

MS-DOS® System Programming
Edited By Robert Ward

R&D Publications, Inc.
2601 Iowa 51.

Lawrence,KS 66046

Edited by:

Robert L. Ward

Published by:

R&D Publications, Inc.
2601 Iowa St.
Lawrence, KS 66046
March 1990

Printed by:

Clark Printing
North Kansas City, MO

Copyright© 1990 by R&D Publications, Inc.,
except where other copyright notice indicated. All rights reserved.

Trademarks:

MS-DOS, MS-Windows, Microsoft C, Microsoft Macro Assembler,
MASM, QuickC, QuickBASIC, OS/2, Microsoft Corporation.

Turbo Assembler, Turbo Pascal, Turbo Debugger, Borland Interna
tional.

Above Board, Intel.

Rampage, AST.

Lotus 1-2-3, Lotus Development Corp.

UNIX, AT&T.

Barcom, Wenham.

Builder, Hyperkinetix.

Wordstar, MicroPro International Corp.

Macintosh, Apple Corp.

MS-DOS System Programming

Chapter One

Chapter Two

Chapter Three

Chapter Four

Chapter Five

Chapter Six

Locating The Master Environment
Scott Robert Ladd 1

Converting A Microsoft C Program Into A TSR
Michael). Young 9

Event Timing On MS-DOS PCS
Phyllis K. Lang 49

Writing MS-DOS Exception Handlers
Robert B. Stout 61

The EXEC Function
Ray Duncan 77

PC Interrupt-Driven Serial I/O
Philip Erdelsky 107

Chapter Seven A Programmer's Bibliography
Harold C. Ogg 125

Index . 141

Preface

This book is intended as a IIhow-to" guide for sophisticated PC
developers. You won't find any tutorials on how to build a linked list
or a binary tree. You will find complete standalone discussions of how
to write TSRs, interrupt handlers, and exception handlers. You'll find
detailed explanations of undocumented system calls and very
thorough explanations of certain hardware interfaces. This is a book
for programmers who have long since mastered the craft of program
ming and who are now looking for technical information to support
advanced applications in a PC environment

Each chapter gives complete details about some advanced tech
nique or subject. Each chapter can be read independently. A keyword
index will help you quickly reference details when you need them
later.

Of course, this book isn't exhaustive - the subject is far too large.
Rather than attempt to exhaust the subject, we've tried to create a
book that will lead you to the information you need. Some chapters
are excerpts from books with wider coverage. If these chapters are
useful to your project, you may want to consider reading the book
from which they are drawn. The final chapter is an annotated bibli
ography of books suitable for advanced PC developers.

We sincerely hope you find this book useful and welcome your
comments and suggestions.

·~. '

Locating The Master
Environment In MS-DOS

Scott Robert Ladd

Developing software for MS-DOS can be frustrating. I often find what
seem to be artificial restrictions on what can and can't be done. For example,
some of the utilities provided with MS-DOS can accomplish tasks which a
programmer can't duplicate by using the documented features of the
operating system. This article attempts to lift the veil from one of MS-DOS's
most useful hidden secrets by providing a function which locates the master
copy of the MS-DOS environment.

The environment is a collection of text variables maintained by
COMMAND. COM. These variables consist of a name and an associated text string.
Environment variables are used for a wide variety of purposes by both the
operating system and application programs. Common examples of environ
mentvariables include COMSPEC (which stores the path name of the MS-DOS
shell), PROMPT (the prompt definition string>, and PATH (a list of directories
to be searched for executable files). Some environment variables are
maintained by special commands; other environment variables are stored
using the internal MS-DOS command SET. Programmers are well aware of
environmellt variables; most assemblers and compilers use them for locating
header files, libraries, and compiler components.

Every program in MS-DOS has its own environment. A program which
executes another program is known as a "parent", while the program it
invokes is called a "child". A child, in turn, can also be the parent of other
programs. A child process inherits a copy of the environment associated with

1

MS-DOS System ProgramminS _

its parent Changes made by the child to its copy of the environment have
no affect on the parent's copy - and vice versa.

The MS-DOS command shell, COMMAND. COM, is the ultimate parent of all
resident programs, since it is the first program loaded. At boot time,
COMMAND. COM allocates a block of memory into which it stores the master
environment variables. Since most programs are executed from the COM
MAND. COM prompt, it is the direct parent of most programs. However, many
programs are c~pable of running other programs directly, and additional
copies of COMMAND. COM can be resident simultaneously as well. This can
muddy the waters when one is searching for the master copy of the
environment, which is associated with the COMMAND. COM loaded at boot-up.

When a program is loaded MS-DOS creates a 256-byte header for it.
This header ~ontains important operating system data, and is called the
Program Segment PrefIX (PSP). A program can locate the copy of its local
environment via a segment pointer stored at offset 2Ch within the PSP.

Placing new information into a local copy of the environment is not
particularly useful. When a local environment is created, it's size is only
slightly larger than that required to hold all of the existing variables in the
parent environment. A copy of the environment cannot be expanded, so
there's almost no room to add new variables. Any changes to a local
environmentare transient; when a program terminates, its local environment
vanishes too. In addition, changing the local copy of the environment is
solely useful if child programs are to be executed, since they are the only
ones which will see new or changed values.

On the other hand, it can be useful to make changes to the master
environment A program could pass along information to other programs
through master environment variables. An application could store status
information for future incarnations of itself. A TSR can use the variables in
the global environment to ensure that it is aware of any changes since it was
executed. Unfortunately, MS-DOS does not provide any documented way
of accessing the master environment. In order to work with the master
environment, we must enter the world of undocumented features.

2

_____________locating The Master Environment In MS-DOS

MS-DOS Memory Management
MS-DOS organizes memory into blocks. Each block is prefaced by a

16-byte paragraph-aligned header called the Memory Control Block, or
MCB for short. The MCB contains three pieces of information: a status
indicator, the segment of the owning program's PSP, and the length of the
block. The status indicator is a byte which contains either the character M
(indicating that it is a member of the MCB chain) or the character Z (denoting
this as the last MCB in the chain). The length of the block is stored as a
number of 16- byte paragraphs. (For those who are curious, the characters
Mand Z are the initials of one of the original developers of MS-DOS.)

Many popular public domain programs use the chain ofMCBs to display
a map of the programs and data currently resident in memory. The first MCB
can be located through an undocumented [NT 21h service of MS-DOS, 52h.
Function 52h returns a pointer (in ES:BX) to an internal table of MS-DOS
values. Immediately preceding this table is the segment address of the first
MCB. Starting with the first MCB, a program can follow the chain of memory
blocks by a simple formula: add the size of a block plus one to the segment
address of the current block to calculate the segment of the next MCB in
the chain.

The initial copy of COMMAND. COM creates a memory segment which will
contain the master environment Usually, this is segment located in the
memory block directly after the one which contains COMMAND. COM. At the
same time, the environment pointer in COMMAND. COM's PSP is set to o.
Beginning with MS-DOS version 3.3, however, the location of the
environment's memory block may be different. In later versions, the environ
ment pointer in COMMAND. COM's PSP contains the segmentof the environment
block.

Once the memory block containing the environment is located, the
programmer can directly manipulate the variables stored there. Environment
variables are stored in sequential order and are terminated by NULs, exactly
like C strings. The end of the valid data in the environment is indicated by
a pair of consecutive NULs. Each variable consists of a name (customarily in
upper case), an equal sign, and a text value.

3

MS-DOS System Programming _

MSTR_£NV. ASM (Listing 1.1) is an 8086 assembly language module which
directly locates the master environment It contains the public function
jindmenv which' returns a pointer to the master environment in £S:8X, and
the byte size of the environment in CX. The function takes no parameters,
and corrupts the AX and OX registers. With a small amount of work, the
function could be rewritten to be callable from a high-level language such
asC.

jindmenv begins by invokingMS-DOS function 52h. The returned values
in the £S and 8X registers are then used to construct a pointer to the segment
address of the first MCB. The first MCB is the one for the MS-DOS kernel
and device drivers; the second ~CB is associated with COMMAND. COM. Using
the formula mentioned above for following the chain of MCBs, jindmenv
finds the second MCB (for COMMAND. COM). That memory block contains the
segment of COMMAND. COM's PSP.

Once the PSP has been located, jindmenv checks the environment
pointer stored there. If the pointer is zero, the environment is stored in the
next consecutive memory block above COMMAND. COM; otherwise, the value
represents a segmentaddress from which jindmenv can build a direct pointer
to the master environment block. jindmenv calculates the size of the
environment from the size of its memory block in bytes, and stores thatvalue
in CX. Finally, the pointer to the master environment is stored in £S:8X.

Once you have the address of the master environment, you can begin
to work with the NUL-terminate strings stored therein. You must be careful
not to delete or overwrite important MS-DOS environment variables such
as PATH or COMSP£C. When deleting an environment variable, shift all of the
environmentvariables IIabove" it IIdown", to overwrite the deleted variable's
space. All of the strings in the environment must be contiguous. Make sure
that all of your variables follow the correct format: an uppercase variable
name, directly followed by an equal sign (=), directly followed by the
variable's text value. The complete set of strings must be terminated by a
pair of NULs. Duplicating a variable will only waste space in the master
environment; be sure to always delete the old variable, and add new
variables at the end of the environment

MSTR £NV.ASM has been tested with Microsoft Macro Assembler vS.10
and Borland Turbo Assembler v2.0. It should compile and work under other

4

_____________Locating The Master Environment In MS-DOS

MS-DOS assemblers which support the MASH syntax. As with all functions
which use "undocumented features" of MS-DOS, it is important to realize
that these functions may not work with future versions of MS-DOS. I made
sure that the functions in HSTR_ENV. Cworked with MS-DOS versions 2.1,
3.0, 3.21, 3.30, and 4.01. In some variations of MS-DOS v4.00, the
undocumented 52h functions do not work.

5

MS-DOS System ProgrammlnS _

Listing 1.1

."""""""""""""""""""""""""'"""""""""""
Module Identification

Env vl.00 09-Jan-1990

Purpose

Allows access to the global MS-DOS environment.

Environment

Language: Intel SOx86 Assembler
Assemblers: Microsoft Macro Assembler v5.10

Borland Turbo Assembler vl.1

Requirements

Hardware: IBM PC compatible
Software: MS-DOS 2.11 thru 3.30, and 4.01

Does not work with some buggy versions of MS-DOS 4.00

Author Information

Written by: Scott Robert Ladd
705 West Virginia
Gunnison CO 81230

Legal Stuff

This module has been placed in the public domain •

."""""""""""""""""""""""""'"""""""""""
TITLE env.asm
NAME env

.MODEL SMALL

.CODE

PUBLIC findmenv

findmenv PROC NEAR

6

mav
int

mov
mav
may

add
inc
inc

ah. 52h
21h

ax, word ptr es:[bx-2]
es, ax
bx. 3

ax. word ptr es: [bx]
ax
ax

• undocumented MS-DOS function locates
• internal table. Returned in ES:BX

• get segment ptr from internal table
i move segment to ~S

• set BX to point to size of first Mea
; add length of first MeB (in para)
• increment 2 more bytes
; to get segment of command shell

______________Locating The Master Environment In MS-DOS

Listing 1.1 (cont'd)

may es, ax
moy bx, 44

may ax, word ptr es:[bx]
cmp ax, 0

jne fge_l

may ax, es
dec ax
moy es, ax
moy bx, 3
add ax, es: [bx]
inc ax

fge_l: dec ax
mav es, ax
mav bx, 3

may dx, es: [bx]
may el, 4
shl dx, cl
may cx, dx

inc ax
may es, ax
xor bx, bx

ret

findmenY ENDP

END

; move segment to ES
; set ax to point to eny seg in shell PSP

; load AX with eny seg in shell PSP
• check for 0

; mav ES to AX where it can be changed
• dec AX to move back one paragraph
; mav new segment to ES
• set BX to point to size of shell Mea
• add size of shell Mca to ax
• dec AX so it points to env MCB

; move 1 para back to env seg MeB
; mav ES to AX
; set ax to point to size of shell MeB

; DX now contains size of environment
• set CL for 4 bit shift
; shift DX
; ex now contains size in bytes of env

; set AX to point to env seg data
; move that data to ES
• clear .BX

• return

7

MS-DOS SystemProgramming_.-....;.....;.... _

8

Converting a Microsoft
C Program Into A TSR

Michael). Young

Amemory resident program, or TSR (terminate and stay resident applica
tion), is one that permanently establishes itself in memory and then returns
control to MS-DOS so that the user can run other programs. The TSR remains
dormant in the background until the user presses a designated hotkey,
whereupon it springs to life, temporarily suspending the current application
and providing instant access to the services it offers.

The module of functions presented in this chapter allows you to convert
a normal Microsoft C program into a TSR through a single function call. You
can specify the hotkey that is to activate your TSR, and the C function in
your program that is to receive immediate control when the hotkey is
pressed. You can also specify a unique code to prevent the same resident
program from being installed more than once. All the details of installing and
activating the program as a TSR are handled invisibly by the functions in this
module. The module also includes a function for removing the TSR from
memory.

The TSR functions written in C are listed at the end of this chapter in
Listing 2.1, and the functions written in assembly language are listed in Listing
2.2. The header file that you must include in your C program to call these
functions is given in listing 2.3.

(Reprinted from Systems Programming in Microsoft C by Michael J. Young, by permission of SYBEX, Inc.
Copyright© 1988 SYBEX, Inc. All rights reserved.)

9

MS-DOS System Programming _

Writing a TSR under MS-DOS is a complex task. The primary challenge
is to design a resident program that will peacefully coexist with the
foreground program, with any other TSRs that are currently installed, and
with the operating system. It is especially important that a TSR written in the
C language be able to freely call MS-DOS functions, since many of the
standard library routines make use of these services. This chapter presents
one of the many approaches that can be used to achieve these design goals..

There are three functions in the TSR module that can be called directly
by your program: Tsrlnstall, TsrlnOos, and TsrRemove. The chapter
begins by describing how to call these three functions, and presents an
example program that demonstrates their use. The chapter then discusses
how the functions work.

The TSR functions not only provide a useful addition to your collection
of software tools, but they also furnish an excellent demonstration of the
advanced features of Microsoft C. Normally it would be quite difficult to
write memory resident interrupt handlers in the C language; however, using
Microsoft C language extensions such as interrupt functions (provided with
versions 5.0 and later), it was possible to write the entire module in C, with
the exception of two short assembly language subroutines.

Using TsrInstoZ Z
The function Tsrlnstall has the prototype

int TsrInstal1
(void (*FPtr) (void),
int HotKey,
unsigned long Code)

10

_____________Converting A Microsoft C Program Into A TSR

and performs the following primary tasks:

• It checks to make sure that the program has not already been
installed in memory. Each program that is installed by this routine
should be identified with a unique value in the parameter Code.

• It stores all values that will be required by the interrupt handlers after
the TSR is installed.

• It installs the appropriate interrupt handlers so that when theuser
presses the shift-key combination specified by the HotKey
parameter, the function given by the FPtr parameter receives
immediate control.

• It terminates the C program, leaving the entire block of code and
data resident in memory.

When you develop a memory resident program using the TSR module,
your program should consist of two parts. The first part is the main function
(plus any functions called bymain). The function main receives control when
the user types the name of the program on the command line, and serves
to install the TSR. This function should perform any required initialization
tasks, print any desired messages to the user, and finally call Tsrlnstal Zto
install the program as a TSR. After the call to TsrlnstaZ Z, control returns to
the DOS command line just as if the program had exited normally; however,
the program's code and data are not released, but rather remain resident in
memory.

The second part of your memory resident program is the portion of the
code that is subsequently activated whenever the user presses the designated
hotkey. This part of the program consists of the TSR entry routine - the
function that receives initial control when the hotkey is pressed - plus any
subroutines called by this function.

The first parameter passed to Tsrlnstall (that is, FPtr) should be
assigned the address of the TSR entry routine. The second parameter
(HotKey) gives the shift-key combination that is used to activate the program.
Note that this parameter does not specify either an ASCII code or an

11

MS-DOS System Programming _

extended keyboard code, but rather some combination of shift keys. The
desired combination may be specified by joining two or more of the
following constant identifiers with the C I operator (these constants are
defined in the header file TSR.H, Listing 2.3):

Identifier

RIGHTSHIFT
LEFTSHIFT
CONTROL
ALT
SCROLLLOCK
NUMLOCK
CAPS LOCK
INSERT

Shift Key

Right shift key
Left Shift key
Ctrl key
Alt key
Scroll Lock key
Num Lock key
Caps Lock key
Ins key

For example, the combination oftheAlt key and Le!t-Shi!t key could
be specified by the following expression:

ALT I LEFTSHIFT

The parameter Code is of type unsigned long. It should range between the
values OxOOOOOOOl and Ox!!!!!!!! and be unique for each separate
program you convert to a TSR. Once a TSR is installed, no other program
having the same 10 number may subsequently be installed. By means of this
parameter, Tsrlnstall avoids loading redundant copies of the same pro
gram.

Since Tsrlnstall terminates the current program, it should obviously
never return. If the function does return, an error has occurred and the
program has not been installed. In this case, one of the following error codes
is passed back to the calling program:

12

_____________Converting A Microsoft C Program Into A TSR

• INSTALLED: This error code indicates that a TSR bearing the
sameidentification code has already been installed.

• NOINT: This value means that there are no free "user" interrupts
available. The interrupt vectors in the range from 60h to 67h are
designated as available for user programs. The first of these vectors
that is free (that is, containing zero) is used to store the identifying
code (the parameter Code) assigned to the TSR. If all of these vectors
are occupied, TsrInstall returns NOINT.

• WRONGDOS: The TSR functions require DOS v2.0 or later. If the
version is prior to 2.0, this error code is returned. (Notethat the TSR
can be successfully installed in the DOS-compatibility environment
of OS/2, which returns a version number of 10.0 orhigher.)

• ERROR: This general code is returned if the installation procedure
failed for some unknown reason.

In most respects, a program destined to become a TSR can be written
like any other C program. However, there are five additional guidelines that
you should follow when developing your memory resident program.

First, your program - and all the C modules t~at are linked with it
must be compiled using the small or medium memory model (both of these
models place all data within a single segment and use near data pointers by
default). You may not compile the program using either the compact, large,
or huge model. As you will see, the code in the TSR module (specifically,
TSR.O uses techniques that require the small or medium memory model.

Second, if your program writes to the screen or alters the cursor, you
must carefully save and restore the complete video state of the interrupted
program. The functions in the TSR module automatically save and restore
almost all of the machine state of the suspended program; the task of
preserving the video state, however, is left to the application program. Note
that you can use the routinesScrSaveBlock and ScrRestoreBlock (defined
in Listing 2.4) to save and restore data from text mode screens.

Third, a resident program should not attempt to allocate memory from
DOS. A transient application (that is, a program that does not remain resident
in memory) can normally obtain additional memory blocks by dynamically
allocating them from DOS. ATSR, however, should restrict its use of memory

13

MS-DOS System Programming _

to the block explicitly reserved for the program when it terminated and
remained resident. Consequently, a TSR should not invoke the MS-DOS
services for allocating, releasing, or changing the size of memory blocks
.(namely, services 48h, 49h, and 4Ah, accessed through interrupt 21h);
likewise, it should not call any of the functions provided by Microsoft C that
rely upon these DOS services (namely,_dos_ollocmem,_dos_freemem, and
_dos_setblock). Note, however, that aTSRcan call the standard C memory
allocation functions, such as malloc and calloc, since these functions
obtain memory from within the block reserved at the time the program
became resident. (However, as you will see in the next section, the TSR
module places a fixed upper bound on the amount of memory that can be
dynamically allocated through functions such as malloc.)

Acorollary to the third guideline is thataTSR must notattempt to execute
achild process, since doingso entails allocation ofadditional memory blocks.
Consequently, a TSR must not call the DOS service for executing a child
process (namely, function 4Bh of interrupt21h); nor should it call any of the
C library functions for starting new processes (namely, the exec. •• and
spawn••• families of functions).

Fourth, the TSR should not use floating point numbers. Specifically, it
should not declare variables of type float or double, and it should not call
functions in the C math library (which are those declared in the header file
MATH. H). The inclusion of floating point code causes the C startup code to
set certain interrupt vectors; floating point operations require that these
interrupt vectors remain intact. As long as these vectors remain unaltered as
various programs run in the foreground, the TSR can successfully execute
floating point instructions; however, if a foreground application alters one
or more of the vectors, any floating point calculations performed by the TSR
will fail. Therefore, a robust TSR must avoid floating point operations
performed by the math library.

The fifth and final guideline is that your TSR must always return from
the function that was initially activated (the function specified by the FPtr
parameter). You must not use the exi t function to terminate the program.
The exi t function is designed to terminate a non-resident program and
return to the parent process (usually the MS-DOS command interpreter).

14

____________Converting A Microsoft C Program Into A TSR

Note that when your TSR entry function receives control in response to
the user pressing the hotkey, the TSR module has temporarily disabled any
control-break or critical error handlers that may have been installed by the
suspended foreground application. (Specifically, during the execution of
your TSR code, interrupt vectors lSh, 23h, and 24h point to routines that
simply return without performing any action; these vectors are restored to
their former values before control returns to the suspended application.) If
your TSR program needs to handle control-break keys or critical-error
conditions, you can install appropriate handlers; however, you do not need
to restore the former values for these vectors since this task is performed
automatically by the TSR module code that receives control when your TSR
issues its final return statement.

Note also that even if the TSR is properly installed, the program may not
always receive immediate control when the hotkey is pressed. There are
times when it is not safe to interrupt the current process (such as when DOS
or the BIOS are engaged in disk activity). The TSR module senses these
conditions and simply ignores the hotkey until it is safe to trigger the resident
program.

A note to QuickC users: You should not attempt to load a TSR from
within the QuickC integrated environment (the TSR should be loaded
directly from the DOS command line so that it is given the lowest possible
position in memory). Therefore, if you prepare the program within QuickC
v1.0, you should select the Exe item in the Output Options column of the
Compt Ze menu; this option will produce a freestanding. EXE file that can be
run from DOS. QuickC v2.0 will automatically produce such a file.

Using TsrInDos
The function TsrlnDos has the prototype

int TsrlnDos
(void)

15

MS-DOS System Programming _

This function returns a nonzero value if an MS-DOS service was active when
your TSR received control, and it returns 0 if MS-DOS was not active. With
this function you may determine which DOS functions your program may
safely call. Specifically, if TsrlnDos returns avalue of 0, you may directly call

. almost any MS-DOS service or almost any C library function that invokes
MS-DOS (exceptions are noted later in this section). However, if TsrlnDos
returns a non-zero value, then you must not use DOS functions 01 h through
OCh. This set of forbidden functions manage input and output to the basic
character devices (console, printer, and serial port). The following C library
functions, which are defined in the CONIO.H header file, employ these
services: cgets, cputs, cprintf, cscanf, getch, getche, kbhit, putch, and ungetch.

Fortunately, it is almost always possible to obtain the services offered by
the forbidden set of procedures through the low-level C library functions
provided by Microsoft (notably~bios_keybrd and display functions such as
_outtext), or by using some of the video functions presented in Listing 2.4.
Either you can call TsrlnDos before using any of the restricted functions, or
you can simply eliminate the restricted functions from your TSR program.
Later in this chaper I'll explain why you shouldn't call this set of MS-DOS
services.

Using TsrRemove
The function TsrRemove has the prototype

;nt TsrRemove
(void)

The memory resident portion.ofyour program can call TsrRemove to remove
itself from memory. It should call this function immediately before returning
control to the foreground program. TsrRemove releases the memory oc
cupied by the TSR and restores all interrupt vectors to their former values.

Ifsuccessful, Ts rRemove returns thevalue NOERROR (which equals 0; error
constants are defined in TSR.H, Listing 2.3). At certain times, however, it is
not safe for the TSR to remove itself from memory (specifically, when the
foreground application or a subsequently loaded TSR has hooked one or
more of the interrupt vectors used by the module). In this case, TsrRemove

16

_____________Converting A Microsoft C Program Into A TSR

returns the value CANTREMOVE. It may be possible to remove the TSR after
terminating the foreground application, or after removing any other TSRs
that were installed after your program.

An Example Program
The program in Listing 2.4 demonstrates the use of TsrInstall, Tsr

InOos, and TsrRemove. This program consists of two functions: main and
Test. The function main calls TsrlnstaZ 1 to convert the program to a TSR,
specifying Test as the function to receive control when the user presses the
hotkey. The selected hotkey is Ctrl-Left Shift, and the identifying code
is Oxllllllll. If another TSR is developed that might be installed at the
same time as this program, a different hotkey combination and identifying
code should be chosen. If Tsrlnstal Z is successful, it will never return;
however, if an error occurs in the installation process, control returns to
main, which then prints the appropriate error message and terminates with
an ERRORLEVEL setting of 1.

If Tsrlnstal 1 is successful, control returns to DOS. Subsequently, each
time the user presses CtrZ-Left Shift (and it is safe to interrupt the current
process), the function Test receives control. This function saves and restores
the current screen contents using ScrSaveBlock and ScrRestoreBlock,
displays a window, and pauses for user input by calling the Microsoft C
function _bios_keybrd. Note that this program, written to provide a simple
example, will work properly only if the system is in a text mode. Since Test
does not alter the cursor, it does not need to preserve the cursor parameters.

If the user presses r or R, Test calls TsrRemove to remove the TSR from
memory. If the user presses any other key, the function simply continues.

Listing 2.5 provides a MAKE file for preparing both the TSR function
module and the example program.

How The TSR Functions Work

The General Strategy

Before discussing the details of the individual functions in the TSR
module, this section provides an ovelView of the basic tasks required to install
and activate a memory resident program, and the general strategies that the
TSR module uses to accomplish these tasks.

17

MS-DOS System Programming _

The most fundamental task required to install a TSR is to load the
program into a safe area of memory that will not be overwritten by
subsequentapplications. Fortunately, MS-DOS provides a service that allows
a program to terminate without relinquishing the memory it occupies.
MS-DOS reserves this area of memory by removing it from its list of free
memory blocks, and loads all subsequent applications at higher memory
addresses. The TSR module accesses this DOS service through the Microsoft
C library function _dos_keep. The only complication in using this function
is that it is necessary to specify the size of the program that is to be kept
resident. The details of using_dos_keep are discussed in the next section.

The next task required to create a TSR is to establish some means for
activating the program through a hotkey. The basic strategy used by the TSR
module is to replace the current keyboard interrupt (09h) handler with a
Microsoft C interrupt function. Each time a key is pressed or released, the
interrupt function receives control. This function first calls the former interrupt
handler, and then simply tests the BIOS shift status flag to see whether the
designated hotkey is pressed. If the hotkey is pressed, the routine performs
several additional tests and possibly activates the TSR entry function.

Another important duty of the TSR code is to prevent the resident
program from being activated at a time when it is not safe to interrupt the
current process. The first such dangerous time is when the BIOS is engaged
in disk activity. Therefore, the TSR module also installs a handler for interrupt
13h, which is the entry point for the BIOS disk services used by MS-DOS
and by some application programs. The interrupt 13h function (in the
assembly language file TSRA. ASH) first increments a global flag indicating that
BIOS disk activity is in progress, calls the original interrupt 13h routine, and
then decrements the flag when the original routine returns. Therefore,
before the keyboard interrupt handler acti,vates the TSR entry function, it
checks this flag and returns immediately if the flag is greater than zero,
indicating that the disk services are currently in progress.

It is also unsafe to activate a TSR when most MS-DOS services are active.
The danger of suspending an MS-DOS service is that the TSR itself may
subsequently invoke an MS-DOS function, which would most likely corrupt
the stack used by the original invocation of DOS. In general, the MS-DOS
kernel cannot be interrupted at an arbitrary point and have its code reused

18

_____________Converting A Microsoft C Program Into A TSR

by another process (since the code cannot be recursively reentered, it is
termed nonreentrant). MS-DOS, however, provides a partial solution to this
problem. Whenever DOS is active, itsets an internal flag to a non-zerovalue;
the address of this [NODS flag is returned by the undocumented, but often
used, function 34h. Therefore, in addition to checking the BIOS disk activity
flag, the keyboard interrupt handler needs to check the [NODS flag, and
return immediately if either of these flags is nonzero.

This technique for avoiding interrupting MS-DOS, however, has a serious
problem. While the command interpreter is waiting for input at the DOS
prompt, the INODS flag is set to 1, since DOS uses one of its own services to
read characters. While DOS is waiting at the command prompt, however,
it is relatively safe to activate a TSR; in fact, all DOS function calls (accessed
through interrupt 21h) can be used at this time except those in the range
Olh to OCh. Therefore, the TSR needs some way of knowing that although
the INODS flag is not 0, DOS is simply waiting at the command line and the
TSR function may be safely called. Again, MS-DOS provides a solution: while
DOS waits for user input at the prompt, it continually invokes interrupt 28h
(which is used to activate background processes such as print spooling, and
is known as the DOS idle interrupt). Therefore, the occurrence of interrupt
28h is a sufficient indication (regardless of the state of the [NODS flag) that
the TSR may be activated. Accordingly, the TSR module installs a fourth and
final interrupt handler, which intercepts interrupt28h and provides a second
door to the TSR.

