
JM1L~, ...... . 

)MICROSOFT®C 
FOR THE MS-DOS® OPERATING SYSTEM 

) 

) LANGUAGE REFERENCE 



Information in this document is subject to change without notice and does 
not represent a commitment on the part of Microsoft Corporation. The 
software described in this document is furnished under a license agreement 
or nondisclosure agreement. The software may be used or copied only in 
accordance with the terms of the agreement. The purchaser may make one 
copy of the software for backup purposes. No part of this manual may be 
reproduced or transmitted in any form or by any means, electronic or ( 
mechanical, including photocopying and recording, for any purpose other 
than the purchaser's personal use without the written permission of 
Microsoft Corporation. 

~ Copyright Microsoft Corporation, 1984-1987. All rights reserved. 
Simultaneously published in the U.S. and Canada. 

Microsoft® I :MS® I :MS-DOS® I CodeView® I and XENIX® are registered trademarks 
of Microsoft Corporation. 

IBM® is a registered trademark of International Business Machines Corporation. 

Document Number 410840018-500-R02-0887 
Part Number 048-014-098 



~~O~F CONTENTS 

In trod uction ..................................................... 1 
1.1 Overview of the C Language.~ .................................... 3 
1.2 About This Ma,nual .................................................... 4 
1.3 Notational Conventions ............................................. 6 

2 Elements of C ................................................. 9 
2.1 Introduction ............................................................. 11 
2.2 Character Sets ......................................................... 11 

2.2.1 Letters, Digits, and Underscore ....................... 12 
2.2.2 White-Space Characters ................................. 12 
2.2.3 Punctuation and Special Characters ................ 12 
2.2.4 Escape Sequences ........................................... 13 
2.2.5 Operators ...................................................... 16 

2.3 Constants ................................................................. 18 
2.3.1 Integer Constants .......................................... 18 
2.3.2 Floating-Point Constants ............................... 20 
2.3.3 Character Constants ...................................... 21 
2.3.4 String Literals ............................................... 22 

2.4 Identifiers ................................................................. 24 
2.5 Keywords ................................................................. 25 
2.6 Comments ................................................................ 26 
2.7 Tokens ..................................................................... 27 

) 3 Program Structure .................................... 29 
3.1 Introduction ............................................................. 31 
3.2 Source Program ....................................................... 31 
3.3 Source Files .............................................................. 33 

iii 



3.4 Functions and Program Execution ........................... 35 
3.5 Lifetime and Visibility ............................................. 36 

3.5.1 Blocks ........................................................... 36 
3.5.2 Lifetime ........................................................ 37 
3.5.3 Visibility ....................................................... 37 
3.5.4 Summary ...................................................... 39 

3.6 Naming Classes ........................................................ 41 

4 Declarations ................................................... 45 
4.1 Introduction ............................................................. 47 
4.2 Type Specifiers ......................................................... 48 

4.2.1 Storage for Fundamental Types ...................... 50 
4.2.2 Range of Values ............................................. 52 
4.2.3 Data-Type Categories .................................... 53 

4.3 Declarators ............................................................... 54 
4.3.1 Pointer, Array, and 

Function Declarators ...................................... 54 
4.3.2 Complex Declarators ...................................... 55 
4.3.3 Declarators with Special I<eywords .................. 59 

4.4 Variable Declarations ............................................... 61 
4.4.1 Simple Variable Declarations .......................... 62 
4.4.2 Enumeration Declarations .............................. 63 . 
4.4.3 Structure Declarations .................................... 65 
4.4.4 Union Declarations ........................................ 68 
4.4.5 Array Declarations ......................................... 70 
4.4.6 Pointer Declarations ....................................... 72 

4.5 Function Declarations (Prototypes) ......................... 76 
4.5.1 Formal Parameters ......................................... 76 
4.5.2 Return Type ................................................. 77 
4.5.3 The List of Formal Parameters ........................ 77 
4.5.4 Summary ...................................................... 79 

iv 



4.6 Storage Classes ........................................................ 82 
4.6.1 Variable Declarations 

at the External Level. ..................................... 83 
4.6.2 Variable Declarations 

at the Internal Level ...................................... 86 
4.6.3 Function Declarations 

at the External and Internal Levels ................. 88 
4.7 Initialization ............................................................ 8g 

4.7.1 Fundalnental and Pointer Types ..................... gO 
4.7.2 Aggregate Types ............................................ g1 
4.7.3 String Initializers ........................................... g4 

4.8 Type Declarations .................................................... g5 
4.8.1 Structure, Union, and 

Enumeration Types ........................................ g5 
4.8.2 Using typedef Declarations ............................. g6 

4.g Type Names ............................................................. g7 

5 Expressions and Assignments .......... 101 
5.1 Introduction ........................................................... 103 
5.2 Operands ................................................................ 103 

5.2.1 Constants .................................................... 104 
5.2.2 Identifiers .................................................... 104 
5.2.3 Strings ........................................................ 105 
5.2.4 Function Calls ............................................. 105 
5.2.5 Subscript Expressions ................................... 106 

5.2.5.1 Unidimensional-Array References .......... 106 
5.2.5.2 Multidimensional-Array Reference •........ 107 

5.2.6 Member-Selection Expressions ....................... 10g 
5.2.7 Expressions with Operators ........................... 110 
5.2.8 Expressions in Parentheses ............................ 111 
5.2.9 Type-Cast Expressions ................................. 112 
5.2.10 Constant Expressions ................................... 112 
5.2.11 Side Effects .................................................. 113 
5.2.12 Sequence Points ........................................... 114 

v 



Operators ............................................................... 114 
5.3.1 Usual Arithmetic Conversions ....................... 115 
5.3.2 Complement and Unary Plus Operators ......... 117 
5.3.3 Indirection and Address-of Operators ............ 118 
5.3.4 The sizeof Operator ...................................... 120 
5.3.5 Multiplicative Operators ............................... 121 
5.3.6 Additive Operators ...................................... 123 
5.3.7 Shift Operators ............................................ 125 
5.3.8 Relational Operators .................................... 126 
5.3.9 Bitwise Operators ......................................... 128 
5.3.10 Logical Operators ......................................... 129 
5.3.11 Sequential-Evaluation Operator .................... 130 
5.3.12 Conditional Operator ................................... 131 

5.4 Assignment Operators ............................................ 133 
5.4.1 Lvalue Expressions ....................................... 133 
5.4.2 Unary Increment and Decrement ................... 134 
5.4.3 Simple Assignment ....................................... 135 
5.4.4 Compound Assignnlent ................................. 136 

5.5 Precedence and Order of Evaluation ...................... 137 
5.6 Type Conversions ................................................... 140 

5.6.1 Assignment Conversions ............................... 140 
5.6.1.1 Conversions from 

Signed Integral Types ......................... 140 
5.6.1.2 Conversions from 

Unsigned Integral Types ...................... 142 
5.6.1.3 Conversions from 

Floating-Point Types .......................... 144 
5.6.1.4 Conversions to and from 

Pointer Types .................................... 145 
5.6.1.5 Conversions from Other Types .............. 146 

5.6.2 Type-Cast Conversions ................................. 147 
5.6.3 Operator Conversions ................................... 147 
5.6.4 Function-Call Conversions ............................ 147 

6 Statements .................................................... 149 

6.1 Introduction ........................................................... 151 
6.2 The break Statement ............................................. 152 

vi 



6.3 The Compound Statement ..................................... 153 
6.4 The continue Statelnent ......................................... 154 

) 6.5 
6.6 

The do Statement .................................................. 155 
The Expression Statement ..................................... 156 

6.7 The for Statement .................................................. 157 
6.8 The goto and Labeled Statements .......................... 158 
6.9 The if Stateillent .................................................... 159 
6.10 The Null Statenlent ............................................... 161 
6.11 The return Statenlent ............................................ 162 
6.12 The switch Statenlent ............................................ 163 
6.13 The while Statement .............................................. 166 

7 Functions ....................................................... 167 
7.1 Introduction ........................................................... 16U 
7.2 Function Definitions ............................................... 171 

7.2.1 Storage Class ............................................... 172 
7.2.2 Return Type and Function Name .................. 173 
7.2.3 Formal Parameters ....................................... 175 
7.2.4 Function Body ............................................. 17U 

7.3 Function Prototypes (Declarations) ........................ 17U 
7.4 Function Calls ........................................................ 182 

7.4.1 Actual Arguments ........................................ 185 
7.4.2 Calls with a Variable 

Number of Arguments .................................. 188 
7.4.3 Recursive Calls ............................................ 188 

) 

vii 



Preprocessor Directives 
and Pragmas ................................................ 191 

8.1 Introduction ........................................................... 193 
8.2 Manifest Constants and Macros ............................. 194 

8.2.1 Preprocessor Operators ................................. 194 
8.2.2 The # define Directive .................................. 195 

8.2.2.1 Stringizing Operator (#) ..................... 196 
8.2.2.2 Token-Pasting Operator (# # ) ............. 197 

8.2.3 The # undef Directive .................................. 201 
8.3 Include Files ........................................................... 202 
8.4 Conditional Compilation ........................................ 204 

8.4.1 The #if, #elif, # else, and 
# endif Directives ........................................ 204 

8.4.2 The # ifdef and # ifndef Directives ............... 208 
8.5 Line Control ........................................................... 208 
8.6 Pragmas ................................................................. 209 

Appendixes 
A Differences ..................................................... 213 

B Syntax Summary ...................................... 219 
B.1 Tokens ................................................................... 221 

B.l.l I<eywords .................................................... 221 
B.l.2 Identifiers .................................................... 221 
B.l.3 constants .................................................... 222 
B.l.4 Strings ........................................................ 224 
B.l.5 Operators .................................................... 224 
B.l.6 Separators ................................................... 224 

viii 



B.2 Expressions ............................................................ 224 
B.3 Declarations ........................................................... 226 
B.4 Statements ............................................................. 22{) 
B.5 Definitions .............................................................. 230 
B.6 Preprocessor Directives .......................................... 230 
B.7 Pragmas ................................................................. 231 

In d ex .......................................................................... 233 

) 

ix 



Table 2.1 

Table 2.2 

Table 2.3 
Table 2.4 

Table 2.5 

Table 2.6 

Table 2.7 
Table 2.8 

Table 3.1 

Table 4.1 

Table 4.2 

Table 4.3 

Table 4.4 

Table 5.1 

Table 5.2 

Table 5.3 
Table 5.4 

x 

Punctuation and Special Characters .............. 13 
:Escape Sequellces ........................................... 1-1 
Unary Operators ............................................ 16 
Binary and Ternary Operators ....................... 17 
Examples of Integer Constants ...................... 10 
Types Assigned to 
Octal and Hexadecimal Constants ................. 19 

Examples of Long Integer Constants .............. 20 
Examples of Character Constants .................. 22 
Summary of Lifetime and Visibility ............... 39 

Fundamental Types ....................................... 48 

Type Specifiers and Abbreviations ................. 50 
Storage and Range of Values for 
Fundamental Types ....................................... 51 
C Data-'Type Categories ................................. 53 

Precedence and Associativity 
of C Operators ............................................ 137 
Conversions froln Signed Integral Types ...... 141 

Conversions fron1 Unsigned Integral Types .. 142 

Conversions fron1 Floating-Point Types ....... 144 



,', I 

CHAPTER 

INTRODUCTION 

1.1 Overview of the C Language ................................... 3 
1.2 About This Nra,nual ................................................ 4 
1.3 Notational Conventions .......................................... 6 

) 





) 

In trod uction 

1.1 Overview of the C Language 

The C language is a general-purpose programming language known for its 
efficiency, economy, and portability. While these characteristics make it a 
good choice for almost any kind of programming, C has proven especially 
useful in systems programming because it facilitates writing fast, compact 
programs that are readily adaptable to other systems. Well-written C pro­
grams are often as fast as assembly-language programs, and they are typi­
cally easier for programmers to read and maintain. 

C was designed to combine efficiency and power in a relatively small 
language. C does not include built-in functions to perform tasks such as 
input and output, storage allocation, screen manipulation, and process 
control. To perform such tasks, C programmers rely on run-time libraries. 

This design makes C both flexible and compact. Because the language is 
relatively sparse, it neither assumes nor imposes a particular programming 
model. You can use the run-time rou tines supplied, or tailor your own 
variations for special purposes. The design also helps to isolate language 
features from processor-specific features in a particular C implementation, 
which makes it easier to write portable code. While the strict definition of 
the language makes it independent of any particular operating system or 
machine, you can easily add system-specific routines to take advantage of 
the most efficient features of a particular machine. 

Note 

Microsoft is committed to conformance wi'th the developing standard 
for the C language as set forth in the Draft Proposed American 
National Standard-Programming Language C (hereinafter referred to 
as the ANSI C standard). Microsoft extensions to the ANSI C standard 
are noted in the text. Because the extensions are not a part of the 
ANSI C standard, their use may restrict portability of programs be­
tween systems. See your compiler guide for information on enabling 
and disabling Microsoft extensions. 

The C language includes the following significant features: 

• A full set of loop, conditional, and transfer statements to control 
program fl?w logically and efficiently and to encourage structured 
programmmg. 

• A large set of operators. Many of these operators correspond to 
common machine instructions, allowing a direct translation in to 
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machine code. The variety of operators allows you to specify 
different kinds of operations clearly and with a minimum of code. 

• Several sizes of integers, as well as single- and double-precision 
floating-point types. You can also design more complex data types, 
such as arrays and data structures, to suit specific program needs. 

• Declarations of "pointers" to variables and functions. A pointer to 
an item corresponds to the item's machine address. Pointers can 
make programs more efficient, since they let you refer to items in 
the same way the machine does. C also supports pointer arith­
metic, which allows you to access and manipulate memory ad­
dresses directly. 

• A C preprocessor that acts on the text of files before they are com­
piled. You can use the C preprocessor to define program constants, 
substitute fast macro definitions for function calls, and compile 
parts of programs based on specified conditions. 

C is a flexible language that leaves many programming decisions up to 
you. In keeping with this philosophy, C imposes few restrictions in matters 
such as type conversion. Although this characteristic of the language can 
make your programming job easier, you must know the language well to 
understand how programs will behave. 

1.2 About This Manual 

The Microsoft C Language Reference defines the C language as imple­
mented by Microsoft Corporation. It is intended as a reference for pro­
grammers experienced in C or other programming languages. Thorough 
knowledge of programming fundamentals is assumed. 

Note 

Appendix A of this manual provides a quick comparison between 
Microsoft C and the definition of C found in Appendix A of The C Pro­
gramming Language by Brian W. Kernighan and Dennis M. Ritchie. 
Appendix B of this manual summarizes the syntax of the C language as 
defined by Microsoft. 

The run-time library functions available for use in Microsoft C programs 
are discussed in a separate manual, the !vficrosoft C Run- Time Library 
Reference. 

4 
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Consult your compiler guide for an explanation of how to compile and link 
C programs on your system; your compiler guide also contains information 
specific to the implementation of C on your system. 

This manual is organized as follows: 

Chapter 2, "Elements of C," describes the letters, numbers, and symbols 
that can be used in C programs and the combinations of characters that 
have special meanings to the C compiler. 

Chapter 3, "Program Structure," discusses the components and structure 
of C programs and explains how C source files are organized. 

Chapter 4, "Declarations," describes how to specify the attributes of C 
variables, functions, and user-defined types. C provides a number of 
predefined data types and allows the programmer to declare "aggregate" 
types and pointers. Function prototypes, a relatively new feature of C, are 
discussed in this chapter, as well as in Chapter 7, "Functions." 

Chapter 5, "Expressions and Assignments," describes the operands and 
operators that form C expressions and assignments. The chapter also 
discusses the type conversions and side effects that may occur when ex­
pressions are evaluated. 

Chapter 6, "Statements," describes C statements, which control the flow 
of program execution. 

Chapter 7, "Functions," discusses C functions. In particular, this chapter 
explains function prototypes, formal parameters, and return values, as 
well as how to define, declare, and call functions. 

Chapter 8, "Preprocessor Directives and Pragmas," describes the instruc­
tions recognized by the C preprocessor, a text processor that is automati­
cally invoked before compilation. This chapter also introduces "pragmas," 
special instructions to the compiler that you may place in source files. 

Appendix A, "Differences," lists the differences between Microsoft C and 
the description of the C language found in Appendix A of The C Program­
ming Language by Brian W. Kernighan and Dennis M. Ritchie. 

Appendix B, "Syntax Summary," summarizes the syntax of the C language 
as implemented by Microsoft. 

The remainder of this chapter describes the notational conventions used 
throughou t the manual. 
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1.3 Notational Conventions 

This manual uses the following notational conventions: 

Convention 

keywords 

placeholders 

Examples 

Input: output 

6 

Meaning 

Bold type indicates text that must be typed 
exactly as shown. Text that is shown in bold 
type includes C keywords, such as goto and 
char, and operators, such as the addition opera­
tor (+) and the multiplication operator (lie). 

Terms in italics may appear in syntax descrip­
tions or in the text. In these instances, the terms 
are being used as placeholders that you would 
replace with specific terms or values in an actual 
C program. For example, in 

goto name; 

name appears in italics to show that this is a 
general form for the goto statement. In an 
actual program statement, you must supply a 
particular identifier for the placeholder name. 

Occasionally, italics are used to emphasize par­
ticular words in the text. 

Examples of C programs and program elemen ts 
appear in a special typeface to look similar to 
listings on the screen or the output of commonly 
used computer printers: 

int x, y; 

swap (&ex, &ey); 

Some examples show both program output and 
user input; in these cases, input is shown in a 
darker fon t. 



Repeating 

) elements ... 

[opt£onal £tems] 

Introduction 

Vertical ellipsis dots are used in program exam­
ples or syn tax to indicate that a portion of the 
program is omitted. 

In the following example, the vertical ellipsis 
dots indicate that zero or more declarations, fol­
lowed by one or more statements, may appear 
between the braces: 

{ 
[ declarat£on] 

statement 
[statement] 

} 

In the following excerpt, two program lines are 
shown. The ellipsis dots between the lines indi­
cate that additional program lines appear 
between these two lines but are not shown: 

int x, y; 

swap (&x, &y); 

Horizontal ellipsis dots following an item indi­
cate that more items of the same form may 
appear. For instance, 

= {express£on [, express£on]. .. } 

indicates that one or more expressions separated 
by commas may appear between the braces 
({ }). 

Double brackets enclose optional items in syntax 
descriptions. For example, 

return [express£on]; 

is a syntax description showing that express£on 
is an optional item in the return statement. 

Single brackets are used to indicate brackets 
used by C-Ianguage array declarations and sub­
script expressions. For instance, a [10] is an 
example of brackets in a C su bscript expression. 
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"Defined terms" 

lillY +NAMES 

8 

Quotation marks set off terms defined in the 
text. For example, the term "token" appears in 
quotation marks when it is defined. 

Some C constructs, such as strings, require quo­
tation marks. Quotation marks required by the 
language have the form" "rather than " " . For 
example, 

"abc" 

is a C string. 

Quotation marks also occasionally indicate a 
term that is being used in a colloquial sense. 

Names of special key combinations, such as 
CTRL+Z, appear in small capital letters. 
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Elements of C 

2.1 Introduction 

This chapter describes the elements of the C programming language, 
including the names, numbers, and characters used to construct a C pro­
gram. The following topics are discussed in the remainder of this chapter: 

• Character sets 

• Constants 

• Identifiers 

• Keywords 

• Comments 

• Tokens 

2.2 Character Sets 

Two character sets are defined for use in C programs: the "C character 
set" and the "representable character set." 

The C character set consists of the letters, digits, and punctuation marks 
having specific meanings in the C language. You construct a C program by 
combining the characters of the C character set into meaningful state­
ments. 

The C character set is a subset of the representable character set. The 
representable character set includes each letter, digit, and symbol that 
can be represented graphically with a single character. The extent of the 
representable character set depends on the type of terminal, console, or 
character device being used. 

All characters in a C program must be part of the C character set. How­
ever, string literals, character constants, comments, and file names in 
# include directives can include any character from the representable 
character set. 

Since each character in the C character set has an explicit meaning in the 
language, the compiler generates error messages when it finds inappropri­
ate or inappropriately used characters in a program. 

Sections 2.2.1 - 2.2.5 describe the characters and symbols of the C charac­
ter set and explain how and when to use them. 

11 
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2.2.1 Letters, Digits, and Underscore 

The C character set includes the uppercase and lowercase letters of the 
English alphabet, the 10 decimal digits of the Arabic number system, and 
the underscore (_) character. 

• Uppercase English letters 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

• Lowercase English letters 

abcdefghijklmnopqrstuvwxyz 

• Decimal digits 

0123456789 

• Underscore character (_) 

These characters are used to form the constants, identifiers, and keywords 
described later in this chapter. 

The C compiler treats uppercase and lowercase letters as distinct charac­
ters. For example, if a lowercase a is specified in an identifier, you cannot 
substitute an uppercase A; you must use the lowercase letter. 

2.2.2 "White-Space Characters 

Space, tab, line-feed, carriage-return, form-feed, vertical-tab, and new-line 
characters are called "white-space characters" because they serve the same 
purpose as the spaces between words and lines on a printed page. These 
characters separate the items you define, such as constants and identifiers, 
from other items in a program. 

The C compiler treats a CTRL+Z character as an end-of-file indicator. It 
ignores any text after the CTRL+Z mark. 

The C compiler ignores white-space characters unless you use them as 
separators or as components of character constants or string literals. 
Therefore, you can use extra white-space characters to make a program 
more readable. The compiler also treats comments as white space. (Com­
ments are described in Section 2.6.) 

2.2.3 Punctuation and Special Characters 

The punctuation and special characters in the C character set have vari­
ous uses, from organizing program text to defining the tasks that the 

12 
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compiler or compiled program will carry out. Table 2.1 lists the punctua­
tion and special characters in the C character set. 

Table 2.1 

Punctuation and Special Characters 

Character Name Character Name 

Comma Exclamation mark 
Period Vertical bar 
Semicolon / Forward slash 
Colon \ Backslash 

? Question mark Tilde 
Single quotation mark + Plus sign 

" Double quotation mark # Number sign 

( Left parenthesis % Percent sign 

) Right parenthesis & Ampersand 

[ Left bracket Caret 

] Right bracket * Asterisk 
{ Left brace Minus sign 
} Right brace Equal sign 

< Left angle bracket > Right angle bracket 

These characters have special meanings in C. Their uses are described 
throughout this manual. Any punctuation character from the represent­
able character set that does not appear in Table 2.1 can be used only in 
string literals, character constants, comments, and file names in # include 
directives. 

2.2.4 Escape Sequences 

Strings and character constants can contain "escape sequences." Escape 
sequences are character combinations representing white-space and non­
graphic characters. An escape sequence consists of a backslash (\) followed 
by a letter or by a combination of digits. 

Escape sequences are typically used to specify actions such as carriage 
returns and tab movements on terminals and printers and to provide 

13 
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literal representations of non printing characters and characters that nor­
mally have special meanings, such as the double-quotation-mark character 
("). Table 2.2 lists the C escape sequences. 

Table 2.2 

Escape Sequences 

Escape 
Sequence 

\n 
\t 
\v 
\b 
\r 
\f 
\a 
\ ' 
\" 
\\ 
\ ddd 

\xddd 

Name 

New line 
Horizon tal tab 

Vertical tab 
Backspace 
Carriage return 
Form feed 
Bell (alert) 
Single quotation mark 
Double quotation mark 

Backslash 

ASCII character 
in octal notation 
ASCII character 
in hexadecimal notation 

If a backslash precedes a character that does not appear in Table 2.2, the 
backslash is ignored and the character is represented literally. For exam­
ple, the pattern \c represents the character c in a string literal or char­
acter constant. However, the use of lowercase letters in escape sequences is 
reserved by ANSI for future standardization. Therefore, occurrences of 
undefined escape sequences, though currently innocuous, could pose future 
portability problems. 

The sequence \ ddd allows you to specify any character in the ASCII 
(American Standard Code for Information Interchange) character set as a 
three-digit octal character code. Similarly, the sequence \xddd allows you 
to specify any ASCII character as a three-digit hexadecimal character 
code. For example, you can give the ASCII backspace character as the nor­
mal C escape sequence (\b), or you can code it as \010 (octal) or \x008 
(hexadecimal). . 

You can use only the digits a through 7 in an octal escape sequence. 
Though you do not need to use all three digits, you must use at least one. 

14 
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For example, you can specify the ASCII backspace character in octal nota­
tion as \10. Similarly, you must use at least one digit for a hexadecimal 
escape sequence, but you can omit the second and third digits. Therefore 
you could specify the hexadecimal escape sequence for the backspace char­
acter either as \x08 or as \x8. 

Note 

When you use octal and hexadecimal escape sequences in strings, it is 
safest to give all three digits of the escape sequence. If you don't spec­
ify all digits of the escape sequence, and the character immediately fol­
lowing the escape sequence happens to be an octal or hexadecimal 
digit, the compiler interprets that character as part of the sequence. 
For example, if you printed the string "\x07Bell", the result would 
be {ell because \x07B is interpreted as the ASCII left-brace charac­
ter ({). The string \x007Bell lnote the two leading zeros) is the 
correct way to represent the bell character followed by the word 
Bell. The string \x7Bell' would generate a compiler diagnostic 
message because 7BE hexadecimal is too big a number to fit in one 
byte. 

Escape sequences allow you to send nongraphic control characters to a 
display device. For example, the escape character \033 is often used as 
the first character of a control command for a terminal or printer. Some 
escape sequences are device specific. For instance, the vertical tab and 
form feed (\ v and \f) do not affect screen output, but they do perform 
appropriate operations for a printer. 

Important 

You should always represent nongraphic characters by escape 
sequences in C programs, since using the characters directly may gen­
erate compiler diagnostic messages. 

You can also use the backslash character (\) as a continuation character. 
When a new-line character immediately follows the backslash, the com­
piler ignores the backslash and the new line and treats the next line as 
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part of the previous line. This is useful primarily for preprocessor def­
initions longer than a single line. In the past this feature was also used to 
create strings longer than one line. However, the string concatenation 
feature (see Section 2.3.4, "String Literals") is now preferred for creating 
long string literals. 

2.2.5 Operators 

"Operators" are symbols (both single characters and character combina­
tions) that specify how values are to be manipulated. Each symbol is inter­
preted as a single unit, called a "token." (Tokens are defined in Section 
2.7.) 

Table 2.3 lists the symbols comprising the C unary operators and names 
each operator. Table 2.4 lists the C binary and ternary operators and 
names them. You must specify operators exactly as they appear in the 
tables, with no white space between the characters of multicharacter op­
erators. Note that three operator symbols (asterisk, minus sign, and am­
persand) appear in both tables. Their interpretation as unary or binary 
depends on the context in which they appear. The sizeof operator is not 
included in these tables. It consists of a keyword (sizeof) rather than a 
symbol, and is listed in Section 2.5. 

Table 2.3 

Unary Operators 

Operator 

.., 
& 

+ 

Name 

Logical NOT 
Bitwise complement 
Arithmetic negation 
Indirection 
Address of 
Unary plus3 

a The unary plus operator is implemented syntactically, but not 
semantically. 

16 



) 

Elements of C 

Table 2.4 

Binary and Ternary Operators 

Operator Name Operator Name 

+ Addition && Logical AND 

Subtraction 

* Multiplication 11 Logical OR 11 

/ Division Sequential 
evaluation 

% Remainder 1: Conditionala 

« Left shift ++ Increment 

» Right shift Decrement 

< Less than Simple 
assignment 

<= Less than or += Addition 
equal to assignment 

> Greater than Subtraction 
assignment 

>= Greater than or *= Multiplication 
equal to assignment 
Equality /= Division 

assignment 

!= Inequality %= Remainder 
assignment 

&; Bitwise AND »= Righ t-shift 
assignment 

Bitwise inclusive «= Left-shift 
OR assignment 
Bitwise exclusive &= Bitwise-AND-
OR assignment 

1_ Bitwise Bitwise 1-

inclusive-OR exclusive-OR 
assignment assignment 

a The conditional operator is a ternary operator, not a multicharacter operator. A conditional 
expression has the following form: expression? expression: expression. 

For a complete description of each operator, see Chapter 5, "Expressions 
and Assignments." 
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2.3 Constants 

A "constant" is a number, character, or character string that can be used 
as a value in a program. A constant's value cannot be modified. 

The C language has four kinds of constants: integer constants, fioating­
point constants, character constants, and string literals. Sections 2.3.1 -
2.3.4 describe the format and use of each kind of constant. 

