,[bp+4+?count*2] ; get parameters

Macro: <reg1,reg2, ••• >
reg_ list
reg,<®_list>
&® ; restore the saved registers

bp ; restore base pointer
; return from program

The @Pushlm macro allows the 8086/8088 user to push immediate data on
· the stack. To use the macro, you must first define somewhere in the code seg

ment the word location mem_16. Although using a memory location to transfer
immediate data to the stack is slower and takes more code, doing so allows more
freedom of register use.

In the @CallS and FCallS macros, the symbol ?count is used to inform the
called routine of the number of parameters provided and to keep track of the
number of bytes pus4ed on the stack for use in clearing the stack after the call.
If the target, or called, routine already knows how many parameters are being
passed to it (which is usually the case), these macros may be modified to dis
pense with pushing and clearing the parameter count. Note that the parameter
count also serves as a way of returning a value for function calls (the @FCallS
and @RetVal macros).

The @RetVal macro is for use with the @FCallS macro and replaces the
parameter count pushed on the stack by @FCallS with a 16-bit value to be re
turned to the caller.

2 - Design and Implementation of Modular Programs

The target routine macro @Accept works with either @CallS or @FCallS
to transfer the parameters from the stack to registers. This macro saves the reg
isters it uses as it progresses. The ?count symbol is used here to determine the
offset of the next parameter within the stack. Because @Accept works its way
up the stack (increasing offsets), this macro removes the parameters from the
stack in the reverse order from which they were pushed! Note also that both
@Accept and @RetVal expect a near call because they allow for only a 2-byte
return address.

The last target macro @CRet restores the registers that were saved by
@Accept. Because POPs must be in reverse order from PUSHes, the argument
list for @CRet must be in reverse order from that in @Accept. The last action
that @CRet takes before RET is to restore the base pointer saved by @Accept.

These macros are presented more as examples than as working copies and
can be enhanced to provide more general coverage. For example, the parameter
PUSH, push &&argn, can be replaced with the more general @PushOp macro
from Chapter 1 to handle immediate data parameters. One limitation of the
current version is that the mov [bp + 41, return_value instruction in macro
@RetVal cannot return memory variables on the stack because the 8086 family
does not support a memory-to-memory move instruction. This macro could be
enhanced to recognize a memory-to-memory move and generate a transfer
through an intermediate register.

You should note, however, that the macros presented in Listings 2-2 and
2-3 implement a calling procedure that is not compatible with any known high
level language. Specifically, these macros pass the number of arguments to the
called procedure as an additional argument, and they return a value to the call
ing procedure directly on the stack.

For the called routine, MASM provides some tools to simplify accessing
the data on the stack. By defining a structure that represents the data on the
stack and aligning the base pointer (BP) with the beginning of the structure,
data on the stack may be accessed symbolically, that is, by name. This helps pre
vent disastrous coding errors, which result from specifying an incorrect offset.
Listing 2-4 demonstrates the use of the MASM STRUC directive in this context.

Listings 2-1and2-4 differ in three important respects. The first difference
is in the order that each example pushes its parameters onto the stack. In List
ing 2-1, the calling program pushes its parameters from last to first, while in
Listing 2-4 they are pushed in the order of first to last. For the StackFrame
structure to work with Listing 2-1, the order of para ms must be reversed. (As
signing an order of "first to last" to the parameters may appear arbitrary at this
point. The parameters are actually assigned an order from left to right, as they
would appear in a subroutine call expressed in a high-level language.)

The second difference between the examples is in the way they each clear
the passed parameters from the stack. In the example in Listing 2-1, the calling
routine clears the parameters by means of the add SP,<2N> instruction. In
Listing 2-4, the called routine clears the stack by using the ret (2N) instruction.

The last difference is that Listing 2-1 shows a near routine, while in List
ing 2-4 the called routine is declared far. If StackFrame is used with a near

83

Coding and Programming

84

Listing 2-4. Accessing the STACK Symbolically
with the STRUC Directive

; The Ca LL i ng Procedure

push <argument_1> ; push first argument
push <argument_2> ; push second argument

push <argumenLN> ; push Last argument
ca LL <myproc> ; ca LL procedure

; The Called Procedure

StackFrame STRUC ; define a template for the stack
dw ? ; saved BP
dd ? ; return address (use "dw" for NEAR)

paramN dw ? ; Last parameter

param2 dw ? ; 2nd parameter
param1 dw ? ; 1st parameter
StackFrame ENDS ; end of template definition
;
base EQU [bp] ; template base
;
<myproc> PROC FAR ; near calling example

push bp ; save old BP
mov bp,sp ; reference point in stack

mov <dummy>,base.param1 ; access to first parameter
mov <dummy>,base.param2 ; access to second parameter

mov <dummy>,base.paramN ; access to Last parameter

mov sp,bp ; restore SP
pop bp ; discard saved BP
ret C2N) ; return to caller

<myproc> ENDP

procedure, the dd directive must be converted to a dw directive. This reserves
only 2 bytes in the template for the caller's return address, rather than the
4 bytes required for afar call. On the other hand, if the structure is to be used in
an interrupt routine, then an additional dw directive must be added after the dd,
to reserve space for the processor flags that are placed on the stack by an
interrupt.

2 - Design and Implementation of Modular Programs

The STRUC directive does not add any code to the finished program. This
directive only defines offsets that are used with the BP to ease the task of refer
encing the parameters.

The stack also provides a convenient place to store returned values, but we
delay discussion of that topic until we have discussed the differences between
functions and subroutines, which we do in later sections of this chapter.

Summary of Parameter Passing Options
There are three proper ways to pass data to modules. These are

1. Passing through registers-few parameters are allowed; best for simple
interfaces and for exception handling or returning values.

2. Passing through common-limited flexibility and generality but has the
advantage of making the data available to all modules.

3. Passing on the stack-preferred method for handling data; excels in
generality (reusable modules) and production of modular code; necessary
for interfacing with most high-level languages; demonstrates that you're
a member of the "in" crowd.

Additionally, when data is passed by any method other than common, each
module must accept as parameters the data it needs not only for itself but for
any modules that it calls in turn. This can sometimes lead to large parameter
lists for upper-level modules.

In actual use, you probably want to use a combination of these techniques
(with the exception of passing data in program memory).

Passing Parameters by Value or Address
Once a decision on how to pass the parameters has been made, you must answer
the question of what form of argument to use. You remember that "argument" is
what we have decided to call the value that is given to the parameter. This value
may be either the data itself or the address of the data.

Pass by Value
Most parameter passing in assembly language is done with pass by value. In
this method, the actual data (its value) is passed to the calling routine. The tar
get routine receives a number, either stored in a register or pushed onto the
stack.

Data that is stored in common memory is something of a special case. In
one sense, it is passed by address because the calling and called routine access
the data by means of a common address. In another sense, the data in the com
mon area may be either values or addresses, and the problem is simplified by
basing the decision on the nature of the data in the common block. If the data is a
value, data is passing by value. If it is an address, data is passing by address.

If parameters consisting of immediate data are to be passed on the stack,
users of the 8086 or 8088 face some additional effort when transferring the value
to the stack. Users of the 80x86 advanced processors can use the PUSH

85

Coding and Programming

86

<immediate> instruction, but for users of the older processors, the data must be
transferred to the stack through an intermediate register. The @Pushlm macro
presented in Chapter 1 could be used, but its complexity is not called for in this
application. If the calling procedure shown in Listing 2-1 is used, the BP regis
ter is available for transferring immediate data to the stack. In almost all con
ventions for the 8086 architecture, the AX register is dedicated for this purpose.
Any immediate data that must be moved to the stack is transferred with the fol
lowing two lines of code:

mov ax,<immediate_data>
push ax

Passing parameters by value inherits the limitations of register and stack
passing-restriction of the value to 16 bits. Indeed, 8-bit data may not be
pushed onto the stack at all. There are ways around this, of course, of which the
@PushOp macro from Chapter 1 is one example. Data belonging to large struc
tures may be pushed a word at a time, but unless the called routine must receive
its parameters from the stack, to pass the address of the data is much easier.

Pass by Address
In pass by address, the called routine receives only the address of the data. All
accesses to the data are made using this address. There are a number of immedi
ate advantages. One, unless the data resides in a different segment, all ad
dresses may be contained in one 16-bit value, which is convenient for, using
registers or the stack. Two, the routine becomes completely general because
specifying a different address yields a new set of data. Three, the data may be
directly manipulated by the called procedure to return a value to the calling rou
tine in the same location that contained the original value.

Sometimes a problem is encountered if the values to be passed are not lo
cated in memory (that is, immediate data). For this case (or if you find it simply
inconvenient to push all the required addresses onto the stack), a type of hybrid
parameter can be used: the argument block.

The argument or parameter block is a special form of pass by address. In
this case, the required arguments are contained in a contiguous piece of mem
ory. However, unlike passing through common, the called procedure has no im
plicit knowledge of this block. When the procedure is called, it is passed the
address of this block as a parameter. It still may not be convenient to place all
the required arguments into the block, but this does avoid the necessity of push
ing all those values onto the stack. If the block already exists for another pur
pose, passing parameters through an argument block makes a lot of sense.

Protecting the Integrity of Passed Data
There is another aspect of the pass by ... option that is just as important as
ease of use. This aspect relates to the integrity of the data or its protection from
unintentional change or corruption.

2 - Design and Implementation of Modular Programs

In typical use, data that is passed by value is a copy of the actual data. As
such, the called routine may manipulate the data in any way without changing
the data in the calling routine. On the other hand, if the called routine receives
the address of the data, that routine may then alter the data, possibly changing the
operation of the calling routine. Data that is passed by value is then considered to
be protected, whereas data that is passed by address is considered to be at risk.

Surprisingly, variables that are passed in a register are sometimes consid
ered to be passed by address because registers are simply specialized addresses
in hardware. This distinction is made because the data in the register is at risk if
the subroutine or function alters the data in the register and that alteration has
an effect on the main routine.

There are no hard and fast rules regarding the degree of exposure of the
data. Concepts such as pass by value and pass by address may help us to evalu
ate the situation, but the actual decisions of the type of passing to use depend on
how valuable the data is to the calling routine (the degree of risk) and whether
the called routine has access to the original data. This in turn determines how
much protection is required for that data.

Functions versus Subroutines
It is often desirable for the called routine to return new data to the caller. As
indicated earlier, those routines that return values are called functions; those
that don't, subroutines. In high-level languages, functions are usually re
stricted to returning only one value. Any other information that must be re
turned to the calling procedure is passed back by modifying one or more of the
parameters. In assembly language no such restrictions apply. Let's examine the
options.

Returning Values in Registers
Once again, the simplest way to return a value is in a register. As with passing
parameters, this option can be limited by the number of available registers and
by the size of the data to be returned. On the positive side, the data is readily
accessible and can be tested or manipulated quite easily.

For frequently called functions, returning values in the registers makes
sense. It requires no special setup and no anticipation of memory buffers or
such. Most MS-DOS functions return their values this way. However, if all func
tions in a program returned their data via the registers, you would be faced with
a major bookkeeping and shuffling task. In addition, because the registers are
where most computations take place, there is fierce competition for their use.

Rather, the registers should be used for those small, frequently called rou
tines that return only a few values and for routines whose returned value must
undergo immediate calculations. A function to read character values for trans
formation into a number would be one example of the latter case.

Most high-level languages use the technique for returning values. The AX
register is usually used for returning byte or wordlength values. If a double

87

Coding and Programming

88

word value must be returned, such as afar pointer, the least significant word (or
offset portion) is returned in the AX register, and the most significant word (or
segment portion) is returned in the DX register. In those cases where more than
two words must be returned to the calling program, the data is placed in a mem
ory buffer, and a pointer to the buffer is returned to the calling routine. Just how
this pointer is managed depends on the individual language.

Returning Values in Common
When a routine returns values in common, no one thinks of it as a function. Nev
ertheless, this "side effect" method provides a reasonably simple means for re
turning large amounts of data. We call it a side effect method because the
transfer operation is not readily apparent from reading the "call" section of the
calling routine and appears to take place as an incidental result of the procedure.
Because this is not readily apparent from the call, clear documentation must be
added describing what values are returned and why.

However, if the address of the common area is instead passed in a param
eter in either a register or the stack, the fact that returned values are expected
in that particular memory area is made more apparent to the reader. In addi
tion, the benefits of generality are gained because the procedure may be di
rected to return its values in any buffer location.

Returning Values on the Stack
The last method of returning values is to place them in the stack (as opposed to
on the stack). This operation requires use of the BP to address the stack (in the
same manner as passing parameters on the stack). To return a value, the value is
loaded onto the stack in one of the memory locations above the return address. If
the procedure is called with parameters, one of the parameter locations may be
used to store the return value. If the procedure is called without parameters,
the calling procedure must push a dummy argument on the stack in order to
make room for the returned value.

When values are returned on the stack, the called routine should not clear
the stack with a RET N instruction. Instead, the calling procedure should be
used to clear the stack, retrieving the returned values through simple POPs.

If the returned values are too large to conveniently fit on the stack, the
called routine may return a pointer to a memory location where the returned
values may be found. Then that memory location would contain the actual re
turned values. In these cases, the calling routine should decide the location of
the buffer area.

Exception Reporting
During this discussion, we have alluded to returning status indications or de
tecting and reporting errors. In many applications, a desirable option is to have
called procedures, functions, and subroutines provide some type of error indica
tion or status code. You probably have noticed that many MS-DOS function calls
return a status code upon completion. Frequently the carry bit is used to

2 - Design and Implementation of Modular Programs

indicate the presence of an error with one or more of the registers, usually the
AX, containing detailed information on the type of error.

The carry bit is used for a number ofreasons. It is easy to check (with JC or
JNC); easy to set, complement, or clear (with STC, CMC, and CLC); and easy to
save and restore (with PUSHF and POPF). Access to the carry flag is more
complete than for any other status bit in the 8086/8088 architecture. This com
bination provides an ideal mechanism for indicating the presence of an excep
tion. Of course, the programmer must remember to clear the carry bit to
indicate a proper completion if no errors occurred because the carry bit may be
already set by a normal operation.

Once the calling routine has determined that an error exists, the routine
must discover the nature of the error. Sometimes no further information is re
quired. When more information is needed, a dedicated register for completion
codes is helpful. A logical choice is the AX register, but because so many other
operations depend on it (MUL and DIV for example), it may not be available.
Whatever choice is made, the register should contain not only error codes but
also a normal completion code. This way, if the original error indication is lost,
the program may retest the register to discover the completion status. If the in
formation is critical, choose a value for normal completion that is not a normal
result. What this implies is that you should not use a value of zero for normal
completion because another error could easily clear the status codes.

MS-DOS provides an error reporting service for use with programs that
run other programs. If a subprocess wishes to return an error code to the pro
cess that invoked that subprocess, it may do so as part of the Terminate Process
function call, function 4Ch. The parent process then may obtain that return code
through MS-DOS function 4Dh, Retrieve the Return Code of a Child. This mech
anism is for use only with programs run under the Load and Execute Program
function, 4Bh, which is introduced in Chapter 3.

Types of Coding

For most basic programming in any language, the programmer is rarely con
cerned with the details of how the processor is executing the program. Details of
1/0 handling, memory management, and where in memory the program is ex
ecuting are left to the operating system to manage. However, there are times
when more direct control of the program environment is desired. At these times
the programmer may need to know about, and take responsibility for, the mech
anism used to load, position, and execute the program. Examples of this occur
when writing stand-alone programs that operate without MS-DOS present,
supporting program overlays to fit large programs into limited physical mem
ory, and writing interrupt driven or recursive programs.

During execution, a program's position in memory is reflected in two ways.
One of the segment registers is used to relate the program counter (also known
as the instruction pointer) or memory reference address to a block of physical
memory. Then, within that block, the actual memory reference is formed, using

89

Coding and Programming

90

an offset from the beginning of the block. This offset appears in the program
counter, in memory references, and within indirect memory references through
registers.

What does this have to do with different types of coding? These types of
references and the way that they are used determine how a program is loaded
into memory, what types of features it can use, and how the program may be
structured. We examine how these references are created and how to use the
right ones to allow us to write the best possible programs.

Program Code Positioning
Understanding the alternatives in positioning program code requires a clear un
derstanding of both program flow control instructions (CALL, RET, and JMP)
and memory accesses in the 8086 processor. Both of these can restrict the
options available to the programmer in locating code in the available memory
space.

Program flow control instructions, often called control transfer instruc
tions, come in two basic forms: the CALL and the JMP. Each causes the pro
gram to begin executing code from a new place in memory, called the
destination. Each of these instructions has three implementation options for
specifying the destination location. They are: current location relative, current
segment relative, and absolute addressing.

Location Relative
Current location relative, sometimes called PC relative (program counter rela
tive), calculates the destination address from the current address and a dis
placement. The displacement is added to the current location to form the
destination address. Because the entire operation is totally independent of the
absolute location of the code in memory, the resulting address is position inde
pendent. If the entire block of code is moved in memory, the new destination ad
dress created correctly points to the new location of the destination instruction.

This method of calculating transfer addresses is used with all conditional
jumps, all intrasegment (short or near) direct JMPs, and all intrasegment
(near) direct CALLs. Direct means that the CALL instruction contains a dis
placement as immediate data. The alternative, nondirect, is a CALL to an ad
dress contained in a 16-bit register (offset only) or to an address contained in a
16-bit or 32-bit memory location (offset or offset and segment).

Because direct transfers involve no actual addresses, they may be located
anywhere in memory and may even be moved about within a segment as long as
both the source instruction (JMP or CALL) and destination routine are moved
together.

Segment Relative
Current segment relative addressing specifies an actual offset value to be
loaded into the instruction pointer (as in the nondirect CALL) or to be used as a
pointer to data. References made using this method always point to the same
location within the block of memory addressed by the relevant segment register.

2 - Design and Implementation of Modular Programs

As such, the code or data may not be moved within the segment. However, such
code may be moved in memory if the segment register for that block is also up
dated. Because segments must be aligned on paragraph boundaries (address
XXXXO hex), the code may be moved only by increments of 16 bytes (one
paragraph).

This type of addressing is used by intrasegment (near) indirect JMPs and
CALLs where a new destination instruction pointer value is fetched from a regi
ster or memory location. This addressing is also used with all data references,
regardless of the segment used (DS, ES, or SS). Code that uses this type ofref
erence is still considered relocatable as long as the segment registers are up
dated to reflect the position of the code.

Absolute Addressing
Absolute addressing occurs when the entire physical memory address is ex
plicitly specified. To accomplish this in the 8086 family, both the segment ad
dress and the offset may be explicitly specified. These references point every
time to the same location in memory. Absolute addresses in the 8086 are rare.
Only a few instructions have the ability to generate absolute addresses in the
8086. These instructions are intersegment (far) JMPs and CALLS and the LDS
and LES instructions (load pointer using DS or ES). The JMP and CALL in
structions, either direct or indirect, update not only the offset (instruction
pointer) but the code segment (CS) register as well. This specifies a physical ad
dress in memory. Likewise, the LDS and LES instructions not only load an off
set into a 16-bit register but load either the data segment (DS) register or the
extra segment (ES) register. Once again, this is a physical address.

One other way to create an absolute address is to use a MOV or POP in
struction to directly load one of the segment registers with a constant. However,
note that POPping a value into the CS register is not allowed in the iAPX186,
iAPX188, or iAPX286 processors and should not be done if only for com
patibility reasons.

Types of Program Code

When discussing the properties of a program, we refer to it by the least flexible
type of addressing that it contains. If only a single absolute reference is con
tained in a program, that program is said to have absolute addressing or to be
nonrelocatable. It may not be moved in memory.

Attentive readers may believe that an error has been made. After all, the
entry point of a MASM program is specified as far, and all . EXE programs load
the DS and ES with a MOV instruction. Both of these facts would seem to imply
a nonrelocatable program, yet MS-DOS does load our programs into memory at
different addresses as required. The key to this dilemma is that the values used
are not constants in MS-DOS. MASM and LINK treat segment and far pro
cedure names in a special way, producing what is called a relocation map. When
a program is loaded into memory, MS-DOS reads the relocation map, and
changes the values of those references that contain segment addresses. The
important note for us as programmers is that MS-DOS does not extend such

91

Coding and Programming

92

courtesies to standard data values, and loading one of the segment registers
with a constant is not the same as using a segment or far procedure name.

Relocatable Code
MASM and LINK normally produce relocatable code. That is, in normal use,
they create programs that may be moved in memory by MS-DOS and still oper
ate correctly. Only the contents of the segment registers change. This has uses
in a number of applications. Programs may load other programs into any area of
memory using MS-DOS function 4Bh (useful for program overlays). Multiple
programs may be loaded into memory concurrently (useful for multitasking sys
tems or memory resident programs, such as print spoolers).

As indicated, MS-DOS accomplishes this feat by changing only the values
of the segment registers and any locations in the program code that reference
the segment name or afar procedure. We can also extend these concepts of flex
ibility to the data areas used by a program. Normally, relocatable programs con
tain relocatable data areas. When the MS-DOS loader brings a program into
memory, the loader assigns values to all segment references rather than just
code segment references. Listing 2-5, which is taken from a standard .EXE
type program file, shows the data segment reference used to load the data seg
ment register. Listing 2-6 shows the equivalent code produced by MASM.

Listing 2-5. Source for .EXE Program Header

data_seg SEGMENT ; define the data segment
; data area & values

data_seg ENDS
code_seg SEGMENT ; define the code segment

ASSUME cs: code_seg
ASSUME ds:data_seg

main PROC FAR ; entry point for the program
start:

mov ax,data_seg ; transfer data segment address
mov ds,ax ; to AX and thence to
mov es,ax ; ... segment registers

In standard use, the variable data_seg is not a constant. Rather, this vari
able is a segment relocatable value, which is indicated in the MASM listing by
four dashes and the letter R. As it loads the program, MS-DOS inserts in the
program the actual value to be used during execution. This value is the address
of the location in memory where data_seg was loaded. So with the help of MS
DOS, a program's code and data areas may be moved around in physical memory.

2 - Design and Implementation of Modular Programs

Listing 2-6. Listing for .EXE Program Header

0000 code_seg SEGMENT
ASSUME cs: code_seg
ASSUME ds:data_seg

0000 main PROC FAR
0000 start:
0000 88 R mov ax,data_seg
0003 8E DB mov ds,ax
0005 8E co mov es,ax

Separate Data Area
If more than one data segment is defined in the program (using corresponding
ASSUME directives), it is possible for routines to have separate data areas. But
in typical programming style, each routine is limited to accessing the same data
area every time that routine is called. The data area is dedicated to the routine
and vice versa.

In normal use, dedicated areas are not a handicap because most routines
execute in a sequential manner, one after the other. But what happens when we
try to execute the same procedure more than once at the same time? Wouldn't
the later call overwrite the earlier call's data because the routine uses only one
data area? At this point, you may be wondering why the same procedure would
be invoked more than once simultaneously.

There are at least three cases where this occurs. First, multitasking sys
tems may have multiple programs running, sharing common libraries of code
called run-time libraries (because the code is accessed at run-time instead of
being included during link-time). Run-time libraries have only one copy of the
code, located in memory, instead of having multiple copies located in the pro
gram file. (See Chapter 3 for a more complete discussion ofrun-time libraries.)
Although they may all run the same code at the same time, run-time libraries
must have separate data areas to avoid inadvertent sharing and corruption of
data.

The second case where the same procedure may be invoked by two parties
simultaneously occurs in interrupt-driven systems. Assume that a routine is ex
ecuting but is interrupted by some external event. The program that services
the interrupt starts executing but needs to call the routine that was inter
rupted. Unless they have separate data areas, the interrupt procedure destroys
the data that belongs to the interrupted routine. For this reason, interrupt serv
ice routines need to have separate data areas.

Recursive Code
The third use for separate data areas occurs when a routine needs to call itself.
This is a common tool for problem solving and is given the name recursion.

93

Coding and Programming

94

Calculating factorials is a good example of this technique. A sample recursive
solution for calculating the value of a factorial appears in Listing 2-7. The solu
tion is not very elegant and contains no overflow checks on the multiplication,
but it suffices for values of N up to 7.

Listing 2-7. Recursive Solution for Calculating Factorials

factor PROC NEAR ; find factorial N
cmp ax,2 ; reached end yet?
jne subfact ; no, calculate (N - 1)!
mov ax,2 ; yes, start at the beginning
ret

subfact:
push ax ; save current value of N
sub ax,1 ; get N -
call factor ; request CN - 1) !
pop bx ; restore value of N
mul bx ; N x CN [min] 1) ! N!
ret

factor ENDP

Reentrant Code-Local Storage Requirements
For all these cases, a routine's data must be preserved separately from its code
in such a way that more than one procedure, each with its own data areas, may
be executing the code at the same time. If this criterion is met, the routine is
said to be reentrant. That is, the routine may be invoked (entered) by one pro
gram flow while another program flow is still executing it. We say program flow
because we don't really care whether the routine is called by another program,
by another routine, or even by itself (recursion).

In factor, the data to be preserved is saved on the stack by the calling rou
tine. This is possible only in recursion because the programmer knows when
control is given to the new routine and may anticipate the need to set up a new
data area. For multiuser and interrupt handler applications, this is not suffi
cient, and the routines must have their data protected at all times. Control may
be taken away at any time. In these cases, set up a local data area when the rou
tine is first entered. This storage may be allocated in one of two ways: on the
stack or in memory.

Local Storage on the Stack
A block of the stack may be reserved for local storage by decrementing the stack
pointer. Then any interrupts or calls that occur continue to build on the stack,
preserving any local data belonging to the routine that was interrupted. This is
the easiest method but requires that all local variable access take place through
the BP register. (See the preceding section entitled "Passing on the Stack" for a
discussion of this.) Listing 2-8 contains an annotated example of this method.

2 - Design and Implementation of Modular Programs

Listing 2-8. Using the Stack for Local Storage

; The Calling Procedure

push <argument_3> ; push third argument
push <argument_2> ; push second argument
push <argument_1> ; push first argument
ca LL Example ; ca LL procedure
add sp,6 ; clear stack

; The Called Procedure

StackFrame STRUC ; define stack structure template
LocWord dw ? ; Local word variable
LocChar db 14 dup (?) ; Loca L character array
Loclndx dw ? ; another Local word variable
XamplBP dw ? ; saved BP

dw ? ; return address (NEAR call)
Param1 dw ? ; 1st parameter (pushed Last)
Param2 dw ? ; 2nd parameter
Param3 dw ? ; 3rd parameter (pushed first)
StackFrame ENDS ; end of template definition
;
base EQU [bp-offset XampLBPJ ; aligns BP with template
;
Example PROC NEAR ; start of procedure

push bp ; save old base pointer
mov bp,sp ; align StackFrame with stack
sub sp,offset XamplBP ; reserve space on stack
push si ; save any registers used
push di

mov si,base.Param1 ; access to passed parameters
mov al,base.LocWord; access to Local variables

pop di ; restore saved registers
pop si
mov sp,bp ; discard Lo ca L va ri ab Les
pop bp ; restore original BP
ret ; return and DON'T clear

Example ENDP ; end of example procedure

95

Coding and Programming

96

Because the structure StackFrame is defined in the current segment, no
segment overrides are necessary. If offsets from another segment are used, as
in attempting to use a template from the data segment, you have to use the SS:
override in the references. Failure to do so results in the MASM error message
Can't reach with segment reg. If you ever see this message, an explicit seg
ment overrides to define which segment you are accessing and see whether this
solves the problem.

lflocal storage is allocated on the stack, that storage must be freed prior to
returning from the routine. This may be accomplished by either adping the size
of local storage to the stack (reversing the sub sp,offset bp_ or restoring the SP
from a saved value (mov sp,bp). It may not be freed by using the RET Nbecause
the current top of stack does not contain the return address!

In most high-level language compilers, the preferred method of storing lo
cal data is by using this "temporary" storage on the stack. Variables that are
placed in this type of storage are sometimes referred to as local, dynamic, or
automatic variables. Listing 2-8 contains the typical sequence of events that is
expected to take place upon entry to a typical high-level language program. The
procedure sets up a new stack frame (saving BP and setting BP to the current
SP), allocates local storage (subtract from the SP), and saves any registers that
it might destroy.

Figure 2-1 represents the arrangement of the stack as it would appear
within the Example routine and shows how the StackFrame template is aligned
with the stack. Note that it is our definition of base as "[BP-offset XamplBP]"
that accomplishes the alignment. Since XamplBP is to align with the location of
the saved BP on the stack, we chose the definition such that base.XamplBP is
equal to [BP - offset XamplBP +offset XamplBP], which is the same as [BP+O].
The other important point is that the stack template structure must start with
the declarations of those items that will be located in lower memory.

The ENTER and LEAVE Instructions for Local Stack Storage
In the more advanced members of the 8086 family, Intel has provided two new
instructions to aid in using local storage on the stack. The iAPX186, iAPX188,
and iAPX286 processors all support the ENTER and LEAVE instructions. EN
TER is used to set up local storage on the stack when first entering a routine,
and LEAVE deallocates this local storage when exiting the routine. In addition,
ENTER and LEAVE has the capability of maintaining frame pointers, which
are used in certain block structured high-level languages such as Pascal.

Because of the complexity of these instructions, we have presented their
macro equivalents in Listing 2-9. This also allows 8086/8088 users to take advan
tage of these instructions in anticipation of an upward migration to one of the
more advanced processors. Note that the enter and leave macros deviate from
our unofficial standard of prefixing macros with an @ because they are intended
to stand in for the ENTER and LEAVE instructions when using the 8088/8086.

2 - Design and Implementation of Modular Programs

Higher Addresses

Param3

[BP+8]

Param2

[BP+6]

Paraml
[BP+4]

[BP+2]

Xamp1BP
[BP+O]

Loclndx

[BP-2]

LocChar

[BP-16] t-------
LocWord

[BP-18]o-------

Saved SI

Saved DI

Top of Stack t-------
Available
Memory

Lower Addresses ------

StackFrame

Figure 2-1. Local stack storage and parameter access.

The ENTER instruction performs three actions on the stack when the in
struction is executed. It always pushes the value on the BP onto the stack. If the
value of level is 1 or greater, the instruction copies the previous values of
the BP onto the stack. If the value of local is 1 or greater, the instruction opens
up space for local storage on the stack by subtracting local from the stack
pointer. The BP is always set to the location of the old BP on the stack (the first
PUSH).

The LEAVE instruction reverses the action of ENTER as long as the BP is
left at, or reset to, the original value of the BP as set by ENTER.

The most confusing phase of this operation is that relating to the frame
pointers. Figure 2-2 shows the state (and contents) of the stack for a series of
operations that consisted of four successive ENTER instructions.

97

Coding and Programming

98

Listing 2-9. Macro Equivalents for the ENTER and LEAVE
Instructions

,, MACRO DEFINITIONS FOR ENTER & LEAVE INSTRUCTIONS
,,
,, Base addressing definitions for use in accessing
,, elements in the stack frame created by ENTER.
,,
pbase equ [BP + 4] ,, access to parameters
Lbase equ [BP - ??tsize] ,, access to Locals
fbase equ [BP - ??fsizeJ ,, access to frame pointers
,, Form: ENTER Local <immediate 16>, Level <immediate 8>
,,
,, ENTER--Create stack frame and allocate Local storage
,, Copies stack frame pointers from previous routine into
,, a new stack frame for this routine and opens up space
,, on the stack for new Local storage.
,,
enter MACRO Local,Level

??tsize = Local + Level * 2
??fsize = level * 2
push bp
IF (level NE 0)

IF (Level GT 1)

REPT Level - 1
sub bp,2
push [bpJ

ENDM
END IF

mov bp,sp
IF (level GT 1)

add bp,(level - 1) * 2
END IF
push bp

ELSE
mov bp,sp

ENDIF
sub sp,local
ENDM

,, Form: LEAVE
,,
,, LEAVE--Execute procedure return removing stack frame
,, and local storage set up by ENTER instruction.
,,

2 - Design and Implementation of Modular Programs

leave MACRO
mov sp,bp
pop bp
ENDM

Each stack entry in Figure 2-2 symbolizes 2 bytes. (For this reason, all lo
cal parameters for ENTER are multiples of 2 bytes. This is not a restriction of
the ENTER instruction.) The arrows in the figure symbolize that an entry
points to another entry (contains the address of that entry).

The first ENTER (level one) sets up a single frame pointer, pointing to its
own frame, and opens up space on the stack for 4 bytes of storage. The second
ENTER (level two) not only creates its own frame pointer (FP #2) but copies
the frame pointer from the previous frame (FP #1). The second ENTER creates
only 2 bytes oflocal storage. The last ENTER (level three) carries the operation
one step further, copying the frame pointers of the previous two levels (FP #1
and FP #2).

Why does the example sequence start with a level one ENTER rather than
a level zero ENTER? A level zero ENTER simply pushes the BP onto the stack
and subtracts the value of local from the stack pointer, setting the BP to point to
the value of the BP just pushed. No frame pointers are copied. A level zero EN
TER is thus ideal for creating local storage on the stack. When used in conjunc
tion with the STRUC directive, ENTER can almost automatically create local
stack storage that is easy to access. Listing 2-10 demonstrates further.

This program fragment defines, allocates, and uses local storage from the
stack. ENTER is instructed to reserve the proper amount of space through the
MASM SIZE operator. The percent mark(%) is required only with the macro
implementation of ENTER. When using the machine code version (supported
by MASM 2.0 and higher by specifying the .286C switch), the% should be omitted.

ENTER 4,1 ENTER 2,2 ENTER 4,3
xxxxxxxx xxxxxxxx

1@!,J'll11ffiffi1W"ffi0'''''' BP#1 [old BP] [old BP]
[FP #1] [FP #1]
[local] [local]
[local] [local]

::f'"ui'"'*[BP#1]1q..rw-m<ffii1!'"'" B2#2 [old BP]
, [FP#1] [FP#1]
\T"''&'"''""[FP#2] [FP#2]

SP "'*!118'<'!)' [local] [local]
[BP#2]«fiP'*'"""1"" BP#3
[FP#1]

li0U1011mm&,'"••-s11m [FP#2]
[FP#3]
[local]

SP'-'"'"'' [local]

Figure 2-2. Effects of ENTER on the stack.

99

Coding and Programming

100

Listing 2-10. Creating and Referencing Local Stack Storage
with ENTER

?data_1
my_var dw
?data_1
test PROC

STRUC
?

ENDS
NEAR

ENTER %(size ?data_1),0 ; allocate Localstorage
mov Lbase.my_var,10 ; store a value in Local

The symbol lbase is defined in Listing 2-9 as the base address for all local
variable accesses. The actual reference created in the MOV instruction is

mov [BP - ??tsizeJ.my_var,10

The symbol ? ?tsize is set by the macro implementation of ENTER to the
number of bytes added to the stack by the ENTER instruction, not including
the BP. This symbol is calculated as local + level * 2. When ? ?tsize is subtracted
from the contents of the BP, the result is the address of the top of the stack. All
structure references are thus positive offsets from lbase. Even if you use the
machine code version of ENTER, you can easily write a macro that calculates
??tsize and creates the ENTER instruction so that this technique can be used on
the 186/188/286 processors as well.

Another symbol defined in Listing 2-9 is pbase, the base address for all ac
cess to variables passed on the stack. The value of pbase is [BP+4] to cover the 2
bytes pushed on the stack as part of a near CALL instruction and the 2 bytes
required for the BP pushed on the stack by the ENTER instruction. Once a
structure has been defined for the stack parameters, pbase can be used with
their field names for symbolic access as in pbase. my_param.

Having described the simpler uses of ENTER, we return to the question of
the frame pointers. What are they for? Each frame pointer points to the begin
ning of the previous routines' stack frames. By loading the BP with the contents
of one of the frame pointers located in the current frame, access can be gained to
the previous level's local variables. This is primarily designed for implementing
high-level languages, such as Pascal, where a routine has automatic access to
the parent routine's variables. Unless you are very serious about high-level
structured programming in assembly languages, you probably pass by using the
frame pointer capabilities of ENTER. If you decide to try using ENTER with
frame pointer anyway, a little experimentation should give you a feel for the
operation.

Code Positioning Summary

Note that reentrant routines are not necessarily relocatable, nor are relocatable
routines necessarily reentrant. Relocation applies to the ability to position the

2 - Design and Implementation of Modular Programs

program in memory. Reentrant applies to a routine having secure local data
storage. Recursive routines are a type of reentrant routine with the relaxed re
striction that the programmer knows at what point data must be preserved in
preparation for the next call.

In addition, when writing reentrant routines, don't forget that the rou
tines' parameters must be reentrant also. Data must be passed to the called rou
tine in an area that either is protected (such as the stack) or is always saved
when a new procedure or task takes control (for instance, all interrupt service
routines save all registers when invoked).

You also should remember that there are two types of relocatable code.
The first type is MS-DOS relocatable where MS-DOS, using the relocation map,
alters the values of segment variables in order to relocate the program. The sec
ond type is self-relocatable, which simply means that no relocation map is re
quired. Only programs that use only displacement addressing in CALLs and
JMPs may be self-relocatable.

Interfacing to High-Level Languages

The most common use of assembly language today is as an adjunct to a high-level
language. During development a program will typically be coded using a high
level language, with only a few modules being written in assembly language.
Assembly language is used where either speed or code size is a critical concern,
or because the high-level language does not support access to certain features or
hardware.

There are three main areas of concern when interfacing an assembly lan
guage module to a high-level language program. These are: reconciling names
between the two modules, handling any special setups that the language and
compiler may require, and adjusting the assembly language module to the
proper calling sequence and parameter passing techniques used by the particu
lar high-level language compiler.

In the past there were few rules governing the naming conventions and
calling sequences for high-level languages. Today the situation is much im
proved, with many compilers following standards laid down by the American
National Standards Institute (ANSI). Because the high-level language com
pilers offered by Microsoft are widely used and because they adhere to the
ANSI standard, we have chosen Microsoft's BASIC, C, FORTRAN, and Pascal
compilers to illustrate common calling conventions.

The Microsoft C Calling Conventions
The calling conventions illustrated in Listing 2-8 represent a typical C program.
Were the Example program translated into C, its opening statements would ap
pear something like this:

IOI

Coding and Programming

102

void Example (Param1, Param2, Param3)
int Param1, Param2, Param3 ;
{

int Loclndx ;
char Loe Char [14] ;
int Loe Word ;

In the C language all subroutines are also functions; any routine can return
a value to its caller. Because our function does not return a value, we have de
clared it as function type void.

C makes use of automatic variables for the storage of local data. Note,
however, that there is no standard that dictates the order to be assigned to local
variables as they are placed on the stack.

Listing 2-8, Figure 2-1, and the preceding code fragment all show how the
C language pushes its arguments in the reverse order that they are declared.
The purpose of this method is so that if a variable number of parameters are to
be passed, the called routine can always find the leftmost parameters at a fixed
position on the stack. Param1 will always be located at [BP+4], regardless of
how many parameters were actually passed. C programs that make use of this
feature usually use the leftmost, or first, parameter to pass the total number of
parameters passed to the called routine. In this manner the called routine can
determine how many additional parameters it needs to read.

Another feature to note in the C language is that parameters are almost
always passed by value. If we call Example with the variable Foo, the contents
of Foo are placed on the stack. The called routine thus manipulates a copy of the
variable passed, rather than the variable itself. The exception to this method is
that arrays are typically passed by address. (In the C standard, an array's iden
tifier is its address, so this apparent exception is actually consistent with C syn
tax.) However, C also allows the programmer to pass the address of any
variable, if desired.

The Microsoft C compiler supports one of the richest programming en
vironments, allowing the experienced programmer complete control over the
memory module to be used. Our example represents the default C environment,
composed of near program calls and near references to data.

In spite of all of the effort just presented, we would still be unable to sub
stitute our assembly language version of Example for the C language routine.
The obstacle to be surmounted lies in reconciling the names used between the
calling C routine and the called assembly language routine. The problem is
that the C compiler prefixes all names with an underscore (_). When the com
piler generates a call to Example, it is really expecting that the destination rou
tine's name is _Example. Possibly this nomenclature is designed to prevent
collisions between the compiler's name space and the assembler's name space. If
both the calling and called routines are in the C language, then the compiler
translates both references, and there isn't any trouble. When one of the refer
ences is in assembly language, we must perform the translation ourselves. This

2 - Design and Implementation of Modular Programs

translation applies to names given to global data variables as well as program
labels.

Two items to note are that the C language limits names to 8 characters and
that in Call names are case sensitive. In C, Example and example are two sepa
rate names. The assembly language routine should be assembled with the lmx
switch, to preserve the case of any names used.

The final requirement for a C program to be able to call an assembly lan
guage routine is that the function be declared public in the assembly language
routine and extern in the C routine. Table 2-1 summarizes the calling conven
tions for Microsoft C.

Table 2-1. Microsoft C Calling Conventions

Convention

Code references
Data references
Stack cleared by
Parameters passed in
Parameters passed by
Values returned in
Name length:
All names are:

Description

Near or far
Near or far
Caller
Reverse order
Value
AXorDX:AX
8 characters
Preceded by an underscore (_)

The Microsoft Pascal Calling Conventions

Where Listing 2-8 approximates the C calling syntax, the calling conventions
for Microsoft's Pascal compiler are best expressed by the example shown in List
ing 2-4. The Pascal equivalent of myprog could be coded somewhat like this:

procedure MyProc C Param1, Param2, Param3 : integer) ;
begin

The major difference between the C and the Pascal languages is that Pascal
performs much more stringent checks. These checks ensure that the proper
number and types of parameters are passed in calls, that function values are
used in a manner appropriate to their type, and so forth. Thus, unlike C, in Pas
cal a routine must be declared either a procedure (a subroutine that returns no
values) or a function.

Pascal also makes use of automatic variables for the storage of local data.
As with C, there is no standard to dictate the assigned order of the local vari
ables in the stack. Also, as with C, space for local variables is allocated on the
top of the stack upon entry to the called routine. If the MyProg procedure used
the local variables Loclndx, LocChar, and Loe Word, they would be referenced
as shown in the StackFrame structure of Listing 2-8. The Pascal equivalent code
would be something like:

103

Coding and Programming

104

procedure MyProc C Param1, Param2, Param3 integer) ;
var

Loclndx, LocWord: integer ;
LocChar[1 •• 14] : character ;

begin

From Listing 2-4 we can see that unlike C, Pascal pushes its arguments in
the order that they are declared, left to right. The reason that this method is
possible is that the Pascal compiler ensures that all calls to a given routine
provide the proper number and type of arguments. Pascal simply does not allow
a variable number of parameters to be passed, so the passing order used in C is
not required in Pascal.

A consequence of the strict call checks performed by Pascal is that the
called routine always receives the same number of arguments, allowing the
called routine to use the RET N instruction to clear the stack, rather than de
pending on the caller.

In another similarity to C, the Pascal language usually passes its variables
by value but also allows variables to be passed by address if desired, using the
var declaration.

In a departure from C, the Microsoft Pascal compiler uses the LARGE
memory module, expecting far calls and far memory references. Also unlike C,
Pascal recognizes names in any case, although the assembly language function
must still be declared public and the Pascal reference must be declared extern.
Table 2-2 summarizes the calling conventions for Microsoft Pascal.

Table 2-2. Microsoft Pascal Calling Conventions

Convention

Code references
Data references
Stack cleared by
Parameters passed in
Parameters passed by
Values returned in
Name length
All names are

Description

Far
Far
Called (RET n)
Declared order
Value
AXorDX:AX
8 characters
Case-insensitive

The Microsoft BASIC and FORTRAN Calling Conventions
The standards followed by Microsoft's BASIC and FORTRAN compilers closely
resemble those of Microsoft Pascal. Table 2-3 shows just how much similarity
there is in the calling standards. However, in a major digression from the C and
Pascal conventions, both BASIC and FORTRAN pass their arguments by refer
ence. Because these languages pass the address of a variable, any manipulation
of a variable that is performed by the called routine also alters the value of the
variable in the caller routine.

2 - Design and Implementation of Modular Programs

In fact, the similarities between all four interfaces mean that it is just as
easy to write assembly language routines for BASIC or FORTRAN as it is for
Pascal, or even C for that matter. However, more effort is required within the
BASIC or FORTRAN program to set up the proper interface.

The BASIC equivalent of the extern statement is DECLARE, while FOR
TRAN requires the INTERFACE statement. Each of these statements informs
its respective compiler that the associated routine name is to be found outside
the current module. Additional parameters may be needed to inform the com
piler how to format and generate the proper call.

Table 2-3. Microsoft Calling Conventions for BASIC
and FORTRAN

Convention

Code references
Data references
Stack cleared by
Parameters passed in
Parameters passed by
Values returned in
Name length
All names are

The Microsoft Segment Model

BASIC

Far
Far
Called (RET n)
Declared order
Far address
AXorDX:AX
40 characters
Uppercase

FORTRAN

Far
Near or far
Called (RET n)
Declared order
Near/far address
AXorDX:AX
6 characters
Case-insensitive

Microsoft's MASM version 5.0 allows the programmer to quickly specify the
proper segment names and setup for a given language with the MODEL direc

. tive. Even without version 5, setting up the proper assembly language template
is relatively easy. All four languages use the same primary segment names. The
code segment is _TEXT, and the data segment is _DATA. Additional segments
may be required for particular interfaces, and many Microsoft compiler models
also require that the stack be placed in the data segment. However, a simple as
sembly language routine need not worry about such issues because it can oper
ate off of the caller's stack, and the high-level language main routine will handle
all necessary setup.

Allocation and Use of Local Storage in Memory

There is a third method of allocating storage for variables. We have seen storage
in global memory and storage on the stack. Now we will see storage in allocated
memory. Allocated memory must come from the unused memory of the system
(often called the memory pool). MS-DOS supplies functions that may be used to
allocate, deallocate, and size memory-system blocks. Once memory has been al
located, the programmer can implement a personal memory management
scheme to manage the memory in smaller units. For now, however, we will con
centrate on MS-DOS's features, beginning with function 48h, Allocate Memory.

105

Coding and Programming

106

Once the block of memory has been obtained, the program must-be able to
address it. Memory that has been allocated through MS-DOS comes in 16-byte
chunks called paragraphs. MS-DOS returns a pointer to this memory that con
tains the high 16 bits of the block's memory address. Segments are also ad
dressed as paragraphs, so the pointer should be loaded into one of the segment
registers (but not the CS register!). Usually either the data segment or the ex
tra segment is used to gain access to the block of memory. If the routine that
allocated the memory is not the main routine of the program, the old segment
register value must be saved and restored before the routine exits. In addition,
the memory that was allocated should be returned to the system before the rou
tine exits. MS-DOS function 49h, Free Allocated Memory, is used to return an
allocated memory block to the system. Listing 2-11 shows how a routine from an
.EXE type program would allocate, use, and free memory for use as local storage.

88 ---- R

Listing 2-11. Allocating Local Storage through MS-DOS

SEGMENT ; common data used by all
dw ?

common
COOL1

com_2 db 14 DUP (?)

common ENDS
; structure definition •••

? ; used with the •.•
dummy_dat STRUC
dummy_ 1. dw
dummy_2 db
dummy_dat ENDS

14 DUP (?) ; .•• allocated memory

ASSUME
Local_example

ds:common ; access to COMMON data
PROC NEAR; example procedure

push ds
mov
mov
push
mov
mov
int
jc
mov
;

ax,common
ds,ax
es
ah,048h
bx,1
21h
noLa L Loe
es,ax

; save previous DS
; COMMON is MS-DOS relocatable

; save previous ES
; allocate memory
; request 1 block (16
; call MS-DOS

bytes)

; carry means allocate failed
; if allocated, address it

; Three examples of addressing
;

A1 0000 R mov ax,com_1
ax,dummy_1
ax,es:dummy_1

; proper seg.--DS assumed
; wrong seg.--immediate 88 0000 mov

26: A1 0000 mov
;
mov
int

ah,049h
21h

j nc f ree_ok
noLa L Loe:

; proper seg.--overridden

; free allocated memory
; call MS-DOS
; no carry means worked

2 - Design and Implementation of Modular Programs

; Error messages, if failed, allocate or deallocate
free_ok:
pop es ; restore ES
pop ds ; restore DS
ret
local_example ENDP ; end of example

Listing 2-11 contains both the Allocate Memory and Free Allocated Mem
ory MS-DOS function calls. Instead of using the DS register to point to the
newly allocated memory, we have used the ES register, reserving the DS for ac
cess to an area of common program variables. Note that unlike the stack exam
ple, accesses using the structure defined here do require the segment override
operator(:). Without a segment override, mov ax,dummy-1 does not generate a
memory reference involving the ES but instead generates an immediate load of
the offset (zero here) into register AX. When the segment override is added to
the instruction, mov ax,es:dummy_1, MASM generates a memory transfer
from offset dummy_1 in the extra segment. The segment override is shown in
Listing 2-11 with the prefix byte 26:.

When using multiple data segments in a program, the programmer's re
sponsibility is to manage the data areas in use. For example, if routine X allo
cates local storage and updates the DS register to access this area, the
programmer must remember that this data area is now the default data area for
all routines called by X. Common data areas that have been defined in the pro
gram are still accessible by loading either the DS or ES registers from a seg
ment variable as shown in Listing 2-6. Those routines that modify their segment
registers must save and restore the original segment registers to prevent their
parent routines from being confused.

Whenever more than one data or extra segment is used by a program, the
programmer must pay careful attention to the ASSUME directives used in the
program. In assembling a typical memory reference, MASM first searches its
internal symbol table for the name of the variable being accessed. If MASM
finds the variable in the symbol table, MASM tries to create the reference using
the segment in which the variable was defined. If that segment isn't present
(through an ASSUME), MASM generates the error message Can't reach with
segment reg.

If MASM can't find the variable in the symbol table, MASM assumes that
it's in the data segment. If this turns out to be wrong, MASM attempts to fix the
error during pass two by attaching a segment override prefix to the instruction.
Unfortunately, inserting this byte causes another error message, Phase error
between passes.

In case of confusion or of a forward reference where the variable name is
not yet in the symbol table, the programmer must use the segment override op
erator(:) to more clearly define to MASM which segment is to be used. The SEG
operator is also useful for controlling accesses in a routine. This operator allows
the programmer to obtain the segment value (base address of the segment) for

107

Coding and Programming

108

any defined variable. The references that SEG creates are MS-DOS relocatable
and are useful for creating relocatable references in place of absolute ones.

Introduction to MS-DOS Memory Management
Our example in Listing 2-11 depends on there being free memory available within
the system. Unfortunately, the default MS-DOS process allocates all memory for
itself when it is loaded. The Allocate Memory call will fail because the process al
ready has all the memory, even though it doesn't know it. If a program wants to use
the Allocate Memory function, some of the memory that it received during the load
must be returned to the system. Typically a process will wish to return all memory
that is not occupied by the program's code, data, or buffers.

The function that MS-DOS provides to allow a process to return part of its
allocated memory to the system is function 4Ah, Modify Allocated Memory
Block. This allows the process to trim memory from its default allocation block.

Note that there are methods to prevent a process from allocating all memory
when it is loaded, but their presentation is delayed until Chapter 3, where the
topics of program loading and MS-DOS program files are covered in more detail.

The parameters required for the Modify Allocated Memory Block function
are the segment address of the block to be modified and the new size of the
block. The segment address of the block that contains the program (whose size
we wish to modify) is given by the PSP (program segment prefix). The PSP is a
section of memory that begins every program in the MS-DOS environment. The
details of the PSP's contents are described in Chapter 3. For now, our only con
cern is that the segment address of the PSP is the segment address of the block
to be modified, and we need that address.

Just how we go about determining these parameters is different for .COM
type files and . EXE type files. Figure 2-3 shows the arrangement of memory for
both .COM and .EXE files. The PSP is the first entry for each type. In the
.COM type program, the PSP is contained in the first 256 bytes of the program
segment, and the program's segment address (in all segment registers) is the
segment address of the PSP.

For .EXE files, the PSP resides in its own segment. However, whenever
an .EXE program is loaded and receives control from MS-DOS, both the DS arid
ES registers contain the segment address of the PSP. So for either type of pro
gram, the PSP address may be obtained from at least the DS and ES registers.
In addition, users of MS-DOS version 3.0 (or higher) may use the Get Program
Segment Prefix Address, function 62h, to determine the PSP address. MS-DOS
returns the value in the BX register.

Because the Modify Allocated Memory Block function expects the block
address in the ES register, the function may be called immediately upon the pro
gram starting execution, since the ES already has the PSP address.

Once the memory block address is found, we must determine the amount of
memory to be saved. The difference between . COM programs and . EXE pro
grams becomes much more marked here. For .EXE programs the size .can be
determined by subtracting the starting segment address of the PSP from the
segment address of a dummy segment located at the end of the program, as

2 - Design and Implementation of Modular Programs

0000

0100

FFFE
or

High
Memory

r--------
.COM

Lower Memory

PSP

Code & Data

Stack

Unused
Memory

.d!.
"WiC

""'

LL ...

r------1
.EXE

Lower Memory

PSP
'''1' PSP

Segment A

Segment B

End Program ""'
--fffr Segment C

Unused

. High Memory
Memory

... 1'.;,

Figure 2-3. MS-DOS program memory map and the program
segment prefix.

shown in Listing 2-12. Why are segment addresses used? Function 4Ah expects
the size in paragraphs, and segment addresses are actually paragraph addresses.

Listing 2-12. Function 4Ah, Modify Allocated Memory
Block-RESIZE for .EXE Programs

resize PROC NEAR
mov
mov
sub
mov
int
jnc
mov
int

resize_ok:
ret

resize ENDP
;

ax,es
bx,SEG enc:Laddr
bx,ax
ah,04Ah
21h
short resi ze_ok
ax,04C00h
21h

; get PSP address
; get next segment address
; difference is prog size
; modify allocated memory
; -.. MS-DOS call
; no carry => resized okay
; carry=> failed--abort

; The remainder of the code goes here with END_ADDR as the Last
; entry in the program file before the END statement. Take care
; to ensure that END_ADDR is Linked as the Last segment if more
; than one source file is used.
;
end_addr SEGMENT
end_addr ENDS

END

109

Coding and Programming

110

For .COM type programs, a little forethought is required. Unlike .EXE
programs, which have a definite size set by the linker, . COM programs can vary
in size. The location of the stack in a .COM program, which is set by MS-DOS,
can vary from the end of the segment (FFFE) to 256 bytes longer than the pro
gram (the minimum size required by MS-DOS for the stack). The user can
choose between, one, accepting what MS-DOS has provided and resizing the
stack provided by MS-DOS (set size 64K [1000 hex paragraphs]) or whatever re
mains; or, two, moving the stack and resizing based on that. The second choice
frees more memory and so is preferred and recommended by Microsoft and
IBM. Listing 2-13 contains an example of a .COM program that sets up its own
stack and resizes its initial allocation block to the more moderate size.

The only interesting part of this routine is the way that it determines the
size of the resultant program. The MASM operator SHR is used to convert the
number of bytes in the program to the number of paragraphs through what is
essentially a division by 16. What is not so obvious is why seg_org is subtracted
from the offset of lasLbyte. The SHR operator doesn't work when applied to an
offset, and it produces the error message Constant was expected. However, the
difference between two offsets is considered a constant, making the expression
palatable to MASM. Note that seg_org must have an offset of zero so that the
size is relative to the beginning of the segment. Were start used instead, the last
100 hex bytes of the program would be lost. (Note that lasLbyte: works just as
well as lasLbyte equ $ for calculations.)

In addition to being useful for freeing memory, the trick of subtracting two
offsets (either Label or Number) to get a constant can be useful for all types of op
erations where sizes are required in expressions that demand constants. We'll see
this applied to the task of aligning a data buffer on a paragraph boundary in
Chapter6.

Memory Allocation from within High-Level Languages
Most high-level languages handle the problems associated with allocating or re
sizing memory blocks. You will not need to add code to resize the initial alloca
tion block in order to make use of a language's memory management functions.
The malloc and calloc functions in the C library, for example, will work regard
less of a process's initial memory allocation.

Protecting Data and Controlling the Scope of Data
The techniques used in reentrant coding lead us into another aspect of modular
programming: protecting the data in the program from accidental alteration. De
struction of important data most often occurs when one part of the program mis
takenly alters the data that belongs to another part of the program. The possibility
of this happening can be reduced by following some basic rules. The foremost rule
is to modularize the program data as well as the code, that is, control the range of
data that a routine may access. This is often called the scope of the data. Let's re~
view what we have just learned and see how it may be applied to our new problem.

2 - Design and Implementation of Modular Programs

Listing 2-13. Function 4Ah, Modify Allocated Memory
Block-RESIZE for .COM Programs

code_seg SEGMENT
ASSUME
ORG

seg_org EQU
ORG

main PROC
start:

mov
call

;
; The remainder
;
main ENDP
resize PROC

mov
mov
int
jnc
mov
int

resize_ok:
ret

resize ENDP
db

stack:

cs:code_seg
OOOOh
$

0100h
FAR

sp,of f set stack
resize

of the program can go here.

NEAR
bx,Coffset last_byte - seg_org + 15) shr 4
ah,04Ah ; modify allocated memory
21h ; .•• MS-DOS call
short resize_ok
ax,04C00h
21h

32 DUP ('stack ')

; no carry => resized okay
; carry=> failed--abort

last_byte EQU $

code_seg ENDS
END start

Local Storage versus Global Storage
The human mind can deal with only a limited number of concepts at any given
time. The implication of this for programmers is that as the number of elements
to be manipulated and remembered grows, so does the number of errors. By
using local storage for subroutines, the programmer reduces the number of data
elements that must be remembered. Rather than dealing with data areas con
taining hundreds of variables, the programmer can now deal with a data area
that contains only a handful of variables. Many small data areas may exist, each
one may be verified with the routine that uses it because each is secure in the
knowledge that no other routine interferes with it. Either of the methods pre
sented for reentrant routines serves for the allocation of temporary local data
storage.

111

Coding and Programming

112

Global storage areas, also known as common areas, may be modularized.
In this case, a number of smaller data areas are created in place of a monolithic
one. Routines then can access only those portions of global data that they re
quire. This necessitates careful attention on the part of the programmer to
ASSUME directives in the contents of the segment registers, but such explicit
handling of common data also makes clearer what is accessing and thus altering
critical data. For example, a common data area containing text strings and
character constants need not be part of a numerical calculation routine, just as a
table of sine and cosine values is not needed by a terminal input routine.

Parameters should be passed on the stack as much as possible, reducing
the number of interroutine data accesses. Whenever multiple routines must ac
cess common data areas for parameter passing purposes, the likelihood of a mis
take increases.

Common data usually should be defined with DEFINE DATA directives
so that the contents of the area are static and not subject to accidental deletion if
a routine makes a mistake with Free Allocated Memory.

Using Segment Registers
The segment registers allow the programmer to restrict the range of possible
data references. By changing the base of the segment that contains the data, the
architecture of the machine automatically constrains the program to a 64K ac
cess window. If more sensitive data is located in the lower areas of memory, then
as the segment register is changed to point to a higher addressed block of mem
ory, the data in the lower area is totally protected against any unauthorized
aceess.

Controlling the Size of Data Access
The programmer may further constrain this window on the data by setting up
bounds-checking on array accesses. One of the most typical data errors occurs
when an array access runs across its boundaries. Whatever data happens to
border on the array is lost. Bounds-checking may be accomplished by a simple
macro as shown in Listing 2-14. For those programmers who are working with
an 80x86 processor, the BOUND instruction has been provided to accomplish
this checking. The bound macro shown in Listing 2-14 has been written for com
patibility with the BOUND instruction.

Listing 2-14. Checking Array Bounds with Macros

,, BOUND-Check the contents of the general register REG
,, against the two consecutive values located in memory at
,, address MEM32. This is a signed integer compare.
bound MACRO reg,mem32

LOCAL out_bound,in_bound
pus hf
cmp reg,word ptr mem32
jl out_bound

; save flags
; check lower limit
; index underflow

2 - Design and Implementation of Modular Programs

cmp reg,word ptr mem32 + 2 ; check upper limit
j le in._bound ; index is okay

out_bound:
po pf ; clean up stack
INT 5 ; ACTION TO BE TAKEN

in._bound:
po pf ; restore flags
ENDM

The bound macro compares the contents of a general register containing
the array index against two successive memory locations. The first memory lo
cation is assumed to contain the lower limit of the index, and the second memory
location is assumed to contain the upper limit of the index. The BOUND instruc
tion executes an interrupt type 5 (int 5) if the index tested is out of bounds.
Macro version users may modify bound to.take whatever action they desire.

Protecting the Integrity of the Stack
The other area that is susceptible to destruction is the stack. Because the stack
mixes code and data, an error here undoubtedly will result in total failure of the
program as the processor attempts to use data as an instruction reference.

The two most common ways to destroy the stack involve problems of faulty
alignment. One way is caused by mismatching PUSH and POP operations, and
the other is through attempting to POP data that was PUSHed on the other side
of a CALL or RET. These problems may be avoided only by paying close atten
tion to pairing the PUSHes and POPs used in a program and making sure that
such pairings do not cross routine boundaries. When reading source code, re
member that macros often contain PUSH and POP instructions that must be
taken into account.

In the case of parameter passing, the question of which routine clears the
stack arises. Normally the rule for such occasions is that the routine that pushed
the data gets to pop the data from the stack. If this rule is followed, the pro
grammer can verify that the stack is aligned by reading one routine's listing
rather than two. However, rigidly following this rule prevents use of the 8086's
RET N instruction. If the interface between two routines is fully debugged and
dependable, an acceptable risk is to use the RET N instruction.

Whenever a routine must be coded to accept a variable number of param
eters, the RET N instruction should not be used. There are various ways to get
around the limitation of being able to clear the stack only of a set number of vari
ables, but all of them involve tricky manipulations of the stack that are difficult
to understand and even more difficult to debug. If a routine must take a variable
number of parameters, the calling routine should clear those parameters from
the stack. In addition, the calling routine must clearly indicate to the called rou
tine the number of parameters that have been passed to it.

113

Coding and Programming

All operations performed on the stack, except PUSH and POP, should take
place rind er the umbrella of the stack pointer and use the BP register to access
the stack. What this means is that the stack pointer should be set to a value be
low the elements being manipulated. Should an interrupt take place, the data
being manipulated remains untouched. For the same reason, the stack pointer
should not be directly manipulated unless switching stacks or opening storage
on the stack. If an interrupt takes place at a time when the stack pointer is not
pointing at the true top of stack, data on the stack could be lost. What this all
adds up to is a warning not to use clever manipulations of the stack.

Summary

114

In this chapter, we have covered a variety of topics ranging from the theoretical
nature of structured programming to the details of MASM, MS-DOS, and 8086
family processor operation. We have tried to give you some alternative ap
proaches for your structured programming needs. Although it is most unlikely
that all or even most of these techniques will appear in your small assembly lan
guage programs, we think that many of them will find uses in your larger proj
ects. And if only one point is remembered, let it be this: think first, codf) later.

Most of the more practical points about MASM and MS-DOS restirface in
subsequent chapters. Try out the examples in our sample programs and get
comfortable with their use. You'll need many of them. Most particularly, our in
troduction to MS-DOS memory management forms the stepping stone for Chap
ter 3, "Program and Memory Management."

3 - Program and Memory Management

N the previous chapters we explored the tools for creating DOS programs
and the various ways in which DOS programs can be internally structured.

Now we will examine how MS-DOS programs exist within the MS-DOS environ-
ment. In the course of this examination, we will backtrack to more fully explain
some of the topics hinted at in the previous chapters: the program segment pre
fix, the working of MS-DOS's memory allocation, and the mechanism used to
load MS-DOS programs. Lastly, we will introduce the mechanism for installing
memory resident programs, a topic that is followed up in Chapter 4, which dis
cusses terminate and stay resident programs (TSRs).

MS-DOS Memory

The easiest way to understand the MS-DOS operating environment is to exam
ine the MS-DOS memory map, the pattern used by MS-DOS to allocate its lim
ited memory to all of its competing purposes. Although generic MS-DOS does
not dictate a particular memory map, the immense popularity of the IBM stan
dard, and its consequent adoption, provides us with a de facto memory map.

MS-DOS Physical Memory Map

MS-DOS was developed on the 8086/8088 central processing unit (CPU), which
can address a total of 1 megabyte of memory. The typical uses and locations of
this memory are shown in Figure 3-1. The first ten segments (64-Kbyte
"chunks") of this memory are referred to as the user area. This 640-Kbyte area
is where MS/PC-DOS itself and the user's application programs reside. The re
maining six segments, which total 384 Kbytes, are called the system area, and
are reserved for use by the ROM-BI OS, for the various device drivers contained
within the BIOS, and for communication with other boards in the system. Note
that Figure 3-1 simplifies the uses of the system area considerably. Actually,
there are many types of boards that use this area for many purposes, but we are
concerned only with the general layout.

117

Coding and Programming

118

ADDRESS

FFFFF

FOOOO

EOOOO

00000

coooo

BOOOO

AOOOO

90000

80000

70000

60000

50000

40000

30000

20000

10000

00000

MEMORY USE

System ROM

System Use

System Use

Disk Control

Video RAM

EGA Graphics

User

User

User

User

User

User

User

User

User

System Use

384K
(ROM or other)

640K
User
Area

ONE
MEGABYTE

Figure 3-1. IBM PC/XT/AT standard memory map for MS-DOS.

Expanded and Extended Memory
Since the introduction of MS-DOS, more powerful central processing units have
been developed. The 80286 and 80386 have each expanded the limits of address
able memory, allowing megabytes of memory to be placed in a single system.
What use, ifany, does MS-DOS make of this additional memory? None directly,
but in many cases this additional extended memory (because it "extends" above
the 1-megabyte boundary) can often be used as a RAM disk or, more commonly,
as another type of additional MS-DOS memory, called expanded memory (be
cause it "expands" on the basic 640-kilobyte limit of MS-DOS).

3 - Program and Memory Management

For MS-DOS versions 3.3 and earlier, expanded memory products are
available in three varieties. The first Expanded Memory Specification was de
veloped jointly by Lotus, Intel, and Microsoft, and is called LIM EMS version
3.2. Soon afterward, Ashton-Tate, Quadram, and AST developed an improved
standard, AQA EEMS (the Enhanced Expanded Memory Specification). Lotus,
Intel, and Microsoft incorporated the AQA EEMS improvements in LIM EMS
version 4.0. All EMS systems consist of memory (on the motherboard or on an
expansion card) and the Enhanced Memory Manager (EMM), an installable de
vice driver. MS-DOS interrupt 67h is reserved for the set of EMS functions.
MS-DOS versions 4.0 and above, as part of the operating system, support the
LIM EMS 4.0 standard. Hardware implementations vary between manufac
turers. The MS-DOS 4.0 EMS software consists of an installable device driver,
and, in fact, any EMS device driver and compatible hardware combination can
be substituted for those supplied with the operating system.

Expanded memory results from the introduction to the MS-DOS world of
the established tradition of using paged or bank-switched memory. In this pro
cess a large section of memory that lies outside the processor's address space is
"mapped" in small pieces into a much smaller section of memory that lies within
the processor's address space. While the processor cannot address the entire
large section of memory directly, it can select and reach any individual part,
much like selecting a page in a book.

Under the MS-DOS Expanded Memory Spec~fication, or EMS, the larger
physical memory is mapped into the MS-DOS memory space in 16-Kbyte sec
tions, called pages. The corresponding 16-Kbyte address space in the MS-DOS
memory space is called a page frame. The number of page frames supported,
and the locations of the page frames within the MS-DOS system, vary with the
type of expanded memory board used and the existing configuration of the
system.

Chapter 7 is dedicated to the topic of EMS memory, describing methods of
access, the EMS standard, and much more. For the purpose of our discussion,
we acknowledge the existence of EMS memory, but it does not greatly affect us.
We are concerned with how MS-DOS itself uses memory, and for us it is suffi
cient to note that EMS memory must be mapped into the standard memory ad
dress space in order to be accessible by MS-DOS. (There is speculation that
future versions of MS-DOS may utilize EMS memory directly, effectively break
ing through the 640-Kbyte boundary.)

MS-DOS Memory Utilization

By this time we have established that under the current de facto standard, MS
DOS has 640 kilobytes of memory to utilize for itself and the user's application
programs. In a typical MS-DOS system, this memory will be allocated as shown
in Figure 3-2. You should note that most of the addresses given in Figure 3-2 are
only approximate and depend on the version of MS-DOS, the physical configura
tion of the system, and the options specified by the user in the CONFIG.SYS
and AUTOEXEC.BAT files. In addition, the sizes of the segments given in

119

Coding and Programming

120

ADDRESS

AOOOO
or Top of
User Area

MEMORY USE

Transient
Program

Area

Resident Programs

COMMAND.COM

Device Drivers

DOS Buffers

10000 to 14000 1----------

DOS Kernel

08000 to OAOOO 1-----------
BIOS Interface

00040 1----------
Int Vectors

Usable
by

~c
User
Area

(640-Kby1e
maximum)

00000 ________ , ______ _

Figure 3-2. MS/PC-DOS user memory utilization.

Figure 3-2 are not to scale but are provided to give the relative position of the
various components.

Within Figure 3-2 there are a few areas that require further explanation.
First, note that COMMAND. COM appears twice in the memory map. Are there
two copies of COMMAND. COM loaded? No, it is rather that COMMAND. COM
is loaded in two separate pieces. The piece located just above the device drivers
is kept permanent in memory and is called the resident portion. This portion is
responsible for handling program termination and any user program errors that
result in program termination. This section is the parent program of any user
programs that are run. The other section of COMMAND.COM, located at the
top of memory, is the piece that provides the user's interface to DOS. This piece
is called the transient portion because it is present only when there are no user
programs running or when the user program is attempting to load another pro
gram. The transient portion processes MS-DOS's internal commands (DIR,
COPY, SET, etc.) and contains the program loader. It is used to load programs
either from the COMMAND.COM prompt (in response to external commands)
or upon request by the user program. Later in this chapter you will see how one
program can make use of this feature to load other programs or program
overlays.

The section of Figure 3-2 labeled "Resident Programs" refers to terminate
and stay resident programs, such as Borland's Sidekick. The memory location

3 - Program and Memory Management

shown in the figure applies to TSRs that are loaded from the AUTOEXEC.BAT
file, or directly upon system initialization. Chapter 4 covers TSR programs in
greater depth.

The "Device Drivers" section refers to installable device drivers, those
that are specified by the DEVICE= command in the CONFIG.SYS file. Install
able device drivers are the topic of Chapter 6. The default device drivers sup
plied with the system are located in the section labeled "BIOS Interface," where
they are used during the process of loading or "bootstrapping" the MS-DOS
system.

The "DOS Kernel" is the section of MS-DOS that processes the various
MS-DOS functions, such as the int 21h functions. It provides the bridge be
tween the user's program or COMMAND.COM and the various device drivers
and hardware.

The "int Vectors" section contains the system's 256 interrupt vectors.
The remaining area is the one that we are really interested in-the "Tran

sient Program Area," or TPA. (The name TPA dates back to the days ofCP/M,
the progenitor of MS-DOS.) It is within the TPA that the user's program is lo
cated and where the remainder of our attention will be focused.

In some ways Figure 3-2 is misleading. Not all of the elements shown in the
figure have their own memory block, and there are a number of elements that
are not shown that have their own discrete memory blocks. We will start by ex
amining the TPA in more detail, beginning with the method that MS-DOS uses
to organize its sections.

MS-DOS Memory Chains
MS-DOS's memory control begins when DOS is loaded. All MS-DOS memory
blocks, either free or allocated, begin with a memory control block, or MCB.
These control blocks, shown in Figure 3-3, identify the type and size of the mem
ory block, and the program (or process) that owns it.

The two types of memory control blocks are chained blocks, whose type is
4D hex, and the final block of the chain, whose type is 5A hex. The type is stored
in the first byte of the MCB.

The next two bytes in the MCB are a word that identifies the owner of the
memory block. A value of zero indicates that the block is unallocated, or free. If
the owner field is nonzero, indicating that the block is allocated, then this word
contains the process identifier, or PID, of the owner process. The PID for a user
process is normally taken from the segment address of the process's program
segment prefix, or PSP.

The fourth and fifth bytes in the MCB are a word that contains the size of
the memory block that follows. This size is expressed in paragraphs (16-byte
blocks), and does not include the size of the MCB itself. The remaining eleven
bytes of the MCB are undefined.

Although the complete list of memory control blocks is often referred to as
the memory allocation chain, the MCBs are not actually linked together, nor
does the MCB point to the allocated memory block. Rather, each MCB is di
rectly followed in memory by the block that it controls. If an MCB and its associ-

121

Coding andProgramming

122

ated memory block are not the last in the chain, then another MCB and memory
block directly follow.

Starting from a given MCB, the segment address of the next MCB in the
chain is located by adding the size (in paragraphs) of the current block to the
current MCB's segment address, plus one more. In this manner the entire chain
of MCBs may be traversed, but only in the forward direction. Starting from a
given MCB, it is impossible to determine the address of the preceding MCB.
How then can we find out which blocks are in memory?

ADDRESS TYPE OWNER SIZE

OAOO:O

Allocated Block Owned by MS-DOS

2001 :0 ~-,-----~------.------

40 2013 0010

2002:0 1---~--~---~------

Allocated Block/Owned by Process 2013

2012:0 1---,-------,------.------

40 2013 0500

2013:0

Allocated Block Owned by Process 2013

2513:0

SA 0000 7AEC

2514:0

Free Block Owned by MS-DOS
Contains Remainder of Memory to Top of Memory

9FFF:F ----------------

Figure 3-3. MS-DOS memory control blocks.

MS-DOS function 52h (int 21h) is an undocumented function that returns a
pointer to a list of DOS's internal values. The pointer is returned in the ES:BX
register pair. Just before this list, at the word pointed to by ES:[BX - 2], is the
segment address of the first MCB. From this starting point the entire MCB
chain may be determined.

These methods are used in the SHOWMEM program, shown in Listing
3-1. The listing contains both the SHOWMEM.ASM source file and the header
file PSP.INC (of which we'll see more). Figure 3-4 depicts a sample result from
the SHOWMEM program. Within SHOWMEM.ASM, the ShowMCBinfo rou
tine displays the contents of the MCB. The main procedure contains the code to
locate the initial block and, after the label show_mem, the arithmetic for finding
the next block in the chain. The additional code in ShowMCBOwner may not

3 - Program and Memory Management

make sense just yet. This code is used to display the name of the process that
owns that block of memory and is explained in subsequent sections.

There are a number of very interesting items that can be learned from
examining Figure 3-4. We can see that the author has loaded three memory
resident programs: RETRIEVE, MODE, and SWITCH. We can see that
SHOWMEM has a very large block of memory allocated to it: 555 kilobytes! And
we can see that every program that was loaded has two memory blocks allocated
to it. It is this last phenomenon that we will explain first.

SM-ShowMem, Version 1.00, ©Copyright 1988

MCB Size Owner Command Line

0A01
12D9
13AD
13B1
13E4
13E9
1493
14A3
14BB
14CC
14E5
14F7

<<<

08D7 0008 DOS
OOD3 12DA [SHELL J
0003 0000 [available]

0032 12DA [SHELL J
0004 13EA c:\bin\RETRIEVE.COM
00A9 13EA c:\bin\RETRIEVE.COM
OOOF 14A4 S:\MODE.COM
0017 14A4 S :\MODE. COM
0010 14CD c:\ws2000\SWITCH.COM
0018 14CD c :\ws2000\SWITCH. COM
0011 14F8 C:\GUIDE\EXAMPLES\SHOWMEM.EXE
8B08 14F8 C:\GUIDE\EXAMPLES\SHOWMEM.EXE

------------ End Of Memory Block List ------------

Figure 3-4. Sample display from SHOWMEM.

Listing 3-1. SHOWMEM MS-DOS Memory Block
Display Program

SHOWMEM.ASM

PAGE 60,132

>>>

; **** SHOWMEM **
; ShowMem - Display MS-DOS Linked Memory Control Blocks
; This file creates the program SM.EXE
;

; ***** INCLUDES & EQUATES **
;
INCLUDE stdmac.inc
INCLUDE psp. inc

continued

123

Coding and Programming

124

Listing 3-1. continued

;
BlocMCB EQU 4Dh ; type of chained MCB

; type of Last MCB LastMCB EQU 5Ah
FreeMCB EQU OOOOh ; owner of free MCB
;
NameSig EQU 0001h ; signature of process name
;

; **** DGROUP CDATA) COMPONENT SEGMENTS *****************************
;
_DATA SEGMENT BYTE PUBLIC 'DATA'
_DATA ENDS
;
STACK SEGMENT PARA STACK

dw 1024 dup C?) ; 2K stack
STACK ENDS
;
DGROUP GROUP _DATA, STACK
;

; **** DATA STORAGE & TEMPLATES *************************************
;
_DATA SEGMENT BYTE PUBLIC 'DATA'
;
; Text Messages for Display: Format as Follows:
;
; "MCB Size Owner Command Line"

; ''--''
; "xxxx xxxx xxxx cccccccc ••• "
; "<<< ------------ End of Memory Block List ------------ >>>"
;
$Title db

db
db
db
db
db
db
db

$Space db
$Free db
$DOS db
$Shell db
$MCBad db

db
db

CR,LF
'SM-ShowMem, Version 1.00, ©Copyright 1988'
CR,LF,CR,LF
'MCB Size Owner Command Line'
CR,LF

'--'
'----------------'
CR,LF,'$'

$'

'[available J$'
'DOS$'
'[SHELL J$'
CR,LF
'********** Error in MCB Chains Aborting List'
I **********'

3 - Program and Memory Management

$End db CR,LF
db '<<< ************ End of Memory Block List'
db ' ------------ >>>'

$Crlf db CR,LF,'$'
;
; Structure Templates
mcb STRUC ; memory control block structure

mcb
;

TypeMCB db ?
OwnerMCB dw ?
SizeMCB dw
ENDS

?

_DATA ENDS
;

; block type
; block owner
; block size

; **** PROGRAM CODE STARTS HERE *************************************
;
_TEXT SEGMENT byte public 'code'

ASSUME cs:_TEXT, ds:DGROUP, es:DGROUP, ss:DGROUP
;

EXT RN bin2hex:NEAR ; hexadecimal .di splay
main PROC FAR

mov ax,DGROUP ; set up data segment
mov ds,ax

;
; Display title for memory block list

;
; Find

;

@DisStr $Title

start of the memory block queue
mov ah,52h ; get DOS parameters
int 21h ; return pointer in ES:BX
sub bx,2 ; point to 1st MCB address
mov ax,word ptr es:[bxJ ; get starting block
mov es,ax
xor di ,di ; clear index
cmp byte ptr es:[diJ.TypeMCB,BlocMCB
jne bacLchain ; exit if not start

, ••• of chain

; Loop to find and display each memory block
show_mem:

call
cmp
je
mov
add
inc

ShowMCBinfo ; dump MCB contents
byte ptr es:[di].TypeMCB,LastMCB
done
ax,es
ax,es:[diJ.SizeMCB
ax

;
;
;
;

exit if end of chain
calculate next address
add block size
plus one for ourselves

continued

125

Coding and Programming

126

mov es,ax
cmp byte ptr
je show_mem
cmp byte ptr
je show_mem

;
bad_chain:

@DisStr $MCBad
@DisStr $Crlf
mov aL,1
@ExitToDOS

;
done: @DisStr $End

@DisStr $CrLf
mov aL,O
@ExitToDOS

;
main ENDP
;

Listing 3-1. continued

; start of new block
es:[diJ-TypeMCB,LastMCB

; continue if proper type
es:[di].TypeMCB,BlocMCB

; continue if proper type

; error in MCB "chains"
; terminating message

; terminate w/ error
; terminate program

; terminating message

; norma L terminate
; terminate program

; **** ShowMCBinfo **
; ShowMCBinfo displays the block addressed by ES:DI as an MS-DOS
; Memory Control Block. Format for the display is shown above.
;

ShowMCBinfo PROC NEAR
mov ch,04
mov ax,es
ca LL bin2hex
@DisStr $Space
mov ax,es:[diJ.SizeMCB
call bin2hex
@DisStr $Space
mov ax,es:[diJ.OwnerMCB
push ax
call bin2hex
@DisStr $Space
pop ax
cmp ax,FreeMCB
je is_ free
call ShowMCBOwner
jmp Info_Exi t

;
is_ free:

@DisStr $Free
Info_exi t:

; display numeric data
; MCB address

; associated block

; owner
; save owner

; is block free?
; yes, don't need name
; no, display owner

; note block as free

3 - Program and Memory Management

@DisStr $Crlf
ret

ShowMCBinfo ENDP
;

; **** ShowMCBOwner ***
; ShowMCBOwner extracts and displays a DOS MCB owner from an
; associated environment string. ES:DI points to a valid MCB,
; with a nonzero owner field.
;
ShowMCBOwner PROC NEAR

push es ; save MCB address
push di ; save for cleanup

;
; Obtain the PIO (PSP address) that owns this memory block

mov ax,es:[diJ.OwnerMCB ; get owner's PSP address
mov es,ax
cmp es:[diJ.PSPExitint,PSPSignature ; valid PSP?
je Owner_PIO ; yes, owner has PIO

;
; Without a PSP the owner must be the DOS kernel
Owner_DOS:

@OisStr $DOS
jmp Owner_Exit

;

; owner is MS-DOS
; a LL done

; Extract the process's Environment Segment from the PSP
Owner_PID:

mov ax,es:[diJ.PSPEnvironment ; yes, get envir. addr
push ax ; save environment seg.

;
; Get the Size of the Environment Segment

;

dee
mov
mov
shl
shl

ax
es,ax
cx,es:[diJ.SizeMCB
cx,1
cx,1

sh L ex, 1
shl cx,1

; environment MCB

; get size of environ.
; convert paragraphs
; ... to bytes

; Proceed to search for the process name at ES:DI, Length CX
; Each environment variable is terminated with a zero byte.
; The List of variables is terminated with aCnother) zero byte.

cld ; forward search
pop
xor

search:
repne

es
al,al

scasb

; restore environment
; search value

; search for ASCIIZ
continued

127

Coding and Programming

128

Listing 3-1. continued

jne Owner_DOS ; stop if overrun
scasb ; end of string list
jne search ; continue if more

;
; Check to see if a "Signature" preceeds the (possible> name

mov si,di ; transfer to SI
push ds ; save string seg
push es ; transfer ES to DS
pop ds
lodsw ; read word preceding
cmp al,NameSig ; check for real name
je show_ name ; valid name

;
; Without a real name, the owner must be the SHELL

pop ds
@DisStr $Shell
jmp Owner_Exit

;
; ES:DI points to a valid
show_name:

lodsb
cmp al,O
je Owner-POP
@DisChr al
loop show_ name

Owner_Pop:
pop ds

Owner_Exit:
pop di
pop es
ret

ShowMCBOwner ENDP
;

; ***** END OF PROGRAM
;
_TEXT ENDS

END main

co

; owner is shell

terminated) process name

; read Name char at a •••
;

;
;

time, checking •••
for end, and
displaying

END OF FILE ********************************

; PSP. INC

;**
; PSP DEFINITIONS INCLUDE FILE

;**
;

3 - Program and Memory Management

PSPSignature EQU 020cdh ; word begining all PSPs
;
ProgramSegmentPrefix STRUC
PSPExi tlnt dw ? ; int 20h exit interrupt
PSPMemTot dw ? ; top of memory
PSPResvr1 db ?
PSPDOSCall db 5 dup (?) ; call to MS-DOS
PSPTerminate dd ? ; terminate address
PSPControlC dd ? ; control-C address
PSPCritical dd ? ; critical error address
PSPParent dw ? ; parent PSP
PSPHandleTable db 20 dup (?) ; default handle table
PSPEnvironment dw ? ; environment address
PSPStack dd ? ; initial stack values
PSPHandleSize dw ? ; handle table size
PSPHandlePntr dd ? ; address of handle table
PSPResvr2 db 24 dup (?)
PSPDOSint db 3 dup (?) ; interrupt 21h & ret
PSPResvr3 db 9 dup (?)
PSPFCB1 db 16 dup (?) ; file control block
PSPFCB2 db 16 dup (?) ; file control block
PSPResvr4 db 4 dup (?)

PSPCommandlen db 1 ; length of command line
PSPCommandBuf db 127 dup (?) ; command line text
ProgramSegmentPrefix ENDS

The Program Environment Block
When MS-DOS loads a program, it always prefixes the program with an en
vironment block, stored in its own memory block. In Figure 3-4, this appears as
the first, smaller block that is associated with each program. The program's en
vironment block contains the program's personal copy of the MS-DOS environ
ment. The MS-DOS environment, in turn, is the area in MS-DOS where the
PATH, COMSPEC, and PROMPT settings are stored, along with any variables
assigned with the SET command. The generic form of an environment variable
is NAME=string. The format of an environment block is given in the example
shown in Figure 3-5.

From Figure 3-5 you can see that each entry in the environment block is
made of an ASCII string terminated with a zero byte. (This format has been
named ASCIIZ by Microsoft.) The entire list of entries is terminated with an
other zero byte, shown as the seventh entry in Figure 3-5. The entries preceding
this list-end marker are those that are displayed whenever you use the SET
command. But what of the two entries following the list-end marker?

An undocumented feature of MS-DOS versions 3 and later is that, when
ever a process is loaded by COMMAND.COM, either directly or in response to

129

Coding and Programming

130

LIB=c:\msc\lib

ECHO=OFF 0

\

PROMPT = pg

Figure 3-5. The environment block.

the EXEC function, the process's nameis placed in the process's environment
block. The last two entries in Figure 3-5, before the "Unused" portion, are this
undocumented process name. The process name is prefixed with the word 0001
hex. The name contains both the name and the path of the process, and is stored
in ASCIIZ format. From Figure 3-5 you can see that this environment block be
longs to the process SHOWMEM.

One item that Figure 3-5 does not give us is the total size of the environment
block. Unlike DOS's master environment, whose size can be controlled by param
eters set in CONFIG.SYS, the process's environment block is sized at program
load time to contain only the current valid portion of the environment.

Compare, in the sample SHOWMEM display of Figure 3-4, the 800-byte
size of DOS's environment (the second "SHELL" entry) to the environments of
RETRIEVE and SHOWMEM, at 64 and 272 bytes, respectively. Although DOS
had reserved 800 bytes, the environment contained less than 64 bytes when RE
TRIEVE was loaded towards the front of the AUTO EXEC.BAT file. After the
AUTOEXEC.BAT file had finished setting up the PATH, PROMPT, and
various other variables, the environment had grown by around 200 bytes.

There are two reasons why each process receives its own environment
block when it is created. One, this reduces the probability that a process will
corrupt its parent's environment-a crucial requirement if the parent process is
COMMAND.COM. Two, because the parent process has control over the en
vironment given to the child, this allows a parent process to control the behavior

3 - Program and Memory Management

of the child. We will return to this topic again when we confront the issues of
loading and executing programs.

We have also left unresolved the question of SHOWMEM's large memory
block. Keep that problem in mind, as we will return to it after a little more
groundwork has been laid.

MS-DOS Processes

We started this chapter with a description of how the entire memory space of a
system is mapped into sections for MS-DOS and for the BIOS and hardware sys
tem functions. We then saw how the section managed by MS-DOS is organized
into different areas, including the transient program area, or TPA. We have also
seen how the TPA is managed through use of the memory control blocks and how
each process consists of two memory blocks: an environment block and what we
will call a process block. We are now ready to expand our view of the process
block and examine the individual components that make up an MS-DOS process.

The MS-DOS Process Context
Figure 2-3 in Chapter 2 gave us one view of the internal layouts of MS-DOS pro
cesses for both an .EXE and a .COM type process. We can now combine that
with what we have just learned to produce a more detailed image of an MS-DOS
process in memory. This new view is shown in Figure 3-6.

There are many features illustrated by Figure 3-6 that we need to consider.
We'll start with the program segment prefix, or PSP. -

The Program Segment Prefix (PSP)
The program segment prefix, introduced in Chapter 2, is in some ways the key
stone of an MS-DOS process. The segment address of the PSP provides the pro
cess identifier and serves as the identifier for a process's memory block. Always
located at the start of a process block, the PSP also serves as the repository for a
large number of invaluable pieces of information.

The PSP is presented here in three forms: as a graphic representation in
Figure 3-7; as detailed definitions in Table 3-1; and as a MASM STRUC defini
tion in PSP. INC, appearing in Listing 3-1. The figure enables quick location, the
table provides in-depth information, and the listing provides offsets for use in
your programs.

A quick glance at Figure 3-7 and Table 3-1 reveals a wealth of information
that can be useful to the programmer. However, a little more explanation is re
quired for a few of the items.

The PSP Terminate Addresses
Table 3-1 shows three terminate addresses stored in bytes OA through 15 (hex)
of the PSP. As explained, these copies of the program terminate address, Con
trol-Break exit address, and critical error exit address are taken from the actual
interrupt vectors located in int 22h, int 23h, and int 24h. In order to affect the
behavior of the system during a terminate situation (such as trapping the

131

Coding and Programming

132

THE .COM PROCESS LOW MEMORY

Previous Block

Environment MCB

Environment Block

Process MCB

Process Block

Free MCB

Unused Memory

HIGH MEMORY

MEMORY Allocated/Owned by Process

THE .EXE PROCESS

COMMAND or
Previous Program

Available
for Use

Figure 3-6. The MS-DOS process context in memory.

Control-Break/Control-C exit), the programmer is required to alter the master
interrupt vectors. This can be accomplished using the Set Vector (code 25h) and
Get Vector (code 35h) functions to obtain and change these addresses.

The PSP's File Handle Table
Three of the "undocumented" entries in the program segment prefix deal with
file handles: the handle table address, the handle pointer, and the handle count.
These three are related, as you will see.

The handle table address contains a long pointer to a byte-wide table in
memory, the size of which is given by the handle count. Each byte entry in this

3 - Program and Memory Management

Table 3~1. Contents of the Program Segment Prefix

Offset Size
(hex) (hex) Contents

00 2

02 2

04 1

05 5

06 2

OA 4

OE 4

12 4

16 2

18 14

2C 2

2E 4

32 2

34 4

38 18

50 3

53 2

55 7

Int 20h. Contains an int 20h instruction (bytes CD 20 hex). Archaic
use. Programs should instead terminate using function 4Ch, int 21h.

Top of memory. Contains the address of the segment following the
program's memory. This can be either the address past DOS memory
(such as AOOO) or the address of the next available memory control
block.

Reserved.

Long call to MS-DOS function dispatcher. Contains a long jump to
the MS-DOS function dispatcher, for use with CP/M type programs.
Archaic use. Programs should instead call MS-DOS using int 21h.

Available Memory. The offset portion of the long call also contains the
number of bytes available in the program's code segment.

Program terminate address. A copy of the int 22h address (IP,CS), to
which control is transferred when the program terminates.

Control-Break exit address. A copy of the int 23h address (IP,CS), to
which control is transferred when Control-Break or Control-C is
entered.

Critical error exit address. A copy of the int 24h address (IP,CS), to
which control is transferred when a critical error is detected in
processing.

Parent program segment prefix. This is the segment address of the
parent process's program segment prefix. This is the current PSP
address for processes that have no parent.

File handle table. Contains 20 single-byte "handles" (indices) into the
system's file table. The first 5 are dedicated to STD IN, STDOUT,
STD ERR, AUXIO, and LSTOUT. See text for details.

Environment address. Segment address of the process's environment
block.

Stack switch storage. Used to store the process's stack segment and
pointer (SS:SP) when the process is operating on the MS-DOS stack.

Handle count. Maximum number of entries allowable in the file
handle table. The default value is 20.

Handle table address. Long pointer to the file handle table. Default
value is offset 18 (hex) in the current PSP.

Reserved.

Function dispatcher interrupt. Contains code for an int 21h to call the
MS-DOS function dispatcher, followed by afar RET.

Reserved.

File control block extension. Extension fields for file control block
#1. Archaic use. Programs should instead use file handles. Refer to
the MS-DOS manual for detailed information on FCBs.

continued

133

Coding and Programming

134

Table 3-1. continued

Offset Size
(hex) (hex) Contents

5C

6C

7C
80

80

81

10

10

4
80

1

7F

File control block number one. Contains unopened FCB #1. Use is
archaic and can result in possible destruction of FCB #2 and the
command line length. File name paths are not supported. Programs
should instead use file handles. Refer to the MS-DOS manual for
detailed information on FCBs.
File control block number two. Contains unopened FCB #2. Use is
archaic and can result in possible destruction of the command line
parameters. Programs should instead use file handles. Refer to the
MS-DOS manual for detailed information on FCBs.
Reserved.
Default disk transfer area. Overlays the command line text string
when used.
Command line length. Length of the text string that was typed
following the program name, minus any redirection characters or
parameters.
Command line buffer. Text string that was typed following the
program name. Redirection characters (< and >) and their associated
file names do not appear in this area, since redirection is transparent
to the application.

table is a handle that can be opened to a file or device. Once opened, the handles
store indices into the system file table. Unused entries in the table are marked
with the value OFF (hex). The first five handles in a file handle table are re
served for the STD IN, STDOUT, STD ERR, AUXIO, and LSTOUT devices,
and are already opened when the process is started. All indices are calculated
from an origin of zero.

Figure 3-8 shows the state of the default file handle table following a suc
cessful open to the file myfile. The default file handle table is a 20-byte table
located at offset 18 (hex) in the PSP. This address is stored in the handle table
address when a process is started. Because the first five handles are reserved
for standard devices, this leaves only fifteen handles available for files or other
devices.

In Figure 3-8 the value of the handle returned by the successful function
call to OPEN is 0005, which signifies that myfile was assigned the sixth entry in
the process's file handle table. The sixth entry in turn contains the value 03,
which means that myfile has been assigned the fourth entry in the system file
table. Figure 3-8 also demonstrates, using the first three handles, that multiple
handles may be assigned to the same entry in the system file table. The max
imum number of entries in the system file table is set by the FILES= statement
in the CONFIG.SYS file.

In most situations the user need never be aware of these arrangements,
but there are two situations where this knowledge becomes useful.

3 - Program and Memory Management

OAh
Terminate Address

12h
Critical Error Exit Address

18h
File Handle Table

File Handle Table (continued)

File Handle Table (end)

32h
Handle Count

Reserved Area (length 40 bytes)

FCB Extension (continued)

File Control Block # 1 (continued)

File Control Block #1

File Control Block #2 (continued)

File Control Block #2

80h 81 h

2Ch
Environment

34h
Handle Table Pointer

5Ch
File Control Block #1

6Ch
File Control Block #2

?Ch
Reserved Area

Length Command Buffer (127 bytes long)

OEh
Ctrl-Break Exit Address

16h
Parent's PSP

2Eh
Initial Stack Address

Figure 3-7. Structure of the PSP (program segment prefix).

One situation arises when the user's program requires more handles than
can be opened at a given time. Since the default file handle table supports only
twenty handles, and since five handles are already assigned, this may not be
such a far-fetched proposition. In order to overcome this restriction, the pro
gram must set up its own expanded file handle table, as the code fragment in
Listing 3-2 shows.

In the second situation, Listing 3-2 assumes that the location of the new
table is supplied to it, and it also assumes that the table has been preloaded with
OFFh, the code for an unused handle. The code first determines the location of
the PSP, using function 62h. From the PSP, the size and location of the existing
file handle table are found, and the old table is copied into the new table. The

135

Coding and Programming

136

34h Handle Table Pointer AX Handle
PS Segment:0018 (hex) OPEN=0005

STDOUT STDERR AUXIO LSTOUT myfile
01 01 00 02 03

System File Table

Figure 3-8. The PSP's file handle table.

new table's address and size are stored in the proper fields of the PSP, and the ex
change is complete.

Another feature made possible by this mechanism is that the programmer
now has control over redirection of the program's input and output. In MS-DOS,
redirection is accomplished by simply changing the handle associated with a par
ticular device. This method even works to redirect input and output performed
with the older, nonhandle input and output calls (such as function 09h, Display
String).

Listing 3-3 demonstrates how StdOut is redirected to the file or device my
file. The program first opens the name myfile and saves the handle. It then ob
tains the PSP's address, and from within the PSP it obtains the address of the
file handle table. Using myfile as an index into the file handle table, the pro
gram obtains myfile's system file table index and stores it in the index assigned
to StdOut, accomplishing the redirection. The remainder of the program re
verses the process and finishes by closing myfile's handle.

3 - Program and Memory Management

Listing 3-2. Code Fragment for Switching the File Handle Thble

; This Listing transfers the default Fi Le Handle Table to an
; area specified in ES:DI. The new table size is assumed in ex.
; MS-DOS version 3.xx is assumed (for "Get PSP Address").
; The AX and BX registers are destroyed.
;

;

push
push
push
push
mov
int
mov

ds
si
di
ex
ah,62h
21h
ds,bx

; save DS
; save SI
; save new table offset
; save new table size
; get program segment prefix
; returns PSP in BX
; address the PSP

; Obtain current table address and size
mov bx,032h ; address of table size
mov cx,[bxJ ; obtain table size
push ds ; save PSP address
Lds si,[bxJ2 ; obtain current table address

;
; Copy the old table from DS:SI to the new Location at ES:DI

;

cld
rep movsb

; forward direction move
; move table to new Location

; Restore new table Location and size and update PSP
pop ds ; restore PSP address
pop
pop
mov
mov
mov
pop
pop

ex
di
[bxJ2,di
[bxJ4,es
[bxJ,cx
si
ds

; restore new table size
; restore new table offset
; store new table offset
; store new table segment
; store new table size
; restore original SI
; restore original DS

Listing 3-3. Code Fragment for Redirecting StdOut to a File

; This Listing opens a handle to the file or device "myfile",
; and replaces the StdOut handle with the newly opened handle.
; Entry is assumed with DS and ES pointing to the data segment.
; The following data variables are assumed to be defined:

continued

137

Coding and Programming

138

Listing 3-3. continued

;
StdOut equ
Handle dw
Outhand db
MyFile db

; code for StdOUT handle
? ; new handle variable
? ; StdOut handle variable
'filename.ext',0

;
; Open a handle to the fi Le/device found in myfile.

Lea dx,MyFile ; name
mov al,2 ; read/write access
mov ah,03dh ; open function
int 21 h
jc OpenError
mov Handle,ax ; save handle

;
; Transfer the file/device handle to the StdOUT handle.

push es ; save ES
mov ah,62h ; get program segment prefix
int 21h
mov es,bx ; ES points to PSP
Les bx,es:[bxJ.PSPHandlePntr

;

; ES:BX now points to the Fi Le Handle Table

;

mov al,es:[bxJ.StdOut ; read StdOut handle
mov
mov
mov
mov

Outhand,al
di,Handle
al,es:[bx+diJ
es:[bxJ.StdOut,al

pop es

; . • • and save

; read handle.s index
; read handle.s entry
; store as StdOut handle

; Restore StdOut.s original handle
push es ; save ES
mov ah,62h ; get program segment prefix
int 21 h
mov es,bx ; ES points to PSP
Les bx,es:[bxJ.PSPHandlePntr

;
; ES:BX now points to the Fi Le Handle Table

;

mov
mov

al,Outhand
es:[bxJ.StdOut,al

pop es

; Close the redirected file

; read StdOut Handle
; store as StdOut handle

mov bx,Handle ; handle for file or device

3 - Program and Memory Management

mov
int

ah,03eh
21h

; close function

SHOWMEN and the PSP's Environment Address Pointer
Another of the useful values stored in the PSP is the segment address of the pro
cess's environment block. We are returning to this entry not because it requires
further explanation but because we are now in possession of all the information
necessary to understand the entire SHOWMEM program, including the Show
MC BOwner routine:

• Find the initial memory control block using int 52h.

• Use the owner field of an MCB as the address of a PSP.
• Verify the PSP by checking the first 2 bytes for an int 20h.

• If the MCB's owner is a PSP, extract the environment address. If the
owner is not a PSP, then the owner must be MS-DOS.

• Subtract one from the environment's segment address to get the
environment's MCB, and extract from it the environment's size.

• Search the environment for the double zero that signals the end of the
ASCIIZ strings.

• Check for the user process "signature" of 0001. If found, print the
following name. If not found, then the process must be COMMAND. COM
or equivalent shell.

• If the current MCB is not the last one, find the next MCB by adding the
block's size (plus one) to the MCB's address.

• Repeat from the second step.

The SHOWMEM program demonstrates the interrelationships that exist
within the DOS world and shows how we can move from memory control block to
program segment prefix, to environment block, and back to the environment's
MCB, gathering data as we progress.

Functions for Manipulating the PSP
MS-DOS contains a number of functions that directly relate to the program seg
ment prefix. These functions are listed in Table 3-2. For those functions that get
and set the PSP, the current PSP is determined by DOS, not by which program
segment is executing at the time.

For example, let us assume a program MYPROG is running when an in
stalled memory resident routine (TSR, if you will) receives control and issues
the Get PSP call (function 62h). In this case MS-DOS returns the PSP value for
the interrupted program MYPROG. This happens because once a memory resi
dent routine has executed a Keep Process or Terminate and Stay Resident func
tion it is no longer considered active. MS-DOS considers the last program
loaded to be the currently active program.

139

Coding and Programming

140

Ifit is important that a TSR have access to its own PSP, the undocumented
function Set PSP (function 50h) can be used. When the TSR is first loaded, it
must save the value of its PSP. Then, when the TSR receives control at a later
time, the interrupted program's PSP can be determined with function 62h, Get
PSP. This value should be saved, and the TSR's own PSP activated with function
50h, Set PSP. After the TSR is done executing, it should restore the original
PSP with the Set PSP function.

Table 3-2. Int 21h Functions for the Program
Segment Prefix

Function Purpose

26h Create PSP block. Archaic use.
50h Set current PSP. Undocumented. BX contains the segment address ofa

valid PSP. This function causes the new PSP (BX) to be made the MS-DOS
active PSP. Subsequent calls to DOS that reference PSP data, such as the
file handle table, will use the new PSP.

51h Get PSP segment. Undocumented. Returns the current PSP's segment
address in the BX register. This is the same as function 62h, but is also
available in versions of MS-DOS prior to 3. 00. Not safe to call from a TSR.
Recommended that function 62h be used instead.

55h Duplicate PSP. Undocumented. Functions almost identical to function 26h.
DX contains segment address of the new PSP. However, this function will also
set the parent PSP field of the new PSP to the segment address of the current
PSP. Since this is undocumented, and useful only when loading a new
program, it is recommended that function 4Bh, EXEC, be used instead.

62h Get current PSP. MS-DOS version 3.00 or later. Returns the current PSP's
segment address in the BX register.

The MS-DOS Process File: .EXE versus .COM
As you know, executable program files in MS-DOS come in two flavors, .COM
files and .EXE files. Figures 2-3 (in Chapter 2) and 3-6 have illustrated some of
the differences between these two formats. To MS-DOS, the differences appear
in other forms.

The .EXE type is actually the "native" mode file for MS-DOS. The MS
DOS system and language tools have been designed to work with this type .
. COM type files were originally provided for compatibility with CP/M pro
cesses, and the type just doesn't seem to die. Even under today's MS-DOS,
.COM type files are simply stripped down versions of .EXE files, with some of
the flexibility of the .EXE format replaced by .COM format default values. As a
result of this simplicity, .COM type files do load faster, but the speed differences
are trivial on modern machines.

When a process is being built, MASM does not know or care what type of
file is being assembled. During the link, LINK will detect that . COM format
files have no stack segment, but LINK will otherwise not complain. It is when
EXE2BIN is run to convert the .EXE type file into a .COM type file that the
differences begin to show up.

3 - Program and Memory Management

All object files produced by MASM and .EXE files made by LINK can con
tain segment relocatable references. These files contain tables that list where in
the program explicit references are made to a program or code segment by its
address. Because the segment addresses in a program will depend on where it is
loaded in memory, when an .EXE program is loaded, MS-DOS must somehow
update the locations in the program where these segment references are made,
changing the values to point to the current segment. This process is called re
locating. Before examining how relocation is performed, let's see how this pro
cess differs from the way a . COM type file is loaded.

When EXE2BIN converts an .EXE type file to a .COM type file, it scans
the .EXE file looking for these segment references. If it finds any explicit seg
ment references in the code, or an implicit reference to a segment other than the
base, it produces an error message stating that the file cannot be converted. In
addition, EXE2BIN checks to make sure that the code starts at address 100
(hex), relative to the base segment. If all these conditions are met, EXE2BIN
strips the file of all relocation information and produces a . COM file. The dif
ferences between these two program formats are summarized in Table 3-3.

Table 3-3. Differences between the .COM
and .EXE Formats

Attributes

Number of segments allowed
Segment references
Stack segment
Program code origin
Program size
PSP address found in
Initial allocation block

Loading a .COM Type File

.COM Type

ONLY ONE
NONE
NONE specified
ORGat lOOh
Less than 64K
All segment regs
All of memory

.EXE Type

Multiple segments
References allowed
Must be defined
No ORG required
May be any size
ES and DS registers
Can be sized

The initial steps taken in loading and executing a . COM type program file are
identical to those in loading an . EXE type program file. In setting up the pro
cess's "context," MS-DOS first initializes the environment block, taking the in
formation either from the current system environment (the default case) or
from an environment specified by the parent process.

Once the environment has been set up, MS-DOS allocates a memory block
for the program. For .COM type programs, this memory block occupies all of
remaining memory. The minimum size required is the size of the . COM program
file, plus space for the PSP. Once the memory block is obtained, MS-DOS pro
ceeds to build the program segment prefix for the program at the beginning of
the block. At this point the loading process used differs markedly from that used
with an .EXE type program.

The .COM file is read into memory directly above the PSP, at offset 0100
hex in the memory block, and without relocation. The segment registers are all
initialized to PSP's segment address, the instruction pointer is set to 0100 (hex),
and the stack pointer is set to OFFFE (hex), or lower ifthere is less that 64K of

141

Coding and Programming

142

memory available for the process. (The minimum stack pointer value is 0100 hex.)
Control is turned over to the process, and the . COM program begins running.

Some . COM programs have trouble operating with the minimum stack
provided by MS-DOS. If a program runs with a stack that's too small, it can re
sult in the stack growing downwards into the code or data sections of the pro
gram; this is almost surely fatal. If you have a. COM program that requires more
than the minimum stack of 256 bytes, you can build your own minimum stack
into the program's file image by reserving large amounts of space at the end of
your program. (Remember that MS-DOS will automatically add at least 256
bytes to your stack when it loads the .COM program.) That way, if there isn't
enough memory available for the stack needed, MS-DOS won't be able to load
the program.

The .EXE Program File Format
Unlike the .COM type program file, which contains only a program image, the
.EXE type program file must contain all the information necessary to relocate
the embedded segment references. Also, because an . EXE type program is not
constrained to have a particular stack or particular starting point, the .EXE
program file must contain the information for the loader to properly initialize,
the program.

An .EXE program file is made up of three sections: the .EXE file header,
the relocation map, and the program image. The .EXE file header is shown in
Table 3-4. Some entries in the header provide the initial state of the program
image. These are MinAlloc, MaxAlloc, and the initial SS:SP and CS:IP values.
Other entries, relocation entries and relocation table offset, allow the loader ac
cess to the process's relocation map.

Each entry in the relocation map allows the loader to resolve one segment
reference within the program image. Each entry consists of a long pointer (seg
ment and offset) to a segment reference within the load image. The pointer itself
is relative to the start of the program's load image. During relocation, the initial
segment references contained in the load image are updated to contain the ac
tual segment values. We will see this process in more detail1as soon as we cover
one more aspect of the .EXE program file: the initial allocation values.

Table 3-4. .EXE Type Program File Header

Off set
(hex) Contents

00 Signature . . EXE program file type marker: 4D5H (hex).
02 Remainder. Number of bytes in last page of file (the load image size modulus

512).
04 Pages. Number of 512-byte pages in the file, including the header.
06 Relocation entries. Number of entries in the relocation table.
08 Header size. Size of the header in 16-byte paragraphs.
OA MinAlloc. Minimum number of memory paragraphs required beyond the end

of the program.

3 - Program and Memory Management

OC MinAlloc. Maximum number of memory paragraphs required beyond the end
of the program.

OE Stack segment. Initial value for the stack segment (relative to the start of the
program load image).

10 Stack pointer. Initial value for the stack pointer.
12 Checksum. Two's complement checksum of the program file.
14 Instruction pointer. Initial value for the instruction pointer.
16 Code segment. Initial value for the code segment (relative to the start of the

program load image).
18 Relocation table offset. Relative byte offset from beginning of the program file

to the relocation table.
IA Overlay number. Number of the overlay generated by LINK.

The .EXE Initial Memory Allocation Block
The examples presented so far have taken for granted that when MS-DOS loads
a program into memory, all of remaining memory is allocated to that program.
This is what was shown by SHOWMEM in Figure 3-4: the last, and largest,
memory block was assigned to SHOWMEM. It was to overcome this phe
nomenon in Chapter 2 that the Modify Allocated Memory Block function (func
tion 4Ah) was used in the programs shown in Listings 2-12 and 2-13. But, we
have been hinting at other methods of obtaining free memory for .EXE type
programs. Figure 3-6 shows an .EXE program that has a large block of free
memory available, and the last entry of Table 3-3 says that an .EXE program's
initial allocation block can be sized. How is this accomplished?

The . EXE type file header contains two entries that control exactly how
much memory a program is given when it is loaded. These two entries are
MinAlloc, the minimum memory allocation (at offset OA hex), and MaxAlloc,
the maximum memory allocation size (at offset OC hex). MinAlloc tells the
loader how much memory (in 16-byte paragraphs) the program must have to be
run, i.e., how much memory the program actually uses. MaxAlloc, on the other
hand, tells the loader the number of memory paragraphs the program desires to
be allocated to it.

The DOS linker normally sets the MaxAlloc value to OFFFF hex, which
indicates that the program wants almost 1 megabyte of memory. Since DOS
doesn't have a megabyte, it does the next best thing: it gives the program all of
memory. However, if we were to set the value of MaxAlloc to MinAlloc, then
the program would get the memory it required, and the rest would be available.
There are two very simple ways to accomplish this.

Microsoft's languages, including MASM, come with a utility called
EXE MOD. This utility can be used both to display and to modify an .EXE pro
gram's header. Figure 3-9 shows how we would go about using EXEMOD to first
dump and then modify the MaxAlloc parameters.

You may be surprised to see that the example changes MaxAlloc to a 1, but
from looking at Figure 3-10 you can see that the modified SHOWMEM does in
deed run, and that the goal of freeing up memory has been accomplished. The
modified SHOWMEM's program image looks in memory just like the .EXE

143

Coding and Programming

144

C> exemod c:\guide\examples\showmem.exe

Microsoft® EXE File Header Utility Version 4.02
Copyright ©Microsoft Corp 1985-1987. All rights reserved.

c:\guide\examples\showmem.exe (hex) Cdec)

EXE size (bytes) CC5 3269
Minimum load size (bytes) AC5 2757
Overlay number 0 0
Initial CS: IP 0093:0000
Initial SS:SP 0013:0800 2048
Minimum allocation (para) 0 0
Maximum allocation (para) FFFF 65535
Header size (para) 20 32
Relocation table offset 1E 30
Relocation entries 1

C> exemod c:\guide\examples\showmem.exe /max

Maximum allocation (para) FFFF 65535

Figure 3-9. Using EXEMOD with .EXE program files.

program image in Figure 3-6, including the free block. You may also be sur
prised to see that the MinAlloc values are zero. If this is the case, then the
actual minimum allocation for the program will be the size of the program itself.
No additional space is allocated.

You could resize all of your . EXE programs this way, even to the extent of
adding EXE MOD to your build batch files. However, when building .EXE files
there is another way to control the MaxAlloc parameter-by using the LINK
switch "/CPARMAXALLOC:nnn" (which can be abbreviated as "/CP:nnn"),
where nnn is the MaxAlloc value in paragraphs. For example, SHOWMEM can
be built with a maximum allocation value of 1 by using the command:

C> link /cp:1 showmem,,,stdlib.lib;

The MS-DOS .EXE Process Loader
Knowing all of the pieces that go into the .EXE type program file, let us now
look at how the .EXE program is loaded and executed. As with the .COM type
program, the first step is to set up the process's context, beginning with the en
vironment block.

After the environment is established, from either the system or the parent
tables, the .EXE program file header is read into a work area. Using the
MinAlloc, MaxAlloc, and program image size (from pages and header size)
values, MS-DOS determines the size of the required memory block and allo-

3 - Program and Memory Management

SM-ShowMem, Version 1.00, ©Copyright 1988

MCB Size Owner Command Line

OA01 08D7
12D9 OOD3
13AD 0003
1381 0032
13E4 0004
13E9 00A9
1493 OOOF
14A3 0017
1488 0010
14CC 0018
14E5 0011
14F7 OOD1
15C9 8A36

0008
12DA
0000
12DA
13EA
13EA
14A4
14A4
14CD
14CD
14F8
14F8
0000

DOS
[SHELL J
[available J
[SHELL J
c :\bi n\RETRIEVE. COM
c:\bin\RETRIEVE.COM
$:\MODE.COM
S :\MODE. COM
c:\ws2000\SWITCH.COM
c :\ws2000\SWITCH. COM
C:\GUIDE\EXAMPLES\SHOWMEM.EXE
C:\GUIDE\EXAMPLES\SHOWMEM.EXE
[available J

<<< ------------ End Of Memory Block List ------------ >>>

Figure 3-10. Sample display from SHOWMEM, with MaxAlloc
set to MinAlloc.

cates it. If the MaxAlloc value is OFFFF hex, then all of memory will be
allocated.

Once the block has been allocated, the program segment prefix is created
at the start of the process block. The PSP for an .EXE type program is no dif
ferent than that ofa .COM type program. MS-DOS then reads the program im
age into memory directly above the PSP, reads the relocation table into a work
space, and proceeds to relocate the program image. Figure 3-11 shows how the
entries in the relocation map relate to the program image. All numbers and
arithmetic in the figure are in hex.

The first step in relocation is to calculate the starting segment address.
This is the address in real memory that corresponds to the starting address of
the program image in the file. In Figure 3-11 the process memory block was allo
cated at segment address 1000. The PSP occupies 100 bytes, or 10 segments.
The program's starting segment address in memory is then segment 1010:0000,
and this is where the loader will place the program's image.

Once the program image has been loaded, the loader must update, or relo
cate, every segment reference. When LINK first builds the program image, it
uses an assumed base segment ofOOOO. In actual fact, the program was loaded at
segment 1010, so every segment reference must have 1010 added to it. The
loader finds all these references by using the relocation map, which contains a
pointer to every segment reference in the program.

Figure 3-11 contains two references to segment values. Let us trace the
relocation process for the far call located at 0003:1234. The actual segment refer
ence is in the fourth and fifth bytes of this instruction, at address 0003:1237.

145

Coding and Programming

146

Add
Starting

Segment
Address
of 1010

0000:0000

0000:0010

0003:1234

0005:ABCD

0007:0000

.EXE TYPE
PROGRAM FILE

Program File
Header

Program Image

START

CALL 0005:ABCD

MOV AX,0007

Data Segment

Initial CS:IP = 0000:0010
Starting Segment = +1010
Actual Values = 1010:001 O

PROGRAM IMAGE
IN MEMORY

Program Segment
Prefix

Program Image

START

CALL 101 S:ABCD

MOVAX,1017

Data Segment

Figure 3-11. The relocation process for loading .EXE
type programs.

1000:0000

1010:0000

1010:0010

1013:1234

1015:ABCD

1017:0000

However, this address is relative to an imaginary base segment of zero, and not
to the actual program image in memory. To find the actual segment reference in
memory, the relocation map pointer itself must be updated by the starting seg
ment address. The actual segment reference is at address 1013:1237.

The words pointed to in memory are then incremented by the starting seg
ment address. The far call to segment 0005 now becomes afar call to segment
1015-the actual location of the routine.

After relocation has been completed, the process's ES and DS registers are
set to the segment address of the PSP, and the CS:IP and SS:SP registers are
initialized from the values given in the .EXE program file header. Both the CS
and the SS registers are incremented by the program image starting segment
address. For example, in Figure 3-11 the address of START, 0000:0010, is offset
by the actual starting segment address, 1010, to form the actual CS:IP values,
1010:0010, used in starting the program.

Overlays
Sooner or later you will write a program that is too large to fit into whatever
space you have for it. When this happens, one of the possibilities is to create

3 - Program and Memory Management

overlays. An overlay is a section of a program that does not need to be in mem
ory all the time. It is loaded into memory when it is needed; but, when it is not
needed, its memory space can be used by some other overlay. The remainder of
the program that cannot be placed in an overlay is called the root. All data must
go into the root, since data in an overlay is lost when the overlay is overlaid.
Overlays are, after all, read only.

Overlays are useful entities, and MS-DOS fully supports them. One of the
uses for the EXEC function is to load overlays. But before looking into that op
tion, you should note that the MS-DOS linker has the ability to create overlays
and an overlay manager automatically!

The rules for using MS-DOS's overlay manager are simple. The overlay
modules may not contain any global or static data, although constant data is al
lowed. The other rule is that the overlay can be called only by far calls, by either
the root or another overlay. The overlay can call the root via near calls.

The method for creating an overlay is very simple: when invoking the
LINK command, the object files that make up an overlay are enclosed in paren
theses. That's all there is to it. The following command line creates a program
file that uses three overlays.

C> Link root+ (init + read) + (work) + (save+ exit) , myprog;

This example uses one set ofroutines to read in some data and initialize the
program, another set to process the data, and yet another to save the processed
data and exit. Since none of these operations occurs simultaneously, each was
made into an overlay, and thus the hypothetical memory problem was avoided.

Memory Resident Programs

In typical use, MS-DOS is a single-task operating system. Only one program ex
ecutes in memory at one time. In fact, MS-DOS is capable of supporting multiple
programs in memory at any given time. Only one program is actually executing
at a time because the processor can execute instructions only one at a time, but
programs may be configured so as to give the appearance of executing simul
taneously. These multiple programs are created by having MS-DOS load a pro
gram into memory and then return control to MS-DOS without removing the
program from memory. Because the program doesn't leave memory when con
trol is returned to the operating system, the program is called memory resi
dent. The first step in the implementation of a memory resident program is the
installation of the program in memory. One of the simplest types of memory resi
dent programs is the run-time library, and we use that as our first example.

Defining a Run-Time Library

What is a run-time library? You know that libraries are collections of useful rou
tines that may be called from a program. Most libraries are link libraries in
which the desired routines are included in the program file (.EXE or .COM) at

147

Coding and Programming

148

link time. Because they are part of the program file, the linked library routines
are loaded with the program when the program file is loaded. An RTL (run-time
library) is not linked with a program but is included at execution time, also
called run-time. The RTL mµst already be in memory or it must be brought into
memory when needed, but an RTL is not part of the program file itself.

An RTL is not directly connected to a program, so how does the program
call it? The program must somehow signal either the operating system or an
RTL support process that the program has a request for the library. This signal
ing can take place via calls, traps, exceptions, or interrupts, depending on the
complexity of the hardware and operating system. In the MS-DOS/8086 en
vironment, the most convenient way is through interrupts.

Why use RTLs if they require the additional effort of loading, calling, etc.?
First, RTLs are often used to develop applications that have a large number of
programs sharing common routines or to provide a common resource to all users
of a particular language. By using RT Ls, the developers need store a copy of the
library only once instead of making sure that each program contains a copy. As
long as the interface between the programs and the RTL remains the same, the
routines in the RTL may be updated without modifying or relinking the pro
grams that call them. Thus, an RTL may be viewed as an extension'. of the oper
ating system because an RTL provides those facilities that the developers deem
necessary but that the system does not support. Second, RTLs have additional
benefits of reduced disk storage and faster program load time because the RTL
doesn't have to be loaded with each program.

Loading Memory Resident Routines from the Command Line
There are a variety of methods that may be used to load a program image in MS
DOS. The methods range from using MS-DOS to load a program from the com
mand line to the lower-level boot routines that transfer program code from abso
lute disk locations to fixed locations in memory. The easiest method to use is the
MS-DOS command line loader, which is simply a request to run a program.
Memory resident programs, such as RTLs, are loaded like any other program.
However, once a memory resident program has been loaded and after it runs
through its initialization sequence, the program terminates by using a special
exit: MS-DOS function code 31h (Keep Process) or interrupt vector 27h (Termi
nate But Stay Resident). The recommended procedure is to use function code
31h of int 21h, which is demonstrated in Listing 3-4.

Function code 31h has two parameters: an optional return code used to sig
nal the exit status and a required value indicating the size of the memory block,
in paragraphs, that remains allocated to the process. When the function is
called, MS-DOS reserves the requested amount of space, starting at the address
of the PSP (program segment prefix). This is almost exactly what happens when
the Modify Allocated Memory Block function is called with the PSP address and
desired size. In the case of the Keep Process function, MS-DOS knows that the
block to be resized has to start at the PSP address, so that parameter is not
needed.

3 - Program and Memory Management

Listing 3-4. Keep Process-Function Code 31h

; .COM Type Use

program segment
ORG 0

seg_org equ $

ORG 0100h
start:

mov dx,Coffset LasLbyte - seg_org + 15) shr 4
mov ah,31h ; keep process
int 21h ; call MS-DOS

LasLbyte:
program ends

end start

; • EXE Type Use

mov ax,es ; get PSP address
mov dx,seg encLaddr ; get Last segment address
sub dx,ax ; difference is program size
mov ah,31h ; keep process
int 21h ; ca LL MS-DOS

program ends
encLaddr segment
end_addr ends

end start

In Chapter 2 we presented a set of formulas for calculating the size of a pro
gram in paragraphs. Those formulas can be used with the Keep Process function
as well as with the Modify Allocated Memory Block function. When we use them
in memory resident programs, the proper equations appear as shown in Listing
3-4. Note that even though the Keep Process function doesn't require the PSP
address, .EXE type programs need to save the PSP address until the exit call.
These programs need to save the PSP address for the purpose of calculating the
size of the program.

Because space is reserved from the start of the PSP, memory resident rou
tines must not be loaded into the upper part of a memory block (by using MS-

149

Coding and Programming

150

LINK switch /high, for example). If the routine is loaded into high memory, that
routine is left unprotected when the memory resident routine terminates be
cause the block of memory saved is located at the start of the memory block. The
routine itself would be located above the reserved memory space. When rou
tines are thus unprotected, MS-DOS could load another program or the tran
sient part of COMMAND.COM in the same space, overwriting the memory
resident routine.

In any case, the MS-LINK switch /high affects only .EXE programs.
When converting a program to a . COM file, EXE2BIN removes the "load high"
marker. MS-DOS then loads the program at the beginning of the PSP.

The other method for installing memory resident programs, the Terminate
and Stay Resident interrupt, int 27h, is a holdover from earlier versions of MS
DOS. Int 27h has a number of disadvantages that make it a poor choice. Unlike
Keep Process, int 27h does require the memory block address (given by the PSP
address), and int 27h requires this address in the CS register. Only . COM type files
have the PSP address in the code segment register, making this function difficult to
use in .EXE type programs. (How do you change the CS and still execute code?) In
addition, the size parameter is specified in bytes rather than paragraphs, which
limits the size of program that can be saved to 64 Kbytes (the maximum size of a
.COM program). The only advantage to this function is that the offset of the last
address can be used as a parameter with no conversion as shown here:

mov
int

LasLbyte:
program

dx,offset Last_byte
27h

ends
end start

; get number of bytes
; terminate & stay resident

Microsoft recommends that this interrupt be converted to function code
31h for all new programs written and for all existing program upgrades. When
performing the conversion, remember to modify the size parameter from bytes
to paragraphs.

Accessing Memory Resident Routines via Int
If you were to run the program shown in Listing 3-4, you would install a memory
resident program on your system. Unfortunately, as this program now s~ands,
all it would do is take up space in memory. To turn this program into an RTL, we
need to give it a purpose, and we must make it available to other programs.

An RTL may contain any function and make any call to MS-DOS (for exam
ple, int 21h) as long as the library is called only by the currently executing pro
gram. This restriction is intended to prevent inadvertent reentering of
MS-DOS, which causes system failure. The next program, shown in Listing 3-5,

3 - Program and Memory Management

contains an example interface to an RTL that could support many separate func
tions, much like the MS-DOS int 21h handler.

As shown in Listing 3-5, this sample framework can be extended to sup
port math routines, table lookups, 110 conversions, or even a common area for
multiple programs, all by adding the necessary "personality" code. We have at
tempted to include some examples of the techniques outlined in Chapter 2, such
as stack parameters, error reporting, etc. If this routine is used to support a
large number of functions, you may wish to replace the case macro with a jump
table as demonstrated in the RDISK ram disk driver in Chapter 6.

The MACRO library referenced in the EXRTL program contains the case
macro introduced in Chapter 1 and the dis_chr (display character) and the
dis_str (display string) macros as presented in the MS-DOS Technical Refer
ence Manual. @DosCall is, of course, a macro for interrupt 21h.

Listing 3-5. Example Run-Time Library Installation

;====== RTL.ASM - This file produces a .COM file================
V_NUM EQU 40h ; this RTL uses vector 40 hex
;
INCLUDE STDMAC.INC ; include macro Library fi Le
;====== PROGRAM CODE SECTION ====================================
;
frame STRUC ; Layout caller's stack structure
old_bp dw ? ; pushed base pointer
re LIP dw ? ; return address (IP)
reLCS dw ? ; return address (CS)
flags dw ? ; caller's f Lags
fun ct dw ? ; function number to perform
frame ENDS
;
eode_seg SEGMENT

ASSUME cs:code_seg
ASSUME ds: code_seg

main PROC FAR
ORG 0

seg_org EQU $

ORG 2Ch
env_adr LABEL WORD ; offset of environment in PSP

ORG 0100h
start: jmp install
entry: push bp ; save base pointer

mov bp,sp ; get stack address
push ds ; save data segment
push ax ; save register

continued

151

Coding and Programming

152

Listing 3-5. continued

f1:

f2:
exit:

push bx
mov
mov
mov
sahf
clc
pus hf
mov
@Case
po pf
stc
pus hf

ax, cs
ds,ax
ax,[bpJ.flags

bx,[bpJ.funct
bl,<1,2>,<f1,f2>

jmp short exit
@DisStr f1msg
jmp short exit
@DisStr f2msg
pop
mov
pop
pop
pop
pop
iret

ax
[bpJ.flags,ax
bx
ax
ds
bp

main ENDP
;

; set up data segment

; transfer caller's flags to AX
; ••• and to my flags
; clear carry (no error>
; and save copy of flags
; get function code

; get copy of flags
; set carry - illegal function
; save copy of flags

; put flags back in stack
; ... through AX
; restore registers

; restore data segment
; restore base pointer
; return from interrupt

f1msg db
f2msg db
lsLbyt:

'Function# 1 performed',CR,LF,'$'
'Function# 2 performed',CR,LF,'$'

; Last byte to save
;
; This is the installation code. ALL code following this point
; is thrown away after installation is complete.
;
; See the section on "MEMORY MANAGEMENT TIDBITS" for an
; explanation of why the Environment Block is being removed.
;
; Remove Environment Block - DS points to current segment
; Set ES to point to Environment Block
;
install:

mov
mov

es,env_adr
ah,49h

; get address of environment
; free allocated memory

3 - Program and Memory Management

@DosCall ; call MS-DOS
jnc setvect ; branch if no error
@DisStr fail49 ; inform if was error
mov ah,4Ch ; terminate process
@Dos Ca LL ; abort on

;
; Set Vector - DS points to current segment
setvect:

error

mov dx,off set entry ; get RTL entry point
mov a l,V_NUM ; set vector number
mov ah,25h ; set vector
@DosCall ; call MS-DOS

;
; Terminate & Stay Resident

mov dx,(offset Lst_byt - seg_org + 15) shr 4
mov ah,31h ; keep process
@Dos Ca L l ; call MS-DOS

;
fail49 db
code_seg ENDS

END

'Fai Led to Free Environment Block',CR,LF,'$'

start

A peculiarity of the EX RTL routine is that no memory for a local stack is
provided when the Keep Process executes. This would be a fatal mistake were
EXRTL a program because the program stack would then be totally un
protected and subject to destruction. EXRTL, however, is not a stand-alone
program but is called by other programs, which do have local stacks. The
EXRTL routine performs all of its operations using the calling routine's
stack.

Once we have written the RTL, we must provide some means of accessing
it. Because it is impossible to determine in advance where MS-DOS will load the
procedure in memory, we cannot CALL the library directly from a program that
wishes to access it. The 8086 family provides one solution in the form of interrupt
vectors. By setting an interrupt vector to point to the address of the library, any
program that wishes may access the library by the use of the INT instruction.

The 8086 family supports 256 interrupt vectors, of which at least 64 (OOh
through 39h) are reserved for the use of the system hardware or MS-DOS. Table
3-5 contains a partial listing of interrupt vector use for Intel, IBM standard,
IBM BIOS, and MS-DOS. A variety of vendors have used other interrupts
throughout the remaining range. Usually, higher-numbered vectors are safe to
use, although only a test can tell. We have chosen to use vector 40h for our RTL
because the test system didn't crash when we tried it.

153

Coding and Programming

154

CAUTION

Some systems may use interrupt vectors other than those defined for MS-DOS.
Check your system's manual before using any of the vectors. Complete system
failure may result from altering a vector that is already in use.

Table 3-5. IBM Standard Interrupt Vectors, Processor,
Hardware, BIOS, and MS-DOS Interrupts

Interrupt
(hex)

Int 0
Int 1
Int 2
Int3
Int 4
Int 5

Int 6
Int 7
Int8/IRQ 0
Int 9/IRQ 1
Int A/IRQ 2
IntA/IRQ2
Int B /IRQ 3
Int C /IRQ 4
IntD/IRQ5
IntD/IRQ 5
Int E /IRQ 6
Int F /IRQ 7
Int 10
Int 11
Int 12
Int 13
Int 14
Int 15
Int 16
Int 17
Int 18
Int 19
Int lA
Int 1B
Int lC
Int lD-lF
Int 20
Int21
Int 22
Int 23
Int24
Int 25

Defined by

Intel
Intel
Intel
Intel
Intel
Intel
BIOS
Intel
Intel
IBM
IBM
IBM-XT
IBM-AT
IBM
IBM
IBM-XT
IBM-AT
IBM
IBM
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
BIOS
Intel
MS-DOS
MS-DOS
MS-DOS
MS-DOS
MS-DOS
MS-DOS

Used for

Divide-by-zero-error interrupt
Single step "trace" interrupt
Nonmaskable hardware interrupt
Breakpoint interrupt
Multiply overflow interrupt
80x86 BOUND exception
Print screen function
Undefined op-code exception
ESC op-code exception
System timer hardware
Keyboard hardware
Spare hardware request
IRQ8-IRQF
Serial port 2 hardware
Serial port 1 hardware
Fixed disk hardware
Parallel port 2
Disk controller hardware
Parallel port 1 hardware
Video and screen services
Read equipment list
Report memory size
Disk I/O service
Serial I/O services
Cassette and extended services
Keyboard I/O services
Printer I/O services
BASIC loader
Bootstrap loader
System timer and clock services
Keyboard Control-Break (from int 9)
User timer tick (from int 08)
Reserved
OLD program terminate function
MS-DOS function call
Program terminate address
Control-C exit address
Fatal error abort address
Absolute disk read function

Int 26
Int 27
Int 28
Int 29
Int2A
Int2B-2D
Int2E
Int2F
Int 30-3E
Int3F
Int4A
Int 67
*Int 70 /IRQ 8
*Int 71 /IRQ 9
*Int 72 /IRQ A
*Int 73 /IRQ B
*Int 74 /IRQ C
*Int 75 /IRQ D
*Int 76 /IRQ E
*Int 77 /IRQ F

*AT-type bus only

MS-DOS
MS-DOS
MS-DOS
MS-DOS
MS-DOS
MS-DOS
MS-DOS
MS-DOS
MS-DOS
MS-DOS
BIOS
EMS4.0
IBM
IBM
IBM
IBM
IBM
IBM
IBM
IBM

3 - Program and Memory Management

Absolute disk write function
Terminate & stay resident function
Keyboard busy/DOS idle (reserved)
Fast console output (reserved)
MS-NET interface (reserved)
Reserved for MS-DOS (IRET)
Execute command (reserved)
Printer control MS-DOS version 3
Reserved for MS-DOS
LINK overlay manager (reserved)
Real time clock (from int 70)
Expanded Memory Specification
Real time clock hardware
IRQ 2 hardware interrupt
Reserved hardware
Reserved hardware
Reserved hardware
Coprocessor hardware
Fixed disk hardware
Reserved hardware

Under MS-DOS, interrupt vectors may be set through the use of MS-DOS
function code 25h, Set Interrupt Vector. The installation operation is very sim
ple: the vector number is provided in the AL register, and the address to be
loaded into the vector is provided in the DS:DX register pair (segment:offset).
Because the DS register is set to the same value as the CS register in . COM pro
grams, the DS register's contents are already correct for the call. The remaining
registers are loaded, and the call is made with the following code:

mov dx,off set entry ; get RTL entry point
mov a l,v_num ; set vector number
mov ah,25h ; set interrupt vector
dos call ; call MS-DOS

Once the EXRTL routine has been installed in memory and its access in
terrupt vector installed in the interrupt vector table, the RTL is ready for use.
To call it, a routine uses the int 40h instruction, and control is transferred to the
EXRTL routine. The program RTL_ TEST, shown in Listing 3-6, is one example
of a routine that accesses this particular RTL.

The interface between EXRTL and RTL_TEST is all through the stack.
RTL_TEST pushes a function code on the stack and executes the int 40h in
struction. Note that the stack layout in RTL differs from that of a CALL inter
face in that the interrupt pushes the flags on the stack as well as the return
segment and offset.

The flow of control between. the two sections is illustrated in Figure 3-12.
The int 40h instruction transfers control through the interrupt vector table to
the EXRTL routine. The EXRTL routine then extracts the function code from
the stack, assisted by the stack structure definition frame. EXRTL

155

Coding and Programming

156

Listing 3-6. Exercise Program for RTL

·====== RTL TEST .ASM - This file , produces a .COM file ==========
V_NUM EQU 40h ; this RTL uses vector 40 hex
;
INCLUDE STDMAC. INC ; include macro Library file
;====== PROGRAM CODE SECTION ===================================
;
code_seg SEGMENT

ASSUME cs:code_seg
ASSUME ds: code_seg

main PROC FAR
ORG 0100h

start: mov cx,3 ; start at illegal value
Loop: push ex ; function code

int V_NUM ; ca LL RTL
pop ex ; clear return param
jnc nxt ; branch no error
@DisStr caserr ; show error

nxt: dee ex
jge Loop ; Loop through 0
mov ah,4Ch ; terminate process
@DosCall

;
caserr db 'Case Error - Illegal Function Code',CR,LF,'$'
main ENDP
code_seg ENDS

END start

analyzes the function code to check whether it is legal and, if it is, branches to
the proper function handler through use of the case macro. Once the function
has been performed, EXRTL returns control to RTL_ TEST with an IRET (Re
turn from Interrupt) instruction.

The stack structure frame also provides EXRTL access to the caller's
flags, which are stored on the stack by an int. By copying the flags from the
stack into its own flags register, EXRTL can change the value of the carry bit;
then, before exiting, it can copy the flags back into the stack (including the new
value of the carry flag). This operation allows EXRTL to use the carry flag to
signal error conditions to the calling routine, using the IRET instruction to re
store the flags from the stack.

The last point is that EXRTL may make full use of MS-DOS as control is
passed directly to it by a program. This isn't the case in some of the other mem
ory resident programs presented in following sections of this book. Those pro
grams receive control via hardware or MS-DOS interrupts.

3 - Program and Memory Management

Address

0000:0100 RTL IP& CS

8086 Family
Vector Table

·:;1J!ei,w!ii9FY'<"1---~Nwm ;·u;;;<'o"_iTP#;!·.'.!~:F~;'.

'<

Figure 3-12. Run-time library access.

Determining Whether a Memory Resident Program Is Installed
So far we have assumed that the RTL would be loaded into memory and then the
programs that use it would be started. In some circumstances, the RTL may al
ready be present in memory. Rather than loading two copies of the RTL, the
loader should first determine whether the RTL is loaded and then load it only
when it is not present. There are two ways to determine whether an RTL is
present, both of which depend on using a preassigned int vector to access the
RTL.

The first method involves reading the interrupt vector contents via func
tion code 35h, Get Interrupt Vector, to determine the starting address of the in
terrupt service routine. The next step is to place into the DS and SI registers
the starting address of the existing routine to be installed. A CMPS instruction
is executed for some number of bytes (in CX) to compare the two sections of
code. If a match results, the routine is already present. If the compare fails, the
routine hasn't been installed. The effectiveness of this method is greatly de
creased if all of your RTLs (or memory resident routines) begin with the same

157

Coding and Programming

158

sequence of instructions. Conversely, the effectiveness can be greatly increased
if all memory resident routines contain the header block shown in Listing 3-7,
which uniquely identifies each memory resident routine.

The second method for checking to see whether an RTL or memory resi
dent routine is present requires that all unused vectors (vectors 40h through
OFFh on most systems) be set to a known state. This known state can be either
high or low memory (0000:0000 or FFFF:FFFF) or the address of an IRET
instruction. In MS-DOS version 2.0 and higher, vector 28h seems to always
point to the location of the IRET instruction, although this is not guaranteed! A
more elegant solution is to install a pseudo-device driver to handle unsolicited
interrupts and to initialize all unused interrupt vectors to point to this routine.
(See Chapter 6 on installable device drivers.) This driver can then contain an
IRET instruction, report an error to the console, or do whatever else is desired.
By permanently allocating one vector to always point to the unsolicited inter
rupt handler (for example, vector 40h), an installation program can read and
compare that vector and the vector of the memory resident routine to see
whether the memory resident routine has yet been installed in memory.

Listing 3-7. In-Line Routine Identification

enter:

start:

jmp
db

start
'< routine name >'

< beginning of the code >

Removing Memory Resident Routines

; bypass the data area
; your routine's name goes here
; data area ••.

When a program is through using an RTL or when a memory resident routine is
no longer needed, you want to be able to recover the memory that was allocated
to that routine. The simplest way to remove a memory resident routine is to re
boot your system. This restores all the vectors that the system requires and re
turns all allocated memory to the system. However, this is a rather drastic step
and is best reserved for desperate situations.

Without rebooting, removal of the routine should take place in two steps:
(1) disable the routine and (2) recover the memory.

The first step is to reset to a null state the vector that points to the routine.
The null state indicates to any potential users that the routine is no longer avail
able. If you have patched the memory resident routine to a preexisting vector,
the vector must be restored so that it points to the original location. You can
write a program to restore the vector if the value of the old vector is stored
somewhere in the memory resident routine where the restore program can find
it. Programs INIT28 (Listing 3-12) and REMOVE (Listing 3-13) demonstrate
this process of saving the vector for later restoration.

If the memory resident routine is driven by its own hardware interrupt
(not patched), you must be sure to disable interrupts from that device before you

3 - Program and Memory Management

remove the memory resident routine. You can change the value of the vector in
the table or leave the vector as it is.

Once the memory resident or RTL routine has been disabled, step two is to
recover the memory. Memory is recovered from MS-DOS through the Free Allo
cated Memory function, function 49h. MS-DOS doesn't seem to care whether
you deallocate memory that doesn't really belong to the program, so if the start
ing address of the block of memory occupied by the memory resident routine can
be determined, the memory can be freed and recovered. The installed routine
can usually determine this address, so one option is to provide a function code to
call the routine and tell it to disable and remove itself. For routines that have
been installed through the use of the interrupt vectors, a second interrupt vec
tor may be allocated for the purpose of instructing the routine to remove itself.

If you know that the routine's interrupt vector segment address and the
routine's memory block segment address are the same, another method is to
write a program to read the vector, determine the memory block segment ad
dress from it, and instruct MS-DOS to free the memory.

For some reason, neither of these methods always works because MS-DOS
may not recover all of the memory. The problem seems to be internal to MS
DOS, so we can give you no advice at present for doing something about the
inconsistency.

REGISTERS

AX: 4BOO (hex)

BX: pointer to ASCllZ file name

DX: pointer to parameter block

Address
xxxx:OOOO

ENVIRONMENT

ASCllZ string 1
ASCllZ string 2

ASCllZ string N
zero byte

Command Line Text Butler

File Control Block 1 : load @ 5Ch

File Control Block 2: load @ 6Ch

Note: All DWORD pointers are stored as OFFSET followed by SEGMENT.

EXTRA SEGMENT

. . .
file/path name

zero byte

DATA SEGMENT

envir.seg. OR zero

DWORD: points text

DWORD: points FCB 1

DWORD: points FCB 2

Figure 3-13. Parameter block for function 4Bh
(AL= 0)-EXECUTE.

159

Coding and Programming

Function 4Bh-Load and Execute Program

160

Memory resident routines and RTLs often are initiated by a user entry or batch
file, but on occasion a program may need to load another program into memory,
either for use as a program overlay or as part of a memory resident routine in
stallation process. In either case, the original program is called the parent and
the other program is called the child.

MS-DOS provides for these occasions through the Load Program and Ex
ecute function, function code 4Bh. This function can operate in either of two
modes. The first mode, Execute Program, is designed to load a program file into
memory and execute that program. The child program runs without control
from the parent program. This mode is chosen by setting register AL equal to
zero and setting the appropriate parameters in the parameter block. The pa
rameters required for this operation are shown in Figure 3-13, and an example
ofloading and executing a program is contained in the LOAD program, shown in
Listing 3-8. The macro library referenced in LOAD is the same one that was
used for the EXRTL program (Listing 3-5).

Listing 3-8. Loading Programs with MS-DOS Function 4Bh
(AL= 0)

;====== LOAD.ASM - This file produces a .COM file==============
; LOAD has the ability to Load and execute another program.
; LOAD is invoked by typing:
; "LOAD <fi Le name> <program arguments>
; There must be only one space between the LOAD and fi Le name,
; and between the file name and arguments. The file name must
; include the extension.
;
NEWPROG EQU
NEWSTR EQU
NEWLEN EQU
;

82h
81h
80h

; addr of Load command Line in PSP
; addr of string in PSP (blank 20h)
; addr of command Line Length

INCLUDE STDMAC.INC ; include macro definitions
;====== PROGRAM SECTION ==
;
code_seg SEGMENT

ASSUME cs:code_seg
ASSUME ds: code_seg
ORG 0

SEG_ORG EQU $

ORG 0100h
main PROC FAR
start:

mov sp,offset TOP_STK ; set the top_oLstack
;

3 - Program and Memory Management

; Parse the command Line Looking for the end or a space.
; Convert the program name into an ASCIIZ string.

cmd_ok:

set_zb:

;

mov bx,O ; clear upper BX
mov bl,NEWLEN[bxJ ; get Length of command string
or bl,bl ; check Length of string
jnz
@DisStr
jmp

dee
mov
mov
mov
repne
pus hf
sub
po pf
jz

inc

mov
mov
cmp
j Le

cmc:Lok
bad_cmd
exit

bx
cx,bx
di,NEWPROG
a L,' '
scasb

bx,cx

seLzb

bx

; command Line error

; subtract 1 for Leading space
; copy Length into count
; search address (1st nonblank)
; search value (blank)
; search for file extension
; save results of search
; get remaining count
; •.. and get search results
; zero flag => params.
; (found space)
; not zero flag implies end of
; string
; convert command Line to ASCIIZ

byte ptr NEWSTR[bxJ,O
cmd_buf,cl
cl,O
free_mem

; set Length of parameter string
; check if end of string reached
; no command parameters

; Take the remainder of the Line and transfer it into the
; command Line text buffer for the called program.

inc cl ; transfer the CR also
mov si,di
mov di ,offset
rep movsb
add cmd_buf,1

;

;
cmc:Ltxt

;
;

transfer source index
; & set destination index
transfer remainder of Line
inc. Length for Leading space

; Free system memory for the Loader and the invoked program.
; Cut down allocation block to minimum necessary
f ree_mem:

mov bx,(offset
mov ah,04Ah
@Dos Ca LL
jnc modify_ok
push ax
@DisStr fail4A

jmp error

LST_BYT - SE6-0RG + 15) shr 4
; ES contains address of PSP
; modify allocated memory

; (push expected by error)
; error message & terminate
; ... if fail

continued

161

Coding and Programming

162

Listing 3-8. continued

;
; Set up the parameter block and register parameters for the
; Load & Execute Program Function call.
modi fy_ok:

mov ax, cs
mov p1,ax
mov p2,ax
mov p3,ax
mov dx,offset
mov bx,offset
mov spoint,sp
mov ax,4B00h
@DosCall

;

; set all parameter segments to
; this segment.

NEWPROG
para11Lblock

; save stack pointer
; Load & execute program func.

; Restore the Segment Registers and Stack Pointer after call

;

mov cx,cs ; duplicate CS into all segs.
mov
mov

ss,cx
sp,cs:spoint

mov ds,cx
mov
jnc

es,cx
exit

push ax
@DisStr fail4B

; stack restored first
; restore stack pointer

; exit program if all okay
; save error code
; display error if failed

; Parse the error code returned from the system and
; display the corresponding text message
error:

pop ax ; get back error code
@Case ax,+,2,7,8,9,10h,11h>,<em1,em2,em7,em8,em9,em10,em11>

mov dx,offset errO ; bad error code - no match
jmp merge

em1: mov dx,offset err1 ; invalid function
jmp merge

em2: mov dx,off set err2 ; file not found
jmp merge

em?: mov dx,of f set err? ; memory arena trashed
jmp merge

em8: mov dx,off set err8 ; not enough memory
jmp merge

em9: mov dx,off set err9 ; invalid memory block
jmp merge

em10: mov dx,offset err10 ; bad environment
jmp merge

em11: mov dx,offset err11 ; bad .EXE file format
jmp merge

3 - Program and Memory Management

merge: mov ah,09h ; display string
@DosCall

exit: mov ax,04C00h ; terminate when finished
@Dos Ca LL

main ENDP
;
bad_cmd db
fail4A db

db
fail4B db
errO db
err1 db
err2 db
err? db
err8 db
err9 db
err10 db
err11 db
;
spoint dw
param._block

dw

'Error in Command Line' ,CR,LF,'$'
'Failed to Modify Allocated Memory Blocks'
CR,LF,'$'
'Failed to Load Program Overlay',CR,LF,'$'
'>>>UNKNOWN ERROR CODE <<<',CR,LF,'$'
'>>>invalid function <<<',CR,LF,'$'
'>>>file not found <<<',CR,LF,'$'
'>>>memory arena trashed <<<',CR,LF,'$'
'>>>not enough memory <<<',CR,LF,'$'
'>>>invalid memory block <<<',CR,LF,'$'
'>>>bad environment <<<',CR,LF,'$'
'>>>bad .EXE file format <<<',CR,LF,'$'

?

Label word
0

; space for stack pointer

; use parent environment
dw offset cmcLbuf

p1

p2

dw
dw
dw
dw

p3 dw
cmd_buf db

db
cmcLtxt db
;

?

5Ch
?
6Ch
?
?

' '
80 dup C?)

; Local Stack Definition
EVEN
stack db 32 dup ('stack
TOP_STK EQU $-2
LSLBYT EQU $
;
code_seg ENDS

END start

; cmd. line segment
; FCB #1 segment & offset

; FCB #2 segment & off set

; Length of command string
; space always expected
; 80 characters

; word align the stack
') ; Loca L stack

; set top stack address
; Last byte in program

The second mode is called Load Overlay. Although it loads a program file,
Load Overlay does not invoke the program. Instead, control is immediately re
turned to the calling program. This mode is selected by setting register AL
equal to three, and its parameter block is shown in Figure 3-14.

In either mode of operation, before the Load and Execute Program func
tion may be executed, the initial allocation block of the calling program must be

163

Coding and Programming

164

REGISTERS

AX:4803(hex) ·-----LOAD OVERLAY Function

BX: pointer to ASCllZ file name

DX: pointer to parameter block

Address SYSTEM MEMORY
0000:0000 .-----------

System & Parent

xxxx:OOOO 1---------t•-"'-" ___ ,,-t
Program Code

EXTRA SEGMENT

file/path name
zero byte

DATA SEGMENT

LOAD Segment Address

RELOCATION Factor

Figure 3-14. Parameter block for function 4Bh (AL= 3)
LOAD OVERLAY.

reset to free up memory space. The reason is that MS-DOS loads programs by
using the COMMAND.COM program loader, which is not in the memory resi
dent part of COMMAND. COM. Instead, the program loader must itself be read
into memory from the disk before it can load a user's program or program over
lay. (This also implies that a disk containing the file COMMAND.COM must be
in the system for this function to work.)

There is an important difference between loading program overlays and
loading and executing programs. Program overlays are loaded under control of
the parent program, at an address determined by the parent program, and are
considered part of the parent program. Program files that are to be executed
(function 4Bh with register AL equal to 0) are loaded at an address of the sys
tem's choosing and are considered a separate program.

Loading and Executing Programs via MS-DOS (Code 4Bh
with AL= 0)

When using the Load and Execute function, MS-DOS requires not only enough
free memory to load the COMMAND.COM program loader but also enough free
memory to contain the new program. This memory is used to create an initial
allocation block for the new program also.

Remember that the initial allocation block of the parent program must be
set large enough to preserve the current program, or MS-DOS overwrites the
block when the new program is loaded. In addition, most of the memory resident

3 - Program and Memory Management

routines or RTLs are written in .COM format. For .COM programs, MS-DOS
sets the stack to start at the highest available memory address in the common
segment that is used for code, data, and the stack. Unless the top of the stack is
relocated downward in the segment, up to 64K of the parent program must be
preserved. If the stack is relocated downward, whatever was on the stack (such
as the return to MS-DOS) is lost. Of course, the return to MS-DOS on the stack
is not needed if you exit from your programs by using function code 4Ch.

Inheritance and Control of the Child Program

Even though the child program is autonomous, the parent program still has a
measure of control over the child's behavior. This control is accomplished
through inheritance, the ability of the parent process to affect how the child pro
cess interacts with the rest of the system.

From Figure 3-13 we can see that the parent process supplies the child
with a command line, an environment block (or the parent's block if a block is not
specified in the EXEC call), and file control blocks. In addition, when a process
is loaded, it automatically inherits the majority of its parent's program segment
prefix, including the parent's file handle table. By controlling these items, the
parent controls the three primary items that control a program: its command
line, its file handles, and its environment block.

There are some differences between the command line as it is passed to a
child process and as it is used at the system prompt. For one thing, it becomes
the responsibility of the parent process to set up any redirection, a task nor
mally handled by COMMAND.COM. Because a child process inherits the file
handles of its parent, a parent can easily redirect the I/O of its child. By chang
ing the values of handles stored in the parent's stdin or stdout devices, the par
ent will change what the child perceives as stdin, stdout, or any other valid
device. The parent can change these by using the techniques shown earlier in
Listing 3-3 (in the section on the PSP's file handle table) or by using the MS
DOS functions for manipulating files and devices. (MS-DOS function 46h, int
21h, Force a Duplicate of a Handle, is one method that may be used to override a
handle.)

Note that certain handles can be excluded from being inherited. When a
file or device is opened, an Open Mode must be specified (see MS-DOS function
3Dh, int 21h, Open File or Device). Bit 7 of the Open Mode is the inheritance bit.
When this bit is 0 (the default), the handle will be inherited by any child process.
If this bit is set to 1 during the open call, then the returned handle will be ex
empt from inheritance.

One other way exists in which the parent process can control the child's
view of the system. The first entry in the Load and Execute parameter block is a
pointer to the child's environment block. If the pointer in the Load and Execute
parameter block is a zero, the parent's environment is duplicated for the child. If
it is nonzero, the block that it points to is loaded as the child's environment.

What does this mean for you? You can write a program to search the en
vironment block for particular entries amd then use those values to establish

165

Coding and Programming

166

the program's run-time parameters. Entries may be inserted in the system en
vironment block with the SET command to control the actions of programs that
read and act on their environment block. Because the parent process can change
the block, the parent process can change the behavior of a child process that
reads the block.

An executing process can access its environment block through a pointer
stored at offset 2Ch in the PSP. The pointer is used as a segment address with an
offset of zero pointing to the start of the block. If this address is transferred to
the extra or data segment register, the program can do a string search to find
those parameters that the program requires. Be careful when you do this so that
you don't lose the PSP address.

The information contained in the PSP is equally valid for the . COM and
. EXE format files, and either type may be used with the Load and Execute Pro
gram function.

Executing MS-DOS Commands with Function 4Bh
One of the Load and Execute function applications is loading COM
MAND.COM. If you consider that COMMAND.COM may be given commands
through the command line text buffer, you can see that you can invoke built-in
MS-DOS commands from within a user's program. In addition, the command
line passed to COMMAND.COM may contain redirection, pipes, and filters.
The format of the command text used with this method is nearly the same as that
used on the initial command line, except that when invoking COMMAND.COM
from a program, the text must begin with le.

Loading two files (COMMAND.COM and the application program) to ex
ecute just one is not a terribly efficient way of running programs. However, the
flexibility and power gained by using this method are worth considering.

An Important Warning
The implementation of the Load and Execute Program function in version 2.0 of
MS-DOS has a serious bug. It causes the function to "trash" all the segment reg
isters (with the exception of the Code Segment), to destroy the stack pointer,
and to destroy the majority of the general registers. If this function is used with
any of the subversions of MS-DOS version 2.0 (that is, 2.00 or 2.10), you must
save the stack pointer and any needed general registers in memory before the
call; and you need to restore the segment registers, stack pointer, and needed
general registers after the call. The code sequence appearing in Listing 3-9
seems to do the job for .COM programs.

For . EXE files, you can recover the proper segment values from the values
established by LINK (for example, mov ss,stack) or from memory located
within the Code Segment. To protect the stack, remember to restore the stack
segment and stack pointer in that sequence, one right after the other.

Beginning with version 3. 0 of MS-DOS, this problem appears to have been
corrected. The Load and Execute function returns with all registers intact.

3 - Program and Memory Management

;

Listing 3-9. Recovering from the Load and Execute Program
Function in MS-DOS Versions 2.XX

< set up calling parameters>

mov spoint,sp ; save stack pointer in memory
mov ax,4B00h ; Load & execute program function
int 21h ; ca LL MS-DOS

Registers are unchanged if the Load fails--don't recover
jc error ; jump if error
mov ax,cs ; get common segment ...
mov ds,cx ; for data segment ...
mov es,cx ; for extra segment ...
mov ss,ax ; and for stack segment
mov sp,spoint ; stack is now realigned

< recover general registers >

Loading Progrom Overlays via MS-DOS (Code 4Bh with AL = 3)

The ability to execute one program from within another is indeed powerful but
has the disadvantage of having the invoked program run once and then termi
nate. On many occasions, the developer wants to invoke another program to per
form some sort of function but in addition wants greater control of the child
program or a higher degree of communication with the child, or the developer
just wants to be able to call the child program repeatedly without having it re
loaded each time. For these circumstances, MS-DOS provides the Load Overlay
option for function 4Bh.

One difference between the Load and Execute function and the Load Over
lay function is that when loading overlays, the parent program has no means to
modify the parameters of the child program. This is because the parent and child
are really part of the same program. All that the Load Overlay function accom
plishes is to load additional program code (and/or program data) into memory.

Another way in which Load Overlay differs from Load and Execute is that
Load Overlay does not require a memory block of its own. It is not given an en
vironment or initial allocation block, as with the Load and Execute Program
function. Load Overlay simply loads the requested file in memory, relocating
the program's segment values based on the parameters that are provided in the
Load Overlay function call (as shown in Figure 3-14). The resulting code may be
run as a subroutine but should not be executed as a separate program.

167

Coding andProgramming

168

If the overlay terminates through one of the MS-DOS Terminate Program
functions, both the overlay and the parent program are terminated. If either
function 31h or interrupt 27h (Terminate and Stay Resident) are used to exit,
the initial allocation block of the parent routine is modified and the parent pro
gram stays in memory. The child stays resident only if the requested memory
block is large enough to cover both parent and child. If one of the other Termi
nate Program functions is executed, both programs are removed from memory.

Figure 3-14 shows that the relocation factor specified as part of the Load
Overlay function does nothing to affect the load address of the overlay. Instead,
the relocation factor is used to modify offset references within the code being
loaded. If the overlay to be loaded is in .COM format, the relocation factor has no
effect on the loaded overlay and should be set to 0.

For .EXE files, the relocation factor is added to the values of the segment
references that appear in the load file. When loading most . EXE format over
lays (which usually default to origin 0000:0000), the relocation factor should be
set to the same value as the load address.

Accessing Program Overlays from the Parent Program
Once the program overlay has been loaded, the parent program must access it.
Because the parent knows the address at which the overlay was loaded, it can
either CALL the overlay or JMP to it. Calling is recommended for the reason
that the overlay may then return to the parent by using the RET instruction
rather than having to know the return address to JMP to in the parent. If control
doesn't need to be returned to the parent program, a JMP is recommended. The
overlay then contains the Terminate Program function call.

All accesses, by either CALL or JMP, to the overlay must be far refer
ences. The code that has been loaded in the overlay is relative to its own segment
address and may not be run in the same segment as the parent routine (although
it can be loaded into the same memory space). In addition, no PSP is built by the
Load Overlay function. Because there is no additional information placed in
memory by the loader, the code and data are loaded from the overlay file begin
ning at the exact load address specified.

Let's consider the simplest case: overlays that are loaded from .COM for
mat files. All .COM files have origins of 100 hex. That is, their code starts at
address 100 hex relative to their segment. All references contained in the pro
gram are relative to that address. Because the .COM file is loaded right on the
load address, you would be incorrect to use the load address as the segment
value for the overlay. Figure 3-15 shows that if the load address is used as the
segment, the offset values in the code are misplaced by 100 hex. The correct pro
gram segment address to use is the load address minus 10 (hex), which trans
lates the code offsets by 100 hex.

A different problem exists for .EXE format programs. When an .EXE file
is loaded for execution, MS-DOS initializes the Code Segment and Stack Seg
ment to point to the proper segments and the Instruction Pointer to point to the
first instruction of the program. When an .EXE file is loaded as an overlay, MS
DOS doesn't provide these values. How then does the parent program know
where to enter the program?