In summary, there are two parallel mechanisms for activating the TSR
when the hotkey is pressed. First, the TSR may be activated through the
keyboard interrupt handler, which must first check both the BIOS flags and
the INODS flag. Second, it may be activated through the interrupt 28h
handler, which needs to check only the BIOS disk activity flag.

Your TSR program can determine whether it was activated through the
interrupt 28h handler by calling the function TsrInOos, as described in the
previous section. If this function returns TRUE, the INODS flag is nonzero and
the TSR must have been activated through the interrupt 28h handler; in this
case, your program must not call DOS functions Olh through OCh, since these
functions use the same operating system stack that DOS was using when it

19

MS-DOS System Programming _

was interrupted. The parallel mechanism for activating a TSR is illustrated in
Figure 2.1.

Once it has been determined that it is safe to activate the TSR, the final
major task is to save the complete machine state of the interrupted program,
set up the runtime environment for Microsoft C, and call the TSR entry
function that was specified at installation time. When the entry function
returns, the machine state must be restored before returning to the
suspend~ application.

Details Of The Implementation
The installation function, TsrlnstaZ l (which is located in the C file of

listing 2.1), begins by testing to see if the TSR has already been installed in
memory, by searching through the user interrupts (numbers 60h to 67h) for

Figure 2.1 The parallel mechanism for activating a TSR.

20

interrupt 28h

N

y

N

foreground
application

return

TSR

interrupt 09h

N

y

y

_____________Converting A Microsoft C Program Into A TSR

...
the identification number passed in the parameter Code. If the code is not
found, indicating that the program has not already been installed, then the
function proceeds to place the code value in the first unused (that is, equal
to 0) interrupt vector within this range. Tsrlnstall next checks that it is
running under DOS v2.0 or later, since prior versions do not support some
of the functions required to install a memory resident program.

Next, Tsrlnstall saves the following important data items that will be
used by the interrupt handlers, which are installed later in the function:

• The hotkey shift mask is saved in the variable HotKeyMask. The
handlers for interrupts 09h and 28h will use this -flag to determine
whether the hotkey is pressed.

• The address of the TSR entry routine, given by the parameter FPtr,
is stored in the function pointer UserRtn. The handlers for interrupts
09h and 28h will use this pointer to invoke your TSR program.

• The segment and offset values of the current disk transfer area (DTA)
are saved so that the C DTA can be assigned before the TSR receives
control.

• The address of the INODS flag, discussed in the previous section, is
obtained through DOS service 34h, and is stored in the far pointer
PtrlnOos. As explained, the interrupt 09h handler will test this flag
to determine whether~it is safe to activate the TSR.

• Next, Tsrlnstall calls the function InitPSP to initialize the func
tions that obtain and set the value of the current program segment
prefix (PSP) maintained by DOS. The PSP, and the functions that
manage the system's record of the PSP, will be explained later in this
section.

• Finally, Tsrlnstall saves the current contents of the three interrupt
vectors that will subsequently be replaced.

• . The values of the C stack segment and stack pointer must also be
saved, so that the TSR can use the C stack rather than borrowing the
stack belonging to the interrupted program. These values, however,
are not stored until' the necessary data are obtaine~ in the course of
calculating the size of the program, later in Tsrlnstall.

21

MS-DOS System Programming _

Once the required data have been stored, Tsrlnstall installs handlers for
interrupts 28h (the DOS "idle" interrupt), 13h (the BIOS disk services), and
09h (the hardware keyboard interrupt).

The last task performed by Tsrlnstall is to calculate the size of the
memory block occupied by the program and then to call the Microsoft C
function _dos_keep to terminate the program while leaving the specified
block resident in memory. The size of the memory block passed to
_dos_keep must be given as the number of 16-byte paragraphs, and is
calculated through the following sequence of steps:

1. Tsrlnstall calls the Microsoft C function sbrk; when this function
is passed a value of 0, it simply returns the offset address (with respect
to the OS register) of the first byte beyond the program's stack, which
is the base of the area used for the program heap (the heap is the pool
of memory that is dynamically allocated through C functions such as
malloc). The return value is stored in the variable OjjHeapBase.

2. If it encounters an error, the function sbrk returns a value of Oxffff;
in this case, Tsrlnstall immediately returns to the calling program,
passing back the code for a general error, ERROR.

3. Tsrlnstall now calculates the paragraph address (that is the absolute
number of 16-byte paragraphs from the beginning of memory) of the
base of the heap. This value is calculated and assigned to the variable
ParaHeapBase in two steps. First, the offset in bytes of the heap base
with respect to the OS register is converted to paragraphs (rounding
up to the nearest whole paragraph) using the expression

ParaHeapBase = (OffHeapBase + 15) » 4;

Second, the value in the OS register (which is the paragraphaddress of
the beginning of the default data segment) is added to ParaHeapBase,
as follows:

segread (&SReg);
ParaHeapBase += SReg.dsi

22

____________Converting A Microsoft C Program Into A TSR

Note that the Microsoft C function segread obtains the current
contents of the segment registers. At this point ParaHeapBase contains
the paragraph address of the base of the heap.

4. The final expression for the number of paragraphs to keep in memory
that is passed to _dos_keep is as follows:

ParaHeapBase + HEAPSIZE - _psp

The constant HEAPSIZE is defined in TSR. C, and contains the number
of paragraphs required for the program heap; accordingly, this value
is added to ParaHeapBase to provide memory for the heap. Finally,
the predefined variable_psp is subtracted; since this variable contains
the paragraph address of the beginning of the program's memory
allocation, the result is the total number of paragraphs to be kept
resident in memory.

The first parameter passed to _dos_keep is the process return code,
which is assigned to the DOS variable ERRORLEVEL when the program
terminates.

Note that you can adjust the amount of memory reselVed for the
program's heap by assigning various values to the identifier HEAPSIZE
(defined at the beginning of the C source file, TSR. C). Once you have
developed a TSR, you can experiment to find the appropriate value for this
constant. If the value is too large, the TSR will consume an undue amount
of memory. If the value is too small, C memory allocation functions will
overwrite memory that does not belong to the process, resulting in the DOS
error message
Memory Allocation Error. System Halted.

Note that even if your program does not explicitly allocate memory from
the heap, C library functions that your program calls may allocate such
memory.

Figure 2.2 provides a map of the block of code and data that remains
resident in memory, and illustrates the values used to calculate the size of
the program. Note that Tsrlnstall performed one additional step in the
course of calculating the program size: assigning values to the variables CSS

23

MS-DOS System Programming _

and CSP, which store the values of the C stack segment and stack pointer.
As you will see in the next section, these variables are used to switch to the
C stack when the TSR is activated. The value of the stack segment (the
paragraph address of the base of the stack) is obtained from the call to
segread. The value of the stack pointer is obtained from the call to sbrk.
As you saw, sbrk returns the offset address of the first byte beyond the
program's stack. When a stack is first used, the stack pointer (which holds
the offset of the top of the stack) should contain the address of the first byte
beyond the end of the stack (the stack grows down in memory, and when
a value is pushed on the stack, the processor first decrements the stack
pointer by two, and then writes the value to memory). Therefore, the
program saves the value returned from sbrk in the variable that stores the
C stack pointer .(CSP).

Figure 2.2 A memory map of the block of code and data that remain
resident in memory.

HEAP

24

Paragraph addresses:...------.
ParaHeapBase --.

STACK

DATA

OS, SS Registers ---+

CODE

CS Register ---+

--psp --. PSP

Offsets:

HEAPSIZE paragraphs

OffHeapBase bytes

____________Converting A Microsoft C Program Into A TSR

The function NewInt13, located in the assembly language file of listing
2.2, is the new handler for interrupt 13h, which is used to access the BIOS
disk services. NewInt13 increments the value of Int13Flag (which is
initialized to zero), calls the original handler (the address ofwhich was stored
by TsrInstal l), and then decrements Int13Flag upon return from the
original handler. The flag Int13Flag therefore has a nonzero value only
when one of the BIOS disk services is active. The program uses a counter
instead of a simple true or false flag because of the small possibility that the
disk services may call themselves recursively. (Note that to access Int13Flag,
which is contained in the C data segment, the OS register is temporarily
assigned the address of the C data segment, OGRDUP.)

The function NewInt09 (in the C file of Listing 2.1) is the keyboard
interrupt handler. This function first calls the former interrupt handler
through the function pointer DldInt09.lt then disables the interrupts so that
it will not be interrupted in the middle of testing and setting the Busy flag.
This flag serves to prevent the TSR from being recursively reentered while it
is active. (Note that since the TSR switches to a fixed location in a local stack,
and uses static and external variables to store data, the code is not reentrant.)
NewInt09 next calls GetShift to see if the hotkey is pressed. If the hotkey
is currently pressed, the function tests whether the BIOS disk services are
active through the Int13Flag variable, and whether DOS is busy through
the far pointer to the INODS flag, PtrlnOos. If all tests are passed, the
function PreActivate is called, which performs the initial steps necessary
to activate the TSR entry function. Upon return from PreActivate, the Busy
flag is switchedO off and the interrupt handler returns.

The function Newlnt28 (also in the C file of Listing 2.1) is the interrupt
28h handler and performs the same tasks as Newlnt09 except that it does
not check whether MS-DOS is active, for reasons described in the previous
section.

The function PreActivate is located in the assembly language file of
Listing 2.2, and is called by Newlnt09 or Newlnt28, when either one of these
interrupt handlers has detected that the hotkey is pressed and that it is safe
to invoke the TSR. PreActivate performs the following tasks:

• It saves the existing values of the stack segment and stack pointer
registers.

25

MS-DOS System Programming _

• It switches to the C stack by assigning 55 and SP the values saved by
TsrlnstaZ Zin the variables CSS and CSP during installation.

• It calls the C function, Activate, which performs some additional
preparations and invokes the TSR entry routine.

• Upon return from the TSR code, PreActivate restores the stack
belonging to the interrupted program.

Note that the interrupts are disabled while the program manipulates the
stack registers, to prevent possible problems if a hardware interrupt were to
occur before both registers have been assigned appropriate values.

There are two important reasons for switching to the C stack. First, the
current stack may be quite small. Switching to the C stack provides the TSR
with the full stack space that is normally allocated to a Microsoft C program.

Second, under the small data models, the C compiler assumes that the
stack segment is equal to the data segment. Specifically, when an address is
passed to a function, only the offset portion is used. The offset, however,
may be relative either to the data segment ,(for external and static variables)
or to the stack segment (for automatic variables). The function simply uses
the offset in conjunction with the data segment register, assuming that this
register is equal to the stack segment register. If the TSR did not switch to
the Cstack, this assumption would be false and Cfunctions would be unable
to access automatic data through addresses passed as parameters.

The function Activate, in the C file of listing 2.1, completes the task
of saving the machine state of the interrupted program and setting up the
runtime environment for the TSR program, and then calls the TSR entry
function.

Activate first saves the current values of the control-break interrupt
vectors (numbers 23h and lBh) and the critical-error interrupt vector (num
ber24h). It then sets the control-break vectors to point to routines (Newlnt23
and NewlntlB) that simply return without performing any action. This
precaution is taken to prevent a break handler belonging to the interrupted
foreground process from receiving control if the user presses CtrZ-C or
CtrZ-Break. The critical-error vector is pointed to a routine (Newlnt24) that
simply assigns the value 0 to register AX, and then returns; this value signals
DOS that the error is to be ignored. Installing this critical-error handler

26

_____________Converting A Microsoft C Program Into A TSR

prevents inadvertently activating the critical-error handler belonging to the
interrupted foreground program, or activating the default DOS critical- error
handler. (In the event of a critical error, the default DOS handler would
overwrite the screen with the familiar "Abort, Retry, Ignore, Fail?" message,
and then possibly attempt to abort the TSR.)

Installing these dummy control-break and critical-error handlers
prevents the certain disaster of activating an inappropriate interrupt routine;
however, as mentioned previously in the article, a robust TSR may need to
install custom control-break and critical-error handlers. These handlers
should be installed at the beginning of the TSR entry function (replacing the
dummy routines installed by the TSR module).

Activate also saves the current contents of the keyboard interrupt
vector (number 09h) in the variable OldRTInt9. It then points this vector to
the keyboard interrupt handler that was active at the time the TSR was
installed (which was stored in Oldlnt9 by Install). This step temporarily
removes any keyboard handler that may have been installed by the
foreground application; some programs (for example, the Quick C develop
ment environment) install keyboard handlers that are incompatible with a
TSR (they prevent TSRs from properly reading the keyboard).

Act i vate next saves the old disk transfer address and switches to the C
disk transfer address that was saved by the installation function.

Before calling the TSR entry routine, Activate must inform MS-DOS
that a new process is active by setting the system's record of the current
program segment prefiX (PSP) to the correct value for the C program. The
PSP is a 256 byte segment located immediately preceding a program in
memory (see Figure 2.2); it contains important system information regarding
the associated process. DOS maintains a record of the segment address of
the PSP of the currently active process. (Among other uses for the PSP, DOS
stores a file table within this area, which contains an entry for each open file
handle belonging to the process.)

When a new program is started from the command line, or through the
DOS service for executing a child process, DOS automatically updates its
record of the current PSP. However, when a TSR is activated through a
hotkey, DOS is unaware of the change in process, and therefore you must
explicitly change the system's record of the current PSP. DOS provides two

27

MS-DOS System Programming _

undocumented functions for managing its record of the PSP. These functions
are accessed through interrupt 21h; function 51h gets the current PSP, and
function ·50hsets it. The problem with these two functions, however, is that
under certain versions of DOS, they are unreliable if called when DOS is
active (that is, when the INDDS flag is nonzero). Accordingly, the TSR module
provides its own functions for getting and setting the PSP: lni tPSP, GetPSP,
and SetPSP (in the C file of listing 2.1).

The function InitPSP is called by Tsrlnstall during installation of the
TSR.lni tPSP obtains a table (which has one or two entries) of the addresses
within the operating system code and data segment where the values of the
current PSP are stored. Once these addresses are known, GetPSP can obtain
the current PSP by simply reading one of these addresses, and SetPSP can
set the PSP by writing the specified value directly to each of the stored
addresses.

Ini tPSP works by searching the MS-DOS code and data for bytes that
match the current PSP (which is contained in the predefined C variable
_psp). When it finds a byte that contains the value of the current PSP, it then
calls function 50h to set the PSP to some other value; if the DOS memory
location changes to the new value after function 50h is called, it must be
one of the addresses where DOS stores the PSP, and therefore this address
is placed in the table (PtrPSPTable). The routine then calls function 50h
once again to restore the former PSP value. (Note that Ini tPSP may safely
call DOS function SOh, since InitPSP is called only from the installation
routine, which is run from the DOS command line.)

Ini tPSP obtains the segment address of the beginning of the MS-DOS
segment from the address of the INODS pointer obtained during installation.
It obtains the segment address of the end of DOS by calling another
undocumented function, number 52h (this function supplies the address of
the first DOS memory control block, which immediately follows the DOS
segment). Note that these two far addresses are converted to a common
format in which the segment portion of the address is zero, so that the
addresses may be numerically compared in the loop (this technique is
possible since the DOS code is located entirely within the first 64 kilobytes
of memory).

28

_____________Converting A Microsoft C Program Into A TSR

Accordingly, the function Activate calls GetPSP and saves the current
value of the PSP in the variable OldPSP.

Finally, the TSR entry function is called through the function pointer
UserRtn that was defined in the installation procedure. Upon return from
the TSR routine, Act i vote restores all values that it saved before calling the
routine: the PSP, the disk transfer address, the control- break and critical
error vectors, and the keyboard vector. Activate then returns control to
PreActivote, which switches back to the previous stack and then returns
to the interrupt handler that called it (Newlnt9 or Newlnt28).

The function TsrlnOos simply returns the current value of the INODS
flag, which is obtained through the pointer InOosPtr.

Finally, the function TsrRemove causes the TSR to be removed from
memory by performing the following steps:

1. It verifies that the three interruptvectors that were set by the installation
program (numbers 09h, 13h, and 28h) still point to your TSR code. If
one or more of these vectors now points to some new address, either
the foreground application or another TSR that was subsequently
installed must have reset the vector(s) to point to its own code. In this

29

MS-DOS System Programming _

Listing 2.1
/*

C functions for converting a Microsoft Cprogram into a TSR.

File Name: TSR.C

This file contains the C functions belonging to the TSR module. The
assembly language functions are in the file TSRA.ASM (Figure 2).

Copyright (C). 1989. Michael J. Young. All rights reserved.
*/
'include <DOS.H>
'include <STOLIB.H>
'include <MALLOC.H>

'include uTSR.Hu

Ipragma cheek_stack (off)

'define HEAPSIZE 1024

/* Eliminate stack checks.

/* Memory allowed for C heap. in 16-byte
/* paragraphs.

*/

*/
*/

static void (*UserRtn) (void);

static unsigned far *PtrEnvSeg;
static char far *PtrlnOos;
static int Unload = 0;
static unsigned int Userlnt;

typedef void (interrupt far *VIFP) (); /* Void Interrupt Function Pointer. */

1* Variables used internally in file: */
static int Busy =0; /* Flag indicates TSR is active. */
static unsigned int CDtaOff; /* C Disk Transfer Area offset. */
static unsigned int CDtaSeg; /* C Disk Transfer Area segment. */
static int HotKeyMask; 1* Hot key shift mask. */
static unsigned int OldOtaOff; /* Old disk transfer address offset. */
static unsigned int OldDtaSeg; /* Old disk transfer address segment. */
static void (interrupt far *01dInt1B) (void); 1* Old int 18h vector. */
static void (interrupt far *01dInt23) (void); /* Old int 23h vector. */
static void (interrupt far *01dInt24) (void); /* Old int 24h vector. */
static void (interrupt far *OldInt28) (void); /* Old int 2ah vector. */
static void (interrupt far *01dInt9) (void); 1* Old int 09h vector. */
static void (interrupt far *OldRTInt9) (void); /* Old int 09h vector at */

/* TSR runtime. */
/* Pointer to environment segment address*/
/* Pointer to DOS lindos l flag. */
/* Flag to release TSR memory. */
/* Number of user interrupt for storing */
/* the TSRls signature. */
/* Pointer to user1s start routine. */

/* Functions defined within this file: */
static unsigned GetPSP (void); /* Gets current PSP address from DOS. */
int GetShift (void); /* Gets status of shift keys. */
static void InitPSP (void); /* Saves DOS PSP storage locations. */
static void interrupt far Newlnt18 (void); /* New fnt 18h handler. */
static void interrupt far NewInt23 (void); /* New int 23h handler. */

/* New int 24h handler: */
static void interrupt far Newlnt24 (unsigned ES. unsigned OS. unsigned 01.

unsigned SIt unsigned BP. unsigned SP.
unsigned ax. unsigned OX. unsigned CX.
unsigned AX);

30

______________Converting A Microsoft C Program Into A TSR

Listing 2.1 (cont'd)
static void interrupt far NewInt28 (void); /* New int 28h handler. */
static void interrupt far NewInt9 (void); /* New int 09h handler. */
static void SetPSP (unsigned PSP); /* Sets DOSls record of PSP address. */

/* Declarations shared with assembler module: */
uns igned int CSS; /* C stack segment. */
uns igned i nt CSP; /* C stack poi nter. */
extern int Intl3Flag; /* Flag: BIOS interrupt 13h active. */
void (interrupt far *OldIntI3) (void); /* Old int 13h vector. */

void interrupt far NewIntl3 (void);
void far PreActivate (void);

void far Activate
(void)

/*

/* New int 13h handler (in ASM mod.).*/
/* Pre-activate routine (in ASM mod.)*/

This function is called by the routine I PreActi vate I (defined in the
assembly language module).

*/

{
union REGS Reg;
struct SREGS SReg;
unsigned OldPSP;

/* Passes values to lint86x l •
/* Passes values to lint86x l •
/* Stores PSP address of
/* interrupted process.

*/
*/
*/
*/

OldInt23 = dos getvect (0x23)i
OldInt24 D -dos-getvect (Ox24);
OldIntlB a -dos-getvect (Oxlb);
OldRTInt9 g- dos getvect (Ox09);
dos setvect-(0X23.NewInt23)i

-dos-setvect (Ox24.NewInt24);
~dos-setvect (Oxlb,NewIntlB)i
:dos:setvect (Ox09,OldInt9);

Reg.h.ah =OX2f;
int86x (Ox2I,IReg,IReg.&SReg);
OldDtaSeg a SReg.es;
OldDtaOff g Reg.x.bx;

Reg.x.dx =CDtaOff;
SReg.ds =CDtaSeg;
Reg.h.ah = Oxle;
int86x (Ox21.lReg,IReg,lSReg);

OldPSP =GetPSP ();

SetPSP (_psp);

(*UserRtn) ();

SetPSP (OldPSP);

/* Set new interrupt vectors: */
/* Save old break-key vector. */
/* Save old critical-error vector. */
/* Save old BIOS break vector. */
/* Save runtime int 9 handler. */
/* Set new break-key handler. */
/* Set new critical-error handler. */
/* Set new BIOS break handler. */
/* Set old fnt 9 handler. */

/* Save old Disk Transfer Address. */

/* Set C Disk Transfer Address. */

/* DOS set DTA service. */

/* Get PSP address of interrupted */
/* process. */
/* Set PSP for C program. */

/* Call the userls C function. */

/* Restore PSP for the interrupted */
/* process. */

31

MS-DOS System Programmins _

Listing 2.1 (cont'd)

Reg.x.dx a OldDtaOff;
SReg.ds =OldDtaSeg;
Reg.h.ah =Oxla;
int86x (Ox21,&Reg,lReg,lSReg);

/* Restore Old Disk Transfer Address*1

/* Restore old interrupt vectors: *1
/* Restore old break-key handler. *1
1* Restore old crit-error handler. *1
1* Restore old BIOS break handler. *1

dos setvect (0x23,OldInt23);
-dos-setvect (Ox24,OldInt24);
-dos-setvect (Oxlb,OldIntlB);
if (TUnload)

_dos_setvect (Ox09,OldRTInt9);I* Restore runtime int 9 handler. */

if (Unload)
{
dos freemem (psp);

-dos-freemem (*PtrEnvSeg);
T -

return;

} 1* end Activate *1

int GetShift
(void)

1*

1* If TSR is being released, free *1
/* both blocks allocated to program.*1
1* Free the main program block. *1
/* Free the environment block. *1

This function returns the BIOS shift status word.
*1

{
1* Far pointer to shift flag in BIOS data area:
unsigned far *PtrShiftFlag a (unsigned far *)Ox00400017;

return (*PtrShiftFlag);

) 1* end GetShift *1

static void interrupt far NewIntlB
(void)

1*

*1

This is the new handler for interrupt lSh, which is invoked by the BIOS
keyboard routine when it detects the Ctrl-break keystroke. While the
TSR is active, this function replaces any BIOS-level break handler that
might have been installed by the interrupted program.

*1
{
return;

} /* end NewIntlB *1

32

/*

_______________Converting A Microsoft C Program Into A TSR

Listing 2.1 (cont'd)
static void interrupt far NewInt23

(void)
/*

This is the new handler for interrupt 23h, which DOS activates when it
detects a control-break key. The function replaces the default DOS
control-break handler, which aborts the process; by simply returning,
this function prevents DOS from attempting to terminate the TSR.

*/
{
return;
} /* end NewInt23 */

static void interrupt far NewInt24 (unsigned ES, unsigned DS, unsigned DI,
unsigned SI, unsigned BP, unsigned SP,
unsigned BX, unsigned DX, unsigned CX,
unsigned AX)

This is the new handl er for interrupt 24h, wh ich DOS· invokes when a
critical error occurs. It assigns a value of 0 to AX, which informs
DOS that the error should be ignored. The function prevents DOS from
attempting to abort the TSR.

*/
{
AX :: 0;
} /* end NewInt24 */

static void interrupt far NewInt28
(void)

/*

*/
This is the new interrupt 28h, the IDOS idle interrupti, handler.

(
e*01dInt28) e)i /* Chain to previous interrupt 28 handler. */
disable ()i /* Disable interrupts to test and set */

if (Busy) /* IBusyl semaphore. */
return;

Busy:: 1;
_enable e); /* Re-enable interrupts. */
if ((GetShift () l HotKeyMask) 1= HotKeyMask) /* Test if hot key */

{ /* is pressed. */
Busy = 0;
return;
}

if eInt13Flag) /* Test if BIOS service is active. */
{
Busy = 0;
return;
}

PreActivate e); /* Conditions are safe, therefore activate TSR*/

Busy a 0;
return:
} /* end NewInt28 */

/* Reset the active semaphore. */

33

MS-DOS System Programming _

Listing 2.1 (cont'd)
static void interrupt far NewInt9

(void)
1*

This is the new handler for interrupt 09. the hardware interrupt
activated by the keyboard.

*/
*/
*/
*/

*/
*/
*/

1* Test if hot key
1* is pressed.

/* Chain to prior interrupt 09 handler.
/* Disable interrupts to test and set 'Busy'
/* Test if TSR already active.

/* Set busy flag.
/* Enable interrupts.

() l HotKeyMask) 1= HotKeyMask)

{
(*01dInt9) ();
disable ()i

if (Busy)
return;

Busy = Ii
enable ();

Tf ((GetShift
(
Busy CI 0;
return;
}

*l

/* Test if EITHER a BIOS service OR DOS is active: */
if (Int13F1ag II *PtrInDos)

(
Busy =0;
return;
}

PreActiv8te ()i 1* Conditions are safe. therefore activate TSR*I

Busy =0i 1* Reset the active semaphore. */

return;

} /* end NewInt9 *1

int TsrlnDos
(void)

1*
This function returns zero if DOS is not currently active. and a
non-zero value otherwise.

*/
{
return (*PtrInDos);

} 1* end TsrInDos *1

1* Uses the 'indos ' flag maintained by DOS. */

int TsrInsta11
(void (*FPtr) (void).
int HotKey.
unsigned long Code)

1*
This routine terminates the C program. but leaves the code resident in
memory. It installs interrupt handlers so that when the shift key
combination specified by I HotKey I is pressed. the function pointed to
by 'fPtr ' receives control. provided that conditions are safe.

34

______________Converting A Microsoft C Program Into A TSR

Listing 2.1 (cont'd)

If successful, the function never returns. If an error occurs, it
returns one of the following error codes:

{
unsigned int ij
struct SREGS SRegj
union REGS Regj
unsigned int OffHeapBase;
unsigned int ParaHeapBase;

*/

INSTALLED

NOINT
WRONGDOS
ERROR

A TSR bearing the same I Code I value has already been
installed.
No free lIuserll interrupts are available.
DOS version is prior to 2.0.
An unidentified error has occurred.

/* Loop index. */
/* Gets segment registers. */
/* Holds registers for lint86 l • */
/* Offset of heap base from OS. */
/* Paragraph address of heap base. */

UserInt m OJ
for (i = Ox60; i <= Ox67; ++i) /* Search "userU interrupt vectors. */

{
if (_dos_getvect (i) g= (VIFP)Code) /* Test for TSR signature. */

return (INSTALLED);
/* Look for free vector:

if (UserInt gC O.l dos getvect (i) == (VIFP)O)
UserInt = ij - -

*/

)
if (UserInt == 0)

return (HOINT);
/* No free uuserll interrupts. */

_dos_setvect (UserInt, (VIFP)Code); /* Write TSR signature to vector. */

if (osmajor < 2)
-return (WRONGDOS)i

FP SEG (PtrEnv$eg) = PSPi
FP=OFF (PtrEnvSeg) = OX2Ci

/* Test that OS version is >= 2.0. */
/* Wrong DOS version. */
/* Initialize pointer to segment */
/* address of TSRls environment. */

HotKeyMask = HotKeYi /* Save hotkey shift mask. */

UserRtn a FPtr; /* Save address of the routine that is activated */
/* when the hotkey is pressed. */

Reg.h.ah =Ox2f;
int86x (Ox21,lReg,lReg.lSReg);
CDtaSeg g SReg.es;
CDtaOff = Reg.x.bxi

Reg.h.ah = Ox34i
int86x (Ox21,lReg,lReg,lSReg)i

FP SEG (PtrInDos) = SReg.esi
FP-OFF (PtrInDos) = Reg.x.bx;
InTtPSP ()i

OldInt28 = dos getvect (Ox28);
OldInt13 m -dos-getvect (Ox13);
OldInt9 a _dos_getvect (Ox9);

/* Invoke MS-DOS function to get */
/* current Disk Transfer Address. */

/* Get pointer to INDOS flag */
/* using the undocumented DOS */
/* function 34h. */

/* Find and save table of PSP */
/* addresses from DOS. */
/* Save old interrupt vectors. */

35

MS-DOS System Programming _

Listing 2.1 (cont'd)
dos setvect (Ox28,NewInt28).