2.3.1 Integer Constants 

• Syntax 

d£g£ts 

Ood£g£ts 

Oxhd£g£ts 
OXhd£g£ts 

An "integer constant" is a decimal, octal, or hexadecimal number that 
represents an integral value in one of the following forms: 

• A "decimal constant" has the form digits, where digits represents 
one or more decimal digits (0 through g), the first of which is not a 
zero. 

• An "octal constant" has the form Oodigits, where odigits represents 
one or more octal digits (0 through 7). The leading zero is required. 

• A "hexadecimal constant" has the form Oxhdigits or OXhdigits, 
where hdigits represents one or more hexadecimal di~its (0 through 
9 and either uppercase or lowercase "a" through "f"). The leading 
Ox or ox is required. 

No white-space characters can separate the digits of an integer constant. 

Table 2.5 gives examples of the three forms of integer constants. 

18 
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Table 2.5 

Examples of Integer Constants 

Decimal Constants Octal Constants Hexadecimal Constants 

10 
132 
32179 

012 
0204 
076663 

Oxa or OxA 
Ox84 
Ox7dB3 or Ox7DB3 

Integer constants always specify positive values. If you need to use a nega­
tive value, place a minus sign (-) in front of a constant t.o form a constant 
expression with a negative value. (In this case, the minus sign is inter­
preted as the unary arithmetic negation operator.) 

Every integer constant is given a type based on its value. A constant's 
type determines which conversions must be performed when the constan t 
is used in an expression or when the minus sign (-) is applied, as summar­
ized in the following rules: 

• Decimal constants are considered signed quantities and are given 
int type, or long type if the size of the value requires it. 

• Octal and hexadecimal constants are given int, unsigned int, 
long, or unsigned long type, depending on the size of the con­
stant. If the constant can be represented as an int, it is given int 
type. If it is larger than the maximum positive value that can be 
represented by an int, but small enough to be represented in the 
same number of bits as an int, it is given unsigned int type. 
Similarly, a constan t that is too large to be represen ted as an 
unsigned int is given long or unsigned long type, if necessary. 

Table 2.6 shows the ranges of values and the corresponding types for octal 
and hexadecimal constants on a machine whose int type is 16 bits long. 

Table 2.6 

Types Assigned to Octal and Hexadecimal Constants 

Hexadecimal Range 

OxO - Ox7FFF 
Ox8000 - OxFFFF 
Ox10000 - Ox7FFFFFFF 
Ox80000000 - OxFFFFFFFF 

Octal Range 

0-077777 
0100000 - 0177777 
0200000 - 017777777777 
020000000000 - 037777777777 

Type 

int 
unsigned int 
long 
unsigned long 
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The consequence of the typing rules shown in Table 2.6 is that hexade­
cimal and octal constants are always zero extended when converted to 
longer types. (For a discussion of type conversions, see Chapter 5, 
"Expressions and Assignmen ts.") 

You can force any integer constant to be given long type by appending 
the letter "I" or "L" to the end of the constant. Table 2.7 illustrates some 
forms of long integer constants. 

Table 2.7 

Exam pIes of Long Integer Constants 

Decimal Constants Octal Constants Hexadecimal Constants 

10L 012L OxaL or OxAL 
791 01151 Ox4f1 or Ox4F1 

Types are described in Chapter 4, "Declarations," and conversions are 
described in Chapter 5, "Expressions and Assignments." 

2.3.2 Floating-Point Constants 

• Syntax 

[d£g£ts] [.d£g£ts] [Ele[-I +] d£g£ts] 

A "floating-point constant" is a decimal number that represents a signed 
real number. The value of a signed real number includes an integer por­
tion, a fractional portion, and an exponent. The digits are zero or more 
decimal digits (0 through 9), and E lor e) is the exponent symbol. You can 
omit either the digits before the decimal point (the integer portion of the 
value) or the digits after the decimal point (the fractional portion), but 
not both. You can leave out the decimal point only if you include an 
exponent. 

The exponent consists of the exponent symbol (E or e) followed by a con­
stant integer value. The integer value may be negative. No white-space 
characters can separate the digits or characters of the constant. 

Floating-point constants always specify positive values. However, you can 
place a minus sign (-) in front of the constant to form a constant floating­
point expression with a negative value. In this case, the minus sign is 
treated as an arithmetic operator. 

All floating-point constants have type double. 
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• Examples 

The following examples illustrate some forms of floating-point constants 
and expressions: 

15.75 
1.575E1 
1575e-2 
-0.0025 
-2.5e-3 
25E-4 

You can omit the integer portion of the floating-point constant, as shown 
in the following examples: 

.75 

.0075e2 
-.125 
-.175E-2 

2.3.3 Character Constants 

• Syntax 

'char' 

A "character constant" is formed by enclosing a single character from the 
representable character set within single quotation marks (' '). An escape 
sequence is regarded as a single character and is therefore valid in a char­
acter constant. Note that escape characters must be represented by escape 
sequences or diagnostic messages will be generated. The value of a charac­
ter constant is the numerical value of the character. 

In the syntax above, char can be any character from the representable 
character set (including any escape sequence) except a single quotation 
mark ('), backslash (\), or new-line character. To use a single quotation 
mark or backslash character as a character constant, precede it with a 
backslash, as shown in Table 2.8. To represent a new-line character, use 
the escape sequence \ n. 
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Table 2.8 

Examples of Character Constants 

Constant 

, , 

'a' 
'1' 

'\b' 
'\xlB' 

'\ " 
'\ \' 

Value 

Single blank space 

Lowercase a 

Question mark 
Backspace 
ASCII escape character 

Single quotation mark 

Backslash 

Character constants have type int, and are therefore sign extended in type 
conversions. (See Section 5.6, "Type Conversions," for more information.) 

2.3.4 String Literals 

• Syntax 

II characters" [" characters "] ... 

A "string literal" is a sequence of characters from the representable char­
acter set enclosed in double quotation marks (tl tI). The example below is a 
simple string literal: 

"This is a string literal." 

In a string literal, characters is a placeholder for zero or more characters 
from the representable character set, including any escape sequence. The 
double quotation mark (tI); backslash (\), or new line must be represented 
by their escape sequences ~ \", \ \, and \n). Non-printing characters 
should always be represented by a corresponding escape sequence. Each 
escape sequence is considered a single character. 

To force a new line within a string literal, enter the new-line (\n) escape 
sequence at the point in the string where you want the line broken, as fol­
lows: 

"Enter a number between 1 and lOO\nOr press Return" 
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The traditional way to form string literals that take up more than one line 
is to type a backslash, tJten press the RETURN key. The backslash causes 
the compiler to ignore the following new-line character. For example, the 
string literal 

"Long strings can be bro\ 
ken into two or more pieces." 

is identical to the string 

"Long strings can be broken into two or more pieces." 

Two or more string literals separated only by white space will be concat­
enated into a single string. For example, long strings passed as literals to 
the printf function may now be continued in any column of a succeeding 
line without affecting their appearance when output, if entered as follows: 

printf ("This is the first half of the string," 
" this is the second half") ; 

As long as each part of the string is enclosed in double quotation marks, 
the parts will be concatenated and output as a single string: 

This is the first half of the string, this is the second half 

String concatenation can be used anywhere you might previously have 
used a backslash followed by a new-line character to enter strings longer 
than one line. Because ensuing strings can start in any column of the 
source code without affecting their on-screen representation, strings can be 
positioned to enhance source-code readability. For example, the following 
pointer, initialized as two distinct string literals separated only by white 
space, is stored as a single string. When properly referenced, as in the fol­
lowing example, it produces a result identical to the previous example: 

char *string = "This is the first half of the string," 
" this is the second half" ; 

printf ("%s" , string) ; 

To use a double quotation mark or backslash within a string literal, pre­
cede it with a backslash, as shown in the following examples: 

"First\\Second" 

"\"Yes, I do,\" she said." 

Note that an escape sequence (such as \ \ or \ ") within a string literal 
coun ts as a single character. 
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The characters of a string are stored in order at contiguous memory loca­
tions. A null character (represented by the \0 escape sequence) is auto­
matically appended to, and marks the end of, each string literal. Each 
string in a program is generally considered to be distinct; however, two 
identical strings are not guaranteed to receive separate storage. Therefore, 
programs should not be designed to allow modification of string literals 
during execution. 

String literals have type array of char (char [D. This means that a string 
is an array with elements of type char. The number of elements in the 
array is equal to the number of characters in the string, plus one for the 
terminating null character. 

2.4 Identifiers 

• Syntax 

letterl_ [letterl digitl-l .. 

"Identifiers" are the names you supply for variables, types, functions, and 
labels in your program. You create an iden tifier by specifying it in the 
declaration of a variable, type, or function. You can then use the identifier 
in later program statements to refer to the associated item. Although 
statement labels are a special kind of identifier and have their own naming 
class, their creation is similar to that of variables and functions. (Declara­
tions are described in Chapter 4, "Declarations." Statement labels are 
described in Chapter 6, "Statements.") 

An identifier is a sequence of one or more letters, digits, or underscores (_) 
that begins with a letter or underscore. Identifiers can contain any number 
of characters, but only the first 31 characters are significant to the com­
piler. (Other programs that read the compiler output, such as the linker, 
may recognize even fewer characters.) 

The C compiler considers uppercase and lowercase letters to be distinct 
characters. This feature enables you to create distinct identifiers that have 
the same spelling but different cases for one or more of the letters. 

An identifier cannot have the same spelling and case as a keyword of the 
language. Keywords are described in Section 2.5. 

You should not use leading underscores in identifiers you create: identifiers 
beginning with an underscore can cause conflicts with the names of system 
routines or variables, and produce errors. Programs containing names 
beginning with leading underscores are not guaranteed to be portable. 
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Note 

Some linkers may further restrict the number and type of characters 
for globally visible symbols. (Visibility is defined in Section 3.5, "Life­
time and Visibility.") Also the linker, unlike the compiler, may not dis­
tinguish between uppercase and lowercase letters. Consult your linker 
documentation for information about naming restrictions imposed by 
the linker. 

• Examples 

The following are examples of identifiers: 

j 
cnt 
tempI 
top_o f_page 
skip12 

Since uppercase and lowercase letters are considered distinct characters, 
each of the following iden tifiers is unique: 

add 
ADD 
Add 
aDD 

2.5 Keywords 

"Keywords" are predefined identifiers that have special meanings to the C 
compiler. They can be used only as defined. The name of a program item 
cannot have the same spelling and case as a C keyword. 

The C language has the following keywords: 

auto double int struct 
break else long switch 
case enum register typedef 
char extern return union 
const float short unsigned 
continue for signed void 
default goto sizeof volatile 
do if static while 
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You cannot redefine keywords. However, you can specify text to be substi­
tuted for keywords before compilation by using C preprocessor directives 
(see Chapter 8, "Preprocessor Directives and Pragmas"). 

The volatile keyword is implemented syntactically, but currently has no 
semantics associated with it. You cannot use volatile as a variable name 
III your programs. 

The following identifiers may be keywords in some implementations. See 
your compiler guide for more information. 

cdecl 
far 
fortran 
huge 
near 
pascal 

2.6 Comments 

• Syntax 

/ * characters * / 

A "comment" is a sequence of characters that is treated as a single white­
space character by the compiler, but is otherwise ignored. In a comment, 
characters can include any combination of characters from the represent­
able character set, including new-line characters, but excluding the "end 
comment" delimiter (lie I). Comments can occupy more than one line, but 
they cannot be nested. 

Comments can appear anywhere a white-space character is allowed. Since 
the compiler treats a comment as a single white-space character, you can­
not include comments within tokens (see Section 2.7 for a definition of 
"token"). However, since the compiler ignores the characters of the com­
ment, you can include keywords in comments without producing errors. 

To suppress compilation of a large portion of a program or a program seg­
ment that contains comments, bracket the desired portion of code with 
the # if and # endif preprocessor directives, rather than "commenting 
out" the code (see Section 8.4, "Conditional Compilation"). 
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• Examples 

The following examples illustrate some comments: 

/* Comments can separate and document 
lines of a program. */ 

/* Comments can contain keywords such as for 
and while. */ 

/***************************************** 
Comments can occupy several lines. 

*****************************************/ 

Since comments cannot contain nested comments, the following example 
causes an error: 

/* You cannot /* nest */ comments */ 

The error occurs because the compiler recognizes the first * /, after the 
word nest, as the end of the commen t. It tries to process the remaining 
text and produces an error when it cannot do so. 

2.7 Tokens 

In a C source program, the basic element recognized by the compiler is the 
character group known as a "token." A token is source-program text the 
compiler will not attempt to further analyze into component elements. For 
example, the following program fragment uses the word "elsewhere" as the 
name of a function. Although else is a keyword in C, there is no confusion 
between the function name token and the C keyword token it contains. 

main () 
{ 

int i = 0; 

} 

if (i) 
elsewhere 0 

However, if you were to type elsewhere as else where with a space 
between "else" and "where," the preceding example would elicit a compiler 
diagnostic message noting the lack of a semicolon before the else keyword. 

The operators, constants, identifiers, and keywords described in this 
chapter are examples of tokens. Punctuation characters such as brackets 
U D, braces ({ }), angle brackets « », parentheses, and commas are 
also tokens. 
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Tokens are delimited by white-space characters and by other tokens, such 
as operators and punctuation characters. To prevent the compiler from 
breaking an item down into two or more tokens, white-space charac-
ters are not permitted within an identifier, multicharacter operator, or 
keyword. 

When the compiler interprets tokens, it includes as many characters as 
possible in a single token before moving on to the next token. Because of 
this behavior, the compiler may not interpret tokens as you intended if 
they are not properly separated by white space . 

• Example 

Consider the following expression: 

i+++j 

In this example, the compiler first makes the longest possible operator 
(++) from the three plus signs, then processes the remaining plus sign as 
an addition operator l+). Thus, the expression is interpreted as (1++) + 
(j) ,not (1) + (++ j). In this and similar cases, use white space and 
parentheses to avoid ambiguity and insure proper expression evaluation. 
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3.1 Introduction 

This chapter defines terms used later in this manual to describe the C 
language, and discusses the structure of C source programs. It gives an 
overview of features of C that are described in detail in other chapters. 
The syntax and meaning of declarations and definitions are discussed in 
Chapter 4, "Declarations," and Chapter 7, "Functions." The C preproces­
sor and pragmas are described in Chapter 8, "Preprocessor Directives and 
Pragmas." 

3.2 Source Program 

A C "source program" is a collection of any number of directives, prag­
mas, declarations, definitions, and statements. These constructs are dis­
cussed briefly in the following paragraphs. To be valid constructs in Micro­
soft C, each must have the syntax described in this manual, though they 
can appear in any order in the program (subject to the rules outlined 
throughout this manual). However, order of appearance does affect how 
variables and functions can be used in a program. (See Section 3.5, "Life­
time and Visibility," for more information.) 

Directives 

A "directive" instructs the C preprocessor to perform a specific action on 
the text of the program before compilation. Directives are described in 
Chapter 8, "Preprocessor Directives and Pragmas." 

Pragmas 

A "pragma" instructs the compiler to perform a particular action at com­
pile time. Pragmas are described in Chapter 8, "Preprocessor Directives 
and Pragmas." 

Declarations and Definitions 

A "declaration" establishes an association between the name and the attri­
butes of a variable, function, or type. In C, all variables must be declared 
before being used. 

A "definition" of a variable establishes the same associations as a declara­
tion, but also causes storage to be allocated for the variable. Therefore, all 
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definitions are implicitly declarations, but not all declarations are def­
initions. For example, variable declarations that begin with the extern 
storage-class specifier are "referencing," rather than "defining," declara­
tions. Referencing declarations do not cause storage to be allocated and 
cannot be initialized (see Section 4.6, "Storage Classes," for more infor­
mation). 

Function declarations (or "prototypes") establish the name of the func­
tion, its return type, and, optionally, its formal parameters. A function 
definition includes the same elements as the prototype, plus the function 
body. If you do not supply an explicit declaration for a function, the com­
piler constructs a prototype from whatever information is available in the 
first reference to the function, whether that is a definition or a call. (Func­
tion definitions are discussed further in Chapter 7, "Functions." Function 
prototypes are covered in Chapter 4, "Declarations," and Chapter 7, 
"Functions." ) 

Both function and variable declarations may appear inside or outside a 
function definition. Any declaration within a function definition is said to 
appear at the "internal" or "local" level. A declaration outside all function 
definitions is said to appear at the "external" or "global" level. 

Variable definitions, like declarations, can appear at the internal level 
(within a function definition) or at the external level (ou tside all function 
definitions). Function definitions always occur at the external level. 

Note that declarations of types (for example, structure, union, and 
typedef declarations) that do not include the name of a variable of the 
type being declared do not cause storage allocation . 

• Example 

int x = 1; 
int y = 2; 

extern int printf(char *, .•. ); 

main () 

{ 
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int z; 
int w; 

static int v; 

/* 
/* 

/* 
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/* 
/* 

/* 

Defining declarations */ 
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or declaration */ 

Function definition 
for main function */ 

Definitions for */ 
two uninitialized */ 
local variables */ 

Definition of variable 
with global lifetime */ 
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extern int u; /* Referencing declaration 
of external variable 
defined elsewhere */ 

z = y + x; /* Executable statements */ 

} 

w = y - x; 
printf(ltz= %d 
printf (ltv= %d 

w= %d", z, w); 
u= %d", v, u); 

The example above illustrates a simple C source program. This source pro­
gram defines the function named main and declares the function named 
pr int f with a prototype. The program uses defining declarations to ini­
tialize the global variables x and y. The local variables z and VI are 
declared, but not initialized. Storage is allocated for all these variables, 
but only x, y, u, and v contain meaningful values when declared 
because they are initialized, either explicitly or implicitly. The values in z 
and VI are not meaningful until values are assigned to them in the execut­
able statemen ts. 

3.3 Source Files 

A source program can be divided into one or more "source files." A C 
source file is a text file containing all or part of a C source program. (For 
example, a source file may contain just a few of the functions that the pro­
gram needs.) When you compile a program, you must separately compile, 
and then link, the individual source files comprising the total program. 
You can also use the # include directive to combine separate source files 
into larger source files before you compile. (See Section 8.3 for information 
on "include" files.) 

A source file can contain any combination of complete directives, pragmas, 
declarations, and definitions. You cannot split items such as function def­
initions or large data structures between source files. The last character 
in a source file must be a new-line character. 

A source file need not contain executable statements. For example, you 
may find it useful to place definitions of variables in one source file and 
then declare references to these variables in other source files that use 
them. This technique makes the definitions easy to find and change. For 
the same reason, manifest constants and macros are often organized into 
separate include files that may be referenced in source files as required. 

Directives in a source file apply only to that source file and its include files. 
Moreover, each directive applies only to the part of the file that follows 

33 



Microsoft C Language Reference 

the directive. To apply a common set of directives to a whole source pro­
gram, you must include the directives in all source files comprising the 
program. 

Pragmas usually affect a specific region of a source file. The implementa­
tion determines the specific compiler action that a pragma defines. (Your 
compiler guide describes the effects of particular pragmas.) 

• Example 

The following example illustrates a C source program contained in two 
source files. Once you have compiled these source files, you can link and 
then execute them as a single program. 

The main and max functions are assumed to be in separate files, and exe­
cution of the program is assumed to begin with the main function. 

/************************************************************ 
Source file 1 - main function 

************************************************************/ 

#define ONE 1 
#define TWO 2 
#define THREE 3 

extern int max (int a, int b); /* Function prototype */ 

main () /* Function definition */ 
{ 

} 

int w = ONE, x = TWO, y = THREE; 
int z = 0; 
z = max(x,y); 
w = max(z,w); 

In Source file 1 (above), a prototype of the max function is declared. This 
kind of declaratIOn is sometimes called a "forward declaration." The def­
inition for the main function includes calls to max. 

The lines beginning with a number sign (#) are preprocessor directives. 
These directives tell the preprocessor to replace the identifiers ONE, TWO, 
and THREE with the corresponding number throughout Source file 1. 
However, the directives do not apply to Source file 2 (below), which will be 
separately compiled and then linked with Source file 1. 
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/************************************************************ 
Source file 2 - definition of max function 

************************************************************/ 

int max (int a, int b) /* Note formal parameters are 
included in function header 

{ 
if ( a > b ) 

return (a) ; 
else 

return (b) ; 
} 

Source file 2 contains the function definition for max. This definition 
satisfies the calls to max in Source file 1. Note that the definition for 
max follows the form specified in the the ANSI C standard. For more 
information on this new form and function prototyping, see Chapter 7, 
"Functions. " 

3.4 Functions and Program Execution 

Every C program has a primary (main) function that must be named 
main. The main function serves as the starting point for program execu­
tion. It usually controls program execution by directing the calls to other 
functions in the program. A program usually stops executing at the end of 
main, although it can terminate at other points in the program for a 
variety of reasons depending on the execution environment. 

The source program usually has more than one function, with each func­
tion designed to perform one or more specific tasks. The main function 
can call these functions to perform their respective tasks. When main 
calls another function, it passes execution control to the function, so that 
execution begins at the first statement in the function. The function re­
turns control when a return statement is executed or when the end of the 
function is reached. 

You can declare any function, including main, to have parameters. When 
one function calls another, the called function receives values for its pa­
rameters from the calling function. These values are called "arguments." 
You can declare formal parameters to main so that it can receive values 
from outside the program. (Most commonly, these arguments are passed 
from the command line when the program is executed.) 

When the main function takes parameters, they are traditionally named 
argc and argv, although these names are not dictated by the C language. 

*/ 
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The argc parameter is declared to hold the total number of arguments 
passed to main. The argv parameter is declared as an array of pointers; 
each element of the array points to a string representation of an argument 
passed to main. 

Traditionally, if a third parameter is passed to main, that parameter is 
named envp, although this name is not required by C. It is an extension to 
the ANSI C standard provided by Microsoft C for compatibility with the 
XENIX@ Operating System. The envp parameter is a poin ter to a table of 
string values that set up the environment in which the program executes. 

The operating system supplies values for the argc, argv, and envp parame­
ters, and the user supplies the actual arguments to main. The operating 
system, not the C language, determines the argument-passing convention 
used on a particular system. For more information, see your compiler 
guide. 

If you declare formal parameters to a function, you must declare them 
when you define the function. Function declarations are described in 
Chapter 4, "Declarations," and Chapter 7, "Functions." Function defini­
tions are described in Chapter 7. 

3.5 Lifetime and Visibility 

To understand how a C program works, you must understand the rules 
that determine how variables and functions can be used in the program. 
Three concepts are crucial to understanding these rules: the block (or 
compound statement), lifetime (sometimes called "extent"), and visIbility 
(sometimes called "scope"). 

3.5.1 Blocks 

A "block" is a sequence of declarations, definitions, and statements 
enclosed within curly braces. There are two types of blocks in C. The 
"compound statement" (discussed more fully in Chapter 6, "Statements") 
is one type of block. The other, the "function definition" , consists of a 
compound statement comprising the function body plus the function's 
associated "header" (the function name, return type, and formal parame­
ters). A block may encompass other blocks, with the exception that no 
block can contain a function definition. A block within other blocks is said 
to be "nested" within the encompassing blocks. 
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Note that, while all compound statements are enclosed within curly 
braces, not everything enclosed within curly braces constitutes a com­
pound statement. For example, though the specifications of array, struc­
ture, or enumeration elements may appear within curly braces, they are 
not considered compound statements. 

3.5.2 Lifetime 

"Lifetime" is the period, during execution of a program, in which a vari­
able or function exists. All functions in a program exist at all times during. 
its execution. 

Lifetime of a variable may be "global" or "local." If its lifetime is global (a 
"global item"), it has storage and a defined value for the entire duration of 
a program. An item with a local lifetime (a "local item") has storage and a 
defined value only within the block where the item is defined or declared. 
A local item is allocated new storage each time the program enters that 
block, and it loses its storage (and hence its value) when the program exits 
the block. 

The following rules specify whether a variable has global or local lifetime: 

• Variables declared at the external level (that is, outside all blocks 
in the program) always have global lifetImes. 

o Variables declared at the internal level (that is, within a block) 
usually have local lifetimes. However, you can ensure global life­
time for a variable within a block by including the static storage 
class specifier in its declaration. Once declared static, the variable 
will retain its value from one entry of the block to the next. How­
ever, it will still be "visible" only within its own block and blocks 
nested within its own block. (Visibility of objects is discussed 
below. See Section 4.6 for a discussion of storage-class specifiers.) 

3.5.3 Visibility 

An item's "visibility" determines the portions of the program in which it 
can be referenced by name. An item is "visible" only in portions of a pro­
gram encompassed by its "scope," which may be limited (in order of 
increasing restrictiveness) to the file, function, block, or function proto­
type in which it appears. 

In C, only a label name is always confined to function scope. (See Chapter 
6, "Statements," for more information on labels and label names). The 
scope of any other item is determined by the level at which its declaration 
occurs. An item declared at the external level has file scope and is visible 
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everywhere within the file. If its declaration occurs within a block (includ­
ing the list of formal parameters in a function definition), the item s scope 
is limited to that block and blocks nested within that block. Formal 
parameter names declared in the parameter list of a function prototype 
have scope only from the completion of the parameter declaration to the 
end of the function declarator. 

Note 

Although an item with a global lifetime exists throughout the execu­
tion of the source program (for example, an externally declared vari­
able or a local variable declared with the static keyword), it may not 
be visible in all parts of the program. 

An item is said to be "globally visible" if it is visible, or if you can use 
appropriate declarations to make it visible, in all the source files compris­
ing the program. (Visibility between source files, also known as "linkage," 
is discussed in greater detail in Section 4.6, "Storage Classes.") 

The following rules govern the visibility of variables and functions within 
a program: 
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• Variables declared or defined at the external level (that is, outside 
all blocks in the program) are visible from their pOInt of definition 
or declaration to the end of the source file. You can use appropri­
ate declarations to make such variables visible in other source files, 
as described in Section 4.6, "Storage Classes." However, variables 
declared at the external level with the static storage-class specifier 
are visible only within the source file in which they are defined. 

• In general, variables declared or defined at the internal level (that 
is, within a block) are visible only from their point of declaration 
or definition to the end of the block actually containing the 
definition or declaration. Such variables are known as "local" vari­
ables. 

• Variables from outer blocks (including those declared at the exter­
nallevel) are visible in all inner blocks. However, the visibility of 
variables is said to "nest" within blocks. For instance, a block 
within another block can contain declarations for variables whose 
identifiers (names) are the same as variables in enclosing blocks. 
Such redefinitions prevail only within the inner block, however. 
Outer-block definitions are restored as the inner blocks are exited. 
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• Functions with static storage class are visible only in the source 
file in which they are defined. All other functions are globally 
visible. (For more information on function declarations, see Section 
4.5.) 

3.5.4 Summary 

Table 3.1 summarizes the main factors determining lifetime and visibility 
of variables and functions. However, the table does not cover all possible 
cases. Refer to the previous discussion and to Section 4.6, "Storage 
Classes," for more information. 

Note 
A Microsoft extension to the ANSI C standard provides that functions 
declared at an internal level may have global visibility. This feature 
should not be relied upon where portability of source code is a con­
sideration. See your compiler guide for information on enabling Micro­
soft extensions. 

Table 3.1 

Summary of Lifetime and Visibility 

Storage 
Class 

Level ItelIl Specifier LifetilIle Visibility 

External Variable static Global Restricted to 
definition source file in 

which it occurs 
Variable extern Global Remainder 
declaration of source file 
Function static Global Restricted 
prototype to single 
or definition source file 
Function extern Global Remainder 
prototype of source file 

Internal Variable extern Global Block 
declaration 
Variable static Global Block 
definition 
Variable auto or Local Block 
definition register 
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• Example 

The following program example illustrates blocks, nesting, and visibility of 
variables: 

#include <stdio.h> 

/* i defined at external level: */ 
int i = 1; 

/* main function defined at external level: */ 
main () 
{ 

} 

/* prints 1 (value of external level i): */ 
printf("%d\n", i); 

/* begin first nested block: */ 
{ 

/* i and j defined at internal level: */ 
int i = 2, j = 3; 

/* prints 2, 3: */ 
printf("%d\n%d\n", i, j); 

/* begin second nested block: */ 
{ 

/* i is redefined: */ 
int i = 0; 

/* prints 0, 3: */ 
printf("%d\n%d\n", i, j); 

/* end of second nested block: */ 
} 

/* prints 2 (outer definition restored): */ 
printf("%d\n", i); 

/* end of first nested block: */ 
} 

/* prints 1 (external level definition restored): */ 
printf("%d\n", i); 

In this example, there are four levels of visibility: the external level and 
three block levels. Assuming that the function print f is defined else­
where in the program, the values will be printed to the screen as noted in 
the comments preceding each statement. 
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3.6 Naming Classes 

In any C program, identifiers are used to refer to many different kinds of 
items. When you write a C program, you provide identifiers for the func­
tions, variables, formal parameters, union members, and other items the 
program uses. C allows you to use the same identifier for more than one 
program item, as long as you follow the rules outlined in this section. 