LOAD ADDRESS
Segment: CS_LOAD

3 - Program and Memory Management

Low Memory

t
100 hex

i
Overlay Code

Overlay Data

High Memory

SEGMENT ADDRESS
OF OVERLAY

Segment: CS_RUN
CS_LOAD: 10 (hex)

MEMORY ADDRESSES
CS_LOAD: 0000 (hex)
CS_RUN: 0100 (hex)

Figure 3-15. Relationship of segment and load addresses for
.COM format overlays.

Because . EXE files usually have an origin of zero, couldn't we just call or
jump to the load address? That would depend on how the program was written.
For .EXE files created from a single source file, LINK and MS-DOS load the
segments in memory in the same order in which they appear in the source pro
gram! A common order for defining segments is stack segment, then data seg
ment, then code segment. (The reason is to minimize forward references in the
code segment.) For an . EXE program to be callable at its load address, the code
segment must be the first segment in the .ASM file, and the entry point must be
the first instruction in the code segment. MASM and LINK have no problems
handling this, although in some cases you may need to use override directives to
resolve forward references for MASM.

Listing 3-10 shows how the load and call sequence could appear when using
the Load Overlay function for a .COM file. The sequence for an .EXE type pro
gram is simpler. No translation from load address to run address is needed. We
have assumed that all segment registers in the parent program are already ini
tialized and that Modify Allocated Memory has already been called to free
enough memory for the COMMAND.COM loader. The sample program allo
cates the memory that is to contain the overlay code. This reserves that area of
memory so that if the overlay also allocates memory, a virgin area is provided.
Otherwise, the overlay could allocate the memory that it already occupies and
overwrite itself. The actual space reserved can be adjusted for the true size of
the overlay.

The overlay may be changed as often as necessary for the execution of the
program. The only warning that applies to all uses of the Load Overlay function

169

Coding and Programming

170

Listing 3-10. Loading and Accessing a .COM Program with
MS-DOS Function 4Bh (AL = 3)

; Allocate memory for Overlay
mov ah,48h
mov bx,1000h
int 21h
jc error
mov params,ax

; Load over Lay
mov
mov
mov
int
jc

dx,off set
bx,offset
ax,4B03h
21h
error

ax,params
ax,10h
run_seg,ax
ds

pa rams
filename

; Call overlay
mov
sub
mov
push
ca LL dword ptr run_adr

; allocate memory function
; assume 64K segment for now
; call MS-DOS
; branch if error occurred
; save memory address

; access parameter block
; access ASCIIZ file name
; Load overlay function
; call MS-DOS
; branch if error occurred

; get Load address
; translate to run address
; and save it
; save data segment
; call overlay

; Free memory that was used for overlay
pop ds ; restore data segment
mov
mov
int
jc

params dw
dw

run_adr dw
run_seg dw

ah,49h
es,params
21h
error

?
0
0100h
?

; free memory function
; get memory block address
; call MS-DOS
; branch if error occurred

; Load address
; relocation value
; new instruction pointer
; new code segment value

is that MS-DOS does nothing to prevent you from loading the overlay on top of
the currently executing program or anywhere else in memory, including the
system itself! Although someone might find such a trick useful, it is definitely
not recommended procedure, and care should be taken to prevent its inadver
tent occurrence.

Loading Memory Resident Programs
Memory resident routines and RTLs to be installed from another program are
best loaded through the Load and Execute Program function so that the new

3 - Program and Memory Management

routine has its own memory block. In these cases, the calling program (the par
ent) receives control after the memory resident program's initialization section
executes its Terminate and Stay Resident request.

If a stand-alone memory resident routine was loaded, the parent program
terminates, leaving the memory resident program in place. This breaks up
memory free space, but there is no risk of MS-DOS loading a subsequent pro
gram over the memory resident routine. If an RTL were loaded, the parent pro
gram would be ready to call the RTL as needed. When the parent routine
terminates, it has the option of leaving the RTL in memory for subsequent use
or ofremoving it by resetting its interrupt vector and freeing its memory block.

Because the Load and Execute Program function does not inform the call
ing routine of the load address of the memory resident routine and because that
address cannot be passed back to the parent in the single byte reserved for the
program's exit code (see Terminate and Stay Resident, function 31h), the parent
routine must resort to the tactics discussed in preceding text to determine the
location of the memory block to be removed.

A Special Case: Part-Time Run-Time Libraries
One of the many features that can be implemented with the functions presented
is a part-time run-time library. Part-time RTLs are resident only when required
and the rest of the time reside on disk. A part-time RTL is implemented by in
stalling the header part of an RTL exactly as described in this chapter. However,
this header contains none of the code for executing the library functions; that is, it
doesn't contain the library routines themselves, which are left on disk in another
file. Flowchart 3-1 shows the sequence of events in the life of a part-time RTL.

When one of the routines in the library is accessed (via an int), the header
portion of the routine loads the library file into memory using function code 4Bh
with AL = 3 (Load Overlay) and locks it into its own memory. The desired li
brary routine is then called to execute the requested function. Either the
header or the individual library routines can contain the IRET to return to the
caller. From this point on, all subsequent calls access the library without having
to wait for the load because the RTL stays resident in memory.

When the main program terminates or requires the RTL's space, it signals
the RTL entry point with a code to release the memory allocated to the RTL.
Because the header portion specified the load address of the library routines
when it loaded them and because the memory block they occupy is "owned" by
the header, freeing the memory is no problem. After this is accomplished, the
header goes back into hibernation and waits for the next call.

Context Switching and Switching Stacks

Because so many of the topics that have been discussed in this chapter relate to
operations between separate programs with separate stacks, the process of
switching deserves some attention. Stack switching, or changing from one stack
to another, is part of a broader topic called context switching.

171

Coding and Programming

172

Flowchart 3-1. Part-time RTL load sequence.

Load
Header

Receive
Request

Execute
Function

YES

NO

Free
Allocated
Memory

Allocate
Memory

Load RTL

If you view the segments in which a program executes as its context, you
can see that in many instances you need to change the entire context of a pro
gram. Examples of such instances are when invoking memory resident routines,
calling RTLs, and using some types of overlays or co-routines. (A co-routine is a
sort of special overlay where there is no parent-child relationship.) In these
cases, when one routine receives control, it wishes to set up its own data, extra,
and stack segments for execution. At the time that it receives control from the
other program, the only thing that is known for sure is that its code segment and
instruction pointer are set to the proper values. Refer to Listing 3-9. We had to
reset the program context after calling the Load and Execute Program func
tion, and this listing shows one way to establish a context for a program. The
example in Listing 3-9 unfortunately does not preserve the context of the pre
vious program but simply overwrites it.

When you need to save the entire register set on receipt of control, the
easiest way is to set up the new program's stack first and then proceed to stack

3 - Program and Memory Management

the other registers. Because the values of the stack segment and stack pointer
cannot be saved on the caller's stack (there would be no way to retrieve them)
and because they cannot be saved on the new stack (which hasn't been set up
yet), the stack's parameters must be saved in memory. If you can stand mixing
code and data in the same segment just this once, the sequence shown in Listing
3-11 can be used to store the old stack segment and pointer and set up the new
stack segment and pointer.

Listing 3-11. Stack Switching for an .EXE Program

enter: mov cs:olcLstlL.seg,ss ; save old stack values
mov cs:olcLstlL.ptr,sp
mov ss,cs:new_stl<-.seg ; Load new stack values
mov sp,cs:new_stl<-.ptr
push ds ; stack segment registers
push es
push ax ; start stacking general regs.

push bp
push si
push di

body: < body of the program > ; your code goes here

pop di ; start recovering general
pop si
pop bp

pop ax
pop es ; recover segment registers
mov ss,cs:olcLstlL.seg ; restore old stack values
mov sp,cs:olcLstlL.ptr
jmp exit ; bypass data storage

;
olcLstlL.seg dw ? ; caller's stack segment
olcLstlL.ptr dw ? ; caller's stack pointer
new_stk__seg dw segment stack ; this routine's stack segment
new_stl<-.ptr dw top_oLstack ; this routine's stack pointer
exit: ; exit position

ret ; return to calling program

The code in Listing 3-11 depends on having the values for the stack seg
ment and stack pointer already located in memory. This could be accomplished
for a memory resident or run-time routine by the initialization process. For an

1'13

Coding and Programming

174

.EXE program, MS-DOS places the proper values in memory during the reloca
tion process.

Because . COM routines cannot contain segment values, these routines re
quire another method for switching stacks. Embedding the value for the top of
stacks in memory causes no problem, except with determining the starting seg
ment address. Because. COM routines share the same segment for all purposes,
the stack segment value may be obtained from the code segment register. Un
fortunately, the 8086 family does not support moves from segment register to
segment register, so the value must be passed indirectly. Because none of the
registers have been saved as yet, the value is passed through memory using the code
segment. To implement this modification, start the routine with the instruction:

mov cs:new_stk._seg,cs ; get new stack segment

If you intend doing a fair amount of stack switching in your programs, you
can set up two macros to include the necessary code. The first macro includes
the code from enter to body, and the second macro contains the code from body
to exit. Both macros must agree on the names of the stack variables in the data
area, and the second macro must accept the label top_of _stack as a parameter to
include in the dw statement for new_stk_ptr. The RET instruction should not be
part of the macros. This allows them to be used with JMP and IRET exits as well
as RET exits.

For .EXE files, the second macro must also accept the name of the stack
segment as a parameter. Listing 3-12 (INIT28), found later in this chapter, con
tains an example in a . COM format of the two macros just described.

Additional Considerations for Stack Switching
When swapping stacks or otherwise manipulating the stack segment, the pro
gram is vulnerable to interrupts. Should an interrupt occur when the t>tack seg
ment but not the stack pointer has been changed, the system could very well
crash. In the 8086 family, this is prevented by changing the stack pointer imme
diately following the instruction that loaded the stack segment. When an 8086
family processor loads a segment register (through either a MOV or POP in
struction), interrupts are prevented from occurring until after the next instruc
tion executes. This feature allows both the stack segment and the stack pointer
registers to be safely updated. This also explains why DEBUG appears to skip
one instruction when tracing a MOV to a segment register. DEBUG single
steps the program by setting the trap flag, which generates a type #1 interrupt
following most instructions. Because interrupts are disabled following a MOV to
a segment register, DEBUG does not regain control until two instructions fol
lowing the MOV.

In any case, you don't always have to go to the lengths demonstrated in
Listing 3-11. Many times some registers may be pushed onto the caller's stack,
allowing the registers to be used in the program or at least to transfer new

3 - Program and Memory Management

values into the stack register. The individual programmer must decide how
much of the current context should be saved in a particular program.

If context switching is used with co-routines, each routine ends up saving
the other routine's context. Although this is redundant, because only one rou
tine needs to save the other's context, it is not really harmful. Co-routines that
use this structure should exit only via function code 4Ch, Terminate Program,
so that MS-DOS correctly terminates the program regardless of the state of the
stack.

If parameters are to be passed from one program to another and each pro
gram maintains its own stack, the BP register cannot be used to access param
eters on the stack. Instead the programmer needs to extract the caller's stack
segment value and move it into either the DS or ES segment registers and per
form the memory access relative to that register. The parameters may then be
read from the caller's stack even though the called routine is using its own stack.

Underpinnings for Memory Residency

In some ways, MS-DOS itself is implemented as a memory resident program.
Look back at Figure 3-15 to see the memory layout for a typical MS-DOS system
that is running version 2.0 or higher. (Note that this does not necessarily apply
to versions higher than 3.1.) All of these parts, with the exception of a transient
piece of COMMAND.COM, are resident in memory at all times. User programs
access MS-DOS through interrupts or jumps to interrupts, just as we did for our
memory resident routines.

Certain parts of this system are common to all MS-DOS systems and are
compatible even among systems of different version numbers. Other parts of the
system are unique to the particular version number or particular hardware that
is running MS-DOS. Table 3-6 lists the different sections that make up the MS
DOS system and the attributes that are associated with each part. The names
may change from system to system, but the functions are equivalent. Your
user's manual tells you what files are for what part of the system. Note that
some of the files may be hidden files that do not appear in a directory listing.
These files are still on disk.

Table 3-6. Components of the MS-DOS System

Name

COMMAND.COM
IBMDOS.COM or other
IBMBIO.COM or other

ROM-BIOS

Attributes

Compatible
Compatible
System-dependent

System-dependent

Function

Command processor
System services
ROM-BIOS interface or
BIOS
ROM-based BIOS (some)

175

Coding and Programming

176

ROM-BIOS versus a Loadable BIOS
There are two main areas of difference that may occur within the realm of MS
DOS systems. These differences drastically affect what can be done and what
cannot be done in the way of memory resident systems. One of these differences
is whether your particular hardware has its BIOS (basic input/output system) in
ROM (read-only memory) or in a file that must be loaded from the disk. The
effect of these alternatives is that a ROM-based BIOS (often called a
ROM-BIOS) provides a set environment for that particular machine, whereas
a loaded BIOS is often inaccessible to the programmer. (Unlike CP/M systems,
MS-DOS suppliers don't seem to be as willing to provide source listings for a
loadable BIOS.)

The importance of this option lies in the fact that MS-DOS is not reentrant!
That is, if you have written a memory resident routine that either is interrupt
driven or patches into the MS-DOS interrupt vectors, that routine may not call
MS-DOS! MS-DOS apparently maintains only one set of internal data buffers,
and any attempt at reentering that set results in a total failure of the system.
Because MS-DOS isn't reentrant, it cannot be used to perform I/O or support
functions for interrupt-driven memory resident programs. This restriction may
be lifted whenever Microsoft releases a concurrent version of MS-DOS, which
we hope will provide some method for handling such events. Until then, pro
grammers who wish to write memory resident routines most likely will have to
rely on a ROM-BIOS or will have to write their own driver routines. All of these
options result in nonportable code, but sometimes that is the price one pays for
desired features.

If the BIOS is actually loaded from the disk during boot, you almost cer
tainly will have to write your own routines to interface with the hardware. Un
like communications between normal programs and MS-DOS, which use the
interrupt vectors, MS-DOS communicates with the BIOS through CALLs and
JMPs. There is no MS-DOS standard jump table for the BIOS (a la CP/M) that
can be used by the application programmer, so you can see that having a ROM
based BIOS can be a great asset in writing memory resident routines that need
to access the hardware.

Interrupt versus Polled Systems
The second area of difference is whether the hardware is interrupt driven or
polled. By interrupt driven, we mean a system that uses hardware interrupts to
notify the BIOS of events that have occurred. By polled, we mean a system that
must repeatedly ask, or poll, the hardware to check for the occurrence of events.
Interrupt-driven systems provide more flexibility and greater opportunity for
installing some types of memory resident programs.

One of the temptations of interrupt-driven systems is to use one of the
hardware interrupts to drive a memory resident routine. This sometimes can be
an easy way out and sometimes can be a nightmare. As long as you use a local
stack and don't trash the system's stack, MS-DOS itself is usually insensitive to
the presence of interrupts. However, your BIOS may not be so forgiving. Often

3 - Program and Memory Management

the BIOS is not written with interrupts in mind, or at least not ones that the
authors of the BIOS were expecting. Should an interrupt occur in a time-sensi
tive portion of the BIOS, as in reading or writing to a disk drive, the interrupt
service routine could disrupt the operation of the BIOS, with the result that the
entire system may fail and hang.

Patching into the Interrupt Vectors
Memory resident routines are activated in one of two ways: they are initiated by
hardware interrupts (event-driven), or they must patch into the existing system
(trap-driven). A combination of these methods is also possible, where the patch
point is one of the hardware interrupts. If the system that you are using does not
support hardware interrupts, you must use the patch method.

Hardware interrupts that are unused by MS-DOS can be used to access
with few complications a memory resident routine. As long as the program
doesn't call MS-DOS, no system conflicts should occur. If the hardware of the
system is accessed by the memory resident routine, it should check to make sure
that no one else is accessing the hardware at that time and be careful to restore
the hardware to its original state. An example of a minimal impact interrupt
driven routine is a program to save all the registers of a currently running pro
gram in a reserved section of memory when an outside interrupt occurs. Such a
routine is useful when debugging a program in real time. However, if the inter
rupt that is to be used is also used by the system, the routine should be consid
ered trap driven because the memory resident routine is installed with a patch.

The patch method is a way of inserting a memory resident routine into the
normal system flow at a given point so that all accesses to that point of the sys
tem pass through the memory resident routine. An example of patching that
also involves a hardware interrupt is found when a keyboard-driven memory
resident routine is installed. To accomplish this, the keyboard interrupt vector
is changed to point to the memory resident routine. The value of the previous
keyboard vector is stored in the destination address of a far jump instruction
that is used to exit the memory resident routine. When a keyboard interrupt oc
curs, the memory resident routine is entered. When the interrupt completes,
the memory resident routine jumps to the keyboard handler. If the memory res
ident routine actually uses the keyboard input in some way that does not con
tinue to the keyboard handler, the memory resident routine must service and
clear the interrupt itself and then return to the calling program with an IRET
instruction. In all cases, the memory resident routine must preserve the context
of the interrupted program.

Other possible patch points that do not use hardware interrupts are
patches into one of the software interrupt vectors or into a jump address. Patch
ing into MS-DOS is usually done via the software interrupt vectors because
there is no recognizable jump table in the MS-DOS system. In addition, because
no standard interface exists between MS-DOS and its BIOS interface, patching
between MS-DOS and the BIOS is extremely difficult. Using software inter
rupts remains the solution.

177

Coding and Programming

178

One of the common places to patch into the MS-DOS interrupt vectors is at
int 28h. This is apparently an auxiliary interrupt used internally by MS-DOS.
This also seems to be one patch point where frequent access is assured. A mem
ory resident routine patched at this point must not call the MS-DOS function
handlers, or a system failure results. The memory resident routine should also
use its own context to prevent altering the existing stack and registers. Listing
3-12 shows the code necessary to install a memory resident routine at interrupt
28h and the accompanying memory resident routine.

Listing 3-12. Program INIT28-Patching into System
Interrupt Vectors

; ==== INIT28 - This fi Le produces a .COM program ===============
; ==== Install Memory Resident Routine by patching into int 28 ==
PAGE 60,132
; ==== EQUATES FOR INSTALL INTERRUPT ============================
VECT_NUM EQU 28h ; vector number to install
OFF
ON
;

EQU
EQU

Oh
OFFFFh

INCLUDE STDMAC.INC

; routine inactive
; routine active

; include macro definitions
; ==== BEGIN PROGRAM SECTION ====================================
i nit28

SEG_ORG

main
start:
old_v
entry:

first:

;

SEGMENT
ASSUME cs:init28
ASSUME ds:init28
ORG 0
EQU $

ORG 0100h
PROC FAR
jmp init
dd ?
jmp first
db 'TEST ROUTINE'
@SwapNewStack
cmp go_switch,ON
jne bypas
mov go_switch,OFF

; skip "old vector" storage
; space to store old vector
; skip "identification"

; MACRO to swap to new stack
; test if I am active
; yes - continue to exit
; no - set active switch

; < YOUR MEMORY RESIDENT ROUTINE GOES HERE >
;

mov go_switch,ON
bypas: @SwapOldStack TOS

jmp cs:exit
exit
go_switch

?
?

; set inactive
, restore stack C& include data)
; goto interrupt service Routine

dd
dw
db 32 dup ('stack I)

3 - Program and Memory Management

TOS
LASLBYTE
;

EQU
EQU

$

$

; ===== INITIALIZATION SECTION - THROWN AWAY AFTER LOAD =========
;
i nit: mov

mov
go_swi tch,OFF
ah,35h

mov al,VECT_NUM
@Dos Call
mov word ptr exit,bx
mov word ptr exit+2,es
mov word ptr old_v,bx
mov word ptr olcLv+2,es
mov ah,25h
mov al,VECLNUM
mov dx,offset entry

@DosCall
mov go_switch,ON

; prevent activation
; get vector address

; save pointer IP for
; save pointer cs for
; save pointer IP for
; save pointer cs for
; set new pointer

; set pointer IP
; (CS & DS same)

mov dx,(offset LAST_BYTE - SEG_ORG + 15) shr 4

exit
exit
remove
remove

mov ah,31h ; terminate & stay resident
@Dos Ca LL

;
main ENDP
init28 ENDS

END start

Other possible patch points depend on the type of memory resident routine
and the frequency with which it must be called. For example, a print spooler
routine (which prints files while allowing other programs to be run at the same
time) not only must trap an interrupt to activate it to send characters to the
printer, but must also trap any accesses to MS-DOS that use the printer so that
conflicts do not occur. Figure 3-16 shows a print spooler trapping int 28h to acti
vate itself and trapping int 21h to guard itself against printer access conflicts.
Your particular system may require additional traps if it provides other means
of accessing the printer.

In any use of trap vectors to implement some semblance of concurrency,
there is a risk of running afoul of programs that access the hardware directly.
For example, if a keyboard trap vector is installed to provide some feature and if
another program bypasses the keyboard vector and instead reads the hardware
directly, the memory resident routine is bypassed. These effects can occur quite
easily if multiple memory resident programs are installed because each pro
gram must bypass MS-DOS to perform I/O. For example, if both a print spooler
and a memory resident routine to print the contents of the video display are
installed and both are activated at the same time, a conflict occurs. These

179

Coding and Programming

Int
to

. .
trap .

Int 21 IP/CS .di.

'"' 8086 Family Vector Table . . .
trap

L4. Int 28 IP/CS . -r:
Internal . . MS-DOS
Int 28h Call

"" MS-DOS
JP . . .

Int 21 Code Al.

." . . .
Int 28 Code dL.

Return to
MS-DOS
from

. .h SPOOLER Int 21h Trap

~
JP . . .

Print Code

I . . .
Pass Int 21h

.• lb Int 21 Check .,,.

User Program .
21 Return .

call
User Program • .lfu

.
p Int 21 h . . .

Figure 3-16. Print spooler using trap vectors.

problems can occur with commercially available memory resident routines also.
The only way for users to protect themselves is to install one routine at a time,
checking for conflicts.

REMOVE-An Integrated Program Example

180

The REMOVE program (see Listing 3-13) is intended to "uninstall" a memory
resident program, based on the example given in INIT28 (Listing 3-12).
REMOVE attempts to identify the memory resident program by dumping

3 - Program and Memory Management

the bytes following the entry point, and it displays the 4 bytes preceding the en
try point as a previous vector address. In addition, REMOVE assumes that the
program is in a .COM format and attempts to locate the addresses of the PSP
and environment block. REMOVE presents all this information to the user and
prompts the user to decide to attempt removal or not.

Listing 3-13. REMOVE-Remove Memory Resident Routines
Patched into Interrupt Vectors

PAGE
;=====
;=====
;=====
; CISR
OLD_ IP
OLD_ CS
ID
IRETOP
;

60,132
REMOVE - This file generates a .COM program==============
Removes a memory resident program that has been patched ==
into an interrupt vector. ================================
refers to Interrupt Service Routine)

EQU -4 ; possible IP location in ISR
EQU -2 ; possible CS location in ISR
EQU 0 ; location of 1st byte in ISR
EQU OCFh ; IRET op-code

;====== MACRO DEFINITIONS FOR UTILITIES =========================
;
INCLUDE STDMAC.INC ; include macro definitions
;
remove SEGMENT

ASSUME cs:remove
ASSUME ds:remove

; Define needed addresses within the Program Segment Prefix

env_adr

cmc:Llen
new_len
cmd_buf
;======

main
start:

ORG 2Ch
LABEL
ORG
db
db
db
BEGIN
ORG
PROC

mov
cmp
jnz

WORD ; address of environment pointer
80h
? ; command line string length
? ; buffered read string length
? ; command line string

PROGRAM CODE ======================================
0100h
FAR

ch,byte
ch,O
have_cmd

ptr [cmd_len]
; was argument provided ?

; Argument not provided - prompt user to supply one
get_cmd:

@DisStr request ; ask for vector number
mov byte ptr [cmc:LlenJ,80

continued

181

Coding and Programming

182

Listing 3-13. continued

mov dx,offset
mov ah,OAh
@Dos Call
@DisChr LF
mov
cmp
jz
inc

ch,new_len
ch,O
abort
ch

cmd._len
; perform buffered read into
; the command line buffer
; new line
; get size of text entered
; see if user responded
; if not then assume exit
; adjust response to conform

have_cmd:
cmp
je

ch,3
oLcmd

; check for proper # characters

@DisStr bad_cmd ; if incorrect flag error
abort: jmp finis
oLcmd: mov bx,offset cmd_buf

;

mov
call
jc

ch,2
geLhex
abort

mov vec_num,al
mov ah,35h
@DosCall
mov
mov
call

vec_ i p,bx
al,vec_num
show_vector

@DisStr askresv
call yesno
jc no_ restore

; parse 2 characters
; convert # in buffer to binary
; exit if error in parse
; save vector address
; get vector pointer from MS-DOS

; store the vector IP
; restore vector number
; display contents of vector

; don't wish vector restored

; RESTORE THE VECTOR FROM ADDRESS IN ROUTINE

;

mov bx,vec_ip ;
mov dx,es:OLD_IP[bxJ;
mov cx,es:OLD_CS[bxJ;
mov
push

al,vec_num
ds

;
;

get address of routine
get old vector IP
get old vector cs
get the vector number
save current DS

mov ds,cx
mov ah,25h

; set vector destination
; set vector address

@DosCall
pop ds ; restore data segment

; Display environment address and ask if wish removed.
; The environment address will be valid only if this is a .COM
no_restore:

@DisStr askremb
mov ax,es:env_adr
mov ch,4

; display environment address
; get address of environment

3 - Program and Memory Management

ca LL bi n2hex ; display possible envir. seg.
@DisStr ipO
ca LL yesno
jc no_env ; bypass removing the environment

;
; REMOVE ENVIRONMENT BLOCK

;

push
mov
mov
ca LL
pop

es
cx,es:env_adr
es,cx
rern__mem
es

; save main routine segment
; get address of environment
; and prepare to remove
; attempt to remove block
; restore address of main routine

; Display Main Routine Segment Address and ask if want removed
no_env:

@DisStr
mov
mov
ca LL
@DisStr
ca LL
jc

;

askremm
ax,es
ch,4
bin2hex
ipO
yes no
finis

; display main block address
; address of main block

; don't want to remove main block

; REMOVE MAIN MEMORY RESIDENT ROUTINE MEMORY BLOCK
ca LL rern__mem ; attempt to remove block

;
finis: mov ax,4C00h ; terminate program

;
vec_num
vec_ip
;
request
bacLcmd
askresv
askremb
askremm
ipO
;
main
;

@DosCall

db
dw

db
db
db
db
db
db

ENDP

?
?

; space to store vector number
; space to store vector IP

'Vector number to remove: $'
'Command Line format error - aborting',CR,LF,'$'
'Restore Vector from Old? $'
'Remove Environment Block: $'
'Remove Main Program Block: $'
':0000 $'

; ----- REM_MEM uses MS-DOS Function 49 (hex) to attempt to
; ----- deallocate the memory block addressed by ES.
;
rern__mem PROC NEAR

push ax ; save registers

continued

183

Coding and Programming

184

free_ok:

push
push

ex
dx

mov ah,49h
@Dos Call
jnc free_ok
push ax
@DisStr fail
pop ax
mov ch,4
call bi n2hex
@DisChr CR
@DisChr LF
jmp rem_exit

Listing 3-13. continued

; used by @DisStr & @DisChr
; free allocated memory

; no errors - give success
; save error code
; inform that it failed
; and give the error code
; Call 4 digits)

msg

@DisStr pass
rem_exit:

pass
fail
rem_mem
;
; -----
; -----
; -----
yes no

pop
pop
pop
ret
db
db
ENDP

YES NO
YES NO
then
PROC
push
push

dx
ex
ax

; restore registers

'Successful Free Allocated Memory',CR,LF,'$'
'Failed to Free Allocated Memory - Error Code: $'

prompts the user for a Y or N. If Y is entered -
returns w/o carry CNC). If Nor <RET> is entered =

YESNO returns w/ carry (CY). --
NEAR
ax
dx

@DisStr prompt
retry: mov ah,08h

; prompt user for input
; get response Cno echo)

no:

@DosCall
@Case al,<'y','Y','n','N',CR>,<yes,yes,no,no,no>
@DisChr 07h ; illegal response - beep
jmp retry
@DisChr 'N'
stc
jmp yn__exit

; and wait some more

yes: @DisChr 'Y'

yn__exit:
clc

@DisChr CR
@DisChr LF

; clear carry

3 - Program and Memory Management

pop dx
pop ax
ret

prompt db I CY/N): $',
yes no ENDP
;
; ----- SHOW_VECTOR displays the contents of Location pointed -
; ----- to by ES:BX in both HEX and ASCII format. Since it is -
; ----- intended for use in displaying vectors, it also shows -
; ----- AL in hex as a vector number, and informs the user if -
; -----the first byte pointed to is an IRET instruction. -
; ----- SHOW_VECTOR also displays the two words Located before =
; ----- the vector address as CS:IP in case the user has -
; ----- stored the old vector address there on installation.
;
show_vector PROC NEAR

noiret:

vmsg1
vmsg2

push ex
push dx
push ax
@DisStr vmsg1
pop ax
push
mov
mov
ca LL

ax
ah,al
ch,2
bin2hex

; save registers

; used by @DisChr & @DisStr
; start displaying messages
; restore value of AL

; display 2 digits of hex

@DisStr vmsg2 ; show potential restore address
mov ax,es:OLD_CS[bxJ; get possible CS value
mov
ca LL

ch,4
bin2hex ; display possible old CS

@DisChr '·'
mov
ca LL
cmp
jne
@DisStr
@Di sChr
@Di sChr
mov
ca LL
pop
pop
pop
ret
db
db

ax,es:OLD_IP[bxJ; get possible CS value
bin2hex ; display possible old CS
byte ptr es:ID[bxJ,IRETOP
noiret
vmsg3
CR
LF
cl,16
dump
ax
dx
ex

'Vector # $'

; is this an IRET instruction?

; dump 16 bytes
; show HEX and ASCII values

Old Vector: $'

continued

185

Coding and Programming

186

Listing 3-13. continued

vmsg3 db
show_vector
;

IRETS'
ENDP

; ----- DUMP displays the contents of location pointed to by ==
; ----- ES:BX in both HEX and ASCII format. CL contains the # ==
; ----- of bytes to display.
dump PROC NEAR

push
push
push
push
@DisStr
mov

ax
dx
bx
ex
dmsg1

h_dump: mov
ch,2
ah,es:[bx]
bx inc

call
@DisChr

bin2hex
' '

dee cl
jnz ILdump
@DisStr dmsg2
pop ex
pop bx
push bx
push ex

t_dump: mov al,es:CbxJ
inc bx
cmp
jb
cmp
ja
@DisChr
jmp

al,' '
no_prnt
al,7Eh
no_prnt
al
nxLtxt

no_prnt:
@DisChr ' '

nxLtxt:
dee cl
jnz Ldump

; All done - clean up & exit
@DisChr CR
@DisChr LF
pop ex
pop bx
pop dx
pop ax

; save registers
; used by @DisChr & @DisStr

; start displaying messages
; 2 hex digits per byte
; get byte
; next byte

; loop count -
; repeat until count 0
; next section
; restore values of
; BX (index)
; and ...
; ex (count)
; get byte
; next byte
; check for printable range
; ? < space
; DEL is not printable either

; is printable - do so

; use "·" for nonprintable

; loop count -
; repeat until count 0

; restore registers

3 - Program and Memory Management

ret
dmsg1 db 'HEX: $'

dmsg2 db I ASCII: $'

dump ENDP
;
; ----- GELHEX parses the buffer pointed to by BX for a hex --
; number, returning the number in AX. The # of digits --
; ----- to parse is contained in CH, and BX is incremented by --
; ----- the # of digits processed. --
;
geLhex PROC NEAR

push dx ; save DX register
push ex ; save ex register
mov ax,O ; clear accumulated #
mov dh,O ; clear upper workspace
mov cl,4 ; set shift count for Later

nxLdigit:
mov dl,[bx] ; get character
sub dl,'0'
jb bacLdigit ; ? < '0' - i L Lega L
cmp dl,OAh
jb oLdigit ; '0' through '9' - ok
sub dl,'A'-'0'
jb bad_digit ; '9' < ? < 'A' - i L Leg a L
add dl,OAh
cmp dl,10h
jb oLdi git ; 'A' through IF' - ok
sub dl,'a'-'A'-0Ah
jb bad_digit ; 'F' < ? < 'a' - i Llega L
add dl,OAh
cmp al,10h
jae bad_digit ; If f < ? - i L Lega L

oLdi git:
add ax,dx ; accumulate digits in AX
inc bx ; next digit
dee ch
jnz more_di git ; more digits to accumulate
clc ; no error - clear CY
pop ex
pop dx
ret

more_digit:
sh L ax,cl ; open room for next digit
jmp nxLdigit ; Loop for next digit

bad_digit:

continued

187

Coding and Programming

188

Listing 3-13. continued

@DisStr digit_error
stc
pop ex
pop dx
ret

; inform of entry error
; error - set carry

digit_error db 'A two-digit hex number was expected',CR,LF,'$'
geLhex ENDP
;
; ----- BIN2HEX displays the value contained in AX as a hex #.==
; ----- No registers are destroyed. CH contains the #of -
; -----digits to disp.lay, taken left to right in AX. (AH is -
; =====displayed if CH equal 2.) --
;
bin2hex PROC NEAR

push ax ; save all registers
push bx
push ex
push dx
mov cl,4 ; set rotate count
mov bx,ax ; copy AX for work

; Begin DIGIT Loop to process digits
moredig:

rol bx, cl ; convert binary to hex
mov al,bl
and al,OFh
add al,90h
daa
adc al,40h
daa

; Display the digit & check for more - restore if done.

bin2hex
;
remove

@DisChr al
dee
jnz
pop
pop
pop
pop
ret
ENDP

ENDS
END

ch
moredig
dx
ex
bx
ax

start

3 - Program and Memory Management

The section that displays the contents of the location addressed by the vec
tor may be extracted and made into a program. This program can be used to dis
play the contents of any of the interrupt vectors and their possible service
routines.

REMOVE serves as an example of many of the topics discussed in this
chapter and helps to demonstrate recommended installation and removal
techniques.

Summary

In this chapter we have presented material about many separate topics. In addi
tion to the promised material on program and memory management, we have
also included material on organizing programs and on the structure and con
tents of MS-DOS programs. More examples of the way MASM operates have
been given.

Although some of the material covered may seem only occasionally useful,
we think that you will find applications for most of it. Especially important to
the systems and applications programmers are the PSP and the organization of
programs in memory.

189

4 - TSR Programming

LJr'I ERMIN ATE a~d stay resident (TSR) programB are useful tools, but their ~operation remams a mystery to most users. The MS-DOS architecture and
the PC hardware impose constraints on the things a TSR may do and when it
may do them. Some of these limitations manifest themselves only when a TSR
writes to the screen or makes a BIOS request from an interrupt service routine;
others demand our attention when the TSR installs itself.

This chapter will explain how to write a TSR. You will learn about the ser
vices (documented and otherwise) that DOS provides and how TSRs interact
with DOS. You will also learn about several of the technical issues that confront
a TSR author. But first a few words of caution.

Much of the material covered in this essay is undocumented, obtained by
disassembling PC-DOS version 3.10. Many services discussed here are not
available in versions of PC-DOS below 3.00, and there is no guarantee that they
will be present in future versions of DOS. Some features may be specific to PC
DOS 3.10. Software that uses these features may not be portable to different
DOS environments and may break in the future.

It is possible for conflicts to exist among various TSRs (including the ex
amples presented here). The severity of these conflicts can range from annoying
to catastrophic. More serious conflicts can cause data loss or can corrupt disks.

Additionally, this chapter describes the programming of the 6845 CRT con
troller, which drives both the MDA and the CGA. Errors in programming this
device can result in severe damage to your system.

Overview

TSRs have become common. They are available as commercial programs, share
ware, and even as part of MS-DOS. Borland's Sidekick is probably the best
known commercial offering. The commands PRINT and ASSIGN and several
other DOS utilities are TSRs.

All TSRs begin life as ordinary programs. After a while the program exits,
leaving part of its code behind. The code that runs first is called the initializa
tion code, and that which remains behind is known as the resident code. The
main task of the initialization code is to prepare the resident code for later use.

193

Coding and Programming

There are no restrictions on what the initialization code may do, but program
ming the resident code can be tricky.

TSRs may be grouped into three categories based on what the resident
code does. Members of the first group have no user interface to their resident
portion. Once loaded, these TSRs sit quietly in the background, performing
their tasks without making any BIOS requests. The DOS ASSIGN command is
one such TSR; its resident portion monitors and redirects disk requests from
one drive to another. Adequate documentation and numerous examples make
writing this type of TSR an easy task.

The members of the second group of TSRs remain dormant until specifi
cally activated by a user request. Normally, this request comes as a specific key
or key combination (e.g., Alt-Shift) called a hot key. Again, their resident code
makes no BIOS requests; they must obtain any DOS services, such as reading a
file, only during initialization.

A small telephone-database TSR might fall into this second group. Initial
ization code would read the entire phone directory into memory. In response to a
hot key, the resident code must save the current display, get one or more names,
look up the associated phone numbers, and display the search results. When
there are no more names to look up, the TSR must restore the original screen
and deactivate itself.

The services needed by these TSRs are reasonably well documented, but
there are a number of technical issues in dealing with hot key activation and in
interacting with the display hardware.

The final group of TSRs makes asynchronous BIOS requests. These re
quests may be triggered by a hot key or some other hardware interrupt (e.g., a
timer). The resident code does not necessarily have a user interface. The DOS
PRINT utility falls into this category. These TSRs are difficult to write because
DOS is basically a single-user/single-program operating system. Microsoft has
retrofitted support for programs such as PRINT, but these services are un
documented and require an in-depth understanding of DOS for proper use.

Before you can write a TSR, you will need some background information.
For instance, you must know how the keyboard and display work in order to
understand the issues involved in supporting hot keys. As another example, the
DOS software architecture imposes some very real constraints on what a TSR
may do; you must know about the workings of the various DOS modules that af
fect a TSR. Once you understand the hardware and operating system mecha
nisms, you will be ready to learn what a TSR needs to do when it initializes and
reactivates. Finally, you will learn how to write a TSR that runs in the
background.

Dealing with PC Hardware

194

The keyboard, timer, and several other devices generate interrupts to get the
processor's attention. PC/XT systems provide eight distinct hardware inter
rupts, and AT systems support more. Many of these interrupts belong to the

4 - TSR Programming

realm of device drivers, and a TSR must be careful not to interfere with them. Of
all the hardware interrupts, it is the clock and keyboard interrupts with which
most TSRs interact.

Part of the appeal ofTSRs is the hot-key user interface. With a single key
stroke, you can wake up a TSR and ask it to do something. If a TSR is well writ
ten, it springs to life quickly, does its job, and slips into the background without
missing a beat or disrupting any other programs. But implementing a hot key
requires quite a bit of work and a good understanding of how the display and
keyboard hardware work.

Some TSRs must perform their tasks periodically. Every PC has a timer
that generates an interrupt 18.2 times per second and provides a mechanism for
scheduling periodic events. The DOS PRINT utility uses the timer to keep the
printer busy regardless of what else is happening on the system.

Hot keys and timers interrupt the CPU when they need its attention. The
CPU deals with this interrupt and then returns to its original task. The PC has
special hardware to deal with interrupts. Both the keyboard and the timer inter
act with this hardware; you'll need to understand how both the hardware and
the software interrupt system work if you want to support a hot key or make use
of the timer.

Hardware Interrupts
At the hardware level supporting MS-DOS is a scheme of hardware interrupts,
each of which is associated with a particular device. Each device wanting the
processor's attention sends an interrupt request, or IRQ, to the 8259A interrupt
controller, which schedules the interrupt for service. Each device has a priority.
Higher-priority devices get first crack at the processor and can preempt less im
portant devices. (The 8259A interrupt controller can be programmed dif
ferently, but these other operating modes are not of interest to us.) When the
interrupt controller decides that an interrupt can be serviced, it sends an "inter
rupt acknowledged" message to the device, disables all interrupts, and gener
ates an interrupt.

In response to a particular hardware interrupt, the processor looks up the
address of an interrupt service routine in the interrupt vector table (IVT). This
table occupies the first 256 double words (1024 bytes) of memory. Each entry
contains the address of an interrupt service routine (ISR). The processor pushes
the current flags and program counter (CS:IP) onto the stack and begins ex
ecuting this ISR.

The ISR does whatever is required to service the interrupt. At some point,
the ISR sends an end of interrupt (EOI) message to the 8259 controller, indicat
ing that it is ready to accept another interrupt service request. The interrupt
controller will not recognize interrupts from this or any lower-priority devices
until it receives this EOI. After the ISR does its job, it executes an IRET in
struction that restores the flags and the original CS:IP.

195

Coding and Programming

196

Software Interrupts
The INT instruction of the 80x8x processors provides a software interrupt
mechanism. The processor treats software- and hardware-generated interrupts
in the same way. Execution of an INT instruction transfers control to the ISR
specified by the instruction operand. For example, the instruction int 60h in
vokes the ISR whose address is recorded at offset 180h (4*60h) of the IVT. The
interrupt controller is not involved, and the software ISRs should not send an
EOI to the interrupt controller. DOS uses software interrupts extensively.
Since all access to an ISR occurs through its IVT entry, it is a simple matter to
replace an interrupt service routine. You will often have occasion to modify the
IVT when you write TSRs.

The Timer Interrupt
The PC uses one channel of an 8253 counter/timer chip to request an interrupt
18.2 times per second. The 8259A controller generates an int Sh in response to
this request. This clock interrupt has the highest priority and will preempt any
other interrupt as long as the processor has not disabled all interrupts with a
CLI (CLear Interrupts) instruction.

Code within ROM-BIOS normally responds to this interrupt. After updat
ing the time of day and performing some other housekeeping tasks, the ROM
BIOS code executes an int 1ch instruction. Programs that run periodically can
set up their own int 1ch ISR (we'll explain this shortly). The default ROM-BIOS
int 1ch service routine consists of an IRET instruction.

The Keyboard
The standard PC keyboard contains its own microprocessor (an Intel 8048 or
equivalent). Pressing or releasing a key sends an IRQl signal to the interrupt
controller, which invokes the int 9 interrupt service routine to process this re
quest. The priority of the keyboard interrupt is second only to that of the clock.

ROM on the system board contains the default int 9 ISR. This code is quite
complicated. It reads and decodes the scan code, tracks the state of special keys
(Control, Shift, Alt, etc.), and maps scan codes into key codes. Each keystroke
produces two scan codes, one for key press-down and one for key release-up.
Keyboard state information affects these mappings. For instance, pressing the
A key produces a scan code of leh. The keyboard ISR normally translates this
scan code to a key code of 61h (the ASCII code for lowercase a). If the control
key is down at the key-press, the scan code translates to a Olh (ASCII for Con
trol-A). If the shift key is down, the same scan code becomes a 41h (ASCII for
uppercase A).

In response to keys such as Shift and Alt, the int 9 ISR updates a keyboard
status byte within the BIOS data segment and then exits with an IRET. The
BIOS data segment begins at paragraph 40h and contains many dynamic vari
ables manipulated by various ROM-BIOS routines. Listing 4-1 describes part of
this data area.

KB_M_RShi ft
KB_M_LShi ft
KB_M_Cont ro L
KB_M_AL t
KB_M_Scrol L
KB_M_Num
KB_M_Caps
KB_M_InsState

KB_CBufSi ze

BIOS

KB_B_Flag

KB_W_BufHead
KB_W_BufTai L
KB_LBuffer
BIOS

4 - TSR Programming

Listing 4-1. The BIOS Data Segment

EQU 01h
EQU 02h
EQU 04h
EQU 08h
EQU 10h
EQU 20h
EQU 40h
EQU 80h

EQU 10h

; right shift being held down
; Left shift being held down
; control key being held down
; alt key being held down
; scroll Lock key down
; num Lock key down
; caps Lock key down
; insert state is active

; size of keyboard buffer

SEGMENT at 40h
ORG 17h ; not interested in other BIOS data
DB 0 ; keyboard status flag
ORG 1ah ; not interested in 18h and 19h
DW 0 ; head of keyboard buffer
DW 0 ; tail of keyboard buffer
DW KB_C_BufSize DUP(Q)
ENDS

Certain key combinations have special meaning. The keyboard ISR ex
ecutes an int 1 bh instruction when it sees the scan code corresponding to the
break key. The default int 1bh ISR consists of an IRET, but the console driver
normally sets up its own int 1 bh ISR. This ability to process breaks makes the
console driver special. (This discussion is extended in the section on break
handling.)

The dreaded Control-Alt-Delete eventually produces an int 19h. Further
discussion of the int 19h and the Control-Alt-Delete key combination is
unnecessary.

If the key code does not have any special meaning, the int 9 ISR saves it in
a type-ahead buffer. This buffer begins at offset leh within the BIOS data seg
ment and is arranged as a 16-word circular buffer. Offsets lah and lch in this
segment point, respectively, to the buffer head and tail. If the buffer is full, the
int 9 ISR beeps and discards the character; otherwise, it inserts the character at
the tail of the buffer.

Each buffer entry is 2 bytes long; its format depends on how the int 9 ISR
interprets the keystroke. Certain key combinations (e.g., Alt plus a letter or
number) and special keys (e.g., function keys) produce an "extended ASCII"
character; other keys produce "normal ASCII." The int 9 ISR records a zero
byte followed by a numeric identifier for extended ASCII characters, and re
cords the ASCII character code and scan code for all others.

Software accesses the keyboard hardware through ROM-BIOS. Int 16h
lets you remove characters from the keyboard buffer, peek at the first character

197

Coding and Programming

198

in the buffer, and check keyboard status. Virtually all access to the keyboard
occurs through int 16h. Even the console driver uses int 16h to retrieve input
characters and check keyboard status.

The Display Hardware
There are a number of different displays available for computers in the PC fam
ily. The Monochrome Display Adapter (MDA) and the Color Graphics Adapter
(CGA) are the most common. Some of the other hardware emulates one or both
of these adapters, as well as providing added capability (more colors, better res
olution, etc.). This discussion is limited to the MDA and CGA hardware.

The PC display hardware has analog and digital components. The screen
and its associated control logic make up the analog part. The surface of the
screen is coated with a phosphor that glows when struck by an electron beam.
The analog control circuits sweep a beam of electrons across and down the
screen; each sweep is known as a scan line. Other parts of this circuit turn the
beam on and off.

The process begins at the upper left corner of the screen. The beam moves
horizontally across the screen from left to right. When it reaches the right side
of the screen, the control electronics turn it off and move it back to the left edge
and down one position. The time that the beam is off is known as the horizontal
blanking interval. This process continues until the beam sweeps the lowest line
of the screen. When the electron beam reaches the bottom of the screen, the con
trol circuit turns it off and returns it to the top left corner of the screen to repeat
the entire process. The time required for this motion is called the vertical re
trace interval. The horizontal and vertical retrace periods are important to man
aging a CGA display.

As the beam sweeps horizontally to the right, a representation of the dis
play saved in display memory causes the necessary signals to turn the beam on
and off and control its position. The base address of this memory varies with the
adapter type. MDA screen memory begins at bOOO:OOOOh, and CGA memory at
b800:000h. Both the CPU and the CRT controller can access this memory.

Some fancy electronics make this arrangement work, but, as far as you are
concerned, you can read and write to screen memory without worrying too
much about what the 6845 CRT controller is doing. The 6845 CRT controller is a
general-purpose chip that can support many different monitors. It has a status
register that contains information about retrace cycles; several other registers
control scan rates, cursor position, cursor mode, and display page.

CAUTION

You should be very careful when programming the 6845. Certain registers
contain critical values that, if not properly set, will destroy your monitor. Con
sult the IBM Hardware Technical Reference Manual for a more complete
description.

4 - TSR Programming

The MDA and the CGA
There are some electronic differences between the MDA and the CGA. The
MDA operates fast enough that the CPU can access display memory whenever
it wants, even as the scan line is active. Attempts to access CGA graphics mem
ory produce snow unless they occur during retrace intervals. The slowest IBM
processor (8088 CPU at 4. 77 MHz) can move only 1 byte in the horizontal retrace
period, and it can move approximately 100 bytes during vertical retrace. Both
the CGA and the MDA provide vertical retrace status, but only the CGA indi
cates horizontal retrace.

There are some functional differences between the MDA and the CGA as
well. The MDA can display only text; the CGA can display both text and
graphics. In text mode, both adapters use 2 bytes of screen memory to display
one character. The lower byte contains the character to be displayed, and the
higher byte describes the character attributes (bold, blink, color, underline,
etc.). Location of graphics data is slightly more complex. Refer to the IBM
Hardware Technical Reference Manual for details.

Writing to Display Memory
Display memory is mapped into the PC address space. Listing 4-2 shows how
easy it is to write to MDA display memory.

; Write
; The 7
; value
; normal

He L Lo

Listing 4-2. Writing Directly to MDA Display Memory

Hello on MDA screen in normal video starting at (0,0).
following each Letter in Hello is the video attribute. A
of 7 describes normal mode (white Letter on dark background,
intensity)

DB 'H',7,'e',7,'L',7,'L',7,'o',7
Hel LoLength EQU $-He L Lo

mov ax,ObOOOh
mov es,ax ; es <== MDA base
xor di,di ; di <== off set into screen memory
mov si,OFFSET Hello ; si <== string to write
mov cx,HelloLength/2 ; ex <== words to write
rep movsw ; do the write

Writing to the CGA is a little tricky. The previous program will run on a
CGA (provided the screen base address is changed to Ob800h), but it will cause
snow on the screen. Because adapter memory is dual-ported, it can be accessed
by both the CPU and the display processor (the Motorola 6845 CRT controller).
The snow is due to memory contention -both the processor and the controller
trying to access memory at the same time. Accessing display memory only dur
ing retrace cycles eliminates this unsightly effect.

199

Coding and Programming

200

The MDA and many CGA clones are fast enough to obviate the restriction
of using only retrace intervals. With the IBM CGA, you can either ignore the
snow, turn the display off during screen updates (more ugly than the snow), or
sync with the retrace signals. Listing 4-3 illustrates how to avoid snow by using
the least-significant bit of the 6845 status register at address 03dah to coordi
nate with the horizontal retrace signal.

Listing 4-3. Writing to CGA Screen Memory

; Write Hello on CGA screen in normal video starting at C0,0).
; The 7 following each Letter in Hello is the video attribute. A
; value of 7 describes normal mode (white Letter on dark
; background, normal intensity). The CGA is assumed to be in
; text mode.

He l Lo DB
HelloLength EQU

HRetrace EQU

'H',7,'e',7,'l',7,'L',7,'o',7
$-He L lo

mov dx,3dah ; dx <== CGA status register
mov ax,Ob800h
mov es,ax ; es <== CGA adapter memory
xor di,di ; di <== off set into screen memory
mov si,OFFSET He L Lo ; si <== string to write
mov cx,HelloLength/2 ; ex <== words to write

_nextbyte:
_sync: in al,dx ; al <== 6845 status

test al,HRetrace ; horizontal retrace?
jz _sync ; if z -- not yet
stosb ; write 1 byte in retrace
Loop _next byte ; wait for next retrace

Although it is not obvious with a short string, this program is not terribly
efficient. To move big blocks of text, you must take advantage of the much longer
vertical retrace interval as well.

ROM-BIOS Video Support
ROM-BIOS provides fairly complete video support through int lOh. For many
applications, these services provide adequate performance. The screen switch
ing needed to support a hot key severely taxes the capabilities of the ROM code,
especially on the slower 8088 machines. The extra memory and dual modes of
the CGA compound this problem. ROM-BIOS supports CGA access in both text
and graphics modes and provides services for switching modes. You should note
that a side effect of mode change is the erasure of display memory.

4 - TSR Programming

Capturing an Interrupt
The process of changing an IVT entry is known as capturing an interrupt. TSRs
rely on interrupts for hot-key activation. Those that run periodically also de
pend on the timer interrupt. TSRs frequently alter the IVT to monitor DOS ac
tivity and hardware status and to locate previously loaded copies of themselves.
The timing of these interrupts is unpredictable in that certain DOS operations
(int 21h functions) cannot be interrupted.

To capture an interrupt, the initialization code of the TSR reads the IVT
entry, stores its contents safely away in a data area, and inserts a new address in
the IVT table. Control will pass to this new ISR the next time the interrupt oc
curs. Your new ISR code should usually call the original ISR first. When the old
ISR has completed, its IRET instruction will return control to your code, which
then issues its own IRET to return control to the program that originally called
the interrupt.

DOS provides two functions to help us capture an interrupt vector. To find
the contents of a specific IVT entry, place its interrupt number in the AL regis
ter, place the value of 35h in the AH register, and execute an int 21h instruction.
This BIOS service returns the contents of the IVT entry in the ES:BX register
pair.

After you record this value, you can modify the IVT entry. Load the
DS:DX with the location of the new ISR, specify an interrupt vector number in
the AL register, place 25h in the AH register, and execute an int 21h instruc
tion. Listing 4-4 illustrates the use of these services to capture the timer (lch)
interrupt.

The specific actions taken in the new ISR depend on which IVT entry you
are replacing and what you are trying to accomplish by replacing it. Notice that
our new ISR "chains" to the old ISR. This technique is quite common. The
pushflcall sequence simulates an INT instruction. Note that the call must be an
intersegment (jar) call because Oldlntlc is a double word (DD pseudo op).

Setting up a Hot Key
Implementing a hot-key feature in a TSR imposes some unique demands on pro
gram design. The hot key should wake up the T.SR without sending the key
press to the foreground program. The basic approach is to examine each key
stroke before the foreground program reads it. You can capture interrupt 16h to
inspect input to the keyboard buffer, or you can poll the keyboard buffer by
using the timer tick (int lch), or you can monitor the contents of the type-ahead
buffer by trapping interrupt 9. Quite often you will find it useful to choose a hot
key that affects keyboard status but does not result in an addition to the type
ahead buffer. Each of these approaches has certain advantages and a number of
problems. You will have to decide which technique is best for your application.

Capturing Int 16h
The simplest way to look for a hot key is to capture int 16h. Most well-behaved
applications use this interrupt for keyboard input. Installing your own int 16h

201

Coding and Programming

202

Listing 4-4. Capturing the Timer Interrupt Int lch

Oldint1c DD 0

mov ax,351ch ; get int 1c
int 21h
mov WORD PTR Oldlnt1c,bx ; save it
mov WORD PTR Oldlnt1c+2,es
push ds ; save ds
mov ax,cs
mov ds,ax
mov dx,OFFSET Newlnt1c ; ds:dx <== new isr
mov ax,251ch ; set new isr
int 21h
pop ds ; recover ds

; ; whatever
Newlnt1c PROC FAR

pus hf ; push flags to simulate
call cs:Oldlnt1c ; an interrupt

; ; whatever
iret

Newlnt1c ENDP

ISR gives you a chance to examine each character and divert any hot keys. List
ing 4-5 shows a typical replacement for the int 16h ISR.

The new int 16h ISR looks at the results of every read (AH = 0) and buffer
status (AH = 1) request but does not intervene in shift status requests (AH = 2).
If the ROM-BIOS code returns a hot key, the new ISR removes the key code
from the type-ahead buffer, wakes up the TSR, and then repeats the request. As
long as the first character in the type-ahead buffer is a hot key, the replacement
ISR does not return to its caller. This example makes the simplifying assump
tion that reactivation will be safe. (See the section titled "Reactivation and DOS
Architecture and Services" for a complete discussion of this topic. The code in
Listing 4-5 is therefore only a general model and is not strictly correct.)

The limitation to this technique is that the only time you get to look for hot
keys is when the foreground program issues a read. If this program is compute
intensive, there may be lengthy delays between the time a hot key is entered
and your TSR responds.

Polling the Keyboard Buffer with Timer Interrupt Int lch
You can ensure frequent keyboard checks by capturing the timer interrupt and
checking the keyboard buffer from within your timer ISR. Listing 4-6 checks for
a hot key on every timer tick. If the first key code in the type-ahead buffer corre
sponds to a hot key, the new ISR removes the key code and activates the TSR. In
either case, the new ISR chains to the previous timer ISR code.

4 - TSR Programming

Listing 4-5. Replacing Int 16h to Look for a Hot Key

Oldint16

Hot Key

Newint16

DoStatus:

DoRead:

DoShift:

DoneO:

Done1:

DD

DW

PROC
cmp
jg
j L

pus hf

0

(?)

FAR
ah,1
DoShift
DoRead

call cs:Oldint16
pus hf
cmp ax,HotKey
jnz Done1
xor
ca LL
ca LL
mov
jmp

pus hf
ca LL
cmp
jnz
call
xor
jmp

jmp

iret

po pf
ret

ax,ax
cs:Oldint16
ActivateTSR
ah,1
SHORT DoStatus

cs:Oldint16
ax,HotKey
DoneO
ActivateTSR
ah,ah
SHORT DoRead

cs:Oldint16

2

Newint16 ENDP

; initialization code saves
; original isr address here
; define hot key here

; Look at function
; if g -- shift status
; ah=O ==> read

; ah=1 ==> check for status
; simulate an int 16
; pass request to BIOS
; save flags
; did we find a hot key?
; not the hot key
; ah <== 0 (read request)
; remove the hot key
; hot key activates TSR
; ah <== 1 (status request)
; repeat request

; simulate an int 16h

; did we find a hot key?
; if nz -- no hot key
; hot key activates TSR
; ah <== 0 (read request)
; repeat request

; pass this request along to
; old ISR. Ignore results

; ax has character
; flags are not used
; return to caller

; ax has character
; recover flags from int 16h
; discard f Lags pushed by
; int instruction and return

203

Coding and Programming

204

Listing 4-6. Using Int lch to Poll the Keyboard

Hot Key DW (?) ; define hot key here
; NB cannot be extended ascii

Oldlnt1c DD 0 ; old timer ISR stored here

Newlnt1c PROC FAR ; new timer i sr
push ax ; needed for int 16h
xor al,al ; xor,inc combo faster than
inc al ; mov al,1
int 16h ; check type-ahead buffer
jz NoHotKey ; if z--buffer empty
cmp ax,HotKey ; not empty--1st char hot key?
jnz NoHotKey ; if nz--not hot key
xor a l,a l ; al <== read request
int 16h ; remove hot key
call ActivateTSR ; wake up the TSR

NoHotKey: pop ax ; restore ax
jmp cs:Oldlnt1ch ; pass timer tick

Newlnt1c ENDP

If you use this technique, you can access only the first character in the
type-ahead buffer. The presence of an ordinary character will hide subsequent
hot keys from this poll routine. Assuming that a user never anticipates program
input requests, frequent polling would provide adequate response to a hot key.
But because user actions are unpredictable, this technique is not a reliable way
to detect a hot key. Again, please note that the example does not check to deter
mine if it is safe to reactivate the TSR.

Trapping Int 9
Another approach to monitoring the keyboard is to trap int 9h. When a key is
pressed or released, the keyboard hardware generates an int 9. The new int 9
ISR calls the ROM keyboard ISR and then uses int 16h to peek at the first
character in the type-ahead buffer. The disadvantage of this approach is that a
nonempty type-ahead buffer hides hot keys. If you can guarantee that no TSR
loaded afterward will move the buffer, you can use this technique to scan the en
tire buffer on every key-press.

TSRs that extend the type-ahead buffer are quite common. They work by
replacing both the int 9 and the int 16h ISRs. Their int 9 code calls the old int 9
ISR to service the keyboard interrupt and then invokes the old int 16h ISR to
drain the type-ahead buffer. The new int 9 ISR saves these characters in its own
buffer. The replacement int 16h ISR removes characters from this new buffer.

TSRs that redefine or bind macro definitions to keys also use this tech
nique. If your TSR loads before any TSR that moves the type-ahead buffer, your

4 - TSR Programming

TSR will always find the buffer empty. It is not a good idea to write a TSR that
depends on load order to work correctly.

Monitoring Keyboard Status
An alternative to checking the type-ahead buffer is to monitor the keyboard
status byte. This technique eliminates the need to know the location of the
ROM-BIOS type-ahead buffer but requires that the user select character com
binations that alter keyboard status (e.g., Alt-Shift, etc.) as a hot key. This
technique will work as long as any TSRs loaded afterward do not alter the key
board status bytes. Because the keyboard status affects scan code processing,
TSRs should not fool around with this variable, so this technique is very
reliable.

Listing 4-7 shows a replacement for the ROM-BIOS keyboard ISR. Some
of the things that this code does may seem a little confusing right now because
the process involves looking for hot keys in an interrupt service routine. As you
will see later, you cannot safely interrupt some DOS operations. Part of the chal
lenge of writing a TSR is coding around this limitation.

In this example, the new ISR runs whenever a key is pressed or released.
Its first action is to call the old keyboard ISR to read and process the keyboard
scan code. The new ISR examines the PgmState variable maintained by the
TSR to determine if the TSR is a foreground application. If the TSR is not run
ning in the foreground and the ISR detects a hot key, it attempts to bring the
TSR to the foreground. If the TSR is currently in the foreground, the interrupt
requires no further processing.

If the keyboard status bits corresponding to the hot key are set, the ISR
increments the PopupPending flag and checks to see if it is safe to bring the TSR
to the foreground. The section entitled "Reactivation and DOS Architecture and
Services" describes the mechanics of this process. If it is safe, the ISR calls
BKGResume to reactivate the TSR. DOSSafe increments the Busy Flag to pre
vent the TSR from being reentered; the ISR must decrement this variable be
fore returning to the interrupted program.

Listing 4-7. Sample Replacement Keyboard ISR

FGCombo EQU KILM_Al t OR KILM_LShi ft

BKG_CFG EQU 1
BKG_C_BG EQU 2

BIOS SEGMENT at 40h
ORG 17h

KB_B_F lag DB 0
BIOS ENDS

_text SEGMENT BYTE PUBLIC 'code'-

continued

205

Coding and Programming

206

PgmState
BusyFLag

Oldlnt9

PopupPending

Int9ISR
Newlnt9:

i9_0:

Int9Exit0:

Int9Exit1:

Int9ISR
_text

Listing 4-7. continued

DB 0
DB -1

DD 0

DB 0

ASSUME ds:NOTHING
PROC FAR

;
;
;
;
;
;

protects against interrupting
non-reentrant code section
initialization saves original
int 9 ISR here
incremented if popup requested
but couldn't be honored

;;; simulate an interrupt pus hf
ca LL
cmp
jz
iret

cs:Oldint9 ;;; dispatch to original ISR
cs:PgmState,BK6-t_BG ;;; are we in background now?
i9_0 ;;; if z -- yes

pushr <ax,ds>
mov ax,SEG BIOS
mov ds,ax
ASSUME ds:BIOS
mov al,KB.....B.....Flag
and al,FGCombo
cmp al,FGCombo
po pr <ds,ax>
ASSUME ds:NOTHING
jnz Int9Exit1

inc cs:PopupPending
call DOSSafeCheck
jc Int9Exit0
ca LL BKGResume

dee cs:BusyFLag

iret
ENDP
ENDS

,,, ignore popup if not
,,, currently in background
,,, so we can access B.....FLAG

,,, al <== current KB flags
,,, mask all unneeded bits
,,, popup being requested?

,,, if NZ -- not a popup
,,, request
,,, say a popup was requested
,,, can we do it now?
,,, if c -- no
; bring to foreground

; release our Lock

; and dismiss interrupt

An Alternative to Capturing Int lch
It is important to note that the int lch ISR is nested within the int 8 ISR because
the clock interrupt has the highest priority-no other interrupts will be ser
viced until the interrupt controller receives an EOI. Any operations that

4 - TSR Programming

depend on interrupts will not work. Another potential problem is that DOS will
lose clock ticks if it takes too long to traverse the int lch chain. PRINT. COM
solves this problem by sending an EOI in its int lch ISR.

An alternate strategy is to capture int 8. The new int 8 ISR immediately
calls the old ISR, which sends an EOI to the interrupt controller before return
ing. No interrupts are blocked when the old ISR returns. The ISR shown in
Listing 4-8 works together with the one in Listing 4-7. If a hot key is pending or
if 1 second has elapsed since the last activation, the int 8 ISR calls BKGResume
to reactivate the TSR.

Listi11g 4-8. Sample Replacement of the Clock Interrupt Int 8 ISR

Oldlnt8

Busyflag

PopupPending
Ticks

lnt8ISR
Newlnt8:

8-0:

Int8Exit0:

Int8Exit1:

Int8ISR

PROC

pus hf
ca LL
c Li
cmp
jnz
cmp
jz
dee
jnz
ca LL
jc

ca LL
mov

dee

iret
ENDP

DD

DB

DB
DB

FAR

0

-1

0
18

cs:Oldlnt8

cs:PopupPending,O
i8-0
cs:Ticks,0
i8-0
cs:Ticks
Int8Exit1
DOSSafeCheck
Int8Exit0

BKGResume
cs:Ticks,18

cs: Busy flag

; initialization code saves
; original int 8 isr address here
; protects against interrupting
; non-reentrant code sections
; nonzero if hot key encountered
; runs once a second

,,,
,,,
,,,
,,,
,,,
,,,
,,,
,,,

simulate an int
dispatch to ROM code
not really needed
pop request pending?
if nz -- yes
tick counter reached 0?
if z -- yes
otherwise decrement it

,,, if not at 0 yet, continue
,,, safe to (re)enter OS?
,,, if c -- no
,,, NB that ticks remains at 0
,,, we'll keep trying to
,,, dispatch on every tick
; dispatch to background code
; reset ti mer

; release our Lock

; and return

207

Coding and Programming

208

Managing the Display
Because of the previously discussed limitations in the ROM-BIOS video sup
port, a TSR frequently needs to manipulate the display hardware directly.
Direct screen reads and writes speed up the process of switching displays when
a hot key activates a TSR. Direct access to the 6845 CRT controller can elimi
nate the problems associated with changes between text and graphics modes.

CAUTION

Direct access to the display hardware can be dangerous. Mistakes in this
process can destroy your monitor.

Before you attempt to program the display, you should understand how it
works. The following discussion is an overview; consult the Hardware Technical
Reference Manual for further details.

There are two techniques for changing the screen contents. One technique
is to maintain two buffers: one buffer contains an image of the TSR screen, and
the other contains the image of the DOS/application screen. The second tech
nique is to substitute video memory for one of these buffers; this saves some
memory at the expense of slightly slower response.

Listing 4-9 shows the dual buffer technique. When the hot key is invoked,
the current screen is copied to a DOS/application buffer and then the contents of
the TSR buffer are moved to display memory. You can move a large block of data
at this time, so use the string MOVE instruction. Counting clock cycles sug
gests that this routine should take about 21 ms to execute on a 4. 77-MHz 8088.
Actual measurements reveal an execution time of about 29 ms. Part of the dif
ference is due to the crude method of counting clock cycles; memory contention
accounts for the rest. The timing was done with the display turned on-a worst
case.

_text

VideoSEG
DOSBuff er
TSRBuffer

Switch

Listing 4-9. Screen Switching Using Two Buffers

SEGMENT WORD PUBLIC 'CODE'
ASSUME cs:_text, ds:_text, es:_text
ow ObOOOh
DW 25*80 DUP (Q)

DW 25*80 DUP (720h)

PROC NEAR
cld ; direction flag<== UP
lea di,DOSBuffer ; di <== buffer off set
mov ax,cs
mov es,ax ; es:di <== DOSBuffer
xor si,si ; si <== video offset
mov ds,VideoSEG ; ds:si <== video memory

4 - TSR Programming

mov cx,25*80 ; ex <== words in display
rep movsw ; DOSBuffer <== video memory
mov ds,ax
Lea si, TSRBuffer ; ds:si <== TSRBuffer
mov es,VideoSEG
xor di,di ; es:di <== video memory
mov cx,25*80 ; ex <== words in display
rep movsw ; video memory <== TSRBuffer
ret

Switch ENDP

The next listing uses only one buffer. Using a single buffer requires the
slower mov/xchg sequence and takes approximately 45 ms to change screens
with the display turned on. This performance is still acceptable. Note that forc
ing the buffer to be paragraph aligned will eliminate one add instruction, but
this change has no significant effect on performance.

_text

VideoSEG
TSRBuffer

Switch

_nb:

Listing 4-10. Screen Switching Using a Single Buffer

SEGMENT WORD PUBLIC 'CODE'
ASSUME cs:_text, ds:_text, es:_text
DW ObOOOh
DW

PROC
cld
Lea
xor
mov
mov
mov
mov
xchg

NEAR

si,TSRBuffer
di,di
bx,2
es,VideoSEG
cx,25*80
ax,[siJ
ax,es:[diJ

mov [siJ,ax
add si,bx
add di ,bx
Loop _nb
ret

DUP (720h)

; make sure we move up
; si <== TSR buffer offset
; di <== video memory offset
; bx <== size of move
; ds:si <== video memory
; ex <== words in display
; ax <== word from TSRBuffer
; video memory <== TSRBuffer
; ax <== word from video memory
; TSRBuffer <== video memory

Switch ENDP

Working with and around DOS
Many of the operations you will want your TSR to perform involve some interac
tion with DOS. DOS is basically a single-user/single-program operating system.

209

Coding and Programming

210

Although Microsoft has added some hooks to support TSRs, many of these
hooks are undocumented and difficult to use. You often have to "stand on your
head" to do things in a TSR that would be trivial in an ordinary foreground pro
gram. This section discusses several key features of DOS that are important to
writing a TSR. You should be aware that most of this material is not formally
documented and consequently may be changed.

The DOS 110 Data Structures
DOS maintains a number of data structures that are important to a TSR. Some
of these are common to all resident programs. For instance, DOS maintains two
system file tables, one for handle access and the other for file control block
(FCB) operations; all programs access the same two system file tables. Other
data structures are unique to each program. For instance, each program has its
own program segment prefix (PSP).

When DOS loads a program, it records that program's PSP in a global vari
able. (In DOS 3.10 this variable is located at offset 02deh in the DOS segment.)
A program whose PSP is recorded here becomes the current program. Once
IBMBIO loads the shell, there is always one and only one current program.

When a program makes an I/O request, it gives DOS either a handle or a
file control block. To process a handle request, DOS must locate a data structure
known as the job file table (JFT). Each PSP contains a JFT address at offset 34h
(Listing 4-15 "Structure of the PSP"). DOS looks in the PSP of the current pro
gram to find the current JFT. The JFT normally begins at offset 18h of the PSP
(i.e., the JFT address points to another location within the PSP). DOS uses the
handle as an index into the JFT to get a system file number (SFN) which, in
turn, is an index into the system file table. One of the undocumented fields
within an FCB contains a system file number; this SFN is an index into the FCB
system file table. This SFT tells DOS how to find a device.

The "List of Lists"
DOS records the address of both the handle and the FCB system file table in a
data structure known as the "list of lists." This data structure contains many
other important pieces of information. Your TSR may need to look at the con
tents of this list or be aware of some of the data structures that it points to. Un
documented int 21h function AH = 52h returns the address of the list of lists in
the ES:BX register pair. The code fragment in Listing 4-11 shows how to locate
this list.

Briefly, here are the functions for the various entries in the list of lists.
Block devices (usually disks) record information on file system structure in de
vice control blocks (DCBs). DCB data includes disk size, number of entries in
the root directory, number of FATs, etc. DOS records the address of the clock
device as a performance optimization. In addition to processing time and date
requests, DOS time-stamps every FCB write and then records the last access
time for handle writes. DOS uses the saved address of the console device to
check for break and to report divide-by-zero errors. DOS expects the console

4 - TSR Programming

Listing 4-11. Finding the List of Lists

ListAddr ow 0,0

mov ah,52h ; ask DOS where it's located
int 21h ; (undocumented function)
mov ListAddr,bx ; address returned in es:bx
mov ListAddr+2,es

device to have an int lBh ISR so that the keyboard ISR can report breaks imme
diately. DOS uses the current directory for block device operations. DOS main
tains a list of cache blocks used to process partial block read/write requests and
to access directory and FAT blocks. Each cache block is DOS_W_MaxSector
bytes long. DOSJ)..HDLSFT and DOS_DJ'CBSFT are the listheads for the
handle and FCB system file tables, respectively. Listing 4-12 summarizes the
contents of this list.

Listing 4-12. The Layout of the List of Lists

DOS STRUC
DOS_D_DCB DD 0 ; list head for device control

; block (DCB) chain
DOS_D_HDLSFT DD 0 ; list head for handle SFT
oos_o_c lock DD 0 ; device header for CurClk device
DOS_D_Console DD 0 ; device header for console device
DOS_W_MaxSector ow 0 ; size of largest sector
DOS_D_Cache DD 0 ; list head for cache control

; blocks (CCB)
oos_o_cos DD 0 ; address of current directory

; structure
oos_o_FCBSFT DD 0 ; list head for FCB SFT
DOS_W_Unknown ow 0 ; unknown
oos_a.DriveCount DB 0 ; max number of drives

; (value set by lastdrive=)
DOS_a.LastDri ve DB 0 ; current number of drives
DOS ENDS

The System File Table
Of all the data structures referenced in the list of lists, the system file table en
tries are the most important to a TSR. Information contained in these table en
tries affects the way a TSR must handle I/O requests. This data structure,
which is located in DOS global data area, is made up of one or more blocks. Each

211

Coding and Programming

212

block contains a header that points to a following block and several system file
table entries. Each SFT entry is a data structure in its own right.

The header is 6 bytes long. The first field is a double word that contains the
address of the next block in the system file table chain or a -1 to indicate the end
of the list. The second field is a word that tells the number of system file table
entries in this block. Listing 4-13 illustrates the structure of the SFT.

Listing 4-13. Header for a System File Table Block

SFTTBL
SFTTBLD-Next
S FTTBLW_Count
SFTTBL

SFTTBLl<-Si ze EQU

STRUC
DD 0
DW 0
ENDS

SIZE SFTTBL ; defined here for Later use

Many fields in each SFT entry are important only for block devices, but
values in the reference count and ownerPSP fields directly impact a TSR. When
DOS opens a file, it allocates an SFT entry in the system file table and records
the current PSP in the OwnerPSP field, which is the eighteenth field in the en
try (offset 22h). Because only the owner of a file may actually close it, be sure
that you have set up your PSP as the current program before asking DOS to
close the file. Similarly, be sure to restore the PSP of the original foreground
application as you terminate.

The reference count is the first field in the entry and contains a word that
records the number of times a file or device has been opened. Before allocating a
new entry, DOS checks all existing entries to see if the file or device making the
request is already open. If an SFT entry already exists, DOS increments the
reference count rather than allocating a new entry. DOS decrements the refer
ence count when the file/device is closed but will not deallocate the entry until
the reference count goes to zero.

When DOS processes an open or create request (either FCB or handle), it
records the current PSP in the SFT owner field and records the mode bits (argu
ments to the open request such as exclusive access and read access) in the SFT
mode field if the file was not opened previously. The mode bits determine what
type of future access DOS will permit.

Listing 4-14. Structure of an SFT Entry

SFT STRUC
SFLW-RefCnt DW 0 ; [QQ] reference count
SFLW_Mode DW 0 ; [02] open mode
SFLB_DirAttrib DB 0 ; [04]

SFLW_Flags DW 0 ; [05]

SFLD_DCB
SFLW_Cluster1
SFLW_HHMMS
SFLW_YYMMDD
SFLD_Fi LSi z
SFLD_Fi LPos
SFLW_Re LC ls tr
SFLW_CurClstr
SFLW_LBN
SFLW_Dirindex
SFLLFi leName
SFLLUnknown
SFLW_OwnerMach
SFLW_OwnerPSP
SFLW_Status
SFT ENDS

SFLl<-Si ze

;
;MOde field
;
SFLM_FCB
SFLM_DenyNone
S FLM_DenyRead
SFLM_DenyWrite
SFLM_Exclusive
SFLM_NetFCB
SFLM_Wri te
SFLM_Read
;
;Flags Field
;
SFLM_Shared
SFLM_DateSet
SFLM_IOCTL
SFLM_IsDevice
SFLM_EOF
SFLM_Binary
SFLM_Special
SFLM_IsClock

SFLM_IsNul
SFLM_IsStdOut
SFLM_IsStdin
SFLM_Written
SFLM_DriveMask

DD
DW
DW
DW
DD
DD
DW
DW
DW
DB
DB
DB
DW
DW
DW

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

4 - TSR Programming

0 ; [07] (FILE) device control block
0 ; [Ob] (FILE) initial cluster
0 ; [0d] (FILE) Hour, Min, Sec/2
0 ; [Of] (FILE) Year, Month, Day
0 ; [11] file size/EOF Location
0 ; [15] Current file position
0 ; [19] (FILE) clusters from beginning
0 ; [1b] (FILE) current cluster
0 ; [1d] (FILE) block number
0 ; [1f] (FILE) directory index
Obh DUP (0) ; [20] (FILE) file name
04h DUP (0) ; [2bJ unknown
0 ; [2f] machine number of fi Le owner
0 ; [31] psp of task that initially
0 ; [33]

SIZE SFT

8000h
0040h
0030h
0020h
0010h
0070h
0001h
OOOOh

8000h
4000h
4000h
0080h
0040h
0020h
0010h
0008h

0004h
0002h
0001h
0040h
003fh

; entry is for FCB
; sharing bits (4-6)
. " ,
; "
; "
; this is a network FCB
; file access bits C0-2)
; "

; network access
; date set (FILE only)
; IOCTL support (DEVICE only)
; entry is for a device
; (DEVICE) end of fi Le on input
; (DEVICE) transparent mode
; (DEVICE) supports int 29H output
; (DEVICE) current
; clock device
; (DEVICE) current nul device
; (DEVICE) current stdout device
; (DEVICE) current stdin device
; (FILE) file written
; (FILE) mask for drive bits (0-5)

213

Coding and Programming

214

The Program Segment Prefix (PSP)
When DOS loads a program, it creates a program segment prefix (PSP). The
previous chapter discussed many of the fields in the PSP. DOS always locates
the PSP on a 16-byte paragraph boundary, so that it can be described as a word
length value (a segment with an offset of zero). DOS function 62h returns
the address of the current PSP in the BX register (undocumented function
AH = 51h also returns the PSP in BX).

Listing 4-15 shows the PSP as a structure. In it, the PSP JLJFTAddr
and PSP _ W _JFTSize fields contain the address and size of the job file table
(JFT). The PSP also contains a copy of the default JFT beginning at location
JFT _T JFT. DOS uses some of the other PSP fields to process critical errors
and termination requests; more about these fields later.

Listing 4-15. Structure of the PSP

PSP STRUC
PSP_W_int20 ow Ocd20h ; [QQ] int 20 instruction
PSP_W_MemSi z ow 0 ; [02] top of memory (para)
PSP_B_UnusedO DB 0 ; [04] unknown
PSP_ LCa l l DB 09aH,OfOh ; [05] far call to DOS

DB OfeH,01dh,OfOh ;dispatcher CCPM relic)
PSP_O_ Term DD 0 ; [Qa] terminate address
PSP_D_Break DD 0 ; [QeJ break address
PSP_D_Cri tErr DD 0 ; [12] critical error
PSP_W_Parent ow 0 ; [16] parent PSP
PSP_LJFT DB 14h DUP (Qffh) ; [18] J FT table
PSP_W_Envron ow 0 ; [2cJ environment
PSP_D_SSSP DD 0 ; [2eJ User SS:SP at time of

; int 21
PSP_W_J FTSi ze ow 14h ; E32J size of J FT
PSP_D_J FTAddr DD 0 ; 'ijJ address of J FT
PSP_D_NextPSP ow OffffH,Offffh ; [38] unused
PSP_LUnused2 DB 14h DUP (Q) ; [3c] unused
PSP_W_lnt21 ow Ocd21h ; [50]
PSP_B_Retf DB 0 ; [52]
PSP _ LUnused3 DB 9 DUP (Q) ; [53]
PSP_LParm1 DB 10h DUP (Q) ; [5cJ formatted param 1
PSP_LParm2 DB 14h DUP (Q) ; [6cJ formatted param 2
PSP_LDTA DB 80h DUP (Q) ; [80] default OTA
PSP ENDS

The Job File Table (JFT)
In most cases the PSP will contain the job file table itself. The default JFT limits
you to 20 simultaneously open files, but you can provide an alternate JFT to in
crease the maximum number of open files. DOS 3.3 provides a function for this

4 - TSR Programming

purpose (int 21h AH = 67h). Prior to DOS 3.3 you could manually change the
JFT address in the PSP. DOS would use the newly defined JFT for 110 but had
problems cloning this JFT when processing a load (int 21h AH = 4bh) request.

The job file table (JFT) links handles to system file table entries. Each en
try in the JFT is 1 byte. If an entry is not used, it will contain a Offh; otherwise,
it contains a system file number (SFN), which is an index into the system file
table. DOS uses the file handle as an index into the JFT.

Listings 4-16 and 4-17 illustrate the relationship among the PSP, JFT,
SFN, and SFT. The first routine accepts a handle in BX and returns the corre
sponding system file number in AX. The routine uses a BIOS service AH = 62h
to locate the current PSP, then gets the address of the JFT from the PSP, and
finally uses the handle as an index into the JFT. The macros pushr and popr save
and restore the registers listed as arguments. This routine returns with the
carry flag set (CY= 1) if it encounters an error.

The second routine accepts an SFN in AX and returns the address of its
corresponding SFT entry in ES:DI. It gets the "list of lists" address with func
tion AH = 52h and then gets the handle SFT list head in ES:DI. Each block has a
"next" field and part of a header that tells how many entries are in that particu
lar block. This routine walks the chain of SFT blocks until it finds the block con
taining the SFT entry. If the handle is invalid or if the SFT is corrupt, these
routines return with the carry set.

Listing 4-16. Using a Handle to Get a System File Number

GetSFN PROC NEAR
pus hr <ds,es,di,bx> ; macro to save ~ome

; registers
mov ah,62h ••• ; get current PSP
int 21h
mov ds,bx ; ds <== current psp
pop bx ; handle
cmp bx,Offh ; check =the handle
jz BadHandle ; negative handle is not valid
cmp bx,ds:PSP_W_JFTSize

; handle too big?
jge BadHandle ; if ge -- yes
Les di,ds:PSP_D_JFTAddr

; es :di <== J FT
mov al,es:[diJ[bxJ ; al <== SFNCHandle)
cbw ; ax <== SFNCHandle)
clc ; indicate success

Done: popr <di,es,ds> ; macro to restore
; registers

ret ; and return

continued

215

Coding and Programming

216

Figure 4-16. continued

BadHandle: stc ; indicate error

GetSFN

LocateSFT

;
;
;

_LO:

;
;
;

;
;
;

;
;
;
_ l 1:

_l2:

jmp SHORT Done ; take common exit
ENDP

Listing 4-17. Finding the System File Table

PROC
push
mov
int

es:di

Les
pop
xor
cmp
jz

bx

add
cmp
j l

<==

NEAR

<==1st

first

ax
ah,52h
21h

block handle SFT

; save SFN
; request list of
; lists address

list head

di,es:[bxJ.DOS_D_HDLSFT
ax ; recover SFN
bx,bx ; bx <== 0
di ,Offffh ; at end of chain
_l2 ; if z -- yes

SFN in next block

bx,es:[di].SFTBLK._W_Count
ax,bx ; SFN in this block?
_ l 1 ; if l -- yes

es:di <== next SFT block

Les
jmp

di,es:[diJ.SFTBLK._D_Next
SHORT _LO ; continue searching

bx<== first SFN this block

sub bx,es:[diJ.SFTBLK._W_Count
sub ax,bx ; ax <== offset into block
mov bl,SFLK._SIZE ; bl <== entry size
mul bl ; convert offset to bytes
add di,ax ; di <== off set into block

; (almost)
add di,SFTBLK._K._Size ; add overhead
clc ; indicate success
ret ; and return
stc ; indicate error

ret
LocateSFT ENDP

The BIOS Dispatcher, Int 21h

4 - TSR Programming

; and return

When DOS boots, IBMDOS initializes the IVT entry for int 21h to point to code
within the IBMDOS image. This ISR processes all int 21h requests. Because of
the way this code switches stacks and uses static variables, it is not reentrant. If
a TSR makes a BIOS request at the wrong time, it will corrupt information that
DOS has saved about the foreground program. The effects of this corruption are
normally disastrous. If you are lucky, your system will crash without corrupting
your disk.

Int 21h processing begins with interrupts disabled as a result of the INT
instruction. The dispatcher contains a table of action routines that complete
processing of various BIOS requests. There is an entry in this table for each
valid int 21h function. Immediately preceding this table is a byte containing the
number of table entries. DOS ultimately uses the function code in AH as an in
dex into this table and first checks the value passed in AH. The dispatcher re
turns an error if the request is not valid.

The int 21h dispatcher services requests for AH = 51h (undocumented Get
Current PSP), AH = 62h (documented Get Current PSP), AH = 50h (undocu
mented Get Current PSP), and AH = 33h (Get/Set Break) immediately. Since
the dispatcher doesn't switch stacks or save context information in static vari
ables, these requests are always safe.

Here is what happens when the request is not for one of the four that can be
immediately serviced (nearly all other int 21h functions). DOS saves all regis
ters on the current stack, saves the current contents of DS:BX in a static vari
able, and increments the critical section (also known as InDOS) flag. The
dispatcher needs the DS and BX registers to continue processing the BIOS re
quest; DOS will reload these registers before it dispatches to the action routine,
which will complete the request.

At this time the SS:SP registers still contain the address of the foreground
program stack. DOS records in static variables the values of SS:SP for the cur
rent and previous entrance (i.e., the corresponding SS:SP value the last time
through the dispatcher). The dispatcher also saves the current SS:SP values in
the current PSP at offset 16h. DOS uses the stack values in the PSP to process
critical errors; it uses the stack values in the global variables when it returns
control and has to restore the original stack.

The dispatch routine uses three private stacks: the auxiliary stack, the
user stack, and the disk I/O stack. Having saved the program stack, the dis
patcher makes an unconditional switch to the auxiliary stack and enables the in
terrupts. If the request is in the range Olh to Och, and if the dispatcher is not
processing a critical error, it switches to the user I/O stack. The dispatcher ser
vices all other requests except Get Extended Error (AH = 59h) on the disk I/O
stack.

217

Coding and Programming

218

If the request is to be serviced on the disk I/O stack, and if breaks are en
abled, the dispatcher checks for a break before completing the request. Func
tions Olh to Och make explicit break checks as appropriate. (Some of these
functions explicitly ignore breaks; all others check for breaks. Refer to the IBM
Technical Reference Manual for a complete description of these requests.)

The int 21h dispatcher uses the function code in AH as an index into the
action routine table, restores DS:BX, and dispatches to the action routine.
After the action routine completes, the dispatcher disables interrupts, decre
ments the critical section flag, restores the SS:SP registers, restores the pre-int
21 register values, and exits with an IRET. Action routines that need to return
values in index registers modify the register values saved on the program stack.

Character 110 Routines
BIOS functions in the range 01 to Och are collectively known as character I/O
functions because of the way they are used. Character I/O operations take a rel
atively long time to complete. BIOS may have to wait for input in order to satisfy
a read request. Character output also takes a relatively long time. Most charac
ter input functions call a keyboard poll routine. The keyboard poll routine re
peatedly checks both the console and the standard input for a break and then
checks the input device for an available character. If no character is available,
the keyboard poll routine always calls the background dispatcher. The display
output function (AH = 2) calls the background dispatcher each time it writes
four characters. The background dispatcher executes an int 28h.

Int 28h ISRs play an important role in background processing. It is safe for
an int 28h ISR to make BIOS requests that will be serviced on the disk I/O
stack. With the exceptions of the functions that are processed without any stack
switch, DOS services all int 21h functions above Och on the disk I/O stack.

DOS Global Variables
DOS relies on many global variables to keep operating state information and to
maintain the context of BIOS requests. DOS provides a work area for buffered
input and keeps track of the current column to support buffered input line edit
ing. Other variables control screen logging, the memory allocation algorithm,
and current switch character. Global variables include the critical error and crit
ical section flags, the current PSP, and the current disk transfer area (DTA).
Many other global variables describe handle I/O operations; they record the
SFN, JFT entry address, and many other important pieces of information about
the request.

The disk transfer area (DTA) is an insidious data structure because DOS
uses it in unexpected ways. DOS maintains its own internal DTA for parsing file
names and directory searches; it copies the results of these operations to the
user DTA. DOS replaces the DTA address with a buffer address for handle file
reads and writes. Operations such as find first/find next write directly into the
current DTA.

4 - TSR Programming

Requests made by the TSR may alter DOS global variables as a side effect.
DOS is not expecting another program to walk all over its global variables and
will probably get very confused if you allow these variables to change.

Break Processing
DOS checks for the presence of a break in two places. The int 21h dispatcher
calls a break check routine if a request is to be processed on the disk stack and if
break checks are enabled. The keyboard poll routine (called by the character I/O
functions) checks for break while waiting for input and while writing to stdout.

The break check routine checks the current console device. DOS identifies
the console device by examining the device attributes of drivers as it loads them
(see Chapter 6). The current console device will have the IsStdln and IsStdOut
bits set in the device header. DOS records the address of the current console de
vice in the list of lists. DOS will check the console device for breaks even if some
program redirects stdin. There is an implicit assumption that the console device
has declared an int lbh service routine and can receive break notification
asynchronously. A side effect of this design is that if stdin is redirected to a file
and a program does its reads with int 21h functions greater than Och, then a
Control-Chas no special meaning.

The keyboard poll routine first calls the break check routine and then
checks standard input. When character I/O operations are in progress, DOS
will detect a break either from the console device or from standard input; but
when DOS is operating on the disk I/O stack, it checks only the console device.

The DOS routine that processes breaks sets SS:SP to the value recorded
by the int 21h dispatcher, restores all registers to their pre-int 21h values, re
sets the critical section and critical error flags, and executes an int 23h instruc
tion. The int 23h JSR can return to the DOS break routine with either an IRET
or a RET instruction. Executing an IRET instruction removes 6 bytes from the
stack, but executing afar return removes only 4 bytes. By comparing the value
in the SP before and after executing an int 23h instruction, the break routine can
tell which instruction (i.e., RET or IRET) returned control.

If the int 23h JSR preserves any registers it uses, it can continue execution
by executing an IRET instruction. If the JSR returns with afar return instead,
the state of the carry flag determines whether or not execution will continue. If
the carry flag is clear, execution will continue; otherwise, the program will be
aborted. The DOS break routine forces an abort by loading 4c00h into the AX
register. In all cases, control returns to the start of the int 21h dispatcher. The
dispatcher then re-executes the int 21h request or executes the terminate re
quest in the case of an abort.

The default int 23h JSR consists of an IRET instruction. COM
MAND. COM sets up its own int 23h JSR, which aborts the current program.
Other programs may set up their own int 23h service routines.

219

Coding and Programming

220

Critical Error Processing
Many int 21h requests cause an 110 operation. BIOS passes most 110 requests to
a device driver. If the device driver has a problem completing the request, it re
ports the problem to BIOS. BIOS responds to device errors by declaring a crit
ical error. Logic within DOS decrements the critical section flag and increments
the critical error flag in response to a device error. Corrupt FAT blocks also
cause critical errors.

DOS takes one of four different actions when it detects a critical error: ig
nore the error, retry the operation that caused the error, terminate the current
program, or fail the current call. All four options are not always available. DOS
contains a flag that defines acceptable actions.

If DOS is already processing a critical error, the critical error routine fails
the call that caused the second error. The critical error routine checks a DOS
global variable to see if a handle 110 request is in progress If it is, DOS re
trieves the JFT entry address of this handle from another global variable and
marks the handle invalid; this action prevents another critical error on the same
handle.

With interrupts disabled, the DOS critical error routine increments the
critical error flag, decrements the critical section flag, restores the SS:SP
values saved by the int 21h dispatcher and executes an int 24h instruction. When
the int 24h ISR returns, the critical error routine resaves the SS:SP pair (the int
24h ISR may change it), increments the critical section flag, and resets the crit
ical error flag.

The critical error routine expects the int 24 ISR to return a processing ac
tion. If the ISR requests an acceptable action, the critical error routine honors
it. If the critical error routine has marked a handle invalid, it restores the SFN
from a DOS global variable before exiting. Termination requests pass through
the break handler, which forces the int 21h dispatcher to execute a terminate
request.

When COMMAND.COM initializes, it sets up its own int 24 ISR; it is this
routine that prints the abort, retry, or ignore message. Other programs may de
clare their own int 24h ISRs.

Loading a Program
A common BIOS service loads all programs. The int 21H AH = 4bh action rou
tine sets up an environment, allocates memory for the program image, loads the
program from disk, and creates a PSP. It uses the largest available memory
block to load the program. The .EXE files specify their memory requirements
in the program header, and the load routine adjusts the memory block size ac
cordingly. A .COM file's size determines its minimum memory requirements,
but the load action routine does not adjust block size for. COM files. A . COM file
will begin executing with the entire memory block allocated to it.

Normally, DOS loads a program because a user has invoked it from the
shell prompt. The program being loaded is known as the child and the one re
questing the load is known as the parent. The parent creates a parameter block

4 - TSR Programming

containing the address of an environment table, the address of a command line,
and the addresses of two file control blocks (FCBs). The parent passes the ad
dress of this parameter block and the address of an ASCIIZ file specification to
the load action routine using an int 21h AX = 4b00h request. The parent may
explicitly specify the location of the environment or may request that its en
vironment be copied by specifying zero as the starting segment of the environ
ment. If the parent does not have an environment and requests that its
environment be copied, the child will have no environment.

The previous section discussed the details of loading a program. This pro
cess is important, but not terribly interesting as far as implementing a TSR is
concerned. After loading the program image from disk, DOS builds a program
segment prefix. The contents of this PSP are important to a TSR. The same
code that services the Build PSP request (int 21h AH = 26h) completes the PSP
for the load routine.

Prior to call~ng the Build PSP routine, the load routine sets a flag that
forces the Build PSP routine to initialize the child's JFT. The Build PSP routine
examines each entry in the parent's JFT, locates its corresponding SFT entry,
and clones a reference unless the "N olnherit" bit is set in the SFT or unless the
SFT entry corresponds to a network FCB. Cloning increments the SFT refer
ence count and copies the SFN into the child's JFT. The child is said to "inherit"
these files. COMMAND.COM uses inheritance to provide redirection of stdin
and stdout. Because an application inherits these files, it does not have to open
them explicitly. The JFT entries for these handles already contain valid system
file numbers copied from the parent process. A second side effect of the flag
being set is that the child PSP becomes the current PSP. The Build PSP routine
fills in several other fields in the PSP; copies the contents of the current IVT
entries for terminate (int 22h), break (int 23h), and critical error (int 24h) into
the child's PSP; and then returns to the load routine.

The load routine fills in the address of the environment; initializes the two
PSP FCB entries; copies the parent's return address to the termination vector
(int 22h); sets the disk transfer address to child PSP:80h; initializes the ES, DS,
SS, and SP registers; and passes control to the child process.

Program Termination
There are a number of different ways for a normal program to terminate. The
two most common are int 21h AH = 4ch and int 21h AH = OOh. A common DOS
routine processes all termination requests. When a program terminates, this
routine copies the critical error (int 24) and break ISR (int 23) addresses saved
in the PSP to the IVT, closes all files, and deallocates all memory belonging to
the current process. Control returns to the terminate address (int 22h). Unless
the terminating process modified the IVT entry for the termination address,
the program that loaded the terminating program regains control at the instruc
tion immediately following the load request. Normally, control then returns to
COMMAND.COM. Critical errors cause aborts. The same code processes
aborts and termination requests; the only difference between the two cases is a
completion code saved in an internal DOS variable.

221

Coding and Programming

Memory deallocation is a simple process. DOS allocates memory in blocks.
Immediately preceding each block is a 16-byte memory control block (MCB).
This area contains the size of the following block and records the owning PSP.
The word immediately before the list of lists contains the segment of the first
memory control block. The DOS termination routine scans the MCB list looldng
for blocks owned by the current process. Whenever it finds one, the termination
routine sets the owner field of the MCB to zero, indicating that the block is free.
This MCB scan frees all blocks owned by the terminating process, including the
environment. A program need take no special action to deallocate its
environment.

The DOS termination routine gets the JFT address from the PSP of the
current (terminating) process and scans the JFT, looking for open files. The ter
mination routine closes every open file. The close routine decrements the SFT
reference count for every open file. If the reference count goes to zero and the
current program owns the file, the close routine deallocates the SFT entry. The
entries corresponding to the inherited files will have reference counts greater
than one; the SFT entries for these files remain. (Since the terminating program
is still the current PSP, any attempt to close these entries would fail; the
OwnerPSP field of these SFT entries lists COMMAND.COM as their owner.)

There are two terminate-and-stay-resident functions, int 27h and int 21h
AH = 31h. The int 27h function is obsolete, and DOS internally maps it to an
int 31h request. The same termination routine handles terminate-and-stay
resident requests. When a program makes a terminate-and-stay-resident re
quest, the termination routine does not close any files or deallocate any memory
blocks, but it does modify the size of the memory block containing the PSP. The
terminating program specifies the new block size as an argument to the termi
nate-and-stay-resident request. Any handles that were valid before the termi
nate-and-stay resident request will be valid when the TSR reactivates.

Loading and Initializing a TSR

222

A TSR may be either a .COM or an .EXE file. DOS loads all programs the same
way. Each program has a program segment prefix (PSP), code, and data. The
difference between a TSR and standard applications is that the TSR has to per
form a few basic tasks to prepare itself for reactivation at a later time.

At initialization, the TSR is the foreground program and the entire DOS
system is fully available. Certain information is valid only while the TSR runs in
the foreground. A TSR must record any of this information as part of its initial
ization. During initialization, a typical TSR

• Checks to see which DOS version is running
• Checks to see if another copy of itself is already loaded

• · Locates important DOS data structures

• Captures one or more interrupt vectors

• Checks to see which display adapters and peripherals are present

4 - TSR Programming

• Performs some additional application-specific processing
• Calculates the memory needed by the resident code

Initialization completes when the program invokes the terminate-and
stay-resident function (int 21h, AH= 31h). It is important to stress that once the
TSR terminates, it is no longer the foreground program. Background programs
are unexpected guests; consequently, they must be very careful about the
things that they do. The primary job of the initialization code is to record the
state of the system so that the TSR can reactivate without corruption of
the system.

In short, the initialization routine gets the program started, ensures that
the TSR can run when it is called later, calculates memory requirements for the
resident code, and finally issues a terminate-and-stay-resident request (int 21h,
AH = 31h) to return control to DOS.

Checking for DOS Version
Many TSRs rely on version-specific, undocumented features of DOS and rou
tinely check the current system version before doing anything else. If the ver
sion is not correct, the TSR should exit with an appropriate error message.

DOS records its version in a global variable and makes this value available
through a BIOS request, function 30h. The int 21h dispatcher does not switch
stacks or alter any global variables to satisfy this request. Although this re
quest is always safe, good programming practice dictates that you make this re
quest in your initialization code. Listing 4-18 shows how to determine the
operating system version.

Listing 4-18. Checking the DOS Version

VersionID EQU Oa03h ; DOS 3.10 (note that minor
; version is in msb)

mov ah,30h ; ah <== function to check
; DOS version

int 21h ; make the request
cmp ax,VersionID ; version is returned in ax
jnz WrongVersion ; version is wrong

Locating Resident Copies of a TSR

Monitoring some DOS action or hardware activity dictates which IVT entry to
use. TSRs also use interrupts and IVT entries to locate resident copies of their
code. You may not want multiple copies of your TSR in memory, or you may need
to locate data recorded by the resident code. If a TSR takes over some IVT

223

Coding and Programming

224

entry when it first runs, subsequent activations locate the resident code by ex
ecuting an INT instruction or inspecting the code pointed to by the IVT entry.

Which IVT entry .should you choose? It turns out that choosing an inter
rupt to locate resident code is one of the tricky problems confronting a TSR au
thor. There are no absolutely foolproof techniques.

DOS and the PC hardware use only a few of the available IVT entries. The
oretically, any unused entry is a good candidate. If your TSR actually executes
an INT instruction, the IVT entry must point to a valid ISR. There is no guaran
tee what an IVT entry contains if a TSR has not initialized it. One way out of this
"Catch 22" dilemma is to inspect the IVT entry.

DOS loads all programs on a segment boundary. If a previous copy of your
code has captured an interrupt vector, the offset value (lowest word) in the IVT
entry must match the offset of the ISR in the current code. Since there is a slight
possibility that ISRs for two different TSRs will use the same IVT entry and
have the same offset, you should do some additional checking. Listing 4-19 illus
trates this technique.

The previous example looked for an ASCII string (UniqueID); we could
have also done a string comparison on the ISR code. One shortcoming of this
technique is that it does not solve the problem of conflicting interrupts. If two
TSRs decide to use the same IVT entry, there is no way to locate which TSR
loaded first.

Beginning with DOS version 3.0, Microsoft documented the multiplexed
interrupt, which is their first attempt at solving the problem of conflicting inter
rupts. The multiplexed interrupt provides a guaranteed valid IVT entry for int
2fu and a protocol for locating TSRs. The initial int 2fu IVT entry points to an
IRET instruction. Each TSR that wants to use the multiplexed interrupt first
looks for previously loaded copies of its code and then installs its own int 2fu
ISR.

Listing 4-19. Locating a TSR by Using an Arbitrary
Interrupt Vector

NewlSRVector EQU ?? ; fill in the vector number

OldISRxx DD 0 ; init code saves old vector here

UniqueID DB 'a unique string' ; to help identify ISR
IDLength EQU $-Unique ID ; Length of string

NewISRxx PROC FAR ; installed by init code
;
; ; whatever the ISR does
;

iret
NewISRxx ENDP

4 - TSR Programming

Locate I SR PROC NEAR
mov al,NewISRVector ; al <== vector number
mov ah,35h ; ah <== get int vector function
int 21h ; ask DOS for int vector
ret ; es:bx has ISR address

Locate I SR ENDP

CheckISR PROC NEAR
cmp bx,OFFSET NewISRxx ; existing offset OK
jnz done ; if nz -- no
mov si,OFFSET UniqueID ; si <== offset UniqueID
mov di,si ; di <== offset Unique ID
mov cx,IDLength ; ex <== Length of ID

cld
repnz cmpsb ; compare IDs

done: ret ; return with results
; zr=1 ==> i nsta L Led

CheckISR ENDP ; zr=O ==> not installed

TSRResdnt PROC NEAR ; determines if TSR resident
ca LL LocateISR ; gets ISR address
ca LL CheckISR ; validates ID
ret ; and returns with results

; zr=1 ==> i nsta L Led
; zr=O ==> not installed

TSRResdnt ENDP

A TSR looks for resident copies of itself by loading a unique identifier in
AH and a zero in AL and by executing an int 2fh instruction. The int 2fh ISR
examines the value in AH. If the ISR recognizes the ID, it sets AL= Offhand
returns with an IRET; otherwise, it jumps to the previously saved int 2fh ISR.
Eventually, either the end of this chain will be reached or some ISR will recog
nize the AH value.

Again, conflicts are possible. The TSR should make some additional
checks to detect this possibility. You may extend the int 2fh protocol to help with
these checks, but you should be aware that there are no standards for additional
checks. You must program defensively. Listing 4-20 illustrates one approach.

The fact that you get a positive response to your AL = 0 int 2fh request
means that some TSR has responded. The int 2fh ISR shown in the listing re
sponds to an AL = 1 function by returning its code segment in ES. The TSR that
made the initial request can use this value to locate a unique string. If the
strings match, you can be sure that you have found the correct ISR.

This extension to the multiplexed interrupt protocol is not standard. You
have no guarantee what some other TSR will do in response to an int 2fh AL = 1
request. By zeroing the ES register before making this second request, you can
at least tell if the responding TSR is returning anything meaningful in ES. (You
know that your TSR would not be loaded in segment 0.)

225

Coding and Programming

226

Listing 4-20. Locating a TSR by Using the Multiplexed Interrupt

OurID EQU 81h ; ah value selects TSR

OldISR2f

UniqueID
IDLength

Oldlnt2f

NewISR2f

ItsMe:

GetAddress:

Bad Function:

LABEL FAR ; init code saves old int 2f vector here

DB
EQU

'a unique string'
$-UniqueID

; to help identify ISR
; length of string

DD

PROC
cmp
jz
jmp
or
jnz
mov
iret

0

FAR
ah,OurID
ItsMe
cs:Oldlnt2f
al,al
GetAddress
al,Offh

; initialization code records original
; ISR address here
; new int 2f ISR
; request for us?
; if z -- for us
; pass request along
; loaded check?
; if nz -- no
; say we're loaded
; and return

cmp al,1 ; address check?
jnz BadFunction ; if nz -- no
push cs ; return segment in es
pop es
iret

stc
iret

; indicate error

NewISR2f ENDP
LocateISR PROC

mov
int
cmp
jnz
xor
mov
mov

NEAR
ax,OurID SHL 8
2fh

; anyone listening?

al,Offh
Not Found
ax,ax
es,ax
ax,COurID

; check out reply
; nz ==> no response
; zap segment so we can
; check out reply

SHL 8) OR 1
; ask for segment

int 2fh
jc
xor
mov
cmp
jz
lea

Not Found
ax,ax
bx,es
bx,ax
Not Found
bx,NewISR2f

; if cy=1, it's not us
; did es change?
; if es didn't change

; es didn't change

4 - TSR Programming

; es:bx has ISR address
clc ; indicate success
ret ; and return

Not Found: stc ; say we failed
ret ; and return

LocateISR ENDP

TSRResdnt PROC NEAR ; determines if TSR resident
call LocateISR ; gets ISR address
jc Not Loaded
call CheckISR ; validates ID
ret ; and returns

; zr=1 ==> installed
; zr=O ==> not installed

Not Loaded: or al,1 ; force zr=O
ret ; and return

TSRResdnt ENDP

Note that the TSR cannot just grab the int 2th. If some other TSR loads
afterward and captures this vector, the IVT table entry will not point to your
code but to the most recently loaded TSR.

Recording the PSP Address
The program segment prefix (PSP) is an important data structure. DOS uses
the PSP address to manage programs and support many 1/0 services. DOS does
not know how to manage multiple PSPs; it only knows about the current PSP. If
your TSR is going to do anything that requires a PSP, you are responsible for
managing the current PSP. Later you will see how to tell DOS which PSP to use.
If your TSR will need the address of its PSP after initialization, it must record it
now. Initialization is the only time you can be sure that the current PSP belongs
to you. The following code illustrates how to determine the address of your PSP.

MyPSP DW

Listing 4-21. Getting the Address of Your PSP

0

mov
int
mov

ah,62h
21h
MyPSP,bx

; PSP address recorded here

; ask DOS to get the current PSP
; it belongs to us now
; save the PSP

227

Coding and Programming

228

Recording the Critical Section (INDOS) and
Critical Error Addresses

After a TSR terminates with a stay resident request (function 31h), it waits for a
captured interrupt to reactivate its code. When the TSR wakes up, you must
have a way to test what the foreground program is doing or to see if any DOS or
BIOS activity is in process. Since it is non-reentrant, DOS maintains critical
error and critical section flags to help the resident code decide whether it is safe
to make BIOS requests.

When the TSR reactivates, it must check both the critical error and the
critical section flags to be sure that it is safe to continue. DOS makes the address
of the critical section flag available through the undocumented int 21h AH= 34h
request. In version 3.10 of DOS, there is no BIOS function to return the address
of the critical error flag; this flag is located immediately before the critical sec
tion flag. DOS 3.3 int 21h, AX = 5d06h returns the critical error flag address in
ES:BX.

Because of the way DOS processes int 21h requests, you may not safely ask
DOS for these addresses within an ISR. The 'only reliable way to access these
flags is to record their address during initialization. The following code frag
ment illustrates capturing the addresses of the critical section and critical error
flags.

CSectflg
CErrf Lg

GetCritFLags

Listing 4-22. Locating the Critical Section and
Critical Error Flags

DW 0,0
DW 0,0

PROC NEAR

mov ah,30h
int 21h
cmp al,03h
jnz WrongVersion
push ax
mov ah,34h
int 21h
mov CSectflg,bx
mov CSectFLg+2,es
dee bx

pop ax
cmp ah,1eh
jnz v3xx
mov ax,5d06h
int 21h

; address of DOS critical section
; and critical error f Lags

; ah <== check DOS version

; at least version 3.00?
; if nz -- no
; save version
; to get address of critical
; section flag
; es:bx has address
; remember address
; assume critical error flag
; precedes critical section f Lag
; recover version
; version 3.30?
; if nz -- no
; get critical error address
; COOS 3.3 only)

4 - TSR Programming

v3xx: mov CErrflg,bx ; store critical error address
mov CErrflg + 2,es ; es:bx has address
clc ; indicate success
ret ; and return

WrongVersion: ; bad version
stc ; indicate failure
ret ; and return

GetCritFlags ENDP

Capturing Interrupt Vectors
At some point in its initialization sequence, the TSR may want to declare its own
int 2fb ISR so that future program activations can locate its resident code. The
TSR may need to modify other IVT entries as well. Int 25h (absolute disk read)
and int 26h (absolute disk write) make blind stack changes. By its very nature,
int 13h (low-level disk I/0) cannot be interrupted. Imagine what would happen if
the int 13h code were interrupted between a seek and a transfer. If another disk
I/O operation occurred as a result of this interrupt, the first transfer would
probably do serious harm to the disk structure.

DOS does not expect any interruptions while it is servicing one of these
requests. It is the TSR's responsibility to protect DOS at these times. Captur
ing these interrupts lets a TSR manage disk activity. These ISRs are tricky to
write because of the way they use the processor flags. The original int 13h ISR
returns the results in the flags register; the new ISR must return these results
rather than the flags pushed by the int 13h instruction. The original int 25h and
int 26h ISRs add yet another twist by leaving the flags pushed by the INT
instruction on the stack. Note that the Newlnt25 and Newlnt26 ISRs do not
execute a pus hf before calling the original routine and that all these IS Rs use
afar return. Listing 4-23 shows what you might want to do when you capture
these interrupts.

Be very careful when you capture an interrupt. Once you modify an IVT
entry, the processor will dispatch to the new ISR even if the ISR address no
longer points to valid code. You have to watch out for breaks and critical errors.
If either of these conditions occurs after you have captured an interrupt, they
can force your program to terminate. DOS will reuse the memory occupied by
your program and its ISRs. Once this happens, the IVT entries no longer point
to valid ISRs.

229

Coding and Programming

230

CAUTION

Before you modify any interrupt vectors, you must set up your own break
and critical error ISRs. Do not attempt to restore either of these vectors. DOS
will fix the IVT entries for these functions when your program terminates. If
you try to restore either the critical error or the break address and have other
vectors captured, your code will become vulnerable to premature termination.

Listing 4-23. Typical Replacement Disk 1/0 ISRs

DiskIO PROC FAR

Oldlnt13 DD 0 ; initialization code records
Oldlnt25 DD 0 ; addresses of original int 13h,
Oldlnt26 DD 0 ; 25h, and 26h here

BusyFLag DB -1 ; protects against interrupting
; non-reentrant code

DiskIOExitO:
pus hf ; save disk I/O f Lags
dee cs:BusyFlag ; release Lock
po pf ; restore disk I/O flags
ret 2 ; return, removing flags

; pushed by int
Diskl0Exit1:

pus hf ; save disk I/O flags
dee cs:BusyFLag ; release Lock
po pf ; restore disk I/O flags
ret

Newlnt13:
inc cs: Busy Flag ; take out Lock
pus hf ; simulate an int
ca LL cs:Oldlnt13 ; dispatch to rea L code
jmp SHORT DiskIOExitO

; take common exit

Newlnt25: inc cs:BusyFLag ; take out Lock
ca LL cs:Oldlnt25 ; dispatch to real code
jmp SHORT Diskl0Exit1

; take common exit

4 - TSR Programming

Newlnt26: inc cs:BusyFlag ; take out lock
call cs:Oldlnt26 ; dispatch to real code
jmp SHORT Diskl0Exit1

; take common exit
Di skIO ENDP

Checking the Display Type

Initialization code should test for the display type and other peripherals as nec
essary. A TSR needs to know quite a bit about the display if it is going to support
hot keys. It is relatively easy to determine whether the display is an MDA or a
CGA. Other display types are possible. Many of these other types emulate ei
ther an MDA or a CGA. Because the MDA and CGA are by far the most com
mon, this discussion is limited to these two types. The following listing shows
how to tell the difference between an MDA and a CGA.

Listing 4-24. Determining the Display Type

C40 EQU 1
C80 EQU 2
M80 EQU 3

DisplayType DB 0

int 11h
and al,30h
mov cl,4
asr al,cl
mov DisplayType,al

Freeing the Environment

; CGA 40 x 25 display
; CGA 80 x 25 display
; MDA 80 x 25 display

; equipment check interrupt
; isolate video bits
; shift video mode bits to bits
; 0 and 1
; remember video mode

The environment contains character strings. Each string has a variable name
followed by a value. (See Chapter 3 for a more complete description of the en
vironment.) DOS sets up the environment when it loads your TSR. Programs
are free to interpret the meaning of these variables. COMMAND. COM uses the
PATH variable to specify which directories to search when loading a program or
a batch file.

Since COMMAND.COM asks DOS to pass a copy of the environment when
it loads a program, a TSR will not notice any posttermination changes to the
environment. The only time that the environment is valid is during initializa
tion. Whether or not your TSR uses the environment for any reason is applica
tion-dependent. Because the environment is not valid after termination and the

231

Coding and Programming

232

environment does take up memory, there is no reason to keep it (although failing
to free the environment does not adversely affect a TSR).

The PSP contains the starting segment of the environment at offset 2ch
(see Listing 4-15, "Structure of the PSP"). To free your environment, use the int
21h AH = 49h Free Memory Block service. Under some circumstances, there
will be no environment. You must check for this case before attempting to free
the environment. If there is no environment, the PSP will contain a zero at off
set 2ch (function 49h will have trouble freeing the memory block at location
OOOOOh). Listing 4-25 shows how to free the environment.

Listing 4-25. Freeing the Environment

;
; Frees the environment
; Note: PSP_W_Envron is part of PSP STRUC in
; Listing 4-15

FreeEnv PROC NEAR

pus hr <ax,bx,es> ; save some registers
mov ah,62h ; request PSP address
int 21h
mov es,bx ; es <-- PSP
xor ax,ax ; ax <== 0

xchg ax,es:PSP_W_Envron ; zap environ segment in PSP
; ax<== environment segment

or ax,ax ; is there an environment?
jz NoEnv ; if z -- none
mov es,ax ; es<== environment
mov ah,49h ; free the block
int 21h

NoEnv: popr <es,bx,ax> ; restore registers
ret ; and return

FreeEnv ENDP

Program Termination
The last task of initialization is to invoke the DOS terminate-and-stay-resident
function, int 21h, function 3lh. When you make a terminate-and-stay-resident
request, you must tell DOS how much memory to keep. You load the number of
segments needed into the DX register and issue the int 21h AH = 31h terminate
and-stay-resident request. DOS frees all but the first DX segments of the

4 - TSR Programming

memory owned by your program. It is common to locate initialization code at the
end of a TSR so that it can be discarded at this time. The following listing illus
trates how to use this service. This code starts with an address (EndOfCode),
rounds it up to the next segment boundary, and finally converts the result to
paragraphs by dividing by 16.

Listing 4-26. Making a Terminate-and-Stay-Resident Request

mov dx,OFFSET EndOf Code ; dx <== end of resident code
add dx,Ofh ; round up to next segment
mov cl,4 ; convert offset to segment
shr dx,cl ; dx <== resident paragraphs
mov ah,31h ; DOS TSR function
int 21h

As a result of the termination request, control passes to DOS, and DOS re
turns control to the shell (normally COMMAND.COM). The shell becomes the
foreground application until the user invokes another program.

Reactivation and DOS Architecture and Services

When the TSR gets a reactivation request, it must determine if it is safe to run.
Actions taken by the initialization code simplify this task. The TSR must check
the critical error and critical section flags and verify that no uninterruptable op
eration is in progress. Ifit is safe to continue, the TSR must save current regis
ter values, switch to its own stack, set up its own critical error and break
routines, record information saved in various DOS global variables, and finally
set up its own run-time environment that includes the current PSP and DTA ad
dresses. Note that the order of these operations is very important.

Other actions may also be needed. If the TSR needs to use the display, it
must save the contents of screen memory. PRINT. COM checks the interrupt
summary register in the 8259 interrupt controller. If any interrupts other than
the ISR that woke it up are active, it ignores the reactivation request. Presum
ably, PRINT.COM makes this check to avoid losing characters on the serial port
and other slow devices.

After the TSR completes its work, it must undo these steps and slip
quietly into the background, waiting to be called again. The TSR must restore
the PSP, DTA, stack, and other register values of the interrupted program.
Once the TSR completes these steps, it can safely restore the critical error and
break handlers and return to the interrupted program.

Determining Whether Reactivation Is Safe
There is no way to predict when the interrupt reactivating a TSR will occur. Sec
tions of DOS are non-reentrant, and a TSR cannot always reactivate when

233

Coding and Programming

234

asked. The DOS architecture section explained the details of this problem. You
must respect these limitations, or your code surely will crash the system and
possibly corrupt the disk in the process.

Listing 4-27 illustrates the minimal checks that your TSR must perform.
This code is designed to run with interrupts disabled. When the processor re
sponds to an interrupt, it disables the interrupts. Unless your interrupt service
routine enables interrupts before calling DOSSafeCheck, you do not have to ex
plicitly manipulate the interrupt flag.

This code begins by incrementing the same Busy Flag used by the new disk
I/O routines (Listing 4-23, "Typical Replacement Disk I/O ISRs"). This flag has
an initial value of -1. If the INC instruction in DOSSafeCheck produces a zero,
it is safe to continue. A nonzero result means that one or more disk operations
are in progress (an int 13h ultimately gets executed as a result of int 25h and int
26h) or that a previous invocation of the TSR has not completed. Because of the
stack switch made by the reactivation code, the TSR is not reentrant. (Later,
the reactivation sequence will be described in detail.)

Next, this code checks the critical section and critical break flags. Note
that you must check both flags. The DOS critical error handler decrements the
critical section flag and increments the critical error flag before it begins proc
essing a critical error. A side effect of calling this routine is that it prevents the
TSR from being reentered. Before the TSR goes back to sleep, it must decre
ment this BusyFlag.

Listing 4-27. Determining Whether It Is Safe to Reactivate

BusyFlag: DB

CSectFlg ow

CErrFlg ow

DOSSafe PROC
DOSNotSafe:

stc
ret

DOSSafeCheck:
inc
jg

pus hr

Lds

-1 ; manipulated by disk ISRs
; as well

0,0 ; critical section flag address
; stored here (initialization)

0,0 ; critical error flag address
; stored here (initialization)

NEAR

,,, indicate that it's not safe
,,, and return

cs:BusyFLag ,,, try to take out a Lock
DOSNotSaf e ,,, if g -- some one already

,,, has Lock
<ds,si,ax> ,,, save so we can get at

,,, IN Dos Flag

si,DWORD PTR cs:CSectFlg ,,, ds:si <== address
critical section f Lag ,,,

lodsb

lds si,DWORD PTR cs:CErrFlg

or al,BYTE PTR [siJ ,,,
,,,

popr <ax,si,ds>
jnz DOSNotSafe ,,,

,,,
,,,

clc ,,,
ret ,,,

DOSSaf e ENDP

,,,
,,,
,,,
,,,

4 - TSR Programming

al <== value of critical
section flag
ds:si <== address
critical error flag

account for nonzero critical
error flag

if nz either critical
error
or int 21 in progress
indicate safe
and return

Stack Switching and Saving Register Contents
The stack is an important part of a program's environment. Since reactivation
occurs as the result of an interrupt, there is no way of knowing which stack is in
use or how much stack space is available. The stacks used by the int 21h dis
patcher are large enough to record all the processor registers. Any interrupted
program must also be assumed to have this much space left; otherwise, it could
not make BIOS requests. The BIOS dispatcher saves all registers on the current
stack.

Before reactivating a TSR, an ISR should save all registers and switch to
the TSR's private stack. It is reasonable to save register values on the stack that
was in use when the interrupt occurred. Both the stack and register values are
part of the same program context, and the stack should have room for these
values.

Trapping Breaks and Critical Errors
The next step in the reactivation sequence involves changing the state informa
tion that DOS has recorded about the current program. At this point, your TSR
is about to become the current program. Since critical errors and breaks canter
minate the current program, you must be sure that you get a chance to put
things back the way you found them. Establishing its own critical error and
break handlers lets a TSR deal with these events in an orderly and safe manner.

Since you have no way of knowing what the foreground program is up to,
setting up break and critical error handlers from within an ISR is tricky. If you
use int 21 to manipulate the IVT, you risk causing a break check. The safest
technique is to manipulate the IVT directly. Note that you must disable inter
rupts while you are changing table entries. Although it is not likely, another
program could interrupt your code in the middle of making your change and
could modify the IVT entry that you are working with. Listing 4-28 shows how
to accomplish this task.

235

Coding and Programming

236

What you do in your newly established break and critical error handlers
depends on your TSR. It is reasonable for a TSR to ignore breaks, but it usually
must do something when a critical error occurs. If your TSR can deal with failed
int 21h requests (you really should check the results of every request and be pre
pared to deal with errors), the simplest approach is to fail the call. There are
times when other actions would be more appropriate. If a disk-write fails
because the drive door was open, you should print an error message and retry
the operation.

Listing 4.28. Trapping Critical Errors and Breaks from an ISR

IVT SEGMENT AT OOh ; note absolute address
ORG 23h*4 ; we don't care about 0 to 22h

IVT23 DW o,o ; reference entries for int 23h
IVT24 DW 0,0 ; and 24h
IVT ENDS

_text SEGMENT BYTE PUBLIC 'code'
Oldlnt23 DW 0.0 ; we' LL save current critical
Oldlnt24 DW 0,0 ; error and break address here

ASSUME ds:_text
BKGNewErrHndlr PROC NEAR

pushr <ax,di,si,ds,es>
cld

mov ax, cs
mov es,ax
xor ax,ax
mov ds,ax
ASSUME ds:IVT,es:_text
mov si ,OFFSET
mov di ,OFFSET
mov cx,4
c Li

movsw
es,ax

es:IVT
ax,OFFSET

ax, cs

; save all modified registers
; put direction flag in known
; state for movsw and stosw
; make es point to segment
; containing Oldlnt23
; make ds point to IVT

; tell masm what to expect
IVT23 ; set up to copy IVT
Oldlnt23 ; entries with movsw

; each entry is 2 words
; IMPORT ANT! ! !

,,, copy current ivt entries
,,, es now points to IVT
,,, tell masm about change

Newlnt23 ,,, enter new values in
;;; IVT

rep
mov
ASSUME
mov
stosw
mov
stosw
mov
stosw
mov
stosw

ax,OFFSET Newlnt24

ax,cs

4 - TSR Programming

sti
popr <es,ds,si,di,ax>
ASSUME ds:_text
ret

BKGNewErrHndlr ENDP

Newlnt23 PROC FAR ; new break handler
iret ; ignore breaks

Newlnt23 ENDP

Newlnt24 PROC NEAR ; new critical error handler
iret ; probably should do something

Newlnt24 ENDP ; about error
; (maybe fail the ca LL)

_text ENDS

Dealing with DOS Global Variables

As a minimum, your TSR will have to record the current DTA and PSP, estab
lish a private DTA, and make itself the current program. Both the DTA address
and the current PSP are recorded in DOS global variables. You can access the
variables directly, but their location may vary with DOS version. There are
BIOS services to get and set both the DTA address and the current PSP. At this
point in the reactivation sequence, you have determined that it is safe to make
BIOS requests, and you have protected yourself against breaks and critical er
rors. Using BIOS services for these functions insulates you from changes in the
locations of these global variables.

Listing 4-29. Dealing with DOS Global Variables

BKGDTA DB 80h DUPCO) ; minimum size for DTA
BKGPSP DW 0 ; initialization code stores PSP

; value here
DOSPSP DW 0 ; we' LL save PSP and DTA of
DOSDTA DW 0,0 ; interrupted program here

BKGSetPSP PROC NEAR
pus hr <ax,bx> ; save nonvolati Le registers
mov ah,62h ; ask DOS for current PSP
int 21h
mov DOSPSP,bx ; save current PSP
mov ah,50h ; tell DOS to use new PSP
mov bx,BKGPSP ; Let it be us

continued

237

Coding and Programming

int 21h ; (undocumented)
popr <bx,ax>
ret

BKGSetPSP ENOP

BKGSetOTA PROC NEAR
pushr <ax,bx,dx,es>
mov ah,2f h
int 21h
mov OOSOTA,bx ; record OTA address
mov OOSOTA+2,es
Lea dx,BKGOTA ; ds:dx <== new OTA
mov ah,1ah
int 21h
popr <es,dx,bx,ax>
ret

BKGSetOTA ENOP

Background Processing Using Int 28h

238

The final piece of the TSR puzzle is background processing. This capability is
undocumented and consequently poorly understood. Under the right condi
tions, a TSR can make BIOS requests while another program is running.
PRINT.COM uses this feature to read blocks from a file. A word processor
might use this capability to save a file concurrent with foreground editing, or a
spreadsheet might perform a lengthy calculation in the background.

DOS provides some hooks to help you, but you still must do a lot of work to
use this feature. The critical section, critical error, and int 28h ISR are all hooks
for background processing. Programs quite frequently spend much of their time
waiting for input. By capturing int 28h, a TSR can use CPU cycles that would
otherwise be wasted waiting for input. Since other TSRs may also use this fea
ture, an int 28 ISR should chain to the previous ISR when it is done.

The int 28 ISR gives a TSR a chance to run only if the foreground applica
tion uses DOS character I/O functions. A TSR that wants to run in the back
ground normally captures one of the two timer interrupts as well. The timer
ISR ensures that the TSR will get access to the processor even ifthe foreground
program is compute-intensive or does not use the character I/O functions.

Writing an int 28h ISR is a fairly simple matter. The new ISR first calls the
old ISR and then increments the same BusyFlag used by the int 8, int 9, and
disk I/O ISRs. If the result is not zero, some uninterruptable function is in pro
gress. Since this ISR should get control only when disk access is safe, the incre
ment should always produce a zero result. Nonetheless, you should be prepared

4 - TSR Programming

for errant int 28s. After reactivating the TSR, the int 28h ISR decrements the
BusyFlag and returns to DOS. Note that you do not have to check the critical
section flag: Because an int 21h request is in progress, you know it is set; but it is
still always safe to make int 21h requests whose function is greater than Och.
You must increment the BusyFlag to prevent the TSR from being reactivated
by hot key or timer interrupts.

Listing 4-30. Interrupt Service Routine for Int 28h

Oldint28 DD 0 ; initialization code records old
; ISR address here

BusyFLag DB -1 ; protects no-reentrant sections of
; code

Int28ISR PROC FAR
Int28Exit0:

dee cs:BusyFLag ; release our Lock
i ret ; and return

Newlnt28:
pus hf ; simulate an int
ca LL cs:Oldlnt28 ; dispatch to original code
inc cs:BusyFLag ; try to take out Lock
jg Int28Exit0 ; if g -- someone beat us to it
ca LL BKGResume ; dispatch to background task
dee cs: BusyF Lag ; release Lock
i ret ; and return

Int28ISR ENDP

The process ofreactivating a TSR is fairly simple: Save all the registers on
the current stack and switch to the TSR's private stack. Most background TSRs
run for a short time and then suspend themselves. Typically they will save all
their registers on their own stacks and then return to the interrupted program.
As part of the reactivation sequence, restore the registers saved on the TSR's
stack when it suspended itself.

PRINT. COM increments the critical section flag during its reactivation se
quence. This utility does some pretty unusual things. It bypasses DOS and calls
the printer device driver directly. Presumably, incrementing the critical section
flag eliminates potential reentrancy problems in the device driver. If your TSR
accesses a driver directly, it's probably a good idea to mimic PRINT. COM.

Next, set up your own break and critical error handlers, make your TSR
the current PSP, and switch to a private DTA. The TSR from which the follow
ing routine was taken supported both background processing and hot-key ac
tivation. If the reactivation is in response to a hot key, you should save the
contents of the current display and flush the type-ahead buffer. The assumption

239

Coding and Programming

240

made here is that any keys in the type-ahead buffer were for the previously
current program and would only confuse the reactivating TSR. The return in
struction dispatches to the TSR code. When the TSR is done, it will call
BKGSuspend.

The suspension code is a little strange. The TSR that used this code
periodically calls BKGSuspend. Under certain conditions, BKGSuspend actu
ally sends the TSR into the background; at other times, it does nothing. You
might like to be able to send a TSR activated by a hot key into the background. If
a TSR running in the foreground calls BKGSuspend, this routine checks the
type-ahead buffer for the specific key that sends it into the background
(BGCombo). If this key is not at the head of the type-ahead buffer, BKGSuspend
ignores the suspension request. If the BGCombo key is found or if the TSR is
currently running in the background, it is deactivated.

Deactivation reverses the steps taken in activation. BKGSuspend restores
the saved DTA and PSP, restores the critical break and critical error handlers,
saves the current TSR registers, restores the screen (SCRBackground), decre
ments the critical section flag, switches stacks, restores index registers, and
updates the PgmState variable. The RET instruction at the end of BKGSuspend
returns control to the ISR that activated the TSR. The SCRBackground does
not switch screens if the TSR had been running in the background.

Listing 4-31. Suspending and Resuming a TSR

Suspend Resume PROC NEAR

AL tF10 EQU 113 ; extended ascii for ALT F10
BG Combo EQU AltF10 SHL 8 ; LSB of extended asci i = 0

BKG_CFG EQU 1
BKG_CBG EQU 2

SaveStack STRUC
rSP DW 0
rSS DW 0
SaveStack ENDS

switch MACRO sstack,dstack ,, switches stacks
c Li ,, disable ints during switch
mov sstack.rSS,SS ,, record current stack
mov sstack.rSP,SP
mov SS,dstack.rSS ,, set new stack
mov SP,dstack.rSP
sti ,, ints ok now
ENDM

_text SEGMENT BYTE PUBLIC 'code'

PgmState DB 0
InDosFLag DD 0

OldStack SaveStack <>
BKGStack SaveStack <>

BKGResume:
ca LL BKGSaveALL

cld
mov ax,cs
mov ds,ax
switch OldStack,BKGStack
ca LL BKGRestoreAL L
pus hr <es,di>
Les di,InDosFLag
inc BYTE PTR es:[diJ
popr <di,es>
ca LL BKGNewErrHndlr

ca LL BKGSetPSP
ca LL BKGSetDTA
c Li
cmp PopupPending,0
jz _brO
dee PopupPending
mov PgmState,BKG_C_FG

ca LL SCRForeground
ca LL BKGBufFlush

_brO: sti
ret

BKGSuspend:
cmp PgmState,BKG_C_FG
j L _bsO
jg _bs2

;

;
;
;
;
;
;

;
;
;

;
;
;

;
;

;
;
;
;

4 - TSR Programming

keeps track of program state
initialization code saves address of
critical section f Lag here
stack of interrupted program
stack of TSR. Set up by
initializaiton code

save all reg on current
stack
init direction flag

ds <== code segment
switch to background stack
restore background registers

es:di <== indos flag
set i ndos flag

set up own critical error and
break handlers
now change PSP
change DTA

,,, popup pending?
,,, if z -- no
,,, one Less popup pending
,,, bring program to
,,, foreground
,,, bring up screen
,,, flush keyboard buffer

; running in foreground?
; if L -- background
; if g -- initializing
; (ignore suspend)

; Currently running in foreground. Check for keystrokes
;

push
xor
inc
int

ax
ah,ah
ah
16h

; save current ax value
; ah <== 1 (status check)

; make request
continued

241

Coding and Programming

;

jz
cmp

jnz
xor
int
pop

_bs1
ax,BGCombo

_bs1
ah,ah
16h
ax

Listing 4-31. continued

; if z -- no character available
; is this the character to push
; us into the background?
; if nz -- no
; ah <== 0 (read request)
; remove character from buffer
; recover ax

; Running in background and asked to suspend. Do it.
;
_bsO:

_bs1:
_bs2:

call BKGRestoreDTA
call BKGRestorePSP

; restore DTA
; restore PSP

call BKGRestoreErrHndlr ; restore old critical error
; and break handlers

call
call
Les
dee

SCRBackground
BKGSaveAll
di ,InDosflag
BYTE PTR es:[di]

switch BKGStack,OldStack
call BKGRestoreAll

; restore screen
; save background registers
; es:di <== indos address
; decrement indos flag
; change stacks
; restore registers

mov
ret

cs:PgmState,BKG_C_BG ; program in background

pop
ret

ax

; and return

; recover original ax
; and return

Suspend Resume ENDP
_text ENDS

Removing a TSR from Memory
'

242

Because of the limited physical memory available on the PC, you may need to
remove a TSR from memory when you no longer need it. Removing a TSR from
memory appears easy, but there are some problems. A TSR frequently captures
interrupt vectors, and before releasing a TSR's memory, you must restore these
vectors.

When the TSR initializes, it should record the initial contents of any vec
tors it modifies. If no other TSR loaded after yours captured these vectors, you
can restore the interrupt vectors to their original values and release the mem
ory occupied by your TSR. If the vectors of interest still point to your code, it is

4 - TSR Programming

a safe assumption that no other TSR has captured them. But suppose your TSR
shares an interrupt vector with a TSR that loaded after it. Each should have re
corded the original vector contents and inserted an IVT entry pointing to its
own code. The existing IVT entry points to the TSR loaded last, which should
have saved the vector to the first TSR, which should have saved the vector to the
original ISR.

If you replace the current IVT entry with the value you saved, you have
effectively removed the other TSR from the ISR chain. If the second TSR could
be entered only by this one vector, all you have done is wasted memory. If the
second TSR has another entry point and tries to chain to the saved interrupt
vector that you have altered, this reference points to a block of deallocated
memory.

The cleanest solution to this problem is to implement a TSR that manages
other TSRs. There is an excellent public domain package called Mark/Release
available on many bulletin boards. The Mark TSR runs before any other pro
grams are loaded and makes a copy of the IVT and records the current state of
memory. The user loads other TSRs as necessary. Running Release restores
memory and the IVT to the values recorded by the Mark program, effectively
unloading any TSRs loaded after Mark. It is possible to nest Mark invocations.

Mark/Release works in most, but not all, cases. It restores the IVT and
memory. If a TSR has altered some other DOS data structure, that data struc
ture will remain changed after the TSR is evicted from memory.

Summary

This chapter has described the technical details of writing TSRs. It has ex
plained what you must do and why you must do these things. These techniques
have many other applications. You can use them to add background saves to a
word processor or background calculations to a spreadsheet. You can implement
many simple functions as background TSRs. The code fragments presented
here are a good starting point for writing more sophisticated TSRs.

243

5 - Real-Time Programming

m=l EAL-TIME systems are used in many applications, and there are few peoIKI ple who do not interact with one every day. For example, applications like
telephone switching systems, power generation and distribution, and automatic
teller machines use real-time systems.

MS-DOS is widely used for personal and business computing applications,
but its use for real-time applications is less popular. In this chapter, we will dis
cuss what real-time systems are and how to use MS-DOS for many simple yet
useful real-time applications.

Overview of Real-Time Systems

Before discussing real-time systems, let us briefly discuss other types of compu
ter systems. This will help us gain a better understanding of real-time systems.

In the early days of computers, the cost of computers was very high as com
pared to the cost of salaries for computer professionals. As a result, the goal was
to maximize the use of every computer. This resulted in batch-processing com
puter systems, where the computer was supplied a constant backlog of work,
and the computer waited for no one. All human activities were done off line so
that the inevitable human delays did not waste expensive computer time.

As the cost of computers came down, it was no longer economical to have
highly paid professionals wait for computer time. Therefore, more computers
were purchased and people worked interactively with the computers. This is
called on-line processing. Still, however, the computer was too fast for human
beings; it wasted time waiting for human responses. This led to the development
of time-sharing systems. Time-sharing systems allow more than one user to
work at a time, each user getting a small slice of time. Time-sharing often gives
the user the impression that the computer system is dedicated only to that user.

In addition to batch-processing, on-line, and time-sharing systems, there
is another important type of computer system called real-time, and that is the
topic we shall discuss in the rest of this chapter.

247

Coding and Programming

248

What Is Real-Time?
To understand what real time is, let us consider a simple example of a scene gen
eration system in which a computer is used to produce video effects. A scene
generation system may produce a frame of movie film every few minutes. It
would give an effect of ultra-slow motion. But, ideally a movie maker would like
to see the scene at full speed, just the way the audience would see it. If the com
puter could produce 24 frames per second, which is the speed of movie film, then
the scene would appear in a nonstretched time frame or in "real time."

This suggests that a real-time computer system is one that:

• Deals directly with the environment external to the computer.
• Is fast enough to keep up with the external environment.

With this understanding ofreal time, the field ofreal time in a broad sense
could include all computer systems. For example, a batch-processing system is
capable of real-time performance if the response criteria are long enough. If
the Internal Revenue Service says that refund checks will be delivered within
60 days, and if their batch-processing computers can manage the work, they
have a real-time system. However, the term real-time systems, as used in com
puter literature, usually includes only those systems with time constraints in
the order of seconds or less. It is in this sense that we are going to study real
time systems in this chapter. To summarize: When a computer is used to deal
with an external environment having certain time constraints (usually less than
a few seconds) that must be met without fail, it is called a real-time system.

Batch-processing, on-line, and time-sharing systems are not real-time sys
tems because they are not guaranteed to meet absolute time constraints. For
example, time-sharing systems are usually fast enough for interactive use, but
they can sometimes slow down, and one user's computing task may be blocked
by another user's computing task.

Characteristics of Real-Time Systems
Real-time systems have many unique characteristics. The external environment
of a real-time system usually contains input/output devices that act as the senses
of the system. In general, any computer system can be said to sense the environ
ment because it performs input/output. Usually, the input and output happen at
discrete, distinct points of time. However, real-time systems have input/output
devices (such as thermocouples, optical scanners, valves, motors, etc.) that col
lect and output data continuously. The continuous output usually overlaps the
continuous input. For example, a real-time system may continuously sense the
temperature of a chemical process and take action to maintain it at a desired
value.

The real-time systems usually require concurrent handling of multiple in
puts/outputs. In real-time systems, the requirement for concurrency involves
correlated processing of two or more inputs/outputs over the same time interval.
This requirement for concurrency is different from the overlapped processing of
independent transactions in time-sharing systems. For example, a real-time

5 - Real-Time Programming

system for a chemical process control may need to simultaneously monitor tem
perature, pressure, level, concentration, flow, etc., and adjust valves, heaters,
etc., to maintain the process in a desired state.

The timing constraints for real-time systems typically range from several
nanoseconds to seconds. This range is fast compared to human standards.

The precision of the required response is greater for real-time systems
than for other systems. For example, in a payroll processing system, salary
checks need to be ready three days before the date of payment. Occasionally, a
delay of one or two days is acceptable. However, for a chemical process control
system requiring adjustment of temperatures within a second, a delay of an
other second may result in a disastrous chemical reaction.

Note that not all the characteristics just explained need to be present in a
real-time systems.

Basic Types of Real-Time Systems
Real-time systems can be divided into three types based on the direction of data
flow, as shown in Figure 5-1:

• Unidirectional

• Bidirectional stable

• Bidirectional potentially unstable

Any real-time system can be viewed as one of these three basic types.

Unidirectional Systems
Unidirectional systems are those real-time systems in which the data flow is in
only one direction, i.e., either from the external environment to the computer
or from the computer to the external environment, but not both. Such systems
are primarily data generation or data collection systems.

The movie scene generation system mentioned before is an example of a
data generation system. The only requirement is that the frames must be pro
duced at the rate of 24 frames per second. This means that it should not take
more than ¥24 of a second to generate a frame. Even a slight delay will be noticed
and thus will be unacceptable. If most frames can be generated within ¥24 of a
second, and a few take a little longer than that, then a buffer can be used as
shown in Figure 5-2 to get a real-time effect. The computer can actually gener
ate a few frames before starting the display. New frames are put in the buffer as
they are generated, and one frame from the buffer is displayed every ¥24 of a
second. Even if the computer takes longer for a frame, it is acceptable because
the output from the buffer is still 24 frames per second.

Data collection systems are the opposite of data generation systems. In
data collection systems, the environment dictates how fast the computer must
be. If the computer is a little slow, then some data will be lost. A buffer cannot
help to smooth out short-term delays in data collection as it does in data genera
tion. A laboratory me.asurement system that collects data is such a system.
After collecting data, it may also analyze it and display it in a graphical or text

249

Coding and Programming

250

Real-Time
Systems

Potentially
Unstable

Figure 5-1. Types of real-time systems based on direction of
data flow.

Scene
Generation
Computer

Buffer

Figure 5-2. Buffered data generation.

Display

form. Thus, it also performs output. But the output phase is usually separate
from the data collection phase. Thus, a laboratory measurement system may
predominantly be a data collection system.

Bidirectional Stable Systems
Unidirectional systems input to or output from the computer, but not both.
However, many real-time systems require both input and output. Such systems
are called bidirectional systems. A bidirectional system may be stable or poten
tially unstable. Let us first discuss bidirectional stable systems with the help of
a home control system.

A home control system can be used for heating, ventilation, air-condition
ing, lighting, watering the lawn, etc. To maintain the temperature at some
value, the system needs to read the temperature and take appropriate correc
tive action every few minutes. The temperature is acceptable even if it is left un
changed for 10 or 20 minutes. Thus, occasional delays are acceptable because no

5 - Real-Time Programming

disaster results and the temperature can still be maintained. The system still
remains under control. This is what we mean by a stable system. Another exam
ple is an automatic teller machine. Most transactions should take only a few sec
onds, but it is acceptable if occasionally a transaction takes longer because of
overload. Note that there is no fixed absolute time constraint (e.g., that re
sponses must come within x seconds). But still there is a time constraint (e.g., a
customer will get annoyed if he or she does not receive money for 5 minutes after
entering the request).

Bidirectional Potentially Unstable Systems
Consider balancing a broomstick on your fingertip as shown in Figure 5-3. To
maintain balance, you must be quick enough to constantly move your fingertip.
This system is bidirectional because you must sense the position of the
broomstick and take corrective action accordingly. If you are a bit too late, the
broomstick may move too far and fall out of balance. Thus, there is some "abso
lute" time constraint that must always be met. Even an occasional delay is not
acceptable. This is what we mean by an unstable system. Another example is
rocket flight control as shown in Figure 5-4. A rocket is balanced on its exhaust,
just like a broomstick on a fingertip. Like the broomstick, if the rocket gets too
far out of balance, it is not possible to control it anymore.

INSTABILITY

Corrections Corrections

Figure 5-3. Balancing broomstick on fingertip:
potentially unstable.

251

Coding and Programming

252

Correction Balanced
on Exhaust

Figure 5-4. Rocket balanced on its exhaust:
potentially unstable.

In bidirectional potentially unstable systems, the computer makes deci
sions about how to control the external environment. Such systems are most de
manding on the part of the computer action because even a small delay can have
disastrous results.

Typical Timing Requirements and Real-Time Solutions
The response time is the most important timing requirement for understanding
how fast the external environment requires responses. The response time is the
elapsed time between the input to the computer system and the completion of its
processing or sending an output in response. The response time is thus the total
time a transaction or activity remains in a computer system.

For example, if the automatic teller machine system (ATM) has only one
terminal, then the response time is simply the time from when the customer
makes a request to the time when the computer executes it to completion. In

5 - Real-Time Programming

actuality, however, the ATM system has many terminals. Therefore, the re
sponse time also includes the delays involved because the computer is handling
several requests at a time.

The range of response times for some applications is shown in Figure 5-5.
For ATM or airline reservation systems, the response time required may be in
the order of seconds. For some database query systems, a response time of
20 seconds may be acceptable. On the other hand, the required response times
for applications such as rocket flight control, radar readings, and scientific data
collection may be in milliseconds.

0.1 ms

1 ms

10 ms

100 ms

1 s

10 s

100 s

1000 s

10000 s

}
1

I
I

Radar Scanning

Typewriter Input

J Laboratory/Scientific Data Collection

} Banking, Stock, Reservation Systems

}
f Database Query Systems

Home Control Systems

Figure 5-5. Range of typical response times.

Another important timing requirement is interval time, the time interval
between two transactions. It determines how frequently the transactions may
come for processing. The interval time may be random or periodic. It is random
when it is determined by events in the external environment (such as a clerk
pressing a key or an interrupt from some device). It is periodic when it is deter
mined by a clock or some other device in the computer. When determining the
required interval time, we must consider the maximum possible load at any
time. Otherwise, there will be loss of data during the peak load periods, which is
not acceptable.

Like response time, interval time may vary from a fraction of a millisecond
(or smaller) to several minutes. A savings bank system with several branches
may have one transaction per second during the busy lunch hours. A keyboarder
may type 5 to 10 characters per second. A scanning radar system may send data
every millisecond. A database inquiry system may have only an occasional
inquiry.

253

Coding and Programming

Table 5-1 gives the types of real-time solutions popularly used for real-time
applications, depending on the response time required. Note that MS-DOS is
not included in the table because it is not popular for real-time applications.

Table 5-1. Response Times and Popular Real-Time
Solutions

Range of Response Time

10 ns-100 ns
100 ns-1 µs
1 µs-100 µs
100 µs-1 ms
1 ms-1 s
1 s-upward

Popular Real-Time Solutions

Dedicated ECL logic, fixed program
Dedicated standard logic, programmable
Fast processor with dedicated program
Microprocessor with real-time kernel (os)
Microprocessor with real-time (os)
Anything

MS-DOS for Real-Time Applications

254

As we have already discussed, real-time systems span a wide range of applica
tions, from a simple data collection system to a complex and elaborate rocket
control system. Real-time systems differ not only in the basic type (unidirec
tional, bidirectional stable/potentially unstable) but also in their timing require
ments. Before we can investigate when to use MS-DOS for real-time
applications, we need to understand how fast MS-DOS is.

How Fast ls MS-DOS?
The speed of a computer running MS-DOS depends on the processor as well as
the methods of data transfer used. We will discuss several issues that determine
the speed of MS-DOS and thus help determine whether it can be used for a real
time application.

MS-DOS Clock Frequencies
At the time of writing this book, MS-DOS is available on six members of the In
tel 8086 family of processors: 8088, 8086, 80188, 80186, 80286, and 80386. Of
these, the 8088 is the slowest, and the 80386 is the fastest (and most powerful).
The 8086 family processors are available at different clock frequencies, as shown
in Table 5-2. The clock frequency of 4. 77 MHz means that 4. 77 million "clock
ticks" are generated per second. The clock frequency determines the speed of
the processor: the higher the clock frequency, the faster the processor. Note,
however, that the 80286 is faster than the 8086 running at the same clock
frequency.

Because the 8088 processor is the slowest in the 8086 family, all timing in
formation given in this chapter is for an 8088 processor running at 4. 77 MHz. If
your computer has a faster processor, you will be able to get faster response.
Because all 8086 family processors have pre-fetch queues, the actual execution
time of any sequence of instructions may be different from that calculated solely
on the basis of individual instruction execution time.

5 - Real-Time Programming

Table 5-2. Clock Frequencies for MS-DOS Computers

8086 Family Processor

8088
8086
80188/186
80286
80386

Computer Name

IBM PC
IBM PC Compatible
IBM PC Compatible
IBM PC AT (8086 real mode)
IBM PC AT (386) (8086 real mode)

Clock Frequencies

4.77, 8 MHz
8, 12MHz
8, lOMHz
8, 10 MHz
16, 20, 25 MHz

MS-DOS maintains a real-time clock. This real-time clock provides the
date and time, and can be accessed by any program. The time of the real-time
clock is accurate up to 10-millisecond intervals. Thus, if our application requires
a resolution time less than 10 ms, we cannot use the real-time clock.

The following program reads the date from MS-DOS. For reading the
date, software interrupt 21h is used. As a matter of fact, when any service
is requested from MS-DOS, this int 21h is used, with the AH register hold
ing the code for the function to be performed. Later, we will discuss some more
example programs using software interrupts to make calls to MS-DOS or the
ROM-BIOS.

mov ah,2ah ; function to read date
int 21h ; call DOS
mov year, ex ; year in ex C1980 through 2099}
mov month, dh ; DH has month C1 through 12>
mov day, dl ; DL has day C1 through 31}

In the preceding program, the day of the week (0 = Sunday, 1 = Monday, etc.) is
also returned in AL.

As seen in the program, the following steps are performed in making a
function call to MS-DOS or the ROM-BIOS:

• Set up registers to contain appropriate function codes and parameters.
• Make an interrupt corresponding to the function call.
• On return, read the return parameters and status information from the

registers.

To read the time from MS-DOS, int 21h with a function code of AH= 2ch is
used as in the following program:

mov ah, 2ch ; function = read time
int 21h ; call DOS
mov hours, ch ; CH has hours CO through 23)
mov mins, cl ; CL has minutes CO through 59)
mov secs, dh ; DH has seconds CO through 59)
mov msec, dl ; DL has 10 ms CO through 99)

255

Coding and Programming

256

The program reads the time from the system and stores it in variables named
appropriately. We can also set the time and date by using function calls in
MS-DOS.

Data Transfer in MS-DOS
For real-time systems, the MS-DOS computer needs to transfer data with the
external environment. The data to be transferred falls into the following three
categories:

• Data represented by single bits indicating the current state of a two-state
device.

• Data representing the digitized value of analog signals produced by
analog-to-digital converters.

• Digital information sent from another piece of equipment (which could
have obtained the data in one of three ways).

Accessed by
IN, OUT

Instructions

Accessed by
DOS or ROM-BIOS

Function Calls

Accessed by
DOS or ROM-BIOS

Function Calls

Figure 5-6. Types of ports and methods of access.

Ports are used by MS-DOS for data transfer. The data read from a port re
presents the external environment. The data written to a port affects (controls)
the external environment. There are two types of ports in MS-DOS: CPU ports
and DOS ports. Figure 5-6 shows the two types of ports and methods used for

5 - Real-Time Programming

accessing them. Physically, these ports may be the same. It is the method of ac
cess that distinguishes them. CPU ports are also called logical ports.

CPU ports represent low-level data transfer and are accessed directly by
the processor. Each CPU port is identified by its address; there may be as many
as 65,536 different ports. MS-DOS uses some of the CPU ports for the program
mable timer and for specific purposes like talking to the keyboard and data
transfer with the disk drive. Other CPU ports can be used for other purposes by
a user. The basic method of accessing these ports is to use the assembly instruc
tions IN and OUT. The IN instruction reads one byte or one word from a port.
The OUT instruction writes a byte or a word to a port.

In MS-DOS, the CPU port 61h is used for the speaker. The second least
significant bit (bit 1) is used for controlling the sound from the speaker. If the bit
is set, the speaker is turned on; otherwise it is turned off. The other bits in this
port control other functions. The following program in Listing 5-1 uses the
speaker port to generate sound:

noise_on:

time_ 1:

noise_off:

time_2:

exit:

Listing 5-1. Sound Generation with the Speaker Port

in
mov
and

or
out
mov

Loop

and
out
mov

Loop
push
mov
int
pop
jnz
jmp

ret

a L, 61h
bl, Of ch
a L, bl

a L, 2
61h, al
ex, Off h

time_1

al, bl
61h, al
ex, Offh

ti me_2
ax
ah,
16h
ax
exit
noise_on

; 61h is speaker port address
; mask to reset bits 0 and 1
; mask a L

; bit 1 in a L is set
; turn speaker on
; spend time

; reset bits 0 and
; turn speaker off
; smaller value in ex means
; higher frequency of sound

; save ax
; read keyboard status
; call BIOS keyboard services
; restore ax before jumping
; a character has been typed
; no character is typed

257

Coding and Programming

258

In the preceding program, the speaker is repeatedly turned on and off by
writing a byte to port 61h. After turning on the speaker, a LOOP instruction is
executed for spending some time before turning it off. The sound continues until
a character is typed from the keyboard. The int 16h function is used for reading
the status of the keyboard.

Table 5-3 gives the CPU port numbers used in MS-DOS for specific
purposes.

Table 5-3. CPU Ports Used for Specific Purposes

CPU Port

Clock
Secondary RS 232
Keyboard
Hard disk
Printer
Monochrome display
Color display
Floppy disk
Primary RS-232

1/0 Address

040=043
2F8=2FF
060=063
320=32F
378=37F
380=3BF
3D0=3DF
3F0=3F7
3F8=3FF

Interrupt Vector

8
11
9

13
15

14
12

DOS ports are for high-level data transfer; that is, they are not controlled
by the processor directly but are accessed by function calls to DOS and the
ROM-BIOS. There are two types of DOS ports, commonly known as serial ports
and parallel ports.

Parallel p()rts are basically designed for printers. They transfer data in
parallel; that is, all 8 bits of a byte are transmitted to the printer at the same
time. DOS supports parallel port data flow in only one direction (i.e., from com
puter to printer), although the hardware itself is capable of both input and out
put. The following piece of code outputs to a parallel port a string pointed to by
DS:DX. The DOS function int 21H with AH = 40H (write file) is used for this
purpose. The BX register contains the file handle for the standard list device
(4). After execution of the call, the AX register will contain the count of the
characters actually written to the parallel port.

mov ah, 40h ; function= write file
mov bx, 4 ; handle for standard printer
mov ex, 20 ; count of characters
mov dx, seg OUTSTR ;
mov ds, dx ;
mov dx, offset OUTS TR ; ds:dx points to OUTSTR
int 21h ; call DOS to print
jc fai Led ; carry set means print failed

Serial ports are commonly used for connecting to modems as well as for in
terfacing with a serial mouse. Serial ports transfer data one bit at a time on the

5 - Real-Time Programming

same wire. DOS supports data transfer bidirectionally, i.e., into and out of the
computer.

Serial ports transfer data asynchronously. As a result, a set of communica
tion parameters must be negotiated between both ends. The baud rate ofa serial
port is the number of bits transferred per second. Baud rates supported by
MS-DOS 3.3 range from 110 to 19,200 bits per second. Word length is the num
ber of bits that constitute a character. This could be 7 or 8. Parity is a simple
mechanism for error detection in the communication line. According to RS-232
standards of serial communication, parity could be odd or even (two ways of
checking errors) or no parity. Each character is delimited by bits known as stop
bits. One or two stop bits can be specified. These parameters have to be ini
tialized before beginning data transfer.

BIOS function int 14h is used for data transfer with a serial port. Initializ
ing a serial port is performed by a function code of 0 in the AH register. The com
munication parameters are encoded in the AL register as shown in Table 5-4.
The port number is specified in DX. There are four serial ports in MS-DOS,
known as COMl through COM4. In the following program, a serial port is ini
tialized to 9600 baud, 8-bit word, 1 stop bit, and no parity. After execution of the
function call, the AH register contains the status of the port.

mov ah,O ; initialize serial port
mov al,Oe3h ; 9600 baud, 8-bit word,

; no parity, 1 stop bit
mov dx,O ; COM1 is initialized
int 14h ; cal l ROM-BIOS

Table 5-4. Communication Parameter Encoding in AL

Baud Rate Parity Stop Bits Word Length

Bits Bits Bits
7, 6, 5 Rate 4,3 Parity Bit 2 Stop Bit 1, 0 Length

000 110 xO None 0 1 bit 10 7 bits
001 150 01 Odd 1 2 bits 11 8 bits
010 300 11 Even
011 600
100 1200
101 2400
110 4800
111 9600

The following program code writes a character 'x' to a serial port. On re
turn, ifbit 7 of the AH register is set to 0, then the function call is successful. A
value of 0 in bit 7 of the AH register indicates failure.

mov ah,1 ; function 1 = write character
mov al,'x' ; AL contains the character
mov dx,D ; write to COM1
int 14h ; ROM-BIOS cal L

259

Coding and Programming

260

The time taken for data transfer with ports usually depends on external
devices. For example, the time taken for writing/reading 1 byte to/from a hard
disk depends on several factors: the type of hard disk, hard disk parameters
such as the number of heads and the number of cylinders, granularity of I/Oto
the hard disk, file structure, number of files, etc. If your real-time system uses
external devices, you should experiment and find out the timings of the opera
tions needed. Since the resolution of the system clock in MS-DOS is 10 ms, the
experiment should repeat the operation many times in order to get accurate
time estimates.

There are three methods of data transfer, as shown in Figure 5-7:

• Polled

• Direct memory access (DMA)

• Interrupt-driven

Interrupt
Driven

Figure 5-7. Methods of data transfer.

Polled Data Transfer
Polled data transfer can be used virtually for any device. In this scheme, the
ports are checked in some fixed sequence to determine if data is available at the
port. If data is available, it is transferred. Thus, a lot of computer time may be
wasted if ports are inactive most of the time. Moreover, the processor remains
busy during data transfer and no polling occurs at this time.

To understand how fast polled data transfer is, consider the following pro
gram code which inputs data from a CPU port into memory. The DX register
contains the address of the port.

5 - Real-Time Programming

read: in ax, dx ; read data -- 12 cycles
add di,2 ; next destination -- 4 cycles
mov [diJ,ax ; store data -- 18 cycles
Loop read ; Loop unti L done -- 17 cycles

; total 51 cycles for 8088
; total 43 cycles for 8086

For an 8088 running at 4. 77 MHz, the 51 clock cycles take 10.69 micro
seconds, resulting in a transfer rate of 93 kHz. This transfer rate means that the
computer can read data a maximum of93,000 times from the port.

The following program checks to see whether data is ready in a serial port.
Int 14h with AH = 03 (serial port status request) is used for this purpose. On
return, if bit 0 of AH is set, it indicates that data is ready. The program waits
until data is ready, and the data is returned in AL.

wait:
mov ah, 3 ; read serial port status
mov dx, 0 ; status of COM1 is required
int 14h ; call ROM-BIOS
and ah, ; i5 data ready?
jz wait ; no, wait unti L ready
mov ah, 2 ; function = read data
mov dx, 0 ; read from COM1
int 14h ; ca LL ROM-BIOS

DMA Data Transfer
DMA data transfer is used when large quantities of data are to be transferred
and the processor has other tasks to do during the data transfer. Usually, only
the processor accesses the memory. But in DMA, the external device can also
access the memory. The external device puts the processor on hold and initiates
data transfer with the memory. During data transfer, the processor cannot ac
cess the memory, but it is free to do something else. Once the data transfer is
completed, the processor can access the memory.