-dos-setvect (Ox13,NewInt13).
:dos:setvect (Dx9,NewInt9);

/* Initialize new interrupt vectors.*/

/* Calculate memory to keep: */
OffHeapBase = (unsigned int)sbrk (D); /* Get offset of heap base */

/* with respect to OS register.*/

if (DffHeapBase a= Dxffff)
return (ERROR).

/* Return value Oxffff indicates
/* that an error has occurred.

*/
*/

/* Calculate paragraph address of heap base: */

/* First, convert offset to paragraphs, */
/* rounding up: */

ParaHeapBase a (DffHeapBase + 15) » 4;

segread (lSReg)i /* Then, add OS register.
ParaHeapBase += SReg.ds;

*/

CSS ::I SReg.ss;
CSP a DffHeapBase;

/* Save the C stack segment. */
/* Save the heap base offset as the value to */
/* be assigned to the stack pointer when the */
/* TSR is activated. */

/* Terminate and stay resident:
_dos_keep (O,ParaHeapBase + HEAPSIZE - _psp);

*/

return (ERROR);

} /* end TsrInstall */

int TsrRemove
(void)

/*

/* , dos keep' function should not return;
/* therefore, something has gone terribly
/* wrong. Return the general error code.

*/
*/
*/

Removes the TSR from memory. If successful, returns NDERRDR (D); if
the TSR cannot be removed, it returns CANTRBMDVE.

*/
{
if (OldRTInt9 1m NewInt9 II /* First, must make sure that */

_dos_getvect (Ox13) 1= NewInt13 II /* none of the TSR interrupts */
dos getvect (0x28) 1= NewInt28) /* have been hooked by a */

-return (CANTREMOVE); /* subsequently loaded program.*/

36

dos setvect (Ox9,DldInt9);
-dos-setvect (Ox13,OldInt13);
:dos:setvect (Dx28,DldInt28);

dos setvect (UserInt.O);

Unload = 1;

return (NOERROR);
} /* end TsrRemove */

/* Now restore the TSR */
/* interrupts to their values */
/* before TSR installation. */

/* Remove TSR signature from */
/* user interrupt. */
/* Set flag so that 'Activate' */
/* will free memory. */

_______________Converting A Microsoft C Program Into A TSR

Listing 2.1 (cont'd)

/*** PSP Functions. ***/

static unsigned far *PtrPSPTable [2]; /* Table of pointers to DOS PSP values*/
static int PSPCount; /* Number of pointers in PtrPSPTable. */

static void InitPSP (void)
/*

This function saves the addresses of the locations in the MS-DOS segment
where DOS stores the current PSP value.

*/
{
union REGS Reg;
struct SREGS SReg;
unsigned char far *PtrDos; /* Points to locations in DOS segment. */
unsigned char far *PtrEndDos; /* Points to the end of DOS segment. */
unsigned far *PtnMCBj 1* Points to the location where the */

/* segment address of end of DOS is kept.*/

PSPCount = OJ /* Initialize counter of valid entries */
1* in PtrPSPTable. */

1* Assign PtrDos the address of the */
/* BEGINNING of the DOS segment. */

FP SEG (PtrDos) = OJ
FP:OFF (PtrDos) Q FP_SEG (PtrInDos) « 4;

1* Assign PtrEndDos the address of the */
Reg.h.ah a Ox52; /* END of the DOS segment. */
int86x (Ox21 ••Reg.lReg.lSReg);
FP SEG (Pt~CB) = SReg.esj
FP-OFF (Pt~CB) = Reg.x.bx - 2;
FP-SEG (PtrEndDos) =OJ
FP-OFF (PtrEndDos) = *PtMMCB « 4;

- /* Obtain addresses where DOS stores the */
1* PSP of the current process. */

while (PtrDos < PtrEndDos •• PSPCount < 2)
{
if (*(unsigned far *}PtrDos == _psp)

{
Reg.h.ah = Ox50;
Reg.x.bx = psp + 1~

int86 (Ox21:.Reg ••Reg);
if (*(unsigned far *)PtrDos == psp + I)

PtrPSPTable [PSPCount++] m-(unsigned far *}PtrDos;
Reg.h.ah = Ox50j
Reg.x.bx Q psp;
int86 (Ox21:lReg ••Reg);
}

++PtrDos;
}

/* end InitPSP */

37

MS-DOS System Programming _

Listing 2.1 (cont'd)

static unsigned GetPSP (void)

/*
This function gets current PSP address from DOS.

*/
{
return *PtrPSPTable [0];

} /* end GetPSP */

static void SetPSP (unsigned PSP)
/*

This function sets DOS's record of PSP address.
*/

{
int i;

for (i ~ 0; i < PSPCount; ++i)
*PtrPSPTable [i] a PSP;

} /* end SetPSP */

38

Converting A Microsoft C Program Into A TSR----------------

Listing 2.2 Assembly language functions for converting a Microsoft C
program into· a TSR.

File Name: TSRA.ASM

This file contains the assembly language functions belonging to the TSR
module. The C functions are defined in the file TSR.C (Figure 1).

Copyright (C), 1989, Michael J. Young. All rights reserved •

•MODEL MEDIUM

•DATA

PUBLIC Int13F1ag
-Int13F1ag DW 0

EXTRN -OldInt13 DWORD
EXTRN -CSS : WORD
EXTRN -CSP : WORD

-OldSS DW?
-OldSP DW?

•CODE

EXTRN Activate: FAR

;F1ag indicating int 13h active.

;Defined in RES.C.
;Defined in RES.C.
;Defined in RES.C.
,Stores old stack segment.
;Stores old stack pointer•

PUBLIC _NewInt13

Prototype:
void interrupt far NewInt13

(void)
This is the new handler for interrupt 13h, the BIOS disk services.
This function maintains a flag of interrupt 13h invocations, Int13Flag.
Each time interrupt 13h 1s invoked, the flag is incremented, and each
time control returns from this interrupt, the flag is decremented. A
zero value of Int13F1ag indicates that interrupt 13h is not active•

•
_NewInt13 PROC

push ds
push ax
mov ax, DGROUP
mov ds, ax
pop ax

inc _Int13F1ag

pushf
call _OldInt13

dec _Int13F1ag

pop ds
ret 2

_NewInt13 EHDP

,Temporarily load the C data segment
;address into DS.

,Increment the interrupt lOh active flag.

;Simulate an interrupt to the old
,handler.

;Decrement the interrupt 10h active flag.

;Restore the DS register.
;Return from interrupt, preserving the
;f1ags.

39

MS-DOS System Programming _

Listing 2.2 (confd)

PUBLIC _PreActivate

Prototype:
void far PreActivate

(void)
This is the first routine called to activate the TSR. It performs
initial activation tasks and then calls the C routine Activate to
complete activation of the TSR.

_PreActivate PROC

cli
mov OldSS. ss
mov -OldSP. sp
mov SSt CSS
mov sp. :CSP
sti

call Activate

cli
mov SSt OldSS
mov sp. :OldSP
sti

ret

_PreActivate ENDP

END

40

.Disable interrupts.

.Save the old SS and SPa

.Switch to the C stack.

iReenable interrupts •

•Call C function to activate TSR.

iDisable interrupts.
iRestore the old stack.

;Reenable interrupts.

iReturn control.

______________Converting A Microsoft C Program Into A TSR

Listing 2.3 TSR.H: Header file you must include in your program to call
the functions in the TSR module.

/*
File Name: TSR.H

This file contains the function prototypes and constant definitions for
the TSR module. You should include this file in any program that calls
one or more of the TSR functions.

Copyright (C). 1989. Michael J. Young. All rights reserved.
*/

int TsrInDos (void);
int TsrInsta11 (void (*FPtr) (void).int HotKey. unsigned long Code);
int TsrRemove (void);

'define RIGHTSHIFT
'define LEFTSHIFT
'define CONTROL
'define ALT
Idefine SCROLLLOCK
'define NUMLOCK
'define CAPSLOCK
Idefine INSERT

/* BIT MASKS FOR TSR HOTKEY:
Ox0001
Ox0002
Ox0004
Ox0008
Ox1000
Ox2000
Ox4000
Ox8000

*/

'define NOERROR 0
'define ERROR 1
'define WRONGDOS 2
'define INSTALLED 3
'define NOINT 4
'define CANTR~OVE 5

/* ERROR RETURN CODES: */
/* No Error. */
/* General. undefined error. */
/* Version of DOS prior to 2.0. */
/* TSR has already been installed in memory. */
/* No free user interrupts are available. */
/* Can1t remove TSR from memory. */

case, the foreground application or other TSR probably calls your TSR
(generally, a newly installed interrupt handler should call the previous
handler - a process known as chaining). If your TSR code is being
called by some other process, it is obviously not safe to remove it from
memory. Also, restoring the original vector values would effectively
uninstall any TSR that was installed after yours. Accordingly, if one of
these three vectors has changed, TsrRemove returns the value
CANTREMOVE, without removing the TSR.

2. TsrRemove restores the original handlers for interrupts 09h, 13h, and
28h from the values that were saved by the installation routine
(Install).

41

MS-DOS System Programming _

Listing 2.4
/*

TSRDEMO.C: A simple memory resident pTOgrartL

File Name: TSRDEMO.C

This program demonstrates the following TSR functions:
Tsrlnstall
TsrlnDos
TsrRemove

Copyright (C), 1989, Michael J. Young. All rights reserved.
*/
'include <BIOS.H>
'include <DOS.H>
'include <MALLOC.H>
'include <MBMORY.H>
linclude <PROCESS.H>
linclude <STDIO.H>

'include "TSR.H"

'define ULR 6
'define ULC 20

/* Position of centered window. */

static void Test (void); /* The TSR demo routine. */

*/
*/
*/
*/

OxOS
Ox04
Ox02

/* Supporting video routines: */
void ScrClear (int StartRow,1nt StartCol,int StopRow,int StopCol,int Attr);
void ScrPutBox (int UR.int LC.int LR,int RC,1nt Attr,int Style);
void ScrPutS (char *String.unsigned char Attr,unsfgned char Row,

unsigned char Col);
void ScrRestoreBlock (char *BlockAddr, int Free);
char *ScrSaveBlock (int UR, fnt LC, tnt LR, fnt RC);

/* Constants for video colors:
/* Lightens foreground color.
/* Red foreground.
/* Green foreground.

'define FG I
'define FG-R
Idefine FG:G

void main
(void)
{
1* Install 'Test' as TSR function; Ctrl-Left Shift is hotkey. */
switch (TsrInstall (Test,CONTROL I LEFTSHIFT,Ox11111111»

{
case WRONGDOS:

printf ("Cannot install TSR; must have DOS version 2.0 "
"or higher.\n");

exit (1);

case INSTALLED:
printf ("TSR already installed.\n");
exit (1);

case NOINT:
printf ("Cannot install; no free user interrupts.\n");
exit (1);

42

_______________Converting A Microsoft C Program Into A TSR

Listing 2.4 (cont'd)

case ERROR: 1* General error case.
default:

printf ("Error installing TSR function.\n");
exit (1);

1* end main */

static void Test (void)
/*

*/

*/

This routine is called when the hotkey is pressed. It displays a
window and indicates whether DOS is currently active.

{
char *ScreenHandle;
int Key;

ScreenHandle = ScrSaveBlock (ULR,ULC,ULR+ll,ULC+39);
ScrClear (ULR,ULC,ULR+l1,ULC+39,OxOf);
ScrPutBox (ULR,ULC,ULR+l1.ULC+39.FG_I I FG_R I FG_G.2);
ScrPutS CUT S ROE MO·.FG_I I FG_R I FG_G.ULR+2.ULC+12);
if (TsrInDos (»

ScrPutS (UNow in DOsu.FG_I I FG_R I FG_G.ULR+5.ULC+14);
else

ScrPutS (aNOT in DOSa,FG I I FG R I FG G,ULR+5.ULC+14);
ScrPutS (apress R to remove TSR from-memory:u.FG_I I FG_R I FG_G.

ULR+9.ULC+3);
ScrPutS ("Press any other key to continue.u.FG I I FG R I FG_G.

ULR+I0,ULC+4); - -

Key = (_bios_keybrd C_KEYBRD_READ) &OXOOff);

if (Key g= Irl II Key == IR 1
)

if (TsrRemove (»
{
ScrClear (ULR+5.ULC+l.ULR+10.ULC+38,OxOf);
ScrPutS (IiSorry , cannot remove TSR now.u.FG I I FG_R I FG_G,

ULR+5.ULC+6); -
ScrPutS ("Press any key to continue.u.FG_I I FG_R I FG_G,

UlR+8.UlC+7);
bios keybrd (KEYBRD READ);T - - -

ScrRestoreBlock (ScreenHandle,l);

} /* end Test */

43

MS-DOS System Programming _

Listing 2.4 (cont'd)

/*** Supporting video functions. **/

void ScrClear
(int StartRow.
int StartCo1,
int StopRow,
int StopCol,
int Attr)

/*
This function clears the rectangular section of the screen specified
by the four parameters. It fills the blank area with the video display
attribute given by IAttr l

•

*/
{
union REGS Reg;

Reg.h.bh • (unsigned char) Attri /* BH specified video attribute.*/
Reg.h.ch a (unsigned char) StartRowi /* CH specifies start row. */
Reg.h.cl a (unsigned char) StartColi /* Cl specifies start column. */
Reg.h.dh a (unsigned char) StopRow; 1* DH specifies stop row. */
Reg.h.dl m (unsigned char) StopCol. /* DL specifies stop column. */
Reg.x.ax a Ox0600; /* BIOS scroll page up function. */
int86 (Oxl0,&Reg,lReg). /* Invoke BIOS video services. */

} /* end ScrC1ear */

void ScrPutBox
(int UR,
int LC,
int LR,
int RC,
int Attr,
int Style)

/*
This function displays a box on the screen starting at row and column
'UR' and IlC I and ending at row and column 'LR' and IRC I

• It uses
the video attribute 'Attr ' • 'Style ' selects the line style. and may
be a value between 0 and 3.

*/

(
register int i;
int Deltal, Delta2.

/* Loop counter. */
/* Bytes between 11nes. */
/* Store the box characters for each style. */

static unsigned char ulc 0 a {218,201,213,214} i
static unsigned char urc 0 a {lS1,187 ,l84.1S3};
static unsigned char llc 0 • (192,200,212,211);
static unsigned char 1rc 0 • {217 ,188,190.189).
static unsigned char hl D· {196.205,205.196);
static unsigned char vl D· {179,186,179,186);
unsigned far *Yideo; /* Far pointer to video memory.
unsigned char far *PtrYideoMode • (unsigned char far *)Ox00400049j

*/

Deltal • (RC - LC);
De1ta2 a 80 - Deltal;

/* Characters between 2 vertical lines.*/
/* Characters between right vertical */
/* line and left vertical line of next */
/* row. */

44

*/

/*

_______________Converting A Microsoft C Program Into A TSR

Listing 2.4 (cont'd)
/* Initialize far pointer to video memory, upper left corner of box: */
FP SEG (Yideo) - (*PtrYideoMode .- 7) ? OxbOOO : OxbBOO;
FP-OFF (Yideo) - UR * 160 + LC·* 2;
YTdeo++ .. (Attr «8) I ulc [Style]. / Draw upper left corner. */
for (i • 1; i <a RC - LC - 1; ++i) /* Draw top horizontal line. */

*Yideo++ - (Attr «8) I hl [Style];
Yideo - (Attr «8) I urc [Style]. / Draw upper right corner. */
Video +- Delta2;
for (i - 1; i <- LR - UR - 1; ++i) /* Draw both vertical lines. */

{
V1deo - (Attr «8) I vl [Style]; / Left vertical line. */
Video +- Delta1;
Video - (Attr «8) I vl [Style]; / Right vertical line. */
Video +- Delta2i
}

Yideo++- (Attr «8) I llc [Style]; / Draw lower left corner. */
for (i • Ii i <a RC - LC - 1; ++i) /* Draw bottom horiz. line. */

*Yfdeo++ - (Attr «8) I hl [Style];
Yideo • (Attr «8) I lrc [Style]; / Draw lower right corner. */

} /* end ScrPutBox */

void ScrPutS
(char *String,
unsigned char Attr,
unsigned char Row,
unsigned char Col)

This function displays null terminated 'String' with video attribute
'Attr', beginning at the position given by 'Row' and 'Col'.

{
register unsigned char A; /* Fast register storage for Attr.*/
unsigned char far *PtrYideoMode • (unsigned char far *)Ox00400049i
unsigned char far *Yideo; /* Far pointer to video memory. */

A • Attr; /* Store attribute in register. */

/* Calculate far pointer to video memory: */
FP SEG (Video). (*PtrVideoMade.· 7) ? OxbOOO : Oxb800i
FP-OFF (Yideo). Row * 160 + Col * 2;
while (*String) /* Write characters from string until null. */

{
*Yideo++ - *String++;
*Yideo++ - Ai
}

/* end ScrPutS */

typedef struct
{
int URi
int LRi
int Le;
fnt BytesPerRow;
}

HEADER;

45

MS-DOS System Programmins _

Listing 2.4 (confd)
void ScrRestoreBlock

(char *BlockAddr,
1nt Free)

1*
This function restores to the screen a block of data saved previously
through the function 'ScrSaveBlock'. 'BlockAddr' is the address of
the block returned by 'ScrSaveBlock'. If you assign the parameter
'Free' a nonzero value, the heap memory used to store the screen data
will be released, and you may NOT call 'ScrRestoreBlock' to restore the
data again. If you assign 'Free' 0, the heap memory is not released
and you may restore the data to the screen again.

*/
{
register int Row;
HEADER *PtrHeader:
unsigned char far *PtrVideoMOde • (unsigned char far *)Ox00400049;
int VideoSeg, VideoOff:
char far *PtrBlock;

1* Set a pointer to the header at the beginning of the block in heap:*1
PtrHeader • (HEADER *)BlockAddr:

/* Calculate target and source addresses:
VideoSeg • (*PtrVideOMode •• 7) ? OxbOOO : OxbSOO;
VideoOff • PtrHeader->UR * 160 + PtrHeader->LC * 2;
PtrBlock • (char far *)(BlockAddr + s1zeof (HEADER»:

/* Write each row of data to the Screen:
for (Row • PtrHeader->UR; Row <. PtrHeader->LR; ++Row)

{
movedata /* Copy a row.

(FP SEG (PtrBlock), 1* Source segment.
FP OFF_(PtrBlock), /* Source offset.
VideoSeg, /* Target segment.
V1deoOff, /* Target offset.
PtrHeader->BytesPerRow); /* Bytes to copy.

/* Increment source and target addresses to next row:
PtrBlock +. PtrHeader->BytesPerRow;
VideoOff +- 160.
}

/* Free the block if the flag is set:
1f (Free)

free (BlockAddr):

return.

) 1* end ScrRestoreBlock *1

char *ScrSaveBlock
(int UR.
1nt LC,
tnt LR,
1nt RC)

1*

*/

*/

*/
*/
*/
*1
*/
*/

*/

*/

This function saves the rectangular block of screen text data specified
through the first four parameters:

46

_______________Converting A Microsoft C Program Into A TSR

Listing 2.4 (cont'd)
UR Upper row (rows are numbered beginning with 0 at the top of

the screen).
LC Left column (columns are numbered beginning with 0 at the

left of the screen).
LR Lower row.
RC Right column

If successful, it returns the address of the block of data. If an error
occurs, it returns the value NULL. The function works only in a text
mode.

*1
{
register int Row;
int BytesPerRow;
size t B10ckSize;
char-*B10ckAddr;
HEADER *PtrHeader;
unsigned char far *PtrVideOMode • (unsigned char far *)Ox00400049;
int VideoSeg, VideoOff;
char far *PtrBlock;

1* Calculate the size of the block and allocate memory from the heap:*1
BytesPerRow • (RC - LC + 1) * 2;
BlockSize a sizeof (HEADER) + BytesPerRow * (LR - UR + 1);
BlockAddr • (char *)ma110c (B10ckSize);
if (BlockAddr aa NULL)

return (NULL);

1* Save information on the saved block in the header at the beginning*1
1* of the memory allocation. *1
PtrHeader • {HEADER *)BlockAddr;
PtrHeader->UR - URi
PtrHeader->LR a LR;
PtrHeader->LC a LC;
PtrHeader->BytesPerRow a BytesPerRow;

1* Calculate initial source and target addresses: *1
VideoSeg • (*PtrVideoMode .D.7) ? OxbOOO : OxbBOO;
VideoOff • UR * 160 + LC * 2;
PtrBlock D {char far *)(BlockAddr + sizeof (HEADER»;

1* Write each row of screen data to the block in the heap: *1
for (Row a UR, Row <a LR; ++Row)

{
movedata 1* Copy a row. */

(VideoSeg. 1* Source segment. */
VideoOff. /* Source offset. */
FP SEG (PtrBlock). /* Target segment. */
FP-OFF {PtrBlock), 1* Target offset. *1
BytesPerRow); /* Bytes to copy. *1

1* Increment source and target addresses for next row: *1
PtrBlock +a BytesPerRow;
VideoOff +- 160;
}

return (B10ckAddr);

} /* end ScrSaveBlock */

1* Return block address as a handle to the *1
/* saved data. *1

47

MS-DOS System Programming _

Listing 2.5 TSRDEMO.MAK: A MAKE file for preparing both TSltC
and TSRDEMO.C.

TSRDEMO.OBJ : TSRDEMO.C TSR.H
cl Ie IFPa IW2 IIp TSRDEMO.C

TSR.OBJ : TSR.C TSR.H
el Ie IW2 IIp TSR.C

TSRA.OBJ : TSRA. ASM
masm IMY.. TSRA.ASM;

TSRDEMO.EXE : TSRDEMO.OBJ TSR.OBJ TSRA.OBJ
link INOI INOD TSRDEMO+TSR+TSRA••NUL.SLIBCER;

3. It removes the TSR signature from the user interrupt vector (by writing
the value 0 to this vector).

4. It sets the flag Unload to 1. When this flag is set, the function Acti vate
later frees the memory blocks occupied by the TSR. TsrRemove does
not perform this task itself, since the memory should be released
immediately before exiting from the TSR. Note that a program nor
mally occupies two memory blocks: the main block beginning at the
start of the program segment prefix Lpsp), and the block containing
the program's copy of the DOS environment.

Accordingly, Activate must free both of these blocks (it uses the C
library function _dos_!reemem).

Michael J. Young is the author ofsix advanced programming books on MS-DOS and OS/2.
He is also the developer of several programmer toolkits for these operatingsystems. Ifyou have
any questions or comments, orwould like to receive a catalog of his products, you can contact
him at the following address:

Michael J. Young, Young Software Engineering, 20 Sunnyside Avenue, Suite AMill Valley,
CA 94941 (415) 383-5354.

48

Event Timing On MS-DOS pes
Phyllis K. Lang

An MS-DOS PC system may be viewed as a layered system (Figure 3.1),
consisting of MS-DOS at the top, the BIOS underneath and the PC hardware
on the bottom. Each of these three layers harbors its own solution to event
timing. The precision required by your application determines which of the
three timing alternatives should be used.

The time of day seovice provided by MS-DOS may be used for timing
eventswith duration on the order ofseconds or more. This service is available
through MS-DOS interrupt 21H, function 2CH. The precision obtained is
approximately 55 ms, but the time returned by MS-DOS is formatted in
hours, minutes, seconds and hundredths of seconds. This format requires
special consideration at midnight

The same 55 ms accuracy is available to applications via a BIOS interrupt
whose service may be customized by manipulating the MS-DOS interrupt

49

MS-DOS System Programming _

vector table and writing a corresponding interrupt service routine. It is
imperative that interruptservice routines be written efficiently so that system
performance is not degraded. Furthermore, the system environment must
be maintained by the interrupt service.

The MS-DOS timing chain includes a free BIOS interrupt (lCH) for
applications. This interrupt is issued every 55 ms by the system time tick
interrupt (int 8). The standard MS-DOS interruptlC handler does essentially
nothing (an iret instruction). The standard handler may be replaced by a
custom handler, which might, for example, decrement a globally defined
counter that may be interrogated by other procedures. The custom handler
should be installed by using MS-DOS interrupt 21 functions 25 and 35 to
change the interrupt vector. This is the safe method of changing interrupt
vectors and should be used whenever possible.

Since interrupt lC is a free vector for applications, beware of resident
programs that use·it. At a minimum, you should restore the original vector
at program exit. To minimize conflicts with other applications, the new
interrupt lC handler should chain to any. existing handler as in listing 3.1.
This listing illustrates how to write the interrupt handler, how to install it,
and how to use the new timing service. Both listing 3.1 and listing 3.2 are
written in Turbo Pascal 5.0 which provides the necessary interrupt service
support. The stack is adjusted, the system flags are saved and the necessary
iret instruction is generated by the interrupt keyword in the procedure
header. Inline assembly language is used in the procedure sti to enable
interrupts and procedure intchain to daisy chain interrupts.

50

Listing 3.1
(---IICEX inserts a user defined timer tick interrupt service procedure

into the MS-DOS timekeeping chain.

Author: pkl

{$F+}

program ilcexample;

uses
dos, crt;

var
countdowntimer : integer;
intlcvec : pointer;

STI enables interrupts.

procedure sti; inline($fa);

INTCHAIN chains to an interrupt. The stack is prepared so that the DOS
interrupt handler will receive it in proper condition.

procedure intchain(ivec : pointer);

begin
inline($9c/

$ff/$5e/$06);
end;

{ pushf }
{ call dword ptr [bp+6] }

IICHNDLR is an interrupt handler for the user timer tick (IC) interrupt.

The BIOS time tick interrupt (int 8) service routine (TIMER INT) updates
the time of day clock, checks the diskette motor counter for timeout, and
issues a user time tick interrupt (int lC). This routine decrements a count
down timer maintained in external memory where it may be set and polled by
functions within the program.

procedure ilchndlr(flags,cs,ip,ax,bx,cx,dx,si,di,ds.es,bp : word);
interrupt;

begin

sti; { enable interrupts }

countdowntimer := countdowntimer - 1;
intchain(intlcvec); { chain to the preexisting handler}

end;

51

MS-DOS System Programming _

Listing 3.1 (confd)

(---Insert a 54.9 ms countdown timer into the MS-DOS timing chain that
is accessible to the application.

begin

GetIntVec($lc, intlcvec);
SetIntVec($lc, @ilchndlr);

Example: delay for 200 ms. }

countdowntimer := 200 div 55;
while countdowntimer > 0 do;

{ Save present vector }
{ Install new one }

Example: wait for a keyboard stroke for 2 seconds.

countdowntimer :m 2000 div 55;
write(IPress any key>I);
while (countdowntimer > 0) and (not KeyPressed) do;

if (countdowntimer <= 0) then (Time out on keyboard
writeln(1 ** Keyboard timed out **1)

else
writeln(1 ** Ok **1);

52

SetIntVec($lc, intlcvec)i

end.

(Restore the interrupt Ie vector.)

Figure 3.2

Various
Components

Interrupt
t--~ Band 1C

Some applications may demand more accuracy than int le's 55 ms
resolution. The MS-DOS PC time chain is designed to provide 55 ms
accuracy; therefore, to increase this precision you mustchange the operation
of both MS-DOS and the PC hardware.

Figure 3.2 shows the PC timing chain. Asystem clock oscillates at 14.318
MHz. This pulse rate is divided by various components to 1.19318 MHz,
which becomes the input frequency to the i8253 programmable interval
timer (Pin. The PIT contains three independently programmable timers,
each ofwhich may be loaded with a different 16-bit down countvalue. Each
timer also may be programmed to operate in one of six modes. The mode
selection dictates how the timer behaves upon decrementing to zero.
MS-DOS programs timer 0 to output a square wave at the terminal down
count of 65536. The output of timer 0 is tied directly to an i8259
programmable interrupt controller (Plq. Thus timer 0 produces a hardware
interrupt every 54.9 ms. (1.19318 MHz / 65536 = 18.17874 Hz; 1 /
18.17874 Hz = 54.9 ms). The PIC is programmed to map the time interrupt
to int 8 in the interrupt vector table. This is the "hook" into the timer
interrupt system.

Timing resolution may be improved by increasing the frequency of timer
interrupts by loading timer 0 with a smaller down count value. However,
the MS-DOS int 8 handler controls many system resources which rely upon
the 54.9 ms heartbeat. If the int 8 interrupt frequency is increased, other
system functions are serviced more frequently as well. The challenge is to
ensure that MS-DOS functions are serviced at the normal rate of 54.9 ms
while the timer interrupt occurs more frequently.