The compiler sets up "naming classes" to distinguish between the identi­
fiers used for different kinds of items. The names within each class must 
be unique to avoid conflict, but an identical name can appear in more 
than one naming class. This means that you can use the same identifier 
for two or more different items, provided that the items are in different 
naming classes. The compiler can resolve references based on the context 
of the identifier in the program. 

The following list describes the kinds of items you can name in C pro­
grams and the rules for naming them: 

Items 

Variables and functions 

Formal parameters 

Naming Class 

The names of variables and functions are 
in a naming class with formal parame­
ters, typedef names and enumeration 
constants. Therefore, variable and func­
tion names must be distinct from other 
names in this class that have the same 
visibility. 

However, you can redefine variable and 
function names within program blocks, 
as described in Section 3.5, "Lifetime 
and Visibility." 

The names of formal parameters to a 
function are grouped with the names of 
the function's variables, so the formal 
parameter names should be distinct from 
the variable names. You cannot rede­
clare the formal parameters at the top 
level of the function. However, the names 
of the formal parameters may be rede­
fined (that is, used to refer to different 
items) within subsequent blocks nested 
within the function body. 
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Enumeration constants 

typedef names 

Tags 

Members 

Statement labels 
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En umeration constants are in the same 
naming class as variable and function 
names. This means that the names of 
enumeration constants must be distinct 
from all variable and function names 
with the same visibility, and distinct 
from the names of other enumeration 
constants with the same visibility. How­
ever, like variable names, the names of 
enumeration constants have nested visi­
bility, so you can redefine them within 
blocks. (Nested visibility is discussed in 
Section 3.5, "Lifetime and Visibility.") 

The names of types defined with the 
typedef keyword are in a naming class 
with variable and function names. 
Therefore, typedef names must be dis­
tinct from all variable and function 
names with the same visibility, as well as 
from the names of formal parameters 
and enumeration constants. Like vari­
able names, names used for typedef 
types can be redefined within program 
blocks. See Section 3.5, "Lifetime and 
Visibility." 

Enumeration, structure, and union tags 
are grouped in a single naming class. 
These tags must be distinct from other 
tags with the same visibility. Tags do 
not conflict with any other names. 

The members of each structure and 
union form a naming class. The name of 
a member must, therefore, be unique 
within the structure or union, but it does 
not have to be distinct from other names 
in the program, including the names of 
members of different structures and 
unIOns. 

Statement labels form a separate naming 
class. Each statement label must be dis­
tinct from all other statement labels in 
the same function. Statement labels do 
not have to be distinct from other names 
or from label names in other functions. 
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struct student { 
char student[20]; 
int class; 
int id; 
} student; 

Program Structure 

Since structure tags, structure members, and variable names are in three 
different naming classes, the three items named student in this example 
do not conflict. The context of each item allows correct interpretation of 
each occurrence of student in the program. 

For example, when student appears after the struct keyword, the com­
piler recognizes it as a structure tag. When student appears after a 
member-selection operator (-> or .), the name refers to the structure 
member. In other contexts, student refers to the structure variable. 
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4.1 Introduction 

This chapter describes the form and constituents of C declarations for 
variables, functions, and types. C declarations have the form 

[sc-specif£er] [type-speczJier] declarator[= initializer] [, declarator[= in itiaiz"zer]] ... 

where sc-speczjier is a storage-class specifier; type-specifier is the name of a 
defined type; and initializer gives the value or sequence of values to be 
assigned to the variable being declared. The declarator is an identifier that 
can be modified with brackets ([]), asterisks (*), or parentheses (( )). 

You must explicitly declare all C variables before using them. You can 
declare a C function explicitly with a function prototype. If you do not 
provide a prototype, one is created automatically from whatever informa­
tion is included in the first reference to the function, whether that refer­
ence is a definition or a call. 

The C language includes a standard set of data types. You can add your 
own data types by declaring new ones based on types already defined. You 
can declare arrays, data structures, and pointers to both variables and 
functions. 

C declarations require one or more "declarators." A declarator is an iden­
tifier that can be modified with brackets ([]), asterisks (*), or parentheses 
(( )) to declare an array, ,Pointer, or function type, respectively. When you 
declare simple variables (such as character, integer, and floating-point 
items), or structures and unions of simple variables, the declarator is just 
an identifier. 

Four storage-class specifiers are defined in C: auto, extern, register, and 
static. The storage-class specifier of a declaration affects how the 
declared item is stored and initialized and which parts of a program can 
reference the item. Location of the declaration within the source program 
and the presence or absence of other declarations of the variable are also 
important factors in determining the visibility of variables. 

Function prototype declarations are presented in Section 4.5 and in 
Chapter 7, "Functions." For information on function definitions, see 
Chapter 7. 
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4.2 Type Specifiers 

The C language provides definitions for a set of basic data types, called 
"fundamen tal" types. Their names are listed in Table 4.1. 

Table 4.1 

Fundamental Types 

Integral Typesa 

char 

int 
short 

long 

signed 
unsigned 

enum 

Floating-Point 
Types 

float 

double 
long doubleb 

Other 

voidC 

canst 
volatiled 

a The optional keywords signed and unsigned can precede any of 
the integral types, except enum, and can also be used alone as type 
specifiers, in which case they are understood as signed int and 
unsigned int, respectively. When used alone, the keyword int is 
assumed to be signed. When used alone, the keywords long and 
short are understood as long int and short into 

b The long double type is semantically equivalent to double, but 
is syntactically distinct. 

C The keyword void has three uses: as a function return type, as an 
argumentrtype list for a function that will take no arguments, and to 
modify a pointer. 

d The volatile keyword is implemented syntactically, but not 
semantically. 

Enumeration types are considered fundamental types. Type specifiers for 
enumeration types are discussed in Section 4.8.1. 

Note 
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The long float type is no longer supported, and occurrences of it in 
old code should be changed to double. 
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The signed char, signed int, signed short int, and signed long int 
types, together with their unsigned counterparts and enUffi, are called 
"integral" types. The float, double, and long double type specifiers are 
referred to as "floating" or "floating-point" types. You can use any inte­
gral or floating-point type specifier in a variable or function declaration. 

You can use the void type to declare functions that return no value 
or to declare a pointer to an unspecified type. When the keyword void 
occurs alone within the parentheses following a function name, it is not 
interpreted as a type specifier. In that context void indicates only that 
the function accepts no arguments. Function types are discussed in 
Section 4.5. 

The const type specifier is used to declare an object as nonmodifiable. The 
const keyword can be used as a modifier for any fundamental or aggregate 
type, or to modify a pointer to an object of any type. A typedef may be 
modified by a const type specifier. A declaration that includes the key­
word const as a modifier of an aggregate type declarator indicates that 
each element of the aggregate type is unmodifiable. If an item is declared 
with only the const type specifier, its type is taken to be const into A 
const object may be placed in a read-only region of storage. 

The volatile type specifier declares an item whose value may legitimately 
be changed by something beyond the control of the program in which it 
appears. The volatile keyword can be used in the same circumstances as 
const (described above). An item may be both const and volatile, in 
which case the item could not be legitimately modified by its own pro­
gram, but could be modified by some asynchronous process. The volatile 
keyword is implemented syntactically, but not semantically. 

You can create additional type specifiers with typedef declarations, as 
described in Section 4.8.2. When used in a declaration, such specifiers may 
only be modified by the const and volatile modifiers. 

Type specifiers are commonly abbreviated, as shown in Table 4.2. Integral 
types are signed by default. Thus, if you omit the unsigned keyword from 
the type specifier, the integral type is signed, even if you do not specify the 
signed keyword. 

In some implementations, you can specify a compiler option that changes 
the default char type from signed to unsigned. When this option is in 
effect, the abbreviation char means the same as unsigned char, and you 
must use the signed keyword to declare a signed character value. Com­
piler options are described in your compiler guide. 
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Note 

This manual generally uses the abbreviated forms of the type specifiers 
listed in Table 4.2 rather than the long forms, and it assumes that the 
char type is signed by default. Therefore, throughout this manual, 
char stands for signed char. 

Table 4.2 

Type Specifiers and Abbreviations 

Type Specifier 

signed chara 

signed int 

signed short int 

signed long int 

unsigned charb 

unsigned int 

unsigned short int 

unsigned long int 

float 

const int 
volatile int 
const volatile int 

Ab breviations 

char 

signed, int 

short, signed short 

long, signed long 

unsigned 

unsigned short 

unsigned long 

const 
volatile 
const volatile 

a When you make the char type unsigned by default (by 
specifying the appropriate compiler option), you cannot 
abbreviate signed char. 

b When you make the char type unsigned by default (by 
specifying the appropriate compiler option), you can 
abbreviate unsigned char as char. 

4.2.1 Storage for Fundamental Types 

Table 4.3 summarizes the storage associated with each fundamental type 
and gives the range of values that can be stored in a variable of each type. 
Since the void type specifier is only used to denote a function with no 
return value or a pointer to an unspecified type, it is not included in the 
table. Similarly, the table does not include const or volatile because a 
variable type modified by const or volatile retains its storage size and 
can contain any value within range for its fundamental type. 
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Table 4.3 

Storage and Range of Values for Fundamental Types 

Type Storage Range of Values (Internal) 

char 1 byte -128 to 127 

int implementation 
defined 

short 2 bytes - 32,768 to 32,767 

long 4 bytes - 2,147,483,648 to 2,147,483,647 

unsigned char 1 byte o to 255 

unsigned implemen tation 
defined 

unsigned short 2 bytes o to 65,535 

unsigned long 4 bytes o to 4,294,967,295 

float 4 bytes IEEE-standard notation; 
discussed below 

double 8 bytes IEEE-standard notation; 
discussed below 

long double 8 bytes IEEE-standard notation; 
discussed below 

The char type is used to store the integer value of a member of the 
representable character set. That integer value is the ASCII code corre­
sponding to the specified character. Since the char type is interpreted as a 
signed, 1-byte integer, a char variable can store values in the range -128 
to 127, although only the values from 0 to 127 have character equivalents. 
Similarly, an unsigned char variable can store values in the range 0-255. 

Note that the C language does not define the storage and range associated 
with the int and unsigned int types. Instead, the size of a signed or 
unsigned int item is the standard size of an integer on a particular ma­
chine. For example, on a 16-bit machine the int type is usually 16 bits, or 
2 bytes. On a 32-bit machine the int type is usually 32 bits, or 4 bytes. 
Thus, the int type is equivalent to either the short int or the long int 
type, and the unsigned int type is equivalent to either the unsigned 
short or the unsigned long type, depending on the implementation. 

The type specifiers int and unsigned int (or simply unsigned) define cer­
tain features of the C language (for instance, the enum type discussed 
later in Section 4.8.1). In these cases, the definitions of int and unsigned 
int for a particular implementation determine the actual storage. 
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Note 

The int and unsigned int type specifiers are widely used in C pro­
grams because they allow a particular machine to handle integer 
values in the most efficient way for that machine. However, since the 
sizes of the int and unsigned int types vary, programs that depend on 
a specific int size may not be portable to other machines. To make 
programs more portable, you can use expressions with the sizeof 
operator (discussed in Section 5.3.4) instead of hard-coded data sizes. 
The actual sizes of int and unsigned int are discussed in your com­
piler guide. 

Floating-point numbers use the IEEE (Institute of Electrical and Electron­
ics Engineers, Inc.) format. Values with float type have 4 bytes, consisting 
of a sign bit, an 8-bit excess-I27 binary exponent, and a 23-bit mantissa. 
The mantissa represents a number between 1.0 and 2.0. Since the high­
order bit of the mantissa is always 1, it is not stored in the number. This 
representation gives a range of approximately 3.4E-38 to 3.4E+38 for type 
float. 

Values with double type have 8 bytes. The format is similar to the float 
format except that it has an II-bit excess-I023 exponent and a 52-bit 
mantissa, plus the implied high-order 1 bit. This format gives a range of 
approximately 1. 7E-308 to 1. 7E+308 for type double. 

4.2.2 Range of Values 

The range of values for a variable is bounded by the minimum and max­
imum values that can be represented internally in a given number of bits. 
However, because of C's conversion rules (discussed in detail in Chapter 5, 
"Expressions and Assignments"), you cannot always use the maximum or 
minimum value for a constant of a particular type in an expression. 

For example, the constant expression - 32768 consists of the arithmetic 
negation operator (-) applied to the constant value 32,768. Since 32,768 is 
too large to represent as a short int, it is given the long type. Conse­
quently, the constant expression -32768 has long type. You can only 
represent -32,768 as a short int by type-casting it to the short type. No 
information is lost in the type cast, since -32,768 can be represented inter­
nally in 2 bytes. 

Similarly, a value such as 65,000 can only be represented as an unsigned 
short by type-casting the value to unsigned short type or by giving the 
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value in octal or hexadecimal notation. The value 65,000 in decimal nota­
tion is considered a signed constant. It is given the long type because 
65,000 does not fit into a short. You can cast this long value to the 
unsigned short type without loss of information, since 65,000 can fit in 2 
bytes when it is stored as an unsigned number. 

Octal and hexadecimal constants may have either signed or unsigned 
type, depending on their size (see Section 2.3.1, "Integer Constants," for 
more information). However, the method used to assign types to octal and 
hexadecimal constants ensures that they always behave like unsigned inte­
gers in type conversions. 

4.2.3 Data-Type Categories 

The C data types fall into two general categories, called scalar and aggre­
gate. Scalar types include pointers and arithmetic types. Arithmetic types 
include all floating and integral types, as described in this section. Aggre­
gate types include arrays and structures. Table 4.4 illustrates the cate­
gories of C data types. 

Table 4.4 

C Data-Type Categories 

Data Types Categories 

char 
int 

short 
long Integral 
signed Types 
unsigned Arithmetic 
enum Types Scalar 

Types 

float 1 
double Floating 

long double Types 

Pointers 

Arrays } Aggregate 
Structures Types 
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4.3 Declarators 

• Syntax 

z'dent£fz'er 
declarator[[ constant-expresst'on]] 
of< declarator 
( declarator) 

The C language lets you declare "arrays" of values, "pointers" to values, 
and "functions returning" values of specified types. You must use a 
"declarator" to declare these items. 

A "declarator" is an identifier that may be modified by brackets ([ D, 
asterisks (lie), or parentheses ( )) to declare an array, pointer, or function 
type, respectively. Declarators appear in the pointer, array, and function 
declarations described later in this chapter (Sections 4.4.6, 4.4.5, and 4.5, 
respectively). The following section discusses the rules for forming and 
interpreting declarators. 

4.3.1 Pointer, Array, and 
Function Declarators 

When a declarator consists of an unmodified identifier, the item being 
declared has a base type. If asterisks (of<) appear to the left of an identifier, 
the tJJ2e is modified to a pointer type. It the identifier is followed by brack­
ets (t J), the type is modified to an array type. If the identifier is followed 
by parentheses, the type is modified to a function returning type. 

A declarator must include a type specifier to be a complete declaration. 
The type specifier gives the type of the elements of an array type, the type 
of object addressed by a pointer type, or the return type of a function. 

The sections on pointer, array, and function declarations later in this 
chapter discuss each type of declaration in detail (see Sections 4.4.6, 4.4.5, 
and 4.5, respectively). 

• Examples 

The following examples illustrate the simplest forms of declarators: 
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/******************** Example 1 ********************/ 

int list[20]; 

Example 1 declares an array of int values named 1 ist. 

/******************** Example 2 ********************/ 

char *cp; 

Example 2 declares a pointer named ep to a char value. 

/******************** Example 3 ********************/ 

double func(void); 

Example 3 declares a function named fune, with no arguments, that 
returns a double value. 

4.3.2 Complex Declarators 

You can enclose any declarator in paren theses to specify a particular 
interpretation of a complex declarator. 

A "complex" declarator is an identifier qualified by more than one array, 
pointer, or function modifier. You can apply various combinations of 
array, pointer, and function modifiers to a single identifier. However, a 
declarator may not have the following illegal combinations: 

• An array cannot have functions as its elements. 

• A function cannot return an array or a function. 

In interpreting complex declarators, brackets and parentheses (that is, 
modifiers to the righ t of the identifier) take precedence over asterisks (that 
is, modifiers to the left of the identifier). Brackets and parentheses have 
the same precedence and associate from left to right. After the declarator 
has been fully interpreted, the type specifier is applied as the last step. By 
using parentheses you can override the default association order and force 
a particular in terpretation. 
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A simple way to interpret complex declarators is to read them "from the 
inside out," using the following four steps: 

1. Start with the identifier and look to the right for brackets or 
parentheses (if any). 

2. Interpret these brackets or parentheses, then look to the left for 
asterisks. 

3. If you encounter a right parenthesis at any stage, go back and 
apply rules 1 and 2 to everything within the parentheses. 

4. Apply the type specifier. 

• Examples 

/******************** Example 1 ********************/ 

char ~(~(~v~r)J»!10]; 

7 6 4 2 1 3 5 

In Example 1, the steps are labeled in order and can be interpreted as 
follows: 

1. The identifier var is declared as 

2. a pointer to 

3. a function returning 

4. a pointer to 

5. an array of 10 elements, which are 

6. pointers to 

7. char values. 

Examples 2 through 9 illustrate complex declarations further and show 
how parentheses can affect the meaning of a declaration. 

/******************** Example 2 ********************/ 

/* array of pointers to int values */ 

int *var[S]; 

In Example 2, the array modifier has higher priority than the pointer 
modifier, so var is declared to be an array. The pointer modifier applies 
to the type of the array elements; therefore, the array elements are 
pointers to int values. 
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/******************** Example 3 ********************/ 

/* pointer to array of int values */ 

int (*var) [5] ; 

In Example 3, parentheses give the pointer modifier higher priority than 
the array modifier, and var is declared to be a pointer to an array of five 
int values. 

/******************** Example 4 ********************/ 

/* function returning pointer to long */ 

long *var(long,long); 

Function modifiers also have higher priority than pointer modifiers, so 
Example 4 declares var to be a function returning a pointer to a long 
value. The function is declared to take two long values as arguments. 

/******************** Example 5 ********************/ 

/* pointer to function returning long */ 

long (*var) (long,long); 

Example 5 is similar to Example 3. Parentheses give the pointer modifier 
higher priority than the function modifier, and var is declared to be a 
pointer to a function that returns a long value. Again, the function takes 
two long argumen ts. 

/******************** Example 6 ********************/ 

/* array of pointers to functions 
returning structures */ 

struct both { 
int a; 
char b; 
} ( *var[S] ) ( struct both, struct both ); 

The elements of an array cannot be functions, but Example 6 demon­
strates how to declare an array of pointers to functions instead. In this 
example, var is declared to be an array of five pointers to functions that 
return structures with two members. The arguments to the functions are 
declared to be two structures with the same structure type, both. Note 
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that the parentheses surrounding *var [5] are required. Without them, 
the declaration is an illegal attempt to declare an array of functions, as 
shown below: 

/* ILLEGAL */ 
struct both *var[5] ( struct both, struct both ); 

/******************** Example 7 ********************/ 

/* function returning pointer 
to an array of 3 double values */ 

double ( *var ( double (*) [3] ) ) [3] ; 

Example 7 shows how to declare a function returning a pointer to an 
array, since functions returning arrays are illegal. Here var is declared to 
be a function returning a pointer to an array of three double values. The 
function var takes one argument. The argument, like the return value, is 
a pointer to an array of three double values. The argument type is given 
by a complex abstract declarator. The parentheses around the asterisk in 
the argument type are required; without them, the argument type would 
be an array of three pointers to double values. For a discussion and ex­
amples of abstract declarators, see Section 4.9, "Type Names." 

/******************** Example 8 ********************/ 

/* array of arrays of pointers 
to pointers to unions */ 

union sign { 
int x; 
unsigned y; 
} * *var [5] [5] ; 

As Example 8 shows, a pointer can point to another pointer, and an array 
can contain arrays as elements. Here var is an array of five elements. Each 
element is a five-element array of pointers to pointers to unions with two 
members. 

/******************** Example 9 ********************/ 

/* array of pointers to arrays 
of pointers to unions */ 

union sign * (*var[5]) [5]; 

Example 9 shows how the placement of parentheses changes the meaning 
of the declaration. In this example, var is a five-element array of pointers 
to five-element arrays of pointers to unions. 
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4.3.3 Declarators with Special Keywords 

Your implementation of Microsoft C may include the following special 
keywords: 

cdecl 

far 

fortran 

huge 

near 

pascal 

These keywords modify the meaning of variable and function declarations. 
See your compiler guide for a full discussion of the effects of these special 
keywords. 

When a special keyword appears in a declarator, it modifies the item 
immediately to the right of the keyword. You can apply more than one 
special keyword to the same item. For example, you might modify a func­
tion identifier with both the far keyword and the pascal keyword. In this 
case, the order of the keywords does not matter (that is, far pascal and 
pascal far have the same effect). Thus the "binding" characteristics of the 
special keywords are the same as those of the type specifiers const and 
volatile. (Section 4.2, "Type Specifiers," contains descriptions of the 
const and volatile keywords.) 

You can also use two or more special keywords in different parts of a 
declaration to modify the meaning of the declaration. For example, the 
following declaration contains two occurrences of the far keyword: 

int far * pascal far func(void); 

In this example, the pascal and far keywords modify the function 
identifier func. The return value of func is declared to be a far pointer 
to an int value. 

As in any C declaration, you can use parentheses to override the default 
interpretation of the declaration. The rules governing complex declarators 
(discussed in Section 4.3.2) also apply to declarations that use the special 
keywords. 
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• Examples 

The following examples show the use of special keywords in declarations: 

/******************** Example 1 **~*****************/ 

int huge database[65000]; 

Example 1 declares a huge array named database with 65,000 int ele­
ments. The huge keyword modifies the array declarator. 

/******************** Example 2 ********************/ 

char * far * x; 

In Example 2, the far keyword modifies the asterisk to its right, making x 
a far pointer to a pointer to char. This declaration is equivalent to the 
following declaration: 

char * (far *x): 

/******************** Example 3 ********************/ 

double near cdecl calc(double,double); 

double cdecl near calc(double,double); 

Example 3 shows two equivalent declarations. Both declare calc as a 
function with the near and cdecl attributes. 

/******************** Example 4 ********************/ 

char far fortran initlist[INITSIZE]; 

char far *nextchar, far *prevchar, far *currentchar; 

Example 4 also shows two declarations. The first declares a far fortran 
array of characters named ini tlist, and the second declares three far 
pointers named nextchar, prevchar, and currentchar. These 
pointers might be used to store the addresses of characters in the 
ini tlist array. Note that the far keyword must be repeated before each 
declarator. 
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/******************** Example 5 ********************/ 

char far * (far *get~nt)Jint far *); 

6 5 2 1 3 4 

Example 5 shows a more complex declaration with several occurrences of 
the far keyword. The following procedure would be used to interpret this 
declaration: 

1. The identifier getint is declared as a 

2. far pointer to 

3. a function taking 

4. a single argument that is a far pointer to an int value 

5. and returning a far pointer to a 

6. char value. 

Note that the far keyword always modifies the item immediately to its 
right. 

4.4 Variable Declarations 

• Syntax 

[sc-spec2Jier] type-specifier declarator [, declarator] ... 

This section describes the form and meaning of variable declarations. In 
particular, it explains how to declare the following: 

Type of Variable 

Simple variables 

Description 

Single-value variables with integral or 
floating-poin t type 

Enumeration variables Simple variables with integral type that 
hold one value from a set of named integer 
constants 

Structures 

Unions 

Variables composed of a collection of 
values that may have different types 

Variables composed of several values of 
different types, which occupy the same 
storage space 
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Arrays 

Pointers 

Variables composed of a collection of ele­
ments with the same type 

Variables that point to other variables and 
contain variable locations (in the form of 
addresses) instead of values 

In the general form of a variable declaration, type-specifier gives the data 
type of the variable and declarator gives the name of the variable, possibly 
modified to declare an array or a pointer type. The type-specifier can be a 
compound, as when the type is modified by canst, volatile, or one of the 
special keywords described in Section 4.3.3. You can define more than one 
variable in a declaration by using multiple declarators, separated by com­
mas. For example, int const far * fp declares a variable named fp as 
a far pointer to a nonmodifiable int value. 

The sc-specifier gives the storage class of the variable. In some contexts, 
you can initialize variables at the time you declare them. For information 
about storage classes and initialization, see Sections 4.6 and 4.7, respec­
tively. 

4.4.1 Simple Variable Declarations 

• Syntax 

[sc-specz:r£er~ type-specz:r£er £dentz:r£er [, £dentz:r£er] ... ; 

The declaration of a simple variable specifies the variable's name and type. 
It can also specify the variable's storage class, as described in Section 4.6. 
The Z"dentz"fier in the declaration is the variable's name. The type-specifier 
is the name of a defined data type. 

You can use a list of identifiers separated by commas (,) to specify several 
variables in the same declaration. Each identifier in the list names a vari­
able. All variables defined in the declaration have the same type. 

• Examples 

/******************** Example 1 ********************/ 

int x; 
int canst y=l; 

Example 1 declares a simple variable named x. This variable can hold any 
value in the set defined by the int type for a particular implementation. 
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The simple object y is declared as a constant value of type into It is ini­
tialized to the value 1, and is not modifiable. If the declaration of y was 
for an un initialized external, it would receive an initial value of 0, and 
that value would be unmodifiable. 

/******************** Example 2 ********************/ 

unsigned long reply, flag; 

Example 2 declares two variables named reply and flag. Both variables 
have unsigned long type and hold unsigned integral values. 

/******************** Example 3 ********************/ 

double order; 

Example 3 declares a variable named order that has double type and 
can hold floating-point values. 

4.4.2 Enumeration Declarations 

• Syntax 

enum [tag] {enum-list} [declarator [, declarator] ... ]; 

enum tag [identz:rier [, declarator] ... ]; 

An "enumeration declaration" gives the name of an enumeration variable 
and defines a set of named integer constants (the "enumeration set"). A 
variable with enumeration type stores one of the values of the enumera­
tion set defined by that type. The integer constants of the enumeration set 
have int type; thus, the storage associated with an enumeration variable is 
the storage required for a single int value. 

Variables of enum type are treated as if they are of type int in all cases. 
They may be used in indexing expressions and as operands of all arith­
metic and relational operators. 

Enumeration declarations begin with the enum keyword and have the two 
forms shown at the beginning of this section and described below: 

• In the first form, enum-l£st specifies the values and names of the 
enumeration set. (The enum-list is described in detail below.) The 
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optional tag is an identifier that names the enumeration type 
defined by enum-list. The declarator names the enumeration vari­
able. You can specify zero or more enumeration variables in a sin­
gle enumeration declaration. 

• The second form of the enumeration declaration uses a previously 
defined enumeration tag to refer to an enumeration type defined 
elsewhere. The tag must refer to a defined enumeration type, and 
that enumeration type must be currently visible. Since the 
enumeration type is defined elsewhere, enum-list does not appear in 
this type of declaration. Declarations of pointers to enumerations 
and typedef declarations for enumeration types can use the 
enumeration tag before the enumeration type is defined. However, 
the enumeration definition must be encountered prior to any actual 
use of the typedef declaration or pointer. 

If a tag argument appears, but no declarator is given, the declaration con­
stitutes a declaration for an enumeration tag. 

An enum-l£st has the following form: 

£dent£/ier [= constant-expression] 
[, identzJier [= constant-expression] ... ] 

Each idenUfier in an enumeration list names a value of the enumeration 
set. By default, the first identifier is associated with the value 0, the next 
identifier is associated with the value 1, and so on through the last 
identifier in the declaration. The name of an enumeration constant is 
equivalent to its value. 

The optional phrase = constant-expression overrides the default sequence 
of values. Thus, if £dentifier = constant-expression appears in enum-l£st, 
the identifier is associated with the value given by constant-expression. 
The constant-expression must have int type and can be negative. The next 
identifier in the list is associated with the value of constant-expression + 1, 
unless you explicitly associate it with another value. 