Interrupt-Driven Data Transfer
Interrupt-driven data transfer is used when the data transfer is asynchronous
(the time of data transfer is not predetermined). And usually the data transfer is
relatively infrequent. An interrupt indicates the occurrence of some external
event to the processor, and can be generated by an external device, a clock, or a
program. When an interrupt occurs, the processor suspends the current pro
gram, reads the address of an interrupt service routine (ISR) from the interrupt
vector table, and executes it.

The main functions performed by an ISR are:

1. Enable interrupts, so that higher-priority interrupts can be serviced.

2. Save those registers that the ISR will use.

3. Do the processing associated with the interrupt as quickly as possible.

261

Coding and Programming

262

4. Restore the registers saved.

5. Execute an IRET instruction to resume the interrupted program.

The following program shows the skeleton of an ISR.

sti
push ax
push bx
push ex
push dx

mov ax,cs
mov ds,ax

pop dx
pop ex
pop bx
pop ax
iret

; enable interrupts
; save only those registers
; that are used by
; the ISR

; Loe a L data to be accessible
; using DS

; process the interrupt
; restore registers in the
; reverse order
;
;
; resume interrupted program

When an interrupt occurs, the processor saves three words (CS, IP, flags) and
reads two words (address of ISR). Thus, the overhead on serving an interrupt
takes 71 cycles for an 8088 processor and 51 cycles for an 8086 processor. There
is no overhead for setting up the interrupt or clearing it because the act of ser
vicing the interrupt clears it (called automatic end of interrupt mode).

Comparison of Data Transfer Methods
A comparison of timings and maximum rates of non-DMA data transfer is pre
sented in Thble 5-5. The timing overheads (cycles and time) in the table are cal
culated for just the loops, with no actual data transfer. The timing information is
given for the purposes of approximate comparison only. For example, the "soft
ware loop" timing is obtained by the following assembly language instruction:

again: Loop again

The CX register is loaded with a particular count and no data is transferred in
this loop.

The timing cycles for polling are based on the following program, which
reads the status from a port, checks for a ready bit, and loops if not ready.

again:
in ax,dx ; port is specified in DX
test ax,bx ; register/register comparison
jnz again ; Loop until ready

5 - Real-Time Programming

Table 5-5. Data Transfer Rates for Non-DMA
Interfaces

Data Ready
Timing Overhead Data Transfer

Maximum Data
Determined by Cycles Time Cycles Time Transfer Rate

Software loop
(8088, 4. 77 MHz) 17 3.564 µs - - -
Polling
(8088, 4. 77 MHz) 27 5.660 µs 51 10.692 µs 61 kHz
Interrupt
(8088, 4. 77 MHz) 115 24.109 µs 43 9.015 µs 30kHz
Interrupt
(8086, 8 MHz) 83 10.375 µs 43 5.375 µs 63 kHz

The data transfer rates that can be achieved in practical applications are
lower than the maximum data transfer rates in Table 5-5 because of the time re
quired to set up the timers, receive the data, etc. If a data acquisition board is
used, then the rate of data transfer also depends on the data transfer rate of the
board.

Techniques for Writing Faster Programs
Many software techniques and boards (standard and custom) can be used for
faster execution of MS-DOS programs. You should consider them only if your
real-time system design requires a faster response from your computer. Al
though an exhaustive discussion of all these is beyond the scope of this chapter,
we will discuss a few such techniques in this section.

If an application requires computation with floating point math, the use of
a math coprocessor 8087 (or 80287/80387) can improve the speed of calculations
by orders of magnitude. Intel, the manufacturer of the 8087, has benchmarks
showing over a thousand times speed increase in certain math operations when
the 8087 is used in place of software math routines. An 8087 provides the system
with instructions for fast floating point calculations such as number conver
sions, basic mathematics, and some transcendental functions (e.g., sine, cosine,
log). Because these math routines are contained in the 8087 rather than in pro
gram memory, use of the 8087 can also result in smaller programs. Refer to
Chapter 10, "Programming for the Intel Numeric Processing Extension," for
programming details.

If an array is to be looked up, the XLAT instruction can be used in all pro
cessors except the 8088. The XLAT instruction has a quick way to index into a
256-byte table and obtain the contents of that location, as shown in Figure 5-8.
By chaining XLAT instructions together, larger table lookups can be handled.

Instead of using an IN/OUT instruction in a loop to transfer a number of
bytes, REP INS/OUTS can be used for 80188, 80186, 80286, and 80386.

Using DMA techniques for data transfer can considerably increase the
speed of a system. The data transfer takes place at the full speed of the bus and

263

Coding and Programming

264

AX Register Before executing XLAT,
AL points to ELEMENT

After executing XLAT,
ELEMENT replaces AL

BX Register points to base

Maximum of
256 Elements

I
Figure 5-8. Operation of XLAT instruction for table lookup.

the memory because the processor is not involved. Another advantage is that
transfer is not limited to the data bus width of the processor.

Using a macro in place of a subroutine call makes a program faster. This is
because a macro expands code in-line whereas a subroutine call has to store the
return address in a stack, usually save registers, and make a jump. Refer to
Chapter 1, "Structured Programming 1: Tools for Structured Coding," for de
tails on writing macros.

When to Use MS-DOS for Real-Time Applications

The decision to use MS-DOS for a particular real-time application depends on
several considerations. These considerations include

• Response time

• Interval time
• Number of inputs
• Number of outputs
• The processor used
• The clock frequency
• The system design

Of all these considerations, only the design of the real-time application de
pends on the designer. The clock frequency is sometimes under the direct con
trol of the designer: a faster MS-DOS system can be selected. All other
considerations are dictated by the external environment and cannot be changed
by the designer.

We need to calculate the required response time for the application as well
as calculate the response time that MS-DOS can support in the application en
vironment. It is usually easy to determine the required response time for the
application. Consider a simple example of data collection. Assume that in 1 sec-

5 - Real-Time Programming

ond you need to collect 50,000 bytes of data and process them. This means that
you have 1/50000 = 20 microseconds to collect and process each byte.

In another example, suppose you require a response time of 10 ms to moni
tor and take corrective action to control the temperature of a chemical process.
(This may be based on factors such as timings of equipment that control the tem
perature as well as the nature of the process.) Thus, the response time required
by the application is inherent to the application as well as the existing
environment.

It is more difficult to determine the response time that your real-time sys
tem can support. To determine the response time that can be supported by
MS-DOS, first consider the existing MS-DOS and existing equipment (if any),
as well as some simple software design method (different design methods are
discussed later). Now compute the response time, which is the time it would
take for the necessary input, processing, output, and all associated delays. If
this response time is less than the required response time, then you have an ac
ceptable design using MS-DOS.

Consider again the example of data collection, with the required response
time of 20 microseconds. MS-DOS could provide a response time of 20 microsec
onds if there is enough primary memory to store the required amount of data.
But if there is not enough memory, you may need to store data in the secondary
memory. In that case, 20 microseconds may not be sufficient to store the data.

If the response time supported by MS-DOS is not less than the required
response time, you need to experiment with other techniques for faster pro
grams (discussed already), standard or custom-made boards, a faster processor,
other system designs, and use of a faster environment (maybe more expensive
devices). This is the most difficult part of a real-time system design, and a com
plete discussion of all these techniques is beyond the scope of this chapter.

The required interval time determines how frequently transactions will be
processed. Depending on the processing required, MS-DOS can handle a certain
maximum number of transactions per second. If the total number of transac
tions can be greater than what MS-DOS can handle, then obviously MS-DOS
cannot be used. For example, if a real-time system needs to get 1 million trans
actions per second, MS-DOS cannot be used for such a system.

Whether or not MS-DOS can be used also depends on the need for multi
tasking. In general, MS-DOS cannot be used if multitasking is required. For ex
ample, MS-DOS cannot be used in a savings bank system with eight terminals.
However, MS-DOS for the IBM PC AT provides some features to permit very
simple multitasking. This is discussed later. Also discussed later is the concept
of cyclic schedulers as a design method to achieve a very simple form of
multitasking.

In general, we can say that MS-DOS can be used for most of the unidirec
tional systems, several of the bidirectional stable systems, and very few of the
bidirectional potentially unstable systems. There are several relatively simple
but useful real-time applications in which MS-DOS can be used. Such applica
tions include home control systems, laboratory measurement systems, sim
plified robot systems, etc.

265

Coding and Programming

Designing Real-Time Systems Using MS-DOS

266

Design of real-time systems using MS-DOS is difficult because there is no for
mal methodology for design, implementation, and testing. This results in com
mon problems such as:

1. Working designs may have mysterious crashes, or produce strange
results because of timing problems.

2. The existing implementations become nonmaintainable because of
changes and extensions.

3. When coding is completed, you don't know if it will ever work.

Figure 5-9 shows the methods of designing real-time systems. Syn
chronous methods require a single task for implementation. The synchronous
methods are of three types:

• Polled (no interrupts)

• Main loop with interrupts

• Cyclic scheduling

We will use examples and assembly code to explain these design methods. We
shall limit the discussion to design without worrying about timing considera
tions which we have already discussed. Multitasking is explained in the next
section.

Polled
(no interrupts)

Synchronous
(single task)

Main Loop
with Interrupts

Design
Methods

Cyclic
Scheduler

Multitasking

Figure 5-9. Methods of designing real-time systems.

5 - Real-Time Programming

Simplified Home Control System-An Example

Let us consider a simplified home control system for controlling the heat, fire
alarm, and the lawn watering, as shown in Figure 5-10. The temperature is
sensed by a temperature-sensing device. A transducer converts the tempera
ture from an analog to a digital value. This value can be read from a port and
compared with a reference temperature. The reference temperature value can
be set by the user. For simplicity, let's assume it to be a constant ref_temp. The
program adjusLtemp to control the temperature is given in Listing 5-2. Note
that the program shows only the important parts of the code. Less important
details, such as declaration and initialization of variables, are not shown.

Reference
Temperature

Figure 5-10. A simplified home control system.

Listing 5-2. The adjusLtemp Program

adjusLtemp:
; delta - to avoid osci Llation of temperature
; ref_temp - reference temperature value
; temp_port - port where temperature control
; information is output
; inc_code - code to increase temperature
; dec_code - code to decrease temperature
; read_port - port from where current
; temperature is read

al, reacLport ; read temperature into in
mov
mov

bl, reLtemp ; get reLtemp to BL
cl, bl ; BL wi LL be used again

AL

to Heater

to Lawn
Watering

Valve

Later
continued

267

Coding and Programming

268

decrease:

increase:

sub
cmp

j L
add
cmp

jg
ret

Listing 5-2. continued

cl, delta
al, cl

increase
bl, delta
al, bl

decrease

; ref_temp - delta in CL
; is current temperature Less
; than (ref_temp - delta)?
; then increase temperature
; ref_temp + delta in BL
; is current temperature more
; than (ref_temp + delta)?
; then decrease temperature
; done

mov al, dec_code ; dec_code is to be output
out temp_port, al ; to temp_port
ret

mov
out
ret

al, inc_code
temp_port, a L

; inc_code is to be output
; to temp_port

Notice that the heater setting is not changed if the temperature is in the
range from (ref_temp - delta) to (ref_temp + delta), as shown in Figure 5-11.
Here delta is a small tolerance value (e.g., 1° F), and it is used to avoid
oscillation.

LOW TEMPERATURE

Increase
Temperature

Reference
Temperature

(ref)-1emp)

Do Not Change
Temperature

Reduce
Temperature

HIGH TEMPERATURE

Figure 5-11. Use of a small-tolerance delta to avoid oscillation.

To understand the concept of oscillation, consider the value of delta to be
zero. In such a case, the temperature needs to be changed when it is not exactly
equal to ref_temp. Suppose the temperature is slightly less than ref_temp. So,
when the procedure is called, action will be taken to increase the temperature.

5 - Real-Time Programming

As a result, the temperature will go beyond ref _temp. When the procedure is
called again, it will take action to decrease the temperature. As a result, the
temperature will be increased and decreased alternately. This is called oscilla
tion. Thus, use of delta (small but nonzero) avoids oscillation because the tem
perature is not changed in the small range around the ref _temp.

Now consider the program to activate the fire alarm. We just need to send
a signal that will set off the fire alarm. This procedure, initiate_alarm, is shown
in Listing 5-3.

Listing 5-3. The initiate_alarm Program

initiate_alarm:
; alarm_port - port to send the alarm signal
; activate_signal - signal to activate alarm
mov al, activate_signal
out alarm_port, al
ret

Next consider the procedure for watering the lawn. Assume we need to
water the lawn in the evening every day for two hours from 1830 hours to 2030
hours. This dictates the need to use a real-time clock. Listing 5-4 shows the pro
cedure water _lawn.

water_Lawn:

mov
int

mov
test
jz
mov
mov

Listing 5-4. The water _lawn Program

ah,
21h

bl,
bl,

;
;
;
;
;
;
;
;
;

2ch

start_hours - hours component of start time
start_mins - minutes component of start time
stop_hours - hours component of stop time
stop_mins - minutes component of stop time
water_port - port to control watering Lawn
start_code - code to start watering
stop_code - code to stop watering
watering - state variable indicating whether
or not watering is started

; function to read time
; call to DOS, on return

watering
; ex has hours and minutes

is watering started? ;
1 ;

sta rt_or _not ; no, then start watering
is it time to stop? dh, stop_ hours ;

dl, stop_mins ; to be compared with stop time

continued

269

Coding and Programming

270

cmp
j L
mov
mov
out
ret

starLor _not:
mov
mov
cmp
j L

exit:

mov
mov
out

ret

Listing 5-4. continued

ex, dx
exit
watering, 0
al, stop_code
water_port, al

dh,starLhours
dl, starLmins
ex, dx
exit
watering,
al, starLcode
water_port, al

; time to stop watering?
; no, Let watering continue
; watering stopped
; output stop code
; through the water port
; done

; start time is in DX
;
; is it time to start watering?
; not yet
; yes, watering started
; output start code
; through the water port

; done

In this program it is assumed that the stop time (stop_hours:stop_mins) is
greater than the start time (starLhours:starLmins). A global boolean variable
watering is used so that the signal to start or stop watering need be given only
once every day.

Now that we have individual procedures to control heating, fire alarm, and
watering of the lawn, let us investigate the requirements of the whole system.
The temperature needs to be adjusted repeatedly once every few minutes. The
fire alarm must ring soon after a fire (or smoke) is detected; delay is not accept
able. The lawn needs to be watered daily for two hours from 1830 hours on
wards. We have assumed that appropriate devices and transducers for input/
output are interfaced with the processor.

Now we are ready to discuss the overall design of the real-time system for
simplified home control. We will consider three synchronous methods: polled
(no interrupts), main loop with interrupts, and cyclic schedulers. As we have al
ready mentioned, the synchronous methods require only a single task for
implementation.

Polled System
A polled system design has a main loop in which all the devices are polled (or
required procedures are called) one time each. The program for the simplified
home control system using this design is shown in Listing 5-5.

Here the waiLloop is a software loop to wait for a certain amount of time.
In general, there may be a need to sleep in polled systems. To understand why
there may be a need to sleep, consider the example of computer-controlled steer
ing in a car. Assume that the computer decides to turn right and issues the com-

5 - Real-Time Programming

Listing 5-5. The ref_level Program

; ref_Level - danger Level of smoke
forever:

ca LL adjusLtemp ; subroutine call
in al, smoke_port ; read smoke Level
cmp al, reL Level ; compare to check danger
j L no_danger
ca LL initiate_alarm ; start fire a La rm

no_danger:
ca LL water_lawn ; subroutine ca LL
ca LL wai Lloop ; sleep (do nothing)
jmp forever

waiLloop:
mov ex, Offh ; the value in ex determines

; the wait time
wait:

Loop wait
ret

mand turn right. The wheels begin to turn, but suppose the computer is
sampling input data at its own much higher rate. It decides that the car is not
turning and resends the command turn right. Before realizing that the car is
turning, the computer issues enough turn right commands to put the car in a
skid. To avoid this, the computer must be programmed to respect the slower
pace of the physical world, and there is a need to let the computer wait. But, in
the case of our home control example, sleep delays the detection of fire, which is
not acceptable.

The advantages of this approach are

• Simple system design.

• Fast response time.

The disadvantages are

• The processor is always busy because it is dedicated to polling ports.

• The loop time may become excessive as the number of devices increases.

• Time is wasted in polling ports that are inactive most of the time, e.g.,
the smoke sensor in our example.

Main Loop with Interrupts

The main loop with interrupts design approach can be viewed as a polled system
with interrupts. As in a polled system, this design uses a main loop. The loop
does nothing or does something that can be interrupted as frequently as needed
by the devices or the clock. As soon as some event occurs, an interrupt is sent to

271

Coding and Programming

272

the processor. An interrupt service routine (ISR) is associated with each
interrupt.

Let us return to the example of the simplified home control system. In our
example, the interrupts are designed so that the processor is interrupted when

1. Temperature goes beyond the range (ref _temp - delta) to (ref _temp +
delta).

2. Smoke level goes beyond the safe limit.

The procedures adjusLtemp and initiate_alarm are the ISRs correspond
ing to the two interrupts.

An interrupt cannot be associated with the water _lawn procedure because
the procedure uses the MS-DOS function int 21h to find the time of day. As the
MS-DOS code is not reentrant, an ISR cannot make another interrupt in
MS-DOS. So the procedure water _lawn is not designed as an ISR, but it is
called from the main program loop, main_loop:

forever:
ca LL
ca LL

water_Lawn
waiLloop

jmp forever

;
; to spend some time before
; calling water_Lawn again

The interrupt service routines are adjusLtemp and initiate_alarm. The
code for the ISRs is the same as the code for procedures already described, with
the difference that

1. An ISR uses IRET in place of RET in ordinary procedure. The IRET
returns to the main program when the ISR is completed.

2. You must save the registers used by the ISR. The registers have to be
restored before executing the IRET instruction.

3. Interrupts must be enabled/disabled.

The program adjust-temp must enable the interrupts. Otherwise the
smoke signal may go undetected, which is not acceptable. Similarly, initiate_
alarm must disable the interrupts because it is the highest priority procedure
and must not be interrupted before setting off the fire alarm.

These ISRs have to be associated with the corresponding interrupt levels.
This can be achieved by the function Set Interrupt Vector in MS-DOS. Int 21h
with the function code of AH = 25h is used for this purpose. DS:DX points to the
ISR before making the call.

mov ah, 25h ; function=set interrupt vector
mov al, i nL Level ; interrupt Level in AL
mov dx, seg adjusLtemp
mov ds, dx ; address of ISR in DS:DX
mov dx, off set adjust_ temp
int 21h ; call to DOS

5 - Real-Time Programming

Similar function calls have to be executed for the other ISRs in the system.
The advantages of this approach are

• No time wasted in polling devices that are not active.
• Very quick response to any number of asynchronous external events (if

most are inactive).

• Simpler code because each ISR is written independently of others.

The disadvantages are

• Tricky interaction between ISR and main program.
• Difficult main program flow because of the asynchronous nature of

events.

Cyclic Schedulers
To understand cyclic schedulers, consider a process control system. It is re
quired that the temperature of the process be monitored and controlled once
every 100 ms. The other factors to be controlled are pressure, moisture content,
and chemical content. These factors need to be controlled less frequently than
the temperature of the process.

Suppose that the procedure temp_control takes 10 ms to monitor and con
trol the temperature. The procedure temp_control must be executed once every
100 ms because the temperature must be controlled once every 100 ms.

Similarly, procedures B, C, and D monitor and control the other three fac
tors, as shown in Table 5-6. Further assume that it is acceptable if procedures C
and D are executed once every 300 ms, and if procedure B is executed twice
every 300 ms.

Table 5-6. Procedures Required for the Example

Procedure Execution
Required Repetition

Name Controls Time Time Comment

temp_control Temperature 20ms lOOms Variation not acceptable
B Pressure 40ms about 150 ms Variation acceptable
c Moisture 60ms about 300 ms Variation acceptable
D Chemical 38ms about300 ms Variation acceptable

Such a real-time system can be accomplished by using the cyclic scheduler
design in Flowchart 5-1. There are three cycles: 0, 1, and 2. The execution se
quence of the cycles is 0, 1, 2, and 0, 1, 2 repeatedly.

Note that procedure temp_control is executed once in each cycle. Each cy
cle takes 100 ms to execute, which is the time needed for the main loop, the time
required to execute temp_control, and the time for a sleep loop at the end of each
cycle. The sleep loop is provided to synchronize the execution of cycles to the
timing requirement of the most frequently executed procedure (temp_control in
our example).

273

Coding and Programming

274

Flowchart 5-1. The cyclic scheduler design.

Required Loop
Time=100 ms

cycle O

temp_control
20 ms

B
40 ms

D
38 ms

Sleep for 2 ms

0

START

count=O

count= count+ 1

2

cycle 2

temp_contro/ temp_control
20 ms 20 ms

B
40 ms

c
60 ms

Sleep for 20 ms Sleep for 40 ms

Flowchart 5-1 illustrates the concept of a cyclic scheduler without inter
rupts. In many applications, it may be necessary to use interrupts to signal an
external event requiring immediate attention. A cyclic scheduler can also be de
signed with interrupts, as shown in Figure 5-12.

Figure 5-12(A) shows that we can guarantee that the main loop will take
100 ms to execute for each cycle if there are no interrupts. Figure 5-12(B) shows
what happens in the presence of interrupts. Suppose an interrupt occurs while
the procedure temp_control is being executed. The procedure temp_control is
completed, and then the interrupt is processed. After processing the interrupt,

5 - Real-Time Programming

temp_control
20 ms

B
40 ms

Total Loop
Time=100 ms

D
38 ms

Sleep for 2 ms

(A) Cycle 0 if no interrupts
(deterministic).

temp_control
20 ms

B
40 ms

D
38 ms

Interrupt
occurs

Total loop time
greater than

100 ms
because of

interrupt

(B) Cycle 0 with interrupts
(nondeterministic).

Figure 5-12. Cyclic scheduler with interrupts:
nondeterministic loop time.

procedure B is executed. Since the occurrence of interrupts cannot be pre
dicted, the total execution time of each cycle cannot be predicted. Thus, the loop
execution time of a cyclic scheduler with interrupts is nondeterministic.

The advantages of the cyclic scheduler design are

• Simple form of multitasking.

• Deterministic operation except when interrupts are present.

The disadvantages are

• Inefficient-all cycles must run to completion.

• Loop time increases with number of cycles.
• Difficult to modify and stay within time constraints.

Deciding on a Design Method

The choice of a design method depends on the external environment/hardware
as well as the timing requirements of the system. It also depends on whether
already available hardware is to be used or new hardware is to be procured. If
new hardware is to be procured, then we may consider an interrupt-driven de
vice or a device without interrupts. However, ifthe hardware already exists, we
may not have a choice whether to use an interrupt. For example, a device may

275

Coding and Programming

not have provisions for an interrupt; then we must use a polled design for that
device.

In some applications, the choice may be dictated by the timing require
ments, as the following simple example shows. Decisions in a practical applica
tion design are, of course, more involved.

Suppose that we need to use MS-DOS with an 8088, 4. 77-MHz processor.
Assume that we need to collect data at the rate of 35,000 bytes per second. Note
from the previous Table 5-5 that with interrupts the maximum rate of data
transfer is 30 kHz. So we cannot use interrupts. However, polled systems can
have a maximum rate of data transfer of 60 kHz. Moreover, the data can be
stored in the primary memory itself.

Finally, if it is required that different procedures be executed at different
frequencies, then cyclic schedulers may be used.

All three design methods discussed so far are synchronous (requiring only
one task, i.e., nonmultitasking). Next we will explore multitasking in MS-DOS.

Multitasking in MS-DOS

276

In general, MS-DOS does not support multitasking, although MS-DOS for the
IBM PC AT computers has provisions for simple multitasking. Multitasking is a
very powerful technique for real-time system design. It simplifies system de
sign and makes it possible to design large, complex systems.

A real-time system is aimed at processing several independent events that
occur at random times. The events can be asynchronous and concurrent. This
means that an event can occur while one is already being processed.

Multitasking can be used in such systems to simplify software design. In
stead of writing a single program to monitor all the events, you can write several
programs, each monitoring a single event. All the programs can be executed
concurrently by the computer supporting multitasking. These individual pro
grams are known as tasks. Because they coexist and coexecute in the computer,
the design is known as multitasking. Multiple tasks are executed by the compu
ter at the same time conceptually, in much the same way as a juggler keeps
many balls in the air at a given time. However, in actuaiity, only one task is ex
ecuted at a given time.

Multitasking Provisions in the IBM PC AT
The BIOS of the IBM PC AT provides "hooks'' to implement a scheduler. The
functions supported are very primitive but can be used to design and implement
a program to support simple multitasking features (a discussion that is beyond
the scope of this chapter). Designing a general-purpose scheduler in MS-DOS is
very difficult, so we recommend that you design a scheduler specific to your
application.

Interrupt 15h is provided for supporting a multitasking scheduler. The
scheduler initially sets up the service routine for interrupt 15h. The scheduler
can support primitive functions such as task switching and nonbusy wait loops.

5 - Real-Time Programming

One provision in the IBM PC AT is to implement a nonbusy wait loop. A
task that needs to execute a nonbusy wait loop issues an interrupt 15h with a
function code of90 hex in AH. At this point, the scheduler should save the status
of the current task and initiate another task. This allows overlapped execution of
tasks when a nonbusy wait is executed.

The waiting task can later be resumed by the scheduler when an interrupt
15h with a function code of 91 hex occurs in AH. At this point, the scheduler
should remember that the task is ready to be resumed at a later time.

This concludes our discussion of multitasking in MS-DOS. We have kept it
short and simple because multitasking in MS-DOS (AT) is very limited in scope
as well as difficult to implement.

Summary

A real-time system deals with its external environment directly and must al
ways meet certain timing constraints. We classified real-time systems into
three categories based on the direction of data flow:

• Unidirectional systems

• Bidirectional stable systems

• Bidirectional potentially unstable systems

We discussed speed as a requirement of MS-DOS to be used in a real-time
application. In addition to clock frequency, the speed of MS-DOS depends on
data transfer. Using examples, we illustrated the use of CPU ports and serial
and parallel ports for data transfer with the external environment. We also dis
cussed three basic methods of data transfer into and out of the computer:

• Polling

• DMA

• Interrupt-driven

We explained the importance of response time in deciding whether MS
DOS can be used for a real-time application. Three synchronous (nonmultitask
ing) methods of designing real-time systems were described:

• Polling
• Main loop with interrupts

• Cyclic scheduling

With the help of examples and assembly code, we demonstrated that MS
DOS can be used for relatively simple yet useful real-time applications. Finally,
we explored the multitasking support in MS-DOS.

277

Coding and Programming

Bibliography

278

Allworth, S.T. Introduction to Real-Time Software Design. New York:
Springer-Verlag, 1981.

Savitzky, Stephen. Real-Time Microprocessor Systems. New York: Van
Nostrand Reinhold, 1985.

6 - Installable Device Drivers

()M HE primary requirement of any computer system is not only the ability to ~compute but also the ability to communicate with the outside world
through its peripherals. Without communications the computer becomes an ex
pensive paperweight at best. The responsibility of any operating system is to
provide communications facilities for application programs and the internal
needs of the operating system itself.

An operating system must meet two separate requirements to enable an
application program to communicate with an external device. First, a defined
interface between the application program and the operating system must exist
and must be flexible enough to allow the program to specify what is desired of
the device. Second, the operating system must have the capability of transfer
ring data to and from the device and controlling the device's operation. This sys
tem-to-device interface is provided by sections of the operating system called
device drivers.

Although mainframe and minicomputer operating systems have a tradi
tion of extensive device support, microcomputer operating systems are gener
ally lean in this area. They usually contain support for the primary disk drives,
the system's terminal, a printer port, and possibly an auxiliary device. Support
beyond that level has been an unexpected plus. In previous operating systems,
including MS-DOS version 1.0, adding this support after purchase has been dif
ficult. The operating systems did not contain applications-level function re
quests for nonstandard devices, and the drivers themselves were embedded
deep in the BIOS (basic input/output system). Adding or changing a device
driver required editing the BIOS source (if it was available), reassembling it,
and copying it to the system disk's boot track (for which task all too often no util
ity was provided). Computers such as the IBM Personal Computer did not even
allow that much. Because its BIOS is in ROM (read-only memory), modifying
the BIOS required the use of a PROM programmer (a device that writes to a
programmable ROM, which isn't an everyday piece of equipment). After all this
effort, no way was available for the application program to talk via the operating
system to the driver.

MS-DOS version 2.0 changed all that. In what is probably the most signifi
cant advance in microcomputer operating systems since the inception of CP/M,
MS-DOS versions 2.0 and later provide not only the ability to install device
drivers without arcane measures but also a standard extensible interface that

283

Devices

allows programs to communicate with the drivers. The result has been an explo
sion in the number of devices that MS-DOS now supports and in virtual devices
that supply MS-DOS systems with such features as RAM disks, high-level
graphics interfaces, and the like.

The MS-DOS device driver is a subprogram that is called by MS-DOS on
one side and communicates with the actual device on the other. The middleman
between the system and the hardware, the MS-DOS device driver passes data
between the subprogram and the device.

Why Have Device Drivers?

284

Device drivers serve two purposes. The first is to provide a standard interface to
all programs that desire to use a particular device, irrespective of the idio
syncrasies of that device. A program that does text processing or spreadsheet
calculations does not care exactly what type of terminal is connected to the sys
tem. The program desires to accomplish functions such as Display Character or
Read Keyboard. The terminal device driver takes care of the details of accom
plishing the transfers and thus provides the high-level interface desired by the
application program. Change the terminal; change the device driver. No modi
fications to the application program should be necessary. Device drivers
provided for disk drives should present a standard interface for all the different
types of disks. A program that performs disk I/O should operate with a floppy
disk of any format, a hard disk, and even a RAM disk. It should make no dif
ference to the application program. So to sum up, the first purpose of device
drivers is to provide a device-independent, uniform interface.

The second purpose of device drivers is that they serve as a type of RTL
(run-time library). Device drivers provide the same measure of support to all
programs. Each program is relieved not only of the necessity for supporting
multiple device formats but also of the necessity for supporting any device for
mats. Support is handled by the device driver. Because all the device drivers are
collected into the operating system, only one copy of each driver need be main
tained. The result is that programs written to use the MS-DOS interface don't
have to contain any driver code at all.

In the MS-DOS implementation, device drivers may be added to the sys
tem to replace the built-in drivers for nondisk devices. If you don't like the way
that the system driver handles a certain device, you can write your own driver.
The difference is once again transparent to application programs. It's not a triv
ial matter to write a driver, but at least the option is available.

Given this powerful ability to interface MS-DOS with diverse foreign de
vices, it is but one more step to conceive of device drivers without physical de
vices! In other words, device drivers can be written to support devices that
don't really exist, such as the ubiquitous RAM disk. These types of devices are
called virtual devices; and their drivers, virtual device drivers.

Virtual devices, or physical devices for that matter, are not limited to
strictly input/output functions. Any transformation function that accepts and/
or returns data may be placed in a device driver. High-speed floating-point

6 - Installable Device Drivers

array processors are only one example of transformation devices. Beyond that,
drivers can contain software with no external 110 to emulate the behavior of ac
tual devices that the system does not yet contain, such as a software clock or the
floating-point processor.

When to Use Device Drivers
At what point should a function be removed from a program and turned into a
device driver? The rule of thumb is that a function performing 110 at a hardware
level is a likely candidate for a device driver. Because of the nature of the 8086
processor family, this sort of function is usually an IN or OUT instruction (in
cluding the INS or OUTS instructions). If the system uses memory-mapped 110,
accesses to absolute memory addresses may also be indicative of hardware level
110. (Reading and writing the interrupt vectors are also absolute memory ac
cesses, but you should really use the MS-DOS functions Get Vector and Set Vec
tor rather than a driver.)

Putting the 110 handlers into a device driver accomplishes four things: it
makes the main program more transportable, makes the 110 handler available
to other programs that desire to access that device, makes the system slightly
larger in terms of memory used, and appreciably slows down the access time to
the hardware. A slightly larger system should not be of any great concern, but
the extended access time can be the critical factor in some applications. When
ever a decision is made to write a device driver, the speed constraints of the ap
plication must be weighed against the increase in program compatibility and
accessibility of the driver. The increase in access time is more noticeable for a
device that transfers data a word or a byte at a time because the overhead
penalty is paid on each call of the driver. For device drivers that transfer an en
tire block of data on each call, the overhead is spread over more transfers and the
resultant penalty decreased.

The Limitation of MS-DOS Being Non-Reentrant
Because device drivers are called by MS-DOS, they are subject to the same lim
itations as memory resident routines. To wit, they may not use MS-DOS to per
form any functions. (The single exception to this is that certain MS-DOS
function calls may be made during the initialization phase of the driver.) This se
verely limits the portability of virtual device drivers written to pre process infor
mation intended for standard drivers.

For example, a virtual device driver written to provide graphics capability
for a dot-matrix printer cannot use the standard MS-DOS print character func
tions for final output. The virtual device driver must contain all the necessary
code to perform the actual output to the printer. (Note that the driver described
for this example is considered a virtual device even though it communicates with
a physical device. The reason is that the driver provides capabilities not inher
ent in the device; that is, this driver provides graphics operations on a dumb
printer.)

285

Devices

Because MS-DOS is non-reentrant, DEBUG may not be used to debug an
installed driver. DEBUG uses MS-DOS to handle its own I/O, and if DEBUG is
used inside of a driver, the program destroys the context of the driver call, leav
ing it unable to return proper information to MS-DOS. One way to handle this
shortcoming is to use any built-in I/O functions (for example, BIOS functions)
that your system may contain to perform rudimentary output of debugging in
formation. A more dependable method is to design a test jig to exercise the
driver routine. A test jig is a small program that feeds test data to the driver and
checks for expected returns. This program is then run by MS-DOS, allowing
DEBUG to be used. Of course, if the device is speed dependent, some additional
care must be exercised to avoid interfering with the driver's handling of the
device.

Installing Device Drivers

286

As mentioned before, in the days before MS-DOS version 2.0, installing a device
driver meant patching the BIOS. Although this method is still possible, the new
method installs additional or replacement device drivers during the boot pro
cess itself.

The process of loading MS-DOS, called bootstrapping, begins with a sys
tem reset. Your system's hardware also provides a reset when the system's
power is turned on. Following a reset, the system processor begins executing
code at an address at the upper end of the processor's address range. For the
80386 processor, this address is FFFFFFFO hex. For the 80286 processor, the
initial address is FFFFFO hex, and for the remainder of the 8086 family pro
cessors, the address FFFFO hex is used. In each case there is a program con
tained in ROM that is located at the initial address. This program, called the
primary bootstrap, is given the responsibility of reading the first portion of the
boot disk into memory. It is interesting to note that the capabilities of the pri
mary bootstrap have grown with time. The original IBM Personal Computer
could boot only from the ''A" floppy drive. The IBM XT computer introduced the
ability to optionally boot from a fixed disk, and it appears likely that the ability
to boot from a network connection in lieu of a disk is not far off.

The portion of the boot disk read into memory by the primary bootstrap is
called the secondary bootstrap. In the case of an MS-DOS system running on
IBM-compatible hardware, this portion is a single sector of 512 bytes. This
small size is made possible by the fact that the BIOS of an IBM-compatible sys
tem is located in ROM. The secondary bootstrap of such a system need only call
the BIOS already present in ROM in order to read into memory the rest of the
system. For those systems that do not contain a BIOS in ROM, the primary
bootstrap must also read from the boot disk sufficient code to enable the second
ary bootstrap to read in the remainder of the system. This requires that a much
larger portion be read from the boot disk.

It is not until the secondary bootstrap is read from the boot disk that
MS-DOS per se is actually being loaded. (This is what allows many users to run
non MS-DOS games or systems on the same hardware. The type of system run is

6 - Installable Device Drivers

Flowchart 6-1. MS-DOS initialization process.

NO

Load & Execute
Designated Shell

(default= COMMAND.COM)

Execute the
DATE & TIME

Programs

YES

YES

Load File
Specified

by DEVICE=
& Link into

Device Queue

Call INIT
Entry for
Device

Execute All
Commands

Found in
AUTOEXEC.BAT

YES

Read Text
Line from

CON FIG.SYS

Process One of
BREAK=
BUFFERS=
FILES=
SHELL=

Configuration
Commands

287

Devices

entirely dependent on what is loaded from the boot disk.) In loading MS-DOS,
the secondary bootstrap checks what it assumes to be the root directory of the
boot disk for two system files. Because the system files are hidden, they do not
appear in a directory listing of the boot disk's root directory (although they can
be seen by using a utility such as XTREE, Norton Utilities, or SDIR). While
the names given to these files depend on the supplier, their functions are fairly
consistent. One file contains the MS-DOS kernel and is usually named
MSDOS.SYS, or IBMDOS.COM on IBM systems. The other file contains the
interface between MS-DOS and the I/O subsystem, and is named IO.SYS by Mi
crosoft, IBM BIO. COM by IBM, or something else by other suppliers. Together
these two files compose an operational MS-DOS system. Once the secondary
bootstrap has located these files, it loads them into memory and MS-DOS initial
ization can proceed. (In IBM systems, the secondary bootstrap loads only
IBMBIO.COM, which in turn loads IBMDOS.COM.)

Once the MS-DOS interface file (IO.SYS or equivalent) is loaded, control is
passed from the secondary bootstrap to initialization code contained in the in
terface file. In addition to containing the initialization code, this file contains the
standard device drivers that will be used during both MS-DOS initialization and
operation.

The initialization procedure itself consists of arranging the pieces of MS
DOS in memory; creating all the internal tables, work areas, and so forth that
MS-DOS requires; and finally, initializing all the devices associated with the
system. Initializing the devices is accomplished by calling the Initialize, or
INIT, command for each of the device drivers contained in the interface file. (We
will discuss the INIT command in the section on device driver commands, found
later in this chapter.) Once the devices have been initialized, the initialization
procedure finishes creation of MS-DOS's internal tables, and MS-DOS is now
able to run. However, there remains one step to complete.

It is at this point that the initialization code asks "Is there a CONFIG.SYS
file present?" If a CONFIG.SYS file is not found, then MS-DOS loads the de
fault command interpreter, COMMAND.COM, and control is passed to COM
MAND.COM. However, if a CONFIG.SYS file is found, then another step is
added to the initialization procedure. It is this step that allows you the oppor
tunity to add your own device drivers to the MS-DOS system.

The CONFIG.SYS File

288

The CONFIG.SYS file is a regular MS-DOS file that may be present in the boot
disk's root directory. (If it is not present in the root directory, then as far as the
initialization procedure is concerned, it is not present at all.) CONFIG. SYS con
tains text commands that direct the initialization code to alter or add to the de
fault MS-DOS configuration. If present, the initialization code (not
COMMAND.COM, which hasn't been loaded yet) reads the file into memory
and processes it a line at a time. Each line contains a separate configuration
command. Flowchart 6-1 depicts the processing of some of these commands. The

6 - Installable Device Drivers

most important to us at this time is the DEVICE command, which has the
format

DEVICE = [d:][path]filename[.ext][parameters]

where the items enclosed in brackets are optional portions of the command. The
DEVICE command instructs MS-DOS to install a new device driver. The driver
program contained in the specified file is similar to an MS-DOS .COM program,
but it has some significant differences that are explained in the upcoming sec
tion on writing device drivers. For the moment, we are concerned with how de
vice drivers fit within the MS-DOS system as a whole.

In general, device drivers are a special form of memory resident programs.
When the DEVICE command is encountered in the CONFIG.SYS file, the as
sociated file is loaded into memory and analyzed. A header block in the file con
tains information about the type, name, and attributes of the device, and also
specifies the program entry points within the driver. After the file has been
loaded, MS-DOS calls the driver's entry point with the INIT command. The
driver performs any required initialization and then returns to MS-DOS the
end-of-driver address, which is the address of the next available byte of memory
located after the driver. Installation of the driver is complete.

The end-of-driver address returned to MS-DOS by the driver's INIT com
mand is similar to the size parameter specified by a memory resident routine in
its Keep Process function call. Its purpose is to inform MS-DOS of where avail
able memory begins. Then, ifthe CONFIG.SYS file contains another DEVICE
command, the next device driver is loaded after the previous one. After
MS-DOS has finished processing the CONFIG.SYS file, one more device driver
is loaded-the NUL device. MS-DOS then completes its initialization by loading
the permanent portion of COMMAND.COM, or a user-specified shell.

Internally, MS-DOS threads all of its device drivers onto a queue, with
each driver pointing to the previously loaded driver. The driver "chain" thus be
gins with the last driver loaded-the NUL device-and ends with the first
driver loaded, usually the default COM2 device. The driver chain is maintained
in the first two words on the driver's header block, which begins each driver.
These two words contain the segment and offset of the next driver or, in the case
of the last driver, the value of minus 1, which is FFFF hex. An example of a de
vice driver queue appears in Listing 6-6, near the end of this chapter.

When MS-DOS needs to access a particular device driver, it begins search
ing the driver queue starting with the NUL device, which is in the reverse order
from the order in which the drivers were loaded. When the proper driver is lo
cated, MS-DOS calls it with the necessary command. The consequence of
searching the queue in this order is that if a user-supplied driver having the
same name as a standard driver (such as CON, AUX, or PRN) is loaded,
MS-DOS will find the newer, user-supplied driver first. This allows user-sup
plied device drivers to supplant the standard device drivers (such as replace
ment of the standard CON driver with the ANSI.SYS CON driver).

The default device drivers are actually loaded and initialized by MS-DOS
before the CONFIG.SYS file is read and parsed. This allows the initialization
section of a device driver to use some of the MS-DOS function calls for the pur-

289

Devices

290

pose of displaying messages or configuring the driver for a particular version of
MS-DOS. The calls that may be safely used at this time are functions 01 through
OCh, which support CON, PRN, and AUX I/O; and function 30h, Get DOS Ver
sion Number. Calls related to file I/O or memory management should be
avoided, since the MS-DOS memory map is not yet stable. However, once the
driver has been installed, all MS-DOS function calls are off limits, including
MS-DOS interrupts 20h through 27h.

After the CONFIG.SYS file has been processed and the drivers ini
tialized, the standard devices CON, PRN, and AUX are closed and then re
opened by MS-DOS so that any replacement drivers for one of these units take
effect. From that point on, any such new drivers are used exclusively.

Certain drivers may not be replaced by the user. One of these is the NUL
device driver. This limitation results from the fact that MS-DOS uses the NUL
device as the head of the device queue. Because the system-supplied NUL de
vice is always the first device in the queue, the system-supplied device is always
the first NUL device found. An example device queue is shown in Figure 6-1.
Not all of the labeled areas will make sense immediately. They will be explained
later. The device marked last device is actually the first device to be installed,
and the device located directly after the NUL device is the last device to be
installed.

Pointer to Pointer to Last Device
1st Device Next Device Pointer -1

Attributes Attributes Attributes

Pointer to Pointer to Pointer to
STRATEGY STRATEGY STRATEGY

Pointer to Pointer to Pointer to
INTERRUPT INTERRUPT INTERRUPT

NUL Device Name Device Name
Device or# Units or# Units

Figure 6-1. Device driver queue.

6 - Installable Device Drivers

The NUL device is not the only device that cannot be replaced. Device
drivers that deal with mass storage devices (that is, disks) are also not replace
able. You may add drivers for new disk devices but not remove or replace the old
ones. This restriction arises because disk device drivers have identifying letters
assigned by MS-DOS during the boot process (A, B, C, etc.) rather than unique
names (such as CON and PRN). Because you can't name a particular disk device
driver, you can't replace it.

Using ASSIGN to Replace Disk Device Drivers

However, don't despair if you don't like your existing disk device drivers. Al
though they can't be removed, they can be bypassed. After you have written
(and tested) the new driver, add it to the CONFIG.SYS file. When MS-DOS is
rebooted, the new driver is installed as the next device in the list. For example,
if you already have three drives, the new driver is drive D. Now use the MS-DOS
command ASSIGN to redirect all accesses of the old drive to the new drive. As
an example, let's assume we want to replace the drive A driver. The ASSIGN
command for this is

ASSIGN A= D

MS-DOS redirects all drive A accesses to the new device D driver, includ
ing absolute disk access interrupts 25h and 26h. If you have written the new de
vice driver to access the same physical device as the old one, you have effectively
replaced the old device driver. If you decide that you like the old one better, you
can restore the original assignments by entering the ASSIGN command with
out any parameters.

CAUTION: When NOT to Use ASSIGN

Although the ASSIGN command does enable you to replace an existing
disk driver with a newer, installed driver, this isn't always a good idea. Some
commands, such as BACKUP and PRINT, and programs such as Lotus 1-2-3 be
come confused when asked to work with assigned drivers. Other commands,
such as FORMAT, DISKCOPY, and DISKCOMP, ignore assigned drives and
process the actual logical drive.

Types of Device Drivers

There are two types of device drivers, named and unnamed, called respectively
character device drivers and block device drivers. The differences between the
two types go much deeper than the issue of names and replaceability. Not only
does MS-DOS provide block-oriented drivers to support disk devices, it expects
a block-mode device driver to be controlling one or more disks. The I/O com
mands for block device drivers are structured to support sector accesses, and

291

Devices

unless the NON IBM attribute (also known as the NONFAT attribute) is spec
ified for a block device driver, the block device is assumed to support the stan
dard MS-DOS disk structure, complete with FATs (file allocation tables) and
directories.

Truthfully, the names character and block device drivers are somewhat
misleading because the character device driver can support block-mode trans
fers just as well as the block mode driver. The actual relationship is something
more akin to nondisk and disk drivers. It cannot even be said that character de
vice drivers are sequential and block device drivers random access because
character-mode drivers can be constructed to perform random access of the de
vices they support.

Leaving aside for the moment the question of what constitutes a block
mode device driver and what constitutes a character-mode device driver, here
are some of the ways that device drivers can be accessed through MS-DOS. This
will give you some idea of the type of device driver you may wish to write for a
particular application.

Accessing Device Drivers from MS-DOS

292

MS-DOS supports four basic types of device I/O that may be used within an ap
plication program. Each of these types is suited for particular applications, and
our intention is to present the strengths and weaknesses of each type of I/O so
that you can judge which type is suited to your application. We have not pre
sented the details of each of the function calls because that information may be
found in the Microsoft MS-DOS Programmer's Reference Manual (or your sys
tem's equivalent manual). The following list classifies the four types.

• CP/M-style dedicated 110 functions for devices such as cohsole, printer,
and auxiliary. These are truly character-oriented devices. The functions
in this group are

CON: Functions 01, 02, and 06 through OCh

PRN: Function 05

AUX: Functions 03 and 04
• CP/M-style file access using the FCB (file control block). This method

may also be used to access character-style devices. FCB access functions
are

Open/Close: Functions OFh and lOh

Device/File Read/Write: Functions 14h and 15h

File Only Read/Write: Functions 21h, 22h, 27h, and 28h

• MS-DOS-style file access using file handles. As with the FCB-type
I/O, character-style devices may be accessed as well as disk files. Those
functions that are used with file handles are

Open/Close: Functions 3Dh and 3Eh

Device/File Read/Write: Functions 3Fh and 40h

6 - Installable Device Drivers

I/O Control for Devices: Function 44h

• Direct disk 110 functions performing absolute disk reads and
writes. These are not part of the MS-DOS function call int 21h but are
supported instead by interrupts 25h (Absolute Read) and 26h (Absolute
Write).

CPIM-Style Character Device 110

The CP/M-style functions dedicated to the standard device CON are useful for
most terminal I/O and offer the options of buffering, echoing, waiting for a
character, and status checking. Support for the PRN and AUX devices is more
limited but sufficient for most purposes. However, for nonstandard devices, ei
ther the FCB (file control block) or the file handle methods of access must be
used.

Device Access Using the File Control Block

The FCB (file control block) method of device access is a mixed blessing. On one
hand, FCB is more cumbersome to set up and use than the file handle method,
although the use of macros and the STRUC directive can greatly ease the task of
setting up the FCB data structure. On the other hand, FCB-type file access al
lows the programmer to directly specify the record number within a file, making
it possible to perform random access I/O on a file. The file handle I/O functions
3Fh (read) and 40h (write) allow only sequential operations. To perform random
I/O with file handles, the application program must use function 42h (Move File
Pointer). This extra step is not required with FCB-type file accesses.

Using File Handles for Device 110

Although random access is fine for files, it doesn't do much for nondisk-type de
vices. When performing I/Oto a nondisk device, the file handle method is much
simpler to use and doesn't require the programmer to set up an FCB. In addi
tion, the file handle access method supports the IOCTL (1/0 control for devices)
function call (44h). As we shall soon see, IOCTL can be extremely useful for ad
vanced control of the device.

When using file handles to access nondisk devices, the programmer is not
limited to performing I/O 1 byte at a time. Up to 64 Kbytes may be transferred
to or from the device in a single call of the File/Device 1/0 functions. As with
disk devices, when these functions are used by themselves on nondisk devices,
they perform sequential transfers, with each successive block of data following
the previous one. However, by using the IOCTL function, additional param
eters for the device can be specified. For example, if both the device and the de
vice driver are set up to handle random mode transfers, the IOCTL function can
be used to control the transfer source or destination within the device.

An example of this last point may help to illustrate the potential of I/O con
trol for devices. Suppose that a particular system has associated with it a mem
ory-mapped graphics display device. Using a device driver, data is transferred

293

Devices

from system memory to the graphics memory. Because the device is not a mass
storage device, its driver must be a character-mode device driver. If I/O is per
formed using only the file handle I/O functions, no way is available to specify
where on the display the data is to be sent. However, if the driver supports the
IOCTL function, the location of the data in the graphics memory may be spec
ified through the control channel.

Function 44h-I/O Control for Devices

294

As we have implied, not all device drivers support the IOCTL function call. In
those drivers that do support IOCTL, not all of the various features of the call
are necessarily supported. However, IOCTL is such a powerful tool for control
ling devices that it behooves the MS-DOS programmer to become familiar with
its capabilities. The knowledge of what can be done through IOCTL calls surely
influences the programmer's decisions on which features to incorporate in a de
vice driver.

The I/O Control for Devices function has three basic modes of operation,
which are determined by a function code passed in the AL register when the re
quest is made. The three modes are: device configuration (codes 0, 1, and, in
later versions of MS-DOS, codes 8, B, E, and F); control channel 110 (codes 2
through 5, and, in MS-DOS 3.2, codes C and D); and device status requests
(codes 6 and 7). A list of the function codes supported by IOCTL appears in
Table 6-1.

Examining these modes in reverse order, the device status requests return
a simple ready (FFh) or not ready (0) indication. Microsoft includes a warning in
the MS-DOS Programmer's Reference Manual to the effect that, in future ver
sions of MS-DOS, the status code may not be valid by the time the system re
turns control to the calling program. Presumably the manual is referring to the
future possibility of multitasking or multiuser MS-DOS. One can only hope that
when future versions appear, Microsoft will have found a way to return the cor
rect information. In any case, until concurrent MS-DOS arrives, the inaccuracy
should not be a problem.

We have already mentioned the IOCTL device control channel I/O ca
pability. Simply put, this is a means to transfer a buffer of data to or from an
auxiliary channel. The mechanics of the call are identical to the file handle I/O
calls (3Fh and 40h), except that the function code specified in the AX register is
different. Whether the data is intended for an auxiliary channel on the device or
for the driver itself is up to the implementor.

Don't, however, be misled by the simplicity of the call and dismiss it as just
another I/O function. In the proper application, IOCTL can be a real blessing as
a secondary channel to communicate with the device driver. Microsoft has
provided a "trapdoor" function to accommodate unforeseen contingencies. They
are saying, "You feel our device interface is too limiting? Need more configura
tion ability? Here, use this." This is a great improvement over the "We don't got
it; you don't need it!" attitude taken by systems developers not too long ago.

6 - InstallableDevice Drivers

Table 6-1.

Code DOS
(AL=) Version*

0: 2.0
1: 2.0
2: 2.0
3: 2.0
4: 2.0
5: 2.0
6: 2.0
7: 2.0
8: 3.0
9: 3.2
A: 3.2
B: 3.0

110 Control for Devices Function Operation

Note Description

#1, 2 Get device information
Set device information

#3 Read from character device control channel
#3 Write to character device control channel
#3 Read from block device control channel
#3 Write to block device control channel
#1 Get input information
#1 Get output information
#2 Does block device support removable media?

Is a block device local or remote (redirected)?
Is a handle local or remote (redirected)?

#4 Change sharing retry count
C: 3.3 #5 Generic IOCTL handle request (code page switch)
D: 3.3 #5 Block device generic IOCTL request
E: 3.3 #5 Get logical drive
F: 3.3 #5 Set logical drive

Nate # 1: Function supported for files as well as devices.
Nate #2: Function not supported for network devices.
Nate #3: Function enabled by bit 14 of driver attribute word, and support indicated by
bit 14 of IOCTL configuration word.
Nate #4: Function requires file sharing command (SHARE) to be loaded.
Nate #5: Function enabled by bit 6 of driver attribute word.

'Earliest version of MS-DOS that supports the command.

Configuration via the 110 Control Commands
MS-DOS has a.lso provided for configuration commands with the Get/Set Device
Information frtnctions supported by the IOCTL function. Figure 6-2 shows the
16-bit configuration word used by the Get/Set Device Information functions,
codes 0 and 1. In current versions of MS-DOS, only the lower 8 bits of this word
may be specified in the Set Device Information word. Those bits in the device
configuration word that either have meaning for device drivers or affect the way
a driver processes data are described next.

IOCTL Bit 14: CTRL
The CTRL bit is set to 1 if the device driver can process I/O control strings. This
bit exactly reflects the value of the IOCTL bit in the associated device driver's
attribute word. The IOCTL bit is used by the device driver to indicate to MS
DOS that the driver will accept I/O control strings. This bit applies to both files
and devices.

295

Devices

296

15 14 13 12 11 10

R c
E T
s R

L
RESERVED

BIT MEANINGS

CTRL = 1 : Supports control channel 1/0
ISDEV = 1: Channel is a device

= 0: Channel is a file

FILE

Channel has been written

BITS 0 through 5 are block device number

9 8 7 6 5 4 3

I E B s I
s 0 I p s
D F N E c
E c L
v L K

DEVICE

EOF =0: END-OF-FILE on input
BIN = 1: Operating in binary mode
SPECL = 1 : Device is special
ISCLK = 1 : Device is the clock device
ISNUL = 1: Device is the NUL device

2

I I
s s
N c
u 0
L T

ISCOT = 1 : Device is the console output device
ISCIN = 1: Device is the console input device

Figure 6-2. IOCTL device configuration word.

IOCTL Bit 7: ISDEV

0

I
s
c
I
N

The ISDEV bit is set to 1 ifthe channel (MS-DOS handle) is open to a device. If
the channel is open on a file, then this bit is set to 0.

IOCTL Bit 5: BIN
The BIN bit is sometimes called the raw bit in MS-DOS documentation, since it
reflects and selects between "raw" and "cooked" modes of operation. This bit in
dicates whether MS-DOS "cooks" the data as it is passed, or whether MS-DOS
simply passes "raw" binary information between the device and the application
program. Cooking the data implies checking for certain control characters,
providing tab expansion, echoing characters, and so forth.

More traditional terms for these functions are the binary mode and the
ASCII mode, corresponding to the "raw" and "cooked" modes. The MS-DOS
Programmer's Reference Manual contains more detailed instructions on how to
check and set this bit. For now, we'll examine what effect this bit has on the op
eration of character device drivers. (Note from Figure 6-2 that this bit does not
apply to block-mode drivers.)

When a character device is in the cooked mode (the default mode), data is
transferred to and from the device one character at a time; that is, one device
driver call is made for each character to be transferred. This occurs regardless
of the transfer count specified when the applications program called MS-DOS.
For example, if an application requests that 128 characters be output to a
character device, and the device is in the cooked mode, then MS-DOS will make
128 calls to the device driver with the Output or Output with Verify function,
each call with a transfer count of one.

6 - Installable Device Drivers

Single-byte I/O can be avoided by operating the device in raw mode. This
mode must be explicitly set by using the IOCTL function. In raw mode, the
transfer count specified in the application will also be used in the I/O call made
to the device driver. Using our earlier example, if an application requests that
128 characters be output to a character device, and the device is in the raw
mode, then MS-DOS will make one call to the device driver with the Output or
Output with Verify function, and that call will specify a transfer count of 128.

IOCTL Bit 4: SPECL
Like the CTRL bit, the SPECL bit of the device configuration word exactly re
flects the status of the SPECL bit in the associated device driver's attribute
word. If set, this bit implies that the driver, which is almost always the console
driver, is capable of performing high-speed output in binary mode through the
use of interrupt 29h.

The BIN bit, specifying raw mode, is also required to enable the high
speed output mode associated with the SPECL attribute. When both the
IOCTL word's BIN bit and the attribute word's SPECL attribute bit are set,
then the device will be operated in the high-speed output mode. This output
mode and the SPECL attribute bit are discussed in more depth in the upcoming
section "The Device Header Attribute Word."

The Generic 1/0 Control Commands
The four IOCTL commands introduced with MS-DOS version 3.3-commands
C, D, E, and F-are all optional, and are enabled only if bit 6 in the driver's at
tribute word is set. The name "Generic I/O Control" given to commands "C" and
"D" is something of a misnomer, since the subfunctions supported under these
commands are quite specific and rather esoteric. The generic I/O control com
mands are actually used to support particular, vendor-specific devices, with
functions that allow font switching in printers, formatting for disk drives, and so
forth. You should refer to your MS-DOS programmer's documentation for more
information if you think that you need to use these commands.

Commands E and F allow an application programmer to manage logical
drive assignments, such as those set up by the MS-DOS SUBST (substitute)
command. Command E, Get Logical Drive, returns the drive assignment that
was last used to access a physical device, and Command F, Set Logical Drive, is
used to sequence through a driver's logical drive assignments.

Direct Disk Access with Interrupts 25h and 26h
At the other end of the spectrum from file handle device accesses are the abso
lute disk access interrupts: Absolute Disk Read (int 25h) and Absolute Disk
Write (int 26h). As the name implies, the Direct Disk Access interrupts work
solely with block-mode devices, for instance, disks. The purpose of absolute disk
access is to allow I/Oto disks without having to go through the MS-DOS file
structure. This is useful in two cases.

In the first case, programmers can read or write selective parts of a stan
dard MS-DOS disk that contains a file and directory structure. This is often

297

Devices

required when part of the disk has gone bad, preventing the FCB or file handle
methods from working. Direct disk I/O functions can then be used to "sur
gically" pick around the disk and recover what may be salvaged. Another use is
to allow programs to read and write the FAT or directory on the disk, something
not allowed through the other methods. Utilities that sort directories, patch
files, etc., require this ability.

The second case for using absolute disk access is when the disk does not
contain any FAT entries or directory structure. The disk is to be used purely as
a data disk. This can also occur when reading disks that were written under a
different operating system like CP/M or the UCSD-p System. In such cases, the
disk configuration parameters returned to the system by the driver prevent
MS-DOS from being able to access the disk in any other way. Any attempts to
perform file I/O, including reading the directory, return garbage or the Non
DOS Disk error message. (For more information on how MS-DOS determines the
format of a disk, refer to the "Build BIOS Parameter Block" driver command
described in the Microsoft MS-DOS Programmer's Reference Manual, or in
your system's equivalent manual.)

In return for providing direct access to the drivers, int 25h and int 26h do
not perform blocking or de blocking for the disk. Blocking and de blocking are re
quired when the physical sector size on the disk is different from the logical rec
ord size used within the system. When blocking, the system gathers together
enough records to fill a physical sector before issuing a disk write. De blocking is
used when reading from the disk because one physical sector can contain many
records. The system reads the entire sector and then extracts the requested
record for the calling program. Absolute disk access functions read and write
only entire sectors, so the programmer must know the sector size of the disk to
determine just how many bytes are transferred.

Because the calling parameters used in these interrupts are passed di
rectly to the device driver without conversion, reads and writes transfer data in
units of the physical sector size on the device. This is contrasted with the FCB
and file handle access methods in which I/O is specified in logical blocks and rec
ords and MS-DOS handles the conversion to physical sectors.

One last peculiarity of absolute disk access functions is that they return
from the interrupt with afar RET rather than an IRET instruction, leaving the
flags on the stack. Therefore, after checking to see whether the function has
completed properly, you must pop the original flags from the stack.

The Verify Switch

298

There is one more ingredient in device I/O that has an effect on device driver
behavior. This is the verify switch, which controls whether or not a driver is ex
pected to verify the performance of an output command, e.g., perform a read
after a write. The verify switch is set or reset in three ways:

1. At the DOS command line, the user can specify "VERIFY ON" or
"VERIFY OFF" to turn the switch on or off.

2. For some MS-DOS commands, such as COPY, the IV switch will set the

6 - Installable Device Drivers

verify mode ON for the duration of the command, as in the command copy
this that Iv.

3. The verify switch may be set or reset from within a program by using
MS-DOS function 2Eh, Set/Reset Verify Switch.

IIOSummary

Now that we have a basic idea of the types of operations that may be requested of
a device driver, we are ready to proceed with the actual construction of the
driver. To summarize, all device drivers are asked to perform basic I/O. Device
drivers may also support an optional separate I/O channel for device control,
which is called the I/O Control for Devices channel.

Character-type device drivers may be asked to transfer from 1 to 64
Kbytes of data in a single call. Block device drivers are asked to transfer data in
units of sectors only because MS-DOS takes care of conversion from sectors to
records and back again. As we have hinted, block-mode drivers also are asked to
return configuration information about the disk that they are currently using.

Writing Device Drivers

Writing device drivers in any operating system has a great advantage over writ
ing standard programs. Device drivers must follow a fairly rigid structure, sort
of a "cookbook," and once the structure is understood, the rest follows.

The basic parts of a device driver and a suggested structure are shown in
Figure 6-3. The three required sections are the device header, the strategy rou
tine, and the interrupt routine. The interrupt routine is not the same as an in
terrupt service routine, which can be an optional part of an interrupt-driven
device driver. Instead, this routine is really the entry point to the driver for
processing the request received from MS-DOS.

Device Header

Driver Data Storage

Strategy Routine

Interrupt Entry

Command Handlers

Interrupt Service Routine

Initialization Code
and Driver Data Buffers

Figure 6-3. The parts of an MS-DOS device driver.

299

Devices

300

Listing 6-1 shows the skeletal structure of a minimal device driver. While
the driver appears similar to the structure expected of a. COM type program, it
is very important to note the following differences:

;

1. The program has its origin at zero, not 100 hex.
2. The program image begins with the data directives for the device driver's

device header.
3. The program does not contain an ASSUME for the stack segment.
4. The program does not contain an END START directive.

Listing 6-1. Device Header, Strategy, and Interrupt Routines

; ----- DRIVER CODE STARTS HERE ===================================
;
DRIVER SEGMENT PARA

ASSUME CS:DRIVER, DS:NOTHING, ES:NOTHING
ORG 0

START EQU $; start Location of driver

;****** DEVICE HEADER ***

;******
req_pt r

dw -1,-1 ; pointer to next device
dw ATTRIBUTE ; attribute word
dw off set STRATEGY
dw off set INTERRUPT
db 8 dup (?)

; strategy entry point
; interrupt entry point
; #units/name field

RESIDENT DATA AREA **
dd ? ; pointer to request buffer

******* STRATEGY ENTRY POINT FOR DEVICE DRIVER ********************
; Save the request header pointer for INTERRUPT in REQ_PTR.
; Entered with pointer contained in ES:BX registers.
;
STRATEGY PROC far

mov cs:word ptr [req_ptrJ,bx
mov cs:word ptr [req_ptr + 2],es
ret

STRATEGY endp
;****** INTERRUPT ENTRY POINT FOR DEVICE DRIVER *******************
; Process the command contained in the request header.
; The pointer to the request header is Located in REQ_PTR
; in the form OFFSET:SEGMENT.
;
INTERRUPT PROC

push a
far

; save all registers

6 - Installable Device Drivers

Lds

INTERRUPT endp

DRIVER ENDS
END

The Device Header

bx,cs:[req_ptr] ; get DS & request header

The device header is an 18-byte block of data that must begin every device
driver. This header must be located at origin 0 in the device driver segment.
When a device driver is loaded, MS-DOS reads the device header to determine
the type of device and the entry points into the device. The header contains four
pieces of information critical to MS-DOS's use of the driver: the chain pointer,
the attribute word, the entry point vectors, and the unit/name field.

The Device Chain Pointer
The first 4 bytes of the device header are a double word pointer (offset:segment)
to the next device in the device chain. These bytes are normally set to
FFFF:FFFF (-1) in the driver code. MS-DOS overwrites them with the ad
dress of the next driver when the system loads the new driver. An exception oc
curs when the device driver file contains more than one device driver, in which
case, the first 2 bytes should contain the offset of the next driver's device header.

The Device Header Attribute Word
The next word in the device header is called the attribute word. It contains a
number of single-bit fields that convey the type and capabilities of the device
driver to MS-DOS. Figure 6-4 shows the layout and meanings of the bits in the
attribute word. Some examples of attribute words for various devices are as
follows:

IBM format disk device-0000

Standard console terminal driver-8003h
Standard character device (for example, PRN)-8000h

Attribute Bit 15: CHR. The CHR bit must be set to 0 if the driver is for a
block device, and it must be set to 1 if the driver is for a nonblock device. (See
the previous section "Types of Device Drivers.")

Attribute Bit 14: IOCTL. The IOCTL bit is an optional setting used to in
form MS-DOS that the block or character device driver supports 110 control for
devices by reading or writing to the device control channel. If this bit is set, the
driver must support driver commands 3 (1/0 Control for Devices Input) and

301

Devices

302

15 14 13 12 11 10 9 8 7 6 5 4 3 2

c I N N 0 G R s c N s
H 0 0 E c I E p L u T
R c N T R 0 s E 0 L D

T I w M c E c c 0
L B 0 RESERVED T R L K u

M R L v T
I K E
0 D
T
B

BIT MEANINGS

CHR = 1: Device is a character device
IOCTL = 1 : Driver supports 1/0 control for devices 1/0

* OCRM = 1: Device supports Open/Close/Removable Media calls

BLOCK DEVICES

NONI BM = 1: Driver is for Non-IBM type disk
:j: NETWORK = 1: Driver is for a network device

** GIOCTL = 1: Device supports generic 1/0 control and Gel/Set logical device

CHARACTER DEVICES

** GIOCTL = 1: Device supports generic 1/0 control
:j::j: OTB = 1 : Device supports Output Til Busy

SPECL = 1: Device has special attributes
CLOCK = 1 : Device is the clock device
NUL = 1: Device is the NUL device
STDOUT = 1 : Device is the standard output device
STDIN = 1: Device is the standard input device

* = MS-DOS version 3.00 or later
:j: = MS-DOS version 3.10 or later

:j::j: =MS-DOS version 3.20 or later
**=MS-DOS version 3.30 or later

Figure 6-4. Device driver attribute word.

0

s
T
D
I
N

12 (I/0 Control for Devices Output). This bit must be set to 0 if these commands
are not supported. If supported, these driver commands are accessed via
MS-DOS function 44h, subcommands 2 and 3 (for character devices) or subcom
mands 4 and 5 (for block devices).

Attribute Bit 13: NON/BM/OTB. For block device drivers this is the NON
IBM or NONFAT bit. When this bit is set to 1, it indicates that the block device
may not support the IBM/MS-DOS standard for disk structures. This bit has im
plications in the driver's processing of the INIT and Build BIOS Parameter
Block commands. For character device drivers used under MS-DOS versions 3.2
or later, this bit is the OTB, or Output Until Busy, bit. When set to 1, it indicates
that the driver supports the optional driver command Output Until Busy (com
mand 9). This command is useful for character devices with large buffer capaci
ties, such as some printers. Character device drivers used with versions of
MS-DOS prior to 3.2 should set this bit to 0.

Attribute Bit 12: NETWORK. The NETWORK attribute is an optional at
tribute, introduced in MS-DOS version 3.10. Interestingly, it is not mentioned

6 - Installable Device Drivers

in any subsequent documentation for MS-DOS versions 3.2 or 3.3, leaving its
current use in question. This bit is used to indicate to MS-DOS that the device is
a network device. Network devices are marked as block devices in the attribute
word. The assumption is made that a network device is a gateway onto the net
work, allowing entire system calls to be sent to a remote device for processing.
However, in order to use the network, some facility for redirection must be
provided, such as MS-NET.

Attribute Bit 11: OCRM. The Open/Close/Removable Media attribute
(OCRM) is a semioptional attribute, introduced with MS-DOS version 3.0. It
may be used with either character or block device drivers. We have called this
attribute "semioptional" because, although it is not required, Microsoft recom
mends that it be set for all new device drivers. An explanation of the implica
tions of setting this attribute will undoubtedly aid the programmer in deciding
whether to use this attribute.

For both character and block device drivers, when this attribute bit is set
to 1, it means that the driver supports the driver commands Device Open and
Device Close (commands 13 and 14). Block device drivers with this attribute set
must also support the driver command Check for Removable Media (command
15).

For block-type device drivers, the Device Open and Device Close com
mands are invoked only if file sharing is in effect. File sharing is enabled by ex
ecuting the MS-DOS command SHARE.EXE. Once file sharing is in effect, the
Device Open command is invoked by MS-DOS when function OFh (Open File via
FCB) or function 3Dh (Open File via Handle) is called. The Device Close com
mand is similarly invoked when function lOh (Close File via FCB) or function
3Eh (Close File via Handle) is called. For block-type drivers, the Device Open
and Device Close commands may be used to maintain a count of the number of
open accesses on a given device, such as the number of open files on a disk. This
can be helpful in determining iHhere has been an illegal disk swap (e.g., a disk
was changed with files open).

For character-type device drivers, the Device Open and Device Close com
mands are called whenever the associated device is opened or closed, regardless
of file sharing. SHARE.EXE is not required. Only MS-DOS functions 3Dh
(Open Device via Handle) and 3Eh (Close Device via Handle) can be used with
devices because the FCB method of access will not work with devices. For
character-type drivers, the Open and Close driver commands can be used to pre
vent simultaneous access to a device such as a printer or modem, or to invoke
preprocessing and postprocessing routines, such as printer setup and
shutdown.

Note that the CON, AUX, and PRN devices are always open because they
are associated with handles 0, 1, and 2 (STDIN, STDOUT, and STDERR, all
mapped to CON), handle 3 (STDAUX, mapped to AUX), and handle 4
(STDPRN, mapped to PRN).

The Check for Removable Media driver command is called when a user pro
cess issues MS-DOS function 44h (110 Control for Devices) with subcommand

303

Devices

304

number 8. The driver responds by informing the caller whether or not the media
is removable.

The Open/Close/Removable Media attribute also has implications for the
processing of the driver command, Build BIOS Parameter Block, abbreviated as
Build BPB. Removable media are expected to support volume identification, an
eleven-character name for the disk. If the device supports removable media, the
volume name must be determined, reported, and maintained by the driver. Fur
ther details are given in the upcoming section on processing the Build BPB
command.

Attribute Bits 10 through 7. These bits are reserved.

Attribute Bit 6: GIOCTL. Under MS-DOS version 3.3, the Generic I/O Con
trol, or GIOCTL, bit is set to 1 to indicate that the block or character device
driver supports the optional driver commands for Generic I/O Control Request
(command 19). When this feature is enabled for block device drivers, the driver
must also support the driver commands for Get and Set Logical Device (driver
commands 23 and 24).

If the driver supports these commands, the user program may access the
Generic I/O Control Request via MS-DOS function 44h (I/O Control), subcom
mands OCh and ODh. For block devices, the driver functions for Get and Set
Logical Device are accessed via MS-DOS function 44h (I/0 Control) and sub
commands OEh (Get Logical Drive) and OFh (Set Logical Drive). (For more de
tailed information on these functions refer to the previous section "Function
44h-I/O Control for Devices" and to the later sections "Generic IOCTL Com
mand" and "Get and Set Logical Device Commands".)

Attribute Bit 5. This bit is reserved.

Attribute Bit 4: SPECL. The SPECL bit is an optional bit used only by con
sole device drivers (named "CON") to inform MS-DOS that the device driver has
installed a special trap handler on interrupt 29h for the purpose of performing
high-speed console output. If this bit is set, whenever MS-DOS needs to per
form fast console output, it invokes int 29h, with the character to be output con
tained in the AL register. Fast output mode is both controlled by and indicated
by bit 5 (binary mode) in the device's IOCTL device configuration word. (See I/O
Control for Devices commands 0 and 1.)

When invoked by int 29h, the driver is expected to output the character in
the AL register and return from the interrupt. Normal device I/O procedures
are bypassed. Both the standard MS-DOS console driver and the standard
ANSI. SYS replacement console driver support this feature. If the console
driver in use supports the SPECL interrupt, as determined by reading the de
vice's IOCTL device configuration word, then application programs can also
perform fast console output by calling int 29h.

Note that the SPECL bit is marked "reserved" in IBM documentation and
is ignored in Microsoft's recent documentation. Both of these facts tend to imply
that future support of the SPECL bit is not guaranteed.

6 - Installable Device Drivers

Attribute Bit 3: CLOCK. The CLOCK bit is set on the character device
driver with the name "CLOCK$" to signify that this device is the system's real
time clock device. Since a clock device is nearly always provided with the sys
tem, there is rarely a need to use this bit.

The clock device driver is usually implemented as a standard character de
vice without any optional attributes (attribute word 8008h). The time is read
with the Input command and set with the Output command. All transfers are
exactly 6 bytes, and are interpreted as follows:

Byte Size Meaning

0, 1 16 bits Number of days since January 1st, 1980

2 8 bits Minutes (past hour)

3 8 bits Hour (since midnight)

4 8 bits 1/ioo of a second (past second)

5 8 bits Second (past minute)

Attribute Bit 2: NUL. The NUL bit designates the device as the NUL de
vice. Since the NUL device cannot be replaced, there is no reason to ever create
a NUL device driver.

Attribute Bits 1 & 0: STDIN & STDOUT. The STDIN and STDOUT bits
designate the associated character device driver as the standard input and out
put device. These bits are almost always defined together on the console device,
CON, which supports the system keyboard and system monitor. If a new con
sole driver, such as ANSI. SYS, is installed in order to add features to the sys
tem, the device should have these bits set. These attributes should be set on
only one active device per system. (Other copies of the CON driver may have
these attributes, but they would be superseded by the latest driver installed.)

The Strategy and Interrupt Entry Pointers
The next two words in the device header contain the offsets of the strategy rou
tine and interrupt routine, respectively. MS-DOS uses this information to
gether with the segment address of the driver to find the entry points to the
routine. MS-DOS knows the segment address, of course, because the system
loaded the driver in the first place.

The Number of Units/Name Field
The last 8 bytes of the device header are used for two purposes. For character
type device drivers, this field contains the ASCII name of the device, padded
with blanks. For example, the printer device field would appear as 'PRN '

For block-mode device drivers, only the first byte has any meaning. It indi
cates to MS-DOS how many separate units are supported by this device driver.
This is necessary because many disk controllers support more than one physical
drive. Because the remaining 7 bytes are unused, they may contain the name of
the device to assist in finding the device in memory or in identifying the driver.

305

Devices

For example, the unit field of the RAM disk driver RDISK (shown in Listing
6-10) is defined as: 1, 'RDISK '

The Strategy Routine

306

The next required section of the device driver is the strategy routine. The strat
egy routine in Listing 6-1 has only three lines of executable code. This section
has the single task of saving the driver request block for later execution by the
interrupt routine.

What is the driver request block? Listing 6-2 shows the structure defini
tion for the request header. Every I/O request made to the driver begins with
this request header. The request may sometimes require more information than
that contained in the request header, which is why the length parameter is in
cluded. We will return to the request header, but first we must finish our
coverage of the strategy routine.

Listing 6-2. Structure for the 1/0 Driver Request Header Block

request equ ds:[bxJ ; base addr of request head
reqhdr struc
Length db ? ; Length of request block (bytes)
unit db ? ; unit #
command db ? ; driver command code
status dw ? ; status return

db 8 dup (?) ; reserved bytes
reqhdr ends

The reason that the strategy routine must save the request block is be
cause MS-DOS does not make a single call to a driver tg perform a function. In
stead, the system first calls the driver and tells the driver what it wants done
and then recalls the driver and tells the driver to actually perform the action.

The reason for the two calls is that when MS-DOS eventually supports a
multitasking or concurrent system, multiple driver requests may be outstand
ing at any given time. By separating the request and execution portions of the
driver, multiple requests can be pending, even while the driver is still process
ing an earlier request.

MS-DOS passes to the strategy routine a pointer to the driver request
block in the ES:BX register pair. As the following code fragment demonstrates,
most drivers save the driver request block by simply saving the pointer to the
block. This is because MS-DOS currently calls the interrupt routine imme
diately after the strategy routine returns. The data in the request block is still
valid.

mov cs:word ptr [req_ptrJ,bx
mov cs:word ptr [req_ptr + 2J,es

6 - Installable Device Drivers

However, as soon as MS-DOS becomes multitasking, saving the pointer
alone no longer suffices. The strategy routine will have to save the contents of
the request block. In addition, drivers probably will have to be able to queue
multiple request blocks unless MS-DOS handles this function for them. Until
the day when MS-DOS becomes multitasking, we can get by with the easier
method of saving just the pointer itself.

Both the strategy routine and the interrupt routine must be defined in
MASM as far procedures and return to MS-DOS with afar RET. Because MS
DOS calls these routines with afar CALL, any other type ofreturn would either
return to the wrong location (near RET) or misalign the stack (IRET).

The Interrupt Routine
After the strategy routine saves the pointer to the request block and returns,
MS-DOS calls the interrupt routine (also called the request entry point in IBM
DOS documentation). This is the routine that actually performs the requested
operation.

The first action that the interrupt routine must take is to save all registers!
When a device driver is called, the stack has enough room for about 20 pushes.
Pushing all of the registers, including the flags, takes 14 pushes. If the interrupt
routine requires more than six words of stack storage for its own use, the inter
rupt routine should set up its own local stack.

After the state of the machine has been saved, the interrupt routine must
retrieve the request block that was saved by the strategy routine. If the pointer
to the block was saved, using the code fragment in preceding text, the pointer
can be retrieved with an LDS instruction.

Lds bx,cs:[req_ptr] ; get OS & request header

Now that the interrupt routine has access to the request block, processing
may begin. The first step is to analyze the desired request. Accessing the indi
vidual fields of the request header is much simpler if a structure is defined for
the header. The structure that we use in the RDISK driver to define the request
header was shown in Listing 6-2.

If the driver supports a block-type device, the first element of the header
checked should be the unit number, request.unit. After the unit number has
been validated, the interrupt routine should fetch the command code,
request.command, from the header to determine the action to be performed.
Character-type device drivers can fetch the command code immediately because
each driver supports only one unit.

Once the command code has been determined, the interrupt routine must
transfer control to the proper function handler. Listing 6-3, which contains a
sample INTERRUPT routine, shows one method for handling this: the jump
table. The jump table itself is a list of the program offsets for each of the routines
that may be called. In order to access a particular routine, the caller specifies an
index, in this case the driver's command code. The index is converted into an off-

307

Devices

308

set into the table, and the program executes an indirect call or jump through the
table to the destination routine:

ca LL word ptr cs:jumptab[bxJ ; invoke command

Because the index (driver command code) can often be much larger than
the number of valid commands, the INTERRUPT routine must first check to
ensure that the specified command code is within range. Rather than use a pre
set value, the INTERRUPT routine compares the command code with the max
imum allowed code stored in max_cmd:

cmp bl,[max_cmdJ ; is the command supported?

Listing 6-1 shows that max_cmd has a default value of OC (hex), the high
est command supported prior to MS-DOS version 3. 0. However, since max_cmd
is stored in memory, it can be modified during the driver's initialization to enable
the use of higher-numbered commands ifthe driver is loaded under a newer ver
sion of MS-DOS. The different commands supported under the various versions
of MS-DOS are given in Table 6-2.

Table 6-2. Device Driver Command Functions

Com- DOS
mand Version* Block Char Attribute** Function Meaning

0: 2.0 x x INITialization
1: 2.0 x MEDIA CHECK
2: 2.0 x BUILD BIOS Parameter Block (BPB)
3: 2.0 x x 14: IOCTL INPUT I/O Control for Devices
4: 2.0 x x INPUT (read)
5: 2.0 x Nondestructive INPUT no-wait
6: 2.0 x INPUT STATUS
7: 2.0 x INPUT FLUSH
8: 2.0 x x OUTPUT (write)
9: 2.0 x x OUTPUT (write) with VERIFY

10: 2.0 x OUTPUT STATUS
11: 2.0 x OUTPUT FLUSH
12: 2.0 x x 14: IOCTL OUTPUT I/O Control for Devices
13: 3.0 x x 11: OCRM DEVICE OPEN
14: 3.0 x x 11: OCRM DEVICE CLOSE
15: 3.0 x 11: OCRM REMOVABLE MEDIA
16: 3.1 x 13: OTB OUTPUT (write) Until Busy
19: 3.2 x x 6: GIOCTL Generic IOCTL Request
23: 3.2 x 6: GIOCTL Get Logical Device
24: 3.2 x 6: GIOCTL Set Logical Device

•Earliest version of MS-DOS that supports command.
**Bit in device attribute word (if any) that enables command.

The final task of the INTERRUPT routine, after the driver function has
returned, is to set the return status in the request block. In Listing 6-3, each
function is expected to return its completion status in the AX register. After the

6 - Installable Device Drivers

called function has returned, the INTERRUPT routine transfers this status to
the status word in the request block header, request.status. The INTERRUPT
routine then ensures that the done bit is set, and returns to MS-DOS. Since the
return to MS-DOS must be afar return, the INTERRUPT routine is defined as
afarproc.

Listing 6-3. Sample Driver INTERRUPT Processing

; Device Driver Status Word Bit Definitions
;
SLERROR equ
SLBUSY equ
SLDONE equ
;

1000000000000000b
0000001000000000b
0000000100000000b

; Device Driver Error Code Definitions
;
WRITE_PROTECT equO
UNKNOWN_UNIT equ1
NOLREADY equ2
UNKNOWN_COMMAND equ3

; error has occurred
; device is busy
; device is done

;****** INTERRUPT ENTRY POINT ***************************************
;
INTERRUPT proc far

push a ; save all working registers
push ds
push es
push cs ; establish loca L data segment
pop ds
Les di ,[req_ptr] ; obtain request block pointer
mov bl,es:[di.commandJ ; obtain driver command code

;
; preset a command error in case the command is unrecognized

mov ax,CST_ERROR or UNKNOWN_COMMAND)
cmp bl,[max._cmdJ ; is the command supported?
ja exit ; no - reject it

;
; Invoke designated command: Each handler is called with OS & CS
; set to segment DRIVER, and ES:DI pointing to the request block.
; Each handler must return with its status in the AX register.

xor bh,bh ; adjust command to be table index
shl
ca LL

bx,1
word ptr cs:jumptab[bxJ ; invoke command

; Transfer status from AX register to request block STATUS word
continued

309

Devices

310

Listing 6-3. continued

exit: push
pop
Les
or
mov
pop
pop
pop a
ret

cs
ds
di ,[req_ptr]
ax,SLDONE
es:[di.statusJ,ax
es
ds

INTERRUPT endp

; establish Local data

; obtain request block
; always set done bit
; store return status
; restore context

segment

pointer

;****** COMMAND PROCESSING JUMP TABLE *******************************
;
JUMPTAB La be L word

dw off set !NIT ; 0--INITialization
dw off set MEDIA-CHECK ; 1--MEDIA check
dw off set BUILD_BPB ; 2--Bui Ld BIOS Parameter

dw offset NO_ COMMAND ; 16
dw offset GEL LOGICAL ; 17--Get Logi ca L Device
dw offset SELLOGICAL ; 18--Set Logical Device

15 14 13 12 11 10 9 8 7 6 5 4 3 2

E B D
R u 0
R s N

y E
RESERVED ERROR CODE IF

BIT 15 IS ON

BIT MEANINGS

ERR = 1 Error has occurred on device. Error code in bits 0-7.
BUSY = 1 Set by Status and Removable Media calls.
DONE= 1 Operation is complete. Bit set on exit.

Figure 6-5. Device driver status word.

Block

0

6 - Installable Device Drivers

The status word, shown in Figure 6-5, is used to indicate error conditions
for all commands (the error bit) and the status of the device for the Status and
Removable Media commands (the busy bit). The error bit is set if an error occurs
in processing the command or if the command is illegal for that driver. If the er
ror bit is set, the driver must place the proper error code in bits 0 through 7 of
the status word. The various error codes that can occur on a device are listed in
Table 6-3.

The done bit must always be set in the status word before the driver re
turns to MS-DOS.

The Driver Commands
For most driver operations, the request header block doesn't contain all the in
formation needed to process the command. Those few commands that do not re
quire additional information are the Status commands and the Flush, Open,
Close, and Removable Media commands. All of the other commands require
more information than that contained in the request header. For each of these
commands, the additional information required is appended to the request
block. The length parameter, request. length, indicates the total size of the re
quest block (in bytes).

Once again, structures can be used to ease the task of accessing the various
elements of the request blocks. Listing 6-10, the RDISK listing (found at the
end of the chapter), shows structure definitions for those commands that
RDISK expects to process. Notice that because many of the different requests
use similar request blocks, we don't need to define all of the fields in every block.
This is convenient because MASM doesn't allow us to use the same name more
than once, even in different structures.

Table 6-3. Driver Error Codes

Code Error

0 Write protect violation
1 Unknown unit
2 Device not ready
3 Unknown command
4 CRC error
5 Bad request structure length
6 Seek error
7 Unknown media

All error codes are given as hexadecimal numbers.
*Supported only under MS-DOS versions 3.0 and later.

Code Error

8 Sector not found
9 Printer out of paper
A Write fault
B Read fault
C General failure
D Reserved
E Reserved

*F Invalid disk change

311

Devices

INIT Command

312

The INIT, or initialize, command is always the first command called when a de
vice driver is installed, and it is called only once for each driver. This function
has the responsibility of informing DOS of the pertinent characteristics of the
driver, and of performing whatever startup functions are necessary. The startup
requirements depend on the type of device being controlled. Deciding which
driver characteristics to return to DOS depends on the type of driver.

All device drivers must return the break address (memory address of the
end of the driver) and the number of units controlled by the driver. Character
device drivers may support a maximum of one unit. Block device drivers may
support more than one unit, such as when the device contains multiple drives. A
driver may also return zero units in order to abort the installation, as may be
required in situations where the device is absent. If the driver does return a unit
count of zero, it must also set the break address to the value CS:O (current code
segment, offset zero) to inform MS-DOS that the entire driver may be overwrit
ten. In normal use, the break address is the address (segment and offset) of the
next byte located after the last byte of the program. MS-DOS resumes loading
the system at the next memory paragraph following the break address (or the
paragraph of the break address if the address is on a paragraph boundary).

The third parameter specific to the INIT command is the BPB table
pointer. This pointer, which is returned to MS-DOS by the INIT command, is
the address of a table which is itself made up of pointers to BIOS Parameter
Blocks. There is one pointer for each unit that the driver supports. A BIOS Pa
rameter Block, or BPB as it is called, is a structure that defines the format of a
block device (see Figure 6-6). Because BPBs apply only to block devices, this
parameter is not returned by character device drivers. However, the BPB table
pointer field has another feature which may be used by both types of device
driver-it points to the driver's command line. We'll see more of this in a
moment.

The last parameter unique to the INIT command is the drive number. This
parameter, which is supported only under MS-DOS versions 3.10 and later, is

6 - Installable Device Drivers

OFFSET
(hex)

+O

+2

+3

+5

+6

+8

+A

+B

CONTENTS

Bytes per Sector

Sectors per Allocation Unit

Number of Reserved Sectors

Number of FAT Tables

Number of Directory Entries

Number of Logical Sectors

Media Descriptor

Number of FAT Sectors

SIZE

Word

Byte

Word

Byte

Word

Word

Byte

Word

Figure 6-6. Contents of the BIOS Parameter Block.

used to specify the starting drive number of the associated device(s). For exam
ple, ifthe driver is intended to control disks C: and D:, this field would be set to
2, and the number of units would be set to 2. If the driver is to control only disk
A:, the drive number is set to 0, and the number of units is set to 1. This feature
is important because it finally allows the default block device drivers to be re
placed with user-installed drivers.

The INIT command is unique because, of all the commands used by a
driver, INIT operates in an environment closest to that of a standard MS-DOS
program. Unlike the other commands, the INIT command may make use of the
int 21h function calls 01 through OCh (the CP/M-style I/O commands) and func
tion 30h (Get MS-DOS Version Number).

The preceding I/O functions allow the driver to identify itself with a "sign
on" message during installation, possibly indicating configuration options or the
like. The Get DOS Version function allows a device driver to adjust its behavior
depending on the number and type of driver commands supported under a given
version of MS-DOS. A developer can then write one driver that works with
many versions of MS-DOS.

Another similarity between the INIT command and a standard DOS pro
gram is that the INIT function can read the driver's command line and use it
to configure the driver. A driver is specified in the CONFIG.SYS file with the
DEVICE command, such as:

DEVICE=[d:][pathlfilename[.ext][parameters]

When the INIT command is called, the driver is passed a pointer to the
command line text buffer. This pointer, passed in the BPB table pointer field of

313

Devices

314

the INIT command's request block, points to the first character after the = in
the command line. In order to obtain configuration information from the com
mand line, the initialization code would skip over the file specification portion of
the command and proceed to parse the parameters. However, unlike a standard
MS-DOS program, only the address of the command line is passed to the INIT
command, and not a copy of the command line. The command line itself must
only be read, and never written over. For block device drivers, the address of the
command line is of course overwritten with the BPB table pointer parameter.

Because the INIT command is called only when the driver is first loaded by
the system at boot time, and never called again, the code required to process
this command is essentially "throwaway" code. To minimize memory use by the
driver, the code to handle the INIT command can be located after the break ad
dress or can be colocated (having the same memory address) with an internal
buffer in the driver. (The RDISK driver reuses the INIT code as part of a mem
ory buffer.) In either case, the memory occupied by the INIT command's pro
gram code will be reused, either by MS-DOS or by the driver. All other code is
required to process the various command functions and must be located before
the break address.

Media Check

The Media Check command is always required for block device drivers and is
never required for character device drivers. This command is used by MS-DOS
to remedy a problem that can occur with block devices using removable media:
the media can be changed. Whenever a diskette or equivalent is exchanged, the
physical format of the new disk may be different from the previous one, and the
contents of the new disk will almost undoubtedly be different.

If the disk format has changed, MS-DOS will need to adapt to the new
structure of the disk: sector size, number of sectors, and so forth. MS-DOS
keeps track of a disk's format with the information contained in the BPB, and if
the disk's format has changed, DOS will need a copy of the new BPB.

6 - Installable Device Drivers

Even if a disk is exchanged with another of the same format, MS-DOS
needs to know ifthe change occurred. Any time that a disk is changed, the direc
tories and files on the new disk will most likely be different from the previous
disk, and MS-DOS may have to decide what to do with any data in its buffers
that was supposed to have been written out to the previous disk.

These questions are addressed with the Media Check command, which
asks the driver if the disk has been changed. The driver must answer the ques
tion with one of these responses: "Yes" (Media Status: -1), "No" (Media Status:
1), or "I don't know" (Media Status: 0).

The importance of this question is reflected in the action that MS-DOS
takes upon receiving the response. If the driver answers, "No, the media has
NOT changed," MS-DOS proceeds with whatever disk access it was planning,
without checking to see if the disk's contents are the same or not. If the driver
responds with "Yes, the media HAS changed," MS-DOS throws out any data it
may have in its buffers, and requests new disk parameters from the driver.
Lastly, if the driver says that it just doesn't know, MS-DOS makes the choice
itself. If there is data to be written to the disk, MS-DOS assumes that it is the
same disk. Otherwise, it assumes that the disk has changed, and it proceeds as if
the driver had answered in the negative (media HAS changed).

To assist the driver in making its decision, MS-DOS provides the driver
with the current media descriptor byte, or MDB. This byte is one of the values
that is returned to MS-DOS inside the Bios Parameter Block(s) returned by the
INIT and Build BIOS Parameter Block driver commands. Each unique disk for
mat should have a unique media descriptor byte, although this is not always pos
sible. (The next section on the Build BIOS Parameter Block command covers
this in more detail.)

The media descriptor byte is stored as the first byte of the disk's FAT, or
file allocation table. This is also the low byte of the disk type value, as shown in
Table 11-5 of Chapter 11. Chapter 11 supplies more information about the FAT
and the disk type value.

The driver can now decide if the disk has been changed by using the follow
ing logic:

1. If the device does not support removable media (e.g., the device is a fixed
or RAM disk), then the driver should answer "No: The media is NOT
changed." Otherwise, go to step 2.

2. Microsoft states that a diskette cannot be exchanged in less than two
seconds. With this reasoning, the driver should check the system clock
and if less than two seconds have elapsed since the last access, the driver
should answer "No: The media is NOT changed." Of course, this method
requires that the driver always save the time of any access. If more than
two seconds have elapsed, go to step 3. (If there is no system clock that
can be read, skip this step entirely.)

315

Devices

316

3. Sometimes the disk drive itself may be able to inform the driver if a
change has occurred. Some disk drives have door locks that report if the
door has been opened since the last access. If the device is such a drive,
and the drive reports that the door has not been opened, the driver
should answer "No: The media is NOT changed." If the door has been
opened, go to step 4.
Other drives use disk drive motors that run only when a disk is accessed,
with a timed delay before the drive motor shuts off. With these drives, if
the motor status can be read by the driver, and the drive motor is still
active from the last access, this would tend to imply that the disk was not
changed, and the driver should answer "No: The media is NOT changed."
However, some drive motors also turn on any time a disk is inserted,
regardless of whether there was an access, which invalidates this test.

4. The driver should read the disk to obtain its media descriptor byte. If the
media descriptor byte is different from that provided by MS-DOS in the
call to the Media Check command, then the driver should answer "Yes:
The media HAS been changed." Otherwise, proceed to step 5.

5. The driver should read the disk to obtain its volume identification. If the
volume ID is different from that stored inside the driver from the last
Build BPB command, then the driver should answer "Yes: The media
HAS been changed." Otherwise, proceed to step 6.

6. The driver should answer, "Don't know if the media has changed."

It may not be possible to implement some of the steps in the preceding
logic chain. If for any reason you cannot determine whether the disk was
changed, it is best to answer, "Don't know if the media has changed." The exact
method used will have to depend on the capabilities of the device itself, and the
fortitude of the programmer.

There is one other piece of information that the Media Check command
may have to return under MS-DOS versions 3.0 and later. If the driver supports
the Open/Close/Removable Media calls (bit 11 in the driver attribute word), and
ifthe Media Check command is going to answer "Yes, the media HAS changed"
(media status: -1), then the driver must return a pointer to the volume name of
the previous disk. (See Chapter 11 for the format and location of a disk's volume
name.) The pointer is returned as shown in the preceding Media Check request
header. If the driver does not know the volume name of the previous disk, such
as on the first call to this command, then the driver should return a pointer to
the string "NO NAME ",terminated with a zero byte (i.e., "NO", one space,
"NAME", four spaces, and a zero).

6 - Installable Device Drivers

Build BIOS Parameter Block Command

The Build BIOS Parameter Block command is always required for block device
drivers and is never required for character device drivers. Whenever MS-DOS
has been informed, or decides for itself, that the media in a block device has been
changed, it must obtain new parameters for the device's media. It does this
through the Build BIOS Parameter Block command, which requests the driver
to return a pointer to a BIOS Parameter Block containing the new values. (The
preceding Figure 6-6 shows the contents of the BPB.)

There is an important difference between the BPB pointer returned by the
Build BPB command and the BPB table pointer returned by the INIT com
mand. The Build BPB command returns a pointer to the BIOS Parameter Block
itself, whereas the INIT command returns a pointer to a table of pointers to
BIOS Parameter Blocks. Although the difference between a single pointer and a
pointer to pointers is fairly obvious once recognized, it can be subtle enough to
cause unnecessary grief.

Like the Media Check command, the Build BPB command may have to con
cern itself with a disk's volume name. Under MS-DOS versions 3.0 or later, ifthe
device supports removable media, and the Open/Close/Removable Media bit (bit
11) of the attribute word is set to 1, then the driver will need to read and save the
disk's volume name. This stored name may need to be returned in subsequent
calls to the Media Check command.

Receiving a Build BIOS Parameter Block command may be taken by the
driver as notification that as far as MS-DOS is concerned, the disk has legally
changed. If the driver is maintaining a count of the number of "opens" and
"closes" performed on the device (from the Open Device and Close Device driver
commands), this is the time to reset the count to zero.

Obtaining the BIOS Parameter Block. With the mechanisms for return
ing BIOS Parameter Blocks behind us, we need to address the question of how
to determine the contents of the BPB. These methods apply to processing the
INIT command as well as to the Build BIOS Parameter Block command. In the

317

Devices

318

simplest case, for device drivers that support only one type of media (such as a
RAM disk driver), the contents of the BPB can be coded into the driver itself.
Unfortunately, real disks, even fixed disks, aren't so obliging, and the driver
must read the disk to determine the contents of the BPB.

Normally the BPB is part of the disk's boot record, as shown in Figure 6-7.
In this case the driver must find and read the disk's boot record, extract the
BPB, and return a pointer to it. In almost all cases the boot record is located at
logical sector zero of the disk. (The translation from logical to physical sectors
varies from device to device, and must be determined from the device's docu
mentation.) The driver should examine the structure of the sector to verify ifit
is a valid boot record.

OFFSET CONTENTS SIZE
(hex)

+o Near JMP to Boot Code 3 Bytes

+3 OEM Name and Version B Bytes

+B 1 Word

+D 1 Byte

+E 1 Word

BIOS +10 1 Byte

PARAMETER
BLOCK + 11 1 Word

+13 1 Word

+15 1 Byte

+16 1 Word

+18 Sectors per Track 1 Word

+1A Number of Heads 1 Word

+1C Number of Hidden Sectors 1 Word

Figure 6-7. Contents of the first 30 bytes of the boot record.

If the first logical sector does not appear to be a valid boot record, such as
occurs with disks formatted under versions of MS-DOS prior to 2.0, then the
driver must read the first sector of the disk's file allocation table, or FAT. Luck
ily, pre 2.0 versions of MS-DOS support only a few formats, all of which store the
first FAT sector in the second logical sector of the disk. The first byte of the first

6 - Installable Device Drivers

FAT sector contains the disk's media descriptor byte, which can then be used to
determine the proper contents of the BPB to be returned to MS-DOS. Versions
of MS-DOS prior to 2.0 used only media descriptor bytes OFEh or OFFh. Chap
ter 11 lists the various disk type values from which the media descriptor byte is
taken.

Throughout this process you should note that simply reading the disk must
not be taken for granted. If the device and driver support multiple formats
(e.g., different sector sizes), the driver may need to attempt the read with a
number of formats before finding the correct one.

For removable media devices (attribute bit 11), after the disk's BPB has
been located and the disk's format determined, the driver must obtain the disk's
volume ID. This will be found by reading the disk's root directory, as explained
in Chapter 11.

In summary, the sequence for processing the Build BIOS Parameter Block
command is as follows:

1. The driver should read the disk's boot record (usually located at logical
sector zero) and check the record for the BIOS Parameter Block. If the
BPB is found, proceed to step 3; else proceed to step 2.

2. The driver should read the first sector of the disk's FAT to obtain the
media descriptor byte. Based on the MDB, the driver must construct the
appropriate BPB. (Refer to Chapter 11 for MDB to BPB
correspondence.)

3. If the device supports Removable Media (attribute bit 11), the driver
should read the disk's volume identification from the root directory
sector, and store it.

To implement this strategy, the driver will need internal buffers to store a
copy of the BIOS Parameter Block and volume ID, and an internal scratch buffer
in which to read into a sector from the disk.

We have skipped over in this explanation the parameters that are passed to
the driver when the Build BIOS Parameter Block command is invoked. Ignore
them! One parameter is the previously described media descriptor byte, which
has no meaning since the Build BPB command will provide MS-DOS with a new
value. The second parameter is a pointer to a buffer that is either a scratch
buffer (if driver attribute bit 13, the NONIBM bit, is set to 1) or.,a buffer that
contains a copy of the first sector of the disk's FAT (if driver attribute bit 13 is 0).
If the buffer contains the FAT sector, then it must not be modified. Since the
driver must contain its own scratch buffer into which the boot record is read, the
buffer passed with the call can be ignored.

The last point to note in the importance of the BIOS Parameter Block is
that the media descriptor byte does not uniquely determine a disk's format.
Only the BPB can do that. However, MS-DOS versions 3.0 and later will not up
date their internal device structures unless the media descriptor byte is dif
ferent from the previous one. Even though MS-DOS versions 3.0 and later
attach no importance to the actual value of the MDB, the driver should return a
different MDB whenever the disk's format changes.

319

Devices

320

Input and Output Commands

The Input, Output, and Output with Verify commands (4, 8, and 9) are always
required for all device drivers. These commands support the transfer of data be
tween MS-DOS and the device.

The I/O Control Input and I/O Control Output commands (3 and 12) are op
tional commands, required only if the I/O Control attribute (bit 14) is set in the
device driver attribute word. These commands apply to both block and charac
ter device drivers and support the transfer of data between MS-DOS and the
device driver.

The Output Until Busy command (16) is an optional command, used solely
with character device drivers and required only if the NONIBM/OTB attribute
(bit 13) is set in the device driver attribute word. This command supports the
transfer of data from MS-DOS to the device. Note also that this command is not
documented in IBM's Technical Reference Manual for version 3.30.

The commands Output and Output with Verify are selected by a combina
tion of IOCTL bit 5 (the BIN or RAW mode bit) and the verify switch. In verify
mode, all driver output uses the Output with Verify command. If verify mode is
not set, then the normal Output command is used. Putting the device in binary
mode (selected by IOCTL bit 5, the BIN bit) allows multibyte transfers to be
performed.

There is one combination of modes that should cause the Output Until
Busy command to be used, but doesn't. This setup consists of no verify (so the
Output with Verify command won't be used), device in binary mode (to allow
multibyte transfers), and a device that supports the Output Until Busy com
mand. However, in testing this mode, the Output with Verify command was

6 - Installable Device Drivers

never called, which may explain why IBM left this command out of its version
3.30 documentation.

All of these commands share a common request structure, but there are
differences based on the type of I/O requested and the type of device driver. The
basic parameters of an Input or Output call are as follows:

• The command itself specifies the source and destination entities for the
transfer operation. It is important to note that I/O Control operations are
intended to transfer command and configuration information to the
driver, not to transfer data directly to the device. The four possible
combinations of source and destination are then as follows:

Command(s) Source Destination
Input Device Buffer

Output, Output Verify, Output Until Busy Buffer Device

I/O Control Input Driver Buffer

I/O Control Output Buffer Driver

• The transfer address contains the full address of the MS-DOS buffer that
either contains data to be written (an Output call) or is to be filled with
data (an Input call).

• The count specifies the number of bytes (character device I/O and all I/O
Control commands) or sectors (block device Input, Output, and Output
Verify commands) that are to be transferred.

• For block device drivers only, the unit and starting sector parameters
further identify the source (Input) or destination (Output) location.

• For block device drivers only, the media descriptor byte parameter may
be useful in determining the device's format or in determining if the
device has changed illegally.
Once the driver has identified the source and destination, it performs the

transfer. After the transfer operation has been completed, the driver must re
turn, in the count parameter, the number of bytes or sectors that it was actually
able to transfer. Even if an error has occurred and the error bit was set in the
returned status, MS-DOS assumes that the returned count is valid. If the driver
fails to update the count parameter, then the returned value will be the same as
the requested value. You must also be aware that even if the transfer succeeds,
the count can still be wrong. This can happen if a "wrap" has occurred.

A wrap occurs in block device drivers when the number of bytes to be
transferred exceeds what is addressable from the buffer segment address. One
example ofa wrap would be a transfer of64 sectors of 512 bytes per sector from a
buffer with an offset address of 8002 hex. This transfer consists of 32, 768 bytes
(8000 hex). Since the buffer's offset address is 8002 hex, the address of the last
byte will be 10002 hex, which is illegal. In the case of a wrap, the driver should
NOT transfer the unreachable portion.

Each command has somewhat different requirements for processing the
transfer and returning the status and count. These requirements are described
next for each command.

321

Devices

322

110 Control Input and 110 Control Output Commands (3and12). These
are the simplest commands, usually requiring only that data be transferred
from or to the driver itself. The data has no meaning to MS-DOS itself, and can
even be ignored by the driver if it so chooses. Whatever data is sent or received,
and whatever meaning is attributed to it, is strictly up to the driver and the ap
plication that it is conversing with. Typically, this data is used for configuring
the device, although other uses are possible. However, the driver must not for
get to set the resulting transfer count.

Input and Output Commands (4 and 8). For most character device
drivers, processing the Input and Output commands is fairly direct. If the trans
fer succeeds, then the done bit is set in the status word and the driver returns. If
there is a problem, the appropriate error is set in the status word (see Table 6-3),
the actual transfer count is set, and the driver returns.

For character devices, ifthe device has no data to be read on an input oper
ation, the driver can either wait for data or return the Device Not Ready error.
On Output, if the device cannot accept the data, the driver can also return De
vice Not Ready. However, the Device Not Ready error is usually reserved to
mean that the device is off-line, or unreachable in some way. It is not normally
used to indicate that the device is simply backed up, since returning the Device
Not Ready error may very well cause MS-DOS to request operator intervention.

For block device drivers, the operation is more complicated. Typically, the
driver will have to convert the starting sector number into a physical sector,
usually consisting of cylinder (or track), head, and physical sector. The driver
may have to "seek" the drive (move the read/write head to the proper track) be
fore starting the transfer, and may have to perform further "seeks" between
transferring sectors. (A more complete description of disk anatomy appears in
Chapter 11.)

Furthermore, devices such as disk drivers are subject to a plethora of er
rors, as seen in Table 6-3, such as Write Protect Violation, CRC Error, Seek Er
ror, Read and Write faults, and the ever descriptive General Failure. Usually, if
an error does occur, the driver sets the appropriate error code in the status
word, sets the count of sectors that :were successfully transferred, and returns.
However, there is one failure that requires further thought and processing-the
Invalid Disk Change.

The error Invalid Disk Change is allowed only under MS-DOS versions 3.0
and later, and only then if MS-DOS knows that it is dealing with a Removable
Media device, as determined by attribute bit 11, the OCRM bit. The difference
between this error and the others is that if the driver informs MS-DOS that the
disk change was invalid, MS-DOS wants to know what disk the driver had ex
pected. This information is conveyed via the expected disk's volume name, and
the driver must return a pointer to the proper volume name. As with the Media
Check command, if the driver does not know the proper name, it should return a
pointer to the name, "NO NAME "

How does the driver known when an Invalid Disk Change has occurred? If
the driver is maintaining a count of the number of opens and closes performed on
a disk (via driver commands 13 and 14), and the disk changes (detected by a dif-

6 - Installable Device Drivers

ferent format, different media descriptor byte, or some such) with more opens
than closes, then the disk is assumed to have changed illegally, and the Invalid
Disk Change error is appropriate.

Output with Verify Command (9). The Output with Verify command ap
plies only to devices where the data written to the device can be read back to
ensure that the write was successful. For these devices, such as disk drives, the
driver should write the data as with the Output command, read it back as with
the Input command, and compare the data read back against the data written. If
there is an error, the driver should not reattempt the operation but rather
should report it to MS-DOS with the appropriate error code (Table 6-3) and the
count of the data successfully transferred.

As with the Build BIOS Parameter Block command, processing this com
mand requires that the driver have an internal buffer in which to read back the
data. If the device does not allow data to be read back from it, this command
should be processed by using the Output command, command 8.

Output Until Busy Command (16). Output Until Busy is another variant of
the Output command. This command, which is called only for character devices
that have attribute bit 13 set, allows programs to transfer large chunks of data
to devices with internal buffers, such as printers. The driver should continue to
send data to the device until there is no more data or until the device cannot ac
cept any more data. It is most important that the driver correctly set the trans
fer count so that MS-DOS will know how much data was sent. Note that, for this
command, transferring less than the requested amount is not an error.

Nondestructive Input without Wait Command

The Nondestructive Input without Wait command (5) is required only for
character device drivers and is not used for block device drivers. Although this
command is similar to a standard character Input command, it has some major
differences:

• There is no transfer buffer or transfer count. The request count is always
1, and if a byte is available, then it is returned in the byte read from
device field.

323

Devices

324

• Without Wait: If no input is available from the device, then the driver
must set the busy bit in addition to the done bit in the status word, and
return immediately.

• Nondestructive: If input is available, then the driver not only must return
that byte but also must save the byte to be read by the next Input
command. If input data is queued within the driver, as with an interrupt
driven driver, then the byte returned must remain in the queue.

This command is intended to allow MS-DOS to: (1) determine if data is
available without having to do an Input operation, which could result in waiting
for input, and (2) to look ahead in the buffer at the next character without having
to accept and "consume" it.

Status and Flush 1/0 Commands

The Input Status and Output Status commands (6 and 10) are required for
character device drivers and are not used for block device drivers.

The Input Flush and Output Flush commands (7 and 11) are required for
character device drivers and are not used for block device drivers.

The Input Status and Input Flush commands have meaning only for
character device drivers that support interrupt-driven input queuing, although
they may be called for any character device driver. The Input Status call is used
to show the status of the queue as follows:

• If there is a queue and there are no available characters, the driver
should set the done and busy bits in the status word, and return.

• If there is a queue, and there are available characters, the driver should
set the done bit and should clear the busy bit in the status word, and
return.

• If there is not an input queue, the driver should set the done bit and
should clear the busy bit in the status word, and return. This seems like a
contradiction, telling MS-DOS that there are characters available when
there isn't even a queue. The reason for this is so that MS-DOS will call
the Input command to read from the device. Were this not done, MS-DOS
would continue to check for input with Input Status, which could never
occur since there would be no queue to hold the character.

6 -- Installable Device Drivers

The Input Flush command is used to direct the driver to discard any
characters that may be in its input queue. After clearing the queue, ifthere was
one, the driver should set the done bit and return. No errors are expected on
this call.

The Output Status command is used to check the status of an output queue
or of a device. If the device does not have an output queue, then the driver
should return the status of the device itself, if possible. The driver should set the
status in the busy bit (busy meaning "output pending"), set the done bit, and
return.

The Output Flush command is used to direct the driver to discard any
characters that may be in its output queue, if there is one, and, if possible, to
abort any device output. After completing these actions, the driver should set
the done bit and return.

Device Open/Close and Removable Media Commands

The Device Open and Device Close commands (13 and 14) are optional com
mands, supported under MS-DOS versions 3.0 and later, and are used only if de
vice driver attribute bit 11, the OCRM bit, is set to 1. However, Microsoft
recommends that new drivers implement these commands.

The Removable Media command (15) is an optional block device command
under MS-DOS versions 3.0 or later, used only if device driver attribute bit 11,
the OCRM bit, is set to 1. However, Microsoft recommends that new drivers im
plement this command.

The conditions under which the Device Open and Device Close commands
are called, are explained in an earlier section "The Device Header Attribute
Word,'' urn:ler the subheading ''Attribute Bit 11: OCRM."

For block-type devices with removable media, these commands can be
used to keep track of the number of open files on the device, with the intention of
detecting if the media is changed illegally (e.g., if the media is changed while
files are still open).

For character-type devices, these commands can be used to prevent simul
taneous access to a device such as a printer, or to supply preprocessing and
postprocessing capabilities such as printer setup or printer reset.

The Removable Media call can be invoked by application programs using
the IOCTL subfunction for Check for Removable Media (subfunction 08h of

325

Devices

326

function 44h). The application program specifies the drive number of interest in
the call. In processing the Removable Media call, the device driver must first
determine if the drive unit referenced in the call contains removable media and
then return the status in the busy bit of the driver status word. If the drive
does not contain removable media, then the driver must set the busy bit to 1.
If the drive does contain removable media, then the driver should clear the busy
bit to 0.

Generic IOCTL Command

The Generic IOCTL command (19) is an optional command under MS-DOS ver
sions 3.20 and later. It is enabled when device driver attribute bit 6, the
GIOCTL bit, is set to 1.

The name "Generic IO Control" is really something of a misnomer because
this command is used to implement what amounts to extended device driver
functions. One group of extended functions (accessed by IOCTL subfunction
OCh) supports code page switching, a means of supporting a run-time configur
able driver. The other major group of functions (accessed by IOCTL subfunction
ODh) provides a standard interface for hardware-dependent block device opera
tions. The operations supported are reading, writing, verifying, and formatting
entire tracks, and reading and changing the device's BIOS Parameter Block
(BPB).

The extended operations of MS-DOS's Generic IO Control command are
well documented in the DOS Technical Reference Manual in the section on func
tion 44h, IOCTL for Devices, and since these functions are intended primarily
for original equipment manufacturers, we refer the reader to the manual for
more information.

6 - Installable Device Drivers

Get and Set Logical Device Commands

The Get Logical Device and Set Logical Device commands (23 and 24) are op
tional block-device driver commands, supplied under MS-DOS versions 3.20
and later. They are also enabled when device driver attribute bit 6, the GIOCTL
bit, is set to 1.

These commands are used to keep track of the current drive reference for
devices that have more than one logical drive name. Like the Generic IO Control
command, these commands are accessed using MS-DOS's function 44h, IOCTL
for Devices. Subfunction OEh is used to get the logical drive assignment, and
subfunction OFh is used to set the logical drive assignment. Like the Generic IO
Control command, these commands are really intended to support OEM de
vices, in this case MS-DOS's DRIVER. SYS device driver for the 3114-inch micro
floppy. A complete description of these commands can also be found in the DOS
Technical Reference Manual, in the section on function 44h, IOCTL for De
vices, and it is to that manual that we refer you.

Creating the Loadable Device Driver File
It has already been said that a device driver program bears much resemblance
to a. COM type program. This is especially true in the method used to create the
driver's . SYS file. (Note that there is no reason other than convention for using
the extension ".SYS" to denote a device driver. Any extension name will do.)
Listing 6-4 shows the dialogue for creating the device driver "DRIVER". The
file is assembled and linked as normal, and then converted to a binary .SYS file.
Note that it is quite normal for the driver to be without a stack segment, as it
uses MS-DOS's own stack when invoked.

The example shown in Listing 6-4 also creates a. LST assembler listing file
and a .MAP linker listing file. The .OBJ and .EXE files can be deleted, of
course, after the . SYS file has been created.

327

Devices

Listing 6-4. Sample Device Driver Build Process

C> masm driver,driver,driver;

Microsoft Macro Assembler Version 4.00
Copyright Microsoft Corp 1981, 1983, 1984, 1985. ALL rights reserved.

45976 Bytes symbol space free

0 Warning Errors
0 Severe Errors

C> link driver,driver,driver;

Microsoft 8086 Object Linker
Version 3.00 Copyright Microsoft Corp 1983, 1984, 1985

Warning: no stack segment

C> exe2bin driver driver.sys

Debugging Device Drivers

328

Once a driver has been installed in the system, that driver cannot be debugged
with MS-DOS (because of the reentrance problem). But there is still a need to be
able to debug drivers because (like most things in programming) they cannot be
expected to function properly the first time through. Three approaches can help
to make simpler the task of debugging the driver.

First, build the driver a block at a time. Get the main routines working
first and then move on to the more advanced features. Don't try to do the IOCTL
handlers right away. The routines that you need to have operating before the
driver loads properly are the strategy and interrupt routines and the INIT com
mand handler. For block-mode devices, you also need the Media Check com
mand and, unless you have specified the NONIBM bit in the attribute word, the
Build BPB command. You won't be able to perform I/O with just these command
handlers, but MS-DOS should at least be able to load your driver successfully.

Another approach that can help in debugging drivers is to use the BIOS
functions to handle simple output that can inform you of the current state of the
driver. It is helpful to know just how far the driver got before it crashed. If you
don't have a ROM-BIOS to rely on, you can cobble together some sort of output
routine and include it in the driver source. For example, when debugging the
RDISK driver at the end of this chapter, the authors had the driver display a
single character for each command that it processed(/ for interrupt, S for strat
egy, i for INIT, and so forth). That was a real help when the driver loaded and
could be accessed with the Absolute Disk Access functions but crashed the sys
tem when an attempt was made to read the device's directory. The interaction

6 - Installable Device Drivers

between the driver and the system can be one of the most complex problems to
solve and, unfortunately, usually can be debugged only with the driver in place
in the system.

If you decide to add debugging statements to your driver, be aware that
such actions most likely will increase the depth of the stack required, and you
may need to change your driver to use a local stack if the driver doesn't do so
already.

When testing the individual pieces of the driver, you don't need to debug it
in place. If you are willing to spend the time to write a simple test program that
creates request blocks and passes them to the driver for processing, you will be
able to use DEBUG to debug that test program and the driver, too. This enables
you to at least get the driver to a state where it should boot. After that, you can
continue with other types of debugging to flush out the final bugs.

When developing drivers, always use a copy of your system disk, not the
original system disk. An error in the driver code can prevent the system from
booting. An error in a disk driver may destroy valuable data on the disk. For
these reasons, you should always have a copy of your system disk to return to in
case of failures.

Displaying the Device Drivers in Your System
It is often helpful when debugging device drivers to know exactly which devices
are present in your system. To this end, we have provided a small program
named "SD," for Show Driver. A sample output of this program appears in List
ing 6-5.

Most of the devices are standard MS-DOS devices, except for the topmost
CON device, which is ANSI. SYS, and the topmost block device, which repre
sents a Bernoulli Box device driver. The lower block device driver, with three
drives, is the standard MS-DOS device driver, which interestingly enough sup
ports both the hard disk and two floppy disks.

Attrib is the driver's attribute word; Address is its start address (found in
the previous driver's link field); and STRAT and INTRP are the offsets of the
strategy and interrupt routines within the device driver. The assembly lan
guage source for the SD program appears in Listing 6-6. Note that SD uses
DRIVER.INC (Listing 6-7), STD MAC.INC (Listing A-7, Appendix A), and the
BIN2HEX routine found in STD LIB.LIB (Listing A-8, Appendix A).

Listing 6-5. Sample Device Driver Chain from the Show
Driver Program

SD-ShowDriv, Version 1.00, Copyright 1988 Kevin Jaeger

Device

NUL
CON

Type Units Attrib

Char
Char

01
01

8004
8013

Address

0000:1898
08A9:0000

STRAT INTRP

1418
00A2

141E
OOAD

continued

329

Devices

330

Listing 6-5. continued

SD-ShowDriv, Version 1.00, ©Copyright 1988 Kevin Jaeger

Device Type Units Attrib Address ST RAT INT RP

--
-------- Block 02 0000 083D:OOOO OOA7 00B2
CON Char 01 8013 0070:0160 OOA7 00B2
AUX Char 01 8000 0070:01F1 OOA7 00B8
PRN Char 01 AOOO 0070:02AO OOA7 OOC7
CLOCK$ Char 01 8008 0070:034A OOA7 OODC
-------- Block 03 0800 0070:0416 OOA7 OOE2
COM1 Char 01 8000 0070:0203 OOA7 OOB8
LPT1 Char 01 AOOO 0070:02B2 00A7 DOC?
LPT2 Char 01 AOOO 0070:0B13 OOA7 OOCD
LPT3 Char 01 AOOO 0070:0B25 DOA? 00D3
COM2 Char 01 8000 0070:0B37 OOA7 OOBE
<<< ------------ End Of Device Driver List ------------ >>>

Listing 6-6. SHOWDRIV.ASM Source File

PAGE 60,132

; ***** SHOWDRIV ***
; ShowDriv - Display Installed Device Driver Chain for MS-DOS
; This file creates the program SD.EXE
;

; ***** INCLUDES ***
INCLUDE stdmac.inc
INCLUDE driver.inc
;

; ***** DGROUP (DATA) COMPONENT SEGMENTS ***********************
;
_DATA SEGMENT BYTE PUBLIC 'DATA'
_DATA ENDS
;
STACK SEGMENT PARA STACK

dw
STACK ENDS
;
DGROUP GROUP
;

1024 dup (?)

_DATA, STACK

; 2K stack

; ***** DATA STORAGE & TEMPLATES *******************************
;
_DATA SEGMENT BYTE PUBLIC 'data'

6 - Installable Device Drivers

;
; Search Parameters
;
nuldev db
nulattr dw

'NUL
AT_CHR OR AT_NUL

; NUL device string
; NUL attribute word

;
; Text Messages for Display: Format as Follows:
;
; "Device Type Units Attrib Address ST RAT INTRP"
; ''---''
; "xxxxxxxx xxxx xx xxxx xxxx:xxxx xxxx xxxx"
; "<<<

;
$title db

db
db
db
db
db
db
db
db

$space db
$block db
$char db
$colon db
$end db

db
db

$crlf db
;

End Of Device Driver List ------------ "

CR,LF
'SD-ShowDriv, Version 1.00, Copyright 1988'
CR,LF,CR,LF
'Device

STRAT
CR,LF

Type
INTRP'

Units Attrib Address'

'--'
'-----------------'
CR,LF,'$'

$'

'--------
'Char$'
'.'
CR,LF

Block $'

'<<< ------------ End Of Device Driver List'
' ------------>>>'
CR,LF,'$'

; Structure Templates
STRUC
dd

devhead

devhead
;

next
attrib
st rat
intrp
dname
term

_DATA ENDS
;

dw
dw
dw
db
db
ENDS

;
? ;
? ;
? ;
? ;
8 dup (?) ;
? ;

device header structure
Long pointer to next block
attribute
off set to strategy
off set to interrupt
name/number of units
terminating position

; ***** PROGRAM CODE STARTS HERE *******************************
;

continued

331

Devices

332

Listing 6-6. continued

_TEXT SEGMENT BYTE PUBLIC 'CODE'

;

main

;

ASSUME cs:_TEXT, ds:DGROUP, es:DGROUP, ss:DGROUP

EXT RN
PROC
mov

bin2hex:NEAR
FAR
ax,DGROUP

mov ds,ax

; hexadecimal display

; set up data segment

; Find the NUL device by searching for the NUL name
cld
mov
xor

cx,OFFFEh
ax,ax

mov es,ax
mov di,0400h

; search count
; start after INT table

mov
search:

al,[nuldev[rvJ ; beginning search value

;

;

;
noLit:

;

repne
jne

push
push
mov
mov
repe
jne

sub
cmpsw
jne
add
sub
jmp

scasb
exit

ex
di
si,offset nuldev+1
cx,7
cmpsb
not_ it

; search unti L match
; no match

; possible match:
; •.. save search position
; remainder "NUL" string
; remainder of count
; compare until no match
; didn't match

di,(offset term - offset attrib) ; adjust pointer
; NUL's attribute word ?

noLit ; didn't match
sp,4 ; discard saved DI & ex
di,Coffset strat - offset next) ; adjust pointer
found_nul ; found NUL device header!

pop di ; restore position & count
pop ex
jmp short search

; Have found NUL device header: continue to display entire chain
found_nul:

@DisStr $title
show_driver:

ca LL
cmp
je
Les

ShowDeviceinfo
word ptr es:[diJ,-1
done
di,es:[di.next]

; display title

; display device header
; check for end of chain
; if -1 then exit
; if not -1 then get next

6 - Installable Device Drivers

jmp short show_driver ; continue;
done: @DisStr $end ; terminating message

@DisStr $er L f
;
exit: mov al,O ; norma L terminate

@ExitToDOS ; terminate program
main ENDP
;

; ***** ShowDevicelnfo ***
; ShowDeviceinfo displays the block addressed by ES:DI as a
; device header. Format for the display is show in Data above.
;
ShowDevicelnfo PROC NEAR

test es:[di.attribJ,AT_CHR
jnz is_char
@DisStr $block
xor ah,ah
mov al,es:[di .dnameJ
jmp short dis_units

is_char:
push
push
pop
Lea
mov

ds
es
ds
si,es:[di.dnameJ
cx,8

show_name:

;

Lodsb
@DisChr al
Loop
pop

show_name
ds

@DisStr $space
@DisStr $char
@DisStr $space
mov ax,1

di s_units:
mov ch,02
call bin2hex
@DisStr $space
mov ch,04
mov ax,es:[di.attribJ
ca LL bin2hex
@DisStr $space

;
mov ax,es
ca LL bin2hex

; device char or block?

; unnamed block device

; number of units

; save program OS
; make Src same as Dest

; SI to name string offset
; #of char to display

; read Name char at a •••
; ••• time and display

; restore program OS

; show type

; only one unit

; show number of units

; display numeric data

; show attribute word

; show address segment
continued

333

Devices

334

Listing 6-6. continued

@DisChr $colon
mov ax,di
call bin2hex ; show address off set
@DisStr $space

;
mov ax,es:[di.stratJ
call bin2hex ; show strategy address
@DisStr $space

;
mov ax,es:[di.intrpJ
call bin2hex ; show interrupt address
@DisStr $crlf

;
ret

ShowDevicelnfo ENDP
;

; ***** END OF PROGRAM END OF FILE ***************************
_TEXT ENDS

END main

Listing 6-7. DRIVER.INC Include File

; ***** DRIVER.INC **
; Driver.Inc: Contains definitions and equates for use with
; MS-DOS device drivers.
;
; ***** DEVICE DRIVER RELATED EQUATES ***************************
;
; Device Driver Attribute Word Bit Definitions
ALCHR EQU 1000000000000000b ; character device
AL IOCTL EQU 0100000000000000b ; supports IOCTL calls
ALBUSY EQU 0010000000000000b ; supports Output Til Busy
ALNOIBM EQU 0010000000000000b ; Non-IBM device
ALNET EQU 0001000000000000b ; Network device
ALOCRM EQU 0000100000000000b ; Open/Close Removable Media
ALGIOCTL EQU 0000000001000000b ; supports Generic IOCTL
ALLOGICL EQU 0000000001000000b ; supports Get/Set Logical

; ••• device
ALSPECL EQU 0000000000010000b ; Special device
A LC LOCK EQU 0000000000001000b ; Clock device
ALNUL EQU 0000000000000100b ; NUL device
ALSTDOUT EQU 0000000000000010b ; Standard Output device

6 - Installable Device Drivers

ALSTDIN EQU 0000000000000001b ; Standard Input device
;
; Device Driver Status Word Bit Definitions
SLERROR EQU 1000000000000000b ; error has occurred
SLBUSY EQU 0000001000000000b ; device is busy
SL DONE EQU 0000000100000000b ; device is done
;
; Device Driver Error Code Definitions
WRITE_PROTECT EQU 0
UNKNOWN._ UN IT EQU 1
NOL READY EQU 2
UNKNOWN._ COMMAND EQU 3
CRLERROR EQU 4
BAD_ REQUEST EQU 5
SEEl<-ERROR EQU 6
UNKNOWN._MEDIA EQU 7
SECTOIL.NOT_FOUND EQU 8
OULOF_PAPER EQU 9
WRITE_ FAULT EQU OAh
READ_ FAULT EQU OBh
GENERAL FAILURE EQU Och
INVALID_DISl<-CHANGE EQU OFh
;
; Media Check Return Status Codes: Block Devices Only
Is Changed EQU -1 ; media has changed
DontKnow EQU 0 ; unsure if media has changed
Not Changed EQU ; media has not changed
;

; ***** END OF FILE DRIVER.INC ********************************

The Ubiquitous RAM Disk

The RAM disk program that is presented at the end of this chapter in Listing
6-10 is intentionally simplified. It is still 100 percent functional and may be used
on any MS-DOS system running MS-DOS version 2.0 or higher. The RAM disk
shown in Listing 6-10 uses 360 Kbytes of your system memory to emulate a stan
dard 5Yi-inch floppy drive. Your system should have at least 512 Kbytes of mem
ory if you intend to use the RDISK program as supplied. If you have less
memory, or simply want a smaller RAM disk, you can change the default param
eters as they appear in the section of RDISK labeled "Description of the RAM
Disk".

A more elegant solution to the task of changing the RAM disk's size is to
utilize command line parameters. Remember that during the driver's INIT call
the parameters request. bpbtabo and request. bpbtabs form a long pointer to the

335

Devices

336

command line string. This string can be examined for switches or options that
can be used to customize the driver. If this method is used, the INIT procedure
should perform the check, adjust the appropriate parameters within the BPB,
and also adjust the driver's ending segment address.

Once the program has been assembled and linked, rename the file to
RDISK.SYS. Now create the file CONFIG.SYS if it does not already exist and
put in the command line: DEVICE= RDISK.SYS.

The next time you reboot your system, the RAM disk will be installed as
the next drive in your system (probably drive C if you don't have a hard disk). No
additional operations are required to install the driver.

The RAM disk can be accessed with any MS-DOS function calls or pro
grams, with the exception of the DISKCOPY and DISKCOMP commands. Both
of those programs expect a particular type of disk and don't work with RAM
disks.

The RDISK driver of Listing 6-10 contains sample code that can be used
for debugging or exploring device drivers. It is written to use the BIOS level I/O
routines provided in Listing 6-8. RDISK includes the source file BIOSIO.ASM
(shown in Listing 6-9). This was required to ensure that the debugging code was
located before the ending address of the RAM disk. Because library routines are
the last piece of code to be linked into an image, it is usually not possible to use
library routines with device drivers.

The debugging code can be activated by including in the RDISK file the
statement DEBUG equ 1 or, if using Microsoft MASM version 4 or later, it can
be activated with the MASM command line statement IDDEBUG.

During execution the debugging code uses the number of the driver com
mand to index into the table message_table. The entries of message_table are
the offset addresses of the command name strings, stored in the data area pre
ceding message_table. These text strings are then displayed using the hard
ware-dependent routine _biosprt. In RDISK, _biosprt has been coded for an
EGA with a color monitor, which allows the debugging text to be easily dis
tinguished from normal MS-DOS messages.

Listing 6-8. The BIOSIO.INC Include File

; ***** BIOSIO.INC **
;
; BiosIO.Inc contains equates for using the BIOS Level I/O
; routines contained within STDLIB.LIB
;
; @Video macro is for use with the Video functions Listed below
;
@Video MACRO function

mov ah, function
int 10h
ENDM

;

6 - Installable Device Drivers

; ***** BIOS I/O Equates **
;
; These definitions support the use of BIOS Level I/O.
;
; BIOS Video Functions (10h) Function Definitions
SET_CURSOR_POS EQU 02h ,, bh = page, dh => row, dl => column
GET_CLJRSOR_POS EQU 03h ,, bh = page; row => dh, column => dl
SELPAGE
SCROLLUP
SCROLLDOWN

READ_CHILATR
WRITE_CHILA TR

WRITLCHAR

WRITE_ TEXT
GELMODE
;
; Video Color
BLINK
BRIGHT
BLACK_F
BLUE_F
GREEN_F
CYAN_F
RED_F
MAGENTILF
YELLOW_F
WHITLF
BLACK_B
BLUE_B
GREEN_B
CYAN_B
RED_B
MAGENTILB
YELLOW_B
WHITE_B
;

EQU OSh
EQU 06h
EQU 07h

EQU 08h
EQU 09h

EQU OAh

EQU OEh
EQU OFh

,, al => page;
al = # Lines, bh => attr, •••

,, c(x) = upper Left, d(x) = Lower right
••. (x)h = row, (x)L =column ,,

,,
,,
,,
,,
,,
,,
,,

bh = page; attr. => ah, char => al
bh = page, ex = 1;
... al=> char, bl => attr.
bh = page, ex = 1;
..• al=> char, no attr.
bh = page; al => char;
mode => al. # columns => ah; page =>bh

Attributes for Use with EGA Boards
EQU 10000000b
EQU 00001000b
EQU OOh
EQU 01h
EQU 02h
EQU 03h
EQU 04h
EQU OSh
EQU 06h
EQU 07h
EQU OOh
EQU 10h
EQU 20h
EQU 30h
EQU 40h
EQU SOh
EQU 60h
EQU ?Oh

; ***** End of BiosIO.Inc **************************************

337

Devices

338

Listing 6-9. The BIOSIO.ASM Procedure File

PAGE 60,132
PUBLIC _biosprt

; ***** BIOSIO.ASM **
; BIOSIO: Contains routines for performing BIOS Level I/O,
; using PC standard BIOS calls. These routines are intended for
; debugging.
; This fi Le is one of the modules within STDLIB.LIB
;
IFNDEF DEBUG ; if not included as part of DEBUG

; then must be part of LIBRARY, and
; must include our own definitions.

; ***** INCLUDES **
;
INCLUDE biosio.inc ; BIOS I/0 definitions
;

; ***** DGROUP (DATA) COMPONENT SEGMENTS ************************
_DATA SEGMENT BYTE PUBLIC 'DATA'
_DATA ENDS
;
DGROUP GROUP _DATA
;

;***** PROGRAM CODE STARTS HERE *********************************
;
_TEXT SEGMENT BYTE PUBLIC 'CODE'

ASSUME cs:_TEXT, ds:DGROUP, es:DGROUP, ss:DGROUP
END IF
;
; Call Stack Frame Structure Template for _BIOSPRT routine
bpframe STRUC

p1
p2
p3
p4

bpframe ENDS
prtbase EQU
;
; _BIOSPRT

dw
dw
dw
dw
dw
dw

[bp]

?
?
?
?
?
?

; old bp
; return address
; parameter #1
; parameter #2
; parameter #3
; parameter #4

; This routine performs BIOS Level screen I/O for use in
; debugging the device driver. This routine uses Video Mode
; 03h: 80x25 color text
;
; "C" Equivalent Call Syntax: biosprt (string,color)

6 - Installable Device Drivers

;
_biosprt

push
PROC
bp

mov bp,sp
push si
push ex
push bx

;

NEAR ; print string using BIOS I/0

@Video GET_MODE ; get current page number
mov si,word ptr [prtbase.p1J ; address of string
mov bl,byte ptr [prtbase.p2] ; attribute
mov cx,1

;
biosprtloop:

;

Lodsb
or
jz
cmp
jz
push
mov
@Video
pop
@Video

jmp

a L,a L
biosprtdone
al,'$'
biosprtdone
ax
al,020h
WRITLCHR-ATR
ax
WRITE_ TEXT

biosprtloop

biosprtdone:
pop bx
pop ex
pop si
pop bp
ret

_biosprt ENDP
;

; read current character
; terminate on NUL

; terminate on "$"

; blank with attribute

; rewrite with TTY
; ••• interpretation
; next character

IFNDEF DEBUG
_TEXT
ENDIF

ENDS
; if not included as part of DEBUG
; then will require our own ENDS

;

; ***** END OF FILE BIOSIO.ASM **********************************
; END ; remove Leading "." , for Library use

339

Devices

340

Listing 6-10. The RDISK Ram Disk Driver

PAGE 60,132
; *** RDISK.ASM : MS-DOS DEVICE DRIVER FOR RAM DISK *************
;
; This fi Le contains the source code for a sample MS-DOS device,
; a RAM Disk that emulates a 360K floppy disk.
;
; This driver demonstrates the basic principles of a device
; driver, including one method that can be used for debugging
; device drivers. This driver is installed by inserting the
; following in your CONFIG.SYS file: "DEVICE=RDISK.ASM"
;
; ----- INCLUDE FILES FOR DEVICE DRIVER =========================
;
INCLUDE driver.inc
IF DEF DEBUG
INCLUDE biosio.inc
END IF
;

; MS-DOS device driver equates

; BIOS IO definitions for debugging

; ----- EQUATES ===
;
; MS-DOS Version Limitations
;
CMD_PRE_30
CMD_PRE_32
CMD_32
;
IF DEF
CR
LF
ENDIF
;
PAGE
;

DEBUG

EQU
EQU
EQU

EQU
EQU

OOCh
OOFh
018h

OAh
ODh

; highest command before DOS 3.00
; highest command before DOS 3.20
; highest command at DOS 3.2 & 3.3

; used in debugging messages

; ===== STRUCTURE TEMPLATES =====================================
;
request EQU es:[di[rvJ ; request block pointer
;
; Driver GENERIC REQUEST Header Structure
reqhdr STRUC

rlength db ? ;
unit db ? ;
command db ? ;
status dw ? ;

db 8 DUP (?) ;

Length of request block
unit number for request
command code
return status
reserved

6 - Installable Device Drivers

reqhdr ENDS
;
; Driver INITIALIZE REQUEST Header Structure
inithdr STRUC

db (type reqhdr) DUP (?)

units db ? ; number of units
endadro dw ? ; end address offset
end ad rs dw ? ; end address segment
bpbtabo dw ? ; ptr. to BPB pointer

; ... (offset)
bpbtabs dw ? ; pt r. to BPB pointer

... (segment)
devnum db ? ; device unit number

inithdr ENDS
;
; Driver MEDIA CHECK Command Header Structure
mchkhdr STRUC

(type reqhdr) DUP (?)

table

table

? ; media descriptor byte
? ; media change status

db
mdb db
change dw
volume dd ? ; volume name returned on CHANGED

mchkhdr ENDS
;
; Build
bpbhdr

BIOS Parameter Block Header Structure
STRUC

db (type
db ?

dd ?

bpbptro dw ?

bpbptrs dw ?

bpbhdr ENDS
;
; Read/Write Header Structure
i ohdr STRUC

db (type
db ?

bufptr dd ?

count dw ?

start dw ?

nuvol dd ?

iohdr ENDS
;

reqhdr) DUP (?)

; media descriptor byte
; pointer to FAT/scratch buffer
; pointer to BPB (offset)
; pointer to BPB (segment)

reqhdr) DUP (?)

; media descriptor byte
; pointer to Transfer Buffer
; byte/sector count
; starting sector (block only)
; pointer to new volume name

; BIOS Parameter Block Structure
bpbstrc STRUC

bps dw ? ; bytes per sector
spau db ? ; sectors per allocation unit

continued

341

Devices

Listing 6-10, continued

nrs dw ? ; number of reserved sectors
nft db ? ; number of FAT tables
nde dw ? ; number of directory entries
nls dw ? ; number of Logical sectors
md db ? ; media descriptor
nfs dw ? ; number of FAT sectors

bpbstrc ENDS
;
PAGE
;
; ===== DRIVER CODE STARTS HERE =================================
;
_TEXT SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:_TEXT, DS:_TEXT, ES:NOTHING
ORG 0

ORIGIN EQU $

;
; ----- DEVICE DRIVER HEADER ====================================
;

dw -1,-1 ; next device pointer
dw ALIOCTL OR AT_OCRM OR AT_NET
dw off set STRATEGY ; offset to STRATEGY routine
dw off set INTERRUPT ; offset to INTERRUPT routine
db 1,'CDEVICE •• ; number of units/name

;
; ----- COMMAND PROCESSING JUMP TABLE ==========================
;
JUMPTAB LABEL WORD

dw off set !NIT ; 0--INITialization
dw offset MEDIA_ CHECK ; 1--MEDIA check
dw off set BUILD_BPB ; 2--bui Ld BIOS parameter

; block
dw off set IOCTL INPUT ; 3--IO control input
dw off set READ ; 4--input from device
dw off set READ_NOWAIT ; 5--nondestructive input

; no-wait
dw offset INPULSTATUS ; 6--input status
dw off set INPULFLUSH ; 7--flush input queue
dw off set WRITE ; 8--output to device
dw offset WRITE_ VERIFY ; 9--output with verify
dw offset OUTPULSTATUS ; A--output status
dw off set OUTPULFLUSH ; B--flush output queue
dw off set IOCTL OUTPUT ; C--IO control output
dw off set DEVICE__OPEN ; D--open a device
dw off set DEVICE__CLOSE ; E--close a device

342

6 - Installable Device Drivers

dw offset REMOVABLE ; F--is the media removable
dw off set NO_ COMMAND ; 10
dw off set NO_ COMMAND ; 11
dw offset NO_ COMMAND ; 12
dw off set GENERILIOCTL ; 13--generic IOCTL request
dw offset NO_ COMMAND ; 14
dw offset NO_ COMMAND ; 15
dw off set NO_ COMMAND ; 16
dw off set GEL LOGICAL ; 17--get Logical device
dw offset SELLOGICAL ; 18--set Logical device

;
; ----- DRIVER COMMAND DATA STORAGE --
;
req_ptr dd ? ; request block pointer
max_cmd db CMD_PRE..__30 ; highest command allowed
;
save_ss dw ? ; entry stack segment value
save_sp dw ? ; entry stack pointer value
;
PAGE
;
; ===== STRATEGY ENTRY POINT ====================================
;
STRATEGY

strategy
;

mov
mov
ret

PROC FAR
cs:word ptr [req_ptrJ,bx
cs:word ptr [req_ptr+2J,es

ENDP

; ===== INTERRUPT ENTRY POINT ===================================
;
INTERRUPT

push
push
push
push
push
push
push
push
push

;

;

push
pop

PROC FAR
ax ; save all working registers
ex
dx
bx
bp
si
di
ds
es

cs ; establish Local data segment
ds

mov word ptr save_ss,ss ; save entry values of SS:SP
continued

343

Devices

344

Listing 6-10. continued

mov word ptr save_sp,sp
;

mov bx,cs ; establish Local stack
mov ax,offset Local_stack - 2
mov ss,bx
mov sp,ax

;
Les di,[req_ptrJ ; obtain request block pointer
mov bl,request.command ; obtain driver command code

;
; preset a command error in case the command is unrecognized

mov ax,(ST_ERROR OR UNKNOWN_COMMAND)
cmp bl,[max_cmdJ ; is the command supported?
ja exit ; no - reject it

;
; invoke the designated command
; each handler is called with CS & DS set to the driver segment,
; and ES:DI set to point to the request block each handler must
; return with its status in the AX register

xor bh,bh ; adjust command to be table index
shl bx,1

IF DEF DEBUG
call print_command ; print name of invoked command

END IF
ca LL word ptr jumptab[bxJ ; invoke command

;
; transfer status from AX register to request block STATUS word
exit: push cs ; establish Local data segment

pop ds
;

Les di ,[reqJptrJ
or ax,SLDONE
mov request.status,ax

;
mov ss,word ptr save_ss

mov sp,word ptr save_sp
;

pop es
pop ds
pop di
pop si
pop bp
pop bx
pop dx

; obtain request block pointer
; always set done bit
; store return status

; restore entry values
; ••• of SS:SP

; restore context

6 - Installable Device Drivers

pop ex
pop ax
ret

interrupt ENDP
;
PAGE
;
; DRIVER FUNCTION PROCESSING ==============================
;
NO_ COMMAND

ret
NO_ COMMAND
;
MEDIA_CHECK

mov
xor
ret

MEDIA_ CHECK
;
BUILD_BPB

mov
mov
xor
ret

BUI LD_BPB
;
IOCTL INPUT

PROC NEAR ; unimplemented command
; return with preset error code

ENDP

PROC NEAR ; 1--MEDIA check
request.change,NotChanged
ax,ax

ENDP

PROC NEAR ; 2--bui ld BIOS parameter block
request.bpbptro,offset bpb
request.bpbptrs,cs
ax,ax

ENDP

PROC NEAR ; 3--IO control input
xor ax,ax
ret

IOCTL INPUT ENDP
;
READ

call
jc
Les

rep
xor

rd_err: ret
READ
;
READ_NOWAIT

xor
ret

READ_NOWAIT
;

PROC
verify

NEAR

rd_err
di,request.bufptr
movsw
ax,ax

ENDP

PROC

ax,ax

ENDP

NEAR

; 4--input from device
; verify & set up transfer pa rams
; exit on error
; destination is buffer
; transfer
; no errors

; 5--nondestructive input
; . . . no-wait

continued

345

Devices

Listing 6-10. continued

INPULSTATUS PROC NEAR ; 6--input status
xor ax,ax
ret

INPULSTATUS ENDP
;
INPULFLUSH PROC NEAR ; 7--flush input queue

xor ax,ax
ret

INPULFLUSH ENDP
;
WRITE PROC NEAR ; 8--output to device

ca LL verify ; verify & set up transfer para ms
jc wr _err ; exit on error
push ds ; save "sector" segment
Lds si,request.bufptr ; source is buffer
pop es ; destination is "disk"
xor di,di ; off set 0
rep movsw ; transfer
xor ax,ax ; no errors

wr_err: ret
WRITE ENDP
;
WRITE_ VERIFY PROC NEAR ; 9--output with verify

ca LL write
ret

WRITE_ VERIFY ENDP
;
OUTPULSTATUS PROC NEAR ; A--output status

xor ax,ax
ret

OUTPULSTATUS ENDP
;
OUTPUT_ f LUSH PROC NEAR ; B--flush output queue

xor ax,ax
ret

OUTPULFLUSH ENDP
;
IOCTLOUTPUT PROC NEAR ; C--10 control output

xor ax,ax
ret

IOCTLOUTPUT ENDP
;
DEVICE_OPEN PROC NEAR ; D--open a device

xor ax,ax
ret

346

6 - Installable Device Drivers

DEVICE_OPEN ENDP
;
DEVICLCLOSE PROC NEAR ; E--close a device

xor ax,ax
ret

DEVICLCLOSE ENDP
;
REMOVABLE PROC NEAR ; F--is the media removable?

mov ax,SLBUSY ; media is NOT removable
ret

REMOVABLE ENDP
;
GENERIC IOCTL PROC NEAR ; 13--generic IOCTL request

xor ax,ax
ret

GENERICIOCTL ENDP
;
GEL LOGICAL PROC NEAR ; 17--get Logical device

xor ax,ax
ret

GEL LOGICAL ENDP
;
SELLOGICAL PROC NEAR ; 18--set Logical device

xor ax,ax
ret

SELLOGICAL ENDP
;
PAGE
; RAM DISK PROCESSING SUBROUTINES -------------------------
; Called to process parameters of an I/O request
; Enter with ES:DI pointing to request block structure
; Verify "sector" is within range
; Transform "sector" into segment & offset
; CL i p count to prevent DTA "wraparound"
; Return with: DS:SI pointing to RAM Disk Address
; ES:DI pointing to request block
; ex contains transfer count in words
;
verify PROC NEAR
; verify starting & ending sectors - sectors
; are indexed 0 through n

mov cx,request.start
cmp cx,bpb.nls ; start sector

; ... sectors
ouLof_range

vs. #

jae
add cx,request.count ; find ending sector

Logical

continued

347

Devices

348

Listing 6-10. continued

dee
cmp

ex
cx,bpb.nls ; end sector vs. # Logical

; ... sectors
jb in_range ; continue if in range

; specified sectors are not contained on the disk
ouLof _range:

mov ax,ST_ERROR OR SECTOR_NOT_FOUND
mov request.count,O ; nothing transferred
stc ; return with error
ret

; calculate starting segment address of the "sector"
i n_range:

mov
mov

ax,bpb.bps
cl,4

shr ax,cl
mul request.start

add ax,RPARA

mov
add

; obtain bytes per sector
; divide by 16 to get
; ••• paragraphs

; paragraph offset relative
; ... to disk
; paragraph offset relative
; . . . to CS

; absolute paragraph offset
mov

dx,cs·
ax,dx
si,ax ; store segment in SI for now

; calculate and
mov
mul
cmp
jne

; clip transfer
mov
cmp
je
neg
cmp
jae
mov

trim transfer
ax,bpb.bps
request.count
dx,O
out_of _range

count to proper values
; sector size in bytes
; transfer count in bytes
; check for overflow

count in AX if required to prevent wraparound
cx,word ptr request.bufptr
cx,O ; offset of 0 is O.K.
set_size
ex ; 64K - buffer offset = remainder

; is remainder Larger than count?
; if yes then is O.K.

cx,ax
seLsi ze
ax,cx ; if no then only transfer

; . . . remainder
; set number of sectors transferred and transfer count
set_size:

mov
shr
div

cx,ax
cx,1
bpb.bps

; transfer count
; converted transfer count to words
; (DX was 0) sector count

mov request.count,ax ; save transfer count
; set DS:SI to point to memory address

mov ds,si

6 - Installable Device Drivers

xor si,si
; set transfer direction & return without error

cld
clc
ret

verify ENDP
;
IFDEF DEBUG
INCLUDE biosio.asm
PAGE
;

; include BIOS IO program code

; ***** DEBUGGING DATA & CODE ***********************************
;
; Debug Message Storage
;
NO_COMMAND_msg
INILmsg
MEDIA_CHECK._msg
BUI LD_BPB_msg

IOCTLINPULmsg
READ_msg
READ_NOWAILmsg

INPUT_STATUS_msg
INPULFLUSH_msg
WRITE_msg
WRITE_VERIFY_msg
OUTPUT_STATUS_msg
OUTPUT_FLUSH_msg
IOCTLOUTPUT_msg
DEVICE_OPEN_msg
DEVICE_CLOSE_msg
REMOVABLE_msg
GENERIC_IOCTLmsg
GELLOGICALmsg
SELLOGICALmsg
;
PAGE
;

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

'NO COMMAND',CR,LF,'$'
'INITialization',CR,LF,'$'
'MEDIA check',CR,LF,'$'
'Build BIOS Parameter Block'
CR,LF,'$'
'IO Control Input',CR,LF,'$'
'Input from device',CR,LF,'$'
'Nondestructive Input no-wait'
CR,LF,'$'
'Input Status',CR,LF,'$'
'Flush Input queue',CR,LF,'$'
'Output to device',CR,LF,'$'
'Output with verify',CR,LF,'$'
'Output status',CR,LF,'$'
'Flush Output queue',CR,LF,'$'
'IO Control Output',CR,LF,'$'
'Open a device',CR,LF,'$'
'Close a device',CR,LF,'$'
'Is media removable',CR,LF,'$'
'Generic IOCTL Request',CR,LF,'$'
'Get Logical Device',CR,LF,'$'
'Set Logical Device',CR,LF,'$'

; ===== DEBUG MESSAGES ADDRESS TABLE =============================
;
message_ tab le LABEL

dw offset
dw off set

WORD
INILmsg
MEDIA_CHECK._msg

;
;

0--INITialization
1--MEDIA check

dw offset BUI LD_BPB._msg ; 2--build BIOS parameter
continued

349

Devices

350

;
PAGE

Listing 6-10. continued

; block
dw offset IOCTL.INPUT_msg ; 3--10 control input
dw offset READ_msg ; 4--input from device
dw offset READ_NOWAIT_msg ; 5--nondestructive

; input no-wait
dw offset INPUT_STATUS_msg ; 6--input status
dw offset INPUT_fLUSILmsg ; 7--flush input queue
dw offset WRITE...msg ; 8--output to device
dw offset WRITE...VERifY_msg ; 9--output with verify
dw off set OUTPUT_STATU5-msg ; A--output status
dw offset OUTPUT_FLUSILmsg ; B--flush output queue
dw offset IOCTL.OUTPUT_msg ; c--10 control output
dw offset DEVICE...OPEN_msg ; D--open a device
dw offset DEVICE...CLOSE...msg ; E--close a device
dw offset REMOVABLE...msg ; F--is the media

; removable?
dw off set NO_COMMAND_msg ; 10
dw offset NO_COMMAND_msg ; 11
dw offset NO_COMMAND_msg ; 12
dw offset GENERIC_IOCTL.msg ; 13--generic IOCTL

dw
dw
dw
dw
dw

off set NO_COMMAND_msg
off set NO_COMMAND_msg
offset NO_COMMAND_msg
offset GET_LOGICAL.msg
off set SET_LOGICAL.msg

; request
; 14
; 15
; 16
; 17--get Logical device
; 18--set Logical device

; PRINLCOMMAND
;
; This routine invokes the BIOS print routine (_biosprt) with
; the address of a string name of the driver command that was
; just called. This routine is entered with the driver
; code* 2 in the BX register. Save all registers that will
; be used.
;
print-command

push
mov
push
mov

push
ca LL
add

PROC NEAR
ax ; save AX register
ax,BLUE...F OR BRIGHT OR BLACK_B ; set color
ax
ax,word ptr message_table[bx] ; get string

ax
_biosprt
sp,4

; address
; and pass it
; call BIOS print routine
; clean up & exit

6 - Installable Device Drivers

pop ax
ret

print_command ENDP
END IF
;
PAGE
;
; ***** LOCAL STACK & END OF OPERATIONAL DRIVER *****************
;

db 32 DUP ('stack ') ; Lo ca L processing stack
Local_stack EQU $; depth 256 bytes
;
bpb_tab dw off set bpb ; pointer to BPB (stored

; ... outside)
LASLUSED EQU $; Last memory Location

; ... used
;

; ***** DEFAULT DESCRIPTION OF THE RAM DISK *********************
;
; Parameters for a 5-1/4" Double side Double density 9 sectored
; disk
;
MTYPE EQU OFDh ; media descriptor byte
TRACKS EQU 40 ; 40 tracks
SECTORS EQU 9 ; 9 sectors/track
DSIZE EQU 512 ; 512 bytes/sector
SIDES EQU 2 ; 2 sides/disk
;
FSECS EQU 2 ; # sectors/FAT
DIR EN EQU 112 ; #directory entries
DSECS EQU 7 ; 7 directory sectors
CLSIZ EQU 2 ; sectors/cluster
;
STOTAL EQU TRACKS*SECTORS*SIDES ; total number of sectors
PTOTAL EQU (DSIZE/16)*STOTAL ; total number of paragraphs
;

; ***** BEGINNING OF RAM DISK DATA AREA *************************
;
; Paragraph Align the RAM Disk
;

IF ($-ORIGIN) mod 16
ORG ($-ORIGIN) + 16 - (($-ORIGIN) mod 16)
END IF

RDISK LABEL BYTE ; start of RAM Disk
RPARA EQU ($-ORIGIN) I 16 ; code size in paragraphs
;

continued

351

Devices

352

Listing 6-10. continued

; BIOS Parameter Block & Pointer --------------------------
jmp near ptr boot ; 3 byte jump
db 'IBM 3.1' ; 8 byte name & version

;
; default BPB
bpb bpbstrc <DSIZE,CLSIZ,1,2,DIREN,STOTAL,MTYPE,FSECS>
; compatibi Lity information

boot:

dw
dw
dw

db

SECTORS
SIDES
0

(DSIZE-30) DUP (?)

; # sectors/track
; # head
; # hidden sectors

; remainder of boot
; ... sector

; ----- FAT Entries ---
FAL1 db MTYPE,OFFh,OFFh ; 1st two FAT entries

db CDSIZE-3) DUP (Q) ; zero remainder of FAT
db ((FSECS-1) * DSIZE) DUP (Q)

FAL2 db MTYPE,OFFh,OFFh ; 1st two FAT entries
db CDSIZE-3) DUP (Q) ; zero remainder of FAT
db ((FSECS-1) * DSIZE) DUP (Q)

; ----- Directory Sectors ***************************************
DI REC db 'RAM_DISK ; volume name (11 bytes)

db 08h ; VID
db 10 DUP (?) ; reserved
dw 0600h ; time 12:00:00 noon
dw 021h ; data Jan 1, 1980
dw 0 ; start cluster 0
dd 0 ; fi Le size 0
db (DSIZE-32) DUP (Q) ; zero remainder of

; ..• directory
db ((DSECS-1) * DSIZE) DUP (Q)

BUFFER LABEL BYTE ; beginning of data
; ... storage

;

; ***** INITIALIZATION CODE *************************************
;
; ----- INCLUDE FILES FOR INITIALIZATION ========================
;
INCLUDE stdmac.inc ; DOS function allowed during init
;
; ===== INITIALIZATION DATA =====================================
;
$signon db
$desig db
$crlf db

'RAM DISK Driver Version 1.00 Installed: Drive '
I A I

ODh,OAh,'$'

6 - Installable Device Drivers

;
; ----- INITIALIZATION CODE STARTS HERE =========================
;
INIT PROC NEAR ; 0--INITialization
;
; set end address, units, and pointer to BPB table

mov request.endadro,O ; end of driver address
mov request.endadrs,cs
add request.endadrs,(RPARA+PTOTAL) ; ending
mov request.units,1
mov request.bpbtabo,offset bplLtab
mov request.bpbtabs,cs
mov al,$desig ; update drive
add al,request.devnum ; designation
mov $desig,al

;
; display sign-on message

@DisStr $signon
;

; Letter

; update "max_cmd" from MS-DOS Version number

segment

@GetDOSVersion ; get the DOS version number
cmp al,3 ; is this DOS 3.00 or higher?
jb init_done ; no - return from init
mov [max_cmdJ;cMD_PRE.._32 ; enable DOS 3.00 commands
cmp ah,2 ; is this DOS 3 .20 or higher?
jb init_done ; no - return from init
mov [max_cmdJ,CMD_32 ; enable DOS 3.20 commands

;
iniLdone:

xor
ret

INIT ENDP
;

ax,ax

; ***** END OF DRIVER
;
_TEXT ENDS

END

Summary

; no problems

END OF FILE *****************************

You're now ready to write and install device drivers on your own. Follow our
guidelines and the information in the DOS Programmer's Reference Manual
when you are presented with technical questions. You should have very few
problems.

353

354

Progam
Output

Monitor
Display

Figure 6-8. Virtual screen device driver.

Some ideas for useful device drivers are a driver for a dot matrix printer
that accepts graphics commands (such as draw line) and converts them to the
format required by the printer driver or a terminal driver (see Figure 6-8) that
supports virtual screens. The terminal driver can have a number of memory
buffers that contain copies of screen information. By sending commands to the
driver's IOCTL channel, the driver can be told which memory buffer to update
and which to display on the screen. Programs using this driver have a type of
windowing capability. Initially, care must be taken not to use the standard MS
DOS console I/O functions, which know nothing of the virtual windowed device.
If the driver is successful, you can use it to replace the existing console driver.

The list of ideas for device drivers is endless. You have probably already
thought of a few of your own that you would like to implement. With a little pa
tience and care, there's no reason why you can't, so go to it!

7 - Using Expanded Memory

LJr'i HE incorporation of the expanded memory specification in MS-DOS 4. 0 \=t.J has legitimized this standard as the technique for increasing memory in all
MS-DOS systems. Despite the ever-growing speed and sophistication of DOS
based, IBM-compatible personal computers, their ultimate hardware and soft
ware performance has been subject to constraints imposed by the system design
and 8088 processor architecture embedded within the original IBM Personal
Computer. Until recently, one such limit, the 640K barrier, has been a steady
source of frustration to both users and programmers of MS-DOS systems. Sig
nifying the maximum amount of user RAM supported by MS-DOS, the 640K
memory limit has loomed as a persistent obstacle to the relentless drive to de
velop and employ more capable and potent software solutions.