The program in listing 3.2 accomplishes this by saving the MS-DOS int
8 vector, replacing it with a vector to the new handler and chaining to the
normal MS-DOS int 8 handler at the proper time. The interrupt rate is
increased by an integral factor so that the MS-DOS service may be called at
a regular frequency. Timer 0 is programmed in iBswapin to operate at a

53

MS-DOS System Programming _

frequency of sixteen times the normal rate, or one interrupt every 3.43 ms.
The new handler, iOBhndlr chains to the MS-DOS int B handler every
sixteenth call.

A final issue involves installing the new timing scheme. PIT timer 0 must
be reprogrammed to interrupt at the new rate on an even boundary of the
54.9 ms interrupt; otherwise, some time in the system is lost and the system
clock will show it. likewise, the old rate must be restored in a similar fashion.
Two additional int B interrupt handlers synchronize the changes.
iBswapin () in listing 3.2 is called on the 54.9 ms interrupt. It programs PIT
timer 0 to operate at the increased frequency and installs the new interrupt
handler, iOBhndl r (). Before exiting the program, iBswapout () must be
called to restore the timer interrupt vector. MS-DOS restores some interrupt
vectors itself at program exit; the timer interrupt vector is not among them,
so it must be restored by the application. iBswapout () is called on the 3.43
ms interrupt. At the boundary of the normal 54.9 ms interrupt, it programs
PIT timer 0 to operate at the normal frequency and restores the MS-DOS
int B vector. Restoring on the interrupt boundary assures that no system
time·is lost.

The interrupt frequency can be altered by changing
intB_passcount_ reset in listing3.2. Realize, though, that there is an upper
limit to the interrupt frequency. The service of an interrupt occupies some
of the execution time available before the next interrupt occurs. If the
interrupt is programmed to occur every 100 IJS and the service requires 100
IJs to execute, no time remains for the application: the system locks up! Of
course the processor clock speed also must be considered in determining
the upper limit of the interrupt frequency. A 4.77 MHz i8086 operates at
about 210 ns per cycle. Assuming the average i8086 instruction requires
seven cycles, one instruction executes in 1.47JlS. Thus, the 3.43 ms interrupt
frequency described above allows about 2300 instructions to execute
between interrupts - not enough time for a significant amount ofoverhead.
In the same interval a 16 MHz i80386 executes about 7800 instructions.

54

_________________ Event Timing On MS-DOS PCS

Summary
Event timing may be accomplished with MS-DOS time of day service,

BIOS interrupt le, or reprogramming PC hardware. A problem may arise in
using the BIOS interrupt if a terminate and stay resident program tries to use
that vector after it has been changed. Reprogramming the hardware may be
dangerous if the system hardware differs from that described or if the
application does not restore interrupt vectors properly. In addition, there
may be several exit routes in a program: an application defined route,
Ctrl-Break and the critical error handler's abort option. Each of these
possibilities should be addressed. If these problems are properly addressed,
the timing resolution attainable with an MS-DOS PC can accommodate
many demanding real-time applications.

55

MS-DOS System Programming _

Listing 3.2

{ ---I8EX reprograms the i8253 PIT to interrupt at 16 times it normal rate
of 54.9 ms. The interrupt decrements a user accessible timer every
3.43 ms.

Author: pkl.

{$F+}

program iBexi

uses
dos, crt;

type
itab a array [O ••$ff] of pointeri

var
intOSvec : pointeri { Interrupt OS save vector }
intS passcount : integer; { Current interrupt downcounter }
timer count: integer; { Application countdown clock timer}
vectab : itab absolute $0:$0; {80x86 interrupt table }

const
isr 8259 : word =$0020i
eoi-8259 byte =$20i

{ i8259 in-service reg addr }
iS259 end-of-intrpt instr }

cwr 8253 : byte =$43i { control word reg addr }
ctrD 8253 : byte =$40i { timer 0 counter addr }
set_ctrO_S253 : byte =$36; { Binary mode 3 ctr 0 }

Define speedup factor and the corresponding iS253 counter values.
The normal timer 0 interrupt occurs every 54.9 ms. The frequency of that
interrupt is increased by a factor of 16 for this application so
interrupts occur every 3.43 ms.

intS_passcount_reset : integer =16;

{ The input clock frequency is 1.1931S MHz on the PCi the corresponding
downcount values for 54.9ms and 3.43ms follow.

intS newct msb
fnt8-newct-lsb
intS-dosct-msb
intS-dosct-lsb

byte = $10;
byte g $00;
byte = $00;
byte g $00;

STI enables interrupts.

procedure sti; inline($fal;

56

___________________ Event Timing On MS-DOS PCs

Listing 3.2 (cont'd)

(--INTCHAIN chains to an interrupt. The stack is prepared so that the DOS
interrupt handler will receive it in proper condition.

procedure intchain(ivec : pointer);

begin
inline($9c/

$ff/$5e/$06);
end;

{ pushf }
{ call dword ptr [bp+6] }

{ ---18HNDLR is an interrupt handler for the DOS time tick interrupt (int 8).
This handler processes more frequent hardware clock interrupts while
maintaining the normal 54.9 ms system clock updating.

procedure i08hndlr(flags.cs.ip.ax.bx.cx.dx.si.di.ds.es.bp : word);
interrupt;

begin

sti; { Reenable interupts }
timer count := timer_count - 1; { Decrement users timer}

If it is time to do the system time chores. reset the pass counter and
chain to the normal DOS interrupt vector.
The normal DOS handler does an sti and reenables the i8259.

int8 passcount := int8 passcount - 1;
if (Tnt8 passcount = 0) then
begin -

int8 passcount := int8 passcount reset;
intchain(int08vec); - -

end
else

port[isr 8259] := eoi_8259;
end; -

57

MS-DOS System Programming _

Listing 3.2 (cont'd)

{ ---I8SWAPIN is an interrupt handler for the DOS time tick interrupt (int 8).
This handler swaps in a new handler for more frequent hardware interrupts
while maintaining the normal 54.9 ms system clock updating. The swap
occurs at interrupt time so that no system clock ticks are lost.

procedure i8swapin(flags.cs.ip.ax.bx.cx.dx.si.di.ds.es.bp : word);
interrupt;

i8259 interrupts are disabled upon entry; re-enable interrupts.
Configure the i8253 to run in mode 3 (square wave) with a new 16 bit
binary countdown value.

begin

sti; { Enable interrupts }

port[cwr 8253] := set ctrO 8253; { Timer output is square wave
port[ctrO 8253] := int8 newct lsb; {New down count value
port[ctrO:8253] := int8:newct:msb;

Initialize pass counter for int 8 handler.

Swap in the new time tick interrupt handler vector. DOS interrupts
shouldn1t be used within an interrupt handler.

vectab[8] := @i08hndlr;

(Go perform DOS time services. DOS does the eoi for the i8259.

intchain(int08vec);

end;

I8SWAPOUT is an interrupt handler for the DOS time tick interrupt
(int 8). This handler swaps out the new handler and restores the DOS
handler. The swap occurs at interrupt time so that no system clock
ticks are lost.

procedure i8swapout(flags.cs.ip.ax.bx.cx.dx.si.di.ds.es.bp : word);
interrupt;

i8259 interrupts are disabled at entry; re-enable. Restore the normal
DOS operation of i8253 timer 0: mode 3 with a binary downcounter.

begin

sti; { Enable interrupts }

timer count := timer count - 1; { Decrement user timer}
int8_passcount := int8_passcount - 1;

58

Read the port }
{ Mask the desired bit

Event Timing On MS-DOS PCS----------------------

Listing 3.2 (cont'd)

if (int8 passcount = 0) then
begin - { Time to change vectors

port[cwr 8253] :a set ctrO 8253; {Binary downcount mode }
port[ctro 8253] := int8 dosct lsb; { Timer expires in 54.9 ms
port[ctrO-8253] :a int8-dosct-msb;
vectab[8]-:= int08vec; - -{ Restore vector for interrupt 8 }
intchain(int08vec); Do the DOS time service. }

end
else

port[isr_8259] := eOi_8259; (End of interrupt for i8259.

end;

var
reply : byte;

begin
GetIntVec($08. int08vec); { Save present int 8 vector}
SetIntVec($08. @i8swapin); { Install vector to swap in new

timing scheme }

Example: wait 300 ms for pin 2 on lPT1: to go high (1).

timer count := 300 * int8 passcount reset div 55;
reply-:= $00; - -
while (timer count> 0) and (reply = $00) do
begin -

reply := port[$03BC];
reply := reply and $01;

end;

if (timer count <= 0) then
writeln('Pin 2 on lPT1: did not go high. I);

timer count := 2000 * int8 passcount reset div 55;
writeC'Press any key>'); - -
while (timer_count> 0) and (not KeyPressed) do;

if (timer count <= 0) then (Time out on keyboard
writelnC' ** Keyboard timed out **1)

else
writeln(' ** Ok **1);

Return the system to its normal timekeeping. Install a vector to the
handler that reprograms the PIT and restores the DOS handler at the next
interrupt. }

SetIntVec($08. @i8swapout);
writeln('Give vector time to swap>I);
while (not KeyPressed) do;

end.

59

MS-DOS·System.Programming _

60

Writing MS-DOS
Exception Handlers

Robert B. Stout

"Exceptions" are catastrophic failures which usually cause an executing
program to abort to the operating system. "Errors", on the other hand, usually
include less disastrous unexpected events. A key difference between errors
and exceptions is that errors are defined by the executing program whereas
exceptions are defined at the system level. For example, telling an applica
tion to open a file in a directory which doesn't exist creates an error, since
only the application presupposed the directory to exist in the first place. On
the other hand, when a disk is unreadable for some reason, it triggers an
exception, since the failure violates the operating system's expectations.

Exceptions in MS-DOS programs come in basically three flavors; those
initiated by the user, those resulting from a coprocessor error, and those
resulting from some other sort of system error. Since most modern high-level
language (Hll) compilers include some mechanism for trapping coprocessor
errors, this chapter will deal with how to handle the other two types of
exceptions.

The code presented here is not necessarily simple "plug and play" code
to be dropped into your next project. This was a conscious decision. To be
universally useful, the code presented here makes no assumptions whether
it is to be embedded in an assembly or Hll application. Since different Hlls
use different conventions for passing arguments, these portions of the code
may change from one language to another. You must refer to MASM or to
your Hll compiler's reference section on interfacing assembly modules to
customize this code for your own use. All code presented here uses Microsoft

61

MS-DOS System Programming _

MASM v5.1 which allows for simplified memory model and language
conventions. In many cases, the code may be used as-is by simply defining
the macros memodel and lang on the command line - but be safe and
double-check everything!

User-Generated Exc~ptions

MS-DOS users can generate exceptions by means of two separate
mechanisms: CtrZ-C and CtrZ-Break.

When a program is executed, the Ctrl-C interrupt23h is set up to point
to a default error handler, which is called whenever a Ctrl-C character is
detected in the keyboard input buffer. Unfortunately, the operating system
checks the keyboard buffer only occasionally, most usually when actually
processing input or output calls. Another problem with interrupt 23h is that
when a child process is spawned, it will usually inherit the parent program's
CtrZ-C handler, which is almost certainly not what is desired. When a
program terminates in any way, MS-DOS resets the interrupt 23h vector to
its default state.

The CtrZ-Break interrupt IBh works somewhat differently, though
usually in concert with interrupt 23h. Whenever the ROM BIOS detects the
CtrZ-Break key combination, the keyboard buffer is flushed and a Ctrl-C
key combination is stuffed in place of the previous contents. This Ctrl-C
will later be detected and processed by interrupt23h. Ctrl-Sreak processing
therefore may offer more immediate response than CtrZ-C processing if the
default action is overridden.

Two major caveats are in order, however:

Unlike interrupt 23h, MS-DOS does not restore the default state of
interrupt ISh upon program termination.

While CtrZ-C processing is standardized among the various machines
utilizing both MS-DOS and PC-DOS, CtrZ-Break processing is much less
standardized.

In the following discussion of CtrZ-C exception handling, be aware that
the same techniques could be used for Ctrl-Break processing provided that
the application supplies some totally reliable way to assure that interrupt ISh

62

is restored prior to program termination. In ANSI C, the atexi t () function
could be used for this as could similar facilities in other Hlls.

Handling Ctrl-C IExceptions
DOS's default Ctrl-C handler is triggered whenever the CtrZ-C char

acter is detected in the input buffer. DOS responds by closing all files which
were opened using handle functions and terminating the program. There
are therefore several things DOS doesn't do that your application may
require:

The default CtrZ-C handler has no knowledge of any Hll's buffered
file I/O. Where a Hll may provide buffered file I/O (e.g., C program files
opened with calls to jopen () portions of files which your application had
assumed written to disk may in fact be left orphaned in a buffer.

The default CtrZ-C handler doesn't attempt to close files opened using
any of the FCB functions. Even though it has declared FCB functions
obsolete, Microsoft continues to use them in critical elements of DOS such
as COMMAND. COM. These calls remain the only mechanism for manipulating
volume lables and deleting files using wildcard specifications.

DOS's normal program termination sequence only restores the interrupt
23h and 24h handlers. Any other intercepted interrupts which your applica
tion uses will be left pointing to free RAM once the application has been
terminated using the default CtrZ-C handler.

Obviously, purely procedural issues such as updating database index
files are also beyond the scope of DOS's default CtrZ-C processing.

The simplest Ctrl-C handler is an IRET. Simply stuff a pointer to an IRET
into the interrupt23h vector and the operating system will ignore CtrZ-C
handy in programs which only want to check for CtrZ-C or CtrZ-Break at
certain times. If your application explicitly checks for Ctrl-C inputs (which
are, after all, simply another keystroke), you don't need DOS doing it for
you.

63

MS-DOS System Programming _

Listing 4.1 demonstrates simple interrupt 23h interception installation
and de-installation routines used to disable DOS Ctrl-C handling. In this
handler, whenever a Ctrl-C interrupt is received, a global variable ccrecvd
is set to -1. In this way, your application has the option of checking the
keyboard buffer for the Ctrl-C character or just testing the value of this
variable at regular intervals. Note that this variable may change
asynchronously with regard to the rest of your application. (In C, ccrecvd
should be declared volati le.)

The next option is to explicitly perform your own Ctrl-C exception
processing. listing 4.2 demonstrates the code to install and de-install your
own customized exception handler. Note that the code is written to accept
the address of a function specified with an explicit segment and offset. This
code is virtually identical to that in listing 4.1 and is actually slightly simpler
since the ccrecvd variable isn't needed and the actual interrupt service
routine (ISR) is external to the code.

64

_________________Writing MS-DOS Exception Handlers

Listing 4.1

Install a do-nothing Interrupt 23 (Ctrl-C exception) handler

.MODEL memodel.lang

•DATA?
PUBLIC ccrecvd

origvec dd ?
ccrecvd dw?

.CODE

This is our actual ISR

;Add model and language support via
;conunand 1ine macros. e.9•
;MASM 1Dmemode1=LARGE ID1 ang=C

;
myint23:

mav
iret

ccrecvd.-l

Call this to install our ISR
;
dis23

dis23

PROC
mav
int
mov
mov
push
pop
mav
mov
int
mav
ret
EHDP

USES AX ax DS ES
ax.3523h
21h
word PTR origvec,bx
word PTR :origvec+2.es
cs
ds
dx, OFFSET myint23
ax.2523h
21h
ccrecvd,O

;get old vector•••

; ••• and save it
;get myint23 segment in DS

;instal1 myint23 in int 23h

;clear the interrupt received flag

;
; Call this to uninstall our ISR
;
redo23 PROC

mov
mov
mov
int
ret

redo23 EHDP

end

USES AX ax DS
dx. word PTR origvec ;restore original vector
ds, word PTR -origvec+2
ax,2523h -
21h

65

MS-DOS System Programming _

Listing 4.2

Install a custom Interrupt 23 (Ctrl-C exception) handler

% .MODEL memodel,lang ;Add model and language support via
;command line macros, e.g.
;MASM IDmemodel=LARGE IOlang=C

•DATA?
_origvec dd ?
_newvec dd ?

.CODE

This is our actual ISR,
myint23:

call
iret

far PTR newvec ,call our handler

Call this to install our ISR
;
ins23 PROC

mov
int
mov
mov
mov
mov
mov
mov
push
pop
mov
mov
int
ret

ins23 ENDP

USES AX 8X DS ES, segm:WORD, offs:WORD
aX,3523h ,get ~ld vector•••
21h
word PTR origvec,bx
word PTR -origvec+2,es ; •••and save it
aX,offs - ,load handler offset •••
word PTR _newvec,ax
aX,segm ; l segment into _newvec
word PTR _newvec+2,ax
cs ,get myint23 segment in OS
ds
dx, OFFSET myint23 ;install myint23 in int 23h
ax,2523h
21h

Call this to uninstall our ISR

66

i
redo23 PROC

mav
mav
mov
int
ret

redo23 EHDP

end

USES AX 8X DS
dx, word PTR origvec irestore original vector
ds, word PTR -origvec+2
ax,2523h -
21h

_________________Writing MS-DOS Exception Handlers

System-Generated Exceptions
DOS's infamous "Abort, Retry..." message is the signal to the user that

it was unable to successfully complete an I/O operation and has called its
own internal exception handler for system failures, usually referred to as the
"Critical Error Handler". Your code can intercept DOS critical error excep
tions just as simply as it does CtrZ-C or CtrZ-Break exceptions (see Listing
4.3). The real challenge in writing critical error handlers is to correctly
interpret the exception.

Listing 4.3
Install an Interrupt 24 (DOS critical error exception) handler

% .MODEL memodel,lang .Add model and language support via
icommand line macros, e.g •
•MASM IDmemodel=LARGE IDlangcC

•DATA?
PUBLIC cedevdvr, cetype, ceerror. cereturn

origvec dd ?
-newvec dd ?
cedevdvr dd ?
cetype dw?
ceerror dw ?
cereturn db ?

.CODE

This is our actual ISR

•myint24:
push
push
push
push
push
push·
push
push
mov
mov
mov
mov
call
mov

ds
es
bx
cx
dx
si
di
bp
word PTR cedevdvr,si
word PTR cedevdvr+2,bp
cetype,ax
ceerror,di
far PTR newvec
al,cereturn

.save registers which may be

.required in case URetryM is
;selected

.save device driver header address

.save error type information

.save error code information
icall our handler
;set up return code (abort, retry•••)

67

MS-DOS System Programming _

The critical error handler requires more information in order to decide
what action to take than does a CtrZ-C handler. All of this information is
passed in the CPU's registers as shown in Table 4.1. To facilitate individual
bit operations, Table 4.1 lists the mask you would logically and against the
register data.

Listing 4.3 (cont'd)

pop bp
pop di
pop sf
pop dx
pop cx
pop bx
pop es
pop ds
iret

Call this to install our ISR

;restore necessary registers

i
ins24 PROC

mov
int
mov
mav
mov
mov
mav
mov
push
pop
mov
mov
int

ins24 ENDP

USES AX BX DS ES. segm:WDRD. offs:WORD
ax.3524h iget old vector•••
21h
word PTR origvec.bx
word PTR -origvec+2.es i •••and save it
ax,offs - iload handler offset •••
word PTR _newvec,ax
aX,segm ; l segment into _newvec
word PTR _newvec+2,ax
cs iget myint24 segment in DS
ds
dx, OFFSETmyint24 ;install myint24 in int 24h
aX,2524h ; into Interrupt 24h
21h

i
; Call this to uninstall our ISR

68

;
redo24 PROC

mov
mov
mov
int
ret

redo24 ENDP

end

USES AX BX DS
dx, word PTR origvec ;restore original vector
ds, word PTR -origvec+2
aX,2524h -
21h

Table 4.1
BP:SI

AH

Critical error register data

Under DOS 2.x or later, contains the segment:offset of the
device driver which reported the exception. This is a pointer
to the device driver1s header. The most important entry in
this header is the word located at BP:SI+4, the device driver
attribute word. Important masks used to test this word are
BOOOh which indicates a character, rather than a block,
device and OBOOh which indicates support of removable media.

If the high bit of AH is zero, a disk error has occurred.
When this happens, the remaining bits of AH are set as
follows:

Bit Mask Meaning

o 01h OOh indicates a read operation
Olh indicates a write operation

1-2 06h Indicates the affected disk area:
OOh if DOS
02h if File Allocation Table (FAT)
04h if root directory
06h if files area

Bits 3-5 only used by DOS 3.1 and later -----
3 OSh OOh Fail response not allowed

OBh Fail response allowed
4 lOh OOh Retry response not allowed

lOh Retry response allowed
5 20h OOh Ignore response not allowed

20h Ignore response allowed

Al If AH masked with BOh equals zero indicating a disk error, Al
contains the drive which failed. Al • OOh indicates drive A,
Al m Olh indicates drive B, etc.

01 The 01 register contains the following error codes:

Code Meaning

COOOh Write-protected disk
000lh * Unknown unit
0002h Drive not ready
0003h * Invalid command
0004h Data (CRC) error
0005h * length of request structure invalid
0006h Seek error
OOC7h * Non-DOS disk
OOOBh Sector not found
0009h * Printer out of paper
OOOAh Write fault
OOOBh * Read fault
COOCh General failure
OOODh ** Invalid disk change

The asterisks next to the odd-numbered codes indicate these
codes are not available under DOS l.x. In addition, code
OOODh is not available prior to DOS 3.x.

69

MS-DOS System Programming _

Only you, the programmer, can determine what your program requires
of a critical error handler. listing 4.4 demonstrates the skeleton of a critical
error function which might be called from the handler in listing 4.3. (Note
that in this example as well as in Listing 4.3, your choice of a HLL could

Listing 4.4

A sample Interrupt 24 (DOS critical error exception) handler

% .MODEL memode1,lang ;Add model and language support via
;command line macros, e.g.
;MASM IDmemodel=LARGE ID1ang=C

EXTAN cedevdvr:dword, cetype:word, ceerror:word, cereturn:byte
EXTAN read err:far, write err:far, bad FAT:far
EXTRN no_paper:far, fixup:ret:far, FAT:err:far

;NOTE: All the above routines MUST set cereturn to:
o - Ignore
1 - Retry
2 - Abort
3 - Fail (DOS 3.3 and later)

•DATA?

PUBLIC osver, rmvb1, exerr, locus, class, suggest
osver db?
nnvbl db?
exerr dw?
locus db?
class db?
suggest db ?

.CODE

This is called by myint24

70

;
mynew24 PROC

mov
int
or
jnz
mov

NotDOS1:
mov
mov
mov
and
jnz
cmp
jz

USES BX
ah,030h
21
a1,al
NotDOS1
a1,l

osver,a1
aX,cetype
bX,ax
ax,BOh
NotDiskErr
a1,1
wrong_D~S

;get DOS version number

;zero means DOS 1.x

;save DOS version
;get type of exception •••
; • save it for later
;disk error?
;no, continue
;yes, DOS 1.x?
;yes, can1t check for removable media

_________________Writing MS-DOS Exception Handlers

iprinter out of paper?
ino, continue
iyes, handle it

iget exception type
ihandle read and write separately

ino. continue
iyes, handle it

isave extended error code•••
locus •••
class •••
&suggested action

;unknown error - handle loose ends •••
; &Abortl

irestore regs

iget extended error info

;get exception type
;FAT problems?

;save media type
;DOS 3.0 or greater?
;no, skip it
;yes, save regs

;no, flag fixed media

word PTR cedevdvr,8000h inon-disk block device?
good fat ino, continue
far PTR bad FAT iyes, assume bad FAT

ceerror,0009h
not eop
far-PTR no_paper

far PTR fixup ret
a1,2 -
cereturn,al

far PTR read err

ax,bx
ax,Olh
rd err
far PTR write_err

ax,bx
ax,06h
ax,02h
ok fat
far PTR FAT err

rmvb1,ah
al,3
wrong DOS
ds -
es
dx
si
di
bp
ah,59h
21
bp
di
s1
dx
es
ds
exerr,ax
10cus,ch
c1ass,bh
suggest,bl

mov
and
jz
jmp

jmp
NotDiskErr:

test
jnz
jmp

good fat:
- test

jnz
jmp

not eop:
- call

mov
mov
ret

mynew24 ENDP

rd err:

ok fat:

Listing 4.4 (cont'd)
mov ah,-l ;no, assume removable media
test word PTR cedevdvr,0800h tis the media removable?
jz removable
xor ah,ah

removable:
mov
cmp
jb
push
push
push
push
push
push
moy
int
pop
pop
pop
pop
pop
pop
mav
mov
mav
mov

wrong_DOS:
mov
and
cmp
jnz
jmp

end

71

MS-DOS System Programming _

obviate the use of the global variables used to pass the register contents to
your critical error handling function(s).) In this example, specific external
routines are called to separately handle read and write disk errors, printer
out-of-paper errors, and corrupted FAT errors reported for a disk (reported
in AH) or character device (as indicated in the driver attribute word). In the
case of an unrecognized error, a routine is called to perform necessary
maintenance before the program is aborted. To assist in interpreting the
information available to the critical error handler, this function also sets two
global variables to indicate the DOS version number, whether the error
occurred on a device with removable media, and the DOS extended error
information, if any (see below).

In writing your specific critical error handler functions, there are several
important restrictions to keep in mind. First, no DOS system services may
be requested other than interrupt2lh functions Dlh-DCh (character I/O), 3Dh
(get DOS version number), and 59h (get extended error information). For
example, a function which mimics DOS's "Abort, Retry..." message must
output text using interrupt2Ih, functions D2h, 06h, or D9h and get the user's
response using interrupt 2Ih, functions Olh, 06h, D7h, D8h, DAh, or DCh. As
noted in Table 4.1, all registers exceptAL must be preserved since DOS sets
them up for processing retry returns prior to invoking the critical error
interrupt.

Table 4.2
Critical error return codes

[AL] Meaning

OOh Ignore
Olh Retry
02h Abort
03h ** Fail

DOS 3.1+ default *

Fail ***
Fail ***

Abort

* Response if corresponding control bit (AH bits 3-5. see Table 1)
disallows this option.

** The Fail option is only available in DOS 3.3 or later.

*** Under DOS 3.1 and 3.2. this defaults to Abort since Fail is not
supported.

72

_________________Writing MS-DOS Exception Handlers

Finally, the handler must return with an lRET instruction, passing a return
code in AL to tell DOS what to do next The available codes and their actions
under various DOS versions are detailed in Table 4.2.

DOS Extended Error Information
Beginning with version 3.0, DOS provides an extremely powerful facility

to aid those writing critical error handlers. Interrupt 21h, function 59h not
only provides extremely detailed error reporting, but also suggests strategies
for handling errors. One caution is in order, though - calling the DOS
extended error function destroys all registers except CS: lP and SS:SP. In a
critical error handler this usually isn't a problem since all registers must be
saved anyway.

Function 59h returns the Locus, or location of the error, in register CH.
Table 4.3 gives the interpretation associated with the various locus values.

Table 4.3

[CH] Meaning

Extended error locus

Olh Unknown location
02h Block device, usually a disk error
03h Network error
04h Serial device, often a timeout from a character device
OSh Memory error, usually RAM

Table 4.4

[BH]

Olh
02h
03h
04h
OSh
06h
07h
OSh
09h
OAh
OBh
OCh
ODh

Extended error classes

Meaning

Out of resource, e.g. storage space or I/O channels
Temporary error, usually a network file or record lock
Permission to access device not authorized
Internal software error - system bugs
Hardware failure - very serious
System software failure, usually bad configuration files
Application software error - something looks wrong to DOS
File not found
File or item of invalid or inappropriate type detected
File interlocked by system
Media failure, usually bad disks
Already exists
Unknown error

73

MS-DOS System Programming _

Table 4.5

Suggested action codes

[BL] Meani ng

Olh Retry a few times, then suggest Ignore or Abort
02h Pause a few seconds then do as above
03h Ask the user to re-enter input data
04h Clean up as best possible then Abort in a hurryl
OSh Abort as soon as possible - donlt try to clean upl
06h Ignore the error as itls mostly informational
07h Prompt the user to take action, e.g. change a floppy.

Function 59h also returns the error Class or category in register SH. Table
4.4 interprets Class values.

DOS also returns a suggested action code (Table 4.5) in register BL. These
values are extracted from the relevant device driver.

Finally, the actual extended error codes are returned in register AX.
Extended error codes are divided into three general classes depending on
whether they are compatible with DOS 2.x errors, DOS 3.x+ errors, or
related to critical error handling (see Table 4.6).

The best way to plan your exception handling strategy is to begin with
your design, making notes to yourself as you go and structuring your code
to allow graceful exits along the way. A well-designed program that makes
full use of DOS's exception handling features will exhibit the kind of
reliability that distinguishes the professional product from an obviously
amateur effort.