The following rules apply to the members of an enumeration set: 
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• An enumeration set can contain duplicate constant values. For 
example, you could associate the value 0 with two different 
identifiers named null and zero in the same set. 

• The identifiers in the enumeration list must be distinct from other 
identifiers with the same visibility, including ordinary variable 
names and identifiers in other enumeration lists. 

• Enumeration tags must be distinct from other enumeration, struc­
ture, and union tags with the same visibility. 

• A comma is allowed following the last item in the enumeration list. 
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• Examples 

/******************** Example 1 ********************/ 

enum day { 
saturday, 
sunday = 0, 
monday, 
tuesday, 
wednesday, 
thursday, 
friday 
} workday; 

Example 1 defines an enumeration type named day and declares a variable 
named workday with that enumeration type. The value 0 is associated 
with saturday by default. The identifier sunday is explicitly set to O. 
The remaining identifiers are given the values 1 through 5 by default. 

/******************** Example 2 ********************/ 

enum day today = wednesday; 

In Example 2, a value from the set defined in Example 1 is assigned to the 
variable today. Note that the name of the enumeration constant is used 
to assign the value. Since the day enumeration type was previously 
declared, only the enumeration tag is necessary. 

4.4.3 Structure Declarations 

• Syntax 

struct [tag] {member-declaration-Ust} [declarator [, declarator] ... ]; 

struct tag[ declarator [, declarator] ... ]; 

A "structure declaration" names a structure variable and specifies a 
sequence of variable values (called "members" of the structure) that can 
have different types. A variable of that structure type holds the entire 
sequence defined by that type. 

Structure declarations begin with the struct keyword and have two forms: 

• In the first form, a member-declaratz'on-lz'st (described in detail in 
Section 4.4.3.1) specifies the types and names of the structure 
members. The optional tag is an identifier that names the structure 
type defined by member-declaratz'on-lz'st. 
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• The second form uses a previously defined structure tag to refer to 
a structure type defined elsewhere. Thus, member-declaration-Ust is 
not needed as long as the definition is visible. Declarations of 
pointers to structures and typedefs for structure types can use the 
structure tag before the structure type is defined. However, the 
structure definition must be encountered prior to any actual use of 
the typedef or pointer. 

In both forms, each declarator specifies a structure variable. A declarator 
may also modify the type of the variable to a pointer to the structure type, 
an array of structures, or a function returning a structure. If tag is given, 
but declarator does not appear, the declaration constitutes a type declara­
tion for a structure tag. 

Structure tags must be distinct from other structure, union, and enumera­
tion tags with the same visibility. 

A member-declaration-list argument contains one or more variable or bit­
field declarations. 

Each variable declared in the member-declaration list is defined as a 
member of the structure type. Variable declarations within the member­
declaration list have the same form as other variable declarations dis­
cussed in this chapter, except that the declarations cannot contain 
storage-class specifiers or initializers. The structure members can have any 
variable type: fundamental, array, pointer, union, or structure. 

A member cannot be declared to have the type of the structure in which it 
appears. However, a member can be declared as a pointer to the structure 
type in which it appears as long as the structure type has a tag. This 
allows you to create linked lists of structures. 

A bit-field declaration has the following form: 

type-spedjz"er [£dentt"jier] : constant-expression; 

The constant-expression specifies the number of bits in the bit field. The 
type-specifier has type int (signed or unsigned) and constant-expression 
must be a non-negative integer value. Arrays of bit fields, pointers to bit 
fields, and functions returning bit fields are not allowed. The optional 
z·dent£jier names the bit field. Unnamed bit fields can be used as "dummy" 
fields, for alignment purposes. An unnamed bit field whose width is 
specified as 0 guarantees that storage for the member following it in the 
member-declaration list begins on an int boundary. 

Each ident£fier in a member-declaration list must be unique within the list. 
However, they do not have to be distinct from ordinary variable names or 
from identifiers in other member-declaration lists. 
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Note 

A Microsoft extension to the ANSI C standard allows char and long 
types (both signed and unsi&ned) for bit fields. Unnamed bit fields 
with base type long or char tsigned or unsigned) force alignment to 
a boundary appropriate to the base type. 

Microsoft C does not implement signed bit fields. The syntax is 
allowed, but a bit field specified as signed is treated as unsigned in 
all conversions. 

• Storage 

Structure members are stored sequentially in the order in which they are 
declared: the first member has the lowest memory address and the last 
member the highest. Storage for each member begins on a memory boun­
dary appropriate to its type. Therefore, unnamed spaces ("holes") may 
appear between structure members in memory. 

Bit fields are not stored across boundaries of their declared type. For 
example, a bit field declared with unsigned int type is packed into the 
space remaining (if any) if the previous bit field was of type unsigned into 
Otherwise, it begms a new object on an int boundary . 

• Examples 

/******************** Example 1 ********************/ 

struct { 
float x,y; 

} complex; 

Example 1 defines a structure variable named complex. This structure 
has two members with float type, x and y. The structure type has no tag 
and is therefore unnamed. 

/******************** Example 2 ********************/ 

struct employee { 

} temp; 

char name[20]; 
int id; 
long class; 

Example 2 defines a structure variable named temp. The structure has 
three members: name, id, and class. The name member is a 20-element 
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array, and id and class are simple members with int and long type, 
respectively. The identifier employee is the structure tag. 

/******************** Example 3 ********************/ 

struct employee student, faculty, staff; 

Example 3 defines three structure variables: student, faculty, and 
staff. Each structure has the same list of three members. The members 
are declared to have the structure type employee, defined in Example 2. 

/******************** Example 4 ********************/ 

struct sample { 

} x; 

char c; 
float *pf; 
struct sample *next; 

Example 4 defines a structure variable named x. The first two members of 
the structure are a char variable and a pointer to a float value. The third 
member, next, is declared as a pointer to the structure type being defined 
(sample). 

/******************** Example 5 ********************/ 

struct { 
unsigned icon : 8; 
unsigned color : 4; 
unsigned underline : 1; 
unsigned blink : 1; 

} screen [25] [80]; 

Example 5 defines a two-dimensional array of structures named screen. 
The array contains 2000 elements. Each element is an individual structure 
containing four bit-field members: icon, color, underline, and 
blink. 

4.4.4 Union Declarations 

• Syntax 

union [tag] {member-declaration-Hst} [declarator [, declarator.] •• ]; 

union tag[ declarator[, declarator] ... ]; 
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A "union declaration" names a union variable and specifies a set of vari­
able values, called "members" of the union, that can have different types. 
A variable with union type stores one of the values defined by that type. 

Union declarations have the same form as structure declarations, except 
that they begin with the union keyword instead of the struct keyword. 
The same rules govern structure and union declarations, except that bit­
field members are not allowed in unions. 

• Storage 

The storage associated with a union variable is the storage required for the 
largest member of the union. When a smaller member is stored, the union 
variable may contain unused memory space. All members are stored in the 
same memory space and start at the same address. The stored value is 
overwritten each time a value is assigned to a different member. 

• Examples 

/******************** Example 1 ********************/ 

union sign { 
int svar; 
unsigned uvar; 

} number; 

Example 1 defines a union variable with sign type and declares a variable 
named number that has two members: svar, a signed integer, and uvar, 
an unsigned integer. This declaration allows the current value of number 
to be stored as either a signed or an unsigned value. The tag associated 
with this union type is sign. 

/******************** Example 2 ********************/ 

union { 
char *a, b; 
float f [20] ; 

} jack; 

Example 2 defines a union variable named jack. The members of the 
union are, in order of their declaration, a pointer to a char value, a char 
value, and an array of float values. The storage allocated for jack is the 
storage required for the 20-element array f, since f is the longest member 
of the union. Because there is no tag associated with the union, its type is 
unnamed. 
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/******************** Example 3 ********************/ 

union { 
struct { 

unsigned int icon : 8; 
unsigned color : 4; 

} windowl; 
int screenval; 

} screen [25] [80]; 

Example 3 defines a two-dimensional array of unions named screen. The 
array contains 2000 elements. Each element of the array is an individual 
union with two members: window! and screenval. The window! 
member is a structure with two bit-field members, icon and color. The 
screenval member is an into At any given time, each union element 
holds either the int represented by screenval or the structure 
represented by windowl. 

4.4.5 Array Declarations 

• Syntax 

type-specifier declarator [constant-expression]; 
type-specifier declarator [ ); 

An "array declaration" names the array and specifies the type of its ele­
ments. It may also define the number of elements in the array. A variable 
with array type is considered a pointer to the type of the array elements, 
as described in Section 5.2.2, "Identifiers." 

Array declarations have the two forms shown at the beginning of this sec­
tion. Their syntax differs as follows: 

• In the first form, the constant-expression argument within the 
brackets specifies the number of elements in the array. Each ele­
ment has the type given by type-specifier, which can be any type 
except void. An array element cannot be a function type. 

• The second form omits the constant-expression argument in brack­
ets. You can use this form only if you have initialized the array, 
declared it as a formal parameter, or declared it as a reference to 
an array explicitly defined elsewhere in the program. 

In both forms, declarator names the variable and may modify the 
variable's type. The brackets ([]) following declarator modify the declara­
tor to array type. 

70 



Declarations 

You can declare an array of arrays (a "multidimensional" array) by follow­
ing the array declarator with a list of bracketed constant expressions, as 
shown below: 

type-specifier dec/arator[ constant-expression] [constant-expression] ... 

Each constant-expression in brackets defines the number of elements in a 
given dimension: two-dimensional arrays have two bracketed expressions, 
three-dimensional arrays have three, and so on. When you declare a mul­
tidimensional array within a function, you can omit the first constant 
expression if you have initialized the array, declared it as a formal parame­
ter, or declared it as a reference to an array explicitly defined elsewhere in 
the program. 

You can define arrays of pointers to various types of objects by using com­
plex declarators, as described in Section 4.3.2. 

• Storage 

The storage associated with an array type is the storage required for all of 
its elements. The elements of an array are stored in contiguous and 
increasing memory locations, from the first element to the last. No blanks 
separate the array elements in storage. 

Arrays are stored by row. For example, the following array consists of two 
rows with three columns each: 

cha r A [2] [3] ; 

The three columns of the first row are stored first, followed by the three 
columns of the second row. This means that the last subscript varies most 
quickly. 

To refer to an individual element of an array, use a subscript expression, 
as described in Section 5.2.5. 

• Examples 

/******************** Example 1 ********************/ 

int scores[lO], game; 

Example 1 declares an array variable named scores with 10 elements, 
each of which has int type. The variable named game is declared as a 
simple variable with int type. 
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/******************** Example 2 ********************/ 

float matrix [10] [15]; 

Example 2 declares a two-dimensional array named matr ix. The array 
has 150 elements, each having float type. 

/******************** Example 3 ********************/ 

struct { 
float x,y; 
} complex[100]; 

Example 3 declares an array of structures. This array has 100 elements; 
each element is a structure containing two members. 

/******************** Example 4 ********************/ 

extern char *name[]; 

Example 4 declares the type and name of an array of pointers to char. 
The actual definition of name occurs elsewhere. 

4.4.6 Pointer Declarations 

• Syntax 

type-speC£/ier'" [modzlication-spec] declarator; 

A "pointer declaration" names a pointer variable and specifies the type of 
the object to which the variable points. A variable declared as a pointer 
holds a memory address. 

The type-speczjier gives the type of the object, which can be any funda­
mental, structure, or union type. Pointer variables can also point to func­
tions, arrays, and other pointers. (For information on declaring more com­
plex pointer types, refer to Section 4.3.2.) 

By making type-specifier void, you can delay specification of the type to 
which the pointer refers. Such an item is referred to as a "pointer to void" 
(void *). A variable declared as a pointer to void can be used to point to 
an object of any type. However; in order to perform operations on the 
pointer or on the object to which it points, the type to which it points 
must be explicitly specified for each operation. Such conversion can be 
accomplished with a type cast. 
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The modification-spec can be either canst or volatile, or both. These 
specify, respectively, that the pointer will not be modified by the program 
itself (canst), or that the pointer may legitimately be modified by some 
process beyond the control of the program (volatile). (See Section 4.2, 
"Type Specifiers," for more information on canst and volatile.) 

The declarator names the variable and can include a type modifier. For 
example, if declarator represents an array, the type of the pointer is 
modified to poin ter to array. 

You can declare a pointer to a structure, union, or enumeration type 
before you define the structure, union, or enumeration type. However, the 
definition must appear before the poin ter can be used as an operand in an 
expression. You declare the pointer by using the structure or union tag 
(see Example 7 below). Such declarations are allowed because the compiler 
does not need to know the size of the structure or union to allocate space 
for the pointer variable. 

• Storage 

The amount of storage required for an address and the meaning of the 
address depend on the implementation of the compiler. Pointers to 
different types are not guaranteed to have the same length. 

In some implementations, you can use the special keywords near, far, and 
huge to modify the size of a pointer. Declarations using special keywords 
are described in Section 4.3.3. See your compiler guide for more informa­
tion on the meaning and use of these keywords . 

• Examples 

/******************** Example 1 ********************/ 

char *message; 

Example 1 declares a pointer variable named message. It points to a 
variable with char type. 

/******************** Example 2 ******************~*/ 

int *pointers[lO]; 

Example 2 declares an array of pointers named pointers. The array 
has 10 elements; each element is a pointer to a variable with int type. 
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/******************** Example 3 ********************/ 

int (*pointer) [10]; 

Example 3 declares a pointer variable named pointer; it points to an 
array with 10 elements. Each element in this array has int type. 

/******************* Example 4 *********************/ 

int canst *x; 

Example 4 declares a pointer variable, x, to a constant value. The pointer 
may be modified to point to a different int value, but the value to which it 
points may not be modified. 

/****************** Example 5 *********************/ 

canst int some_object = 5 ; 
int other_object = 37; 
int *const y = &fixed_object; 
const volatile *const Z = &some_object; 
*const volatile w = &some_object; 

The variable y in Example 5 is declared as a constant pointer to an int 
value. The value it points to may be modified, but the pointer itself must 
always point to the same location: the address of fixed_object. Simi­
larly, z is a constant pointer, but it is also declared to point to an int 
whose value will not be modified by the program. The additional specifier 
volatile indicates that although the value of the const int pointed to 
by z cannot be modified by the program, it could legitimately be modified 
by a process ou tside the program. The declaration of w specifies that the 
value pointed to will not be changed and that the program itself will not 
modify the pointer. However, some outside process could legitimately 
modify the pointer. 

/******************* Example 6 ********************/ 

struct list *next, *previous; 

Example 6 declares two pointer variables that point to the structure type 
list. This declaration can appear before the definition of the list 
structure type (see Example 7), as long as the 1 ist type definition has 
the same visibility as the declaration. 
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/******************** Example 7 ********************/ 

struct list { 

} line; 

char *token; 
int count; 
struct list *next; 

Example 7 defines the variable line to have the structure type named 
1 ist. The 1 ist structure type has three members: the first member is a 
pointer to a char value, the second is an int value, and the third is a 
pointer to another list structure. 

/******************** Example 8 ********************/ 

struct id { 
unsigned int id_no; 
struct name *pname; 

} record; 

Example 8 declares the variable record to have the structure type id. 
Note that pname is declared as a pointer to another structure type named 
name. This declaration can appear before the name type is defined. 

/*********************** Example 9 ********************/ 

int i; 
void *p; 

p = &i; 

(int *)p++; 

/* p declared as pointer to an object 
whose type is not specified */ 

/* address of integer i assigned to p 
but type of p itself is still not 
specified. An operation like p++ 
would not be permitted yet */ 

/* incrementing p permitted when the 
cast converts it to pointer to int */ 

In Example 9, the pointer variable p is declared, but the void * preceding 
the identifier p in the declaration means that p can be used later to point 
to any type object. The address of an int value is assigned to p, but no 
operations on the pointer itself are permitted unless it is explicitly con­
verted to the type to which it points. Similarly, indirect operations on the 
object poin ted to by p are not permitted unless p is converted to a 
specific type. Finally, a cast is used to convert p to a pointer to int, and 
p is then incremented. 
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4.5 Function Declarations (Prototypes) 

• Syntax 

[sc-spec] [type-spec] declarator([formal-parameter-list]) [, declarator-list] ... ; 

A "function declaration," also called a "function prototype," establishes 
the name and return type of a function and may specify the types, formal 
parameter names, and number of arguments to the function. A function 
declaration does not define the function body. It simply makes information 
about the function known to the compiler. This information enables the 
compiler to check the types of the actual arguments in ensuing calls to the 
function. 

If you do not provide a function prototype, the compiler constructs one 
from the first reference to the function it encounters, whether a call or a 
function definition. Whether such a prototype reflects the correct parame­
ter types can only be assured if the function definition occurs in the same 
source file. If the definition occurs in a different module, argument mis­
match errors may not be detected. Function definitions are described in 
detail in Section 7.2. 

The sc-spec represents a storage-class specifier; it can be either extern or 
static. Storage-class specifiers are discussed in Section 4.6. 

The type-spec gives the function's return type, and declarator names the 
function. If you omit type-spec from a function declaration, the function is 
assumed to return a value of type into 

The formal-parameter-list is described below. 

The final declarator-list indicated in the syntax represents further declara­
tions on the same line. These may be other functions returning values of 
the same type as the first function, or declarations of any variables whose 
type is the same as the first function's return type. Each such declaration 
must be separated from its predecessors and successors by a comma. 

4.5.1 Formal Parameters 

"Formal parameters" describe the actual arguments that can be passed to 
a function. In a function declaration, the parameter declarations establish 
the number and types of the actual arguments. They may also include 
identifiers of the formal parameters. Though the parameters may be omit­
ted from a function declaration, their inclusion is recommended, and they 
are mandatory in a true prototype. The extent of the information in 
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the declaration influences the argument checking done on function calls 
that appear before the compiler has processed the function definition. 

Note 

Iden tifiers used to name the formal parameters in the prototype 
declaration are descriptive only. They go out of scope at the end of the 
declaration. Therefore, they need not be identical to the identifiers 
used in the declaration portion of the function definition. Using the 
same names may enhance readability, but this use has no other 
significance. 

4.5.2 Return Type 

Functions can return values of any type except arrays and functions. 
Therefore, the type-specifier argument of a function declaration can 
specify any fundamental, structure, or union tYl?e. You can modify the 
function identifier with one or more asterisks t *) to declare a pointer 
return type. 

Although functions cannot return arrays and functions, they can return 
pointers to arrays and functions. You may declare a function that returns 
a pointer to an array or function type by modifyin~ the function identifier 
with asterisks (*), brackets ([ 1), and parentheses (t )). Such a function 
identifier is known as a "comp1ex declarator." Rules for forming and inter­
preting complex declarators are discussed in Section 4.3.2. 

4.5.3 The List of Formal Parameters 

All elements of the formal-parameter-list argument appearing within the 
parentheses following the function declarator are optional. The two fol­
lowing syntax variations illustrate the possibilities: 

[void] 
[register] [type-spec] [declarator[[, ... H, ... ]]] 
If formal parameters are omitted from the function declaration, the 
parentheses should contain the keyword void to specify that no arguments 
will ever be passed to the function. If the parentheses are left entirely 
empty, no information is conveyed about whether arguments will be 
passed to the function and no checking of argument types is performed. 
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Note 

Empty parentheses in a function declaration or definition represent an 
obsolescent form not recommended for new code. Functions accepting 
no arguments should be declared with the void keyword replacing the 
list of formal parameters. This use of void is interpreted by context, 
and is distinct from uses of void as a type specifier. 

A declaration in the list of formal parameters can contain the register 
storage-class specifier, either alone or combined with a type specifier and 
an identifier. If register is not specified, the storage class is auto. The 
only explicit storage-class specifier permitted is register. If the 
parentheses contain only the register keyword, the formal parameter is 
considered to represent an unnamed int for which register storage is 
being requested. 

If type-spec is included, it can specify the type name for any fundamental, 
structure, or union type (such as int). A declarator for a fundamental, 
structure, or union type is simply an identifier of a variable having that 
type. 

The declarator for a pointer, array, or function can be formed by combin­
ing a type specifier, plus the appropriate modifier, with an identifier. 
Alternatively, an "abstract declarator" (that is, a declarator without a 
specified identifier) can be used. Section 4.9, "Type Names," explains how 
to form and interpret abstract declarators. 

A full, partial, or empty list of formal parameters can be declared. If the 
list contains at least one declarator, a variable number of parameters can 
be specified by ending the list with a comma followed by three periods 
(, ... ), referred to as the "ellipsis notation." A function is expected to have 
at least as many arguments as there are declarators or type specifiers 
preceding the last comma. 

Note 
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One other special construction is permitted as a formal parameter: void * 
represents a pointer to an object of unspecified type. Thus, in a call, the 
pointer can be used to reference any type of object after you convert the 
pointer (for example, with a cast) to a pointer to the desired type. Note 
that before operations can be performed on the pointer or the object it 
addresses, the pointer must be explicitly converted. Section 4.4.6, "Pointer 
Declarations," provides further information on void *. 

4.5.4 Summary 

Function prototypes are optional, but strongly recqmmended. If included, 
the only elements absolutely required are the name of the function, the 
opening and closing parentheses following the name, and the final semi­
colon. If no return type is included, as in the following example, the func­
tion is assumed to return an int: 

/***** Obsolescent form of function declaration *****/ 

minimal_declaration(); /* mayor may not 
accept arguments */ 

A full function prototype is the same as a function definition, except that 
instead of having a function "body," it is terminated by a semicolon (;) 
immediately following the closing parenthesis. 

Any appropriate combination of elements is permitted among the parame­
ter declarations, from no information (as in the obsolescent form in the 
example above) to a full prototype of the function. If no prototype at all is 
given, a de facto prototype is constructed from information in the first 
reference to the function encountered in the source file. 

• Examples 

/******************** Example 1 ******************** 

double func(void); 

fun (void *); 

char *true(long, long); 

/* returns a double, but 
* accepts no arguments 

*/ 
/* takes a pointer to an 

* unspecified type; 
* returns an int 

*/ 
/* takes two longs; 

* returns pointer to char 
*/ 
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new (register a, char *); /* takes an int with request 
* for register storage, and 
* a pointer to char; 
* returns an int 

*/ 
void go(int *[], char *b); /* takes an array of pointers 

* to int using an abstract 
* declarator, and a pointer 
* to char; there is no return 

*/ 
void *tu(double v, ... ); /* takes at least one double; 

* other arguments may also be 
* given; returns a pointer 
* to an unspecified type 

*/ 

Any information included in the formal parameter list is used to check 
actual arguments appearing in calls to the function that occur before the 
compiler has processed the function definition. 

/******************** Example 2 ********************/ 

int add(int numl, int num2); 

Example 2 is a prototype for a function named add that takes two int 
arguments, represented by the identifiers numl and num2, and returns 
an int value. 

/******************** Example 3 ********************/ 

double calc 0 ; 

Example 3 declares a function named calc that returns a double value. 
The obsolescent empty parentheses leave the issue of possible arguments 
to the function undefined. 

/******************** Example 4 ********************/ 

char *strfind(char *ptr, ... ); 

Example 4 is a prototype for a function named str find that returns a 
pointer to char. The function accepts at least one argument, declared by 
the formal parameter char *ptr, to be a pointer to a char value. The 
formal parameter list has one entry and ends with a comma followed by 
three periods, indicating that the function may take more arguments. 
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/******************** Example 5 ********************/ 

void draw(void); 

Example 5 declares a function with void return type (returning no value). 
The void keyword also replaces the list of formal parameters, so no argu­
ments are expected for this function. 

/******************** Example 6 ********************/ 

double (*sum(double, double» [3J; 

In Example 6, sum is declared as a function returning a pointer to an 
array of three double values. The sum function takes two double values 
as arguments. 

/******************** Example 7 ********************/ 

int (*select(void» (int number); 

In Example 7, the function named select is declared to take no argu­
ments and to return a pointer to a function. The pointer return value 
points to a function taking one int argument, represented by the identifier 
number, and returning an int value. 

/******************** Example 8 ********************/ 

int prt(void *); 

In Example 8, the function prt is declared to take a pointer argument of 
any type and return an int value. A pointer to any type could be passed 
as an argument to prt without producing a type-mismatch warning. 

/******************** Example 9 ***********************/ 

long (*const rainbow [J) (int, ... ) ; 

Example 9 shows the declaration of an array, named rainbow, of an 
unspecified number of constant pointers to functions. Each of these takes 
at least one parameter of type int, as well as an unspecified number of 
other parameters. Each of the functions pointed to returns a long value. 
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4.6 Storage Classes 

The "storage class" of a variable determines whether the item has a "glo­
bal" or "local" lifetime. An item with a global lifetime exists and has a 
value throughout the execution of the program. All functions have global 
lifetimes. 

Variables with local lifetimes are allocated new storage each time execu­
tion control passes to the block in which they are defined. When execution 
control passes out of the block, the variables no longer have meaningful 
values. 

Although C defines only two types of storage classes, it provides the fol­
lowing four storage-class specifiers: 

auto 
register 
static 
extern 

Items declared with the auto or register specifier have local lifetimes. 
Items declared with the static or extern specifier have global lifetimes. 

The four storage-class specifiers have distinct meanings because storage­
class specifiers affect the visibility of functions and variables, as well as 
their storage class. The term "visibility" refers to the portion of the source 
program in which the variable or function can be referenced by name. An 
item with a global lifetime exists throughout the execution of the source 
program, but it may not be "visible" in all parts of the program. (Visibil­
ity and the related concept of lifetime are discussed in Chapter 3, "Pro­
gram Structure.") 

The placement of variable and function declarations within source files 
also affects storage class and visibility. Declarations outside all function 
definitions are said to appear at the "external level;" declarations within 
function definitions appear at the "internal level." 

The exact meaning of each storage-class specifier depends on two factors: 

• Whether the declaration appears at the external or internal level 

• Whether the item being declared is a variable or a function 
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Sections 4.6.1-4.6.3 describe the meanings of storage-class specifiers in 
each kind of declaration and explain the default behavior when the 
storage-class specifier is omitted from a variable or function declaration. 

4.6.1 Variable Declarations 
at the External Level 

In variable declarations at the external level (that is, outside all func­
tions), you can use the static or extern storage-class specifier or omit the 
storage-class specifier en tirely . You cannot use the auto and register 
storage-class specifiers at the external level. 

Variable declarations at the external level are either defin£t£ons of vari­
ables ("defining declarations"), or references to variables defined elsewhere 
("referencing declarations"). 

An external variable declaration that also initializes the variable (impli­
citly or explicitly) is a defining declaration of the variable. A definition at 
the external level can take several forms: 

• A variable that you declare with the static storage-class specifier. 
You can explicitly initialize the static variable with a constant 
expression, as described in Section 4.7. If you omit the initializer, 
the variable is initialized to 0 by default. For example, static 
int k = 16; and static int k; are both considered 
definitions of the variable k. 

• A variable that you explicitly initialize at the external level. For 
example, int j = 3; is a definition of the variable j. 

Once a variable is defined at the external level, it is visible throughout the 
rest of the source file in which it appears. The variable is not visible prior 
to its definition in the same source file. Also, it is not visible in other 
source files of the program, unless a referencing declaration makes it visi­
ble, as described below. 

You can define a variable at the external level only once within a source 
file. If you give the static storage-class specifier, you can define another 
variable with the same name and the static storage-class specifier in a 
different source file. Since each static definition is visible only within its 
own source file, no conflict occurs. 

The extern storage-class specifier declares a reference to a variable defined 
elsewhere. You can use an extern declaration to make a definition in 
another source file visible, or to make a variable visible above its definition 
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in the same source file. Once you have declared a reference to the variable 
at the external level, the variable is visible throughout the remainder of 
the source file in which the declared reference occurs. 

Declarations that use the extern storage-class specifier cannot contain ini­
tializers, since these declarations refer to variables whose values are 
defined elsewhere. 

For an extern reference to be valid, the variable it refers to must be 
defined once, and only once, at the external level. The definition can be in 
any of the source files that form the program. 

One special case is not covered by the rules outlined above. You can omit 
both the storage-class specifier and the initializer from a variable declara­
tion at the external level; for example, the declaration int n; is a valid 
external declaration. This declaration can have one of two different mean­
ings, depending on the context: 

1. If there is an external defining declaration of a variable with the 
same name elsewhere in the program, the current declaration is 
assumed to be a reference to the variable in the defining declara­
tion, exactly as if the extern storage-class specifier had been used 
in the declaration. 