Users demanding sophisticated databases, spreadsheets, graphical inter
faces, and resident utilities want to use these features simultaneously under the
control of a multitasking windowing system. Developers have risen to meet this
challenge armed with resident debuggers, on-line manuals, and user interface
toolkits. Both groups had struggled forward under the 640K ceiling with no cer
tain solution to the DOS memory crunch.

The entire PC industry has now cooperated to devise a workable solution
to MS-DOS's memory limitations with a memory expansion scheme called ex
panded memory, which provides MS-DOS programs with access to a maximum
of 32 megabytes of RAM memory beyond the 640K bytes managed by MS-DOS.
Unfortunately, expanded memory cannot be used by MS-DOS applications auto
matically. Each program must be specifically written to recognize and use it.
While the process of recognizing and using expanded memory is not automatic,
it is not particularly difficult or mysterious. This chapter will provide you with
the background and knowledge you need to add this powerful tool to your own
base of programming expertise.

The performance and flexibility demands that PC users place on software
almost dictate that programs directly manipulate the PC hardware, bypassing
DOS and the BIOS, to wring maximum potential out of the PC family hardware.
Building such programs is a laborious task for developers, who not only must
master the hardware intricacies of the PC and its va;rious 1/0 adapter boards,
but also must take special care to accommodate the hardware diversity of the
installed base of PC-compatible systems.

357

Devices

358

Fortunately, developers writing applications that use expanded memory
need not submerge themselves in the obscure hardware details of expanded
memory boards to obtain high performance and flexibility. Rather, complete ac
cess to expanded memory is provided by well-documented, hardware-indepen
dent programming interfaces that have been developed and supported by the
personal computer industry's premier vendors of hardware and software.

The best-known of these programming interfaces is the Lotus/Intel/Micro
soft Expanded Memory Specification (LIM EMS). An impressive variety of
commercially available system and application software exploits LIM EMS ex
panded memory to relieve DOS memory constraints. Microsoft Windows 2. 0 and
Quarterdeck Office Systems DE SQ View utilize expanded memory to help mul
titask sever.al applications. Lotus 1-2-3 and Symphony, Microsoft Excel, Auto
desk AutoCAD, and a host of other popular software applications all employ
expanded memory to provide users with the means to solve larger and more
complex real-world problems. PC-DOS and MS-DOS 4.0 include drivers that
support the LIM EMS standard as part of the operating system, although early
releases of DOS 4.0 seemed not to support EMS function 19h, the Get/Set Han
dle Attribute function, and early system-supplied drivers were buggy. PC-DOS
and MS-DOS 4.0 use LIM EMS 4.0 memory to buffer sectors from open files
(controlled by the BUFFERS parameter in the CONFIG.SYS file) and to check
directory entries (which the FASTOPEN command supplied with DOS 3.3 and
above does). Early releases of DOS 4.0 seem not to use LIM EMS 4.0 multitask
ing features in any way. (Note that throughout this chapter whenever we refer
to MS-DOS version 4.0, we are also including PC-DOS 4.0, unless specifically
stated otherwise.)

This chapter will conduct an in-depth survey of the techniques needed to
exploit expanded memory in your own programming projects. Expanded mem
ory can be a potent, multifaceted tool empowering your programs to handle big
ger problems, to quickly access large databases customarily stored on disk, to
share data with other programs, or to reduce the amount of DOS memory they
require.

You may be surprised to learn that your computer does not even need any
special hardware or add-on memory boards for you to write, test, and run ex
panded memory applications. This chapter explains how expanded memory em
ulation software can provide you with a low-cost tool for developing expanded
memory applications.

You will learn how expanded memory fits into the hardware and software
architecture of PC-compatible computers. You will also learn the programming
conventions and protocols that are necessary in order to use expanded memory
without interfering with other applications, including:

• How to detect when expanded memory is present on a computer and, if
so, how much is installed.

• How to allocate, deallocate, and manipulate up to 32 megabytes of
expanded memory, using the Expanded Memory Manager's int 67h
interface defined by the Lotus/Intel/Microsoft Expanded Memory
Specification.

7 - Using Expanded Memory

• How to exploit the functional and ease-of-use enhancements incorporated
in the most recent version (4.0) of the LIM EMS.

• How to interpret and respond to error conditions returned by the
expanded memory subsystem.

In this chapter we'll provide reference material detailing the specific inter
rupt mechanism and register usage conventions required to use the LIM EMS
programming interface. We'll also help you determine the types of data struc
tures that are best suited for storage in expanded memory.

We will review the history and motivation behind the Lotus/Intel/Micro
soft Expanded Memory Specification and the AST/Quadram/Ashton-Tate En
hanced Expanded Memory Specification (AQA EEMS). You will see how
various features of these standards evolved to help overcome DOS memory re
strictions for nearly every type of program, including device drivers, terminate
and-stay-resident utilities, and operating system enhancements. This chapter
will explore the technical and compatibility considerations relevant to each ex
panded memory specification, including EMS 4.0 support built-into MS-DOS
4.0, so that applications you write will be compatible with the widest variety of
expanded memory implementations.

To get you started programming for expanded memory, this chapter in
cludes a collection oflow-level interface routines, written in Microsoft C version
5.0, and a sample application. The sample application, consisting of two com
plete, working programs, gives you a start-to-finish demonstration of the key
LIM EMS programming techniques presented in the chapter. Some of the ad
vanced techniques illustrated by the application include data sharing between
two programs and the use of expanded memory inside an interrupt service
routine.

We begin our exploration of memory expansion options by examining the
history and events in the PC-compatible personal computer industry that
spawned its development and use.

A History Lesson

In 1981, the typical personal computer could address no more than 64 kilobytes
of main storage. Serious programmers of these machines spent an inordinate
amount of time squeezing out those last few bytes, just to shoehorn in one extra
feature. The introduction of the IBM Personal Computer, with RAM storage
that was an order of magnitude more than its predecessors, seemed to offer the
promise oflong-term relief from the memory crunch.

Barely three years later, the computer memory analog of Parkinson's Law
(work expands to fit the time available in which to do it) had done to the IBM PC
what it had done to every previous generation of computers. Today, burgeoning
spreadsheets, integrated applications, networks, and a flood ofresident utilities
render the IBM PC's memory space as cramped and limited as its ancestors'.

No perfect solution to the RAM limit exists. Even though the Intel 8088
microprocessor in the IBM PC supports a 1-Mbyte address space, the 384

359

Devices

Kbytes of the PC's address space between 640K and the 1-Mbyte addressing
limit are reserved for video adapter buffers, system and BASIC ROM, and
other I/O card ROM-BIOS modules. New PC-DOS applications are trapped
within the bounds of the 640-Kbyte user RAM with which the IBM PC family
was born.

One traditional solution to memory problems, the overlay, is frequently
used by PC applications whose code components can be layered appropriately.
For other types of applications, such as spreadsheets, this approach is not com
pletely effective. The storage requirements for this type of application are
driven primarily by the potentially unlimited size of their central data struc
tures, rather than the size of their executable code.

LIM EMS

360

In the absence of a universal solution, Lotus Development Corporation, Intel
Corporation, and Microsoft Corporation collaborated to produce a scheme al
lowing individual applications to work around the 640K RAM limit imposed by
the IBM PC implementation of DOS. The result is called the Lotus/Intel/Micro
soft Expanded Memory Specification, or LIM EMS. Intel produced a board to
hold this memory, Lotus adapted their spreadsheet to use the memory, and Mi
crosoft made sure that the specification would be responsive to the require
ments of the operating system enhancements it was working on.

What LIM EMS actually defines is a new implementation of a popular, an
cient maneuver around the address space crunch: memory-bank switching. In
short, memory-bank switching schemes work by using electronic switches (in
the form of software-addressable I/O ports) to dynamically alter how physical
blocks of memory are mapped into part of the processor's address space. In this
way, a computer system may access more bytes of physical memory than were
provided for by its processor's memory architecture, though not all the bytes of
physical memory may be accessed by a program at any given instant.

As a technical solution to the memory space problem, the LIM EMS is not
all that more exciting or effective than the bank-switching schemes present in
many machines built during the 6502 and 8080 microprocessor era. What the
LIM EMS does have is the sponsorship of several market leaders in the PC in
dustry and documentation that is readily available to software developers, free
for the asking. This circumstance is something of a rarity these days, when ma
jor software vendors seem to focus their efforts selling application-building tool
kits to developers at costs of $500 to $3000.

Until the release of PC-DOS version 4.0, IBM had remained neutral
toward the LIM EMS, choosing to promote the adoption of Operating System/2
by application developers as a more permanent solution to the memory problem.
While OS/2 definitely represents a longer-term solution, for most MS-DOS
users the relative lateness of its introduction and its lack of total upward com
patibility with much of the enormous existing base of PC-compatible hardware
and software has limited its immediate potential as a solution.

7 - Using Expanded Memory

Because the LIM EMS is a practical, immediately available, and upwardly
compatible solution for the entire existing base of systems running MS-DOS, it
has become a commercially and technically successful way for a DOS program to
break the 640-Kbyte barrier. In fact, several industry observers have specu
lated that the effectiveness of the LIM EMS solution may actually extend the
useful life of MS-DOS based systems for several years beyond the point of their
supposed technological obsolescence.

LIMEMS3.2
The first widely supported version of the LIM EMS, numbered 3.2, was pub
lished in September 1985. It defined a memory expansion protocol providing ap
propriately programmed applications with up to 8 megabytes of bank-switched
memory for data or code storage. The specification included facilities that allow
several active applications to use this memory concurrently without mutual
interference.

The ability for multiple programs using expanded memory to coexist par
ticularly benefits developers of terminate-and-stay-resident programs (TSRs)
in at least two ways. First, a TSR program may store portions of its data or code
in expanded memory, reducing the amount of conventional memory it occupies.
Second, conflicts between TSRs and other programs over the use of expanded
memory may be avoided, since the LIM EMS defines specific programming con
ventions that prevent such conflicts from occurring.

LIM EMS 3.2 Concepts and Terminology
The basic LIM EMS 3.2 scheme works as follows:

1. Up to 8 megabytes of RAM, on one or more memory cards, can be
installed in a machine. Unlike the garden variety memory cards, storage
on these cards is divided into 16 kilobyte pages. Expanded memory is not
directly addressable by DOS applications, since it does not appear in the
lower 640K of the PC's address space.

2. These memory cards also incorporate a set of mapping registers that are
manipulated under software control to map any of the 16-Kbyte pages on
the expanded memory card(s) into any of four 16-Kbyte slots in a 64-
Kbyte portion of the PC's address space called the page frame. The page
frame is located somewhere in the PC's reserved address space, above the
640K line, and below the I-megabyte addressing limit of the 8086/8. Each
slot in the page frame is called a physical page and is identified by a
number, 0-3. The page frame constitutes a window through which a
suitably written program can access the entire memory capacity of the
expanded memory card(s). The process of altering the board's mapping
registers to make an expanded memory page available to a program is
called page mapping.

3. Control of the expanded memory system, including the page mapping
process, is performed by a software component called the Expanded
Memory Manager, or EMM, that is supplied by the expanded memory
board manufacturer. Much as DOS and the BIOS provide a programming

361

Devices

interface between an application and the underlying computer system's
hardware, the EMM provides a programming interface between an
application and the underlying expanded memory system. The EMM is
loaded into memory as a DOS character device driver at boot time, and
communicates with programs via software inter:mpt 67h, using a
parameter-passing mechanism comparable to DOS's int 21h interface.

4. Upon program request, the EMM allocates a set of one or more 16-Kbyte
logical pages to the program. It also allocates a handle that the program
uses, in subsequent expanded memory service requests to the EMM, to
identify the set of expanded memory pages to be operated upon. In much
the same way that DOS file handles are used by the operating system to
keep track of each program's open files, expanded memory handles are
used by the EMM to keep track of each program's set of active expanded
memory pages. The format of the handle is unspecified, except for the
fact that a handle is a 16-bit quantity. Logical page numbers associated
with a handle are numbered zero relative, up to one less than the number
of pages requested by the program.

5. When requesting a service from the EMM, the program identifies the
particular 16K page of expanded memory it wishes to use by specifying a
combination of a handle and a logical page number.

Note: Earlier versions of the specification used the term process ID,
rather than the term handle, to refer to a set of expanded memory pages.
The designers of the LIM EMS originally assumed that each program
would allocate only one set of pages, implying a one-to-one
correspondence between programs and process IDs. In practice though,
many programs requested more than one set of expanded memory pages. 1

As you will see later, this is a legal and useful programming technique.
However, the fact that one program could have more than one EMS
process ID confused many developers, thus prompting the terminology
change.

6. The EMM for a LIM EMS 3.2 expanded memory system provides 14
user-callable functions (plus 2 reserved functions) that applications use to
obtain information about and manipulate expanded memory pages.

Enhanced Expanded Memory Specification

362

A second computer industry collaboration soon formed to promote an Enhanced
Expanded Memory Specification. The result of this effort, which was sponsored
by AST Research, Quadram, and Ashton-Tate Corporation, was an upwardly
compatible (with the LIM EMS 3.2) expanded memory scheme called the AQA
EEMS.

The Window Size Limitation
A major limitation of the LIM 3.2 scheme, from the AQA point of view, was the
paltry 64-Kbyte page frame size. Through this small window into expanded
memory, a program could access only 4 of the 16-Kbyte expanded memory pages

7 - Using Expanded Memory

out of the 512 possible pages (8 megabytes) supported by the specification. The
AQA EEMS allowed a program to access, in theory at least, up to sixty-four 16-
Kbyte pages of expanded memory at any given time. A quick trip to the calcula
tor (binary thinkers can shift bits) reveals that this works out to 1 megabyte of
mappable memory! But wait, you ask, what about all the video buffers and the
ROM-BIOS in the space above 640K, not to mention DOS and applications in the
space below 640K? Are these summarily dealt with in a wink of the mapping
registers?

No. The reality that EEMS deals with is the same one that the LIM EMS
faces; the AQA EEMS just handles that reality more boldly. The LIM EMS 3.2
is an example of a conservative, worst-case design philosophy. For example, the
designers calculated that a PC with an Enhanced Graphics Adapter (EGA) and a
network card containing a ROM might have only 64K of unreserved, unused ad
dress space above 640K. DOS was already firmly in control of the address space
below 640 Kbytes. Thus, LIM EMS 3.2's designers were left with a 64-Kbyte
page frame.

AQA's designers evaluated the problem from a different perspective. They
reasoned that a standard PC with a CGA or MDA had enough address space
available above 640K to map in at least 12 EMS pages at a time. And Quarter
deck Office Systems, ceding nothing to DOS, had developed an operating sys
tem extender called DESQView that could swap programs in and out of the
lower 640K. If DE SQ View were able to substitute a nearly instantaneous page
mapping operation for the comparatively slow memory swapping process, its
potential as a high-performance multitasking system for the IBM PC would be
greatly enhanced.

AST designed and built a board capable of mapping memory throughout
the 1-Mbyte address space, thus providing DE SQ View with the mechanism nec
essary to achieve rapid switching among several programs. Practical limita
tions, however, prevent remapping of those portions of the address space
occupied by the ROM-BIOS, Display Adapter, and permanent planar board
memory needed to boot the system.

The EEMS scheme enjoyed only limited market success. A combination of
product marketing confusion generated by AST and Quadram, and lackadaisical
support for its functional extensions by other major PC software developers
limited its growth as a major alternative standard to the LIM EMS. Developers
were glad that EEMS was at least upwardly compatible with LIM EMS, but
many of them apparently did not think that the extensions it offered were worth
pursuing if the extensions entailed a loss of downward compatibility with the
LIM scheme.

LIM EMS4.0

Regardless of the marketing results, someone in the LIM camp must have found
things to like about the AQA EEMS. As Microsoft's Windows 2.0 product
neared release (and the amount of memory required to run it edged ever up
ward), the idea of being able to switch tasks rapidly in memory below 640K must
have gained considerable appeal. And maybe the space above 640K wasn't all

363

Devices

364

that crowded, as even an IBM PS/2 with a Video Graphics Array (VGA) display
controller had space for at least six 16-Kbyte pages.

In August of 1987, the Lotus/Intel/Microsoft group announced the LIM
EMS 4.0 specification. The new specification incorporated essentially all the en
hanced features of the AQA EEMS, and added several more of its own, all of
which will be covered in detail later in the chapter. The AQA group was so im
pressed (or doubted the wisdom of engaging in another marketing battle) that
they soon announced their public support for the 4.0 specification.

In 1988 IBM and Microsoft incorporated EMS drivers in version 4.0 of the
PC-DOS and MS-DOS operating systems. EMS drivers in the early releases of
this operating system were buggy, and technical specs explicitly defined lack of
support for EMS function 19h, the Get/Set Handle Attribute function, although
in all other respects the DOS version 4.0 EMS implementation complies with
the LIM EMS 4.0 spec. This chapter refers to the LIM EMS 4.0 specification
whether or not it resides in the DOS 4.0 operating system, for in all respects
interfacing with EMS 4.0 systems is identical.

As of 1988, all major players in the MS-DOS domain have settled on the
LIM EMS 4.0 specification. The unification of the expanded memory standard
removes at least one worry from the minds of software developers, who no
longer have to worry whether it is better to be safe with EMS or to get fancy
with the EEMS extensions.

Figure 7-1 illustrates how up to 32 megabytes of expanded memory are ad
dressed within two distinct regions of the 1-megabyte address space of the IBM
Personal Computer. Depending on the ROM-BIOS and Video Display Adapter
usage of the space between 640K and 1024K, from four to twelve 16-Kbyte pages
of expanded memory can be mapped into this region. Mappable conventional
memory (a feature of the AQA EEMS and the LIM EMS 4.0) can be used only by
operating system extensions.

A few features of the new specification were not clearly documented in its Au
gust 1987 edition. And a couple of revised boundary conditions for some 3.2 func
tions introduced in the 4.0 specification created downward incompatibilities
between versions. A revision of the 4.0 specification that clarified the new features
and resolved the incompatibilities was published in October 1987.

The number of functions supported by the 4.0 specification doubled the
number of user-callable functions available under the 3.2 specification to 28, and
most of the new functions had several subfunctions. Thus, the whole subject of
expanded memory is now several times larger than it used to be. The official
specification document for the LIM EMS 4.0, whose appearance follows the
style of the DOS Technical Reference Manual, has more than doubled in size rel
ative to its version 3.2 predecessor.

While this chapter will present as many details as it can to illustrate ex
panded memory concepts, serious developers may find that it cannot serve as a
complete substitute for the official specification. You can obtain a copy of the

Optional 1/0
Adapter

ROM

EGA/VGA/MDA/CGA
Display Buffer

EGA/VGA
Display Buffer

7 - Using Expanded Memory

1000000H (16 Mbytes)

1 OOOOOH (1 MbY1e)

FOOOOH (960K)

EOOOOH (896K)

COOOOH
(768K)

BOOOOH (704K)

AOOOOH (640K)

LIM EMS
Page Frame

4-12 16-Kbyte
Physical Pages

LIM EMS
Mappable Conventional

Memory
-----,(for OS/Environment Use Only)

40000H
(256K)

OOOOOH (OK)

0-24 16-Kbyte
Physical Pages

UP TO 32 Mbytes

EXPANDED

MEMORY

0-2048 16-Kbyte

Logical Pages

Figure 7-1. Expanded memory and the IBM PC address space.

365

Devices

specification directly from Intel by calling (800) 538-3373 in the USA and Can
ada or (503) 629-7354 elsewhere.

One possible approach to exploring EMS would be to study the EMS 3.2
compatible functions and then follow up with a discussion1 of functions added by
the 4.0 specification. As you will soon see, the functions added by EMS 4.0 are
more than upwardly compatible extensions: in many cases, the new functions of
fer much easier ways of accomplishing expanded memory management tasks
than were possible with the old functions. Therefore, this chapter presents re
lated 3.2 and 4.0 functions together.

LIM EMS 4.0 vs LIM EMS 3.2 vs AQA EEMS

366

Because each of these expanded memory standards has a significant market
presence, developers who intend to write applications that use expanded mem
ory must decide which version (or versions) of the specification to support in
their programs. Since all versions of the expanded memory specification provide
a function that allows the program to determine the level of the specification im
plemented by the EMM, your programs will have no trouble determining which
expanded memory functions are usable on a given machine. The following dis
cussion presents compatibility and technical factors that should help you select
the expanded memory specification that best matches your programming in
clination and target market.

Compatibility Considerations
If you intend to write expanded memory applications that can utilize the largest
installed base of expanded memory systems, then you are unlikely to err by
using only those EMM functions supported by the LIM EMS 3.2 specification.
However, you should note that most major expansion board and software
vendors strongly endorsed the LIM EMS 4.0 specification soon after its an
nouncement. This degree of acceptance of the LIM EMS 4. 0 practically assures
its position as the primary expanded memory standard. The following factors
support this assertion:

• The user does not have to buy any new hardware to use applications that
are written to the LIM EMS 4.0 specification. Older expanded memory
boards designed for the LIM EMS 3.2 specification can support the 4.0
specification-the manufacturer just has to write a new EMM to
implement the 4.0 function calls.

• Intel Corporation provides owners of its Above Board expanded memory
products with an EMM supporting the 4.0 specification free of charge.
Other manufacturers of expanded memory hardware are likely to follow
this bold action on the part of a market leader (and codeveloper of the
LIM specification).

• Practically every new expanded memory hardware (and expanded
memory emulator) product supports the LIM EMS 4.0.

• High-visibility software products, such as Microsoft's Windows 2.0
(presentation manager) and Excel (spreadsheet), and Quarterdeck Office

7 - Using Expanded Memory

Systems' DE SQ View 2.0 (multitasking environment) all use features of
the LIM EMS 4.0. Forthcoming upgrades to other major vendors'
spreadsheet and database products are also expected to include support
for the LIM EMS 4.0.

Since the codevelopers of the AQA EEMS specification announced that
their new expanded memory products would conform to the LIM EMS 4.0 speci
fication, it seems inadvisable for programmers to use EEMS functions in new
programs. Therefore, no further details about the EEMS will be presented in
this chapter. It is incumbent on the developer to write an EMS application such
that it tests both for the presence of the EMM driver and for the EMS version
installed, as well as testing for the MS-DOS and PC-DOS 4.0 EMS drivers.

Technical Considerations
From the viewpoint of the application developer, the decision to use LIM 4.0
functions in a program, rather than employing only the LIM 3.2 functions, may
initially look like a matter of programmer preference.

This is true on one level, since it is possible for you to accomplish any rea
sonable application function requiring expanded memory by using functions
that are available only in the LIM EMS 3.2 specification. However, by using the
higher-level functions introduced by the 4.0 specification, you will be able to re
duce the amount 'of code you must write to perform many common expanded
memory manipulation tasks. In particular, later sections of this chapter will
show you how LIM EMS 4.0 functions make it possible to transfer large blocks
of memory between expanded memory and conventional memory, and to ex
ecute code in expanded memory with a single EMM function call.

The Expanded Memory Manager

Many PC programmers and users associate expanded memory with only a set of
memory chips installed on a special type of memory board. This exceedingly
narrow perception is unfortunate, as no part of the LIM EMS specifies anything
about the hardware used to implement an expanded memory system. As was
mentioned briefly in the chapter introduction, it is possible to have expanded
memory on a computer with no special hardware whatsoever. We will present
the support for this bold claim in a later section of the chapter describing several
different types of expanded memory implementations.

Regardless of the expanded memory system's construction, each one must
include a software component, called the Expanded Memory Manager (EMM),
that provides the software interface defined by the LIM EMS between the ap
plication program and the underlying expanded memory system.

The EMM software itself is packaged within a DOS character device
driver, defined in CONFIG.SYS, that is loaded and activated by DOS at boot
time. It differs from other DOS device drivers in that communication between
the application and the EMM device driver does not take place through the DOS
file system in the form of opens, closes, reads or writes. Rather, it uses a soft
ware interrupt mechanism very similar to the one employed by DOS, passing

36'1

Devices

function codes, parameters, and return codes back and forth in registers. The
main reason that the EMM is packaged as a device driver is to permit it to be
loaded early enough in the boot process so that device drivers (e.g., RAM disks
and print spoolers) may use expanded memory.

EMM Functions
To satisfy the LIM EMS 4.0 specification, the EMM must implement 28 dif
ferent user-callable functions, many of which have multiple subfunctions. The
large number of functions and subfunctions defined by the specification pre
sents a significant obstacle to the intelligent use of expanded memory.

The complexity of LIM EMS 4.0 almost demands that the developer obtain
some higher-level understanding of the EMM's functions. Before we delve into
the mechanics of using these functions from assembly and high-level language
programs, we will approach the task by dividing EMM functions into five man
ageable categories:

Informational

Data Management

Context Management

Operating-System
Oriented

Reserved

Return the status of the EMM, as well as the
quantities of expanded memory resources
that are available and that are in use by EMS
applications.
Control the allocation, deallocation,
movement, mapping, and sharing of data and
code in expanded memory.

Control the saving and restoring of the EMM
mapping state by device drivers and
terminate-and-stay-resident programs.
Control the switching of the EMM mapping
state among several concurrent applications
by multitasking environments, such as
Microsoft Windows or Quarterdeck
DE SQ View.
Hardware-dependent services that were
removed from the documented specification
when LIM EMS 3.2 was announced.

Table 7-1 presents the LIM EMS 3.2 and 4.0 functions belonging to each of
the preceding classifications (also see Table 7-2). You should note that several
functions combine informational, data management, and context management
services into one function, and are listed in more than one category.

Table 7-1. LIM EMS 3.2 and 4.0 Functions

EMS 3.2 Functions EMS 4.0 Additions

Informational (1) Get Status (21) Get Handle Directory
(25) Get Mappable Physical

Address Array

368

(2) Get Page Frame Address
(3) Get Unallocated Page

Count

Data Management

Context Management

Operating-System
Oriented

Reserved

EMS 3.2 Functions

(7) Get Version
(12) Get Handle Count
(13) Get Handle Pages
(14) Get All Handle Pages

(4) Allocate Pages
(5) Map/Unmap Handle Page
(6) Deallocate Pages

(8) Save Page Map
(9) Restore Page Map

(15) Get/Set Page Map

None

(10) Reserved
(11) Reserved

7 - Using Expanded Memory

EMS 4.0 Additions

(17) Map/Unmap Multiple
Handle Pages

(18) Reallocate Pages
(19) Get/Set Handle Attribute
(20) Get/Set Handle Name
(22) Alter Page Map and Jump
(23) Alter Page Map and Call
(24) Move/Exchange Memory

Region

(16) Get/Set Partial Page Map
(22) Alter Page Map and Jump
(23) Alter Page Map and Call

(26) Get Expanded Memory
Hardware Information

(27) Allocate Standard/Raw
Pages

(28) Alternate Map Register
Set

(29) Prepare Expanded
Memory Hardware for
Warm Boot

(30) Enable/Disable Operating
System/Environment
Function Set Functions

Table 7-2. EMM Functions

Function No.

1

2

3

4

Function Name

Get Status

Get Page Frame
Segment Address

Get Unallocated Page
Count

Allocate Pages

Input Registers

AH: 40h (function
code)

AH: 41h (function
code)

AH: 42h (function
code)

AH: 43h (function
code)
BX: no. of pages to
allocate

Output Registers

None

BX-page frame
segment address

BX-no. of unallocated
pages

DX-handle

continued

369

Devices

Table 7-2. continued

Function No. Function Name Input Registers Output Registers

5 Map/Unmap Handle AH: 44h (function None
Pages code)

AL: physical page no.
BX: logical page no.
(-1 to unmap physical
page)
DX: handle

6 Deallocate Pages AH: 45h (function None
code)
DX: handle

7 Get Version AH: 46h (function AL: BCD EMM version
code)

8 Save Page Map AH: 47h (function None
code)
DX: handle

9 Restore Page Map AH: 48h (function None
code)

10 Reserved

11 Reserved

12 Get Handle Count AH: 4Bh (function BX-no. of handles in
code) use

13 Get Handle Pages AH: 4Ch (function BX-no. of pages
code) allocated to specified
DX: handle handle

14 Get All Handle Pages AH: 4Dh (function BX-no. of handles in
code) use
ES:DI ~handle page
array

15 Get Page Map AX: 4EOOh (function Dest. page map array ~
code) EMM mapping state
ES:DI ~ dest. page
map array

Set Page Map AX: 4E01h (function EMM mapping state ~
code) source page map array
DS:SI ~source page
map array

Get & Set Page Map AX: 4E02h (function Dest. page map array ~
code) EMM mapping state;
ES:DI ~<lest page EMM mapping state ~
map array source page map array
DS:SI ~ source page
map array

370

7 - Using Expanded Memory

Function No. Function Name Input Registers Output Registers

15 Get Size of Page Map AX: 4E03h (function AL: no. of bytes
Array code) required for source or

<lest. page map array

16 Get Partial Page Map AX: 4FOOh (function Dest. partial page map
code) array~ partial EMM
DS:SI--;> mappable mapping state
segment array
ES:DI --;><lest. partial
page map array

Mappable segment
array structure:
mappable_seg_count dw? No. of mappable

segments to save

mappable_seg _addr dw (mappable_seg Segment address of
_count) dup (?) mappable segment to

save

Set Partial Page Map AX: 4F01h (function Partial EMM mapping
code) state ~ source partial
DS:SI --;>source page map array
partial page map

Get Size of Partial AX: 4F02h (function AL: no. of bytes needed
Page Map Array code) to store partial page

BX: no. of pages in the map array with specified
partial page map array no. of physical pages

17 Map/Unmap Multiple AH: 50h (function None
Handle Pages code)

AL: OOh-physical
page specified as
page no.
Olh-physical page
specified by segment
address
DX: handle
CX: no. of entries in
logical to physical map
array
DS:SI --;>logical to
physical map array

Logical to physical
map array structure:
log_page_number dw? Logical page no.

phys_page_number dw? Physical page no. or
segment address,
depending on value
specified in register AL

continued

371

Devices

Table 7-2. continued

Function No. Function Name Input Registers Output Registers

18 Reallocate Pages AH: 51h (function BX: no. of pages
code) allocated to handle after
DX: handle reallocation
BX: no. of pages
handle should have
after relocation

19 Get Handle Attribute AX: 5200h (function AL: 0-handle is volatile
code)
DX: handle 1-handle is nonvolatile

Set Handle Attribute AX: 5201h (function None
code)
DX: handle
BL: new handle
attribute
OOh, volatile
Olh, nonvolatile

Get Attribute AX: 5202h (function AL: 0, nonvolatility not
Capability code) supported

1, nonvolatility is
supported

20 Get Handle Name AX: 5300h (function Handle name dest.
code) buffer +--- handle name
DX: handle
ES:DI ~ 8-character
handle name dest.
buffer

Set Handle Name AX: 5301h (function Handle name +--- handle
code) name source buffer
DX: handle
DS:SI ~ 8-character
handle name source
buffer

21 Get Handle Directory AX: 5400h (function AL: no. of entries in the
code) handle directory array
ES:DI ~handle
directory array

Handle directory:
handle_value dw? Active handle

handle_name db 8 dup (?) Handle name

Search for Named AX: 5401h (function DX: handle with
Handle code) specified name

DS:SI ~ 8-character
handle name search
buffer

Get Total Handles AX: 5402h (function BX: total no. of handles
code) supported by EMM

372

7 - Using Expanded Memory

Function No. Function Name Input Registers Output Registers

22 Alter Page Map & AH: 55h (function None
Jump code)

AL: 0-physical pages
specified by physical
page no.
1-physical pages
specified by segment
address
DX: handle
DS:Sl-? map and
jump structure

Map and jump
structure:
targeLaddress dd? Entry point of target
log_phys_map_len db? No. of entries in page

map structure -? logical
to physical map array
structure as in function
17

log_phys_map_ptr dd?

23 Alter Page Map AH: 56h (function None
&Call code)

AL: 0-physical pages 1-physical pages
specified by physical specified by segment
page no. address

DX: handle
DS:SI -? map and call
structure

Map and call structure:
target_[J,ddr dd? Far -? target entry

point
new_page_map_len db? No. of pages to map

after call far -? as in
function 17

new_page_map_ptr dd?
old_page_map_len db? No. of pages to map

after return far -? as in
function 17

old_page_map_ptr dd?
Reserved dw4 dup (?) Reserved for EMM
Get Page Map Stack AX: 5602h (function BX: No. of bytes of
Space Size code) stack space required by

Alter Page Map and Call
function

continued

373

Devices

Table 7-2. continued

Function No. Function Name Input Registers Output Registers

24 Move Memory Region AX: 5700h (function None
code)
DS:SI - source/dest.
regiomlescriptor

Exchange Memory AX: 5701 (function None
Region code)

DS:SI - source/dest.
region descriptor

Source/dest. region
descriptor:
regionJength dd? No. of bytes to move/

exchange
source_memory-1ype db? Conventional memory: 0
source-1iandle dw? Conventional memory: 0

Expanded memory:
source handle

source_iniLnffset dw? Conventional memory:
initial offset within
source segment
Expanded memory:
initial offset within
source page
Conventional memory:
initial source segment

source_page_seg dw? Expanded memory:
initial logical source page

desLmemory-1ype db? Conventional memory: 0
Expanded memory: 1

dest-1iandle dw? Conventional memory: 0
Expanded memory: dest.
handle

desLiniLnffset dw? Conventional memory:
initial offset within dest.
segment
Expanded memory:
initial offset within dest.
page

dest_seg _page dw? Conventional memory:
initial dest segment
Expanded memory:
initial logical dest. page

25 Get Mappable AX: 5800h (function CX: no. of entries in
Physical Address code) mappable physical
Array ES:DI - mappable address array

physical address array
Mappable physical (Array sorted in
address array: ascending segment

order)

374

7 - Using Expanded Memory

Function No. Function Name Input Registers Output Registers

25 phys_page_segment dw? Segment address of
mappable page
corresponding to
physical page no.

phys_page_number dw?
Get Physical Address AX: 5801h (function CX: no. of entries in
Array Entry Count code) mappable physical

address array

26 Get Hardware AX: 5900h (function Hardware configuration
Configuration Array code) array - hardware data

ES:DI - hardware
configuration array

Hardware
configuration array:
raw_page_size dw? Raw page size in bytes
alternate_reg _sets dw? No. of alternate map

register sets
save_area_size dw? No. bytes in context

save area (also returned
by function 15)

DMA_reg_sets dw? No. of register sets that
can be assigned DMA
channels
0: LIM standard DMA
operation

DMA-channeLnp dw? 0: LIM standard DMA
operation
1: only 1 DMA channel

Get Unallocated Raw AX: 5902h (function BX: no. of unallocated
Page Count code) raw pages

DX: total no. of raw
pages

27 Allocate Standard/ AH: 5Ah (function DX: raw/standard
Raw Pages code) handle

AL: OOh-allocate
standard pages
Olh-allocate raw
pages
BX: no. of pages to
allocate

28 Get Alternate Map AX: 5BOOh (function If BL <> 0 - active
Register Set code) alternate map register

set
IfBL = 0-ES:DI-
map register context
save area

continued

375

Devices

Table 7-2. continued

Function No. Function Name Input Registers Output Registers

28 Set Alternate Map AX: 5B01h (function None
Register Set code)

BL: OOh
ES:DI ~map register
context save area
<> OOh-no. of
alternate map register
set

Get Alternate Map AX: 5B02h (function DX: no. of bytes in map
Save Area Size code) register context save

area
Allocate Alternate AX: 5B03h (function BL: 0-no alternate map
Map Register Set code) register sets are

available
<> 0-no. of alternate
map register set
allocated

Deallocate Alternate AX: 5B04h (function None
Map Register Set code)

BL: no. of alternate
map register set

Allocate DMA AX: 5B05h (function BL: 0-DMA register
Register Set code) sets are not supported

<> 0-no. of DMA
register set allocated

Enable DMA on AX: 5B06h (function None
code)

Alternate Map BL: DMA register set
Register Set no.

DL: DMA channel no.
Disable DMA on AX: 5B07h (function None

code)
Alternate Map BL: DMA register set
Register Set no.
Deallocate DMA AX: 5B08h (function None
Register Set code)

BL: DMA register set
no.

29 Prepare for Warmboot AH: 5Ch (function None
code)

30 Enable OS/E AX: 5DOOh (function BX, CX: access key
Function Set code) (returned only on the

BX,CX: access key first call)
(required on all calls
after the first)

376

Function No.

30

Function Name

Disable OS/E
Function Set

Return Access Key

7 - Using Expanded Memory

Input Registers

AX: 5D01h (function
code)
BX,CX: access key
(required on all
function calls after the
first)
AX: 5D02h (function
code)
BX,CX: access key
(returned by first
invocation of Enable or
Disable OS/E Function
Set)

Output Registers

BX,CX: access key
(returned only on the
first call)

None

Expanded Memory Manager Implementations
The original EMM was developed by Intel to provide a software interface to
memory boards that are manufactured for LIM EMS memory. Other vendors
produced EMMs that were tailored to expanded memory boards of their own
manufacture. But EMM implementations are not limited in form to a software
driver for a special type of memory board.

Our previous discussion of the EMM introduced the notion that the LIM
EMS (at least since version 3.2) is basically hardware independent. Several sys
tem software developers took note of this fact and proceeded to build expanded
memory managers that required no special expanded memory hardware what
soever. These EMMs, which are usually referred to as expanded memory emu
lators or simulators, simulate expanded memory by swapping data from
conventional memory to and from either disk storage or the extended memory
present on many PC/ AT compatible systems.

The introduction of PC/ AT compatibles and PS/2 systems that use the Intel
80386 microprocessor has made it possible to build another type of expanded
memory manager that uses the advanced memory management hardware inher
ent in each 80386. COMPAQ currently includes with each of its Deskpro 386
models an EMM based on this capability, called CEMM.

While every variety of EMM implements the LIM EMS specification, each
type also presents a set of cost, performance, and compatibility trade-offs that
are important to you as an EMS application developer. You need to be aware of
the design and programming considerations that will affect the ability of your
software to function correctly with acceptable performance on different types of
expanded memory systems. If development cost is a major consideration, for
example, investing in a relatively inexpensive expanded memory simulator pro
gram should permit you to build, test, and run programs that use expanded
memory without investing hundreds of dollars in new hardware.

The following sections describe the specific advantages and disadvantages
associated with each type of expanded memory implementation with regard to
compatibility, performance, and cost.

377

Devices

378

Expanded Memory Hardware and Software
Regardless of the particular details of a board's construction, the EMM controls
the dynamic switching of memory into and out of directly addressable memory
through a set of mapping registers on the board. The mapping registers are im
plemented by a series of 1/0 ports somewhere in the computer's 1/0 space. The
board and its supporting EMM must be configured at installation to accommo
date the usage of the 1/0 address space and addresses above 640K by video and
1/0 adapters, as well as the ROM-BIOS.

Advantages

Speed-can map a page of expanded memory into the EMS page frame in
approximately 100 microseconds.
Widely Available-Boards are available for PC, PC/AT, and IBM Micro
Channel Architecture bus systems.

Disadvantages

Costly-Expanded memory boards with large amounts of memory can
cost as much as an entire computer.
Space-Requires one or more bus slots in the computer chassis.

Compatibility-Not every EMS board will work in every computer
system. Users of high-performance PC/AT compatibles must take care to
purchase an EMS board capable of operating at the bus speed of their
system.

80386 Hardware and Software
It is possible to use the memory management hardware present in every Intel
80386 microprocessor in combination with the 80386's virtual 8086 mode. The
operational details of the 80386's memory management and virtual 8086 mode
are far too complex to explain here. Suffice it to say that they are capable of per
forming the mapping functions served by the page-mapping registers on a dedi
cated expanded memory board.

Advantages

Speed-Page maps can be performed in a few microseconds.
Inexpensive-This assumes that you already have an 80386 machine with
a large amount of extended memory.

Disadvantages

Expensive-This assumes that you don't already have an 80386-based
machine or that your 80386 machine doesn't have a large amount of
extended memory.

7 - Using Expanded Memory

Compatibility-Other software using the protected mode of the 80386, as
several multitasking environments or "DOS extenders" do, can conflict
with the EMM's use of protected mode features like paging and virtual
8086 mode. Testing of the 80386 EMM with the actual combination of
hardware and software with which it will be used may be the only way to
ensure success.

Software Only
On 8086-based machines, the EMM simulates EMS memory by swapping data
between a page frame allocated in conventional memory and a floppy or fixed
disk. On 80286-based machines with extended memory (PC/AT compatibles and
PS/2 Models 50 or 60), the EMM can simulate expanded memory by swapping
EMS pages between extended memory and the EMS page frame in conventional
memory.

Advantages

Inexpensive-The EMM requires only the resources that are usually
available on the base hardware.

Disadvantages

Performance-Moving data from conventional memory to and from
extended memory takes tens to hundreds of times as long as it does to
map pages on a real EMS board. A hard disk takes hundreds or
thousands of times as long. If all you have is a floppy disk, it takes
seemingly millions of times as long. Perhaps surprisingly though, there
are certain uses of EMS memory that don't require the performance of a
board, such as storing a text or graphics screen for later recall, or
swapping TSRs to and from memory on demand.
Compatibility-On a real board (or 80386-type emulator), one logical
EMS page can be mapped into more than one physical EMS page at a
time, using a technique called aliasing (which will be explained in further
detail later in the chapter). Because simulators copy pages of memory,
rather than "mapping" them into different parts of the address space,
applications that depend on data aliasing cannot work with this type of
EMM. In practice, most applications that use EMS do not depend on
aliasing to operate.

IBM PS/2 80286 Memory Expansion Option
A sketchily documented feature of the IBM 82086 Memory Expansion Option
for the PS/2 Models 50 and 60 provides a set of subaddressing registers, access
ible through the Programmable Option Select feature of the Micro Channel Ar
chitecture bus, that can be programmed to operate like the mapping registers
on a real expanded memory board.

379

Devices

Ostensibly, these subaddressing registers were designed to allow the
power-on-self-test (POST) routines in the ROM-BIOS to remap any failing
physical memory blocks to the high end of memory (and map good blocks into
the space left behind) so that the machine could operate even after one or more
memory chips had failed.

It is also possible to map expansion board memory into the space below
640K, to furnish mappable conventional memory allowed by the AQA EEMS
and LIM EMS 4.0. Unfortunately, the entire megabyte of memory present on
the planar boards of the PS/2 Models 50 and 50 must be disabled to do so.

Advantages

Inexpensive-This assumes that you already have an IBM PS/2 Model 50
or 60 with the IBM Extended Memory Expansion Option. Other memory
expansion boards for the PS/2's may or may not support the
subaddressing feature.
Performance-An EMM written to use these registers can perform
identically to a dedicated expanded memory board.

Disadvantages

Expensive-This assumes that you don't already have a PS/2 with the
IBM Extended Memory Expansion Option.

The EMS Application Program Interface

380

Moving forward from a general discussion of the EMM's structure and function,
we can now explain how to issue expanded memory requests to the EMM from
your assembly and high-level language programs, and how to interpret the
EMM's response to those requests.

Programs communicate requests to the EMM via software interrupt 67h,
using the processor's registers to specify expanded memory function codes and
arguments. Since the use of software interrupts and processor registers is least
complex from assembly language, we will explore that interface first.

EMS Assembly Language Programming
Assembly language programmers accustomed to the DOS system-call interface
will find that the Expanded Memory Manager presents a practically identical
situation:

1. Place a function code for the desired EMS function in the AH register.

2. Place the other arguments needed by the selected function in other
microprocessor registers and/or data structures in memory, as specified
by the LIM EMS.

7 - Using Expanded Memory

3. Transfer control to the EMM by issuing software interrupt 67h.

4. The EMM returns control to the requesting program after the interrupt
instruction, overwriting the function code placed in register AH in step 1
with a status code for the requested operation. A status code of OOh
signals successful completion of the function; any other value signifies
that the EMM encountered some problem while attempting to execute
the selected function. Error code values and their meanings are listed
later in the chapter.

5. Depending on the EMS function, other information is returned in
registers and/or data structures in memory.

Interrupt Conflict
Programmers should note that int 67h is not "officially" reserved for the LIM
EMS; many other commercially available programs also use it. Conflicts in the
usage of this interrupt often bewilder developers and users of EMS software
when an application that works on one machine will fail to work on a machine
with an identical hardware configuration. It is possible for int 67h to be shared
cooperatively by more than one program, though EMMs are not programmed to
do so. Even if the EMM is capable of sharing the use of int 67h with other soft
ware, one of the two documented methods for detecting the presence of the
EMM will fail if another interrupt handler chains itself in front of the EMM's
interrupt handler.

Because the use of int 67h is embedded in the LIM EMS specification,
every application written to use expanded memory communicates with the
EMM by issuing this interrupt. Thus, conflicts in the use of int 67h between the
EMM and other software can be resolved only if the non-EMS software can be
reconfigured or modified to use another interrupt vector.

High-Level Languages

As is the case with DOS system calls, there is no standard interface between
high-level languages such as C, Pascal, or FORTRAN and the LIM EMS.
However, developers who wish to access expanded memory from applications
written in high-level languages ordinarily have several viable alternatives for
doing so. EMS function libraries for several different language products are
commercially available. Many popular language products include subroutines or
functions that provide a general means for accessing the microprocessor regis
ters and issuing software interrupts. Additionally, the high-level language must
also provide some way to specify far pointers (a segment register plus offset) for
the address of data structures passed to the EMM.

Programmers who know 808x assembly language, and who are familiar
with the subroutine linkage and parameter-passing conventions of their high
level language, will find it easy to construct a collection of EMS interface
routines. An example of such a collection, written in Microsoft C version 5.0,
appears at the end of the chapter along with the sample programs.

381

Devices

Handling Error Conditions

382

Every programmer attempting to write reliable software should expect to han
dle the inevitable errors that will occur. The LIM EMS 4.0 defines 36 different
error conditions that might be returned by the EMM, as well as a code that sig
nals successful function completion. Listing 7-1 contains equates for LIM EMS
4.0 error codes, and Table 7-3 lists the error status codes.

The EMM returns this detailed completion status code in the AH register
for each service request at the return from the interrupt. With respect to error
detection and reporting, the EMM's programming interface is more consistent
and less complicated than DOS's. To detect and report an error condition follow
ing a DOS call, the programmer must examine a register or the carry flag and
then issue another system call to return a detailed error code.

Code

OOH
80H
81H
82H
83H
84H
85H
86H
87H
88H
89H
8AH
8BH
SCH
8DH

8EH

8FH
90H
91H
92H
93H
94H
95H
96H
97H

Table 7-3. Lotus/Intel/Microsoft Expanded Memory
Specification 4.0 Status Codes

Description

The specified function completed without error.
EMM driver software failure.
EMM driver detected hardware failure.
EMM driver busy (doesn't happen any more).
Cannot find the specified handle.
The function code is undefined.
No handles are currently available.
A mapping context restoration error has occurred.
Insufficient total pages for request.
Insufficient unallocated pages for request.
Zero logical pages have been requested from a LIM 3.2 compatible function.
Logical page out ofrange for specified handle.
Physical page out of range.
Mapping register context save area is full.
Mapping register context stack already has a context associated with the
specified handle.
Mapping register context stack does not have a context associated with the
specified handle.
Undefined subfunction was requested.
The attribute type is undefined.
The system does not support nonvolatility.
Partial source overwrite occurred during move region.
Expanded memory region is too big for specified handle.
Conventional memory region and expanded memory region overlap.
Offset within a logical page exceeds the length of a logical page.
Region length exceed 1-Mbyte limit.
Source and destination expanded memory regions have the same handle and
overlap.

7 - Using Expanded Memory

Code Description

98H Undefined/unsupported memory source and destination types.
9AH Specified alternate map register set does not exist.
9BH All alternate map/DMA register sets are in use.
9CH Alternate map/DMA register sets are not supported.
9DH Specified alternate map/DMA register set is not defined, not allocated, or is

the current one.
9EH Dedicated DMA channels are not supported.
9FH The specified dedicated DMA channel does not exist.
AOH No corresponding handle value could be found for the specified handle

name.
AlH A handle with the specified name already exists.
A2H Attempt to wraparound 1-Mbyte address space during move or exchange.
A3H The contents of the user data structure passed to the function were corrupt

or meaningless.
A4H The operating system denied access to the function.

Product:
Version:
Name:

Above Disc
2.00
emmerr.h

Listing 7-1. EMMERR.H

Contents: equates for LIM EMS Spec 4.0 Error Codes
Reference: Lotus/Intel/Microsoft
Expanded Memory Specification
Version 4.0, pp A5 - A10

*'
#defineFRSTEMERR Ox80 I* first emm error number*'
#defineLASTEMERR OxA4 I* Last emm error number *'

#defineFUNCCOK OxOO
#defineEMDRVSWF Ox BO
#defineEMDRVHWF Ox81
#defineEMDRVBSY Ox82
#defineHANDLNFD Ox83
#defineFUNCCUND Ox84
#def i neHANDLINS Ox85
#defineMAPCXPRO Ox86
#def i neTOTPGINS Ox87
#def i neUNAPGINS Ox88

'*
'*
'*
'*
'*
'*
'*
'*
'*
'*

the specified function completed without error *'
EMM driver software failure*'
EMM driver detected hardware failure*'
EMM driver busy (doesn't happen any more) *'
cannot find the specified handle *'
the function code is undefined *'
no handles are currently available*'
mapping context restoration error has occurred *'
insufficient total pages for request *'
insufficient unallocated pages for request *'

continued

383

Devices

#defineLPAGE2SM

#defineLPAGERNG
#definePPAGE2BG
#defineMRCSAFUL
#defineMRCSTDUP

#defineMRCSTNFD

#defineSFUNCUND
#defineATTRBUND
#defineNVSTGUNS
#defineMREGNOVW

#defineMREGN2SM
#defineMREGNOVL

#defineLPGOF2BG

#defineMREGN2BG
#defineMREGNDUP

#defineMREGNUND

#defineAMRSNFD
#defineAMDRSINS
#defineAMDRSUNS
#defineAMDRSUND

#defineDDMACUNS
#defineDDMACNFD
#def i neHNDVLNFD

#defineHNDNMDUP
#defineMREGNWRP

#defineUSRDSFMT

Ox89

Ox8A
Ox8B
Ox8C
Ox8D

Ox8E

Ox8F
Ox90
Ox91
Ox92

Ox93
Ox94

Ox95

Ox96
Ox97

Ox98

Ox9A
Ox9B
Ox9C
Ox9D

Ox9E
Ox9F
Ox AO

OxA1
OxA2

OxA3

Listing 7-1. continued

f* zero Logical pages have been requested from
LIM 3.2 compatible function *f

f* Logical page out of range for specified handle *f
f* physical page out of range *f
f* mapping register context save area is full *f
f* mapping register context stack already has a

context associated with specified handle *f
f* mapping register context stack does not have a

context associated with the specified handle */
f* undefined subfunction was requested *f
f* the attribute type is undefined *f
f* the system does not support nonvolati Lity *f
f* partial source overwrite occurred during move

region *f
f* expanded memory region too big for specified handle *f
f* conventional memory region and expanded memory

region overlap *f
f* offset within a Logical page exceeds the Length of

a Logical page *f
f* region Length exceeds 1-Mbyte Limit *f
f* source and destination expanded memory regions

have the same handle and overlap *f
f* undefined/unsupported memory source and destination

types *f
f* specified alternate map register set does not exist */
f* all alternate map/DMA register sets are in use *f
f* alternate map/DMA register sets are not supported *f
f* specified alternate map/DMA register set is not

defined, not allocated, or is current one *f
f* dedicated DMA channels are not supported *f '* the specified dedicated DMA channel does not exist *'
f* no corresponding handle value found for

the specified handle name *f
f* a handle with specified name already exists *f
f* attempt to wraparound 1-Mbyte address space during

move or exchange *'
f* contents of user data structure passed to

the function were corrupt or meaningless *f
#defineOPSYSACC OxA4 f* operating system denied access to function */

384

Since checking for EMM-detected errors is a simple matter of testing the
AH register for zero after every call, it is always a disappointment to discover
popular commercial software that doesn't take the care to do it. Save yourself

7 - Using Expanded Memory

(and your users) the headache of tracking down mysterious hang-ups and
failures by checking the error code after each call to the EMM.

A program's response to an error condition returned by the EMM depends
on the nature of the error and on the ability of the program to adapt to conditions
that the LIM EMS refers to as "recoverable." For example, there is very little a
program can do if it receives an "Expanded Memory Hardware Failure" indica
tion from the EMM, other than to report the problem to the user and to refrain
from making additional use of EMM services.

Alternatively, an adaptable program might be able to recover from a condi
tion such as "Insufficient EMS Pages Available," perhaps by using a disk file as
a temporary storage area for the data that cannot be placed in expanded
memory.

Other conditions, such as "Physical Page Out of Range," generally indicate
that a design or programming error is present in the EMS application. Imple
ment your EMS error-handling routines so that they report the location in your
program where the error condition occurred, preferably in a way that relates to
the source code.

Writing Programs That Use Expanded Memory

All programs using expanded memory must observe a certain protocol. Each
program should perform the following steps in the order in which they are listed:

1. Detect the presence of the EMM.

2. Determine whether a sufficient number of expanded memory pages is
available to your application.

3. Obtain the address of the start of the page frame.
4. Allocate expanded memory pages.

5. Map expanded memory pages into the page frame.

6. Read, write, or execute data in expanded memory.
7. Return expanded memory pages to the EMM before your application

terminates.

General Programming Guidelines
The characteristics of expanded memory and the EMM impose relatively few re
strictions on programs that use it. The following guidelines are relevant to all
programs using expanded memory:

• Programs using data aliasing must ensure that the expanded memory
system supports it. Data aliasing occurs when one logical page of
expanded memory is mapped into more than one physical page of the
page frame. With EMM implementations that use page-mapping
hardware, the effect of this technique is that a 16-Kbyte page of expanded
memory will appear in more than one 16-Kbyte block of the processor's
address space. EMMs written for actual EMS boards, 80386 paging

385

Devices

386

hardware, and the IBM PS/2 80286 Memory Expansion Option can all
support this technique. However, software-only EMS emulators that
simulate page mapping by copying blocks of data in memory cannot
perform data aliasing.

Your program can perform the following test to determine whether
the EMM supports data aliasing:

1. Map one logical page into at least two physical pages.
2. Write data to one of the physical pages.
3. If the data written to the physical page in step 2 also appears in

each of the other physical pages into which the logical page has been
mapped, then the EMM implementation supports data aliasing.
Figure 7-2 graphically illustrates data aliasing. Because a single logi-

cal page is mapped into the first and third physical pages within the page
frame, the data element located at offset 2132H within the logical page
may be accessed by the physical addresses CC00:2132 and D400:2132.

PHYSICAL PAGE
STARTING
SEGMENT

CC OOH

DOOOH

D400H

0800H

PHYSICAL
PAGE

0

2

3

Data Element at Offset
2132H in Logical Page

Reading/Writing: Physical Addresses
CCOO: 2132 or 0400: 2132 will
reference the same data item
in expanded memory

Figure 7-2. Data aliasing-one logical page mapped into more
than one physical page.

• Applications should return any allocated pages to the EMM before
program termination. Your program must return each expanded
memory handle allocated by your program to the EMM prior to its
normal or abnormal termination. Failure to return all pages to the EMM
may cause subsequent application requests for expanded memory to fail
for lack of sufficient pages or handles. Be sure your program's error
or abort exit code frees expanded memory, as well as its normal
termination code.

7 - Using Expanded Memory

• Map data only into conventional memory that your program has
allocated from DOS. The Move/Exchange Region function introduced in
LIM EMS 4.0 made it possible to swap data to or from the address space
managed by DOS. Prior to swapping any data into the DOS address
space, your program must have allocated it from DOS, since the EMM
does not manage conventional memory. Failure to observe this rule is
likely to result in corrupted data and a system crash.

• Any data structure whose address is passed to an EMM function call
must not reside in mappable memory. Except for the Alter Page Map
and Jump and the Alter Page Map and Call functions, which were
specifically designed to support the execution of code objects in expanded
memory, data structures whose addresses are passed to the EMM must
reside in memory that cannot be mapped out. For example, your program
cannot store mapping context save areas in expanded memory.

• Do not locate a program's stack in expanded memory. If you use
expanded memory to store and execute code, its stack must be located in
conventional (nonmappable) storage. If an interrupt service routine
using expanded memory gains control from a program whose stack
resides in expanded memory, reading or writing data on a stack that has
been mapped out would fail disastrously.

Using Expanded Memory in Transient Programs
DOS device drivers and terminate-and-stay-resident programs (TSRs) have to
perform additional tasks in order to use expanded memory without interfering
with other programs. A discussion of the extra requirements for using ex
panded memory in these programs will be postponed until we have gained a
foothold in the programming techniques used to manipulate expanded memory
in normal DOS programs.

Detecting the Presence of the EMM
The LIM EMS documents two techniques that can be used to detect the pres
ence of expanded memory: the open handle technique and the get interrupt vec
tor technique. For standard DOS programs, the method you choose is a matter
of preference. An outline of the open handle technique is presented here; an ex
ample of the get interrupt vector technique will be presented in the section de
scribing the use of expanded memory with resident programs.

Open Handle Method
To detect the presence of the EMM using the open handle method, a series of
DOS file system calls is used to establish the presence of the EMM device driver
and, if present, to determine whether it is capable of servicing requests for int
67h. The method operates as follows:

1. Perform a DOS open handle call (DOS function 3Dh), specifying read-only
access (mode 0), with a path name of EMMXXXXO. This is the name of

387

Devices

the EMM character device driver that was installed at boot time if a
DEVICE= entry for the EMM device driver was specified in the
CONFIG.SYS file.

2. If the open handle call fails with a "file or path name not found" return
code, you may assume that expanded memory is not present. The open
call might also fail if all DOS file handles are in use prior to the presence
test. To prevent this from occurring, your program should perform the
expanded memory presence test before opening any other files.

3. If the open completes successfully, it indicates that a file or device with
the name of the EMM exists. To determine whether the handle returned
in step 1 refers to a device or a file, issue an I/O Control for Devices
(IOCTL) call (DOS function 44h) with the Get Device Information
subfunction (register AL = OOh) for the file handle returned in step 1.

4. If the handle belongs to a device, bit 7 ofregister DL will be 1, which
indicates that an expanded memory manager is present. If bit 7 is 0, the
handle is associated with a file, so you may assume that expanded
memory is not present.

5. If the handle does refer to a device, issue an IOCTL call with the Get
Output Status subfunction (register AL = 07h) for the handle, to
determine whether the EMM is ready to process expanded memory
service requests.

6. If the EMM is ready to process expanded memory service requests, the
IOCTL call will return the value OFFh in the AL register. Otherwise, the
EMM is not present or is unable to process expanded memory service
requests.

7. If the initial DOS open handle succeeded, close it by using the close
handle call (DOS function 3Eh). The handle is no longer needed, since
further communication between the EMM and your application takes
place via the int 67h interface and does not use the DOS file system.

Checking the EMS Specification Supported by the EMM

388

If the EMM exists and is ready to service requests, issue function 7, Get Ver
sion, to ensure that the version of the EMM with which your program is commu
nicating supports the version of the Expanded Memory Specification required
by your program. This function returns a two-digit binary-coded decimal (BCD)
number in the AL register. The upper 4 bits of this number indicate the major
version number. The lower 4 bits or fractional part of this number may be used
by vendors to signify enhancements or error correction to their memory man
agers. Therefore, your program to check the version should not depend on both
digits matching. A much better strategy is to perform a "greater than or equal
to" comparison.

In the case of MS-DOS version 4. 0, the user may have installed third party
drivers to compensate for deficiencies in those provided by early releases of the
operating system, so it is not sufficient to test for MS-DOS 4.0 and assume the

7 - Using Expanded Memory

presence of EMS drivers. In fact, the MS-DOS 4.0 drivers may be installed and
yet not control the hardware. As a simple test, invoke function 1, Get Status, by
putting the value of 40h into the AH register and calling int 67h; if the hardware
and software are working together, the function will return a value of zero in
AH; if not, you will get a nonzero value. Any nonzero value indicates failure, but
values of 80h or 81h indicate hardware failure typical of driver mismatch. In this
case, display a message to the user that the drivers may not be operating cor
rectly. If your application tests working operation for MS-DOS version 4.0
EMS, remember that the early DOS 4.0 versions do not support LIM EMS 4.0
function 19h, Get/Set Handle Attribute.

Determining the Amount of Expanded Memory Available
Before your program may use expanded memory, it must explicitly allocate it
from the EMM. The first step toward doing this is determining if enough pages
are available to satisfy your program's requirements by issuing EMS function 3,
Get Unallocated Page Count. This function returns the total number of 16-kilo
byte pages managed by the EMM, as well as the number of pages currently
available to your program.

Allocating Expanded Memory
Depending on your program's dynamic behavior, you may choose to allocate all of
the expanded memory it could possibly need at one time, or you could make sep
arate allocation requests as run-time requirements vary. The first choice is most
appropriate if the number of required pages does not vary significantly over
time. The second choice is appropriate if you expect the program's expanded
memory requirements to grow and shrink appreciably throughout its execution.
This choice is also more cooperative in that it leaves more expanded memory
available for other programs that may be executed concurrently. For example,
one popular spreadsheet program retrieves the available amount of expanded
memory and allocates Vs of that amount each time it needs more. Of course,
there is another popular spreadsheet package that allocates the entire unallo
cated pool of expanded memory when it starts execution, leaving nothing for
any other programs that may be subsequently invoked from inside itself.

Under the LIM EMS 3.2 specification, only one function was furnished to
allocate expanded memory: Allocate Pages, which is EMS function 4. Each al
location request returns a separate handle that has to be used to reference pages
associated with that particular allocation. The number of pages associated with
that handle is fixed from the time the pages are allocated until the time they are
returned to the EMM. This restriction discourages the dynamic allocation and
deallocation of expanded memory, since it is impossible to return to the EMM
just some of the pages belonging to a particular handle.

This limitation was relieved in the LIM EMS 4.0 specification by the Real
locate Pages function, EMS function 18. It allows the number of pages asso
ciated with a handle to be increased or decreased any time after allocation. The

389

Devices

new function doesn't solve all the problems associated with dynamic manage
ment of data structures in EMS storage, since logical pages may be added or re
moved only from the back. For example, if you wanted to free the third logical
page in a handle to which six pages had been allocated, you would have to release
the fourth through sixth logical pages as well. This function also allows the re
turn of all the pages associated with a handle to the EMM, without returning the
handle itself, by specifying a new page count of zero.

To complete discussion of expanded memory allocation, the LIM EMS 4.0
specification also introduced the concept of raw pages. Raw pages-logical
pages that are some submultiple of the standard EMS page size of 16 kilo
bytes-were introduced to provide additional flexibility for expanded memory
hardware and software capable of supporting smaller page sizes. For example,
an EMM based on the paging hardware of the Intel 80386 could support a raw
page size of 4 kilobytes, providing suitably written software with the ability to
manage expanded memory more efficiently than it could with a 16-Kbyte page
size. EMS 4.0 EMMs written to support existing EMS board designs support
the concept of raw pages in a hollow manner-the raw page size is identical to
the standard page size.

Raw pages are allocated using EMS function 27, subfunction 1, Allocate
Raw Pages. EMS function 27 also has a subfunction 0, Allocate Standard Pages,
which provides identical service to the LIM EMS 3.2 Allocate Pages function,
with one extension: it allows zero pages to be allocated to a handle. This exten
sion also applies to subfunction 1.

Addressing Expanded Memory

390

Conventional memory addresses on Intel 80x86 processors (in real address
mode) are specified by a pair of 16-bit components: a segment value, sometimes
called a selector, and a byte offset value.

Forming the address of a data item in expanded memory is a little more
complicated. To begin with, items of data in expanded memory have a three-part
logical address: a handle number, a logical page number, and a byte offset within
the logical page. Furthermore, unlike a data item in conventional memory,
whose location remains constant once it has been allocated, the physical address
of a data item in expanded memory can change, since it depends on the current
mapping state of the expanded memory system.

These characteristics make the task of keeping track of data in expanded
memory a two-fold problem: managing logical addresses and managing physical
addresses.

Managing Logical Addresses
The LIM EMS defines a handle to be a 16-bit quantity (even though it supports
a maximum of 255 handles) and a logical page number to be a 14-bit quantity
(logical pages are numbered from 0 to 2047). The subaddressing of objects
within a logical page is not of concern to the EMM, but it is a major concern to
the expanded memory application developer. Specifically, what type of data
should be stored in expanded memory and how should it be managed?

7 - Using Expanded Memory

A general method of keeping track of a data item in expanded memory,
without resorting to bit-twiddling tricks, requires your program to manage
three 16-bit variables per item-a handle, a page number, and a byte offset
within that page. This overhead makes the use of expanded memory most appro
priate for storing data structures that are comparatively large with respect to
the pointers used to access them. It makes little sense to store a 4-byte data
item in expanded memory if it requires a 6-byte pointer to access it.

Another factor to consider is the dynamic behavior of the data structures
that you intend to store in expanded memory. Maintaining a linked list consist
ing of variable-sized elements could be an interesting proposition if it resides in
expanded memory. A fairly involved storage management scheme would be re
quired to efficiently compact free space and handle spillover when the size of the
list exceeds the size of a logical page.

Actually, effective techniques for managing expanded memory are quite
similar to the file buffer and index management techniques employed by
database management systems. The essential problem is one of managing vari
able-sized data elements (records, arrays, etc.) in a limited set of fixed-size
buffers (16-Kbyte in the case ofan EMS page). Not surprisingly, some database
programs for IBM PC-compatibles take advantage of this similarity by keeping
file indices, or even entire files, in expanded memory when it is available.

It would require a significant effort to use expanded memory as a general
purpose storage management tool within your programs. However, you can
effectively employ expanded memory in many common data storage tasks with
simple, ad-hoc approaches. The sample application listed at the end of this chap
ter shows how comparatively simple methods of managing expanded memory
suffice for handling a dynamic memory management task. Later sections in this
chapter will explain in detail several functions added by the LIM EMS 4. 0 speci
fication that greatly reduce the programming effort needed to manipulate code
and data objects in expanded memory.

Managing Physical Addresses
In the LIM EMS 3.2 specification, the physical address of a data item in a logical
page that is currently mapped into a physical page is calculated relative to the
base of the 64-kilobyte page frame. The segment address of this page frame is
obtained via EMS function 2, Get Page Frame Segment Address. Dividing the
size of the page frame by the size of the standard logical page yields the four
physical pages, numbered 0 through 3, that can be specified in EMS function
calls. All four physical pages are contiguous in memory-the address of each
page is 16 kilobytes higher than the address of the preceding page.

The LIM EMS 4.0 specification, incorporating the AQA EEMS concept of
multiple, possibly discontiguous page frames, makes calculation of physical ad
dresses either easier or more difficult, depending on your point of view. In addi
tion to function 2 of the LIM 4.0 specification, the EMM can now provide your
program with a table of physical page numbers and segment addresses corre
sponding to each physical page.

EMS function 25, subfunction 1, Get Physical Page Address Entry Count,
returns the number of mappable physical pages supported by the EMM. Use

391

Devices

392

this subfunction to determine the size of the array whose address is passed to
EMS function 25, subfunction 0, Get Mappable Physical Address Array, which
fills the array with the ascending segment addresses and the corresponding
page numbers.

While the LIM EMS 4.0 does not require the EMM to provide any more
than the four standard physical pages defined by the 3.2 specification, the EMM
can provide up to thirty-six 16-Kbyte physical pages. Up to 12 pages can be lo
cated in the space between 768K and 960K (addresses COOOO to FOOOO in hex),
and up to 24 pages can be located between 256K and 640K (addresses 40000 to
AOOOO in hex).

Access to the page frame above 640K is available to any EMS application.
Access to mappable memory below the 640K line, which the specification refers
to as mappable conventional memory, is intended for developers of operating
system extensions, such as Microsoft Windows 2.0.

The number of physical pages in the page frame above 640K can vary, de
pending on the layout of the ROM space on any particular machine. Video
adapters of various types can take up a substantial portion of the ROM space for
their display buffers. Many types of IIO adapters, including network cards and
disk controllers, contain ROM-BIOS extensions that appear in the address
space between COOOO and FOOOO.

Software emulators must usually allocate the EMS page frame out of the
DOS address space, below the 640K line, because most PC-compatible systems
do not have RAM present between 640K and 960K. Some EMS software emula
tors can take advantage of the capability of certain memory expansion boards to
map 64K or more of RAM into the space above 640K.

It is hazardous to make any simplifying assumptions about the location and
alignment of the page frame. Several existing EMS applications do make such
assumptions, relying on the page frame alignment typically provided by EMS
hardware, in order to save storage space for expanded memory pointers or to
simplify calculation of data addresses in expanded memory. However, the page
frame provided by software-only EMM implementations may not have the same
alignment as an EMS board's page frame. To allow your EMS application to be
used on systems with software-only EMMs, here are several simplifying as
sumptions that you should avoid making in your programming:

1. Because EMS hardware provides page frames aligned on 16-Kbyte
boundaries, only the high-order byte of the segment address is
significant in forming a physical address. As a result, some programs do
not store the low-order byte of the page frame segment, assuming it to be
zero. The LIM EMS does not specify that physical pages must be aligned
on any boundary higher than a paragraph boundary.

2. Some EMS applications perform expanded memory address calculations
assuming that the page frame is above 640K, or that its address in
memory is greater than the address of the application itself. The page
frame provided by a software EMM may not obey either assumption.

7 - Using Expanded Memory

Reading and Writing Expanded Memory
While the LIM EMS 4.0 allows up to 32 megabytes of data to be managed by the
EMM, the amount addressable by your program at any one time is limited by
the number of physical pages present in the page frame.

Prior to reading data from or writing data to expanded memory, the logical
page on which the data is located must be made accessible to a program by map
ping the logical page into a physical page in the page frame. Page mapping is
really the heart of EMS memory management; for most applications that use ex
panded memory, it is the most frequently used EMM function.

The LIM EMS 3.2 specification provided function 5, Map/Unmap Handle
Pages, for this purpose. By supplying a handle, a logical page number, and a
physical page number, a single logical page is mapped into a single physical
page. Specifying -1, or OFFFFH, as the logical page number makes any logical
page that is mapped into the specified physical page inaccessible to the pro
gram. Of course, the contents of a page mapped out in this manner are not al
tered, and may be made accessible again by subsequently mapping that logical
page into a physical page.

The LIM EMS 4.0 specification function 17, Map/Unmap Multiple Handle
Pages, added a more concise and flexible means of mapping pages. In one invo
cation, this function can map or unmap logical pages into as many pages as the
EMM supports. Programs that frequently map multiple pages at a time may re
alize visibly better performance because of the reduction in the fixed overhead
associated with each call to the EMM.

As is the case with function 5, specifying a logical page number of -1
(OFFFFh) causes any logical page mapped into the specified physical page to be
mapped out.

Two Ways to Specify Physical Pages
The initial discussion of physical pages in connection with LIM EMS 3.2 stated
that physical pages are identified by an ordinal number (0 through 3 in the LIM
EMS 3.2). The LIM EMS 4.0 specification provides an additional way to specify
physical pages: by the actual segment address of the beginning of the physical
page. For example, if the page frame address returned by Get Page Frame Ad
dress was CCOOh, the third physical page within the page frame could be spec
ified by its ordinal number, 2, or by its segment address, D400H. This segment
address was calculated by adding three times the physical page size (in para
graphs) to the page frame base address.

Any LIM EMS 4.0 functions taking physical page numbers as parameters
allow physical pages to be specified by either the ordinal number or the corre
sponding segment address. You can choose the method most convenient for your
program by specifying a subfunction code in register AL for EMS 4.0 functions
that accept physical page numbers. A subfunction code of OOh indicates that the
physical page values are specified as ordinal physical page numbers, while a
subfunction code ofOlh indicates that physical page values are specified by their
corresponding segment address.

393

Devices

394

As was described in a preceding section, the cross reference between phys
ical page numbers and their segment address is obtained from the EMM via
function 25, Get Physical Address Array.

Once a logical page is mapped into a physical page, your program can then
address any data in that page with afar pointer. Language processors that gen
erate only so-called small model programs may not support the use of32-bit (jar)
pointers for named data items. In the absence of such support, some compilers
provide a library routine that copies a block of data from an arbitrary segment
and offset address to an area within a program's single 64-Kbyte data segment.
Lacking even this, you may be able to write an assembly language interface rou
tine to accomplish the same result.

Figure 7 -3 shows a hypothetical 384K expanded memory configuration
that is being used by two programs, a spreadsheet and a print spooler. It illus
trates some of the dynamic relationships between programs, handles, logical
pages, and physical pages, particularly:

• Two (or more) independent programs may use expanded memory
simultaneously without interference.

• A single program may have more than one EMS handle allocated to it
the background task in the illustration has two handles.

• Sequentially numbered logical pages do not have to be mapped into
sequential physical pages-the active foreground task has logical pages
6, 7, 2, and 1 mapped into physical pages 0 through 3.

The Move/Exchange Memory Region function (24), which was added as
part of the LIM EMS 4.0, provides comprehensive facilities for managing the
movement of data areas up to 1 megabyte in length between expanded memory
and conventional memory. This function also allows data to be moved or ex
changed when both specified regions are within expanded memory or when both
regions are located within conventional memory.

The move subfunction (OOh) copies the contents of the source region to a
destination region. If the specified regions overlap, the EMM chooses the move
direction so that the destination region receives an intact copy of the source re
gion. When part of the source region has been overlaid by the target region dur
ing a move operation, a status code indicating that this has occurred will be
returned by the EMM (as always, in the AH register).

The exchange subfunction (Olh) exchanges two regions of memory; either
or both regions can be either expanded memory or conventional memory. Unlike
the move subfunction, the exchange subfunction does not allow overlapping re
gions to be specified.

A convenient feature of both subfunctions is that the current mapping con
text is not altered by the move or exchange operation. Any logical pages that
your program may have mapped into the page frame will be unaltered by func
tion 25, so there is no need for your program to save the mapping context prior
to using this function.

The Move/Exchange Memory Region function relieves the programmer
from several tedious programming chores associated with expanded memory

Print Spooler
(Background Task)