74

_________________Writing MS-DOS Exception Handlers

Table 4.6 Extended error codes

[AX] Mean i ng

Errors compatible with DOS 2.x -----
01h Invalid function number
02h File not found
03h Path not found
04h No file handles available
OSh Access denied
06h Invalid file handle
07h Memory allocation error - memory control blocks destroyed
OBh Insufficient memory
09h Memory allocation error - invalid memory control block
OAh Invalid environment
OSh Invalid format
OCh Invalid access code
ODh Invalid data
OEh * Reserved *
OFh Invalid disk drive specification
10h Attempt to remove the current directory
Ilh Not the same device
12h No more files

----- Critical errors -----
13h Attempt to write on write-protected disk
14h Unknown unit
ISh Drive not ready
16h Invalid command
17h Data (CRC) error
18h Length of request structure invalid
19h Seek error
lAh Unknown media type (non-DOS disk)
ISh Sector not found
lCh Printer out of paper
IDh Write error
lEh Read error
IFh General failure

----- DOS 3.x+ extended errors -----
20h File sharing violation
21h File lock violation
22h Invalid disk change
23h FCB unavailable
24h Sharing buffer exceeded
2Sh * Reserved *
26h * Reserved *
27h * Reserved *
28h * Reserved *
29h * Reserved *
2Ah * Reserved *
2Bh * Reserved *
2Ch * Reserved *
2Dh * Reserved *
2Eh * Reserved *

75

MS-DOS System Programming _

Table 4.6 (cont'd)

2Fh * Reserved *
30h * Reserved *
31h * Reserved *
32h Unsupported network request
33h Remote computer not listening
34h Duplicate network name
35h Network name not found
36h Network busy
37h Device no longer on network
38h NetBIOS command limit exceeded
39h Network hardware error
3Ah Incorrect network response
3Bh Unexpected network error
3Ch Incompatible remote adapter
3Dh Print queue full
3Eh Print queue not full
3Fh No room for print file
40h Network name deleted
41h Access denied
42h Incorrect network device type
43h Network name not found
44h Network name limit exceeded
45h NetBIOS session limit exceeded
46h Temporary pause
47h Network request not accepted
48h Print or disk redirection paused.
49h * Reserved *
4Ah * Reserved *
4Bh * Reserved *
4Ch * Reserved *
4Dh * Reserved *
4Eh * Reserved *
4Fh * Reserved *
SOh File already exists
51h * Reserved *
52h Cannot create directory
53h Failure on Interrupt 24h
54h Out of structures
55h Already assigned
56h Invalid password
57h Invalid parameter
58h Network write fault

76

The EXEC Function
Ray Duncan

The MS-DOS EXEC function (Int 21H Function 4BH) allows a program
(called theparent) to load any other program (called the child) from a storage
device, execute it, and then regain control when the child program is
finished.

A parent program can pass information to the child in a command line,
in default file control blocks, and by means of a set of strings called the
environment block (discussed later in this c~apter). All files or devices that
the parent opened using the handle file-management functions are dupli
cated in the newly created child task; that is, the child inherits all the active
handles of the parent task. Any file operations on those handles by the child,
such as seeks or file I/O, also affect the file pointers associated with the
parent's handles.

MS-DOS suspends execution of the parent program until the child
program terminates. When the child program finishes its work, it can pass
an exit code back to the parent, indicating whether it encountered any
errors. It can also, in turn, load other programs, and so on through many
levels of control, until the system runs out of memory.

The MS-DOS command interpreter, COMMAND. COM, uses the EXEC
function to run its external commands and other application programs. Many
popular commercial programs, such as database managers and word proces-

(Reprinted from Advanced MS-DOS Programming, 2d edition, by Ray Duncan (Redmond, WA: Microsoft
Press, 1988). Copyright @ 1986, 1988 by Ray Duncan, all rights reserved.)

77

MS-DOS System Programming _

sors, use EXEC to run other programs (spelling checkers, for example) or to
load a second copy of COMMAND. COM, thereby allowing the user to list
directories or copy and rename files without closing all the application files
and stopping the main work in progress. EXEC can also be used to load
program overlay segments, although this use is uncommon.

Making Memory Available
In order for a parent program to use the EXEC function to load a child

program, sufficient unallocated memory must be available in the transient
program area.

When the parent itself was loaded, MS-DOS allocated it a variable
amount of memory, depending upon its original file type - • COM or •EXf
- and any other information that was available to the loader. Because the
operating system has no foolproof way of predicting how much memory any
given program will require, it generally allocates far more memory to a
program than is really necessary.

Therefore, a prospective parent program's first action should be to use
Int 21H Function 4AH (Resize Memory Block) to release any excess memory
allocation of its own to MS-DOS. In this case, the program should callint
21H Function 4AHwith theES register pointing to the program segmentprefix
of the program releasing memory and the 8X register containing the number
of paragraphs of memory to retain for that program~

II WARNING A. COM program must move its stack to a safe area if it
is reducing its memory allocation to less than 64 KB.

Req.uesting The EXEC Function
To load and execute a child program, the parent must execute an Int

21H with the registers set up as follows:

AH = 4BH
AL = OOH (subfunction to load child program)
DS:DX = segment:offset of pathname for child program
ES:BX = segment:offset of parameter block

78

The EXEC Function--------------------

The parameter block, in turn, contains addresses of other information
needed by the EXEC function.

The Program Name
The name of the program to be run, which the calling program provides

to the EXEC function, must be an unambiguous file specification (no wildcard
characters) and must include an explicit. COM or •EXE extension. If the path
and disk drive are not supplied in the program name, MS-DOS uses the
current directory and default disk drive. (The sequential search for. COM,
•EXE, and •BAT files in all the locations listed in the PATH variable is not a
function of EXEC, but rather of the internal logic of COMMAND. COM.)

You cannot EXEC a batch file directly; instead, you must EXEC a copy of
COMMAND. COM and pass the name of the batch file in the command tail, along
with the IC switch.

The Parameter Block

The parameter block contains the addresses of four data objects:

• The environment block

• The command tail

• Two default file control blocks

The space reserved in the parameter block for the address of the environ
ment block is only two bytes and holds a segment address. The remaining
three addresses are all double-word addresses; that is, they are four bytes,
with the offset in the first two bytes and the segment address in the last two
bytes.

The Environment B~ock

Each program that the EXEC function loads inherits a data structure called
an environment block from its parent. The pointer to the segment of the
block is at offset· 002CH in the PSP. The environment block holds certain
information used by the system's command interpreter (usually COMMAND. COM)
and may also hold information to be used by transient programs. It has no
effect on the operation of the operating system proper.

If the environment-block pointer in the EXEC parameter block contains
zero, the child program acquires a copy of the parent program's environment

79

MS-DOS System Programming _

block. Alternatively, the parent program can provide a segment pointer to a
different or expanded environment The maximum size of the environment
block is 32K, so very large chunks of information can be passed between
programs by this mechanism.

The environment block for any given program is static, implying that if
more than one generation of child programs is resident in RAM, each one
will have a distinct and separate copy of the environment block. Further
more, the"environment block for a program that terminates and stays resident
is not updated by subsequent PATH and SET commands.

You will find more details about the environment block later in this
chapter.

The Command Tail

MS-DOS copies the command tail into the child program's PSP at offset
0080H. The information takes the form of a count byte, followed by a string
of ASCII characters, terminated by a carriage return; the carriage return is
not included in the count.

The command tail can include filenames, switches, or other parameters.
From the child program's point of view, the command tail should provide
the same information that would be present if the program had been run
by a direct user command at the MS-DOS prompt. EXEC ignores any
I/O-redirection parameters placed in the command tail; the parent program
must provide for redirection of the standard devices before the EXEC call is
made.

The Default File Control Blocks

MS-DOS copies the two default file control. blocks pointed to by the
EXEC parameter block into the child program's PSP at offsets D05CH and
006CH. To emulate the function of COMMAND. COM from the child program's
point of view, the parent program should use Int 21H Function 29H (the
system parse-fi·lename service) to parse the first two parameters of the
command tail into the default file control blocks before invoking the EXEC
function.

File control blocks are not much use under MS-DOS v2 and v3, because
they do not support the hierarchical file structure, but some application

80

The EXEC Function--------------------

programs do inspect them as a quick way to get at the first two switches or
other parameters in the command tail.

Returning From The EXEC Function
In MS-DOS v2, the EXEC function destroys the contents of all registers

except the code segment (C5) and instruction pointer (1P). Therefore, before
making the EXEC call, the parent program must push the contents of any
other registers that are important onto the stack and then save the stack
segment (55) and stack pointer (5P) registers in variables. Upon return from
a successful EXEC call (that is, the child program has finished executing), the
parent program should reload 55 and 5P from the variables where they were
saved and then pop the other saved registers off the stack. In MS-DOS v3.0
and later, the stack and other registers are preserved across the EXEC call in
the usual fashion.

Finally, the parentcan use Int21H Function 40Hto obtain the termination
type and return code of the child program.

The EXEC function will fail under the following conditions:

• Not enough unallocated memory is available to load and execute
the requested program file.

• The requested program can't be found on the disk.

• The transient portion of COMMAND. COM in highest RAM (which con
tains the actual loader) has been destroyed and not enough free
memory is available to reload it (PC-DOS v2 only>.

81

MS-DOS System Programming _

Figure 5.1 summarizes the calling convention for function 4BH. Listing
5.1 shows a skeleton of a typical EXEC call. This particular example uses the
EXEC function to load and run the MS-DOS utility CHKDSK. COM. The
SHELL. ASH program listing later in this chapter (Listing 5.3) presents a more
complete example that includes the use of Int 21H Function 4AH to free
unneeded memory.

Figure 5.1 Calling convention for the EXEC function
(Int 21H Function 4BH). Called with:

AH = 4BH
AI., = function type

00 =load and executeprogram
03 =load overlay

ES:BX = segment:offset ofparameter block
DS:DX = segment:offset ofprogram specification

Returns:
Ifcall succeeded
Carry flag clear. In MS-DOS version 2, all registers except for CS: IP may be
destroyed. In MS-DOS versions 3.0 and later, registers are preserved in the usual
fasbion.

Ifcallfailed
Carry flag set and AX =error code.

Parameter block format:
IfAL = 0 (load and executeprogram)

Bytes 0-1 = segment pointer, environment block
Bytes 2-3 = offset ofcommand-line tail
Bytes 4-5 = segment ofcommand-line tail
Bytes 6-7 = offset of first file control block to be copied into

newPSP +5CH
Bytes 8-9 = segment of first file control block

82

Bytes 10-11

Bytes 12-13

IfAL =3 (load overlay)
Bytes 0-1
Bytes 2-3

= offset ofsecond file control block to be copied
into new PSP + 6CH

= segment ofsecond file control block

= segment address where file will be loaded
= relocation factor to apply to loaded image

The EXEC Function----------------------

Listing 5.1 A brief example of the use of the MS-DOS EXEC call, with all
necessary variables and command blocks. Note the protection
of the registers for MS-DOS version 2 and the masking of
interrupts during loading ofss:sp to circumvent a bug in some
early 8088 CPUs.

cr equ Odh ;' ASCII carriage return

mov stkseg,ss save stack pointer
mov stkptr,sp

mov dx.offset pname DS:DX =program name
mov bx.offset pars ES:BX =param block
mov ax.4bOOh function 4bh, subfunction OOh
int 21h transfer to MS-DOS

mov ax,_DATA ; make our data segment
mov ds.ax ; addressable again
mov es.ax

cli (for bug in some 8088s)
mov ss.stkseg restore stack pointer
mov sp,stkptr
sti (for bug in some 8088s)
jc error jump if EXEC failed

stkseg dw 0 ori ginal SS contents
stkptr dw 0 original SP contents

pname db I \CHKDSK.COM 1,0 pathname of child program

pars dw envir environment segment
dd cmdline command line for child
dd fcbl file control block II
dd fcb2 file control block 12

83

MS-DOS System Programming _

Listing 5.1 (cont'd)

cmdlinedb 4,1 *.*I,cr

fcbl db 0
db 11 dup (I?I)
db 25 dup (0)

fcb2 db 0
db 11 dup (I I)
db 25 dup (0)

envir segment para IENVIR1

db 1PATH=1,0

file control block '1

; file control block 12

environment segment

empty search path
location of COMMAND.COM

db ICOMSPEC=A:\COMMAND.COM1,O
db 0 ; end of environment

envir ends

More About the Environment Block

The environment block is always paragraph aligned (starts at an address
that is a multiple of 16 bytes) and contains a series of ASCIIZ strings. Each
of the strings takes the following form:

NAME=PARAMETER

An additional zero byte (Listing 5.2) indicates the end of the entire set
ofstrings. Under MS-DOS v3, the block of environment strings and the extra
zero byte are followed by a word count and the complete drive, path,
filename, and extension used by EXEC to load the program.

84

The EXEC Function--------------------

Figure 5.2 Dump of a typical environment block under MS-DOS v3.
This particular example contains the default COMSPEC
parameter and two relatively complex PATH and PROMPT
control strings that were set up by entries in the user's
AUTOEXEC file. Note the path and file specification of the
executing program following the double zeros at offset 0073H
that denote the end of the environment block.

o 1 2 3 4 5 6 7 8 9 A 8 C D E F 0123456789A8CDEF
0000 43 4F 40 53 50 45 43 3D 43 3A 5C 43 4F 4D 4D 41 COMSPEC=C:\COMMA
0010 4E 44 2E 43 4F 4D 00 50 52 4F 4D 50 54 3D 24 70 NOcom.PROMPT=$p
0020 24 5F 24 64 20 20 20 24 74 24 68 24 68 24 68 24 $_$d thhh$
0030 68 24 68 24 68 20 24 71 24 71 24 67 00 50 41 54 hhh qq$g.PAT
0040 48 3D 43 3A 5C 53 59 53 54 45 4D 38 43 3A 5C 41 H=C:\SYST8M;C:\A
0050 53 4D 38 43 3A 5C 57 53 38 43 3A 5C 45 54 48 45 SM;C:\WS;C:\ETHE
0060 52 4E 45 54 38 43 3A 5C 46 4F 52 54 48 5C 50 43 RNET;C:\FORTH\PC
0070 33 31 38 00 00 01 00 43 3A 5C 46 4F 52 54 48 5C 31; ••••C:\FORTH\
0080 50 43 33 31 5C 46 4F 52 54 48 2E 43 4F 4D 00 20 PC31\FORTH.COM.

Under normal conditions, the environment block inherited by a program
will contain at least three strings:

COMSPEC=variable
PATH=variable
PROMPT=variable

MS-DOS places these three strings into the environment block at system
initialization, during the interpretation ofSHELL, PATH, and PROMPT directives
in the CONFIG.SYS and AUTOEXEC.BAT files. The strings tell the MS-DOS
command interpreter, COMMAND. COM, the location of its executable file (to
enable it to reload the transient portion), where to search for executable
external commands or program files, and the format of the user prompt.

You can add other strings to the environment block, either interactively
or in batch files, with the SET command. Transient programs can use these
strings for informational purposes. For example, the Microsoft C Compiler
looks in the environment block for INCLUDE, LIB, and TMP strings to tell it
where to find its #include files and library files and where to build its
temporary working files.

85

MS-DOS System Programming _

Example Programs: SHELL. CAnd SHELL.ASH
As a practical example of use of the MS-DOS EXEC function, I have

included a small command interpreter called SHELL, with equivalent
Microsoft C (listing 5.2) and Microsoft Macro Assembler (listing 5.3) source
code. The source code for the assembly-language version is considerably
more complex than the code for the C version, but the names and
functionality of the various procedures are quite parallel.

Listing 5.2

/*

SHELL.C: A table-driven command interpreter written
in Microsoft c.

SHELL.C Simple extendable command interpreter for MS-DOS
versions 2.0 and later

Copyright 1988 Ray Duncan

Compile: C>CL SHELL.C

Usage: C>SHELL
*/

'include <stdio.h>
'include <process.h>
'include <stdlib.h>
'include <signal.h>

/* macro to return number of
elements in a structure */

'define dim(x) (sizeof(x) / sizeof(x[O]»

86

unsigned intrinsic(char *);
void extrinsic(char *);
void get_cmd(char *);
void get_comspec(char *);
void break_handler(void);
void cls_cmd(void);
void dos_cmd(void);

/* function prototypes */

The EXEC Function---------------------

Listing 5.2 (cont'd)

void exit_cmd(void);

struct cmd table /* intrinsic commands table */
char *cmd_name;
int (*cmd_fxn)();
cOJ1l11ands 0 =

"ClS II
, cl s_cmd,

11005", dos_cmd,
IIEXIT II

, exi t_cmd, };

static char com_spec[64];

main(int argc, char *argvD)
{

char inp_buf[80];

/* COMMAND.COM filespec */

/* keyboard input buffer */

/* get COMMAND.COM filespec */

/* register new handler
for Ctrl-C interrupts */

if(signal(SIGINT, break_handler) == (int(*)(» -1)
{

fputs (1lCan I t capture Control-C Interrupt II , stderr);
exi t (1) ;

while(l)
{

get_cmd(inp_buf);
if (1 intrinsic(inp_buf)

extrinsic(inp_buf);

/* main interpreter loop */

/* get a command */
/* if itls intrinsic,

run its subroutine */
/* else pass to COMMAND.COM */

87

MS-DOS System Programming _

Listi" 5.2 (cont'd)

Try to match user's command with intrinsic command
table. If a match is found. run the associated routine
and return true; else return false.

*/

unsigned intrinsic(char *input_string)
{

i nt i. j; /* some scratch variables */

/* scan off leading blanks */
while(*input_string == '\x20 ') input_string++ ;

/* search command table */
for(i=O; i < dim(commands); i++)
{

j = strcmp(commands[i].cmd name. input string);
if(j == 0) - /* if mat;h. run routine */
{

(*commands[i].cmd fxn)();
return(l); - /* and return true */

}

}

}
return(O); /* no match. return false */

/*

*/

Process an extrinsic command by passing it
to an EXEC'd copy of COMMAND.COM.

void extrinsicCchar *input_string)
{

int status;
status = system(input_string); /* call EXEC function */
ifCstatus) /* if failed. display

error message */
fputsCU\nEXEC of COMMAND.COM failed\n ll

• stderr);

88

The EXEC Function---------------------

Listing 5.2 (cont'd)

/*
Issue prompt. get user's command from standard input.
fold it to uppercase.

*/

void get_cmd(char *buffer)
{

printf("\nsh: ");
gets(buffer);
strupr(buffer);

/*

/* display prompt */
/* get keyboard entry */
/* fold to uppercase */

Get the full path and file specification for COMMAND.COM
from the COMSPEC variable in the environment.

*/

void get_comspec(char *buffer)
{

strcpy(buffer. getenv("COMSPEC"»;

if(buffer[O] == NULL)
{

fputs(lI\nNo COMSPEC in environment\n". stderr);
exit(l);

/*
This Ctrl-C handler keeps SHELL from losing control.
It just reissues the prompt and returns.

*/

void break handler(void)
{ -

signal (SIGINT. break handler);
printf("\nsh: II); -

/* reset handler */
/* display prompt */

89

MS-DOS System Programming _

Listing 5.2 (cont'd)

/*
These are the subroutines for the intrinsic commands.

*/

void cls_cmd(void)
{

printf("\033[2J");

void dos_cmd(void)
{

int status;

/* CLS command */

/* ANSI escape sequence */
/* to clear screen */

/* DOS command */

/* run COMMAND.COM */
status = spawnlp(P_WAIT, com_spec, com_spec, NULL);

if (status)
fputs("\nEXEC of COMMAND.COM failed\n",stderr);

90

void exit_cmd(void)

exit(O);
}

/* EXIT command */

/* tenminate SHELL */

The EXEC Function----------------------

Listing 5.3 SHELLASM: A simple table-driven command interpreter
written in Microsoft Macro Assembler.

name shell
page 551)132
title SHELL.ASM-simple MS-DOS shell

SHELL.ASH Simple extendable command interpreter
for MS-DOS versions 2.0 and later

Copyright 1988 by Ray Duncan

Build: C>MASM SHELL;
C>LINK SHELL;

;. Usage: C>SHELL;

stdin equ 0 standard input handle
stdout equ 1 standard output handle
stderr equ 2 standard error handle

cr equ Odh ASCII carriage return
lf equ Oah ASCII linefeed
blank equ 20h ; ASCII blank code
escape equ 01bh ; ASCII escape code

TEXT segment word public ICODE 1

assume cs:_TEXT.ds:_DATA.ss:STACK

shell proc far ; at entry DS = ES = PSP

mov aX._DATA ; make our data segment
mov ds.ax addressable

mov ax.es: [OO2ch] get environment segment

91

MS-DOS System Programmins _

Listing 5.3 (cont'd)

mov

mov
mov
int
jnc

mov
mov
jmp

shel11:call
jnc

mov
mov
jmp

shel12:mov
mov
mov
mov
int

mov
mov
mov

shel13:

call

call
jnc

call
jmp

92

bx,100h
ah,4ah
21h
shel11

dx,offset msg1
cx,msgl_length
shel14

get_comspec
shel12

dx,offset msg3
cx,msg3_length
shel14

dX,offset shel13
ax,cs
ds,ax
ax,2523h
21h

ax,_DATA
ds,ax
es.ax

get_cmd

intrinsic
shel13

extrinsic
shel13

from PSP and save it

release unneeded memory•••
ES already = PSP segment
BX = paragraphs needed
function 4ah = resize block
transfer to MS-DOS
jump if resize OK

resize failed, display
error message and exit

get COMMAND.COM filespec
jump if it was found

COMSPEC not found in
environment, display error
message and exit

set Ctrl-C vector (int 23h)
for this program1s handler
DS:DX = handler address
function 25h = set vector
transfer to MS-DOS

; make our data segment
; addressable again

; main interpreter loop

get a command from user

check if intrinsic function
; yes, it was processed

no, pass it to COMMAND.COM
then get another command

______________________ The EXEC Function

Listing 5.3 (cont'd)

shel14:

moy
moy
int

moy

int

shell endp

bx.stderr
ah.40h
21h

aX~4cOlh

21h

come here if error detected
DS:DX =message address
CX = message length
BX = standard error handle
function 40h = write
transfer to MS-DOS

function 4ch = te~inate with
return code = 1
transfer to MS-DOS

intrinsic procnear

moy si.offset commands

intrl: cmp byte ptr [si],O
je intr7
moy di,offset inp_buf

intr2: cmp byte ptr [di] ,bl ank
jne intr3

inc di
jmp intr2

intr3: moy al, [si]

or al,al
jz intr4

cmp al. [di]

decode user entry against
the tabl e ··COMMANDS··
if match, run the routine,
and return carry = false
if no match. carry = true
return carry = true

DS:SI = command table

end of table?
jump, end of table found
no, let DI = addr of user input

scan off any leading blanks

found blank, go past it

next character from table

end of string?
jump, entire string matched

compare to input character

93

MS-DOS System Programming _

Listing 5.3 (cont'd)

jnz intr6 jump, found mismatch

inc
inc
jmp

intr4: cmp
je
cmp
jne

intr5: call

clc
ret

si
di
intr3

byte ptr [di],cr
intr5
byte ptr [di],b1ank
intr6

word ptr [si+1]

j advance string pointers

be sure user1s entry
is the same length •••
next character in entry

j must be blank or return

run the command routine

return carry flag = false
as success flag

intr6: lodsb
or a1,a1
jnz intr6

add si,2
jmp intr1

intr7: stc
ret

intrinsic endp
extrinsic procnear

look for end of this
command string (null byte)
not end yet, loop

skip over routine address
try to match next command

command not matched, exit
j with carry = true

process extrinsic command
by passing it to
COMMAND.COM with a
.. Ie .. conmand tail

find length of command
by scanning for carriage
return

al,cr
cx,cmd_tai 1_1 ength
di,offset cmd_tai1+1

mov
mov
mov
cld
repnz scasb

mov ax,di calculate command-tail

94

The EXEC Function----------------------

Listing 5.3 (cont'd)

sub
mov

ax,offset cmd_tail+2
cmd_tail,al

length without carriage
return, and store it

set command-tail address
mov word ptr par_cmd,offset cmd tail
call exec ; and run COMMAND.COM
ret

extrinsic endp

get_cmd proc near

mov dx,offset prompt
mov cx,prompt_length
movbx,stdout
mov ah,40h
int 21h

mov dx,offset inp_buf
mov cx,inp_buf_length
mov bx,stdin
mov ah,3fh
int 21h

prompt user, get command

display the shell prompt
DS:DX = message address
CX = message length
ax = standard output handle
function 40h = write
transfer to MS-DOS
get entry from user
DS:DX = input buffer
CX = max length to read
ax =standard input handle
function 3fh = read
transfer to MS-DOS

mov
mov

si,offset inp_buf
cx,inp_buf_length

fold lowercase characters
in entry to uppercase

gcmdl: cmp
jb
cmp
ja
sub

byte ptr [sil,lal check if la_zl
gcmd2 jump, not in range
byte ptr [sil,lzl check if la_zl
gcmd2 ; jump, not in range
byte ptr [sil,lal_IA I ; convert to uppercase

gcmd2: inc
loop
ret

get_cmd endp

si
gcmdl

advance through entry

back to caller

95

MS-DOS System Programming _

Listing 5.3 (cont'd)

get_comspec proc near

mov s;.offset com_var
call get_env
jc gcsp2

mov s;.offset com_spec

gcspl: mov al .es: [d;]
mov [si] .al
inc s;
inc d;
or a1.a1
jnz gcspl

gcsp2: ret

get_comspec endp

i get 10cat;on of COMMAND.COM
from env;ronment "COMSPEC=II
returns carry = false
;f COMSPEC found
returns carry = true
;f no COMSPEC

DS:SI = str;ng to match •••
search environment block
jump if COMSPEC not found
ES:DI po;nts past "="
DS:SI = local buffer

copy COMSPEC variable
to local buffer

null char? (turns off carry)
no. get next character

back to caller

96

mov
xor

genvl: mov
cmp
jne
stc

ret

near

es.env_seg
d;.d;

bx.s;
byte ptr es:[d;].O
genv2

search environment
call DS:SI = IINAME="
uses contents of IIENV SEG II

returns carry = false and ES:DI
po;nt;ng to parameter ;f found.
returns carry = true ;f no match
get environment segment
init;a1ize env offset

;nit;a1ize po;nter to name
end of env;ronment?
jump. end not found
no match. return carry set

______________________ The EXEC Function

Listing 5.3 (cont'd)

genv2: mov al J [bx] get character from name
or al,al end of name? (turns off carry)
jz genv3 yes, name matched

cmp al,es: [di] compare to environment
jne genv4 jump if match failed

inc bx advance environment
inc di and name pointers
jmp genv2

genv3: match found, carry = clear,
ret ES:DI = variable

genv4: xor al,al scan forward in environment
mov cX,-l for zero byte
cld
repnz scasb
jmp genvl go compare next string

get_env endp

exec proc near call MS-DOS EXEC function
to run COMMAND.COM

mov stkseg ,ss save stack pointer
mov stkptr,sp

now run COMMAND.COM
mov dX,offset com_spec DS:DX = filename
mov bX,offset par_blk ES:BX = parameter block
mov aX,4bOOh function 4bh = EXEC

subfunction 0 =
load and execute

int 21h transfer to MS-DOS

97

MS-DOS System Programming _

Listing 5.3 (cont'd)

moy
moy
moy

cli
moy
moy
sti

jnc

moy
moy
moy
moy
int

execl: ret

exec endp

ax,_DATA
dS,8X
es,ax

ss,stkseg
sp,stkptr

execl

dx,offset msg2
cx,msg2_length
bx,stderr
ah,40h
2lh

; make data segment
; addressable again

(for bug in some 8088s)
restore stack pointer

(for bug in some 8088s)

jump if no errors

display error message
DS:DX = message address
ex = message length
ax = standard error handle
function 40h =write
transfer to MS-DOS

back to caller

cls_cmdproc near

moy dx,offset cls_str
moy cx.cls_str_length
moy bx,stdout
moy ah,40h
int 2lh
ret

98

intrinsic CLS command

send the ANSI escape
sequence to clear
the screen

______________________ The EXEC Fun<.tion

Listing 5.3 (cont'd)

dos cmd proc near intrinsic DOS command

set null command tail
moy word ptr par_cmd,offset nultail

call exec
ret

dos_cmd endp
eXit_cmd proc near

; and run COMMAND. COM

intrinsic EXIT command

moy
int

TEXT ends

ax,4cOOh
21h

call MS-DOS tenminate
function with
return code of zero

STACK segment para stack ISTACK I

dw 64 dup (1)

STACK ends

DATA segment word public IDATAl

commands equ $

db ICLSI,O
dw cls cmd
db IDOSI,O
dw dos cmd

declare stack segment

Ilintrinsic il commands table
each entry is ASCIIZ string
followed by the offset
of the procedure to be
executed for that command

99

MS-DOS System Programming _

Listing 5.3 (cont'd)

db I EXIT1.0
dw exit cmd

db 0

com var db ICOMSPEC=I.O

com_spec db 80 dup (0)

nul tail db O.cr

cmd tail db 0. 1 IC I

inp_buf db 80 dup (0)

inp buf length equ $-inp buf
cmd=tail_length equ $-cmd_tail-l

prompt db cr.l f. Ish: I
prompt_length equ $-prompt

end of table

environment variable

COMMAND.COM filespec
from environment COMSPEC=

null command tail for
invoking COMMAND.COM
as another shell

command tail for invoking
COMMAND.COM as a transient

j cannand line fran standard input

SHELL's user prompt

dw o segment of environment block

msgl db cr.lf
db 'Unable to release memory. I

db cr.lf
msgl_length equ $-msgl

msg2 db cr.1f
db 'EXEC of COMMAND.COM failed. I

db cr.lf
msg2_length equ $-msg2

msg3

100

db
db

cr.lf
'No COMSPEC variable in environment. I

The EXEC Function---------------------

Listing 5.3 (cont'd)

db cr.lf
msg3_length equ $-msg3

cls str db escape. I [2J 1

cl~_str_length equ $-cls_str
j ANSI escape sequence

to clear the screen

fcbl

fcb2

dw
dd
dd
dd

db
db
db

db
db
db

o
cmd tai 1

fcbl
fcb2

o
11 dup (I I)
25 dup (0)

o
11 dup (I I)
25 dup (0)

EXEC parameter block
environment segment
conmand line
file control block #1
file control block #2

file control block #1

file control block #2

stkseg
stkptr

dw
dw

OJ original SS contents
o j original SP contents

DATA ends

end shell

101

MS-DOS System Programming _

The SHELL program is table driven and can easily be extended to provide
a powerful customized user interface for almost any application. When
SHELL takes control of the system, it displays the prompt

sh:

and waits for input from the user. After the user types a line terminated by
a carriage return, SHELL tries to match the first token in the line against its
table of internal (intrinsic) commands. If it finds a match, it calls the
appropriate subroutine. If it does not find a match, it calls the MS-DOS EXEC
function and passes the user's input to COMMAND. COM with the IC switch,
essentially using COMMAND. COM as a transient command processor under its
own control.