2. If there is no external defining declaration of a variable with the 
same name elsewhere in the program, the declared variable is allo­
cated storage at link time and initialized to o. This kind of variable 
is known as a "communal" variable. If more than one such declara­
tion appears in the program, storage is allocated for the largest 
size declared for the variable. For example, if a program contains 
two uninitialized declarations of i at the external level, int i; 
and char i;, storage space for an int value is allocated for i at 
link time. 

Uninitialized variable declarations at the external level are not recom­
mended for any file that might be placed in a library. 
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• Example 

/********************************************************** 
SOURCE fILE ONE 

~*********************************************************/ 

extern int i; 

main () 
{ 

i++; 
printf ("%d\n", 
next 0; 

} 

int i = 3; 

next () 
{ 

i++; 
printf ("%d\n", 
other(); 

} 

i) ; 

i) ; 

/* reference to i, 
defined below */ 

/* i equals 4 */ 

/* definition of i */ 

/* i equals 5 */ 

/********************************************************** 
SOURCE fILE TWO 

**********************************************************/ 

extern int i; 

other 0 
{ 

} 

i++; 
printf("%d\n", i); 

/* reference to i in 
first source file */ 

/* i equals 6 */ 

The two source files in this example contain a total of three external 
declarations of i. Only one declaration contains an initialization; that 
declaration, int i = 3; , defines the global variable i with initial 
value 3. The extern declaration of i at the top of the first source file 
makes the global variable visible above its definition in the file. Without 
the extern declaration, the main function could not reference the global 
variable i. The extern declaration of i in the second source file also 
makes the global variable visible in that source file. 

Assuming that the print f function is defined elsewhere in the program, 
all three functions perform the same task: they increase i and print it. 
The values 4, 5, and 6 are printed. 
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If the variable i had not been initialized, it would have been set to 0 
automatically at link time. In this case, the values 1, 2, and 3 would have 
been printed. 

4.6.2 Variable Declarations 
at the Internal Level 

You can use any of the four storage-class specifiers for variable declara­
tions at the internal level. When you omit the storage-class specifier from 
such a declaration, the default storage class is auto. 

The auto storage-class specifier declares a variable with a local lifetime. 
An auto variable is visible only in the block in which it is declared. 
Declarations of auto variables can include initializers, as discussed in Sec­
tion 4.7. Since variables with auto storage class are not initialized 
automatically, you should either explicitly initialize them when you 
declare them, or assign them initial values in statements within the block. 
The values of uninitialized auto variables are undefined. 

A static auto variable can be initialized with the address of any external 
or static item, but not with the address of another auto item, because the 
address of an auto item is not a constant. 

The register storage-class specifier tells the compiler to give the variable 
storage in a register, if possible. Register storage usually speeds access 
time and reduces code size. Variables declared with register storage class 
have the same visibility as auto variables. The number of registers that 
can be used for variable storage is machine-dependen t. If no registers are 
available when the compiler encounters a register declaration, the vari­
able is given auto storage class and stored in memory. The compiler 
assigns register storage to variables in the order in which the declarations 
appear in the source file. Register storage, if available, is only guaranteed 
for int and pointer types that are the same size as an into 

A variable declared at the internal level with the static storage-class 
specifier has a global lifetime but is visible only within the block in which 
it is declared. Unlike auto variables, static variables keep their values 
when the block is exited. You can initialize a static variable with a con­
stant expression. A static variable is initialized only once, when program 
execution begins; it is not reinitialized each time the block is entered. If 
you do not explicitly initialize a static variable, it is initialized to 0 by 
default. 

A variable declared -with the extern storage-class specifier is a reference to 
a variable with the same name defined at the external level in any of the 
source files of the program. The internal extern declaration is used to 
make the external-level variable definition visible within the block. Unless 
otherwise declared at the external level, a variable declared with the 
extern keyword is visible only in the block in which it is declared. 
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• Example 

int i = 1; 

main 0 
{ 

} 

other () 
{ 

} 

/* reference to i, defined above: */ 
extern int i; 

/* initial value is zero; a is 
visible only within main: */ 

static int a; 

/* b is stored in a register, if possible: */ 
register int b = 0; 

/* default storage class is auto: */ 
int c = 0; 

/* values printed are 1, 0, 0, 0: */ 
printf("%d\n%d\n%d\n%d\n", i, a, b, c); 
other(); 

/* address of global i assigned to pointer variable */ 
static int *external_i = &i; 

/* i is redefined; global i no longer visible: */ 
int i = 16; 

/* this a is visible only within other: */ 
static int a = 2; 

a += 2; 
/* values printed are 16, 4, and 1: */ 
printf("%d\n%d\n%d\n", i, a, *external_i); 

In this example, the variable i is defined at the external level with initial 
value 1. An extern declaration in the main function is used to declare a 
reference to the external-level i. The static variable a is initialized to 0 
by default, since the initializer is omitted. The call to print f (assuming 
the pr int f function is defined elsewhere in the source program) prints 
the values 1, 0, 0, and 0. 

In the other function, the address of the global variable i is used to ini­
tialize the static pointer variable external_i. This works because the 
global variable has static lifetime, meaning its address will always be the 
same. Next, the variable i is redefined as a local variable with initial 
value 16. This redefinition does not affect the value of the external-level 
i, which is hidden by the use of its name for the local variable. The value 
of the global i is now accessible only indirectly within this block, through 
the pointer external i. Attempting to assign the address of the auto 
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variable i to a pointer would not work, since it may be different each 
time the block is entered. The variable a is declared as a static variable 
and initialized to 2. This a does not conflict with the a in main, since 
static variables at the internal level are visible only within the block in 
which they are declared. 

The variable a is increased by 2, giving 4 as the result. If the other 
function were called again in the same program, the initial value of a 
would be 4, since internal static variables keep their values when the pro­
gram exits and then re-enters the block in which they are declared. 

4.6.3 Function Declarations 
at the External and Internal Levels 

You can use either the static or the extern storage-class specifier in func­
tion declarations. Functions always have global lifetimes. 

The visibility rules for functions vary slightly from the rules for variables, 
as follows: 

• A function declared to be static is visible only within the source 
file in which it is defined. Functions in the same source file can call 
the static function, but functions in other source files cannot. You 
can declare another static function with the same name in a 
different source file without conflict. 

• Functions declared as extern are visible throughout all the source 
files that make up the program (unless you later redeclare such a 
function as static). Any function can call an extern function. 

• Function declarations that omit the storage-class specifier are 
extern by default. 

Note 
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4.7 Initialization 

• Syntax 

= z"nz"t£al£zer 

You can set a variable to an initial value by applying an initializer to the 
declarator in the variable declaration. The value or values of the initializer 
are assigned to the variable. An equal sign (=) precedes the initializer. 

You can initialize variables of any type, provided that you obey the follow­
ing rules: 

• 

• 

• 

• 

• 

• 

Declarations that use the extern storage-class specifier cannot 
include initializers. 

Variables declared at the external level can be initialized. If you do 
not explicitly initialize a variable at the external level, it is initial-
ized to 0 by default. 

A constant expression can be used to initialize any variable 
declared with the static storage-class specifier. Variables declared 
to be static are initialized when program execution begins. If you 
do not explicitly initialize a static variable, it is initialized to 0 by 
default. 

Variables declared with the auto and register storage-class 
specifiers are initialized each time execution control passes to the 
block in which they are declared. If you omit an initializer from the 
declaration of an auto or register variable, the initial value of the 
variable is undefined. 

Aggre~ate types with auto storage class (arrays, structures, and 
unions cannot be initialized. Only static aggregates and aggre­
gates eclared at the external level can be initialized. 

The initial values for external variable declarations and for all 
static variables, whether external or internal, must be constant 
expressions. (Constant expressions are described in Section 5.2.10.) 
You can use either constant or variable values to initialize auto 
and register variables. 

Sections 4.7.1 and 4.7.2 describe how to initialize variables of fundamen­
tal, pointer, and aggregate types. 
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4.7.1 Fundamental and Pointer Types 

• Syntax 

= expression 

The value of expressz"on is assigned to the variable. The conversion rules 
for assignment apply. 

An internally declared static variable can only be initialized with a con­
stant value. Since the address of any externally declared or static variable 
is constant, it may be used to initialize an internally declared static 
pointer variable. However, the address of an" auto variable cannot be used 
as an initializer because it may be different for each execution of the block . 

• Examples 

/******************** Example 1 ********************/ 

int x = 10; 

In Example 1, x is initialized to the constant expression 10. 

/******************** Example 2 ********************/ 

register int *px = 0; 

In Example 2, the pointer px is initialized to 0, producing a "null" 
pointer. 

/******************** Example 3 ********************/ 

const int c = (3 * 1024); 

Example 3 uses a constant expression to initialize c to a constant value 
that cannot be modified. 

/******************** Example 4 ********************/ 

int *b = &x; 
int *const a = &z; 

Example 4 initializes the pointer b with the address of another variable, 
x. The pointer a is initialized with the address of a variable named z. 
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However, since it is specified to be a canst, the variable a can only be ini­
tialized, never modified. It always points to the same location. 

/******************** Example 5 ********************/ 

int GLOBAL ; 

int function(void) 
{ 

} 

int LOCAL ; 
static int *lp = &LOCAL; /* Illegal declaration */ 
static int *gp = &GLOBAL; /* Legal declaration */ 
register int *rp = &LOCAL; /* Legal declaration */ 

The global variable GLOBAL is declared in Example 5 at the external 
level, so it has global lifetime. The local variable LOCAL has auto storage 
class and only has an address during the execution of the function in 
which it is declared. Therefore, attempting to initialize the static pointer 
variable Ip with the address of LOCAL is not permitted. The static 
pointer variable gp can be initialized to the address of GLOBAL because 
that address is always the same. Similarly, *rp can be initialized because 
rp is a local variable and can have a nonconstant initializer. Each time the 
block is entered, LOCAL will have a new address, which will then be 
assigned to rp. 

4.7.2 Aggregate Types 

• Syntax 

= {init£alz"zer-Iz"st} 

The initz"alizer-list is a list of initializers separated by commas. Each ini­
tializer in the list is either a constant expression or an initializer list. 
Therefore, an initializer list enclosed in braces can appear within another 
initializer list. This form is useful for initializing aggregate members of an 
aggregate type, as shown in the examples in this section. 

For each initializer-list, the values of the constant expressions are assigned, 
in order, to the corresponding members of the aggregate variable. When a 
union is initialized, initializer-list must be a single constant expression. 
Th.e value of the constant expression is assigned to the first member of the 
unIon. 

If initialz"zer-list has fewer values than an aggregate type, the remaining 
members or elements of the aggregate type are initialized to O. If 
initial£zer-list has more values than an aggregate type, an error results. 
These rules apply to each embedded initializer list, as well as to the aggre­
gate as a whole. 
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For example, 

int P[4] [3] = { 

}; 

{ 1, 1, 1 }, 
{ 2, 2, 2 }, 
{ 3, 3, 3,}, 
{ 4, 4, 4,}, 

declares P as a 4-by-3 array and initializes the elements of its first row to 
1, the elements of its second row to 2, and so on through the fourth row. 
Note that the initializer list for the third and fourth rows contains com­
mas after the last constant expression. The last initializer list ({ 4, 4, 
4, }) is also followed by a comma. These extra commas are permitted but 
are not required; only commas that separate constant expressions from one 
another, and those that separate one initializer list from another, are 
required. 

If there is no embedded initializer list for an aggregate member, values are 
simply assigned, in order, to each member of the subaggregate. Therefore, 
the initialization in the previous example is equivalent to the following: 

int P[4] [3] = { 
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4 

}; 

Braces can also appear around individual initializers in the list. 

When you initialize an aggregate variable, you must be careful to use 
braces and initializer lists properly. The following example illustrates the 
compiler's interpretation of braces in more detail: 

typedef struct { 
int n1, n2, n3; 

} triplet; 

triplet nlist[2] [3] = { 

}; 

{{ 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }, 
{ { 10,11,12 }, { 13,14,15 }, { 16,17,18 } } 

/* Line 1 */ 
/* Line 2 */ 

In this example, nl ist is declared as a 2-by-3 array of structures, each 
structure having three members. Line 1 of the initialization assigns values 
to the first row of nl ist, as follows: 
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1. The first left brace on Line 1 signals the compiler that initialization 
of the first aggregate member of nlist (that is, nlist [OJ) is 
beginning. 
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2. The second left brace indicates that initialization of the first aggre­
gate member of nl ist [0] (that is, the structure at 
nl ist [0] [0]) is beginning. 

3. The first right brace ends initialization of the structure 
nlist [0] [OJ; the next left brace starts initialization of 
nlist [0] [1] . 

4. The process continues until the end of the line, where the closing 
right brace ends initialization of nl ist [0] . 

Line 2 assigns values to the second row of nlist in a similar way. 

Note that the outer sets of braces enclosing the initializers on lines 1 and 2 
are required. The following construction, which omits the outer braces, 
would cause an error: 

/* THIS CAUSES AN ERROR */ 

triplet nlist[2] [3] = { 

}; 

{ 1, 2, 3 },{ 4, 5, 6 },{ 7, 8, 9 }, 
{ 10,11,12 },{ 13,14,15 },{ 16,17,18 } 

/* Line 1 */ 
/* Line 2 */ 

In this construction, the first left brace on line 1 starts the initialization of 
nlist [0] , which is an array of three structures. The values 1, 2, and 3 
are assigned to the three members of the first structure. When the next 
right brace is encountered (after the value 3), initialization of nl ist [0] 
is complete, and the two remaining structures in the three-structure array 
are automatically initialized to o. Similarly, { 4,5, 6 } initializes the 
first structure in the second row of nl ist. The remaining two structures 
of nl ist [1] are set to O. When the compiler encounters the next initial­
izer list ({ 7, 8, 9 }), it tries to initialize nl ist [2]. Since nl ist has 
only two rows, this attempt causes an error . 

• Examples 

/******************** Example 1 ********************/ 

struct list { 
int i, j, k; 
float m [2] [3] ; 
} x = { 

}; 

1, 
2, 
3, 
{4.0, 4.0, 4.0} 
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In Example 1, the three int members of x are initialized to 1, 2, and 3, 
respectively. The three elements in the first row of m are initialized to 4.0; 
the elements of the remaining row of m are initialized to 0.0 by default. 

/******************** Example 2 ********************/ 

union 
{ 

char x [2] [3] ; 
int i, j, k; 
} Y {{ 

}; 

{'1'}, 
{'4'} } 

In Example 2, the union variable y is initialized. The first element of the 
union is an array, so the initializer is an aggregate initializer. The initial­
izer list { , 1 ' } assigns values to the first row of the array. Since only one 
value appears in the list, the element in the first column is initialized to 
the character 1, and the remaining two elements in the row are initialized 
to the value zero by default. Similarly, the first element of the second row 
of x is initialized to the character 4, and the remaining two elements in 
the row are initialized to the value o. 

4.7.3 String Initializers 

• Syntax 

= II characters II 
I 

You can initialize an array of characters with a string literal. For example, 

char coder ] = lIabc"; 

initializes code as a four-element array of characters. The fourth element 
is the null character, which terminates all string literals. 

If you specify the array size and the string is longer than the specified 
array size, the extra characters are simply ignored. For example, the fol­
lowing declaration initializes code as a three-element character array: 

char code[3] = "abed"; 

Only the first three characters of the initializer are assigned to code. The 
character d and the string-terminating null character are discarded. 
Beware that this creates an unterminated string (that is, one without aD 
value to mark its end) and generates a diagnostic message indicating the 
condition. 
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If the string is shorter than the specified array size, the remaining elements 
of the array are initialized to 0 values. 

4.8 Type Declarations 

A type declaration defines the name and members of a structure or union 
type, or the name and enumeration set of an enumeration type. You can 
use the name of a declared type in variable or function declarations to 
refer to that type. This is useful if many variables and functions have the 
same type. 

A typedef declaration defines a type specifier for a type. You can use 
typedef declarations to construct shorter or more meaningful names for 
types already defined by C or for types that you have declared. 

4.8.1 Structure, Union, and 
Enumeration Types 

Declarations of structure, union, and enumeration types have the same 
general form as variable declarations of those types. tSections 4.4.2-4.4.4 
discuss variable declarations.) However, type declarations and variable 
declarations differ in the following ways: 

• In type declarations the variable identifier is omitted, since no vari­
able is declared. 

• In type declarations tag is required; it names the structure, union, 
or enumeration type. 

• The member-declaratt'on-list or enum-list defining the type must 
appear in the type declaration; the abbreviated form of variable 
declarations, in which tag refers to a type defined elsewhere, is not 
legal for type declarations. 

• Examples 

/******************** Example 1 ********************/ 

enum status { 
loss = -1, 
bye, 
tie = 0, 
win 
}; 
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Example 1 declares an enumeration type named status. The name of the 
type can be used in declarations of enumeration variables. The identifier 
loss is explicitly set to -1. Both bye and tie are associated with the 
value 0, and win is given the value 1. 

/******************** Example 2 ********************/ 

struct student { 
char name[20]; 
int id, class; 
}; 

Example 2 declares a structure type named student. A declaration such 
as struct student employee; can be used to define a structure vari­
able with student type. 

4.8.2 Using typedef Declarations 

• Syntax 

typedef type-speczlier declarator [, declarator] ... ; 

A typedef declaration is analogous to a variable declaration except that 
the typedef keyword replaces a storage-class specifier. A typedef declara­
tion is interpreted in the same way as a variable or function declaration, 
but the identifier, instead of assuming the type specified by the declara­
tion, becomes a synonym for the type. 

Note that a typedef declaration does not create types. It creates 
synonyms for existing types, or names for types that could be specified in 
other ways. When a typedef name is used as a type specifier, it can be 
combined with certain type specifiers, but not others. Acceptable modifiers 
include const and volatile. In some implementations there are additional 
special keywords that can be used to modify a typedef. (The special key­
words are described in Section 4.3.3.) 

You can declare any type with typedef, including pointer, function, and 
array types. You can declare a typedef name for a pointer to a structure 
or union type before you define the structure or union type, as long as the 
definition has the same visibility as the declaration. 
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• Examples 

/******************** Example 1 ********************/ 

typedef int WHOLE; 

Example 1 declares WHOLE to be a synonym for into Note that WHOLE 
could now be used in a variable declaration such as WHOLE i; or const 
WHOLE i;. However, the declaration long WHOLE i; would be illegal. 

/******************** Example 2 ********************/ 

typedef struct club { 
char name[30]; 
int size, year; 
} GROUP ; 

Example 2 declares GROUP as a structure type with three members. Since a 
structure tag, club, is also specified, either the typedef name (GROUP) or 
the structure tag can be used in declarations. 

/******************** Example 3 ********************/ 

typede f GROUP * PG; 

Example 3 uses the previous typedef name to declare a pointer type. The 
type PG is declared as a pointer to the GROUP type, which in turn is 
defined as a structure type. 

/******************** Example 4 ********************/ 

typedef void DRAWF(int, int); 

Example 4 provides the type DRAWF for a function returning no value and 
taking two int arguments. This means, for example, that the declaration 
DRAWF box; is equivalent to the declaration void box (int, int);. 

4.9 Type Names 

A "type name" specifies a particular data type. In addition to ordinary 
variable declarations and defined-type declarations, type names are used 
in three other contexts: in the formal-parameter lists of function declara­
tions, in type casts, and in sizeof operations. Formal-parameter lists are 
discussed in Section 4.5, "Function Declarations." Type casts and sizeof 
operations are discussed in Sections 5.6.2 and 5.3.4, respectively. 
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The type names for fundamental, enumeration, structure, and union types 
are simply the type specifiers for those types. 

A type name for a pointer, array, or function type has the following form: 

type-sped/ier abstract-declarator 

An abstract-declarator is a declarator without an identifier, consisting of 
one or more pointer, array, or function modifiers. The£ointer modifier (*) 
always precedes the identifier in a declarator; array ([ and function ( )) 
modifiers follow the identifier. Knowing this, you can etermine where the 
identifier would appear in an abstract declarator and interpret the 
declarator accordingly. See Section 4.3.2 for information and examples of 
complex declarators. 

Abstract declarators can be complex. Parentheses in a complex abstract 
declarator specify a particular interpretation, just as they do for the com­
plex declarators in declarations. 

Note 

The abstract declarator consisting of a set of empty parentheses, ( ), is 
not allowed because it is ambiguous. It is impossible to determine 
whether the implied identifier belongs inside the parentheses (in which 
case it is an unmodified type) or before the parentheses (in which case 
it is a function type). 

The type specifiers established by typedef declarations also qualify as 
type names. 

• Examples 

\ \ 

/******************** Example 1 **********~*********/ 

long * 

Example 1 gives the type name for "pointer to long" type. 
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/******************** Example 2 ********************/ 

/******************** Example 3 ********************/ 

int (*) (void) 

Examples 2 and 3 show how parentheses modify complex abstract declara­
tors. Example 2 gives the type name for a pointer to an array of five int 
values. Example 3 specifies a pointer to a function taking no arguments 
and returning an int value. 
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Expressions and Assignments 

5.1 Introduction 

This chapter describes how to form expressions and make assignments in 
the C language. An "expression" is a combination of operands and opera­
tors that yields ("expresses") a single value. 

An "operand" is a constant or variable value that is manipulated in the 
expression. Each operand of an expression is also an expression, since it 
represents a single value. When an expression is evaluated, the resulting 
value depends on the relative precedence of operators in the expression 
and on "sequence points" and "side effects," if any. The precedence of 
operators determines how operands are grouped for evaluation. Side effects 
are changes caused by the evaluation of an expression. In an expression 
with side effects, the evaluation of one operand can affect the value of 
another. With some operators, the order in which operands are evaluated 
also affects the result of the expression. Section 5.2 describes the formats 
and evaluation rules for C operands, including discussions of side effects 
and sequence points. 

"Operators" specify how the operand or operands of the expression are 
manipulated. C operators are described in Section 5.3. 

In C, assign men ts are considered expressions because an assign men t yields 
a value. Its value is the value being assigned. In addition to the simple­
assignment operator (=), C offers complex-assignment operators that both 
transform and assign their operands. Assignment operators are described 
in Section 5.4. 

The value represented by each operand in an expression has a type that 
may be converted to a different type in certain contexts. Type conversions 
occur in assignments, type casts, function calls, and operations. (Section 
5.5 gives the precedence rules for C operators; side effects are discussed in 
Section 5.2.11 and type conversions in Section 5.6.) 

5.2 Operands 

Operands in C include constants, identifiers, strings, function calls, sub­
script expressions, member-selection expressions, or more complex expres­
sions formed by combining operands with operators or enclosing operands 
in parentheses. Any operand that yields a constant value is called a "con­
stant expression." 

Every operand has a type. The following sections discuss the type of value 
each kind of operand represents. An operand can be "cast" (or temporarily 
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converted) from its original type to another type by means of a "type­
cast" operation. A type-cast expression can also form an operand of an 
expreSSIOn. 

5.2.1 Constants 

A constant operand has the value and type of the constant value it repre­
sents. A character constant has int type. An integer constant has int, 
long, unsigned int, or unsigned long type, depending on the integer's 
size and how the value is specified. Floating-point constants always have 
double type. String literals are considered arrays of characters and are 
discussed in Section 5.2.3. 

5.2.2 Identifiers 

An "identifier" names a variable or function. Every identifier has a type 
that is established when the identifier is declared. The value of an identi­
fier depends on its type, as follows: 
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• Identifiers of integral and floating types represent values of the 
corresponding type. 

• An identifier of enum type represents one constant value among a 
set of constant values. The value of the identifier is the constant 
value. Its type is int, by definition of the enum type. 

• An identifier of struct or union type represents a value of the 
specified struct or union type. 

• An identifier declared as a pointer represents a pointer to a value 
of the type specified in the pointer's declaration. 

• An identifier declared as an array represents a pointer whose value 
is the address of the first array element. The pointer addresses the 
type of the array elemen ts. For example, if ser ies is declared to 
be a IO-element integer array, the identifier series represents the 
address of the array, and the subscript expression series [5] 
refers to an integer value which is the sixth element of ser ies. 
Subscript expressions are discussed in Section 5.2.5. The address of 
an array does not change during program execution, although the 
values of the individual elements can change. The pointer value 
represented by an array identifier is not a variable, so an array 
identifier cannot form the left-hand operand of an assignment 
operation. 
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• An identifier declared as a function represents a pointer whose 
value is the address of the function. The pointer addresses a func­
tion returning a value of a specified type. The address of a function 
does not change during program execution; only the return value 
varies. Thus, function identifiers cannot be left-hand operands in 
assign men t operations. 

5.2.3 Strings 

• Syntax 

II stringll [II stringll] 

A "string literal" is a character or sequence of adjacent characters 
enclosed in double quotation marks. Two or more adjacent string literals 
separated only by white space are concatenated into a single string literal. 
A string literal is stored as an array of elements with char type and ini­
tialized with the quoted sequence of characters. The string literal is 
represented by a pointer whose value is the address of the first array ele­
ment. The address of the string's first element is a constant, so the value 
represented by a string expression is a constant. 

Since string literals are effectively pointers, they can be used in the same 
contexts as pointers, and have the same restrictions as pointers. However, 
since they are not variables, neither string literals nor any of their ele­
ments can be the left-hand operand in an assignment operation. 

The last character of a string is always the null character. Though the null 
character is not visible in the string expression, it is added automatically 
as the last element when the string is stored. For example, the string 
"abc" actually has four characters rather than three. 

5.2.4 Function Calls 

• Syntax 

expressz'on ([ expressz'on-/£s t]) 

A "function call" consists of an expression followed by an optional 
expression-list in parentheses, where 

• expression must evaluate to a function address (for example, a 
function identifier), and 
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• expression-list is a list of expressions (separated by commas) whose 
values (the "actual arguments") are passed to the function. The 
expression-Ust argument can be empty. 

A function-call expression has the value and type of the function's return 
value. If the function's return type is void (that is, the function has been 
declared never to return a value), the function-call expression also has 
void type. If the called function returns control without executing a 
return statement, the value of the function-call expression is undefined. 
(See Chapter 7, "Functions," for more information about function calls.) 

5.2.5 Subscript Expressions 

• Syntax 

expressz"onl [ expressz"on2] 

A subscript expression represents the value at the address that is expres­
sion2 positions beyond expression1. Usually, the value represented by 
expressionl is a pointer value, such as an array identifier, and expression2 
is an integral value. However, all that is required syntactically is that one 
of the expressions be of pointer type and the other be of integral type. 
Thus the integral value could be in the expressionl position and the 
pointer value could be in the brackets in the expression2, or "subscript," 
position. Whatever the order of values, expression2 must be enclosed in 
brackets ([ ]). 

Subscript expressions are generally used to refer to array elements, but 
you can apply a subscript to any pointer. 

5.2.5.1 Unidimensional-Array References 

The subscript expression is evaluated by adding the integral value to the 
pointer value, then applying the indirection operator (*) to the result. 
lSee Section 5.3.3 for a discussion of the indirection operator.) In effect, for 
a one-dimensional array, the following four expressions are equivalent, 
assuming that a is a pointer and b is an integer: 

a [b] 
* (a + b) 
* (b + a) 
b [a] 

Accordin~ to the conversion rules for the addition operator (given in Sec­
tion 5.3.6), the integral value is converted to an address offset by multiply­
ing it by the length of the type addressed by the pointer. 
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For example, suppose the identifier 1 ine refers to an array of int values. 
The following procedure is used to evaluate the subscript expression 
line[i]: 

1. The integer value i is multiplied by the number of bytes defined as 
the length of an int item. The converted value of i represents i 
int positions. 

2. This converted value is added to the original pointer value (1 ine) 
to yield an address that is offset i int positions from 1 ine. 

3. The indirection operator is applied to the new address. The result 
is the value of the array element at that position (intuitively, 
line[iD· 

Note 

The subscript expression 

line [0] 

represents the value of the first element of 1 ine, since the offset from 
the address represented by line is o. Similarly, an expression such as 

line [5] 

refers to the element offset five positions from 1 ine, or the sixth ele­
ment of the array. 

5.2.5.2 Multidimensional-Array Reference 

A subscript expression can be subscripted, as follows: 

express£onl [express£on2] [express£onB] ... 

Subscript expressions associate from left to right. The left-most subscript 
expression, expressionl [expression21, is evaluated first. The address that 
results from adding expressionl and expression2 forms a pointer expres­
sion; then expressionS is added to this pointer expression to form a new 
pointer expression, and so on until the last subscript expression has'been 
added. The indirection operator (*) is applied after the last subscripted 
expression is evaluated, unless the final pointer value addresses an array 
type (see Example 3 below). 
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Expressions with multiple subscripts refer to elements of "multidimen­
sional arrays." A multidimensional array is an array whose elements are 
arrays. For example, the first element of a three-dimensional array is an 
array with two dimensions. 