Owns Handles 1 & 3

CCOOH

"' g>
o. - DOOOH ca C) c
.~ .£ ~
~~~ o. (f) (f) D400H 

DSOOH 

0 

1 

2 

3 

"' u 
c 

"' I 

2 

2 

2 

2 

c;;'!l 
.2 Q) 
Ol Ol 
0"' ...J 0. 

6 

7 

2 

1 

Page Frame 

Spreadsheet 
(Foreground Task) 

Owns Handle 2 

" 

7 - Using Expanded Memory 

"' c;;'!l 384-Kbyte 
u .2 Q) 

EXPANDED MEMORY c Ol Ol 

"' 0"' 24 16-Kbyte Pages I ...J 0. 

0 

2 

3 

4 

5 

6 

7 

0 

/ 
/ 

/ 
/ 

/ 

/ 
/ 2 / 

/ 

/ --/-- 3 

4 

5 

6 

7 

8 

9 

0 

2 

3 

Figure 7-3. Snapshot of expanded memory with foreground 
and background tasks. Foreground task is currently active. 

management that were a fact of life in earlier versions of the LIM EMS. None
theless, it is important to check the status code returned by this function. There 
are 13 different errors that could occur during either the move or the exchange 
operation. 

395 



Devices 

396 

Sharing Expanded Memory among Programs 
Under LIM EMS 3.2, nothing prevented two programs from sharing data in ex
panded memory. A program needed to know only the handle and logical page 
number of the data it wanted to access. Since a program can't know a priori 
which handle(s) will be allocated to it by the EMM, two programs designed to 
share data in expanded memory had to arrange some means to pass handle num
bers during execution. 

LIM EMS 4.0 made the sharing of data in expanded memory a little easier 
by making it possible to associate an 8-character name with a handle. Two EMM 
functions were introduced to support this capability: Get/Set Handle Name, 
function 20, and Get Handle Directory, function 21. 

Subfunction OOh of function 20, Get Handle Name, returns the 8-character 
name associated with a handle passed to the function. Subfunction Olh, Set 
Handle Name, associates an 8-character string with a specified handle number. 
There are no restrictions on the characters used to form the name, and all 8 
characters are significant (the name is not a NULL-terminated ASCII string). 
A handle with no name would have a handle name consisting of 8 bytes of binary 
zeros (or ASCII NULLS, if you prefer). A handle's name is set to NULLS at 
EMM initialization, when the handle is allocated, and when the handle is deallo
cated. You can change a handle's name at any time, including resetting it to bi
nary zeros. The only restriction is that no two handles are permitted to have the 
same name. 

The EMM provides function 21, Get Handle Directory, to determine which 
handle is associated with a particular name or to provide a table of handle names 
associated with each active handle. Subfunction OOh, Get Handle Directory, re
turns this table to a user-supplied data area. Since the specification supports up 
to 255 handles, an 8-byte handle name plus a 2-byte handle value, the entire 
table could require as much as 2550 bytes to store. The actual number of handles 
supported by the EMM may be obtained from subfunction 02h, Get Total Han
dles. Multiplying this number by 10 yields the size of the area needed to contain 
the handle directory. Subfunction Olh, Search for Named Handle, is provided 
so that a program may look up the handle associated with a given name without 
having to scan the entire handle directory or without having to request the 
name associated with each handle number. 

Executing Code in Expanded Memory 
It has always been possible to use LIM EMS memory to store and run executa
ble code, but it hasn't always been easy. In the first place, the 64-Kbyte max
imum size of the pre-4.0 specification page frame limited the size of an overlay 
that could be active at one time. It was also up to each developer to work out the 
complete linkage mechanism that permitted the code in conventional memory to 
execute the code residing in expanded memory. 

The LIM EMS 4.0 has the potential to alleviate some of these problems. 
Page frames larger than 64 Kbytes can now be supported, although EMMs writ
ten for boards designed for the 3.2 spec probably cannot provide a larger page 



7 - Using Expanded Memory 

frame. Two new functions, Alter Page Map and Jump (22) and Alter Page Map 
and Call (23), were introduced to assist the mapping and linkage of code objects 
in expanded memory. 

Alter Page Map and Jump maps zero or more logical pages (up to the max
imum number of physical pages supported by the EMM) into the page frame, 
and transfers control to a specified target address. Unlike every other EMM 
function, this one does not return control to the instruction following the int 67h 
(except when the EMM detects an error prior to jumping to the target address). 
The routine that receives control as a result of this function is responsible for 
establishing its own exit linkage. When the target address receives control, the 
contents of the processor registers and flags are as they were when the EMM 
interrupt was issued. Thus, programs may pass parameters to the target rou
tine in registers. The mapping context that existed before this function was in
voked is not preserved. 

The Alter Page Map and Call function is an analog of the 80x86 far CALL 
instruction. Like the Alter Page Map and Jump function, this function maps 
zero or more logical pages (up to the maximum number of physical pages sup
ported by the EMM) into the page frame, and transfers control to the target ad
dress. The pages mapped before the transfer of control occurs are called the new 
page map. Unlike the Alter Page Map and Jump function, the target routine re
turns control to the EMM (and eventually to the routine that issued the Alter 
Page Map and Call) by executing afar RETURN instruction. When the EMM 
receives control again from the target routine, a set of pages, called the old page 
map, is mapped into the page frame, and the EMM returns control to the origi
nal calling function. Both the new and old page map contents are specified by 
the calling program. The caller's registers are preserved throughout the pro
cess. The register contents at entry to the target routine are the same as they 
were at the time the calling routine issued the EMM interrupt. 

This function is able to support nested calls-a routine entered via an Alter 
Page Map and Call may itself use this function. The EMM uses the invoking pro
gram's stack to keep track of the context at each call level. The number of stack 
bytes needed by the EMM to accomplish this is obtained by using subfunction 
02, Get Page Map Stack Space Size, of the Alter Page Map and Call function. 

Freeing Expanded Memory 
Properly constructed programs close files and deallocate conventional memory 
that has been allocated from DOS before terminating. Likewise, expanded 
memory resources allocated by your program should be returned to the EMM 
before it terminates. 

Since it acts completely independently of the operating system, the EMM 
has no way to determine when your program has ended. If your program does 
not explicitly deallocate all the expanded memory pages it has allocated before 
exiting, the next program that attempts to use expanded memory could find 
that expanded memory is full, even though the data in expanded memory is no 
longer being used. 

397 



Devices 

If you intend to write robust applications using expanded memory, it will 
not be enough for your program to return resources to the EMM before normal 
terminations. A more thorough treatment must include code to clean up ex
panded memory resources in the Break (Control-C) handler, Critical Error han
dler, and the Zero Divide handler. Previously, handling these conditions 
required a significant amount of assembly language programming, along with 
the ability to decipher the DOS Technical Reference Manual. Recently, though, 
several high-level language products, including Microsoft C 5.0 and Borland's 
Turbo Pascal 4.0 and Turbo C, have included facilities for handling these condi
tions in the high-level language itself. Programmers using these products to 
write EMS applications no longer have a good reason to gloss over abnormal ter
mination procedures. 

System Software 

398 

The set of functions presented so far satisfies the expanded memory manage
ment needs of normal DOS (transient) programs. In the DOS environment, 
transient refers to programs that are executed from the DOS prompt or that are 
invoked from within another such program through the use of the DOS EXEC 
function. Memory occupied by such programs reverts to the operating system 
when the program is exited, and the program must be reloaded into memory be
fore it is entered again. 

As we mentioned earlier, device drivers, interrupt service routines 
(ISRs), and terminate-and-stay-resident programs (TSRs) that use expanded 
memory have additional responsibilities with respect to its use. These kinds of 
programs are classified as resident, since they remain in memory even after 
they are exited for the first time and since they may be reentered at any time -
even while other programs are executing. 

Transient vs Resident Programs 
Memory residence or transience really isn't the important issue with respect to 
the use of expanded memory. The critical difference is that transient programs 
are executed synchronously, that is, explicitly at the request of the user. DOS 
manages the transition between programs so that the machine's state and oper
ating-system-controlled resources are properly managed. 

Hardware ISRs (including ISRs embedded inside device drivers and 
TSRs) obtain control asynchronously in response to hardware events. DOS 
plays no part in the transition between the currently executing program and the 
ISR. Therefore, the individual ISR is responsible for saving the state of the pro
cessor before altering that state, and restoring the original state before return
ing control to the interrupted program. The EMM also has a state, often 
referred to as a context. ISRs using expanded memory must preserve this con
text before changing it, and must restore it before exiting. 

A substantial fraction of the EMS 4.0 function set is devoted to require
ments of resident programs, operating systems, and operating environments. 



7 - Using Expanded Memory 

Beside the functions required to save and restore the Expanded Memory Man
ager's context, EMS 4.0 also introduced several functions specifically designed 
to provide a cooperative linkage between the operating systems or multitasking 
environments (OS/Es in EMS parlance) and the EMM. This linkage would allow 
OS/E software to exploit features that may be incorporated into new EMS hard
ware designs, such as rapid task switching mechanisms and nonvolatile storage. 

With our grasp of the expanded memory concepts presented so far in this 
chapter, we can now discuss the advanced features of LIM EMS that support 
resident programs and system-oriented software. 

Detecting the Presence of the EMM 

Device drivers, which are loaded before DOS is completely initialized, are not 
supposed to issue DOS file system calls. Most DOS calls are also off-limits to res
ident programs that do not specifically handle DOS's non-reentrancy problem. 
Thus, the open handle technique presented earlier in the chapter is an inap
propriate means for these programs to detect the presence of expanded 
memory. 

An alternative method that may be used by any program is the get inter
rupt vector method. This method works as follows: 

1. The DOS Get Vector function (int 21h, function 35h) is issued to obtain 
the address of the EMM's software interrupt (67h). 

2. The EMM resides within a DOS character device driver, which has a 
device header at offset zero in the segment returned in the ES register by 
the previous step. All character device drivers have an 8-character device 
name field located at offset OAh in the device header, which DOS uses to 
locate the device when file system calls reference it. Compare the device 
name at offset OAh in the segment returned in the ES register in step 1 
with the string "EMMXXXXO." (Recall that this device name was 
referenced in the open call used as part of the open handle technique.) If 
the strings match, the Expanded Memory Manager is present. 

Context Management 
If you have already written interrupt service routines for device drivers or 
TSRs, you are no doubt aware that such programs must save the contents of any 
of the processor's registers that were altered by the program at entry, and must 
restore these registers before exit. This concept of saving the processor state 
(the registers, instruction pointer, and flag word constitute its state) must also 
be applied to the EMM. 

Essentially, the state of the EMM, or context, is the content of the map
ping registers (or simulations thereof). Your program must save the EMM con
text prior to invoking any functions that would alter it, and must restore the 
original context before relinquishing control. 

The LIM EMS 3.2 specification provided two sets of functions for this pur
pose. The easiest to use is the function 8/9 pair, called Save Page Map and Re
store Page Map. The former, given a handle number, saves the current context in 

399 



Devices 

an area internal to the EMM; no storage inside your program is required. The 
latter function, given the same handle number, restores the context previously 
stored for that handle in the EMM's internal save area. While they are easy to 
use, these functions have several limitations that lead to a recommendation to 
avoid their use in new programs. 

The first limitation is that a maximum of one save area is provided for each 
handle, and some EMMs do not provide a save area for each possible handle. The 
effect is that your program cannot be fully reentrant if it uses these functions to 
save and restore the EMM's context, since each save for a given handle must be 
followed by a restore for that handle before the page map can be saved again 
using the same handle. Another limitation is that these functions only save or 
restore the context of the four physical pages defined by LIM EMS 3.2. 

To supersede these limitations, LIM EMS 3.2 also provides function 15, 
Get/Set Page Map. Unlike functions 8 and 9, which save and restore the context 
from an area inside the EMM, this function saves and restores the context from 
an area provided by the caller. Subfunction OOh, Get Page Map, stores the EMM 
context in the user buffer pointed to by registers ES:DI. Subfunction Olh, Set 
Page Map, loads an EMM context from the user buffer pointed to by registers 
DS:SI. Subfunction 02h, Get and Set Page Map, does what its name implies, sav
ing the EMM context in the buffer pointed to by ES:DI, and loading a new con
text from the area pointed to by DS:SI. You should not make any assumptions 
about the size of the buffer necessary to contain a saved context. Obtain it from 
the EMM through subfunction 03h, Get Size of Page Map Array. The format ofa 
context save area depends on the internal EMM implementation, and is not de
signed to be intelligible to your program. Even assuming that you could locate 
the contents of the page mapping registers inside the context save area, you 
could not reliably determine which logical pages were mapped into each physical 
page. 

Since the LIM EMS 4.0 supports up to 36 physical pages, the storage over
head of saving and restoring a complete context could be much greater than it 
was with the 64-Kbyte page frame of LIM EMS 3.2. To reduce this overhead, 
function 16, Get/Set Partial Page Map, was defined. A program can save the con
text for only the specific physical pages it will alter, analogous to the ability of 
the assembly language programmer to save only registers that will be modified 
by an interrupt service routine. Subfunction OOh, Get Partial Page Map, saves 
zero or more selected physical page mapping registers in a user-supplied buffer. 
Subfunction Olh, Set Partial Page Map, restores zero or more such registers. 
Subfunction 02h, Get Size of Partial Page Map Save Array, returns the size of 
the save area required to save context consisting of the specified number of 
physical pages. 

Task Switching 

400 

Explicit support for task switching using the Expanded Memory Manager was 
added by LIM EMS 4.0. The set of functions described next are designed for use 
by operating systems or operating environments (OS/Es), such as Quarter
deck's DESQView or Microsoft's Windows, and should not be used by typical 



7 - Using Expanded Memory 

EMS application programs. Specific details concerning their use exceed the 
scope of this chapter, but some discussion of their purpose and implementation 
is appropriate. 

These OS/E functions will be able to take advantage of advanced EMS 
hardware designs. One feature that may be included in new-generation EMS 
boards is multiple sets of mapping registers. This would allow nearly in
stantaneous context switching among two or more tasks by dedicating an alter
nate map register set to each context. Another feature, called DMA Register 
Sets, would allow a multitasking operating system to switch tasks while another 
task is waiting for a DMA transfer to complete. Support for multiple context 
register sets and concurrent DMA transfers is incorporated into nine subfunc
tions of function 28, Alternate Map Register Sets. 

The OS/E software can determine which advanced hardware capabilities 
are supported by the EMM by issuing function 26, Get Expanded Memory 
Hardware Information. It returns the number of Alternate Map Register Sets, 
DMA Register Sets, and an indicator of the ability of the expanded memory 
hardware to detect when DMA activity is occurring. It also returns the size of 
the raw pages supported by the EMM. 

Hardware incorporating these features is just beginning to appear on the 
market. To allow multitasking software to be designed and built before new
generation hardware becomes readily available, the LIM EMS 4. 0 provides for a 
software simulation of Alternate Map Register Sets, by saving and restoring 
context save areas that are provided by, and reside within, the multitasking 
monitor. 

Nonvolatile Storage 
Two functions added by LIM EMS 4.0 support the preservation of expanded 
memory across warm boots. Software that maps memory into mappable conven
tional memory (memory below 640K) should trap all conditions leading to a 
warm boot (BIOS int 19h) and issue function 29, Prepare Expanded Memory 
Hardware for Warmboot. Expanded memory boards with appropriate hardware 
designs could preserve the contents of mappable conventional memory, as well 
as the current mapping context across a warm boot. EMMs for existing boards 
do not implement this option because the boards are dependent on the underly
ing system's memory refresh circuitry, which is disabled during a warm boot. 

Function 19, Get/Set Handle Attribute, allows an application to determine 
whether the EMM supports the capability to preserve the contents of a handle's 
pages across a warm boot. If so, the application may request that the EMM ei
ther preserve the specified handle's pages across the warm boot by setting its 
handle attribute to nonvolatile, or allow the EMM to deallocate the handle and 
discard the contents of its associated pages during a warm boot (a volatile han
dle). By default, all handles initially have the volatile attribute. 

401 



Devices 

Access Control 
An important attribute of the OS/E function set is that the multitasking man
ager can deny access to operating-system -oriented EMM functions for any pro
gram except itself. Function 30, Enable/Disable OS/E Function Set, permits the 
multitasking manager to disable functions 26, 28, and 30 before it gives control 
to application software, and to reenable access for its own purposes. 

Summary 

402 

For many types of applications, expanded memory offers a practical program
ming solution to PC-DOS's 640K RAM limitation. The LIM EMS 4.0 is the most 
recent definition of a software interface between the application and a bank
switched memory management mechanism. This software interface is imple
mented by an Expanded Memory Manager, or EMM, which is typically loaded 
as a DOS character device driver at boot time. Expanded memory systems may 
be built by using dedicated EMS hardware, the paging mechanism of the Intel 
80386 processor, or mapping registers on certain types of PS/2 memory expan
sion cards, or expanded memory systems may be completely in software. 

Applications issue function requests to the EMM via software interrupt 
67h in a style reminiscent of DOS's int 21h interface. Parameters are passed in 
registers and/or memory resident data structures, a mechanism that is most 
natural to assembly language programmers. Applications written in high-level 
languages may also access expanded memory if the language provides ways to 
issue software interrupts, manipulate the processor's registers, and specify far 
pointers to code and data objects. 

The LIM EMS 3.2 defined an 8-megabyte expanded address space, divided 
into 16-kilobyte pages. Up to 64K of this space could be accessed concurrently 
through a 64-kilobyte page frame located in the memory space above 640K. It 
also defined a set of 14 relatively low-level functions that could be used to access 
and manipulate code and data objects in expanded memory. The 14 functions 
may be classified into three groups: informational, data management, and con
text management. 

The LIM EMS 4.0 is an upwardly compatible addition to the 3.2 specifica
tion, and is now incorporated as a part of MS-DOS version 4.0. It incorporates 
several features present in the AQA EEMS specification, including a page 
frame larger than 64K, and the ability to support mapped memory below 640K. 
It also adds a class of functions designed to directly support rapid task switching 
by multitasking operating environments. The 4.0 specification increases the ex
panded memory address space to 32 megabytes and offers a set of functions that 
manipulate data and code objects at a higher level than was possible with the 3.2 
specification. 

Both transient and resident applications may use expanded memory. Resi
dent applications must use the context management functions to save and re
store the EMM's context, since such programs must save the processor's state at 
entry and restore that state at exit. 



7 - Using Expanded Memory 

The 4.0 specification's operating system support functions will be able to 
take advantage of enhanced hardware features that may appear in new ex
panded memory hardware designs. One such feature is multiple sets of page 
mapping registers, which would allow a multitasking operating environment to 
perform nearly instantaneous context switching by dedicating a mapping regis
ter set to a task. Another feature, nonvolatile memory, would allow the contents 
of expanded memory to be retained across a warm boot. Boards providing hard
ware support for these functions are only now becoming commercially available. 

Bibliography 

Duncan, Ray. "Lotus/Intel/Microsoft Expanded Memory," Byte 11, no. 11, 1986 
(Special IBM Edition). 

How to write programs using LIM EMS 3.2. Example portions of RAMDISK 
program that uses expanded memory. 

Hansen, Marion, and John Driscoll. "LIM EMS 4.0: A definition for the Next 
Generation of Expanded Memory," MSJ 3, no. 1, Jan 88. 

A description of the features introduced by LIM EMS 4.0. Sample programs 
in C and assembly language demonstrate improved methods for screen sav
ing, data sharing between programs, and executing code from expanded 
memory. 

Hansen, Marion, Bill Krueger, and Nick Stuecklen. "Expanded Memory: Writ
ing Programs That Break the 640K Barrier," MSJ 2, no. 1, Mar 87. 

A description of LIM EMS 3.2. Sample programs in C and assembly language 
demonstrate screen saving and executing code from expanded memory. 

Lefor, John A., and Karen Lund. "Reaching into Expanded Memory," PCT J 5, 
no. 5, May 86. 

An application-oriented explanation of the LIM EMS 3.2 and AQA EEMS. 
Complete sample programs to obtain expanded memory parameters and to 
dump expanded memory data. 

Lotus/Intel/Microsoft. "Lotus/Intel/Microsoft Expanded Memory Specifica-
tion, Version 4.0," Document number 300275-005, Oct 87. 

The complete specification for the latest version of the expanded memory 
specification. Includes sample programs in Turbo Pascal and assembly 
language. 

Mirecki, Ted. "Expandable Memory," PCT J 4 no. 2, Feb 86. 
A description of LIM EMS 3.2 and the AQA EEMS. Tests of Intel and AST 
expanded memory products. 

Yao, Paul. "EMS Support Improves Microsoft Windows 2.0 Application Per
formance," MSJ 3, no. 1, Jan 88. 

A technical discussion of the way Windows 2. 0 uses LIM EMS 4. 0 to manage 
multiple concurrent applications. 

403 



Devices 

Low-Level Interface Routines and Sample Application 

404 

If this chapter has accomplished its mission, you should now have a good idea of 
how expanded memory works and of how DOS programs can use it to access lit
erally megabytes of additional storage for code and data. Now we'll help you use 
the power of expanded memory in your own software by providing you with a 
comprehensive collection oflistings written in Microsoft C version 5.0. We'll also 
provide a sample EMS application that exercises some of the more complex ex
panded memory functions. Table 7-4 summarizes the listings which you will find 
at the end of the chapter. 

Table 7-4. Low-Level Interface Routines 

Listing File Name Contents 

7-2 EMMCONST.H Provides #defines for general EMS constants, and status 
codes returned by EMS functions. 

7-3 EMMTYPES.H Contains typedefs for data structures passed between the 
EMS interface functions and the EMS application 
program. 

7-4 EMMERMSG.C Gives an array of character strings providing a short text 
description for each nonzero EMS function status code. 

7-5 EMMFUNC.C Has a comprehensive EMS function library. Unless 
otherwise stated, each EMS function returns the EMS 
function status code as an integer. 

7-6 EMMFUNC.H Contains function prototypes for each function in 
EMMFUNC.C. If your compiler supports function 
prototyping defined in the ANSI C language specification 
(as does Microsoft's version 5 product), the inclusion of 
this file in your applications will ensure that the argument 
types specified in your programs agree with the 
parameter type expected by the called functions. 

7-7 EMMEXIST.H Contains routines to test for the presence of expanded 
memory. The "open handle" method is performed by the 
function emm_exists (line 25). The "get interrupt vector" 
method of testing for the presence of expanded memory is 
performed by function emm_exists2 (line 113). 

7-8 SNAPSHOT.C Provides a terminate-and-stay-resident (TSR) program 
that stores the current contents of the video display 
screen to a buffer in expanded memory every time the 
PrtSc key is pressed. The program can store as many 
screen images as your system has space in expanded 
memory. 

7-9 PLAYBACK.C Provides a program to copy the screen images stored by 
the SNAPSHOT program in expanded memory to the 
DOS standard output file. A program's screen displays 
could be captured permanently, for example, by 
redirecting PLAYBACK's standard output to a disk file. 

7-10 BEEP.ASM Has a utility routine to sound an audible tone on the PC's 
built-in speaker. 



7 - Using Expanded Memory 

About the Sample Application 
The sample application consists of two programs: SNAPSHOT.C and PLAY
BACK.C. SNAPSHOT is a terminate-and-stay-resident (TSR) program that 
stores text screen images in expanded memory by intercepting the print screen 
interrupt (int 5). This interrupt is invoked every time the PrtSc or Print Screen 
key is pressed. SNAPSHOT also builds an index data structure in expanded 
memory that contains the logical page number and byte offset of each screen im
age stored in expanded memory. PLAYBACK simply reads the index data 
structure, copying each of the text screens from expanded memory to the DOS 
standard output file. Figure 7-4 diagrams how expanded memory is used to es
tablish communication between the two independent programs. 

In order to demonstrate some of the more advanced expanded memory 
concepts that were presented in this chapter, this application is necessarily 
more complicated than an intermediate-level programmer might expect to write 
as a first expanded-memory project. Developers who are not familiar with TSR 
and interrupt handler programming in the DOS environment may feel par
ticularly uncomfortable digesting the large portion of code in SNAPSHOT.C 
that is required to install, manage, and terminate itself. 

While SNAPSHOT has more than its share of DOS-related complications, 
its use of context switching and new LIM EMS 4.0 functions offers a valuable 
study example of EMS concepts that are not usually demonstrated in EMS pro
gramming tutorials. Key EMS features exploited by SNAPSHOT include: 

• Expanded memory sharing between programs by using the Named 
Handle facility (EMS function 20). 

• Context switching using Get/Set Page Map (EMS function 15). 
• Block moves of data between conventional memory and expanded 

memory by using the Move/Exchange Memory Region function (EMS 
function 18). 

• Dynamically appending logical pages to a previously allocated EMS 
handle by using the Reallocate Pages function (EMS function 18). 

Note: In order to execute these programs, your Expanded Memory Man
ager must support the LIM EMS 4.0 specification. 

A Few Coding Highlights 
The actual work of storing the video display screens in expanded memory is tri v
ial. A single EMS Move/Exchange Memory Region function call at line 175 of 
SNAPSHOT. C suffices to copy the entire screen image from the video display 
buffer into expanded memory. Since this takes place inside an interrupt handler, 
the Get Page Map function on line 110 is required to preserve the EMS mapping 
context. The Set Page Map function on line 120 restores the EMS mapping con
text prior to exiting the interrupt handler. 

The Set Handle Name function on line 372 of SNAPSHOT. C associates the 
ASCII name "SNAPSHOT" with the EMS handle that the program allocated 
for screen storage. By giving the handle a name, the PLAYBACK program can 

405 



Devices 

406 

SNAPSHOT.EXE (a TSR) 

ints_Jsr (entered when PrtSc is pressed) 
1. Saves emm state 
2. Copies screen image to expanded memory 
3. Updates screen image index in expanded memory 
4. Restores emm state 

main 
1. Initializes, terminates, and reports 

status of program 

SNAPSHOT 

0 

2 

3 

4 

5 

PLAYBACK.EXE 

1. Detect expanded memory 
2. Look up handle ID 
3. Map in screen index 
4. Map in each screen image and copy to standard 

output file 

Screen 3 
Image 

EXPANDED MEMORY 

Figure 7-4. Example application-SNAPSHOT/PLAYBACK. 

I 

locate and access this region of expanded memory without having to know its 
actual handle number, a value that could vary each time SNAPSHOT is started. 



7 - Using Expanded Memory 

Listing 7-2. EMMCONST.H 

'* 
General EMS Constants 

*' 

#define EMM_INT Ox67 '* expanded memory software interrupt *' 
#define HANDLE_NAME_LENGTH 8 '* #bytes in handle name *' 
#define PAGE_FRAMES 4 '* maximum #of physical pages *' 
#define PAGE_SIZE 16384 '* #bytes in EMS page *' 
#define EMM_DEVICE "EMMXXXXO" '* EMM device driver name *' 
#define MALHANDLE 255 '* maximum #of EMM handles *' 

'* Constants for EMS Status Codes 

*' 
#define FRSTEMERR 
#define LASTEMERR 

#define FUNCCOK 
#define EMDRVSWF 
#define EMDRVHWF 
#define EMDRVBSY 
#define HANDLNFD 
#define FUNCCUND 
#define HANDLINS 
#define MAPCXPRO 
#define TOTPGINS 
#define UNAPGINS 
#define LPAGE2SM 

#define LPAGERNG 
#define PPAGE2BG 
#define MRCSAFUL 
#define MRCSTDUP 

Ox BO 
OxA4 

OxOO 
Ox BO 
Ox81 
Ox82 
Ox83 
Ox84 
Ox85 
Ox86 
Ox87 
Ox BB 
Ox89 

Ox8A 
Ox8B 
OxBC 
Ox8D 

#define MRCSTNFD Ox8E 

#define SFUNCUND Ox8F 
#define ATTRBUND Ox90 
#define NVSTGUNS Ox91 
#define MREGNOVW Ox92 

#define MREGN2SM Ox93 

I* first EMM error number*' 
I* Last EMM error number *' 

I* the specified function completed without error *' 
I* EMM driver software fai Lure *' 
I* EMM driver detected hardware fai Lure *' 
I* EMM driver busy (doesn't ~appen any more) *' 
I* cannot find the specified handle *' 
I* the function code is undefined *' 
I* no handles are currently available*' 
I* mapping context restoration error occurred *' 
I* insufficient total pages for request *' 
I* insufficient unallocated pages for request *' 
I* zero Logical pages have been requested from 

LIM 3.2 compatible function *' 
I* Logical page out of range for specified handle *' 
I* physical page out of range *' 
I* mapping register context save area is full *' 
I* mapping register context stack already has a 

context associated with the specified handle *' 
I* mapping register context stack does not have a 

context associated with the specified handle *' 
I* undefined subfunction was requested *' 
I* the attribute type is undefined *' 
I* the system does not support nonvolatility *' 
I* partial source overwrite occurred during move 

region *' 
I* EMS region is too big for specified handle *' 

continued 

407 



Devices 

#define MREGNOVL Ox94 

#define LPGOF2BG Ox95 

#define MREGN2BG Ox96 
#define MREGNOUP Ox97 

#define MREGNUNO Ox98 

#define AMRSNFO Ox9A 
#define AMORSINS Ox9B 
#define AMORSUNS Ox9C 
#define AMORSUNO Ox90 

#define OOMACUNS Ox9E 
#define OOMACNFO Ox9F 
#define HNOVLNFO OxAO 

#define HNONMOUP OxA1 
#define MREGNWRP OxA2 

#define USROSFMT OxA3 

#define OPSYSACC OxA4 

'* 

Listing 7-2. continued 

I* conventional memory region and expanded memory 
region overlap *' 

'* offset within a Logical page exceeds the Length of 
a Logical page *' 

I* region Length exceed 1-Mbyte Limit *' 
'* source and destination expanded memory regions 

have the same handle and overlap *' 
I* undefined/unsupported memory source and 

destination types *' 
I* specified alternate map register set does not exist *' 
I* all alternate map/OMA register sets are in use *' 
I* alternate map/OMA register sets are not supported *' 
I* specified alternate map/OMA register set is not 

defined, not allocated, or is the current one *' 
'*dedicated OMA channels are not supported*' 
'* the specified dedicated OMA channel does not exist *' 
I* no corresponding handle value could be found for 

the specified handle name *' 
'* a handle with the specified name already exists *' 
'* attempt to wrap around 1-Mbyte address space during 

move or exchange *' 
I* the contents of the user data structure passed to 

the function were corrupt or meaningless *' 
I* the operating system denied access to the function *' 

Listing 7-3. EMMTYPES.H 

Structures used to communicate with EMM 

*' 
#define PCONTEXT 
#define PMAP 

unsigned char 
unsigned char 

typedef struct handle_page { 
unsignedint 
unsignedint 

} HANOLLPAGE; 

typedef struct ppmap { 

408 

emm._handle; 
pages_alloc_to_handle; 

I* handle page structure *' 
I* allocated EMM handle *' 
I* # Logical pages belonging 

to handle *' 

'* partial context request 



7 - Using Expanded Memory 

unsignedint 

unsignedint 

} PPMAP; 

structure *' 
seg_cnt; f* number of mappable segments 

to get *' 
seg_addr[PAGLFRAMESJ; '* address of mappable segment 

to get *' 

typedef struct Log_to_phys { '* Logical to physical 
mapping struct *' 

unsignedint 
unsignedint 

} LOG_ TQ_PHYS; 

Log_page_no; 
phys_page_no; 

typedef struct handle_names { 

I* Logical page number *' 
I* page frame #/mappable 

segment address *' 

f* handle name array 
element *' 

handle_value; '* handle *' unsignedint 
char handle_name[HANOLLNAMLLENGTHJ; I* name associated with 

handle *' 
} HANOLLNAMES; 

typedef struct map_phys_page { 

unsignedint 

unsignedint 
} MAP_PHYS_PAGE; 

phys_page_segment; 

phys_page_number; 

typedef struct hardware_info { f* EMS 
unsignedint 
unsignedint 

unsigned int 
unsigned int 
unsigned int 

} HAROWARLINFO; 

raw_page_s i ze; 
a L Lreg_sets; 

ctx_savearea_size; 
dma_reg_sets; 
dma_chan_op; 

I* mappable segment -> phys 
page #mapping *' 

f* segment address of 
physical page*' 

'* number of physical page *' 

hardware information structure *' 
'* #bytes in raw page *' 
I* #alternate map 

register sets *' 
f* #bytes in context save area *' 
f* #OMA register sets *' 
I* 0: LIM std. OMA op, 1: 

only 1 OMA channel *' 

#define CONV_MEM 
#define EXP _MEM 

0 '* conventional memory *' 
I* expanded memory *' 

typedef struct mregn { '* memory region descriptor *' 
unsignedchar memory_type; '* CONV_MEM I EXP_MEM *' 
unsignedint handle; I* CONV_MEM: O, EXP_MEM: handle *f 
unsignedint initial_offset; '* CONV_MEM: 

0 - 65535, EXP_MEM: 
continued 

409 



Devices 

Listing 7-3. continued 

0 - 16383 *' 
unsignedint initial_seg_page; I* CONV_MEM: segment address, 

EXP_MEM: page # *I 
} MREGN; 

typedef struct move_xchg { /* move exchange structure *' 
Long region_Length; I* 0 - 1 megabyte *' 
MREGN source; I* source region descriptor *' 
MREGN dest; I* destination region descriptor *' 

} MOVLXCHG; 

char 

410 

'* Name: 
Contents: 
Reference: 

*' 

*emmermsg[] = { 

Listing 7-4. EMMERMSG.C 

emmermsg.c 
error messages for LIM EMS Spec 4.0 Error Codes 
Lotus(r)/Intel(r)/Microsoft(r) 

Expanded Memory Specification 
Version 4.0, pp A5 - A10 

"EMM driver software failure", 
"EMM driver detected hardware failure", 
"EMM driver busy (doesn't happen any more)", 
"Cannot find the specified handle", 
"The function code is undefined", 
"No handles are currently available", 
"A mapping context restoration error has occurred", 
"Insufficient total pages for request", 
"Insufficient unallocated pages for request", 
"Zero Logical pages have been requested from LIM 3.2 compatible 

function", 
-"Logical page out of range for specified handle", 
"Physical page out of range", 
"Mapping register context save area is full", 
"Mapping register context stack already has a context associated with 

the specified handle", 
"Mapping register context stack does not have a context associated with 

the specified handle", 
"Undefined subfunction was requested", 
"The attribute type is undefined", 



7 - Using Expanded Memory 

''The system does not support nonvolatility", 
''Partial source overwrite occurred during move region", 
"Expanded memory region is too big for specified handle", 
"Conventional memory region and expanded memory region overlap", 
"Offset within a Logical page exceeds the Length of a Logical page", 
"Region Length exceeds 1-Mbyte Limit", 
"Source and destination expanded memory regions have the same handle 

and overlap", 
''Undefined/unsupported memory source and destination types", 
"Error code Ox99 is not used", 
''Specified alternate map register set does not exist", 
"ALL alternate map/OMA register sets are in use", 
"Alternate map/OMA register sets are not supported", 
"Specified alternate map/DMA register set is not defined, not 

allocated, or is the current one", 
"Dedicated OMA channels are not supported", 
''The specified dedicated DMA channel does not exist", 
"No corresponding handle value could be found for the specified 

handle name", 
"A handle with the specified name already exists", 
''Attempt to wrap around 1-Mbyte address space during move or exchange", 
"The contents of the user data structure passed to the function were 

corrupt or meaningless", 
"The operating system denied access to the function" 
}; 

#inc Lude<dos. h> 
#inc Lude"emmconst. h" 
#inc Lude"emmtypes. h" 
#pragma check_stack(off) 

#define CONTINUE_COL 32 

Listing 7-5. EMMFUNC.C 

'* error message continuation column *' 

static union REGS inregs, outregs; 
static struct SREGS segregs; 
static int result; 
void ShowEMMErr(errcode, Lineno, filename) 
unsigned int errcode; 
unsigned int Lineno; 
char *fi Lename; 

continued 

411 



Devices 

{ 

} 

Listing 7-5. continued 

unsigned int ec, func, Len, Line; 
char *bp, *Lp, *cp; 
extern char *emmermsg[J; 

ec = errcode & OxOOFF; 
func = inregs.x.ax; 

printf(''EMM error detected at Line(%d) in source file(%s)\n", Lineno, 
fi Lename); 

if (ec < FRSTEMERR I I ec > LASTEMERR) 

else { 

} 

printf("EMM Function (%04X) Error(%02X): Unknown Error 
Code!\n", func, ec); 

printf("EMM Function C%04X) Error(%02X): ", func, ec); 
Lp = emmermsg[ec - FRSTEMERRJ; 
Line = O; 
while (*Lp) { 

} 

for (cp = lp, Len = 80 - CONTINUE_COL; *CP && Len; 
cp++, Len--) 

if '*CP -- I I) 

bp :::c cp; 

*bp++ : 1 \0 I; 
if Cline++) 

printf(" "); 
printf ("%s\n", lp); 
Lp = (*cp) ? bp : cp; 

EMSGetStatus() f* tests for presence of working EMM *' 
{ 

inregs.h.ah = Ox40; f* EMS Get Status function *' 
result= (unsigned int) int86CEMM_INT, &inregs, &outregs) >> 8; 
returnCresult>; 

} 

EMSGetFrameAddr(pfa) 
char far **Pfa; 

f* returns far address of EMM page frame *' 

{ 

412 

inregs.h.ah = Ox41; f* EMS Get Page Frame Address function *' 
result= (unsigned int) int86(EMl"LINT, &inregs, &outregs) >> 8; 
if (!result) { 

FP_SEG(*pfa) = outregs.x.bx; 



7 - Using Expanded Memory 

FP_OFF(*pfa) = O; 
} 

return( result); 
} 

EMSGetPageCnt(una, tot) 
unsigned int *una, *tot; 
{ 

f* returns total and unallocated EMS pages *' 

inregs.h.ah = Ox42; f* EMS Get Unallocated Page Count function *' 

} 

result= (unsigned int) int86(EMM_INT, &inregs, &outregs) >> 8; 
if ( ! resu Lt) { 

*una = outregs.x.bx; 
*tot = outregs.x.dx; 

} 

return(result); 

EMSALLocatePages(handle, pages) '* allocate a handle with 'pages' 
Logical pages *' 

unsigned int *handle, pages; 
{ 

inregs.h.ah = Ox43; 
inregs.x.bx = pages; 
result = (unsigned int) 
if (!result) 

f* EMS Allocate Pages *' 
f* number of Logical pages to allocate *' 
int86(EMM_INT, &inregs, &outregs) >> 8; 

f* function succeeded *' 
*handle = outregs.x.dx; f* EMM handle to use with 

return(result); 
} 

EMSMapHandlePage(handle, page, frame) 

unsigned int handle, page, frame; 
{ 

inregs.h.ah Ox44; 
inregs.h.al = frame & OxOOff; 
inregs.x.bx = page; 
inregs.x.dx = handle; 

these pages *' 

'* map Logical page <handle,page> 
into 'frame' *' 

'* EMS Map/Unmap Handle Pages *' 
'* target page frame *' 

'* Logical page number to map in 

'* handle to which Logical page 
belongs *' 

result = (unsigned int) int86(EMM_INT, &inregs, &outregs) >> 8; 
return(result); 

} 

EMSDeallocatePages(handle) 

unsigned int handle; 

f* deallocate handle 'handle' and all 
its pages *' 

*' 

continued 

413 



Devices 

{ 

} 

Listing 7-5. continued 

inregs.h.ah = Ox45; f* EMS Deallocate Pages *' 
inregs.x.dx = handle; f* EMM-assigned handle to deallocate *' 
result= (unsigned int) int86CEMM.-INT, &inregs, &outregs) >> 8; 
return( result); 

EMSGetVersion(emsver) 
char *emsver; 

I* returns version number of EMM software *I 

{ 

} 

inregs.h.ah = Ox46; f* EMS Get Version function *I 
result = (unsigned int) int86CEMM_INT, &inregs, &outregs); 
if (!(result & OxFF00)) { f* function succeeded*' 

emsver[OJ = ((result & OxOOFO) >> 4) + '0'; 

} 

emsver[1] = 
emsver[2] = 
emsver[3] = 

return(result >> 8); 

' '. . , 
(result & OxOOOF) + '0'; 
'\0'; 

EMSSavePageMap(handle) f* save EMM context in EMM's context 
save area *' 

unsigned int handle; 
{ 

} 

inregs.h.ah = Ox47; 
inregs.x.dx = handle; 
result = (unsigned int) 
return( result); 

EMSRestorePageMap(handle) 

unsigned int handle; 
{ 

inregs.h.ah = Ox48; 

'* EMS Save Page Map *' 
f* handle to save under *' 
int86CEMM.-INT, &inregs, &outregs) >> 8; 

I* restore EMM context from EMM's context 
save area *' 

I* EMS Restore Page Map *' 
inregs.x.dx = handle; f* context area to restore from *I 
result= (unsigned int) int86(EMM.-INT, &inregs, &outregs) >> 8; 
return( result); 

} 

EMSGetHandleCnt(hcnt) 
unsigned int *hcnt; 
{ 

414 

I* returns the number of open handles (1 - 255) *' 



7 - Using Expanded Memory 

} 

inregs.h.ah = Ox4B; /* EMS Get Handle Count *f 
result = (unsigned int) int86(EMM._INT, &inregs, &outregs) >> 8; 
if (!result) { f* function succeeded *f 

*hcnt = outregs.x.bx; 
} 

return(result); 

EMSGetHandlePages(handle, pages)/* returns no. of pages allocated to handle *f 
unsigned int handle, *pages; 
{ 

} 

inregs.h.ah = Ox4C; 
inregs.x.dx = handle; 

f* EMS Get Handle Pages *f 
f* handle to which pages supposedly belong *f 

result = (unsigned int) int86(EMM._INT, &inregs, &outregs) >> 8; 
if (!result) f* function succeeded *f 

*pages = outregs.x.bx; 
return( result); 

EMSGetALLHandlePages(hp, hpcnt) f* returns no. of pages allocated to all 
open handles *f 

HANDLE_PAGE *hp; 
unsigned int *hpcnt; 
{ 

} 

segreadC&segregs); 
inregs.h.ah = Ox4D; 
segregs.es = segregs.ds; 

f* fill segment registers */ 
f* EMS Get All Handle Pages *f 

f* segment of HANDLE 
_PAGE array *f 

inregs.x.di = (unsigned int) hp; f* offset of HANDLE 
_PAGE array *f 

result= (unsigned int) int86xCEMM._INT, &inregs, &outregs, 
&segregs) >> 8; 

if (!result) f* function succeeded*/ 
*hpcnt = outregs.x.bx; 

return(result); 

EMSGetPageMap(map) 
PMAP *map; 

f* get EMM context in user context save area *f 

{ 

segread(&segregs); f* fill segment registers *f 
segregs.es = segregs.ds; f* use es = ds *f 
inregs.x.ax = Ox4EOO; f* EMS Get Page Map *f 
inregs.x.di = (unsigned int) map; f* pointer to map array *f 
result = (unsigned int) int86x(EMM._INT, &inregs, &outregs, 

&segregs) >> 8; 
continued 

415 



Devices 

Listing 7-5. continued 

return(result); 
} 

EMSSetPageMap(map) 
PMAP *map; 

'* set EMM context from user context save area *' 

{ 

} 

segreadC&segregs); 
inregs.x.ax = Ox4E01; 

f* fi LL segment registers *' 
f* EMS Set Page Map *' 

inregs.x.si = (unsigned int) map; f* pointer to map array *' 
result= (unsigned int) int86x(EMM-INT, &inregs, &outregs, 

&segregs) >> 8; 
return(result); 

EMSGetSetPageMap(srcmap, destmap) f* save EMM context in destmap, and then 
set EMM context from srcmap *' 

PMAP *srcmap, *destmap; 
{ 

} 

segreadC&segregs); '*fill segment registers *' 
segregs.es = segregs.ds; f* both maps in ds *' 
inregs.x.ax = Ox4E02; f* EMS Get and Set Page Map *' 
inregs.x.si = (unsigned int) srcmap; '* pointer to source map array *' 
inregs.x.di = (unsigned int) destmap; f* pointer to dest map array *' 
result= (unsigned int) int86x(EMM-INT, &inregs, &outregs, 

&segregs) >> 8; 
return( result); 

EMSGetPageMapSize(size) '* get size of user context save area *' 
unsigned int *size; 
{ 

} 

inregs.x.ax = Ox4E03; f* EMS Get Page Map Size*' 
result= (unsigned int) int86(EMM-INT, &inregs, &outregs); 
if (!(result & OxFFOQ)) '*function succeeded*' 

*size = outregs.h.al; 
return(result >> 8); 

EMSGetPPageMap(pmap, savearea) f* get partial EMM context in user save area *' 
PPMAP *pmap; 
PCONTEXT *savearea; 
{ 

416 

segreadC&segregs); 
segregs~es = segregs.ds; 

'* fi LL segment registers *' 
'* use es = ds *' 



7 - Using Expanded Memory 

} 

inregs.x.ax = Ox4FOO; f* EMS Get Partial Page Map *f 
inregs.x.si = (unsigned int) pmap; f* which frames we want *f 
inregs.x.di (unsigned int) savearea; f* pointer to map array *f 
result= (unsigned int) int86xCEMM_INT, &inregs, &outregs, 

&segregs) >> 8; 
return(result); 

EMSSetPPageMap(savearea) 
PCONTEXT *savearea; 

f* set partial EMM context from user save area *f 

{ 

segreadC&segregs); f* fill segment registers *f 
inregs.x.ax = Ox4F01; f* EMS Set Partial Page Map */ 
inregs.x.si = (unsigned int) savearea; f* frames we want to restore */ 
result= (unsigned int) int86xCEMM_INT, &inregs, &outregs, 

} 

&segregs) >> 8; 
return(result); 

EMSGetPPageMapSize(count, size) f* get size of area needed to store *f 
f* EMM context for count page frames */ 

unsigned int count, *size; 
{ 

} 

inregs.x.ax = Ox4F02; f* EMS Get Partial Page Map Size */ 
inregs.x.bx = count; f* number of frames we want to save *f 
result = (unsigned int) int86CEMM_INT, &inregs, &outregs); 
if (!(result & OxFF00)) f* success *f 

*size = outregs.h.al; 
return(result >> 8); 

EMSMapMultPages(handle, map, method, count) /* map count pages in map for 

unsigned int handle; 
LOG_TO_PHYS *map; 
unsigned int method; 
unsigned int count; 
{ 

handle */ 
f* handle to map pages for *f 
f* Logical to physical page map *f 
f* use page frame #'s or mappable segment addresses *f 
f* number of entries in map *f 

segreadC&segregs); 
inregs.h.ah = Ox50; 
inregs.h.al = (unsigned 
inregs.x.cx = count; 
inregs.x.dx. = handle; 
inregs.x.si = (unsigned 
result = (unsigned int) 

&segregs) >> 8; 

f* fi LL segment registers *f 
f* EMS Map Multiple Handle Pages *f 
char) method; 
f* number of pages to map in *f 
f* handle these pages belong to *f 
int) map; /* pages to map in *f 
int86x(EMM_INT, &inregs, &outregs, 

continued 

417 



Devices 

Listing 7-5. continued 

returnCresult>; 
} 

EMSReallocPagesChandle, pages) f* change handle's allocation to pages *' 
unsigned int handle, *pages; 
{ 

'* EMS Reallocate Pages *' inregs.h.ah = Ox51; 
inregs.x.bx = *Pages; 
inregs.x.dx = handle; 
result = (unsigned int) 
if (!result) 

f* number of logical pages have when done *' 
'* handle to reallocate page for *' 
int86CEMM_INT, &inregs, &outregs) >> 8; 

} 

f* function succeeded *' 
*pages = outregs.x.bx; f* new number of pages we have *' 

returnCresult>; 

EMSGetHandleAttr(handle, attr) 
unsigned int handle, *attr; 

f* gets handle attribute *' 

{ 

} 

inregs.x.ax = Ox5200; 
inregs.x.dx = handle; 
result = (unsigned int) 
if (!(result & OxFFOQ)) 

f* EMS Get Handle Attribute *' 

int86CEMM_INT, &inregs, &outregs); 
f* function succeeded *' 

*attr = outregs.h.al; f* attribute *' 
return(result >> 8); 

EMSSetHandleAttr(handle, attr) '* sets handle attribute *' 
unsigned int handle, attr; 
{ 

} 

inregs.x.ax = Ox5201; f* EMS Set Handle Attribute *' 
inregs.x.dx = handle; 
inregs.h.bl = attr & OxOOFF; 
result= (unsigned int) int86CEMM_INT, &inregs, &outregs) >> 8; 
return(result>; 

EMSGetAttrCap(cap) 
unsigned int *cap; 
{ 

f* get attribute capability*' 

} 

418 

inregs.x.ax = Ox5202; f* EMS Get Attribute capability*' 
result = (unsigned int) int86CEMM_INT, &inregs, &outregs); 
if (!(result & OxFF00)) f* success*' 

*cap = outregs.h.al; 
return(result >> 8); 

continued 



7 - Using Expanded Memory 

EMSGetHandleName(handle, name) 
unsigned int handle; 
char *name; 
{ 

segread(&segregs); 
inregs.x.ax = Ox5300; 

f* get handle name *I 
f* handle to get name for */ 
f* buffer to receive handle name *I 

f* fi LL segment registers *f 
f* EMS Get Handle Name *f 

segregs.es = segregs.ds; 
inregs.x.di = (unsigned int) name; 
inregs.x.dx = handle; 
result = (unsigned int) int86x(EMM_INT, &inregs, &outregs, 

&segregs) >> 8; 
return(result); 

} 

EMSSetHandleName(handle, name) 
unsigned int handle; 
char *name; 
{ 

} 

segreadC&segregs); 
inregs.x.ax = Ox5301; 
inregs.x.si = (unsigned 
inregs.x.dx = handle; 
result = (unsigned int) 

&segregs) >> 8; 
return(result); 

EMSGetHandleDir(hnt, hn_cnt) 
HANDLE_NAMES *hnt; 
unsigned int *hrLcnt; 
{ 

segreadC&segregs); 
inregs.x.ax = Ox5400; 

f* set handle name *I 
f* handle to set name for *f 
f* buffer with handle name to set *f 

f* fi LL segment registers *f 
f* EMS Set Handle Name *f 
int) name; 

int86x(EMM_INT, &inregs, &outregs, 

f* get handle directory *f 
f* pointer to handle name table *f 
f* # of entries returned *f 

f* f il L segment registers *f 
f* EMS Get Handle Directory*/ 

inregs.x.di = (unsigned int) hnt; 
segregs.es = segregs.ds; 
result = (unsigned int) int86x(EMM_INT, &inregs, &outregs, &segregs); 
if (!(result & OxFF00)) f* success *f 

*hn_cnt = outregs.h.al; f* return #of handle names gotten *I 
return<result >> 8); 

} 

EMSSearchHandleName(name, handle) 
char *name; 
unsigned int *handle; 
{ 

segreadC&segregs); 

f* search for named handle */ 
f* name to search for */ 
f* returned handle number */ 

/*fill segment registers */ 
continued 

419 



Devices 

} 

Listing 7-5. continued 

inregs.x.ax = Ox5401; I* EMS Search for Named Handle *' 
inregs.x.si = (unsigned int) name; 
result = (unsigned int) int86x(EMllLINT, &inregs, &outregs, 

&segregs) >> 8; 
if (!result) '*success*' 

*handle = outregs.x.dx; '* return handle value *' 
return(result); 

EMSGetTotaLHandles(handle_count) '* get total #of handles *' 
unsigned int *handle_count; 
{ 

} 

inregs.x.ax = Ox5402; I* EMS Get Total Handles subfunction *' 
result= (unsigned int) int86(EMllLINT, &inregs, &outregs) >> 8; 
if (!result) 

*handle_count = outregs.x.bx; 
return(result); 

EMSMoveRegion(rp) 
MOVLXCHG *rp; 

I* Move Region *' 
I* ptr to region descriptor *' 

{ 

} 

segreadC&segregs); 
inregs.x.ax = Ox5700; 
inregs.x.si = (unsigned 
result = (unsigned int) 

&segregs) >> 8; 
return( result); 

EMSExchangeRegion(rp) 
MOVE_XCHG *rp; 
{ 

} 

segreadC&segregs); 
inregs.x.ax = Ox5701; 
inregs.x.si = (unsigned 
result = (unsigned int) 

&segregs) >> 8; 
return ( resu Lt); 

I* fi LL segment registers *' 
I* EMS Move Region *' 
int) rp; 
int86x(EMllLINT, &inregs, &outregs, 

'* Exchange Region *' 
I* ptr to region descriptor *' 

I* fill segment registers*' 
I* EMS Exchange Region *' 
int) rp; 
int86x(EMllLINT, &inregs, &outregs, 

EMSGetMapAddrArray(mpaa, mpa_cnt) '*get mappable physical address array*' 
MAP_PHYS_PAGE *mpaa; I* ptr to mappable physical address array*' 
unsigned int *mpa_cnt; '* #of elements returned *' 
{ 

segreadC&segregs); I* fill segment registers*' 

420 



7 - Using Expanded Memory 

} 

inregs.x.ax = Ox5800; f* EMS Get Mappable Physical Address Array *f 
inregs.x.di = (unsigned int) mpaa; 
segregs.es = segregs.ds; 
result = (unsigned int) int86x(EMM_INT, &inregs, &outregs, 

&segregs) >> 8; 
if (!result) f* success *f 

*mpa_cnt = outregs.x.cx; f* return # of mappable 
physical pages *f 

return(result); 

EMSGetMapAddrCount(mpa_cnt) 
unsigned int *mpa_cnt; 

f* get mappable physical address count *f 
f* #of mappable 

{ 

} 

physical pages *f 

inregs.x.ax = Ox5801; f* EMS Get Mappable Physical Address Count *f 
result = (unsigned int) int86CEMM_INT, &inregs, &outregs) >> 8; 
if (!result) f* success *f 

outregs.x.cx; 

return(result); 

/* return # of mappable 
physical pages *f 

EMSGetHardwareinfoChwp) f* get EMS hardware info *f 
HARDWARE_INFO *hwp; f* ptr to area to receive hardware info *f 
{ 

} 

segreadC&segregs); 
inregs.x.ax = Ox5900; 

f* fi LL segment registers *f 
f* EMS Get EMS Hardware Info *f 

inregs.x.di = (unsigned int) hwp; 
segregs.es = segregs.ds; 
result = (unsigned int) int86xCEMM 
_INT, &inregs, &outregs, &segregs) >> 8; 
return(result); 

EMSGetRawPageCount(rpg_cnt, urpg_cnt) f* get raw page count, # of 
raw pages *f 

unsigned int *rpg_cnt; 
unsigned int *urpg_cnt; 
{ 

inregs.x.ax = Ox5901; 
result = (unsigned int) 
if (!result) { 

f* # of raw pages *f 
f* #of unallocated raw pages *f 

/* EMS Get Raw Page Count *f 
int86CEMM_INT, &inregs, &outregs) >> 8; 
f* success *f 

I* total #of raw pages *f *rpg_cnt = outregs.x.dx; 
*urpg_cnt = outregs.x.bx; f* #of unallocated raw pages *f 

} 

return(result); 
} 

continued 

421 



Devices 

Listing 7-5. continued 

EMSALLocateStdPages(handle, pages) '* allocate a handle with 'pages' 
standard pages *' 

unsigned int *handle, pages; 
{ 

inregs.x.ax = Ox5AOO; '* EMS Allocate Standard Pages *' 
inregs.x.bx = pages; '*number of Logical pages to allocate*' 
result= (unsigned int) int86CEMM._INT, &inregs, &outregs) >> 8; 
if (!result) '* function succeeded*' 

*handle = outregs.x.dx; f* EMM handle to use with 
these pages *' 

return(result); 
} 

EMSALLocateRawPages(handle, pages) '*allocate a handle with 'pages' raw pages *' 
unsigned int *handle, pages; 
{ 

} 

inregs.x.ax = Ox5A01; 
inregs.x.bx = pages; 
result = (unsigned int) 
if (!result) 

f* EMS Allocate Raw Pages *' 
f* number of Logical pages to allocate *' 
int86CEMM._INT, &inregs, &outregs) >> 8; 
f* function succeeded *' 

*handle = outregs.x.dx; f* EMM handle to use with 
these pages *' 

return(result); 

EMSGetAltMapRegSet(set, pmap) 
unsigned int *set; 

f* get EMS alternate map register set *' 
f* current alternate map register set *' 
f* pointer to context save area pointer *' PMAP far **pmap; 

{ 

} 

422 

inregs.x.ax = Ox5BOO; 
segreadC&segregs); 

f* get alternate map register set *' 

result = (unsigned int) int86xCEMM._INT, &inregs, &outregs, 
&segregs) » 8; 

if (!result) { 
*set = outregs.h.bl; 
if (*Set == Q) { 

FP_OFF(*pmap) 

'* currently active set *' 
'* fake alternate register set *' 

= outregs.x.di; I* offset of OS 

FP_SEGC*pmap) = segregs.es; 
context area *' 

f* segment of OS 
context area *' 

} 

} 

return(result); 



7 - Using Expanded Memory 

EMSSetALtMapRegSet(set, pmap) '* set EMS alternate map register set *' 
unsigned int set; '*new alternate map register set *' 
PMAP *pmap; '* pointer to context save area *' 
{ 

} 

segread<&segregs); '* fi LL segment registers *' 
inregs.x.ax = Ox5B01; '* set alternate map register set *' 
inregs.h.bl = set & OxOOFF; 
if (set == Q) { '* fake register set *' 

} 

inregs.x.di = (unsigned int) pmap; 
segregs.es = segregs.ds; 

result= (unsigned int) int86x(EMM_INT, &inregs, &outregs, 
&segregs) >> 8; 

return(result); 

EMSGetALtMapArraySize(size) 
unsigned int *size; 

'* get size of alternate map save array*' 
'* #of mappable physical pages *' 

{ 

inregs.x.ax = Ox5B02; '* EMS Get Alternate Map Save Array Size *I 
result= (unsigned int) int86(EMM_INT, &inregs, &outregs) >> 8; 
if (!result) '*success*' 

*size = outregs.x.dx; I* size of array */ 
return(result); 

} 

EMSAllocAltMapRegSet(set) 
unsigned int *Set; 

'* allocate alternate map register set *' 
I*# of set allocated *I 

{ 

inregs.x.ax = Ox5B03; I* EMS Allocate Alternate Map 
Register Set *I 

result= (unsigned int) int86(EMM_INT, &inregs, &outregs) >> 8; 
if (!result) I* success*' 

*set = outregs.h.bl; '* #of set allocated *' 
return(result); 

} 

EMSDeallocALtMapRegSet(set) 
unsigned int set; 
{ 

I* deallocate alternate map register set *I 
I*# of set to deallocate*/ 

inregs.x.ax = Ox5B04; /* EMS Deallocate Alternate Map Register Set */ 
inregs.h.bl = set & OxOOFF; 
result= (unsigned int) int86(EMM_INT, &inregs, &outregs) >> 8; 
return(result); 

} 

EMSAllocDMARegSet(set) 
unsigned int *Set; 

/* allocate DMA register set *' 
'* #of set allocated *I 

continiied 

423 



{ 

} 

Listing 7-5. continued 

inregs.x.ax = Ox5B05; f* EMS Allocate DMA Register Set *f 
result = (unsigned int) int86CEMM.....INT, &inregs, &outregs) >> 8; 
if (!result) f* success *f 

*set = outregs.h.bl; 
return(result); 

f* #of set allocated *f 

EMSEnableDMARegSet(set, channel) f* enable DMA register set *f 
unsigned int set; f* #of set to enable *f 
unsigned int channel; f* #of DMA channel to associate with map register *f 
{ 

} 

inregs.x.ax = Ox5B06; f* EMS Enable DMA Register Set *f 
inregs.h.bl = set & OxOOFF; 
inregs.h.dl = channel & OxOOFF; 
result= (unsigned int) int86CEMM.....INT, &inregs, &outregs) >> 8; 
returnCresult>; 

EMSDisableDMARegSet(set) 
unsigned int set; 

f* disable DMA register set *f 
f* #of set to disable *f 

{ 

} 

inregs.x.ax = Ox5B07; f* EMS Disable DMA Register Set *f 
inregs.h.bl = set & OxOOFF; 
result = (unsigned int) int86CEMM.....INT, &inregs, &outregs) >> 8; 
return(result); 

EMSDeallocDMARegSet(set) 
unsigned int set; 

f* deallocate DMA register set *f 
f* #of set to deallocate *f 

{ 

} 

inregs.x.ax = Ox5B08; f* EMS Deallocate DMA Register Set *f 
inregs.h.bl = set & OxOOFF; 
result= (unsigned int) int86CEMM.....INT, &inregs, &outregs) >> 8; 
return(result>; 

EMSPrepareForWarmboot() f* prepare EMS hardware for warm boot *f 
{ 

} 

inregs.h.ah = Ox5C; f* EMS Prepare for Warmboot *f 
result= (unsigned int) int86CEMM.....INT, &inregs, &outregs) >> 8; 
return(result); 

EMSEnableOSFunc(key) f* Enable OS Function Set *f 

424 



7 - Using Expanded Memory 

Long *key; 
{ 

I* OS Access key - should be 0 first time used *I 

} 

} 

inregs.x.ax = Ox5DOO; 
if (*key != 0) { 

I* EMS Enable OS Function Set */ 

inregs.x.bx = FP_OFF(*key); 
inregs.x.cx FP_SEGC*key); 

result= (unsigned int) int86CEMM_INT, &inregs, &outregs) >> 8; 
if (!result) { 

if (key -- 0) { 

} 

} 

return(result); 

FP_OFF(*key) outregs.x.bx; 
FP_SEGC*key) = outregs.x.cx; 

EMSDisableOSFunc(key) 
Long *key; 

I* Disable OS Function Set *I 
I* OS Access key - should be 0 first time used*/ 

{ 

} 

inregs.x.ax = Ox5D01; 
if (*key != 0) { 

I* EMS Disable OS Function Set *I 

inregs.x.bx FP_OFFC*key); 
inregs.x.cx = FP_SEGC*key); 

} 

result= (unsigned int) int86CEMM_INT, &inregs, &outregs) >> 8; 
if ( ! resu Lt) { 

if (key -- 0) { 

} 

} 

return(result); 

FP_OFF(*key) = outregs.x.bx; 
FP_SEGC*key) outregs.x.cx; 

EMSReturnAccessKeyCkey) 
Long key; 

I* returns OS access key to the EMM */ 
I* OS access key */ 

{ 

} 

inregs.x.ax = Ox5D02; I* EMS Return OS Access Key *I 
inregs.x.bx = FP_OFFCkey); 
inregs.x.cx = FP_SEG(key); 
result= (unsigned int) int86CEMM_INT, &inregs, &outregs) >> 8; 
return(result); 

425 



Devices 

Listing 7-6. EMMFUNC.H 

extern void ShowEMMErr(unsigned int errcode,unsigned int lineno,char *fi Lename); 
extern int EMSGetStatus(void); 
extern int EMSGetFrameAddr(char far * *pfa); 
extern int EMSGetPageCnt(unsigned int *una,unsigned int *tot); 
extern int EMSAllocatePages(unsigned int *handle,unsigned int pages); 
extern int EMSMapHandlePage(unsigned int handle,unsigned int page, 

unsigned int frame); 
extern int EMSDeallocatePages(unsigned int handle); 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 

int EMSGetVersion(char *emsver); 
int EMSSavePageMap(unsigned int handle); 
int EMSRestorePageMap(unsigned int handle); 
int EMSGetHandleCnt(unsigned int *hcnt); 
int EMSGetHandlePages(unsigned int handle,unsigned int *pages); 
int EMSGetALLHandlePages(struct handle_page *hp,unsigned int *hpcnt); 
int EMSGetPageMap(unsigned char *map); 
int EMSSetPageMap(unsigned char *map); 
int EMSGetSetPageMap(unsigned char *srcmap,unsigned char *destmap); 
int EMSGetPageMapSize(unsigned int *size); 
int EMSGetPPageMap(struct ppmap *pmap,unsigned char *savearea); 
int EMSSetPPageMap(unsigned char *savearea); 
int EMSGetPPageMapSize(unsigned int count,unsigned int *size); 
int EMSMapMultPages(unsigned int handle,struct Log_to_phys *map,unsigned 
int method,unsigned int count); 

extern int EMSReallocPages(unsigned int handle,unsigned int *pages); 
extern int EMSGetHandleAttr(unsigned int handle,unsigned int *attr); 
extern int EMSSetHandleAttr(unsigned int handle,unsigned int attr); 
extern int EMSGetAttrCap(unsigned int *cap); 
extern int EMSGetHandleName(unsigned int handle,char *name); 
extern int EMSSetHandleNameCunsigned int handle,char *name); 
extern 
extern 
extern 

int EMSGetHandleDir(struct handle_names *hnt,unsigned int *hn__cnt); 
int EMSSearchHandleName(char *name,unsigned int *handle); 
int EMSGetTotalHandles(unsigned int *handle_count); 

extern int EMSMoveRegion(struct move_xchg *rp); 
extern int EMSExchangeRegion(struct move_xchg *rp); 
extern int EMSGetMapAddrArrayCstruct map_phys_page *mpaa,unsigned int 

extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 

426 

int 
int 
int 
int 
int 
int 
int 
int 
int 

*mpa_cnt); 
EMSGetMapAddrCount(unsigned int *mpa_cnt); 
EMSGetHardwarelnfo(struct hardware_info *hwp); 
EMSGetRawPageCountCunsigned int *rpg_cnt,unsigned int *urpg_cnt); 
EMSAllocateStdPages(unsigned int *handle,unsigned int pages); 
EMSAllocateRawPages(unsigned int *handle,unsigned int pages); 
EMSGetAltMapRegSet(unsigned int *set,unsigned char far * *pmap); 
EMSSetALtMapRegSet(unsigned int set,unsigned char *pmap); 
EMSGetALtMapArraySize(unsigned int *size); 
EMSAllocALtMapRegSet(unsigned ~nt *set); 



7 - Using Expanded Memory 

extern int EMSDeallocALtMapRegSet(unsigned int set); 
extern int EMSALLocDMARegSet(unsigned int *set); 
extern int EMSEnableDMARegSet(unsigned int set,unsigned int channel); 
extern int EMSDisableDMARegSet(unsigned int set); 
extern int EMSDeallocDMARegSet(unsigned int set); 
extern int EMSPrepareForWarmboot(void); 
extern int EMSEnableOSFunc(Long *key); 
extern int EMSDisableOSFunc(Long *key); 
extern int EMSReturnAccessKeyCLong key); 

Listing 7-7. EMMEXIST.C 

#inc Lude <stdlib.h> 
#inc Lude <fcntl.h> 
#inc Lude <dos.h> 
#inc Lude <errno.h> 
#inc Lude "emmconst.h" 

#define 005-INT Ox21 f* DOS function dispatcher *f 
#define DOS_ IOCTL Ox44 f* DOS IOCTL function *f 
#define IOCTLGETINFO OxOO f* IOCTL get device information 

subfunction *f 
#define IOCTLOUTSTAT Ox07 f* IOCTL get output status subfunction *f 
#define READY_OUTPUT Ox FF f* device is ready for output *f 
#define 15-DEVICE Ox0080 f* handle belongs to a device *f 

static char device_name[9J = EMM_DEVICE; 

f* 
Checks for the presence of expanded memory using the "open handle" 
method. Sets emm _present to '1' if expanded memory 
is present, '0' if not. The function returns a '0' 
if the presence test completed successfully. Otherwise 
it returns the DOS error code of the DOS function 
call that fai Led during the presence test. 
*f 

emm_exists(emm_present) 
int *emm_present; f* pointer to EMM presence 

indicator *f 
{ 

int return_code; f* file operation return code *f 

continued 

427 



Devices 

} 

Listing 7-7. continued 

int handle; f* file handle*' 
unsigned int dev_attr; 
unsigned int dev_status; 

f* device driver attributes *' 
f* device output status *' 

if (_dos_open(device_name, O_RDONLY, &handle)) { 

if Cerrno == ENOENT) { 
return_code = O; 

*emm_present = O; 

} else 
return_code = errno; 

f* couldn't open file*' 
f* file does not exist*' 
f* we expected that this might 

happen *' 
f* EMM is definitely not 

present *' 

f* presence test completed 
unsuccessfully *' 

} else f* EMM device name exists *' 

} 

if C!Creturn_code = ioctl_getattrChandle, &dev 
_attr))) '* got attribute *' 

if C!Creturn_code = ioctl_outstat(handle, &dev_ 
status))) '* got output status *' 

f* EMM is present if handle belongs to a 
device and it is ready for output *' 

*emm_present = ((dev_status -- READY_OUTPUT) && Cdev_attr & IS 
_DEVICE)) ? 1 : O; 

close (hand Le); f* close the file handle*' 

return(return_code); 

Obtain the DOS attribute word for an open handle 
associated with an open fi Le or device. Returns 0 if 
function completed successfully, otherwise returns 
DOS error code. 

ioctl_getattr(handle, attrib) 
int handle; f* open fi Le/device handle*' 

f* -> returned device info*' unsigned int *attrib; 
{ 

428 

int re; 
union REGS regs; 

regs.h.ah = DOS_IOCTL; 
regs.h.al IOCTL-GETINFO; 

f* DOS I/0 control for devices *' 
f* get device information*' 



7 - Using Expanded Memory 

} 

regs.x.bx = handle; 
int86(DOS_INT, &regs, &regs); 
if (!regs.x.cflag) { 

} else 

*attrib = regs.x.dx; 
re O; 

re = regs.x.ax; 

return(rc); 

'* 

I* invoke DOS function *' 
I* if no error occurred *' 
/*return device/file attributes*' 
/*function was successful *' 

/*return error code *' 

Obtains the output status of a file or device. A returned status 
of 0 means that the device is not ready for output; a status 
of OxOOFF means the device is ready for output. Returns 
0 if function completed successfully. Otherwise, returns 
DOS error code. 

*' 
ioctl_outstat(handle, status) 
int handle; 
unsigned int *status; 
{ 

} 

int re; 
union REGS regs; 

regs.h.ah 
regs.h.al 

DOS_ IOCTL; 
IOCTLOUTSTAT; 

regs.x.bx = handle; 
int86CDOS_INT, &regs, &regs); 
if (!regs.x.cflag) { 

*status = regs.h.al; 
re O· , 

} else 
re = regs.x.ax; 

return( re); 

'* 

I* open fi Le/device handle*' 
I* -> output status word 

'* DOS 1/0 control for devices 

'* get output status *' 

'* invoke DOS function *' 

'* if no error occurred *' 

'* return output status *' 

'* function was successful *' 

I* return error code *' 

*' 

Checks for the presence of expanded memory using the ''get vector" method. 
Sets emm_present to '1' if expanded memory is present, '0' if not. The 
function always returns a '0'; 

*' 
continued 

429 



Devices 

Listing 7-7. continued 

emm_exists2<emm_present) 
int *emm_present; 
{ 

int Len; 
char far *dev_name; 

char *np; 
unsigned int get_int_seg(); 

'* character device name 
pointer *' 

FP_SEG(dev_name) = get_int_seg(EMM_INT); '* EMM device driver segment *f 

} 

FP_OFF(dev_name) = 10; I* offset of character device 
driver name *f 

I* see if EMM name is at offset 10 in EMM_INT's segment *f 

for (Len = 8, np = device_name; Len && *dev_name++ == *np++; Len--); 

*emm_present = <Len) ? 0 : 1; 

return CO); 

'* 

'* if all characters matched, 
EMM is present *' 

'* always succeeds *' 

Returns the segment address of interrupt vector 'intno' 
*f 

unsigned int get_int_seg(intno) 
int i ntno; 
{ 

} 

union REGS regs; 
struct SREGS segregs; 

regs.h.al = <unsigned char) intno; 
regs.h.ah = Ox35; 
intdosx<&regs, &regs, &segregs); 
return((unsigned) segregs.es>; 

430 

'* DOS get vector function *' 



'* 
Name: 
Purpose: 

*' 

#inc Lude <stdio.h> 
#inc Lude <stdlib.h> 
#inc Lude <signal.h> 
#include <dos.h> 
#inc Lude <bios.h> 

#inc Lude "emmconst.h" 
#inc Lude "emmtypes.h" 
#inc Lude "emmerr.h" 
#inc Lude "emmfunc.h" 

#define PRTSCINT 
#define HANDLEJJAME 

#define MA LS CR 

#define MDLSEG 

#define CGLSEG 

#define SCR_ROWS 

7 - Using Expanded Memory 

Listing 7-8. SNAPSHOT.C 

SNAPSHOT.C 
TSR Uti Lity to save text screen images to 
Expanded Memory. 

5 
"SNAPSHOT" 

500 

OxBOOO 

OxB800 

25 

I* EMM constants *' 
f* EMM data structures *' 
/* EMM error codes *' '* EMM function declarations *' 
'* print screen interrupt *' '* expanded memory handle 

name *' 
I* maximum number of screens 

to save *' 
'*monochrome display 

adapter buffer segment *' 
'* color graphics adapter 

buffer segment *' 
i* assume 25 rows - procedure 

to determine *' 
'* actual #of rows is 

adapter-dependent *' 

#pragma pack(1) '* byte align data structures *' 

#define DisplayError(rc) ShowEMMErr(rc, __ LINE __ , __ FILE __ ) 

typedef struct bios_video_data { '* basic BIOS video data *' 
unsigned char crLmode; 
unsigned int crLcols; 
unsigned int crL Len; 

unsigned int crLstart; 

unsigned int cursor_pos[8J; 

I* display mode *' '* number of columns on screen *' 
'* Length of regen buffer 

in bytes *' 
'* starting address in regen 

buffer *' 
I* cursor position for 8 pages *' 

continued 

431 



Devices 

Listing 7-8. continued 

unsigned int 
unsigned char 

unsigned int 

unsigned char 

unsigned char 

} BIOS_VIDEO_DATA; 

typedef struct scr { 

unsigned int 

unsigned int 

unsigned int 
unsigned int 

} SCR; 

cursor_mode; 
active_page; 

addr _6845; 

crt_mode_set; 

crLpalette; 

scr_page; 

scr_offset; 

scr_width; 
scr_Len; 

typedef struct scr_index { 
void (interrupt far *scr_int5)(); 

unsigned int 

unsigned int 

SCR 
} SCILINDEX; 

'* 

scr_count; 

scr_max; 

scr_idx[MA)LSCRJ; 

global data 

*' 
void (interrupt far *old_int5)(); 
PMAP *emm_save; 

unsigned int emm_tpages, 

432 

emm_apages, 

emm_handle, 
emm_pages, 

I* current cursor mode setting *' 
I* current page 

being displayed *' 
I* base address for active 

display card *' 
I* current setting of 3x8 

register *' 
'* current palette setting 

- color card *' 

I* screen data descriptor *I 
I* screen starting expanded 

memory page *' 
I* screen starting expanded 

memory offset *' 
I* # cols on the screen *' 
I* screen Length, in bytes *' 

I* screen index structure *' 
I* pointer to our interrupt 

service routine *' 
I* #of screens currently 

saved *' 
I* maximum #of screens to 

save *' 
I* screen index array *' 

'* old print screen vector 

'* EMM context save area 
pointer *' 

'* total expanded memory 
pages *' 

*' 

'* available expanded memory 
pages *' 

'* expanded memory handle *' 
'* #pages belonging to 

handle *' 



7 - Using Expanded Memory 

isr_status, '* 0: isr should chain, <> 

0: isr should service *' 
char 
SCR....INDEX 
SCR 

far 
terminate_f Lag; 
*page_ frame; 
far *ip; 

f* 1: terminate this program*' 
f* far -> to EMS page frame *' 
'* far -> to screen index *' 

far *sp; f* far -> to screen 
descriptor *' 

BIOS_VIDEO_DATA far *VP = CBIOS_VIDEO_DATA far *) Ox00400049L; 

MOVLXCHG mcb; 

#pragma check_stackCoff) 

void break_handler(sig_type) 
int sig_type; 
{ 

f* far -> to bios video data 
area *' 

'* move/exchange region 
structure *' 

f* clean up if control-c happens *' 

signalCSIGINT, SIG_IGN); 
cleanup(); 

'* disallow control-c during handler *' 
exit CO>; 

} 

'* interrupt handler for print screen interrupt 
Takes a snapshot of conventional memory into expanded memory 

*' 
void interrupt cdecl far int5_isr(es,ds,di,si,bp,sp,bx,dx,cx,ax,ip,cs,flags) 
unsigned es, ds, di, si, bp, sp, bx, dx, ex, ax, ip, cs, flags; 
{ 

static int re = O; 
int status; 
if C!isr_status) 

f* keep track of Last return code *' 
'* if interrupt service is not activated, 

chain *' 
f* to the previous interrupt handler *' 

_chain_intrCold_int5); 

if Crc == O> { f* proceed only if no previous errors *' 
re = EMSGetPageMapCemm_save>; 

continued 

433 



Devices 

Listing 7-8. continued 

if (re -- Q) { '* context saved successfully *' 
f* take a snapshot of the screen *' 

re = dump_screen(); 

f* restore previous mapping context *' 
if (status = EMSSetPageMap(emnLsave)) 

re = status; '* update error code *' 
} 

} 

'*if any failure has occurred, announce it audibly*' 

if (re) 
Beep(32000); 

} 

dump_screen() 
{ 

434 

int re; 
unsigned int overflow, new_offset, scr_size; 

'* map screen index data in Logical page 0 into physical page 0 *' 
if (re = EMSMapHandlePage(em11Lhandle, O, 0)) 

returnCrc); f* failure*' 

f* make sure we haven't run out of index entries *' 
if (ip->scr_count >= ip->scr_max> 

return(1); '* index full *' 
f* if screen would overf Low page, allocate one or more 

additional pages *' 

scr_size = vp->crt_cols * SCR.....ROWS * 2; f* #bytes on screen *' 
new_offset = sp->scr_offset + scr_size; '* new offset in save buffer *' 
if (new_offset > PAGE_SIZE) { '* screen overflows page*' 

overflow = new_offset - PAGE._SIZE; 

emnLpages += (overflow I PAGE._SIZE); 

'* amount that 
overflows page *' 

f* #additional 
pages needed *' 



7 - Using Expanded Memory 

new_offset =overflow % PAGE-SIZE; I* size of odd 
fragment *I 

if (new_offset) I* add page for 
odd-size *I 

emrrLpages++; I* fragment if 
necessary */ 

if (re = EMSReallocPages(emm.....handle, &emm.....pages)) 
return(rc); I* fai Lure *I 

} 

I* snapshot displayed video screen into expanded memory *I 

mcb.region_Length = (Long) scr_size; I* # bytes on screen 
in conventional 
memory *I 

mcb.source.memory_type = CONV_MEM; 

mcb.source.handle 
mcb.source.initial_offset 

= O; 
= vp->crt 

I* no handle is used *I 

_start;/* starting screen offset *I 
mcb.source.initial_seg_page = Cvp->crt_mode == 7) ? MDA_SEG : CGA-SEG; 

I* works with color/monochrome text only */ 
mcb.dest.memory_type = EXP_MEM; I* goes into 

expanded memory *I 
mcb.dest.handle = emrrLhandle; I* handle 

mcb.dest.initial_offset 

mcb.dest.initial_seg_page 

if (re = EMSMoveRegionC&mcb)) 
return(rc); 

BeepC1000); 

previously 
a L Located *I 

= sp->scr_offset; I* next available 
offset *I 

= sp->scr 
_page; I* in the current page *I 

I* EMS move memory region *I 
I* failure *I 

I* issue a short beep to signal 
success *I 

I* update screen index data (Move Region did not disturb mapping 
context) *I 

ip->scr_count++; 

sp->scr_Len = scr_size; 
sp->scr_width = vp->crt_cols; 

I* increment #of 
screens saved */ 

I* store # bytes on screen *I 
I* store# columns per Line *I 

continued 

435 



Devices 

} 

Listing 7-8. continued 

sp++; 

sp->scr_Len = O; 
sp->scr_width = O; 
sp->scr_page = em11L.pages - 1; 

sp->scr_offset = new_offset; 

return( re>; 

-
'* point to next index 

element *' 
'* new screen not dumped yet *' 
'* so zero Length and width *' 
f* new screen goes on 

Last page allocated *' 
'* immediately following 

previous screen *' 

'* success *' 

'* deallocate expanded memory, if allocated *' 

cleanup() 
{ 

int re; 

f* ignore return code, since we may be invoked from an error procedure *' 

if Cem11L.handle != -1) 
re = EMSDeallocatePagesCem11L.handle>; 

} 

#pragma check_stackCon) 

mainCargc, argv) 
int argc; 
char *argv[J; 
{ 

436 

int eml!L.present, re; 
unsigned int far *pseg_top; 
char eml!L.v~r[4J; 

get_opts(argc, argv); '*obtain command Line switches *' 

em11L.handle = -1; '* no expanded memory handle is allocated *' 

f* install control-c (break) handler *' 

signaLCSIGINT, break._handler>; 

'* test for presence of expanded memory *' 



7 - Using Expanded Memory 

if (re = emm_existsC&emm_present)) { f* emm presence test failed*/ 
printf("snapshot: EMM presence test fai Led, re: %d", re); 
exit(2); 

} 

if C!emm_present) { f* expanded memory is not present *f 
printf ("snapshot: No expanded memory is present"); 
exitC1>; 

} 

f* obtain version of EMS supported by the EMM */ 

if (re = EMSGetVersion(emm_ver)) { 
DisplayError(rc); 
exitC1>; 

} 

f* make sure it's at Least version 4.0 *f 

if C*emm_ver < '4') { f* requires LIM EMS 4.0 or greater *f 

} 

printf("snapshot: Unsupported EMM version detected: %s, LIM 
EMS 4.0 or greater is required", emm_ver); 

exitC1>; 

f* get pointer to EMS page frame *f 

if (re = EMSGetFrameAddrC&page_frame)) { 
DisplayError(rc); 
exitC1>; 

} 

f* Look up EMS handle which contains the stored screens */ 

re = EMSSearchHandleName(HANDLE_NAME, &emm_handle>; 

f* error if any return code other than 'normal' or 'handle not found' *f 

if (re != 0 && re != HNDVLNFD) { 
DisplayError(rc); 
exitC1>; 

} 

f* either terminate the TSR, install the TSR, or show its 
current status *f 

continued 

437 



Devices 

} 

Listing 7-8. continued 

if Cterminate_f lag) { f* user has requested termination *' 

if (re == 0) '* handle with our name exists *' 
f* so try to un-install ourself *' 
f* handle does not exist, so can't else { 

} 

termi nateO; 

terminate *' 
printfC"snapshot: can't terminate - not installed">; 
exitC1>; 

} else { f* either install or give status *' 

} 

f* if a handle named HANDLE._NAME already exists, then *' 
'* just report how much EMS memory is currently allocated *' 
f* and how many screens are stored in it. Otherwise, install *' 
'* an ISR for the print screen interrupt and make the *' 
f* program resident. *' 

if Crc 

else { 

} 

== 0) '* handle with our name already exists *' 
show_status 0; '* so just show status *' 

'* handle does not exist *' 
install 0; '* so al locate one and install ISR *f 

'* terminate and stay resident *' 

FP_SEGCpseg_top) = _psp; '* ending para. of program 
is at psp+2 *' 

FP_OFFCpseg_top) = 2; 

printf("snapshot: TSR installing at segment [%04XJ, 
size %u paragraphs\n", _psp, *pseg_top - _psp); 

_dos_keepCO, *pseg_top - _psp); '* # paragraphs 
in program *' 

'*display the handle id, #of logical pages allocated to that handle*' 
'* and the number of screens currently stored in EMS *' 

show_statusO 
{ 

int re; 
unsigned int alloc_pages, screens; 

438 



} 

7 - Using Expanded Memory 

I* Look up# of EMS pages allocated to the EMM handle*' 

if (re = EMSGetHandlePages(emm_handle, &alloc_pages)) { 
DisplayErrorCrc); 
cleanup(); 
exitC1); 

} 

'*map in the first Logical page, containing the screen index 
into physical page zero*' 

if (re = EMSMapHandlePage(emm_handle, O, 0)) { 
DisplayErrorCrc); 
cleanup(); 
exitC1>; 

} 

I* get addressability to screen index data structure in 
expanded memory *' 

ip = CSCR_INDEX far *) page_frame; 

I* print the current status *' 

printf("snapshot: status - EMS handle C%d); EMS pages C%d); 
screens (%d)\n", 

emm_handle, alloc_pages, ip->scr_count); 

I* unmap the screen index page *' 

if (re = EMSMapHandlePage(emm_handle, -1, 0)) { 
DisplayError(rc); 

} 

cleanup(); 
exit C 1); 

'* Obtain an EMS handle with one Logical page from the EMM, *' 
I* and name the handle so that other programs may access it. *' 
I* Initialize the screen index data structure, which will be*' 
'* Located at the start of the first EMS page. Then insert *' 
I* an interrupt service routine for the print screen interrupt *' 
I* so that screen images are saved in expanded memory when the *' 
I* user presses the PrtSc key. *' 

install() 
continued 

439 



Devices 

{ 

440 

Listing 7-8. continued 

int re, context_bytes; 

f* allocate 1 page to start *f 

emm_pages = 1; 

if (re = EMSALlocatePagesC&emnLhandle, em11Lpages)) { 
DisplayError(rc); 
exit(1); 

} 

f* give the handle a name so other programs can find it *f 

if (re = EMSSetHandleName(emnLhandle, HANDLE._NAME )) { 
DisplayError(rc); 
cleanup(); 
exitC1>; 

} 

printf ("snapshot: allocated expanded memory handle 
# %d with name '%s'\n", 

emm_handle, HANDLE_NAME); 

f* initialize the data in the screen index page *f 
f* which will be stored in Logical page 0 *f 

if (re = EMSMapHandlePage(em11Lhandle, O, 0)) { 
DisplayError(rc>; 
cleanup(); 
exit(1); 

} 

f* get addressability to screen index data structure *f 

ip = (SCR__INDEX far *> page_frame; 

f* initialize the data therein *f 

ip->scr_count = O; f* #of screens saved *f 
ip->scr_max = MAl<_SCR f* maximum #to save *f 
ip->scr_int5 = int5_isr; f* pointer to our print screen ISR *f 
sp = ip->scr_idx; f* -> 1st index element *f 
sp->scr_page = sizeof(*ip) I PAGE_SIZE; f* screens begin *f 



7 - Using Expanded Memory 

sp->scr_offset = sizeof(*ip) % PAGE_SIZE; 
f* immediately after index *f 

sp->scr_Len = O; f* initially empty *f 
sp->scr_width = O; 

f* unmap the screen index page *f 

if (re = EMSMapHandlePage(emm_handle, -1, Q)) { 

DisplayError(rc); 
cleanup(); 
exit(1); 

} 

f* allocate an expanded memory context save area for use by the 
print screen interrupt handler *f 

if (re = EMSGetPageMapSizeC&context_bytes)) { 
DisplayErrorCrc); 
cleanup(); 
exit(1); 

} 

if ((emm_save = (PMAP *) malloc(context_bytes)) == NULL) { 
printf("snapshot: Couldn't allocate %d bytes for context 

save area", context_bytes); 
cleanup(); 
exit(1); 

} 

f* install an interrupt handler to intercept print screen requests *f 

old_int5 = _dos_getvect(PRTSC_INT); f* save old interrupt vector *f 
_dos_setvect(PRTSC_INT, int5_isr); f* install new vector *f 

printf("snapshot: print screen interrupt handler is installed\n"); 

isr_status = 1; 
f* Let new one service interrupts */ 
printf("snapshot: print screen interrupt handler is activated\n"); 

} 

f* de-install TSR from memory at the request of the user *f 

termi nateO 
{ 

int re; 
continued 

441 



Devices 

442 

Listing 7-8. continued 

unsigned int tsr_psp; 

unsigned int far *envptr; 
void (interrupt far *our 
_int5)0; 

I* program prefix segment of 
active TSR *' 

'* TSR's environment pointer *' 

I* address of installed tsr *' 

I* suspend processing of print screen interrupts *' 

isr_status = O; 
printf("snapshot: print screen interrupt handler 

deacti vated\n"); 

I* map in page containing screen index *' 

if (re = EMSMapHandlePage(emm_handle, 0, Q)) { 

DisplayError(rc); 
c leanupO; 
exitC1>; 

} 

I* get addressability to screen index data structure*' 
I* so we can obtain the address of the interrupt service *' 
'* routine we installed when the program started *' 

ip = CSCR-INDEX far *> page_frame; 
our_int5 = ip->scr_int5; 

I* release expanded memory *' 

cleanup(); 

I* get stored ISR address *' 

printf("snapshot: expanded memory handle %d deallocated\n", emm_handle); 

I* if no other print screen handler has been installed ahead *' 
I* of us, then unhook the interrupt service routine and *' 
'* de-install the program *' 

if (_dos_getvectCPRTSC_INT) == our_int5) { '*our ISR is first *' 

I* restore the old print screen interrupt vector *' 

_dos_setvectCPRTSC_INT, olc:Lint5); 
printf("snapshot: old print screen interrupt handler 

restored\n"); 

'*free the TSR's environment strings and program segment*' 



} 

7 - Using Expanded Memory 

tsr_psp = FP_SEG(our_int5) - 16; '* PSP starts 16 para. 
before code segment *' 

printf("snapshot: deallocating TSR at segment [%04XJ\n", 
tsr_psp); 

FP_SEG(envptr) = tsr _psp; '* environment pointer 
at off set *' 

FP_OFF(envptr) = Ox2C; '* 2Ch in the program 
segment prefix *' 

_dos_freemem(*envptr); '* free the environment 
strings *' 

_dos_freemem(tsr_psp); '* free the program 
segment *' 

is 

} else '*our ISR is not first in chain, cannot de-install TSR *' 
printf("snapshot: cannot deallocate TSR - print screen ISR 

is not first in chain\n"); 

'* process command Line switches in the form /L, where 'L' is *' 
I* a single character switch identification. Returns index of *' 
I* the first element in the ptr array following the switches. *' 

get_opts(cnt, ptr) 
int cnt; 
char *ptr[J; 
{ 

int argc; 

terminate_flag = O; 

argc = 1; 
whi Le ((*++ptr)[QJ == '/') { 

switch((*ptr)[1J) { 

'* turn terminate f Lag off */ 

case '?' : '* display command and switch usage *' 
printf("snapshot: saves text screen images 

to expanded memory\n"); 
printf ("usage: snapshot [/XJ\n"); 
printf (" IX - terminates snapshot"); 
exit CO>; 
break; 

case 'x': 
case 'X': 

I* terminate request *' 

continued 

443 



Devices 

} 

#include 
#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 

#define 

#define 

#define 

#define 

} 

argc++; 
} 

return(argc); 

default: 

Listing 7-8. continued 

terminate_f lag = 1; 
break; 

I* unknown switch *I 
printfC"'%c' is an unknown option\n", C*ptrH1J); 
break; 

Listing 7-9. PLAYBACK.C 

'* Name: PLAYBACK.C 
Purpose: Dump text screen images saved in expanded memory by the 
SNAPSHOT program to the DOS standard output file. 

*' 

<stdio.h> 
<stdlib.h> 
<signal.h> 
<dos.h> 
<bios.h> 

"emmconst.h" '* EMM constants *' 
"emmtypes.h" '* EMM data structures *' 
"emmerr.h" '* EMM error codes *' 
"emmfunc.h" '* EMM function declarations *' 

DisplayError(rc) ShowEMMErrCrc, _LINE___, __ FILE._) 

HANDLE__NAME ''SNAPSHOT" '* expanded memory 
handle name *' 

MA)LSCR 500 '* maximum number of 
screens to save *' 

SCILCOLS 80 '* assume 80 columns - we can 
fix this later *' 

#pragma pack(1) '* byte align data structures *' 

444 



7 - Using Expanded Memory 

typedef struct scr { 

unsigned int scr _page; 

unsigned int scr_offset; 

unsigned int scr_width; 
unsigned int scr_Len; 

} SCR; 

typedef struct scr_index { 

void (interrupt far *scr_int5)(); 

unsigned int 

unsigned int 

SCR 
} SCILINDEX; 

'* 

scr_count; 

scr_max; 

scr_idx[MAlLSCRJ; 

global data 

*' 

I* screen data descriptor *' 
'* screen starting expanded 

memory page *' 
I* screen starting expanded 

memory off set *' 
I* # cols on the screen *' 
'* screen Length, in bytes *' 

I* screen index structure *' 

I* pointer to our interrupt 
service routine *' 

I*# of screens currently 
saved *' 

'* maximum #of screens to 
save *' 

'* screen index array *' 

unsigned int emm_handle, 
emm_pages; 

'* expanded memory handle *' 

'* #pages belonging to handle 
char far 
SCILINDEX 
SCR 

*page_ frame; 
far *ip; 
far *sp; 

'* far 

'* far 

'* far 

-> to EMS page frame *' 
-> to screen index *' 
-> to screen descriptor 

MOVE __ XCHG mcb; 
structure *' 

'* move/exchange region 

main() 
{ 

unsigned int scan_code; 
int emm_present, re, current_screen; 
char emm_ver[4J; 

'* test for presence of expanded memory *' 

if (re = emm_exists(&emm_present)) { 
'* EMM presence test failed*' 

} 

printf("replay: EMM presence test fai Led, re: %d", re); 
exit(2); 

*' 

*' 

contim<ed 

445 



Devices 

Listing 7-9. continued 

if (!emm_present) { 
f* expanded memory is not present *' 

446 

} 

printf("replay: No expanded memory is present"); 
exit(1); 

f* obtain version of EMS supported by the EMM *' 

if (re = EMSGetVersion(emm__ver)) { 
DisplayError(rc); 
exit(1); 

} 

f* make sure it's at Least version 4.0 *' 

if (*emm_ver < '4') { f* requires LIM EMS 4.0 or greater*' 
printf ("replay: Unsupported EMM version detected: %s, LIM 

EMS 4.0 or greater is required", emm__ver); 
exit(1); 

} 

f* get pointer to EMS page frame *' 

if (re = EMSGetFrameAddrC&page_frame)) { 
DisplayError(rc); 
exit(1); 

} 

I* Look up handle which contains the stored screens *' 

if Crc = EMSSearchHandleName(HANDLE_NAME, &emm__handle)) { 
DisplayErrorCrc>; 
exit(1); 

} 

I• map in the page containing the screen index *' 

if (re = EMSMapHandlePage(emm__handle, O, 0)) { 
DisplayError(rc>; 
exit(1); 

} 

f* get addressability to screen index data structure*' 

ip = (SCR-INDEX far *> page_frame; 
sp = ip->scr_idx; I• point to first saved screen*' 



} 

7 - Using Expanded Memory 

if (ip->scr_count == 0) 

else 
printf ("replay: no screens have been saved"); 

dump each stored screen image to standard output 

for (current_screen = O; current_screen < ip->scr_count; 
current_screen++) { 

re 

if (re) { 

} 

} 

print_screen(sp++); 

/* an expanded memory error 
has occurred *f 

DisplayError(rc); 
exit(1); 

f* unmap the screen index page *I 

if (re = EMSMapHandlePage(emm_handle, -1, Q)) { 

DisplayError(rc); 

} 

exit CD; 

Given a far pointer to a screen descriptor stored in expanded 
memory, write each character of the stored screen image to 
the DOS standard output f i Le. 

prinLscreen(sp) 
SCR far *sp; f* far -> screen descriptor *f 
{ 

int re, i, Lpages, Line, rows; 
char *line_buf[SCR_CQLS+1J; 
int far *bp; 
struct SREGS segregs; 

f* calculate how ma~y physical pages we need to map in *f 

Lpages = 1; f* at Least one page *f 

continued 

447 



Devices 

} 

_TEXT 
_TEXT 
_DATA 
_DATA 
CONST 

448 

Listing 7-9. continued 

if (sp->scr_offset + sp->scr_Len > PAGE_SIZE) 
Lpages++; 

'*map Logical page(s) which contain the screen image *f 
f* to physical pages starting with physical page 1 */ 

for Ci = O; i < Lpages; i++) 
if (re = EMSMapHandlePage(emrTLhandle, i + sp->scr_page, 

return(rc); f* failure*/ 

f* get addressability to physical page 1 */ 

bp = (int far *> page_frame; 

FP_SEG(bp) += CPAGE_SIZE I 16); 

FP_OFF(bp) = sp->scr_offset; 

f* page frame base 
address *f 

f* # paragraphs in 
an EMS page *f 

rows= sp->scr_Len I sp->scr_width I 2; f* calculate# Lines 
per screen *f 

putchar('[bsJ014'); f* start a new page *f 

f* write each character on the screen image to standard output *f 

for Cline = O; Line < rows; Line++) { 
i = sp->scr_width; 

} 

while Ci--) 
putchar(*bp++ & OxFF); 

putchar('[bs]n'); 

return( re); 

Listing 7-10. BEEP.ASM 

TITLE Beep 

f* output a newline 
after each Line *f 

SEGMENT BYTE PUBLIC 'CODE' 
ENDS 
SEGMENT WORD PUBLIC 'DATA' 
ENDS 

SEGMENT WORD PUBLIC 'CONST' 

+ 1)) 



7 - Using Expanded Memory 

CONST 
_BSS 
_BSS 
DGROUP 

_TEXT 
timer 
porLb 

ENDS 

GROUP 
ASSUME 

equ 

SEGMENT 
ENDS 

WORD PUBLIC 'BSS' 

CONST, _BSS, 
cs:_TEXT, DS:DGROUP, 
SEGMENT 
40h 
equ 61 h 

_DATA 
SS:DGROUP, ES:DGROUP 

;----- Emits an audible tone on the IBM PC's internal speaker 
; The Length of the tone is controlled by a single integer argument. 
; 

_Beep 

beepO: 

_Beep 
_TEXT 

PUBLIC 
PUBLIC 
PROC 
push 
mov 
mov 
out 
mov 
out 
mov 
out 
in 
mov 
or 
out 
mov 
mov 
Loop 
dee 
jnz 
mov 
out 
pop 
ret 

END 

_Beep 
_Beep 
NEAR 
bp 
bp,sp 
al,10110110B 
timer+3,al 
ax,533H 
timer+2,al 
al,ah 
timer+2,al 
al,port_b 
ah,a L 
al,03 
porLb,a L 
cx,[bp+4J 
bl,1 
beepO 
bl 
beepO 
al,ah 
porLb,a L 
bp 

ENDP 
ENDS 

; gen a short beep Clong one Loses data) 
; code snarfed from Technical Reference 

449 







8 - Programming the Serial Port 

~HE serial port in an MS-DOS system provides a gateway to the outside ~ world. The basic purpose of the serial port is to send and receive data over 
a line in the form of a stream of bits. (Contrast this with a parallel port in which 
an entire byte is transferred at once.) You can use the serial port to attach a 
mouse to the system, send data to a printer, or dial out using a modem. Although 
MS-DOS systems do not need serial ports to function, these ports have become a 
standard system peripheral. 

The serial port on MS-DOS systems is capable of supporting the RS-232C 
standard for asynchronous communications. Even though the ROM-BIOS, stan
dard on all MS-DOS systems, and MS-DOS itself include some support for 
programming the RS-232C ports (for example, interrupt number 14h), this sup
port, as we will explain soon, is not adequate for high speed communications. If 
you want to include efficient serial communications capabilities in an applica
tion, you have to access the serial port at the hardware level. This chapter will 
show you how. 

Basics of Asynchronous Serial Communications 

In data communications, we are interested in transferring bytes of data from 
one device to another-say, from the PC to a modem or to a serial printer. Ifwe 
had eight lines between the two devices, we could let each line correspond to a 
bit and send the data 1 byte at a time. This would be a parallel transfer. The 
parallel port on the PC works this way, although in addition to the eight data 
lines there are other signal lines to assist in data transmission. 

On the other hand, if we have only a single line, we have to send each byte 
of data serially, one bit at a time. Furthermore, we may also decide to send the 
data synchronously so that every byte is sent at a predetermined time (say, 
once every x seconds), or asynchronously at a rate that is not necessarily 
uniform. 

Serial communication is cheaper than parallel because it requires fewer 
data lines-as few as two for two-way communication. Also, the asynchronous 
mode of transmission makes much less demand on hardware because there is no 
need for special hardware to maintain synchronism between the transmitter and 
the receiver. 

453 



Devices 

Telephone Line 

Figure 8-1. Asynchronous serial communication. 

454 

Receiving 
Computer 

to modem I 



8 - Programming the Serial Port 

Thus, asynchronous serial communication is the preferred solution be
cause of low cost and lower complexity in hardware. Of course, in this mode of 
data transmission we must have a means to convert each data byte into a series 
of bits and to indicate to the receiver the beginning and the end of each byte. 
Figure 8-1 illustrates the concept of asynchronous serial communication. 

For the moment let us assume that we have some means of converting each 
byte into a stream of l's and O's, bits that can be transmitted over the communi
cations medium (for example, the telephone line). In fact, the Universal 
Asynchronous Receiver Transmitter (UART) performs precisely this function, 
as we will see in the next section. It is normal practice to indicate that a line is 
"ok" by keeping it at a logical 1 when it is idle, meaning that nothing is being 
sent over the line. In this case, the line is said to be marking. On the other hand, 
when the line is at a logical 0, it is said to be spacing. Thus, logical 1 and 0 are 
also referred to as MARK and SPACE, respectively. 

In asynchronous communication, a change in the condition of the line from 
MARK to SPACE indicates the start of a character (see Figure 8-2). This is re
ferred to as the start bit. Following the start bit is a pattern of bits representing 
the character and then a bit known as the parity bit. Finally, the line changes to 
its idling MARK condition which represents the stop bit and indicates the end of 
the current character. The number of bits used to represent the character is 
known as the wordlength and is usually either seven or eight. The parity bit is 
used to perform rudimentary error detection. 

Direction of 
Transmission 

Duration Line returns 

MARK
1
::•1 L\ l"/i'-0 ------ 0 ------ 0 -----r- - tE r--

11111111 -r.-i ! 
SPACE or o _o_l_~j_=_L_3_J_~_!_~_l_~J-~_L_J ___ ! ______ _LJ_ __ _ 

I I \ ! 
START bit 7 or 8 bits PARITY STOP Start of 

of data bit bit another 
character 

Figure 8-2. Format of a single character in asynchronous 
serial communication. 

How does the transmitter (or the receiver) know how long each bit lasts? 
In fact, both must have some knowledge of this duration, or the detection of the 
bits would be impossible. The duration of each bit is determined by data clocks 
at the receiver and the transmitter. Note, however, that while the clocks at the 
receiver and the transmitter must have the same frequency, they are not re
quired to be synchronized. The selection of the clock frequency depends on the 
baud rate, which refers to the number of times the line changes state every 

455 



Devices 

456 

second. Nominally, a clock rate of "16 times baud rate" is used so that the line is 
checked often enough to detect the start bit reliably. 

There is one particular condition of the line that is sometimes used to gain 
the attention of the receiver. The normal state of the line is MARK (or 1) and the 
beginning of a character is indicated by a transition to SPACE (0). If the line 
stays in the SPACE condition for a period longer than the time it would have 
taken to receive all the bits of a character, then we say that a BREAK condition 
has occurred. There is no ASCII representation of BREAK-it is essentially 
the line "dropping dead" for a short duration of time that constitutes a BREAK. 

Parity and Error Detection 
Earlier, we mentioned the parity bit as being useful for error detection. For ex
ample, when even parity is selected, this bit is set so that the total number of l's 
in the current word is even (a similar logic applies for odd parity). At the receiv
ing end, the parity is recalculated and compared with the received parity bit. If 
they disagree, the receiver declares that a parity error has occurred. A major 
drawback of error detection via parity check is that it can only detect errors that 
affect a single bit. For example, the bit pattern 0100 0001 0 (ASCII A), transmit
ted with 8-bit wordlength and even parity, may change (due to, say, noise in the 
line) to 0100 0111 0 (ASCII G), but to the receiver everything would seem fine 
because the parity is still even. 

Communicating with the RS-232C Standard 
Previously we mentioned sending l's and O's over a telephone line. Although in 
the PC we represent the l's and O's by voltage levels, the signals carried in the 
telephone line are usually tones of different frequencies. The device that sits be
tween the PC's hardware and the transmission line and makes data communica
tion possible is the modem (modulator/demodulator). A modem can convert 
information back and forth between the voltage/no voltage representation of 
digital circuits and analog signals (for example, tones) appropriate for transmis
sion through the telephone lines. Standards such as the RS-232C (set forth by 
the Electrical Industry Association, EIA) specify a prescribed method of infor
mation interchange between the modem (or in EIA terminology "data communi
cations equipment, DCE") and the PC's communications hardware (or "data 
terminal equipment, DTE"). A modem can be operated in one of two modes: half 
duplex or full duplex. Half duplex mode can transmit in only one direction at a 
time, while full duplex operation permits independent two-way communica
tions. The RS-232C standard provides control signals such as "Request-To-Send 
(RTS)" and "Clear-To-Send (CTS)" that may be used to coordinate the transmis
sion and reception of data. The term handshaking is used to describe the coordi
nation of transmission and reception of signals. As shown in Figure 8-3, the 
RS-232C standard is evident in the cable and connectors used to connect the PC 
to the modem. 

Although we have used the modem as an example of data communications 
equipment (DEC), other devices such as a mouse or a printer with the appropri-



8 - Programming the Serial Port 

RS-232C 

PC or 

~---------------------------, 
Pin Pin 

Number Number 
DTE..-----. DCE 

2t----TD 2 

3 RD 3 

4 ATS 4 

5 CTS 5 

6 DSR 6 

_c- 7 Comm 

~ 8 RLSD 

on- 7~ 
8 

20 DTR 20 

22 RI 22 . . . 
L---------------------------~ 

Transmit Data 
Received Data 
Request To Send 
Clear To Send 
Data Set Ready 

TD 
RD 
ATS 
CTS 
DSR 
RLSD 
DTR 

Receive Line Signal Detector 
Data Terminal Ready 

Data Terminal Equipment 
(DTE) 

Figure 8-3. The RS-232C connection. 

to 
telephone 

line 

Modem or Data 
Communications 
Equipment (DCE) 

ate circuitry can also exchange data with the PC through the serial port. Thus, 
all references in this chapter to a modem apply equally to a serial printer or a 
serial mouse. 

Flow Control with XONIXOFF 

In addition to the handshaking via the hardware RTS/CTS signals, special 
ASCII control characters (Control-Q/Control-S or XON/XOFF) are used to 
achieve flow control in software. Flow control is necessary because sometimes 
either the transmitter or the receiver may not be able to keep up with the rate of 
transmission and should be able to inform the other party to stop while it 
catches up. 

Suppose the receiver has a buffer to store incoming characters. As the 
buffer gets close to full, the receiver can send an XOFF character to the trans
mitter indicating that transmission should stop. Of course, the transmitter must 
understand the meaning of XOFF and cease sending characters. Then, when 
the receiver processes characters (say, puts them in a disk file) and the buffer 
empties, it can send an XON to indicate that transmission can proceed. This 
scheme of flow control is widely used because of its simplicity. Most communica
tions programs allow full duplex communication with XON/XOFF flow control. 

457 



Devices 

A Programmer's View of the Serial Port 

458 

The serial port hardware on MS-DOS systems is known as the serial adapter or 
asynchronous communications adapter (we will refer to it as the serial adapter 
in the rest of the chapter). This adapter is based on the Intel 8250 UART (Uni
versal Asynchronous Receiver Transmitter), has an RS-232C port for connect
ing to the modem, and, like the display adapter, is programmable through a set 
of registers. The registers are accessible to the microprocessor through pre
defined I/O port addresses. 

The Intel 8250 UART is controlled by writing to, or reading from, a set of 
8-bit registers. These registers are accessible to the programmer via port ad
dresses. The port addresses are assigned sequentially, so it is enough to know 
the address of the first port. This is also commonly known as the base address of 
the serial adapter. In the IBM PC, the two serial ports COMl and COM2 are 
assigned base port addresses 3F8h and 2F8h respectively. Thus, for the serial 
adapter COMl, the first register is at 3F8h, the next one at 3F9h, and so on. 

There are seven physical registers in the 8250, and these are described in 
order of increasing offsets from the base address. As Figure 8-4 shows, the base 
port address has a single register that doubles as the receive buffer register and 
the transmit holding register (THR), which is used to store a single character 
that is being received or transmitted. Next comes the interrupt enable 1·egister, 
which is used to enable or disable interrupts that the serial adapter is capable of 
generating. The third register, called the interrupt identification register, con
tains the U ART's report on the identity of an interrupt. Then comes the line 
control register, used to set up various communications parameters such as 
wordlength, number of stop bits, parity, and baud rate. The fifth register is the 
modem control register, which is used to send signals such as DTR (Data Termi
nal Ready) and RTS (Request To Send) to the modem. Finally, the last two regi
sters, the line status register and the modem status register indicate the status 
of the line and the modem, respectively. 

The first two registers are also used in setting baud rates. The baud rate is 
set by specifying a 16-bit divisor for the clock frequency used by the serial 
adapter (1.8432 MHz in most MS-DOS systems). The value of the divisor is com
puted by the formula 

divisor = 1,843,200 

16 x baud rate 

To set the baud rate, you have to follow three steps: 

1. Set the most significant bit of the line control register (this is called the 
divisor latch access bit or DLAB) to 1. 

2. Load the low and the high bytes of the divisor into the receive buffer and 
the interrupt enable registers, respectively. 

3. Reset DLAB to 0 for normal UART operation. 



PORT ADDRESS 
OF REGISTER 

Base Address: 
(COM1-3F8 
COM2-2F8) 

Base Address + 1 : 

Base Address +2: 

Base Address + 3: 

Base Address +4: 

Base Address +5: 

Base Address + 6: 

8 - Programming the Serial Port 

Receive Buffer/Transmit Holding Register 

Interrupt Enable Register 

0 0 0 0 

Set bit to 1 to enable 

Interrupt Identification Register 

Line Control Register 

BREAK 

'1 sets line to SPACE 

Modem Control Register 

0 0 0 

Line Status Register 

Loop back 
Test 

Modem 
Status 

OUT2 

3-bit Interrupt ID 
11 o =Line status 
100 =Received data 
010 =Transmit buffer empty 
000 =Modem status 

OUT1 ATS DTR 

'Must be 1 for interrupt 1/0 on PC 

0 
Trans. 
Empty 

BREAK Framing Parity Overrun 
detected Error Error Error 

Modem Status Register 

Figure 8-4. Registers in the 8250 UART. 

459 



Devices 

Using this approach, you can set the baud rate to any value you want. Note 
that the maximum possible baud rate is 1/i.6 of the clock frequency, or 115,200 
baud (for this baud rate the divisor is 1). This limit stems from the fact that the 
divisor cannot be less than 1. You can also use BIOS interrupt 14h to set the 
baud rate. We will discuss the use of BIOS later in the chapter. 

Interrupt-Driven Serial 110 

460 

There are two common methods of 1/0 in any computer system: polled and inter
rupt-driven. Polling refers to the repeated checking of the status register of 
the 1/0 device to see ifthe desired transaction can be initiated. In polled 1/0, the 
program requesting an input character repeatedly reads a status register 
in the 1/0 device until it indicates that a character is available for input (or until 
the program decides to "time out"). When the status indicates that there is a 
character ready, the program reads the character from the appropriate register 
in the 1/0 device. A similar sequence of "wait until ready, then write" is used 
when writing characters out to the 1/0 device. Thus, the thread of execution of 
the program is held up until the 1/0 operation is complete. 

A big problem with polled 1/0 through the communication port is that at 
baud rates above 300 baud there is hardly any time available for the program to 
do anything with the received character, even display it on the screen. Consider 
the following example. Suppose you are reading characters at 300 baud and the 
communication parameters are 7-bit wordlength, even parity, and one stop bit 
which, with the start bit, adds up to 10 bits per character. So you expect to re
ceive roughly 30 characters every second. After reading a character, your pro
gram has about Vso of a second to do other chores. If you do not want to miss any 
characters, you must begin polling the port again before this time is up. What 
happens when the speed is increased to 9600 baud? The time interval between 
characters is too short to even put the received character on the display, let 
alone interpret special characters and emulate a terminal. 

In the interrupt-driven approach, the program enables interrupts from 
the 1/0 device, assuming it is capable of signaling interrupts to the CPU, and 
then it goes about its own business without any concern for the device. When
ever the device is ready for 1/0, it signals the CPU via hardware. Upon receiv
ing this signal, the CPU saves its current state and invokes an interrupt service 
routine whose address is stored in an interrupt vector table. This routine per
forms the 1/0, and then it restores the state of the machine and returns to the 
interrupted program. Consider the case of characters arriving at the communi
cation port of the PC. If you set aside some memory locations to hold characters 
(a buffer), then you can use a simple interrupt handling routine that quickly 
reads the character from the communication port and saves it in the next avail
able location in the buffer. As long as the interrupt handler can read and save a 
character before another one arrives, no characters will be lost. This simple task 
is easy enough to complete even in the short time interval between characters at 
9600 baud. The beauty of this method is that it does not matter how long the 
main program takes to manipulate the characters saved in the buffer. Of course, 
there is the risk of filling up the buffer, but this can be remedied by simply in-



8 - Programming the Serial Port 

creasing the size of the buffer. If this is not good enough, XON/XOFF flow con
trol can be implemented to avoid overflowing the buffer. 

From our discussions, it should be clear that an interrupt-driven, buffered 
communication with XON/XOFF flow control is preferred over a polled 
implementation. 

Interrupts from the Serial Adapter 
The serial adapter on the PC can be programmed to interrupt the CPU when
ever one of four things happens (see Figure 8-5). The UART assigns a priority to 
each of these events. Table 8-1 lists the four interrupts. 

I. 
ASCII Characters 

• 

Serial 

Interrupt 
Identification 

) 

Adapter .._ ______ _ 

Interrupt ..n.. 
to 8259A 

Figure 8-5. Interrupts from the serial adapter. 

Table 8-1. Serial Adapter Interrupts 

Priority Interrupt ID 

1 Receive line status (RLS) 
2 Receive data available (RDA) 
3 Transmit holding register empty (THRE) 
4 Modem status (MS) 

The event with highest priority is the receive line status (RLS) interrupt, 
which is processed by reading the line status register. An RLS interrupt occurs 
when one of the following happens: 

• The line goes dead (logical 0) for a period longer than that necessary to 
receive a character. 

• A character is received before the last one was read (an overrun error). 

461 



Devices 

• There is a parity error. 
• No stop bit was found while assembling a character from the received bits 

(a framing error). 

Next comes the receive data available (RDA) interrupt, which occurs 
when a character is ready in the receive buffer register. It can be cleared by 
reading the character from that register. 

The transmit holding register empty (THRE) interrupt has the next pri
ority. As the name suggests, it occurs when the register assigned to hold the 
character to be transmitted (same port address as the receive buffer register) is 
empty. This interrupt is processed by writing to this register or by reading from 
the interrupt identification register. The second method of clearing this inter
rupt is necessary because sometimes, even though the UART interrupts to say 
the transmit buffer is empty, there may not be anything to transmit. 

The lowest priority interrupt is the modem status (MS) interrupt. This is 
caused when the modem: 

• Asserts (sends) the "Clear To Send" (CTS) signal. 
• Indicates its readiness by setting the "Data Set Ready" (DSR) line. 
• Receives a call, setting the "Ring Indicator" (RI) line to a logical 1. 

• Detects a carrier signal (that tone you hear when you dial a number and a 
modem answers) setting the "Receive Line Signal Detect" (RLSD) line 
to 1. 

The modem status interrupt can be cleared by reading the modem status 
register. 

These interrupts may be turned on or off individually by setting appropri
ate bits in the interrupt enable register. On the IBM Serial/Parallel Adapter (as 
well as the IBM Asynchronous Adapter), the bit named OUT2 in the modem con
trol register must also be set to 1 before interrupts from the UART can reach 
the CPU. When interrupts occur, the serial adapter arranges them according to 
priority and indicates the pending interrupt of highest priority in the interrupt 
identification register. The adapter stops responding to further interrupts of 
equal or lower priority until it determines that the current one has been ser
viced by the interrupt service routine. 

The 8259A Programmable Interrupt Controller 

462 

In MS-DOS systems, the CPU (the 80x86 microprocessor) does not directly ac
cept interrupts from hardware devices such as the serial adapter. Rather, hard
ware interrupts are first fielded by an Intel 8259A Programmable Interrupt 
Controller (PIC) chip. The 8259A acts as the CPU's "receptionist." A program
mable device, the 8259A accepts up to eight distinct interrupts and can mask 
(ignore) interrupts individually. The 8259A responds to each unmasked, or al
lowed, interrupt and forwards it to the CPU, provided no other interrupt of 
higher priority is being serviced at that moment. 



8 - Programming the Serial Port 

How does the 8259A assign priorities? Just as the UART has its method of 
determining priorities of interrupts generated from the serial adapter, the 
8259A also has its own scheme of assigning priorities to interrupts. The serial 
adapter is only one of several hardware devices that can interrupt the 8259A. 
Each device is hardwired or jumpered to distinct inputs known as the interrupt 
request (IRQ) inputs of the 8259A. That's why it is customary to talk about the 
IRQ assigned to a hardware interrupt. Another feature is also associated with 
the IRQ of an interrupt-the interrupt number used in referring to that par
ticular interrupt. On the IBM PC this number is eight plus the IRQ. When an 
interrupt occurs, the CPU uses the interrupt number as an index into a table 
known as the interrupt vector table (located in the beginning of memory), which 
should contain the address of the interrupt handling routine for that interrupt. 
Since the 8259A associates higher priorities with lower IRQs, the hardware de
vices needing maximum attention have lower IRQs. Thus, the system timer gets 
IRQO, the keyboard has IRQl, and so on. 

Although MS-DOS 3.3 supports four communication ports, CO Ml through 
COM4, this support is nothing more than the availability of four drivers with 
these names, each supporting unbuffered, polled I/O only. Since we are inter
ested in interrupt-driven serial I/O, the details of MS-DOS support for the com
munication ports are not relevant to this discussion. 

In the IBM PC, only the first two ports, COMl and COM2, have desig
nated IRQ numbers and interrupt numbers. Other serial ports such as COM3 
and COM4 can be used for interrupt-driven I/O, provided you follow the vendor's 
instruction during installation of the adapters and assign IRQ numbers by se
lecting jumpers. Once the IRQ number is known, the steps involved in program
ming COM3 and COM4 are the same as those for CO Ml or COM2. Therefore, in 
the rest of this chapter, we will focus on COMl and COM2 only. 

The two serial ports CO Ml and COM2 are respectively assigned IRQ4 and 
IRQ3, resulting in interrupt numbers 12 and 11 (decimal). By the way, the inter
rupt numbers must be known so that DOS function calls (via software interrupt 
21h) with function numbers 35h and 25h can be used to get and set interrupt vec
tors, respectively. 

There are a few more details to note before we can talk about programming 
the serial ports for interrupt-driven I/O. The 80x86 microprocessor automat
ically disables all interrupts when it transfers control to the service routine for 
the current interrupt. Although during the servicing of an interrupt the 8259A 
inhibits further interrupts of the same or lower priority, higher priority inter
rupts are still acknowledged if the interrupt flag is set. Unless we reenable in
terrupts immediately, before we begin servicing the interrupt from the serial 
port, many vital system functions relying on interrupts (such as the system 
timer, the keyboard, and the disk controller) will not be serviced. It is impor
tant, therefore, to turn interrupts back on as soon as the service routine gets 
control by using an STI "SeT Interrupt flag" instruction. This will then allow 
the timer, the keyboard, and the disk controller to interrupt the serial port's 
service routine, allowing the other devices to function properly. 

How do we tell the 8259A when the serial interrupt processing is com
plete? Our service routine has to send an end of interrupt (EOI) command to the 

463 



Devices 

8259A before returning control to the CPU. Although there are ways of indicat
ing an EOI for a specific IRQ, for the priority scheme used in the PC it is enough 
to send what is known as a nonspecific EOI (code 20h) to the 8259A. This is 
called nonspecific because it does not specify which interrupt has been serviced. 
It simply tells the 8259A that the servicing is complete for the highest priority 
interrupt that has been acknowledged. This reenables acknowledgment of fur
ther interrupts at that IRQ or higher. 

Programming the 8259A 

464 

Interrupt-driven I/O with the serial port requires that you set up the 8259A 
properly. Otherwise, the interrupts generated by the serial adapter will never 
be acknowledged by the 80x86 microprocessor. Thus, an important first step is 
to find out how we can program the 8259A. 

Like all hardware in the PC, the 8259A is programmed via two command 
words (registers). These are located at I/O port adresses 20h and 21h respec
tively (Figure 8-6). The register at 21h is used solely for masking interrupts. An 
interrupt is masked (i.e., not acknowledged) if the bit corresponding to its IRQ 
(counting from right to left with the rightmost bit assigned to IRQO) is a logical 
1. The port at 20h is used to send the end of interrupt command to the 8259A. As 
we noted earlier, on MS-DOS systems this is done by writing 20h to this port. 

Interrupt 
to CPU I 

__________________________________________________________ l ________ , 

Port 20h 

8259A 

Port 21 h 

Programmable Interrupt Controller 

COM2:} PC's 
Serial 

....__ ___ COM1: Ports 

End of Interrupt 
E01=20h 

IRQ 
1 =Mask Interrupt 
0 =Allow Interrupt 

Figure 8-6. The 8259A programmable interrupt controller. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

In MS-DOS systems, the first serial port (known as COMl to MS-DOS) is 
assigned IRQ4 (interrupt number 12), while the second one (COM2) has IRQ 3 
(interrupt 11). As mentioned earlier, ports COM3 and COM4 can be handled in a 



8 - Programming the Serial Port 

similar manner provided that you know the IRQ numbers assigned during in
stallation of these ports (only COMI and COM2 have preassigned IRQs). Thus, 
the 8259A can be programmed to acknowledge interrupts from COMI by read
ing from port 21h and writing back the contents logically ANDed with EFh. In
terrupts from COMI may be masked by repeating the above step but ORing 
with IOh in place of the logical AND. Thus, the 8259A can be programmed to 
enable interrupts from COMI by the code fragment 

IN 
AND 
OUT 

AL,21H 
AL,EFH 
21H,AL 

;get current interrupt mask 
;enable IRQ4 
;write it back again 

When interrupts from COMl are turned off again, the 8259A can be pro
grammed to mask IRQ4 by 

IN 
OR 

OUT 

AL,21H 
AL,10H 
21H,AL 

;get current interrupt mask 
;disable IRQ4 
;write it back again 

Programming devices in this manner, by first reading the contents of a reg
ister and then writing back again with the appropriate bit altered, is recom
mended because that way we do not disturb any prior bit settings. 

In addition to enabling and disabling acknowledgment of interrupts, the 
8259A must be informed whenever the processing of a particular interrupt is 
complete. As described earlier, this is done by sending a 20h to the I/O port ad
dress 20h as shown here: 

MOV 

OUT 
AL,20H 
20H,AL 

;end-of-interrupt code 
;to port 20H of 8259A 

Using MS-DOS Tools to Program the Serial Port 

Once you know the purpose of each register in the serial adapter, programming 
the serial port involves setting up the registers properly, enabling the inter
rupts, and installing an interrupt handler. We have already described how to 
program the programmable interrupt controller. Now we are ready to discuss 
the rest of the details on programming the serial port. 

Driver, TSR, or Stand-alone Program 
You have several choices on the approach you adopt to access the serial ports in 
an MS-DOS system. You can control the serial port through an installable 
character device driver that performs I/O with the serial port. Chapter 6, "In
stallable Device Drivers," explains the ins and outs of developing such a driver. 
The major drawback of this approach is the overhead associated with reaching 
the driver via DOS. On the plus side, any program that knows about your driver 

465 



Devices 

can use it. If you follow this route, you can provide IOCTL capabilities in the 
driver so that the communications parameters such as baud rate and wordlength 
can be set by DOS IOCTL calls (DOS function number 44h). 

The second approach is to install a TSR (terminate and stay resident) pro
gram that takes over the BIOS RS-232C interrupt (14h) and extends its func
tionality by providing interrupt-driven I/O. This technique will also allow any 
program to access the serial port through your TSR driver, as long as you docu
ment the register settings that are needed when using the new communication 
functions in the TSR. The access mechanism will be the same as calling the 
BIOS RS-232C function, which we will describe soon. 

The third method is to develop a stand-alone application that includes the 
interrupt handler for the serial port. In this case, at the start of your applica
tion, you can install the serial port's interrupt handler and de-install the handler 
when the program terminates. This approach creates a self-contained applica
tion and is capable of high-speed (9600 baud) serial I/O because there is less 
overhead than the other two methods. 

No matter which approach you adopt, the steps for controlling the serial 
port will remain the same. Therefore, we will concentrate on these details next. 

Using the BIOS for Serial Communications 

466 

You are probably wondering if we could have efficient serial I/O through the 
BIOS. Unfortunately, the answer is no. The BIOS does not provide an efficient 
way of controlling the serial adapter. The BIOS does have an RS-232C function, 
accessible via interrupt 14h, to program the serial adapter. Unfortunately, this 
function supports only polled I/O, which is not much help because of the draw
backs of polling outlined earlier. However, this function is ideal for setting up 
the parameters of the communication port such as baud rate, wordlength, par
ity, and stop bits using BIOS interrupt 14h. 

Setting Communication Parameters Using the BIOS 
Even though serial I/O using the BIOS is not as efficient as the interrupt-driven 
approach, it is instructive to see how the communications parameters (baud 
rate, wordlength, parity, and stop bits) can be set by using the BIOS RS-232C 
functions accessed by interrupt 14h. 

Interrupt 14h with a zero in AH sets the parameters of the serial port. The 
port number should be in DX. A 0 in DX indicates COMl, while a 1 means 
COM2. The selected communications parameters are passed in the AL register 
in a packed format, shown in Figure 8-7. The baud rate is specifed by a 3-bit 
value, the parity by a 2-bit value, the number of stop bits by a single bit, and the 
wordlength by a 2-bit value. Table 8-2 shows the coded values for each of the 
communications parameters. Note that the DOS 3.3 COM port drivers can go up 
to 19,200 baud, but the ROM-BIOS stops at 9600 baud. You can use the baud 
rate programming capability of the UART, outlined earlier, to achieve baud 
rates that are not in Table 8-2. 



8 - Programming the Serial Port 

IBaudRate 
Stop 

Parity I Bits iWordlength1 

Baud 

001 

010 

011 600 

100 1200 

101 2400 

110 4800 

111 9600 

Figure 8-7. Communications parameters packed into a single 
byte in the format required by BIOS interrupt 14h. 

Table 8-2. Coded Value of Communications Parameters 
for Interrupt 14h 

Parameter Name Actual Value Coded Value 

Baud Rate 110 0 
150 1 
300 2 
600 3 

1200 4 
2400 5 
4800 6 
9600 7 

Parity None 0 or 2 
Odd 1 
Even 3 

Stop Bits 1 0 
2 1 

Wordlength 7 2 
8 3 

You can prepare the packed form of the parameters easily. For example, if you 
are using a high-level language such as C, the packed parameters can be ob
tained by 

pckci._commparams = Cbaudrate << 5) 
Cstopbits << 2) 

(parity «3) I 
(word length); 

467 



Devices 

468 

where we have used the bit-shift and bitwise OR operators of C. The variables 
baudrate, parity, stopbits, and wordlength must be coded values of the com
munication parameters from the last column in Table 8-2. Once the parameters 
are in this format, you can call the BIOS using an int 14h. In Microsoft C, you can 
use the int86 function for this purpose, as shown in the following code fragment: 

#include <dos. h> 
#define BIOS_RS232 Ox14 
static union REGS xr, yr; 

xr.h.ah = O; 

I* interrupt number for BIOS service *' 

I* function no. for BIOS RS-232 call *' 
xr.h.al = pckd_commparams; '* communication parameters *' 
xr.x.dx = port_number; '* 0 means COM1, 1 means COM2 *' 
int86CBIOS_RS232, &xr, &yr>; I* make the call *' 

Microsoft C 5.0 makes it even easier to call the BIOS routines: the 
_bios_serialcomm function acts as an interface between your C program and the 
BIOS interrupt 14h. For example, if you select 8-bit wordlength, 1 stop bit, no 
parity, and a baud rate of 300, the call 

_bios_serialcom(_COM_INIT, COM1, (_COM._CHR8 I _COM._STOP1 I 
_COM....NOPARITY I _COM....300) >; 

will suffice. The _bios_serialcom function call 

status = _bios_serialcomm(service_code, port_number, data); 

accepts three unsigned integer parameters and returns an unsigned integer sta
tus code to indicate the result of the requested operation. The argument service_ 
code is used to specify the requested operation, and the porLnumber is either 0 
(COMl) or 1 (COM2). The meaning of data depends on the service being re
quested. You can find more details about this function in the Microsoft C 5.0 
Run-time Library Reference. 

Getting the Serial Port's Address 
Another useful built-in feature of the BIOS is that, during the power-on self test 
(POST) phase, it checks for the existence of serial adapters COMl and COM2 
(although MS-DOS 3.3 supports ports COM3 and COM4, the BIOS recognizes 
only CO Ml and COM2), and if it finds either, the address of the first register of 
each adapter is stored in an area of memory beginning at offset zero of segment 
40h. Since in the PC a 20-bit physical address equals 10h * 16-bit segment+ 16-
bit offset, if your MS-DOS system has a single serial port designated as CO Ml, 
then the word at the physical location 400h will contain 3F8h (if COM2 is also 
present, the next word at 402h will contain 2F8h). Thus, you can get the port 



8 - Programming the Serial Port 

address of the serial adapter from this BIOS data area at offset 0 and segment 
40h. For example, in Microsoft C, you can set the base port address by 

#define BIOS_DATA ((short far *><Ox400000L)) 
static short comport, 

porLnumber; 
I* for base address of port *' 
I* 0 for COM1, 1 for COM2 *' 

comport = *CBIOS_DATA + port_number>; 

if(comport == 0) '* means no serial adapter installed *' 
{ 

} 

printf("Serial port not installed!\n"; 
exit(1); 

Once the variable comport is initialized, all other registers on the serial 
adapter can be addressed by adding appropriate offsets to the base address. In 
C, you can use the #define preprocessor directive to set up the addresses of 
these registers. For example, if you define them as the following, once comport 
is initialized, you can refer to the serial port's registers by the defined names. 

#define IER (comport + 1) '* interrupt enable register *' 
#define IIR (comport + 2) '* interrupt identification *' 
#define LCR (comport + 3) '* Line control register *' 
#define MCR (comport + 4) '* modem control register *' 
#define LSR (comport + 5) '* Line status register*' 
#define MSR (comport + 6) '* modem status register *' 

Setting Up for Interrupt-Driven Serial 110 
After getting the base address of the port from the BIOS data area, you must 
set up the serial port and install an interrupt handler before interrupt-driven 
serial I/O can begin. The interrupt number and IRQ of the serial port interrupt 
depend on whether you want to use CO Ml or COM2. Once you get the interrupt 
number, you should get the current handler's address and save it. That way, 
when exiting the program, you can restore the interrupt vector to the original 
value. MS-DOS functions 35h and 25h, respectively, get and set handlers for a 
given interrupt number. Microsoft C 5.0 offers the routines _dos_getvect and 
_dos__setvect for this purpose. Using C, you can perform this step as follows: 

short int_number; '* interrupt number for comm. port *' 
void interrupt far s_inthndlrCvoid>; '* handler to be installed *' 
static void (interrupt far *olcLhandler)C); '*place for old one*' 

469 



Devices 

470 

I* get old interrupt vector and save it. *' 
old_handler = _dos_getvect(int_number); '* install the new handler named s_inthndlr 

* disable interrupts when changing handler 

*' _disable(); 
_dos_setvect(int_number, s_inthndlr); 
_enable(); 

In the example we show the handler as a function of type interrupt, which 
is a new keyword introduced in Microsoft C 5.0. The next section shows you how 
the interrupt attribute allows you to write the interrupt handler entirely in Mi
crosoft C 5.0 (Turbo C 1.5 also has a similar facility). 

The other point to note is the use of the functions _disable and _enable. 
These two functions correspond to the assembly language instructions STI and 
CLI, respectively. Thus, we are turning interrupts off while switching from one 
serial interrupt handler to another. Otherwise, an interrupt arriving in the 
midst of the switch may cause the CPU to jump off to never-never land because 
the interrupt vector was not the address of any valid handler. 

After the interrupt handler is in place, you can set up the communications 
parameters and enable the serial port to generate interrupts. You must also en
able recognition of these interrupts at the 8259A. Once again, you should disable 
the interrupts until both the port and the 8259A are ready. Here is how we can 
do this in Microsoft C 5.0. 

short intmask, int_enable_mask; I* enable mask depends on port *' 
'* turn on interrupts from comm port . setup 8259A *' 

_disable(); '* set up modem control register (port = MCR) *' 
outp(MCR, MCRALL); '* enable all interrupts on serial card (port = IER) *' 
outp(IER, IERALL); '* read 8259A's interrupt mask register and write it 

* back after AND-ing with int_enable_mask 

*' intmask = inp(P8259_1) & int_enable_mask; 
outp(P8259_1, intmask); 
_enable(); 

At this point, the serial port will begin operating in interrupt-driven 
mode. The actions that take place will depend on the interrupt handler, which 
we will discuss next. 



8 - Programming the Serial Port 

Handling the Interrupts from the Serial Port 
When the serial port generates an interrupt, our installed handler, s_inthndlr, 
will be called. We must immediately enable acknowledgment of further inter
rupts by the system so that other higher-priority tasks (such as the timer) can 
continue to get the attention of the microprocessor. 

The next step is to identify the exact cause of the interrupt from the serial 
port. You have to read the interrupt identification register (IIR) to get this in
formation. Once the cause of the interrupt is determined, you can take the nec
essary action to handle the interrupt, as outlined in the description of the 8250 
UART. 

Since the serial port may generate an interrupt while you are in the midst 
of handling another, you must check bit 0 (least significant bit) of the IIR for this 
condition. If this bit is 0, another interrupt is waiting and you should process it. 
On the other hand, if the bit is 1, no more interrupts are pending. In this case 
you should send an end-of-interrupt to the 8259A and return from the handler. 
Thus, the handler is an endless loop that keeps processing serial interrupts until 
there are none waiting. In Microsoft C 5.0, the handler may be implemented as 

void interrupt far s_inthndlr(void) 
{ 

int c; 
register int int_id, intmask; 

f* enable interrupts immediately *f 
_enable<>; 

while <TRUE) 
{ 

f* read the interrupt identification register, IIR *f 
int_id = inp(llR); 
if CbitOCint_id) == 1) 
{ 

f* if bit 0 is 1, then no interrupts pending. send an 
* end of interrupt signal to the 8259A Programmable 
* Interrupt Controller and then return. 
*f 

} 

outpCP8259_0, END_Qf_INT); 
return; 

f* if it is receive data ready interrupt, enable 
* interrupts for "transmit holding register empty" 
*f 

if Cint_id >= RXDATAREADY) 
turnon_intCTHREINT,intmask); 

f* process interrupt according to ID. The following 

471 



Devices 

* List is in increasing order of priority. 

*' switch (inLid) 
{ 

case MDMSTATUS: /* read modem status *' 

break; 
case TXREGEMPTY: I* send out a character *' 

break; 
case RXDATAREADY: /* read a character *' 

break; 
case RLINESTATUS: /* read Line status *' 

break; 
I* just fall through if ID is none of the above *' 

} 

} 

} 

Note that we have used the keyword interrupt, introduced in Microsoft C 
5.0, which allows us to write the handler entirely in C. This keyword is used as a 
qualifier for a function that you wish to install as the interrupt handler for a spe
cific interrupt number. When the compiler translates a function with the inter
rupt attribute, it generates code to first push the registers AX, CX, DX, BX, 
SP, BP, SP, SI, DI, DS, and ES. It then sets up the DS register to point to the 
data segment of that function. After this initial sequence comes the code of the 
function. Finally, the compiler uses an IRET instruction instead of a normal 
RET to return from the function. This example is a typical use of the interrupt 
attribute. Turbo C also has this keyword, but the registers are pushed onto the 
stack in a different order. 

When you write the interrupt handler in C, you have to follow the same 
precautions that apply to assembly language interrupt handlers. For example, 
you should not call any library routine that calls any DOS function (those ac
cessed by the int 21h instruction). The file 1/0 routines in C are such functions. 
On the other hand, routines like the ones in the string manipulation category are 
safe inside the interrupt function. 

Queues for the Interrupt Handler 

472 

The goal of the handler for serial port interrupts is to save the incoming charac
ters as quickly as possible. This is best done by using a buffer. The application 



8 - Programming the Serial Port 

program can retrieve the characters from this buffer at its own pace without 
worrying about losing any character because it was not processing fast enough. 
Outgoing characters can also be passed to the interrupt handler through a sec
ond buffer. 

Conceptually, each of these buffers should behave like a checkout line at 
the supermarket cash register. The incoming characters line up one after an
other and the program reading the characters takes the first one in the line and 
processes it, then it takes the next, and so on. This type of buffer is known as 
first-in first-out, or FIFO, buffer. It is also called a queue. 

Figure 8-8 shows the conceptual realization of a queue. The queue natu
rally has afront and a rear. In an actual implementation the queue size, i.e., the 
maximum number of characters it can hold, is fixed. It is convenient to think of 
the storage locations assigned to the queue as a circle so that once we go past the 
last location we return to the first one. This makes efficient use of the limited 
space available in the queue. Such an implementation of a queue is described as 
circular. 

IN OUT 

Figure 8-8. A circular FIFO buffer (queue). 

Cleaning Up before Closing Shop 

When your application no longer needs any more serial I/O, it must restore the 
port to its original state. This involves setting all the port's interrupt enable reg
ister (IER) bits to off and turning off all the modem control signals. Then, the 
8259A must be programmed to stop acknowledging interrupts from the serial 
port. Finally, the interrupt vector for the serial interrupt must be reset to the 
original value you saved when the port was being initialized for I/0. Here are the 
steps written in Microsoft C 5. 0: 

473 



Devices 

int intmask; 

/* Disable interrupts during clean up *f 
_disable(); 

f* First reset Interrupt Enable Register of the port *f 
outp(IER, IEROFF); 

/* Turn off all bits of the Modem Control Register *f 
outp(MCR, MCROFF); 

/* Next disable 8259A from recognizing interrupts 
from the serial port *f 

intmask = inp(P8259_1) I inLdisable_mask; 
outp(P8259_1, intmask); 

f* Restore original interrupt vector *f 
_dos_setvect(int_number, old_handler); 

f* Enable interrupts back on again *f 
_enab LeO; 

A Sample Program 

474 

We have described the serial port's hardware and outlined the steps necessary to 
program the port for efficient interrupt-driven I/O. All that remains is to put the 
pieces together so that you can see how a complete serial communications pro
gram is constructed. We do this in Listing 8-1, which shows a basic communica
tion program written entirely in Microsoft C 5.0. 

Listing 8-1. Microsoft C 5.0 Communication Program 

f* 

* Fi Lename: 

* Purpose: 

* 
* 
* 
* 
* Author: 

* Language: 

* Memory Model: 

* Compile/Link: 
*f 

S E R I 0 • C 
To i Llustrate programming the serial 
port in MS-DOS systems. 
This version was developed on an IBM 
PC-AT with an IBM Serial Adapter. 
DOS version 3.1 was used. 
Naba Barkakati, March 1988 
Microsoft C 5.0 
Large 
CL /AL /Gs serio.c 

/*-------------------------------------------------------------*! 
#include <stdio.h> 



8 - Programming the Serial Port 

#inc Lude <ctype.h> 
#inc Lude <dos.h> 
#inc Lude <bios.h> 
#inc Lude <conio.h> 

#define TRUE 1 
#define FALSE 0 
#define EOS '\0' 

#define CONTROL(x) Cx-Ox40) 
#define ES(_KEY CONTROL('[') 

I* Define communications parameters *' 
#define COM_PARAMS (_COM_CHR8 I _COM_STOP1 I \ 

_COM.._NOPARITY l-COM.._1200) 

I* Define receive and transmit buffer sizes *' 
#define RXQSIZE 512 
#define TXQSIZE 512 

I* Definitions for the 8259 Programmable Interrupt 
*Controller 

*' #define P8259_Q Ox20 
#define P8259_1 Ox21 
#define END_OF_INT Ox20 

I* int control register *' 
I* int. mask register *' 
I* Non-specific EOI *' 

I* Define XON and XOFF ASCII codes *I 
#define XON_ASCII COx11) 
#define XOFF_ASCII C0x13) 

I* Address of BIOS data area at 400h *' 
#define BIOS_DATA ((int far *)(0x400000L)) 

I* The address of the comm port is in the short integer 
* 'comport'. This variable is initialized by reading 
* from the BIOS data area at segment Ox40. 

*' #define IER 
#define IIR 
#define LCR 
#define MCR 
#define LSR 
#define MSR 

(comport + 1) 
(comport + 2) 
(comport + 3) 
(comport + 4) 
(comport + 5) 
(comport + 6) 

I* interrupt enable register *' 
I* interrupt identification *' 
I* Line control register*' 
I* modem control register *' 
I* Line status register *' 
I* modem status register *' 

continued 

475 



Devices 

476 

Listing 8-1. continued 

f* Codes to enable individual interrupts *f 
#define RDAINT 1 
#define THREINT 2 
#define RLSINT 4 
#define MSINT 8 

f* Modem Control Register value *' 
#define MCRALL 15 /* (DTR, RTS, OUT1 and OUT2 = 1) */ 
#define MCROFF 0 '* everything off *' 

f* Interrupt Enable Register value to turn on/off int *' 
#define IERALL (RDAINT+THREINT+RLSINT+MSINT) 
#define IEROFF 0 

f* Some masks for turning interrupts off *' 
#define THREOFF Oxfd 

f* Interrupt identification numbers *' 
#define MDMSTATUS 0 
#define TXREGEMPTY 2 
#define RXDATAREADY 4 
#define RLINESTATUS 6 

I* Flags for XON/XOFF flow control *f 
#define XON_RCVD 1 
#define XOFF_RCVD 0 
#define XON_SENT 
#define XOFF_SENT 0 

I* Hi and Low percentages for xon-xoff trigger *' 
#define HI_TRIGGER(x) (3*x/4) 
#define LO_TRIGGER(x) (x/4) 

f* Function to get bit 0 of an integer *' 
#define bitO(i) Ci & Ox0001) 

I* Macro to turn on interrupt whose "Interrupt Enable 
*Number" is 'i', in case it has been disabled. For 
* example, the THRE interrupt is disabled when an XOFF 
* is received from the remote system. 
*f 

#define turnon_int(i,j) \ 
if(((j=inp(IER))&i>==O)outp(IER,Cjli)) 

#define report_error(s) fprintf(stderr,s) 



8 - Programming the Serial Port 

typedef struct QTYPE 
{ 

f* data structure for a queue *' 

int 
int 
int 
int 
char 

} QTYPE; 

count; 
front; 
rear; 
maxsize; 
*data; 

static char rxbuf[RXQSIZEJ, txbuf[TXQSIZEJ; 

static QTYPE rcvq = {0, }-1, -1, RXQSIZE, rxbuf}, 
trmq = {0, }-1, -1, TXQSIZE, txbuf}; 

f* Global status indicators *' 
int s_linestatus, s_modemstatus; 

static QTYPE *txq = &trmq, *rxq = &rcvq; 
static short comport=O, 

enable_xonxoff = 1, 
rcvd_xonxoff = XON__RCVD, 
sent_xonxoff = XON__SENT, 
send_xon = FALSE, 
send_xoff = FALSE, 
i nLnumber = 12; 
int_enable_mask = Oxef, 
int_disable_mask = Ox10; 

f* Functions Prototypes *' 
int s_sendchar(int); 
int s_rcvchar(void); 
int s_setup(short, unsigned); 
int s_cleanup(void); 

char *q_getfrom( QTYPE *, char *>; 
int q_puton( QTYPE *' char *>; 

void interrupt far s_inthndlr(void); 

static void s_rda(void); 
static void s_trmty(void); 
static void (interrupt far *old_handler)(); 
'*-------------------------------------------------------------*! 
main(int argc, char **argv) 
{ 

int ch, port_number = O; 

continued 

477 



Devices 

478 

Listing 8-1. continued 

I* Get port number, if on command line *' 
if(argc > 1) port_number = atoiCargv[1J) - 1; 
printf('\nSERIO -- Serial I/O at 1200,8,N,1 \ 

using port COM%d\n", porLnumber+D; 
printf('\nConnecting ••• \n"); 

I* First set up the serial port*' 
s_setup(port_number, COM_PARAMS); 

I* The following endless loop simulates a terminal. 
* Escape key cleans up everything and returns. 

*' 

} 

while CTRUE) 
{ 

} 

if CCch = s_rcvchar()) != -1) putchCch>; 
if C kbhitO != 0) 
{ 

ch = getchO; 
if (ch == Esc_KEY) 
{ 

} 

else 

s_c leanupO; 
return; 

s_sendcharCch); 
} /* end of kbhit() check *' 

'*-------------------------------------------------------------*/ 
I* s _ i n t h n d l r 
* Handler for all serial port interrupts. 

*' void interrupt far s_inthndlrCvoid) 
{ 

int c; 
register int int_id, intmask; 

'* Enable interrupts immediately *' 
_enableO; 

while (TRUE) 
{ 

I* Read the interrupt identification register, IIR *' 
inLid = inp(IIR); 



8 - Programming the Serial Port 

if CbitOCint_id) == 1) 
{ 

I* If bit 0 is 1, then no interrupts pending. Send an 
* end of interrupt signal to the 8259A Programmable 
* Interrupt Controller and then return. 

*' 
} 

outp(P8259_0, END_QF_INT); 
return; 

if (int_id >= RXDATAREADY) 
turnon__int(THREINT,intmask); 

I* Process interrupt according to ID. The following 
* List is in increasing order of priority. 

*' switch (inLid) 
{ 

case MDMSTATUS: I* read modem status *' 
s_modemstatus = inp(MSR); 
break; 

case TXREGEMPTY: s_ t rmtyO; 
break; 

case RXDATAREADY: s_rdaO; 
break; 

case RLINESTATUS: I* read Line status *' 
s_Linestatus = inp(LSR); 
break; 

I* Just fall through if ID is none of the above *' 
} 

} 

} 

'*-------------------------------------------------------------*/ 
f* s _ r d a 
* Process a "receive data avai Lable" interrupt 

*' static void s_rda(void) 
{ 

register int intmask; 
char c; 

I* Read from comport *' 
c = inp(comport); 
if(enable_xonxoff) { 

if(c == XQN_ASCII) { 
rcvcLxonxof f = XON._RCVD; 

I* Turn on THRE interrupt if it's off. *' 
turnon__int(THREINT,intmask); 

continued 

479 



Devices 

480 

Listing 8-1. continued 

return; 
} 

if(c == XOFF_ASCII) { 
rcvd_xonxoff = XOFF_RCVD; 

I* Turn off THRE interrupts. *' 
intmask = inpCIER); 
if Cintmask & THREINT) 

outp(IER, intmask & THREOFF); 
return; 

} 

} 

q_puton(rxq, &c>; 
I* Check if queue is almost (75%) full *' 

if Cenable_xonxoff){ 
if(rxq->count >= Hl_TRIGGERCRXQSIZE) && 

sent_xonxoff != XOFF_SENT ) { '* Set flag to send XOFF *' 
send_xoff = TRUE; 

I* Turn on THRE interrupts so we can send the XOFF *' 
turnon_int(THREINT,intmask); 

} 

} 

} 

'*-------------------------------------------------------------*/ 
I* s _ t r m t y 

* Process "transmit holding register empty" interrupt 

*' static void s_trmty(void) 
{ 

char c; 
register int ierval; 

if Csend_xoff == TRUE) { 
outp(comport, XOFF_ASCII); 
send_xoff = FALSE; 
sent_xonxoff = XOFF_SENT; 
return; 

} 

if Csend_xon == TRUE) { 
outp(comport, XON_ASCII); 
send_xon = FALSE; 
sent_xonxoff = XON_SENT; 
return; 

} 



8 - Programming the Serial P01·t 

I* Put a character into the transmit holding register *' 
if( q_getfrom(txq, &c) != NULL){ 

outp(comport, c); 
return; 

} 

'* Nothing to send -- turn off THRE interrupts *' 
ierval = inp(IER); 
if (ierval & THREINT) outp(IER, ierval & THREOFF); 

} 

'*-------------------------------------------------------------*/ 
I* s _ s e t u p 

* Sets up everything for communication. 
* Return 1 if setup successful, else return 0. 

*' int s_setup(short port_number, unsigned commparams) 
{ 

int intmask; 

if (porLnumber < 0 11 porLnumber > 1) 
report_error("Invalid port number!\n"); 

'* Get serial port's base address from BIOS data area *' 
comport = *<BIOS_DATA + port_number); 
if (comport == 0) 
{ 

} 

report_error("BIOS could not find port!\n"); 
return CO); 

I* Set up masks for 8259A PIC. To enable interrupt from 
* the port this mask is ANDed with the mask register 
*at 21h. To disable, OR the disable mask with the 
*mask register. The interrupt number is 8 + the IRQ 
* Level of the interrupt. Com port 1 has IRQ 4, port 2 
* has IRQ 3. 

*' if (port_number == 0) 
{ 

} 

int_enable_mask = Oxef; 
int_disable_mask = Ox10; 
i nLnumbe r = 12; 

if (port_number == 1) 
{ 

int_enable_mask = Oxf7; 
int_disable_mask = 8; 

continued 

481 



Devices 

482 

Listing 8-1. continued 

inLnumber = 11; 
} 

f* Get old interrupt vector and save it. *f 
old_handler = _dos_getvect(int_number); 

f* Install the new handler named s_inthndlr 
* Disable interrupts when changing handler 
*f 

_disable(); 
__ dos_setvect ( i nLnumber, s_ i nthnd l r); 
_enable(); 

f* Set up communication parameters *f 
_bios_serialcom(_CQM__INIT, port_number, commparams); 

f* Initialize XON/XOFF flags *f 
rcvd_xonxoff = XON_RCVD; 
if (sent_xonxoff == XOFF_SENT) 

send_xon = TRUE; 
else 

send_xon = FALSE; 
send_xoff = FALSE; 

f* Turn on interrupts from comm port + setup 8259A */ 
_di sable(); 

f* Set up modem control register (port = MCR) */ 
outp(MCR, MCRALL); 

f* Enable all interrupts on serial card (port = IER) *f 
outp(IER, IERALL); 

f* Read 8259A's interrupt mask register and write it 
* back after AND-ing with int_enable_mask. 
*f 

} 

intmask = inp(P8259_1) & int_enable_mask; 
outp(P8259_1, intmask); 

_enable(); 

return(1); 

!*-------------------------------------------------------------*/ 
f* s _ c l e a n u p 

* Cleanup after comm session is done. Turns off all 



8 - Programming the Serial Port 

* interrupts. 
*I 

int s_cleanup(void) 
{ 

int i ntmask; 

I* Turn off interrupts from serial card *I 
_disable(); 

I* First reset Interrupt Enable Register on the port *I 
outp(IER, IEROFF); 

I* Turn off all bits of Modem Control Register *I 
outp(MCR, MCROFF); 

I* Next disable 8259A from recognizing interrupts 
* from the serial port 
*I 

intmask = inp(P8259_1) int_disable_mask; 
outpCP8259_ 1, intmask); 

I* Restore original interrupt vector *I 
_dos_setvect(int_number, old_handler); 

I* Enable interrupts back on again *I 
_enableO; 

} 

/*-------------------------------------------------------------*/ 
I* s _ s e n d c h a r 
* Puts a character into transmit queue. Returns 1 if 
* all's ok, 0 if there were problems. 
*I 

int s_sendcharCint ch) 
{ 

int retval, intmask; 

_disable(); 
retval = q_puton(txq, (char *>&ch); 
_enable(); 

I* Turn on THRE interrupt if it's off and an XOFF was 
* not received 
*I 

} 

if Crcvd_xonxoff != XOFF_RCVD) 
turnon_intCTHREINT,intmask); 

return C retva L); 

continued 

483 



Devices 

484 

Listing 8-1. continued 

/*-------------------------------------------------------------*! 
f* s _ r c v c h a r 
* Returns a character from the receive queue. 
* Returns -1 if queue is empty. 
*f 

int s_rcvchar(void) 
{ 

int ch, i ntmask; 
f* If XOFF sent earlier, we might have to send an XON *f 

if(enable_xonxoff) 

} 

{ 

if(rxq->count <= LO_TRIGGER(RXQSIZE) && 
sent_xonxoff != XON._SENT ) 

{ 

} 

send_xon = TRUE; 
turnon._int(THREINT,intmask); 

} 

_disable(); 
if (q_getfrom(rxq, (char *>&ch) -- NULL) 
{ 

} 

else 
{ 

_enable(); 
return(-1); 

_enable(); 
return( ch); 

} 

'*-------------------------------------------------------------*/ 
f* q _ g e t f r o m 
* Copy next data element in queue to specified 
* Location. Also return a pointer to this element. 
*f 

char *q_getfrom( QTYPE *queue, char *data) 
{ 

char *current; 
current = NULL; 
if(queue->front == -1) return(current); 

f* Else retrieve data *f 
current = &Cqueue->data[queue->frontJ); 
*data = *current; 
queue-> count--; 



8 - Programming the Serial Port 

if (queue->count == Q) 

{ 

'* The queue is empty. Reset front and rear, 
* and the count. 

*' 
} 

queue->front = queue->rear = -1; 
return(current); 

'* Increment front index and check for wraparound *' 
if(queue->front == queue->maxsize-1) 

queue->front = O; 

} 

else 
queue->front++; 

return( current>; 

'*-------------------------------------------------------------*/ 
/* q _ p u t o n 

* Put a data element into queue. 

*' int q_puton(QTYPE *queue, char *data) 
{ 

I* First check if queue is full. Return 0 if full. *' 
if(queue->count == queue->maxsize) return(O); 

I* Else, adjust rear and check for wrap-around *' 
if (queue->rear == queue->maxsize-1) 

queue->rear = O; 
else 

queue-> rear++; 
'* Save the character in the queue *' 

queue->data[queue->rearJ = *data; 
queue-> count++; 

} 

Summary 

if(queue->front == -1) queue->front = O; 
return(1); I* Successfully inserted element *' 

This chapter discussed the hardware features of the serial port in MS-DOS sys
tems and presented techniques for programming the serial port. It also pre
sented a small communications program in Microsoft C 5. 0 to illustrate how the 
techniques can be implemented in practice. The steps involved in programming 
the serial port for interrupt-driven I/O are as follows: 

1. Get the base port address of the selected communication port from BIOS 
data area at segment 40h and offset 0. 

485 



Devices 

486 

2. Using MS-DOS function 35h, get the address of the old interrupt service 
routine for the interrupt number corresponding to this adapter and save 
it. 

3. Using MS-DOS function 25h, install our own interrupt service routine for 
that interrupt number. 

4. Set up the communication parameters of the adapter using BIOS function 
14h. 

5. Set up the receive and transmit queues to hold incoming and outgoing 
characters. 

6. Turn on signals needed by modem (e.g., DTR-Data Terminal Ready, 
and RTS-Request To Send) in the modem control register. 

7. Enable all interrupts from the adapter (by setting bits 0 through 3 of the 
interrupt enable register to 1). 

8. Also turn on bit OUT2 in the modem control register to enable interrupts 
from the serial adapter. 

9. Program the 8259A to recognize interrupts with the IRQ of this adapter 
(by setting the appropriate bit to zero in the interrupt mask register 
accessed through the port address 21h). 

At some point, when the user decides to terminate the communication ses
sion, a "cleanup" routine should be called. The cleaning up involves the following 
steps: 

1. Turn off the interrupts from the serial adapter. 
2. Reset the bits in the modem control register. 

3. Restore the old interrupt service routine. 
4. Mask the interrupts for this IRQ in the 8259A. 





9 - Programming the EGA and VGA 

~HE Enhanced Graphics Adapter (EGA) and the newer Vuleo Graphics Ar~Lay (VGA) present a unique set of problems to the developer. The EGA is 
rapidly becoming the most common graphics card in the MS-DOS world. 
However, four very different graphics standards are involved in supporting the 
EGA: 

1. CGA-compatible graphics modes 

2. Two new EGA graphics modes for 200-line color monitors 

3. A new EGA graphics mode for 350-line color monitors 

4. A new EGA graphics mode for use with monochrome (text) monitors 

The VGA supports all of these modes as well as several new modes. This 
chapter will discuss programming concepts for each of the new EGA graphics 
modes as well as the new VGA modes. The CGA-compatible text and graphics 
modes will not be covered since they are more applicable to the CGA card. 

The original EGA from IBM comes with 64K of graphics memory on the 
card. This may be expanded in 64K increments to 256K. The more EGA mem
ory, the greater the graphics capabilities. EGA-compatible cards from other 
manufacturers often come with the full 256K memory already installed. VGA 
cards in most of the new IBM System 2s are essentially attached to the mother
board; for other PCs, the VGA is available as an add-in display card. In either 
case, the VGA will always have 256K of memory already installed. 

Video functions on the IBM PC are called with the BIOS interrupt lOh. 
These video functions allow a program to set text or graphics modes, read or 
write single pixels, and place characters on the screen. The EGA has a new 
BIOS that replaces all the original PC video functions and adds several new 
functions. The new EGA functions allow new characters to be defined, more 
control over the palette, and text strings to be printed. 1 

1. A complete technical reference manual with an EGA BIOS listing and complete 
EGA description may be ordered from IBM by calling 1-800-IBM-PCTB 
(l-800-426-7282). The EGA technical reference is $9. 95, part number 6280131. The 
VGA is documented in the IBM PS/2 technical reference manual, part number 
68X2251. 

489 



Devices 

Monitors and EGA Capabilities 

490 

The EGA is designed to work with one of three different monitors: the IBM 
Color Display, the IBM Enhanced Color Display, or the IBM Monochrome Dis
play and their equivalents from other manufacturers. The particular monitor 
used determines the graphics resolution, the maximum number of colors, the 
color palette, and the number of pixels that make up each character. The VGA 
card must be used with an analog monitor, either color or monochrome. Al
though an analog monitor is functionally different from a digital (or TTL) moni
tor, from the programmer's perspective it can be treated as a high-resolution 
digital monitor. The only concern is whether it is monochrome or color. 

The IBM Color Monitor has a maximum resolution of 640 x 200 pixels. The 
Color Monitor is limited to 200 scan lines vertically because it is able to use only 
one vertical scan rate. The EGA is compatible with all the text and graphics 
modes of the Color Graphics Adapter when used with the Color Monitor. There 
are two new graphics modes, modes 13 and 14, that use up to 16 colors with 320 x 
200 and 640 x 200 resolution. However, the Color Monitor is limited to a 16-color 
fixed palette and 200 scan lines vertically. The fixed palette uses the same 16 
colors used by the CGA in text mode. The default character box is 8 x 8 pixels. 
These modes are shown in Table 9-1. 

Table 9-1. EGA Used with an IBM Color Monitor 

Size 
Mode Maximum (Col x Box Maximum Buffer 
Number Type Colors Row) Size Pages Segment Resolution 

0 Text 16 40x25 8x8 8 B800 320 x 200 
1 Text 16 40x25 8x8 8 B800 320 x200 
2 Text 16 80x25 8x8 4/8/8* B800 640 x 200 
3 Text 16 80x25 8x8 4/8/8* B800 640 x 200 
4 Graphics 4 40x25 8x8 1 B800 320 x 200 
5 Graphics 4 40x25 8x8 1 B800 320 x200 
6 Graphics 2 80x25 8x8 1 B800 640 x 200 

13 Graphics 16 40x25 8x8 2/4/8* AOOO 320 x200 
14 Graphics 16 80 x25 8x8 1/2/4* AOOO 640 x 200 

*Depends on amount of installed EGA memory. 

The Enhanced Color Display 
The IBM Enhanced Color Display is compatible with all the modes used with the 
Color Display, and uses one more high-resolution mode. The Enhanced Color 
Display is able to use two vertical scan rates, one for 200-line modes and one for 
350-line modes. Multisync-type monitors are able to use the two standard EGA
generated vertical scan rates as well as even higher frequencies for higher reso
lution. The high-resolution mode, mode 16, can be used only with the IBM En
hanced Color Display, an equivalent monitor, or a multisync monitor, since the 
vertical resolution is 350 scan lines and the Color Display can display only 200 
lines. 



9 - Programming the EGA and VGA 

The EGA can display 16 colors from a 64-color palette in most modes when 
used with the Enhanced Color Display. The 16 colors are available only in mode 
16 ifthere is more than 64K on the EGA card. Modes 4 through 6, the CG A-com
patible graphics modes, are limited to the same 16-color fixed palette as the 
CGA. The text modes on the Enhanced Color Display use 8 x 14 pixels for each 
character, which gives a higher resolution character than that used on the CGA. 
The modes for the Enhanced Color Display (and multisync equivalents) are 
shown in Table 9-2. 

Table 9-2. EGA Used with an IBM Enhanced Monitor 
(or Multisync) 

Size 
Mode Maximum (Col x Box Maximum Buffer 
Number Type Colors Row) Size Pages Segment Resolution 

0 Text 16 of64 40x25 8x14 8 B800 320 x 350 
1 Text 16 of 64 40x25 8x 14 8 B800 320 x 350 
2 Text 16 of64 80x25 8x14 4/8/8* B800 640 x 350 
3 Text 16 of 64 80x25 8 x 14 4/8/8* B800 640 x 350 
4 Graphics 4 40x25 8x8 1 B800 320 x 200 
5 Graphics 4 40x25 8x8 1 B800 320 x 200 
6 Graphics 2 80x25 8x8 1 B800 640 x 200 

13 Graphics 16 of 64 40x25 8x8 2/4/8* AOOO 320 x 200 
14 Graphics 16 of 64 80x25 8x8 1/2/4* AOOO 640 x 200 
16 Graphics 4/16 of 64* 80x25 8 x 14 1/2* AOOO 640 x 350 

'Depends on amount of installed EGA memory. 

Monochrome Graphics Modes 

The IBM Monochrome Display is used primarily as a text-only display. The text 
mode is compatible with the IBM Monochrome Adapter. However, there is a new 
mode that adds 640 x 350 graphics with four "colors," the four colors being 
black, video, flashing video, and intensified video. If a monochrome monitor is 
connected to the EGA, the EGA is unable to use any of the color graphics 
modes, but it may use the new monochrome graphics mode. 

The EGA converts the 8 x 14 font used with the Enhanced Color Monitor 
into an MD A-compatible 9 x 14 font. This is accomplished by extending any line 
draw characters into the ninth pixel position. Do not confuse an EGA connected 
to a monochrome monitor with a VGA connected to an analog monochrome 
monitor. The VGA in this case is treated as ifit were connected to either a high
resolution color monitor or a digital monochrome monitor, depending on the 
VGA switch settings. 

There is a subtle change to the standard MDA mode 7, the text mode, with 
the EGA. That change is the addition of multiple video pages. The original 
Monochrome Adapter uses only one page. The EGA can store up to eight indi
vidual video pages, depending on the amount of EGA memory. The page num
ber is specified in the 80x86 register BH when using the BIOS functions for 
text. If older software uses BH for other data, or fails to initialize it, the final 
text output may not appear on the desired page. 

491 



Devices 

492 

EGA-compatible cards from other manufacturers may offer a Hercules
compatible graphics mode when used with a Monochrome Display. The two 
modes for the Monochrome Display are shown in Table 9-3. 

Table 9-3. EGA Used with a Monochrome Monitor 

Size 
Mode Maximum (Colx Box Maximum Buffer 
Number Type Colors Row) Size Pages Segment Resolution 

7 Text 4 80x25 9 x 14 4/8* BOOO 720 x350 
15 Graphics 4 80x25 8 x 14 1/2* AOOO 640 x 350 

*Depends on amount of installed EGA memory 

IBM offers both monochrome and color analog monitors for use with the 
VGA. The VGA can be set to treat either analog monitor as if it were a digital 
monochrome monitor or a digital color monitor. In other words, the VGA can be 
set to treat the color analog monitor as if it were a digital monochrome monitor, 
or it can be set to treat a monochrome analog monitor as a high-resolution digital 
color monitor. This capability exists for backward compatibility with the EGA, 
and, when set to act as an EGA with a monochrome monitor, the VGA's ca
pabilities are unchanged from the EGA with a monochrome text monitor 
attached. 

The VGA's power-on self-test program calibrates the card to act as either a 
monochrome adapter or a color adapter when the PC is booted. When calibrated 
as a monochrome adapter, the modes in Table 9-3 are the only video modes avail
able. When calibrated as a color adapter, the video modes in Table 9-4 are 
available. 

Table 9-4. Analog Monitor and VGA Configured 
for Color 

Size 
Mode Maximum (Col x Box Maximum Buffer 
Number Type Colors Row) Size Pages Segment Resolution 

0 Text 16 of256K 40x25 9x 16 8 B800 360 x400 
1 Text 16 of256K 40x25 9x 16 8 B800 360 x 400 
2 Text 16 of256K 80x25 9x 16 8 B800 720 x400 
3 Text 16 of256K 80x25 9x 16 8 B800 720x 400 
4 Graphics 4 40x25 8x8 1 B800 320x 200 
5 Graphics 4 40x25 8x8 1 B800 320 x 200 
6 Graphics 2 80x25 8x8 1 B800 640 x 200 

13 Graphics 16 of256K 40x25 8x8 8 AOOO 320 x200 
14 Graphics 16 of256K 80x25 8x8 4 AOOO 640 x 200 
16 Graphics 16 of256K 80x25 8x 14 2 AOOO 640 x 350 
17 Graphics 2 of256K 80x30 8x 16 1 AOOO 640 x 480 
18 Graphics 16 of256K 80x30 8x 16 1 AOOO 640 x480 
19 Graphics 256 of256K 40x25 8x8 1 AOOO 320x 200 



9 - Programming the EGA and VGA 

Installation Considerations and Presence Test 
The capabilities of the EGA are dependent on the monitor and the amount of 
memory on the EGA board. The monitor determines which video mode to use 
for graphics or text, and the amount of EGA memory determines the number of 
colors and pages available. It is very important for your programs to determine 
whether there is an EGA present in the PC before you try to use it, and which 
monitor and memory were used if one is found. The program in Listing 9-1 does 
just that. The function geLega_info( &info) is called with a pointer to a struc
ture to hold EGA information. The function first retrieves a byte from the BIOS 
data area. That byte, at Ox40:0x87, has encoded information about the EGA 
hardware configuration, memory, and monitor. It is one of several status bytes 
kept by the EGA BIOS for its internal use and to provide information to 
programs. 

We are interested in bits 5 and 6, which indicate total EGA memory; bit 3, 
which indicates whether the EGA is the active display; and bit 1, which indicates 
the type of monitor. 

The function also calls one of the EGA's new BIOS calls, alternate function 
10, which returns EGA information. The EGA is called by placing Ox12 in regis
ter AH and OxlO in BL, and using int lOh. Here is the EGA BIOS call that re
turns the information: 

Return EGA Information 

Issue: Int OxlO 

Call with: AH= Ox12 to select EGA alternate functions 

Returns: 

BL = OxlO Alternate function for EGA information 

BH = 0 = Color monitor 
1 = Monochrome monitor 

BL = Encoded EGA memory: 
0 = 64K 
1=128K 
2 = 192K 
3 = 256K 

CH = Feature bits 
CL = EGA board switch settings 

Since the PC's BIOS does not use a video function Ox12, this call can be 
used as an EGA presence test. The PC's BIOS will safely reject unknown int lOh 
calls with the registers unchanged. So, ifthe outgoing registers are unchanged 
by the call, or, the incoming registers do not match the data in the EGA informa
tion byte, then there is simply no EGA present. If there is an EGA, the type of 
monitor used is determined by reading the installation switch settings. You can 
safely assume that the user has set the EGA switches properly, and those 
switches are set to the monitor type. 

493 



Devices 

494 

After detecting an EGA, the function will also test for a VGA. Most regis
ters on the EGA are write only, and read/write on the VGA. A register is set to a 
value, and then an attempt is made to read that value. If the byte read back does 
not match the byte written, then the card is an EGA, not a VGA. The register 
used is the bit mask register, which will be covered in detail later. 

The program EGACHECK.C, shown in Listing 9-1, will check for an ac
tive EGA display card. (There may be another display card in the system. If an
other card is active, bit 3 of the byte at Ox40:0x87 will be 1.) If an active EGA 
card is found, some information about the setup is saved. 

The macro PEEKJJYTE(seg,off) in Listing 9-1 allows this program to re
trieve a byte from anywhere in the PC's memory. It works by shifting the value 
for the segment left one word (16 bits), and then bit ORing the offset to form a 
long int. This long int is then cast to afar pointer. 

Listing 9-1. Program EGACHECK.C 

f* egacheck.c *f 
f* Checks for an EGA/VGA *f 
f* If one is found, information is saved *f 
#include <conio.h> 
#include <dos. h> 
#include <stdio.h> 

#define PEEK_BYTE(seg,off) \ 
(*(char far*> ( Clong)(seg)<<16 I (off) ) ) 

struct Ega_ info f* template to hold information about EGA *f 
{ 

char card ; f* to hold the type 
char monitor ; f* to hold the type 
int memory ; f* amount of memory: 
char high_res_graphics ; 
char texLmode ; 

} ; 

int get_ega_info(struct Ega_info *) ; 

mai no 
{ 

struct Ega_info info ; 

of card *f 
of monitor 
64, 128, 

if(get_ega_info(&info)) 
{ 

f* test for EGA *f 

if(info.card == 'E') 
{ 

printf("\n\nEGA in use.") ; 

*f 
192, 256K *f 



9 - Programming the EGA and VGA 

pri ntf ("\nConnected to a") 
switch(info.monitor) 
{ 

case 'c' : puts(" Color Monitor") 
break ; 

; 

case 'M': puts(" Monochrome Monitor") 
break ; 

; 

case 'H': puts("n Enhanced Color Monitor") 
break ; 

default: break ; I* undefined *' 
} 

; 

printf("\n%iK bytes of EGA Memory.", info.memory) ; 
} 

else 
printf("\n\nVGA in use.") ; 

printf<"\nMode %#2i is the highest resolution graphics mode.", 
(int)info.high_res_graphics) ; 

printf<"\nMode %#2i is the text mode.\n\n", 
(int)info.text_mode) ; 

} 

else 
puts('~nNo active EGA.") ; 

} '* end of main() *' 

int get_ega_info(info) 
struct Ega_info *info ; 

I* This function tests if an active EGA is in the system *' 
{ 

union REGS regs ; 
int i, test_mask = 1 ; 

'* Get the EGA information byte from the BIOS data area *' 
char bios_info = PEEK_BYTE(Ox40,0x87) ; 

I* Bit 3 indicates if the EGA is active or not 
** it is NOT a test for presence *' 
if(bios_info & Ox8) 

return (Q) ; I* if bit 3 is 1, EGA is NOT active *' 

regs.h.ah = Ox12 ; '* EGA alternate BIOS function *' 
regs.h.bl = Ox10 ; '* get info *' 
regs.h.bh = Ox FF ; '* an impossible return va Lue *' 
int86<0x10, &regs, &regs) ; I* EGA BIOS video ca LL *' 

'* bios_info bits 5 + 6 and BL(encoded EGA memory) and *' 
continued 

495 



Devices 

496 

Listing 9-1. continued 

I* bios_info bit 1 and BH must be equal for an EGA*' 
ifCCregs.h.bl != CCbios_info & Ox60) >> 5)) I I /* memory *I 

Cregs.h.bh != CCbios_info & Ox2) >> 1)) I I /* monitor *' 
Cregs.h.bh -- OxFF)) /* BH must change *' 
returnCO>; I* if any test fails, return, no EGA*' 

'* There is an EGA, save the type of monitor *' 
'* The monitor type code is: 

'C' for color, 
'M' for mono, 
'H' for highres *' 

switchCregs.h.cl) '* cl has the EGA switch settings 
{ 

} 

case 
case 

case 
case 
case 
case 

0: I* mono primary, EGA color 40x25 *' 
6: I* mono second, EGA color 40x25 *' 
info-::smonitor = 'C' ; 
info->high_res_graphics = OxD ; 
info->text_mode = Ox1 ; 
break ; 
1 : '* mono primary, EGA color 80x25 *' 
2: '* same as 1 *' 
7: '* mono second, EGA color 
8: '* same as 7 *' 
info->monitor = 'C' ; 
info->high_res_graphics = OxE ; 
info->text_mode = Ox3 ; 
break ; 

80x25 *' 

case 3: I* mono primary, EGA high res *' 
case 9: I* EGA high res primary, mono second *' 

info->monitor = 'H' ; 
info->high_res_graphics = Ox10 ; 
info->text_mode = Ox3 ; 

case 
case 
case 
case 

break ; 
4: '* color 40 primary, EGA mono 
5: '* color 80 primary, EGA mono 
10: '* EGA mono primary, color 
11: '* EGA mono primary, color 
info->monitor = 'M' ; 
info->high_res_graphics = OxF ; 
info->text_mode = Ox? ; 
break ; 

40 
80 

default: '* reserved switch settings *' 
return CO> ; 

*' 
*' 
second *' 
second *' 

*' 



} 

9 - Programming the EGA and VGA 

info->memory = 64 * (regs.h.bl + 1) ; 

f* Now distinguish between an EGA and a VGA: *' '* This is done by writing a value to a register that is 
read only on the EGA, but read/write on the VGA *' 

outp(Ox3CE, 8) ; f* EGA/VGA bit mask *f 
outpCOx3CF, test_mask) ; f* send the test value *' 
outpCOx3CE, 8) ; f* the bit mask again *' 
ifCinp(Ox3CF) == test_mask) 

{ 

info->card = 'V' ; f* the register is readable *' 
if(info->monitor != 'M') 

{ 

info->high_res_graphics Ox12 ; 
info->text_mode = Ox3 ; 
} 

f* If connected to a Mono, the values already set *' 
} 

else 
info->card = 'E' ; 

outpCOx3CE, 8) ; 
outpCOx3CF, OxFF) ; 

'* just an EGA *' 
f* reset the bit mask *' 

f* EGA/VGA is active in this system, return the memory *' 
return(info->memory) ; 

The function prototype for geLega_info() and the skeleton for the struc
ture Ega_info should be added to a new header file called ega.h. This function 
and structure, as well as other functions and macros, will be used by later 
examples. 

Now that we know which mode to use for graphics, we can draw something 
on the display. The EGA BIOS has the same Write Dot call as the PC BIOS. This 
call is slow but usable on all IBM graphics cards. Here are the specifics of the 
EGA BIOS Write Dot: 

Write Dot 
Issue: 

Call With: 

Returns: 

Int 

AH= 

BH= 

DX= 

Ox IO 

OxC to select Write Dot function 
Page 
Row number 

CX = Column number 

AL = Color value 

Nothing 

497 



Devices 

498 

Notice the addition of a page value in BH. If you are converting older soft
ware to run on the EGA, make sure that the page number is in BH before calling 
int lOh. Programs written for the monochrome adapter, or the CGA in graphics 
mode, are especially vulnerable to this oversight. 

The BIOS call to switch to a graphics mode is precisely the same as on the 
PC, namely function 0 of int lOh. However, the BIOS does not check to make sure 
that the mode you select will not damage your monitor. A monochrome monitor, 
connected to an EGA, may be damaged by a color text or graphics mode signal, 
so it is important to check for monitor and mode compatibility. The function 
geLega_info( &info) from the program in Listing 9-1 is used to check the moni
tor and find the high-resolution mode that is safe to use. The program in Listing 
9-2 demonstrates the use of seLcrLmode() to set a graphics mode, and the use 
of dot(), which uses the BIOS Write Dot function. The program will draw a se
ries of parallel diagonal lines. 

Listing 9-2. DIAGONAL.C Program 

I* diagonal.c *' 
I* Demonstrates the high res graphics mode *' 
#include <conio.h> 
#include <dos. h> 
#include <stdio.h> 

void set_crt_mode( char ) ; '* add this to "ega.h" *' 
void dot( int, int, int, int ) ; 

mai nO 
{ 

} 

register i,j ; 
struct Ega_info info ; 
if(get_ega_infoC&info)) 

set_crt_mode(info.high_res_graphics) ; 
else 

return(1) ; 

for(j = O; j <= 500; j += 5) 
for(i = O; i <= 100; ++i) 

dot(i,i+j,13,0) ; 
getch() ; I* wait for a character to be typed *' 
set_crt_mode(info.text_mode) ; 
return(O) ; 

'*==========================================================*/ 
void dot(row,col,color,page) 
int row, col, color, page; 



9 - Programming the EGA and VGA 

{ 

} 

union REGS regs ; 
regs.x.dx row ; 
regs.x.cx = col ; 
regs.h.al = (char)color ; 
regs.h.ah = (char)OxC ; 
regs.h.bh = (char)page ; 
int86(0x10, &regs, &regs) ; 

'* Write Dot call *' 

'*==========================================================*/ 
void set_crt_mode(mode) 
char mode ; 
{ 

} 

union REGS regs ; 
regs.h.al = mode ; 
regs.h.ah = (char)O ; 
int86(0x10, &regs, &regs) ; 

I* al = mode to set *' 
I* Set Mode function *' 
I* execute BIOS int 10h *' 

'*==========================================================*/ 

When you see how slow the BIOS Write Dot function is, you will probably 
wonder if you can make it faster. To do that requires bypassing the EGA BIOS 