As supplied in these listings, SHELL IIknows" exactly three internal
commands:

Conrnand

CLS

DOS

EXIT

Action

Uses the ANSI standard control sequence to clear
the d;splay screen and home the cursor.

Runs a copy of COMMAND.COM.

Ex;ts SHELL. return;ng control of the system to the
next lower command ;nterpreter.

You can quickly add new intrinsic commands to either the C version or the
assembly-language version of SHELL. Simply code a procedure with the
appropriate action and insert the name of that procedure, along with the
text string that defines the command, into the table COMMANDS. In
addition, you can easily prevent SHELL from passing certain "dangerous"
commands (such as MKDIR or ERASE) to COMMAND. COM simply by putting the
names of the commands to be screened out into the intrinsic command table
with the address of a subroutine that prints an error message.

102

The EXEC Function--------------------

To summarize, the basic flow of both versions of the SHELL program is
as follows:

1. The program calls MS-DOS Int 21H Function 4AH. (Resize Memory
Block) to shrink its memory allocation, so that the maximum possible
space will be available for COMMAND. COM if it is run as an overlay. (This
is explicit in the assembly-language version only. To keep the example
code simple, the number ~f paragraphs to be reserved is coded as a
generous literal value, rather than being figured out at runtime from
the size and location of the various program segments.)

2. The program searches the environment for the COMSPEC variable,
which defines the location of an executable copy of COMMAND. COM. If
it can't find the COMSPEC variable, it prints an error message and exits.

3. The program puts the address of its own handler in the Ctrl-C vector
(Int 23H) so that it won't lose control if the user enters a Ctrl-C or a
Ctrl-Break.

4. The program issues a prompt to the standard output device.

S. The program reads a buffered line from the standard input device
to get the user's command.

6. The program matches the first blank-delimited token in the line against
its table of intrinsic commands. If it finds a match, it executes the
associated procedure.

7. If the program does not find a match in the table of intrinsic commands,
it synthesizes a command-line tail by appending the user's input to the
IC switch and then EXECs a copy of COMMAND. COM, passing the address
of the synthesized command tail in the EXEC parameter block.

8. The program repeats steps 4 through 7 until the user enters the
command EXIT, which is one of the intrinsic commands, and which
causes SHELL to terminate execution.

In its present form, SHELL allows COMMAND. COM to inherit a full copy of
the current environment. However, in some applications it may be helpful,
or safer, to pass a modified copy of the environment block so that the
secondary copy of COMMAND. COM will not have access to certain information.

103

MS-DOS System Programming _

Using EXEC To Load Overlays
loading overlays with the EXEC function is much less complex than using

EXEC to run another program. The overlay can be constructed as either a
memory image (. COM) or relocatable (. EX£) file and need not be the same
type as the program that loads it. The main program, called the root segment,
must carry out the following steps to load and execute an overlay:

1. Make a memory block available to receive the overlay. The program
that calls EX~C must own the memory block for the overlay.

2. Set up the overlay parameter block to be passed to the EXEC
function. This block contains the segment address of the block that
will receive the overlay, plus a segment relocation value to be applied
to the contents of the overlay file (if it is a •EXE file). These are normally
the same value.

3. Call the MS-DOS EXEC function to load the overlay by issuing an Int
21H with the registers set up as follows:

AH =4BH
AL = 03H (EXEC subfunction to load overlay)
DS:DX =segment:offset of overlay file pathname
ES:BX = segment:offset of overlay parameter block

Upon return from the EXEC function, the carry flag is clear if the overlay
was found and loaded. The carry flag is set if the file could not be found or
if some other error occurred.

4. Execute the code within the overlay by transferring to it with a far
call. The overlay should be designed so that either the entry point or
a pointer to the entry point is at the beginning of the module after it
is loaded. This technique allows you to maintain the root and overlay
modules separately, because the root module does not contain any
"magical" .knowledge of addresses within the overlay segment.

To prevent users from inadvertently running an overlay directly from the
command line, you should assign overlay files an extension other than • COM
or •EXE. It is most convenient to relate overlays to their root segment by
assigning them the same filename but a different extension, such as •OVL or
.OVl, .OV2, and so on.

listing 5.4 shows the use of EXEC to load and execute an overlay.

104

The EXEC Function----------------------

Listing 5.4 A code skeleton for loading and executing an overlay with the
EXEC function. The overlay file may be in either
•COM or •EXE format.

moy
moy
int
jc

moy
moy

bxDIOOOh
ah D48h
21h
error

pars.ax
pars+2.ax

allocate memory for overlay
get 64 KB (4096 paragraphs)
function 48h = allocate block
transfer to MS-DOS
jump if allocation failed

set load address for oyerlay
set relocation segment for overlay

moy word ptr entry+2.ax
set segment of entry point

moy
moy

moy
moy

moy
moy
moy
int

moy
moy
moy

cli
moy
moy

stkseg .ss
stkptr.sp

axDds
esDax

dxDoffset oname
bxpoffset pars
aXJ)4b03h
21h

aXp_DATA
dSJ)ax
eSJ)ax

ss.stkseg
sp.stkptr

saye root's stack pointer

set ES = OS

DS:DX = oyerlay pathname
ES:BX = parameter block
function 4bh. subfunction 03h
transfer to MS-DOS

make our data segment
i addressable again

(for bug in some early 8088s)
restore stack pointer

105

MS-DOS System Programming _

Listing 5.4 (cont'd)

sti

jc

push
call
pop

error

ds
dword ptr entry
ds

(for bug in some early 8088s)

jump if EXEC failed

otherwise EXEC succeeded •••
save our data segment
now call the overlay
restore our data segment

oname db I OVERLAY .OVL I ,0 pathname of overlay file

pars dw 0 load address (segment) for file
dw 0 relocation (segment) for file

entry dd 0 entry point for overlay

stkseg dw 0 save 55 register
stkptr dw 0 save 5P register

106

PC Interrupt-Driven Serial I/O
Philip frdelsky

Serial Ports
Most IBM PCs and compatibles have at least one serial port; many have

two or more. A serial port also goes under several other names: it may be
called an asynchronous communications port, a UART (Universal
Asynchronous Receiver and Transmitter) or an RS-232 port.

Some serial ports are used to drive printers, but on PC clones serial ports
are more commonly used for communication, usually through a modem. An
internal modem is actually a serial port and modem on a single card, and is
accessed by the computer just like a serial port. Some kind of communication
software (at the very least a terminal emulation program) is required to use
a serial port for communication.

Writing a simple terminal emulation program seems easy. Just take
keyboard input and pass it to the serial port output, take serial port input
and pass it to the screen. Just for good measure, save all serial port input to
a disk file so it can be reviewed and edited later. Finally, if the program is
not to remain permanently memory-resident, it must look for some special
key combination (such as Alt-X) and terminate when it appears. This is
basically what the accompanying TERMEMUL program (listing 6.1) does,
although a sophisticated programming technique called interrupt-driven I/O
is required to make it work.

107

MS-DOS System Programming _

Why Interrupt-Driven I/O Is Needed
Unfortunately, the BIOS interface to the serial ports (INT I4H) and the

DOS interface (COMI, COM2, COM3, and COM4) have long been regarded as
inadequate for communications. These routines were apparently designed
for printers. They use polling, not interrupts, to determine when input has
been received and when the serial port is ready to accept output This
reliance on polling is a serious shortcoming, especially for input, which may
be missed if it arrives while the program is occupied with other tasks, such
as disk or screen operations. Since most programs have other things to do
besides waiting for input from the serial port, they must either:

• use interrupts, allowing them to wait for and accept input while
doing other things, or

• use hardware or software handshaking stop the input while. they
attend to other things, or

• rely on the device at the other end to keep its output rate safely
below the program's input capacity.

Even a simple terminal emulation program, if written without interrupts
or handshaking, will often lose characters that arrive while the screen display
is scrolling. (Some dial-up services send a few NUL characters at the end of
each line to allow time for scrolling .)

Hardware handshaking involves the use of the RTS, CTS, DSR and DTR
signals. All serial port connectors have pins for these signals, but not all serial
cables have wires for them. When communication is by modem, these
signals are not available. A typical telephone line has only two wires.

Software handshaking (also called XON/XOFF protocol) requires nothing
beyond the bare minimum of connectors and cables, but it does require the
cooperation of the device at the other end of the communication channel.
Software handshaking works just like a standard screen display; type (or
send) a Ctrl-S to stop; type (or send) a Ctrl-Q to resume. Actually, for a
communication program it is a little more complicated: send a Ctrl-S, wait
for the input to stop (there may have been a few characters in the pipeline),
waita little longer to makesure the input has stopped, and then do something
else. A terminal emulation program that relies on only XON-XOFF control

108

would have to invoke handshaking at the end of almost every line, to allow
time for scrolling.

In theory, it is always possible to replace interrupt-driven I/O by polled
I/O, provided the complete program is written this way. However, PC
application programs are not complete; they share some of the computing
load with DOS .and the BIOS, which were written without regard for the
special needs of applications. Interrupt-driven I/O allows an application to
reach into the DOS and BIOS and do some I/O processing even if an external
event occurs while DOS or BIOS code is running.

How Interrupts Work
When it has been installed and configured to do so, an external device

can interrupt the CPU by sending a signal on one of eight interrupt request
(IRQ) lines. Th.e signal is routed through a programmable interrupt controller
(Plq, which passes the interrupt to the CPU only if the corresponding bit in
the PIC's Interrupt Disable Register (at I/O address 2IN) has been cleared to
zero. If the interrupt-enable bit in the CPU flag register is set, the interrupt
is hon"ored immediately; otherwise, the interrupt is stored (but not lost) until
the bit is set. When the interrupt is honored, the CPU acts as though the
next instruction were an INT instruction; that is, it pushes the flag register
and the address of the next instruction onto the stack, clears the interrupt
enable bit to prevent further interrupts, and then starts executing an interrupt
handler whose starting address is taken from an interrupt vector. IRQ lines
o to 7 are assigned to interrupt vectors 8 through 15, respectively.

An interrupt vector may be set with this DOS system call:
AH = 25H
AL = interrupt vector number
DS:DX = starting address of Interrupt Handler
INT 21H

Since an application should restore an interrupt vector upon termination,
there is also a DOS system call to read an interrupt vector:

109

MS-DOS System Programming _

AH =35H
AL =interrupt vector number
INT 21H
returns with ES:BX = starting address of Interrupt Handler

A general assembly language interrupt handler looks something like the
one in Figure 6.1. Since the interrupt may occur at any time, the interrupt
handler must preserve all register values. The handler must service the
interrupt according to the requirements of the device that generated it, and
then send an ~nd-of-interrupt signal (20H) to the PIC (at address 20H). Finally,
the handler must restore all the registers and return to the interrupted code
with an [RET instruction. It is not necessary to save and restore the flag
register because that is done automatically.

An important consideration in interrupt programming is the interrupt
latency time, which is the delay from the time the interrupt signal is received
by the CPU until the time it is serviced. If several interrupt handlers run with
interrupts disabled, as most do, the worst-case interrupt latency will be the

Figure 6.1 Fonn of an intermpt handler for an external device interrupt

IHAND PRoe FAR
PUSH AX
PUSH BX
PUSH ex
PUSH ox
PUSH SI
PUSH 01
PUSH BP
PUSH OS
PUSH ES
<device-specific operations>
POP ES
POP OS
POP BP
POP 01
POP SI
POP OX
POP ex
POP BX
MOV AL.20H
OUT 20H.AL
POP AX
IRET

IHAND ENDP

110

sum of their individual latencies. If some interrupt handlers allow themselves
to be interrupted (by setting the interrupt-enable bitwith an STI instruction),
the worst-case latency is reduced, but then their combined stack require
ments may lead to stack overflow, unless each interrupt handler switches to

its own stack.

On an AT system, there are eight additional IRQ lines, numbered from
8 to 15, that are assigned to interrupt vectors 112 to 119, respectively. These
lines feed to a second PIC, whose interrupt mask register is at I/O address
AIH (the interrupts are actually passed through IRQ number 2 in the first
PIC, but the BIOS takes care of those details).

Interrupt Handling In The Terminal Emulator
The TERMEMUL program, like more sophisticated communication

programs, bypasses both DOS and the BIOS and accesses the serial port
. directly so it can use interrupts. The program maintains two FIFO buffers,
one for input and one for output. These are /Iring" buffers, because the
modular arithmetic used for their indices makes them effectively circular.
The program was written in Turbo Pascal, v5.0, a high-level language with
good access to low-level features such as interrupts, hardware I/O opera

tions, and bitwise operations on integers.

Input is fairly straightforward. When a character arrives through the serial
port, an interrupt is generated and the interrupt handler puts it into the input
buffer. The main program takes characters from the buffer, displays them
on the screen and saves them in an optional disk file (whose specifications
were typed on the command line). Some characters take longer to display
than others. A line feed, for example, takes a relatively long time if the screen
needs to be scrolled. During a scroll, a few characters after the line feed will

accumulate in the buffer. If the program is also saving characters in a disk
file, a fairly large buffer will be needed to hold all the characters that arrive
while the program is writing to the disk file.

If the input buffer is full when another character is received, the interrupt
handler sets the Overflow flag and discards the character. A more sophisti
cated version of TERMEMUL would probably take some additional action in
this case, such as invoking either hardware or software handshaking or
notifying the operator in some manner.

111

MS-DOS System Programming _

Output is very similar. The main program accepts characters from the
PC keyboard and puts them into the output buffer. The interrupt handler
sends them out when the serial port generates an interrupt to tell the CPU
that it is ready to send a character. However, there is one little complication.
The serial port generates an interrupt only after it has finished sending the
previous character. Hence the first character in a series has to be sent by the
main program. Subsequent characters are sent by the interrupt handler, as
long as the main program puts characters into the output buffer fast enough
to keep the buffer from emptying. When an interrupt occurs and the buffer
is empty, the situation reverts to to its initial state.

Advantages Of Output Buffering
As long as characters are accepted only from the keyboard, buffering

serial output is actually gilding the lily. The DOS and BIOS keyboard input
interface is interrupt-driven, and it uses a FIFO buffer. If the operator
somehow manages to type a few characters faster than the serial port can
transmit them, the keyboard buffer could hold them even if there were no
serial output buffer. Nevertheless, output buffering is included for purposes
of illustration.

If the program is modified to allow the contents of a disk file to be sent
directly to the serial port, output bufferingwill greatly improve the program's
efficiency, provided the output buffer is at least as large as the file system's
input buffer. Since disk files can be read faster than they can be sent through
a serial port, the program will sometimes find the output buffer full and will
have to wait until some room appears in it. However, when it returns to the
file system for more data, it will generally leave a full output buffer that the
interrupt handler can transmit while DOS is reading more information from
the disk file. It is this parallel operation that produces the efficiency
enhancement.

Timing Problems
The interaction between the main program and the interrupt handler

illustrates a basic principle of multitasking called mutual exclusion. Two tasks
that run in parallel, such as the interrupt handler and the main program in
TERMEMUL, must be prevented from accessing a common data structure such
as OutBuffer at the same time. Even simple operations like incrementing

112

and decrementing a counter may not work if the two operations are
interleaved. For example, suppose Count contains 2. After the main program
increments it and the interrupt handler decrements it, the result should be
2; but look what happens when temporary registers are used and the
operations are interleaved:

main program

Count -> Regl

Regl+l -> Regl
Regl -> Count

Interrupt Handler

Count -> Reg2
Reg2-l -> Reg2
Reg2 -> Count

Count

2
2

2
1
1
3

Of course, this cannot happen if the operations are implemented in single,
indivisible instructions; but compilers seldom generate such instructions for
these operations. In TERMEMUL the variable Index and the internal state of
the serial port are also involved. These "synchronization" errors are likely to
be very intermittent, because they occur only when an interrupt occurs
during the few microseconds spanned by a critical period.

Therefore, the main program must disable interrupts while it is putting
a character into the output buffer or taking a character out of the input
buffer. Otherwise, the program would generate some rare and mysterious
errors that would probably be blamed incorrectly on the hardware.

There is one rare type of hardware failure for which the TERMEMUL
program makes no allowance. Glitches happen, and interrupts that are
supposed to occur are sometimes missed. In the case of input interrupts, the
result is a single missed character, which is not especially serious. In the case
of output interrupts, however, the interrupt handler would never send
another character to the serial port. The output buffer would eventually fill
up. In the TERMEMUL program the only escape is to terminate and then restart
the program, which is probably an adequate remedy in that situation.
However, designers of large systems do (or should) implement timouts to
deal with missed interrupts.

113

MS-DOS System Programming _

Figure 6.2

address

Base
Base+2
Base+5
Base+6

address

Base
Base+l
Base
Base+l
Base+3
Base+4

I/O addresses of serial port registers relative
to the base address.

input register

received data
interrupt identification
line status
modem status

output register

transmitted data
interrupt enable
LS byte of baud rate count
MS byte of baud rate count
line control (and baud rate count selection)
modem control

Details Of The Serial Port Interface
Now for a bit-by-bit description of the interface between the CPU and

the serial port. This interface has remained unchanged for years, probably
to maintain compatibility with communication software that accesses serial
ports directly.

The Serial Port Registers
Each serial port has six registers that can be written by CPU output

instructions and four registers that can be read by CPU input instructions.
When configured to do so, a serial port can generate a single interrupt on
one of the interrupt request (IRQ) lines. The interface is determined by two
quantities, which can usually be selected by jumpers or switches:

• the base I/O address, which is 3FBH for COMI and 2FBH for COM2, and
• the interrupt request (IRQ) line number, which is 4 for COMI and 3

for COM2.

The accompanying program can easily be modified to accommodate
other choices by changing the constants Base and IRQ. The serial port uses
a range of seven consecutive I/O addresses, starting with the base address.
Obviously these addresses must not overlap the range of any other installed
I/O device.

The registers are as shown in Figure 6.2.

114

Figure 6.3 The Line Control Register (address = Base+3).
bit 7 eMS) g 1: select baud rate count registers

bit 6 = 1: send break signal

bits 5,4,3 = 000 no parity
bits 5,4,3 gOal odd parity
bits 5,4,3 g 010 no parity
bits 5,4,3 g 011 even parity
bits 5,4,3 a 100 no parity
bits 5,4,3 a 101 parity bit always 1
bits 5,4,3 a 110 no parity
bits 5,4,3 a 111 parity bit always a

bit 2 a 0: 1 stop bit
bit 2 = 1: 1.5 stop bits if 5 data bitsj 2 stop bits otherwise

bit 1,0 aDO: 5 data bits
bit 1,0 = 01: 6 data bits
bit 1,0 =10: 7 data bits
bit 1,0 = 11: 8 data bits

Setting The Interrupt Vector
The program's first task is to set the interrupt vector. If the program is to

terminate and return to DOS, the interruptvector must be saved and restored
upon termination. Otherwise a serial port interrupt that occurs after termina
tion will be vectored to an interrupt handler that may no longer be in
memory. The result is almost always a system crash. In the standard PC
system, IRQ numbers 0 to 7 are assigned to interrupt vectors 8 to 15,
respectively. An AT system also possesses IRQ numbers 8 to 15, which are
assigned to interrupt vectors 112 to 119, respectively, by the BIOS.

Initializing The Serial Port
Next, the program must initialize the serial port. Interrupts should be

disabled during this process to prevent serial port interrupts while the serial
port is partially initialized.

First, the program writes BOH to the Line Control Register to select the
baud rate count registers. Then the program forms the baud rate count,
which is a 16-bit quotient 115200/BaudRate, and writes it to the two Baud
Rate Count Registers.

115

MS-DOS System Programming _

The program then writes an appropriate value to the Line Control
Register to set the parity, stop bits and data bits, and also to deselect the
Baud Rate Count Registers. The format of the Line Control Register is shown
in Figure 6.3.

Next the program initializes the Modem Control Register (Figure 6.4).
The two signals RTS and DTS are used for hardware handshaking. Set both
to 1 when hardware handshaking is not used.

By setting bit 3 of the Modem Control Register, the program has not
actually enabled interrupts. It has merely opened the first of several doors
through which the interrupt signal must pass. The serial port is capable of
interrupting on any of four conditions. To specify which are to cause
interrupts, the program must write to the Interrupt Enable Register, whose
format is shown in Figure 6.5.

All four conditions can also be detected by. polling the appropriate bits
in the Line Status Register or the Modem Status Register (Figure 6.6 and
Figure 6.7). Finally, the program should read the Received Character Register

Figure 6.4 The Modem Control Register (address = Base+4).
bits 7 (MS), 6, 5: unused

bit 4 = 1: enable loopback test (output is echoed back to input)

bit 3 = 1: enable interrupts

bit 2: unused

bit 1: RTS (request to send) signal

bit 0: OTR (data terminal ready) signal

Figure 6.5 The Interrupt Enable Register (address = Base +1).

bits 7 (MS), 6, 5, 4: unused

bit 3 = 1: interrupt when the modem status changes

bit 2 = 1: interrupt upon error or break condition in input

bit 1 = 1: interrupt when ready to send a character

bit 0 = 1: interrupt when a character is received

116

to remove any nonsense left by the previous user. (Always rinse the cup out
before drinking from it.)

The serial port is now fully configured, but any interrupts it generates
must pass through the PIC (programmable interrupt controller), which has
its own Interrupt Disable Register at I/O address 21H. The bit corresponding
to the IRQ being used by the serial port must be cleared to enable the
interrupt. Other bits must be left unchanged to avoid interfering with other
interrupt-driven devices. Fortunately, the register can be read or written, so
this is easy.

If the serial port is using one of IRQ numbers 8 to 15 on an AT system,
the interrupt must pass through a second PIC with Interrupt Disable Register
at AIH.

Figure 6.6 The Line Status Register (address = Base+5).

bit 6 a 1: transmitter shift register empty

bit 5 g 1: ready to send a character (TXRDY)

bit 4 g 1: break signal detected

bit 3 a 1: framing error

bit 2 = 1: parity error

bit 1 = 1: overrun error

bit 0 =1: a character has been received (RXRDY)

Figure 6.7 The Modem Status Register (address = Base+6).
bit 7 (MS) a 1: carrier tone detected by attached modem

bit 6 = 1: (telephone) ringing detected by attached modem

bit 5 = 1: DSR (data set ready) - used for hardware handshaking

bit 4 = 1: CTS (clear to send) - used for hardware handshaking

bit 3 =1: there has been a change in bit 7

bit 2 =1: there has been a change in bit 6

bit 1 =1: there has been a change in bit 5

bit 0 a 1: there has been a change in bit 4

117

MS-DOS System Programming _

Special Interrupt Techniques For Serial Ports
When an interrupt occurs, the interrupt handler must read the Interrupt

Identification Register to see which condition produced the interrupt The
format of this register is shown in Figure 6.8.

Even if only one interrupt condition has been specified, the interrupt
handler must read the Interrupt Identification Register to reset the interrupt
logic and make the next interrupt possible.

If two or more interrupt conditions have been enabled, as in the accom
panying program, the interrupt handler must read the Interrupt Identification
Register repeatedly and service all interrupt conditions that appear in it This is
necessary because if two or more interrupt conditions occur nearly simul
taneously, they may generate only one interrupt Interrupt conditions are
supposed to be presented in the order indicated in Figure 6.8.

Also, to ensure continued interrupts when the same condition occurs
again, and to prevent further interrupts until the same condition occurs again,
the interrupt handler or the main program must reset the interrupt by reading
or writing the appropriate register as follows:

interrupt condition

change in modem status
ready to send next character
character has been received
error or break condition

action to reset interrupt

read Modem Status Register
write Transmitted Data Register
read Received Data Register
read Line Status Register

Figure 6.8 The Interrupt Identification Register (address = Base+2).

bit 7 (MS), 6, 5, 4, 3: not used

bits 2,1 = 00: change in modem status (presented last)
bits 2,1 = 01: ready to send next character
bits 2,1 = 10: character has been received
bits 2,1 = 11: error or break condition detected (presented first)

bit 0 = 1: no interrupts pending

118

_________________pc Interrupt-Driven Serial va

The interrupt handler in TERMEMUL has been defensively written. It does not
assume that both interrupt conditions, if present, will be presented in the
specified order. Even though reading the Interrupt Identification Register
should be sufficient to identify the interrupt, in some cases it apparently is
not, so the interrupt handler also reads the Line Status Register. Finally, to
prevent a system lockup if the serial port fails to set bit 0 when all interrupt
conditions have been serviced, it reads the Interrupt Identification Register
at most three times.

Most of these difficulties could be eliminated if only a single interrupt
condition is enabled at a time. Indeed, this is usually the recommended
practice. The TERMEMUL program works quite well with interrupt-driven
buffering only on input. Output buffering is recommended only when
uploading a file, and in that case input buffering is unnecessary. Input
buffering can be eliminated by clearing the flag OutputBujjering
Imp lemented.

Keyboard And Screen Access
The TERMEMUL program gets its keyboard input through DOS, which splits

the codes for function keys and other special keys into two-character
sequences, the first of which is zero. The Key function in the TERMEMUL
program puts them back together, and the main program ignores all of them
except Alt-X, but it could be modified to make good use of other special
keys. This process is rather slow and inefficient, but entirely adequate for
input at finger speed.

The TERMEMUL program uses the standard Write function for screen
output, modifying it only by screening out ASCII nu II s, which communica
tion programs should ignore butwhich the Wri te function displays as spaces.
Wri te's speed is adequate in many cases, but may be inadequate when
communicating at high baud rates on slow machines. Also, Wri te terminates
the program when a Break signal (Ctrl-NumLock on most keyboards) has
been typed, and leaves the interrupt vector pointing to an interrupt handler
that does not stay resident. To avoid these problems, more sophisticated
communications programs bypass the BIOS and access the screen directly.