• Examples 

For the following examples, an array named prop is declared with three 
elements, each of which is a 4-by-6 array of int values. 

int prop [3] [4] [6] ; 
int i, *ip, (*ipp) [6] ; 

/******************** Example 1 ********************/ 

i = prop [0] [0] [1] ; 

Example 1 shows how to refer to the second individual int element of 
prop. Arrays are stored by row, so the last subscript varies the most 
quickly; the expression prop [0] [0] [2] refers to the next (third) element 
of the array, and so on. 

/******************** Example 2 ********************/ 

i = prop [2] [1] [3] ; 

Example 2 shows a more complex reference to an individual element of 
prop. The expression is evaluated as follows: 
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1. The first subscript, 2, is multiplied by the size of a 4-by-6 int array 
and added to the pointer value prop. The result points to the 
third 4-by-6 array of prop. 

2. The second subscript, 1, is multiplied by the size of the 6-element 
int array and added to the address represented by prop [2J • 

3. Each element of the 6-element array is an int value, so the final 
subscript, 3, is multiplied by the size of an int before it is added to 
prop [2] [1]. The resulting pointer addresses the fourth element 
of the 6-elemen t array. 

4. The indirection operator is applied to the pointer value. The result 
is the int element at that address. 
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/******************** Example 3 ********************/ 

ip = prop [2] [1]; 

/******************** Example 4 ********************/ 

ipp = prop[2]; 

Examples 3 and 4 show cases where the indirection operator is not applied. 

In Example 3, the expression prop [2J [1J is a valid reference to the 
three-dimensional array prop; it refers to a 6-element array (declared 
above Example 1). Since the pointer value addresses an array, the indirec­
tion operator is not applied. 

Similarly, the result of the expression prop [2J in Example 4 is a pointer 
value addressing a two-dimensional array. 

5.2.6 Member-Selection Expressions 

• Syntax 

express£on. £dent£f£er 
express£on-> £dent£f£er 

A "member-selection expression" refers to members of structures and 
unions. Such an expression has the value and type of the selected member. 
As shown above, a member-selection expression can have one of the two 
following forms: 

1. In the first form, expressz"on.£dent£jier, expressz"on represents a value 
of struct or union type, and £dentz"jier names a member of the 
specified structure or union. 

2. In the second form, expression- > identifier, expression represents 
a pointer to a structure or union, and identzjier names a member of 
the specified structure or union. 

The two forms of member-selection expressions have similar effects. In 
fact, an expression involving the pointer selection operator (- » is a 
shorthand version of an expression using the period (.) if the expression 
before the period consists of the indirection operator (*) applied to a 
pointer value. (Section 5.3.3 discusses the indirection operator.) There-

, fore, 
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expressz'on-> z'dentz'fz'er 

is equivalent to 

(* expression). identifier 

when expression is a pointer value. 

• Examples 

Examples 1 through 3 refer to the following structure declaration: 

struct pair { 
int a; 
int b; 
struct pair *sp; 
} item, list[10]; 

/******************** Example 1 ********************/ 

item.sp = &item; 

In Example 1, the address of the i tern structure is assigned to the sp 
member of the structure. This means that i tern contains a pointer to 
itself. 

/******************** Example 2 ********************/ 

(item.sp)->a = 24; 

In Example 2, the pointer expression i tern. sp is used with the pointer 
selection operator (- > ) to assign a value to the member a. 

/******************** Example 3 ********************/ 

list[8].b = 12; 

Example 3 shows how to select an individual structure member from an 
array of structures. 

5.2.7 Expressions with Operators 

Expressions with operators can be "unary," "binary," or "ternary" expres­
sions. A unary expression consists of either a unary operator ("unop") 
prepended to an operand, or the sizeof keyword followed by an expression. 
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The expression can be either the name of a variable or a cast expression. If 
expression is a cast expression it must be enclosed in parentheses. 

unop operand 
sizeof express£on 

A binary expression consists of two operands joined by a binary operator 
("binop"): 

operand Mnop operand 

A ternary expression consists of three operands joined by the ternary 
operator (? : J: 

operand? operand: operand 

Sections 5.3.1-5.3.12, describe the operators used in unary, binary, and 
ternary expressions. 

Expressions with operators also include assignment expressions, which use 
unary or binary assignment operators. The unary assignment operators 
are the increment (++) and decrement (--) operators~ the binary assign­
ment operators are the simple-assignment operator (=) and the 
compound-assignment operators (referred to as "compound-assign-ops"). 
Each compound-assignment operator is a combination of another binary 
operator with the simple-assignment operator. Assignment expressions 
have the following forms: 

operand++ 
operand-­
++operand 
-- operand 
operand = operand 
operand compound-assign-op operand 

Sections 5.'4.1 - 5.4.4 describe the assignment operators in detail. 

5.2.8 Expressions in Parentheses 

You can enclose any operand in parentheses without changing the type or 
value of the enclosed expression. For example, in the expression 

(10 + 5) / 5 

the parentheses around 10 + 5 mean that the value of 10 + 5 is the left 
operand of the division (/) operator. The result of (10 + 5) / 5 is 3. 
Without the parentheses, 10 + 5 / 5 would evaluate to 11. 
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Although parentheses affect the way operands are grouped in an expres­
sion, they cannot guarantee a particular order of evaluation in all cases. 
Exceptions resulting from "side effects" are discussed in Section 5.2.11. 

5.2.9 Type-Cast Expressions 

A type cast provides a method for explicit conversion of the type of an 
object in a specific situation. Type-cast expressions have the following 
form: 

(type-name) operand 

Casts can be used to convert objects of any scalar type to or from any 
other scalar type. Explicit type casts are constrained by the same rules 
that determine the effects of implicit conversions, discussed in Section 
5.B.1, "Assignment Conversions." Additional restraints on casts may 
result from the actual sizes or representation of specific types on specific 
implementations. Representation is discussed in Chapter 4, "Declara­
tions." For information on actual sizes of integral types and pointers, see 
your compiler guide. 

Any object may be cast to void type. However, if the type-name in a type­
cast expression is not void, then operand cannot be a void expression. 
Any expression can be cast to void, but an expression of type void cannot 
be cast to any other type. For example, a function with void return type 
cannot have its return cast to another type. Note that a void * expression 
has a type pointer to void, not type void. If an object is cast to void 
type, the resulting expression cannot be assigned to any item. Similarly, a 
type-cast object is not an acceptable lvalue, so no assignment can be made 
to a type-cast object. Lvalues are discussed in Section 5.4.1. Section 5.6 
discusses type-cast conversions and Section 4.9 discusses type names. 

5.2.10 Constant Expressions 

A constant expression is any expression that evaluates to a constant. The 
operands of a constant expression can be integer constants, character con­
stants, floating type constants, enumeration constants, type casts, sizeof 
expressions, and other constant expressions. You can use operators to 
combine and modify operands as described in Section 5.2.7, with the fol­
lowing restrictions: 

• 

• 
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You cannot use assignment operators (see Section 5.4) or the 
binary sequential-evaluation operator (,) in constant expressions. 

You can use the unary address-of operator (&) only in certain ini­
tializations (as described in the last paragraph of this section). 
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Constant expressions used in preprocessor directives are subject to addi­
tional restrictions. Consequently, they are known as "restricted constant 
expressions." A restricted constant expression cannot contain sizeof 
expressions, enumeration constants, type casts to any type, or floating­
type constants. It can, however, contain the special constant expression 
defined( identzfier). (See Section 8.2.2, "The # define Directive," for more 
information about this expression.) 

Constant expressions involving floating constants, casts to nonarithmetic 
types, and address-of expressions can only appear in initializers. The 
unary address-of operator (&) can only be applied to variables with funda­
mental, structure, or union types that are declared at the external level, or 
to subscripted array references. In these expressions, a constant expression 
that does not include the address-of operator can be added to or sub­
tracted from the address expression. 

5.2.11 Side Effects 

"Side effects" occur whenever the value of a variable is changed by expres­
sion evaluation. All assignment operations have side effects. Function calls 
may also have side effects if they change the value of an externally visible 
item, either by direct assignment or by indirect assignment through a 
pointer. 

The order of evaluation of expressions is defined by the specific implemen­
tation, except when the language guarantees a particular order of evalua­
tion (as ou tlined in Section 5.5). 

For example, side effects occur in the following function call: 

add (i + 1, i = j + 2) 

The arguments of a function call can be evaluated in any order. The 
expression i + l.may be evaluated before i = j + 2, or i = j + 2 
may be evaluated before i + 1. The result is different in each case. 

Since unary increment and decrement operations involve assignments, 
such operations can cause side effects, as shown in the following example: 

d = 0; 
a = b++ = c++ = d++; 

In this example, the value of a is unpredictable. The value of d (initially 0) 
could be assigned to c, then to b, and then to a before any of the variables 
are incremented. In this case, a would be equal to o. 
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A second way to evaluate this expression begins by evaluating the operand 
c++ = d++. The value of d (initially 0) is assigned to c, and then both d 
and c are incremented. Next, the value of c, now 1, is assigned to b, and b 
is incremented. Finally, the incremented value of b is assigned to a; in this 
case, the final value of a is 2. 

Since C does not define the order of evaluation of side effects, both evalua­
tion methods discussed above are correct and either may be implemented. 
To make sure that your code is portable and clear, avoid statements that 
depend on a particular order of evaluation for side effects. 

5.2.12 Sequence Points 

Expressions involving assignment, unary "increment," unary "decrement," 
or calling a function may have consequences incidental to their evaluation 
(side effects). When a "sequence point" is reached, everything preceding 
the sequence point, including any side effects, is guaranteed to have been 
evaluated before evaluation begins on anything following the sequence 
point. 

Certain operators act as sequence points, including the following: 

• The logical-AND operator (&&) 

• The logical-OR operator (l l) 
• The ternary operator (?:) 
• The sequential-evaluation operator (,) 

• The function-call operator (that is, the parentheses following a 
function name) 

Other sequence points include the end of a full expression (that is, an 
expression that is not part of another expression); any initlalizer; an 
expression in an expression statement; the control expressions in selection 
statements (if or switch) and iteration statements (do, while, or for); 
and the expression in a return statement. 

5.3 Operators 

C operators take one operand ( unary operators), two operands (binary 
operators), or three operands (the ternary operator). Assignment operators 
include both unary or binary operators; Section 5.4 describes the assign­
men t operators. 
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Unary operators appear before their operand and associate from righ t to 
left. C includes the following unary operators: 

Symbol 

- ! 

* & 
sizeof 

+ 

Name 

Negation and complement operators 

Indirection and address-of operators 

Size operator 

Unary plus operator 

Binary operators associate from left to right. C provides the following 
binary operators: 

Symbol 

* / % 
+-
« 
< > 
& 

» 
<= >= != 

Name 

Multiplicative operators 

Additive operators 

Shift operators 

Relational operators 

Bitwise operators 

&& I I 
I I Logical operators 

Sequential-evaluation operator 

C has one ternary operator: the conditional operator (? :). It associates 
from right to left. 

5.3.1 Usual Arithmetic Conversions 

Most C operators perform type conversions to bring the operands of an 
expression to a common type or to extend short values to the integer size 
used in machine operations. The conversions performed by C operators 
depend on the specific operator and the type of the operand or operands. 
However, many operators perform similar conversions on operands of 
integral and floating types. These conversions are known as "arithmetic 
conversions" because they apply to the types of values ordinarily used in 
arithmetic. 

The arithmetic conversions summarized below are called "usual arithmetic 
conversions." The discussion of each operator in the following sections 
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specifies whether or not the operator performs the usual arithmetic conver­
sions. It also specifies the additional conversions, if any, the operator per­
forms. This is not a precedence order. It is an outline of an algorithm that 
is applied to each binary operator in the expression. 

Section 5.6 outlines the specific path of each type of conversion. In deter­
mining which conversions will actually take place, the following algorithm 
is applied to each binary operation in the expression: 

1. Any operands of float type are converted to double type. 

2. If one operand has long double type, the other operand is con­
verted to long double type. 

3. If one operand has double type, the other operand is converted to 
double type. 

4. Any operands of char or short type are converted to int type. 

5. Any operands of unsigned char or unsigned short type are con­
verted to unsigned int type. 

6. If one operand is of unsigned long type, the other operand is con­
verted to unsigned long type. 

7. If one operand is of long type, the other operand is converted to 
long type. 

8. If one operand is of unsigned int type, the other operand is con­
verted to unsigned int type. 

The following example illustrates the application of the preceding algo­
rithm: 

long 1: 
unsigned char uc; 
int i; 
f ( 1 + uc * i); 

The preceding example would be converted as follows: 

1. uc is converted to an unsigned ~nt (step 5). 

2. i is converted to an unsigned int (step 8). The multiplication is 
performed and the result is an unsigned Int. 

3. uc * i is converted to a long (step 7). 

The addition is performed and the result is type long. 
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5.3.2 Complement and Unary Plus Operators 

The C complement operators are discussed in the following list: 

Operator 

+ 

• Examples 

Description 

The arithmetic-negation operator produces the 
negative (two's complement) of its operand. The 
operand must be an integral or floating value. This 
operator performs the usual arithmetic conver­
SIons. 

The bitwise-complement operator produces the 
bitwise complement of its operand. The operand 
must be of integral type. This operator performs 
usual arithmetic conversions; the result has the 
type of the operand after conversion. 

The logical-NOT operator produces the value 0 if 
its operand is true (nonzero) and the value 1 if its 
operand is false (0). The result has int type. The 
operand must be an integral, floating, or pointer 
value. 

The unary plus operator preceding a parenthesized 
expression forces the grouping of the enclosed 
operations. It is used with expressions involving 
more than one associative or commutative binary 
operator. 

Note 

The unary plus operator (+) is implemented 
syntactically in Microsoft C, but has no seman­
tics of any type associated with it. 

/******************** Example 1 ********************/ 

short x = 987; 
x = -x; 

In Example 1, the new value of x is the negative of 987, or -987. 

117 



Microsoft C Language Reference 

/******************** Example 2 ********************/ 

unsigned short y = Oxaaaa; 
y = Ny; 

In Example 2, the new value assigned to y is the one's complement of the 
unsigned value Oxaaaa, or Ox5555. 

/******************** Example 3 ********************/ 

if ( ! (x < y»; 

In Example 3, if x is greater than or equal to y, the result of the expres­
sion is 1 (true). If x is less than y, the result is 0 (false). 

5.3.3 Indirection and Address-of Operators 

The C indirection and address-of operators are discussed in the following 
list: 

Operator 

* 
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Description 

The indirection operator accesses a value 
indirectly, through a pointer. The operand must be 
a pointer value. The result of the operation is the 
value addressed by the operand; that is, the value 
at the address specified by the operand. The type 
of the result is the type that the operand 
addresses. If the pointer value is invalid, the result 
is undefined. The specific conditions that invali­
date a pointer value are implementation-defined. 
The following list includes some of the most com­
mon: 

• The pointer is a null pointer. 

• The pointer specifies the address of a local item 
that is not active at the time of the reference. 

• The pointer specifies an address that is inap­
propriately aligned for the type of the object 
pointed to. 

• The pointer specifies an address not used by 
the executing program. 
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The address-of operator gives the address of its 
operand. The operand can be any value that is a 
valid left-hand value of an assignment operation. 
A function designator or array name can also be 
the operand of the address-of operator, although in 
these cases the operator is superfluous since func­
tion designators and array names are addresses. 
(Assignment operations are discussed in Section 
5.4.) The result of the address operation is a 
pointer to the operand. The type addressed by the 
poin ter is the type of the operand. 

You cannot apply the address-of operator to a bit­
field member of a structure (described in Section 
4.4.3, "Structure Declarations") or to an identifier 
declared with the register storage-class specifier 
(described in Section 4.6). 

Examples 1 through 4 use the following declarations: 

int *pa, x; 
int a[20]; 
double d; 

/******************** Example 1 ********************/ 

pa = &a[S]; 

In Example 1, the address-of operator (&) takes the address of the sixth 
element of the array a. The result is stored in the pointer variable pa. 

/******************** Example 2 ********************/ 

The indirection operator (*) is used in Example 2 to access the int 
value at the address stored in pa. The value is assigned to the integer 
variable x. 
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/******************** Example 3 ********************/ 

if (x = *&x) 
printf("True\n"); 

In Example 3, the word True would be printed. This example demon­
strates that the result of applying the indirection operator to the address 
of x is the same as x. 

/******************** Example 4 ********************/ 

d = * (double *) (&x) ; 

Example 4 demonstrates an appropriate application of the rule shown in 
Example 3. First the address of x is converted by a type cast to a pointer 
to a double type; then the indirection operator is applied to give a result 
of type dou hie. 

/******************** Example 5 ********************/ 

int roundup 0 ; 

int (*proundup) = roundup; 
int (*pround) = &roundup; 

In Example 5, the function roundup is declared, and then two pointers to 
roundup are declared and initialized. The first pointer proundup is ini­
tialized using only the name of the function, while the second, pround, 
uses the address-of operator in the initialization. The initializations are 
equivalent. 

5.3.4 The sizeof Operator 

The sizeof operator gives the amount of storage, in bytes, associated with 
an identifier or a type. This operator allows you to avoid specifying 
machine-dependent data sizes in your programs. 

A sizeof expression has the form 

sizeof expression 

where expressz"on is either an identifier or a type-cast expression (that is, a 
type specifier enclosed in parentheses). If expressz"on is a type-cast expres­
sion, it cannot be void. If it is an identifier, it cannot represent a bit-field 
object or a function designator. 

When you apply the sizeof operator to an array identifier, the result is the 
size of the entire array rather than the size of the pointer represented by 
the array iden tifier. 
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When you apply the sizeaf operator to a structure or union type name, or 
to an identifier of structure or union type, the result is the actual size of 
the structure or union. This size may include internal and trailing padding 
used to align the members of the structure or union on memory boun­
daries. Thus, the result may not correspond to the size calculated by 
adding up the storage requirements of the individual members. 

• Examples 

/******************** Example 1 ********************/ 

buffer = calloc(lOO, sizeof (int) ): 

Example 1 uses the sizeaf operator to pass the size of an int, which varies 
among machines, as an argument to a function named calloc. The value 
returned by the function is stored in bu f fer. 

/******************** Example 2 ********************/ 

static char *strings[] ={ 
"this is string one", 
"this is string two", 
"this is string three", 

}: 
const int string_no = (sizeof strings)/(sizeof strings[O]): 

In Example 2, strings is an array of pointers to char. The number of 
pointers is the number of elements in the array, but is not specified. It is 
easy to determine the number of pointers by using the sizeaf operator to 
calculate the number of elements in the array. The canst integer value 
str ing_no is initialized to this number. Because it is a canst value, 
str ing_no cannot be modified. 

5.3.5 Multiplicative Operators 

The multiplicative operators perform multiplication (*), division (/)( and 
remainder (%) operations. The operands of the remamder operator %) 
must be integral. The multiplication (*) and division (/) operators can 
take integral- or floating-type operands; the types of the operands can be 
differen t. 

The multiplicative operators perform the usual arithmetic conversions on 
the ope~ands. The type of the result is the type of the operands after 
converSIOn. 
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Note 

Since the conversions performed by the multiplicative operators do not 
provide for overflow or underflow conditions, information may be lost 
if the result of a multiplicative operation cannot be represented in the 
type of the operands after conversion. 

The C multiplicative operators are described below: 

Operator 

/ 

% 

• Examples 

Description 

The multiplication operator causes its two 
operands to be multiplied. 

The division operator causes the first operand to 
be divided by the second. If two integer operands 
are divided and the result is not an integer, it is 
truncated according to the following rules: 

• If both operands are positive or unsigned, the 
result is truncated toward O. 

• If either operand is negative, the direction of 
truncation of the result (either toward 0 or 
away from 0) is defined by the implementation. 
For more information, see your compiler guide. 

The result of division by 0 is undefined. 

The result of the remainder operator is the 
remainder when the first operand is divided by the 
second. If either or both operands are positive or 
unsigned, the result is positive. If either operand is 
negative the sign of the result is defined by the 
implementation. (See your compiler guide for more 
information.) If the right operand is zero, the 
result is undefined. 

The declarations shown below are used for all of the following examples: 

int i = 10, j = 3, n; 
double x = 2.0, y; 
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/******************** Example 1 ********************/ 

y = x * i; 

In Example 1, x is multiplied by i to give the value 20.0. The result has 
double type. 

/******************** Example 2 ********************/ 

n = i / j; 

In Example 2, 10 is divided by 3. The result is truncated toward 0, yielding 
the integer value 3. 

/******************** Example 3 ********************/ 

n = i % j; 

In Example 3, n is assigned the integer remainder, 1, when 10 is divided 
by 3. 

5.3.6 Additive Operators 

The additive operators perform addition (+) and subtraction (-). The 
operands can be integral or floating values. Some additive operations can 
also be performed on pointer values, as outlined under the discussion of 
each operator. 

The additive operators perform the usual arithmetic conversions on 
integral and floating operands. The type of the result is the type of the 
operands after conversion. Since the conversions performed by the additive 
operators do not provide for overflow or underflow conditions, information 
may be lost if the result of an additive operation cannot be represented in 
the type of the operands after conversion. 

Addition (+) 

The addition operator (+) causes its two operands to be added. Both 
operands can have integral or floating types, or one operand can be a 
pointer and the other an integer. 

When an integer is added to a pointer, the integer value (ZJ is converted by 
multiplying it by the size of the value that the pointer addresses. After 
conversion, the integer value represents i memory positions, where each 
position has the length specified by the pointer type. When the converted 
integer value is added to the pointer value, the result is a new pointer 
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value representing the address £ positions from the original address. The 
new pointer value addresses a value of the same type as the original 
pointer value. 

Subtraction (-) 

The subtraction operator (-) subtracts the second operand from the first. 
The following combinations of operands can be used with this operator: 

• Both operands integral or floating type values 

• Both operands pointer values to the same type 

• The first operand a pointer value and the second operand an 
integer 

When two pointers are subtracted, the difference is converted to a signed 
integral value by dividing the difference by the size of a value of the type 
that the pointers address. The size of the integral value is defined by the 
type ptrdiff_ t in the standard include file stddef.h. (See Chapter 5 of the 
M£cro8ojt C Run-T£me L£brary Reference for more information.) The result 
represents the number of memory positions of that type between the two 
addresses. The result is only guaranteed to be meaningful for two ele­
ments of the same array, as discussed in "Pointer Arithmetic," later in this 
section. 

When an integer value is subtracted from a pointer value, the subtraction 
operator converts the integer value (z) by multiplying it by the size of the 
value that the pointer addresses. After conversion, the integer value 
represents £ memory positions, where each position has the length specified 
by the pointer type. When the converted integer value is subtracted from 
the pointer value, the result is the memory address i positions before the 
original address. The new pointer points to a value of the type addressed 
by the original pointer value. 

Pointer Arithmetic 

Additive operations involving a pointer and an integer give meaningful 
results only if the pointer operand addresses an array member and the 
integer value produces an offset within the bounds of the same array. 
When the integer value is converted to an address offset, the compiler 
assumes that only memory posi tions of the same size lie between the origi­
nal address and the address plus the offset. 

This assumption is valid for array members. By definition, an array is a 
series of values of the same type; its elements reside in contiguous memory 
locations. However, storage for any types except array elements is not 
guaranteed to be completely filled. That is, blanks may appear between 
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memory positions, even positions of the same type. Therefore, the results 
of adding to or subtracting from the addresses of any values but array ele­
ments are undefined. 

Similarly, when two pointer values are subtracted, the conversion assumes 
that only values of the same type, with no blanks, lie between the 
addresses given by the operands. 

On machines with segmented architecture (such as the 8086/8088), addi­
tive operations between pointer and integer values may not be valid in 
some cases. For example, an operation may result in an address that is 
outside the bounds of an array. See your compiler guide for more informa­
tion on memory models. 

• Examples 

The following declarations are used for both examples: 

int i = 4, j; 
float x[lO]; 
float *px; 

/******************** Example 1 ********************/ 

px = &x[4] + i; /* equivalent to px = &x[4+i]; */ 

In Example 1, the value of i is multiplied by the length of a float and 
added to &x [4] . The resulting pointer value is the address of x [8] . 

/******************** Example 2 ********************/ 

j = &x[i] - &x[i-2]; 

In Example 2, the address of the third element of x (given by x [i - 2J ) is 
subtracted from the address of the fifth element of x (given by x [i] ). 
The difference is divided by the length of a float; the result is the integer 
value 2. 

5.3.7 Shift Operators 

The shift operators shift their first operand left ( < <) or righ t (> > ) by 
the number of positions the second operand specifies. Both operands must 
be integral values. These operators perform the usual arithmetic conver­
sions; the type of the result is the type of the left operand after conversion. 

For leftward shifts, the vacated right bits are set to o. For rightward 
shifts, the vacated left bits are filled based on the type of the first operand 
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after conversion. If the type is unsigned, they are set to O. Otherwise, 
they are filled with copies of the sign bit. 

The result of a shift operation is undefined if the second operand is nega­
tive. 

Since the conversions performed by the shift operators do not provide for 
overflow or underflow conditions, information may be lost if the result of a 
shift op~ration cannot be represen ted in the type of the first operand after 
converSIOn . 

• Example 

unsigned int x, y, z: 

x = OxOOaa; 
y = Ox5500; 

z = (x « 8) + (y » 8): 

In this example, x is shifted left eight positions and y is shifted right eight 
positions. The shifted values are added, giving Oxaa55, and assigned to z. 

5.3.8 Relational Operators 

The binary relational operators compare their first operand to their second 
operand to test the validity of the specified relationship. The result of a 
relational expression is 1 if the tested relationship is true and 0 if it is 
false. The type of the result is into 

The relational' operators test the following relationships: 

Operator 

< 
> 
<= 
>= 

f-.-

Relationship Tested 

First operand less than second operand 

First operand greater than second operand 

First operand less than or equal to second operand 

First operand greater than or equal to second operand 

First operand equal to second operand 

First operand not equal to second operand 

The operands can have integral, floating, or pointer type. The types of 
the operands can be different. Relational operators perform the usual 
arithmetic conversions on integral and floating type operands. In addition, 
you can use the following combinations of operand types with relational 
operators: 
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• Both operands of any relational operator can be pointers to the 
same type. For the equality (==) and inequality (!=) operators, 
the result of the comparison indicates whether or not the two 
pointers address the same memory location. For the other rela­
tional operators «, >, <=, and >=), the result of the com­
parison indicates the relative position of two memory addresses. 

Since the address of a given value is arbitrary, comparisons 
between the addresses of two unrelated values are generally mean­
ingless. However, comparisons between the addresses of different 
elemen ts of the same array can be useful, since array elemen ts are 
guaranteed to be stored in order from the first element to the last. 
The address of the first array element is "less than" the address of 
the last element. 

• A pointer value can be compared to the constant value 0 for equal­
ity (= =) or inequality (!=). A pointer with a value of 0, called a 
"null" pointer, does not point to a memory location. 

• Examples 

/******************** Example 1 ********************/ 

int x = 0, y = 0; 
x < y 

Because x and yare equal, the expression in Example 1 yields the value O. 

/******************** Example 2 ********************/ 

char array[lO] ; 
char *p ; 

for (p = array; p < &array[lO]; p++) 
*p = '\0' 

The fragment in Example 2 initializes each element of array to a null 
character constant. 

/******************** Example 3 ********************/ 

enum color {red, white, green} col; 

if (col - red) 

127 



Microsort C Language Rererence 

Example 3 declares an enumeration variable named col with the tag 
color. At any time, the variable may contain an integer value of 0, 1, or 
2, which represents one of the elements of the enumeration set color: the 
color red, white, or green, respectively. If col contains 0 when the if state­
ment is executed, any statements depending on the if will be executed. 

5.3.9 Bitwise Operators 

The bitwise operators perform bitwise-AND (&), inclusive-OR ( :), and 
exclusive-OR C') operations. The operands of bItwise operators must have 
integral types, but their types can be different. These operators perform 
the usual arithmetic conversions; the type of the result is the type of the 
operands after conversion. 