and putting pixels directly into the EGA's memory. However, first you must un
derstand how the EGA's memory is organized and how to control it. 

Memory Organization 
The EGA uses two different display memory organizations for graphics. In 
modes 4 through 6, the EGA uses the same memory organization as the CGA. In 
these modes, the display memory segment starts at OxB800 and uses 80 bytes 
per scan line. Since there are 200 scan lines, 16,000 bytes are used. In the 
medium-resolution 320 x 200 mode, each byte represents 4 pixels with one of 
four colors, or two bits per pixel. In mode 6, each byte represents S pixels with 
two colors, or one bit per pixel. If a bit is 1, the corresponding pixel is on; if a bit 
is 0, the corresponding pixel is off. Additionally, the even-numbered scan lines 
are in the first SK of the display memory, and the odd-numbered scan lines are in 
the second SK of memory. The split scan line memory requires every pixel's off
set to be tested to determine if it is in the even or odd bank. 

The display memory for modes 13 through 16 (through mode 18 on the 
VGA) starts at segment OxAOOO and uses up to 64K of the SOxS6 CPU address 
space. Each byte represents S pixels, with the most significant bit being the 
leftmost. The scan lines are not separated in memory like they are in the CGA 
modes, so the byte offset of a pixel is easier to calculate. In mode 16, the EGA 
has a maximum resolution of 640 x 350, or 224,000 pixels. Since there are up to 

499 



Devices 

16 colors, each pixel must use 4 bits to specify the color. Altogether, this repre
sents a total memory usage of (640 x 350 pixels + 8 pixels/byte x 4 bits/pixel) = 
109K. 

The 80x86 CPU used in the PC can address only a segment of 64K. The 
EGA fits into the 64K segment limit by dividing 128K of its 256K memory into 
four 32K bit planes. Each bit plane (or bit map) corresponds to one bit of a pixel's 
color. Imagine these four bit planes as being stacked on top of each other at the 
same CPU address. Each CPU display memory address is actually 4 bytes of 
EGA memory. 

In VGA modes 17 and 18, the EGA's memory organization is simply ex
tended for another 130 scan lines. The VGA has a 320x200 resolution mode with 
256 colors. This mode, although similar, must be addressed separately later. 

Latch Registers 

500 

Reading or writing 4 different bytes (one for each bit plane) at the same CPU 
address presents a problem. To overcome this problem, the EGA has four latch 
registers. The EGA latch registers temporarily hold 1 byte from each of the four 
bit planes. EGA logic fills each of the four latch registers with a byte from each 
of the four bit planes at the address last read by the CPU. When the CPU sends 
a byte to the address last read, each of the four latch register contents may be 
unchanged, modified, or entirely replaced by the CPU data. The latch register 
contents are then written back to each of the EGA's bit planes. 

When the latch registers are written back to the EGA's bit planes, they are 
again "stacked," with 1 bit of each of the 4 bytes forming the 4-bit color for 8 
pixels. The relationship between the latch registers and the bit planes is shown 
in Figure 9-1, which shows the state of the EGA's memory and the contents of 
the four latch registers after the CPU reads the byte at AOOO:OOOO. The 8 pixels 
in the byte contain colors 0 through 7. 

OJ OJ o J o J o _I o l oj o J Bit Plane 3 
Latch Registers 

AOOO:OOOO 

o 0JoloJ1J1_l1L1J Bit Plane 2 

0 0 111Jol 011J 1J Bit Plane 1 

0 1 0 1 I O 11 IO I 1 J Bit Plane o 
1 

3 

2 c 
0 
L 
0 

1--' R 

.......... 

t- l 0 

Pixel Position 

Figure 9-1. EGA bit maps and latch registers. 



9 - Programming the EGA and VGA 

It is important to understand that the byte returned to the CPU after 
reading AOOO:OOOO has no use. That byte is read only to establish which pixels to 
work with (in this case, pixels 0 through 7 in row 0) and to "prime" the latch regi
sters, allowing the individual bytes of the bit planes to be manipulated by CPU 
data. This allows the 8 pixels contained in the 4 bytes to be modified, replaced, 
or cleared by the PC's CPU. To work with pixels in a different row or column, 
the offset from AOOO is changed and the new byte containing the pixels is read by 
the CPU. 

Whether the latch registers are modified, replaced, or unchanged by the 
CPU depends on the settings of several EGA control registers. These registers 
are accessed through one of five indexed Very Large Scale Integration (VLSI) 
chips on the EGA. These VLSI chips are set by sending an index number corre
sponding to the function desired, followed by the data for that function. Essen
tially, the index corresponds to one of many registers internal to the EGA, but 
mapped to a single PC output port. Data for these registers is sent using the 
80x86 OUT instruction or the C library's outp() function. 

For example, the EGA has a bit mask register that will allow individual 
bits of the latch registers to be protected from change. Setting a bit to 0 in this 
register masks out the corresponding bit in the latch registers, and setting a bit 
to 1 allows that bit to be changed by CPU writes. The bit mask register there
fore allows individual pixels to be changed without altering adjacent pixels ad
dressed by the byte. 

The bit mask register is function number 8 on the EGA's Graphics 1&2 
chip. It is programmed by sending an index of 8 to port Ox3CE, followed by the 
bit mask data to port Ox3CF. The following C statements would set the bit mask 
register to protect all bits except bit 2: 

outpCOx3CE, 8) ; 
outpCOx3CF, Ox2) ; 

I* the index of the bit mask*' 
I* all bits, except bit 2, to 0 *' 

But those statements give no clue, except for the comments, to what they do. In 
a minute, we will cover a C macro to make setting the EGA registers easier. 

A second EGA register that affects how the latch register contents are re
written is the map mask register. If any of the four bits of the map mask register 
are zero, the corresponding bit maps (bit planes) are protected from change. 
Sending a number between 0 and 15 to the map mask register will allow the color 
corresponding to that number to be written to the EGA's bit planes. However, 
the previous contents of the bit planes are not cleared. The previous contents of 
the bit maps must be cleared before setting the map mask to mask for a new 
color, but after setting the bit mask, by writing a zero to the byte containing the 
pixel to change. The map mask register is part of the EGA's Sequencer chip. It is 
accessed by sending the index of 2 to port Ox3C4 and sending the map mask to 
port Ox3C5. The effects of the bit mask and the map mask are shown in Fig
ure 9-2. 

501 



Devices 

Map Mask Register Latch Registers 

Bit Plane 3 

Bit Plane 2 

Bit Plane 1 

Bit Plane O 

Byte from CPU __ _...........,_... .................... _, 

Figure 9-2. The bit mask and map mask registers. 

Direct Screen Writing 

502 

With the bit mask and map mask registers, and an understanding of the EGA 
latch registers, we have enough information to create a C routine that will di
rectly write a dot into screen memory. This routine is faster than the same rou
tine in the EGA's BIOS. On an 8-MHz AT, the EGA BIOS will put 2.65 dots on 
the display in 1 millisecond (2.65 dots/ms). The routine in Listing 9-3 puts 7.55 
dots/ms on the display-an increase in speed of 185 percent. The drawback is 
thatfastdot() will work only in EGA-specific graphics modes, and would have to 
be rewritten for another display card. 

The following macros will allow the routine in Listing 9-3 to set the bit 
mask, the map mask, as well as other internal EGA registers. 

#define EGA_GRFXCindex, value) { outpCOX3CE, index) ; \ 
outp(Ox3CF, value) ;} 

#define EGA_SQNCCindex, value) { outp(0X3C4, index) ; \ 
outpCOx3C5, value> ;} 

The first macro, EGA_GRFX, takes as arguments the index number cor
responding to the function desired on the Graphics 1&2 controller chip, as well 
as the value to send to the chip. The EGA's Graphics 1&2 chips control the access 
to the bit planes. (Although there are actually two chips at the same address, 
you can treat the Graphics 1&2 chips as one chip.) The address to index the 



9 - Programming the EGA and VGA 

Graphics 1&2 chip is Ox3CE, and the data address is Ox3CF. The macro expands 
into two C statements. The first statement sends the index value to the chips, 
and the second statement sends the data. 

The second macro, EGA_SQNC, is similar to EGA_GRFX. However, 
EGA_SQNC accesses a different chip, the EGA's Sequencer chip, by sending 
the index and data to different output ports. The Sequencer chip's main interest 
here is the map mask register. 

The next two macros allow the routine to access a segment:offset address 
anywhere in the PC's address space: 

#define PEEK_BYTE(s,o) <*<char far*' ( (Long)(s)«16 I (o))) 
#define PEEK_WORD(s,o) <*<int far*' ( (Long)(s)«16 I (o))) 

The final macros combine the previous macros. The GET_CRT_COLS() 
macro returns the value to use for the number of bytes per line in the EGA 
graphics modes. The number of bytes per line is the same as the number of 
characters per line, and this number is at address Ox40:0x4A in the BIOS data 
area. The EGA_BJT _MASK and EGA_MAP _MASK macros set the bit mask 
a~d the map mask registers, respectively. 

#define GET_CRT_COLS() PEEK_WORD(Ox40, Ox4A) 
#define EGA_BIT_MASK(mask) EGA_GRFXC8, mask) 
#define EGA_MAP_MASK(mask) EGA_SQNC(2, mask) 

Altogether, these macros make it much easier to read and understand code 
written to manipulate EGA hardware. These macros are used in all the routines 
in the rest of this chapter. 

Most of the EGA registers are write-only. Any program that uses the dis
play needs to make assumptions about the state of the EGA since a write-only 
register cannot be read. Therefore, the safest state to leave the EGA registers 
in is the EGA BIOS default state. Additionally, the EGA BIOS assumes that the 
EGA registers are in the default state when writing characters on the display. If 
the bit mask register is set to mask bits, the characters will be unreadable. For 
the bit mask and the map mask, the default is no mask at all, so setting a mask of 
OxF and OxFF in the last two lines of fastdot() restores the default state. The 
majority of the VGA's registers are read/write. (This difference between the 
EGA and the VGA was used in EGACHECK.C to detect a VGA card.) However, 
the VGA registers should still be left in the default state. 

Be sure that you understand how the byte address of the pixel is calculated 
in Listing 9-3: 

char far *rgen (char far *><OxAOOOOOOOL + 
(col » 3) + 

(row * GET_CRT_COLS()) ); 

The address of the byte is ((row x bytes per row)+ cols-:- 8 bits per byte). For the 
division of cols by 8, C's shift right operator, the>>, is used for greater speed. 

503 



Devices 

504 

Listing 9-3. FASTDOT.C Program 

f* fastdot.c *' 
#include <conio.h> 

fastdotCrow, col, color) 
I* This routine will put a dot in the EGA's display buffer 
** Use only in EGA graphics modes C13, 14, 15 or 16) 
** and on an EGA with 128K memory or greater 
** OR with a VGA in modes 13, 14, 15, 16, 17 or 18 

*' int row, col, color; 
{ 

char Latch ; 
I* Establish the address of the byte to change *f 
I* Buffer byte is AOOO:CCrow * bytes/row) + col/8) *' 

unsigned char far *rgen = Cchar far *>COxAOOOOOOOL + 
(col >> 3) + 
Crow * GET_CRT_COLS()) ) ; 

I* Calculate the bit to change: *' 

} 

char bit_mask = Cchar)C0x80 >> (col & 7)) ; 
EGA-BIT_MASKCbit_mask) ; f* set the bit mask *I 
Latch = *Crgen) ; 
*Crgen) = 0 ; 
EGA-MAP_MASKCcolor) ; 
*Crgen) = OxFF ; 
EGA-MAP_MASKCOxF) ; 
EGA-BIT_MASKCOxFF) ; 

'* 
'* 
f* 
'* 
'* 
'* 

prime the Latches *' 
clear the bit *' 
set the color *' 
set the bit *' 
reset the map mask *' 
reset the bit mask *' 

To find out the number of bytes per row, which can be 40 bytes in video mode 13 
or 80 bytes in modes 14 through 16, look at the number of characters per row in 
the BIOS data area (address Ox40:0x4A). The number of bytes per row and the 
characters per row are the same in the EGA graphics modes. The result of the 
total calculation is added to OxAOOOOOOOL, which is the segment of the EGA 
graphics modes. The entire value is then cast to afar pointer. 

The bit number in the byte that corresponds to the pixel to change is calcu
lated by (col-&-7). Once the bit number is known, the bit mask is set to Ox80 
>>bit number (Ox80 is OlOOOOOOOb). 

The preceding routine assumes that page 0 is used. To add the ability to 
address a page other than page 0, insert these lines: 

while(page){ 
rgen += PEEK_WORDC0x40, Ox4C) ; I* add page length *f 
--page ;} 



9 - Programming the EGA and VGA 

where page is the number of the page to address. The word at Ox40:0x4C con
tains the length in bytes of the CRT display buffer used by the EGA's BIOS 
routines. 

Try the program in Listing 9-2 after replacing dot withfastdot(). It is two 
to three times faster than the BIOS routine. 

Lots of Dots 

For maximum performance on the EGA, many functions need to be written to 
take advantage of unique EGA hardware. For example, the fastdot() routine 
sets the bit mask and map mask to the needed values at the beginning of the rou
tine and then resets those registers to the BIOS default state at the end. If a 
function calls the fastdot routine repeatedly, the register reset at the end of the 
fastdot routine is repeated unnecessarily. That slows down the function. 

The program in Listing 9-4 includes a line drawing routine that is based on 
Bresenham's Algorithm. This algorithm was originally used to control digital 
plotters, but it is equally suited for bit-mapped CRT graphics. The algorithm 
always increments (or decrements) by 1 in either the X or the Y direction. The X 
or Y direction is selected by the magnitude of the slope of the line. If the rise (Y 
direction) is greater, increment (or decrement) Y; if the run (X direction) is 
greater, increment (or decrement) X. Whether to increment or decrement X and 
Y is selected by the direction of the line. A cumulative error term is used to de
cide when to increment or decrement in the perpendicular direction. 

Instead of calling thefastdot() routine, the dots are placed directly on the 
display. The EGA registers are reset only once at the end, and the function is 
much faster than one based on callingfastdot(). 

Listing 9-4. BRES.C Program 

f* bres.c *f 
/*Draws a pattern of Lines to demonstrate the Line() function *f 
#include <conio.h> 
#inc Lude <dos. h> 
#include <stdio.h> 
#include "ega.h" 

void Line(int,int,int,int,int) ; /* add this to ega.h *f 

main() 
{ 

int x1, y1, x2, y2 ; 
int step = 10, color = 13, scan_Lines ; 
struct Ega_info info ; 

if(get_ega_infoC&info) >= 128) /* active EGA? memory? *f 
continued 

505 



Devices 

506 

} 

{ 

Listing 9-4. continued 

set_crt_mode(info.high_res_graphics) ; 
scan_lines = CPEEK_BYTEC0x40, Ox84) + 1) 

* PEEK_WORDC0x40, Ox85) ; 
y2 = (scan_lines - 1) - ((scan...'.lines - 1) % step) ; 
for (y1 = O, x1 = O, x2 = O; 

y1 <= y2; 
y1 += step, x2 += step) 

line(x1,y1,x2,y2,color) ; 
getch() ; I* wait for a key press *' 

set_crt_mode(info.text_mode) ; 
} 

else 
puts('~nEGA adapter not active or not installed.\n") ; 

void line(x1,y1,x2,y2,color) 
int x1,y1,x2,y2,color ; 
I* A fast line function - uses Bresenham's algorithm. *' 
I* Coordinates in row(y's) and col(x's) and assumed not equal *' 
#define sign(x) (((x) < 0) ? (-1) (1)) 
#define qabs(x) (((x) < Q) ? -(x) : (x)) 
{ 

int dx = qabsCx2 - x1) ; '* run *' 
int dy = qabsCy2 - y1) ; '* rise *' 
int s1 = sign(x2 - x1> ; '* to increment/decrement 
int s2 = sign(y2 - y1) ; 
int dx2, dy2, bytes_per_line = GELCRLCOLS () ; 
register error_term, i ; 
unsigned char far *rgen = (char far *> COxAOOOOOOOU 
unsigned char exchange = Cchar)Q ; 

I* The larger of rise or run determines 
** which to increment in the loop 

*' if(dy > dx) 

*' 

; 

{ int temp = dx; dx = dy; dy = temp; exchange = (char)1; 
\ 

dx2 = Cdx << 1) ; '* used repeatedly, calculate now *' 
dy2 = (dy << 1) ; 
error_term = Cdy - dx) << 1 ; '* initialize error_term *' 
EGILGRFXCO, color) ; f* use the EGA's Set/Reset register *' 
EGILGRFXC1, Oxf) ; I* enable all bit planes *' 
for Ci=1; i<=dx; ++i) '* all the pixels along the line*' 

} 



9 - Programming the EGA and VGA 

{ 

EGA_BIT_MASK(Ox80 >> (x1 & 7) ) ; 
rgen[ ((x1 >> 3) + (y1 * bytes_per_Line)) J += Ox1 ; 

} 

whi Le (error_term >= 0) I* Loop unti L another pixel *' 
{ 

if (exchange) 
x1 += s1 ; 

else 
y1 += s2 ; 

error_term 
} 

dx2 ; 

if (exchange) 
y1 += s2 ; 

else 
x1 += s1 ; 

error_term += dy2 ; 

EGA-GRFX(1, 0) ; I* disable the Set/Reset register *' 
EGA-BIT_MASK(OxFF) ; I* reset the bit mask *I 
} 

To keep the graphic image on the screen, a program should have the height 
and width of the display in pixels. The width of the display in pixels is given by 
GET_CRT_COLS() x 8 pixels/byte. The height could be determined exactly 
with a table containing scan line counts for each mode. However, there is a 
quicker but less accurate way. Both the number of character rows and the point 
size (bytes per character) are programmable on the EGA, and therefore either 
one can change. But the height of the character box in bytes and the number of 
scan lines determine the number of rows. Since the word at Ox40:0x85 has the 
bytes per character, and the byte at Ox40:0x84 has the number ofrows, they can 
be used to calculate the number of scan lines for any video mode. The C 
statement 

scan_lines = (PEEK_BYTE(Ox40, Ox84) + 1) 
* PEEK_WORD(Ox40, Ox85) ; 

calculates the approximate value for total scan lines. The value calculated is ap
proximate, since the number ofrows is truncated and may or may not be off by 1. 
Once the EGA data is known, the program draws a pattern of lines that is inde
pendent of the EGA graphics mode used. 

Using the Set/Reset Register 
The line() function in Listing 9-4 uses a different method to specify the color of 
dots on the display than thefastdot() routine. Thefastdot() routine uses the map 

507 



Devices 

mask register to specify the color. But since specifying a mask to the map mask 
register does not clear the previous dot, the dot must be cleared with the map 
mask first set to OxF and then set to the color of the new dot. In other words, 
both the map mask and the EGA memory must be accessed twice for every dot 
to set to a specific color. 

The line( ) function uses the set/reset register and the enable set/reset 
register to specify the color. The set/reset register will set a byte to OxFF in 
each EGA bit plane where a bit is on in the set/reset register, and will reset a 
byte to 0 in each EGA bit plane where a bit is off. Therefore, the previous con
tents of the latch registers are replaced with the color number corresponding to 
the value set in the set/reset register. The map mask register has no effect on 
the set/reset register, but the bit mask register is usable to protect adjacent 
pixels. 

To use the set/reset register, you must first enable it with the enable set/ 
reset register. The set/reset register and the enable set/reset register are part 
of the EGA's graphics controller. The BIOS default state for the enable set/reset 
register is 0, which means that the set/reset register is turned off. Each bit of a 
four-bit value sent to the enable set/reset register corresponds to an EGA bit 
plane. If a bit in the enable set/reset register is 0, the corresponding bit plane is 
protected from change by the set/reset register. 

The set/reset register is accessed by first sending an index of 0 to port 
Ox3CE and then sending the four-bit color code to port Ox3CF. The set/reset 
register affects only the bit planes enabled in the enable set/reset register. The 
enable set/reset register is accessed by sending an index of 1 to port Ox3CE and 
then sending the four-bit map mask to port Ox3CF. 

Notice the statement rgen[ ((x1>>3) + (y1*bytes_per _line))] +@ Ox1; in 
Listing 9-4. Since the EGA display buffer is linear, it can be easily addressed as 
an array. The expression inside the brackets calculates the buffer offset of the 
byte to change. The right side of the statement would seem to be adding 1 to that 
byte, and that is what the CPU is trying to do. However, the actual purpose is to 
preserve the adjacent pixels contained in the byte. When the bit mask register 
is used, the display buffer must be read first to fill the latch registers so that the 
other bits in the byte may be preserved. Unlike the map mask register method 
of setting a color, when the set/reset register is used the byte sent by the CPU 
has no meaning beside establishing the address of the byte to change. 

So the + = 1 accomplishes two things: it reads the display buffer in order to 
prime the latch registers, and it sends back a byte that triggers the set/reset 
register. The 1 could be any value as long as the C compiler translates the opera
tion into an 80x86 instruction that first reads and then stores a byte in the EGA's 
display memory. 

Using the EGA Write Modes 

508 

The EGA has three write modes: 0, 1, and 2. Changing the EGA write mode 
changes the way that EGA hardware reacts when the CPU sends a byte to the 
display buffer. Each write mode is optimized for a different use. Write mode 0 is 
the general-purpose write mode, write mode 1 is optimized for copying EGA 



9 - Programming the EGA and VGA 

memory regions, and write mode 2 is best used for color fills. Changing the 
write mode can speed up an operation dramatically. 

Write mode 0 is the mode used by the EGA BIOS. It is the most general
purpose write mode. In write mode 0, the color of a pixel may be set by using 
either the map mask register or the set/reset register. The map mask register is 
used by the EGA BIOS and by thefastdot() routine. The line() function uses 
the set/reset register to specify a color. When the map mask register is used, 
individual pixels may be set by the CPU sending a byte, with the corresponding 
bits in the byte set to 1. However, adjacent pixels in the byte must be protected 
with the bit mask register. When the set/reset register is used, the bits in a CPU 
byte sent to the EGA display do not correspond to pixels. The byte is written 
only to determine the offset of the pixels to change. The color is specified in the 
set/reset register, and the bit mask register allows individual control of pixels. 

Write mode 2 is the most similar to write mode 0. In write mode 2, the byte 
sent from the CPU sets the color rather than individual pixels. The bit mask 
register gives control over individual pixels, and, if the bit mask register is not 
set, the entire byte of pixels is filled with the color from the CPU. The write 
mode is specified in bits 0 and 1 of a byte sent to the mode register on Graphics 
1&2 chips. The index of the mode register is 5. The program in Listing 9-5 dem
onstrates write mode 2. The rect() routine uses write mode 2 to fill a rectangle 
with a given color. 

Listing 9-5. RECT.C Program 

I* rect.c *' 
I* This program demonstrates write mode 2 *' 
#include <conio.h> 
#include <dos. h> 
#include <stdio.h> 
#include "ega. h" 

void rect(int,int,int,int,char); '* add to ega.h *f 

mai no 
{ 

int i,.j; 
struct Ega_info info ; 
if(get_ega_info(&info)} 

set_crt_mode(info.high_res_graphics) ; 
else 

return(1) ; 
pri ntf ("\nColor #:\n"); 
for (i=O,j=O;i<16;++i,j+=40) 
{ 

printf(" %2i ",i); 
rect(50,j,349,j+39,(char)i); 

continued 

509 



Devices 

510 

} 

getchO; 
set_crt_mode{3) ; 
} 

Listing 9-5. continued 

void rectCrow1,col1,row2,col2,color) 
int col1,row1,col2,row2; 
char color ; 
{'*This function generates a filled rectangle*' 

I* It is assumed that row1 < row2, and col1 < col2 *' 
unsigned char far *rgen = {char far *>COxAOOOOOOOL) ; 
int rows = row2 - row1 ; I* number of rows *' 
int cols= Ccol2 >> 3) - Ccol1 >> 3) - 1 ; I* total cols*' 
char Left = Cchar)COxFF >> Ccol1 & 7)) ; I* Left mask*' 
char rght = Cchar)"COxFF >> Ccol2 & 7)) ; I* right mask*' 
char next_row ; 
char bytes_per_Line = Cchar)GET_CRT_COLS{) ; 
register x,y ; 
char Latch ; 

if (cols< 0) '*are col1 and col2 in the same byte?*' 
Left &= rght, cols = O, rght = 0 ; 

rgen += bytes_per_Line*row1 + Ccol1 >> 3) ; 
next_row = bytes_per_Line - cols - 2 ; 

EGA._GRFXC5,2); '* set write mode 2 *' 
forCy = 0 ; y < rows ; y++) '* do every row *' 
{ 

EGA._BIT_MASKCleft) ; 
Latch = *Crgen) ; 

I* set the bit mask for Left *' 
I* Latch the EGA bit planes *' 

*Crgen++) = color ; I* set the color, point to next byte *' 
EGA._BIT_MASKCOxff) ; '* no mask in the center *' 
forCx = O; x < cols; x++) '* do every column *' 

} 

{ 

} 

Latch = *Crgen) ; 
*Crgen++) = color ; 

EGA._BIT_MASK(rght) ; 
Latch = *Crgen) ; 
*Crgen++) = color ; 
rgen += next_row ; 

EGA._BIT_MASKCOxf f) ; 
EGA._GRFXC5,0> ; 

} 

'* 
'* 
'* 
'* 

'* 
'* 

set the right bit mask *' 
latch the EGA bit planes 
set the color *' 
go to the next row *' 

reset the bit mask *' 
reset the write mode *' 

*' 



9 - Programming the EGA and VGA 

In Listing 9-5, write mode 2 is set with the macro EGA._GRFX(5,2). You 
must be careful not to send a value other than 0, 1, or 2 on the EGA (0, 1, 2, or 3 
on the VGA), since the other bits of the byte sent to the mode register are sig
nificant to the EGA. The map mask and the bit mask registers are effective in 
write mode 2, but the set/reset register is not usable. Write mode 0, the BIOS 
default write mode, is set with EGA_GRFX(5,0). The write mode must be reset 
to 0 before other programs or BIOS calls are used. 

Write mode 1 is used to rapidly copy one area of EGA memory to another 
area. This is most useful for scrolling, animation, or saving and restoring areas 
of the screen. Write mode 1 allows you to copy the 4 bytes in each of the four bit 
planes with only one CPU read and write, and is many times faster than reading 
the 4 individual bytes from the bit planes and then writing the 4 bytes back at 
the new address. 

To copy the 8 pixels, the EGA memory offset containing the 8 pixels is read 
to prime the latch registers; then the offset containing the destination is written 
to by the CPU. When the CPU writes a byte, and the write mode is set to 1, the 
EGA discards the byte from the CPU and copies the latch registers to each of 
the bit planes. The bit mask register is not usable with write mode 1. All 4 bytes 
in the latch registers. are written to all four bit planes regardless of the setting of 
the bit mask. The map mask register can be used to protect individual bit 
planes. 

The program in Listing 9-6 demonstrates write mode 1. A pattern of lines 
is drawn at the top of the screen. That pattern is then copied using write mode 1. 
Finally, the edge of the pattern is redrawn rapidly to demonstrate the potential 
for animation. 

Listing 9-6. MODEL.C Program 

f* mode1.c *f 
/* This program demonstrates EGA write mode 1 */ 
#include <conio.h> 
#include <dos. h> 
#include <stdio.h> 
#inc Lucie "ega. h" 

void copy( int,int,int,int,int,int ; 

void main() 
{ 

register i,j; 
int k = O; 
set_crt_mode(16) ; f* enhanced monitor only! *f 
f* Draw an interesting pattern: *f 
for(k = O; k <= 4; ++k) 
for(j = O+k; j <= SOO+k; j += 5) 

continued 

511 



Devices 

512 

Listing 9-6. continued 

for(i = O+k; i <= 100+k; ++i) 
fastdotCi,i+j,13) ; 

for(k O; k <= 3; ++k) 
for(j = O+k; j <= 500+k; += 5) 
for(i = O+k; i <= 100+k; ++i) 

fastdot(i,i+j,3) ; 
'* Copy the pattern 120 rows down: *' 
copy(0,0,105,639, 120,0) ; 
whileC!kbhitO) 
{ 

'* Copy the edge repeatedly, 
**gives the illusion of motion: *' 

copy(99,100,106,592, 219,100) ; 
copyC99,100,106,592, 219,108) ; 

} 

set_crt_mode(3) ; 
} 

void copy(r1_1, c1_1, r2_ 1, c2_ 1, rL2, c1-2) 
int rL 1, cL 1, '* upper Left corner of source *' 

r2-1, c2_ 1, '* Lower right corner of source *' 
rL2, cL2 ; '* upper Left of destination *' 

{ 

'* Copies one screen ~egion to another rapidly. Uses 
**write mode 1. Only the upper corner of the destination 
** needs to be given. 

*' char far *source= (char far *><OxAOOOOOOOL) ; 
char far *destination= (char far *)(OxAOOOOOOOL) ; 
int rows= r2_1 - r1_1 ; 
int cols= (c2_1 >> 3) - (c1_1 >> 3) ; 
int bytes_per_line = GET_CRT_CQLS() ; 
int next_row = bytes_per_Line - cols ; 
register x,y ; 
source+= bytes_per_Line * r1_1 + Cc1_1 >> 3) ; 
destination+= bytes_per_Line * r1_2 + Cc1_2 >> 3) ; 

EGA_GRFX(5,1) ; 
for(y = 0 ; y < rows ; y++) 
{ 

I* set write mode 1 *' 

for(x = O; x < cols; x++) 
*(destination++) = *<source++) ; 

source += next_row ; 
destination += next_row ; 



} 

} 

EGJLGRFX(5,0) 

9 - Programming the EGA and VGA 

f* reset the write mode *f 

Since the bit mask register is not usable in write mode 1, the copy() rou
tine will copy all 8 pixels in the source bytes to the destination bytes. In other 
words, write mode 1 is usable only on bytes rather than pixels. Write mode 1 can 
be used to save an area of the screen to a non visible page. This is useful for im
plementing pull-down menus. The area under the pull-down menu can be saved 
to a non visible page and then restored after the user has finished with the menu. 
Write mode 1 can copy only to another part of the EGA's memory. To read a color 
from EGA memory requires reading the four bit maps individually. 

The VGA has one new write mode. Write mode 3 on the VGA is similar to 
using the set/reset and enable set/reset register pair in write mode 0 on the 
EGA to set the color (used by line() in Listing 9-4). The difference is that in 
write mode 3 the enable set/reset register is not used, so that the value in the 
set/register is not masked by the enable set/reset register. 

Reading the Bit Maps 

Since each byte of CPU address space reserved for the EGA represents 4 bytes 
of graphics memory, EGA memory cannot be read by the CPU directly. The 
EGA will return the byte from the bit plane selected in the read map select regi
ster. The map to read must be set before reading the EGA offset containing the 
pixels you are interested in. 

To determine the color of a given pixel requires a separate read from each 
of the four bit planes. Each bit of the four-bit color value is on one of the four bit 
planes. The most significant bit of the color value is on bit map 3, and the least 
significant bit is on bit map 0. The read map select register is index 4 on the 
EGA's Graphics 1&2 chip. Since each of the EGA's bit maps must be read indi
vidually, the value in the read map select register corresponds to only one EGA 
bit map at a time. 

The function in Listing 9-7 returns the color of a pixel on the display. Like 
fastdot(), it is several times faster than the equivalent BIOS routine for reading 
the color of a dot. 

The offset of the byte containing the pixel is determined exactly the same 
way as in thefastdot() routine. A value for a bit mask is calculated by determin
ing the bit number of the byte to change. But the bit mask value is not sent to the 
EGA's bit mask register. The EGA's bit mask register has no effect on bytes 
read from the EGA. The bit mask is used to isolate the pixel from the byte read 
from the EGA's bit plane. The bits are then added plane by plane to the pixel's 
color code. The read map select register selects the map to read from. The bit 
maps are read backwards (map 3, 2, 1, 0), since that makes the color code trans
lation easier. Notice that the read map select register is not reset at the end of 

513 



Devices 

Listing 9-7. Program to Return the Color of a Pixel 

I* return the color of a pixel *' 
int readdot(row,col) 
int row,col; 
{ 

} 

register color = 0 ; 
register latch ; 
unsigned char far *rgen = (char far *)(OxAOOOOOOOL + 

(col » 3) + 
Crow * GET_CRT_COLS())) ; 

int bit_number = (col & 7)-7 ; 
int bit_mask = (1 << bit_number) ; 
int plane ; 
I* Step through each plane 3,2,1,0 *' 
for(plane = 3; plane >= O; plane--) 
{ 

} 

EGA-GRFXC4,plane) ; 
latch = *Crgen) & bit_mask ; 
latch >>= bit_number ; 
color <<= 1 ; 
color I= latch ; 

return(color) ; 

I* select plane *' 
'* bit from that plane *' 
I* right justify *' 
I* room for new bit *' 
I* add the bit *' 

the routine. The last time through the loop sets the read map select register to 
0, which is the default value. 

EGA Color Palettes 

514 

When used with an Enhanced Color Monitor, the EGA can display any 16 colors 
from a 64-color palette. It takes 4 bits to represent 16 colors. Each of these bits 
corresponds to one of the EGA's four bit planes. On the CGA, and with the 
EGA's default palette, the 4 bits correspond to red, green, blue, and intensity, 
usually abbreviated as IRGB. But once the EGA palette is changed from the de
fault, the four-bit color code is simply an index to the new palette. 

The 64-color palette has the same three basic colors (red, green, blue) as 
the 16-color palette, but there is no intensity bit. Instead, each color has 2 bits 
for individual color intensity, giving three intensity levels for each color. The to
tal 64-color palette may thus be represented with 6 bits (3 colors x 2 bits/color). 
The bits for the lower intensity of the three colors are the most significant bits in 
the 6-bit value, and are usually abbreviated as lowercase rgb for low-intensity 
red, green, and blue. The least significant 3 bits represent the higher-intensity 



9 - Programming the EGA and VGA 

red, green, and blue, and are abbreviated as an uppercase RGB. The total 6-bit 
value, rgbRGB, is used to select 1 of the 64 colors. Once 1 of the 16 displayable 
colors is set to an rgbRGB value, that color may be selected with a 4-bit IRGB 
value. The bits of an rgbRGB value will always indicate the red, green, and blue 
components of the resulting color, but, with an ECD connected, an IRGB value 
is simply an index to the current palette. 

The rgbRGB colors can be used only with an EGA connected to an En
hanced Color Monitor. When the EGA is connected to a Color Display, only the 
16 colors from the default palette may be used. In text modes and the EGA 
graphics modes, individual palette registers may be set to any of the 16 default 
colors. In the CG A-compatible modes, the palette must be changed by using the 
CGA-compatible BIOS calls. 

The EGA also has an overscan register. The color value sent to the over
scan register is displayed as a border. However, the overscan is usable only in 
the 200 scan line modes. 

The EGA's palette registers are most often set with a new EGA BIOS call. 
The BIOS call can set either 1 of the 16 colors, or all 16 at once. The BIOS call is 
function OxlO of interrupt OxlO. There are four subfunctions: 0 sets individual 
palette registers to any rgbRGB value (or any IRGB value ifthe EGA is not con
nected to an ECD), 1 sets the overscan register, 2 sets all the palette registers 
and the overscan register, and 4 toggles between text blinking and intensity. 
The subfunction is selected in register AL. 

Set Palette 

Issue: Int OxlO 

Call with: AH = OxlO 

AL= 

BL= 

BH= 

AL= 

BH= 

AL= 

0, Set individual palette register 

Color number (IRGB) to change 

rgbRGB value to set 

1, Set overscan register 

Color number to set 

2, Set all palette registers and overscan 
ES:DX points to a 17-byte table 
Bytes 0-15 have the 16 rgbRGB values for colors 
0-15 
Byte 16 is a color number for the overscan register 

AL= 

BL= 

BL= 

3, Toggle intensity/blinking bit 
Changes the meaning of bit 7 of the text attribute 
byte. 

0, Allow background intensity 

1, Allow foreground blinking 

515 



Devices 

516 

Unfortunately, the EGA's palette registers are write only. Normally it is 
not possible to determine what rgbRGB value a given color number represents. 
The EGA BIOS will check for the existence of a 256-byte table called the param
eter save area when changing the palette registers. The BIOS will save the 
rgbRGB values in that table if it exists. The creation and maintenance of a pa
rameter save area will not be covered here, but it is important to use BIOS calls 
to set the palette so that a parameter table will be updated. 

The VGA does have read/write palette registers, so individual rgbRGB col
ors may be determined by reading the associated palette register. The VGA also 
has a more extensive palette, in which any of the 16 colors displayed may be from 
a palette of 262, 144 possible colors. Instead of the 2 bits per color on the EGA, 
the VGA uses 6 bits per color (26 x 3 colors= 262,144 colors). 

The program in Listing 9-8 demonstrates the uses of the palette registers. 
It will work only with an EGA/ECD combination (or VGA). The program will 
first draw 16 colored rectangles using the rect() function from Listing 9-5. The 
palette is then continuously changed. 

Listing 9-8. PALETTE.C Program 

f* palette.c *' 
f* Demonstrates the 64 color palette *' 
#include <conio.h> 
#inc Lude <dos. h> 
#include <stdio.h> 
#inc Lude "ega. h" 

void set_all_pal(char *) ; 
void gotoXY(int,int) ; 

main() 
{ 

int i,j,ch = O; 
char palette[17J ; 
set_crt_modeC16) ; 

f* this array holds the palette *' 
f* have the right monitor! *' 

f* Draw some color bars: *' 
pri ntf ("\nCo Lor #: \n") ; 
for Ci=O,j=O;i<16;++i,j+=40) 
{ 

} 

printf(" %2i ",i); 
rectC50,j,300,j+39,i); 
palette[i] = (char)i; 

gotoXY(15,22) ; 

f* from Listing 9-5 *' 
f* initialize array *' 

printf("rgbRGB of color 7") ; 
printf(''%c%c%c%c%c%c'',205,205,205,205,205,190) ; 



9 - Programming the EGA and VGA 

gotoXYC20,0) ; 
printf("Press Space to single space, Esc to exit") ; 

palette[16J = (char)O ; 
whi Le(ch != 27) 

{ 

if CkbhitO) 
ch = getchO ; 

for Ci = 1; i<=15; ++i) 
{ 

palette[iJ++; 

I* whi Le not ESC *I 

I* if a key is hit, */ 
I* get the character *I 

if (palette[iJ == 64) I* max rgbRGB value */ 
pa Lette[i J 1 ; 

} 

set_all_pal(palette) ; 
gotoXYC15,23) ; 

I* set the palette *I 

I* Convert the rgbRGB value to binary: *I 
for(i = S;i>=O; --i) 

} 

if(palette[7J & 1<<i) 
putchar('1') ; 

else 
putchar('0') ; 

if(ch == 32) 
whileC!kbhitO); 

set_crt_mode(3) ; 
} 

I* single space mode *I 

/*==========================================================*/ 
void set_all_pal(palette) 
char *Palette ; 
I* This function sets the entire palette *I 
{ 

union REGS regs ; I* the 8086 registers */ 
struct SREGS segregs ; 
char far *fP = (char far *)palette ; 
regs.h.ah = Ox10 ; 
regs.h.al = 2; I* function to set all *I 
segregs.es = FP_SEG(fp) ; I* ES to segment of palette */ 
regs.x.dx = FP_OFF(fp) ; I* DX to offset of palette *I 
int86x(Ox10, &regs, &regs, &segregs) ; 
} 

!*==========================================================*! 
continued 

517 



Devices 

void gotoXYCx,y) 
int x,y ; 

Listing 9-8. continued 

f* This function moves the text cursor to x,y *f 
{ 

union REGS regs ; 
regs.h.ah = 2 • f* set cursor function */ , 
regs.h.bh = 0 ; f* page 0 *f 
regs.h.dh = <char)y ; f* row *f 
regs.h.dl = (char)x ; f* col *f 
int86<0x10, &regs, &regs) ; f* call int Ox10 *f 

} 

The Data Rotate Register 

518 

The data rotate register allows you to select how the data sent by the CPU will 
be combined with the EGA latch registers. The options are to have the data be 
ANDed, ORed, XO Red, or unmodified with the bytes in the latch registers. Al
though the data rotate register also has the ability to rotate the byte sent from 
the CPU, in practice this is of little value. The CPU can be used to rotate the 
byte more quickly and with less setup. The significant bits of the data rotate reg
ister are shown in Figure 9-3, and an example of how to use the data rotate regis
ter is shown in Listing 9-9. 

----~..__.,_..------~ 

I I_ Rotation Count for Byte from the CPU 

L__ Function Selection 

BITS 
4 3 
O O Data is unmodified 
0 1 CPU byte is ANDed with latch bytes 
1 O CPU byte is ORed with latch bytes 
1 1 CPU byte is XORed with latch bytes 

'--------- Unused on the EGA 

Figure 9-3. The data rotate register. 



9 - Programming the EGA and VGA 

main 0 
{ 

Listing 9-9. Example Use of Data Rotate Register 

int i,J, k ; 
for(k=1;k<16;k++) 

{ 

set_crt_mode(16) ; 
rect'C0,0,200,639,k) ; 
EGIL.GRFXC3,0) ; 
for(i=O;i<13;i++) 

pri ntf ("\n") ; 

I* background *' 
I* reset the DRR *' 

printfC" Unmodified AND'ed") ; 
printf(" \t OR'ed XOR'ed") ; 
for(i=O, j=O; i<4; j=160*(i+1),i++) 

{ 

switch(i) 
{ 

case 1:EGIL.GRFXC3,8) ; 
break ; 

I* DRR to AND *I 

case 2:EGIL.GRFXC3,16) ; I* DRR to OR *' 
break ; 

case 3:EGIL.GRFX(3,24) ; I* DRR to XOR *I 
} 

I* Now draw the rectangles: *' 
rect(20,20+j,100,99+j,1) ; 
rect(40,40+j,120,119+j,1<<1) ; 
rect(60,60+j,140,139+j,1<<2) ; 
rect(80,80+j,160,159+j,1<<3) ; 
} 

getchO ; 
} 

set_crt_mode(3) ; 
} 

VGA 256 Color Mode 

The VGA has a new video mode, mode 19, that can display 256 colors out of a 
palette of 262,144 total colors. Mode 19 is conceptually quite easy. Since each 
pixel is represented by 1 byte of display memory, the calculations to determine 
the offset of each pixel are simplified. The program in Listing 9-10 is an example 
VGA mode 19. The entire set of 256 colors is displayed. The first 16 colors are 
the same palette as the CGA, VGA, and EGA. The next 21 colors are a gray 
scale. The final 216 colors are three groups of72 colors. Each group of72 ranges 

519 



Devices 

520 

smoothly from blue to red to green. The three groups correspond to decreasing 
saturation, or increasing whiteness. 

Listing 9-10. Example VGA Mode 19 

void fast19Cint, int, int) ; 

mai no 
{ 

} 

register i,j ; 
struct Ega_info info; 
ifCget_ega_infoC&info)) 

ifCinfo.card == 'V') 
set_crt_modeC19) ; 

else 
return ; 

else 
return ; 

forCi=OxO; i<=OxFF; i++) 
forCj=O; j<200; j++) 

fast19Cj,i,i) ; 

I* VGA card? *I 

I* print the palette */ 

void fast19Crow,col,color) 
int row, col, color ; 
{ 

} 

I* since each byte is a pixel, the offset of a pixel is 
** Crow * 320 bytes/row) + col 
** there is also no bit mask *I 

unsigned char far *rgen = (char far *)(OxAOOOOOOOL + 
Crow * 320) + col) ; 

*rgen = (unsigned char)color ; 

Included in Listing 9-10 is a direct video memory dot routine,fast19( ), for 
the VGA's 256 color mode. Since each pixel uses 1 byte of display memory, the 
routine can be very direct. There is no need for lengthy memory calculations or 
bit map or map mask manipulation. A routine to return the value of a pixel is just 
as straightforward. Simply replace the statement *rgen = color ; with re
turn( *rgen) ;. 



9 - Programming the EGA and VGA 

Summary 

With the EGA, everything is complicated. When IBM designed the EGA, it was 
locked into supporting two very different previous display standards (the CGA 
and MDA). The result now is supported in the even more complicated VGA. 
Your best bet for designing software to run on the EGA or VGA without sacri
ficing future compatibility is to separate hardware.dependent code into log
ically independent functions. For example, thefastdot() routine in Listing 9-5 
was easy to rewrite for the new VGA 256 color mode. A more complicated plot
ting routine that calls fastdot() to plot dots would not need to be rewritten as 
long asfastdot() supports the new mode. 

This chapter has developed several basic graphics functions line(), fast
dot( ), readdot( ), and rect( ). Many of the EGA peculiarities, such as latch regis
ters, have been examined. The three ways of setting a color on the EGA-the 
map mask register, the set/reset register, and write mode 2-have also been 
shown. Although the routines in this paper are fast, there are many improve
ments that could be made. High-performance graphics routines on the EGA or 
VGA tend to be found only through exploration. 

521 







10 - Programming the Intel NPX 

()f""] HE MS-DOS world belongs exclusively to Intel. That fad prov id es users of 
l±JMS-DOS with two benefits. One, programs written for MS-DOS systems 

are generally portable even at the object code level. Two, most MS-DOS sys
tems have the capability of using the Intel 8087, 80287, or 80387 Numeric Proc
essing Extension chips. Throughout this chapter, we shall refer to the Numeric 
Processing Extension by the abbreviation "NPX." The NPX's purpose is to 
provide 8086-family, 80286, and 80386 systems with the ability to performjasi 
floating point calculations. 

The NPX supplies the system with instructions for number conversions, 
basic mathematics, and even some transcendental functions, such as sine, co
sine, and log. 

The benefits of the NPX are not limited to speed alone. By supplying what 
amounts to a library of floating-point math routines, the NPX spares the pro
grammer the burden of writing those routines, thus speeding the programming 
job. In addition, because these routines are contained in the NPX chip rather 
than in program memory, use of the NPX can result in a smaller program, which 
can mean a cost savings in some developments. 

Unlike earlier math processors, such as the Intel 8231A and 8232, the NPX 
is accessed with escape sequences that appear to the assembly language pro
grammer as machine language instructions. The NPX does not require the in
stallation of any additional software or hardware (as long as the 8088 or main 
CPU chip is configured in "max mode"), nor does the NPX require programmed 
I/O or DMA transfers for access. 

Because the NPX is fully compatible with the proposed IEEE (Institute of 
Electrical & Electronics Engineers) standards for floating point computations, 
a large and expanding base of advanced numerical calculation software is avail
able. This base conforms with the NPX's way of processing numbers. For a pro
grammer who doesn't have the time to write complicated numerical routines, 
this software base represents a great savings in time and money. 

Use of the 8087 NPX is not limited to the 8086 and 8088 processors. The 
8087 NPX can also be used with the 80186 and 80188 processors. For users of the 
80286 processor, Intel has provided the 80287 NPX. And for users of the 80386 
processor, the 80387 NPX is used. Note that some 80386-based systems provide 
a socket for the 80287 NPX in addition to, or instead of, an 80387 NPX socket, 
since the 80287 NPX was cheaper and more readily available than the 80387 

525 



Devices 

NPX when the 80386 was first introduced. Unless otherwise noted, the informa
tion presented in this chapter is valid for all of these combinations. 

A Programmer's View of the NPX 

526 

The following sections discuss aspects of the NPX that are important to keep in 
mind when you are programming for the NPX. These include data registers, 
floating-point and other data formats, the NPX instruction set, addressing 
modes, and the control and status words. 

The Data Registers in the NPX 
Although it's true that NPX instructions appear as part of the main processor's 
instruction set, the NPX has no means of accessing the main CPU's registers. 
Instead, the NPX has its own set of registers and communicates with the main 
CPU through common memory. That really isn't much of a limitation because 
the main CPU's registers aren't well suited to real numbers. Instead of the 
16-bit or 32-bit registers used in the main CPU, the NPX has eight 80-bit regis
ters and can therefore hold much more information. These registers are shown 
in Figure 10-1. 

TAG WORD DATA REGISTERS 

Accessible 
through NPX 

Operands 

Accessible Only 
through FSAVE 

} 

and FSTENV 

Pointer to 
Main CPU Common 

Memory 

Figure 10-1. Register layout in the NPX. 

You should notice that unlike the main CPU, the NPX's data registers 
don't have unique names but are indexed entries in a stack (for example, ST (1)). 
Values are loaded into the NPX by pushing them onto this stack, and some 
values (but not all) are retrieved by popping them from the stack. Many of the 



10 - Programming the Intel NPX 

NPX's instructions operate only on the top of the stack, and most of the other 
instructions default to operating on the stack's top. 

The fact that the NPX addresses its registers as a stack is very important 
because all register addresses are relative to the top of the stack! For example, a 
value contained in register i is contained in register i-1 if the stack is popped 
and register i + 1 if a new entry is pushed on the stack. 

When programming for the NPX, pay close attention to the behavior of the 
stack. You can't stuff a value into a register and assume that the value will be in 
the same place later. 

Floating-Point Real Number Representation in the NPX 
These registers also differ from the main CPU's registers in that they may hold 
only one type of number-a floating-point real number (called a temporary real 
in Intel parlance). The topmost format in Figure 10-2 shows what this floating 
real number looks like in an NPX register. From the picture, you can see that 
the register is divided into three fields: the sign bit, the biased exponent 
(15 bits), and the significand (64 bits). Each of these numbers taken by itself is 
an unsigned binary integer, but when combined they can represent a very large 
number! 

Let's take a closer look at the individual parts of this floating-point real 
number. The leftmost part (bit 79) is the sign bit. When this bit is a 0, the num
ber is positive. When it's a 1, the number is negative. Simple, but there are two 
effects to note. Unlike two's complement binary integers (as used in the main 
CPU), this floating-point real number has exactly as many positive numbers as 
negative numbers (you'll see why later). The other, more important effect is that 
this numbering system has two types ofO! This means that 0 can be a positive or 
a negative number and that 0 doesn't necessarily equal 0. The NPX takes care of 
this effect, but it's something to be remembered if you attempt to compare real 
numbers with the main CPU (you shouldn't ever need to because the NPX com
pares numbers just fine). 

Skipping to the right-hand side of the number, we see the significand (bits 
0 through 63). This is where the significant digits part of the number is repre
sented. Because each entry can be either positive or negative, the range is ex
actly the same size for each. You'll also note that bit 63 (the most significant bit 
of the significand) is shown as a 1. This is because the NPX usually stores num
bers in a normalized format, which means that the NPX finds the leftmost 1 in a 
binary number and shifts it up or down until that 1 is in bit 63. (A number with 
no 1is0, and its representation is all O's.) Let's do a short example with the num
ber 10: 

Decimal: 
Hexadecimal: 
Binary 64 bit integer: 
NPX 64 bit real: 

10 
A 

000000000000000 •.. 000000000001010 
101000000000000 •.• 000000000000000 

527 



Devices 

528 

FLOATING 
REAL 

PACKED 
DECIMAL 

79 

72 71 

LONG 
REAL 

LONG 
INTEGER 

64 63 '-1.o Explicit 

52 '- 1.0 Assumed 

SHORT 
REAL 

0 

0 

0 

0 

31 23 ' 0 

SHORT 
INTEGER 

WORD 
INTEGER 

1.0 Assumed 

0 

15 0 

Figure 10-2. Number representations in the NPX. 

See how the NPX slid the number to the left? This allows much more room 
for other digits to be represented, such as 10.1, 10.12, etc. The only problem is 
that the number shown for the NPX is no longer 10. It's now 10 x 2so. How does 
the NPX know that it's really just 10? It uses something called the exponent 
field (bits 64 through 78). 

The NPX always assumes that the number in the significand is between 1 
and 2. By itself the number shown above would be 1.01 binary, or 1.25 decimal. 
(Each binary digit in a fraction is 1h the previous binary digit, so the positions to 
the right of the decimal point in binary are 1h, ~.Vs, 1hB, etc.) The NPX remem
bers in the exponent field how many positions it shifted the original number. For 
the case of 10, the NPX shifted the decimal point three positions from 1010.0 



10 - Programming the Intel NPX 

(binary) to 1.0100 (binary). The value 3 is stored in the exponent field. There is 
one more trick to the NPX's storage of numbers. Because the exponent is stored 
as an unsigned integer, ifthe NPXjust put the true exponent in the field, there 
would be no way to store numbers less than 1 (no negative exponents means no 
number less than 2° or one). So the NPX biases (it adds a bias to) the exponent. 
The bias used in the NPX is 3FFFh, or 16,383 decimal. For the example of stor
ing the number 10, the biased exponent is 3 plus 3FFFh, or 4002h. 

We're all done, so let's look at Figure 10-3 to see what the number 10 looks 
like inside the NPX. Why must you understand how the NPX stores numbers? 
Because there are times when you'll want to inspect the contents of NPX regis
ters during debugging, and in order to understand the uses and limitations of 
some of the more advanced NPX instructions, you must first know the types of 
data being manipulated. 

79 78 .. . 64 63 62 0 

+ 23 x 1.01O=101 O (Binary)= 1 O (Decimal) 

Figure 10-3. NPX representation of the number 10. 

Other Data Formats Used with the NPX 
Figure 10-2 contains six other data formats in addition to the 80-bit floating
point real number format used internally. What are these representations used 
for? In addition to the 80-bit real, these forms are those that the NPX can use to 
read data from or write data to memory. If the data is in one of these formats, it 
can be understood by the NPX. Otherwise, all bets are off. Three basic types are 
shown in Figure 10-2. These types are real, integer, and packed decimal. 

Short Real and Long Real Data Formats 
The short real (32-bit) and long real (64-bit) formats are very similar to the 80-
bit floating-point real just discussed. These numbers are capable of represent
ing floating-point real numbers but with less range and accuracy. The dif
ferences can be summed up as shown in Table 10-1. 

Table 10-1. Differences among Real Data Formats 

Data Type #Bits Significand # Bits Exponent Exponent Bias Leftmost One 

80-bit Real 
64-bit Real 
32-bit Real 

64 
52 
23 

15 
11 
8 

3FFF (16383) 
3FF (1023) 
7F (127) 

Explicit 
Assumed 
Assumed 

529 



Devices 

530 

In addition to their size, the short and long real forms differ from the 80-bit 
real in that the most significant one bit does not actually appear! Because of 
their limited space, these forms always assume a 1 at the leftmost position but 
don't store the 1, and thus they gain another digit position. 

Word Integer, Short Integer, and Long Integer Data Formats 
The integer forms should be familiar by now. These forms are used by the main 
CPU to store two's complement integer numbers (although the main CPU can't 
use the 8-byte long integer format). These numbers have the following ranges: 

64-Bit: 

32-Bit: 
16-Bit: 

-9,223,372,036,854, 775,808 to 9,223,372,036,854, 775,807 
-2,147,483,648 to 2,147,483,647 
-32, 768 to 32, 767 

These numbers differ from the real numbers in that any value loaded from this 
form is an exact representation of the number. Also remember that although 
these are signed numbers and the most significant bit reflects the sign of the 
number, they are still two's complement numbers. 

Packed Binary-Coded Decimal (BCD) Formats 
The last form of the NPX is called packed BCD (binary-coded decimal). What is 
packed BCD? In binary-coded decimal notation, each 4-bit nibble is a separate 
digit that can have a value between 0 and 9. The entire number has no real mean
ing other than as a string of digits. In this way, the number is more like an 
ASCII string. In Figure 10-4, we've taken the number 256 and shown its forms 
in normal binary and binary-coded decimal. The little calculation attached is 
shown in decimal base. 

9-8 7 ... 4 3 ... 0 

0 0 

Binary: 1x256 + Ox 16 + ox 1 =256 
BCD: 1x100 + Ox10 + Ox1=100 

9-8 7 ... 4 3 ... 0 

2 5 6 

2 x 256 + 5 x 16 + 6 x 1 = 598 
2x100 + 5x10 + 6x1=256 

Figure 10-4. Binary-coded decimal number representation. 

From Figure 10-4, you can see that in binary-coded decimal we write the 
number as if it were hexadecimal (one digit every 4-bit nibble) but interpret it as 
decimal. But why is the data form so important? Because it's a snap to convert 
between ASCII and packed BCD. Figure 10-5 shows that to convert from BCD 
to ASCII, you need only unpack the digits (one per nibble) into bytes and add 30 
hex to form the ASCII characters 0 through 9 (hex 30 through 39). To convert 
the other way, subtract 30h from each character and pack them down, two 
per byte. 



10 - Programming the Intel NPX 

9-8 7 ... 4 3 ... 0 

BCD FORMAT 2 5 6 

7 ....... 0 7 ....... 0 7 ....... 0 

32 (Hex) 35 (Hex) 36 (Hex) 

ASCII FORMAT 2 5 6 

Figure 10-5. Conversions between ASCII and BCD numbers. 

This data form is used by the NPX only for loading and storing numbers. 
None of the arithmetic instructions can use packed BCD form. Even with this 
limitation, the packed BCD load and store instructions of the NPX are two of the 
most useful instructions that it possesses. This is because the ability to calculate 
is worthless without the means to communicate results to the user, and most 
people use standard decimal notation for floating-point numbers. 

The NPX provides for conversion from base 10 to base 2 and back again. 
The programmer need only take care of the conversions between ASCII strings 
and packed BCD and oflocating the decimal point correctly (we'll see that in the 
section on converting between decimal and binary floating-point numbers). The 
NPX takes care of the rest. 

Summary of Data Types 

In Table 10-2, we've summarized the size of the numbers that can be represented 
by each data type, along with the approximate decimal resolution (number of 
significant digits) that each data type supports. In terms of actual use, we can 
recommend the following: Use packed BCD for converting from ASCII to float
ing real and back again. Use floating-point real numbers for all calculations and 
for real number constants in MASM (we'll get to that). And use the smallest in
teger form that fits a number for integer number constants in MASM. Following 

531 



Devices 

these guidelines will give the best possible accuracy with some savings in mem
ory by using the shorter integer forms where possible. 

Table 10-2. Range and Precision of NPX Data Types 

Data Type 

Floating real 
Packed decimal 
Long real 
Long integer 
Short real 
Short integer 
Word integer 

Binary 
Bits 

80 
80 
64 
64 
32 
32 
16 

Decimal 
Digits 

19 
18 
15-16 
18 
6-7 
9 
4 

Approximate Range 

3.4 x 10-4932 s N s 1.2 x 104932 
-1018 -1sNs1018 -1 
4.19x10-3o7 sNs1.67x10308 
-9x1018 s N s +9x1018 
8.43 x 10-37 s N s 3.37 x 1038 
-2x109 s N s +2x109 
-32, 768 s N s + 32, 767 

Figure 10-6 shows the range of number representation in the NPX. Note 
that the NPX stores numbers with greater accuracy internally (80-bit real) than 
is normally used when loading or storing the NPX's registers (long real). This 
allows an extra margin of accuracy for calculations. Note also that the spacing 
between unique representable numbers (the distance between two adjacent 
numbers that the NPX may represent exactly) decreases towards zero (from ei
ther direction), and increases towards infinity (plus or minus). This density of 
number representation implies that the NPX has more accuracy for processing 
extremely small numbers than large numbers. 

~ Outside Range of Internal Representation 

///, ;/~ Outside Range of Long Real 

-oc -8 

~ 
Exp 
2 

~ - 1
1.67x10308 

-1.2 x 104932 

-4 

Basic Range 
2"-2 

Unique #'s 

-2 -1 -% 

Basic Range 
2"-2 

Unique #'s 

0 V2 1 2 

Exp Exp Exp Exp Exp Exp 
1 0 1 1 0 1 

/~ 
-4.19x10-307 1 +4.19x10- 307 

-3.4x 10- 4932 +3.4x 10-4932 

4 8 +oc 

Exp 
2 

+167"1~ 
+ 1.2x 104932 

Density of numbers increases toward O ---+ Density of numbers decreases toward oc ---• 

Figure 10-6. Representational range of the NPX. 

The Instruction Set of the NPX 

532 

The NPX has what is known in the industry as a rich instruction set. This 
doesn't necessarily mean that there are a lot of instructions (although it does 
have 69 different instructions) but that the instruction set is well suited for the 



10 - Programming the Intel NPX 

types of operations desired from the NPX. There is an instruction for nearly 
every purpose, greatly reducing the number of steps (and associated program
ming difficulties) that might be encountered with a lesser numerical 
coprocessor. 

Table 10-3 lists the 69 instructions. This table is organized by classes of op
erations rather than alphabetically because you will most likely want to look up 
an instruction by type rather than by name. Two designations in Table 10-3 need 
to be explained. First is the (P) mark appearing next to some instructions. This 
signifies that the associated instruction may be used in a POP form, FopP. The 
POP form tells the NPX to increment the stack pointer and tag the old stack top 
register as empty, which essentially throws away the stack top. This is all made 
clearer in the following text. 

The FWAIT Prefix 

The second designation in Table 10-3 is the (N) mark. The (N) mark means that 
the associated instruction may be used in a no-wait form, as in FN op. Normally 
the MASM assembler generates an FWAIT prefix for every NPX instruction. 
The no-wait form tells the MASM assembler not to generate an FWAIT prefix. 
Now, just what is an FWAIT prefix? 

Normally the NPX must wait to finish the current instruction before it can 
accept a new one. This is accomplished by the FWAIT op-code prefix (9B hex), 
which is really an 8086 op-code! When the main CPU executes this instruction, 
the main CPU waits until the TEST pin on the main CPU/NPX interface be
comes active. This occurs when the NPX has finished executing and is ready for 
the next instruction. The main CPU starts executing again and the next NPX 
instruction is fetched, starting the cycle over again. 

The reason that FWAIT is used as a prefix is so that the main CPU waits 
only when it wants to send the NPX another instruction. Once an NPX instruc
tion has been sent, the main CPU and the NPX can be processing simul
taneously, and when the main CPU needs the NPX again, the main CPU must 
check to ensure that the NPX is ready. 

There is one other case where the main CPU must use the FWAIT instruc
tion. Whenever the main CPU needs to read data from the NPX, the main CPU 
issues the proper NPX instruction to store the data in memory. The main CPU 
must then wait (via the FWAIT instruction) for the data to become available. In 
this case, the programmer must explicitly code the NPX instruction FWAIT be
cause MASM doesn't know that the main CPU rather than the NPX is waiting 
for the instruction to complete. 

533 



Devices 

Table 10-3. List of Intel NPX Instructions and 
I Addressing Forms 

Instruction Address 
Notes Mnemonic Modes Instruction Name 

Data Transfer Instructions (9) 

FXCH /Id Exchange registers 
FLD 8 Load real 

(P) FST d Store real 
FILD 8 Load integer 

(P) FIST d Store integer 
FBLD 8 Load packed BCD 
FBSTP d Store packed BCD 

Constant Instructions (7) 

FLDZ Load +0.0 
FLDl Load +1.0 
FLDPI Load Pi 
FLDL2T Load log210 
FLDL2E Load log2e 
FLDLG2 Load log102 
FLDLN2 Load loge2 

Transcendental Instructions (8) 

FPTAN Partial tangent 
FPATAN Partial arctangent 
F2XM1 2x - 1 
FYL2X Yxlog2X 
FYL2XP1 Y x log2(X + 1) 
FCOS Cosine of ST(O) (80387 only) 
FSIN Sine of ST(O) (80387 only) 
FSINCOS Sine and cosine of ST(O) (80387 only) 

Comparison Instructions (~O) 
(P) FCOM Ifs Compare real 
(P) FI COM 8 Compare integer 

FCOMPP Compare & POP twice 
FTST Test stack top 
FXAM Examine stack top 
FU COM Unordered compare (80387 only) 
FU COMP Unordered compare and POP (80387 only) 
FUCOMPP Unordered compare & POP twice (80387 

only) 

Arithmetic Instructions (26) 
(P) FADD * Add real 

FIADD 8 Add integer 
(P) FSUB * Subtract real 

FI SUB 8 Subtract integer 
(P) FSUBR * Subtract real (reversed) 

FISUBR 8 Subtract integer (reversed) 

534 



(P) 

(P) 

(P) 

(N) 

(N) 
(N) 
#(N) 

#(N) 

(N) 
(N) 
(N) 

10 - Programming the Intel NPX 

FMUL * Multiply real 
FIMUL s Multiply integer 
FDIV * Divide real 
FIDIV s Divide integer 
FDIVR * Divide real (reversed) 
FIDIVR s Divide integer (reversed) 
FSQRT Square root 
FSCALE Scale 
FPREM Partial remainder 
FPREMl Partial remainder (IEEE; 80387 only) 
FRNDINT Round to integer 
FXTRACT Extract exponent & significand 
FAES Absolute value 
FCHS Change sign 

Process Control Instructions (16) 

FIN IT 
FLDCW 
FSTCW 
FSTSW 
FSTENV 
FLDENV 
FSA VE 
FRSTOR 
FINCSTP 
FDECSTP 
FFREE 
FNOP 
FWAIT 
FDISI 
FENI 
FCLEX 

s 
d 
d 
d 
s 
d 
s 

d 

Initialize processor 
Load control word 
Store control word 
Store status word 
Store environment 
Load environment 
Save state 
Restore state 
Increment SP 
Decrement SP 
Free register 
No operation 
CPU wait 
Disable interrupts (8087 only) 
Enable interrupts (8087 only) 
Clear exceptions 

'Instruction operand forms for FADD, FSUB, FSUBR, FMUL, FDIV, FDIVR 
: F<op> ... generates F<op>P ST(l),ST 
: F<op> s ... generates F<op> ST,<memory> 
: F<op> d,s ... d,s registers only 
: F<op>P d,s ... d,s registers only 

(P) F<op> or F<op>P forms 
(N) F<op> or FN <op> forms 

Source s 
d Destination 
Ifs None or source 
lid None or destination 
# Instruction not self-synchronizing 

Addressing Modes of the NPX 

Addressing modes in the NPX reflect the stack architecture of the processor. 
All of the NPX's numeric op-codes, as distinguished from control op-codes, use 
the top of the stack as at least one operand. Some instructions operate on only 
the top of the stack, for example, FSQRT and FABS. Others operate on both the 
top of the stack and the next stack register, for example, FSCALE and F2XM1. 
The remaining double operand instructions vary according to type. Some take 
their second operand from another stack register. Others can take their second 
operand from memory. 

535 



Devices 

536 

Table 10-4 shows the various allowed combinations of operand addressing 
and NPX instructions. Note that although some math and comparison instruc
tions may use a memory operand as the source, memory operands may never be 
used as a destination except by the store instructions (FST<P>, FIST<P>, and 
FBSTP). Note also that the source operand for any integer instruction (Flop) 
must be a memory operand because the NPX's registers always contain real 
numbers. 

Table 10-4. Allowed Types for NPX Numeric Instructions 

SECOND OPERANDS 
Math 

ExampleNPX Double Quad Ten NPX Compare 
Instructions Word Word Word Bytes Register Instructions 

FLD source Yes Yes FLD Yes Real 
FST dest. Yes Yes FSTP None 
FILD source Yes Yes Yes Int 
FIST dest. Yes Yes Yes None 
FELD source Yes None 
FBSTP dest. Yes None 

Some confusion may still exist about how the NPX addresses its operands. 
A short example should help to clear the fog, so let's take a look at the operation 
of three NPX op-codes. 

FLD 
FLD 
FADD 
FSTP 

<arg1> 
<arg2> 
<arg2> 
<result> 

; Load 1st argument from memory 
; Load 2nd argument from memory 
; encodes as FADDP ST(1),ST 
; store result into memory 

This operation uses FLD to read two memory operands into the NPX regi
ster stack, adds them using the "classic" form of FADD, and stores the result 
using FSTP. Remember that when one of the basic arithmetic instructions 
(FADD, FSUB, FMUL, and FDIV) is coded by itself, MASM generates the 
classic stack operation with a pop, using the stack top, ST, as the source and the 
next stack element, ST(l), as the destination. 

The operation of the preceding four instructions is graphically displayed in 
Figure 10-7. We've separated the two parts of the FADD instruction so that you 
can better see the effects of the pop. Looking at the operation, you can see that 
the NPX conceptually completes the arithmetic part of the operation -storing 
the result in ST(l)-then pops the stack, moving the result to the stack top, ST 
or ST(O). 

At the end of our little demonstration, the stack is left exactly as it was 
when we arrived. Or is it? It is ifthere was room on the stack for additional argu
ments. If, however, the stack didn't have enough room to accommodate the new 
data, the NPX declares an invalid operation exception because of stack overflow. 
(We'll get to exceptions in the following text.) Therefore, before we can do even 
our tiny example, we must be sure that the NPX can accept the data. Two ways 
are available to accomplish this. 



10 - Programming the Intel NPX 

(1) (2) (3) (4) 

Same Instruction 

FLO FLD FADDP FADDP FSTP 
Pushes Pushes (ST(1)~ Pops Stores & 
Mem-1 Mem-2 Mem-1 + Mem-2 Mem-2 Pops SUM 

ST(O) 

ST(1) 

ST(2) 

Figure 10-7. Example ofNPX stack operations. 

The FINIT and FFREE Instructions 

The easiest way to prepare the NPX for operations is through the FINIT in
struction. This is the first instruction that should be given to the NPX whenever 
a new program is run. FINIT initializes the NPX as if a hardware reset had oc
curred, which means that the instruction clears all registers and exceptions and 
provides a clean slate for the programmer to work with. 

The other method of ensuring that the NPX has free registers is with the 
FFREE instruction. FFREE tags the designated register as empty and allows 
the programmer to use that register for subsequent calculations. Note that it 
isn't necessary to clear the registers at the top of the stack. If the bottom of the 
stack, (ST(7), has enough free room, the upper registers are pushed down into 
the stack when a new value is loaded. 

Controlling the NPX 

Besides the eight data registers, the NPX has four other registers that are ac
cessible to the programmer. In Figure 10-1, we can see that these are the status 
word, the control word, and the operand and instruction pointers. The NPX 
also has another register, called the tag word, but it is only used internally by 
the NPX. (The tag word is where the NPX marks its registers as empty, zero, or 
not-a-number.) The two pointers, operand and instruction, are useful only dur
ing external exception handling, a topic that we'll discuss in forthcoming text. 
What's left are the control and status words. You will need to understand these 
two registers to make effective use of the NPX. 

The NPX Control Word 
The first register that we'll look at is the control word. This 16-bit word defines 
how the NPX treats the different exception conditions and how it views the 
numbering system that it uses. We've diagrammed the control word in Figure 
10-8, showing the various fields and their effects. Basically, the control word 

537 



Devices 

538 

INFINITY 
CONTROL 

O = Projective 

1 =Affine 

-oc-Q-+oo 

ROUNDING 
CONTROL 

OO=(x+1)-o.5- x 

01 = 
10= 

-o--o-
11= -o-

Invalid Operation 

Denormalized Operand 

Zero Divide 

Overflow 

Underflow 

Precision 

(Reserved) 

00= 

10= 

O=Enabled 

Interrupt 
Enable Mask 

1 =Disabled (masked) 

PRECISION 
CONTROL 

24 bits 

53 bits 

11 =I 64 bits 

Figure 10-8. The control word and its effect on 
NPX operations. 

contains three control fields and seven flags for use with exceptions. Let's de
scribe the exception flags first. 

At this stage in the game, we want to use as much of the built-in facilities of 
the NPX as possible. Part of this means availing ourselves of the built-in excep
tion handling capabilities of the NPX. You see, the NPX, all by itself, can take 
care of most of the errors that can occur, either fixing up the number as best it 
can or returning a special value called not-a-number. Because handling these 
errors ourselves is not easy, we let the NPX do it for us. We do this by masking 
the exceptions, and we do that by setting the exception masks in the control 
word. All the exception masks, along with the master interrupt enable mask, 
are contained in the lower byte of the control word. 

To set up the NPX to use its internal error handlers, we set the lower byte 
to BF (hex), using the load control word instruction FLDCW. We simply define 



10 - Programming the Intel NPX 

a word in the main CPU memory with a lower byte that has the value BF (hex). 
Then we load it as follows: 

cw87 dw 03BFh ; NPX control word value 

FLDCW cw87 ; Load NPX control word 

Why did we use the value 3 for the upper byte of the control word? The up
per byte contains three fields for determining which number model the NPX 
uses. These three fields are also shown in the insets in Figure 10-8. Comparing 
the diagram with our value of 3, you can see that we've chosen 64-bit precision, 
rounding to the nearest integer, and projective infinity. These values are the 
ones that Intel recommends and also the ones that the NPX uses as defaults. If 
you want to change these settings, Figure 10-8 tells you what values to use. 

The NPX Status Word 
The NPX's status word contains four types of information: (1) a busy indicator; 
(2) a top-of-stack pointer; (3) condition codes reflecting the results of the FCOM, 
FTST, and FXAM instructions; and (4) the exception indicators, which signal 
any errors that may occur. Figure 10-9 gives the positions of the different indica
tors within the status word. 

The busy indicator signals whether the NPX is currently processing an in
struction. This indicator really isn't of much use to us because the contents of the 
status word can't be used until the NPX signals that it is finished storing the 
status word. At that point, you know that the NPX is idle because the FWAIT 
instruction finishes. 

The top-of-stack pointer, in bits 11 through 13, is useful to the programmer 
who writes complicated NPX routines that perform successive operations in se
quence and store many values on the NPX stack. In these cases, to ensure that 
enough room is available for the next operation, check the stack depth before 
proceeding with a routine. If the stack has insufficient room to support the oper
ation, some or all of the registers must be saved in memory to allow the routine 
to safely execute. 

The stack pointer is initialized by FINIT to point to 000 (0), and each suc
cessive load operation decrements the stack pointer, wrapping around past 111 
(7) until it finally reaches 001 (1). The stack pointer may also be manipulated by 
the FINCSTP (increment stack pointer) and FDECSTP (decrement stack 
pointer) instructions. However, because these operations do not mark the regis
ters empty, using FDECSTP or FINCSTP could invalidate using the top-of
stack indicator to check for free registers. 

The condition codes are needed most often to decide what action to take at 
a decision point in the program. We'll see in a later section some examples of 
using the condition codes. Briefly, to check the condition codes, store the status 

539 



Devices 

540 

Busy 

Stack Top 
Pointer 

ooo-
001-

010-

011-

100-

101-

110-

111-

Condition 
Codes 

Register O 

Register 1 
Register 2 

Register 3 

Register 4 

Register 5 

Register 6 

Register 7 

Invalid Operation 

Denormalized Operand 

Zero Divide 

Overflow 

Underflow 

Precision 

(Reserved) 

Interrupt Request 

Figure 10-9. The NPX's status word. 

word in memory by using the FSTSW instruction; then check the codes with the 
main CPU. When storing NPX status information for the main CPU to check, 
remember to add an FWAIT instruction after the store instruction is issued. 
The following code fragment shows how a comparison sequence might appear. 

sw87 dw ? ; NPX status word space 

FCOM ST(1) ; check relationship of ST & STC1) 
FSTSW sw87 ; store NPX status word 
FWAIT ; wait for NPX to complete 
test sw87,4000h ; are operands equal? 
je are_equa l ; yes ... 

The meanings assigned to these codes by the various compare instructions 
are given in Table 10-5. Note that the condition codes do not occur in one group 
but are split by the stack pointer and that the codes returned by the FCOM and 
FTSTinstructions are also split by condition bit Cl, which is not used. Note also 
that NAN means "not a number." 



10 - Programming the Intel NPX 

Table 10-5. Status Conditions Set by the FCOM, FTST, 
and FXAM Instructions 

CONDITION CODES 

Instruction C3 C2 Cl co Result 

F 0 0 D 0 ST> source 
c 0 0 0 1 ST< source 
0 1 0 N 0 ST= source 
M 1 1 'T 1 ST? source 

F 0 0 c 0 ST> o.o 
T 0 0 A 1 ST< 0.0 
s 1 0 R 0 ST= 0.0 

T 1 1 E 1 ST? 0.0 
F 0 0 0 0 + Unnormal 
x 0 0 0 1 +NAN 
A 0 0 1 0 - Unnormal 
M 0 0 1 1 -NAN 

0 1 0 0 +Normal 
0 1 0 1 +Infinity 
0 1 1 1 - Infinity 
1 0 0 0 +Zero 
1 0 0 1 Empty 
1 0 1 0 - Zero 
1 0 1 1 Empty 
1 1 0 0 + Denormal 
1 1 0 1 Empty 
1 1 1 0 - Denormal 
1 1 1 1 Empty 

Exception Handling in the NPX 
The lower byte of the status word contains the exception flags. These flags cor
respond to the exception masks in the control word. When an exception occurs, 
the NPX sets the proper flag and then checks to see whether that exception is 
masked or not. Because most operations use the masked response (the NPX's 
internal error handlers), we summarize their operation in Table 10-6. You should 
still remember to check periodically for exceptions to ensure the accuracy of the 
results. If an exception occurs, the proper flag is set and stays set until cleared 
by initializing the NPX (FINIT) or by using the clear exceptions instruction, 
FCLEX. Because the flags stay set, they provide a cumulative record of any er
rors that occur during processing. 

The other method of handling exceptions involves unmasking one or more 
of the exceptions and enabling interrupts in the NPX's control word. In this 
mode, if the NPX detects an exception, it signals an interrupt and requests the 
main CPU to process the exception. The NPX, however, is not necessarily tied 
into the main CPU's interrupt request line! An external interrupt handler cir
cuit is required to field interrupt requests from the NPX. Do not enable the 
NPX external interrupts unless your system supports them! 

541 



Devices 

Table 10-6. The NPX's Default Exception Response 
(Exceptions Masked) 

Exception 

Precision 
Underflow 
Overflow 
Zero-divide 
Denormal operand 

Invalid operation 

Masked Response 

Return rounded result. 
Denormalize result. 
Return signed infinity. 
Return infinity signed with exclusive-or of operand signs. 
If memory operand, ignore. If register operand, convert 
to "unnormal" and reevaluate. 
If one operand NAN, return it. If both are NAN s, return 
one with larger absolute value. If neither is NAN, return 
indefinite. 

If your system supports external interrupts and you enable them, you 
must provide an exception handler when the NPX interrupts the main CPU. 
The main CPU routine should read the NPX's status word to determine the na
ture of the problem. If you desire, your exception handler can also determine 
the instruction and operand that caused the problem by examining the NPX's 
instruction and operand pointers. To obtain this information, the exception han
dler must issue one of the NPX instructions FSTENV or FSAVE. These in
structions write into the main CPU memory at least the contents of the five 
NPX control registers (status word, control word, tag word, instruction 
pointer, and operand pointer). The exception handler can retrieve this informa
tion from memory and process it. If you would like a more detailed picture of 
these registers, Listing 10-1 in the section "Programming Examples for the 
NPX with MASM" contains a sample program that dumps and then decodes this 
information. 

Using MS-DOS Tools with the NPX 

542 

The only difference between writing programs for the NPX and writing them 
without is that with the coprocessor there are more instructions to use for nu
meric operations. Because the difference is visible only at the instruction level, 
the MS-DOS tools that need to know about the NPX are MASM and DEBUG. 
All of the other tools, LINK, LIB, and CREF, remain ignorant of the NPX's 
presence. 

Using MASM and the NPX 
When using MASM with the NPX, the programmer simply enters NPX instruc
tions in the same manner as the main CPU instructions. Instructions for the 
NPX have the same fields as the main CPU instructions: labels, op-codes, oper
ands, and comments. The only difference in encoding instructions is that NPX 
operands may be only NPX registers or memory, and main CPU operands may 
be only main CPU registers or memory. In the case of memory operands, the 
two forms are not different. NPX instructions may use any of the five basic 
memory forms shown here: 



10 - Programming the Intel NPX 

-Displacement Only FSTSW mem_word 
-Base or Index Only FIADD word ptr [bx] 
-Displacement + Base or Index FSTP base[diJ 
-Base + Index FLDCW [bpJ[siJ 
-Displacement + Base + Index FILO [bpJtable[diJ 

CAUTION 

MASM version 1.25 has an error that causes it to exchange the op-codes 
FSUB with FSUBR or FDIV with FDIVR and vice versa if any of these are 
used in "classic" form (without specifying the operands). If you are using an 
older version of MASM, explicitly specify the operands and type for these in
structions, as in: 

FSUBP 
FDIVRP 

ST( 1) ,ST 
ST(1),ST 

Remember that the classic form always uses the pop form of the 
instruction. 

MASM's NPX Switches-Ir and le 

Once the program has been entered into a file, MASM must be used to assemble 
the program. If the standard MASM command line is used, every NPX instruc
tion encountered produces a Syntax Error. This is because in the normal mode 
of operation MASM doesn't know anything about the NPX. To actually assem
ble NPX instructions, use the command line switch Ir (real mode) to tell MASM 
that the source file contains NPX instructions: 

A:>masm test.asm test.obj test.lst test.crf/r 

This lets MASM know that the program being assembled is intended for 
execution on a real NPX. MASM then generates the proper NPX op-codes, pre
fixed with the FWAIT op-code unless one of the FN <op> instructions is used. 
(Note, however, that although the NPX's no-operation instruction, FNOP, be
gins with FN, it generates an FWAIT prefix.) 

MASM has yet another switch that instructs it to assemble NPX instruc
tions. This is the le (emulation mode) switch. The le mode switch is nearly iden
tical to the real mode switch, except that no-wait instructions (FN <op>) are not 
assembled. The purpose of this switch is for users who have emulation libraries 
that can replace the NPX op-codes with main CPU CALLs to emulation sub
routines. Because MASM does not provide such an emulation library and be
cause there is no point in using the library if you have a real NPX, we don't 
provide further information on this topic. 

543 



Devices 

NPX Data Types in MASM 

544 

You now know that the NPX supports seven different data types: word; short 
and long integer, short and long real; packed binary-coded decimal; and floating
point real. To use these types, the proper storage locations must be defined in 
memory. Table 10-7 shows the correspondence between the NPX's data types 
and the methods used in MASM to define and reference them. 

Storage locations are allocated by using the define data (dw, dd, dq, or dt) 
MASM directives, followed by a question mark (?). This format tells MASM to 
reserve the space but not initialize it. In order to initialize the reserved location 
to a particular real number value, MASM provides three different forms: the 
scientific notation without an exponent, the scientific notation with an expo
nent, and the real (R) form. Each of these forms may be used with any of the 
larger "define data" directives, as follows: 

double dd 3.14159 
quad dq 1.23456E + 03 
tenbyte dt 0123456789ABCDEF0123R 

; scientific without exponent 
; scientific with exponent 
; rea L 

Table 10-7. A Comparison of Data Types for the NPX 
andMASM 

NPX Main CPU Size in MASM Operand NPX 
Data Type Data Type Bytes Directive Name Compatible 

Word integer Word 2 dw wordptr Yes 
Short integer Double word 4 dd dwordptr Yes 
Short real Double word 4 dd dwordptr No 
Long integer Quad word 8 dq qwordptr Yes 
Long real Quad word 8 dq qwordptr No 
Packed BCD Ten byte 10 dt tbyte ptr "R" form 
Floating real Ten byte 10 dt tbyte ptr Yes 

Defining real numbers with the define byte (db) or define word (dw) direc
tives isn't possible. Real numbers may only be initialized to integer values. 

The scientific notations are evaluated into a floating-point format (sign, ex
ponent, and significand), whereas the real notation is used on a digit-per-nibble 
basis so that the real notation's hexadecimal representation exactly corresponds 
to its definition. 

Note that although MASM has the ability to define real numbers in both 
4- and 8-byte lengths, the format used to initialize these numbers is not compat
ible with the NPX! Figure 10-10 shows how Microsoft implemented real num
bers for these sizes. By comparing them with Figure 10-2, you can see that they 
are quite different. If you must use these formats (for compatibility with exist
ing software, for example), you can write conversion routines to change from 
one format to the other. 



MICROSOFT 
MASM 

LONG REAL 

MICROSOFT 
MASM 

SHORT REAL 

1.0 Assumed 

Biased 
Exponent """"''""""'"'""'"'""',""''!:?> 

129.0 

10 - Programming the Intel NPX 

Significand 
55 bits 

81h s Significand 
23 bits 

31 24 23 22 0 

"' 1 .0 Assumed 

Figure 10-10. Microsoft MASM real number formats. 

Using DEBUG with the NPX 

DEBUG always knows about NPX instructions. This explains why when you 
sometimes attempt to "unassemble" memory, DEBUG lists strange instruc
tions. (One common technique used in debugging is to fill unused memory with 
the hex word DEAD. This distinctive pattern allows the programmer to quickly 
see what memory is being altered. However, DEBUG disassembles this as 
FISUBR WORD PTR [DI + ADDE].) 

Even though DEBUG is always in NPX mode, so to speak, DEBUG 
doesn't recognize all the NPX instructions. It doesn't display, nor allow you to 
assemble, any of the FN <op> form instructions. The rationale behind this is 
that DEBUG recognizes the FWAIT as a separate instruction from the NPX op
code, which it really is. So, DEBUG decodes an FN <op> instruction as a stan
dard instruction that doesn't happen to be prefixed by FWAIT. 

The reverse is that unlike MASM, DEBUG does not automatically insert 
the FWAIT prefix on standard NPX instructions. You must remember to man
ually assemble the FWAITwhen entering NPX instructions in DEBUG. 

You should remember also that when specifying memory operands in DE
BUG, you must always tell DEBUG what size the operand is, as in the form: 

FLD TBYTE PTR [200] 

The brackets are required to inform DEBUG that the number is an ad
dress rather than an immediate value. 

Debugging the NPX's Registers 
One of the things that DEBUG cannot do is display the status of the NPX or the 
contents of any of its registers. If you desire to examine any of the NPX's regis
ters, you first must have the NPX write the data into common memory. 

545 



Devices 

To help you in debugging your NPX programs, we have provided the 
dump87 routine in the following section, "Programming Examples for the NPX 
with MASM." This routine uses the FSA VE instruction to store the entire state 
of the NPX and then displays it in more understandable form on the console dis
play. The routine may be put in a library or included at the time of assembly and 
called whenever you need to check on the state of an NPX calculation. The rou
tine itself is described more fully in the next section. 

Instruction Encoding Formats 
When hexadecimal dumps are being read, NPX instructions may be recognized 
in code by the presence of either the FWAIT op-code (9B) or by their distinctive 
escape codes, D8 through DF (hex). Figure 10-11 shows the different forms that 
an NPX instruction may _take, but all instructions start with the 11011 bit 
pattern. 

(1) 

(2) 

(3) 

(4) 

HIGHER-ADDRESSED BYTE 

1 0 OP-A aa OP-B mmm 

1 0 Format ~ aa OP-B mmm 
0 

1 0 R p ~ OP-B rrr 
0 

1 0 0 0 OP 

7 6 5 4 3 2 0765432 0 

Escape NPX Code 

I ~-A& OP-B I 
~Are:::.J 

SPLIT OP-CODE 

Figure 10-fl. Instruction-encoding formats. 

Programming Examples for the NPX with MASM 

546 

Even with a good technical knowledge of the NPX and a copy of the Intel in
struction reference (which is a must for serious programming of the NPX), it's 
hard to understand the NPX without some hands-on experience. Because we 
can't give you an actual computer and NPX, we do the next best thing. We pres
ent here a number of nontrivial programming examples that should give you a 
better understanding of the NPX's mode of operation and provide a starting 
place for building your own library of NPX routines. 



10 - Programming the Intel NPX 

The FWAIT and FINIT Instructions 

Let's stress once again that if the main CPU intends to use results from the 
NPX, it must first ensure that the NPX is finished by issuing an FWAIT. 

Another point that must be understood is that the NPX must be initialized 
with the FINIT instruction at the start of the program. It is very important to 
force the NPX into a known state before proceeding with operations. 

DUMP87 Routine 

We previously pointed out that the DEBUG program is unable to examine the 
contents or state of the NPX, and we promised to give you some help in that sit
uation. Listing 10-1 provides a routine to dump the contents of the NPX and ex
amine them. 

Listing 10-1. DUMP87 NPX Debugging Aid 

PAGE 60,132 ; wide Listing 
#.8087 ; allow assembly of 8087 NPX instructions 
;================================================================== 
; L I B R A R Y I M P L E M E N T A T I 0 N 
; 

PUBLIC dump87 ; defined Library routine 
; 
IJMODEL SMALL 
; 
#.CODE 

EXTRN bin2hex:NEAR ; ca L Led Library routine 
;================================================================= 
; D U M P 8 7 8 0 8 7 D E B U G G I N G T 0 0 L 

; 
; This procedure dumps the entire state of the Intel Numeric 
; Processor Extension CNPX) (8087, 80287, or 80387) ont~ the 
; stack and then formats and outputs said state to the screen. 
; 
; Setup Requirements: NONE 
; Stack Requirements: 108 bytes free on the stack 
; 
; ••• wd -- Word Defines for bit fields within various words 
; The defined structures take advantage of the fact that the 
; SW and CW interrupt structures match. 
·-----------------------------------------------------------------, 
; M A C R 0 D E F I N I T I 0 N S 
; 
,, Display a character (from DL) 

continued 

547 



Devices 

548 

Listing 10-1. continued 

@DisChr MACRO char 
push ax 
push dx 
mov dl,&char 
mov ah,02h 
int 21h 
pop dx 
pop ax 
ENDM 

,, 
,, Display a String by Label 
@DisStr MACRO string 

push ax 
push dx 
mov dx,off set &string 
mov ah,09h 
int 21h 
pop dx 
pop ax 
ENDM 

; 
,, Display a String (from DS:DX) 
@Display MACRO 

mov ah,09h 
int 21h 
ENDM 

; 
#.DATA 
;-----------------------------------------------------------------
; S T R U C T U R E D E F I N I T I 0 N S 
; 
intrpt record master:1,nul0:1,pr:1,un:1,ov:1,zd:1,de:1,inv_op:1 
control record 
status record 
tag record 

infc:1,rndc:2,prec:2 
busy:1,c3:1,stp:3,c2:1,c1:1,c0:1 
onetag:2 

ipwd record ipseg:4,nul2:1,opcode:11 ; op-code & instruction 

opwd 
expwd 

record opseg:4,nul3:12 
record sign:1,exp:15 

; 
; Basic Environment Structure: 
enviro STRUC 
cw87 dw ? 
sw87 dw ? 

; ... pointer 
; operand pointer segment 
; sign & exponent 

; control word 
; status word 



10 - Programming the Intel NPX 

tw87 dw ? ; tag word 
ipo87 dw ? ; instruction pointer offset 
ips87 dw ? ; IP segment & op-code 
opo87 dw ? ; operand pointer offset 
ops87 dw ? ; OP segment 
enviro ENDS 
; 
; Register Structure: 
fltreg STRUC 
man87 dq ? ; mantissa Csignificand) 
exp87 dw ? ; exponent & sign 
fltreg ENDS 
; 
; Entire State Save Structure: 
state87 STRUC 

db size enviro dup (?) ; environment header 
reg87 db size flt reg * 8 dup (?) ; 8 data registers 
state87 ENDS 
; 
dump87s STRUC ; stack format for 
; ; ••• dump 87 
rec87 db size state87 dup (?) ; space for NPX state 
; oldbp dw ? ; entry base pointer 
dump87s ENDS 
; 
BASE EQU [bp - size dump87s] ; Structure Index 
; 
#.CODE 

;-----------------------------------------------------------------
; B E G I N P R 0 G R A M C 0 D E 
; 
dump87 PROC NEAR 

push bp ; save entry BP 
pus hf ; save caller's flags 
push ds ; save caller's data segment 
mov bp,sp ; and set up index 
sub sp,size dump87s ; allocate space for 

; ... local store 
push ax ; save caller's registers 
push bx 
push ex 
push dx 
push di 
push si 

; 
mov ax,cs ; set DS to point to this 

continued 

549 



Devices 

550 

; 
; Get 

; 

Listing 10-1. continued 

mov ds,ax ; ••• routine's data area 

copy of the NPX's internal state: 
pus hf 
cl i 

FSAVE BASE.rec87 
FRSTOR BASE.rec87 

; 
; 
; 
; 
; 
; 

save caller's interrupt 
don't a L Low interrupts 
... whi Le saving 
save state of NPX 
restore state that was 
... saved 

state 

just 

FWAIT 
po pf 

; wait to complete restore 
; reenable interrupts? 

; Now that we have a copy of the NPX's state, decode it and 
; present it to the user on the terminal. 
; 
; Presentation consists of the following items: 
; 

; 
; 
; 
; 
; 
; 

< , 

; 
; 

Infinity: Affine 
Inst Addr: x:xxxx 

INT PRE UNO 
Enable: x x x 
Signal: x x x 

Round ••••••• near 
Oper Addr: x:xxxx 

OVR ZER DEN IOP 
x x x x 
x x x x <--

significand 

C3 C2 C1 CO 
x x x x 

"x" means unmasked 
or signaled 

ST(x) 
exponent 
+ xxxx xxxx xxxx xxxx xxxx #0 tag 

; Infinity, Rounding, and Precision Control: 

; 

@DisStr LINE1 ; start display 
mov 
and 
mov 
shr 
mul 
add 

al,byte ptr BASE.cw87+1 ; get control word 
al,mask infc 
cl,i nfc 

; infinity control 

a L,cl 
i nLsi z 

; condition # 
; condition offset 

ax,offset inf_cnd ; condition address 
mov dx,ax 
@Display 

@DisStr rnd_Lab 
mov 
and 

al,byte ptr BASE.cw87+1 ; get control word 
al,mask rndc ; rounding control 



10 - Programming the Intel NPX 

mov cl,rndc 
shr a L,cl ; condition # 
mu L rnd_siz ; condition offset 
add ax,off set rnc:Lcnd ; condition address 
mov dx,ax 
@Display 

; 
@DisStr pre_ Lab 
mov al,byte ptr BASE.cw87+1 ; get control word 
and al,mask prec ; precision control 
mov cl,prec 
shr al,cl ; condition# 
mul pre_siz ; condition offset 
add ax,offset pre_cnd ; condition address 
mov dx,ax 
@Display 

; 
; Instruction & Operand Pointers, and Opcode 

@DisStr LINE2 ; next Line 
mov ax,BASE.ips87 ; instruction pntr. 
and ax,mask ipseg ; segment 
mov cL,i pseg 
shr ax,cl ; digit 
mov ch,1 ; display 
call bin2hex 
@DisChr '.' 
mov ax,BASE.ipo87 ; instruction pntr. 
mov ch,4 ; offset 
ca LL bin2hex 

; 
@DisStr opadr ; operand pointer 
mov ax,BASE.ops87 ; segment 
and ax,mask opseg 
mov cL,opseg 
shr ax,cl ; digit 
mov ch,1 ; display 
ca LL bin2hex 
@DisChr f •I 

mov ax,BASE.opo87 ; operand pntr. 
mov ch,4 ; off set 
ca LL bin2hex 

; 
@Di sStr ocode ; opcode 
mov ax,BASE.ips87 
and ax,mask opcode 
or ax,0800h ; add OPCODE assumed bit 

continued 

551 



Devices 

552 

; 

mov 
ca LL 

ch,3 
bin2hex 

Listing 10-1. continued 

; 3 digits 
; display 

; Interrupt I Exception - Enable Flags: 

; 

@DisStr LINE3 ; next Line 
mov 
ca LL 

al,byte ptr BASE.cw87 
exception___ flags 

; exception enable flags 
; show status 

; Condition Codes: 
@DisStr space10 

; 

next_cc: 

; 

; 

; 

mov ah,byte ptr BASE.sw87+1 ; condition codes 
push ax ; (save codes) 
mov al,30h ; (ASCII "0") 
and ah,mask c3 ; C3 
sub ah,mask c3 ; 0 -> CY, 1 -> NC 
cmc 
adc al,O 
@DisChr al 
pop ax 

mov ch,c2 + 

@DisStr SPACE2 

; 0 -> NC, 1 -> CY 
; 0 -> "0", 1-> "1" 
; display 
; (save codes) 

; #of codes to display 

mov 
and 
sub 

a L,30h ; (ASCII "0") 
ah,mask c2 + mask c1 + mask cO 
ah,mask c2 ; 0 -> CY, 1 -> NC 

cmc 
adc al,O 
@DisChr al 

shl 
dee 
jnz 

ah,1 
ch 
next_ cc 

; 0 -> NC, 1 -> CY 
; 0 -> "0", 1-> "1" 
; display 

; next code 
; 1 Less to go •.• 
; .•• until all done 

; Interrupt I Exception - Status Flags: 
@DisStr LINE6 

; 

mov 
ca LL 

al,byte ptr BASE.sw87 
exception___f Lags 

; Data Register Display: 
@DisStr CRLF 
mov 
mov 

dh,8 
si,O 

; exception signal flags 
; show status 

; #of reg. to display 
; start with reg #0 



10 - Programming the Intel NPX 

; 
register_display: 

@DisStr LINES ; registers status 
push dx ; save count 
mov al,8 ; calculate register 
sub al,dh 
add al,30h ; convert to ASCII 
@DisChr al ; and display 
pop dx 

; 
; Sign of Data Register: 

@DisStr paren ; sign comes next 
mov ax,word ptr BASE.reg87[siJ.exp87 
test 
jnz 
@DisStr 
jmp 

sign_minus: 

ax,mask sign 
sign_minus 
plus 
show_exponent 

@DisStr minus 
; 
; Exponent Portion of Data Register: 
show_exponent: 

and 
xor 
ca LL 

ax,mask exp 
cx,cx 
bin2hex 

@DisStr space3 
; 

di,si 

; what is it? 

; obtain exponent 
; four characters 
; and display 

; base of register 

# 

mov 
add 
mov 

di ,offset exp87 
dl,4 

; Location of mantissa 
; 4 words per register 

; 
; Display Significand Portion of Data Register: 
show_significand: 

; 

sub di,2 
mov 
ca LL 
@DisStr 
dee 

ax,word 
bin2hex 
SPACE1 
dl 

; point at word start 
ptr BASE.reg87[di] 

; and display 

; another word gone 
jnz show_significand 

; True Register Number: 
@DisStr truenum 
mov al,byte ptr BASE.sw87+1 ; get stack pointer 
and al,mask stp 
mov cl,stp 
shr al,cl ; have stack pointer 

continued 

553 



Devices 

554 

Listing 10-1. continued 

; 

; 

; 

; 

mov 
sub 
add 
and 

cl,8 
cl,dh 
al,cl 
al,07H 

push ax 
add al,30h 
@DisChr al 

@DisStr SPACE2 

; Tag Word Status: 

; 

mov ax,BASE.tw87 
pop 

shl 
shr 
and 

ex 

cl, 1 
ax,cl 
ax,mask tag 

push dx 
tag_siz 

; convert counter to ... 
; ..• 0 through 7 
; current reg. # 

; save register number 
; convert to ASCII 
; and display 

; now for the TAG field 

; get tag word 
; get register number 
; in CL 
; multiply by 2 
; and get proper tag word 

mu L 
add ax,off set tag_cnd 

; condition offset 
; condition address 

mov dx,ax 
@Display 
pop dx 

; 
; ALL Done for That Register! 

; 

add si,size f Ltreg 
dee dh 
jz 
jmp 

finished 
register_display 

; ALL Done for ALL Registers! 
; 
finished: 

@DisStr LINE9 
; 

; show tag status 

; next register 
; 1 Less 

; until all gone 

; all done! 

; Restore the main CPU to the way it was and return 
; Start w/ saved registers 

pop si ; restore caller's registers 
pop di 
pop dx 
pop ex 
pop bx 



10 - Programming the Intel NPX 

pop ax 
mov sp,bp ; restore stack 
pop ds ; restore data segment 
po pf ; restore caller's flags 
pop bp ; restore entry BP 
ret ; return when finished 

; 

;-----------------------------------------------------------------
; Display Subroutine for displaying MASK & SIGNAL status of 
; exceptions. 
; Test byte in AL for bits corresponding to exception flags 
; 
exception_flags PROC NEAR 

test al,mask master ; master control 
call mark_ it 

; 
mov cl,pr ; next is PR flag 
ror al,cl ; move to 1's position 
inc cl ; count 1 > bit # 

; 
tesLexception: 

test al,1 ; is flag set? 
call mark_ it 
rol al, 1 ; next flag 
dee cl ; keep track of count 
jnz tesLexception ; continue until done 
ret 

; 

;-----------------------------------------------------------------
; Mark result according to flags set on entry 
; 
mark_it PROC NEAR 

jz mark_space 
@DisStr marky 
ret 

mark_space: 
@DisStr markn 
ret 

mark_ it ENDP 
; 
exception_flags ENDP 
; 
#.DATA 

;-----------------------------------------------------------------
;DUMPS? L 0 C A L C 0 N S T A N T S T 0 R A G E 

continued 

555 



Devices 

556 

Listing 10-1. continued 

; 
; ----- this section read only -----
; 
; "_Lab" - Label for section 
; "_end" - condition for Label 
; "-siz" - number of bytes in condition 
; 
@CR et 

; 
LINE1 

MACRO 
db 
ENDM 

EQU 
@CRet 

ODh,OAh 

$ 

,, new Line macro 

db '=====================NPX DUMP ------------------------------------------
db '===· 
@CRet 
db 'Infinity: $' 

rncLLab db Round: ••••••• 
pre_Lab db Precision: $' 
i nLsi z db 7 
i nLcnd db 'Proj. $' 

db 'Affine$' 
rnd_siz db 5 
rncLcnd db 'near$' 

db 'down$' 
db 'up $' 
db 'chop$' 

pre_siz db 3 
pre_cnd db '24$' 

db '**$' 
db '53$' 
db '64$' 

; 
LINE2 EQU $ 

@CR et 
db 'Inst Addr: $' 

opadr db Oper Addr: $' 
ocode db Opcode: 0$' 
; 
LINE3 EQU $ 

@CR et 
@CR et 

$' ; Label 
; Label 

; infinity state 
; infinity state 

; round state 
; round state 
; round state 
; round state 

; "ret" precision 
; "ret" precision 
; "ret" precision 
; "ret" precision 

; "x:xxxx" 
; "x:xxxx" 

state 
state 
state 
state 

; "xxx","ret","ret" 



10 - Programming the Intel NPX 

; 
LINE6 

marky 
markn 
; 
LINE8 

paren 
plus 
minus 
space10 
SPACE2 
SPACE1 
space3 

truenum 
tag_siz 
tag_cnd 

; 
LINE9 

CRLF 

db 
db 
@CRet 
db 

EQU 
@CRet 
db 
db 
db 

EQU 
@CR et 
db 
db 
db 
db 
db 
EQU 
EQU 
db 

db 
db 
db 
db 
db 
db 

EQU 
@CR et 
db 
db 
EQU 
@CRet 

INT PRE UND OVR ZER DEN IOP' 
C3 C2 C1 co• 

'Masked:$' 
condition codes 
$ 

'Signal:$' 
x $' 

$' 

$ 

'ST($' 
') $' 

'+ $' 
,_ $' 

$ + 

$ + 2 
$' 

' #$' 
6 
'Valid$' 
'Zero $' 
'Spec.$' 
'Empty$' 

$ 

"ret" 

; "ret" 

; "x" 

; "xx xx" 
; 10 space 
; 2 space 
; 1 space 
; 3 space 
; "xxxx " 4 times 
; " #x", then " 

; tag state 
; tag state 
; tag state 
; tag state 

"tag 

'------------------------------------------------' , ________ , 

$ 

db '$' 

; 
#.CODE 
; 
dump87 ENDP 
;================================================================= 

END ; end of routine(s) 

557 



Devices 

I 
I 

D UMP87 obtains the information to display by using the NPX FSA VE in
struction. This instruction saves the entire state of the NPX in 94 bytes in the 
format shown in Figure 10-12. However, FSA VE also initializes the NPX as if an 
FINIT had been performed. This allows a numeric subroutine to save the state 
of the NPX and then initialize it in one instruction, which is analogous to push
ing the registers and clearing them on entry to a main CPU subroutine. Because 
we wish to continue processing without disruptions, we must follow the FSAVE 
with the FRSTOR instruction, which reloads the NPX from the saved 
information. 

From Figure 10-12, you can also see that the first 14 bytes of the saved in
formation are identical to that saved by the FSTENV (store environment) in
struction. FSTENV does not reinitialize the NPX; rather, it is intended to allow 
the programmer access to the information required in exception handling: the 
status word and the instruction and operand pointers. Like FSAVE, FSTENV 

FSAVE 
(94 bytes) 

-~-----------------------------------------------------

FSTENV 
(14 bytes) 

ST(O) 

ST(1) 

ST(2) 

ST(3) 

ST(4) 

ST(5) 

ST(6) 

ST(7) 

558 

Exponent Significand 

: : Byte Offset 

Status 
Word 

Tag 
Word 

Instruction 
Pointer 

Operand 
Pointer 

:/ +9 7 +8 7 +7 7 +6 7 +5 7 +4 7 +3 7 +2 7 +1 7 

Figure 10-12. FSAVE and FSTENV memory structure. 



10 - Programming the Intel NPX 

has a corollary instruction called FLDENV that can reload the environment 
from stored information. 

Using the DUMP87 Routine 
The remainder of the program has nothing to do with the NPX. Instead, the rest 
of the program uses MASM structure and record definitions to break down the 
information returned by FSAVE and present it to the user. The format used to 
present the information is documented in the routine's header section. The list
ing as presented is suitable for assembly and inclusion in a library file. If you 
follow this procedure, DUMP87 may be included in any other file by matching 
DUMP87's segment and class names, by declaring it external, and by providing 
the external routine BIN2HEX. One variation for using DUMP87 is as follows: 

code segment para public 'code' ; library segment 
assume cs:code,ds:code,es:code,ss:code 
extrn dump87:near ; LIBRARY ROUTINE 
ORG 0100h ; .COM FORMAT 

main proc far 
start: 

FIN IT ; initialize NPX 

call dump87 ; analyze NPX 

DUMP87 requires in excess of 120 bytes on the CPU stack. In return, the 
program does not use any data storage, which allows greater freedom of place
ment and use. As mentioned, DUMP87 requires a routine called BIN2HEX. 
BIN2HEX appears in Appendix A. 

Using the NPX for Binary to Decimal to Binary Conversions 
Now that we are equipped to check on what the NPX is up to, we can turn to 
some more serious programming. The first necessity for using the NPX is to 
provide some means to get data into and out of the NPX in a form that humans 
can understand. And that means decimal representation. 

Integer Operations 
Performing integer to binary conversions on the NPX is a snap, thanks to the 
FBLD and FBSTP packed BCD load and store instructions. All that is needed is 
a simple main CPU routine to pack and unpack the BCD digits from and to 
ASCII strings. To convert from decimal to binary, load the decimal number with 
FBLD and store it as a binary integer with FIST. To convert in the other direc
tion use an FILD followed by the decimal store instruction, FBSTP. 

Note that as long as the numb~rs being converted are small enough to fit 
within a 16-bit (or 32-bit register in an 8038) register, it is not worth using the 
NPX to convert from decimal to binary. The overhead associated with packing 

559 



Devices 

560 

the digits and executing an FBLD-FIST sequence is greater than that which is 
involved with the standard "shift-multiply" conversion routine as follows: 

; Assume number being accumulated is in AX and the new digit is 
; in the CL register. 

shr ax,1 ; existing number x 2 
mov bx,ax ; save 
shr ax,1 ; number x 4 
shr ax,1 ; number x 8 
add ax,bx ; (# x 8) + (# x 2) = # x 10 
xor ch,ch ; prepare for 16-bit add 
add ax,cx ; next digit added in 

For small numbers (one to three decimal digits), the NPX takes about 
twice as long to convert from decimal to binary, including the time necessary to 
create the packed BCD vector from an ASCII string. 

When numbers get larger than 16 binary bits, the main CPU begins to 
slow down because it must continuously check for carries, possible overflows or 
underflows, etc. In the range of 16 to 64 binary bits, the NPX really makes the 
conversions fly! 

As long as the numbers are no longer than 18 decimal digits (which is hard 
to exceed!), no NPX operations beyond the load and store instructions are re
quired. Once numbers begin to exceed 18 digits, they must be scaled, and we 
enter the realm of floating-point real numbers. 

Floating Point Operations 
Handling conversions between decimal and binary numbers in the floating point 
world is mainly a matter of scaling. That is, we can use the FBLD and FBSTP 
instructions to get the basic numbers in and out of the NPX, but then we need to 
adjust the numbers by some power of ten. To understand how these operations 
take place, let's review some basic mathematical identities of number 
conversions. 

1. 1 ox = 2x * Iog2 10 

2. EX = 2x * Iog2E 
3. yx = 2x * Iog2Y 

4. log10X = log102 * log2X 

5. logEX = logE2 * log2X 

Fortunately, the NPX knows how to calculate some of these operations and 
can provide constants for others. The pertinent instructions that we need to ac
complish our conversions are 

A. F2XM1calculates2x - 1 

B. FLDL2T constant log210 

C. FLDL2E constant log2E 

D. FYL2X calculates Y * log2X 



10 - Programming the Intel NPX 

E. FLDLG2 constant log102 
F. FLDLN2 constant logE2 

We know that once an integer number has been loaded, we must either 
multiply it by a power of ten for a number with a positive base-ten exponent or 
divide it by a power of ten for a number with a negative base-ten exponent. 
From rule number 1, we can see that the first step toward obtaining a power of 
10 is calculating 2 to some power X. 

The 2x Calculation 
Generally, 2 can be raised to a power through a simple shift, and this is indeed 
what the NPX accomplishes with its FSCALE instruction. Unfortunately, that 
is not the entire solution because integer powers of 10 don't correspond to in
teger powers of 2. Some fractional part of the power of 2 needs to be calculated. 
This is where the NPX instruction F2XM1 applies (see rule A). 

F2XM1 has the capability of calculating 2 to the Xth power for a value of X 
from 0.0 through 0.5, inclusive. Given an arbitrary number X, we can separate it 
into its fractional and integer parts by evaluating the expressions: 

integer (X) = FRNDINT (X) 
fractional (X) = FSUB X - integer (X) 

The integer portion of Xis used in FSCALE to raise 2 to an integer power, 
and the fractional portion becomes the input for F2XM1. We can use two succes
sive operations because we know that for any Y and Z the following holds true: 

2<Y + Z) = 2Y * 2Z 

The absolute value of the fractional part of Xis held within the range of 0. 0 
to 0.5 by ensuring that the NPX's rounding control is set to nearest, which en
sures a maximum fraction of 0.5. 

We may then calculate the total result by applying F2XM1, adding 1 back 
to the result, and using FSCALE on that. Of course, if the fractional part is 
negative, we must make sure that we use its absolute value and use the identity 

2CY - Z): 2Y/2Z 

for the correct result. This is essentially the sequence of events that takes place 
in the routine EXP2, which appears near the end of the next listing (Listing 
10-2). 

The l()X Calculation 
Now that we have determined how to calculate 2 to the Xth, we have accom
plished the major part of calculating 10 to the Xth. From rule number 1, we 
know that 

561 



Devices 

562 

which means that all we need to find is the value 

in order to be able to use the 2 to the Xth routine just developed. From looking 
at rule B, we see that the NPX can supply us with the value for the base 2 log of 
10. Calculating 10 to the Xth then becomes the operation FLDL2T, followed by 
the multiplication FMUL and finishing with a call to EXP2. These are the in
structions that appear in the routine EXPlO, also contained in Listing 10-2. 

By changing identities from base 2 log of 10 to base 2 log of e to base 2 log of 
X, we can calculate the values of 10 to the Xth, e to the Xth, and Y to the Xth, all 
with the EXP2 routine. 

The Decimal to Real Scaling Function 
Once we have the value of 10 to the Xth, what do we do with it? We wanted this 
number so that we could use scientific notation in the NPX. Given a packed BCD 
number and a word integer X for the exponent, we can convert the parts to a 
floating-point real number by loading the packed BCD significand with FBLD. 
We calculate 10 to the absolute value of X and then either multiply the result by 
the significand for positive X (FMUL) or divide the significand by the resulting 
10 to the Xth for negative exponents (FDIV). As you've probably guessed, that's 
what the routine DEC2FLT does in Listing 10-2. This routine looks larger than 
it is because we needed to keep track of and adjust for the sign of the exponent. 

The resulting package of routines, EXP2, EXPlO, and DEC2FLT, can 
take a two-part number (packed BCD significand and integer exponent), which 
the main CPU can generate, and turn it into a floating-point real number inside 
of the NPX. 

The Real to Decimal Scaling Function 
Once we have numbers inside the NPX, we can calculate with them to our hearts 
content. Ifwe run out of room, we can always store them in common memory as 
temporary reals (the FSTP instruction does that). But what about when it is 
time to see the results? How do we go about turning a floating-point real number 
into a two-part integer number? 

The answer is that we must play with the NPX's biased exponent so that 
the NPX can give us an integer significand. You see, when storing a number as a 
packed BCD string, the FBSTP instruction first rounds the number to the near
est integer. If the number is too large to be represented by a packed BCD 
string, the NPX is unable to store that number. If the number is too small, sig
nificant precision is lost when the number is rounded. In order to use the 
FBSTP instruction, we must first make sure that the number stored in the regi
ster is in the proper range. 

We can tell that a number is in the proper range because its biased expo
nent (a sort of binary decimal point) has a value less than 64 (otherwise, the 
number is too large) and greater than the number of significant binary digits 
(otherwise, we lose precision). Typically, we choose a number that we know 
gives us good precision. For a number that we wish to be accurate to 10 decimal 



10 - Programming the Intel NPX 

digits, a true exponent of 32 is a good number. That means that the binary deci
mal point is on bit 32, about halfway through the floating point. Not too large 
and not too small. 

Now what ifthe number has an exponent that's not in that range? We have 
to change the exponent. The first step is to determine what the exponent really 
is. We use the FXTRACT instruction, which splits an NPX data register into 
two, one holding the significand with an exponent of zero (ST) and the other 
holding the original number's true exponent as a real number (ST(l)). The part 
that we're interested in is ST(l). 

The first step of this calculation is to determine how many binary decimal 
places we're off. Another way of saying this is that we wish to determine the dis
tance between the desired exponent and the existing exponent. FSUB can tell 
us that pretty quickly. 

Once we have the distance, can't we just apply it as a scaling factor (with 
FSCALE) to the original exponent? No, because when we display the number, 
we're going to tell the user what the exponent is in scientific notation, as in: 

+ l.2345600000E + 00 

and we won't be able to do that if the exponent is a power of 2. The idea of this 
exercise is to have the NPX produce an integer number and then know how 
many powers of 10 that number was shifted to make it an integer. Straight-up 
scientific notation. 

What we have to do is somehow convert the distance, which is currently in 
powers of two, into a distance of integer powers of 10. As it turns out, the rela
tionship between the two values is expressed by the rule 

2x = lOX*log,o2 
2X = l0Xllog210 

The second relationship results from the identity stating that 

Either way we calculate, we have determined the value of X (for the ex
pression 10 to the Xth) required to create the proper scaling factor. Creating the 
factor can be accomplished through the FLDLG2 (load base 10 log of2) followed 
by an FMUL or through FLDL2T (load base 2 log of 10) followed by an FDIV. 
However, these methods give us an exact number of X for 10 to the Xth, and we 
need the closest integer. So we apply FRNDINT to round the number, and we 
have our base 10 exponent. 

Given the exponent, we have but a moment's work to calculate 10 to the Xth 
(with EXPlO), and we have the scaling factor to turn the real number into an 
integer (with FMUL). We return the exponent of 10 via FIST (store integer) 
and the significand portion with FBSTP (store packed BCD). Everything ex
cept the BCD store is contained in FLT2DEC in Listing 10-2. 

563 



Devices 

564 

Another useful trick is that once the packed BCD number is stored in 
memory, we can use a binary to hexadecimal display routine (such as 
BIN2HEX) to display the digits because they look exactly like a hexadecimal 
number. 

We've been talking about Listing 10-2, and it finally follows. Notice that, 
like the DUMP87 listing, this one is formatted to be used as a library also. In 
addition, all operations take place on the main CPU stack or in locations spec
ified by the caller, so there should be no problem with portability. 

Listing 10-2. DE2FLT, FLT2DEC, and the Exponent Routines 
EXP2, EXPlO, EXPE, and EXPY 

PAGE 60,132 ; wide Listing 
#.8087 ; allow the assembly of 8087 NPX instructions 
; 

PUBLIC dec2flt ; declare Library routine 
PUBLIC flt2dec ; declare Library routine 
PUBLIC exp10 ; declare Library routine 10**X 
PUBLIC expE ; declare Library routine e**X 
PUBLIC expY ; declare Library routine Y**X 
PUBLIC exp2 ; declare Library routine 2**x 

; 
;================================================================ 
; I M P L E M E N T A T I 0 N 
; 
#.MODEL SMALL 
; 
#.CODE 
; 

;**************************************************************** 
; DEC2FLT - Convert decimal integer with exponent to floating 
; point real number. Accept exponent and pointer to 
; packed BCD string on stack. Return result in STCO) 
; 
; Use: push 
; push 
; ca LL 
; 

offset Ctbyte ptr packed_BCD) 
exponent 
dec2flt 

; Requirements: 3 stack Locations 
; Notation: N •••.•• exponent for 10**N 
; S •••••• significand portion of loading real 

;----------------------------------------------------------------
; 
#.DATA 
D2FLTD STRUC 
d2f L tbp dw · ? ; old base pointer 



10 - Programming the Intel NPX 

d2fltex 
d2fltpd 
D2FLTD 
; 
#.CODE 
dec2flt 

dw 
dw 
dw 
ENDS 

PROC 
push 

? 

? 

? 

NEAR 
bp 

; return address 
; exponent 
; pointer to packed BCD 

mov bp,sp ; address parameters 
cmp word ptr [bpJ.d2f Ltex,O ; check sign of exponent 
j z d2flt_nxp ; if zero, no 10**N 

; . • . needed 
pus hf ; save sign of exponent 

d2f L Lpos jg 
neg word ptr [bpJ.d2fltex 

; if positive start 10**N 
; else make exp positive 

d2f L Lpos: 
FILD 
call 

word ptr [bpJ.d2fltex ; get exponent of 
exp10 ; calculate 10**N 

; enter here i f exp is 0 
si 
si,[bpJ.d2fltpd ; get pointer to packed 

10 

BCD 

d2fLLnxp: 
push 
mov 
FBLD 
pop 
po pf 

tbyte ptr [siJ ; ST => s. , ST( 1) 10**N 
si 

jz d2flt_end 
jl d2flt_neg 
FMUL 
jmp 

d2f L Lneg: 
FDIVR 

d2f L Lend: 

d2f L Lend 

pop bp 
ret 4 

dec2flt ENDP 
; 

; 
; 
; 
; 
; 

; 

; 

restore exponent.s sign 
done if exp is 0 
if negative do divide 
ST => significand * 10**N 
and done 

ST => significand I 10**N 

restore bp 

;**************************************************************** 
; FLT2DEC - Convert floating point real to decimal integer with 
; exponent. ST(Q) contains number to be converted. 
; 
; 
; 
; 
; 
; Use: 
; 

Stack contains number of binary digits desired and 
pointer to 10's exponent Location. 
Returns with ST(O) converted to an integer and writes 
the 10's exponent to the designated Location. 

push sig_digits 
push offset (word ptr to exponent) 

continued 

565 



Devices 

566 

Listing 10-2. continued 

; call fl t2dec 
; 
; Requirements: 4 stack Locations 
; Notation: R Real number to display 
; 
; 

N 

I 
Exponent of 10 to convert R to integer 
Integer portion of resultant number 

; n(N) •••• nearest integer of N 
·----------------------------------------------------------------, 
; 
#.DATA 
F2DECD STRUC 
f2deccw dw ? ; original control word 
f2decbp dw ? ; old base pointer 

dw ? ; return address 
f2decex dw ? ; pointer to exponent 
f2decsd dw ? ; number of signif. binary digits 
F2DECD ENDS 
; 
#.CODE 
; *** check rounding control at this point - use other ?? *** 
F2DECCT EQU 03BFh ; new control word - round nearest 
; 
flt2dec PROC NEAR 
; 
; Set up the NPX's control word and open storage 
; on the stack: 

push 
STKADJ1 EQU 

; 

sub 
mov 
push 
mov 
push 
FSTCW 
FLDCW 
pop 
pop 

bp 
f2decbp-F2DECD 
sp,STKADJ1 
bp,sp 
ax 
ax,F2DECCT 
ax 

; save old base pointer 

; make storage on the stack 
; address new structure 
; save AX 
; push new control word on stack 

word ptr [bpJ.f2deccw 
word ptr [bp-4] ; set to round to nearest int 
ax ; clean up stack 
ax ; res tore AX 

; Find N for 1D**N to convert to integer: 
FLD ST(Q) ; duplicate R (preserve unti L 

; . • • end) 
FXTRACT ; ST(1) => exponent portion of R 



10 - Programming the Intel NPX 

FSTP ST(Q) ; ST => exponent portion of R 
FISUBR word ptr [bpJ.f2decsd ; sigdig - exp = #of 

; ... scale digits 
FLDL2T ST => Log2 (10), ST(1) => scale 
FDIV ; ST => scale I Log2 (10) = N 
FRNDINT ; ST => n(N) 

; 
; Store nint (N) as exponent & calculate 10**nint(N): 

push si 
mov si,[bpJ.f2decex; get pointer to exponent 
FIST word ptr [siJ ; store base 10 scale 
FWAIT 
neg 
pop 
call 

word ptr [siJ 
si 

; direction to move dee. point 

exp10 ; calculate 10**N (scale) 
; 
; ST(1) now has R (the original real #) - scale it: 

FMUL ; ST => R * 1D**N = Integer 
FLDCW word ptr [bpJ.f2deccw ; restore control word 

STKADJ2 EQU f2decbp-F2DECD 
add 
pop 
ret 

flt2dec ENDP 
; 

sp,STKADJ2 
bp 
4 

; resize stack to original 
; restore BP 
; clear stack on return 

;**************************************************************** 
; EXP10 - Calculate 10 to the power of ST(O) 
; Return result in ST(O) 
; 
; Uses formula: 10**N = 2**(N*Log2(10)) 
; 
; CALLS: EXP2 
; 
; Requirements: 3 stack Locations 
; Notation: N exponent for 10**N 
; X equi va Lent exponent for 2**X 
; 
; 

n(x) •.• nearest integer of X 
f(x) ••• fractional part of X 

;----------------------------------------------------------------
exp10 PROC NEAR 

FLDL2T ; ST > Log2 ( 10); ST( 1) => N 
FMUL ; ST => N * Log2 (10) => x 
ca LL exp2 ; raise 2 to ST power 
ret ; ... for 10 ** N 

exp10 ENDP 

continued 

567 



Devices 

568 

Listing 10-2. continued 

; 

;**************************************************************** 
; EXPE - Calculate E to the power of ST(Q) 
; Return result in ST(Q) 
; 
; Uses formula: E**N = 2**<N*Log2(E)) 
; 
; CALLS: EXP2 
; 
; Requirements: 3 stack Locations 
; Notation: N exponent for E**N 
; X equivalent exponent for 2**X 
; n(x) .•• nearest integer of X 
; f(x) ••• fractional part of X 
;----------------------------------------------------------------
expE PROC NEAR 

FLDL2E ; ST > Log2 Ce>; STC1> => N 
FMUL ; ST => N * log2 (e) => X 
ca LL exp2 ; raise 2 to ST power 
ret ; ... for E ** N 

expE ENDP 
; 

;**************************************************************** 
; EXPY - Calculate Y [ST(O)J to the power of N [ST(1)J 
; Return result in ST(Q) 
; ST(1) (value of N) is Lost! 
; 

; 
; **** NOTE: Y MUST BE POSITIVE **** 
; 
; CALLS: EXP2 
; 
; Requirements: 3 stack Locations 
; Notation: N exponent for Y**N 
; x equivalent exponent for 2**X 
; n(x) ... nearest integer of X 
; f(x) ... fractional part of X 
;----------------------------------------------------------------
expY PROC NEAR 

FYL2X ; ST => N * Log2 (Y) => x 
ca LL exp2 ; raise 2 to ST power 
ret ; ... for Y ** N 

expY ENDP 



10 - Programming the Intel NPX 

; 

;**************************************************************** 
; EXP2 - Calculate 2 to the power of ST(Q) 
; Return result in ST(Q) 
; 
; Requirements: 3 stack Locations 
; Notation: X ...•.. exponent for 2**X 
; n(x) ••• nearest integer of X 
; f(x) .•• fractional part of X 
;----------------------------------------------------------------
; 
#.DATA 
EXP2D STRUC 
exp2cc dw ? ; condition codes 
exp2cw dw ? ; original control word 
exp2bp dw ? ; old base pointer 

dw ? ; return address 
EXP2D ENDS 
; 
#.CODE 
EXP2CT EQU 03BFh ; new control word - round nearest 
exp2 PROC NEAR 
; 
; Set up the NPX's control word and open storage 
; on the stack: 

push bp ; save old base pointer 
STKADJ3 EQU exp2bp-EXP2D 

sub sp,STKADJ3 ; make storage on the stack 
mov bp,sp ; address new structure 
push ax ; save AX 
mov ax,EXP2CT ; push new control word on stack 
push ax 
FSTCW word ptr [bpJ.exp2cw 
FLDCW word ptr [bp-4] ; set to round to nearest int 
pop ax ; clean up stack 
pop ax ; restore AX 

; 
; Start processing the number now: 

FLD STCO) ; ST => ST(1) => x for 2**X 
FRNDINT ; ST => n(X); ST(1) => x 
FXCH ; ST => X; ST(1) => n(X) 

ST ,STC1) ; ST => f(X); STC1) = n(X) 
; set condition codes 

FSUB 
FTST 
FSTSW 
FWAIT 

word ptr [bpJ.exp2cc ; store CC's 

and byte ptr [bp+1J.exp2cc,45h ; mask all but CC's 
con ti 1111 ed 

569 



Devices 

570 

; 

cmp 
ja 
je 

F2XM1 
FLD1 

FADD 
FSCALE 
FSTP 

Listing 10-2. continued 

byte ptr [bp+1J.exp2cc,1 ; test for negative 
exp2_err ; NAN or infinity -> error 
exp2_neg ; fractional part is minus 

; ST => (2**f (X)) - 1 · STC1> = n(X) , 
; ST => 1; STC1) => C2**fCX))-1; 
; ... STC2) = nCX) 
; ST => 2**f(X); STC 1) => n(X) 
; ST => 2**CX) => 2**CN*log2C?)) => ?**N 

STC1) ; ST => ?**N; STC1) => restored 
jmp exp2_mer ; merge 

; 
exp2_neg: 

; 

FABS 
F2XM1 
FLD1 
FADD 
FXCH 
FLD1 
FSCALE 

FDIVRP 
FSTP 

exp2_mer: 
clc 

exp2_out: 
FLDCW 

STKADJ4 EQU 
add 
pop 
ret 

exp2_err: 
stc 

exp2 
jmp 
ENDP 

; ST => 1-f(x); STC1) = n(X) + 1 
; ST => C2**C1-f(x)))-1; ST(1) = nCX) + 
; ST => 1; ST(1) => (2**<1-f(x)))-1 
; ST => 2**<1-f(x)); STC1) => nCX) + 1 
; ST => n(X) + 1; ST(1) => 2**(1-f(x)) 
; ST => 1; ST(1) = n(X) + 1 
; ST => 2**(n(x) + 1); 
; •.• STC2) => 2**(1-CfCx)) 

ST(2),ST ; ST(1) => 2**(n(X) + 1)/2**(1 - f(x)) 
ST(O) ; ST => 2**CnCx) + 1 - 1 + f(x) => 2**CX) 

; no errors 

word ptr [bpJ.exp2cw ; restore control word 
exp2bp-EXP2D 
sp,STKADJ4 ; resize stack to original 
bp ; restore BP 

; errors occurred 
exp2_out 

;**************************************************************** 
END ; end of routines 



Summary 

By providing these example routines for debugging and I/O, we hope that we 
have given you an understanding of how the NPX works and what is possible 
with it and that we have encouraged you to develop your own applications for the 
NPX. Equipped with this boost, you should be able to branch out into whatever 
field interests you. Trigonometric analysis, Fourier transforms-all are much 
easier when the power of the NPX can be brought to bear. Good luck and happy 
numeric coprocessing! 

571 









11 - Disk Layout and File Recovery 

F you've been using MS-DOS for a while, you probably have inadvertently 
deleted or accidentally lost a file that you later realized you needed. The 

ERASE (or DEL) command in MS-DOS is very useful and powerful and, by its 
very nature, is a destructive command. Its destructiveness, of course, is essen
tial for it to accomplish its task, but when you're careless, it can become more 
destructive than you want it to be. 

The only safeguard against inadvertently deleting files with the ERASE 
or DEL command is displayed when you specify that all files on a disk be deleted 
by entering erase *. *. A prompt asks whether you're sure you want the opera
tion executed. If you enter n (for no), the command's execution is stopped. But 
when you use the command to delete a particular file or group of files, the only 
other safeguard is to discipline yourself to freeze your fingers before pressing 
the Return (or Enter) key and to carefully examine the file-delete command se
quence you've just typed. Even then, no matter how certain you are that the file 
or files you specified for deletion are the ones you ultimately want deleted, at 
some point we all make a mistake. Because computers are designed to obey your 
commands to the letter, your request for deleting files is executed immediately 
after you've pressed the Return or Enter key following the command sequence. 

A file can also be erased by a program that you are currently running. 
Word processors and other programs providing file-management facilities can 
be instructed, either directly or indirectly, to erase files. Additionally, files can 
be erased by an equipment malfunction, a power interruption, or a quirky fea
ture in a program. 

So what do you do when a file that hasn't been backed up is accidentally 
deleted? Fortunately, the MS-DOS file system was designed so that, under cer
tain conditions, restoring a file isn't difficult. As a result of this design, several 
utilities have been developed to recover erased files. Some of these are in the 
public domain. Others are commercially available products. Of the commercial 
products available, the Norton Utilities and Mace Utilities are popular exam
ples. A similar product called Ultra Utilities consists of a set of utilities in the 
"freeware" category and is currently available through various channels of 
public-domain software distribution. 

In this chapter we discuss how to recover erased files and how to use the 
MS-DOS utilities CHKDSK and RECOVER for recovering damaged and lost 
files. We also discuss the use of other file recovery methods, including the 

577 



Recovery 

commercial program Norton Utilities and the user-supported program Ultra 
Utilities. 

Before we do this though, you must understand how the MS-DOS file sys
tem works so that you understand the limitations of these file-recovery utilities. 
Note that both Norton Utilities and Ultra Utilities operate only on IBM Per
sonal Computers or close compatibles. Starting with version 2.01, Norton Util
ities also supports the recovery of files on hard disks (IO-megabyte hard disks on 
the IBM PC or compatible environment), and Norton Utilities version 3.0 in
cludes support for both the IBM AT's 20-megabyte hard disk and high-capacity 
floppy format (under MS-DOS version 3.0 or later). Norton Utilities version 
4.0 includes the ability to deal with any disk media running under MS-DOS, 
provided the disk media is formatted according to standard MS-DOS 
conventions. 

Although file-recovery utility packages are extremely useful in the en
vironments for which they were designed, they may not work properly in your 
particular MS-DOS environment, especially if your system is not an IBM PC or 
not sufficiently compatible with the IBM PC. For this reason, this chapter in
cludes a program that you can try if the other utilities fail or if you decide they 
are not appropriate for your machine. The program, RESCUE, is simple in de
sign, and can be expanded and customized with new features. RESCUE is de
signed to support any disk format, both removable and fixed-disk media, 
provided the disk's format adheres to standard MS-DOS formatting conven
tions. Before we show you how to use Norton and Ultra Utilities and the alter
nate program RESCUE, let's review the basics of the MS-DOS disk storage 
system and file recovery. 

Principles of File Recovery 

578 

You probably are wondering how it is possible to restore a file that's been 
erased. It would seem, initially, that if a file is erased, it must have been wiped 
off the face of the disk forever. This initial assumption is partially correct be
cause, after a file is erased, it is no longer visible or accessible by any of the stan
dard MS-DOS commands. 

Each file stored by MS-DOS on a disk, however, consists of the following 
three parts: 

• The file's directory entry 

• The file's space allocation 

• The data sectors containing the file data 

When a file is erased, only the first two parts of the file, the directory en
try and the space allocation, are affected. These two parts act as control points 
for MS-DOS to reference the file's data sectors. The data sectors of the file, 
however, are not erased, which is why it is possible to recover a file if you know 
something about the first two parts of the file. We'll talk about the space alloca
tion and directory sections in more detail a little further on, but first we'll cover 
the layout of disks that have been formatted in various ways under MS-DOS. 



11 - Disk Layout and File Recovery 

The following paragraphs describe the formats of standard floppy disk for
mats as well as hard (fixed) disk formats. Note that in some systems all 40-track 
formats supported by MS-DOS also can be used with 3112-inch floppy disks. In 
such systems, the 3112-inch floppy drive must be treated by the system hardware 
as if it were a 40-track, 5Yt-inch floppy drive, as is often the case when 3112-inch 
floppy drives are connected to existing floppy disk controllers in IBM PC, XT, 
and AT systems. However, the 80-track formats supported by MS-DOS are nor
mally not interchangeable between 3112-inch and 5Yt-inch floppy disks. 

Layouts of 5114-Inch, 40-Track, Single-Sided Floppy Disks 

Figure 11-1 shows the basic layout of a 5Yt-inch, 40-track, single-sided disk. It 
shows the tracks and sectors and provides an example of how file data can be 
arranged on a disk. The first part shows the layout of a disk formatted to eight 
sectors per track. The portion to the right shows the difference on track 0 of a 
disk formatted to nine sectors per track. 

~rack 
I sec~ 

1 
2 
3 
4 
5 
6 
7 
8 

8-SECTOR-PER-TRACK FORMAT 

2 3 3 

0123456789012345678901234567890123456789 

BXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXEEE 
FXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXEEE 
FXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXEEE 
DXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXEEE 
DXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXEEE 
DXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXEEE 
DXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXEEEE 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXEEEE 

9-SECTOR-PER-TRACK FORMAT 

r.s: ... 3 

r 0 1 ... 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

BX ... 
FX ... 
FX ... 
FX ... 
FX ... 
DX ... 
DX ... 
DX ... 
DX ... 

E 
E 
E 
E 
E 
E 
E 
E B = Boot Record 

E D =Directory Entry 
F =File Allocation Table 

For example purposes only: 
X =Sectors containing file data 
E =Empty sectors 

Figure 11-1. Information layout on a single-sided, 40-track, 
5Yt-inch floppy disk. 

The first part of Figure 11-1 shows the simplest disk format under 
MS-DOS. Because all standard disk formats under MS-DOS support a sector 

579 



Recovery 

580 

si;i:e of 512 bytes, we can easily verify the information in Figure 11-1 by calculat
ing the total capacity of the disk as follows: 

40 tracks x 8 sectors x 512 bytes= 163,840 bytes (160 Kbytes) total capacity 

The total disk capacity can be checked against the results displayed when the 
FORMAT or CHKDSK command is used. 

A disk formatted to nine sectors per track (MS-DOS versions 2. 0 and above 
only) is similar to an 8-sector-per-track disk except that a ninth sector is add
ed at the end of each track, thereby in creasing total disk space. This can be 
verified with the following formula and checked against the results displayed 
by the FORMAT or CHKDSK command: 

40 tracks x 9 sectors x 512 bytes= 184,320 bytes (180 Kbytes) total capacity 

Another difference between 8- and 9-sector-per-track disks is the number 
of FAT (file allocation table) sectors. Although both formats have one boot 
sector and fou~ 1irectory sectors, the number of FAT sectors is greater in the 
9-sector-per-track format. Eight-sector-per-track disks have two FAT sectors 
(sectors 2 and 3 of track 0). Nine-sector-per-track disks have four FAT 
sectors (sectors 2 through 5 of track 0). The extra number of FAT sectors in 
9-sector-per-track disks is necessary because of the extra file space permitted 
by the 40 extra sectors (one per track). 

Layouts of 5114-lnch, 40-Track, Double-Sided Floppy Disks 

Double-sided, 40-track floppy disks formatted under MS-DOS are assigned the 
same number of FAT sectors (proportionally) as single-sided disks, but more di
rectory sectors are provided to increase the total number of files that can be 
stored on a disk. In both 8- and 9-sector-per-track double-sided formats, seven 
sectors are assigned as directory sectors. The layouts of the two double-sided, 
40-track disk formats supported by MS-DOS are shown in Figure 11-2. The part 
at left shows the layout in the 8-sector-per-track format. The part at right shows 
the layout in the 9-sector-per-track format. 

The layout of the disk in Figure 11-2 is very similar to the one in Figure 
11-1. Notice, however, that on all double-sided floppy disks formatted under 
MS-DOS, storage information on a track always begins at side 0, sector 1; moves 
to the last sector of the track; continues from side 1, sector 1 to the last sector of 
the track; then reverts back to side 0, starting with the first sector on the next 
track; and so on until the last sector on the last track of side 1 is reached. Also 
note that the arrangement of directory sectors and FAT sectors differs from 
that of single-sided disks. Both double-sided formats have one boot track and 
have proportionally the same number of FAT sectors as single-sided disks. 
However, the number of directory sectors for both double-sided formats is in
creased to seven. Again, by comparing the results of the following calculations 
with the results of the CHKDSK program, we can verify the total capacity of the 
two 40-track, double-sided floppy disk formats: 



11 - Disk Layout and File Recovery 

40 tracks x 8 sectors x 512 bytes x 2 sides = 
327,680 bytes (320 Kbytes) total capacity 

40 tracks x 9 sectors x 512 bytes x 2 sides = 
368,640 bytes (360 Kbytes) total capacity 

8-SECTOR-PER-TRACK FORMAT 9-SECTOR-PER-TRACK FORMAT 

~rack 
I sect~ 

3 

012 ... 6789 ts: r 

1 
2 

SIDE ~ 
0 5 

6 
7 
8 

SIDE 
0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

--1 

BXX .•. XXXX 
FXX ••• XXXX 
FXX •.• XXXX 
DXX .•• XXXX 
DXX •.. XXXX 
DXX ..• XXXX 
DXX .•. XXXX 
DXX •.. XXXX 
DXX ..• XEEE --1 

DXX ... XEEE 2 

SIDE ~ xxx ... XEEE 
xxx ... XEEE SIDE 

1 5 

6 
7 
8 

xxx ... XEEE 
xxx ... XEEE 
xxx ... EEEE 
xxx ... EEEE 

B = Boot Record For example purposes only: 
D = Directory Entry 
F =File Allocation Table 

X = Sectors containing file data 
E = Empty sectors 

1 

2 
3 
4 
5 
6 
7 
8 
9 

... 3 

0 1 2 ••• 9 

BXX ... 
FXX •.. 
FXX ... 
FXX ... 
FXX .•. 
DXX ... 
DXX ... 
DXX ... 
DXX ..• 
DXX ... 
DXX ... 
DXX .•. 
xxx ... 
xxx ... 
xxx ... 
xxx ... 
xxx ... 
xxx ... 

Figure 11-2. Information layout on a double-sided, 40-track, 
5111-inch floppy disk. 

Layouts of5114-Inch, BO-Track, Double-Sided Floppy Disks 

MS-DOS version 3.0 introduced a new 5111-inch floppy disk format commonly 
known as the high-capacity format. This format provides a data storage capacity 
of 1. 2 million bytes and requires a special 80-track, 5111-inch floppy disk drive and 
appropriate disk controller (introduced on the IBM AT system). This particular 
high-capacity format is not available for 3112-inch floppy disks. 

The structure of this format is very similar to the older formats we've just 
described. The format's higher capacity depends on the use of floppy disks with 
double the number of tracks (80) and the formatting of more sectors (15) per 
track. Figure 11-3 illustrates the layout of this format and shows the higher 
number of directory and FAT sectors needed to support the extended capacity. 

The following formula can be used to verify the results displayed by the 
CHKDSK program when it is used with an 80-track, 5111-inch floppy disk: 

80 tracks x 15 sectors x 512 bytes x 2 sides = 
1,228,800 bytes (1,200 Kbytes or 1.2 Mbytes) total capacity 

MS-DOS version 3.20 introduced support for 3112-inch floppy diskettes. The 
3112-inch diskettes can be formatted to the same single- or double-sided, 8- or 

581 



Recovery 

582 

15·SECTOR-PER·TRACK FORMAT 9·SECTOR·PER·TRACK FORMAT 18-SECTOR·PER·TRACK FORMAT 
(51/4' DISKETTES) (3%'' DISKETTES) (3%'' DISKETTES) 

l.s: Sector 012 

1 BXX 
2 FXX 
3 FXX 
4 FXX 
5 FXX 
6 FXX 

SIDE 7 FXX 

0 8 FXX 
9 FXX 

10 FXX 
11 FXX 
12 FXX 
13 FXX 
14 FXX 
15 FXX 
1 DXX 
2 DXX 
3 bXX 
4 DXX 
5 DXX 
6 DXX 

SIDE 7 DXX 

1 
8 DXX 
9 DXX 

10 DXX 
11 DXX 
12 DXX 
13 DXX 
14 DXX 
15 xxx 

B =Boot Record 
D = Directory Entry 
F =File Allocation Table 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

7 

789 l.:s: r 

XEE 
XEE 
XEE 
XEE 
XEE 
XEE 
EEE 
EEE 
EEE 
EEE 
EEE 
EEE 
EEE 
EEE 
EEE 
EEE 
EEE 
EEE 
EEE 

1 
2 
3 

SIDE 4 

0 5 
6 
7 
8 

--9 
1 
2 
3 

SIDE 4 

1 
5 
6 
7 
8 
9 

EEE 
EEE 
EEE 
EEE 
EEE 
EEE 
EEE 
EEE 
EEE 
EEE 
EEE 

For example purposes only: 
X = Sectors containing file data 
E = Empty sectors 

... 7 
0 1 2 ... 89 ts: 0 1 2 r 

BXX ... xx 
FXX . .. xx 
FXX ... xx 
FXX ... xx 
FXX . .. xx 
FXX ... xx 
FXX ... xx 
DXX . .. xx 
DXX ... xx 
DXX ... xx 
DXX ... xx 
DXX ... xx 
DXX ... xx 
DXX ... xx 
xxx ... xx 
xxx ... xx 
xxx . .. xx 
xxx ... xx 

1 BXX 
2 FXX 
3 FXX 
4 FXX 
5 FXX 
6 FXX 
7 FXX 

SIDE 8 DXX 
0 9 DXX 

10 DXX 
11 DXX 
12 DXX 
13 DXX 
14 DXX 
15 DXX 
16 FXX 
17 FXX 

__ 18 FXX 
1 FXX 
2 FXX 
3 FXX 
4 FXX 
5 FXX 
6 FXX 
7 FXX 

SIDE 8 FXX 
1 9 FXX 

10 FXX 
11 FXX 
12 FXX 
13 FXX 
14 FXX 
15 FXX 
16 xxx 
17 xxx 
18 xxx 

Figure 11-3. Information layout of high-capacity, double-
sided, 80-track, 5¥4-inch and 311:.i-inch floppy disks. 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

7 

89 

xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 

9-sector-per-track formats as used for 40-track, 5¥4-inch diskettes, provided 
that the physical name of the drive is specified with the FORMAT command. A 
double-sided, 80-track, 9-sector-per-track format for 311:.i-inch diskettes was also 
introduced in MS-DOS version 3.20. The layout for this format is shown in Fig
ure 11-3. This format yields a total storage capacity of 720 Kbytes: 

80 tracks x 9 sectors x 512 bytes x 2 sides = 
737,280 bytes (720 Kbytes) total capacity 

The 311:.i-inch diskettes are formatted to the 720K format by specifying a 
logical drive name with the FORMAT command, without any format-specific pa
rameters. The logical drive used, which is expressly created for formatting 
720K floppy diskettes, is created at boot time if the following string is included 
in the CONFIG.SYS file, 



11 - Disk Layout and File Recovery 

DEVICE=DRIVER.SYS /D:x 

where x is the physical number of the SO-track, 3112-inch drive (0 = A:, 
1 = B:, etc.). The DRIVER.SYS file is a device driver provided with MS-DOS 
version 3.2 and higher versions. When the system is booted, DRIVER.SYS 
creates a logical drive using the next available drive letter, and maps it to the 
specified physical drive number. Once a disk has been formatted to the 720K for
mat, it can be read and written to by using the physical drive name as well as the 
corresponding logical drive name. 

MS-DOS version 3.30 introduced yet another 3V2-inch, high-capacity for
mat, consisting of 80 tracks, each formatted to 18 sectors (see Figure 11-3). This 
format yields a total capacity of 1.44 megabytes, using disks that have been 
tested to 2 megabytes. Special 3112-inch disk drives, first introduced in the IBM 
PS/2 systems, are required to support this format. The 1.44-megabyte drive 
also supports the 720K format. 

The Boot Sector 

80 tracks x 18 sectors x 512 bytes x 2 sides = 
1,474,560 bytes (1.44 Mbytes) total capacity 

The very first sector on a disk formatted under MS-DOS is always defined as the 
boot record. It contains a short program that is automatically loaded into mem
ory when the disk is used to load the MS-DOS operating system after system 
power-up or reset. This program then instructs the computer where to look on 
the disk for the files that contain the MS-DOS operating system. Once the files 
are found, the boot program loads the files into memory and transfers control to 
MS-DOS. Because the number of MS-DOS files and the way in which they are 
stored may differ according to the type of implementation (IBM PC, COMPAQ, 
CompuPro, for example), the contents of the boot record may vary. For the sake 
of consistency, the boot sector is always defined first on a formatted disk, re
gardless of whether you intend to make the disk a "boot" disk or a "data-only" 

. disk. 
The first 3 bytes of the boot record always contain a jump instruction. At 

boot-up, the jump instruction tells the system to jump past the first part of the 
record to the boot code. With the introduction of MS-DOS 2.00, the 27 bytes of 
the boot record between the initial jump instruction and the boot code contain 
information about the disk format. By examining this block of data, programs 
can obtain nearly all the formatting information needed for the disk. Table 11-1 
shows the contents of the format information block in the boot record. 

The formatting information in the boot record can prove to be very valu
able in determining the format of a disk. The boot record is initially created 
when the disk is formatted by using the FORMAT command for floppy disks, or 
the FDISK command for hard disks. The "OEM and Version" part of the format
ting information in the boot record usually contains the implementation and 
version number of the MS-DOS used to create the boot record. For example, 
if IBM DOS version 3.3 was used to format the disk, this field will contain the 

583 



Recovery 

584 

Table 11-1. The Boot Record Formatting Information 

Offset 
(dee) (hex) Size Contents 

0 00 3 bytes Near JMP to boot code* 

3 

11 
13 
14 
16 
17 
19 
21 
22 

24 
26 
28 

30 
446 
462 

03 8 bytes OEM name and version 

OB 1 word Bytes per sector 
OD 1 byte Sectors per cluster 
OE 1 word Number of reserved sectors 
10 1 byte Number of FAT tables 
11 1 word Number of directory entries** 
13 1 word Number of logical sectors 
15 1 byte Media descriptor byte*** 
16 1 word Number of FAT sectors 

18 1 word Sectors per track 
lA 1 word Number of heads 
lC 1 word Number of hidden sectors 

1E 416 bytes Boot code 
lBE 16 bytes Partition information**** 
lCE 50 bytes Rest of boot code 

*For MS-DOS version 2.X = 3-byte near jump. 
For MS-DOS version 3.X = 2-byte short jump plus NOP. 

**Total entries ofroot directory. 

B p 
I A 
0 R 
s A 

M 
E 
T 
E 
R 

27 bytes 

482 bytes 

***Media descriptor bytes are not always valid as of MS-DOS 2.00. 
****Bootable hard (fixed) disks only; this area is not used on floppy disks. 

B 
L 
0 
c 
K 

F I 
0 N 
R F 
M 0 
A R 
T M 
T A 
I T 
N I 
G 0 

N 

information "IBM 3.3". The rest of the items in the boot record's formatting in
formation are a superset of the BIOS Parameter Block (BPB) (see Chapter 6) as 
it existed when the disk was formatted. The last three items of the formatting 
information (sectors per track, number of heads, and number of hidden sectors) 
are calculated and inserted in the boot record when the disk is formatted. 

The READFMT program, shown in Listing 11-1, provides a method by 
which the formatting information of the boot record is read from the disk and 
displayed on the screen. In addition to the formatting items that exist in the 
boot record, READFMT also calculates several other format items, such as to
tal system storage, total data storage, and total disk storage capacities, and dis
plays them on screen. 

PAGE 
TITLE 
.SALL 
.8086 

Listing 11-1. READFMT Program 

50,132 
READFMT.ASM/.EXE 

; supress macro expansion Listing 
; use 8086/8088 instructions only 

;**************************************************************** 
;** READFMT Version 1.00 



11 - Disk Layout and File Recovery 

;** 
;** This program reads the boot sector of any disk, decodes the 
;** BIOS Parameter Block CBPB) found in the boot record, and 
;**displays the information on the screen along with some other 
;** calculated information. 
;** 
;** NOTE: When this program is created the LINK switch "/CP:1" 
;** must be used so that only the amount of memory actually 
;** needed by the program at Load time is allocated. The default 
;** maximum memory allocation if "/CP:1" is not specified is all 
;**memory above the program's Load point, which will cause the 
;** program to exit with an error message because it won't be 
;** able to do any additional run-time allocation of memory. 
;**************************************************************** 
; 
; INCLUDES: 
; 
INCLUDE 
INCLUDE 
INCLUDE LIB 

; 

stdequ.inc 
stdmac.inc 
stdlib.Lib 

; include standard equates fi Le 
; include standard macros file 
; include STDLIB.LIB library at 
; Link time 

; Declarations for external Library routines in STDLIB.LIB: 
EXTRN dosv2con:NEAR ; get & display current DOS ver. 
EXTRN dosver:NEAR ; get current DOS version 
EXTRN bin2dec2:NEAR ; display DX:AX in ASCII decimal digits 

; (if DX = 0, AX is treated as unsigned; 
; CH = minimum digits to display) 

; 

;----- INITIALIZATION -------------------------------------------
; 
.MODEL SMALL 
.STACK 2048 
; 

; small model 
; create 2K stack 

;**************************************************************** 
; MAIN PROGRAM 
; 
.DATA 
; 

;----------------------------------------------------------------
; References to boot record components read from disk and stored 
; in block of memory referenced via ES. Only the components of 
; the "BIOS Parameter Block" CBPB) are referenced; the 
; first 3 bytes and all data after the BPB area of the boot 
; record are ignored. 
; 

continued 

585 



Recovery 

586 

boot record 
BootJump 
OEMstring 

SectorBytes 
ClusterSec 
Reserved Sec 
FATcopies 
DirEntries 

TotalSectors 

MediaDescrip 
FATsectors 

TrackSectors 
Heads 
HiddenSectors 
boot record 
; 
; 
.CODE 
; 

STRUC 
db 
db 

dw 
db 
dw 
db 
dw 

dw 

db 
dw 

dw 
dw 
dw 
ENDS 

Listing 11-1. continued 

3 DUP (?) ; initial jump instruction 
8 DUP (?) ; OEM & version of DOS used to 

? 
? 
? 
? 
? 

? 

? 
? 

? 
? 
? 

; .•• format disk 
; bytes per sector 
; sectors per cluster 
; reserved sectors 
; number of FAT copies 
; number of root directory 
; ... entries 
; total disk sectors 
; ... C100% of disk) 
; media descriptor 
; number of sectors occupied 
; • • • by 1 FAT 
; number of sectors per track 
; number of heads 
; number of hidden sectors 

; begin code segment 

; Local data storage (keep these definitions in the code 
; segment): 
; 
DSsave dw seg DGROUP ; storage for DS register 
; 
.DATA 
PSPseg dw ? ; PSP segment 
.CODE 
; 
main PROC NEAR ; begin main process 

;**************************************************************** 
; Start of program 

;**************************************************************** 

; 

mov 
mov 
mov 

ds,DSsave 
ax,es 
word ptr PSPseg,ax 

; initialize DS 
; get PSP seg. address 
; ••• and save it 

;----------------------------------------------------------------
; Display startup message 

;----------------------------------------------------------------
@DisStr Start1_Msg ; display startup msg. 



11 - Disk Layout and File Recovery 

; 

;----------------------------------------------------------------
; Get disk drive number/name: 
;----------------------------------------------------------------

mov 
cmp 
je 

di,80h 
byte ptr es:[diJ,O 
get_default_drive 

; ES:DI = command-Line 
; are there parameters? 
; no, get default drive 

cmp byte ptr es:[di+3JJ,':' ; is colon present? 
jne get_default_drive ; no, get default drive 

; 
geLdisLdrive: 

xor ah,ah 
mov al,byte ptr es:[di+2] 
cmp al,">" 
je get_default_drive 
cmp al,61h 
jge convert_upper 

sub al,40h 

jmp short test_drive 
convert_upper: 

sub al,60h 
tesLdrive: 

cmp 
j L 
dee 

cmp 
jg 
jmp 

al,1 
bad_drive 
al 

al,25 
bad_drive 
short drive_used 

get_default_drive: 
mov ah,19h 
@Dos Ca LL 

drive_used: 
mov 
jmp 

bad_drive: 

byte ptr DiskDrive,al 
short drive_end 

@DisStr BadDrive_Msg 

jmp terminate 
drive_end: 
; 

; get drive in cmd. Line 
; clear out AH 
; get specified drive 
; was redirection used? 
; yes, get default drive 
; is drive in uppercase? 
; yes, convert from 
; •.• uppercase ASCII 
; else, convert from 
; Lowercase ASCII 
; and continue 

; convert uppercase ASCII 

; is number below 1? 
; yes, exit to error msg. 
; else, make A: = O; 
; ... B: = 1, etc. 
; is it >25 ( >Z: )? 
; yes, exit error msg. 
; else, save drive 
; specified 

; get default drive 

; store drive 
; and continue 

; else, display error msg 
; (syntax error) 
; and exit to DOS 

;----------------------------------------------------------------
; Read boot sector information into memory 

continued 

587 



Recovery 

588 

Listing 11-1. continued 

; On return ES:DI CES:O) points to memory block containing 
; boot record. 
;----------------------------------------------------------------
.DATA 
BootSeg dw 

.CODE 
mov 
call 
jnc 
call 
jmp 

; 
reac:Lboot: 

; 

mov 
push 
mov 
xor 

pop 
mov 
mov 
mov 
int 
jc 
popf 
mov 
mov 
mov 
xor 
jmp 

reac:Lboot_e r ro r: 
popf 

; 

mov 
@DisStr 
jmp 

end_read_boot: 
; 

? ; storage of segment address of memory 
; block containing copy of boot record 

bx,40h ; al loc. 1024 bytes (64 paras.) 
mema l loc ; allocate the block 
reac:Lboot ; continue if no error 
mem_err_handler ; else, deal with error 
terminate ; and exit to DOS 

word ptr BootSeg,ax ; save the seg. address 
ax ; and save it 
al,byte ptr DiskDrive ; get drive to read 
ah,ah ; clear AH 

ds ; get seg. addr. of new block 
dx,O ; read logical sector 0 
cx,1 ; read in one sector 
bx,O ; store data at DS:O 
25h ; read the disk 
reac:LbooLerror ; exit if error 

; clear flags pushed by int 25h 
ds,DSsave ; reinitialize DS 
ax,word ptr BootSeg ; get boot seg. address 
es,ax ; and initialize ES to it 
di,di ; with offset of 0 
enc:Lread_boot ; and continue 

; clear flags pushed by int 25h 
ds,DSsave ; reinitialize DS 
ReadError_Msg ; exit with error 
terminate ; ... message 

;-----------------------------------------------------------------
; Verify that the boot record read contains the information we 
; need. If the disk is a 160K or 320K floppy, the boot record 
; will not contain the BPB information we need (may be true 



11 - Disk Layout and File Recovery 

; with some nonstandard disk formats as well), in which case 
; the FAT table must be read to get the format ID byte. This byte 
; is needed to determine whether the disk is 160K CDOS 1.0) or 
; 320K CDOS 1.1> format. 

;----------------------------------------------------------------
; 

; 

mov 

ca LL 
jnc 
ca LL 
jmp 

read_ fat: 
.DATA 
FATSeg dw 
.CODE 

mov 
push 
mov 
xor 
pop 
mov 
mov 
mov 
int 
jnc 
po pf 
mov 
@DisStr 
mov 
ca LL 
jnc 
ca LL 

end_faLerr: 
jmp 

; 
process_ FAT: 

po pf 
mov 
mov 
mov 
xor 

.DATA 
FALID db 
.CODE 

bx,20h ; allocate 512 bytes 
; ... C32 paras.) 

mema L Loe ; a L Locate memory block 
read_ fat ; continue if no error 
menLerr_handler ; else, go to error handler 
terminate ; and exit to DOS 

? ; seg. address of FAT information 

word ptr FATseg,ax 
ax 

; save FAT seg. address 
; and save it 

al,byte ptr DiskDrive 
ah,ah 

; get drive to read 
; clear AH 

ds 
dx,1 
cx,1 
bx,O 
25h 
process_ FAT 

; 
; 
; 
; 
; 
; 
; 

get seg. address of 
read Logi ca L sector 
read in one sector 
store data at DS:O 
read the disk 
continue if no error 
else, clear f Lags 

ds,DSsave ; reinitialize DS 
ReadError_Msg ; exit with error 

new block 

ax,word ptr FATSeg ; get boot seg. address 
memfree ; deallocate the block 
end_fat_err ; exit if no error 
menLerr_handler ; else, display error msg. 

terminate ; exit to DOS 

ds,DSsave 
ax,word ptr 
es,ax 
di,di 

? 

; clear flags pushed by int 25h 
; reinitialize DS 

FATSeg ; get boot seg. address 
; and init. ES to it 
; with offset of 0 

; ID byte from the FAT 

continued 

589 



Recovery 

590 

Listing 11-1. continued 

mov al,byte ptr es:[diJ ; get FAT entry 0 
mov byte ptr FALID,al ; and save it as a byte 
call memfree ; deallocate FAT seg. 

; ... (address is in ES) 
jnc comp_byte_id ; continue if no error 
call mem_err_handler ; else, display error msg. 
jmp terminate ; exit to DOS 

; 
comp_byte_id: 

mov 
mov 
xor 
mov 
cmp 

jne 
jmp 

ax,word ptr BootSeg 
es,ax 

ptr FALID 

; point to boot segment 
; ES:O points to ... 
; ••• boot record 
; get FAT ID byte 

di,di 
al,byte 
al,byte ptr es:[diJ.MediaDescrip ; and compare 

; with ID byte in boot record 
chl<-.dosL fmt 
encLreacL fat 

; if different, then resolve 
; else, continue 

chl<-.dosL fmt: 
cmp al,OFEh ; is it a 160K floppy? 
je iniLdosLfmt ; yes, initialize boot record 
cmp a l,OFFh ; else, is it a 320K floppy? 
je iniLdosLfmt ; yes, initialize boot record 

.DATA 
UnknownMedia db "Unable to determine disk format--possible " 

"non-MS-DOS disk.",CR,LF,"$" db 
.CODE 

@DisStr 
jmp 

UnknownMedia 
terminate 

; display error message 
; and exit to DOS 

ni LdosL fmt: 
; Initialize format items that are the same between 
; the 160K and 320K formats: 
mov word ptr es:[di+3],"D" ; spell out "DOS 1.X"? 
mov word ptr es:[di+4],"0" ; in OEM and DOS 
mov word ptr es:[di+SJ,"S" ; version field 
mov word ptr es:[di+6]," " ; of boot record 
mov word ptr es:[di+7J,"1" 
mov word ptr es:[di+8J,"." 
mov word ptr es:[[bJdiJ.SectorBytes,512 ; bytes per sec. 
mov word ptr es:[diJ.ReservedSec,1 ; reserved sectors 
mov byte ptr es:[diJ.FATcopies,2 ; number of FAT copies 
mov word ptr es:[diJ.FATsectors,1 ; # FAT sectors 
mov word ptr es:[diJ.TrackSectors,8; #of sec. per track 
mov word ptr es:[di].HiddenSectors,O ; #of hidden sec. 



11 - Disk Layout and File Recovery 

; 

cmp 
je 
cmp 
je 

al,OFEh 
iniL160K 
a l,OFFh 
iniL320K 

; 
; 
; 
; 

is it a 160K floppy? 
yes, initialize boot record 
else, is it a 320K floppy? 
yes, initialize boot record 

iniL160K: 

; 

mov word ptr es:[di.9],"0" ; "DOS 1.0"? 
mov word ptr es:[di.10],"?" 
mov byte ptr es:[diJ.ClusterSec,1 ; sectors per cluster 
mov word ptr es:[di].DirEntries,64 ; #of dir. entries 
mov word ptr es:[diJ.TotalSectors,320 ; total disk sect. 
mov byte ptr es:[di].MediaDescrip,OFEh ; media descriptor 
mov word ptr es:[di].Heads,1 ; number of heads 
jmp end_ read_ fat 

i ni L320K: 
mov word ptr es:[di.9],"1" ; "DOS 1 • 1 "? 
mov word ptr es:[di.10],"?" 
mov byte ptr es:[diJ.ClusterSec,2 ; sectors per cluster 
mov word ptr es:[diJ.DirEntries,112 ; #of dir. entries 
mov word ptr es:[diJ.TotalSectors,640 ; total disk sec. 
mov byte ptr es:[diJ.MediaDescrip,OFFh ; media descriptor 
mov word ptr es:[diJ.Heads,2 ; number of heads 
jmp enci._read_fat 

; 
end_read_FAT: 
; 

;----------------------------------------------------------------
; Calculate values not available in the BIOS Parameter Block 
; NOTE: ES:DI (offset 0) must point to boot record read into 
; memory. All calculated results are stored in the data segment. 

;----------------------------------------------------------------
get_new_values: 

xor di,di ; clear out DI 
; 
; Calculate total sectors used for all copies of the FAT 

xor ah,ah ; clear out AH 
mov al,byte ptr es:[diJ.FATcopies ; get FAT copies 
xor dx,dx ; clear out DX 
mov bx,word ptr es:[di].FATsectors ; get FAT sectors 
mu l bx ; multi p Ly by it 
mov word ptr TotalFATSec,ax ; save the 1-word result 

; 
; Calculate total sectors used by all directory entries 

mov ax,word ptr es:[diJ.DirEntries ; get total root 
; ••• directory entries 

continued 

591 



Recovery 

592 

; 

Listing 11-1. continued 

mov 
xor 
mul 

bx,word ptr DirEntBytes 
dx,dx 
bx 

mov bx,word ptr 
es:[diJ.SectorBytes; get sector bytes 

; get dir. entry bytes 
; clear out DX 
; multiply 

xor dx,dx ; c Lear out DX 
div bx ; divide 
mov word ptr DirSectors,ax ; save the 1-word result 

; Calculate total cylinders 
mov ax,word ptr es:[diJ.TotaLSectors; get total sec. 
mov bx,word ptr es:[diJ.TrackSectors ; get sec./track 
xor dx,dx ; c Lear out DX 
div bx ; and divide by it 
mov bx,word ptr es:[diJ.Heads ; get number of heads 
xor dx,dx ; clear out DX 
div bx ; and divide by it 
cmp word ptr es:[diJ.HiddenSectors,O ; hidden secs.? 
je store_cyl ; no, we now have total 

; •.• cylinders 
mov cx,word ptr es:[diJ.HiddenSectors ; else, hidden 

; ••. sectors = 1 
cmp cx,word ptr es:[diJ.TrackSectors; •.. cylinder? 
je add_cyl ; yes 
mov 
jmp 

add_cyl: 
add 

store_cyl: 
mov 

ax,O 
short store_cyl 

ax,1 

word ptr Cylinders,ax 

; else, we have an error 
; 

; add an extra cylinder 

; save result 
; 
; Get total number of bytes on all (100%) of disk 

; 
; Get 

mov ax,word ptr es:[diJ.TotaLSectors ; get total sec. 
xor dx,dx ; c Lear out DX 
mov 
mul 
mov 
mov 

total 
mov 
xor 
sub 
sub 

bx,word ptr es:[diJ.SectorBytes ; get sec. bytes 
bx ; and multiply by it 
word ptr TotaLBytes,ax ; & save 2-word result 
word ptr TotaLBytes.2,dx ; ••• from AX and DX 

number of data sectors (where files can be stored) 
ax,word ptr es:[diJ.TotaLSectors; get total sec. 
dx,dx ; clear out DX 
ax,word ptr es:[diJ.ReservedSec ; sub. reser. sec. 
ax,word ptr TotaLFATSec ; sub. total FAT sectors 



11 - Disk Layout and File Recovery 

; ... Call copies of FAT) 
sub ax,word ptr DirSectors ; sub. root dir. sectors 
mov word ptr DataSectors,ax ; and save result 

; 
; Get number of bytes per cluster 

xor ah,ah ; clear out AH 
mov al,byte ptr es:[diJ.ClusterSec ; get cluster sec. 
xor dx,dx ; clear out DX 
mov bx,word ptr es:[diJ.SectorBytes ; get sec. bytes 
mul bx ; and multiply by it 
mov word ptr ClusterBytes,ax ; and save result 

; 
; Get total number of clusters 

mov ax,word ptr DataSectors ; get data sectors 
xor bh,bh ; clear out BH 
mov bl,byte ptr es:[diJ.ClusterSec ; get cluster sec. 
xor dx,dx ; clear out DX 
div bx ; div. by sectors/cluster 
mov word ptr TotalClusters,ax ; and save word result 

; 
; Get number of bits in a FAT entry 
; Always 12 bits if total clusters= 4,085 or below; 
; always 16 bits if total clusters is above 4,085 

cmp word ptr TotalClusters,4085 ; total clusters 
; ... above 4085? 

jle got_entry_size 
mov al,16 

; no, use 12-bit default 
; else, it's 16 bits 

mov byte ptr FATentryBits,al ; and save value 
goLentry_size: 
; 
; Get total number of data bytes (usable bytes) 

mov 
xor 
mov 
mul 
mov 
mov 

; 

; Calculate size 
mov 
mov 
mov 
div 
mov 
cmp 

ax,word ptr DataSectors ; get total data sectors 
dx,dx ; clear out DX 
bx,word ptr es:[diJ.SectorBytes ; get sec. bytes 
bx ; and multiply by it 
word ptr DataBytes,ax ; & save 2-word result 
word ptr DataBytes.2,dx ; from AX and DX 

of disk in kilobytes or megabytes 
ax,word ptr TotalBytes 
dx,word ptr TotalBytes.2 
cx,1024 
ex 
word ptr Kbytes,ax 
ax,1000 

; get total disk bytes 
; (double word) 
; set up divisor 
; and get ki lobytes 
; save value 
; calculate megabytes? 

continued 

593 



Recovery 

594 

Listing 11-1. continued 

j L dis_ info ; no, we're done 
mov bx,1000 ; else, set up divisor 
xor dx,dx ; clear out DX 
div bx ; and get megabytes 
mov word ptr Mbytes,ax ; save main value 
mov word ptr Mbytes2,dx ; & save fraction, if any 
cmp dx,O ; is there a fraction? 
je megabytes_end ; no, we're done 
mov ax,dx ; else, set up dividend 
mov bx,10 ; set up divisor 
xor dx,dx ; and clear out DX 

; 
; Delete-trailing-zeros Loop 
compress_ Loop: 

div bx ; divide AX by 10 
cmp dx,O ; is there a remainder? 
jne megabytes_end ; yes, we're done 
mov word ptr Mbytes2,ax ; else, save new 

; compressed value 
jmp short compress_Loop ; and go through again 

megabytes_end: 
; 

;----------------------------------------------------------------
; Display disk format information: 

;----------------------------------------------------------------
dis_ info: 

; 

@DisStr Start2_Msg 

xor 
mov 
inc 
add 

ah,ah 
al,byte ptr DiskDrive 
al 
al,40h 

@DisChr al 
@DisChr •·• 
@Newline 

@DisStr OEM._Msg 
push di 

; display first part of 
; ••• drive msg 
; clear out AH 
; and display drive name 
; make it a usable number 
; convert it to uppercase 
; ... ASCII letter 
; and display it 
; followed by a colon 

; display OEM message 
; save DI 

mov di,bootrecord.OEMstring ; point to OEM string 
; set up char. count 
; enter display Loop 
; get character 

mov 
more_char: 

cx,8 

mov al,byte ptr es:[di] 
@DisChr al ; display character 



11 - Disk Layout and File Recovery 

inc di ; point to next character 
dee ex ; dee. character count 
cmp cx,O ; all done? 
jg more_char ; no, output next char. 
@Newline ; else, we're done 
pop di ; restore DI 

; 
@DisStr MediaDescrip_Msg ; display media descrip. 
xor ah,ah ; clear out AH 
mov al,byte ptr es:[di].MediaDescrip ; read byte val. 
@DisNum ax,16,2 ; display 2 hex digits 
cmp byte ptr es:[diJ.MediaDescrip,OF8h ; fixed disk? 
je fixec:Ldisk ; yes, display message 
@DisStr RemovableMedia_Msg 
jmp short media_size 

fixed_disk: 
@DisStr FixedMedia_Msg 

media_size: 
cmp 
je 
mov 
@DisNum 
cmp 
je 
@DisChr 

word ptr Mbytes,O 
show_ki lobytes 
ax,word ptr Mbytes 
ax,10,1,0 
word ptr Mbytes2,0 
done_mbytes 

' ' 

mov ax,word ptr Mbytes2 
@DisNum ax,10,1,0 

done_mbytes: 
@DisChr 'M' 
jmp short done_media 

show_ki lobytes: 
mov ax,word ptr Kbytes 
@DisNum ax,10,1,0 
@DisChr 'K' 

done_media: 

; 

@DisStr Media_Msg 
@Newline 

@DisStr Cylinders_Msg 

cmp word ptr Cylinders,O 
jne show_cyl 

; else, it's removable 
; and now do KB/MB size 

; display fixed media msg 

; show megabytes? 
; no, kilobytes instead 
; yes, get megabytes 
; output unsigned dee. # 

; is there a fraction? 
; no, we're done 
; else, display decimal 
; . . . point 
; get megabytes fraction 
; output unsigned dee. # 

; display meg. symbol 
; and we're done 

; get kilobytes value 
; output unsigned dee. # 

; display kilobytes 
; symbol 

; and display end of msg 

; display total 
; cylinders (tracks) 
; was there an error? 
; no, display total 
; cylinders 

@DisChr '?' ; else, display unknown 
continued 

595 



Recovery 

596 

Listing 11-1. continued 

jmp 
show_cyl: 

short encLcyl ; and end 

end_cyl: 

; 

; 

; 

; 

mov ax,word ptr Cylinders ; get value 
@DisNum ax,10,1,0 ; and display it 

@Newline 

@DisStr Heads_Msg ; display number of heads 
mov ax,word ptr es:[diJ.Heads 
@DisNum ax,10,1,0 ; 
@Newline 

; get word value 
output unsigned dee. # 

@DisStr TrackSectors_Msg ; display #of sectors 
; ••• per track 

mov ax,word ptr es:[diJ.TrackSectors; get word value 
@DisNum ax,10,1,0 ; output unsigned dee. # 
@Newline 

@DisStr SectorBytes_Msg ; disp. bytes per sector 
mov ax,word ptr es:[di].SectorBytes ; get word value 
@DisNum ax,10,1,0 ; output unsigned de~. # 
@Newline 

@DisStr HiddenSectors_Msg ; display number of 

mov 
@DisNum 
cmp 

; ••• hidden sectors 
ax,word ptr es:[diJ.HiddenSectors ; get word val. 
ax,10,1,0 ; output unsigned dee. # 
word ptr es:[di].HiddenSectors,O ; are there any 

; ••• hidden sectors? 
je hidden._done ; no, we're done 

; else, indicate @DisStr Partitionlnfo_Msg 
; ••. partition info. 

hidden_done: 
@Newline 

; 
@DisStr TotalSectors_Msg ; display total disk 

; ••• sectors 
mov ax,word ptr es:[diJ.TotalSectors; get word value 
@DisNum ax,10,1,0 ; output unsigned dee. # 
@Newline 

; 
@DisStr TotalBytes_Msg ; display total bytes of 

; disk 
mov ax,word ptr TotalBytes ; get 2-word value and 



; 

; 

; 

; 

; 

; 

; 

11 - Disk Layout and File Recovery 

mov dx,word ptr TotalBytes.2 ; put it into AX and DX 
call bin2dec2 ; and display result from 

; ••• DX:AX 
@Newline 

@DisStr ReservedSec_Msg ; display number of 
; .•. reserved sectors 

mov ax,word ptr es:[diJ.ReservedSec ; get word value 
@DisNum ax,10,1,0 ; output unsigned dee. # 
@Newline 

@DisStr FATsectors_Msg ; display number of 

mov 
@DisNum 
@Newline 

; .•• sectors in 1 FAT 
ax,word ptr es:[diJ.FATsectors ; get word value 
ax,10,1,0 ; output unsigned dee. # 

@DisStr FATcopies_Msg ; display number of 
; • • • FAT copies 

xor ah,ah 
mov al,byte ptr 
@DisNum ax,10,1,0 
@Newline 

; clear out AH 
es:[di].FATcopies ; get byte value 

; output unsigned dee. # 

@DisStr TotalFATsectors_Msg ; display total sectors 
; •.• for all FATS 

mov ax,word ptr TotalFATSec ; get word value 
@DisNum ax,10,1,0 ; output unsigned dee. # 

@Newline 

@DisStr DirEntries_Msg ; display number of root 

mov 
@DisNum 
@Newline 

@DisStr 

mov 
@DisNum 
@Newline 

@DisStr 

mov 
@DisNum 

; ••• directory entries 
ax,word ptr es:[di].DirEntries ; get word value 
ax,10,1,0 ; output unsigned dee. # 

DirSectors_Msg ; display total root 
; ... directory sectors 

ax,word ptr DirSectors ; get word value 
ax,10,1,0 ; output unsigned dee. # 

DataSectors_Msg ; display total data 
; ... sectors 

ax,word ptr DataSectors ; get word value 
ax,10,1,0 ; output unsigned dee. # 

continued 

597 



Recovery 

598 

; 

; 

; 

; 

Listing 11-1. continued 

@Newline 

@DisStr ClusterSectors_Msg ; display number of 
; ..• sectors per cluster 

xor ah,ah ; clear out AH 
mov al,byte ptr es:[diJ.ClusterSec ; get byte value 
@DisNum ax,10,1,0 ; output unsigned dee. # 

@Newline 

@DisStr ClusterBytes_Msg ; display bytes per 
; • - - cluster 

mov ax,word ptr ClusterBytes ; get word value 
@DisNum ax,10,1,0 ; output unsigned dee. # 
@Newline 

@DisStr Totalclusters_Msg ; display total clusters 
mov ax,word ptr TotalClusters ; get word value 
@DisNum ax,10,1,0 ; output unsigned dee. # 

@Newline 

@DisStr FATentrySize_Msg ; display size of each 
; ••• FAT entry 

xor ah,ah ; clear out AH 
mov al,byte ptr FATentryBits ; get byte value 
@DisNum ax,10,1,0 ; output unsigned dee. # 

@DisStr Bits_Msg ; indicate that value is 
; .•• in bits 

cmp byte ptr FATentryBits,12 ; find out how many 
; ••• bytes there are 

jg dis_two_bytes 
@DisStr SmallFAT_Msg ; FAT entry= 1.5 bytes 
jmp short show_fat_done 

dis_two_bytes: 
@DisStr largeFAT_Msg 

show_faLdone: 
@Newline 

; 
@DisStr DataBytes_Msg 

mov ax,word ptr DataBytes 
mov dx,word ptr DataBytes.2 
call bin2dec2 
@Newline 

; 

; FAT entry = 2 bytes 

; display total data 
; bytes of disk 
; get 2-word value & put 
; it into AX and DX 
; and display it 



11 - Disk Layout and File Recovery 

push es ; save current ES 
mov ax,word ptr BootSeg ; get seg. address of 

; allocated block 
mov es,ax ; and assign ES to it 
ca LL memfree ; dea L Locate block 
pop es ; restore ES 

; 
terminate: 

@Exi tToDOS ; terminate program 
; 

;**************************************************************** 
; End of program 

;**************************************************************** 
main ENDP ; end of main process 
; 

;**************************************************************** 
; Start of routines 

;**************************************************************** 
; 
;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

; MEM-ERR-HANDLER: Memory allocation/deallocation/resize error 
; handler. 
; ENTRY: AX = error code 
; BX = maximum memory block available 
; Cif error code 8) 
; ES = segment address of a L Located block 
; (if error code 9) 
; 
; EXIT: None Call registers are restored). 
; 
; CALLED ROUTINES: None. 
;----------------------------------------------------------------
mem_err_handler PROC NEAR 
; 

cmp ax,7 ; trashed memory control 
; blocks? 

jne mem_error8 ; no, continue checking 
.DATA 
TrashedMemErr_Msg db 

db 
"Memory allocation failure: memory" 
"control blocks destroyed.",CR,LF,"$" 

.CODE 

; 

@DisStr TrashedMemErr_Msg 
ret 

mem_error8: 
cmp ax,8 

; yes, exit with message 
; return 

; insufficient memory? 
continued 

599 



Recovery 

600 

Listing 11-1. continued 

jne mem.._error9 ; no, continue checking 
.DATA 
InsuffMemErr_Msg db "Memory allocation failure:" 

db "insufficient memory",CR,LF 
db "Largest block of memory available=$" 

.CODE 
@DisStr InsuffMemErr_Msg ; yes, exit with message 
@DisNum bx,10,1,0 ; ... is avai Lable 
@Newline ; display blank Line 
ret ; return 

; 
mem.._error9: 

cmp ax,9 ; invalid memory block 
; address? 

jne mem.._err _unknown ; no, unknown cause 
.DATA 
IncorrSegAddr_Msg db "Incorrect segment address for " 

db "resize/deallocation.",CR,LF 
db "Segment address $" 

.CODE 
@DisStr IncorrSegAddr_Msg ; display error message 
@DisNum es,16,4 ; display seg. address 
@NewL i ne 
ret 

; 
mem.._err_unknown: 
.DATA 

; 
; 

display blank 
return 

UnknownMemErr_Msg db "Unknown memory allocation/resize/" 
db "deallocation error.",CR,LF,"$" 

.CODE 

Line 

@DisStr UnknownMemErr_Msg 
ret 

; display message 

; 
mem.._err_handler ENDP 
; 
;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

; MEMALLOC: Allocates a block of memory of the specified size 
; in paragraphs (16 bytes). 
; 
; ENTRY: 
; 
; 
; EXIT: 
; 

BX = size, in 16-byte paragraphs, 
of requested block 

SUCCESS if Carry flag = 0, with 
AX = segment address of allocated 



11 - Disk Layout and File Recovery 

; memory block 
; <BX is restored) 
; 
; FAILURE if Carry flag = 1, with 
; AX error code 
; 7 = memory control blocks 
; destroyed 
; 8 = insufficient memory 
; BX Largest memory block available 
; in paragraphs 
; 
; CALLED ROUTINES: None. 
;----------------------------------------------------------------
mema L Loe PROC NEAR 
; 

push bp ; save base pointer 
push bx ; save BX 
mov bp,sp ; initialize base pointer 

; 
xor al,al ; clear out AL 
mov ah,48h ; Load allocate memory function 
@Dos Ca LL ; execute memory allocation 
jnc end_mema L Loe ; exit if no error with 

; ... seg. address in AX 
; else, exit with carry flag set, 

mov word ptr [bpJ,bx ; max. size block (BX), 

; 
end_mema L Loe: 

pop 
pop 
ret 

mema L Loe 
; 
; 

bx 
bp 

ENDP 

; and error code in AX 

; restore BX 
; restore base pointer 

;;+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

; MEMFREE: Deallocates a block of memory previously allocated by 
; the MALLOC routine. 
; 
; ENTRY: 
; 
; EXIT: 
; 
; 
; 
; 

ES = segment address of allocated memory block 

SUCCESS if Carry f Lag = 0 
(ES is restored) 

FAILURE if Carry flag = 1, with 