119

MS-DOS System Programming _

Listing 6.1

program TERM~L;

uses Crt, Dos;

const

InputBufferSfze m 1024; { must be power of 2
OutputBufferSize = 256; { must be power of 2
BaudRate lOa 1200;
DataBits ::I 8;
Parity ::I 0; { O=none, l c odd, 3=even
StopBits a 1;
Base ::I $2F8; { $3F8=COM1, $2F8=C0M2 }
IRQ m 3; { 4a COM1, 3=C0M2 }
OutputBufferfngImplemented = true;

type

InputBufferType ::I record
Chars: array[O•• InputBufferSize-l] of char;
Count, Index : integer;
Overflow : boolean;

end;

OutputBufferType = record
Chars: array[O••OutputBufferSize-l] of char;
Count, Index : integer;
Overflow : boolean;

end;

var

InputBuffer : InputBufferType;
OutputBuffer : OutputBufferType;
SavedInterruptVector : pointer;
InterruptVectorNumber : integer;
InChar : char;
OutChar : integer;
LogFile : text;
Logging : boolean;

procedure InterruptHandler;
interrupt;
var

InterruptIdentification Byte;
LineStatus : Byte;
Ch : Byte;
LoopCount : integer;

begin
LoopCount := 0;
repeat

InterruptIdentification := Port[Base+2] and 7;
LineStatus := Port[Base+5];

120

Listing 6.1 (cont'd)

if (InterruptIdentification = 4) or ((LineStatus and 1) <> 0) then
with InputBuffer do
begin

Ch := Port [Base] ;
if Count < InputBufferSize then

begin
Chars[Index] := Chr(Ch);
Index := (Index+1) and (InputBufferSize-l);
Count := Count+1;

end
else

Overflow := true;
end.
if (InterruptIdentification = 2) or ((LineStatus and $20) <> 0) then
with OutputBuffer do
begin

if Count> 0 then
begin

Port[Base] := Ord(Chars[Index]);
Index := (Index+1) and (OutputBufferSize-1);
Count := Count-1;

end
else Count := -1;

end;
LoopCount := LoopCount+1.

until ((InterruptIdentification and 1) = 1) or (LoopCount = 3);
if IRQ<8 then Port[$20] := $20; { reset PIC }

end;

function Key : integer;
var

k : char;
begin

Key := 0;
if KeyPressed then
begin

k := ReadKey;
if k = #0 then

Key := 256+ord(ReadKey)
else

Key := ord(k);
end;

end;

procedure DisableInterrupts; inline($FA);
procedure EnableInterruptsi inline($FB)i

begin

if ParamCount >0 then
begin

Assign(LogFile. ParamStr(l»;
Rewrite(LogFile);
Logging :1:1 true;

end

121

MS-DOS System Programming _

Listing 6.1 (cont'd)
else Logging := false;
InputBuffer.Count := 0;
InputBuffer.Index := 0;
InputBuffer.Overflow := false;
OutputBuffer.Count := -1;
OutputBuffer.Index := 0;
OutputBuffer.Overflow := false;
if IRQ<8 then InterruptVectorNumber := IRQ+8
else InterruptVectorNumber := IRQ+112;
GetIntVec(InterruptVectorNumber, SavedInterruptVector);
SetIntVec(InterruptVectorNumber, @InterruptHandler);
OisableInterrupts;
Port[Base+3] := $80j {select baud rate count registers }
Port[Base] := (115200 div BaudRate) and $FF;
Port[Base+l] := (115200 div BaudRate) div 256;
Port[Base+3] := Parity*8 + (StopBits-l)*4 + (OataBits-5)i
Port[Base+4] := 8+3j { enable interrupts, set RTS and OTR }
Port[Base+l] := 3; { define interrupt conditions }
OutChar := Port[Base]i { clean out Received Data Register}
if IRQ<8 then {enable interrupt via PIC }

Port[$21] := Port[$21] and ($FF-(1 shl IRQ»
else

Port[$Al] := Port[$Al] and ($FF-(1 shl (IRQ-8»);
EnableInterrupts;
OutChar := OJ

repeat

if OutChar = a then OutChar := Key;

if (O<OutChar) and (OutChar<127) then
begin

if OutputBufferinglmplemented then
with OutputBuffer do
begin

DisableInterruptsi
if Count = OutputBufferSize then Overflow := true
else
begin

if Count = -1 then Port[Base] := OutChar
else Chars[(Index+Count) and (OutputBufferSize-l)] := Chr(OutChar)i
Count := Count+li

endj
EnableInterruptsi
OutChar := 0;

end
else if (Port[Base+5] and $20) <> a then
begin

Port[Base] := OutChari
OutChar := OJ

endi
end;

122

___________________pc Interrupt-Driven Serial I/O

Listing 6.1 (cont'd)

with InputBuffer do if Count> a then
begin

OisableInterrupts;
InChar := Chars[(Index-Count) and (InputBufferSfze-l)];
Count := Count-I;
EnableInterrupts;
if InChar <> 10 then
begin

Write(InChar);
if Logging then Write(LogFile. InChar);

end;
end;

until OutChar = 301 {Alt-X};

Port[Base+4] := 0; { disable interrupts. clear RTS and OTR }
SetIntVec(InterruptVectorNumber. SavedInterruptVector);

{ restore interrupt vector}
if IRQ<8 then { restore PIC

Port[$21] := Port[$21] or (1 shl IRQ)
else

Port[$Al] := Port[$Al] or (1 shl (IRQ-B»;
if Logging then Close(LogFile);

end.

123

MS-DOS System Programming _

124

A Programmer's Bibliography
Harold C. Ogg

In attempts to coax the last ounce of power from a C language or
assembly language routine, PC programmers often overlook the hidden
powers of the foundation of their labors - the Disk Operating System.
Whether it be MS-DOS or PC-DOS, DOS has inherent powers and talents
that require only the knowledge of their existences to unlock a potential that
is relatively free for the taking. .

Perhaps it is best to think of MS-DOS as a language. Indeed, its features
can be unleashed with batch files (simple or extensive), and its system calls
are dormant only to those who would not take advantage of the various
interrupts and service routines via coded subroutines. The knowledge is
available to those who would read and study; this bibliography purports to
provide a library foundation for those who actively pursue the offerings of
this best-selling operating system.

Even for those who would not use MS-DOS as a tool in itself, a thorough
knowledge of its anatomy is essential for tapping the full potential from
applications and utility programs. Many software packages insist on "version
2.1 or higher," and more and more of the newer programs require DOS
v3.0 or better. This is particularly true for networkable programs, which
demand version 3.1. ~t is said that "the person who knows not of foreign
languages knows nothing of his own." The same could be said of MS-DOS,
and this reading list should render MS-DOS a little less "foreign."

This bibliography is not all-inclusive, and it reviews no journals. Further
more, the listing of a particular book does not imply endorsement of its

125

MS-DOS System Programming _

contents. However, all these booksare aimed at power users and developers.
Consumer-oriented publications and beginner level manuals are deliberate
ly omitted, hopefully, to leave the serious programmer with a point of
departure for developing a personal library of professional MS-DOS litera
ture. The degree of value of any individual work will be left with the reader.
There is a trend in computer book publishing to issue everything in paper
back (noted as "paper" in the following list). This keeps the price down, but
makes a book vulnerable to wear in cases of repeated use. If you are going
to use a particular book as a reference tool, spend an extra five dollars and
have it hardbound.

Take a moment also to examine the title page. The computer book
publishing industry, like the PC technology itself, is volatile. Many books are
issued as new editions each year, and most of them logically follow the
issuance of new versions of DOS. You'll pay a dollar or two more for the
latest edition, but you're buying insurance that the book is in sync with the
latest DOS on the market Even so, don't ignore the older editions if you're
bargain shopping; there are many good values to be found on bookstores'
remainder tables.

Some of the titles include a program or utility disk as part of the cover
price. Others offer a supplementary disk, which generally must be mail
ordered from the publisher. The latter are noted in the bibliography by
"companion disk available."

II Alonso, Robert. QuickC DOS Utilities. New York: Wiley, 1988. Paper,
258 pages, $19.95.

While the more advanced developmental programmer may prefer the
power of one of the standard compilers, QuickC DOS Utilities melds nicely
with persons wishing to hone their skills in a more user-friendly setting. The
manual contains material on directory, file, and printer utilities to be used
directly in the QuickC programming environment and a considerable
discussion of routines applicable to computer security and performance. The
book is a worthy springboard to more involved coding.

II Alperson, Burton L. The Fully Powered pc. New York: Brady, 1988.
Revised edition. Paper, 641 pages, $39.95 (includes two 5 1/411 disks).

126

With the necessary emphasis on DOS, the text presents utilities and
instructional methodologies for customizing a personal computer to run
faster and to automate some program tasks. Features batch file operations,
memory management, and macro processing. Required to run utilities: 640K
RAM, dual 360K floppy drives or one 360K floppy/one hard drive, MS-DOS
or PC-DOS version 3.0 or greater, Prokey or Smartkey (optional), and a
PC/Xf/AT/PS/2 or compatible machine.

II Angermeyer, John... [et al.]. The Waite Group's MS-DOS Developer's
Guide. Indianapolis: Howard Sams & Company, 1988. Second edition.
Paper, 783 pages, $24.95.

The previous edition was published as The MS-DOS Developer's Guide.
The focus in this edition is on structured, modular DOS programming. There
are included many of the usual topics found in advanced MS-DOS books,
written with a more sophisticated slant which should be appreciated by the
serious programmer. Discussed are: TSR programs, serial port interfacing,
the writing of installab~edevice drivers, graphics programming (emphasizing
EGA and VGA screens), and expanded (EMS) memory management. The
not-so-usual is here, too: real time programming, programming the Intel
Numeric Processing Extension, accessing undocumented interrupts and
DOS functions, and recovering data lost in memory. Includes a generous
amount of material on the difference between MS-DOS versions.

• Angermeyer, John, Fahringer... [et aI.] (a.k.a. The Waite Group). Tricks
of the MS-DOS Masters. Indianapolis: Howard Sams & Company, 1987.
Paper, 542 pages, $24.95.

Presents out-of-the-ordinary methodologies to coax ultimate perfor
mance from MS-DOS. Topics include: tree-structured Wizardry for quicker
directory accesses, screen manipulations, and the entering of control char
acters into text files. Also includes use of DEBUG, add-on software, and
accessory boards for maximum benefit of the operating system.

II Bursch, Davud D. DOS Customized: Create Your Own DOS Commands
for the IBM PC, XT, AT and Compatibles. New York: Brady, 1987. Revised
edition. Paper, 326 pages, $19.95.

The previous edition was published as PC-DOS Customized. This text
allows the user to invoke a specific powerup sequence of screen colors and

127

MS-DOS System Programming _

user-defined function keys. It also instructs how to enable one DOS com
mand to call a second without utilizing version 3.3's CAll structure. There
is also material for building your own menu system and a DOS shell that
bypasses the DOS prompt. Considerable emphasis is on parameter passing.
Special features incude the creation of interactive commands that can accept
user input, the writing of new directory commands, and use of the environ
ment to create a PC security system. The latter allows building of user lists
and passwords, and allows the supervisor to manipulate users' privileges. A
generous amount of code examples are included, many in the form of DOS
batch files.

• campbell, Joe. C Programmer's Guide to Serial Communications. In
dianapolis: Howard Sams & Company, 1987. Paper, 655 pages, $24.95.

At first glance, this Guide might seem to offer "all things to all program
mers" on the subject of PC data communications. Given its depth of material
in RS-232 interfacing, modem protocols, the 8250!Z80 SID UART's, timing
functions and error detection - it may do just that! The DOS programmer
must first consider the "PC DOS Assembly language Interface" appendix to
be able to access the many C library code examples. From there, the C
programmer is shown the intricacies of Hayes/Smartmodem functions, the
details of XMODEM/CRC, and the fundamentals of modems in general. A
unique feature is the discussion of interfacing DOS machines to CP/M boxes.
Because of the gathering of material from many sources, the C Programmer's
Guide to Serial Communications is destined to become a classic.

II Chesley, Harry R. and Waite, Mitchell (a.k.a. The Waite Group).
Supercharging C With Assembly Language.' Reading, MA: Addison-Wesley
Publishing Company, 1987. Paper, 402 pages, $22.95.

It is often easier and more efficient to address MS-DOS interrupt calls
and ROM BIOS services by direct invocation of assembly code than by C
language subroutines. "How to do it" is a common request made of technical
support personnel, and Supercharging C with Assembly language has
spendidly reported many of the concerns. Chesley and Waite assume more
than a little reader sophistication; this isn't an assembly language guide for
beginners. Much initial emphasis is on calling conventions - each compiler
has its own "quirks." From there, discussion and examples are lent to very
technical subjects such as fractal geometry, asynchronous communication,

128

_________________A Programmer's Bibliography

direct screen addressing, and file encryption. The example code (Intel
8086-based) is fundamental and pragmatic, leaving the programmer to add
the bells and whistles. The illustrations are clear and informative. Any C
language programmer who uses MASM should keep this book within reach
at all times.

II Dettmann, Terry R. DOS Programmer's Reference. Carmel, IN: Que
Corp., 1989. Second edition (revised byJim Kyle). Paper, 892 pages, $27.95.

Includes both PC-DOS and MS-DOS. An encyclopedic reference which
details the DOS functions and utilities in a manner which assumes some
background knowledge on the part of the reader. In short, the book is a
compendium of technical information which would not necessarily be
understood by beginning or applications users, but which is invaluable to
the developmental programmer for its degree of detail. Uses a style and
format similar to Que Corporation's books on C language programming, and
is worthwhile for the degree of accuracy in its examples.

II DeVoney, Chris with Hale, Norman. DOS Tips, Tricks, and Traps.
Carmel, IN: Que Corp., 1989. Paper, 522 pages. $22.95.

The emphasis is on versions 3.3 and 4.0, both MS-DOS and PC-DOS.
As it is with many of Que's publications, this text has a definite hardware
slant. As such, it provides a unique approach to disk drive and memory
manipulation via DOS. This is the Year of the Advanced Batch File, and
DeVoney can't resist the temptation occasionally to use the medium.
Discussed are expanded and extended memory, in the context of llMulators,
expansion busses, and linear V5. real memory. Disk buffering routines,
cachers, and defragmenters are here, too. Also, data transfer rates, interleav
ing, shockproofing, and sophisticated disk backups are written up. Disk
maintenance is outlined as "troubleshooting physical damage." You'll also
find some useful end-of-day processes as well as some variations on the
CONFIG.SYS file, along with some classy device drivers.

II Duncan, Ray. Advanced MS-DOS Programming: The Microsoft Guide for
Assembly Language and C Programmers. Redmond, WA: Microsoft Press,
1988. Second edition. Paper, 669 pages, $24.95 (companion disk available
for $15.95).

129

MS-DOS System Programming _

Topics include: disk file and record operations, memory management,
the EXEC function, and the MS-DOS environment. Specializes in outlining
the Lotus-Intel-Microsoft (LIM) expanded memory specification, device
drivers, the ROM BIOS, and directory/file matters globally described as /ldisk
internals." More than a third of the book is a reference on MS-DOS
interrupts, including the INT67h EMS series, with code (assembler) examples
on the use of each. Utilities include a terminal emulation program, a DOS
shell, and a customized critical error interrupt handler.

II Duncan, Ray. The MS-DOS Encyclopedia. Redmond, WA: Microsoft
Press, 1988. 1,529 pages, $134.95; paper, $69.95.

A comprehensive and authoritative reference on MS-DOS commands,
directives, utilities, and systems calls. An annotated volume of technical
specifications, featuring C-callable, ,assembly language routines. All the user
commands are included, as are the function calls, with version specific
descriptions and usage information on each. Features system management,
interrupt handling, keyboard and ANSI.SYS control, and insurance of com
patibility of MS-DOS programs liable to be run under OS/2's real mode.
Exhaustive and authoritative.

II Duncan, Ray. MS-DOS Functions. Redmond, WA: Microsoft Press, 1988.
Paper, 122 pages, $5.95.

A ready reference (handbook) tool. Lists the DOS interrupt functions
and error codes, with appropriate (register) calling conventions. No sample
code segments are given, but supplemental information is footnoted where
warranted. Essential for system calls from assembly language.

II Forney, James. MS-DOS Beyond 640K: Working With Extended and
Expanded Memory. Blue Ridge Summit, PA: Windcrest, 1989. Paper, 235
pages, $19.95.

Exhaustive treatment of memory management, with emphasis on device
drivers and hardware descriptions. Surprisingly, the author did not include
much code; this is a book. to be studied for its richness of narratives and
diagrams. Details the LIM 3.2 and 4.0 standards, and describes the architec
ture of memory cards such as Intel's AboveBoard and AST's RAMpage. Some
of the book is tangential to EMS per se, but the departures are valuable: the
virtual control program interface (VCPI) is outlined, as are other DOS

130

extenders, hard disk interleaving, multitasking, and accelerator cards. DOS
4.X is considered in context of memory management, as are PC-MOS/386,
Concurrent DOS, and UNIX. The author's preference for extended memory
is subtle in this one-of-a-kind text.

• Gliedman, john. Tips and Techniques for Using Low-Cost and Public
Domain Software. New York: McGraw-Hili, 1989. Paper, 387 pages,
$24.95.

The title disguises the book's main contents. Herein lies an exhaustive
compendium of utility programs for MS-DOS enhancement. The focus is on
versions 2.XX and 3.XX, and there are descriptions of programs for keyboard
control, hard disk management, hardware speedups, file control/archiving,
mouse 'manipulation, multitasking, data communications, and protection
from Trojan horses and viruses. There is even some discussion on interfacing
CP/M and Z80 and V20 microprocessors. Not much sample code is
presented, however, and the programs described are not always free or
inexpensive. A valuable reference for unusual and often undetected
programs.

II Goodell, Thomas. DOS 4.0: Customizing the Shell. Portland, OR: MIS:
Press, 1989. Paper, 371 pages, $22.95.

A handbook for taking advantage of the· new DOS version 4.0 menu
driven shell. Expands on the SELECT command and outlines its context
sensitivity, and details the HEM command which maps the entire contents of
the PC's memory. Explains the SWITCHES command and its techniques for
allowing an extended keyboard to emulate a conventional keyboard. Details
how version 4.0 breaks the old 32 megabyte hard disk volume limitation, as
well as how "4.0 relates to the LIM expanded memory standard. A must for
DOS users who wish to personalize the 4.0 work environment.

• Gookin, Dan. Advanced MS-DOS Batch File Programming. Blue Ridge
Summit, PA: Windcrest, 1989. Paper, 385 pages, $24.95 (companion disk
available for $24.95).

An intensive treatment of the use of batch commands as elements of a
programming language. Covers structured programming, use of ERRORLEVEL,
environment manipulation, hard disk strategies, and keyboard enhance
ments. Shows how to tweak ANSI 0 SYS, AUTOEXEC•BAT, and CONFIG. SYS to

131

MS-DOS System Programming _

maximum advantage. OS/2 is included, and MS-DOS through version 4.0 is
discussed. The programs in this book would be ideal candidates for use with
Wenham Software's Batcom or Hyperkinetix's Builder batch file compilers.

_ Harriman, Cynthia W. with Hodgson, Jack. The MS-D05-Mac Connec
tion: Data Sharing, Networking, and Support in the Mixed Office. New York:
Brady, 1988. Paper, 348 pages, $21.95.

Not a book on local area networks-LAN's actually take up a small part
of this work on data translation and resource sharing. The text discusses
external DOS drives for the Mac, coprocessing, and disk formats/swapping.
Considered also are conversions between both text/program and graphics
files. Two chapters compare and contrast the MS-DOS/Macintosh operating
systems, noting both command and keyboard equivalences. The appendix
features a lengthy product list of resources to effect data transfer solutions.
The book is sufficiently authoritative to convince you that a Mac/DOS
marriage could just work.

_ Held, Gilbert. DOS Productivity Tips and Tricks. New York: Wiley, 1989.
Paper, 286 pages, $22.95.

This is more of a utility manual than a developer's book, but the
information is useful and comprehensive. The emphasis is on productivity
routines - some twenty in all, mostly based on DOS batch files. Included
are instructions for creating your own VDISK or RAM disk, master menus, a
usage log, and a rudimentary data base. You can also effect time-dependent
program execution and write your own DOS commands. The material
further contains screen controls, color setting routines, display switching
commands, and screen dumps. Additionally, you can change printer modes,
swap ports, and make mailing labels. There is a program to remap the
function keys and one to create a calculator. Also detailed are routines for
exit code processing and the elimination of disk fragmentation.

II Holub, Allen. On Command: Writing a UNIX-Like Shell for MS-DOS.
Redwood City, CA: M&T Publishing, 1987. Second edition. Paper, 319
pages, $39.95 (includes 5 1/411 disk).

The book includes a complete listing of C code for working under a
UNIX emulating shell. The feature program, SH, is presented as an inter
preter. More for comparison study than developmental programming, but

132

an excellent tutorial for those who must occasionally switch from DOS to
UNIX or vice versa. Disk utilities require an IBM compatible PC, 256K RAM,
and MS-DOS version 2.1 or greater.

• Hyman, Michael. Advanced DOS. Portland, OR: MIS: Press, 1989.
Paper, 363 pages, $22.95 ($44.95 if purchased with the 5 1/4" utilities disk).

Covers DOS through v4.0. Deals with some topics not found in many
advanced DOS manuals, including programming to manipulate the boot
sector, the file allocation table, and the program segment prefix, as well as
parameter passing and the exploration of the root/subdirectories. The writing
of popup utilities and keyboard triggered routines are discussed in the
context of "program cooperation" and multi-tasking. The book also discusses
memory resident programs (TSR's), disk sector management, BIOS calls and
DOS interrupts. Examples are given in assembly language and Turbo Pascal
v5.0.

• Jamsa, Kris. DOS Power User's Guide. Berkeley, CA: Osborne/McGraw
Hill, 1988. Paper, 921 pages, $22.95.

Written to allow maximum performance from DOS. The emphasis is on
pipes and filters, with a thorough excursion through the PC's memory map.
Includes both MS-DOS and PC-DOS. Code samples include a routine for
erasing deleted files and for mapping disk layouts. Speaks of the DOS
pretender commands, and delves into programming for OS/2, using the
latter's Application Program Interface (API). Many of the book's examples
are written in Turbo Pascal.

II Jamsa, Kris. DOS: The Complete Reference. Berkeley, CA: Osborne/Mc
Graw-Hili, 1987. Second edition. Paper, 1,046 pages, $27.95.

Not the most advanced work on DOS, but a comprehensive foundation
for later departure. Covers advanced commands, customizing the shell,
redirection, and ANSI drivers. lengthy discussion of the LINK and DEBUG
utilities. Valuable for its extensive treatment on the use of DOS with
Microsoft Windows. Not much on the anatomy of DOS. Both PC-DOS and
MS-DOS through v3.X are included. A comprehensive desktop resource.

• Jamsa, Kris. MS-DOS Batch Files. Redmond, WA: Microsoft Press, 1989.
Paper, 166 pages, $6.95.

133

MS-DOS System Programming _

Also a ready reference (handbook) tool. Contains the essentials of batch
file programming with MS-DOS. This is a barebones guide, but it presents
considerably more material than found in the DOS user's manual. There are
enough examples to create meaningful batch files and to take advantage of
batch file utilities in applications program environments.

II Kamin, Jonathan. MS-DOS Power User's Guide, Volume I. Berkeley, CA:
Sybex, 1987. Second edition. Paper, 182 pages, $21.95.

Covers MS-DOS versions through 3.3. Discusses undocumented MS
DOS commands, pipes and filters, as well as extensions to what the book
calls the DOS "programming language" found in each successive DOS
version. The book also considers the ANSI. SYS driver for customizing screens
and keyboards, nationalization of keyboards for foreign languages, alternate
date/time and currency formats, recovery methods for damaged disks, and
batch files with emphasis on the ·use of replaceable parameters. Much
attention is given to DEBUG as a programming tool, and many examples in
assembly language are provided to be coded/altered with the DEBUG utility.

• King, Richard Allen. The MS-DOS Handbook. Berkeley, CA: Sybex,
1988. Third edition. Paper, 362 pages, $19.95.

An appropriate label for this work might be "the beginner's technical
manual." Introductory material on serial/parallel port manipulation, disk
maps, nonstandard disk drives, the keyboard, video I/O and ROM BIOS calls.
Considers file recovery, RS-232 communications, memory management,
error handling, and interrupts. The text contains user-level discussions of
DOS only for the advanced functions. An excellent transitional book for
programmers no longer requiring the basics, but in need of preambulatory
material to work up to power MS-DOS programming.

II King, Richard Allen. The IBM PC-DOS Handbook. Berkeley, CA: Sybex,
1988. Third edition. Paper, 359 pages, $19.95.

Includes material on the expanded command summary; fills in the pieces
for PC-DOS not covered in King's other book (above).

II Krumm, Robert. Getting' the Most From Utilities on the IBM PC:
Perfecting the System Environment. New York: Brady, 1987. Paper, 520
pages, $22.95.

134

The emphasis in this work is on a few commercially available programs,
but the book contributes some tips and hints not found in user manuals.
Features the Norton Utilities, ProKey, SuperKey, Smartkey, Turbo Lightning,
DeskSet, others. Discusses file handling, macro invocation, environment
manipulation, and keymapping. Not a first purchase, but valuable for the
insights the author has gained from experience using DOS utilities.

• Lai, Robert S. (a.k.a. The Waite Group). Writing MS-DOS Device Drivers.
Reading, MA: Addison-Wesley Publishing Company, 1987. Paper, 466
pages, $24.95.

Begins with a lengthy discussion of device drivers in general, providing
a motivation for the programming of one's own prototype drivers. The
lectures focus on the console and printers, as well as on the system drivers
for these pieces of hardware. Much emphasis is on creating an 10CTL driver
(code included), expanding on the standard printer driver that DOS provides.
Of particular interest is a chapter on creating a RAM disk device driver. The
book concludes with "Building a Complete Full- Function Device Driver" to
allow the reader to experiment with custom design.

II Mikes, Stephen. UN/Xfor MS-DOS Programmers. Reading, MA: Addison
Wesley Publishing Company, 1989. Paper, 500 pages, $24.95.

Compares and contrasts the MS-DOS and UNIX operating systems,
detailing their similarities and differences by functions. Focuses on the UNIX
file system and I/O subsystem, shell programming, processes, multitasking,
the UNIX keyboard, and screen techniques. For systems programmers, an
essential cross reference for noting the subtle elements common to the two
systems.

II Miller, Alan R. DOS Assembly Language Programming. Berkeley, CA:
Sybex, 1988. Paper, 365 pages, $24.95.

While it covers DOS only through v3.3, DOS Assembly Language
Programming nicely marries assembler macro programming to DOS system
functions and interrupt handling. Its value lies in the assembler code
segments that teach system calls one function at a time, as examples that
can be incorporated into more detailed programs. The emphasis is on disk
I/O, keyboard control, screen and port addressing, and memory handling.
Several projects reinforce the learning: Wordstar to ASCII file conversion,

135

MS-DOS System Programming _

printer typeface .nanipulation, increasing memory to 704K bytes, and
changing the default colors of Lotus 1-2-3. Read this book if you're tired of
wading through the MASM user's manual.

• Norton, Peter. Peter Norton's DOS Guide: Revised and Expanded. New
York: Brady, 1989. Third edition. Paper, 408 pages, $19.95.

More of an intermediate level user's manual, but written in light of Peter
Norton's usual experiences with PC software. Features batch file program
ming and insights on advanced commands. A no-nonsense manual, probably
of best value to mainframe programmers seeking a switchover to DOS and
as a textbook.

II Richardson, Ronny. MS-DOS Batch File Programming... Including OS/2.
Blue Ridge Summit, PA: Windcrest, 1988. 300 pages, $25.95; paper,
$17.60.

The basics, but considerably more on batch files than found in the DOS
user's manual. Covers menuing, environment handling, looping, and passing
of replaceable parameters. Explains each batch command in detail. Use this
text as an introduction to Gookin's book (above).

• Richardson, Ronny. MS-DOS Utility Programs: Add-On Software Resour
ces. Blue Ridge Summit, PA: Windcrest, 1989. Paper, 665 pages, $24.95.

Richardson has performed some exhaustive research in compiling this
annotated compendium of MS-DOS specific tools. There isn't much con
sumer-oriented material here; this is a reference book for developers and
systems managers. Features menu systems, alternative DOS shells, disk
optimizers and console accelerator software, document indexers and data
translation utilities. Data protectors, copy unprotectors, and anti-viral
programs are here, too. TSR managers, file compressors, DOS command
enhancers, and expanded memory emulators round out the collection. Each
program is adequately described, and many are illustrated with screen
snapshots to emphasize their features. Some of the programs are shareware,
but most are for sale-you'll pay for the privileges. Browse through this book
as you would with the Sears & Roebuck catalog, and be pleasantly en
lightened with what you find.

• Rochkind, Marc J. Advanced C Programming for Displays, Character
Displays, Windows, and Keyboards for the UNIX and MS-DOS Operating

136

Systems. Englewood Cliffs, NJ: ~rentice-Hall, 1988. Paper, 331 pages,
$34.95.

Unless married to a specific graphics environment, developers with a
need for screen service routines will want to give this book serious considera
tion. A good starting point for the basics of graphics displays, particularly
where the programmer must be loyal to a dual DOS/UNIX environment.
Presents the techniques and algorithms to support code examples, with the
intent of combining portability with efficiency.

• Ross, Sleven S. Data Exchange in PC/MS-DOS. New York: McGraw- Hill,
1990. Paper, 411 pages, $27.95.

This book collects data regarding the data coding schemes of popular
applications programs, and much of the information isn't found anywhere
else. Although there is not much sample code, the text provides enough
material on the coding schemes of word processors, spreadsheets, and
database managers that the professional programmer will have little difficulty
writing proprietary conversion software to switch back and forth between
several dozen applications formats. EMACS and ASCII systems are con
sidered, and many of the examples are given as sample applications screen
illustrations. There is also material on conversion by hardware, conversion
by media (disk format) exchange, and conversion between DOS-based and
Macintosh systems. For those who would write software conversion
programs, some examples are given in BASIC and C language, as well as
techniques for performing file conversions using EDLIN, DEBUG, and the
Norton Utilities.