The C bitwise operators are described below: 

Operator 

& 

• Examples 

Description 

The bitwise-AND operator compares each bit of its 
first operand to the corresponding bit of its second 
operand. If both bits are 1, the corresponding 
result bit is set to 1. Otherwise, the corresponding 
result bit is set to o. 
The bitwise-inclusive-OR operator compares each 
bit of its first operand to the corresponding bit of 
its second operand. If either bit is 1, the 
corresponding result bit is set to 1. Otherwise, the 
corresponding result bit is set to o. 
The bitwise-exclusive-OR operator compares each 
bit of its first operand to the corresponding bit of 
its second operand. If one bit is 0 and the other bit 
is 1, the corresponding result bit is set to 1. Other­
wise, the corresponding result bit is set to o. 

The following declarations are used for these examples: 

short i = OxabOO; 
short j = Oxabcd; 
short n; 
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/******************** Example 1 ********************/ 

n = i &. j; 

/******************** Example 2 ********************/ 

n = i I j; 

/******************** Example 3 ********************/ 

n = i - j; 

The result assigned to n in the first example is the same as i (OxabOO hex­
adecimal). The bitwise-inclusive OR in Example 2 results in the value 
Oxabcd (hexadecimal), while the bitwise-exclusive OR in Example 3 pro­
duces Oxcd (hexadecimal). 

5.3.10 Logical Operators 

The logical operators perform logical-AND (&&) and logical-OR ( : :) 
operations. The operands of the logical operators must have integral, 
floating, or pointer type. The types of the operands can be different. 

The operands of logical-AND and logical-OR expressions are evaluated 
from left to right. If the value of the first operand is sufficient to determine 
the result of the operation, the second operand is not evaluated. There is a 
sequence poin t after the first operand. 

Logical operators do not perform the usual arithmetic conversions. 
Instead, they evaluate each operand in terms of its equivalence to o. 
The result of a logical operation is either 0 or 1. The result's type is into 

The C logical operators are described below: 

Operator 

&& 

Description 

The logical-AND operator produces the value 1 if 
both operands have nonzero values. If either 
operand is equal to 0, the result is o. If the first 
operand of a logical-AND operation is equal to 0, 
the second operand is not evaluated. 
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I I 
I I 

• Examples 

The logical-OR operator performs an inclusive-OR 
operation on its operands. The result is 0 if both 
operands have 0 values. If either operand has a 
nonzero value, the result is 1. If the first operand 
of a logical-OR operation has a nonzero value, the 
second operand is not evaluated. 

The following examples use these declarations: 

int w, x, y, z; 

/******************** Example 1 ********************/ 

if (x < y && Y < z) 
printf (tl x is less than z\ntl); 

In Example 1, the printf function is called to print a message if x is less 
than y and y is less than z. If x is greater than y, the second operand (y 
< z) is not evaluated and nothing is printed. Note that this could cause 
problems in cases where the second operand has side effects that are being 
relied on for some other reason. 

/******************** Example 2 ********************/ 

printf (tI%d tl , (x=w :: x==y : : x==z)); 

In Example 2, if x is equal to either w, y, or z, the second argument to the 
printf function evaluates to true and the value 1 is printed. Otherwise, 
it evaluates to false and the value 0 is printed. As soon as one of the condi­
tions evaluates to true, evaluation ceases. 

5.3.11 Sequential-Evaluation Operator 

The sequential-evaluation operator evaluates its two operands sequentially 
from left to right. There is a sequence point after the first operand. The 
result of the operation has the same value and type as the right operand. 
Each operand can be of any type. The sequential-evaluation operator does 
not perform type conversions bet'Yeen its operands. 
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The sequential-evaluation operator, also called the "comma operator," is 
typically used to'evaluate two or more expressions in contexts where only 
one expression is allowed. 

Commas may be used as separators in some contexts. However, you must 
be careful not to confuse the use of the comma as a separator with its use 
as an operator; the two uses are completely different . 

• Examples 

/******************** Example 1 ********************/ 

for ( i = j = 1; i + j < 20; i += i, j--); 

In Example 1, each operand of the for statement's third expression is 
evaluated independently. The left operand, i += i I is evaluated first; 
then the right operand, j - -, is evaluated. 

/******************** Example 2 ********************/ 

func_one(x, y + 2, z); 
func_two«x--, y + 2), z); 

In the function call to func_one, three arguments, separated by commas, 
are passed: x, y + 2, and z. 

In the function call to func_ two, parentheses force the compiler to inter­
pret the first comma as the sequential-evaluation operator. This function 
call passes two arguments to func_two. The first argument is the result 
of the sequential-evaluation operation (x- - I Y + 2), which has the 
value and type of the expression y + 2; the second argument is z. 

5.3.12 Conditional Operator 

C has one ternary operator: the conditional operator (? :). It has the fol­
lowing form: 

operandl ? operand2 : operandS 

The expression operandl must have integral, floating, or pointer type. It is 
evaluated in terms of its equivalence to O. A sequence point follows 
operand1. Evaluation proceeds as follows: 
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• If operandl does not evaluate to 0, operand2 is evaluated, and the 
result of the expression is the value of operand2. 

• If operandl evaluates to 0, operandS is evaluated, and the result of 
the expression is the value of operandS. 

Note that either operand2 or operandS is evaluated, but not both. 

The type of the result of a conditional operation depends on the type of 
operand2 or operandS, as follows: 

• If operand2 or operandS has integral or floating type (their types 
can be different), the operator performs the usual arithmetic 
convers~ons. The type of the result is the type of the operands after 
converSIOn. 

• If both operand2 and operandS have the same structure, union, or 
pointer type, the type of the result is the same structure, union, or 
poin ter type. 

• If both operands have type void, the result has type void. 

• If either operand is a pointer to an object of any type, and the 
other operand is a pointer to void, the pointer to the object is con­
verted to a pointer to void and the result is a pointer to void. 

• If either operand2 or operandS is a pointer and the other operand is 
a constant expression with the value 0, the type of the result is the 
poin ter type. 

• Examples 

/******************** Example 1 ********************/ 

j = (i < 0) ? (-i) : (i); 

Example 1 assigns the absolute value of i to j. If i is less than 0, - i is 
assigned to j. If i is greater than or equal to 0, i is assigned to j. 

/******************** Example 2 ********************/ 

void f1 (void) 
void f2 (void) 
int x 
int y 

(x-=y) ? (flO) 
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In Example 2, two functions, fl and f2, and two variables, x and y, are 
declared. Later in the program, if the two variables have the same value, 
the function fl is called. Otherwise, f2 is called. 

5.4 Assignment Operators 

The assignment operators in C can both transform and assign values in a 
single operation. Using a compound-assignment operator to replace two 
separate operations can make your programs smaller and more efficien t. 

C provides the following assignmen t operators: 

Operator 

++ 

= 

/= 
%= 
+= 
-= 

«= 
»= 
&= 
I­
I-

Operation Performed 

Unary increment 

Unary decrement 

Simple assignment 

Multiplication assignment 

Division assignment 

Remainder assignment 

Addition assignment 

Subtraction assignment 

Left-shift assign men t 

Right-shift assignment 

Bitwise-AND assignment 

Bitwise-inclusive-OR assignment 

Bitwise-exclusive-OR assignment 

In assignment, the type of the right-hand value is converted to the type of 
the left-hand value. The specific conversion path, which depends on the 
two types, is outlined in detail in Section 5.6. 

5.4.1 Lvalue Expressions 

An assignment operation assigns the value of the right-hand operand to 
the storage location named by the left-hand operand. Therefore, the left­
hand operand of an assignment operation (or the single operand of a unary 
assignment expression) must be an expreSSIOn that refers to a modifiable 
memory location. 
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Expressions that refer to memory locations are called "lvalue expressions." 
Expressions referring to modifiable locations are modifiable lvalues. One 
example of a modifiable lvalue expression is a variable name declared 
without the const specifier. The name of the variable denotes a stor-
age location, while the value of the variable is the value stored at that 
location. 

The following C expressions may be lvalue expressions: 

• An identifier of integral, floating, pointer, structure, or union type 

• A subscript ([]) expression that does not evaluate to an array or a 
function 

• A member-selection expression (- > or .), if the selected member 
is one of the aforementioned expressions 

• A unary-indirection (*) expression that does not refer to an array 
or function 

• An lvalue expression in paren theses 

• A const object (a nonmodifiable lvalue) 

Note 

Microsoft C includes an extension to the ANSI C standard allowing a 
type cast to a pointer type as an lvalue expression, as long as the size 
of the object does not change. The following example illustrates this 
feature: 

char *p 
int i; 
long 1; 

(long *) p = &1 ; 
(long) i = 1 ; 

/* legal cast */ 
/* illegal cast */ 

See your compiler guide for information on enabling and disabling the 
Microsoft extensions. 

5.4.2 Unary Increment and Decrement 

The unary assignment operators (++ and --) increment and decrement 
their operand, respectively. The operand must have integral, floating, or 
pointer type and must be a modifiable (non-const) lvalue expression. 
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An operand of in tegral or floating type is incremen ted or decremen ted by 
the integer value 1. The type of the result is the same as the operand type. 
An operand of pointer type is incremented or decremented by the size of 
the object it addresses. An incremented pointer points to the next object; 
a decremented pointer points to the previous object. 

An increment (++) or decrement (- - ) operator can appear either be­
fore or after its operand, with the following results: 

• When the operator appears before its operand, the operand is 
incremented or decremented and its new value is the result of the 
expreSSIOn. 

• When the operator appears after its operand, the immediate result 
of the expression is the value of the operand before it is incre­
mented or decremented. After that result is applied in context, the 
operand is incremented or decremented. 

• Examples 

/******************** Example 1 ********************/ 

if (pos++ > 0) 
*p++ = *q++; 

In Example 1, the variable pes is compared to 0, then incremented. If pes 
was positive before being incremented, the next statement is executed. 
First, the value of q is assigned to p. Then, q and p are incremented. 

/******************** Example 2 ********************/ 

if (line [--i] != '\n') 
return; 

In Example 2, the variable i is decremented before it is used as a subscript 
to line. 

5.4.3 Simple Assignment 

The simple-assignment operator assigns its right operand to its left 
operand. The conversion rules for assignment apply (see Section 5.6.1). 
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• Example 

double x; 
int y; 

x = y; 

In this example, the value of y is converted to double type and assigned 
to x. 

5.4.4 Compound Assignment 

The compound-assignment operators combine the simple-assignment 
operator with another binary operator. Compound-assignment operators 
perform the operation specified by the additional operator, then assign the 
result to the left operand. For example, a compound-assignment expres­
sion such as 

expre88£onl += expre88£on2 

can be understood as 

expre88£onl = expre88£onl + expre88£on2 

However, the compound-assignment expression is not equivalent to the 
expanded version because the compound-assignment expression evaluates 
expressionl only once, while the expanded version evaluates expressionl 
twice: in the addition operation and in the assignment operation. 

The operands of a compound-assignment operator must be of integral or 
floating type. Each compound-assignment operator performs the conver­
sions that the corresponding binary operator performs and restricts the 
types of its operands accordingly. The addition-assignment (+=) and 
subtraction-assignment (-=) operators may also have a left operand of 
pointer type, in which case the right-hand operand must be of integral 
type. The result of a compound-assignment operation has the value and 
type of the left operand. 

• Example 

#define MASK OxffOO 

n &= MASK; 

In this example, a bitwise-inclusive-AND operation is performed on nand 
MASK, and the result is assigned to n. The manifest constant MASK is 
defined with a # define preprocessor directive (this directive is discussed 
in Section 8.2.2.). 

136 



Expressions and Assignments 

5.5 Precedence and Order of Evaluation 

The precedence and associativity of C operators affect the grouping and 
evaluation of operands in expressions. An operator's precedence is mean­
ingful only if other operators with higher or lower precedence are presen t. 
Expressions with higher-precedence operators are evaluated first. 

Table 5.1 summarizes the precedence and associativity of C operators, list­
ing them in order of precedence from highest to lowest. Where several 
operators appear together in a line or large brace, they have equal pre­
cedence and are evaluated according to their associativity. 

Table 5.1 

Precedence and Associativity of C Operators 

Symbola 

() [] . -> 
- - ! * & 
++ sizeof casts 

* / % 
+-
« » 
< > <= >= 
- - != 
& 

&& 
I I 
I I 

? : 

I 

= *= /= %= I += -= «= »= 
&= 1= "'= 

Type of Operation 

Expression 

Unaryb 

Multiplicative 
Additive 
Shift 
Relational (inequality) 
Relational (equality) 
Bitwise AND 
Bitwise-exclusive OR 
Bitwise-inclusive OR 
Logical AND 
Logical OR 
Conditional 
Simple and 
compound 
assignmentC 

Sequential evaluation 

Associativity 

Left to right 

Righ t to left 

Left to right 
Left to right 
Left to right 
Left to right 
Left to right 
Left to right 
Left to right 
Left to right 
Left to right 
Left to right 
Right to left 
Right to left 

Left to righ t 

a Operators are listed In descending order of precedence If several operators appear In the 
same line or In a large brace, they have equal precedence 

b All unary operators have equal precedence 

C All simple and compound-assignment operators have equal precedence 
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As Table 5.1 shows, operands consisting of a constant, an identifier, a 
string, a function call, a subscript expression, a member-selection expres­
sion, or a parenthetical expression have the highest precedence and associ­
ate from left to right. Type-cast conversions have the same precedence and 
associativity as the unary operators. 

An expression can contain several operators with equal precedence. When 
several such operators appear at the same level in an expression, evalua­
tion proceeds according to the associativity of the operator, either from 
right to left or from left to right. The direction of evaluation does not 
affect the results of expressions that include more than one multiplication 
(*), addition (+), or binary-bitwise (& : A) operator at the same level. 
The compiler is free to evaluate such expressions in any order, even when 
parentheses in the expression appear to specify a particular order. 

Important 

Only the sequential-evaluation (,), logical-AND (&&), logical-OR ( : :), 
ternary (?:) and function-call operators constitute sequence points, and 
therefore guarantee a particular order of evaluation for their operands. 
The function-call operator is the set of paren theses following the func­
tion identifier. The sequential-evaluation operator (,) is guaranteed to 
evaluate its operands from left to right. (Note that the comma separat­
ing arguments in a function call is not the same as the sequential­
evaluation operator and does not provide any such guaran tee.) 
Sequence points are discussed in Section 5.2.12. 

The unary plus operator (+) is in tended to force specific groupings in 
certain situations. It is implemented syntactically, but not semanti­
cally. See Section 5.3.2, "Complement Operators," for further informa­
tion on unary operators. 

Logical operators also guarantee evaluation of their operands from left to 
right. However, they evaluate the smallest number of operands needed to 
determine the result of the expression. Thus, some operands of the expres­
sion may not be evaluated. For example, in the expression x && y+ +, the 
second operand, y++, is evaluated only if x is true (nonzero). Thus, y is 
not incremen ted if x is false (0). 

~he following list shows the default groupings for several sample expres­
SIOns: 
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Expression 

a & b :: c 

a = b :: c 

q && r :: s--

Default Grouping 

(a & b) :: c 

a = (b :: c) 

(q && r) :: s - -

In the first expression, the bitwise-AND operator (&) has higher 
precedence than the logical-OR operator l: :), so a & b forms the first 
operand of the logical-OR operation. 

In the second expression, the logical-OR operator (: :) has higher pre­
cedence than the simple-assignment operator (=), so b :: c is grouped 
as the right-hand operand in the assignment. Note that the value assigned 
to a is either 0 or 1. 

The third expression shows a correctly formed expression that may pro­
duce an unexpected result. The logical-AND operator (&&) has higher 
precedence than the logical-OR operator (: :), so q && r is grouped as an 
operand. Since the logical operators guarantee evaluation of operands 
from left to right, q && r is evaluated before s--. However, if q && r 
evaluates to a nonzero value, s-- is not evaluated, and s is not decre­
mented. To correct this problem, s- - should appear as the first operand 
of the expression, or s should be decremented in a separate operation. 

The following expression is illegal and produces a diagnostic message at 
compile time: 

Illegal Expression Default Grouping 

p == 0 ? P += 1: p += 2 (p == ° ? P += 1 : p) += 2 

In this expression, the equality operator (= = ) has the highest precedence, 
so p == ° is grouped as an operand. The ternary operator (? :) has the 
next-highest precedence. Its first operand is p == 0, and its second 
operand is p += 1. However, the last operand of the ternary operator is 
considered to be p rather than p += 2, since this occurrence of p binds 
more closely to the ternary operator than it does to the compound­
assignment operator. A syntax error occurs because += 2 does not have a 
left-hand operand. You should use parentheses to prevent errors of this 
kind and produce more readable code. For example, you could use 
parentheses as shown below to correct and clarify the preceding example: 

(p == 0) ? (p += 1) : (p += 2) 
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5.6 Type Conversions 

Type conversions are performed in the following cases: 

• When a value of one type is assigned to a variable of a differ­
ent type 

• When a value of one type is explicitly cast to a different type 

• When an operator converts the type of its operand or operands 
before performing an operation 

• When a value is passed as an argument to a function 

Sections 5.6.1-5.6.4 outline the rules for each kind of conversion. 

5.6.1 Assignment Conversions 

In assignment operations, the type of the value being assigned is converted 
to the type of the variable that receives the assignment. C allows conver­
sions by assignment between integral and floating types, even if informa­
tion is lost in the conversion. The conversion methods used depend on the 
types involved in the assignment, as described in Section 5.3.1, "Usual 
Arithmetic Conversion," and Sections 5.6.1.1 - 5.6.1.5. 

5.6.1.1 Conversions from Signed Integral Types 

A signed integer is converted to a shorter signed integer by truncating the 
high-order bits, and to a longer signed integer by sign extension. 

When a signed integer is converted to an unsigned integer, the signed 
integer is converted to the size of the unsigned integer, and the result is 
interpreted as an unsigned value. 

No information is lost when a signed integer is converted to a floating 
value, except that some precision may be lost when a long int or 
unsigned long int value is converted to a float value. 

Table 5.2 summarizes conversions from signed integral types. This table 
assumes that the char type is signed by default. If you use a compile-time 
option to change the default for the char type to unsigned, the conver­
sions given in Table 5.3 for the unsigned char type apply instead of the 
conversions in Table 5.2. 
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Table 5.2 

Conversions from Signed Integral Types 

From To Method 

chara short Sign extend 

char long Sign extend 

char unsigned char Preserve pattern; high-order bit loses function as 
sign bit 

char unsigned short Sign extend to short; convert short to unsigned 
short 

char unsigned long Sign extend to long; convert long to unsigned 
long 

char float Sign extend to long; convert long to float 

char double Sign extend to long; convert long to double 

char long double Sign extend to long; convert long to double 
short char Preserve low-order byte 
short long Sign extend 
short unsigned char Preserve low-order byte 

short unsigned short Preserve bit pattern; high-order bit loses function 
as sign bit 

short unsigned long Sign extend to long; convert long to unsigned 
long 

short float Sign extend to long; convert long to float 
short double Sign extend to long; convert long to double 
short long double Sign extend to long; convert long to double 
long char Preserve low-order byte 
long short Preserve low-order word 
long unsigned char Preserve low-order byte 
long unsigned short Preserve low-order word 
long unsigned long Preserve bit pattern; high-order bit loses function 

as sign bit 
long float Represent as float. If long cannot be represented 

exactly, some precision is lost. 
long double Represent as double. If long cannot be 

represented exactly as a double, some precision is 
lost. 

long long double Represent as double. If long cannot be 
represented exactly as a double, some precision is 
lost. 

a All char entries assume that the char type is signed by default. 

141 



Microsoft C Language Reference 

Note 

The int type is equivalen t to either the short type or the long type, 
depending on the implementation. Conversion of an int value 
proceeds the same as for a short or a long, whichever is appropriate. 

5.6.1.2 Conversions from Unsigned Integral Types 

An unsigned integer is converted to a shorter unsigned or signed integer by 
truncating the high-order bits, or to a longer unsigned or signed integer by 
zero extending. 

When an unsigned integer is converted to a signed integer of the same size, 
the bit pattern does not change. However, the value it represents changes 
if the sign bit is set. 

Unsigned integer values are converted to floating values by first converting 
the unsigned integer value to a signed long value, then converting that 
signed long value to a floating value. 

Table 5.3 summarizes conversions from unsigned integral types. 

Table 5.3 

Conversions from Unsigned Integral Types 

From To Method 

unsigned char char Preserve bit pattern; high-order bit 
becomes sign bit 

unsigned char short Zero extend 
unsigned char long Zero extend 
unsigned char unsigned short Zero extend 
unsigned char unsigned long Zero extend 
unsigned char float Convert to long; convert long to 

float 
unsigned char double Convert to long; convert long to 

double 
unsigned char long double Convert to long; convert long to 

double 
unsigned short char Preserve low-order byte 
unsigned short short Preserve bit pattern; high-order bit 

becomes sign bit 
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Table 5.3 (continued) 

From To Method 

unsigned short long Zero extend 
unsigned short unsigned char Preserve low-order byte 

unsigned short unsigned long Zero extend 
unsigned short float Convert to long; convert long to 

float 
unsigned short double Convert to long; convert long to 

double 
unsigned short long double Convert to long; convert long to 

double 
unsigned long char Preserve low-order byte 
unsigned long short Preserve low-order word 
unsigned long long Preserve bit pattern; high-order bit 

becomes sign bit 
unsigned long unsigned char Preserve low-order byte 
unsigned long unsigned short Preserve low-order word 
unsigned long float Convert to long; convert long to 

float 
unsigned long double Convert to long; convert long to 

double 
unsigned long long double Convert to long; convert long to 

double 

Note 

The unsigned int type is equivalent either to the unsigned short 
type or to the unsigned long type, depending on the implementation. 
Conversion of an unsigned int value proceeds in the same way as 
conversion of an unsigned short or an unsigned long, whichever is 
appropriate. 

Conversions from unsigned long values to float, double, or long 
double are not accurate if the value being converted is larger than the 
maximum positive long value. 
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5.6.1.3 Conversions from Floating-Point Types 

A float value converted to a double value undergoes no change in value. 
A double value converted to a float value is represented exactly, if possi­
ble. Precision may be lost if the value cannot be represented exactly. 

A floating value is converted to an integral value by first converting to a 
long, then from the long value to the specific integral value, as described 
in Table 5.4. The decimal portion of the floating value is discarded in the 
conversion to a long; if the result is still too large to fit into a long, the 
result of the conversion is undefined. 

Table 5.4 summarizes conversions from floating types. 

Table 5.4 

Conversions from Floating-Point Types 

From To Method 

float char Convert to long; convert long to char 
float short Convert to long; convert long to short 
float long Truncate at decimal point. If result is 

too large to be represented as long, 
result is undefined. 

float unsigned short Convert to long; convert long to 
unsigned short 

float unsigned long Convert to long; convert long to 
unsigned long 

float double Change internal representation 
float long double Change internal representation 
double char Convert to float; convert float to char 
double short Convert to float; convert float to 

short 
double long Truncate at decimal point. If result is 

too large to be represented as long, 
result is undefined. 

double unsigned short Convert to long; convert long to 
unsigned short 

double unsigned long Convert to long; convert long to 
unsigned long 
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Table 5.4 (contz'nued) 

From To 

double float 

long double char 

long double short 

long double long 

long double unsigned short 

long double unsigned long 

long double float 

long double double 

Note 

Method 

Represent as a float. If double value 
cannot be represented exactly as float, 
loss of precision occurs. If value is too 
large to be represented as float, the 
result is undefined. 
Convert to float; convert float to char 

Convert to float; convert float to 
short 

Truncate at decimal point. If result is 
too large to be represented as long, 
result is undefined. 
Convert to long; convert long to 
unsigned short 
Convert to long; convert long to 
unsigned long 
Represent as a float. If double value 
cannot be represented exactly as float, 
loss of precision occurs. If value is too 
large to be represented as float, the 
result is undefined. 
The long double value is treated as 
double. 

Conversions from float, double, or long double values to unsigned 
long are not accurate if the value being converted is larger than the 
maximum positive long value. 

5.6.1.4 Conversions to and from Pointer Types 

A pointer to one type of value can be converted to a pointer to a different 
type. However, the result may be undefined because of the alignment 
requirements and sizes of different types in storage. 

A pointer to void may be converted to or from a pointer to any type, 
without restriction. 
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In some implementations, you can use the special keywords near, far, and 
huge to change the size of pointers within a program. The conversion path 
depends on your implementation. For example, on an 8086 processor, the 
compiler might use a segment-register value to convert a 16-bit pointer to 
a 32-bit. pointer. See your compiler guide for information about pointer 
converSIOns. 

A pointer value can also be converted to an integral value. The conversion 
path depends on the size of the pointer and the size of the integral type, 
according to the following rules: 

• If the size of the pointer is greater than or equal to the size of the 
integral type, the pointer behaves like an unsigned value in the 
conversion, except that it cannot be converted to a floating value. 

• If the poin ter is smaller than the in tegral type, the poin ter is first 
converted to a pointer with the same size as the integral type, then 
converted to the integral type. The implementation determines 
how a pointer is converted to a longer pointer; see your compiler 
guide for information about pointer conversions. 

Conversely, an integral type can be converted to a pointer type according 
to the following rules: 

• If the integral type is the same size as the pointer type, the conver­
sion simply causes the integral value to be treated as a pointer (an 
unsigned in teger). 

• If the size of the integral type is different from the size of the 
pointer type, the integral type is first converted to the size of the 
pointer, using the conversion paths given in Tables 5.2 and 5.3. It 
is then treated as a pointer value. 

If the special keywords near, far, and huge are implemented, implicit 
conversions may be made on pointer values. In particular, the compiler 
may make assumptions about the default size of pointers and convert 
passed pointer values accordingly, unless a forward declaration is present 
to override the implicit conversion. See your compiler guide for informa­
tion about pointer conversions. 

5.6.1.5 Conversions from Other Types 

Since an enum value is an int value by definition, conversions to and from 
an enum value are the same as those for the int type. An int is equivalent 
to either a short or a long, depending on the implementation. 

No conversions between structure or union types are allowed. 
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The void type has no value, by definition. Therefore, it cannot be con­
verted to any other type, and other types cannot be converted to void by 
assignment. However, you can explicitly cast a value to void type, as dis­
cussed in Section 5.6.2. 

5.6.2 Type-Cast Conversions 

You can use type casts to explicitly convert types. A type cast has the 
form 

( type-name)operand 

where type-name is a type and operand is a value to be converted to that 
type. (Type names are discussed in Section 4. g.) 

The operand is converted as though it had been assigned to a variable of 
type-name type. The conversion rules for assignments (outlined in Section 
5.6.1) apply to type casts as well. 

You can use the type name void in a cast operation, but you cannot 
assign the resulting expression to any item. 

5.6.3 Operator Conversions 

The conversions performed by C operators depend on the operator and on 
the type of the operand or operands. Many operators perform the usual 
arithmetic conversions, outlined in Section 5.3.1. 

C permits some arithmetic with pointers. In pointer arithmetic, integer 
values are converted to express memory positions. (See the discussions of 
additive operators, Section 5.3.6, and subscript expressions, Section 5.2.5, 
for more information.) 

5.6.4 Function-Call Conversions 

The type of conversion performed on the arguments in a function call 
depends on the presence of a function prototype (forward declaration) 
with declared argument types for the called function. 

If a function prototype is present and includes declared argument types, 
the compiler performs type checking. The type-checking process is out­
lined in detail in Chapter 7, "Functions." 
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If no function prototype is present, or if an old-style forward declaration 
omits the argument-type list, only the usual arithmetic conversions are 
performed on the arguments in the function call. These conversions are 
performed independently on each argument in the call. This means that a 
float value is converted to a double; a char or short value is converted 
to an int; and an unsigned char or unsigned short is converted to an 
unsigned into 

If the special keywords near, far, and huge are implemented, implicit 
conversions may also be made on pointer values passed to functions. You 
can override these implicit conversions by providing function prototypes 
to allow the compiler to perform type checking. See your compiler guide 
for information about pointer conversions. 
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Statements 

6.1 Introduction 

The statements of a C program control the flow of program execution. In 
C, as in other programming languages, several kinds of statements are 
available to perform loops, to select other statements to be executed, and 
to transfer control. This chapter describes C statements in alphabetical 
order, as follows: 

break statemen t 
compound statement 
continue statement 
do statemen t 
expression statement 
for statement 

goto and labeled statemen ts 
if statement 
null statement 
return statement 
switch statement 
while statement 

C statements consist of keywords, expressions, and other statements. The 
following keywords appear in C statements: 

break 
case 
continue 

default 
do 
else 

for 
goto 
if 

return 
switch 
while 

The expressions in C statements are the expressions discussed in Chapter 
5, "Expressions and Assignments." Statements appearing within C state­
ments may be any of the statements discussed in this chapter. A statement 
that forms a component of another statement is called the "body" of the 
enclosing statement. Frequently the statement body is a "compound" 
statement: a single statement composed of one or more statements. 