AX = error code 

continued 

601 



Recovery 

602 

; 
; 
; 
; 
; 
; CALLED ROUTINES: 

Listing 11-1. continued 

7 = Memory control blocks 
destroyed 

9 = Invalid address 
(ES is restored) 

None. 
;----------------------------------------------------------------
memfree PROC 
; 

push 
push 
push 
mov 

; 
xor 
mov 
@DosCall 

NEAR 

bp 
es 
ax 
bp,sp 

al,al 
ah,49h 

; save base pointer 

; save AX 
; initialize base pointer 

; clear out AL 
; Load deallocate mem. function 
; execute memory deallocation 

jnc enc:Lmemfree ; exit if no error 
; else, exit with carry flag set, 

mov word ptr [bpJ,ax ; and error code (AX) 
; 
end_memfree: 

pop 
pop 
pop 
ret 

; 
memfree ENDP 
; 
; 

ax 
es 
bp 

; restore AX 

; restore base pointer 

;**************************************************************** 
; End of routines 

;**************************************************************** 
; 
.DATA ; switch to data segment 

;**************************************************************** 
; Start of data storage 

;**************************************************************** 
; 
; Variables: 
; 
DiskDrive db 0 ; disk drive to operate on 

; (initial value=default drive) 
;----------------------------------------------------------------



11 - Disk Layout and File Recovery 

; Rest of (calculated) 
Cylinders dw ? 
TotaLBytes dd ? 
TotalFATSec dw ? 
DirEntBytes 
DirSectors 
DataSectors 
ClusterBytes 
Total Clusters 
FATentryBits 
DataBytes 
Kbytes 
Mbytes 
Mbytes2 
; 

dw 32 
dw ? 
dw ? 
dw ? 
dw ? 
db 12 
dd ? 
dw ? 
dw 0 
dw 0 

disk format parameter variables: 
; total cylinders 
; total disk capacity in bytes 
; total FAT sectors Call copies) 
; number of bytes in a directory entry 
; sectors occupied by root directory 
; total data sectors for fi Le storage 
; bytes per cluster 
; total clusters 
; number of bits in a FAT entry 
; total data bytes (for fi Le storage) 
; total kilobytes (all of disk) 
; total megabytes Call of disk) 
; and total megabytes fraction 

;----------------------------------------------------------------
; Text messages: 
; 
StartLMsg db "MS-DOS Disk Format Identifier " 

db "--Version 1.00",CR,LF,"$" 
Start2_Msg db "BPB = Value extracted from boot record; " 

db "CAL = Calculated value",CR,LF,CR,LF 
db "Format information for drive $" 

; 
OEM_Msg db "BPB: Formatted by: $" 
SectorBytes_Msg db "BPB: Bytes per sector: $" 
ClusterSectors_Msg db "BPB: Sectors per cluster: $" 
ReservedSec_Msg db "BPB: Reserved sectors: $" 
FATcopies_Msg db "BPB: FAT copies: $" 
DirEntries_Msg db "BPB: Root dir. entries: $" 
TotaLSectors_Msg db "BPB: Total disk sectors: $" 
MediaDescrip_Msg db "BPB: Media descriptor: $" 
FATsectors_Msg db "BPB: FAT sectors (1 FAT>: $" 
TrackSectors_Msg db "BPB: Sectors per cylinder: $" 
Heads_Msg db "BPB: Heads: $" 
HiddenSectors_Msg db "BPB: Hidden sectors: $" 
; 
TotaLFATsectors_Msg db "Ca L: Tota L FAT sectors: $" 
DirSectors_Msg db "Ca L: Directory sectors: $" 
TotaLBytes_Msg db "Cal: Total disk bytes: $" 
Cy Li nders_Msg db "Ca L: Tota L cylinders: $" 
DataSectors_Msg db "Ca L: Total data sectors: $" 
Totalclusters_Msg db "Cal: Total clusters: $" 
ClusterBytes_Msg db "Cal: Bytes per cluster: $" 
FATentrySize_Msg db "Ca L : FAT entry size: $" 
DataBytes_Msg db "Cal: Total data bytes: $" 

continued 

603 



Recovery 

604 

; 
FixedMedia_Msg 
RemovableMedia_Msg 
Media_Msg 
Bi ts_Msg 
Bytes_Msg 
SmallFALMsg 
LargeFALMsg 
CurrPartition_Msg 
Partitionlnfo_Msg 
; 

Listing 11-1. continued 

db " (fixed $" 
db " (removable $" 
db " media)$" 
db " bits$" 
db " bytes$" 
db " (1.5 bytes)$" 
db " (2 bytes)$" 
db " (within current partition)$" 
db " (partitioning information)$" 

;----------------------------------------------------------------
; Error messages: 
NonDOSerr_Msg db 

db 
BadDrive_Msg db 

db 
ReadError_Msg db 

"Disk could not be read." 

"Probable non-DOS disk.",CR,LF,"$" 
"Syntax error or the drive specified is " 
"not allowed.",CR,LF,"$" 
"General error in reading disk." 

db CR, LF, "$" 

UnknownErr_Msg db "Unknown error terminating.",CR,LF,"$" 
; 
; 

;**************************************************************** 
; End of data storage 

;**************************************************************** 
END main ; end of program 

Hard Disk Partition Tables 
With the introduction of support for hard, or "fixed," disks under MS-DOS ver
sion 2.00, a new item was added to a disk's formatting information: the disk par
tition table. The disk partition table is used to describe how a disk is divided 
into sections, and is almost always used only on fixed (nonremovable) hard disks 
with capacities of 10 megabytes or more. The disk partition table consists of 16 
bytes of information starting at offset OlBE hex in the boot record (first sector 
of the disk). The layout of the disk partition table is shown in Table 11-2. 

When the hard disk is partitioned into one or more partitions with the 
FDISK command, a new boot record with partition table is stored in the first 
sector of each partition. Thus, a disk with one partition contains a master parti
tion table (in the boot record stored in the very first sector of the disk) and a 
second partition table in its boot record stored in the first sector of the partition 
itself. Additional partitions also contain their own boot record and partition 
table. The master partition table is updated each time FDISK is used to change 
partitions, and the partition status field of each individual partition is updated 
to reflect its active/inactive state. 



11 - Disk Layout and File Recovery 

Table 11-2. Disk Partition Table Layout 

Offset 
(dee) 

0 

1 
2 

4 

5 
6 

8 
12 

M 
s 
B 

(hex) Size Name Contents 

00 1 byte Partition status 0 =Inactive 
80h = Bootable, active 

01 1 byte Starting head Integer 

02 1 word Starting sector See note* 
and cylinder 

04 1 byte Partition type** 1 = DOS with 12-bit 
FAT 
4 = DOS with 16-bit 
FAT 
5 = Extended DOS*** 

05 1 byte 
06 1 word 

08 2 words 
oc 2 words 

Ending head 
Ending sector 
and cylinder 
Starting absolute sector 
Number of sectors 

Integer 
See note* 

Integer**** 
Integer**** 

*The partition table begins at offset OIBE hex in the initial boot record (1st absolute sector 
of the hard disk). The partition table contains the starting head, cylinder, and sector 
number of the boot record of the active partition. 

**Additional partition types are used by some manufacturers to identify their system or to 
identify large-capacity disks divided into several logical drives. 

***The extended DOS partition is supported only under MS-DOS versions 3.30 and above. 
****Cylinder and sector are stored in bit-position-coded notation, as applied to the starting 

and ending cylinder and sector. 

M 
s 
B 

L 
s 
B 

The two most significant bits of byte n precede the 8 bits of byte n+ 1 to form the 10-bit cylinder 
number. The 6 least-significant bits of byte n form the sector number. 

L 
s 
B 

Although the FAT sectors are next in the sequence of sectors on the disk, 
we're going to skip them and instead talk about the directory sectors. You must 
understand the contents of the directory sectors in order to understand what is 
stored on the rest of the disk. 

The Directory Sectors 
The directory sectors store the directory information for all files in the root di
rectory of the disk. The information for files contained in subdirectories is 
stored in the subdirectory file, the entry for which is stored in its parent direc
tory (root or other subdirectory). When you issue the DIR command, the infor
mation is obtained from the directory sectors if reading from the root directory 
or is obtained from the subdirectory file describing the current subdirectory. 
Because a sector is usually 512 bytes long, we can easily deduce that each direc
tory entry is 32 bytes long. The total number of root directory entries depends 

605 



Recovery 

606 

on how many directory sectors are defined. For example, single-sided floppy 
disks have a total of 64 root directory entries, whereas double-sided, 40-track 
disks have a total of 112, and double-sided, 80-track, 5-¥4-inch disks have a total 
of 224. In most hard disks, the total number of directory entries depends on how 
the disk is formatted: each hard disk partition will have a maximum number of 
root directory entries according to the partition's size. The total number of root 
directory entries determines the maximum number of files that can be stored in 
the root directory. This restriction, however, does not exist for subdirectories. 
Because the directory entries that correspond to files stored in subdirectories 
are themselves stored in the su,bdirectory description file, there is no limit to 
the number of files stored in a subdirectory; the subdirectory description file 
can continue to grow as needed. 

The information contained in a directory entry is divided into six compo
nents, four of which are directly or indirectly relevant to recovering erased files. 
Figure 11-4 shows the components of a directory entry, the length of each com
ponent, and how each is defined. 

xx 
0 

xx xx xx xx xx xx xx xx xx xx xx 
1 2 3 4 5 6 7 8 9 10 11 

I \ 
File Status or 

First Character 
of File Name 

~-------(10 bytes) ---------i~i----(4 bytes) 
Reserved by MS-DOS Time/Date Sta~mp. 

r Time--t--Date 

xx xx xx xx xx xx xx xx xx xx xx xx xx xx 
12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Starting Cluster File Size 
J-(2 bytes)--+----(4 bytes) f 

xx xx 
26 27 

xx xx xx xx 
28 29 30 31 

Figure 11-4. Components of a directory entry. 

The four parts of a directory entry with which we need to be concerned, as 
shown in Figure 11-4, are the file name and type, the attribute(s), the starting 
cluster, and the file size. 

File Name, File Type, and File Status 
The file name and type consist of 11 bytes, representing the name of the file to 
which the directory entry corresponds. Each byte contains an ASCII character. 



11 - Disk LaljOUt and File Recovery 

In MS-DOS versions 2.0 and above, the file name in a directory entry always re
fers to a file in the root directory. Because subdirectory names are treated as 
files by MS-DOS, they also have their own entries in the directory sectors. A 
subdirectory name, however, contains information in its directory entry that is 
slightly different from normal files. We'll cover these differences in later sec
tions of this chapter. 

Note also that under MS-DOS versions 2.0 and above, the maximum num
ber of files or directory entries that a floppy disk can accommodate (64, 112, and 
224) corresponds only to the root directory. Because all files stored in a sub
directory have directory entries in the subdirectory "file" itself, there is effec
tively no limit to the number of files that can be stored on a disk within the space 
provided by the particular type of disk and format. We'll talk about subdirecto
ries and file recovery in more detail later in this chapter. 

When a file is erased, two things happen to the disk. The first item affected 
is the first character of the file name in the directory entry. As shown in Figure 
11-4, the first byte in a directory entry can either indicate the file's status or re
present the first ASCII character of the file's name. If a directory entry has not 
been used since the disk was last formatted, this first byte is always set to 00. In 
this way, MS-DOS needs to read only the first byte of a directory entry to deter
mine whether it can be used. When a file is created, the first byte is changed to 
represent the first character of the file's name. When the file is later erased, the 
first byte is changed to a hexadecimal value of E5. The rest of the information in 
the erased file's directory entry is left intact. When you examine the disk's sec
tors for the information on the erased file's directory entry, this value is your 
first clue that the desired directory entry has been found. 

The second clue, of course, is the presentation of the rest of the file's name 
and type in ASCII format. But the first character of hex value E5 tells you that 
the directory entry represents an erased file. The byte is set to this value so that 
MS-DOS knows that the directory entry is free to be overwritten with new file 
information should the space be needed. Thankfully, the designers of MS-DOS 
saw fit to implement file deletion in this manner. Because they did, we are able 
(most of the time) to restore a file that has just been erased. 

Attribute 
The attribute byte contains information about the file's storage attributes. At
tributes indicate how MS-DOS treats the file. Table 11-3 shows the definitions of 
each attribute and the respective hexadecimal values that can be stored in the 
attribute byte. Each bit in the byte defines a specific attribute and is set to 1 
when the attribute is assigned to the file. 

Notice that a file can have more than one attribute. For example, if a file is 
assigned the read-only (hex 01) and hidden (hex 02) attributes, the resulting 
value in the attribute byte is the sum of both attribute values-hex 03. Informa
tion contained in the attribute byte may or may not be useful when recovering a 
file. For example, it's unlikely that we'd try to recover a file assigned the read
only attribute, unless we were trying to recover a damaged disk. Normally, we 
wouldn't care what the file's attributes are. However, if we're recovering a file 
with the hidden attribute assigned to it, we would want to change the attribute 

607 



Recovery 

608 

Table 11-3. File Attribute Definitions 

Bit Hex Value Attribute 

1st 
2nd 
3rd 

4th 

5th 

6th 

7th 
8th 

80 
40 

20 

10 

08 

04 

02 
01 

Not defined (in MS-DOS version 3.0 and below) 
Not defined (in MS-DOS version 3.0 and below) 
Archive status: Set when the file has been opened and closed and is 
used by some hard disk backup and restore utilities 
Subdirectory entry: Indicates that the directory entry pertains to a 
subdirectory "file" 
Volume label: Indicates that the directory entry contains a volume 
label (DOS 2.0 and above only); rest of entry contains no useful 
information 
System status: Used to indicate system files, such as those used for 
booting the system. The MS-DOS boot files (e.g., IBMDOS.COM 
and IBMBIO.COM) must have this attribute set. 
Hidden status: File is excluded from normal directory searches 
Read-only status: File cannot be erased 

because otherwise we wouldn't be able to see the file listed when we used the 
DIR command to verify that the file was recovered. Another reason we may 
want to reference the file's attribute byte is if we try to recover a subdirectory 
name. 

Starting Cluster 
A starting cluster is a 2-byte, 16-digit binary number that represents the first 
section of the disk occupied by the file. This section of the disk is referred to as a 
cluster. Although Figure 11-1 portrayed a formatted disk in terms of tracks and 
sectors, MS-DOS actually views the disk in terms of clusters of sectors rather 
than individual sectors. The starting cluster is the initial "pointer" to the file's 
first data sector as well as to subsequent pointers in the FAT sectors. Having 
read this initial pointer in the directory entry, MS-DOS proceeds to read the 
rest of the pointers to the file's data sectors in the FAT sectors. We talk about 
FAT sectors next, but for now note that referencing the starting cluster is one of 
the most important first stages in the restoration of an erased or damaged file. 

File Size 
A file's size is represented by a 4-byte binary number, the first byte of which 
represents the least significant part of the file's size. The fourth byte is the most 
significant part of the file size, and we use that value to determine the exact 
length of a file and thus determine the number of sectors that an erased file oc
cupies or is supposed to occupy. 

Now that the essential portions of the directory entry have been defined, 
we move on to the FAT sectors. The information in these sectors provides addi
tional clues about how an erased or damaged file can be recovered. 

The "." and " .. " Directory Entries 
The directory information just described is valid for all files stored under MS-



11 - Disk Layout and File Recovery 

DOS, with the exception of two special types of directory entries: the"." and" .. " 
directory entries found in all subdirectories. The"." directory entry contains in
formation for the current subdirectory, and the " .. " entry contains information 
on the parent directory of the current directory. Table 11-4 describes the con
tents of each field of the directory entries for the"." and" .. " directories. 

Field 

Name/type 
Attribute 
Time 
Date 
Starting cluster 
Size 

Field 

Name/type 
Attribute 
Time 
Date 
Starting cluster 

Size 

Table 11-4. Contents of the"." and" .. " 
Directory Entries 

"."(Current) Directory 

Contents 

1st byte = 2E hex; the rest = 00 
Directory status only (10 hex) 
Time created 
Date created 
Cluster number of current directory 
Blank (size is in parent's directory entry for this directory) 

" .. "(Parent) Directory 

Contents 

1st and 2nd bytes = 2E hex; the rest = 00 
Directory status only (10 hex) 
Time created 
Date created 
Cluster number of parent directory, only if parent is not the 
root directory 
Blank 

File Allocation Table (FAT) Sectors 
The sectors containing the FAT are used by MS-DOS to determine the locations 
on the disk of each part of every file. Unlike some operating systems that always 
store files consecutively and utilize sectors in a contiguous manner, MS-DOS is 
capable of storing files and parts of each file in a random manner. A system that 
always stores files contiguously keeps track of files more easily and can thus ac
cess the files more quickly. To recover a file that is stored contiguously, we need 
only locate the beginning and end of the file. All the data in-between pertains to 
the file. 

But contiguous file storage is less efficient when a file stored between sev
eral files is deleted and replaced by a larger file. For ifthe free space made avail
able by the deleted file is not large enough to accommodate the new file, 
sufficient contiguous space for the new file must be allocated toward the end of 
the string of files. If the disk doesn't contain sufficient space for the file, the disk 
is considered full. This can pose a real problem when using floppy disks with 
fairly low storage capacity because a lot of storage space can go to waste. 

609 



Recovery 

610 

MS-DOS and similar disk-based microcomputer operating systems were de
signed to allow random storage as well as contiguous or sequential storage. The 
information in the FAT sectors permits MS-DOS to accomplish this feat. 

When a disk is first formatted under MS-DOS and several files are copied 
to that disk, information stored in the FAT sectors is used by MS-DOS to deter
mine the location of each part of a file. Files are referenced by the FAT in terms 
of clusters. A file always occupies at least one cluster and, if it is large enough, is 
divided into several clusters. A cluster is really a section of allocation and con
sists of one data sector in single-sided floppy disks and two data sectors in dou
ble-sided floppy disks. Some hard disks use clusters that each consist of as many 
as eight sectors. The entire data storage area of a disk (except for the boot, FAT, 
and directory sectors) is divided equally into clusters, and the entire range of 
clusters is mapped out by the FAT. Figures 11-5 and 11-6 show how single- and 
double-sided, 40-track floppy disks, in both the 8- and 9-sector formats, are 
mapped in terms of clusters. Figure 11-7 shows how the 80-track, high-capacity 
floppy disk is mapped out. 

8-SECTOR-PER-TRACK FORMAT 9-SECTOR-PER-TRACK FORMAT 

ls: r 

1 
2 
3 
4 
5 
6 
7 
8 

0 2 39 ~ r 0 1 

Boot 3 11 1 Boot 2 
FAT 1 4 12 2 FAT 1 3 
FAT 2 5 13 309 3 FAT 1 4 
Dir 6 14 310 4 FAT 2 5 
Dir 7 15 311 5 FAT 2 6 
Dir 8 16 312 6 Dir 7 
Dir 9 313 7 Dir 8 
2 10 314 8 Dir 9 

9 Dir 10 

Figure 11-5. Cluster numbers in single-sided, 
40-track floppy disks. 

2 ... 
11 ... 
12 ... 
13 ... 
14 ... 
15 ... 
16 ... 
17 ... 

... 

... 

39 

346 
347 
348 
349 
350 
351 
352 

Notice that in the previous three figures the FAT sectors are either num
bered one or two. They're shown this way because the designers of the MS-DOS 
file system reserved twice as many FAT sectors as are actually necessary to map 
out the disk. A possible reason for this design was to allow room for the FAT to 
grow with larger-capacity floppy disks. In versions of MS-DOS up to 3.3, 
however, the extra set of sectors is used to store an exact copy of the first set of 
FAT sectors. Having redundant sets of the FAT can prove to be convenient if the 
first set is damaged for some reason. Repairing a damaged FAT can be very te
dious and complicated. When recovering files, however, you normally need to 
reference only the first FAT. 

Each cluster on the disk has a corresponding FAT entry. The FAT entry 
that corresponds to the first cluster of a file contains the number of the next 
cluster occupied by that file. By looking in the FAT entry corresponding to this 
"next" cluster, we find either that the end of the file has been reached or that the 
entry contains the number of yet another cluster occupied by the file. Thus, the 



11 - Disk Layout and File Recovery 

8-SECTOR-PER-TRACK FORMAT 

r.:s: r 0 1 2 ... 39 

1 Boot 5 13 ... 
2 FAT 1 

SIDE 
3 FAT 2 6 14 ... 
4 Dir 

0 5 Dir 7 15 311 ... 
6 Dir 
7 Dir 8 16 ... 312 
8 Dir --
1 Dir 9 17 ... 313 

Start of 2 Dir 

Data Sectors 3 2 10 18 ... 314 

SIDE 
4 

1 5 3 11 19 ... 315 
6 
7 4 12 ... 316 End 
8 

9-SECTOR-PER-TRACK FORMAT 

ts: r 0 1 2 ... 39 

1 Boot 5 14 ... 
2 FAT 1 
3 FAT 1 6 15 ... 

SIDE 
4 FAT 2 

0 
5 FAT 2 7 16 ... 349 
6 Dir 
7 Dir 8 17 ... 350 
8 Dir 
9 Dir 9 18 ... 351 --
1 Dir 
2 Dir 10 19 ... 352 

Start of 
Data Sectors 

3 Dir 
4 2 11 20 ... 353 

SIDE 
5 

1 
6 3 12 ... 354 
7 
8 4 13 ... 355 End 
9 

Figure 11-6. Cluster numbers in double-sided, 
40-track floppy disks. 

FAT entries effectively contain pointers both to the clusters occupied by the file 
and to subsequent FAT entries that correspond to additional clusters occupied 
by the file. Because the total number of entries in the FAT sectors exceeds the 
total number of clusters on the disk, the entire disk can be easily mapped even 
when it has reached maximum storage capacity. In Figures 11-5, 11-6, and 11-7, 
the numbering of clusters begins with 2. This is because clusters are numbered 
the same as FAT entries (to allow for quick indexing into the FAT), and FAT en
tries 0 and 1 are used for other purposes. To make up for the reserved FAT 

611 



Recovery 

15-SECTOR-PER· TRACK FORMAT 

~ r 0 1 2 ... 79 

1 Boot 3 33 ... 
2 FAT 1 4 34 ... 
3 FAT 1 5 35 ... 1166 
4 FAT 1 6 36 ... 1167 
5 FAT 1 7 37 ... 1168 
6 FAT 1 8 38 ... 1169 

SIDE 7 FAT 1 9 39 ... 1170 

0 8 FAT 1 10 40 ... 1171 
9 FAT 2 11 ... 1172 

10 FAT 2 12 ... 1173 
11 FAT 2 13 ... 1174 
12 FAT 2 14 ... 1175 
13 FAT 2 15 ... 1176 
14 FAT 2 16 ... 1177 
15 FAT 2 17 ... 1178 --
1 Dir 18 ... 1179 
2 Dir 19 ... 1180 
3 Dir 20 ... 1181 
4 Dir 21 ... 1182 
5 Dir 22 ... 1183 
6 Dir 23 ... 1184 

SIDE 7 Dir 24 ... 1185 

1 8 Dir 25 ... 1186 
9 Dir 26 ... 1187 

10 Dir 27 ... 1188 
11 Dir 28 ... 1189 
12 Dir 29 ... 1190 
13 Dir 30 ... 1191 
14 Dir 31 ... 1192 

--t-----15 2 32 ... 1193 Start of 
Data Sectors 

Figure 11-7. Cluster numbers in double-sided, 
80-track floppy disks. 

entries, the clusters are numbered from 2 to the number of the last FAT entry. 
The number of clusters on a disk is thus equal to the number of the last FAT en
try minus 1. Because the boot, FAT, and directory sectors do not have cluster 
numbers, cluster 2 contains the first data sector(s) on the disk. The example in 
Figure 11-8 illustrates how FAT entries can be referenced. 

Decoding the FAT Entries 

612 

The value in FAT entry 0 always indicates the format of the disk. Entry 1 is al
ways set to (F)FFF to act as a barrier or filler between entry 0 and entry 2. 
Table 11-5 shows the different values for each format supported under MS-DOS 
versions 1.0 through 3.3. 

All subsequent FAT entries are used for mapping the disk. Each of these 
entries contains one of four types of information: 

• The next cluster number of a file 

• The end-of-file marker 



11 - Disk Layout and File Recovery 

• An unused cluster 

• A cluster that is marked as reserved or bad 

Table 11-6 lists the values that can exist in FAT entries. 

Directory Entry for File 1 
Starting cluster number 
points to FAT Entry 2 
(1st part of file is in cluster 2) 

FFF 

003 

004 

008 

006 

007 

d FFF 

s I 009 

010 

111 000 

121 000 

131 000 

Directory Entry for File 2 
Starting cluster number 
points to FAT Entry 5 
(1st part of file is in cluster 5) 

Double-sided, 9-sector-per-track floppy disk 

(Filler) 

Next part of File 1 points to Entry/Cluster 3 

Next part of File 1 points to Entry/Cluster 4 

Next part of File 1 points to Entry/Cluster 8 

Next part of File 2 points to Entry/Cluster 6 

Next part of File 2 points to Entry/Cluster 7 

End of File 2 

Next part of File 1 points to Entry/Cluster 9 

Next part of File 1 points to Entry/Cluster 10 

End of File 1 

Not used - Allocated as Free Space 

Not used - Allocated as Free Space 

Not used - Allocated as Free Space 

Figure 11-8. Sample FAT. 

613 



Recovery 

614 

Table 11-5. Disk Type Values in FAT Entry 0 

At Entry 0 (hex value) 

(F)FFO 

(F)FF8 

(F)FF9 

(F)FFC 

(F)FFD* 

(F)FFE* 

(F)FFF 

Type of Disk and Format 

3¥2-inch, 1.44-Mbyte diskette (MS-DOS 3.30 and above) 
or 
Other nondefined format (MS-DOS 3.30 and above 
Fixed disk (IBM PC, XT, and AT hard disks with MS-DOS 
2.0 and above) 
Removable media. Normally represents: 5114-inch, 1.2-
Mbyte, high-capacity floppy diskette format (MS-DOS 3.0 
and above) 
or 
3¥2-inch, 720-Kbyte diskette format (MS-DOS 3.20 and 
above) 
Removable media. Normally represents: 5114-inch, 180-
Kbyte floppy diskette (MS-DOS 2.00 and above) 
Removable media. Normally represents: 5114-inch, 360-
Kbyte floppy diskette (MS-DOS 2.00 and above) 
or 
8-inch, 501-Kbyte (double-sided, single-density) floppy disk 
Removable media. Normally represents: 5114-inch, 160-
Kbyte floppy diskette (MS-DOS 1.00 and above) 
or 
8-inch, 250-Kyte (single-sided, single-density) floppy disk 
or 
8-inch, 1.232-Mbyte (double-sided, double-density) floppy 
disk 
Removable media. Normally represents: 5114-inch, 320-
Kbyte floppy diskette (MS-DOS 1.10 and above) 

*Note: Some implementations of MS-DOS support 8-inch, soft-sectored floppy disks. Although 
custom device drivers must be written for the particular type of 8-inch disk drives used in the 
system, "generic" MS-DOS supports four 8-inch disk formats: two single-sided, single-density 
(128 bytes per sector) formats; one double-sided, single-density format; and one double-sided, 
double density (1,024 bytes per sector) format. The only difference between the two single
sided, single-density formats is that one has a single reserved sector for the boot record and the 
other has four sectors. The disk format definition value in FAT entry 0 for both the single
density format with one reserved sector and the double-density format is FFE (hex). For the 
single-density format with four reserved sectors, the value is FFD. Sharing the same value 
with 5V.-inch disks is no problem because MS-DOS, through its device driver, knows when it is 
accessing 8-inch disks. However, in order for MS-DOS to distinguish 8-inch formats when it 
encounters FFE in FAT entry 0, it first reads the disk assuming it is single density and 
subsequently tries to read the single-density address mark in the first sector. If no error 
occurs, it continues reading the disk knowing that it is in single-density format. If an error 
occurs, MS-DOS assumes that the disk is formatted to double density and, expecting a double
density format, returns to the beginning to read the data. If your system is equipped with 
8-inch floppy disk drives, the MS-DOS manual accompanying your particular MS-DOS 
implementation should have the necessary technical information about 8-inch disk formats. 

As shown in Tables 11-5 and 11-6, all FAT entries contain either a three- or 
a four-digit hexadecimal number. This means that a FAT entry contains either a 
12-bit or a 16-bit value. All disks containing 4,085 or fewer clusters (most floppy 
disks and other removable media) use 12-bit FAT entries, whereas all disks hav
ing more than 4,085 clusters (most fixed hard disks and some removable media) 
use 16-bit FAT entries. 



Table 11-6. 

FAT Entry Hex Value 

(0)000 

(F)FFO through (F)FF6 

(F)FF7 

(F)FFS through (F)FFF 

(X)XXX 

11 - Disk Layout and File Recovery 

FAT Entry Values Controlling 
File Allocation 

Meaning 

Cluster is unused and is available for new file storage 
Reserved cluster (not available for normal file storage) 
Cluster is marked as bad by MS-DOS and is not used 
for file storage 
Last cluster occupied by a file 
Any other value indicates a cluster number in the chain 
defining how a file is stored 

Why are there two different FAT formats? Before the support for hard 
disks under MS-DOS was introduced (MS-DOS version 2.0), the designers of 
MS-DOS saw fit to minimize the amount of space needed to store the FAT table. 
Since the maximum number of clusters stored on a floppy disk is below 4,085 
(2,847 clusters on a 1.44-megabyte 3Y2-inch disk), disk space would be wasted if 
16-bit FAT entries were used, and the maximum cluster number that could be 
mapped with 8-bit entries would be 255, which would be inadequate. So, in 
order to decode the entries in the FAT table, the total number of clusters on the 
disk must first be determined. 

Processing 12-Bit FAT Entries 
The MS-DOS scheme of storing numbers that are 1 V2-bytes wide in FAT entries 
on floppy disks may seem strange. But MS-DOS is designed to be able to decode 
these bytes easily. The way MS-DOS stores FAT information is to scramble FAT 
entries into pairs in which two 1 Y2-byte entries are interweaved into a tidy 
3-byte pair. Ifwe want to determine the cluster number in FAT entry 2, we also 
need to look at FAT entry 3. If we want to look at the cluster number in FAT 
entry 3, we have to look back to FAT entry 2. FAT entries 4 and 5 would be 
paired together in the same manner as well as entries 6 and 7, 8 and 9, and so on. 
Figure 11-9 illustrates how two cluster numbers are encoded into a pair of FAT 
entries when viewing the numbers as they are presented in DEBUG. Figure 
11-10 shows how two cluster numbers can be decoded from a pair of FAT entries. 

If only three digits are extracted from the cluster number, why is the sec
ond most significant digit of the first cluster number swapped with the least sig
nificant digit of the second cluster? The swapping scheme operates faster in 
terms of how the machine itself decodes bytes and extracts information. The 
digits appear swapped only when humans read the FAT in DEBUG. 

To decode the information in 12-bit FAT entries on paper or in a program, 
use the following formula. 

1. Multiply FAT entry or cluster number by 1V2 bytes. (Multiply the number 
by 3; then divide by 2.) 

2. Use the result as an offset into the FAT, pointing to the entry that maps 
the cluster just used. That entry contains the number of the next cluster 
occupied by the file. 

615 



Recovery 

616 

1st 
Cluster 
Number 

L 
Not Used 

? 1 2 3 f'. 0 4 

1. M 

[ 1 
1st ~Ir •If ~, • ! 

FAT 2 3 6 1 4 
Entry 

A 3-Byte Pair of FAT Entries 

5 

I 

·1r 
5 

6 

2nd 
FAT 
Entry 

2nd 
Cluster 
Number 

Figure 11-9. Encoding two cluster numbers into a pair of 12-bit 
FAT entries. 

1st 
Cluster 
Number 

1st 
FAT 
Entry 

~Ir 

0 0 

~ 

0 2 3 
N 

l ,, • 0 2 

Not Used 

0 0 0 

m 

~ ~· ,, 
0 0 0 v 

2nd 
FAT 
Entry 

'I~· 
3 

2nd 
Cluster 
Number 

Figure 11-10. Decoding a pair of 12-bit FAT entries into two 
cluster numbers. 

3. Load the word (a 2-byte number) located at that offset into a register. 

4. There are now four hexadecimal digits in the register. Because we need 
only three digits for a three-digit FAT entry, determine whether the FAT 
entry number is even or odd. 

5. If the entry number is even, keep the low-order three digits in the 
register by ANDing it with OFFF. If the number is odd, keep the high
order three digits by shifting the register right four bits with the SHR 
instruction. 



11 - Disk Layout and File Recovery 

6. If the resulting three digits represent a number from FF8 through FFF, 
you have reached the end of the file. Otherwise, the three digits 
represent the number of the next cluster occupied by the file. 

Processing 16-Bit FAT Entries 
Dealing with cluster numbers and FAT entries on disks that use 16-bit FAT en
tries is considerably easier than it would be for those with 12-bit FAT entries 
because all FAT entries are word bound; that is, each FAT entry can be read and 
written as a complete word without having to worry about its neighboring FAT 
entries. 

To decode the information in 16-bit FAT entries on paper or in a program, 
use the following formula: 

1. Obtain the starting cluster of the file from its directory entry. 

2. Multiply the cluster number used by 2 (bytes; 1 word). 

3. Use the result as an offset into the FAT table, pointing to the entry that 
maps the cluster just used. That entry contains the number of the next 
cluster occupied by the file. 

4. Load the word (2 bytes) located at that offset into a register. 

5. If the resulting 4 digits represent a number from FFF8 through FFFF, 
you have reached the end of the file. Otherwise, the four digits represent 
the number of the next cluster occupied by the file. 

Converting Clusters to Logical Sectors 

If you write a program that accesses the data storage area of disks, you will find 
that MS-DOS facilities such as int 25h (Absolute Disk Read) and int 26h (Abso
lute Disk Write) as well as the DEBUG program require that you specify logical 
sector numbers. Although the disk layout illustrations (see Figures 11-2 and 
11-3) identify the first sector of a disk as side 0, track 0, sector 1, the first sector 
actually equates to logical sector 0. All subsequent logical sectors are sequential 
offsets of 0. Thus, logical sector 1 would be side 0, track 0, sector 2; and logical 
sector 2 would be side 0, track 0, sector 3. Because each FAT entry, according to 
the results in the preceding formula, always produces a cluster number, the fol
lowing formula shows you how to convert a cluster number to a logical sector 
number: 

1. Subtract 2 from the cluster number. 

2. Multiply the result by the number of sectors used in a cluster, as follows: 

a. For all single-sided floppy disk formats or for the double-sided, 
80-track, 5114-inch (high capacity) format, multiply by 1. 

b. For all double-sided, 40-track, 5114-inch floppy disks, multiply by 2. 

c. For double-sided, double-density, 8-inch floppy disks, multiply by 4. 

d. For hard disks, use one of the above values or another number 
depending on the disk format. 

617 



Recovery 

3. Add the result to the logical sector number of the beginning of the data 
storage area. 

By applying the proper formulas in the right order, you can now go from a 
directory entry to a FAT entry to the cluster number to the logical sector num
ber. Given this, who needs MS-DOS? You could read the files yourself, a sector 
at a time! 

An Overview of Recovery Procedures 

When a file on a disk has been damaged in some way, three basic approaches to 
correcting the problem are possible. The first approach is to use one of MS
DOS's built-in facilities, such as CHKDSK or RECOVER. These programs can 
isolate damaged areas of the disk so that you can recover some or all of a 
damaged file. 

The second approach is to use DEBUG, which allows you to do anything 
that you want in attempting to recover a damaged or erased file. Unfortunately, 
DEBUG offers little intelligence to aid you in this goal and is often the "court of 
last resort." A similar approach is to write your own recovery program, such as 
the RESCUE program presented later in these chapter. The information pre
sented in the preceding section on decoding the disk's directory and FAT is es
sential to writing your own recovery programs. 

The last approach, and a more comfortable one if your pocketbook can 
stand it, is to use one of the available off-the-shelf utilities, such as Norton Util
ities or Ultra Utilities. These utilities are like a toolbox, providing all the ca
pabilities of the above methods, including decoding the FAT, inspecting 
individual sectors on the disk, repairing damaged files, and restoring erased 
files. 

Recovering Damaged Files Using CHKDSK 
and RECOVER 

618 

Understanding how a disk is laid out under MS-DOS can be very useful if a file 
or part of a disk appears to be damaged. Fortunately, the operating system con
tains several functions that not only call attention to damaged parts of a disk but 
also allow you to recover data that is otherwise not accessible. When faced with 
file storage problems or defective disks, MS-DOS automatically isolates the 
problem part of the disk when the system attempts to access it. Although MS
DOS doesn't necessarily tell you exactly what has happened, you probably get 
an error message indicating that the part of the disk from which you wanted to 
read cannot be accessed properly. If this happens, use the DIR command to ex
amine the directory of the disk. If the DIR command shows the directory as nor
mal, the recovery of the file(s) should be more or less straightforward: use the 
RECOVER command on the file or files. 

If the directory entries are not in the directory, use the CHKDSK com
mand, initially without any parameters. You will probably get a message stating 



11 - Disk Layout and File Recovery 

that a certain number of clusters are lost on the disk, which is a good sign be
cause it indicates that you can again use the CHKDSK command, this time ac
companied by the /F parameter. This parameter causes CHKDSK to read all 
"lost" clusters and store them in one file. Sometimes CHKDSK cannot recover 
all the lost data in one pass. Use CHKDSK as many times as is necessary until 
the lost clusters message disappears. CHKDSK creates a new file each time the 
command is used to recover lost data. Once the new file(s) is created, copy it to a 
new disk, and then look at the contents of the file just created by CHKDSK. 

If the recovered data corresponds to text files, you can open the file with a 
text editor or word processor and sort out the information. If, however, the re
covered data corresponds to files that are not in a readable text format (such as 
object code or machine code), you have to use DEBUG or some other utility to 
look at the information and sort it out. In either case, do not be surprised if a 
small part of the data is missing. The part of the disk on which the data was 
stored may have been so badly damaged that it can't be read. Most of the time, 
data that isn't recoverable consists of increments of 512 or 1,024 bytes, depend
ing on the format of the disk (one 512-byte sector in one cluster for single-sided 
floppies or two 512-byte sectors in one cluster for double-sided floppies). The 
reason MS-DOS can't recover this data is that the cluster(s) in question already 
has been isolated in the corresponding FAT entries and each entry contains a 
value of (F)FF7, indicating that the clusters are bad and that no program is to 
use them under any circumstances. You could try to read these clusters with 
DEBUG, but they may be so badly damaged that even DEBUG cannot read 
them. 

The following section shows how to use DEBUG to read portions of a disk 
on a sector-by-sector basis. 

Recovering Erased Files 

Fortunately, when a file is erased under MS-DOS, only part of the file's direc
tory entry is modified: the first character of the file name is changed to a hex
adecimal E5. This value is used as a flag. When MS-DOS scans the directory 
sectors for a free spot to store a new file's directory information, the system 
finds and uses the first entry that begins either with hex E5 (erased file) or with 
00 (directory entry hasn't been used yet). The rest of the information in the di
rectory entry is left intact. If all we had to do was change E5 to the value of the 
first character of the erased file name, recovering erased files would be very 
easy. Unfortunately, however, MS-DOS is much more efficient in erasing the in
formation stored in the FAT sectors. Although MS-DOS doesn't touch the infor
mation stored in the data sectors or clusters occupied by a file, the system sets 
to 000 all FAT entries corresponding to these clusters. MS-DOS does this be
cause that's the only way the system can quickly scan the disk for blank space 
when it wants to store new files. Thus, our task ofrecovering an erased file is a 
little more involved than it might seem at first. Some basic guidelines to re
covering erased files are described next. 

619 



Recovery 

The Basics 

620 

There are many ways to lose files. Maybe you inadvertently used the ERASE or 
DEL command. Or perhaps your hardware malfunctioned or power was lost 
during an edit session. After scanning the disk, you discovered that the file you 
were editing could not be found. 

Generally, a file is only truly "erased" (with the first character in the file's 
directory entry equaling hex E5) if it is erased with the ERASE or DEL com
mand or by another program that performs the same function. If you lose a file 
because of a hardware malfunction or power loss, the file probably isn't truly 
erased. It's simply lost on the disk if the program you are using didn't have time 
to close the file properly. In such a case, you can use the MS-DOS disk recovery 
programs RECOVER and CHKDSK to recover the lost data. 

CAUTION 

When recovering files, the first thing you should do is make an exact dupli
cate of the disk by using the disk copy program. Do not store any new files on the 
disk until you've made an attempt to recover the lost or erased files. 

The preceding caution is very important because storing new data to the 
disk probably makes file recovery difficult if not impossible. And by first making 
an exact copy of the disk, you avoid the possibility of corrupting certain parts of 
the disk (thereby guaranteeing permanent data loss) as a result of improper file 
recovery. Thus, if things don't go right the first time, you still have the original 
disk from which you can copy the data and the file recovery process can begin 
again. 

The best way to determine whether a file is truly erased or is merely lost is 
to use the CHKDSK program without any parameters. If the file is lost, the 
CHKDSK program displays the message, Lost clusters found. This message is 
displayed if CHKDSK finds a break in the chain of clusters described in the 
FAT-if, for example, the last cluster in the chain doesn't point to a FAT entry 
that contains an end of file marker-(F)FFS through (F)FFF). When this hap
pens, you should reenter CHKDSK with the /F parameter to recover all lost 
clusters and store the data into a file that is created by CHKDSK. 

This is where the initial step of making an entire copy of the original disk 
may prove to be a blessing. For if you also had other files that were truly erased 
on the disk, the CHKDSK/F command sequence quite likely stores the file con
taining the recovered data over the area containing the erased files! File recov
ery, no matter what the circumstances, should be approached in a methodical 
and careful manner. 

Once it is clear that a file has been truly erased, and if no additional files 
have been stored on the disk since the file was erased, you know three things 
with certainty: First, the file's directory entry is intact, except for the first 



11 - Disk Layout and File Recovery 

character, which is hex E5. Second, the clusters or sectors in the data area of the 
disk originally used by the file still contain the file's data. Third (sadly), the FAT 
entries originally used to map out the clusters occupied by the file each contain 
(0)000. 

To recover an erased file, the following steps should be taken. 

1. Search through the directory entries until you find an entry that begins 
with hexadecimal E5 at byte 00. Look at the characters of the rest of the 
file name in bytes 1through10 and verify that it's the file you want to 
recover. 

2. Look at the starting cluster number (bytes 26 and 27). Use the starting 
cluster number as a pointer to the first cluster in the data area of the disk 
occupied by the file as well as to the first FAT entry originally used. 

3. Look at the file's size (bytes 28 through 31, the last 4 bytes in the 
directory entry). Knowing the file's size is important if the file takes up 
more than one cluster in the data area of the disk and especially 
important if parts of the file are scattered at different parts of the disk. 

4. Having determined the cluster number occupied by the beginning of the 
file, examine the contents of that cluster. Search for an ASCII Control-Z 
character (hex lA) in the cluster. If you know that the file contains text 
(ASCII) and if one or more Control-Z characters are found, recover the 
file as follows. (Otherwise, proceed to Step 5.) 

a. If one or more Control-Z characters were found, you know that the 
file occupies only one cluster. Begin recovering the file by storing 
any number from (F)FFS through (F)FFF in the FAT entry 
corresponding to the cluster. 

b. Change the hex E5 in the directory entry to whatever you think the 
first character of the file's name should be. 

c. Back at the MS-DOS prompt, use the DIR command to verify that 
the file is listed. Open the file with a text editor or word processor 
to verify that the contents are intact. You're done! Stop here and 
ignore the following steps. 

5. If the end of the file wasn't found, search through the subsequent FAT 
entries (sequentially) until one containing 000 is found. Look at the 
contents of the cluster that is numbered the same as the FAT entry. If the 
contents appear to be part of the erased file, make note of the cluster 
number and continue the search through the FAT entries and the 
equivalent clusters until you think the end of the file has been reached. 
The amount of searching you do depends on several things, as described 
in the next step. 

6. Determine from the size of the file extracted from the directory entry 
how many clusters the file should occupy. Also keep in mind that if you're 
recovering an ASCII text file, the presence of a Control-Z character (hex 
lA) in a cluster indicates the end of the file. Therefore, loop back to step 5 
until you reach the maximum number of clusters occupied by the file. 

621 



Recovery 

Make note of each cluster number that contains data you think is part of 
the erased file. If you find a Control-Z in a cluster but haven't yet 
examined a sufficient number of clusters matching the file's size, be 
careful: The cluster with the Control-Z on it could mark the end of 
another erased file. Search through subsequent directory entries for 
erased files and make note of their starting clusters as well as their file 
sizes. It's possible that two or more erased files have interweaving paths 
for any given sequence of clusters. 

7. Once you're reasonably certain about the clusters occupied by the file and 
how they're chained together and you're fairly certain you've found the 
end of the file, reconstruct the FAT. Beginning with the first cluster, go 
to the equivalent FAT entry and store the number of the next cluster 
occupied by the file. Then go to this next FAT entry and store the 
number of the subsequent cluster. Continue this operation until the last 
cluster is reached, storing in the corresponding FAT entry any number 
from (F)FF8 through (F)FFF to mark the end of the file. Next, go to the 
file's directory entry, and change the first character of hex E5 to the 
ASCII equivalent (in hexadecimal) of whatever you think the first 
character of the file should be. 

8. That's it! When you're back at the MS-DOS prompt, use the DIR 
command to verify that the file is listed. If the recovered file is a text file, 
open the file with a text editor or word processor to verify its contents. If 
it's some other type of file, such as an . EXE or a. COM file, load the file 
as a program to verify that it works correctly. 

The previous steps might suggest that the procedure for recovering a file is 
fairly straightforward. Depending on the tools you have at your disposal, 
however, actually looking at the data on the disk and writing information to the 
disk can be a bit cumbersome. Notice also that Steps 6 and 7 provide cautions 
about the possibility that several erased files might be interwoven through a se
quence of clusters. Recovering data that is interwoven in this way can be very 
tedious and at times rather mind-boggling. But with patience (possibly quite a 
bit) and by forcing yourself to be methodical, you can untangle the files. 

Now that you have an idea of the effort that it takes to recover erased files, 
this is a good time to point out that the fastest way to recover erased files is to 
copy them off your backup disk. You should try to get into the habit of backing 
up your work frequently, and always use a copy of your purchased or private 
software, never the original disk(s). 

Recovering Erased Files the Hard Way 

622 

If all you have at your disposal is the DEBUG program for recovering files, and 
you don't have the time or the patience to type and assemble the program RES
CUE described in this chapter, the following tips may prove useful to you. The 
four DEBUG functions or commands of interest are L (Load), D (Display), E 
(Enter), and W (Write). Once you make a copy of the disk with the erased file on 



11 - Disk Layout and File RecoDery 

it, load DEBUG. At the DEBUG prompt, enter the L command to load data 
from the part of the disk you're interested in looking at. 

L <address> <drive> <start sector> <end sector> 

In this case, <address> represents the beginning address in memory 
where the data is to be loaded, <driDe> is the drive number (for example, 0 for 
A, 1 for B, 2 for C), and <start sector> and <end sector> indicate the range of 
logical sectors (hexadecimal numbers only) that you want to load. To load the 
contents of all the directory sectors on a double-sided, 40-track, 5114-inch dis
kette formatted to nine sectors per track and inserted in drive B, enter the 
following: 

A> DEBUG 
-L 0 1 5 B 

When the information is loaded, you can use the D command to display the 
contents in memory and the E command to change individual bytes as needed. 
Once you note the information you need and make any changes, the data can be 
written back to the disk using the W command. The W command uses the exact 
same syntax as the L command. Make sure that you specify the same param
eters as you did with the L command. This ensures that only the correct part of 
the disk is overwritten. 

The only time you need to write information to the disk is when you change 
the first character of an erased file name in its directory entry or when you mod
ify the contents of the FAT entries that correspond to the file. When examining 
the contents of the clusters occupied by the actual file, you don't have to write 
the information back to the disk unless you're doing some tricky repair work 
that could otherwise not be accomplished. Refer to the MS-DOS User's Manual 
(or your system's equivalent manual) for more information on how to use DE
BUG and its commands. 

Using the RESCUE Program 
The program described in Listing 11-4 is very straightforward and easy to use. 
The command RESCUE is typed, followed by the file name of the erased file. 
RESCUE will accept only the name of the file, so the default drive and directory 
containing the erased file must be set with the CHDIR or CD command before 
running RESCUE. The file to be erased may be any file: normal, hidden, sys
tem, read-only, or subdirectory. If you're unerasing a file in a subdirectory that 
is also erased or if you wish to rescue the entire directory tree below an erased 
subdirectory, you must first unerase the subdirectory by name with RESCUE, 
make the newly rescued subdirectory the default directory (using the CHDIR 
or CD command), and then manually unerase the file(s) in the subdirectory with 
RESCUE. 

If the name of the file is found in the directory (root directory or subdirec
tory "file"), an attempt is made to recover the file by analyzing and writing 

623 



Recovery 

624 

information to the FAT. If the file was not found or was found to be not deleted, a 
message is displayed to that effect. As explained earlier, the allocation path 
taken through the FAT for a given file can be sometimes complex. If RESCUE 
cannot resolve the allocation path of a file (maybe it was interwoven with a path 
of another file), the program terminates and no information is written to the 
disk. An important factor in the way the program works is that it won't write 
any information to the disk until all aspects of the file have been resolved. It ac
complishes this by reading all directory and FAT sectors into memory where all 
of the modifications to the file's directory entry and its FAT entries are made. 
When all modifications have been made, RESCUE writes the entire directory 
and FAT back to the disk. If difficulties are encountered in analyzing the data 
and making the modifications, RESCUE terminates and the disk is left 
untouched. 

As noted earlier, RESCUE is designed so that it can deal with any disk 
format that adheres to standard MS..,DOS formatting conventions. It uses the 
undocumented MS-DOS function 32h, Get Disk Parameter Block, to obtain the 
necessary information about the disk's format. It also makes extensive use of 
functions contained in the Microsoft C Run-Time Library. If you adapt this pro
gram to another language or compiler, you will have to find or write substitutes 
for these functions. 

The RESCUE program is intentionally simple, both to aid in understand
ing and to enable us to fit it in the book. There are a number of enhancements 
that you may want to add to make RESCUE more useful. You may want to allow 
the user to specify the drive and directory of the erased file on RESCUE's com
mand line, or you may want to allow wild card specifications of the erased files by 
using the * or ? standards. A very useful addition would be one that checked to 
see if the user is trying to restore a file whose name already exists (which can be 
done by judicious use of the existing routines). 

Another modification that you may wish to do is to allow RESCUE to work 
with hard disks that have partitions larger than 32 megabytes, as introduced in 
MS-DOS 4.0. These extended-size partitions use 32-bit sector numbers instead 
of the 16-bit sector numbers used in partitions of 32 megabytes or smaller. In 
order to avoid having to deal with 32-bit FAT entries, the sector-to-cluster ratio 
is increased in extended-size partitions so that 16-bit FAT entries can still be 
used. However, the maximum size of the FAT table (one copy) has been in
creased from 64K (MS-DOS version 3.3) to 128K (in MS-DOS version 4.0). 
MS-DOS applications are shielded from the extended-size partition cluster and 
sector-mapping scheme provided that only standard MS-DOS file functions or 
absolute cluster referencing is used. However, absolute sector references using 
interrupts 25h and 26h require different calling conventions between partitions 
that are 32 megabytes or less and partitions that are more than 32 megabytes. 
The following listings show the two calling conventions in MS-DOS 4.0 for inter
rupt 25h (Absolute Disk Read) and interrupt 26h (Absolute Disk Write): 

With some modifications, RESCUE can be turned into a very capable 
application, able to deal with any type of disk media, regardless of the imple
mentation and version of MS-DOS. 



11 - Disk Layout and File Recovery 

ENTRY: 

Listing 11-2. Calling Convention for Absolute Disk 
Read/Write (Int 25h/26h) on Disk Partitions 32 Mbytes or Less 

(All Versions of MS-DOS) 

AL = Drive number co = A, 1 = B, etc.) 
ex = Number of sectors to read (int 25h) or 

write (int 26h) 
DX = Beginning Logical sector number 
DS:BX = Transfer address 

RETURN: Carry Flag = 0 (successful transfer), or 
= (unsuccessful transfer): 

NOTE: 

ENTRY: 

AL = Error code 
AH = Type of error 

AX is returned with 0207h if an attempt is made 
to read or write a partition Larger than 32 megabytes. 

Listing 11-3. Calling Convention for Absolute Disk Read/Write 
(Int 25h/26h) on Disk Partitions Larger than 32 Mbytes 

(MS-DOS Versions 4.0 and Higher Only) 

AL = Drive number (0 = A, 1 = B, etc.) 
BX= Pointer to parameter List 
CX = -1 (indicates extended (>32MB) format) 

RETURN: Carry Flag = 0 (successful transfer), or 
= (unsuccessful transfer) 

AL = Error code 

NOTE: 

AH = Type of error 

POP AX (error code) on return. Error codes the same 
as above. 

Parameter List structure: 

rba dd ? ; first sector (32-bits, 0 origin) 
; read/write 

count dw ? ; number of sectors to read/write 
buffer dd ? ; data buffer 

to 

625 



Recovery 

626 

Listing 11-4. RESCUE Program 

'***************************************************************** 
FILE: RESCUE2.C Rescue File Utility Version 2.00 

Enhancements: Rescuing a file in subdirectories 
Rescuing an erased subdirectory 
Handles any type of MS-DOS disk media 
(floppies, fixed disks, removable cartridges) 

Compile with Microsoft C Compiler: 

cl /c /Zp1 /AS /GO /Ze /Ot rescue2.c 

Link with Microsoft Linker: 

link /DOSSEG/MA/LI/CPAR:1/STACK:4096 rescue2,rescue2.exe, 
rescue2.map,slibce; 

****************************************************************' 

f* I N C L U D E F I L E S 

#include <stdio.h> '* for pri ntf 0 and much more *' 
#include <conio.h> '* for getchO *' 
#include <dos.h> '* for i ntdos (), i nt86 (), and so forth *' 
#include <malloc.h> '* for _ fma L Loe () & ma L Loe *' 
#include <string.h> '* for memory "mem ••. ()" and "str .•• " *' 
#include <ctype.h> '* for toupper() and "is •.• 0" *' 
#include <direct.h> '* for getcwd 0 *' 

'* c 0 N S T A N T D E F I N I T I 0 N S *f 

#define FALSE 0 '* these definitions are to *I 
#define TRUE 1 '* make the program more *' 
#define AND && f* readable and understandable *' 
#define OR 
#define EQ 
#define NE 
#define LE 

11 

!= 
<= 

#define ABS_READ Ox25 
#define ABS_WRITE Ox26 

#define DFUNC_RESETDSK OxOD 
#define DFUNC_GETDISK Ox19 

'* read disk interrupt *' 
'* write disk interrupt *' 

'* DOS int 21 h functions: *' 
'* reset drive *' 
'* get current drive *' 



#define DFUNC_GETDPB 
#define DFUNC_GETCD 

#define FATR_NONE 
#define FATR_READ 
#define FATR_HIDDEN 
#define FATR_SYSTEM 
#define FATR_VOLUME 
#define FATR_SUBDIR 
#define FATR_ARCHIV 

#define CL_OFF 
#define TENMB 

#define CHAIN_END 

#define FILE_END 

#define NO_MATCH 
#define IS_MATCH 
#define IS_ERASED 
#define IS_UNIQUE 

#define DNAME_SIZE 

Ox32 
Ox47 

OxOO 
Ox01 
Ox02 
Ox04 
Ox08 
Ox10 
Ox20 

2 
20740L 

Oxfff8 

0 
1 
2 
4 

80 

11 - Disk Layout and File Recovery 

I* get disk parameter block */ 
I* get current directory*/ 

I* DOS fi Le attribute bits: *I 
I* matches ANY *I 
I* READ Only *I 
I* Hidden *I 
I* System File *I 
I* Volume Label */ 
I* Sub-Directory *I 
I* Archived Fi Le *I 

I* first cluster number is 2 */ 
I* maximum #of sectors ••• *I 
I* ... supported by 12-bit FAT *I 
I* used by "get_clusterO" .•. *I 
I* to indicate end-of-fi Le */ 
I* FAT entry for end-of-f i Le *I 

I* match() routine match types *I 
I* no match *I 
I* did match *I 
I* match on erased files *I 
I* match on unerased files *I 

I* maximum directory name size *I 

I* S T R U C T U R E & T Y P E D E F I N I T I 0 N S */ 

typedef unsigned int BOOL ; 
typedef unsigned char BYTE ; 
typedef unsigned int WORD ; 
typedef unsigned Long DWORD ; 
typedef union { 

BYTE far * ptr ; 
struct { 

WORD off ; 
WORD seg ; 
} a ; 

} LONGPTR ; 

typedef struct dpbbuf { 
BYTE PhysDrive ; 
BYTE DriverUnit ; 
WORD BytesSector ; 
BYTE SectorsCLuster ; 

I* disk parameter block buffer */ 
I* drive number */ 
I* unit number within drive */ 
I* bytes per sector */ 
I* sectors per cluster -1 *I 

continued 

627 



Recovery 

628 

Listing 11-4. continued 

BYTE ClusterShift ; 
WORD Reserve ; 
BYTE NumberOfFATs ; 
WORD DirEntries ; 
WORD DataSect ; 
WORD TotClust ; 
BYTE nFATsec ; 
WORD DirSect ; 
DWORD DevHeaderAddr ; 
BYTE MediaByte ; 
BYTE DiskAccFlag ; 
DWORD NextBlockAddr ; 
} DPB ; 

typedef struct dirbuf { 
char name [8] ; 
char ext [3] ; 
BYTE attrib ; 
BYTE reserved [10] ; 
WORD time ; 
WORD date ; 
WORD cluster ; 
DWORD fsize ; 
} DENTRY ; 

f* cluster shift *' 
f* number reserved sectors *' 
'* FAT table copies *' 
'*number root directory entries*' 
'*first data sector*' 
'* total clusters + 1 *' 
f* number of FAT sectors (1 FAT) *' 
'*sector number of directory*' 
f* address of device header*' 
f* media descriptor byte *' 
f* disk access flag *' 
'* address of next disk block *' 

f* disk directory entry*' 
f* name *' 
'* extension *' 
f* attribute *' 

'* time: hhhhh mmm - mmm sssss *' 
f* date: yyyyyyy m - mmm ddddd *' 
'* starting cluster *' 
'* total size in bytes *' 

f* G L 0 B A L V A R I A B L E S 

DPB far * DPBPtr ; 
WORD ClUnit ; 

WORD BytClust ; 
DWORD TotSect ; 
WORD FATSize ; 
WORD far * FatAnchor ; 
DENTRY near * DirAnchor ; 

f* pointer to DPB *' 
'* sectors per cluster *' 
'* (also size of directory buffer) *' 
'* number of bytes per cluster *' 
f* total number of sectors on disk *' 
'* number of bytes in FAT table *' 
f* FAT table buffer address *' 
f* directory buffer address*' 

DENTRY near* AltAnchor; f* alternate directory buf address*' 
char default_sname [] = {"*·*"} ; '* default search name *' 

f* P S E U D 0 - S U B R 0 U T I N E D E F I N E S 

#define diskread(d,s,c,b) diskaccess(ABS_READ,d,s,c,b) 
#define diskwrite(d,s,c,b) diskaccess(ABS_WRITE,d,s,c,b) 

#define sector_of(cl) (DPBPtr->DataSect+(cl-CL..OFF)*ClUnit) 
#define cluster_of (sec) (CL_OFF+(sec-DPBPtr->DataSect)/ClUnit) 



11 - Disk Layout and File Recovery 

'* s u B R 0 U T I N E p R E - D E C L A R A T I 0 N S *' 

WORD get_c Luster () ; '* get cluster entry value *' 
void put_c Luster () ; '* store value in cluster *' 
BOOL savef i Le 0 ; '* restore file.s FAT & DIR*' 
DENTRY near * findf () ; '* search directory buffer *' 
DPB far * getdpb 0 ; '* get disk param block addr *' 
void diskaccess () ; '* absolute disk read/write *' 
BOOL match () ; '* match spec. name with file*' 

'* ***************************************************** *' 

'* '* '* 
M A I N E N T R Y P 0 I N T *' *' *' '* ***************************************************** *' 

main Cargc, argv, envp) 
int argc ; 
char * argv [] ; 
char * envp [] ; 

{ 

char 
char 
char 
WORD 
WORD 
WORD 
DEN TRY 

near * sspec ; 
dname [DNAME._SIZE] 
* pptr ; 
dnum ; 
snum ; 
savenum ; 
near * dptr ; 

; 
'* search specifier *' 

'* directory name buffer *' 
'* pointer to dir name *' 

'* drive number (origin 0) 

'* directory sector number 

'* used to store snum *' 
'* current directory entry 

pri ntf ("\nRESCUE, Version 2 .00\n\n") ; 

if Cargc < 2) { f* if no parameters ••. *' 
printf ("*** Fi Lename not specified ***\n") ; 
exit (1) ; 

} ; 

sspec = argv [1] ; f* fi Le to restore *' 

*' 
*' 

*' 

getcwd Cdname, DNAME._SIZE) 
if <*<char *><CWORD)dname 

; f* get default drive & dir *' 

strcat Cdname, "\\") ; 
pptr = dname + 3 ; 
dnum = *dname - 'A' ; 

+ strlen(dname) - 1) NE '\\') 
f* pathname ends with ''\" *' 
f* init path name pointer *' 
f* extract drive number *' 

f* Determine various global values from Disk Parameter Block, ••• 
.•• including FAT size, bytes per cluster, total sectors, etc. *' 

continued 

629 



Recovery 

630 

Listing 11-4. continued 

DPBPtr = getdpb Cdnum) ; I* get disk param block *I 

if Cdnum NE DPBPtr->PhysDrive) { 
printf ("Drive %c: is SUBSTituted\n",Cdnum+'A')) ; 
printf ("RESCUE will work only on physical drives\n"); 
exit (1) ; 
} ; 

FATSize = DPBPtr->BytesSector * DPBPtr->nFATsec ; 
ClUnit = DPBPtr->SectorsCluster + 1 ; 
TotSect = CDWORD) DPBPtr->TotClust * CDWORD) ClUnit 

+ CDWORD) DPBPtr->DataSect ; 
BytClust = DPBPtr->BytesSector * ClUnit ; 

I* Allocate memory for directory buffers and FAT tables*/ 

if CCCDirAnchor=CDENTRY near *> malloc(BytClust)) EQ NULL) OR 
CCAltAnchor=CDENTRY near *> mallocCBytClust)) EQ NULL) OR 
CCFatAnchor=CWORD far *) _fmallocCFATSize)) EQ NULL)) { 
printf ("***Can't Allocate Working Memory ***\n") ; 
exit (1) ; 
} ; 

I* Read in initial FAT table *I 

diskread Cdnum,DPBPtr->Reserve,DPBPtr->nFATsec,FatAnchor) ; 

I* Follow chain of directory entries to match dname path *f 

snum = DPBPtr->DirSect ; f* first directory sector *f 
while C*pptr NE '\0') f* while dir path non-null*/ 

if ((dptr = findf Cdnum, &snum, pptr, DirAnchor, 
NULL, FATR-SUBDIR, IS_UNIQUE)) NE NULL) { 

snum = sector_of Cdptr->cluster) ; 
while ((*pptr NE '\0') AND (*pptr NE '\\')) 

pptr++ ; 
if C*pptr EQ '\\') pptr++ ; 

} else { 
printf ("***Can't Find Directory %s ***\n", pptr) ; 
exit (1) ; 

} ; 

f* Abort if the file to restore is not erased. *f 

savenum = snum ; f* save direc sector *f 



11 - Disk Layout and File Recovery 

if (findf (dnum, &snum, sspec, DirAnchor, 
NULL, FATR_NONE, IS_UNIQUE) NE NULL) { 

printf ("*** %s%s is not erased ***\n", dname, sspec) ; 
exit (1) ; 
} ; 

I* If fi Le is erased sub-directory or file then un-erase it*/ 

snum = savenum ; I* restore di r sector */ 
if ((dptr = findf (dnum, &snum, sspec, DirAnchor, 

NULL, FATR_NONE, IS_ERASED)) NE NULL) { 
if (get_cluster (dptr->cluster) NE 0) 

printf ("Unerased fi Le %s%s can't be restored\n", 
dname, sspec) ; 

else { 
if (savefile (dnum,dptr,snum,toupper(*sspec))) { 

if (dptr->attrib & FATR_SUBDIR) 
printf ("Subdirectory %s%s restored\n", 

dname, sspec) ; 
else 

printf ("File %s%s restored\n", 
dname, sspec) ; 

} else { 
printf ("Fai Led to restore %s%s\n", 

dname, sspec) ; 
diskread (dnum,DPBPtr->Reserve, 

DPBPtr->nFATsec,FatAnchor) ; 
} ; 

} ; 
} else { 

} ; 

printf ("Can't Locate unerased fi Le %s%s\n", 
dname, sspec) ; 

} ; 

I* **** FIND NEXT CLUSTER IN A CHAIN **************************** 

This routine retrieves the value of a FAT entry. This is 
equivalent to chaining the FAT cluster. This routine returns 
either a cluster's value (the next cluster in a DOS fi Le 
chain) or the value NULL if there are no more clusters in 
the chain. 

If the disk is 10 Mbytes or Less, then 12-bit FAT entries 
(clusters) are used. If the disk is Larger, then 16-bit FAT 
entries are used. 

continued 

631 



Recovery 

632 

Listing 11-4. continued 

Cluster values: (0)000 
(0)001 

free cluster 
undefined 

*' 
WORD 

(0)002 - (F)FEF ••••••• next cluster 
(F)FFO - (F)FF6 ••••••• reserved 
CF)FF7 .•••••••••••••••. bad cluster 
(F)FF8 - (F)FFF ••••••• end of chain 

get-cluster Cclust) 
WORD clust ; '* cluster number *' 
{ 

uni6n { WORD FAR }* w ; 
BYTE far * b ; 
} fatptr ; 

WORD value ; 

if CTotSect > TENMB) { 
fatptr.b = (BYTE far *> 

'* pointer to FAT table *' 

'* cluster content *' 

. CCDWORD) FatAnchor + CDWORD) Cclust * 2)) ; 
value = *fatptr.w ; 

} else { 
fatptr.b = (BYTE far *> 

((DWORD) FatAnchor + (DWORD) (clust * 3/2)) ; 
value = *fatptr.w ; 

I* Odd-numbered clusters are Left-shifted 4 bits in the word *' 
if Cclust & Ox01) value >>= 4 ; 
value &= OxOfff ; 
} ; 

if ((value & OxOffO) EQ OxffO) return (CHAIN._END) ; 
else return (value) ; 

} ; 

I* **** STORE CLUSTER VALUE ************************************* 

*' 

/ 

This routine stores a value into a cluster entry in the FAT. 
If the disk is 10 Mbytes or Less, then 12-bit FAT entries 
(clusters) are used. If the disk is Larger, then 16-bit FAT 
entries are used. 

void put_cluster Cclust,value) 
WORD clust ; '* cluster number *' 
WORD value ; '* new cluster value *' 
{ 



11 - Disk Layout and File Recovery 

union { WORD FAR }* w ; 
BYTE far * b ; 
} fatptr ; 

WORD cur_val ; 

if (TotSect > TENMB) { 
fatptr.b = (BYTE far *) 

I* pointer to FAT Table *' 

I* current cluster value *' 

((DWORD) FatAnchor + (DWORD) (clust * 2)) ; 
*fatptr.w = value ; I* patch FAT *' 

} else { 
fatptr.b = (BYTE far *) 

((DWORD) FatAnchor + (DWORD) (clust * 3/2)) ; 
cur_val = *fatptr.w ; 

I* Odd-numbered clusters are Left-shifted 4 bits in the word *' 
if (clust & Ox01) 

*fatptr.w = Ccur _va L & OxOOOf) (value « 4) ; 
else 

*fatptr.w (cur_val & Oxf000) (value & OxOfff) ; 
} ; 

} ; 

I* *** FIND A FILE'S CLUSTER, AND SAVE THE FILE'S DIR & FAT *** 

*' 

This routine restores an erased fi Le, if possible. It 
calculates the number of clusters the fi Le should occupy, and 
Looks for those clusters in the FAT. 

This routine assumes that the starting cluster number of the 
fi Le to be restored has been checked, and its value is zero. 

BOOL savefile Cdnum,dptr,sect,ch) 
WORD dnum ; 
DENTRY near * dptr ; 
WORD sect ; 
BYTE ch ; 
{ 

DENTRY far * writeptr ; 
WORD fi lecls ; 
WORD last ; 
WORD current ; 
WORD next ; 
WORD fatsect ; 
union { WORD FAR }* w ; 

BYTE far * b ; 
} fatptr ; 

I* operative drive *' 
I* directory entry to save*' 
I* dir "cluster" sector#*' 
I* 1st char of file name*' 

'* pointer to dir buffer *' 
'* file size (in clusters) *' 
'* Last cluster number *' 

'* current cluster number *' 

'* next cluster in chain *' 

'* FAT sector number *' 

'* pointer to FAT Table *' 

continued 

633 



Recovery 

634 

Listing 11-4. continued 

if Cdptr->attrib & FATR-SUBDIR) /*If file is a sub-dir *f 
filecls = 0; f* no additional needed*' 

else 
filecls =(WORD) ((dptr->fsize + CDWORD) BytClust - 1L) I 

CDWORD) BytClust) - 1 ; 
current = Last = dptr->cluster ; '* 1st cluster *' 

f* Patch the FAT *' 

while Cfilecls) { 
if (++current > DPBPtr->TotCLust) { 

printf (''\n*** Unable to Restore Fi le ***\n"> ; 
return (FALSE) ; 
} ; 

if Cget_cluster(current) EQ 0) { 
put-cluster C Last,current> ; 

f* blank cluster *' 
f* part of chain *' 

} ; 

last = current ; 
filecls--; 
} ; 

put_cluster (Last, FILE._END) ; 

*Cdptr->name) = ch ; 

f* end chain *' 

f* save 1st char *' 

f* Preparation complete - write out the FAT and Directory 
sectors *' 

writeptr = DirAnchor ; 
fatsect = DPBPtr->Reserve ; 
diskwrite Cdnum,fatsect,DPBPtr->nFATsec,FatAnchor) ; 
fatsect += DPBPtr->nFATsec ; 
diskwrite Cdnum,fatsect,DPBPtr->nFATsec,FatAnchor) ; 
diskwrite Cdnum,sect,CLUnit,writeptr) ; 
bdos CDFUNC-RESETDSK,NULL,NULU ; 
return <TRUE) ; 
} ; 

I* **** FIND SPECIFIED ENTRY IN THIS DIRECTORY *************** *f 

DENTRY near 
WORD 
WORD 
char 
DENT RY 
DENT RY 

* findf Cdnum, sect, 
dnum ; 
* sect ; 
near * pptr ; 
near * dbuf ; 
near * bptr ; 

pptr, dbuf, bptr, sattr, mtype) 
'* operative drive *' 
'*current direc sector*' 
'* path name pointer *' 
'*directory buffer *' 
'* another buffer pointer *' 



11 - Disk Layout and File Recovery 

BYTE sat tr ; I* search attribute */ 
int mtype ; I* type of match desired *I 
{ 

int i ; I* Loop counter *I 
WORD cluster ; I* used for chaining *I 
DENT RY near * dirptr ; I* directory but pointer *I 
DENT RY far * readpt r ; I* directory but pointer *I 
DENT RY near * dirend ; I* address of buffer end *I 

readptr = dbuf ; 
dirend = (DENTRY near*) ((WORD) dbuf + BytClust - 1) ; 

while <TRUE) { 
if (bptr NE NULL) { 

dirptr = ++bptr; 
bptr = NULL ; 

} else { 

I* continue from •.. *I 
I* ... where Left off *I 

I* else start at begining *I 
diskread Cdnum,*sect,CLUnit,readptr) ; 
dirptr 
} ; 

dbuf ; 

whi Le (dirptr <di rend) { 
I* any matching fi Les ? *I 

if (((dirptr->attrib & sattr) EQ sattr) AND 
(match (pptr,dirptr->name,mtype))) 
return (dirptr) ; 

dirptr++; 
} ; 

f* all entries in this "cluster" checked, get another *I 

if <*sect >= DPBPtr->DataSect) { I* sub-directory*/ 

} ; 

cluster = cluster_of <*sect) ; I* next cluster */ 
if ((cluster = get_cluster (cluster)) LE CHAIN_END) 

return (NULL) ; 
else *sect = (sector_of (cluster)) ; 

} else /*root directory *I 

} ; 

if <*sect>= DPBPtr->DirSect) { 
*sect += CLUnit ; I* next sectors */ 
if <*sect >= DPBPtr->DataSect) return (NULL) ; 

} else return (NULL) ; 

I* **** GET BIOS PARAMETER BLOCK FOR SPECIFIED DRIVE ********* *I 

DPB far *getdpb (dnum) I* return pointer to DPB */ 
continued 

635 



Recovery 

636 

Listing 11-4. continued 

WORD 
{ 

dnum ; 

union REGS inregs, outregs ; 
struct SREGS segregs ; 
LONGPTR farptr ; 

inregs.h.ah = DFUNC_GETDPB ; 
inregs.h.dl = dnum + 1 ; 

'* operating drive number *' 

intdosx C&inregs, &outregs, &segregs) ; '* get DPB *' 
if (outregs.x.cf lag) { 

if (outregs.h.al EQ Oxff) 
printf ("*** Drive %c Invalid ***\n", (dnum + 'A')) ; 

else 
printf ("*** Can't Read Drive %c Paramters ***\n", 

(dnum + 'A')) ; 
exit (1) ; 
} ; 

farptr.a.off outregs.x.bx ; 
farptr.a.seg segregs.ds ; 
return ((DPB far *> farptr.ptr) ; 
} ; 

I* **** DIRECT DISK READ I WRITE ***************************** *I 

void diskaccess (function, dnum, sector, count, buffer) 
BYTE function ; '* interrupt function *' 
BYTE dnum ; 
WORD sector ; 
WORD count ; 
BYTE far * buffer ; 
{ 

union REGS inregs, outregs ; 
struct SREGS segregs ; 
LONGPTR farptr ; 

farptr.ptr = buffer ; 
inregs.h.al = dnum ; 
inregs.x.dx = sector ; 
inregs.x.cx = count ; 
inregs.x.bx farptr.a.off ; 
segregs.ds = farptr.a.seg ; 

I* physical drive number *' 
'* sector number *' 
'* sector count *' 
'* buffer *' 

int86x (function, &inregs, &outregs, &segregs) ; 
if (outregs.x.cf lag) { 

if (function EQ ABS_READ) 
printf ("*** Error During Disk Read ***\n") ; 



11 - Disk Layout and File Recovery 

} ; 

else 
pri ntf ("*** Error During Disk Write ***\n") ; 

exit (1) ; 

} ; 

I* **** CHECK NAMES FOR MATCH ******************************** *I 

I* Note that the name arrays are accessed unsigned, so that the 
compare to OxES wi LL be carried out properly*' 

BOOL match (sname, fname, mtype) 
BYTE near *sname ; '* search match name *' 
BYTE near *fname ; '* f i Le or directory name *' 
int mtype ; '* type of match desired*' 
{ 

int ; '* index *' 
char near *fext ; '* f i Le or dir extension *' 

fext = fname + 8; '* f i Le extension *' 

I* Check the fi Le status (erased/unerased) against search type *' 

if (((*fname NE Oxe5) AND (mtype EQ IS_ERASED)) OR 
((*fname EQ Oxe5) AND (mtype NE IS-ERASED))) 
return (NO_MATCH) ; 

if C*fname EQ Oxe5) { 
fname++ ; 

I* ignore 1st character ···*' 
I* ... of an erased file*' 

sname++ ; 
} ; 

while (fname < (fext+3)) { 
if (*fname EQ toupper(*sname)} { 

fname++ ; 
sname++ ; 

} else '* if names di ff er ... *' 
switch C*sname++) { '* 

case ' '. . 
if ( (*fname EQ ' ') 

fname = fext ; 
break ; 
} ; 

return (NO_MATCH) ; 
case '\\': 
case '\0': 

if (*fname EQ ' ') 

find out why *' 

OR (fname EQ fext)) { 

'* extension check 

I* else ... *' 

I* end of sname *' 

*' 

continued 

637 



Recovery 

Listing 11-4. continued 

return (!$_MATCH) ; 
default: 

return (NQ_MATCH) ; 
} ; 

} ; 
return CIS_MATCH) ; 

} ; 

I* End of FILE RESCUE.C *I 

Using Norton Utilities 

638 

Norton Utilities are very easy to use, especially when you know something 
about how MS-DOS disks are laid out. In versions of Norton Utilities prior to 
3.0, the DL (DiskLook) and UE (UnErase) programs are the most useful for file 
recovery. DiskLook examines sector by sector any part of the disk, showing 
hexadecimal data on the left side of the screen and the ASCII equivalent on the 
right side. Smart enough to recognize the disk format as well as the type of sec
tors being read (such as boot, FAT, directory, or data area), the program dis
plays this information on the screen. The program is also capable of displaying a 
simple map of the disk, similar to the disk layout illustrations in this chapter, 
showing what each sector or cluster is used for on a per-track basis. It also 
shows which parts of the disk contain files and which are empty. 

The UnErase program is similar to DiskLook. However, UnErase has dif
ficulties if it encounters the types of problems discussed in this chapter, prob
lems such as incomplete files that have been overwritten with new information 
or several files with complex interwoven chains. 

To some extent, the value of Norton Utilities depends on how well you un
derstand the layout of MS-DOS disks and what you know about FAT sectors and 
directory sectors, and where they begin and end. Even so, you may find using 
the programs very educational because of the clear and detailed manner in 
which they display disk data. Another advantage is that safeguards are built 
into the programs to prevent you from doing any damage to disks. 

In version 3. 0 of Norton Utilities, the functions of both DiskLook and Un
Erase are combined in the program NU (Norton Utilities). The functions in this 
implementation have been improved and include more detailed text interpreta
tions of what is on the disk instead of relying mostly on cryptic hexadecimal 
data. Only versions 3.0 and higher are capable of working with the 80-track, 
double-sided, 5%-inch (high capacity) floppy disks as well as with the 20-mega
byte hard disk in the IBM PC AT and compatibles. None of the versions (up to 
3.0) are capable of working with 8-inch floppy disks formatted under MS-DOS 
nor can they work with hard disks that have formats different from those used in 



11 - Disk Layout and File Recovery 

IBM XT and IBM AT systems. Only Norton Utilities version 4.0 is capable of 
dealing with all disk formats that adhere to standard MS-DOS formatting con
ventions. Additionally, because of the fancy way in which these programs dis
play information on the screen, they operate only with display equipment 
compatible or closely compatible with equipment used in IBM systems. 
However, if you use an IBM PC or compatible system, you'll find Norton Util
ities are effective and entertaining because they deal very well with the topics 
described in this chapter. 

Using Ultra Utilities 

Ultra Utilities are a set of file recovery programs similar to Norton Utilities. 
Ultra Utilities are "user-supported" programs, also sometimes known as "free
ware," and can be obtained through various channels of public-domain software 
distribution. Ultra Utilities include a notice to the user that if the programs are 
found to be useful, a suggested fee be paid to the originators, in return for which 
the user becomes a registered user and is eligible for future software updates. 

Three programs are provided on the main Ultra Utilities disk: U-ZAP, 
U-FORMAT, and U-FILE. U-ZAP is similar to the Norton Utilities DiskLook 
program and provides extensive capabilities for modifying any of the contents of 
a disk. U-FORMAT is a very special program because it provides the capability 
of formatting individual tracks on a disk. U-FORMAT can even reformat a track 
without destroying any MS-DOS data stored on it. This can prove very useful on 
troublesome disks with formatting problems so severe that even MS-DOS can't 
recover inaccessible data. The U-FILE program has many capabilities of dis
playing and modifying files on the disk, including recovering erased files. 

Ultra Utilities are a fine alternative to Norton Utilities if you are cost-con
scious. And don't be dissuaded by the semi-free aspect of this package-Ultra 
Utilities are very fine programs designed by professionals who use low-cost 
methods of distribution. 

Summary 

This chapter has focused on disk layout and file recovery under MS-DOS. The 
information in this chapter has shown that, if equipped with the necessary infor
mation, you can recover erased, damaged, and lost files. Even though the 
various tools mentioned for recovering files provide varying degrees of sim
plicity and disk file accessibility in their use, the basic sequence of file recovery 
outlined in this chapter remains the same. 

The next chapter presents a similar topic: recovering data lost in memory. 
Understanding disk layouts and file storage will help you understand the infor
mation in the next chapter. 

639 







12 - Recovering Data Lost in Memory 

m !,MOST every computer user has at some point lost valuable data in RAM 
tml(random access memory). Losing data that's currently in memory can be 

caused by operator error, hardware malfunction, an elusive bug in a program, or 
a power failure. In many cases, some if not all of the data lost in memory can be 
recovered and stored safely to a disk if you're willing to do some patient inves
tigating. Before taking any drastic measures, like resetting the system, any 
problem short of a power failure or an automatic system reset is worth 
investigating. 

Of course, it's a good idea to experiment with data recovery and explore the 
memory of your system before something goes wrong. Word processing pro
grams and BASIC interpreters are good starting points in experimenting with 
data recovery. Note that the procedures for recovering lost data are appropriate 
only if the malfunction was not severe enough to lock up the entire system. If, 
however, the MS-DOS prompt returns and you're able to enter commands, you 
can start searching for the lost data. 

Recovering from Word Processing/Test Editing Failures 

Probably the easiest way to explore your system memory is to simulate a prob
lem. Load your favorite word processor or test editor, create a short, simple text 
file, and then exit normally to MS-DOS. Immediately afterwards, load the 
DEBUG program, and using the D (Display) command, start scanning the con
tents of memory. DEBUG always assumes memory offset OlOOh as the begin
ning point. Don't worry about setting the segment address (DEBUG defaults to 
one anyway) but make note of what that address is in case you need to return to 
it later. 

For this exercise, we used the WordStar word processing program on an 
IBM Personal Computer. If you use a different word processor or a different 
system, don't worry. Although no two word processing programs utilize mem
ory in exactly the same way (there are even differences between the various 
WordStar versions), the very nature of the way MD-DOS loads programs aids us 
in our endeavor. Nearly all word processors or text editors load the program 
first and use the memory above the program to store the text. When we load 
DEBUG into the system, more often than not DEBUG will overlay the program 

643 



Recovery 

644 

portion of the word processor or text editor, allowing us to scan upward in mem
ory looking for our lost text. If by chance your favorite text editor is smaller 
than DEBUG (in terms of code space used), some data may be lost, but on aver
age-sized files the majority of the data will still be there, above DEBUG. 

The following examples begin with a sample text file, followed by a de
scription of the contents of memory after loading WordStar and the text file, and 
then exiting back to MS-DOS. 

Load WordStar and create the following TEST. TXT file: 

xxxx1xxxx2xxxx3xxxx4xxxx5xxxx6xxxx7xxxx8xxxx9x10 
xxx11xxx12xxx13xxx14xxx15xxx16xxx17xxx18xxx19x20 
xxx21xxx22xxx23xxx24xxx25xxx26xxx27xxx28xxx29x30 
xxx31xxx32xxx33xxx34xxx35xxx36xxx37xxx38xxx39x40 
xxx41xxx42xxx43xxx44xxx45xxx46xxx47xxx48xxx49x50 
xxx51xxx52xxx53xxx54xxx55xxx56xxx57xxx58xxx59x60 
xxx61xxx62xxx63xxx64xxx65xxx66xxx67xxx68xxx69x70 
xxx71xxx72xxx73xxx74xxx75xxx76xxx77xxx78xxx79x80 
xxx81xxx82xxx83xxx84xxx85xxx86xxx87xxx88xxx89x90 
xxx91xxx92xxx93xxx94xxx95xxx96xxx97xxx98xxx99100 

The contents of the file TEST. TXT may look a little strange at first, but 
the purpose of the text arrangement becomes clear when you see it (or part of 
it) in memory. This file consists of 100 5-character or 5-byte words. Each word is 
numbered 1 through 100, which enables us to count the number of portions or 
words of text we actually see in memory. Note that the last "words" on each line 
(xlO,. x20, ... 100) consist of only three characters. Because we have to accom
modate the carriage return and line feed characters at the end of each line, these 
three-character words become five-character words. Note that some word pro
cessor and text editor programs insert only a carriage return character when 
the Return or Enter key is pressed. Such programs execute the line feed func
tion automatically without actually inserting it in the text. In such cases, ex
pand the last words on each line to four characters (xxlO, xx20, ... xlOO). 

Now exit WordStar by saving the file using Control-KX command (or Con
trol-KD, then X). Immediately load DEBUG and start searching through mem
ory for the lost text. Use the D (Display) command to dump the contents of 
memory on the screen until you see the sought-after text on the right side of the 
display. The following code shows what our sample file looked like when we fi
nally found it on our system. (Note that the actual addresses will quite likely be 
different on your system.) 

A> debug 
-d 7e10 
68F8:7E10 00 00 00 00 00 00 00 00-89 00 78 78 78 78 31 78 
68F8:7E20 78 78 78 32 78 78 78 78-33 78 78 78 78 34 78 78 
68F8:7E30 78 78 35 78 78 78 78 36-78 78 78 78 37 78 78 78 
68F8:7E40 78 38 78 78 78 78 39 78-31 30 OD OA 78 78 78 31 
68F8:7E50 31 78 78 78 31 32 78 78-78 31 33 78 78 78 31 34 

•.•..••. 9.xxxx1x 
xxx2xxxx3xxxx4xx 
xx5xxxx6xxxx7xxx 
x8xxxx9x10 •. xxx1 
1xxx12xxx13xxx14 



12 - Recovering Data Lost in Memory 

68F8:7E60 78 78 78 31 35 78 78 78-31 36 78 78 78 31 37 78 
68F8:7E70 78 78 31 38 78 78 78 31-39 78 32 30 OD DA 78 78 
68F8:7E80 78 32 31 78 78 78 32 32-78 78 78 32 33 78 7a 78 
-d 
68F8:7E90 32 34 78 78 78 32 35 78-78 78 32 36 78 78 78 32 
68F8:7EAO 37 78 78 78 32 38 78 78-78 32 39 78 33 30 OD DA 
68F8:7EBO 78 78 78 33 31 78 78 78-33 32 78 78 78 33 33 78 
68F8:7ECO 78 78 33 34 78 78 78 33-35 78 78 78 33 36 78 78 
68F8:7EDO 78 33 37 78 78 78 33 38-78 78 78 33 39 78 34 30 
68F8:7EED OD DA 78 78 78 34 31 78-78 78 34 32 78 78 78 34 
68F8:7EFO 33 78 78 78 34 34 78 78-78 34 35 78 78 78 34 36 
68F8:7FOO 78 78 78 34 37 78 78 78-34 38 78 78 78 34 39 78 
-d 
68F8:7F10 35 30 OD DA 78 78 78 35-31 78 78 78 35 32 78 78 
68F8:7F20 78 35 33 78 78 78 35 34-78 78 78 35 35 78 78 78 
68F8:7F30 35 36 78 78 78 35 37 78-78 78 35 38 78 78 78 35 
68F8:7F40 39 78 36 30 OD DA 78 78-78 36 31 78 78 78 36 32 
68F8:7F50 78 78 78 36 33 78 78 78-36 34 78 78 78 36 35 78 
68F8:7F60 78 78 36 36 78 78 78 36-37 78 78 78 36 38 78 78 
68F8:7F70 78 36 39 78 37 30 OD DA-78 78 78 37 31 78 78 78 
68F8:7F80 37 32 78 78 78 37 33 78-78 78 37 34 78 78 78 37 
-d 

xxx15xxx16xxx17x 
xx18xxx19x20 .. xx 
x21xxx22xxx23xxx 

24xxx25xxx26xxx2 
7xxx28xxx29x30 •. 
xxx31xxx32xxx33x 
xx34xxx35xxx36xx 
x37xxx38xxx39x40 
.. xxx41xxx42xxx4 
3xxx44xxx45xxx46 
xxx47xxx48xxx49x 

50 .. xxx51xxx52xx 
x53xxx54xxx55xxx 
56xxx57xxx58xxx5 
9x60 .• xxx61xxx62 
xxx63xxx64xxx65x 
xx66xxx67xxx68xx 
x69x70 .• xxx71xxx 
72xxx73xxx74xxx7 

68F8:7F90 35 78 78 78 37 36 78 78-78 37 37 78 78 78 37 38 5xxx76xxx77xxx78 
68F8:7FAD 78 78 78 37 39 78 38 30-0D DA 78 78 78 38 31 78 xxx79x80 .. xxx81x 
68F8:7FBO 78 78 38 32 78 78 78 38-33 78 78 78 38 34 78 78 xx82xxx83xxx84xx 
68F8:7FCO 78 38 35 78 78 78 38 36-78 78 78 38 37 78 78 78 x85xxx86xxx87xxx 
68F8:7FDO 38 38 78 78 78 38 39 78-39 30 OD DA 78 78 78 39 88xxx89x90 .• xxx9 
68F8:7FEO 31 78 78 78 39 32 78 78-78 39 33 78 78 78 39 34 1xxx92xxx93xxx94 
68F8:7FFO 78 78 78 39 35 78 78 78-39 36 78 78 78 39 37 78 xxx95xxx96xxx97x 
68F8:8000 78 78 39 38 78 78 78 39-39 31 30 30 OD DA 1A 1A xx98xxx99100 •.•. 
-d 
68F8:8010 1A 1A 1A 1A 1A 1A 1A 1A-1A 1A 00 E8 EC 01 E8 C2 •.......... hL.hB 
68F8:8020 

Write down the address where you found the test. In our case this was 
68F8:7E10 (hex). Now, continue scanning memory until you no longer see the 
text you wish to recover and write down the last address (68F8:8019 in our 
example). 

We see in the preceding screen that the entire file is still resident in mem
ory. If we have created a file that is larger than the available memory, only the 
part of the file last edited is resident in memory. By scanning the memory 
beyond the limits shown in the preceding screen, we found that on our system 
19,449 bytes of text may be retained in memory. If we could recover that many 
bytes of text from memory, we could avoid a lot of retyping! In the previous ex
ample, however, we know we've reached the end of text at location 8019 because 
that's where the string of Control-Z (ASCII IA hex) values end. These values 

645 



Recovery 

are required by Word Star as end-of-file markers, so these values are written to 
the disk when the file is saved. 

The following shows how text stranded in memory can be saved to the disk 
while you are still in DEBUG. 

-n test.sav 
-h 8019 7e1a 
FE33 01 FF 
-r bx 
BX 0000 

-r ex 
ex 0000 
:1ff 
-r 

AX = 0000 BX= DODO ex= 01FF DX= 0000 SP= FFEE BP= DODO SI = 0000 DI =DODO 
DS = 68F8 ES 68F8 SS = 68F8 CS = 68F8 IP = 0100 NV UP DI PL NZ NA PO NC 
68F8:0100 C9 DB C9 
-w 7e1a 
Writing 01FF bytes 
-q 

A>dir test.sav 
Volume in drive A has no Label 
Directory of A:\ 

TEST SAV 522 4-09-85 11:03a 

A> 

646 

1 Fi Le(s) 188416 bytes free 

The first step in this example is to specify a file name that DEBUG uses for 
disk read and write operations by using the N (Name) command. A new file 
name should be used, such as TEST.SAY. Next, use the offset address of the 
beginning of text (7E1A) and the ending address (8019) to calculate how many 
bytes should be written to the disk. DEBUG's built-in H ("hexarithmetic") com
mand is a useful tool for calculating the result we need. When specifying the ad
dress values after the H command, make sure you specify the ending address 
before the starting address because the difference must be a positive integer. In 
the preceding screen, the result on the left is the sum of the two hexadecimal 
address values. The difference between the two address values (on the right) 
represents the number of bytes that we want to write to the disk. Load this 
value into the ex register in preparation for the W (Write) command. Note that 
the BX register is also used with ex for values greater than FFFF (otherwise it 
should contain zero). We then write the data to the disk specifying the starting 
address. 

When the file is saved and you've returned to MS-DOS, type the file to the 
screen to verify its contents. You can later combine this file with other parts of 
the recovered file by using your word processor. 



12 - Recovering Data Lost in Memory 

But what do we do when not all of the lost text can be found in RAM mem
ory? WordStar, like most other word processing programs, constantly shuffles 
text in and out of memory as you move around in the text being edited. If you've 
been editing an existing file, say TEST. TXT, WordStar creates a file called 
TEST.$$$, which is used to store the new edited text. When you finish editing 
and save the edit session to disk, the program renames TEST. TXT to 
TEXT.BAK (overwriting the old TEST.BAK ifit exists) and renames TEST.$$$ 
to TEST.TXT. Thus, in normal operation, TEST.$$$ is never seen in the direc
tory when you return to MS-DOS. However, ifthe program fails abnormally, you 
find TEST.$$$ listed in the directory. If not all the text can be found in memory 
using DEBUG, check the contents of the$$$ file for the rest of the text. If the 
status of your file is not immediately obvious by looking at the directory listing, 
you may have to resort to a disk utility (such as Norton Utilities or Ultra Util
ities described in the previous chapter) that shows hidden information on the 
disk. Before doing so, however, check the status of the disk with the CHKDSK 
program. This lets you know whether there are any stranded clusters on the 
disk. If stranded clusters are introduced to the disk after the failed edit session, 
part of the lost text may be in these lost clusters. You can recover them by spec
ifying the /F parameter with CHKDSK but do so only after you've examined the 
contents of RAM memory and have saved stranded text to the disk. 

As mentioned previously, the ways in which various word processing and 
text editing programs utilize memory differ greatly. All have different locations 
in memory for their work space. Some have larger work spaces than others. 
Some programs have multiple areas of memory for text manipulation, some
times called buffers, which can complicate things even further. However, if 
you've never before tried to recover stranded data from memory, the previous 
examples illustrate some useful tools and techniques. 

Recovering BASIC Programs from Memory 

Have you ever done extensive work on a program using a BASIC interpreter 
only to discover that, after testing the program, a "Return to MS-DOS" com
mand embedded in the program terminated the interpreter before you had a 
chance to save the program to the disk? If the program is short (20 lines or 
fewer), this is a minor frustration. If the program is long, unexpected termina
tion of the interpreter is disastrous. 

Just as we were able to recover lost text from memory, we also should be 
able to recover "lost" BASIC programs because they must reside in memory in 
their entirety for the convenience of the interpreter. And for those interpreters 
that always deal with normal ASCII program text, the techniques described 
previously for recovering text from memory can be applied. But this is not the 
case with interpreters that deal with programs in "protected" mode or programs 
that are tokenized. A tokenized program, as seen by the interpreter, is a series 
of hexadecimal instruction values and absolute integer values. An ASCII pro
gram, on the other hand, consists of a series of two-digit ASCII values for each 
character or number, thus increasing the size of the file considerably. 

647 



Recovery 

648 

Microsoft BASIC and IBM BASIC are the most popular examples of inter
preters that deal with tokenized programs. Although these interpreters can 
read programs in standard ASCII format, they default to the tokenized state. 
They convert an ASCII program to its tokenized equivalent when it's loaded by 
the interpreter. The problem with trying to recover a lost tokenized BASIC pro
gram in memory is that it is virtually impossible to decipher with DEBUG's D 
(Display) command. So a slightly different approach must be taken. 

The following example shows how to recover a program using Microsoft/ 
IBM BASIC on the IBM Personal Computer. A variation of this procedure is re
quired for other BASIC interpreters or different machines, but the following 
example provides some tips on how to approach the problem of program recov
ery on other machines. 

Immediately after losing the program, the first step is to load DEBUG. 
According to the technical manual for the system, the address of the BASIC 
segment (where the beginning of our program is) can be found by examining lo
cation 0050:0010. Use the D command to display the first two values at this loca
tion. These values vary depending on the version of MS-DOS, the version of the 
BASIC interpreter, and the amount of memory installed in your system. Study 
the following program code and explanation. 

A> debug 
-d 0050:0010 £2 
0050:0010 73 68 
-d 6b73:30 £2 
6873:0030 EF 11 
- f 6b 73: 11 ee l 1 ff 

-d 6b73:358 £2 
6873:0358 88 12 
-h 1288 11ee 

2476 009A 

-r ex 
cxooo 
-n %test.bas 

-w 6b73: 11ee 
Writing 009A bytes 
-q 
A> 

~BASIC segment address 
~examine the segment (reverse the bytes) at offset 0030 

~this is the beginning address of the lost program 

~enter an FF at the beginning address of the lost program at 
offset-I (again, reverse the two beginning-address bytes) 

~locate the ending address of the lost program at offset 0358 
~this is the ending address 
~calculate the number of bytes used by the program (reverse the 

2-byte ending address as well) 

~the second number is the difference, and therefore the 

program's length 
~load the program's length into the 

CXregister 

~establish the file specification in which the program is to be 

stored 

~write the bytes starting at the program's beginning address 

~return to MS-DOS 

When you return to the MS-DOS prompt, check the recovered file by loading it 
in the BASIC interpreter and listing it to the screen. The contents of the file are 
tokenized, so it can't be read any other way. The contents of the file should be 
intact. 



12 - Recovering Data Lost in Memory 

Summary 

This chapter shows some of the techniques that can be used to recover data 
stranded in memory. The two types of programs covered, Word Processors/Text 
Editors and BASIC Interpreters, are the most likely to be involved when data is 
lost in memory. Similar problems with other programs, such as database man
agers, for example, or communications programs, can often be approached 
using these techniques. If you lose important data in memory because of any cir
cumstance other than a power failure or system reset, spending your time to in
vestigate recovery techniques is well worth the effort. 

649 









13 - Differences between MS-DOS Versions 

[ID] IN CE the introduction of the first version of MS-DOS in 1981, the operatlNJ ing system has been enhanced to accommodate new hardware environ
ments, fix problems, and generally improve its operation. Although many of 
these enhancements resulted in more powerful capabilities, they have also 
caused a few headaches because the new functions have not been compatible 
with older versions of MS-DOS. In order to keep the value of these enhance
ments in proper perspective, this chapter has information that will help you 
determine the compatibility among the different versions of MS-DOS. The inf or
mation in this chapter is especially useful if you're using assembly language to 
develop your programs. 

Except for those commands that are, by design, tools for programmers, 
such as the debugger (DEBUG) and linker (LINK), new and enhanced MS-DOS 
commands are of relatively little use to programmers. Changes that are of spe
cial interest to a programmer include MS-DOS interrupts, function calls, error 
codes, floppy and hard disk formats, and file manipulation. These areas can be 
dealt with fairly easily because topics such as function calls exist in all imple
mentations of a given MS-DOS version. 

Other areas, such as memory mapping, cannot be dealt with generically 
because they often vary according to the hardware environment for which an im
plementation of MS-DOS is targeted. This is the case with the IBM Personal 
Computer and close compatibles. Systems with radically different hardware 
architectures have different memory mapping schemes specific to the imple
mentation of MS-DOS. Even among some of the more "standard" areas, such as 
interrupts, critical differences exist. 

Therefore, a programmer needs to know the dos and don'ts when develop
ing an application program. The differences are especially important if you're 
developing a program that is intended to have as wide a distribution as possible. 
Remember that there are different machine-specific versions of MS-DOS and 
that there are also lots of machines with different hardware architectures and 
implementations of MS-DOS. Simply following the MS-DOS Technical Manual 
can be very misleading if you're developing a program that is intended to run 
under all implementations of MS-DOS. 

This chapter is not meant to replace the MS-DOS Technical Manual. Its 
intent is rather to present an overview of the differences between the versions of 
MS-DOS and thus complement the technical manuals of all versions of MS-DOS. 

655 



Compatibility 

The information is divided into topics by which the differences between all the 
versions (from 1.0 through 4.0) are presented. Where appropriate, this chapter 
includes specific technical information and tips about suggested procedures and 
things to avoid, depending on the nature of the application program you're 
developing. 

General Compatibility Recommendations 

656 

Various degrees of compatibility are available to a programmer. In most cases, 
the goal is total compatibility. However, because we generally like to design 
"slick" programs, we often take advantage of the "new and improved" functions 
built into our implementation of MS-DOS, such as fancy screen functions or 
special-purpose interrupts, and frequently forget the consequences of noncom
patibility. Choosing a degree of compatibility is often the compromise we make. 
If we must achieve total compatibility, the following rules are useful. 

1. Do not under any circumstances use any 8086-family INT (interrupt) 
instruction, except those that are designated as MS-DOS interrupts. 

2. Never write data to any absolute memory location outside of your 
program. Let MS-DOS handle memory usage. 

3. Never use the 8086-family IN and OUT instructions. 

4. Avoid using instructions that are provided only by the 80188, 80186, 
80286, and 80386 microprocessors, as follows: 
PUSH immediate (push immediate) 
PUSHA (push all registers) 
POPA (pop all registers) 
SHR > 1 (shift right with immediate value greater than 1) 
SHL > 1 (shift left with immediate value greater than 1) 
IMUL dest.-reg.,source,immediate (multiply immediate signed integer) 
INS source-string,port (in string) 
OUTS port,dest.-string (out string) 
ENTER (enter procedure) 
LEAVE (leave procedure) 
BOUND (detect value out ofrange) 
Avoid using the instruction POP CS because it functions properly only 
with the 8088 and 8086 microprocessors. Be aware of all the other 
differences in operation between the various processors in the 8086 
family. 

Avoid all 80286/80386 instructions: 
LGDT, LIDT, and LLDT (load descriptor table) 
INSB (input from port using bytes) 
OUTSB (output string to port using bytes) 
ARPL (adjust requested privilege level-protected mode) 
CLTS (clear task switched flag-protected mode) 
LAR (load access rights-protected mode) 



13 - Differences between MS-DOS Versions 

LMSW (load machine status word-protected mode) 
LSL (load segment limit-protected mode) 
LTR (load task register-protected mode) 
SGDT, SIDT, and SLDT (store descriptor table-protected mode) 
SMSW (store machine status word-protected mode) 
STR (store task register-protected mode) 
VERR and VERW (verify read or write-protected mode) 

Avoid all 80386-only instructions: 

MOV special-registers (move to/from special registers) 
MOVSX (move with sign extend) 
MOVZX (move with zero extend) 
OUTSW (output string to port using words) 
BSF and BSR (bit scan) 
BT, BTC, BTR, and BTS (bit tests) 
CWDE (convert word to extended double) 
INSW (input from port using words) 
LFS, LGS, and LSS (load far pointer) 
POPAD (pop all into 32-bit registers) 
POPFD (pop flags into 32-bit flags register) 
PUSHAD (push all 32-bit registers) 
PUSHFD (push 32-bit flags register) 
SET condition (set conditionally) 
SHLD and SHRD (double-precision shift) 

5. If the machine you're using to develop a program has routines stored in 
ROM, never call these routines. Don't even attempt to read them. 

6. For absolute compatibility, never use an MS-DOS function call that is 
supported only in MS-DOS versions above 1.0. However, since versions of 
MS-DOS prior to 2.0 are no longer supported by Microsoft and IBM, 
setting the minimum version to 2.0 provides you with more flexibility. 

7. Always make sure that information written to the screen consists only of 
standard ASCII characters (00 through 7F hexadecimal). Avoid using any 
other characters, such as those in the extended character set of IBM PCs 
and compatibles. 

If you find that you must break any of the first five rules, you might as well 
break rule 6 because your first option would be to write a device driver targeted 
for a machine that would otherwise be incompatible. And because installable de
vice drivers are supported only under MS-DOS version 2.0 and above, you'll find 
yourself using function calls not supported by MS-DOS versions 1. 0 and 1.1. If 
you need (or want) to break rule 7, write a device driver for the target machine 
or a "universal" installation program that can be used to customize the applica
tion program for a variety of terminals and monitors. The installation program 
must, of course, at least follow rule 7. 

Because one solution to incompatibility might be a device driver, we find 
ourselves already breaking rule 6, which introduces another level of com
patibility that needs to be considered. In many cases, you will want to break rule 

657 



Compatibility 

658 

· 6 intentionally because not all versions of MS-DOS provide a particular function 
call that you like or need to use. For example, if your application program made 
extensive use of tree-structured directories, you probably would want to use 
function calls 39 through 3B, in which case the level of compatibility would be 
restricted to MS-DOS versions 2.0 and higher and would exclude versions 1.0 
and 1.1. Similarly, if your program needs to make use of the networking func
tions supported by MS-DOS 3.1, the program would not be compatible with 
MS-DOS versions 1.0 through 2.1. 

Never forget to state plainly the compatibility restrictions of your pro
gram, either in the source code or in the documentation (preferably both). If 
your program is to be made commercially available, make sure that com
patibility restrictions (or the lack of restrictions!) are clearly stated both in the 
packaging and in advertisements. 

If you develop a program that is designed to operate under any version of 
MS-DOS but that contains some routines which can be optionally executed if a 
particular version of MS-DOS is being used, use function 30h (Get DOS Version 
Number) to control whether or not certain routines are executed. Although this 
function is provided only in MS-DOS versions 2.0 and higher, it can be executed 
using versions 1. 0 and 1.1 without ill effects as long as the precautionary steps 
described under Invoking DOS Functions in your MS-DOS manual are followed. 

To use this function, load 30h into the AH register. When int 21h is ex
ecuted, the major version number is returned in register AL and the minor ver
sion in register AH. If AL contains 00, you can assume that the version of 
MS-DOS is either 1. 0 or 1.1. Any other number in AL indicates the version num
ber. For example, if you are using MS-DOS version 2.00, 02 is found in AL and 00 
is found in AH. If you are using MS-DOS version 3.10, you will find 03 in AL and 
10 in AH. Even if you don't need to control the optional execution of certain rou
tines, this function allows you to control the display of a friendly message if a 
user attempts to run the program under an incompatible version of MS-DOS. 
The routine in Listing 13-1 can be implemented in your programs to accomplish 
this function. 

Listing 13-1. Routine to Determine the MS-DOS Version 

; ROUTINE TO DETERMINE THE VERSION OF MS-DOS UNDER WHICH 
; THE PROGRAM CONTAINING THIS ROUTINE IS RUNNING 
; 
; NOTE: Make sure that the following statements are defined 
; either in the data segment or in the data area of the 
; code segment in your program: 
; 
; 
; 
; 
; 

majver db ? 
minver db ? 

getdosver proc 

; major version number (hex) 
; minor version number (hex) 

near ; change to far if needed 



13 - Differences between MS-DOS Versions 

; 
push ax ; save registers 
push bx 
push ex 

; 
mov ah,30h ; get the function number ready 
int 21h ; execute the MS-DOS function call 

; 
cmp al,O ; see whether it IS pre-version 2.0 
jnz dos2plus ; if not, it's version 2.00 or above 
mov al,1 ; major version is 1.00 (because we 
mov ah,O ; know AH st i l l contains the function 

; number (30h), we won't be able 
; to find out what the minor version 
; is, so we assume the worst case: 
; version 1.00) 

; 
dos2plus: 

mov majver,al ; save major version 
mov minver,ah ; save minor version 

; 
pop ex ; restore registers 
pop bx 
pop ax 

; 
ret ; return 

; 
getdosver endp 

In the previous subroutine, you can do several things with the version 
number stored in the two variables majver and minver. Each number can be 
converted to decimal ASCII for output to the screen with a message, or you can 
use these variables to control whether or not certain parts of the program are to 
be executed. 

High-Level Language Considerations 

If you're writing a program with a high-level language, be aware of the specifica
tions of the particular compiler or interpreter being used. If the product specifi
cations state that your compiler or interpreter runs only under a particular 
version of MS-DOS, your compiled or interpreted programs probably don't func
tion under an earlier version. This is especially true for BASIC interpreters, 
such as Microsoft/IBM BASIC and GWBASIC because new versions of these in
terpreters are often released to complement new versions of MS-DOS. 

659 



Compatibility 

MS-DOS Interrupts 

660 

The software interrupts defined for use by MS-DOS are consistent among all 
versions except interrupt 2Fh, which has been added to version 3.0. Table 13-1 
lists the interrupts. 

Table 13-1. MS-DOS Interrupts 

Interrupt MS-DOS Version 

Int Description i.o I 1.1 2.0 I 2.1 3.0 I 3.1 I 3.2 I 3.3 

20 Program Terminate 

21 Function Request 

22 Terminate Address 

23 Ctrl/Break Exit 
Address 

24 Critical Error Yes 
Handler Vector 

25 Absolute Disk 
Read 

26 Absolute Disk 
Write 

27 Terminate But 
Stay Resident 

28 Reserved 
T T • T T T T 

(Used mternally by MS-DOS) 

29 
----i (Reserved) (Reserved) 
2E 

2F 

30-
66 

67 

68-
6F 

Multiplex 
Interrupt No Yes 

Reserved (Reserved) 

Expanded Memory 
No (see Note 1) System Interface 

Reserved (Reserved) 

Note 1: The Expanded Memory System (EMS), as defined by both the Lotus/Intel/Microsoft 
(LIM) and AST/Quadram/Ashton-Tate (AQA) specifications, is accessible through int 67h in all 
versions of MS-DOS beginning with version 2.0. However, only MS-DOS versions 4.0 and 
higher have int 67h officially reserved specifically for accessing EMS. See Chapter 7 for 
information on EMS int 67h functions. 

4.0 

T 

T 

Yes 

Many machines have several interrupts not listed in Table 13-1. These in
terrupts are defined for special uses, such as accessing the BIOS (basic input/ 



13 - Differences between MS-DOS Versions 

output system) routines or communicating with serial communications ports. 
Don't confuse these interrupts with those defined for use with MS-DOS. Only 
those interrupts described in your MS-DOS Technical Manual are true 
MS-DOS interrupts. In order to maintain compatibility with all implementa
tions of MS-DOS, avoid using any interrupts that are not true MS-DOS inter
rupts. Refer to Appendix B for information on undocumented interrupts. 

Function Calls 

The use of function calls is probably the most important compatibility factor 
when programming in assembly language. Because almost all operations nor
mally performed by MS-DOS can be initiated by function calls, you can avoid the 
use of interrupts (except int 21) and BIOS calls. By using MS-DOS function 
calls, you also eliminate any need to include in your programs certain types of 
routines, such as those that manipulate files. If blindingly fast execution of your 
programs is not crucial, it's worthwhile to let MS-DOS perform all standard op
erations by means offunction calls. MS-DOS performs function calls fast enough 
for most situations. 

Performing Function Calls the Standard Way 
When the first version of MS-DOS was introduced, two methods were provided 
to perform function calls. The first is recommended for use with all versions of 
MS-DOS and the procedure is as follows: 

1. Save the contents of the AX, BX, CX, and DX registers as appropriate 
by pushing them onto the stack. 

2. Place the function number in the AH register. 

3. Place other data in the registers specified for the particular function to be 
executed if and when appropriate. 

4. Execute the int 21h instruction. 

5. Depending on the function executed, variable data is returned in 
specified registers that can be later read and used by your program. 
Some functions don't return anything. 

6. Perform the desired operation, if needed, based on the returned data 
from the function just executed. 

7. Restore the original contents of the registers. 

The previous procedure is recommended for all versions of MS-DOS. The 
second method is described next. 

Performing Function Calls in Compatibility Mode 

The second method that MS-DOS provides for compatibility with other operat
ing systems applies specifically to CP/M-80 and CP/M-86. This method doesn't 
really provide the capability ofrunning CP/M programs under MS-DOS. It only 

661 



Compatibility 

662 

simplifies the conversion ofCP/M programs to MS-DOS by not always requiring 
the redefinition of the function call process. You will, however, probably have to 
change many of the function numbe'rs. This method works only with MS-DOS 
functions 0 through 24h. You might also encounter difficulties with register 
usage of some function calls, so this method should be avoided unless you want 
to test a program before it has been fully converted. MS-DOS requires that 
function calls using this second method be made by using the following 
procedure: 

1. Save the contents of the AX, BX, CX, and DX registers as appropriate 
by pushing them onto the stack. 

2. Place the function number in the CL register. (Only function numbers 
0 through 24h may be used.) 

3. Place other data in the registers specified for the particular function to be 
executed as desired. 

4. Make an intrasegment call to location 5 in the current code segment. This 
location contains a long call to the MS-DOS function dispatcher. 

5. Depending on the function executed, variable data is returned in 
specified registers that can be later read and used by your program. 
Some functions don't return anything. Note: This procedure always wipes 
out the contents of the AX register. All other registers, however, are 
affected in the same manner as when the standard function call procedure 
is followed. 

6. Restore the original contents of the registers. 

And Yet Another Method (MS-DOS Versions 2.00 and 
Higher Only) 

A third method for making function calls was introduced in MS-DOS version 
2.00. This method can be used with higher versions as well, but it doesn't oper
ate correctly with any previous versions. The third method is accomplished in 
the following manner. 

1. Save the contents of the AX, BX, CX, and DX registers as appropriate 
by pushing them onto the stack. 

2. Place the function number in the AH register. 

3. Place other data in the registers specified for the particular function to be 
executed. 

4. Make a long call to offset hex 50 in the program segment prefix. 

5. Depending on the function executed, variable data is returned in 
specified registers that can be later read and used by your program. 
Some functions don't return anything. 

6. Restore the original contents of the registers by POPping the stack. 

With the release of MS-DOS version 3.10, both Microsoft and IBM have 
recommended that this method not be used. Why then was it introduced? One 



13 - Differences between MS-DOS Versions 

possible use of the method may explain why it was introduced. Offset 50 hex in 
the PSP (program segment prefix) usually contains an int 21h instruction. By 
using the method described previously, the programmer has channeled all 
MS-DOS function code accesses (excluding other interrupts) through one loca
tion. By altering the instruction located at offset 50 hex, you can redirect all of 
the program's MS-DOS accesses. Was this an abandoned attempt of Microsoft's 
to implement multitasking? Only Microsoft knows for sure. 

Functions Supported in Different Versions 

Table 13-2 lists all the MS-DOS functions supported in versions 1.0 through 3.1 
and indicates which functions are new for certain versions. 

Table 13-2. MS-DOS Functions 

Function MS-DOS Version 

Num 
Hex Description 1.0 1.1 2.0 2.1 3.0 3.1 3.2 3.3 4.0 

0 Program Terminate 

1 Keyboard Input 

2 Display Output 

3 Auxiliary Input 

4 Auxiliary Output 

5 Printer Output 

6 Direct Console I/O 

7 Direct Console 
Input Without Echo 

8 Console Input Yes 
Without Echo 

9 Print String 

A Buffered Keyboard 
Input 

B Check Standard 
Input Status 

c Clear Keyboard 
Buffer and Invoke 
Keyboard Function 

D Disk Reset 

E Select Disk 

continued 

663 



Compatibility 

Table 13-2. continued 

Function MS-DOS Version 

Num 
Hex Description 1.0 1.1 2.0 2.1 3.0 3.1 3.2 3.3 4.0 

F Open File 

10 Close File 

11 Search for First 
Entry 

12 Search for Next 
Entry 

Yes 
13 Delete File 

14 Sequential Read 

15 Sequential Write 

16 Create File 

17 Rename File 

18 (Reserved) l!///////////////fJ//l/fJ/////f/l///f///////////////// 

19 Current Disk 

lA Set Disk Transfer 
Address 

1B Allocation Table Yes 
Information 

lC Allocation Table 
Information 
Specific Device 

lD- !///////////////////////////////////////////////////// 
(Reserved) /////////////l//////l//////////////////////I////////// 

20 ////////////////////////l!//////////////////////////// 

21 Random Read 

22 Random Write 

23 File Size 

24 Set Relative 
Record Field Yes 

25 Set Interrupt 
Vector 

26 Create New Program 
Segment 

664 



13 - Differences between MS-DOS Versions 

Function MS-DOS Version 

Num 
Hex Description 1.0 1.1 2.0 2.1 3.0 3.1 3.2 3.3 4.0 

27 Random Block Read 

28 Random Block Write 

29 Parse Filename 

2A Get Date 

2B Set Date Yes 

2C GetTime 

2D Set Time 

2E Set/Reset Verify 
Switch 

2F Get Disk Transfer 
Address (DTA) 

30 Get DOS Version No Yes 
Number 

31 Terminate but 
Remain Resident 

32 (Reserved) ///!/////l/////l/////I//////////////////////////////// 

33 Ctrl/Break Check No Yes 

34 (Reserved) ///l!////l////I/////////////////////////////////////// 

35 Get Vector 

36 Get Disk Free 
No Yes 

Space 

37 (Reserved) ////lf////////////////////////////I/////////////////// 

38 Country Get Yes 
Dependent r---
Information Set No Yes 

39 Create 
Subdirectory No 
(MKDIR) 

Yes 
3A Remove 

Subdirectory 
(RMDIR) 

continued 

665 



Compatibility 

Table 13-2. continued 

Function MS-DOS Version 

Num 
Hex Description 1.0 1.1 2.0 2.1 3.0 3.1 3.2 3.3 4.0 

3B Change Current 
Directory (CHDIR) 

3C Create a File Yes (CR EAT) 

Open a File 
(normal) 

3D Open a Network 
T 

File No Yes 
T 

3E Close a File 
Handle 

3F Read from a File 
or Device 

40 Write to a File 
or Device 

41 Delete a File from 
a Specified 
Directory (UNLINK) 

42 Move File 
Read/Write No 
Pointer (LSEEK) 

43 Change File Mode Yes 
(CHMOD) 

44 I/O Control for 
Devices (IOCTL) 

00 Get Device 
Information 

01 Set Device 
Information 

02 Read from Char-
acter Device 

03 Write to Char-
acter Device 

04 Read from 
Block Device 

05 Write to Block 
Device 

666 



13 - Differences between MS-DOS Versions 

Function MS-DOS Version 

Num 
Hex Description 1.0 1.1 2.0 2.1 3.0 3.1 3.2 3.3 4.0 

44 06 Get Input 
Status 

No Yes 
07 Get Output 

Status 

08 Is Block Device No Yes 
Changeable? 

09 Is Logical 
Device Local 
or Remote? No Yes 

OA Is Handle Local 
or Remote? 

OB Change Sharing No Yes 
Retry Count 

OC Generic IOCTL 
Handle Request No Yes 
(code page 
switching) 

OD Block Device 
Generic IOCTL 
Request 

OE Get Logical No Yes 
Device 

OF Set Logical 
Device 

45 Duplicate a File 
Handle (DUP) 

46 Force a Duplicate 
of a Handle (CDUP) 

47 Get Current 
Directory 

No Yes 
48 Allocate Memory 

49 Free Allocated 
Memory 

4A Modify Allocated 
Memory Blocks 
(SE TB LOCK) 

continued 

667 



Compatibility 

Table 13-2. continued 

Function MS-DOS Version 

Num 
Hex Description 1.0 1.1 2.0 2.1 3.0 3.1 3.2 3.3 4.0 

4B Load or Execute a 
Program (EXEC) 

4C Terminate a 
Process (EXIT) 

4D Get Return Code of 
a Sub-Process No Yes 
(WAIT) 

4E Find First 
Matching File 
(FIND FIRST) 

4F Find Next 
Matching File 

50- ////////////////////////////////////////////////////// 

53 
(Reserved) l//////l/l//////l//////l//////l////////l/l//////I///// 

////////////////////////////////////////////////////// 

54 Get Verify No Yes 
Setting 

55 (Reserved) ////////////////////////////////////////////////////// 

56 Rename a File 
57 Get/Set a File's 

Date and Time 

58 (Reserved) ////////////////////////////////////////////////////// 

59 Get Extended Error 

5A Create Temporary 
File 

5B Create New File 
No Yes 

5C Lock/Unlock File 
Access 

5D (Reserved) /l///////////////////////////////////////////////l///I 
T 

5E Lock/Unlock File 
Access 

00 Get Machine No Yes Name I 

02 Set Printer I 

Setup 

668 



13 - Differences between MS-DOS Versions 

Function MS-DOS Version 

Num 
Hex Description 1.0 1.1 2.0 2.1 3.0 3.1 3.2 3.3 4.0 

5E 03 Get Printer 
Setup 

5F 02 Get Redirection 
List Entry 

Yes No 
03 Redirect a 

Device 

04 Cancel 
Redirection 

60 (Reserved) /////////////////J/////~///////////~///l/"!!1111111111 
61 ///lll/////lll/////I////////////////////////////////// 

-,- -,- T 

62 Get Program 
Segment Prefix No Yes 
(PSP) Address 

63 
(Reserved) 

///////////////////////ll//ll//l///ll//////I////////// 
64 ///l///////////////////////////////////////ll/l////ll/ 

65 Get Extended 
Country 
Information 

66 Get/Set Global No Yes Code Page 

67 Set Handle Count 

68 Commit File 

69- '///////////////////////////lll/////ll///l//ll///////// 
(Reserved) ///l///////ll///l/ll///////////////////////l///////ll/ 

6B ///ll//////ll//////////////l///////ll//I////////////// 

6C Extended No Yes 
Open/Create 

In view of how MS-DOS functions are defined in the various versions as 
shown in Table 13-2, the range of functions can be divided into "functional" 
groups, which, incidentally, tend to define boundaries between different ver
sions of MS-DOS, but not always. These groups are described in the following 
paragraphs. 

Program Terminate Group 
The only function in this group is function 0. This function is almost identical to 
the int 20h interrupt. Although int 20h is defined as Program Terminate in al
most all implementations of MS-DOS, you should use function 0 instead so that 

669 



Compatibility 

670 

the use of the INT instruction is avoided. You should be aware that the manuals 
for MS-DOS versions 2.0 and higher recommend that function 4Ch (Terminate a 
Process, also known as EXIT) be used as the "preferred" method to terminate a 
program. However, function 4Ch doesn't exist in versions prior to 2.00. 

Following the manual's advice for terminating a program is a good idea. We 
highly recommend that you always use function 4Ch to terminate your programs 
for MS-DOS versions 2.00 and higher. If you want your programs to run under 
all versions, use the Get DOS Version function (30h) to determine which pro
gram terminate code to use: Use function 0 for MS-DOS versions 1.0 and 1.1, 
and use function 4Ch for all other versions. 

Standard Character Device Input/Output Group (Olh - OCh) 
This group includes functions 01 through OCh. They are used for input from the 
keyboard, and output to the console display, output to the printer, and as input 
and output to and from the auxiliary (logical) devices. These functions operate 
the same way throughout all versions of MS-DOS and are similar in nature to the 
equivalent range of functions in CP/M. 

Standard File Management Group (ODh -24h, 27h -29h) 
This group includes functions ODh through 24h and 27h through 29h. Using 
these functions to manipulate files allows compatibility with all versions of 
MS-DOS. Some of these functions are similar to the equivalent range of func
tions used in CP/M. Although some fancier functions for file manipulation were 
introduced in MS-DOS 2.00 (described next), carefully consider the com
patibility implications when using them. The section on file manipulation 
towards the end of this chapter also contains some important information that 
you should know about when deciding which group of functions to use. 

Standard Nondevice Functions (25h, 26h, 2Ah -2Eh) 
This group includes fun~tions 25h, 26h, and 2Ah through 2Eh. Note that func
tion 2Eh is the highest function supported in MS-DOS versions prior to 2.00. 
These functions perform a variety of different tasks that aren't related to de
vices: retrieving and setting the current time and date, setting the interrupt 
vector, creating a new program segment, and setting or resetting the verify 
switch. All of these functions are specific to MS-DOS, and equivalents are not 
found in CP/M. All of these functions perform well in all versions of MS-DOS, 
but special attention should be given to function 25h (Set Interrupt Vector). This 
function requires two things before it is executed: the address of the interrupt 
handling routine must be loaded into the DX register and the data segment 
(DS:DX), and the interrupt number must be loaded into the AL register. Be
cause this function deals with interrupts, be careful with its use because it may 
make your program incompatible with other implementations of MS-DOS and 
hardware environments. 



13 - Differences between MS-DOS Versions 

Extended (General) Function Group (2Fh - 38h, 4Ch - 4Fh, 
54h-57h, 59h-5Fh, 62h) 

This group of functions crosses the boundaries of MS-DOS versions 2.00 through 
3.10. Functions 59h through 5Ch and 62h exist only in versions 3. 00 and higher, 
and functions 5Eh and 5Fh exist only in versions 3.10 and higher. None of these 
functions are available under MS-DOS versions below 2.00. Additionally, as of 
MS-DOS version 3.10, functions 32h, 34h, 37h, 50h through 53h, 55h, 58h, 5Dh, 
60h, and 61h are reserved (not defined for use). Functions existing in all versions 
also work consistently among them, with the following exceptions. 

1. Function 38h (Country Dependent Information). Under MS-DOS 
versions 3.00 and higher, this function can be used to set country
dependent information as well as to retrieve the information. However, in 
versions starting with 2.00 up to (but not including) 3.00, the function can 
be used only to retrieve information. 

2. Function 44h (110 Control for Devices) [IOCTL]. Has two new 
additional parameters in MS-DOS version 3.00 to support device drivers 
(AL = 08h to check for removable media and AL = OBh to change the 
sharing retry count on a block device). In MS-DOS 3.10, two more 
parameters were added to check for redirection on a network (AL = 09h 
checks devices, whereas AL= OAh checks file or device handles). 

3. Functions 5Eh and 5Fh. These functions are supported only under 
versions 3.1 and higher and are used only in network environments. Each 
is subdivided into several subfunctions. They are loaded into the AX 
register as four-digit hexadecimal (16-bit) function numbers, with the 
last two digits representing the specific function (or subfunction). 
Function 5EOOh is used to retrieve the name of a machine connected to 
the same network as the machine making the function call. Function 
5E02h is used to initialize a printer connected to a network that is shared 
by several computers. Functions 5F02h through 5F04h are used to 
control redirection of data throughout a network: 5F03h redirects a 
device, 5F02h retrieves redirection information, and 5F04h cancels 
redirection. 

Directory Group (39h - 3Bh, 47h) 

This group consists of functions 39h through 3Bh and 47h, provided under 
MS-DOS versions 2.00 and higher. These functions complement the subdirec
tory commands: 39h creates a subdirectory (MKDIR or MD), 3Ah removes a di
rectory (RMDIR or RD), and 3Bh changes the current directory (CHDIR or 
CD). Function 4 7h is used to retrieve the current-directory information (as if the 
CD command were entered without any parameters). 

Memory/Process Management Group (48h-4Bh) 

Several functions added to MS-DOS version 2.00 can be used for the manage
ment of processes and memory. Most of the functions in this group deal with 

671 



Compatibility 

controlling memory allocation. The last function, 4Bh, is useful for programs 
that call and load other programs or overlays. Note that function 4Ch, Termi
nate a Process (EXIT), should always be used in programs that are called and 
loaded by function 4Bh. 

By now it is clear that maintaining a total or reasonable degree of com
patibility can be complex and rather frustrating. It's always good practice to de
cide beforehand what level of compatibility you want to achieve and then make 
note of the MS-DOS functions you can use. 

Error Codes 

672 

The errors generated by MS-DOS, their types, and the way they're handled 
have changed considerably from earlier versions of MS-DOS. Not only have new 
error codes been introduced in later versions, but new mechanisms of error re
porting have been introduced as well. The following paragraphs describe the dif
ferences in error handling among the versions of MS-DOS. 

Critical or Hard Error Codes (via Int 24h) 
In MS-DOS version 1.0, the process of returning error codes is handled 
exclusively by the int 24h interrupt vector. All of these error codes represent 
errors that are hardware-related and are considered serious or critical in 
nature. These same codes and their reporting mechanism are supported in all 
later versions, although some new error codes were introduced in MS-DOS 
version 2.0. 

For an application program to respond to this error-reporting mechanism, 
the program's initialization code should save the int 24h vector and replace the 
vector with one pointing to the program's custom error routine. Before the pro
gram terminates, the original int 24h vector should be restored to its original 
state. Up to seven codes can be returned through this mechanism under 
MS-DOS version 1.0, up to 13 codes under MS-DOS version 2.0, and up to 16 
codes under MS-DOS versions 3.0 and higher. 

Table 13-3 lists the codes and indicates which are supported only in 
MS-DOS versions 2.00 and higher. The critical error codes shown in Table 13-3 
can also be retrieved through another error-reporting mechanism introduced in 
MS-DOS version 2.0. Under this version, certain function calls return error 
codes when an error condition occurs. This mechanism is described in the para
graph following the table. 

Function Call Error-Return Codes (MS-DOS Versions 2.0 and 
Higher Only) 

Beginning with version 2.0, some function calls return error codes in certain 
registers if an error results after the function executes. If an error occurs, the 
carry flag is set, and the appropriate register can be examined (if supported by 
the function) for the error code. If the carry flag is clear, you can assume no 



13 - Differences between MS-DOS Versions 

error occurred. The critical or hard errors described previously (determined via 
the int 24h mechanism) are also presented through this mechanism, although 
different code values are used. Under versions of MS-DOS from 2.0 to 3.1, the 
following functions return an error code in the AX register if the carry flag is set 
after execution: 38h through 4Bh, 4Eh, 4Fh, 56h, 57h, 5Ah through 5Ch, and 
5EOOh through 5E04h. The AL half of AX should always be examined for the 
error code because some functions return other information in AH. For all of 
these functions, the presence of 0 in AL indicates that no error occurred. 

Table 13-4 lists all of the error codes that can be returned after a function 
call is made. The version(s) of MS-DOS under which each code is supported is 
indicated. Note also that error codes 19 through 31 correspond on a one-to-one 
basis to int 24h type error codes 0 through Ch, and error code 34 corresponds to 
int 24h type error code Fh. 

Table 13-3. Critical Error Code (via Int 24h) 

Error 
MS-DOS Version 

Code Description 1.XX 2.XX 3.XX 4.XX 

0 Write attempt on write- Yes 
protected disk 

1 Unknown unit No 

2 Drive not ready Yes 

3 Unknown command No 

4 Data error (CRC) Yes 

5 Bad request structure length No 

6 Seek error Yes Yes 

7 Unknown media type No 

8 Sector not found Yes 

9 Printer out of paper No 

A Write fault Yes 

B Read fault No 

c General failure Yes 

D Not defined ////// ///Ill ////// ////// 

E Not defined ////// ////// ////// ////// 

F Invalid disk change No Yes 

continued 

673 



Compatibility 

Error 
Code 
(hex) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 
D 

E 

F 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

IA 

674 

Table 13-4. Function Call Error Codes 
(MS-DOS Versions 2.0 and Higher Only) 

MS-DOS Version 

Description 2.0 I 2.1 I 3.0 I 3.1 I 3.2 I 3.3 I 4.0 

Invalid function number 

File not found 

Path not found 

Too many open files 

Access denied 

Invalid handle 

Memory control blocks 
destroyed 

Insufficient memory 

Invalid memory block address 

Invalid environment 

Invalid format 

Invalid access code 

Invalid data 
Yes 

(Reserved) 

Invalid drive specified 

Remove attempt of current 
directory 

Not the same device 

No more files 

Int 24h error 0 (Table 13-3) 

Int 24h error 1 (Table 13-3) 

Int 24h error 2 (Table 13-3) 

Int 24h error 3 (Table 13-3) 

Int 24h error 4 (Table 13-3) 

Int 24h error 5 (Table 13-3) 

Int 24h error 6 (Table 13-3) 

Int 24h error 7 (Table 13-3) 



13 - Differences between MS-DOS Versions 

Table 13-4. continued 

Error MS-DOS Version 
Code 
(hex) Description 2.0 2.1 3.0 3.1 3.2 3.3 4.0 

1B Int 24h error 8 (Table 13-3) 

lC Int 24h error 9 (Table 13-3) 

1D Int 24h error A (Table 13-3) Yes 

1E Int 24h error B (Table 13-3) 

lF Int 24h error C (Table 13-3) 

20 Sharing violation 

21 Lock violation 
No Yes 

22 Int 24h error F (Table 13-3) 

23 FCB unavailable 

24 Sharing buffer overflow ////// ////// ////// ////// Ill/// Yes 

25- ////// ////// ////// ////// ////// //I/II ////// 
41 (Reserved) ////// ////// ////// ////// ////// ////// ////// 

/I/Ill ////// ////// ////// ////// ////// ////// 

42 Network request not 
supported 

43 Remote computer not 
listening 

44 Duplicate name on network 

45 Network name not found 

46 Net work busy 

47 Net work device no longer 
exists 

No Yes 
48 Network BIOS command 

limit exceeded 

49 Network adapter hardware 
error 

4A Incorrect response 
from network 

4B Unexpected network error 

4C Incompatible remote adaptor 

4D Print queue full 

continued 

675 



Compatibility 

676 

Table 13-4. continued 

Error MS-DOS Version 
Code 
(hex) Description 2.0 2.1 3.0 3.1 3.2 3.3 4.0 

4E Queue not full 

4F Not enough space to 
print file 

50 Network name was deleted 

51 Access denied 

52 Net work device type 
incorrect 

53 Net work name not found No Yes 

54 Network name limit exceeded 

55 Network BIOS session limit 
exceeded 

56 Temporarily paused 

57 Network request not accepted 

58 Print/disk redirection 
paused 

59- ////// ////// ////// ////// ////// ////// ///Ill 

5F (Reserved) ////// ////// ////// ////// ////// ////// ////// 
////// /Ill/I ////// ////// //!Ill ////// ////// 

60 File exists No Yes 

61 (Reserved) ////// ///Ill ////// ///Ill ////// ////// ////// 
T ' ' Cannot make <function> 62 

No Yes 
63 Failure on Int 24h 

64 Out of structures 

65 Already assigned 

66 Invalid password No Yes 

67 Invalid parameter 

68 Network write fault 

Function Call Extended Error Information (MS-DOS Versions 
3.0 and Higher Only) 

Because of concerns about compatibility between all versions of MS-DOS, it 
wasn't possible to add error-return information handling to all new and existing 



13 - Differences between MS-DOS Versions 

function calls in later versions. Therefore, in order to enhance MS-DOS's error 
handling capabilities, a new mechanism called the Extended Error Code was in
troduced under MS-DOS version 3.0. Under 3.0 and all subsequent versions, 
when a function executes and either the carry flag is set or the AL register con
tains FFh, additional detailed error information can be retrieved by imme
diately loading 0 into the BX register and then issuing function call 59h (Get 
Extended Error). The information returns as shown in Table 13-5. 

Table 13-5. Extended Error Return Information 

Register Contents 

AX Error code (see Table 13-4) 
BH Error class 
BL Suggested action 
CH Locus 

Error Code 
The error code returned in the AX register can be any one of those listed in 
Table 13-4, depending on the version of MS-DOS. 

Error Class 
One of the values in Table 13-6 is returned in the BH register and indicates the 
general category of the error. This can help determine the actual cause of the 
error because the same error code could occur twice from different causes. 

Value 

1 
2 

3 

4 

5 
6 

7 

8 

9 

10 

11 

12 

13 

Table 13-6. Error Classes 

Definition 

Out of resource (no more space, channels, etc.) 
Temporary situation (problem may go away, such as a locked file) 
Authorization (denied access) 
Internal (MS-DOS determined that error was caused by an internal bug, 
not by the user or the system) 
Hardware failure (problem not caused by user program) 
System failure (serious failure of system software, although may not be 
directly the fault of the user program-such as missing or faulty 
configuration files) 
Application program error (such as inconsistent requests) 
Not found (file or other item not found) 
Bad format (file or item of incorrect format) 
Locked (file or item is interlocked) 
Media (media failure such as incorrect disk, CRC error, incorrect disk in 
drive, or damaged media surface) 
Already exists (collision with existing item such as a file name or 
machine name) 
Unknown (error not categorized or is inappropriate) 

677 



Compatibility 

678 

Suggested Action 
One of the values in Table 13-7 is returned in the BL register and suggests a 
course of action to recover from the error condition. 

Value 

1 

2 

3 

4 

5 

6 

7 

Locus 

Table 13-7. Suggested Error-Recovery Actions 

Definition 

Retry (retry a few times and if failure persists, prompt user to 
determine whether program should continue or be aborted) 
Delay retry (same as retry but pause first to determine whether error 
recovers itself) 
User (prompt user to reenter input-incorrect text may have been typed) 
Abort (terminate the program normally after cleanup) 
Immediate exit (terminate the program abnormally, skipping cleanup) 
Ignore (the error can be ignored) 
Retry after user intervention (continue operation after user interaction, 
such as replacing a disk 

The values in Table 13-8 are returned in the CH register and provide additional 
information about where the problem is located. 

Value 

1 
2 
3 

4 

5 

Table 13-8. Locus of Error 

Definition 

Unknown (nonspecific or not appropriate) 
Block device (related to disk storage media) 
Network 
Serial device (error is related to a serial link or device) 
Memory (error is related to RAM memory) 

Because of the changes made in error handling in newer versions of 
MS-DOS, programmers face difficult choices. The new "extended error" infor
mation technique is obviously the most useful for designing error-trapping rou
tines in your programs. But its price is noncompatibility. If you must include 
this technique in your programs and also must maintain some form of downward 
compatibility with older versions of MS-DOS, the Get MS-DOS Version routine 
(described earlier in this chapter) could prove useful. For MS-DOS versions be
low 2.0, you would check only for those error codes supported by the version. 
For versions 2.0 and 2.1, you would expand the error-handling capability and 
provide for the detection of more error codes. And for versions 3.0 and higher, 
you could expand error-handling even further with the Get Extended Error In
formation function call. 



13 - Differences between MS-DOS Versions 

Disk Formats 

As pointed out in Chapter 11, "Disk Layout and File Recovery," several disk for
mats are supported by the various versions of MS-DOS. Tables 13-9 and 13-10 
provide summaries of the specifications of all the standard 31/2-inch, 5V4-inch, 
and 8-inch floppy disk formats supported by MS-DOS up to version 4.0. For 
more detailed information, however, refer to Chapter 11. 

Although other formats and types of disks are supported under some im
plementations of MS-DOS, Table 13-9 shows only those floppy disk formats that 
are officially supported by MS-DOS as of the printing of this book. Similarly, 
specifications of hard disks are not covered because many variations are product 
or system specific. The support for hard disks is generally contained in the 
ROM-BIOS of the system; many types and sizes of hard disks can be used, de
pending on the version and manufacturer of the ROM-BIOS. Special types of 
media, such as the Bernoulli Box, often require special disk controllers and in
stallable device drivers in order to contend with the lack of support in most im
plementations of the ROM-BIOS. MS-DOS versions 2.0 through 3.30 support 
many hard disk formats, with partitions reaching a maximum size of 32 
megabytes. 

MS-DOS versions 2.0 through 3.2 support only one DOS partition per hard 
disk, whereas version 3.3 supports several DOS partitions per hard disk, each 
with a maximum size of32 megabytes and each assigned a drive name. MS-DOS 
version 4.0 (and COMPAQ MS-DOS version 3.31) supports extended-size parti
tions that may be as large as 512 megabytes. Extended-size partitions are op
tional under MS-DOS 4.0: a large hard disk can still be formatted with several 
DOS partitions that are 32 megabytes or smaller in size. Note that 32-megabyte 
or smaller partitions use 16-bit sector numbers, and extended-size partitions 
use 32-bit sector numbers. This can cause incompatibility problems with many 
applications that reference a disk's file allocation table (FAT) and that reference 
sectors with 16-bit values. See Chapter 11 for more information on disk formats. 

Table 13-9. MX-DOS Floppy Disk Formats 

MS-DOS Version 
Specifi-
cations 1.0 1.1 2.0 2.1 3.0 3.2 3.3 See Note 1 

Size 514'' 514'' 5114'' 5114'' 51;4" 3112'' 3112" 8" 8" 8" 

Format 
byte FFE FFF FFC FFD FF9 FF9 FFO FFE FFD FFE 

Sides 1 2 1 2 2 2 2 1 2 2 

Tracks 
per side 40 40 40 40 80 80 80 77 77 77 

Sections 
per track 8 8 9 9 15 9 18 26 26 8 

Bytes per 
sector 512 512 512 512 512 512 512 128 128 1024 

679 



Compatibility 

MS-DOS Version 
Specifi-
cations 1.0 1.1 2.0 2.1 3.0 3.2 3.3 See Note 1 

Sections 
per cluster 1 2 1 2 1 2 1 4 4 

Boot 
sectors 1 1 1 1 1 1 1 1 4 

Sectors 
per FAT 1 1 2 2 7 3 9 6 6 

Number 
ofFATs 2 2 2 2 2 2 2 2 2 

Root 
directory 
sectors 4 7 4 7 14 7 14 17 17 

Root 
directory 
entries 64 112 64 112 224 112 224 68 68 

Total 
sectors 320 640 360 720 2400 1440 2880 2002 4004 

Data 
sectors 313 630 351 708 2371 1426 2857 1972 3940 

Total 
clusters 313 315 351 354 2371 713 2857 493 985 

Total 160 320 180 360 1.2 720 1.44 501 250.25 
capacity Kbytes Kbytes Kbytes Kbytes Mbytes Kbytes Mbytes Kbytes Kbytes 

Total 
data 156.5 315 175.5 354 1.1855 713 1.4285 246 492.5 
capacity Kbytes Kbytes Kbytes Kbytes Mbytes Kbytes Mbytes Kbytes Kbytes 

1. The format descriptor byte values used to identify the format of 8-inch disks are the same as 
those used for some of the 5V•-inch disks. The distinction is handled either within the BIOS 
of the particular implementation of MS-DOS or within a device driver. Most implementations 
of MS-DOS, especially in those systems that have the BIOS stored in ROM, do not have the 
necessary routines within the BIOS for 8-inch disks. Thus, support is usually handled with a 
special device driver. Because the first single-density, 8-inch format has the same descriptor 
byte value (FFE) as the last (double-density) format, MS-DOS makes the distinction when it 
tries to read the disk: The system first assumes that the disk is formatted to single density. 
If no error occurs after reading the first sector, MS-DOS continues treating the disk as a 
single-density disk. If an error occurs after first reading the disk, MS-DOS assumes that the 
disk is formatted to double density and tries to read the first sector again. Nate also that 
some systems support a double-density format for single-sided, 8-inch disks, which yields a 
total disk capacity approximately half that of double-sided disks (610 Kbytes). 

1 

1 

2 

2 

6 

192 

1232 

1221 

1221 

1.232 
Mbytes 

1.221 
Mbytes 

File Manipulation 

680 

When dealing with different MS-DOS versions, consider the way in which files 
are handled in your programs. When MS-DOS was first released, it provided 
file-handling capabilities similar to those used under the CP/M (control program 



13 - Differences between MS-DOS Versions 

for microcomputers) operating system. This similarity was intentional because 
it provided programmers with a relatively painless method to convert both 8-bit 
and 16-bit programs from CP/M to MS-DOS. In order to maintain compatibility, 
all versions of MS-DOS up to version 3.1 have the same file-handling ca
pabilities. A new method, however, was introduced under version 2. 0 that repre
sents a major departure from CP/M-style file handling. This method is very 
similar to the file-handling method used in the XENIX operating system. Al
though much easier to use, the new method is not, however, compatible with the 
older method and therefore requires cautious attention. The following para
graphs describe the differences between these two methods. 

Using File Control Blocks (FCBs) 

Function calls OFh through 29h, introduced in the first version of MS-DOS, are 
used in conjunction with an FCB (file control block) to create, modify, and delete 
a file. An FCB is a segment of code written to memory that defines the param
eters of a program-manipulated file. MS-DOS and the application program use 
the FCB parameters to ascertain the file's location, name, size, and other perti
nent information. However, because no function call was provided to actually 
create an entire FCB, the FCB must already be defined before any of the file
related function calls are used in a program. In all cases, each of the file-related 
function calls (OFh through 29h) requires that the location of the FCB in mem
ory be loaded into the DS:DX register pair prior to executing the function. This 
means that the application program must first create an FCB and load it to a 
known location in either the data segment or the data area of the code segment 
of memory (whichever is initially defined by the program). 

When MS-DOS loads a program, the system creates and formats two FCBs 
in the program's PSP (program segment prefix). The location of these FCBs in 
the PSP, as well as the means of accessing the PSP, are described in Chapter 3. 
The file name fields are filled in from information typed on the command line 
when the program is entered (as with ''A>MUNG infile outfile"). However, if a 
file specification contains a path name, only the drive number in the FCB is 
valid. Additionally, no redirection directives appear in the FCB. Finally, note 
that if the program opens the first FCB in the PSP, the second FCB is 
overwritten. 

Table 13-10 shows the structure of an FCB and indicates both the size and 
the offset location in memory for each parameter within the FCB. Notice that 
not all parameters within an FCB are controlled by the application program. 
Some are modified only by MS-DOS itself, and others can be modified by both 
the program and MS-DOS. In either case, space must be allotted for all param
eters when an FCB is created. 

In Table 13-10, fields with negative offsets are used under MS-DOS ver
sions 2.0 and higher to turn the FCB into an extended FCB, which allows the use 
of the file attribute parameter in offset -1. OFFh must be at offset -7 to denote 
the FCB as an extended FCB. 

681 



Compatibility 

682 

Table 13-10. MS-DOS FCB Format 

Offset Byte 

-7 
-6 
-1 
0 
1 
9 

12 
14 
16 
20 
22 
32 
33 

Size 

1 
6 
1 
1 
8 
3 
2 
2 
4 
2 

10 
1 
4 

Description 

OFF hex 
Reserved (must be zero) 
File attribute 
Drive number (0 through 16) 
File or device name 
File extension or type 
Current block 
Record size in bytes 
File size in bytes 
Date 
Reserved 
Current record 
Random record number 

Both offset and size values are in decimal. 

MS-DOS File Handles 

Modified by 

Program 
Program 
Program/MS-DOS 
Program/MS-DOS 
Program 
Program 
Program 
Program 
MS-DOS 
MS-DOS 
MS-DOS 
Program/MS-DOS 
Program/MS-DOS 

MS-DOS version 2.0 provided a much easier method for the manipulation of 
files. Instead of painstakingly defining and creating an FCB whenever a file is 
created or opened, several function calls can be used that require only that you 
specify a single ASCII string describing the entire file specification and termi
nated by a zero. Called an ASCIIZ string, it can be as long as 64 bytes to accom
modate long path names, and it follows the same syntax as a normal file 
specification: 

drive: \path \filename. extension 

When either function call 3Ch (Create a File) or function 3Dh (Open a File) 
is executed, MS-DOS creates a file handle, based on the information contained 
in the ASCIIZ string. Function calls 3Ch through 57h are all file-related func
tions that involve the use of file handles. These include three new functions (5Ah 
through 5Ch) introduced in MS-DOS version 3.0. 

Because MS-DOS creates and controls file handles, the application pro
gram no longer needs to keep track of where the file information is located in 
memory. Simply referencing the ASCIIZ string is sufficient to inform MS-DOS 
about what the program is doing according to the functions being used. This 
built-in facility also has another benefit: Several file handles can exist at one 
time because MS-DOS always keeps track of where they're located in memory. 

The only disadvantage with file handles is that they're not supported by 
versions of MS-DOS prior to 2.0. So if a program must be compatible with all 
versions of MS-DOS, avoid the use of file handles. Note, however, that with the 
introduction of file handles, as well as many other features, MS-DOS versions 
2. 0 through 3.1 have proven to be stepping stones of sorts between older operat
ing systems (such as CP/M) and the more advanced XENIX operating system. 

Almost all of the new MS-DOS file-related function calls are directly com
patible with those under XENIX, as are other features such as path names, 
tree-structured directories, and redirection. Thus, upward compatibility should 



13 - Differences between MS-DOS Versions 

also be considered, especially when one realizes that current versions of 
XENIX do not support the old FCB method of file handling. 

MS-DOS and the IBM Personal Computer and IBM 
Personal System 2 Series 

The IBM Personal Computer (IBM PC) undoubtedly has been the most popular 
of all the computers installed with MS-DOS. Indeed, the high popularity of 
MS-DOS has been due to the unprecedented success of the IBM Personal Com
puter series and compatible machines. How does MS-DOS, as it is implemented 
on the IBM PC, compare with the implementations described in this chapter 
and in this book? When reading the MS-DOS manual for the IBM PC and IBM 
PS/2 (in which MS-DOS is called DOS or IBM PC-DOS) and the MS-DOS man
ual published by Microsoft, you notice both similarities and significant dif
ferences. The similarities involve parts of MS-DOS that are standard or 
"generic" to all implementations of MS-DOS. The differences represent features 
of MS-DOS that are often unique to particular implementations. The goal of this 
book is to cover programming in the MS-DOS environment from the generic 
point of view and the focus is thus on items of programming that are applicable 
to all implementations of MS-DOS. However, because MS-DOS on the IBM PC 
is the most popular implementation, the similarities and differences must be 
made clear. Having this information helps you make crucial compatibility design 
decisions for your programs. 

Similarities 
The following generic aspects of MS-DOS are the same throughout all imple
mentations of MS-DOS for any version. 

• DOS (disk operating system) program. This program is MS-DOS and is 
stored in a hidden file on the boot disk. On the IBM PC, this file is called 
IBMDOS. COM. Although it may be called something else on other 
machines, this file is always the same for a given version and can be 
broken down into the following parts. 

1. Operating system executive 

2. Function calls 

3. Memory management (not memory layout) up to 640K 

4. BIOS interface (not the BIOS itself) 

• The BIOS interface program. The BIOS (basic input/output system) 
interface program acts as an interface or translator between MS-DOS 
and the BIOS. In the IBM PC, this interface is stored on the boot disk 
in a hidden file called IBMBIO.COM. The input part of the program is 
the same for any version of MS-DOS, but the output depends on the 
particular machine (IBM PC, IBM PCjr, IBM PC Portable, IBM PC XT, 
IBM AT, or IBM PS/2). DOS for IBM PC-compatible machines has a 

683 



Compatibility 

684 

similar file, but it is called something else. In some implementations of 
MS-DOS, such as MS-PRO and PC-PRO for the CompuPro (Viasyn) 
computers, this file is replaced by the entire BIOS itself. 

• Command interpreter (COMMAND.COM). This nonhidden file exists on 
all boot disks. It is normally the same for all implementations, but you 
occasionally encounter some differences. It provides the interface 
between MS-DOS and the user, displays prompts, and provides built-in 
commands and functions, such as DIR, COPY, RENAME, ERASE, and 
redirection. 

• External commands. A set of external commands is standard throughout 
all implementations of MS-DOS. However, some external commands 
unique to particular implementations of MS-DOS are often added. For 
example, the commands COMP and DISKCOMP are unique to the 
IBM PC series. Most other implementations of MS-DOS have 
equivalent commands, but they're slightly different and normally called 
something else. 

Differences 

The following parts of MS-DOS are implementation-specific: 

• BIOS. On the IBM PC series, as well as almost all IBM PC-compatible 
machines, the BIOS is stored in ROM. The BIOS contains routines that 
act as extensions of MS-DOS to control the hardware. Because the 
hardware is always based on the proprietary design of the computer's 
manufacturer, the design of the BIOS must also be proprietary unless it 
is purchased from another manufacturer. The following general aspects of 
the BIOS are often machine-specific: 

1. Hardware and software interrupt handlers 

2. Routines for disk controllers and disk drivers 

3. Routines for the console, printer, and communications ports 

4. Other miscellaneous functions, such as graphics controllers and 
game adapters 

• BIOS interface program. On all machines containing a BIOS interface 
file (such as IBMBIO.COM on the IBM PC series), the input part of the 
program is the same so that it can accept generic data from the MS-DOS 
operating system. The output part of this file, however, is different 
because it has to be able to communicate with the proprietary BIOS. 

• Device drivers. In order to control certain unique aspects of the system's 
hardware, many systems now include device drivers as part of MS-DOS. 
In the IBM PC series, the device driver called ANSI.SYS adds extended 
functions to the monitor system. A similar file is provided with some 
IBM PC-compatible machines but is rarely provided for non-IBM 
PC-compatible machines. 



13 - Difference between MS-DOS Versions 

• External commands. Special nonstandard external commands are often 
included in implementations of MS-DOS. 
Generally, the most important difference between MS-DOS implementa

tions involves the BIOS itself because the BIOS contains the routines required 
by the unique hardware (such as disk controllers, monitors or terminals, and 
keyboards) of the machine. Thus, when making design decisions about a pro
gram, the intended level of program compatibility should be carefully consid
ered. If you want your program to be compatible with all implementations of 
MS-DOS, never access the BIOS directly and never use system-specific func
tions, such as interrupts. If system-specific functions are necessary but across
the-board compatibility is still required, such functions should be handled either 
in device drivers or, if accompanied by an installation program that can make 
machine-specific modifications, in the program itself. 

Even within the series of IBM PCs, compatibility issues arise. For exam
ple, the capabilities of BIOS programs stored in ROM vary among the IBM PC, 
IBM PC XT, and IBM AT. Although the BIOS functions in the IBM PC also 
exist in the IBM PC XT, the XT provides additional functions. Comparable dif
ferences exist between the IBM PC XT and the IBM AT. If you're unsure about 
the differences, refer to the IBM Technical Reference (hardware) manuals for 
each machine. The entire listing of the BIOS is provided in each manual. 

Compatibility with Other Operating Systems 

As mentioned earlier in this chapter, MS-DOS is in various ways similar to other 
operating systems. The first version of MS-DOS, from both the programmer's 
and the user's standpoints, is similar to the CP/M operating system. Although 
many features of MS-DOS do not exist in CP/M, the basic structure and com
mand usage (such as the DOS> prompt and .COM command files) are virtually 
identical. MS-DOS version 2.00, however, introduced several features and func
tions derived from a much more advanced operating system called XENIX, also 
from Microsoft. (XENIX is a variation of the popular minicomputer and main
frame operating system called UNIX.) Functions such as file and device redirec
tion, pipes, device drivers, and file handles are derivations of similar functions 
provided by XENIX. With several versions of MS-DOS now available, some of 
the newer operating systems offer MS-DOS compatibility. Probably the best 
known examples are Concurrent PC DOS and Concurrent DOS286 from Digital 
Research, Inc. (the original designers of CP/M). The following paragraphs give 
an overview of the similarities and differences among MS-DOS and these com
patible and pseudo-compatible operating systems. 

CP/M-80 
After examining the architecture and capabilities of MS-DOS, you will know 
that the designers got their ideas from the CP/M operating system for 8080, 
8085, and Z80 microprocessor-based machines. Before the introduction of the 
IBM PC with MS-DOS, CP/M was considered the de facto standard operating 

685 



Compatibility 

686 

system for microcomputers. CP/M still remains the most popular operating sys
tem for 8-bit machines. When computer manufacturers began to entertain plans 
for designing 16-bit computers using the then recently introduc.ed 8086 micro
processor from Intel, many of them had to wait because a 16-bit version of CP/M 
(now called CP/M-86) was not available. A company called Seattle Computer 
Products went ahead and designed their own operating system, which they 
called QDOS (Quick 'n Dirty Operating System) and which, after several im
provements, they later renamed 86-DOS. 

The architecture of 86-DOS was very similar to that of CP/M, but Seattle 
Computer Products improved on many functions and added some new ones. 
86-DOS was then sold to Microsoft and was renamed MS-DOS. This first version 
of MS-DOS (which was essentially an unchanged 86-DOS) was adopted for use 
by IBM on their newly released personal computer, the IBM PC. Microsoft then 
made several enhancements to MS-DOS, which resulted in MS-DOS version 
2.00. MS-DOS 2.0 retained most of the functions of the first version. Thus, the 
similarity to CP/M was maintained, which was of great benefit to programmers 
because most CP/M programs could be easily converted to MS-DOS. From the 
programmer's point of view, the following similarities are important: 

• Function calls. Most of the function calls in the first version of MS-DOS, 
especially those related to file functions, are very similar to those 
provided by CP/M versions 2.2 and 3.0. Although register usage differs 
considerably between the 8-bit 8080/Z80 and the 16-bit 8086 family of 
microprocessors, the way in which the functions are set up and return 
information is very similar. Even some of the function call numbers 
themselves are the same. MS-DOS functions that are virtually identical 
to those of CP/M include functions 0 through 24 hex. These functions and 
their operation have been retained in later versions of MS-DOS up to 
version 3.1. 

• FCBs. The only way the first version of MS-DOS could create, open, 
change, or delete a file was through the use of an FCB. The format of an 
FCB under MS-DOS and the way in which it is set up is almost identical 
to FCB usage under CP/M. Because file handling is crucial in most DOS
based operating systems, the similarities between FCB usage in CP/M 
and in MS-DOS are invaluable to programmers. Although a new file
handling mechanism was introduced in MS-DOS version 2.00, all versions 
up to version 3.1 still retain, for compatibility purposes, the "old" FCB 
method. 

• Commands. The use of built-in commands and external program 
commands is very similar in both operating systems. CP/M has its built
in commands in what is called the CCP (console command processor), 
which is part of the operating system when loaded into memory. MS-DOS 
handles built-in commands in much the same way, except that its 
command processor exists in a disk file called COMMAND.COM. 
MS-DOS also has an 8-bit compatibility mode for external commands and 
thus handles .COM files in a manner almost identical to the way they are 
handled by CP/M. Under MS-DOS, .COM files use only a 64-Kbyte 



13 - Differences between MS-DOS Versions 

segment of memory, thereby emulating the memory usage of an 8080 or 
Z80 microprocessor-based system. The .EXE command format under 
MS-DOS, however, is used only in machines with 8086-family 
microprocessors and therefore is not compatible with CP/M. 

CPIM-86 and Concurrent CPIM-86 
The CP/M-86 operating system is the 16-bit counterpart of the original CP/M for 
the 8086 family of microprocessors. Many of its features, carried over from the 
8-bit CP/M version, are similar to MS-DOS. For example, FCBs and file-related 
function calls (excluding file handles) are referenced in CP/M-86 much like the 
methods used in MS-DOS. 

Shortly after the introduction of CP/M-86, a new version was introduced 
called Concurrent CP/M-86, which added multitasking and windowing features 
to CP/M-86. Special versions of both operating systems were released for the 
IBM PC, which made special use of these features. Most of the functions of 
CP/M-86 were carried over to Concurrent CP/M-86, but many of them were fur
ther complicated by the multitasking features of the newer operating system. 

Concurrent PC-DOS and Concurrent DOS-286 
With the emergence of MS-DOS as the de facto standard operating system for 
the 16-bit 8086 family of microcomputers (especially the IBM PC and compatible 
machines), the makers of CP/M realized that they would have to provide some 
form of compatibility with MS-DOS because of the large user-base of MS-DOS 
systems. Digital Research, Inc., released an enhanced version of Concurrent 
CP/M-86 called Concurrent PC-DOS, which, in its initial release, provided 
MS-DOS version 1.0 compatibility. Version 3 of Concurrent PC-DOS was en
hanced yet again to include MS-DOS version 2.00 compatibility. This operating 
system is capable ofrunning both CP/M-86 and MS-DOS programs concurrently 
and accepts all of the function calls supported under the equivalent versions 
of MS-DOS. 

Another variation of Concurrent PC-DOS called Concurrent DOS286 
is planned for machines with the Intel 80286 microprocessor. This operating sys
tem is designed for use with the 80286 processor in "virtual" (also called "pro
tected") mode, providing a memory-addressable range of 16 megabytes. This 
operating system is also capable of running in the "real" mode (8086-com
patibility mode) concurrently with the virtual mode so that both MS-DOS and 
CP/M-86 programs can be run. Concurrent DOS286 provides the same MS-DOS 
compatible features as Concurrent PC-DOS. Caution should be exercised when 
dealing with the compatibility of this operating system because its correct oper
ation depends heavily on the version of the 80286 processor used in the system 
(earlier versions of the processor had problems switching and communicating 
between the virtual and real modes). 

687 



Compatibility 

XENIX and UNIX 

0812 

As indicated previously, later versions of MS-DOS (beginning with version 2. 0) 
incorporated some features found in XENIX, another Microsoft operating sys
tem. Most of the features introduced in MS-DOS version 2.0, such as device 
drivers, redirection, piping, and file handles, are features based on those found 
in XENIX, which in turn is based on the UNIX operating system from AT&T. 
Thus, although you should pay attention to downward compatibility issues 
(MS-DOS and CP/M), upward compatibility should also be a consideration be
cause the XENIX-like features of MS-DOS represent an indication of what's in 
store for future versions of MS-DOS. 

MS-DOS programs are not in any way compatible with the 80286/80386 
protected-mode operation of the OS/2 operating system. OS/2 does, however, 
provide a "compatibility box" in which most MS-DOS programs can run, un
modified, under an MS-DOS emulator. The compatibility box ofOS/2 runs in the 
8086-family real mode (1 megabyte of addressable memory, of which 640K is us
able under MS-DOS) and provides MS-DOS emulation compatible with MS-DOS 
version 3.3. However, because the compatibility box does not actually run 
MS-DOS but rather emulates it, compatibility is not 100 percent. For example, 
programs using timing interrupts will most likely not run in the compatibility 
box. Furthermore, some of the undocumented int 21h function calls may not op
erate the same as they do under the real MS-DOS. The locations of some of the 
data structures in MS-DOS may not be the same in the compatibility box. In 
general, so-called well-behaved programs will run in the compatibility box with
out needing any modifications. 

Because OS/2 is designed primarily for the 80286 processor, OS/2 runs on 
the 80386 processor in "80286 protected mode." Consequently, OS/2 supports 
only one compatibility box at a time despite its multitasking capabilities. The 
80386 processor is capable of running many real mode "boxes" at once when the 
processor is placed in the 80386 protected mode. Multiple compatibility boxes 
will not be possible under OS/2 until an 80386-specific version of OS/2 is 
released. 

Summary 

688 

Many things-more than can be covered in one chapter-must be considered 
when you develop programs intended to be compatible with all or most versions 
and implementations of MS-DOS. The information presented here should 
provide a good basis for starting to investigate the many compatibility issues 
you're likely to encounter. Most manufacturers of computers that run MS-DOS 
have published technical information about how MS-DOS is implemented on 
their machines. If you're writing a program targeted for a particular machine 
(or intended to be compatible with a particular machine), these manuals can help 
you considerably. 







A - Development Tools 

~ HIS appendix describes some tools that can simpUfy and enhance the pro~ cess of using assembly language to develop application programs. The fol
lowing text describes: automating the program development process with batch 
files, using the Microsoft MAKE facility, creating .EXE and .COM programs 
with templates, and using include files and library routines. 

Using Batch Files to Automate the Assembly Process 

The MS-DOS batch processor is often one of the least appreciated facilities in 
the operating system. This facility can, however, be a very useful tool when you 
use the MASM macroassembler. Listings A-1, A-2, and A-3 provide the sources 
for three batch files: MASM2EXE.BAT, MASM2COM.BAT, and MK.BAT. 
MASM2EXE.BAT is used to automate the process of assembling and linking 
.EXE programs. MASM2COM.BAT is a modification of the first file and in
cludes the process of converting an .EXE file to a .COM file. Both files are de
signed to work with Microsoft MASM versions 1.00 through 4.00 and most 
versions of the linker LINK. MK.BAT (Listing A-3) is a significantly enhanced 
development batch file for use with MASM versions 5.0 and higher and LINK 
versions 3.00 and higher. MK.BAT can be used to create .EXE, .COM, or .OBJ 
(linkable object-code) files by using command-line parameters. 

Using Batch Files for Versions of MASM Prior to Version 5 

The MASM2EXE.BAT and MASM2COM.BAT batch files shown in Listings 
A-1 and A-2 are appropriate for use with versions of MASM from 1.00 to 4.00 
and LINK 1.00 to 2.00. 

Modifications to the batch files for later versions of MASM and LINK are 
provided in the remarks in the listings. Both files require that a second file 
called AUTO LINK be present. This file contains four carriage return/line feeds 
and is used to deal with the problem that LINK (up to version 2.00) has: It can
not accept null parameters on the command line for the listing (.MAP) and 
library (.LIB) options. AUTOLINK is submitted to LINK by adding the 
file name on the command line and preceding it with an @ sign. The @ sign is 

693 



Appendixes 

694 

used for compatibility with MS-DOS versions prior to version 2.00 because 
the earlier versions don't support command-line redirection. 

Using the batch files is very simple. Simply enter the name of the batch 
command followed by the name of the file to be assembled. Do not include the 
extension, as .ASM is assumed. If you're using MS-DOS version 2.00 or above 
and the PATH is set correctly, the drives on which any of the related files are 
stored don't have to be specified. 

Listing A-1. MASM2EXE.BAT 

echo off 
if not exist %1.asm goto NOFILERR 
rem 
masm %1 %1 nul nul 
rem 
rem Use the above only with versions of MASM below 2.00 
rem Use "masm %1.asm,,;" for MASM version 2.00 and above 
rem 
Link %1 @a:autolink 
rem 
rem Use the above only with versions of LINK below 2.20 
rem Use "Link %1.obj,,nul;" for LINK version 2.20 and above 
rem 
echo Deleting %1.obj 
del %1.obj >nul: 
echo Done! 
dir %1.* 
goto END 
rem 
:NOFILERR 
echo The fi Le %1.asm was not found. 
:END 

Listing A-2. MASM2COM.BAT 

echo off 
if not exist %1.asm goto NOFILERR 
rem 
masm %1 %1 nul nul 
rem 
rem Use the above only with versions of MASM below 2.00 
rem Use "masm %1.asm,,;" for MASM version 2.00 and above 
rem 
Link %1 @a:autolink 



A - Development Tools 

rem 
rem Use the above only with versions of LINK below 2.20 
rem Use ''Link %1.obj,,nul;" for LINK version 2.20 and above 
rem 
echo Deleting %1.obj 
del %1.obj >nul: 
echo Creating %1.com from %1.exe (and deleting %1.exe) 
exe2bin %1.exe %1.com >nul: 
del %1.exe >nul: 
echo Done! 
dir %1.* 
goto END 
rem 
: NOFI LERR 
echo The file %1.asm was not found. 
:END 

Note that some of the lines in Listings A-1 and A-2 terminate with output 
redirection parameters. If you're using a version of MS-DOS prior to version 
2.00, these parameters should be stripped. 

Using Batch Files for MASM Versions 5 and Higher 
If you are using MASM version 5 and LINK version 3, or higher versions, the 
batch file MK.BAT, shown in Listing A-3, may be used. MK.BAT may be used to 
create either. EXE, . COM, or. OBJ files by specifying the correct parameter on 
the command line. For example, if you wish to assemble a file called 
TESTl.ASM to create TESTl.EXE, simply enter MK TEST1 EXE. Con
versely, if the target file is TESTl.COM, enter MK TEST1 COM, or enter 
MK TEST1 OBJ to create an .OBJ-linkable object-code file. MK.BAT also 