• Scanlon, Leo J. Assembly Language Subroutines for MS-DOS Computers.
Blue Ridge Summit, PA: TAB Books, 1986. Paper, 332 pages, $19.95
(companion disk available for $24.95).

Although much of the book emphasizes PC architecture, there is a
relatively significant association with MS-DOS to warrant inclusion in this
bibliography. The presentation is an abbreviated group of assembly language
instructions, with considerable detail of each one, accompanied by code
examples. Particular to DOS, the date/time functions are considered, along
with disk drive operations, IBM PC-specific I/O, subdirectory operations, and
disk file operations. Some non-DOS specific material includes: 16- and

137

MS-DOS System Programming _

32-bit arithmetic, ordered and unordered list manipulation, code conver
sions (binary, BCD, and hex), sorting, and string manipulations. Most of the
assembler instructions discussed are incorporated into useful macro routines.
The utility disk requires 256K RAM, an IBM PC/Xf/AT or compatible, and
an IBM or Microsoft macro assembler to run.

II Simrin, Steven. The Waite Group's MS-DOS Bible. Indianapolis: Howard
Sams & Company, 1989. Third edition. Paper, 630 pages, $22.95.

Covers MS-DOS through v4.0. An encyclopedia of syntax, examples,
and descriptions of each of the MS-DOS resident and transient commands.
Includes discussions of memory management (EMS), file management,
installable device drivers, DOS interrupts and functions. Examples are
written in assembly language.

• Somerson, Paul. PC Magazine DOS Power Tools. New York: Bantam,
1988. Paper, 1,275 pages, $44.95 (includes a 5 1/4" disk).

Tons of Assembler and BASIC code, collected from past issues of PC
Magazine. The book is a virtual flea market of screen utilities, memory
managers, drivers, and DOS enhancers. Somerson likes DEBUG and EDLIN
and waxes eloquent on their uses and power. "Many hours of enjoyment,"
as the saying goes; if only two or three of the hundreds of the book's routines
prove worthwhile for your particular environment, the capital outlay for
Power Tools will have been money well spent.

II Tischer, Michael. PCSystem Programming for Developers. Grand Rapids,
MI: Abacus, 1989. Paper, 928 pages, $59.95 (includes two 5 1/4" disks).

Written for the professional programmer, with no extraneous lecture or
fluff. The examples comprise straightforward, working code segments with
few adjectives in the explanations. Topics include: memory organization,
use of extended/expanded memory, interrupt handling, • COM and •EXE
programs, character I/O, TSR writing, and creation of device drivers. Details
DOS structures and thoroughly discusses BIOS fundamentals. Gives a con
siderable amount ofspace to graphics programming, including the intricacies
of EGA and VGA cards. The author expects that the DOS systems program
mer will interface to Turbo Pascal, assembly language, BASIC, or to one of
several brands of C compilers.

138

_________________A Programmer's Bibliography

_ Townsend, carl.Advanced MS-DOS Expert Techniques for Programmers.
Indianapolis: Howard Sams & Company, 1989. Paper, 597 pages, $24.95.

Includes DOS v4.0. The value of this advanced work is the variety of
examples of DOS-targeted programming in C (Microsoft version 5.1, Turbo
C and QuickO, as wen as in Microsoft's macro assembler (MASM). Discusses
methods for calling a child program from a parent, interfacing applications
programs with the operating system, the use of hardware resources, the
recognition of and protection against viruses, and the writing of device
drivers and TSR's. Also discusses the pros and cons of developers' use of
Microsoft Windows with their MS-DOS based programs. An unusual feature
is material on the use of disassemblers, and several different debugging
tools-the Turbo debugger, SYMOEB, and, of course, DEBUG - are con
sidered.

• The Waite Group. The Waite Group's MS-DOS Papers For MS-DOS
Developers and Power Users. Indianapolis: Howard Sams & Company,
1988. Paper, 400 pages, $26.95.

Thirteen experts lecture on heretofore undocumented features of the
MS-DOS operating system. Included are techniques and details of the
MS-DOS user interface, along with some obscure programming tools and
methodologies. A recurring theme is the addressing and invocation of
hardware via MS-DOS and the interaction with various types of devices.

• Waterhouse, Martin, and Kamin, Jonathan. MS-DOS Power User's
Guide, Volume II. Berkeley, CA: Sybex, 1988. Paper, 424 pages, $19.95.

The companion to Kamin, Volume I (above), extended to cover MS-DOS
v4.0.

_ Wolverton, Van. Running MS-DOS. Redmond, WA: Microsoft Press,
1988. Third edition. Paper, 478 pages, $22.95.

Relatively elementary, but this work is included for the teachers in the
audience. It is so well organized that it is invaluable as a textbook. Includes
the usual tutorial on the basic transient and resident commands (including
the EDLIN utility), but concludes with three chapters on IIsmart" commands.
As such, provides a better discussion of batch files than the DOS user's
manual, and offers a good transition into Supercharging MS-DOS (below).

139

MS-DOS System Programming _

II Wolverton, Van. Supercharging MS-DOS. Redmond, WA: Microsoft
Press, 1989. Second edition. Paper, 336 pages, $34.95 (includes a 5 1/4"
disk).

Includes versions of MS-DpS through 4.0. The utility disk includes all
the batch files, script files, and programs outlined in the book. Discusses
automatic definition of RAM disks, the modification of ANSI. SYS, file/pro
gram contents manipulations, and customization of CONFIG. SYS. Also in
cludes system environment modification, interactive menuing, and a
detailing of DEBUG.

• .Young, Michael J. MS-DOS Advanced Programming. Berkeley, CA:
Sybex, 1988. Paper, 490 pages, $22.95.

Extends the performance of DOS by allowing maximum use of system
resources. Covers functions, interrupts, devices, multitasking, and memory
resident programs. Features DOS 3.3 and 4.0, giving examples in both
assembly language and C language. Includes discussion of real mode OS/2
(the compatibility box).

II Young, Michael J. Systems Programming in Microsoft C. Berkeley, CA:
Sybex, 1989. Paper, 604 pages, $24.95 (companion diskettes available for
$34.95, or $39.95 for Turbo C or Turbo Pascal versions with documenta
tion).

A companion to Young's other book (above), gives the code and details
for several dozen callable C language functions. Although primarily a book
on C, the chapters' library actually comprises a complementary set of low
level DOS routines. Included are subprograms to handle expanded memory
functions, interrupts, keyboard and mouse functions, TSRs, graphics and
video functions, and printer functions. The set is curiously similar to that
found in the OS/2 API. The library allows some insight into interfacing with
assembly language, and includes some miscellaneous utility functions for
string and time/date manipulations that Microsoft C doesn't provide. Com
patible with MSC v5.0 and v5.1 as well as QuickC v1.0 and v2.0.

140

Subsequent to printing we discovered a pagination .error
that causes many page references in the index to be Incor
rect. In each case the reference may be corrected by ad-

ding an offset:

52-58

59-68

69-88

89-92

93-100

. add
. add
. add
. add
. add

.......1 page
· . 2 pages
· . 3 pages
· .13 pages
· .14 pages

We suggest that you adhere this label to the top of page
141. We apologize for the inconvenience this causes.

Index
8250 UART 128
825352,55
8259 55, 56, 57
Abort, retry 65
AboveBoard 130
Accelerator cards 131
Access denied 72, 73
Action codes 71
Allocate memory 92
Alonso, Robert 126
Alperson, Burton L. 126
Already assigned 73
Angermeyer, John 127
ANSI drivers 133
ANSI.SYS 130, 131, 134, 140
Arithmetic 138
Assembly language 129, 133, 135, 137,

138, 140
Asynchronous communication 93, 128
Atexit 061
Attempt to remove the current directory

72
AUTOEXEC.BAT 82, 131
background 9
BASIC 138
Batch commands 131
Batch files 76, 125, 127, 128, 129, 132,
134, 136, 140

Batcom 132
Baud Rate Count Registers 115
BCD 138

Bibliography 125
Binary 138
BIOS 15, 19, 138
bios 16

BIOS break handler 31
BIOS calls 133
BIOS disk services 18
BIOS video services 44
_bios_keybrd 17
Bit operations 66
Boot sector 133
Boot time 2
Break-key handler 31
Buffer 97
Buffered file va 61
Builder 132
Bursch, David D. 127
Cache 129
Calling conventions 78, 128, 130
calloe 14
Campbell, Joe 128
Cannot create directory 73
cgets 15
chaining 41
Character display programming 136
Character VO 138
Chesley, Harry R. 128
Child process 1, 14, 60, 74, 80, 139
Circular buffer 97
Clear Interrupt 118
Clear screen 42

141

MS-DOS System Programming _

Clock speed 53
Code conversions 138
Color setting routines 132
Command interpreter 84
Command parsing 77
Command shell 2
Command tail 76, 77
COMMAND.COM 2, 74, 132
Commands 130
Command-tail 87
Communications 93, 120, 128, 134
Communications protocols 94
Compact model 13
Compression 136
COMSPEC 1, 81, 82, 90
Concurrency 98
Concurrent DOS 131
CONFIG.SYS 82, 129, 131, 140
CONIO.H 16
Console accelerator 136
Control-break 15, 29
Control-Break 54, 60, 90
Control-break interrupt 26
Coprocessing 132
Coprocessor error 59
Copy protection 136
Corrupted data 127
Corrupted FAT 69
CP/M 128, 131
cprintf 16
cputs 15
CRC 128
Critical error codes 67
Critical error exception 65, 68
Critical error handler 15, 31, 54, 65, 68
Critical error interrupt 26
Critical resource 98
Critical section flag 98
cscanf 16
Ctrl-C 60, 90
Ctrl-C exception 63, 64
Ctrl-C vector 85, 90
Ctrl-Q 94
Ctrl-S 94
CTS94
Currency formats 134
Daisy chain interrupts 50

142

Damaged disks 134
Data base 132
Data Bits 116
Data coding schemes 137
Data communications 128, 131
Data (CRC) error 67, 72
Data Exchange 137
Data protection 136
Data segment 26
Data transfer 132
Data transfer rates 129
Data translation 132, 136
Database managers 137
Date functions 134, 137, 140
DEBUG 133, 134, 137, 138, 139, 140
Default error handler 60
Deleted files 133
Dettmann, Terry R. 129
Device drivers 127, 129, 130, 135, 138,
139

Device no longer on network 73
Devices 140
DeVoney, Chris 129
Direct screen I/O 129·
Directory utilities 126
Disable interrupts 99
Disabling arl-Break 62
Disabling Ctrl-C 62
Disassemblers 139
Disk buffering 98, 129
Disk drive manipulation 129, 137
Disk drives, nonstandard 134
Disk error 67
Disk formats 132
Disk fragmentation 132
Disk interleaving 129, 131
Disk internals 130
Disk I/O 135
Disk layouts 133
Disk maps 134
Disk operations 130
Disk optimizer 136
Disk sector management 133
Disk services 22, 25, 39
Disk transfer address 21, 27, 29, 31, 35
Disk volume limitation 131
Display programming 136

Index----------------------------

Display string 45
Display switching 132
DOS extenders 130, 138
DOS safe interrupt 33
DOS segment 37
DOS tuning 127
DOS version number 69
dos allocmen 14

- dos- freemem 48
-dos-freemen 14
=dos=lCeep 18, 22, 36

dos setblock 14
Drivenot ready 67, 72
DSR94
DTR 94, 116
Duncan, Ray 74, '129, 130
Duplicate network name 73
Dynamic memory allocation 13
EDLIN 137, 138, 139
Efficiency 98
EGA 127, 138
EMACS 137
EMS 127, 129, 130, 138
Encryption 129
End-of-interrupt signal 96
Entry Function 15
Entry routine 11
env.asm 6
Environment 90, 130
Environment block 74, 76, 82, 90
Environment manipulation 131, 135, 136
Environment, maximum size 77
Environment modification 140
Environment segment 81
Environment variables 1
Error codes 67, 130
Error detection 128
Error handling 134
ERRORLEVEL 131
Errors 59
Event timing 49
Exception handlers 59
EXEC 74, 80, 130
EXEC calling conventions 78
EXEC failures 78, 80
Execute 74
Execute an overlay 91

exit 14
Exit code 74
Expanded environment 77
Expanded memory 127, 129, 130, 131,
138, 140

Expanded memory emulators 136
Expansion busses 129
Extended error information 70, 72
Extended keyboard 131
Extended memory 129, 130, 131, 138
Extrinsic command 86
Failure on Int 24H 73
Far addresses 28
Far pointer 25
FCB functions 61
FCB unavailable 72
FIFO buffers 97
File allocation table 67, 133
File already exists 73
File compression 136
File control blocks 74, 76, 77, 81
File conversion 135
File lock violation 72
File management 138
File not found 72
File pointers 74
File recovery 134
File sharing violation 72
File system 135
File utilities 126
File-management functions 74
Files area 67
Filters 133, 134
findmenv 4, 6
Fopen 0 61
Foreign languages 134
Forney, James 130
Fractal geometry 128
Fragmentation 129
Free memory 18, 79
Function 34H 19, 35
Function 52H 3
Function keys 128, 132
General failure 67, 72
getch 16
GetPSP 28
Gliedman, John 131

143

MS-DOS System ProgramminS _

Goodell, Thomas 131
Gookin, Dan 131
Graphics 127, 140
Graphics conversion 132
Graphics displays 137
Graphics programming 138
Hale, Norman 129
Handle functions 61
Handshaking 94
Hard disk management 131
Hardware handshaking 94, 116
Hardware speedUps 131
Harriman, Cynthia W. 132
Hayes Smartmodem 128
Heap base 35
HEAPSIZE 23, 36
Held, Gilbert 132
Hex 138
Hierarchical file structure 77
Hodgson, Jack 132
Holub, Allen 132
Horizontal line 45
hotkey 9, 25, 35
Hotkey shift mask 21
HotKeyMask 34
Huge model 13
Hyman, Michael 133
Identify interrupt 118
idle interrupt 22
INCLUDE 82
#include files 82
Incompatible remote adapter 73
Incorrect network device type 73
Incorrect network response 73
Increasing memory 136
Indentify interrupt 119
Indexers 136
INDOS flag 19
InitPSP 21, 28
Inline assembly language 50, 51
Input buffering 119
Install TSR 11
Installable device drivers 138
Insufficient memory 72
Int08H 55
Int 09H 21, 25, 30, 34
Int 09H handler 31

144

Int 13H 22, 39
INT 14H 94
Int 1BH 26, 60
Int1CH 50
Int21H 3
Int 21 H, Function 25 50
Int 21 H, Function 25H 95
Int 21 H, Function 29H 77
Int 21 H, Function 2CH 49
Int 21 H, Function 35 50
Int 21 H, Function 35H 96
Int 21 H, Function 49H 14
Int 21 H, Function 4AH 75, 79
Int 21 H, Function 4BH 14, 74, 75, 79, 91
Int 21 H, Function SOH 28
Int 21 H, Function 51 H 28
Int 21 H, Function 52H 28
Int 23H 26, 30, 60, 61, 62, 63, 64, 90
Int 24H 30, 33, 61, 65, 68
Int 28H 19, 22, 25, 30, 33, 41
Int 28H handler 31
Int21H 14
INT21H 3
Int 21H, Function 484 14
Int 21H, Function 4AH 14
Int8H 50, 58
Int 8H handler 52
Int 9H 22, 41
Int 9H handler 31, 32
Int 13H 18, 25, 41
IntlBH 30
int8635
int86x 31
Interactive menuing 140
Interleaving 129
Internal commands 89
Internationalization 134
Interrupt calls 128
Interrupt controller 95
Interrupt Disable Register 117
Interrupt Enable Register 116
Interrupt frequency 53
Interrupt functions 10, 130
Interrupt handler 11, 19, 21, 25, 29, 41,
96, 130, 135, 138

Interrupt handler stack requirements 97
Interrupt Identification Register 118

Index----------------------------

Interrupt keyword 50
Interrupt latency time 96
Interrupt request 95
Interrupt service routine 50
Interrupt vectors 13, 14, 15, 16, 21, 95,
97, 115

Interrupt-driven serial I/O 93
Interrupts 133, 134, 138, 140
Intrinsic commands 88, 89
Invalid access code 72
Invalid command 67
Invalid data 72
Invalid disk change 67, 72
Invalid disk drive specification 72
Invalid environment 72
Invalid file handle 72
Invalid format 72
Invalid function number 72
Invalid parameter 73
Invalid password 73
I/O redirection 77, 133
I/O subsystem 135
Jamsa, Kris 133
Kamin, Jonathan 134, 139
kbhit 16
keyboard 130
Keyboard 135
Keyboard control 131
Keyboard enhancements 131
Keyboard functions 140
Keyboard handler 19
Keyboard input buffer 60
Keyboard interrupt 22, 34
Keyboard interrupt handler 18, 25, 27
Keyboard I/O 134
Keyboard vector 29
_keybrd 16
Keymapping 135
King, Richard Allen 134
Krumm, Robert 134
Ladd, Scott Robert 1, 1
Lai, Robert S. 135
Lang, Phyllis K. 49
Large model 13
Latency time 96
Length of request structure invalid 67
LIB 82

LIM 129, 130, 131
Line control 94
line Control Register 115, 115
Line feed delay 97
Line Status Register 116, 117, 119
line Style 44
Linear memory 129
Line-feed delay 94, 119
LINK 133
List manipulation 138
Load address 92
Load and execute program 79
Load overlays 79, 91
Loader 91
Local environment 2
Log file 97
Looping 136
Lost data 127
Lotus 1-2-3 136
Macintosh 132, 137
Macro processing 127, 135
Mailing labels 132
MAKE file 48
malloc 14
Map function keys 132
Mask 66
Master environment 2
Master menus 132
Math library 14
MATH.H 14
MCB3
Medium model 13
MEM 131
Memory allocation 13, 23
Memory allocation error 23, 72
Memory blocks 3
Memory cards 130
Memory control block 3, 28
Memory error 70
Memory, increasing 136
Memory management 3, 127, 130, 134,

135, 138
Memory manipulation 129
Memory map 133
Memory model 13, 60
Memory organization 138
Memory resident programs 9, 133, 140

145

MS-DOS System Programming _

Menu systems 128, 136, 140
Mikes, Stephen 135
Miller, Alan R. 135
Missed interrupts 99
Modem 93
Modem Control Register 116
Modem protocols 128
Modular programming 127
Mouse functions 140
Mouse manipulation 131
MS Windows 133, 139
MSTR ENV.ASM 4
Multitisking 131, 133, 135, 140
Mutual exclusion 98
Nationalization 134
Near data pointers 13
NetBIOS command limit exceeded 73
NetBIOS session limit exceeded 73
Network busy 73
Network error 70
Network hardware error 73
Network name deleted 73
Network name limit exceeded 73
Network name not found 73
Network request not accepted 73
Network write fault 73
Newlntl325
No file handles available 72
No more files 72
No room for print file 73
Non-DOS disk 67
nonreentrant 19
Nonstandard disk drives 134
Norton, Peter 136
Norton Utilities 135, 137
Not the same device 72
NUL characters 94
Numeric processing 127
Ogg, Harold C. 125
Optimization 128
OS/2 132, 133, 136, 140
OS/2 API 140
Out of structures 73
Output buffering 98, 119
outtest 16

Overlay 75, 90, 91, 92
Overrun 97

146

Padding 94, 119
Paragraph address 22
Parallel port manipulation 134
Parallel tasks 98
Parameter block 76
Parameter passing 78, 128, 133
Parent process 1, 14, 74
Parity 116
Parse-filename service 77
Passwords 128
PATH 1, 76, 77, 82
Path not found 72
Performance 126, 127, 133, 140
PIC 52, 95, 97, 117
Pipes 133, 134
PIT 52
Polled I/O 94
Popup utilities 133
Port addressing 135
Portability 137
Print or disk redirection paused 73
Print queue full 73
Print queue not full 73
Printer configuration 136
Printer driver 135
Printer functions 140
Printer modes 132
Printer out of paper 67, 72
Printer utilities 126
Process return code 23
Processes 1, 135
Program function keys 132
Program heap 22
Program overlays 75
Program segment prefIX 2, 21, 27, 133
Program stack 22
Programmable function keys 128
Programmable interrupt controller 52, 95,
117

Programmable timers 52
Prokey 127, 135
PROMPT 1,82
Protection 131, 136
PSP 2, 23, 27, 31, 37, 38, 76, 77, 133
putch 16
QuickC 15
RAM disk 132, 135, 140

Index----------------------------

RAMpage 130
Read error 72
Read fault 67
Read interrupt vector 95
Read operation 67
Real memory 129
Real mode 130, 140
Real time programming 127
Received Character Register 116
Record operations 130
Recovering lost data 127
Recovery methods 134
Redirection 77, 133
Reentrancy 19, 25
Reference 129, 130, 134
Relocation segment 92
Relocation value 91
Remote computer not listening 73
Reset interrupt 118
Resident commands 138
Resident program 10
Resize Memory Block 75, 90
Resource sharing 132
Restore interrupt vector 53, 95
Restore screen 13, 42, 46
Richardson, Ronny 136
Ring buffers 97
Rochkind, Mark J. 136
ROM BIOS 128, 130, 134
Root 133
Root directory 67
Root segment 91
Ross, Steven S. 137
RS-232 93, 128, 134
RTS 94, 116
Save screen 13, 42, 46
sbrk 22
Scanlon, Leo J. 137
Screen addressing 129, 135, 135
Screen colors 127
Screen controls 132
Screen dumps 132
Screen output 119
Screen service routines 137
Screen utilities 138
Script files 140
ScrRestoreBlock 13, 17

ScrSaveBlock 13, 17
Search path 81
Sector not found 67, 72
Security 126, 128
Seek error 67, 72
Segment relocation 91
segread 23
SELECT 131
semaphore 34
Serial communications 120, 128
Serial port 93
Serial port base address 100
Serial port initialization 115
Serial port interface 100
Serial port interfacing 127
Serial port manipulation 134
Service 34H 21
Session logging file 97
SET 1, 77, 82
Set interrupt vector 95
SetPSP 28
Shared resource 98
Shareware 136
Sharing buffer exceeded 72
SHEll 82, 83
Shell 84, 128, 132, 133, 136
Shell programming 135
Shockproofing 129
Simrin, Steven 138
Small model 13
Smartkey 127, 135
Software handshaking 94
Somerson, Paul 138
Sorting 138
Speed optimization 98
Spreadsheets 137
Stack 18
Stack overflow 97
Stack pointer 21, 24, 25, 39
Stack requirements, Interrupt handler 97
Stack segment 21, 24, 25, 26, 36, 39
Stack space 26
Standard error handle 84
Standard input handle 84
Standard output handle 84
Startup code 14
Stop bits 116

147

MS-DOS System Programming _

String manipulation 138
Structured programming 131
Subdirectory operations 133, 137
Suggested action code 71
SuperKey 135
SWITCHES 131
Switches 78
SYMDEB 139
Synchronization errors 99
System calls 125, 130
System clock 52
System error 59
System lockup 119
System management 130
Systems drivers 135
Systems Programming in Microsoft 9
Table driven 89
Temporary pause 73
Terminal emulation program 93, 120
Terminate and stay resident (see TSR) 9
Text conversion 132, 135
Textbook 139
Throughput 53
Time functions 134, 137, 140
Time of day service 49
Time tick interrupt 50, 56, 57
Timer 52, 55
Timer tick interrupt 51
Timing 49
Timing Chain 50
Timing functions 128
Timing precision 49
Timing problems 98
Timing resolution 52
Timouts 99
Tischer, Michael 138
TMP82
Townsend, Carl 139
Transient commands 138
Transient program area 75
Transmit 98
Trojan horses 131
TSR 2, 9, 127, 133, 138, 139, 140
TSR entry routine 21
TSR interrupts 36
TSR signature 36, 48
TSRA.ASM 18

148

TSR.C30
TsrlnDos 10, 15
Tsrlnstall10, 21
TsrRemove 10, 16
Tuning DOS 127
Turbo debugger 139
Turbo Lightning DeskSet 135
Turbo pascal 50
Turbo Pascal 97, 133, 138
Typeface selection 136
UART93, 128
Undocumented commands 134
Undocumented features 139
Undocumented functions 28
Undocumented interrupts 127
Undocumented systems call 1
Unexpected network error 73
ungetch 16
Universal Asynchronous Receiver and
Transmitter 93

UNIX 131, 135
Unknown media type 72
Unknown unit 67
Unsupported network request 73
Usage log 132
User interface 89
User interrupts 13, 20, 35
User lists 128
User-defined function keys 128
Utilities 126, 127, 130, 131, 136
V20131
VCPI130
VDISK 132
Vertical line 45
VGA 127, 138
Video attribute 44
Video functions 44, 140
Video I/O 134
Video memory 45
Virtual control program interface 130
Viruses 131, 136, 139
Volume lables 61
Waite Group, The 127, 128, 135, 138,

139
Waite, Mitchell 128
Waterhouse, Martin 139
Wildcards 61, 76

Index--------------------------

Windows 133, 136
Wowerton, Van 139, 140
Word processors 137
Wordstar 135
Write error 72
Write fault 67
Write operation 67
Writ&-protected disk 67
XMODEM 128
XON/XOFF94
Young, Micha~1 J. 9, 140
Z80131
Z80510 128

149

Tech Bookshelf-------

Supercharging C With Assembly Language
By Harry R. Chesley, Mitchell Waite,
and The Waite Group

Written for programmers who want to create faster, more powerful C
programs on PC clones, this book offers techniques for combining C and
assembly language to reach their goal. The authors show the impact of al
ternate optimization strategies by successive refinements to each of
several non-trivial applications including a tenninal emulator, a fractal pro
gram, and encryption utilities. In the process they give detailed infonna
tion about interrupt handlers, the ROM BIOS, M5-DOS disk I/O, video
adapters, and the asynchronous communications adapter.

Addison-Wesley, 402 pp., ISBN 0-201-18349-8.

Y35 $22.95

Turbo Pascal Innovations
(Through Version 5.0)

Edited by Judith Overbeek

Turbo Pascal Innovations provides practical information for inter
mediate to advanced Pascal programmers. Chapters by seven dif
ferent authors cover object-oriented programming, TSRs, user
interfaces, graphiCS, and DOS subdirectory routines. Also included is
an MS-DOS disk with all code presented in the book.

Rockland Publishing, Inc., 346 pp., ISBN 0-939621-01-0.

Z30 $32.95

Advanced MS-DOS (2nd Edition)
By Ray Duncan

This reference for advanced assembly language and C programmers
covers the essentials of MS-DOS. Duncan discusses disk file and
record operations, disk directories and volume labels, MS-DOS disk
internals, installable device drivers, memory management, and more.
Also included is an extensive reference section on all MS-DOS func
tions and interrupts.

Microsoft Press, 468 pp., ISBN 1-55615-1578.

Z28 $24.95

. .$24.95

Systems Programming In Turbo C offers tools to optimize the use of
Turbo C for applications and systems-level programming. For the applica
tions programmer it contains an extensive collection of software tools
that can be immediately incorporated into a C program. Systems
programmers can make use of the complete source code listing and
detailed explanations of Turbo C's advanced features. All functions are
designed to operate on IBM PCS, ATs and compatibles, and PS/2 series
computers. The book covers Turbo v1.0 and 1.5.

Sybex, 503 pp., ISBN 0-89588-467-4.

Z22 .

Howard W. Sams and Company, 783 pp., ISBN 0-672-22630-8.

Z29 . $24.95

Systems Programming In Turbo C
By Michael j. Young

MS-DOS Developer's Guide (2nd Edition)
By The Waite Group

Compatible with MS-DOS v4.0, MASM 5.1 and Microsoft C 5.1, this
edition represents an expanded revision of the original MS-DOS
Developer's Guide. The latest edition contains information about un
documented functions and interrupts for MS-DOS v2.0 and 4.0, file
I/O handles, TSR programs, Enhanced Graphics Adapter and Virtual
Graphics Array display standards, programming the serial port, EMS,
and more.

Ouantity Code # Title Unit Price Total

All payments must be in US dollars (MC/VISA accepted). Shipping (North America) $3.50
Note: Call (913) 841-1631 for special shipping.

Name
Overseas shipping (add 45%)

Company TOTAL

Mail to: R&D Publications
2601 Iowa St.

Lawrence, KS 66046
Or call: (913) 841-1631

Card Number _

Signature _

Address _

City _

State Zip/Mail code _

Countty _

Daytime phone _

Tech Bookshelf
TSP

o MC o VISA Exp. date _

	Contents
	Preface
	Chapter One: Locating The Master Environment In MS-DOS
	Chapter Two: Converting a MicrosoftC Program Into A TSR
	Chapter Three: Event Timing on MS-DOS PCs
	Chapter Four: Writing MS-DOS Exception Handlers
	Chapter Five: The EXEC Function
	Chapter Six: PC Interrupt-Driven Serial I/O
	Chapter Seven: A Programmer's Bibliography
	Index