makes use of return codes generated by MASM and LINK. If a return code 
other than 0 is returned by either MASM or LINK, MK.BAT stops processing 
and exits with an error message. MK.BAT's error checking is useful, for exam
ple, when MASM detects an error at assembly time-MK.BAT is prevented 
from continuing to link time until the error in the source file is fixed. 

Listing A-3. MK.BAT 

@ECHO off 
REM Use the above Line to prevent "ECHO off" from being 
REM displayed, but only if running DOS 3.3 or above. Otherwise, 
REM use the next two Lines with ANSI.SYS Loaded. 
REM ("-["=ASCII ESCape character). 
REM ECHO off 

continued 

695 



Appendixes 

696 

Listing A-3. continued 

REM ECHO A[[sA[[1AA[[KA[[u 
REM 

IF (%1)==() goto :NOPARM 
IF not exist %1.asm goto :NOFILE 
SET F1=%1 
IF (%2)==() goto :ASKTYPE 
SET TYPE=%2 
IF (%3)==() goto :CHKTYPE 
SET MASMS= 
SET LINKS= 
IF (%3)==<m> 
IF (%3)==(M) 
IF C%3)==Cmo) 
IF (%3)==(m0) 
IF (%3)==(Mo) 
IF C%3)==CMO) 

rem 
IF (%3)==Cl) 
IF (%3)==(L) 
IF (%3)==< Lo) 
IF C%3)==CLO) 
IF C%3)==(Lo) 
IF C%3)==CLO) 

rem 
IF (%5)==(m) 
IF (%5)==(M) 
IF (%5)==<mo) 
IF C%5)==Cm0) 
IF C%5)==(Mo) 
IF C%5)==CMO) 

rem 
IF C%5)==<L> 
IF (%5)==(L) 
IF C%5)==CLo) 
IF C%5)==CLO) 
IF (%5)==(Lo) 
IF (%5)==CLO) 

rem 
GOTO :CHKTYPE 

:ASKTYPE 
ECHO AH 

SET MASMS=%4 
SET MASMS=%4 

SET MASM=%4 
SET MASM=%4 
SET MASM=%4 
SET MASM=%4 

SET LINKS=%4 
SET LINKS=%4 

SET LINK=%4 
SET LINK=%4 
SET LINK=%4 
SET LINK=%4 

SET MASMS=%6 
SET MASMS=%6 

SET MASM=%6 
SET MASM=%6 
SET MASM=%6 
SET MASM=%6 

SET LINKS=%6 
SET LINKS=%6 

SET LINK=%6 
SET LINK=%6 
SET LINK=%6 
SET LINK=%6 

ANSWER Enter type of fi Le to be created: OBJ, COM, or EXE: 
ECHO AH 

:CHKTYPE 
IF (%TYPE%)==(o) SET TYPE=OBJ 



A - Development Tools 

IF (%TYPE%)==(0) SET TYPE=OBJ 
IF (%TYPE%)==(ob) SET TYPE=OBJ 
IF (%TYPE%)== (Ob) SET TYPE=OBJ 
IF (%TYPE%)==(oB) SET TYPE=OBJ 
IF (%TYPE%)==COB) SET TYPE=OBJ 
IF (%TYPE%)==(obj) SET TYPE=OBJ 
IF (%TYPE%)==(0bj) SET TYPE=OBJ 
IF (%TYPE%)==(oBj) SET TYPE=OBJ 
IF (%TYPE%)==(obJ) SET TYPE=OBJ 
IF (%TYPE%)==C0Bj) SET TYPE=OBJ 
IF (%TYPE%)==(oBJ) SET TYPE=OBJ 
IF (%TYPE%)==COBJ) goto :DOASM 

rem 
IF (%TYPE%)==(e) SET TYPE= EXE 
IF (%TYPE%)==(E) SET TYPE= EXE 
IF (%TYPE%)==(ex) SET TYPE= EXE 
IF (%TYPE%)==( Ex) SET TYPE= EXE 
IF (%TYPE%)==(eX) SET TYPE= EXE 
IF (%TYPE%)==( EX) SET TYPE= EXE 
IF (%TYPE%)==(exe) SET TYPE= EXE 
IF (%TYPE%)==( Exe) SET TYPE= EXE 
IF (%TYPE%)==(eXe) SET TYPE= EXE 
IF (%TYPE%)==(exE) SET TYPE=EXE 
1F (%TYPE%)==(EXe) SET TYPE=EXE 
IF (%TYPE%)==(eXE) SET TYPE=EXE 
IF (%TYPE%)==( EXE) goto :DOASM 

rem 
IF (%TYPE%)==(c) SET TYPE= COM 
IF C%TYPE%)==(C) SET TYPE= COM 
IF (%TYPE%)==( co) SET TYPE= COM 
IF (%TYPE%)==( Co) SET TYPE=COM 
IF (%TYPE%)==(c0) SET TYPE=COM 
IF (%TYPE%)==( CO) SET TYPE=COM 
IF (%TYPE%)==( com) SET TYPE= COM 
IF (%TYPE%)==( Com) SET TYPE= COM 
IF (%TYPE%)==(c0m) SET TYPE= COM 
IF (%TYPE%)==(coM) SET TYPE=COM 
IF (%TYPE%)==(C0m) SET TYPE= COM 
IF (%TYPE%)==(c0M) SET TYPE=COM 
IF (%TYPE%)==( COM) goto :DOASM 

rem 
GOTO :ASKTYPE 

:DOASM 
IF (%MASM%)==() SET MASM=/S/P/V/L%MASMS% 
IF not (%MASM%)==0 ECHO MASM command-line switches: %MASM% 

continued 

697 



Appendixes 

698 

ECHO on 
MASM %F1%.asm; 
@ECHO off 

Listing A-3. continued 

IF errorlevel 1 goto :NOASSEM 
REM 

IF (%TYPE%)==COBJ) goto :LSTFILES 
IF (%LINK%)==() SET LINK=/I/CP:1%LINKS% 
IF not (%LINK%)==() ECHO Link command-Line switches: %LINK% 
ECHO on 
LINK %F1%.obj,%F1%.exe; 
@ECHO off 
IF errorlevel 1 goto :NOLINK 
IF exist %F1%.obj DEL %F1%.obj >nul: 

REM 
IF (%TYPE%)==(COM) EXE2BIN %F1%.exe %F1%.com >nul: 
IF (%TYPE%)=~(COM) goto :DEL._EXE 
GOTO : LSTF I LES 

: DEL._ EXE 
IF exist %F1%.exe DEL %F1%.exe >nul: 

: LSTFILES 
IF exist %F1%.bak DEL %F1%.bak >nul: 
DIR %F1%.* 
GOTO :END 

:NOPARM 
ECHO No parameter was specified! 
GOTO :END 

:NOFILE 
ECHO The fi Le "%F1%.ASM" does not exist!" 
GOTO :END 

:NOASSEM 
ECHO Assembly error! 
GOTO :END 

: NO LINK 
ECHO Linking error! 

:END 
SET F1= 
SET TYPE= 
SET MASM= 
SET LINK= 
SET MASMS= 
SET LINKS= 

Note that MK.BAT makes use of some nonprintable ASCII characters: 
ASCII ESC (escape) shown as A [and ASCII BS (backspace) shown as AH. When 



A - Development Tools 

creating this file, the editor or word processor you use must provide a way for 
you to insert these characters in the text. The beginning of the listing shows the 
use of the MS-DOS version 3.3 @ECHO off command, which causes echoing to 
be turned off without ECHO off being displayed. However, if you're using aver
sion of MS-DOS prior to 3.3, the ANSI escape sequence shown on the next few 
lines of the listing can be used. The ANSI escape sequence works only if the 
ANSI. SYS device driver is loaded when the system booted. The ASCII back
space character is used to cause MS-DOS to display a blank line when the file 
executes: the statement ECHO' H causes a blank line to be displayed in all ver
sions of MS-DOS. 

MK.BAT makes use of a public-domain program called ANSWER.COM. 
This program is used to display a prompt of your choice, and, in response to the 
prompt, any text entered is assigned to the environment variable ANSWER. 
The entry to the prompt can then be tested in the batch file by using 
%ANSWER% in a statement. 

Using the Microsoft MAKE Facility 

The Microsoft Program Maintenance Utility called MAKE can be used to sig
nificantly enhance the automation of program development. MAKE is used to 
automatically update an executable file whenever changes are made to one or 
more of its source or object files, and it can update any file whenever changes are 
made to other, related files. In order to use MAKE, a description file must be 
created that contains instructions to MAKE on how a particular project is built. 
For example, if you want to create a program called TESTl.EXE using MAKE, 
the MAKE description file might contain the statements shown in Listing A-4. 

Listing A-4. Example MAKE Description File 

# Standard command Line text macro definitions 
f1=test1 #name of fi Le to be created 
msm=masm IS IP IV IL 
Lnk=Link ICP:1 II 
# 
# The ASM Fi Le List 
$(f1).obj: $(f1).asm 

$Cmsm) $(f1).asm; 
# 
$(f1).exe: $(f1).obj 

# MASM command-Line switches 
#LINK command-Line switches 

$(Lnk) $(f1).obj,$(f1).exe; 
DEL $(f1).obj 

A MAKE description file generally has the same name as the executable 
file but without an extension. Thus, ifthe executable file is called TESTl.EXE, 

699 



Appendixes 

700 

then the MAKE description file used to create TESTl.EXE is called simply 
TESTl. To create or update TESTl.EXE, simply enter MAKE TESTl. 

The MAKE description file shown in Listing A-4 has the following 
characteristics: 

• Any text that begins with the # character is a comment and is ignored by 
MAKE during processing. 

• Text= represents a text macro that is assigned a string of text, allowing 
for that text to be represented symbolically throughout the description 
file. The example in Listing A-4 shows that the text macro fl is assigned 
the name of the program file that is to be processed; fl is then used 
throughout the rest of the description file to represent the program file in 
the form of $(fl). If you need to change the name of the program file, it is 
changed in only one place, where fl is first assigned. 

• $(fl). OBJ is the name of the first target file, called the outfile, and 
$(f1).ASM (which translates to testl .ASM in the example) is the name of 
the source file, called the infile. The infile is the file required to create 
the outfile. The outfile is always entered first, followed by a colon, and 
then followed by one or more infiles required to create the outfile. If the 
outfile does not exist or if it is stamped with a time and date earlier than 
the associated infile(s), the next line in the description file is executed as 
an MS-DOS command ($(msm) $(fl);, which would translate to masm IS 
IP IV IL testl; in the example). If the infile does not exist, then MAKE 
stops processing at that point and exits with an error message. 

• $(f1).EXE is the name of the final outfile, and $(fl). OBJ is the required 
infile. Again, if $(f1).EXE (which translates to testl.EXE) does not exist 
or if it is stamped with a time and date earlier than $(f1).0BJ, then the 
next line is executed ($(lnk) $(fl;, which translates to link ICP:l II testl; 
in the example). If $(f1).0BJ does not exist, then MAKE stops 
processing and exits with an error message. 

• The description file may contain any MS-DOS command. At the end of 
the example, the command DEL $(fl). obj causes the $(fl). obj (which 
translates to testl. obj) to be deleted, but only if the linking process was 
successful. 

The MAKE facility is capable of responding to error codes returned by 
MS-DOS commands in the description file. For example, if MASM returned an 
"error level" above 0 ($(msm) $(f1).asm; in the example), MAKE would stop 
processing the description file at that point and display an error message on the 
screen. If MASM is successful in assembling the file, but LINK returned an er
ror, then the command to delete the object file (DEL $(f1).obj) would not be 
processed. 

The MAKE facility is an excellent tool for building program projects, es
pecially large ones. The MAKE description file may contain rules for many 
source files and object files, and can specify the use of several different as
semblers, compilers, linkers, and other tools, as well as several instances of the 
same tools. When all the files of a large project are backed up or archived, the 



A - Development Tools 

MAKE description file for building the project can be archived as well, so that, 
when the project is rebuilt, it can be easily accomplished by simply running 
MAKE and specifying the description file. 

Using Templates to Create .COM and .EXE Programs 

Listings A-5, A-6, and A-7 can be useful when you create programs initially. 
Listing A-5 shows the format for an .EXE program with gaps for you to write 
your code. Listing A-6 shows the format for a .COM file. Listing A-7 contains 
some macros that can be useful when writing either .EXE or .COM programs. 
The macros either can be embedded in your program source file or can perma
nently reside in a separate file which is "included" in your source file during the 
assembly process (by embedding the MASM INCLUDE directive in the source 
file). 

Listing A-5 .. EXE Program Template 

PAGE 60, 132 ; wide Listing 
;------------------------------------------------------------------
FALSE EQU 
TRUE EQU 
; 

0 
OFFFFh 

; FALSE compare 
; TRUE compare & mask 

; < INCLUDES FOR EQUATES AND MACROS GO HERE > 
; 

;---- INITIALIZATION ----------------------------------------------
_TEXT SEGMENT WORD PUBLIC 'CODE' 
_TEXT ENDS 
_DATA SEGMENT WORD PUBLIC 'DATA' 
_DATA ENDS 
STACK SEGMENT PARA STACK 'STACK' 
STACK ENDS 
; 
DGROUP GROUP _DATA, STACK 
; 

; code segment 

; data segment 

; stack segment 

ASSUME cs:_TEXT, ds:DGROUP, ss:DGROUP, es:DGROUP 
; 
_TEXT SEGMENT ; begin code segment 
; Local data storage (keep these definitions in the code 
; segment): 
DSsave dw seg DGROUP ; storage for DS register 
; 
_TEXT ENDS 
_DATA SEGMENT 
PSPseg dw ? ; PSP segment 
_DATA ENDS 

continued 

701 



Appendixes 

702 

Listing A-5. continued 

_TEXT SEGMENT 
; 
main PROC NEAR 

mov ds,DSsave 
mov ax,es 
mov word ptr PSPseg,ax 

; 
; 
; < MAIN ROUTINE GOES HERE > 
; 
; 

; 

mov 
int 

main ENDP 
; 

ax,4C00h 
21h 

; begin main process 
; initialize DS 
; get PSP seg. address 
; ... and save it 

; terminate program 

;------------------------------------------------------------------
; 
; < THE REST OF YOUR ROUTINES GO HERE > 
; 

;------------------------------------------------------------------
_TEXT ENDS 
_DATA SEGMENT 
; 
; < INSERT DATA HERE > 
; 
_DATA ENDS 
_TEXT SEGMENT 
;------------------------------------------------------------------
_TEXT ENDS 

END main 

Listing A-6 .. COM Program Template 

PAGE 60,132 ; wide Listing 
;----------------------------------------------------------------
FALSE 
TRUE 
; 

EQU 
EQU 

0 
OFFFFh 

; FALSE compare 
; TRUE compare & mask 

; < INCLUDES FOR EQUATES AND MACROS GO HERE > 
; 

;---- INITIALIZATION --------------------------------------------
code SEGMENT 



A - Development Tools 

ASSUME cs:code, ds:code, ss:code, es:code 
; 
main PROC NEAR 
; 
entry: ORG 0100h 
; 

mov sp,offset top_oLstack ; set new stack 
; 
; 
; < MAIN ROUTINE GOES HERE > 
; 
; 

mov 
int 

ax,4C00h 
21h 

; terminate program 

; 
main ENDP 
; 

;----------------------------------------------------------------
; 
; < THE REST OF YOUR ROUTINES GO HERE > 
; 

;----------------------------------------------------------------
; 
; < INSERT DATA HERE > 
; 

;----------------------------------------------------------------
; Optional stack - CAUTION - You *must* use function 4Ch 
; to terminate the program if you use a Local stack ! 
; 

db 
top_oLstack 
; 

32 DUP ('stack 
EQU $ 

') ; 256 byte stack 

;----------------------------------------------------------------
code ENDS ; end code segment 

END entry 

Listing A-7. Useful Macros (STDMAC.INC) 

;----------------------------------------------------------------
; MACRO DEFINITIONS INCLUDE FILE 

' ·----------------------------------------------------------------, 
; STANDARD EQUATES: 
; 

TRUE EQU OFFFFh ; TRUE 

continued 

703 



Appendixes 

704 

Listing A-7. continued 

FALSE EQU 0 ; FALSE 
; 
; Standard nonprintable ASCII characters: 
NUL EQU OOOOOOOOb ; null 
BEL EQU 00000111b ; bell 
BS EQU 00001000b ; backspace 
HT EQU 00001001b ; horizontal tab 
LF EQU 00001010b ; Line feed 
FF EQU 00001100b ; form feed 
CR EQU 00001101b ; carriage return 
SUBST EQU 00011010b ; substitute 
ESCAPE EQU 00011011b ; escape 
SPACE EQU 00100000b ; space 
COLON EQU 00111010b ; colon 
SCOLON EQU 00111011b ; semicolon 
; 
; IBM Extended characters: 
SLINE EQU 11000100b ; horizontal Line 
; 

;----------------------------------------------------------------
• • XLIST 
;; • LALL 
,, 
,, 

; suppress Listing macro defs • 
; List everything 

;;** @Model *************************** GENERAL PURPOSE MACRO ** 
,, Set up segments according to memory model. 
,, This macro emulates the MASM 5.X .MODEL 
,, directive for use with earlier versions of 
,, of MASM. 
IF1 ;; assemble only during Pass 1 
@Model MACRO memory_model,code_name,stack....size 

;; NOTE: "code_name" is used only with medium, 
,, Large, and huge memory models. 
IFNB <memory_model> ;; was memory model specified? 
,, 

IF memory_model EQ 0 
@TinyModel stack....size 

ELSE 
IF memory_mode L EQ 11 

@SmaLLModel stack....size 
ELSE 

IF memory_model EQ 2 
@MediumModel code_name,stack....size 

ELSE 
IF memory_model EQ 3 



A - Development Tools 

ENDIF 
,, 

,, 

@CompactModel stack_size 
ELSE 

IF memory_model EQ 4 
@LargeModel code_name,stack_size 

ELSE 
IF memory_model EQ 5 

@LargeModel code_name,stack_size 
ELSE 

.ERR 
%OUT @Model macro: unknown memory model 

ENDIF ;; end of huge model check 
ENDIF ;; end of large model check 

ENDIF ;; end of compact model check 
ENDIF ;; end of medium model check 

ENDIF ;; end of small model check 
ENDIF ,, end of tiny model check 

ELSE ,, memory model was not specified 
.ERR ;; terminate with error message 
%OUT @Model macro error: Memory model not specified. 

ENDIF ,, end of memory-model parameter check 
,, 
ENDM ,, end of macro definition 
,, end of pass execution 

;;**@Tiny **************************** GENERAL PURPOSE MACRO ** 
,, Direct macro to set up TINY memory model (.COM type programs) 
,, <This macro is called via "@Model 0". 
,, This macro may also be called directly.) 
,, Note that this macro, unlike the other memory-model macros, 
,, does not make use of the @Stack macro, since alternate 
,, stacks in .COM programs must be defined at the end of 
,, of the program. To define an alternate stack in a .COM 
,, program, execute the @Stack macro at the appropriate position 
,, in the source code. 
IF1 ;; assemble only during Pass 
@TinyModel MACRO 

MEMODEL = 0 
_TEXT SEGMENT BYTE PUBLIC 'CODE' ; code segment 
_TEXT ENDS 
;; Assign physical segments: 
ASSUME cs:_TEXT, ds:_TEXT, ss:_TEXT, es:_TEXT 
;;-----------------------------------------------
,, Insert the following code manually after @Model 0: 
,, 
,, _TEXT SEGMENT 

continued 

705 



Appendixes 

706 

Listing A-?· continued 

,, main PROC near 
,, entry: ORG 0100h 
,, jmp start 
,, ; <insert data here if desired> 
,, start: 
,, ; <insert program code here> 
,, main ENDP 
,, ; <insert routines here> 
,, ; <Insert optional stack here> 
,, ; <insert data at the end if desired> 
,, _TEXT ENDS 

END entry 
;;-----------------------------------------------
,, 
ENDM ;; end of macro definition 

ENDIF ;; end of pass execution 
,, 
;;**@Small *************************** GENERAL PURPOSE MACRO ** 
,, Direct macro to set up SMALL memory model 
;; <This macro is called via "@Model small". 
;; This macro may also be called directly.) 
IF1 ;; assemble only during Pass 1 
@SmallModel MACRO stacl<-.size 

MEMODEL = 1 
_TEXT SEGMENT BYTE PUBLIC 'CODE' ; code segment 
_TEXT ENDS 
_DATA SEGMENT WORD PUBLIC 'DATA' ; data seg. CDGROUP) 
_DATA ENDS 
CONST SEGMENT WORD PUBLIC 'CONST' ; constants segment 
CONST ENDS ; ... CDGROUP) 
_BSS SEGMENT WORD PUBLIC 'BSS' ; uninitialized data 
_BSS ENDS ; ... segment (DGROUP) 
STACK SEGMENT PARA STACK 'STACK' ; stack seg. (DGROUP) 
STACK ENDS 
,, 
IFNB <stacl<-.size> 

@Stack stack_size 
ENDIF 
,, 
DGROUP GROUP _DATA,CONST,_BSS,STACK; data seg. grouping 
,, 
;; Assign physical segments: 
ASSUME cs:_TEXT, ds:DGROUP, ss:DGROUP, es:DGROUP 
,, 



A - Development Tools 

ENDM ;; end of macro definition 
END IF ;; end of pass execution 
,, 
;;**@Medium************************** GENERAL PURPOSE MACRO** 

Direct macro to set up MEDIUM memory model 
;; <This macro is called via "@Model medium". 
;; This macro may also be called directly.) 
IF1 ;; assemble only during Pass 1 
@MediumModel MACRO code_name,stack_size 

MEMODEL = 2 
code_name_TEXT SEGMENT BYTE PUBLIC 'CODE' ; named code 
code_name_TEXT ENDS ; • . • segment 
_DATA SEGMENT WORD PUBLIC 'DATA' ; data segment (DGROUP) 
_DATA ENDS 
CONST SEGMENT WORD PUBLIC 'CONST' ; constants segment 
CONST ENDS ; ... (DGROUP) 
_sss SEGMENT WORD PUBLIC 'BSS' ; uninitialized data 
_SSS ENDS ; •.. segment (DGROUP) 
STACK SEGMENT PARA STACK 'STACK' ; stack seg. (DGROUP) 
STACK ENDS 
,, 
IFNB <stack_size> 

@Stack stack_size 
END IF 
,, 
DGROUP GROUP _DATA,CONST,_BSS,STACK; data seg. grouping 

;; Assign physical segments: 
ASSUME cs:_TEXT, ds:DGROUP, ss:DGROUP, es:DGROUP 
,, 
ENDM ;; end of macro definition 

END IF ;; end of pass execution 

;;** @Compact ************************* GENERAL PURPOSE MACRO ** 
,, Direct macro to set up COMPACT memory model 
;; <This macro is called via "@Model compact". 
;; This macro may also be called directly.) 
IF1 ;; assemble only during Pass 1 
@CompactModel MACRO stack_size 

MEMODEL = 3 
_TEXT SEGMENT BYTE PUBLIC 'CODE' ; code segment 
_TEXT ENDS 
FAR_DATA SEGMENT PARA 'FAR_DATA' ; private far data 
FAR._DATA ENDS ; ••• segment CDGROUP) 
FAR_BSS SEGMENT PARA 'FAR_BSS' ; private far unini-
FAR_BSS ENDS ; ••• tialized data seg. CDGROUP) 

contim;ed 

707 



Appendixes 

708 

END IF 
,, 

Listing A-7. continued 

_DATA SEGMENT WORD PUBLIC 'DATA' ; data segment CDGROUP) 
_DATA ENDS 
CONST SEGMENT WORD PUBLIC 'CONST' ; constants segment 

; ••• (DGROUP) CONST ENDS 
_BSS SEGMENT WORD PUBLIC 'BSS' ; uninitialized data 
_BSS ENDS ; - • • segment ( DGROUP) 
STACK SEGMENT PARA STACK 'STACK' ; stack seg. (DGROUP) 
STACK ENDS 
,, 
IFNB <stack_size> 

@Stack stack_size 
END IF 
,, 
DGROUP GROUP _DATA,CONST,_BSS,STACK; data seg. grouping 
,, 
;; Assign physical segments: 
ASSUME cs:_TEXT, ds:DGROUP, ss:DGROUP, es:DGROUP 
,, 
ENDM ;; end of macro definition 
;; end of pass execution 

;;** @Large *************************** GENERAL PURPOSE MACRO ** 
,, Direct macro to set up LARGE memory model 
;; (This macro is called via "@Model Large". 
;; This macro may also be called directly.) 
IF1 ;; assemble only during Pass 1 
@LargeModel MACRO code_name,stack_size 

MEMODEL = 4 
code_name_TEXT SEGMENT BYTE PUBLIC 'CODE' ; named code seg. 
code_name_TEXT ENDS 
FAR-DATA SEGMENT PARA 'FAR-DATA' ; private far data 
FAR-DATA ENDS ; ••• segment (DGROUP) 
FAR._BSS SEGMENT PARA 'FAR-BSS' ; private far unini
FAR-BSS ENDS ; • • • ti al i zed data seg. ( DGROUP) 
_DATA SEGMENT WORD PUBLIC 'DATA' ; data segment CDGROUP) 
_DATA ENDS 
CONST SEGMENT WORD PUBLIC 'CONST' ; constants segment 

; • • • ( DGROUP) CONST ENDS 
_BSS SEGMENT WORD PUBLIC 'BSS' ; uninitialized data 
_BSS ENDS ; • • • segment ( DGROUP) 
STACK SEGMENT PARA STACK 'STACK' ; stack seg. CDGROUP) 
STACK ENDS 
,, 
IFNB <stack_size> 



A - Development Tools 

@Stack stack_size 
END IF 
,, 
DGROUP GROUP _DATA,CONST,_BSS,STACK; data seg. grouping 
,, 

Assign physical segments: 
ASSUME cs:_TEXT, ds:DGROUP, ss:DGROUP, es:DGROUP 
,, 
ENDM ;; end of macro definition 

END IF ,, end of pass execution 
,, 
;;** @Huge **************************** GENERAL PURPOSE MACRO ** 
,, Direct macro to set up HUGE memory model 
,, (This macro is called via "@Model huge". 
,, This macro may also be called directly.) 

The HUGE memory model is currently set up the 
same as the LARGE memory model. 

IF1 ;; assemble only during Pass 1 
@HugeModel MACRO code_name,stack_size 

MEMODEL = 5 
@LargeModel code_name,stack_size 
ENDM ;; end of macro definition 

ENDIF ;; end of pass execution 
,, 

;;** @Stack *************************** GENERAL PURPOSE MACRO ** 
;; Direct macro to establish the size of the stack 
IF1 ;; assemble only during Pass 1 
@Stack MACRO stack_size,prog_type 

,, 
IFB <prog_type> ;; if prog_type parameter is blank ••. 

IF MEMODEL EQ 0 
PROGTYPE = 0 

ELSE 
IF MEMODEL EQ 1 

PROGTYPE = 1 
ELSE 

IF MEMODEL EQ 2 
PROGTYPE 1 

ELSE 
IF MEMODEL EQ 3 

PROGTYPE = 1 
ELSE 

IF MEMODEL EQ 4 
PROGTYPE = 1 

ELSE 

continued 

709 



Appendixes 

710 

Listing A-7. continued 

IF MEMODEL EQ 5 
PROGTYPE = 1 

ELSE 
.ERR 
%OUT @Stack macro: The memory model or 
%OUT program type was not established. 

ENDIF ;; end of huge model check 
ENDIF ;; end of Large model check 

ENDIF ;; end of compact model check 
ENDIF ;; end of medium model check 

ENDIF ;; end of small model check 
ENDIF ;; end of tiny model check 

ELSE ;; prog_type parameter was specified 
IF prog_type EQ 0 ;; set up for .COM type program 

PROGTYPE = 0 
ELSE 

IF prog_type EQ 
PROGTYPE 1 

ELSE 
.ERR ,, exit with error message 
%OUT @Stack macro: Incorrect prog. type specified. 

ENDIF ;; end of .EXE type check 
ENDIF ;; end of .COM type check 

ENDIF ;; end of "prog_type" parameter check 
,, 
IFNB <stack-size> 
,, 

,, 

IF PROGTYPE EQ 0 
; Optional stack. CAUTION! You MUST use 
; function 4Ch to terminate the program 
; when using a Local stack! 

db stack-size DUP ('stack ') 
top_oLstack EQU 

ELSE ;; prog. type is .EXE 
STACK SEGMENT 

$ 

db stack-size DUP ('stack ') 
STACK ENDS 

ENDIF ;; end of PROGTYPE check 

ELSE ,, "stack-size" parameter wasn't specified 
,, 

IF PROGTYPE EQ 0 
; Optional stack. CAUTION! You MUST use 
; function 4Ch to terminate the program 



A - Development Tools 

; when using a Local stack! 
db 32 DUP ('stack ') 

top_oLstack EQU $ 

ELSE ,, prog. type is .EXE 
STACK SEGMENT 

db 32 DUP ('stack ' ) 
STACK ENDS 

END IF end of PROGTYPE check 
,, 
END IF end of "stack_size" check 
,, 
ENDM ,, end of macro definition 

END IF ,, end of pass execution 
,, 
;;** @SwapNewStack ******************** GENERAL PURPOSE MACRO ** 
;; Switch stack to a new stack 
IF1 ;; assemble only during Pass 1 
@SwapNewStack MACRO tos 

LOCAL bypass 
,, 

bypass ,, skip data area jmp 
old_stk_seg 
old_stk_ptr 
new_stk_seg 
new_stk_ptr 

dw ? ,, space for caller's stack segment 
dw ? space for caller's stack pointer 

bypass: 

END IF 
,, 

,, 

mov 
mov 
mov 

dw ? ,, space for new stack segment 
dw offset tos ,, space for new stack pointer 

cs:new_stk_seg,cs 
cs:old_stk_seg,ss ,, 
cs:old_stk_ptr,sp ,, 

set new stack segment 
save old stack values 
save old stack pointer 

mov ss,cs:new_stk_seg ,, get new stack values 
mov sp,cs:new_stk_ptr ,, get new stack pointer 
@PushALL ,, save flags and all registers 
ENDM ;; end of macro definition 
;; end of pass execution 

;;** @SwapOldStack ******************** GENERAL PURPOSE MACRO ** 
,, Switch from new stack to the original stack. 

@PopALL ,, restore flags and all regs. 
mov ss,cs:old_stk_seg ,, restore old stack values 
mov sp,cs:old_stk_ptr 
ENDM ;; end of macro definition 

END IF ;; end of pass execution 
,, 
;;** @DosCall *************************GENERAL PURPOSE MACRO** 
;; Call an MS-DOS function 

continued 

711 



Appendixes 

712 

Listing A-7. continued 

IF1 ;; assemble only during Pass 1 
@DosCall MACRO 

int 21h 
ENDM ;; end of macro definition 

ENDIF ;; end of pass execution 
,, 
;;** @DirConCharIO ********************GENERAL PURPOSE MACRO** 
@DirConCharIO MACRO ; check keyboard status & read 

push dx ; save DX 
mov dl,OFFh ; no character to output 
mov ah,06h 
@DosCall 
pop dx ; restore DX 
ENDM 

,, 
;;** @ReadCon_NoEcho ****************** GENERAL PURPOSE MACRO ** 
@ReadCon_NoEcho MACRO 

mov ah,08h ; read keyboard without echo 
@DosCall 
ENDM 

,, 
;;** @ReadBuff Input ******************* GENERAL PURPOSE MACRO ** 
@ReadBuff Input MACRO buffname ; read buffered keyboard input 

mov dx,off set buf name 
mov ah,OAh 
@DosCall 
ENDM 

,, 
;;** @DisChr **************************GENERAL PURPOSE MACRO** 
;; Display an immediate character 
IF1 ;; assemble only during Pass 1 
@DisChr MACRO char 

IFNB <char> ,, was character argument 
,, yes, so insert code 

push ax ,, save registers used 
push dx 
mov dl,char ,, Load character 
mov ah,02h ,, Load func. number 
@DosCall ,, call MS-DOS 

dx 
ax 

,, restore registers 

,, otherwise 

specified? 

pop 
pop 
ELSE 
.ERR ,, generate error and output message 
%OUT @DisChr macro: "char" argument not supplied. 



A - Development Tools 

END IF 
,, 
ENDM ;; end of macro definition 

END IF ;; end of pass execution 

;;** @DisStr ************************** GENERAL PURPOSE MACRO ** 
,, Display a string from memory with default "$" 

,, end-of-string terminator or with a specified 
,, terminator. 
,, (Calls @DisStr1 or @DisStr2 internal macros.) 

,, assemble only during Pass 1 IF1 
@DisStr MACRO string,terminator 

END IF 
,, 

ItNB <string> ,, was string argument specified? 
;; yes, so •.• 

IFB <terminator> ;; was terminator specified? 
;; no, so insert default code for "$" terminator 
@DisStr1 string 

ELSE ;; otherwise, a terminator was specified 
@DisStr2 string,terminator 

ENDIF ,, end "terminator" check 
ELSE ;; otherwise, "string" was not specified 
.ERR ;; generate error and output message 
%OUT @DisStr macro: "string" argument not supplied. 
END IF 
ENDM ;; end of macro definition 
;; end of pass execution 

;;** @DisStr1 ********************************* SUPPORT MACRO ** 
;; Called by @DisStr to display a string from memory with 
;; default "$" end-of-string terminator. 
IF1 ;; assemble only during Pass 1 
@DisStr1 MACRO string 

ENDIF 
,, 

push ax ;;save registers used 
push dx 
mov dx,offset ds:string ;; point to string 

mov ah,09h 
@DosCall 
pop dx 
pop ax 

;; in memory 
,, Load tune. number 
, , cal L MS-DOS 
,, restore registers used 

ENDM ,, end of macro definition 
;; end of pass execution 

;;** @DisStr2 ********************************* SUPPORT MACRO ** 
,, Called by @DisStr to display a string from memory with a 
;; specified end-of-string terminator. 

continued 

713 



Appendixes 

714 

Listing A-7. continued 

IF1 ;; assemble only during Pass 1 
@DisStr2 MACRO string,terminator 

strloop: 

LOCAL strloop,strloopdone ,, create Local Labels 
push si ,, save registers 
push ax 

push bx 
dx push 

xor 
mov 
mov 
xor 

bh,bh ,, clear BX 
bl,terminator ,, get the terminator 
si,offset string ,, point to string 
dx,dx 

mov dl,byte ptr [siJ 
cmp dl,bl 
je strloopdone 
mov ah,02h 
@Dos Cal L 

,, get next char. 
,, is it the terminator? 
,, yes, we're done 
,, Load output-char. function 
,, and call DOS 

inc 
jmp 

strloopdone: 
pop 
pop 

si 
short strloop 

dx 
bx 

,, point to next char. 
,, and go thru again 

,, restore registers 

pop ax 
pop si 
ENDM ,, end of macro definition 

ENDIF ;; end of pass execution 
,, 
;;** @TypeStr ************************* GENERAL PURPOSE MACRO ** 
,, Display an immediate string (string defined on the fly) 
,, NOTE: "string" must be presented within quotes so that 
,, it is treated as a single argument to the macro and to 
,, ensure that the data is encoded correctly. 
IF1 ;; assemble only during Pass 1 
@TypeStr MACRO string ,, define and display a string 

LOCAL TypeStrAddr ,, set up a Local Label 
,, 
IF MEMODEL NE 0 ,, if not .COM type 

_TEXT ENDS ,, end code segment 
_DATA SEGMENT ,, change to data segment 

END IF 
TypeStrAddr DB string,'$' ,, define string in data segment 

IF MEMODEL NE 0 ,, if not .COM type 
_DATA ENDS ,, end data segment 
_TEXT SEGMENT ,, return to code segment 



A - Development Tools 

ENDIF 
,, 
@DisStr TypeStrAddr ;; display string 
ENDM ;; end of macro definition 

END IF ;; end of pass execution 
,, 
;;** @TypeStrCR *********************** GENERAL PURPOSE MACRO ** 
;; Display an immediate string terminated with a CR/LF 
IF1 ;; assemble only during Pass 1 
;; "string" must be presented within quotes so 
;; treated as a single argument to the macro. 
@TypeStrCR MACRO string 

that it is 

END IF 
,, 

@TypeStr string 
@Newline 
ENDM ,, end of macro 
;; end of pass execution 

,, define and display string 
,, terminate with a CR/LF 
definition 

;;**@Newline ************************* GENERAL PURPOSE MACRO ** 
;; Display a carriage return and Linefeed 
IF1 ;; assemble only during Pass 1 
@Newline MACRO 

END IF 
,, 

IFNDEF EXT_NEWLINE ,, was EXT_NEWLINE symbol defined? 
EXTRN newline:NEAR 
EXT_NEWLINE EQU 0 

,, no, insert EXTRN only once 
,, and define equate only once 

END IF 

ca LL 
ENDM 
;; end 

,, (the above 2 lines won't be inserted 
,, in subsequent calls of the macro) 

newline ,, call NEWLINE procedure 
;; end of macro definition 

of pass execution 

;;** @DisNum ************************** GENERAL PURPOSE MACRO ** 
;; Display a binary number in ASCII decimal or hexadecimal 
IF1 ;; assemble only during Pass 1 
@DisNum MACRO number,type,digits,sign 

,, 
;; Test for required parameters first 
IFB <number> ;; was number parameter specified? 
.ERR ;; no, exit with error message 
%OUT @DisNum macro: "number" parameter not specified. 
END IF 
,, 
IFNB <type> ,, was type of output specified? 
,, 

IF type EQ 10 
IFNDEF EXT_BIN2DEC 

,, decimal conversion specified? 
,, was EXT_BIN2DEC defined? 

EXTRN bin2dec:NEAR ,, no, insert EXTRN declaration 

cont,in'ued 

715 



Appendixes 

716 

,, 

Listing A-7. continued 

EXT_BIN2DEC EQU 0 
END IF 
,, 
ELSE 
,, 

;; and equate only once 

IF type EQ 16 ,, hex. conversion specified? 
,, was EXT_BIN2HEX defined? 

,, 

IFNDEF EXT_BIN2HEX 
EXTRN bin2hex:NEAR ,, no, insert EXTRN declara
EXT_BIN2HEX EQU 0 ,, tion and equate only once 
ENDIF 

ELSE 
,, 

.ERR 
%OUT @DisNum Macro: Illegal "type" specified. 
ENDIF ;; end check for 16 

ENDIF ,, end check for 10 
,, 
ELSE ,, otherwise, parameter is blank 

.ERR ,, exit with error message 
%OUT @DisNum macro: "type" parameter not specified. 
ENDIF ;; end check for blank parameter 
,, End test for required parameters 
,, 
,, Begin code insertion 
push ax ;; save registers 
push ex 
push dx 
,, 
mov ax,number ,, put number in AX 
,, 
IFNB <digits> ,, was digits argument specified? 
mov ch,digits ,, yes, put value in CH 
ELSE ,, otherwise 
mov ch,1 ,, default to disp. at Least 1 digit 
ENDIF 
,, 
IFNB <sign> 
mov dx,sign ,, 

was the sign argument specified? 
yes, so put it in DX 

ELSE ,, otherwise 
mov dx,O ,, default to unsigned 
END IF 



A - Development Tools 

,, 
IF type EQ 10 ,, decimal conversion specified? 
call bin2dec 
ELSE 

IF type EQ 16 ,, hex. conversion specified? 
call bin2hex 
END IF ,, end of base 16 check 

END IF ,, end of base 10 check 
,, 
pop dx ;; restore registers 
pop ex 
pop ax 
,, 
ENDM end of macro definition 

ENDIF ;; end of pass execution 
,, 
,, 
;;** @GetDate ************************* GENERAL PURPOSE MACRO ** 
;; Get the system date 
IF1 ;; assemble only during Pass 1 
@GetDate MACRO 

mov ah,2Ah ,, Load func. number 
@Dos Ca LL ,, ca LL MS-DOS 
ENDM ,, end of macro definition 

ENDIF ,, end of pass execution 
,, 
;;** @GetTime ************************* GENERAL PURPOSE MACRO ** 
;; Get the system time 
IF1 ;; assemble only during Pass 1 
@GetTime MACRO 

mov ah,2Ch ,, Load func. number 
@DosCall ,, call MS-DOS 
ENDM ,, end of macro definition 

ENDIF ,, end of pass execution 
,, 
;;** @DiskRead ************************ GENERAL PURPOSE MACRO ** 
;; Read from Logical sector(s) 
IF1 ;; assemble only during Pass 1 
@DiskRead MACRO 

int 25h ;; execute absolute disk-read interrupt 
ENDM ;; end of macro definition 

END IF ;; end of pass execution 
,, 
;;** @DiskWrite *********************** GENERAL PURPOSE MACRO ** 
;; Write to Logical sector(s) 
IF1 ;; assemble only during Pass 1 

continued 

717 



Appendixes 

718 

Listing A-7. continued 

@DiskWrite MACRO 
int 26h ;; execute absolute disk-write interrupt 
ENDM ;; end of macro definition 

ENDIF ;; end of pass execution 
,, 

;;** @GetDOSVersion ******************* GENERAL PURPOSE MACRO ** 
;; Get DOS Version number 
IF1 ;; assemble only during Pass 1 
@GetDOSVersion MACRO 

END IF 
,, 

push bx ,, save registers destroyed 
push ex 
mov ah,30h 
@DosCall 
pop ex 
pop bx 
ENDM ,, end 
,, end of pass 

,, Load func. number 
,, call MS-DOS 
,, restore registers 

of macro definition 
execution 

;;** @GetDOSVer ********************** GENERAL PURPOSE MACRO ** 
;; Get DOS Version number 
IF1 ;; assemble only during Pass 1 
@GetDOSVer MACRO 

END IF 
,, 

IFNDEF EXT_GDOSV 
EXTRN GETDOSV:NEAR 
EXLGDOSV EQU 0 
ENDIF 

ca LL dosver 

,, was symbol defined? 
,, no, insert EXTRN only once 
,, and define equate only once 
,, <the above 2 Lines won't be inserted 

in subsequent calls of the macro) 
call Library routine 

,, 
,, 

ENDM ,, end of macro definition 
,, end of pass execution 

;;** @DisDOSVer ********************** GENERAL PURPOSE MACRO ** 
;; Get and display DOS Version number 
IF1 ;; assemble only during Pass 1 
@DisDOSVer MACRO 

END IF 
,, 

IFNDEF EXT_DDOSV ;; was symbol defined? 
EXTRN DOSV2CON:NEAR ;; no, insert EXTRN only once 
EXT_DDOSV EQU 0 ,, and define equate only once 
END IF ;; (the above 2 Lines won't be inserted 

;; in subsequent calls of the macro) 
call dosv2con ;; call Library routine 
ENDM ;; end of macro definition 
;; end of pass execution 



A - Development Tools 

;;** @ChangeCase ********************** GENERAL PURPOSE MACRO ** 
;; Change case of character 
IF1 ;; execute only on pass 1 
@ChangeCase MACRO char,type 

END IF 
,, 

IFB <char> ;; was char to be converted specified? 
.ERR ;; no, generate error and output message 
%OUT @ChangeCase macro: "char" parameter not defined! 
ELSE ,, otherwise 
mov al,char ;; Load char into AL 
ENDIF 
,, 
IFB <type> 
mov ah,O 
ELSE 

,, was type of conversion specified? 
,, no, so Load 0 into AH 

mov ah,type ,, Load type of conversion into AH 
END IF 
,, 
IFNDEF EXJ_CHGCASE 
EXTRN CHGCASE:NEAR 
EXJ_CHGCASE EQU 0 

,, was EXJ_CHGCASE symbol defined? 
,, no, insert EXTRN only once 
,, and define equate only- once 

ENDIF ,, Cthe above 2 Lines won't be inserted 
,, in subsequent calls of the macro) 

,, 
call chgcase ,, call change-case Library procedure 
ENDM ;; end of macro definition 
,, end of pass execution 

;;** @Case **************************** GENERAL PURPOSE MACRO ** 
;; CASE macro for assembly Language 
@Case MACRO key,case_List,jmp_Labels 

,, 
,, 

??tmp_ 1 = 0 
IRP match,<&case_List> 

??tmp_1 = ??tmp_1 + 1 
cmp key,&&match 
??tmp_2 = 0 
IRP retl,<&jmp_Labels> 

??tmp_2 = ??tmp_2 + 1 
IF C??tmp_1 EQ ??tmp_2) 

je &&&retl 
EXITM 

,, sequence through cases 
,, set index number 
; case match? 

,, sequence through jumps 
,, until index matches 

; yes! 

ENDIF ,, end condition check 
ENDM ,, end 2nd IRP block 

ENDM ,, end 1st IRP block 
ENDM ,, end macro definition 

continued 

719 



Appendixes 

720 

Listing A-7. continued 

;;*************************************************************** 
,, Use the @PushALL and @PopALL macros instead of the 
,, PUSHA and POPA instructions supported by the 
,, 80186/80188/80286/80386 processors to maintain 
,, compatibi Lity with the 8086/8088 processors. 

,, 
;;** @PushAll *************************GENERAL PURPOSE MACRO** 
;; Push all registers 
IF1 
@PushALL MACRO 

push ax 
push bx 
push ex 
push dx 
push bp 
push di 
push si 
ENDM ,, end 

END IF ;; end of pass 
,, 

,, execute only during pass 1 
,, save all registers onto the stack 

of macro definition 
execution 

;;** @PopALL ************************** GENERAL PURPOSE MACRO ** 
;; Pop all registers 
IF1 ;; execute only during pass 1 
@PopA l l MACRO ;; restore all registers off of the stack 

pop si 
pop di 
pop bp 
pop dx 
pop ex 
pop bx 
pop ax 
ENDM ,, end of macro definition 

END IF ;; end of pass execution 
,, 
;;** @ExitToDos ***********************GENERAL PURPOSE MACRO** 
;; Terminate process with optional ERRORLEVEL settings 
IF1 ;; execute only during pass 1 
@ExitToDOS MACRO errorcode 

IFB <errorcode> 
mov ax,4C00h 
ELSE 
mov ah,4Ch 

,, was an errorcode specified? 
,, no, Load func. & errorlevel 0 into AX 
,, otherwise 
,, Load function 

mov al,errorcode ;; and errorlevel separately 
END IF 



A - Development Tools 

@Dos Ca LL 
ENDM 

;; call MS-DOS 
end of macro definition 

END IF ;; end of pass execution 
,, 

;;*************************************************************** 
;; END OF MACRO DEFINITIONS 

;;*************************************************************** 
.LIST ; restore Listing back to normal 
; End of macro definitions include ti Le. 

Using Library Routines 

If you use a standard set of unmodified routines in all your programs, you may 
find it practical to put these routines in a library file that is always linked with 
your programs. Using this method simplifies the assembly and linking process 
and reduces the size of your program source files. A library file is created by 
assembling the file containing your routines and then processing the .OBJ file 
with the LIB program included on the MASM disk. The LIB program produces 
a correctly formatted object code file with the extension .LIB. The external ref
erences to the routines should be declared within the source code of the program 
that is to call these routines. These are written in the format: 

EXTRN routine:distance 

where EXTRN is the directive that informs MASM that routine will be included 
at link time, from either another object file or a library file. The distance param
eter is either near or far, depending on how the referenced routine was de
clared. For .COM type programs, distance is always near. Once the external 
routines have been declared, they can be called like any other routine. 

Listing A-8 provides a complete source to the library file STDLIB.LIB, as 
discussed in previous chapters. 

Listing A-8. Source for STD LIB.LIB Library File 

PAGE 60,132 
TITLE 
.8086 
.SALL 

stdlib.asm/.ooj ~ .Lib 
; allow only 8086/8088 instructions 
; suppress macro expansion Listing 

·---------------------------------------------------------------, 
; 
;------ EQUATES AND MACRO DEFINITIONS --------------------------
; 
INCLUDE stdmac.inc ; include standard macro Library and equates 

continued 

721 



Appendixes 

722 

Listing A-8. continued 

; 

;----- INITIALIZATION -----------------------------------~------
; 
; The following initialization is a subset of (and ~ompatible 
; with) the ".MODEL SMALL" directive in MASM 5.0 and higher 

; versions. 
; 
_TEXT SEGMENT WORD PUBLIC 'CODE' ; code segment 
_TEXT ENDS 
; 
_DATA SEGMENT WORD PUBLIC 'DATA' ; data segment 
_DATA ENDS 
; 
DGROUP GROUP _DATA ; define segment group 
; 
ASSUME cs:_TEXT, ds:_DATA ; assign physical segments 
; 
; 

;**************************************************************** 
; BEGIN LIBRARY ROUTINES 

;**************************************************************** 
; 
_TEXT SEGMENT ; begin code segment 
; 
;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
; NEWLINE - Displays a new line (carriage return+ linefeed). 
; 
; INPUT: None 
; 
; OUTPUT: AX and DX are restored; 
; no other registers are used. 
; 
; ROUTINES CALLED: None 

;----------------------------------------------------------------
PUBLIC NEWLINE 
; 
newline PROC NEAR 

; 

push 
push 

ax 
dx 

mov dl,CR 
mov ah,02h 
@DosCall 
mov dl,LF 

; library routine 

; save registers 

; display carriage return 

; display linefeed 



A - Development Tools 

mov ah,02h 
@DosCall 

; 
pop dx ; restore registers 
pop ax 
ret 

; 
newline ENDP 
; 
; 
;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

; CSAVE: Performs an automatic saving and restoral of the 
; BX, CX, DI, and SI registers within a called subroutine. 
; It is called from within another called routine, as follows: 
; 
;- - - - - - -
; LOCALSIZE EQU 10h 
; routine PROC NEAR ; FAR if medium, Large, or huge model 
; 
; 
; 
; 
; 
; 

push 
mov 
sub 
call 

bp 
bp,sp 
sp,LOCALSIZE 
cs ave 

; (routine's code) 
; 
; ret ; always goes to $cret 
; 
; routine ENDP 
;- - - - - - -
; 
; INPUT: See description above. 
; 
; OUTPUT: See description above. 
; 
; REGISTERS USED: BX, ex, DI, & SI are saved; 
; AX & DX aren't touched. 
; 
; ROUTINES CALLED: Calls "calling" routine, unti L its RET returns 
; to this routine, whereupon this routine's RET returns to the 
; original calling Location. 
;----------------------------------------------------------------
PUBLIC CSAVE 
; 
cs ave PROC 

push 
NEAR 
bp 

; Library routine 

; set up stack addressing 

continued 

723 



Appendixes 

724 

Listing A-8. continued 

mov bp,sp 
xchg bx,[bp+2J ; save BX and obtain return 

; ... address of calling routine 
pop bp ; restore current return address 
push ex ; save remainder of regi stel"s 
push si 
push di 
cal L bx ; resume processing in calling 

; routine 
; 
; Arrive here after calling routine's RET 
$cret: pop di ; restore saved registers 

pop 
pop 
pop 
mov 
pop 
ret 

; 
csave ENDP 
; 
; 

si 
ex 
bx 
sp,bp 
bp 

; discard Local variables 

; returns to where calling 
; routine's RET would 
; normally return 

;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
; BIN2DEC - BINary to DECimal conversion. Displays a 16-bit 
; signed or unsigned number on the screen in decimal. 
; Finds the rightmost digit by division. Repeat unti L all found. 
; A minimum number of digits to be displayed can be specified: 
; if minimum number of digits specified is greater than the 
; actual number of digits, the output number is padded with 
; Leading zeros. 
; 
; INPUT: 
; 
; 
; 
; 
; OUTPUT: 
; 

AX= number to be displayed 
CH minimum number of digits to be displayed 
DX = 0 if number is to be processed as unsigned, 

or 1, if signed. 

None (AX, CX, and DX are restored) 

; ROUTINES CALLED: None 
;----------------------------------------------------------------
PUBLIC BIN2DEC ; Library routine 
; 
bin2dec PROC NEAR 



A - Development Tools 

push 
push 
push 
push 
mov 
mov 
cmp 
je 

; 

ax 
bx 
ex 
dx 
cl,O 
bx, 10 
dx,O 
more_dec 

; save registers 

; clear digit count 
; set divisor = 10 
; always display #as positive? 
; yes, skip negative check 

; Check for negative number. If negative, make number positive. 
or ax,ax 
jnl more_dec 
neg ax 
@DisChr '-' 

; 

; is number positive? 
; yes, skip "negate" 
; make number positive 
; display minus sign 

; Main Division Loop - Get Decimal Digit 
; Repeat as Long as digits are remaining 
more_dec: 

xor 
div 
push 
inc 
or 
jnz 

; 

dx,dx 
bx 
dx 
cl 
ax,ax 
more_dec 

; cleanup 
; divide by 10 
; save remainder 
; digit counter + 

; test quotient 
; continue if more 

; Main Digit Print Loop - Reverse Order 
sub 
jle 
xor 

morezero: 
push 
inc 
dee 
jnz 

morechr: 
pop 
add 
@DisChr 
dee 
jnz 

; 
pop 
pop 
pop 
pop 
ret 

ch,cl 
morechr 
dx,dx 

dx 
cl 
ch 
morezero 

dx 
dl,30h 
dl 
cl 
morechr 

dx 
ex 
bx 
ax 

; min. number of digits reached? 
; yes - begin display 
; no - start pushing "O"s 

; digit counter + 1 
; check if matched yet 
; no - keep pushing it 

; restore Last digit 
; convert to ASCII 
; output digit 
; digits count - 1 
; continue if more 

; restore registers 

continued 

725 



Appendixes 

726 

Listing A-8. continued 

; 
bin2dec ENDP 
; 
; 
;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

; BIN2DEC2 - BINary to DECimal conversion. Displays a 32-bit 
; signed number. Creates two decimal numbers which are displayed 
; through calls to BIN2DEC. 
; A minimum number of digits to be displayed can be specified: 
; if minimum number of digits specified is greater than the 
; actual number of digits, the output number is padded with 
; Leading zeros. 
; 
; NOTE: The register pair containing the number is split by 
; division by 10,000. Since, at most, the Least significant 
; portion is 9,999, it wi LL never be displayed as a 
; negative number. 
; 
; INPUT: DX:AX = number to be displayed 
; 
; 

CH = minimum number of digits to be displayed 

; OUTPUT: None CAX:DX and ex are restored) 
; 
; ROUTINES CALLED: BIN2DEC (output 16-bit number in decimal) 
;----------------------------------------------------------------
PUBLIC BIN2DEC2 
; 

; 
; Check 

push 
push 
push 
push 

for 
or 
jnl 
not 
not 
add 
adc 
push 

ex 
dx 

negative number. 
dx,dx 
bd2_pos 
ax 
dx 
ax,1 
dx,O 
dx 

push ax 
@DisChr '-' 

; Library routine 

; reference BIN2DEC routine 
; save registers 

If negative, make number positive. 
; is number positive? 
; yes, skip "negate" 
; make number positive 

; 2's complement the hard way 



A - Development Tools 

pop ax 
pop dx 

; 
; Now split the number to be printed into manageable parts 
bd2_pos: 

mov bx,10000 ; set divisor = 10,000 
div bx ; split number into pairs 
cmp dx,O ; quit if most significant number 
je bd2_2bi g ; ... is too Large 
or ax,ax ; find out if most significant 

; ... number is zero 
jz bd2_nosig ; there is no most significant 

; ... number 
; 
; Print the most significant number first <Leftmost number) 

push dx 
sub ch,4 ; four digits wil L be printed from 

; ... Least significant part 
jnc bd2_cntok ; asked for more than 4, so count 

mov 

bd2_cntok: 
ca LL 

pop 

mov 

; 

; 
ch,O ; 

; 

bin2dec ; 
; 

dx ; 
; 

ch,4 ; 
; 

... is valid 
otherwise go until run out 
... digits 

print the most significant 
... portion 
recover Least significant 
... portion 
four digits in Least 

significant number 

; Print the Least significant portion (rightmost number) 
bd2_nosig: 

mov ax,dx ; print the DX portion (Least 
; ••• significant) first 

of 

ca LL 
bd2_done: 

pop 

bin2dec ; print Least significant number 

dx ; restore registers and exit 
pop ex 
pop bx 
pop ax 
ret 

bd2_2big: 
@DisStr Bin2BigErrMsg 
jmp short bd2_done ; return from routine 

; 
_TEXT ENDS 

continued 

727 



Appendixes 

728 

Listing A-8. continued 

_DATA SEGMENT 
Bin2BigErrMsg db 
_DATA ENDS 

"BIN2DEC2 error: Number is too Large.$" 

_TEXT SEGMENT 
; 

bin2dec2 ENDP 
; 
; 
;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

; BIN2HEX - BINary to HEXadecimal conversion. Displays a 16-bit 
; number in hexadecimal. 
; A minimum number of digits to be displayed can be specified: 
; if minimum number of digits specified is greater than the 
; actual number of digits, the output number is padded with 
; Leading zeros. 
; 
; INPUT: 
; 
; 
; 
; 
; OUTPUT 
; 

AX = number to display 
CH = minimum number of digits to display 

(1 to 4) 
(If CH = 0, digit count defaults to 4.) 

None CAX and ex are restored) 

; CALLED ROUTINES: None. 
;----------------------------------------------------------------
PUBLIC BIN2HEX 
; 
bin2hex PROC NEAR 

; 

; 

push 
push 

ax 
bx 

push ex 
push dx 

mov 
cmp 
jne 
mov 

bx,ax 
ch,O 
align_Left 
ch,4 

; Library routine 

; save registers 

; use BX as temporary holding 
; count already set? 
; yes, so continue 
; else, set character count to 4 

; Align the number on the Leftmost side of the AX 
; (rotate Left by (4 - CH) * 4 bit positions 
align_Left: 

mov 
sub 
shl 

cl,4 
cl,ch 
cl,1 

shl cl,1 

; find number of digits to shift 

; multiply by 4 



A - Development Tools 

; 

rol 
mov 

bx,cl 
cl,4 

; align on Left side 
; and set minor rotate count 

; Main Loop - repeat N times ••. Print the Leftmost digit 
more_hex: 

rol 
mov 
and 
add 
daa 
adc 
daa 

; 
; Display digit 

@DisChr 
dee 
jnz 

; 
pop 
pop 
pop 
pop 
ret 

; 
bin2hex ENDP 
; 
; 

bx,cl 
al,bl 
al,OFh 
al,90h 

al,40h 

al 
ch 
more_hex 

dx 
ex 
bx 
ax 

; Left digit to right 
; move to AL 
; right digit only 
; sneaky conversion 
; ••• to ASCII hex characters 

; digits count - 1 
; continue if more 

; restore registers 

;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

; CHGCASE - CHanGe CASE of character. Changes the case of an 
; ASCII character. Type of case conversion is specified: 
; 
; 1. Forced upper-to-Lower case conversion 
; 2. Forced Lower-to-upper case conversion 
; 3. Toggle case (if Lower, then upper; if upper, then Lower) 
; 
; INPUT: 
; 
; 
; 
; 
; 
; OUTPUT: 
; 
; 
; 
; 

AL = ASCII alphabetic character to 
AH = type of conversion: 

"L" or "L" = force char. 
"U" or "u" = force char. 
any other value = toggle case 

AL = converted ASCII character 
AH = character's status: 

"L" = Lowercase 
"U" = uppercase 

be converted 

to Lowercase 
to uppercase 

0 = if character in AL wasn't an 

continued 

729 



Appendixes 

730 

; 
; 
; 

Listing A-8. continued 

ASCII alpha character 
ALL other registers are restored. 

; ROUTINES CALLED: None 

;----------------------------------------------------------------
PUBLIC CHGCASE ; Library routine 
; 
chgcase PROC NEAR 

push dx ; save registers 
; 
; Determine if AL contains an ASCII alpha character 
; and if a valid character, determine its case. 

cmp al,"A" ; is char. below 1st uppercase Let.? 
jl error ; yes, it isn't an ASCII alpha char. 

; 

cmp 
j Le 
cmp 
j L 
cmp 
j Le 
jmp 

is_upper: 

al,"Z" 
i s_upper 
al,"a" 
error 
al,"z" 
is_ Lower 
short error 

; 
; 
; 
; 
; 
; 
; 

is char. below Last uppercase Let.? 
yes, char. is uppercase. 
is char. below 1st Lowercase Let.? 
yes, it isn't an ASCII alpha char. 
is char. below Last Lowercase Let.? 
yes, char. is Lowercase. 
else, it isn't an ASCII alpha char. 

mov dl,"U" ; flag character as uppercase 
jmp short convert_type ; and continue 

is_ Lower: 
mov dl,"L" ; flag character as Lowercase 
jmp short convert_type ; and continue 

error: 
mov 

jmp 
; 
convert_ type: 

cmp 
je 
cmp 
je 
cmp 
je 
cmp 
je 

; 

ah,O 

short done 

ah,"L" 
to_ Lower 
ah,"L" 
to_ Lower 
ah,"u" 
to_upper 
ah,"U" 
to_upper 

; Else, toggle character's case 

; flag char. as not an ASCII 
; alpha char. 
; and exit procedure 

; convert to Lowercase? 
; yes, so convert character 
; convert to Lowercase? 
; yes, so convert character 
; convert to uppercase? 
; yes, so convert character 
; convert to uppercase? 
; yes, so convert character 



A - Development Tools 

cmp dl,"L" ; is character Lowercase? 
je to_upper ; yes, convert it to uppercase 

; else, it is uppercase, 
; so make it Lower 

; 
to_ Lower: 

mov ah,"L" ; set the case flag for return 
cmp dl,ah ; is char. already Lowercase? 
je done ; yes, so we're done 
add al,20h ; else, convert to Lowercase 
jmp short done ; and exit procedure 

; 
to_upper: 

mov ah,"U" ; set the case flag for return 
cmp dl,ah ; is char. already uppercase? 
je done ; yes, so we're done 
sub al,20h ; else, convert to uppercase 

; 
done: 

pop dx ; restore registers 
ret 

; 
chg case ENDP 
; 
; 
;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

; DOSVER: Gets the version of MS-DOS and return "major" and 
; "minor" versions. Returns ''1.00" if DOS version is currently 
; 1 . 00 or 1 • 10. 
; 
; 
; 
; 
; 
; 
; 

INPUT: 

OUTPUT: 

None 

AL = 
AH = 
(a LL 

; ROUTINES CALLED: 

major version 
minor version (= 00 if pre-DOS 2.00) 
other registers are restored) 

None 
;----------------------------------------------------------------
PUBLIC DOS VER ; Library routine 
; 
dosver PROC NEAR 

push bx ; save registers 
push ex 
push dx 

; 
xor ax,ax ; clear out AX 

continued 

731 



Appendixes 

732 

Listing A-8. continued 

mov ah,30h 
@DosCall 
cmp al,O 
jg dos2plus 
mov al,1 
mov ah,O 

; 
dos2plus: 

pop dx 
pop ex 
pop bx 
ret 

; 
dosver ENDP 
; 
; 

; Load "get DOS Version" function 

; is it pre-version 2.00? 
; no, we're done 
; else, it's version 1.XX 
; set minor version to 00 

; restore registers 

;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

; DOSV2CON: Obtains and displays the version of MS-DOS currently 
; running, and returns version to calling routine. 
; 
; INPUT: None 
; 
; OUTPUT: AL = major version 
; AH = minor version 
; Ca LL other registers are restored) 
; 
; ROUTINES CALLED: DOSVER (gets version of MS-DOS) 
; BIN2CON (displays numbers in decimal) 

;----------------------------------------------------------------
PUBLIC DOSV2CON ; Library routine 
; 
dosv2con PROC NEAR 
; 
;EXTRN dosver:NEAR ; get version of MS-DOS 
;EXTRN bin2dec:NEAR ; displays numbers in decimal 
; 

push bx ; save registers 
push ex ; 
push dx ; 

; 
ca LL dosver ; get version of MS-DOS 
push ax ; save returned version 
push ax ; and save it again 
xor ah,ah ; output major version in AL 



A - Development Tools 

mov 
ca LL 
@DisChr 
pop 
cmp 
je 
xchg 
xor 
mov 
ca LL 
jmp 

; 
ver1xx: 

@DisChr 
@DisChr 

; 
end_ver: 

pop 

pop 
pop 
pop 
ret 

; 
dosv2con ENDP 
; 
; 

ch,1 
bin2dec 
' ' . 
ax 
al,1 
ver1xx 
ah,al 
ah,ah 
ch,2 
bin2dec 
short end_ver 

'X' 
'X' 

ax 

dx 
ex 
bx 

; display at Least 1 digit 
; output number 
; separator character 
; restore minor version number 
; is it version 1.XX? 
; yes, display "XX" as minor ver. 
; else, put minor version in AL 
; clear upper 
; display at Least two digits 
; output number 
; and end 

; output an X 
; and again 

; restore version for return to 
; ..• main routine 
; restore rest of registers 

; end of routine 

;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

; MEMALLOC: Allocates a block of memory of the specified size 
; in paragraphs (16 bytes). 
; 
; INPUT: 
; 
; 
; OUTPUT: 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 

BX size, in 16-byte paragraphs, 
of requested block 

Carry flag = 0 if SUCCESS, with 
AX = segment address of allocated 

memory block 
(BX is restored) 

Carry flag = 1 if FAILURE, with 
AX = error code 

7 = memory control blocks 
destroyed 

8 = insufficient memory 
BX = Largest memory block avai Lable 

in paragraphs 
continued 

733 



Appendixes 

734 

Listing A-8. continued 

; 
; CALLED ROUTINES: None. 

;----------------------------------------------------------------
PUBLIC MEMALLOC 
; 

mema L Loe PROC 
push 
push 
mov 

; 

NEAR 
bp 
bx 
bp,sp 

; Library routine 

; save base pointer 
; save BX 
; initialize base pointer 

xor al,al ; clear out AL 
mov ah,48h ; Load allocate memory function 

; execute memory allocation @DosCall 
jnc end_memalloc ; exit if no error with 

; ••• seg. address in AX 
; else, exit with carry f Lag set, 

mov word ptr [bpJ,bx; max. size block (BX), 

; 
end_memalloc: 

pop 
pop 
ret 

; 
memalloc ENDP 
; 
; 

bx 
bp 

; and error code in AX 

; restore BX 
; restore base pointer 

;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

; MEMSIZE: Changes the size of a block of memory previously 
; allocated via the MEMALLOC routine. The block's address and 

the requested size (in 16-byte paragraphs) is specified. ; 
; 
; INPUT: 
; 
; 
; OUTPUT: 
; 
; 
; 
; 
; 
; 
; 
; 

ES = segment address of allocated memory block 
BX = new size, in 16-byte paragraphs 

Carry flag = 0 if SUCCESS, with 
Call registers are restored) 

Carry flag = 1 if FAILURE, with 
AX = error code 

7 = memory control blocks 
destroyed 

8 = insufficient memory 
9 = invalid block address 



A - Development Tools 

; 
; 
; 

; 

BX= Largest memory block available 
in paragraphs if AX = 8; 
else, it is restored. 

(ES is restored) 

; CALLED ROUTINES: None. 
;----------------------------------------------------------------
PUBLIC 
; 
memsize 

; 

MEMSIZE 

PROC 
push 
push 
push 
push 
mov 

xor 
mov 
@Dos Ca LL 
jnc 

pus hf 
cmp 

NEAR 
bp 
es 
ax 
bx 
bp,sp 

a L,a L 
ah,4Ah 

end_memsi ze 

ax,8 

; Library routine 

; save base pointer 
; save memory block address 
; save AX 
; save BX 
; initialize base pointer 

; clear out AL 
; Load "change block size" func. 

; exit if no error 
; else, exit with carry f Lag set 
; save flags 
; insufficient memory? 

jne memsize_err ; no, continue 
mov word ptr [bpJ,bx ; else, save max. size avai Lable 

memsize_err: 
mov word ptr [bp+2J,ax ; save error code 
popf ; restore flags 

; 
end_memsize: 

pop bx 
pop ax 

; 

pop es 
pop 
ret 

bp 

memsize ENDP 
; 
; 

; restore registers 

; restore base pointer 

;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
; MEMFREE: Deallocates a block of memory previously allocated by 
; the MALLOC routine. 
; 
; ENTRY: ES = segment address of allocated memory block 
; 
; EXIT: Carry flag O, if SUCCESS 

continued 

735 



Appendixes 

736 

; 
; 
; 
; 
; 

; 
; 
; 
; 

Listing A-8. continued 

CES is restored) 

Carry flag= 1, if FAILURE, with 
AX = error code 

7 = Memory control blocks 

destroyed 
9 = Invalid address 

(ES is restored) 

; CALLED ROUTINES: None. 

;----------------------------------------------------------------
PUBLIC MEMFREE 
; 
memfree PROC 

push 
push 
push 
mov 

; 
xor 
mov 
@DosCall 

NEAR 
bp 
es 
ax 
bp,sp 

al,al 
ah,49h 

; Library routine 

; save base pointer 
; save block address 
; save AX 
; initialize base pointer 

; clear out AL 
; load deallocate mem. function 
; execute memory deallocation 

jnc encLmemfree ; exit if no error 
; else, exit with carry flag set, 

mov word ptr [bpJ,ax ; and error code (AX) 
; 
end_memfree: 

pop 
pop 
pop 
ret 

; 
memfree ENDP 
; 
; 

ax 
es 
bp 

; restore AX 
; restore block address 
; restore base pointer 

;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

; MERRHNDL: Memory allocation/deallocation/resize error 
; handler. 
; 
; INPUT: 
; 
; 
; 
; 

AX = error code 
BX = maximum memory block available 

Cif error code 8) 
ES = segment address of allocated block 

(if error code 9) 



A - Development Tools 

; 
; OUTPUT: None Call registers are restored) 
; 
; CALLED ROUTINES: BIN2DEC (via @DisNum macro) 
;----------------------------------------------------------------
PUBLIC MERRHNDL ; Library routine 
; 
merrhndl PROC NEAR 
; 

; 

cmp 
jne 
@DisStr 
ret 

ax,7 ; trashed memory control blocks? 
mem.....error8 ; no, continue checking 
TrashedMemErr_Msg ; yes, exit with message 

; return 

mem.....error8: 
cmp ax,8 ; insufficient memory? 
jne mem.....error9 ; no, continue checking 
@DisStr InsuffMemErr_Msg ; yes, exit with message 
@DisNum bx,10,1,0 ; ... and Largest block available 
@Newline ; display blank Line 
ret ; return 

; 
mem.....error9: 

; 

cmp 
jne 
@DisStr 

ax,9 ; 
mem.....err_unknown ; 
IncorrSegAddr_Msg 

invalid memory block address? 
no, unknown cause 

@DisNum es,16,4 
@Newline 

; display error message 
; display seg. address 
; display blank Line 

ret ; return 

mem.....err_unknown: 

; 
_TEXT 
_DATA 

@DisStr UnknownMemErr_Msg ; display message 
ret 

ENDS 
SEGMENT 

; end code segment 
; start data segment 

TrashedMemErr_Msg db "Memory allocation failure: memory" 
db "control blocks destroyed.",CR,LF,"$" 

InsuffMemErr_Msg db "Memory allocation failure: " 
db "insufficient memory",CR,LF 
db "Largest block of memory available=$" 

IncorrSegAddr_Msg db "Incorrect segment address for " 
db "resize/deallocation.",CR,LF 
db "Segment address = $" 

UnknownMemErr_Msg db "Unknown memory allocation/resize/" 
db "deallocation error.",CR,LF,"$" 

continued 

737 



Appendixes 

738 

_DATA ENDS 
_TEXT SEGMENT 
; 
merrhndl ENDP 
; 

; 

Listing A-8. continued 

; end data segment 
; start code segment 

;**************************************************************** 
; END LIBRARY ROUTINES 

;**************************************************************** 
_TEXT ENDS 

END 

As you can see in the listing, all routines must be declared PUBLIC in the 
source file in order to make them available to other programs. Any label (which 
is what a routine's name is) that is to be used in another program must be de
clared this way. 

If the routines are to be included in an .EXE file, all that's needed is to use 
the EXTRN directive, placed outside the segment definition. LINK finds the 
reference in the library and places the referenced routine in its own segment in 
the final program. However, if the routines are to be included in a . COM type 
file, both the segment name and the "class" name used for the .COM program 
must match those used in the library routine. To use either the BIN2DEC or 
BIN2HEX routines, the .COM program must use the segment definition: 

code segment para public "code" 

Note that the segment definition must also be declared PUBLIC. In this 
case both the segment name (code) and the class name ('code') are the same to 
help in remembering the names. In addition, the EXTRN directives must be 
placed inside of the segment definition to let MASM know that the external rou
tines are part of the same segment. (PUBLIC and EXTRN labels are given the 
same segment attributes as the segment that encloses their definitions.) 

Additional information about libraries, PUBLIC, and EXTRN may be 
found in the Microsoft MASM and LINK reference manuals. 





B - Undocumented Interrupts and Functions 

LJf"'I HIS appendix provides descriptions of some of the undocumented features l±_J of MS-DOS. In particular, MS-DOS interrupts and functions associated 
with interrupts are covered. Undocumented refers to features that are not de
scribed in any detail and are simply referred to as "reserved" or "unused" in the 
MS-DOS Technical Reference Manual (Microsoft) or DOS Technical Reference 
Manual (IBM). Although some of the reserved features are indeed reserved and 
appear to have no functionality associated with them, others have had their 
functionality revealed over the years by dedicated and curious programmers. 
The features described next are a compendium of undocumented interrupts and 
interrupt-functions that have been analyzed by the authors and by other people 
who have submitted their findings through various electronic bulletin boards as 
public-domain information. 

It should be stated that the authors and the publisher do not make any war
ranties whatsoever as to the validity and ~ccuracy of the information presented 
in this appendix. Since all the interrupts and functions described in this appen
dix are labeled as reserved in the technical reference documentation from Micro
soft and IBM, it is reasonable to assume that the originators of MS-DOS could, 
conceivably, change the definitions of these interrupts and functions in future 
versions of MS-DOS. Therefore, anyone wishing to use any of the described in
terrupts or functions in programs does so at his or her own risk. Only some of 
the interrupts and functions have gained popular acceptance for their use in cer
tain types of programs (e.g., terminate-and-stay-resident (TSR) programs). 
The majority of the features described are presented only to satisfy the curi
osity that we all have and to further our understanding of how the MS-DOS op
erating system works. 

Undocumented MS-DOS Interrupts 

As of MS-DOS 3.3, MS-DOS interrupts 28 through 2E (hex) are declared as re
served in the MS-DOS documentation. Of these interrupts, 28, 29, and 2E (hex) 
are described in the following paragraphs. 

Interrupt 28h (40): DOS Safe Interrupt 
Interrupt 28h is commonly called the DOS safe interrupt or keyboard busy loop 
interrupt. It is used internally by the MS-DOS Get Input from Keyboard 

741 



Appendixes 

742 

routine, if and only if it is safe to use interrupt 21h functions OCh and above. 
Int 28h is used primarily by terminate-and-stay-resident programs, including 
MS-DOS's PRINT.COM. When a program has called the MS-DOS Get Input 
from Keyboard routine and is waiting for a key to be pressed, MS-DOS ceases 
calling int 28h as a signal to other applications that may be loaded that no int 21h 
functions (OCh and above only) should be called. Once a key is pressed and the 
routine has terminated, int 28h is called to signal other applications that may be 
loaded that the system is sitting idle and it is safe to execute int 21h functions. 
Generally, int 28h is used in conjunction with int 21h function 34h (Get DOS 
Busy Flag): MS-DOS calls or releases int 28h as appropriate, and the application 
calls the Get DOS Busy Flag function to determine the idle state of the system. 

Interrupt 29h (41): Console Device Output 

Interrupt 29h, often referred to as console device output or FAST PUTCHAR, 
is called internally by MS-DOS output routines if output is going to a device 
rather than a file, and ifthe attribute word of the device's device driver has bit 3 
(04h) set to 1. Int 29h can be regarded as a back door to the console output device 
driver: the character in the AL register is output to the console when this inter
rupt is executed. 

Interrupts 2Ah (42) through 2Dh (45): MS-DOS 
Internal Routines 

Interrupts 2Ah through 2Dh are MS-DOS internal interrupts. Their vectors all 
point to an IRET op-code. Int 2Ah is used for network control in systems 
installed with MSNET and other Microsoft network software. 

Interrupt 2Eh (46): Back Door to COMMAND Processor 

The EXEC function (int 21h function 4Bh) is normally used for executing a com
mand through the command processor COMMAND.COM. However, interrupt 
2Eh provides an alternative, quick and dirty method of accomplishing the same 
function. To execute an MS-DOS command, first shrink the memory to make 
room for the new program (as in int 21h function 4Bh), then make the DS:SI reg
ister point to the parameter string for the command, and finally execute int 
2Eh. The first byte in the command's parameter string is the length of the 
string, followed by the string itself (e.g., CHKDSK C:), and is terminated by a 
carriage return (ODh). The terminating carriage return is counted as part of the 
string's length. After int 2Eh has been executed, it is important to reset the 
stack, since int 2Eh may not have saved the SS and SP registers. 

Interrupts 30h (48) through FFh (255) 

Interrupts 30h through FFh are marked as reserved beginning with MS-DOS 
version 3.30. However, some of these interrupts are used by add-on hardware 
and software. For example, int 67h is the interrupt reserved for use by the 



B - Undocumented Interrupts and Functions 

Lotus/Intel/Microsoft (LIM) Expanded Memory System (EMS) specification. It 
is through this interrupt (implemented in the EMS device driver) that all the 
LIM EMS functions are executed (see Chapter 7 for more information on EMS). 
Other types of add-on hardware and software make use of these interrupts, such 
as Microsoft and IBM network adapters and BIOS routines, the EGA and VGA 
adapters, and others. 

Undocumented Interrupt 21h (33) Function Calls 

The following interrupt int 21h function calls are labeled as "reserved" or 
"unused" in the Microsoft and IBM DOS Technical Reference Manual (as of 
MS-DOS version 3.30): 18h, lDh through 20h, 32h, 34h, 37h, 50h through 53h, 
55h,58h,5Dh,60h,61h,63h,64h. 

The highest int 21h function defined (as of MS-DOS version 3.30) is 68h. 
Reserved functions beyond 68h, if any, remain to be discovered. 

The following paragraphs describe in more detail the undocumented int 
21h functions with uncovered operations. 

Functions 18h (24), lDh (29), lEh (30), 20h (32h): Dummy 
Functions for Compatibility with CP/M 

Many of the lower-numbered functions of MS-DOS have an equivalent CP/M 
counterpart. Not all of the CP/M functions were implemented in MS-DOS, but 
many of them have "blank slots" in order to ease the porting of CP/M programs 
to MS-DOS. These functions do not return anything when they are executed. 

Function lFh (31): Locate Disk Block Information 
for Default Drive 

Function lFh is used to return a pointer to the disk block information table for 
the default drive. Table B-1 shows the format of this table and what its con
tents are. 

Entry: AH = lFh 

Return: DS:BX contains the address of the first entry in the disk block 
of the default drive. 

Notes: Function lFh is the same as function 32h, except that function 
32h returns the disk block information for a specified drive. 
Under MS-DOS versions 2.0 and higher, this function simply 
executes int 21h function 32h with AL = 0. 

Table B-1. MS-DOS Disk Block Layout 

Offset Type Data 

00 
01 

Byte 
Byte 

Drive: 0 = A, 1 = B, etc. 
Unit within driver (0, 1, 2, etc.) 

continued 

743 



Appendixes 

744 

Offset 

02 
04 
05 
06 
08 
09 
OB 
OD 
OF 
10 
12 
16 
17 
18 

Type 

Word 
Byte 
Byte 
Word 
Byte 
Word 
Word 
Word 
Byte 
Word 
Dword 
Byte 
Byte 
Dword 

Table B-1. continued 

Data 

Bytes per sector 
Sectors per cluster - 1 
Cluster to sector shift 
Number of reserved (boot) sectors 
Number of FAT tables 
Number of root directory entries 
Sector number of Cluster 2 (1st data sector) 
Number of clusters+ 1 (or last cluster number) 
Sectors for FAT 
Sector number of directory 
Address of device header 
Media descriptor byte 
Zero if disk has been accessed 
Address of next DOS disk block (FFFF if last one in chain) 

Function 32h (50): Locate Disk Block Information 
for Specified Drive 

Function 32h is the same as function lFh, except that the pointer to the disk 
block information table for a specified drive may be specified. 

Entry: AH = 32h 
DL =Number of disk drive (0 =default, l=A, etc.) 

Return: AL = 00 if drive exists; FFh for invalid drive. 
DS:BX contains the address of the first entry in the DOS 
disk block. 

Notes: Function 32h is the same as function lFh, except that function 
lFh only returns the disk block information for the default 
drive. 

Function 34h (52): Get MS-DOS Busy Flag 

Function 34h returns a pointer to the DOS busy flag (also called the DOS critical 
section flag). The DOS busy flag is a byte that is set to zero when it is safe to 
interrupt MS-DOS, and is set to a nonzero value when it is not safe to interrupt 
MS-DOS. This function is used in conjunction with interrupt 28h: the interrupt 
sets the DOS busy flag, and int 21h function 34h points to the location of the flag 
(refer to the earlier discussion on undocumented interrupts). 

Entry: AH = 34h 

Return: ES:BX points to the DOS busy flag. 
Notes: There are some peculiarities regarding the DOS busy flag in 

various versions of MS-DOS. Under MS-DOS 2.10, the byte 
immediately after the DOS busy flag must be set to 00 to 
permit the PRINT.COM interrupt to be called. For MS-DOS 



B - Undocumented Interrupts and Functions 

3.0 and 3.1 (except COMPAQ DOS 3.0), the byte before the 
DOS busy flag must be zero; for COMPAQ DOS 3.0, the byte 
OlAAh before it must be zero. 

Function 37h (55): Get/Set Switch Character 

Function 37h is used to change the character that is used for switches on 
MS-DOS command lines. The default switch character is a slash(/), but it can be 
changed by using function 37h to something else, like the - (hyphen) character, 
which is the default in the UNIX operating system. This function was fully doc
umented in the MS-DOS documentation before MS-DOS version 3.0 was re
leased, as was a command that could be placed in the CONFIG.SYS startup file 
(SWITCHAR = /). References to both this function and the CONFIG.SYS 
SWITCHAR command were removed from the MS-DOS documentation as of 
MS-DOS version 3.0. However, as of MS-DOS version 3.30, int 21h function 37h 
operates as it did before. 

Entry: AH = 37h 
AL= 0 (Read switch character (returned in DL) 
AL = 1 (Set switch character (new character in DL) 
AL = 2 (MS-DOS 2.X only: Read device availability) 
AL = 3 (MS-DOS 2.X only: Set device availability, where DL = 
0 if /DEV/ must precede device names, and DL < > 0 if /DEV/ 
need not precede device names 

Return: DL =Switch character (if AL= 0 or 1 on entry) 
DL = Device availability flag (if AL = 2 or 3 on entry) 
AL = OFFh if error (value in AL on entry was not 0 through 3) 

Function 50h (80): Set PSP Segment 

Function 50h is used to set the segment for a new program segment prefix (PSP). 

Entry: AH = 50h 
BX = Segment address of new PSP 

Return: None 

Notes: Under MS-DOS 2.X, this function cannot be invoked inside an 
int 28h handler without a prior call to int 21h function 5Dh. 

Function 51h (81): Get PSP Segment 

Function 51h is used to return the segment address of the current program seg
ment prefix (PSP). 

Entry: AH = 51h 

Return: BX = Segment address of current PSP 

745 



Appendixes 

Function 52h (82): Get Address of the MS-DOS List of Lists 

746 

Function 52h returns a pointer to the MS-DOS "list of lists," which contains 
various types of information, including pointers to other lists of information. 
Tables B-2 and B-3 show the layout of the MS-DOS list oflists. 

Entry: AH = 52h 
Return: ES:BX contains the address of the MS-DOS list of lists. 

Notes: The list oflists pointed to is different between MS-DOS 

Offset 

-02 
00 
01 
04 
08 
oc 
10 
12 
16 
lA 
20 
21 
22 

versions 2.XX and 3.XX. See Tables B-2 and B-3 for the 
differences. Although the list of lists table pointed to after 
function 52h is invoked contains information on the first disk 
block, it does not cause the drive to be accessed, so the 
information in the disk block may not be accurate. Functions 
lFh or 32h, however, do cause the drive to be accessed, 
automatically updating the disk block if the disk changed. 

Table B-2. MS-DOS 2.XX List of Lists 

Offset Type Data 

-02 Word Segment of first memory control block 
Null 00 Byte 

01 Word Pointer to first disk block (see function 36h) 
Not known; pointer to first resident driver? 
Pointer to CLOCK$ device driver 

04 Byte 
08 Word 
OC Word Pointer to actual CON: device driver 

Number of logical drives in system 
Maximum bytes per block of any block device 
Unknown 

10 Byte 
11 Word 
13 Byte 
17 Byte Beginning (not a pointer) of the NUL device driver 

Type 

Word 
Byte 
Word 
Byte 
Word 
Word 
Word 
Byte 
Byte 
Byte 
Byte 
Byte 
Byte 

Table B-3. MS-DOS 3.XX List of Lists 

Data 

Segment of first memory control block 
Null 
Pointer to first disk block (see function 36h) 
Not known; pointer to first resident driver? 
Pointer to CLOCK$ device driver 
Pointer to actual CON: device driver 
Maximum bytes per block of any block device 
Unknown (possibly a pointer to current directory block) 
Unknown (possibly an array of drive information) 
Unknown 
Number of block devices . 
Value ofLASTDRIVE command in'CONFIG.SYS (default= 5) 
Beginning (not a pointer) of the NUL device driver 



B - Undocumented Interrupts and Functions 

Function 53h (83): Translate BIOS Parameter Block (BPB) 
to Disk Block 

Function 53h translates the BIOS Parameter Block (BPB) of a given disk into 
the DOS disk block format and places information at the specified location (see 
Table B-4). 

Entry: AH= 53h 
DS:SI = Pointer to BIOS Parameter Block (BPB) for disk 
ES:BP =Pointer to area in which to store the DOS disk block 

Return: Disk block layout information stored in area originally pointed 
to by ES:BP. 

Table B-4. MS-DOS Disk Block Layout Information 
Returned from Function 53h 

Offset Type Data 

00 Word Bytes per sector 
02 Byte Sectors per cluster 
03 Word Reserved sectors 
05 Byte Number of FATs 
05 Byte Cluster to sector shift 
06 Word Number of root directory entries 
08 Word Total number of sectors 
OA Byte Media descriptor byte 
OB Word Number of sectors per FAT 

Function 55h (85): Create PSP Block 

Function 55h is used to create a child program segment prefix (PSP). It is simi
lar to int 21h function 26h except that a new PSP is created instead of copying 
the current PSP. 

Entry: AH= 55h 
DX= Segment address in which to set up the PSP 

Return: None 

Function 58h (88): Get/Set Memory Allocation Strategy 
Entry: AH = 58h 

AL = Function code 
AL = 0 to get allocation strategy 
AL = 1 to set allocation strategy 
BL = Strategy Code 
BL= 0 if first fit (use first memory block large enough to fit) 
BL= 1 if bet fit (use smallest memory block large enough to 
fit) 
BL = 2 iflast fit (use high part of last usable memory block) 

747 



Appendixes 

748 

Return: Carry Flag = 1 if error, with error code in AX. Carry Flag = 0 
if no error, with strategy code in AX. 

Note: The set subfunction accepts any value in BL: 2 or greater 
means "last fit." The subfunction returns the last value set, so 
programs should check to see whether the value is equal to or 
greater than 2, and not just equal to 2. 

Function 60h (96): Resolve Path String to Fully Qualified 
Path String 

Function 60h takes a path string that is pointed to and returns a fully qualified 
version of the same path. 

Entry: AH = 60h 
DI:SI = Pointer to path string 
ES:DI = Pointer to area in which to store the returned fully 
qualified path string 

Return: Fully qualified path string is returned in area originally pointed 
to by ES:DI. There are no known returned error codes. 

Function 63h (99): Get Lead Byte Table 
Entry: AH = 63h 

AL = Subfunction 
AL = 0 to get system lead-byte table 
AL = 1 to set or clear interim console flag 

DL = 0 to clear flag 
DL = 1 to set flag 

AL = 2 to get interim console flag 

Return: DS:SI = pointer to lead byte table (if called with AL = 0) 
DL =interim console flag (if called with AL = 2). 





C - Bibliography 

QT] HE following books and articles are ones used by the authors as refer[ili_J ences. You may wish to consult these texts for further information on 
specific topics. 

Books 

Abel, P. Programming Assembler Language. 2d ed. Reston, VA: Reston, 1984. 

Allworth, S.T. Introduction to Real-Time Software Design. New York: 
Springer-Verlag, 1981. 

Angermeyer, J., R. Fahringer, K. Jaeger, and D. Shafer. Tricks of the MS-DOS 
Masters. Indianapolis: Howard W. Sams, 1987. 

DeMarco, T. Structured Analysis and System Specification. New York: 
Yourdon, 1978. 

Disk Operating System. Boca Raton, FL: International Business Machines, 
1982 (for DOS 1.10), 1983 (for DOS 2.00), 1983 (for DOS 2.10), 1984 (for DOS 
3.00), 1984 and 1985 (for DOS 3.10). 

Disk Operating System Technical Reference. Boca Raton, FL: International 
Business Machines, 1983 (for DOS 2.10), 1984 (for DOS 3.00), 1984 and 1985 
(for DOS 3.10). 

Duncan, Ray. Advanced MS-DOS. Redmond, WA: Microsoft Press, 1986. 

Hyman, Michael. Memory Resident Utilities, Interrupts, and Disk Manage
ment with MS & PC DOS. Portland, OR: MIS Press, 1986. 

IAPX 86/88, 186/188 User's Manual: Programmer's Reference. Santa Clara, 
CA: Intel, 1983. 

Kane, G., D. Hawkins, and L. Leventhal. 68000 Assembly Language Program
ming. Berkeley, CA: Osborne/McGraw-Hill, 1981. 

Kernighan, Brian, and Dennis Ritchie. The C Programming Language. En
glewood Cliffs, NJ: Prentice-Hall, 1978. 

751 



Appendixes 

752 

Lafore, R. Assembly Language Primer for the IBM PC and XT. New York and 
Scarborough, Ontario: New American Library, 1984. 

Lai, S. Robert. Writing MS-DOS Device Drivers. New York: Addison-Wesley, 
1987. 

Lattice 8086/8088 C Compiler Manual. New York: Lifeboat Associates, 1982. 

Microsoft C Compiler: User's Guide. Bellevue, WA: Microsoft, 1984 and 1985 
(for C 3.00). 

Microsoft C: Run-Time Library Reference. Bellevue, WA: Microsoft, 1984 and 
1985 (for C 3.00). 

Microsoft Macro Assembler User's Manual. Bellevue, WA: Microsoft, 1981 and 
1983 (for MASM 2.00), 1984 and 1985 (for MASM 4.00). 

Microsoft MS-DOS Programmer's Reference. Bellevue, WA: Microsoft, 1981 
and 1983 (for MS-DOS 2.10). 

Morgan, C. L. Bluebook of Assembly Language Routines for the IBM PC & XT. 
New York and Scarborough, Ontario: New American Library, 1984. 

Morgan, C.L., and M. Waite. 8086/8088 16-Bit Microprocessor Primer. Peter
borough, NH: BYTE/McGraw-Hill, 1982. 

Norton, P. Inside the IBM PC. Bowie, MD: RobertJ. Brady Co., 1983. 

Savitzky, Stephen. Real-Time Microprocessor Systems. New York: Van 
Nostrand Reinhold, 1985. 

Simrin, Steven. The Waite Group's MS-DOS Bible. rev. ed. Indianapolis: 
Howard W. Sams, 1988. 

Tausworthe, R.C. Standardized Development of Computer Software. Pt. I. 
Englewood Cliffs, NJ: Prentice-Hall, 1977. 

Turbo Pascal Reference Manual Version 2.0. Scotts Valley, CA: Borland Inter
national, 1984. 

Turbo Pascal Reference Manual Version 3.0. Scotts Valley, CA: Borland Inter
national, 1983, 1984, and 1985. 

Waite Group, The. The Waite Group's MS-DOS Papers. Indianapolis: Howard 
W. Sams, 1988. 

Yourdon, E. U., and L. L. Constantine. Structured Design. Englewood Cliffs, 
NJ: Prentice-Hall, 1977. 

Yourdon, E.U. Techniques of Program Structure and Design. Englewood 
Cliffs, NJ: Prentice-Hall, 1975. 



Articles 

C - Bibliography 

Duncan, Ray. "Lotus/Intel/Microsoft Expanded Memory," Byte 11, no. 11, 1986 
(Special IBM Edition). 

How to write programs using LIM EMS 3.2. Example portions ofRAMDISK 
program that uses expanded memory. 

Hansen, Marion, and John Driscoll. "LIM EMS 4.0: A Definition for the Next 
Generation of Expanded Memory,'' MSJ 3, no. 1, Jan 88. 

A description of the features introduced by LIM EMS 4.0. Sample programs 
in C and assembly language demonstrate improved methods for screen sav
ing, data sharing between programs, and executing code from expanded 
memory. 

Hansen, Marion, Bill Krueger, and Nick Stuecklen. "Expanded Memory: Writ
ing Programs That Break the 640K Barrier," MSJ 2, no. 1, Mar 87. 

A description of LIM EMS 3.2. Sample programs in C and assembly language 
demonstrate screen saving and executing code from expanded memory. 

Lefor, John A., and Karen Lund. "Reaching into Expanded Memory,'' PCT J 5, 
no. 5, May 86. 

An application-oriented explanation of the LIM EMS 3.2 and AQA EEMS. 
Complete sample programs to obtain expanded memory parameters and to 
dump expanded memory data. 

Lotus, Intel, Microsoft. "Lotus/Intel/Microsoft Expanded Memory Specifica-
tion, Version 4.0," Document number 300275-005, Oct 87. 

The complete specification for the latest version of the expanded memory 
specification. Includes sample programs in Turbo Pascal and assembly 
language. 

Mirecki, Ted. "Expandable Memory,'' PCT J, no. 2, Feb 86. 
A description of LIM EMS 3.2 and the AQA EEMS. Tests of Intel and AST 
expanded memory products. 

Yao, Paul. "EMS Support Improves Microsoft Windows 2.0 Application 
Performance,'' MSJ 3, no. 1, Jan 88. 

A technical discussion of the way Windows 2.0 uses LIM EMS 4.0 to manage 
multiple concurrent applications. 

753 







D - ASCII Conversions 

~ABLE D-1 cross-references terminal keys with their dechnal (base 10), ~hexadecimal (base 16), octal (base 8), and ASCII (American Standard 
Code for Information Interchange) assignments. The key sequences that consist 
of Control- are typed by simultaneously pressing the Control key and the key 
indicated. These sequences are based on those defined for most standard termi
nals, such as the Diablo 1640 keyboard and the Televideo series of terminals, and 
may be defined differently on other keyboards. 

Table D~l. ASCII Cross-Reference 

IBM 
DEC HEX OCT Graphics 
X10 Xrn Xs ASCII Char. Terminal Key* 

0 00 00 NUL <Ctrl-@> 
1 01 01 SOH © <Ctrl-A> 
2 02 02 STX • <Ctrl-B> 
3 03 03 ETX • <Ctrl-C> 
4 04 04 EOT • <Ctrl-D> 
5 05 05 ENQ '- <Ctrl-E> 
6 06 06 ACK • <Ctrl-F> 
7 07 07 BEL • <Ctrl-G> 
8 08 10 BS a <Ctrl-H> 
9 09 11 HT 0 <Ctrl-1> 

10 OA 12 LF • <Ctrl-J> 
11 OB 13 VT 0 <Ctrl-K> 
12 oc 14 FF Cjl <Ctrl-L> 
13 OD 15 CR )' <Ctrl-M> 
14 OE 16 so n <Ctrl-N> 
15 OF 17 SI ~ <Ctrl-0> 
16 10 20 DLE .... <Ctrl-P> 
17 11 21 DCl .... <Ctrl-Q> 
18 12 22 DC2 i <Ctrl-R> 
19 13 23 DC3 !! <Ctrl-S> 
20 14 24 DC4 ~ <Ctrl-T> 
21 15 25 NAK § <Ctrl-U> 
22 16 26 SYN <Ctrl-V> 
23 17 27 ETB ..t <Ctrl-W> 
24 18 30 CAN 1' <Ctrl-X> 
25 19 31 EM t <Ctrl-Y> 

continued 

757 



Appendixes 

Table D-1. continued 

IBM 
DEC HEX OCT Graphics 
X10 x16 Xs ASCII Char. Terminal Key* 

26 lA 32 SUB ~ <Ctrl-Z> 
27 1B 33 ESC ~ <Esc> 
28 lC 34 FS L <Ctrl-\> 
29 1D 35 GS <E-7 <Ctr!-' > 
30 lE 36 RS ~ <Ctr!-=> 
31 lF 37 us T <Ctr!--> 
32 20 40 SP (Space) <SPACE BAR> 
33 21 41 ! (Exclamation mark) 
34 22 42 "(Quotation mark) 
35 23 43 # # #(Number sign or Octothorpe) 
36 24 44 $ $ $ (Dollar sign) 
37 25 45 % % % (Percent) 
38 26 46 & & & (Ampersand) 
39 27 47 ' (Apostrophe or acute accent) 
40 28 50 ((Opening parenthesis) 
41 29 51 ) (Closing parenthesis) 
42 2A 52 * * * (Asterisk) 
43 2B 53 + + + (Plus) 
44 2C 54 , (Comma) 
45 2D 55 - (Hyphen, dash, or minus) 
46 2E 56 . (Period) 
47 2F 57 I I I (Forward slant) 
48 30 60 0 0 0 
49 31 61 1 1 1 
50 32 62 2 2 2 
51 33 63 3 3 3 
52 34 64 4 4 4 
53 35 65 5 5 5 
54 36 66 6 6 6 
55 37 67 7 7 7 
56 38 70 8 8 8 
57 39 71 9 9 9 
58 3A 72 : (Colon) 
59 3B 73 ; (Semicolon) 
60 3C 74 < < < (Less than) 
61 3D 75 = (Equals) 
62 3E 76 > > > (Greater than) 
63 3F 77 ? ? ? (Question mark) 
64 40 100 @ @ @(Commercial at) 
65 41 101 A A A 
66 42 102 B B B 
67 43 103 c c c 
68 44 104 D D D 
69 45 105 E E E 
70 46 106 F F F 
71 47 107 G G G 
72 48 110 H H H 
73 49 111 I I I 
74 4A 112 J J J 
75 4B 113 K K K 

758 



D- ASCII Conversions 

IBM 
DEC HEX OCT Graphics 
X10 Xrn Xs ASCII Char. Terminal Key* 

76 4C 114 L L L 
77 4D 115 M M M 
78 4E 116 N N N 
79 4F 117 0 0 0 
80 50 120 p p p 
81 51 121 Q Q Q 
82 52 122 R R R 
83 53 123 s s s 
84 54 124 T T T 
85 55 125 u u u 
86 56 126 v v v 
87 57 127 w w w 
88 58 130 x x x 
89 59 131 y y y 
90 5A 132 z z z 
91 5B 133 [ [ [(Opening bracket) 
92 5C 134 \ \ \ (Reverse slant) 
93 5D 135 ] ] ] (Closing bracket) 
94 5E 136 A A " (Caret or circumflex) 
95 5F 137 _(Underscore or underline) 
96 60 140 ' (Grave accent) 
97 61 141 a a a 
98 62 142 b b b 
99 63 143 c c c 

100 64 144 d d d 
101 65 145 e e e 
102 66 146 f f f 
103 67 147 g g g 
104 68 150 h h h 
105 69 151 
106 6A 152 j j j 
107 6B 153 k k k 
108 6C 154 1 1 1 
109 6D 155 m m m 
110 6E 156 n n n 
111 6F 157 0 0 0 
112 70 160 p p p 
113 71 161 q q q 
114 72 162 r r r 
115 73 163 s s s 
116 74 164 t t t 
117 75 165 u u u 
118 76 166 v v v 
119 77 167 w w w 
120 78 170 x x x 
121 79 171 y y y 
122 7A 172 z z z 
123 7B 173 { { {(Opening Brace) 
124 7C 174 : (Vertical bar; logical OR) 

continued 

759 



Appendixes 

Table D-1. continued 

IBM 
DEC HEX OCT Graphics 
X10 x16 Xs ASCII Char. Terminal Key* 

125 7D 175 } } } (Closing brace) 
126 7E 176 - (Tilde) 
127 7F 177 DEL DEL <Del> 

N onprintable ASCII Character Definitions 

760 

ACK (ACKNOWLEDGMENT)-A communication control character that serves as 
a general "yes" answer to various queries but also sometimes indicates 
"I received your last transmission and I'm ready for your next." 

BELL (BELL)-A general-purpose control character that activates a bell, 
beeper, or other audible alarm on the device to which it was sent. 

BS (BACKSPACE)-A format effector control character that moves the carriage, 
print head, or cursor back one space or position. 

CAN (CANCEL)-A general-purpose control character that indicates that the 
material in the previous transmission is to be disregarded. The amount of 
material is decided by the user. 

CR (CARRIAGE RETURN OR RETURN) -A format effector control character that 
moves the carriage, print head, or cursor on a terminal back to the begin
ning of the line. On most terminals, the Return key causes both a CR and 
an LF (line feed). 

DCl - DC4 (DEVICE CONTROLS)-General-purpose control characters that con
trol the user's terminal or similar devices. No standard functions are as
signed, except that DC4 frequently means stop. The CCITT (Comite 
Consultatif International Telegraphe et Telephone [International Tele
graph and Telephone Consultative Committee]) suggests a number of pos
sible assignments. In general, CCITT prefers using the first two controls 
for on, and the last two for off, and DC2 and DC4 to refer to the more im
portant device. In some systems, these codes are labeled XON, TAPE, 
XOFF, and NO TAPE, respectively. X means transmitter, and TAPE and 
NO TAPE mean tape on and tape off. These labels are found on the keytops 
of some terminals. 

DEL (DELETE)-A general-purpose control character that deletes a character. 
Called RUBOUT on some terminals, DEL is not strictly a control charac
ter because it is not grouped with the other ASCII control characters. The 
DEL function has a binary all-ones bit pattern (11111111, base 2). The rea
son is historic: The only way to erase a bit pattern punched into paper tape 
was to punch out all the holes so that the resulting pattern was equivalent 
to a null. ASCII still considers DEL equivalent to a null, although many 
operating systems use DEL to erase the preceding character. 



D - ASCII Conversions 

DLE (DATA LINK ESCAPE)-A communications control character that uses a 
special type of escape sequence specifically for controlling the data line and 
transmission facilities. 

EM (END OF MEDIUM)-A general-purpose control character that indicates the 
end of paper tape (or other storage medium) or is the end of the material on 
the medium. 

ENQ (ENQUIRY)-A communications control character that usually is used for 
requesting identification or status information. In some systems, this code 
is WRU (who are you?). 

EOT (END OF TRANSMISSION)-A communications control character that marks 
the end of a transmission after one or more messages. 

ESC (ESCAPE)-A general-purpose character that marks the beginning of an 
escape sequence. An escape sequence consists of a series of codes, which as 
a group have a special meaning, usually a control function. On some termi
nals, ESC is called ALT MODE. 

ETB (END OF TRANSMISSION BLOCK)-A communications control character 
that is used when you want to break up a long message into blocks. ETB 
marks block boundaries. The blocks usually have nothing to do with the 
format of the message being transmitted. 

EXT (END OF TEXT)-A communications control character that marks the end 
of a text. See SOH. This code was originally called EOM (end of message) 
and may be labeled as such on some terminals. 

FF (FORM FEED )-A format effector control character that causes the carriage, 
print wheel, or cursor to advance to the top of the next page. 

FS, GS, RS, US (FILE, GROUP, RECORD AND UNIT SEPARATOR)-A set of infor
mation separator control characters that delimit portions of information. 
No standard usage exists, except that FS is expected to refer to the 
largest division and US to the smallest. 

HT (HORIZONTAL TAB)-A format effector control character that tabs the car
riage, print wheel, or cursor to the next predetermined stop on the same 
line. The user usually decides where the horizontal tab stops are 
positioned. 

LF (LINE FEED)-A format effector control character that moves the carriage, 
print head, or cursor down one line. Most systems combine CR (carriage 
return) with LF, and the new line is called NL (new line). 

NAK (NEGATIVE ACKNOWLEDGMENT)-A communications control character 
that indicates no in answer to various queries. Sometimes it is defined as 
"I received your last transmission, but it had errors and I'm waiting for a 
retransmission." 

NUL (NULL)-A general-purpose control character that mainly is used as a 
space filler. See also SYN. 

SI (SHIFT IN)-A general-purpose control character that is used after an SO 
code to indicate that codes revert to normal ASCII meaning. 

761 



Appendixes 

SO (SHIFT OUT)-A general-purpose control character that indicates the follow
ing bit patterns have meanings outside the standard ASCII set and will 
continue to do so until SI is entered. 

SOH (START OF HEADING)-A communications control character that marks the 
beginning of a heading when headings are used in messages along with 
text. Headings usually state the name and location of an addressee. This 
code was originally called SOM (start of message). 

STX (START OF TEXT)-A communications control character that is used as a 
marker for the beginning of text and end of heading (ifused). This code was 
originally called EOA (end of address). 

SUB (SUBSTITUTE)-A general-purpose control character indicating a charac
ter that is to take the place of a character known to be wrong. 

SYN (SYNCHRONOUS IDLE)-A communications control character used by some 
high-speed data communications systems that use synchronized clocks at 
the transmitter and receiver ends. During idle periods, when there are no 
bit patterns to enable the receiver's clock to track the transmitter's, the re
ceiver may drift out of sync. Every transmission following an idle period 
therefore is replaced by three or four SYN characters. The SYN code has a 
bit pattern that enables the receiver not only to lock onto the transmitter's 
clock but also to determine the beginning and end points of each character. 
SYN characters may also be used to fill short idle periods to maintain syn
chronization, hence the name. 

VT (VERTICAL TAB)-A format effector control character that tabs the car
riage, print head, or cursor to the next predetermined stop (usually a line). 

Hexadecimal to Decimal Conversion 

762 

Figure D-1 shows how the hexadecimal number 5F9D is converted to its decimal 
equivalent. 

5 F 9 D Hexadecimal 

~LDh=13d -13d x 1d = 13d 
~ 9h= 9d - 9d x 16d = 144d 

Fh=15d -15d x 256d = 3840d 
Sh= 5d - 5d x 4096d = 20480d 

24477 Decimal 

Figure D-1. Conversion of hexadecimal number 5F9D to its 
decimal equivalent. 

Each hexadecimal digit is always 16 times greater than the digit imme
diately to the right. 



D - ASCII Conversions 

24477 Decimal -------~ 5 F 9 D Hexadecimal 

24477+4096=5 - 5d = Sh 
Remainder= 3997 

3997+256=15 -15d = Fh 
Remainder= 157 

157+16=9 
Remainder= 13 

13+1=13 

- 9d= 9h 

-13d= Dh 

Figure D-2. Decimal number 244 77 converted back to its 
hexadecimal equivalent. 

Decimal to Hexadecimal Conversion 

The conversion process is reversed when converting decimal numbers to hex
adecimal. Start by selecting the leftmost digit and determine its significance in 
the number (thousands, hundreds, etc.). The decimal is then divided by the hex
adecimal value of the first digit's relative position. If, for example, the first digit 
is in the thousands position, divide by 4,096 (hexadecimal equivalent of 1,000 
decimal). The result is the first hexadecimal digit. The remainder is divided by 
the hexadecimal value of the next digit's relative position (that is, divide the 
hundreds digit by 256 because 256 is the hexadecimal equivalent of 100 decimal). 
Figure D-2 shows how the decimal number derived in the previous example is 
converted back to hexadecimal. 

Table D-2. IBM Extended Cross-Reference 

Binary OCT DEC HEX Ext. 
X2 Xs Xrn Xrn ASCII 

1000 0000 200 12S so Q 
1000 0001 201 129 Sl ti 
1000 0010 202 130 S2 e 
1000 0011 203 131 S3 a 
1000 0100 204 132 S4 a 
1000 0101 205 133 S5 a 
1000 0110 206 134 S6 a 
1000 0111 207 135 S7 i; 
1000 1000 210 136 SS e 
1000 1001 211 137 S9 e 
10001010 212 13S SA e 
10001011 213 139 SB 1 
1000 1100 214 140 SC 

continued 

763 



Appendixes 

Table D-2. continued 

Binary OCT DEC HEX Ext. 
X2 Xs X10 x16 ASCII 

1000 1101 215 141 SD l 
1000 1110 216 142 SE A 
1000 1111 217 143 SF A 
10010000 220 144 90 :E 
1001 0001 221 145 91 re 
1001 0010 222 146 92 lE 
1001 0011 223 147 93 0 
10010100 224 14S 94 0 
10010101 225 149 95 0 
10010110 226 150 96 il 
1001 0111 227 151 97 u 
10011000 230 152 9S Y. 
10011001 231 153 99 0 
10011010 232 154 9A u 
10011011 233 155 9B ¢ 
10011100 234 156 9C £ 
10011101 235 157 9D ¥ 
10011110 236 15S 9E P, 
10011111 237 159 9F f 
1010 0000 240 160 AO a 
1010 0001 241 161 Al 
1010 0010 242 162 A2 6 
1010 0011 243 163 A3 u 
1010 0100 244 164 A4 fl 
1010 0101 245 165 A5 :N 
1010 0110 246 166 A6 ~ 
1010 0111 247 167 A7 .Q 
1010 1000 250 16S AS l 
1010 1001 251 169 A9 r 
10101010 252 170 AA .., 
1010 1011 253 171 AB lf2 

1010 1100 254 172 AC 1/4 

1010 1101 255 173 AD 
1010 1110 256 174 AE « 

1010 1111 257 175 AF » 

1011 0000 260 176 BO 
10110001 261 177 Bl ·:::: 

1011 0010 262 17S B2 :;:;:. 
1011 0011 263 179 B3 I 
10110100 264 lSO B4 --1 
10110101 265 lSl B5 =1 
10110110 266 1S2 B6 -JI 
1011 0111 267 1S3 B7 .,, 
10111000 270 1S4 BS ~ 

10111001 271 1S5 B9 ~I 
10111010 272 186 BA II 
10111011 273 1S7 BB =i1 

10111100 274 lSS BC =.! 

10111101 275 1S9 ED _Jj 

10111110 276 190 BE d 

10111111 277 191 BF --, 

1100 0000 300 192 co L 

764 



D - ASCII Conversions 

Binary OCT DEC HEX Ext. 
X2 Xs X10 x16 ASCII 

1100 0001 301 193 Cl ...J... 

1100 0010 302 194 C2 I 

1100 0011 303 195 C3 f-
1100 0100 304 196 C4 
1100 0101 305 197 C5 + 
1100 0110 306 19S C6 ~ 
1100 0111 307 199 C7 I~ 
1100 1000 310 200 cs lb 

1100 1001 311 201 C9 rr= 
1100 1010 312 202 CA db 
1100 1011 313 203 CB ,r 
1100 1100 314 204 cc II= 
1100 1101 315 205 CD = 
1100 1110 316 206 CE .JL ,r 
1100 1111 317 207 CF __.__ 

1101 0000 320 20S DO ...JL 

1101 0001 321 209 D1 =;= 

1101 0010 322 210 D2 ,,-

1101 0011 323 211 D3 IL 

1101 0100 324 212 D4 b 

1101 0101 325 213 D5 F 

1101 0110 326 214 D6 rr 
1101 0111 327 215 D7 * 11011000 330 216 DS =I= 
11011001 331 217 D9 _J 

11011010 332 21S DA r 
11011011 333 219 DB • 11011100 334 220 DC -11011101 335 221 DD I 
11011110 336 222 DE I 
11011111 337 223 DF -1110 0000 340 224 EO ex 
1110 0001 341 225 El (3 
1110 0010 342 226 E2 r 
1110 0011 343 227 E3 7r 

1110 0100 344 22S E4 2 
1110 0101 345 229 E5 a 
1110 0110 346 230 E6 µ 
1110 0111 347 231 E7 7 

1110 1000 350 232 ES <I> 
1110 1001 351 233 E9 e 
1110 1010 352 234 EA n 
1110 1011 353 235 EB {j 
1110 1100 354 236 EC 00 

1110 1101 355 237 ED </> 
1110 1110 356 23S EE E 

1110 1111 357 239 EF n 
1111 0000 360 240 FO -

1111 0001 361 241 Fl ± 
1111 0010 362 242 F2 2: 

1111 0011 363 243 F3 :::; 

continued 

765 



Appendixes 

766 

Binary OCT 
X2 Xs 
1111 0100 364 
1111 0101 365 
1111 0110 366 
1111 0111 367 
11111000 370 
11111001 371 
11111010 372 
11111011 373 
11111100 374 
11111101 375 
11111110 376 
11111111 377 

Table D-2. continued 

DEC 
X10 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 

HEX 
Xrn 
F4 
F5 
F6 
F7 
F8 
F9 
FA 
FB 
FC 
FD 
FE 
FF 

Ext. 
ASCII 

\/ 
1/ 

(blank) 

* Those key sequences consisting of "<Ctr!->" are typed in by pressing tbe CTRL key, and 
while it is being held down, pressing the key indicated. These sequences are based on those 
defined for the IBM Personal Computer series keyboards. The key sequences may be defined 
differently on other keyboards. 
IBM Extended ASCII characters can be displayed by pressing the <Alt> key and then typing 
the decimal code of the character on the keypad. 

Abbreviations: 
DEC = Decimal (Base 10) 
HEX = Hexadecimal (Base 16) 
OCT = Octal (Base 8) 
ASCII = American Standard Code for Information Interchange 



Index 

A 

Absolute addressing, 91 
Absolute Disk Read function, 230, 293, 

297-298, 625, 660 
Absolute Disk Write function, 230, 293, 

297-298, 625, 660 
@Accept macro for parameter passing, 

82-83 
ACK character, 760 
Addresses 

as operands, 25-26 
passing parameters by, 85-86 

Addressing 
of expanded memory, 390-392 
with NPX, 535-536 

AdjusLtemp program, 267-268 
Allocate Alternate Map Register Set EMM 

function, 376 
Allocate DMA Register Set EMM function, 

376 
Allocate Memory function, 106, 108, 667, 

671-672 
Allocate Pages EMM function, 369, 389 
Allocate Standard/Raw Pages EMM function, 

375 
Allocate Table Information function, 664 
Alt key, 196 
Alter Page Map and Call EMM function, 373, 

397 
Alter Page Map and Jump EMM function, 

373, 397 
Alternate Map Register Set EMM function, 

376, 401 
Ampersands (&)with macro arguments, 8-9, 

20, 29-30 
AND operator, 24 
Angle brackets ( <>) operators for macros, 17, 

20, 55 
ANSWER.COM program, 699 
AQA EEMS, 119, 362-363, 366-367 

Arguments, 76 
C, on stack, 102 
FORTRAN, passing of, 104 
macro, 7-9, 16-18, 20, 27-35 
PASCAL, passing of, 104 

Arithmetic NPX instructions, 534-535 
Arrays 

bounds checking for, 112-113 
C, passing of, 102 

Articles, bibliography of, 752-753 
ASCII characters, 197 

and BCD, 530-531 
cross reference for, 757-759, 763-765 
macro to display binary numbers as, 

715-717 
ASCII programs, recovery of, 647-648 
ASCIIZ strings in environment block, 129 
Assembly language programs 

batch files for, 693- 699 
compared to high-level, 5-6 
compatibility issues with, 661 
conditional assembly of, 18-25 
for expanded memory, 380-385 
macros for, 6-18 
modular programs for, 75-89 
STRUC directive for, 64-68 
structured control statements in, 35-50 

ASSIGN command, 193-194, 291 
ASSUME macro directive, 13, 107, 112 
Asynchronous BIOS requests, TSRs for, 194 
Asynchronous communication. See Serial 

communication port 
Asynchronous communications adapter, 458 
AT computer, multitasking with, 276-277 
Attributes 

character, 199 
for device headers, 301-305 
file storage, 607-608 

AUTOEXEC.BAT files, 119-121 
Automatic variables, 96 

in C, 102 

767 



MS-DOS Developer's Guide 

768 

Automatic variables-cont. 
in PASCAL, 103 

AUX device, 290, 292-293 
Auxiliary dispatcher stack, 218-219 
Auxiliary Input function, 663 
Auxiliary Output function, 663 
AUXIO device, handle for, 134 

B 

Background processing, 219 
and TSRs, 239-243 

BACKUP command with ASSIGN, 291 
Bank-switched memory, 119, 360 
Base address of serial adapter, 458 
BASIC programs 

calling conventions in, 104-105 
compatibility considerations of, 659 
recovery of, 64 7 - 649 

Batch files, 693-699 
Batch processing, 247 
Baud rate, 259, 455-456, 458, 460, 466-468 
BCD. See Binary-coded decimal numbers 
BELL character, 760 
Biased exponents, 527 
Bidirectional potentially unstable real-time 

systems, 251-252 
Bidirectional stable real-time systems, 

250-252 
BIN bit of IOCTL device configuration word, 

296-297 
Binary-coded decimal numbers, 559-560 

data macro for, 51-54 
formats for, 530-531 

Binary numbers, conversion of 
with ASCII, 715-717 
with decimal, 559-571, 724-728 
with hexadecimal, 728-729 

BIOS and BIOS functions 
compatibility of, 683-685 
data segment in, 197 
for debugging of device drivers, 328 
ROM vs. loadable, 176 
for serial port, 466-469 
system area for, 117 

BIOS parameter block 
building of, 317-319 
function for, 747 
table pointer for, 312-313 

BIOSIO program, 336-337 
_bios_serialcomm( ) function (C), 468 
Bit maps, reading of, 513-514 
Bit mask register, 501 
Block device drivers, 291-292 
Block read and write functions, 665 
Blocking with direct disk access, 298 
Books, bibliography of, 751-752 
Boot sector, 583-584, 604-605 

BPB in, 318 
in disk formats, 680 

Bootstrapping, 121, 218, 286 
BOUND instruction, 112-113 

BP (base pointer) register for stack 
addressing, 79, 114 

BPB. See BIOS parameter block 
Break address of device drivers, 312 
BREAK condition in serial communications, 

456 
Break processing, 220 

and TSRs, 230, 236-238, 240-241 
BRES.C program, 505-507 
BS character, 760 
Buffered Keyboard Input function, 663 
Buffers 

for display screen, 209-210 
keyboard, 197, 202-205 
and Media Check, 315 
with real-time systems, 249 
See also Queues 

Bugs 
in Load and Execute Program function, 

166-167 
inMASM, 543 

Build BIOS Parameter Block device driver 
command, 317-319 

Build PSP function, 222 
Busy flag, function for, 744 
Busy indicator in NPX status word, 539 

c 
C language 

calling conventions in, 101-103 
CL! instruction for, 470 

Cache blocks, 212 
CALL instructions, 72, 90 

designs to minimize, 73-74 
with overlays, 168 
and stack integrity, 113 

Calling conventions, 101-105 
Calloc function (c), 110 
@CallS macro for parameter passing, 81-82 
CAN character, 760 
Cancel Redirection function, 669 
Can't reach with segment reg error message, 

96, 107 
Carry bit for errors, 88-89 
Case of characters 

library routine for, 729-731 
macro for, 719 

CASE macro, 49-50, 719 
CASE-OF control statement, 36 
CDUP function, 165, 667 
CGA. See Color Graphics Adapter 
Chains 

device driver, 289, 301 
memory, 121-129 

Change Current Directory function, 666, 671 
Change File Mode function, 666 
Characters and character device drivers, 

291-293 
display of, 199 
functions for, 219, 670 

CHDIR function, 666, 671 



Check Standard Input Status function, 663 
Child programs, 160, 221-222 

environment block for, 130 
inheritance by, 165-166 
PSP for, function for, 747 

ChkChr macro, 59 
CHKDSK command, 580 

for file recovery, 618-620, 647 
CHMOD function, 666 
CHR bit for device header attribute word, 

301 
Circular FIFO buffers, 478 
Classes, error, 677 
Clear Keyboard Buffer function, 663 
Clear-To-Send, 456-457 
CLI instruction, C equivalent for, 470 
CLOCK bit for device header attribute word, 

305 
Clock frequencies, 254-256, 455-456 
Clock interrupt, replacement of, 207 
Close File via FCB function, 303, 664 
Close File via Handle function, 303, 388, 666, 

671 
Clusters, 608, 610-612, 647 

conversion of, to logical sectors, 617 
in disk formats, 680 

Code page switching, 326 
Coding 

execution of, in expanded memory, 
396-397 

in high-level languages, 6 
macros for, 56-63 
types of, 89-101 

Cohesion, functional, 73 
Colons(:) 

with macro labels, 13 
as segment override operator, 107 

Color Display, 490 
Color Graphics Adapter, 198-200, 489 

checking for, 232 
writing to, 200 

Colors, 490-491, 514-520 
.COM files 

batch files for, 694-695 
compared to .EXE, 140-146 
Load Overlay function with, 169 
memory allocation for, 108-110 
stack switching with, 17 4 
template for, 702-703 

COMl port, 458, 463-464 
COM2 port, 289, 458, 463-464 
COMMAND.COM file, 175, 681, 684 

and inheritance, 222 
interrupt for, 742 
loading of, 289 
memory for, 120 

Command line 
for child processes, 165 
loading memory resident programs 

from, 148-150 
for RAM disk size, 335-336 

Index 

Commands 
compatibility of, 655 
and CP/M, 686-687 
for device drivers, 311-327 
execution of, with load and execute 

function, 166 
NPX, 532-535 

Commas (,)with macro arguments, 7 
Comments 

in macros, 20, 61 
in MAKE facility, 700 

Commit File function, 669 
Common area 

compared to local storage, 111-112 
passing parameters through, 78 
values returned to, 88 

Compact memory model, macro for, 707-708 
Comparison NPX instructions, 534 
Comparison of numbers with MASM, 23 
Compatibility issues 

and compatibility box with OS/2, 688 
for expanded memory, 366-367 
for function calls, 661-672 
for interrupts, 660-661 
programming guidelines for, 656-659 
See also Portability 

COMSPEC setting, storage of, 129 
CON bit in device header attribute word, 304 
CON device, 290, 292-293 
Concurrent CP/M -86 operating system, 681 
Concurrent DOS-286 operating system, 

686-687 
Concurrent handling in real-time systems, 

248 
Concurrent PC-DOS operating system, 

686-687 
Condition codes in NPX status word, 

539-542 
Conditional assembly, 18-25 

and macros, 25-35, 57-58 
CONFIG.SYS file, 288-291 

DRIVER.SYS file in, 582-583 
FILES statement in, 134 
and memory, 119 

Configuration 
conditional assembly for, 23 
with I/O channel commands, 295-297 

Console device output interrupt, 297, 304, 
742 

Console Input Without Echo function, 663 
Constant NPX instructions, 534 
Constant was expected error message, 110 
Constants, 76 
Contexts, 131 

ofEMM, 398 
management of, 399-400 
switching of, 171-175 

Contiguous file storage, 609 
Control-Alt-Delete, interrupt by, 197 
Control-Break exit address, 131, 222 
Control channel IOCTL mode, 294-297 

769 



MS-DOS Developer's Guide 

770 

Control statements in assembly language, 
35-50 

Control transfer instructions, 90 
Control word, NPX, 537-539 
Conversion, 263 

of ASCII and BCD, 530-531 
of binary numbers, 559-571, 724-729 
of hexadecimal numbers, 559-571, 

724-728, 762-763 
Cooked device mode, 296-297 
Copies ofTSRs, locating of, 224-228 
Coprocessors. See Numeric Processing 

Extension 
Co-routines, 172, 175 
Counters, 16, 47 
Country information, functions for, 665 669 

671 ' ' 
~:~RMAXALLOC switch, 144 

compatibility with, 681, 743 
I/O functions in, 292-293 

CP/M-80 operating system, 685-687 
compatibility with, 661-662 

CP/M-86 operating system, 687 
compatibility with, 661-662 

CPU ports, 256-257 
CR character, 760 
CREAT function, 666, 682 
Create File function, 664 
Create New File function, 668 
Create New Program Segment function, 664 
Create PSP Block function, 747 
Create Subdirectory function, 666, 671 
Create Temporary File function, 668 
@~~et macro for parameter passing, 82-83 
Critical Error Handler Vector interrupt 131 

221-222, 660 ' ' 
Critical errors 

codes for, 672-673 
exit address for, 131, 222 
flags for, 219, 221 
processing of, 221 
trapping of, 236-238 
and TSRs, 229-230, 234-238 239-240 

Critical sections ' 
flags for, 219, 221 
and TSRs, 229, 234-235, 239-240 

Cross-re_ferences with macros, 61 
CTRL bit of IOCTL device configuration 

word, 295 
Ctrl/Break Check function, 665 
Ctrl/Break Exit Address interrupt, 131, 220, 

222, 660 
CTS (Clear-To-Send), 456-457 
Current Disk function, 664 
Current location relative addressing 90 
Current program, 211 ' 
Cyclic schedulers, 265, 273-275 

D 

Data 
aliasing of, and expanded memory, 

385-386 
hiding of, 66 
macros for, 50-56 
MASM types, 544-545 
multiple s~ructures to address, 65-67 
and real-time systems, 249-250 
recovery of, in memory, 643-649 
scope of, 110-113 
separate areas for, 93-94 
transfer of, 256-262, 534 

Data communications equipment, 456 
Data rotate register, 518-519 
_DATA segment name, 105 
Data terminal equipment, 456 
Date 

and device headers, 305 
functions for, 665, 668 
macro for, 717 
reading of, 255 

DCB (device control blocks), 211-212 
DCE (data communications equipment), 456 
DCx character, 760 
Deactivation of TSRs, 241-243 
Deallocate Alternate Map Register Set EMM 

function, 376 
Deallocate DMA Register Set EMM function 

376 ' 
Deallocate Pages EMM function 370 
Debugging and DEBUG ' 

and conditional assembly, 19-21 
for data recovery, 643-648 
of device drivers, 286, 328-329 
fo~ file recovery, 618, 622-623 
with NPX, 545-546 

Decimal numbers, conversions of 
with binary, 559-571 724-728 
with hexadecimal, 76Z-763 

DECLARE statement (BASIC), 105 
Decomposition, 72 
Default file handle table, 134 
DEFINE DATA directives 112 
Definition of macros, 7 ' 
DEL character, 760 
Delete File function, 664 
Delete File from Specified Directory 

function, 666 
Denormal operand exceptions, 542 
Description files for MAKE 699-700 
Designing of modular progr~ms 72-75 
DESQView and expanded mem~ry, 363 
DEVICE command, 289 
Device Close driver command 303 325 
Device configuration IOCTL ~ode' 294 
Device control blocks, 211-212 ' 
Device drivers, 283, 299-300 

accessing of, from MS-DOS, 292-299 
commands for, 311-327 
compatibility of, 684 
displaying of, 329-335 



Device drivers-cont. 
header for, 301-306 
installable, 121 
installation of, 286-291 
interrupt routines for, 307-310 
purpose of, 284-286 
and RAM disks, 335-353 
for serial port, 465-466 
strategy routines for, 306-307 

Device Open driver command, 303, 325 
Device status requests IOCTL mode, 294 
DIAGONAL.C program, 498-499 
Digital Research, Inc., 687 
DIR command, 605-606 
Direct access of display screen, 208-210 
Direct Console I/O function, 663 
Direct Console Input Without Echo function, 

663 
Direct disk access, 293, 297-298 
Directives, macro, 19 

for conditional assembly, 21-22 
for listings, 13-14, 20 
for repeating, 14-17 

Directories and directory entries, 605-609 
. and .. , 608-609 
direct disk access of, 298 
in disk formats, 680 
functions for, 665, 667, 671 

Disable DMA on EMM function, 376 
_disable function (C), 470 
Disable OS/E Function Set EMM function, 

377, 402 
Disabling of memory resident programs, 

158-159 
Disk Reset function, 663 
DISKCOMP command with ASSIGN, 291 
DISKCOPY command with ASSIGN, 291 
DiskLook, 638 
Disks and disk I/O 

device drivers for, 291-293 
direct access of, 293, 297-298 
dispatcher stack for, 218-219 
formats for, 678-680 
interrupts for, 660 
layout of, 579-583 
macros for, 717 
RAM disks, 335-353 
space on, 665 
transfer area for, 219, 238, 664-665 
TSRs for, 230-232 

Dispatcher, 218-219 
Display command (DEBUG), 644 
Display Output function, 663 
Display screen 

and compatibility, 657 
direct writing to, 502-505 
hardware for, 197-200 
interrupt for, 201, 489 
macros for, 712-715 
management of, 208-218 
memory for, 198-200 
saving of, 234 

Index 

Display screen-cont. 
switching of, 207 

Display type, checking of, 232 
Divide and conquer modularization rule, 74 
DL (DiskLook), 638 
Diab (divisor latch access bit), 458 
DLE character, 761 
DMA data transfer, 261, 263-264 
DMA Register Sets, 401 
DO-WHILE control statement, 36, 40-41 
DOS 

compatibility of, 682-684 
ports in, 256 
and TSRs, 210-224, 233-239 
version, checking for, 224 

_dos_getvect( ) function (C), 469 
DOS Kernel, 121, 288 
DOS safe interrupt, 178-179, 219, 660, 

741-742 
_dos_setvect( ) function (C), 469 
Dot( ) function (C), 498 
Double-sided disk formats, 580-583 
Drive number with device drivers, 312-313 
Driver request block, 306 
DRIVER.SYS file, 582-583 
DTA (disk transfer area), 219, 238, 664-665 
DTE (data terminal equipment), 456 
Dummy macro arguments, 8-9 
DUMP87 program, 547-559 
DUP function, 667 
DUP statement (MASM), 51 
Duplex with modems, 456 
Duplicate File Handle function, 667 
Dynamic variables, 96 

E 

le switch with MASM, 543 
@ECHO off command, 699 
EGA. See Enhanced Graphics Adapter 
EGACHECK.C program, 494-496 
86-DOS, 686 
8253 counter/timer chip, 196 
8259A interrupt processor, 195 
80386 microprocessor 

and expanded memory, 378-379 
and program compatibility, 656-657 

ELSE conditional directive, 22 
EM character, 761 
EMM. See Expanded Memory Manager 
EMMCONST program, 406-424 
EMMEXIST program, 424-427 
EMS (Expanded Memory Specification), 119, 

742-743 
Emulators, expanded memory, 377 
_enable function (C), 470 
Enable DMA on EMM function, 376 
Enable OS/E Function Set EMM function, 

376, 402 
End-of-driver address, 289 
End-of-file marker in FAT, 612 
End of interrupt command, 195, 463-464 

771 



MS-DOS Developer's Guide 

772 

ENDIF conditional directive, 22 
ENDM macro directive, 15-16, 19, 51 
ENDS macro directive, 13, 64 
Enhanced Color Display, 490-491 
Enhanced Expanded Memory Specification, 

362-363 
Enhanced Graphics Adapter, 489 

direct writing to, 502-505 
installation of, 493-499 
memory for, 499-500 
monitors for, 490-502 
palettes for, 514-518 
reading bit maps of, 513-514 
testing for, 493-494 
write modes for, 508-513 

ENQ character, 761 
ENTER instruction, 96-100 
Entry pointers in device header, 305 
Environment block, 129-131 

address pointer for, 139 
for child programs, 165 
for .COM files, 141 
freeing of, 232-233 

EOI command, 195, 463-464 
EOT character, 760 
EQ operator, 23-24 
Equ and equal sign(=) for macro symbols, 16, 

35 
Erased files, recovery of, 619-630 
Errors · 

codes for, 672-678, 700 
detection rule for, with modularization, 

75 
with device drivers, 311, 322 
with expanded memory, 382-385 
function for, 668 
parity bits for, 455-456 
See also Critical errors; Exceptions 

ESC character, 761 
ETE character, 761 
Even parity, 456 
Event-driven memory resident routines, 177 
Exceptions 

NPX handling of, 541-542 
reporting of, 88-89 

Exchange Memory Region EMM function, 
374, 395 

Exclamation point (!)with macros, 20 
.EXE files 

batch files for, 693- 694 
compared to . COM, 140-146 
macros for, 10-12 
memory allocation for, 108-110 
program header for, 92 
template for, 701-702 

EXE2EIN file and . COM files, 140-141 
EXEC function, 89, 92, 160-171, 668, 671 

for overlays, 147 
Execute Program function, 164-171, 668 
EXEMOD utility, 143-144 
EXIT function, 89, 175, 668 
EXITM macro directive, 19 

Expanded file handle tables, 135 
Expanded memory, 118, 357-358 

addressing of, 390-392 
application program interfaces for, 

380-385 
code execution in, 396-397 
freeing of, 397 - 398 
history of, 359-367 
low-level interface for, 402-407 
reading and writing of, 393-395 
sharing of, 396 
system software for, 398-402 
writing programs with, 385-398 

Expanded Memory Manager, 361-362, 
367-380 

detection of, 387-388, 399 
task switching with, 400-401 

Expanded Memory Specification, 119, 
742-743 

Expanded Memory System Interface 
interrupt, 660 

Expansion, macro, 7, 12-13 
EXT character, 761 
Extended ASCII characters, 197, 763-765 
Extended device driver functions, 326 
Extended error information, 676-678 
Extended FCEs, 682 
Extended memory, 118 
Extended Open/Create function, 669 
Extended-size partitions, 679 
Extern PASCAL references, 104 
External commands, 120 

compatibility of, 684-685 

F 

IF parameter with CHKDSK, 619-620 
F2XM1 instruction (NPX), 535, 560-561 
FAES instruction (NPX), 535 
Factorials, recursive solution for, 94 
FADD instruction (NPX), 536 
FALSE values, 23-24 
Far addresses, 26 
Far procedure calls and stack pointer, 79 
FAST PUTCHAR interrupt, 742 
FASTDOT.C program, 504 
Faster programs, 263-264 
FAT. See File allocation tables 
FELD instruction (NPX), 559-560 
FESTP instruction (NPX), 536, 559-560, 562 
@FCallS macro for parameter passing, 

81-82 
FCE. See File control blocks 
FCLEX instruction (NPX), 541 
FDISK command, 583, 604 
FDIV instruction (NPX), 536, 543, 562-563 
FDIVR instruction (NPX), 543 
FF character, 761 
FFREE instruction (NPX), 537 
FIFO (first-in-first-out) buffers, 473 
FILD instruction (NPX), 559 
File allocation tables, 580, 609-612 



File allocation tables-cont. 
compatibility of, 679 
critical errors from, 221 
decoding of, 612-618 
direct disk access of, 298 
and erased files, 619, 622 
MDB in, 315, 317-318 
starting cluster in, 608 

File control blocks, 208 
compatibility of, 681-682 
and CP/M, 292-293, 687 
and parent programs, 222 

File handles 
compatibility of, 682-683 
functions for, 666, 668 
I/O functions using, 292-294 
table for, in PSP, 132-140 

File or path name not found message, 388 
File recovery, 577 

and boot sector, 583-584 
and clusters, 617-618 
and directories, 605-609 
and disk layouts, 578-583 
of erased files, 619-630 
and FAT, 609-617 
and partitions, 604-605 
procedures for, 618-630 
READFMT program for, 584-604 

File Size function, 664 
Files 

compatibility issues with, 680-683 
headers for, 142-143 
management functions for, 665-667, 670 
names of, 606-607 
sharing of, 303 
size of, 608, 664 
status of, 606-607 
type, 606-607 

FILES= statement, 134 
Find First Matching File function, 668 
Find Next Matching File, 668 
FINDFIRST function, 668 
FINIT instruction (NPX), 537, 547 
First-in-first-out buffers, 473 
FIST instruction (NPX), 536, 559, 563 
Fixed disks, partitions for, 604-605, 679 
Flashing video, 491 
FLDL2E instruction (NPX), 560 
FLDL2T instruction (NPX), 560, 562-563 
FLDLG2 instruction (NPX), 561, 563 
FLDLN2 instruction (NPX), 561 
Floating-point operations, 525, 527-529 

coprocessors for, 263 
and scaling, 560-561 

FMUL instruction (NPX), 536, 562-563 
FOR-DO control statement, 36, 42-44 
Force Duplicate of Handle function, 165, 667 
FORMAT command, 291, 580 
Format of disk in FAT, 612 
FORTRAN 

calling conventions in, 104-105 
as high-level language, 5-6 

Index 

Forward references, 26-27, 107 
Free Allocated Memory function, 106, 112, 

159, 667, 671-672 
Free Memory Block function, 233 
FRNDINT instruction (NPX), 563 
FRSTOR instruction (NPX), 558 
FS character, 761 
FSAVE instruction (NPX), 542 
FSCALE instruction (NPX), 535, 561, 563 
FSQRT instruction (NPX), 535 
FST instruction (NPX), 536 
FSTENV instruction (NPX), 542, 558 
FSTP instruction (NPX), 562 
FSUB instruction (NPX), 536, 543, 563 
FSUBR instruction (NPX), 543 
Full duplex, 456 
Function calls 

compatibility of, 661-672 
and CP/M, 686 
error return codes for, 672-678 
macro for, 711-712 
table of, 663-669 

Function Request interrupt, 122, 150, 
218-219,220,463,660 

for date reading, 255 
and EMM detection, 399 
with OS/2, 688 
for program loading, 221-222 
for program termination, 222-223 
for PSP, 140, 662-663 
for TSRs, 223-224, 228, 232 
undocumented functions with, 743-748 

Functional separation, 72-73 
FWAIT instruction (NPX), 533-535, 545, 547 
FXTRACT instruction (NPX), 563 
FYL2X instruction (NPX), 560 

G 

GE operator, 24 
Generic IOCTL commands, 297, 326 
Get Address of MS-DOS List of Lists 

function, 122, 746 
Get All Handle Pages EMM function, 370 
Get Alternate Map Register Set EMM 

function, 375 
Get Alternate Map Save Area Size EMM 

function, 376 
Get Attribute Capability EMM function, 372 
Get Country Dependent Information 

function, 665 
Get Current Directory function, 667 
Get Current PSP function, 218 
Get Date function, 665 
Get Device Information IOCTL command, 

295, 388 
Get Disk Free Space function, 665 
Get Disk Transfer Address function, 665 
Get DOS Version Number function, 224, 290, 

658, 665 
Get Expanded Memory Hardware 

Information function, 401 

773 



MS-DOS Developer's Guide 

774 

Get Extended Country Information function 
669 ' 

Get Extended Error function, 668 
Get Handle Attribute EMM function 372 

401 ' ' 
Get Handle Count EMM function 370 
Get Handle Directory EMM function, 372 

396 ' 
Get Handle Name EMM function, 372, 396 
Get Handle Pages EMM function, 370 
Get Hardware Configuration Array EMM 

function, 375 
Get interrupt handle method of EMM 

detection, 399 
Get Interrupt Vector function 132 157-158 

201, 399, 665 ' ' ' 
Get Lea? Byte Table function, 748 
Get Logical Device device driver command 

297, 304, 327 ' 
Get Map Page Stack Space Size EMM 

function, 373 
Get Mappable Physical Address EMM 

function, 374, 392 
Get MS-DOS Busy Flag function, 744 
Get Output Status function, 388 
Get Page Frame Segment Address EMM 

function, 369, 391, 393 
Get Page Map EMM function, 370, 400 
Get Partial Page Map EMM function 371 400 
Get Physical Address Array Entry Count 

EMM function, 375, 391-392, 394 
Get Program Segment Prefix Address 

function, 108, 139-140, 669, 745 
Get Redirection List Entry function, 669, 671 
Get Return Code of Sub-Process function 89 

668 ' ' 
Get/Set Break function, 218 
Get/Set File Date and Time function, 668 
Get/Set Global Code Page function, 669 
Get/Set Memory Allocation Strategy 

function, 747 
Get/Set Switch Character function 745 
Get Size of Page Map Array EMM function, 

371, 400 
Get Size of Partial Page Map Array EMM 

function, 371, 400 
Get Status EMM function, 369, 389 
Get Time function, 665 
Get Total Handles EMM function, 372, 396 
Get Unallocated Page Count EMM function 

369, 389 ' 
Get Verify Setting function, 668 
Get Version EMM function, 370, 388 
GeLega-1nfo() function (C), 493, 497-498 
GIOCTL bit for device header attribute 

word, 304 
Global code page, function for 669 
Global storage. See Common ~rea 
Global variables, 219-220, 238-239 
Graphics with CGA, 199 
Greater than operator, 23 
GS character, 761 
GT operator, 24 

H 

Half duplex, 456 
Handles 

for child programs, 165 
count for, 132 
with expanded memory, 362 386 396 
pointer for, 132 ' ' 
in PSP, 132-140 
for SFN, 216-217 
table address for, 132-134 
and TSRs, 223 

Handshaking with modems, 456 
Hard disk, partitions for, 604-605, 679 
Hardware 

error codes for, 672 
interrupts from, 194-195 
and TSRs, 194-207 
See also Device drivers 

Headers 
for device drivers, 289, 299-306 
for .EXE programs, 92-93 
for memory resident programs, 157-158 

Hello World program, 11-13 
Hexadecimal numbers, conversion of 

with ASCII, 715-717 
with binary, 728-729 
with decimal, 762-763 

Hidden files, 607 
Hidden MASM features 47 
Hide details modularization rule, 74 
High-capacity disks, format of 581-583 
High-level languages ' 

advantages of, 5-6 
compatibility considerations of, 659 
and expanded memory, 381 
interfacing of, 101-105 
memory allocation from within 110 

/high switch, 150 ' 
Home control system, 267-276 
Horizontal blanking interval, 198-199 
Hot keys, 194 

and ROM BIOS, 200 
setting up of, 201-206 

Housekeeping for CALL-RET structures 74 
HT character, 761 ' 
Huge memory model, macro for, 709 

I 

IBMBIO.COM file, 175, 211, 288, 683 
IBMDOS.COM file, 175, 218, 288 683 
IF conditional directive, 22 ' 
IF-THEN control statement 36 39 
IF-THEN-ELSE control st~te~ent 36 39 

44-47 ' ' ' 
IFl conditional directive, 22 
IFB conditional directive, 22 
IFDEF conditional directive, 22 
IFDIF conditional directive, 22 
IFE conditional directive, 22 
IFIDN conditional directive, 22 
IFNB conditional directive, 22 



IFNDEF conditional directive, 22 
IIR (interrupt identification register), 458, 

461 
Immediate operands, 25-26 
IN instruction, 257 

compatibility of, 656 
and device drivers, 285 

Include macro files, 14 
Inheritance by child programs, 165-166, 222 
INIT device driver command, 288-289, 

312-314 
Initialization 

of MS-DOS, 286-290 
of TS Rs, 193-194, 223-234 

Initiate_alarm program, 269 
Input device driver command, 320, 322-323 
Input Flush status device driver command, 

324-325 
Input/output 

data structures for, 208 
device drivers for, 285 
See also IOCTL functions 

Input status device driver command, 324 
Installable device drivers, 121 

and compatibility, 657-658 
installation of, 286-291 
See also Device drivers 

Instruction pointer, 89, 537 
Int86 function (C), 468 
Integers 

conversion operation with, 559-560 
number formats for, 530 

Integrity 
of passed data, 86-87 
of stack, 113-114 

Intel 8250 UART, 458-459 
Intel 8259 Programmable Interrupt 

Controller, 462-465 
Intensified video, 491 
INTERFACE statement (FORTRAN), 105 
Interfaces 

devices as, 284 
for expanded memory, 380-385, 

403-407 
for high-level languages, 101-105 

Internal commands, 120 
Interrupt enable 8250 register, 458 
Interrupt identification 8250 register, 458, 

471 
Interrupt keyword (C), 472 
Interrupt vectors, 121, 132, 155, 664, 670 

patching into, 177-180 
table for, 195, 463, 469 
and TSR removal, 244 

Interrupts 
capturing of, 200-201, 230-232 
clock, 206-207 
and compatibility, 656, 660-661 
for data transfer, 261-262 
for device drivers, 299-300, 307-311 
for EMS, 362, 380-381, 742-743 
entry pointer for, 305 

Index 

Interrupts-cont. 
for expanded memory, 380-381 
handlers for, 472-473 
hardware, 176-177, 195 
keyboard, 201-204 
for locating TSRs, 224-228 
low-level disk 110, 230 
for memory resident programs, 150-157 
for multitasking, 276 
requests for, 195, 463-465 
and separate data areas, 93 
for serial port, 460-466, 469-472 
service routines for, 195 
software, 196 
and stacks, 32-33, 174-175 
table of, 660 
timer, 203-204 
undocumented, 741-748 

Interval time for real-time systems, 253, 265 
Invalid Disk Change error message, 322 
Invalid operation exception message, 536, 542 
110 Control Input device driver command, 

320, 322 
110 Control Output device driver command, 

320, 322 
IOCTL bit for device header attribute word, 

301-302 
IOCTL functions, 293-295, 388, 666-667, 

671 
IO.SYS file, 288 
IRP (indefinite repeat) macro directive, 

17-19, 28, 55 
IRPC (indefinite repeat characters) macro 

directive, 17-19, 28 
IRQ (interrupt request), 195, 463-465 
ISDEV bit of IOCTL device configuration 

word, 296 
ISR (interrupt service routines), 195 
IVT (interrupt vector table), 195, 463, 469 

J 

JFT (job file table), 211, 215-216, 223 
JMP instructions, 90, 168 
Jump tables, 72, 307-308 

K 

Keep Process function, 148-149 
Kernel, 121, 288 
Keyboard, 196-198 

interrupts from, 194-195, 201-204, 
741-742 

macros for, 712 
monitoring status of, 204-206 
polling of, 219-220 

Keyboard busy loop interrupt, 741 
Keyboard Input function, 663 
KISS modularization rule, 74 

775 



MS-DOS Developer's Guide 

'176 

L 

Labels 
for macros, 9-13 
PROC directive for, 75 
and two-pass assemblers, 27 

.LALL macro directive, 13, 20 
Large memory model (C), macro for, 708-709 
LARGE memory module (PASCAL), 104 
Latch registers, 500-502 
Layouts of floppy disks, 579-583 
LE operator, 24 
LEAVE instruction, 96-100 
Less than operator, 23 
LF character, 761 
.LFCOND directive, 21, 24 
Libraries, 721-738 

macro, 14 
See also Run-time libraries 

l LIM EMS, 119, 358-361 
See also Expanded Memory Manager 

LIM EMS 3.2, 361, 366-367 
LIM EMS 4.0, 364-367 
Line control 8250 register, 458 
Line status 8250 register, 458 
LINK command for overlays, 147 
.LIST directive, 14, 20, 24 
List oflists, 211-212, 746 
Listing of macro files, 13-14, 20, 24 
Literal characters, 20 
Load and Execute Program function, 89, 92, 

160-171, 668, 671-672 
Loadable ROM, 176 
Loader, process, 144-146 
Loading 

of .COM files, 141-142 
of memory resident programs, 148-150, 

170-171, 223-234 
of MS-DOS, 286-287 
ofoverlays, 167-170 
of programs, 160-165, 221-222 

LOCAL macro directive, 9-13, 19, 59 
Local stack for interrupt routines, 307 
Local storage 

allocation of, 105-114 
compared to global storage, 111-112 
on stack, 94-100 

Local variables, 96 
Locate Disk Block Information for Default 

Drive function, 743 
Locate Disk Block Information for Specified 

Drive function, 744 
Location relative addressing, 90 
Lock/Unlock File Access function, 668, 

671-672 
Locus of errors, 678 
Logarithms and NPX, 560-561 
Logical addresses with expanded memory, 

390-391 
Logical drive assignments, 297, 304, 327 
Logical operators with conditional assembly, 

24 

Logical pages for expanded memory, 362, 
390-391 

Logical sectors, conversion of clusters to, 617 
Long data formats, 529-530 
Loops with macros, 14-17 
Lost clusters found message, 620 
Lost clusters message, 619 
Lotus/Intel/Microsoft Expanded Memory 

Specifications, 358-361, 363-367 
See also Expanded Memory Manager 

Low-level disk 1/0 function, 230 
Low-level interface for expanded memory, 

402-407 
LSEEK function, 293, 666 
.LST macro dirE)Ctive, 13-14 
LSTOUT device, handled for, 134 
LT operator, 24 

M 

Macro Assembler 
batch files for, 693-699 
macros with, 6-18 
and NPX, 542-571 

Macros, 6 
arguments for, 7-9, 16-18, 20, 27-35 
code, 56-63 
compared to subroutines, 35, 57, 87-88 
and conditional assembly, 25-35, 57-58 
data, 50-56 
directives for, 14-17, 19 
file of, 703-721 
labels for, 9-13 
libraries for, 14 
special symbols for, 20 
for speed, 264 
substitution with, 7 

Magnitude of numbers with MASM, 23 
Main loop with interrupts real-time system, 

271-273 
MAKE facility, 699-701 
Malloc function (C), 110 
Map mask register, 501 
Map/Unmap Handle Pages EMM function, 

370, 393 
Map/Unmap Multiple Handle Pages EMM 

function, 371, 393 
Mappable conventional memory, 380, 392 
Maps with expanded memory, 361 
MARK with serial communications, 455-456 
Mark/Release package, 244 
MASM. See Macro Assembler 
MASM2COM.BAT program, 694-695 
MASM2EXE.BAT program, 693-694 
Matching 

file functions for, 668 
of strings, 27-30 

Math coprocessors. See Numeric Processing 
Extension 

MaxAlloc entry in .EXE file headers, 
143-144 

MCB (memory control blocks), 121, 223 



MDA (Monochrome Display Adapter), 
198-200, 232 

MDB (media descriptor byte), 315 
Media Check device driver command, 

314-316 
Media descriptor byte, 315 
Medium memory model, macro for, 707 
Memory 

allocation of. See Memory allocation 
chains for, 121-129 
compatibility of, 655-656 
control blocks for, 121, 223 
deallocation of, 223 
and environment block, 129-131 
expanded. See Expanded memory 
for graphics, 489 
map of, 117 -118 
pool of, 105 
program position in, 90-91 
recovery of data in, 643-649 
screen display, 198-200, 499-500 
utilization of, 119-121 

Memory allocation, 105-114, 667, 671-672 
for .EXE files, 143-144 
library routines for, 733-738 
and memory-resident programs, 

158-159 
Memory block for .COM files, 141 
Memory Expansion Option, IBM PS/2 80286, 

379-380 
Memory models, macros for, 704-709 
Memory operands, 25-26 
Memory resident programs, 147 

accessing of, 150-157 
interrupt-driven, 176-180 
loading of, 148-150, 170-171 
MS-DOS as, 175-180 
presence of, 157-158 
removal of, 158-159, 180-189 
See also Terminate and stay resident 

programs 
Messages, data macros for, 54-56 
Microprocessors and compatibility, 656-657 
Microsoft calling conventions, 101-105 
MinAlloc entry in .EXE file headers, 

143-144 
MK.BAT program, 695-699 
MKDIR function, 665, 671 
Mnemonics, macros for, 25 
MODEl.C program, 511-513 
MODEL directive, 105 
Modem control 8250 register, 458 
Modem status 8250 register, 458 
Modem status interrupt, 462 
Modems, 257, 456-458 
Modify Allocated Memory Block function, 

108-109, 111, 148-149, 667, 671 
Modular programming, 71-75 

for assembly language, 75-89 
Modules and parameters, 76-77 
Monitors 

damaging of, 498 

Index 

Monitors-cont. 
for EGA, 490-502 

Monochrome Display, 490-492 
Monochrome Display Adapter, 198-200, 232 
Monochrome graphics modes, 491-492 
Move File Read/Write Pointer function, 293, 

666 
Move Memory Region EMM function, 374, 

394 
MS-DOS 

and device drivers, 285-286 
first version of, 686 
loading of, 286-287 
memory management by, 108-110, 

117-131 
as memory resident program, 175-180 
for real-time programming, 254-264 
versions of. See Versions and version 

numbers 
MSDOS.SYS file, 288 
Multiple data segments, 107 
Multiple structures to address data, 65-67 
Multiplex interrupt, 225-228, 660 
Multisync monitors, 490 
Multitasking, 265, 276-277, 306-307 

N 

NAK character, 761 
Name command (DEBUG), 646 
Names 

in device headers, 305-306 
of files, 606-607 
for macros, 8 
for processes, in environment block, 

129-130 
Native mode file, 140 
NE operator, 24 
Near addresses, 26 
Near procedure calls and stack pointer, 79 
Nesting 

of control structures, 44-47 
of macros, 8, 29-30, 59-60 

NETWORK bit for device header attribute 
word, 302-303 

New line, library routine for, 722- 723 
Non-DOS Disk error message, 298 
Nonbusywait loops, 277 
Nondestructive Input without Wait device 

driver command, 323-324 
NONIBM attribute, 292, 302 
Nonprintable ASCII character definitions, 

760-762 
Nonspecific EOI, 464 
Normalized format, 527-529 
Norton Utilities, 578, 618, 638-639 
Not equal to operator, 23 
NOT operator, 24 
NPX. See Numeric Processing Extension 
NU (Norton Utilities), 578, 618, 638-639 
NUL bit for device header attribute word, 

305 

777 



MS-DOS Developer's Guide 

778 

NUL character, 761 
NUL devices, 289-291 
Number sign(#) in MAKE facility, 699-700 
Number of units field in device headers, 

305-306 
Numbers, comparison of, with MASM, 23 
Numeric Processing Extension, 263, 525 

data registers in, 526-527 
DEBUG with, 545-546 
MS-DOS tools with, 542-546 
programs using, 546-571 

0 
Object files, 141 
OCRM bit for device header attribute word, 

303-304 
Odd parity, 456 
Off-line processing, 247 
On-line processing, 247 
Open/Close/Removable Media attribute, 

303-304 
Open File via FCB function, 303, 662, 664, 

686 
Open File via Handle function, 303 
Open handle method of EMM detection, 

387-388 
Open Network File function, 666 
Operand pointer, NPX, 537 
Operand types, 25-26 
Operating System/2, 688 

and expanded memory, 360 
Operating systems, non-MS-DOS, 360, 

685-688 
OR operator, 24 
Oscillation in real-time programs, 268-269 
OUT instruction, 257, 501 

compatibility of, 656 
and hardware drivers, 285 

Outp( ) function (C), 501 
Output device driver command, 320-323 
Output flush device driver command, 

324-325 
Output status device driver command, 

324-325 
Output Until Busy device driver command, 

320' 323- 324 
Output with Verify device driver command, 

320, 323 
Overflow exceptions and NPX, 542 
Overlays, 146-147, 163-164 

loading of, 167-170 
parent program access to, 168-170 

Overscan register, 515 

p 

Packed binary-coded decimal formats, 
530-531 

Pages 
with expanded memory, 119, 361-362 
of video, 491 

PALETTE.C program, 516-518 
Palettes, 490-491 

for EGA, 514-518 
Paragraphs, 106, 121 
Parallel ports, 257, 453 
Parameters, 76 

designs to minimize, 73 
and modules, 76-77 
passing options for, 77-87 
and stack integrity, 113 
subroutine, structures as, 67-68 

Parent directories, 609 
Parent programs, 120, 160, 221-222 

environment block for, 130 
overlay access by, 168-170 

Parity and parity bits, 259, 455-456, 
466-468 

Parse Filename function, 664 
Parsing of macro arguments, 30-35 
Part-time run-time libraries, 171 
Partitions 

and compatibility, 679 
status field for, 604- 605 
tables for, 604-605 

PASCAL, calling conventions in, 103-104 
Patching into interrupt vectors, 177-180 
PATH setting, storage of, 129 
Paths, function for, 748 
PC relative addressing, 90 
Percent sign(%) operator with macro 

arguments, 16, 20, 45 
Periodic interval times for real-time systems, 

253 
Personal System 2 

compatibility with, 683-685 
Memory Expansion Option for, 379-380 

Phase error between passes error message, 
27, 107 

Physical addresses and pages with expanded 
memory, 361, 391-395 

Physical memory map, 117-118 
PID (process identifiers), 121, 362 
PLAYBACK.C program, 405-407, 441-446 
Plus sign(+) with macros, 7, 14 
Pointer to list of DOS internal values, 122 
Polling, 460 

data transfer with, 260-261 
of hardware, 176-177 
of keyboard, 203-204, 219-220 
with real-time systems, 270-271 

POP instructions 
compatibility of, 656 
macro for, 720 
and NPX instructions, 533 
and stack integrity, 113 

Portability 
and BIOS, 176 
and device drivers, 285 
and parameter passing through 

registers, 77 
See also Compatibility issues 



Ports, 256-259 
See also Serial communication port 

Positioning of program code, 90-101 
Potentially unstable real-time systems, 250 
Power-on self test and serial port, 468-469 
Powers, raising numbers to, 561-562 
Precision 

of data types, 532 
NPX exceptions for, 542 

Prepare for Warmboot EMM function, 376, 
401 

Primary bootstrap, 286 
PRINT command 

with ASSIGN, 291 
as TSR, 193 

PRINT.COM file, 234, 239-240 
Print spooler trapping, 179 
Print String function, 663 
Printer Output function, 663 
Priorities, interrupt, 463 
PRN device, 290, 292-293 
PROC directive, 75-76 
Processes, 131-147 

environment blocks for, 129-130 
identifiers for, 121, 362 
loader for, 144-146 
NPX instructions for, 535 

Program code. See Coding 
Program counter, 89 
Program environment block. 

See Environment block 
Program image of .EXE files, 142 
Program memory, passing parameters 

through, 78-79 
Program segment prefix, 133-134, 215 

accessing of, 66-67 
for child programs, 165 
compatibility of, 681 
for .EXE files, 145 
file handle table in, 132-140 
functions for, 669, 745, 747 
global variable for, 219-220 
int 21h instruction in, 663 
PID in, 121 
for segment addresses, 108-109 
and TSRs, 222, 226, 238 

Program terminate address, 131, 222 
Program Terminate function, 303, 663 
Program Terminate interrupt, 660 
Programmable Interrupt Controller, 462-465 
Programs 

flow control instructions for, 90 
loading of, 120, 160-165, 221-222 
termination of, 222-223, 233-234, 

669-670 
See also Coding 

Protected mode programs, recovery of, 647 
Protection 

of data, 110-113 
of memory resident programs, 149-150 

PSP. See Program segment prefix 
PTR override operator, 27 

Index 

Public PASCAL functions, 104 
PURGE macro directive, 14, 19 
PUSH instructions 

macro for, 720 
and stack integrity, 113 

@Pushim macro, 32-33 
@PushimOffmacro, 33-35 
@PushOp macro, 30-35 

Q 
QDOS, 686 
Question marks (?) with macro labels, 10 
Queues 

device driver, 289-290, 324-325 
for interrupt handler, 472-473 

R 

/r switch with MASM, 543 
RAM disks, 335-353 
Random Block Read function, 665 
Random Block Write function, 665 
Random files, 293, 610 
Random interval times for real-time systems, 

253 
Random Read function, 165, 664 
Random Write function, 664 
Range of data types, 532 
Raw device mode, 296-297 
Raw pages with expanded memory, 390 
RDA (receive data available) interrupt, 462 
Reactivation ofTSRs, 234-239 
Read From File or Device function, 293-294, 

666 
Read-only file attribute, 607 
READFMT program, 584-604 
Real number formats, 529-530 
Real-time clock, 255 
Real-time programming, 247-254 

design of, 266-276 
MS-DOS for, 254-264 
and multitasking, 276-277 

Reallocate Pages EMM function, 372, 
389-390 

Receive buffer 8250 register, 458 
Receive data available interrupt, 462 
Receive line status interrupt, 461 
RECOVER command for file recovery, 

618-620 
Recovery of data in memory, 643- 649 

See also File recovery 
RECT.C program, 509-511 
Recursive code 

with macros, error message for, 18 
and separate data areas, 93-94 

Redirect Device function, 669 
Redirection of I/O, 136-139, 222, 668-669 
Reentrancy, 176 

and device drivers, 285-286 
and local storage, 94 

Reference, passing arguments by, 104 

779 



MS-DOS Developer's Guide 

780 

Register operands, 25-26 
Registers 

and device driver interrupt routines, 307 
Intel 8250, 458-459 
Intel 8259A, 464 
as macro arguments, 27-30 
NPX:, 526-527, 537-542, 545-546 
passmg parameters through, 77-78 
and TSR reactivation, 236 
values returned in, 87-88 

Relational operators, 23-24 
Relocatable code and files, 91-93, 141 
Relocation maps, 91, 142, 145 
Relocation table, 145 
Removable Media device driver command 

325-326 ' 
Removal ofTSRs, 243-244 
REMOVE program, 180-189 
Remove s~bdirectory function, 665, 671 
Rename File function, 664, 668 
REPEAT-UNTIL control statement 36 

41-42 ' ' 
REPT macro directive, 14-17 19 51 
Request entry point for interr~pt'routines 

307 ' 
Request-To-Send, 456-457 
RESCUE program, 623-630 
Resident code, for TSRs, 193-194 
Resident portion of COMMAND. COM 120 
Resolution, display, 490, 492, 499 ' 
Resolve Path String to Fully Qualified Path 

String function, 748 
Response time for real-time systems, 

252-254, 264-265 
Restore Page Map EMM function 370 

399-400 ' ' 
RET. instructions and stack integrity, 113 
Retrieve Return Code of Child function, 89 
Return Access Key EMM function, 377 
@RetVal macro for parameter passing, 

82-83 
Reverse video, 491 
RLS (receive line status) interrupt 461 
RMDIR function, 665, 671 ' 
ROM routines, compatibility of, 657 
ROM-BIOS, 175-176 

system area for, 117 
for video, 200 

Root directory, 288, 606, 680 
Root program, 147 
RS character, 761 
RS-232C standard, 456-458 
RTS (Request-To-Send), 456-457 
Run-time libraries 

defining of, 147-148 
device drivers as, 284 
installation of, 150-157 
loading of, 148-150, 170-171 
part-time, 171 
presence of, determining, 157-158 
removal of, 158-159 
and separate data areas, 93 

s 
.SALL macro directive, 14, 20 
Save Page Map EMM function 370 399-400 
Saving of files with DEBUG, 646 ' 
Scaling and floating-point operations, 

560-561 
Scan codes, 196 
Scope of data, 110-113 
Screen. See Display screen 
SD program for displaying device drivers, 

329-334 
Search for First Entry function, 664 
Search for Named Handle EMM function 

372, 396 ' 
Search for Next Entry function, 664 
Seattle Computer Products, 686 
Secondary bootstrap, 286 
Sections in disk formats, 679 
Sectors, 579, 580 

conversion of clusters to, 617 
macros for, 717 

Segment registers 
for data protection, 112 
destroyed by bug, 166 

Segment relative addressing, 90-91 
Segments 

models for, 105 
override operator for, 107 
relocatable references with, 141 
for user area, 117 

Select Disk function, 663 
Semicolons (;) for macro comments 20 61 
Sensing of environment by real-ti~e s~stems 

248 ' 
Separate data areas, 93-94 
Sequential Read function, 664 
Sequential Write function, 664 
Serial adapter, 458, 466 
Serial communication port, 257-258, 

453-457 
MS-DOS tools for, 465-474 
program for, 474-485 
programmer view of, 458-465 

Set Alternate Map register Set EMM 
function, 376 

SET command for environment block, 129 
Set Country Depended Information function 

665 ' 
SeLcrLmode( ) function (C), 498 
Set Date function, 665 
Set Device Information IOCTL command 

295 ' 
Set Disk Transfer Address function, 664 
Set Handle Attribute EMM function 372 401 
Set Handle Count function, 669 ' ' 
Set Handle Name EMM function, 372, 396 
Set Interrupt Vector function, 132, 155, 664, 

670 
Set Logical Drive IOCTL command, 297 304 

327 ' ' 
Set Page Map EMM function, 370, 400 
Set Palette function, 515 



Set Partial Page Map EMM function, 371, 400 
Set PSP Segment function, 140, 745 
Set Relative Record Field function, 664 
Set/reset register, 507 -508 
Set/Reset Verify Switch function, 665 
Set Time function, 665 
SETBLOCK function, 108-109, 111, 148, 667 
.SFCOND directive, 21, 24 
SFN (system file number), 211, 216-217 
SFT (system file tables), 211, 212-218, 223 
SHARE.EXE file, 303 
Sharing of expanded memory, 396 
Shift key, 196 
Short data formats, 529-530 
Shorthand statements, 5-6 
SHOWMEM program, 122-129 
SHR operator, 110 
SI character, 761 
Side effect method, 88 
Sidekick, 193 
Sign bits, 527 
Significand, 527 
Simulators, expanded memory, 377 
Single entry-single exit modularization rule, 

74 
Single-sided disk formats, 579-580 
6845 CRT controller, 198, 209 
Size 

of data access, 112-113 
of .EXE programs, 144 
offiles, 608 
of initial allocation block, 143-144 
of memory blocks, 108-110, 121 

Slash(/) as switch character, 745 
Sleep in real-time polling systems, 270-271 
Small memory model, macro for, 706 
SNAPSHOT.C program, 405-406, 427-440 
SO character, 762 
Software interrupts, 196 
SOH character, 762 
Sound, generation of, 257 -259 
SPACE with serial communications, 455-456 
Speaker, sound through, 257-259 
SPECL bit for device headers, 297, 304 
Stable real-time systems, 250 
Stack pointer, destroyed by bug, 166 
Stacks 

C variables on, 102 
for .COM files, 142 
for dispatcher, 218-219 
and expanded memory, 387 
and interrupts, 32-33 
local storage on, 94-100 
macros for, 709-711 
and NPX, 535 
PASCAL variables on, 103-104 
passing parameters on, 79-85 
protection of, 113-114 
storage of data on, 112 
structural representation of, 83-84 
switching of, 171-175, 236 
values returned on, 88 

Index 

Stand-alone serial port applications, 466 
Standard devices, 290 
Standard interfaces, device drivers as, 284 
Standard interrupt vectors, 154-155 
Start bits, 455 
Starting cluster, 608 
Starting segment address, 145 
Status word, NPX, 537, 539-542 
Stderr device, handle for, 134 
STDIN bit for device header attribute word, 

305 
Stdin device 

with child programs, 165 
handle for, 134 
redirection of, 222 

STDLIB.LIB file, 721-738 
STDOUT bit for device header attribute 

word, 305 
Stdout device 

with child programs, 165 
handle for, 134 
redirection of, 136-139, 222 

STI instruction, C equivalent for, 470 
Stop bits, 259, 455, 466-468 
Strategy routines, 306-307 

for device drivers, 299-300 
entry pointer for, 305 

Strings 
data macros for, 54-56 
matching of, 27-30 

STRUC directive and assembly language 
structures, 64-68 

Structured programming 
in assembly language, 35-50, 75-89 
code macros for, 56-63 
and conditional assembly, 18-35 
data macros for, 50-56 
and high-level language interfacing, 

101-105 
with macros, 6-18, 25-35 
and memory allocation, 105-114 
and modular programming, 71-75 
shorthand statements for, 6-7 
STRUC directive for, 64-68 
types of coding, 89-101 

STX character, 762 
SUB character, 762 
Subdirectories, 605-607, 609, 665 
Subroutines 

compared to macros, 35, 57, 87-88 
macros that call, 61-63 
parameters for, structures as, 67-68 

Substitution, macro, 7 
Suggested error-recovery actions, 678 
Switch character, 745 
Symbol not defined error message, 16, 27, 47 
SYN character, 762 
Synchronization and expanded memory, 398 
Synchronous communications, 453 
Synchronous methods for real-time systems, 

266-276 
Syntax Error message, 543 

781 



MS-DOS Developer's Guide 

782 

.SYS extension for device drivers, 327 
System area, 117 
System clock and Media Check, 315 
System date, macro for, 717 
System file number, 211, 216-217 
System file table, 211, 212-218, 223 
System time, macro for, 717 
Systems programming, conditional assembly 

for, 22 

T 

Tables, data macros for, 51-54 
Task switching, 276, 400-401 
Templates for program creation, 701-703 
Temporary files, function for, 668 
Temporary real numbers, 527 
Terminate Address interrupt, 131, 222, 660 
Terminate addresses in PSP, 131-132, 222 
Terminate and stay resident programs, 

120-121, 193-194 
and background processing, 239-243 
and DOS, 210-223 
and expanded memory, 361, 387 
and hardware, 194-207 
loading and initialization of, 223-234 
PSPfor, 140 
reactivation of, 234-239 
removal of, 243-244 
for serial port, 466 

Terminate But Stay Resident function, 
148-150, 168, 223, 660, 665 

Terminate Process function, 89, 175, 667 
Termination of programs, 222-223, 303, 663 

macro for, 720 
with TSRs, 233-234 

Test jigs for device driver debugging, 286 
Text area read past end error message, 18 
Text mode, 491 
_TEXT segment name, 105 
. TFCOND directive, 24 
THRE (transmit holding register empty) 

interrupt, 462 
Time 

and device headers, 305 
functions for, 665, 669 
macro for, 717 

Time-sharing systems, 247 
Timer, interrupts from, 194-196, 203-204 
Timing requirements for real-time systems, 

252-254 
Tiny memory model, macro for, 705-706 
Tokenized programs, 647-648 
Top-of stack indicator in NPX status word, 

539 
TPA (transient program area), 121 
Tracks, disk, 579,580,679 
Transcendental functions, coprocessor for, 

263, 534 
Transfer of data, 257 -263, 534 
Transfer rates, 261 

Transformation devices, 284-285 
Transient portion of COMMAND.COM, 120 
Transient program area, 121 
Transient programs, 398-399 
Translate BIOS Parameter Block to Disk 

Block function, 747 
Transmit holding 8250 register, 458 
Transmit holding register empty interrupt, 

462 
Trap-driven memory resident routines, 177 
TRUE values, 23-24 
TSR. See Terminate and stay resident 

programs 
Two-pass assemblers, 27 
TYPE operator, 26, 61-63 
. TYPE operator, 26-30, 61-63 

u 
UART (Universal Asynchronous Receiver 

Transmitter), 455, 458-460 
UE (UnErase), 638 
UFILE, 639 
UFORMAT, 639 
Ultra Utilities, 578, 618, 639 
Unallocated memory blocks, 121 
Underflow exceptions and NPX, 542 
Underscore symbol(_) in C, 102 
Undocumented interrupts, 741-748 
UnErase, 638 
Unidirectional real-time systems, 249-250 
Universal Asynchronous Receiver 

Transmitter, 455, 458-460 
UNIX operating system, 685, 688 
UNLINK function, 666 
Unstable real-time systems, 250-252 
Unsupported features, 47 
US character, 761 
User area, 117 
User dispatcher stack, 218 
User interface, COMMAND.COM as, 120 
UZAP, 639 

v 
Value, passing parameters by, 85-86, 102 
Var declaration (PASCAL), 104 
Variable parameter subroutines, 63, 113 
Variables, 76 

modularization rule for, 75 
Vectors, interrupt. See Interrupt vectors 
Verify switch 

with device I/O, 298-299 
functions for, 665, 668 

Versions and version number 
checking for, 224 
compatibility of, 657 
functions for, 290, 655-659, 665 
library routine for, 731-733 
macro for, 718 

Vertical retrace interval, 198-199 



VGA (Video Graphics Array), 489 
255 
color mode for, 519-520 
palettes for, 516 
testing for, 494 

Video. See Display screen 
Video pages, 491 
Virtual device drivers, 284 
Volume identification with removable media, 

304 
VT character, 762 

w 
WAIT function, 8-9, 668 
Warm boots and expanded memory, 401 
Water_lawn program, 269-270 
Window size limitation with expanded 

memory, 362-363 
Word integer data format, 530 
Word length, communication, 259 
Word processing failures, recovering from, 

643-647 
Wordlength with serial communications, 455, 

466-468 

Index 

Wraps with data transfer, 321 
Write Dot function, 497 
Write to File or Device function, 293-294, 

666 
Write mode 0, 508-509 
Write mode 1, 508-509, 511-513 
Write mode 2, 509-511 
Writing 

to display memory, 199-200 
to expanded memory, 393- 395 
functions for, 664, 666 

x 
.XALL macro directive, 14, 20 
.XCREF directive, 61 
XENIX operating system, 681, 685, 688 
XLAT instruction, 263 
.XLIST directive, 14, 20, 24 
XON/XOFF flow control, 457 
XOR operator, 24 

z 
Zero-divide exceptions and NPX, 542 

783 



MS·DOS® Bible, Second Edition 
Steven Simrin, The Waite Group 

This revised edition of the best seller is 
ideally targeted for the intermediate lev
el user and programmer of the operat
ing system, especially those who have 
upgraded to the new version 3.3. The 
comprehensive tutorial emphasizes the 
new features found in DOS 3.3 and pro
vides expanded coverage of batch files, 
device drivers, memory management, 
and network commands. 

The new expanded batch language, disk 
structure, terminate and stay resident 
programs ffSRs), and the Lotus-Intel ex
panded memory model 4.0 are high
lighted. The new commands are 
explained in detail, and a unique "Infor
mation Jump Table" is included and 
enhanced for easy reference. 

Topics covered include: 

• Starting MS-DOS 
• MS-DOS Files and Batch Files 
• Directories, Paths, and Trees 
• Installing a Fixed Disk 
• Redirection, Filters, and Pipes 
•EDLIN 
• Extended Keyboard and Display 

Control 
• Debug 
•Link 
• Disk Structure 
• MS-DOS Device Drivers 
• MS-DOS Commands 
• Appendices: Undocumented Features; 

MS-DOS Interrupts and Function 
Calls; Practical Batch Files; ASCII 
Cross Reference Table 

568 Pages, 7Ih x 9314, Softbound 
ISBN: 0-672-22617-0 
No. 22617, $22.95 

The Waite Group's 
Understanding MS-DOS® 
Kate O'Day and John Angermeyer, 

The Waite Group 

MS-DOS is a very powerful and intricate 
operating system with millions of users. 
This operating system can be explored 
by beginning programmers in a hands
on approach, at the keyboard. 

Understanding MS-DOS introduces the 
use and operation of this popular 
operating system for those with little 
previous experience in computer hard
ware or software. The fundamentals of 
the operating system such as ED LIN. 
tree-structured directories and 
pathnames, and such advanced features 
as redirection and filtering are presented 
in a way that is easy-to-understand and 
use. 

Topics covered include: 

• Organizing Data into Files 
• Redirecting Input and Output 
• Using the Text Editor EDLIN to 

Create and Edit Files 
• Using Commands to Manage Files 
• Special Function Keys and Key 

Combinations 
• Creating Batch Files of Often 

Repeated Commands 
• Create and Use Tree Structured 

Directories 

300 Pages, 7 x 9, Softbound 
ISBN: 0-672-27067-6 
No. 27067, $17.95 

The Waite Group's 
Tricks of the MS-DOS® Masters 

John Angermeyer, Rich Fahringer, 
Kevin Jaeger, and Dan Shafer, 

The Waite Group 

This title provides the personal user 
(not necessarily the programmer or soft
ware developer) with a wealth of ad
vanced tips about the operating system 
and tricks for using it most successfully. 

Also included are advanced tips on us
ing popular software packages such as 
WordStar.® 

Topics covered include: 

• Secrets of the Batch File Command 
Language 

• Secrets of Pipes, Filters, and 
Redirection 

• Secrets of Tree-Structured Directories 
• Discovering Secrets: A Debugger 

Tutorial 
• Secrets of DOS Commands 
• Secrets of Files 
• Secrets of Free and Low-Cost 

Software 
• Secrets of Add-Qn Software, Boards, 

and Mass Storage 
• Secrets of System Configuration 
• Secrets of Data Encryption 

568 Pages, 7Ih x 9314, Softbound 
ISBN: 0-672-22525-5 
No. 22525, $24.95 

The Waite Group's 
Discovering MS-DOS® 
Kate O'Day, The Waite Group 

This comprehensive study of MS-DOS 
commands such as DEBUG, LINK, an 
EDLIN begins with general informatio 
about operating systems. It then show 
how to use MS-DOS to produce letter: 
and documents; create, name, and 
manipulate files; use the keyboard an1 
function keys to perform jobs faster; 
and direct, sort, and find data quickly 

It features a command summary card 
for quick reference. 

Topics covered include: 

• Introduction to MS-DOS 
• What is a Computer System? 
• What is an Operating System? 
• Getting MS-DOS off the Ground 
• System Insurance 
• Editing 
•Filing 
• Batch Files 
• Paths 
• Input/Output 
• Hard Disks 
• Appendices: Error Messages, 

Reference Card 

296 Pages, 71/2 x 93/4. Softbound 
ISBN: 0-672-22407-0 
No. 22407, $19.95 

Visit your local book retailer, use the order form provided, or call 800-428-SAMS. 



MS-DOS® Papers 
Edited by The Waite Group 

A collection of tutorials written by a 
diverse selection of experts, MS-DOS 
Papers presents some of the lesser
known features of MS-DOS. It provides 
additional insight into the operating sys
tem for programmers, developers, and 
"power-users" in an interesting and 
easy-to-read format. 

The book includes such topics as inside 
BIOS, terminate and stay resident 
programming, and advanced MASM. 
The material has been compiled by 
recognized experts and "gurus" in the 
computer industry. Although tutorial in 
nature, the book is an excellent refer
ence on each of the various aspects of 
the MS-DOS operating system. 

Topics covered include: 

• A Fast File Search Utility 
• PCnix: A UNIX-like Shell 
• Adding Power with Batch Language 

and MS-DOS Programming 
• Advanced MASM Techniques 
• Undocumented DOS Functions 
• Terminate and Stay Resident 

Programming 
• Data and File Security Techniques 
• The Spy Utility: Investigating 

Windows 
• DOS Services for Device Drivers 
• Sounder: A Musical Device Drive 
• Programming the EGA 
• C Serial Port Programming 
• Enhanced Memory System (EMS) 

100 Pages, 7'h x 9%, Softbound 
SBN: 0-672-22594-8 
~o. 22594, $26.95 

Hard Disk Management 
Techniques for the IBM® 

Joseph-David Carrabis 

This is a resource book of in-depth 
techniques on how to set up and 
manage a hard disk environment 
directed to the everyday "power user," 
not necessarily the DOS expert or 
programmer. 

Each fundamental technique, based on 
the author's consulting experience with 
Fortune 500 companies. is emphasized 
to help the reader become a "power 
user." This tutorial highlights installa
tion of utilities, hardware, software, and 
software applications for the experienced 
business professional working with a 
hard disk drive. 

Topics covered include: 

• Introduction to Hard Disks 
• Hard Disks and DOS 
• Backup and What You Need to 

Know 
• Service and Maintenance 
• Setting Up a Hard Disk 
• Organizing a Hard Disk 
• Hard Disk Managers 
• Utilities to Find Files, Get Overlays, 

unERAse Files, Recover Damaged 
Files, Speed Up Disk Access, and 
Restore and Backup Disks 

• Maintenance Utilities 
• File Security Utilities 
• Security Utilities 

250 Pages, rn x 9%, Softbound 
ISBN: 0-672-22580-8 
No. 22580, $22.95 

IBM® PC AT 
Usel"s Reference Manual 

Gilbert Held 

Includes everything you need to know 
about operating your IBM PC AT-how 
to set the system up, write programs 
that fully use the AT's power, organize 
fixed-disk directories, and use IBM's 
multitasking TopView. 

Includes a BASIC tutorial for beginners 
and includes several fixed disk 
organizer programs-all clearly de
scribed, explained, and illustrated. 

Topics covered include: 

• Hardware Overview 
• System Setup 
• Storage Media and Keyboard 

Operation 
• The Disk Operating System 
• Fixed Disk Organization 
• BASIC Overview 
• Basic BASIC 
• BASIC Commands 
• Advanced BASIC 
• Data File Operation 
• Text and Graphics Display Control 
• Batch and Shell Processing 
• Introduction to TopView 
• Appendices: ASCII 

Code Representation, Extended 
Character Codes, BASIC Error 
Messages, Programming Tips and 
Techniques 

453 Pages, 7 x 91/,, Softbound 
ISBN: 0-8104-6394-6 
No. 46394, $29.95 

IBM® PC & PC XT User's 
Reference Manual, 

Second Edition 
Gilbert Held 

Expanded to include the more powerful 
PC XT, this second edition contains the 
most up-to-date information available on 
the IBM PC. From setup through apply
ing and modifying the system, this book 
continues to provide users with clear, 
step-by-step explanations of IBM PC 
hardware and software-complete with 
numerous illustrations and examples. 

Highlights of the second edition include 
instructions for using DOS 3.1 and 
upgrading a PC to an XT; information 
on the customized hardware configura
tion of the PC and XT; explanations on 
how to load programs on a fixed disk 
and how to organize directories; and 
material on available software, including 
compilers. 

Topics covered include: 

• Hardware Overview 
• System Setup 
• Storage Media and Keyboard Operation 
• The Disk Operating System 
• Fixed Disk Organization 
• BASIC Overview 
• BASIC Commands 
• Data File Operations 
• Text and Graphics Display Control 
• Batch Processing and Fixed 

Disk Operations 
• Audio and Data Communications 
• Introduction to TopView 
• Appendices: ASCII 

Code Representation, Extended 
Character Codes, BASIC Error 
Messages, and Programming Tips 
and Techniques 

496 Pages, 7 x 91/, , Softbound 
ISBN: 0-672-46427-6 
No. 46427, $26.95 

Visit your local book retailer, use the order form provided, or call 800-428-SAMS. 



Portability and the C Language 
Rex Jaeschke 

Portability, the feature that distinguishes 
C from other programming languages, is 
thoroughly defined and explained in this 
definitive reference work. The book 
primarily addresses the technical issues 
of designing and writing C programs 
that are to be compiled across a diverse 
number of hardware and operating sys
tem environments. 

Organized around the ANSI C Standard, 
it explains the C preprocessor and the 
run{ime library and tackles portability 
from a C language perspective, discuss
ing implementation-specific issues as 
they arise. 

Topics covered include: 

• Introduction and Overview 
• The Environment 
• Conversions, Expressions, Declara

tions, and Statements 
• The Preprocessor 
• Diagnostics, Character Handling, 

Errors 
• Numerical Limits and Localization 
• Mathematics, Non-Local Jumps, 

Signal Handling 
• Variable Arguments and Common 

Definitions 
• Input/Output, General Utilities, 

String Handling 
• Date and Time 
• Appendix: Keywords and Reserved 

Identifiers 

400 Pages, 7lh x 9%, Softbound 
ISBN: 0-672-48428-5 
No. 48428, $24.95 

C + + Programminl! Guide 
for the IBM~ 

John Berry and Mitchell Waite, 
The Waite Group 

C + + Programming Guide for the IBM 
is a complete guide and tutorial to the 
C + + language specifically adapted to 
the IBM PC family. 

Aimed at developers and students, it 
teaches the use of object-oriented 
programming skills and introduces the 
major features of the language with 
explanations followed by pro,ctical exam
ples. It builds three professional 
libraries-cEntry, cGraphics, and 
cWindows-which enable programmers 
and developers to find shortcuts to the 
often cumbersome programming 
process. 

Topics covered include: 

• How the C + + Translator Works 
• New C + + Syntax 
• The C + + Stream h. Library 
• The lnline Functions 
• What the New C + + Pointers Offer 
• Memory Allocation Functions 
• Void Type Pointer to Generic Object 
• New C + + Structured Data Type 

Versus the Old 
• Private and Public Structures 
• Hiding the Implementation 
• Access by Non-member Functions 
• Constructors and Destructors 
• Overloading Functions and Operators 

400 Pages, 71/2 x 9 % , Softbound 
ISBN: 0-672-22619-7 
No. 22619, $24.95 

Microsoft® C Bible 
Nabajyoti Barkakati, The Waite Group 

Microsoft C Bible provides a thorough 
description of the 370 functions of the 
Microsoft C library, complete with prac
tical, real-world MS-DOS-based examples 
for each function. Library routines are 
broken down into functional categories 
with an intermediate-level tutorial fol· 
lowed by the functions and examples. 

Included are two "quick-start" tutorials, 
complete ANSI prototypes for each func
tion, extensive program examples, and 
handy jump tables to help enhance 
learning. 

Topics covered include: 

• Overview of the C Language 
• Microsoft C 5.0 Compiler Features 

and Options 
• Process Control 
• Variable Length Argument Lists 
• Memory Allocation and Management 
• Buffer Manipulation 
• Data Conversion Routines 
• Math Routines 
• Character Classification and Conversion 
• String Comparison and Manipulation 
• Searching and Sorting 
• Time Routines 
• File and Directory Manipulation 
• Input and Output Routines 
• System Calls 
• Graphics Modes, Coordinates, and 

Attributes 
• Drawing and Animation 
• Combining Graphics and Text 

824 Pages, 71/2 x 9%, Softbound 
ISBN: 0-672-22620-0 
No. 22620, $24.95 

C Programmer's Guide to 
NetBIOS 

W David Schwaderer 

Network Basic Input/Output System 
(NetBIOS) has quickly become the 
standard programming interface 
used to access local area network 
(LAN) functions. This book explains 
how to use the NetBIOS interface 
with C to create applications for a 
wide variety of products and appli
cations. 
Each principle is explained and il
lustrated, then used as a building 
block for the next even more com
plex principle. Emphasizing the 
Microsoft® C compiler, examples 
are clear and complete, revealing 
the capabilities of the NetBIOS in
terface. 
Topics covered include: 
• NetBIOS Overview 
• NetBIOS and IBM® 's LAN 

Adapters 
• Application Services 
• NetBIOS Ncb/Mcb Fields 
• The IBM LAN Support Program 
• NetBIOS Relationships to Other 

IBM Products 
• LAN Data Integrity and Security 

Issues 
• Real-Time LAN Conferencing 
• C File Transfer Applications 
• Medialess Workstations, RPL, 

and Redirectors 
• A CRC Treatise 
• CRC-16 and CRC General 

Mechanics 
• CRC-CCITT (SDLC/HDLC) and 

Minimum Look-Up Table Sizes 
• CRC-32 (IBM Token-Ring, PC 

Network, and ETHERNET) 
• The NetBIOS Technical 

Reference 
600 Pages, 7Ih x 9 % , Softbound 
ISBN: 0-672-22638-3 
No. 22638, $24.95 

Visit your local book retailer, use the order form provided, or call 800-428-SAMS. 



MS-DOS STRUCTURES 

Directory Structure 

Time RECORD Hour:5, Minute:6, Second:5 
F E D C B A 9 8 7 6 5 4 3 2 1 0 

I I I I I Seconds/2 
.............. __._...._.._ _____ Minutes 

..._ ...... __.__.~~~~---~-~~ Hours 

Date RECORD Year:?, Month:4, Day:5 
F E D C B A 9 8 7 6 5 4 3 2 1 0 

...... -... ...... --Day 1-31 
..._..._._..... _____ Month 1-12 

1--1.....&.--i......i..._,_..i..... ________ Year + 1980 

dir STRUC 
di r stat db dup (?) 

dir name 
dir-ext 
dir-attr 

db 7 dup (?) 
db 3 dup (?) 
db 1 dup (?) 

dir resv db 10 dup (?) 
di r - ti me Ti me < > 
dir-date Date < > 
dir-first db 2 dup (?) 
dir-size db 4 dup (?) 

dir ENDS 

BIOS Parameter Block (BPB) 

bpb STRUC 
bpb_sec_size dw ? 
bpb_clust_sec db ? 
bpb resv sec dw ? 
bpb=fats- db ? 
bpb_dir_ents dw ? 
bpb secs dw ? 
bpb=media db ? 
bpb fat secs dw ? 
bpb- - ENDS 

file name's actual first character or: 
OOh =file name never used 
05h = first character is really E5h 
E5h =file has been erased 
2Eh =file is a subdirectory 

rest of file name characters 
extension 
attributes: 
7 6 5 4 3 2 1 0 

Read only 
Hidden 

,__ __ System 
----Volume Label 

'-------Subdirectory ....., ______ Archive 
.._....._ ______ Unused 

reserved 
time stamp (2 bytes) 
date stamp (2 bytes) 
starting cluster number of file 
file size in bytes (1st word holds Low

order size) 

Offset--Description 
0--number of bytes per sector 
2--number sectors per cluster 
3--number of reserved sectors 
5--number of FATs (copies) 
6--number of root directory entries 
8--total number of sectors 

10--media descriptor byte 
11--number of sectors per FAT 

continued 



MS-DOS STRUCTURES 
continued 

File Control Block (FCB) Layout 

Date RECORD year:7, month:4, day:5 

fcb STRUC 

fcb_drive 

fcb name 
left
fcb ext 
fcb-cur blk 
fcb rec size 
fcb-filsiz lo 
fcb-filsiz-hi 
fcb=date 

db 

db 

db 
dw 
dw 
dw 
dw 
Date 

fcb resv1 db 
fcb=curr rec db 

fcb rndm_rec dw 

fcb rndm_rec h dw 

fcb ENDS 
fcb exten STRUC 

fcb_ext_flag db 

fcb resv2 db 
fcb-attr db -
fcb struc FCB 
fcb=exten ENDS 

dup CO>. 

8 dup (" ") 

3 dup (" ") 

? 
80h 
0 
0 
< > 

10 dup (?) 
? 

? 

? 

OFFh 

5 dup (Q) 

? 
<> 

MAIN PART OF FCB 
Offset--Description 
0--drive number CO = default drive 

before open) 
1--file name or device name; 

left-justified; no colon 
9--fi le extension; left-justified 

12--current block relative to start of file 
14--logical record size in bytes 
16--fi le size in bytes; low word 
18--file size in bytes; high word 
20--date file was created or last 

updated (see directory structure) 
22--reserved 
32--current relative record within 

current block 
33--relative record from start of 

file; low word 
35--relative record from start of 

file; high word 

EXTENDED PART OF FCB 
Offset--Description 
-7--flag containing FFh indicates 

extended FCB 
-6--reserved 
-1--attributes <see directory structure) 
0--reference main FCB structure 

Program Segment Prefix (PSP) Layout 

psp STRUC 
psp_int20 
psp top 
psp-reserv1 
psp=termIP 
psp termCS 
psp-ctlbrkIP 
psp=ctlbrkCS 
psp critIP 
psp-critCS 
psp=reserv2 
psp environ 
psp-reserv3 
psp-dos 
psp-reserv4 
psp - fcb1 
psp-fcb2 
psp=parmlen 
psp_parms 
psp ENDS 

db OCDh,020h 
dw ? 
db 6 dup (?) 
dw ? 
dw ? 
dw ? 
dw ? 
dw ? 
dw ? 
db 22 dup (?) 
dw ? 
db 34 dup (?) 
db 0CDh,021h 
db 10 dup (?) 
db 16 dup (?) 
db 20 dup (?) 
db ? 
db 127 dup (?) 

Offset--Description 
0--int 20h instruction 
2--top of memory in paragraph form 
4--reserved 

10--terminate address IP 
12--terminate address CS 
14--Ctrl-Break exit address IP 
16--Ctrl-Break exit address CS 
18--critical error exit address IP 
20--critical error exit address CS 
22--reserved 
44--environment segment address 
46--reserved 
80--MS-DOS int 21h function call 
82--reserved 
92--unopened standard FCB 1 

108--unopened standard FCB 2 
128--number of characters in parameter list 
129--command parameters 



HOWARD W. SAMS &. COMPANY 

The Waite Group's 

MS·DOS® Developer's Guide 
Second Edition 
Now compatible with MS-DOS® version 4.0, here is the greatly expanded re
vised edition of the best-selling classic in its field, MS-DOS Developer's Guide. 
Also compatible with MASM 5.1 and Microsoft® C Compiler 5.1, this book 
presents all of the details you will need to write application programs for the 
latest version of the MS-DOS operating system. Inside you will find complete in
formation on 

• undocumented functions and interrupts for MS-DOS versions 2.0 to 4.0 

• all disk formats, including quad density and micro floppy diskettes 

• MS-DOS data structures such as the Program Segment Prefix (PSP), Data 
Transfer Area (DTA), Job File Table (JFT), and more 

• file 1/0 handles 

• Terminate and Stay Resident (TSR) programs 

• Enhanced Graphics Adapter and Virtual Graphics Array display standards 

• all Enhanced Memory Specifications (EMS) versions, including MS-DOS 4.0 
implementation 

• programming the serial port 
~ 

All example programs have been revised to be compatible with MS-DOS 4.0. 
You will find completely revised and expanded chapters on structured program
ming with MASM 5.1, installable device drivers, real-time programming, pro
gramming the NPX math coprocessor, and MS-DOS memory management. 

The Waite Group is a developer of computer, science, and technology books. Acknowledged 
as a leader in the field, The Waite Group creates book ideas, finds authors, and provides 
development support throughout the book cycle, including editing, reviewing, testing, and 
production control for each title . The Waite Group has produced over 70 titles, including such 
best-sellers as C Primer Plus, MS-DOS® Developer's Guide, Tricks of the UNIX® Masters, and 
Assembly Language Primer for the IBM® PC. Mitchell Waite, president of The Waite Group, 
wrote his first computer book in 1976. Today The Waite Group produces 15 to 20 new computer 
books each year. Authors can contact The Waite Group at l 00 Shoreline Highway, Suite 285, 
Mill Valley, California, 94941. 

$24. 95 US/22630 

#f 
HOWARD W. SAMS&. COMPANY 
A Division of Macmillan, Inc. 

4300 Wesl 62nd Slreel 

Indianapolis. Indiana 46268 USA 

ISBN 0-672-22630-8 

90000 

9 7806 72 226304 