The compound statement is delimited by braces ({ }); all other C state­
ments end with a semicolon(;). 

Any C statement may begin with an identifying label consisting of a 
name and a colon. Since only the goto statement recognizes statement 
labels, statement labels are described along with the goto statement in 
Section 6.8. 

When a C program is executed, its statements are executed in the order in 
which they appear in the program, except where a statement explicitly 
transfers control to another location. 
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6.2 The break Statement 

• Syntax 

break; 

• Execution 

The break statement terminates the execution of the smallest enclosing 
do, for, switch, or while statement in which it appears. Control passes to 
the statement that follows the terminated statement. A break statement 
can appear only within a do, for, switch, or while statement. 

Within nested statements, the break statement terminates only the do, 
for, switch, or while statement that immediately encloses it. You can 
use a return or goto statement to transfer control out of the nested 
structure. 

• Example 

for (i = 0; i < LENGTH; i++) { 

} 

for (j = 0; j < WIDTH; j++) { 
if (lines[i] [j] == '\0') { 

lengths[i] = j; 
break: 

} 
} 

This example processes an array of variable-length strings stored in 
lines. The break statement causes an exit from the interior for loop 
aft~r.the.terminat.ing null character ( \0) of each string is found and its 
posItIOn IS stored In lengths [iJ . Control then returns to the outer for 
loop. The variable i is incremented and the process is repeated until i is 
greater than or equal to LENGTH. 
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6.3 The Compound Statement 

• Syntax 

{ 
[ declaration] 

statement 
[statement] 

} 

• Execution 

A compound statement typically appears as the body of another state­
ment, such as the if statement. When a compound statement is executed, 
its statements are executed in the order in which they appear, except 
where a statement explicitly transfers control to another location. Chapter 
4, "Declarations," describes the form and meaning of the declarations that 
can appear at the head of a compound statement. 

Like other C statements, any of the statements in a compound statement 
can carry a label. Labeled statements are discussed in Section 6.8. 

• Example 

if (i > 0) { 
line [i] = x; 
x++; 
i--; 

} 

In this example, if i is greater than 0, all of the statements in the com­
pound statement are executed in order. 
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6.4 The continue Statement 

• Syntax 

continue; 

• Execution 

The continue statement passes control to the next iteration of the do, 
for, or while statement in which it appears, bypassing any remaining 
statements in the do, for, or while statement body. The next iteration of 
a do, for, or while statement is determined as follows: 

• Within a do or a while statement, the next iteration starts by re­
evaluating the expression of the do or while statement. 

• Within a for statement, the next iteration starts by evaluating the 
loop expression of the for statement. Then it evaluates the condi­
tional expression and, depending on the result, either terminates or 
iterates the statement body. (The for statement is discussed in 
Section 6.7.) 

• Example 

while (i-- > 0) { 

} 

x = f(i); 
if (x = 1) 

continue; 
y += x * x; 

In this example, the statement body is executed if i is greater than O. 
First f (i) is assigned to x; then, if x is equal to 1, the continue state­
ment is executed. The rest of the statements in the body are ignored, and 
execution resumes at the top of the loop with the evaluation of i - - > o. 
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6.5 The do Statement 

• Syntax 

do 
statement 

while (expression); 

• Execution 

The body of a do statement is executed one or more times until expression 
becomes false (0). Execution proceeds as follows: 

1. The statement body is executed. 

2. The expressz'on is evaluated. If expression is false, the do statement 
terminates and control passes to the next statement in the pro­
gram. If expressz'on is true (nonzero), the process is repeated, begin­
ning with step 1. 

The do statement may also terminate when a break, goto, or return 
statement is executed within the statement body. 

• Example 

do { 
y = f (x) ; 
x--; 

} while (x > 0); 

In this do statement, the two statements y = f (x) ; and x- -; are exe­
cuted, regardless of the initial value of x. Then x > 0 is evaluated. If x 
is greater than 0, the statement body is executed again and x > 0 is 
reevaluated. The statement body is executed repeatedly as long as x 
remains greater than O. Execution of the do statement terminates when x 
becomes 0 or negative. The body of the loop is executed at least once. 
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6.6 The Expression Statement 

• Syntax 

express£on; 

• Execution 

When an expression statement is executed, the expression is evaluated 
according to the rules outlined in Chapter 5, "Expressions and Assign­
ments." 

In C, assignments are expressions. The value of the expression is the value 
being assigned (sometimes called the "right-hand value"). 

Function calls are also considered expressions. The value of the expression 
is the value, if any, returned by the function. If a function returns a value, 
the expression statement usually includes an assignment to store the re­
turned value when the function is called. The value returned by the func­
tion is usually used as an operand in another expression. If the value is to 
. be used more than once, it can be assigned to another variable. If the value 
is neither used as an operand nor assigned, the function is called but the 
return value, if any, is not used. 

• Examples 

/******************** Example 1 ********************/ 

x = (y + 3); 

In Example 1, x is assigned the value of y + 3. 

/******************** Example 2 ********************/ 

x++; 

In Example 2, x is incremented. 

/******************** Example 3 ********************/ 

z = f(x) + 3; 
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Example 3 shows a function-call expression. The value of the expression, 
which includes any value returned by the function, is assigned to the vari­
able z. 

6. 7 The for Statement 

• Syntax 

for ( [init-expression ~; [ cond-expression ~; [loop-expression~ ) 
statement 

• Execution 

The body of a for statemen t is execu ted zero or more times un til the 
optional cond-expression becomes false. You can use the optional 
z'nit-expression and loop-expression to initialize and change values during 
the for statement's execution. 

Execution of a for statement proceeds as follows: 

1. The init-expression, if any, is evaluated. 

2. The cond-expression, if any, is evaluated. Three results are possi­
ble: 

a. If cond-expression is true (nonzero), statement is executed; then 
loop-expression, if any, is evaluated. The process then begins 
again with the evaluation of cond-expression. 

b. If cond-expression is omitted, cond-expressz'on is considered 
true, and execution proceeds exactly as described for case a. A 
for statement without a cond-expression argument terminates 
only when a break or return statement within the statement 
body is executed, or when a goto (to a labeled statement out­
side the for statement body) is executed. 

c. If cond-expression is false, execution of the for statement ter­
minates and control passes to the next statement in the pro­
gram. 

A for statement also terminates when a break, goto, or return state­
ment within the statement body is executed. 
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• Example 

for (i = space = tab = 0; i < MAX; i++) { 
if (line [i] - , , ) 

space++; 
if (line [i] -- '\t ') { 

tab++; 
line [i] = , , . , 

} 
} 

This example counts space ( '\x20' ) and tab ( '\ t' ) characters in the 
array of characters named 1 ine and replaces each tab character with a 
space. First i, space, and tab are initialized to O. Then i is compared 
with the constant MAX; if i is less than MAX, the statement body is exe­
cuted. Depending on the value of line [ i ], the body of one or nei­
ther of the if statements is executed. Then i is incremented and tested 
against MAX; the statement body is executed repeatedly as long as i is 
less than MAX. 

6.8 The goto and Labeled Statements 

• Syntax 

gata name; 

name: statement 

• Execution 

The goto statement transfers control directly to the statement that has 
name as its label. The labeled statement is executed immediately after the 
goto statement is executed. A statement with the given label must reside 
in the same function, and the given label can appear before only one state­
ment in the same function. 

A statement label is meaningful only to a goto statement; in any other 
context, a labeled statement is executed without regard to the label. 

A label name is simply an identifier. (Section 2.4 describes the rules that 
govern the construction of iden tifiers.) Each statemen t label must be dis­
tinct from other statement labels in the same function. 
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Like other C statements, any of the statements in a compound statement 
can carry a label. Thus, you can use a goto statement to transfer into a 
compound statement. However, transferring into a compound statement is 
dangerous when the compound statement includes declarations that ini­
tialize variables. Since declarations appear before the executable state­
ments in a compound statement, transferring directly to an executable 
statement within the compound statement bypasses the initializations. 
The results are undefined. 

• Example 

if (errorcode > 0) 
goto exit; 

exit: 
return (errorcode); 

In this example, a goto statement transfers control to the point labeled 
exi t if an error occurs. 

6.9 The if Statement 

• Syntax 

if ( expresst"on) 
statementl 

[ else 
statement2 ] 

• Execution 

The body of an if statement is executed selectively, depending on the value 
of expression, as described below: 

1. The expression is evaluated. 

a. If expression is true (nonzero), statementl is executed. 

b. If expression is false, statement2 is executed. 

c. If expression is false and the else clause is omitted, statementl 
is ignored. 
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2. Con trol passes from the if state men t to the next statemen t in the 
program . 

• Examples 

/******************** Example 1 ********************/ 

if (i > 0) 
Y = xli: 

else { 
x = i: 
y = f(x):} 

In this example, the statement y = xli; is executed if i is greater than 
o. If i is less than or equal to 0, i is assigned to x and f (x) is assigned 
to y. Note that the statement forming the if clause ends with a semicolon. 

Note 

C does not offer an "else if' statement, but you can achieve the same 
effect by nesting if statements. An if statement may be nested within 
either the if clause or the else clause of another if statement. 

When nesting if statements and else clauses, use braces to group the 
statements and clauses into compound statements that clarify your 
intent. If no braces are present, the compiler resolves ambiguities by 
pairing each else with the most recent if lacking an else. 

/******************** Example 2 ********************/ 

if (i > 0) 
if (j > i) 

x = j: 
else 

x = i; 

/* Without braces */ 

In Example 2, the else clause is associated with the inner if statement. If 
i is less than or equal to 0, no value is assigned to x. 

/******************** Example 3 ********************/ 

if (i > 0) { /* With braces */ 
if (j > i) 

x = j:} 
else 

x = i: 
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In Example 3, the braces surrounding the inner if statement make the else 
clause part of the outer if statement. If i is less than or equal to 0, i is 
assigned to x. 

6.10 The Null Statement 

• Syntax 

• Execution 

A "null statement" is a statement containing only a semicolon; it may 
appear wherever a statement is expected. Nothing happens when a null 
statement is executed. 

Statements such as do, for, if, and while require that an executable state­
ment appear as the statement body. The null statement satisfies the syn­
tax requirement in cases that do not need a substantive statement body. 

As with any other C statement, you can include a label before a null state­
ment. To label an item that is not a statement, such as the closing brace 
of a compound statement, you can label a null statement and insert it 
immediately before the item to get the same effect. 

• Example 

for (1 = 0; 1 < 10; 11ne[1++] = 0) 

In this example, the loop expression of the for statement line [i++] =0 
initializes the first 10 elements of line to o. The statement body is a null 
statement, since no further statements are necessary. 
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6.11 The return Statement 

• Syntax 

return [expre88ion~; 

• Execution 

The return statement terminates the execution of the function in which it 
appears and returns control to the calling function. Execution resumes in 
the calling function at the point immediately following the call. The value 
of expression, if present, is returned to the calling function. If expression is 
omitted, the return value of the function is undefined. 

By convention, parentheses enclose the expression argument of the return 
statement. However, C does not require the parentheses. 

If no return statement appears in a function definition, control automati­
cally returns to the calling function after the last statement of the called 
function is executed. The return value of the called function is undefined. 
If a return value is not required, declare the function to have void return 
type. 

• Example 

main () 
{ 

} 

void draw(int,int); 
long sq(int); 

y = sq(x); 
draw (x, y); 

long sq(x) 
int x; 
{ 

return (x * x); 
} 
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void draw(x,y) 
int x, y; 
{ 

return; 
} 

Sta.tements 

In this example, the main function calls two functions: sq and draw. 
The sq function returns the value of x * x to main, where the return 
value is assigned to y. The draw function is declared as a void function 
and does not return a value. An attempt to assign the return value of 
draw would cause a diagnostic message to be issued. 

6.12 The switch Statement 

• Syntax 

switch (expressz"on) { 
[ declarat£on] 

} 

[case constant-express£on :] 

[statement] 

[default: 
[statement]] 

• Execution 

The switch statement transfers control to a statement within its body. 
Con trol passes to the statemen t whose case constant-expression matches 
the value of switch expression. The switch statement may include any 
number of case instances. Execution of the statement body begins at the 
selected statemen t and proceeds un til the end of the body or un til a state­
ment transfers control out of the body. 
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The default statement is executed if no case constant-expression is equal 
to the value of switch expressz"on. If the default statement is omitted, and 
no case match is found, none of the statements in the switch body is exe­
cuted. The default statement need not come at the end; it can appear 
anywhere in the body of the switch statement. 

The type of switch expressz"on must be integral, but the resulting value is 
converted to into Each case constant-expression is then converted using 
the usual arithmetic conversions. The value of each case constant­
expression must be unique within the statement body. If the type of 
switch expression is larger than int, a diagnostic message is issued. 

The case and default labels of the switch statement body are significant 
only in the initial test that determines where execution starts in the state­
ment body. All statements between the statement where execution starts 
and the end of the body are execu ted regardless of their labels, unless a 
statement transfers control out of the body entirely. 

Note 

Declarations may appear at the head of the compound statement form­
ing the switch body, but initializations included in the declarations 
are not performed. The switch statement transfers control directly to 
an executable statement within the body, bypassing the lines that con­
tain initializations. 

• Examples 

/******************** Example 1 ********************/ 

switch (c) { 
case 'A': 

} 

capa++; 
case 'a': 

lettera++; 
default : 

total++; 

In Example 1, all three statements of the switch body are executed if c is 
equal to 'A'. Execution control is transferred to the first statement 
(capa++;) and continues in order through the rest of the body. If c is 
equal to 'a', lettera and total are incremented. Only total is incre­
mented if c is not equal to 'A' or 'a'. 
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/******************** Example 2 ********************/ 

switch (i) { 

} 

case -1: 
n++; 
break; 

case 0 : 
z++; 
break; 

case 1 : 
p++; 
break; 

Statements 

In Example 2, a break statement follows each statement of the switch 
body. The break statement forces an exit from the statement body after 
one statement is executed. If i is equal to -1, only n is incremented. The 
break following the statement n++; causes execution control to pass out 
of the statement body, bypassing the remaining statements. Similarly, if i 
is equal to 0, only z is incremented; if i is equal to 1, only p is incre­
mented. The final break statement is not strictly necessary, since control 
passes out of the body at the end of the compound statement, but it is 
included for consistency. 

Multiple Labels 

A single statement may carry multiple case labels, as the following exam­
ple shows: 

case 'a' 
case fbi 

case 'c' 
case Ide 
case Ie' 
case ' f' hexcvt(c); 

Although you can label any statement within the body of the switch 
statement, no statement is required to carry a label. You can freely inter­
mingle statements with and without labels. I(eep in mind, however, that 
once the switch statement passes control to a statement within the body, 
all following statements in the block are executed, regardless of their 
labels. 
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6.13 The while Statement 

• Syntax 

while (express£on) 
statement 

• Execution 

The body of a while statement is executed zero or more times until expres­
sion becomes false (0). Execution proceeds as follows: 

1. The expression is evaluated. 

2. If expression is initially false, the body of the while statement is 
never executed, and control passes from the while statement to the 
next statement in the program. 

If expression is true (nonzero), the body of the statement is exe­
cuted and the process is repeated beginning at step l. 

The while statement may also terminate when a break, goto, or return 
within the statement body is executed. 

• Example 

while (i >= 0) { 

} 

stringl[i] = string2[i]: 
i--; 

This example copies characters from str ing2 to str ingl. If i is greater 
than or equal to 0, string2 [iJ is assigned to stringl [iJ and i is 
decremented. When i reaches or falls below 0, execution of the while 
statement terminates. 
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Functions 

7.1 Introduction 

A function is an independent collection of declarations and statements, 
usually designed to perform a specific task. C programs have at least one 
function, the main function, and they may have other functions. This 
chapter describes how to define, declare, and call C functions. 

A function dejinz"tz"on specifies the name of the function, the types and 
number of its formal parameters, and the declarations and statements 
that determine what it does. These declarations and statements are called 
the "function body." The function definition also gives the function's 
return type and its storage class. If the return type and storage class are 
not stated explicitly, they default to int and extern, respectively. 

A function prototype (or declaration) establishes the name, return type, 
and storage class of a function fully defined elsewhere in the program. It 
can also include declarations giving the types and number of the function's 
formal parameters. The formal parameter declarations can name the for­
mal parameters, although such names go out of scope at the end of the 
declaration. The storage class register can also be specified for a formal 
parameter . 

• Example 

/** Prototype-Style Function Declarations and Definitions **/ 

double new_style(int a, double *x); /* Function 
Prototype */ 

double alt_style (int, double *); /* Alternative 
Prototype form */ 

double old":"style 0; /* Obsolescent 
* form of function 
* declaration 

*/ 
double new_style (int a, double *real) /* Prototype-style */ 

{ /* Function */ 
return ( *real + a) /* Definition */ 

} 

double alt_style(a , real) /* Old Form of */ 
double *real /* Function */ 
int a ; /* Definition */ 

{ 
return (*real + a) 

} 
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This example contrasts the concise and clear prototype declaration and 
definition formats, and illustrates that the function prototype has the 
same form as the function definition except that the prototype ends with a 
semicolon instead of a function body. 

The compiler uses the prototype or declaration to compare the types of 
actual arguments in subsequent calls to the function with the function's 
formal parameters, even in the absence of an explicit definition of the 
function. Explicit prototypes and declarations are optional for functions 
whose return type is into However, to ensure correct behavior, you must 
declare or define functions with other return types before calling them. 
(Function prototype declarations are discussed further in Section 7.3 and 
in Chapter 4, "Declarations.") 

If no prototype or declaration is provided, a default prototype is created 
from whatever information accompanies the first reference to the function 
name, whether that reference occurs in a call or a definition. However, 
such a default prototype may not adequately represent a subsequent 
definition of, or call to, the function. 

A function "call" passes execution control from the calling function to the 
called function. The actual arguments, if any, are passed by value to the 
called function. Execution of a return statement in the called function 
returns control and possibly a value to the calling function. 

Note 

170 

The use of function prototypes is strongly recommended. Sometimes 
they provide the only basis on which the compiler can enforce correct 
argument passing. Prototypes allow the compiler to either diagnose, or 
handle correctly, argument mismatches that would otherwise be 
undetectable until program execution. 

The Microsoft C Compiler can generate function prototypes automati­
cally from program source files. These can then be stored in a file that 
can be included in the compilation of the program. See your compiler 
guide for more information. 
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7.2 Function Definitions 

• Syntax 

[sc-specifier] [type-specifier] declarator ([formal-parameter-list]) 
function-body 

Functions 

A "function definition" specifies the name, formal parameters, and body of 
a function. It can also stipulate the function's return type and storage 
class. 

The optional sc-specz"jier gives the function's storage class, which must be 
either static or extern. 

The optional type-specz"jier and mandatory declarator together specify the 
function's return type and name. The declarator is a combination of the 
identifier that names the function and the parentheses following the func­
tion name. 

The formal-parameter-list is a sequence of formal parameter declarations 
separated by commas. The following syntax illustrates the form of each 
formal parameter in a formal parameter list. 

[register] type-specifier [declarator] 
[, •.. n 

The formal parameter list contains declarations for the function's parame­
ters. If no arguments are to be passed to the function, the list should con­
tain the keyword void. The empty parentheses form « )) can be used, but 
is obsolescent and, if used, conveys no information about whether argu­
ments will be passed. The formal parameter list can be full or partial. The 
second line of the syntax above shows the "ellipsis notation," a comma fol­
lowed by three periods (, .•. ). A partial formal parameter list can be ter­
minated by the ellipsis notation to indicate that there may be more argu­
ments passed to the function, but no more information is given about 
them. Type checking is not performed on such arguments. At least one for­
mal parameter must precede the ellipsis notation and the ellipsis notation 
must be the last token in the formal parameter list. Without the ellipsis 
notation, the behavior of a function is undefined if it receives parameters 
in addition to those declared in the formal parameter list. When a proto­
type is available, argument checking and conversion are automatically per­
formed. If no information is given concerning the formal parameters, any 
undeclared arguments simply undergo the usual arithmetic conversions. 
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The type-speczfi,er can be omitted only if register storage class is specified 
for a value of int type. 

The function-body is a compound statement containing local variable 
declarations, references to externally declared items, and statements. 

Note 

The old forms for function declaration and definition are still sup­
ported, but considered obsolescent. Use of the prototype form is 
recommended in new code. The old function-definition form is 
represented in the following syntax: 

[ 8c-8pecijier ] [ type-8pecij£er] declarator ( [ £dent£j£er-U8t ] ) 
[parameter-declaration8] 
junction-body 

The identifier-list is an optional list of identifiers that the function will 
use as the names of formal parameters. The parameter-declaration 
arguments establish the types of the formal parameters. 

Sections 7.2.1-7.2.4 describe the parts of a function definition in detail. 

7.2.1 Storage Class 

The storage-class specifier in a function definition gives the function either 
extern or static storage class. If a function definition does not include a 
storage-class specifier, the storage class defaults to extern. You can expli­
citly give the extern storage-class specifier in a function definition, but it 
is not required. 

A function with static storage class is visible only in the source file in 
which it is defined. All other functions, whether they are given extern 
storage class explicitly or implicitly, are visible throughout all the source 
files that make up the program. 

If static storage class is desired, it must be declared on the first 
occurrence of a declaration (if any) of the function, and on the definition 
of the function. 
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Note 

A Microsoft extension to the ANSI C standard offers some latitude on 
functions declared without a storage-class specifier. When the exten­
sions are enabled, a function originally declared without a storage class 
(or with extern storage class) is given static storage class if the func­
tion definition is in the same source file and explicitly specifies static 
storage class. For information on enabling and disabling extensions, 
see your compiler guide. 

7.2.2 Return Type and Function Name 

• Syntax 

[sc-specz:rier] [type-specz,ier] declarator ([formal-parameter-Ust]) 

The return type of a function establishes the size and type of the value 
returned by the function and corresponds to type-specifier in the syntax 
above. The type-specifier can specify any fundamental, structure, or union 
type. If you do not include type-specifier, the return type int is assumed. 

The declarator is the function identifier, which may be modified to a 
pointer type. The parentheses following the identifier establish the item as 
a function. Functions cannot return arrays or functions, but they can 
return pointers to any type, including arrays and functions. 

The return type given in the function definition must match the return 
type in declarations of the function elsewhere in the program. You need 
not declare functions with int return type before you call them, although 
prototypes are recommended so that correct argument checking will be 
enabled. However, functions with other return types must be defined or 
declared before they are called. 

A function's return type is used only when the function returns a value. A 
function returns a value when a return statement containing an expres­
sion is executed. The expression is evaluated, converted to .the return value 
type if necessary, and returned to the point at which the function was 
called. If no return statement is executed, or if the return statement does 
not contain an expression, the return value is undefined. If the calling 
function expects a return value, the behavior of the program is also 
undefined. 
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• Examples 

/******************* Example 1 *******************/ 

/* prototype-style definition: */ 

static add (register x, int y) 
{ 

return (x+y) ; 
} 

/* old-style definition: */ 

subtract (x , y) 

{ 

} 

int x, y; 

return (x-y): 

In Example 1, the return type of add is int by default. The function has 
static storage class, which means that only functions in the same source 
file can call it. The formal parameters declared in the header include one 
int value, x, for which register storage is requested, and a second int 
value, y. The second function, subtract, is defined in the old form. Its 
return type is int by default. The formal parameters are declared between 
the header and the opening brace. 

/********************* Example 2 *********************/ 

typedef struct { 
char name[20J: 
int id: 
long class: 

} STUDENT: 

/* return type is STUDENT: */ 

STUDENT sortstu (STUDENT a, STUDENT b) 
{ 

return ( (a.id < b.id) ? a : b ): 
} 

The second example defines the STUDENT type with a typedef declara­
tion and defines the function sortstu to have STUDENT return type. 
The function selects and returns one of its two structure arguments. This 
prototype-style definition has the formal parameters declared in the 
header. In subsequent calls to the function, the compiler checks to make 
sure the argument types are STUDENT. Efficiency would be enhanced by 
passing pointers to the structure, rather than the entire structure. 
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/********************* Example 3 *********************/ 

/* return type is char pointer: */ 

char *smallstr(sl, s2) 
char sl [], s2 [] ; 
{ 

} 

int i; 

i=O; 
while ( sl[i] != '\0' && s2[i] != '\0' ) 

i++; 
if ( sl[i] = '\0' ) 

return (sl): 
else 

return (s2): 

Example 3 uses the old form to define a function returning a poin ter to an 
array of characters. The function takes two character arrays (strings) as 
arguments and returns a pointer to the shorter of the two strings. A 
pointer to an array points to the type of the array elements; thus, the 
return type of the function is poin ter to char. 

7.2.3 ~ornaalJ>aranneters 

"Formal parameters" are variables that receive values passed to a function 
by a function call. In a function prototype-style definition, the parentheses 
following the function name contain complete declarations of the 
function's formal parameters. 

Note 

In the old form of a function definition, the formal parameters were 
declared following the closing parenthesis, immediately before the 
beginning of the compound statement constituting the function body. 
In that form, an identifier list within the parentheses specifies the 
name of each of the formal parameters and the order in which they 
take on values in the function call. The identifier list consists of zero or 
more identifiers, separated by commas. The list must be enclosed in 
parentheses, even if it is empty. This form is obsolescent and should 
not be used in new code. 

If at least one formal parameter occurs in the formal parameter list, 
the list can end with a comma followed by three periods (, ..• ). This 
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construction, called the "ellipsis notation," indicates a variable number of 
arguments to the function. However, a call to the function is expected to 
have at least as many arguments as there are formal parameters before the 
last comma. In the obsolescent definition form, the ellipsis notation can 
follow the last identifier in the identifier list. 

If no arguments are to be passed to the function, the list of formal param­
eters is replaced by the keyword void. This use of void is distinct from its 
use as a type specifier. 

Note 

To maintain compatibility with previous versions, a Microsoft exten­
sion to the ANSI C standard allows a comma without trailing periods 
(,) at the end of the list of formal parameters to indicate a variable 
number of arguments. However, it is recommended that code be 
changed to incorporate the ellipsis notation. See your compiler guide 
for information on enabling and disabling extensions. 

Formal parameter declarations specify the types, sizes, and identifiers of 
values stored in the formal parameters. In the obsolescent function 
definition form, these declarations have the same form as other variable 
declarations (see Chapter 4, "Declarations"). However, in a function 
prototype-style definition, each identifier in the formal-parameter-list must 
be preceded by its appropriate type specifier. For example, in the following 
(obsolescent form) definition of the function old, double X, Y I Z ; 

can be declared simply by separating identifiers with commas: 

void old (x, y, z) 
double z, y 
double x 

{ 

} 

void new (double x, double y, double z) 
{ 

} 

The function called new is defined in prototype format, with a list of for­
mal parameters in the parentheses. In this form, the type specifier 
double must be repeated for each identifier. 

176 



Functions 

The order and type of formal parameters, including any use of the ellipsis 
notation, must be the same in all the function declarations (if any) and in 
the function definition. The types of the actual arguments in calls to a 
function must be assignment compatible with the types of the correspond­
ing formal parameters, up to the point of the ellipsis notation. Arguments 
following the ellipsis are not checked. A formal parameter can have any 
fundamental, structure, union, pointer, or array type. 

The only storage class you can specify for a formal parameter is register. 
Undeclared identifiers in the parentheses following the function name are 
assumed to have int type. In the old function-definition form, formal 
parameter declarations can be in any order. 

The identifiers of the formal parameters are used in the function body to 
refer to the values passed to the function. These identifiers cannot be 
redefined in the outermost block of the function body, but they may be 
redefined in inner, nested blocks. 

In the obsolescent form, only identifiers appearing in the identifier list can 
be declared as formal parameters. Functions having variable-length argu­
ment lists should use the new prototype form. You are responsible for 
determining the number of arguments passed, and for retrieving additional 
arguments from the stack within the body of the function. (See your com­
piler guide for information about macros that allow you to do this in a 
portable way.) 

The compiler performs the usual arithmetic conversions independently on 
each formal parameter and on each actual argument, if necessary. After 
conversion, no formal parameter is shorter than an int, and no formal 
parameter has float type. This means, for example, that declaring a for­
mal parameter as a char has the same effect as declaring it as an into 

If the near, far, and huge keywords are implemented, the compiler may 
also convert pointer arguments to the function. The conversions performed 
depend on the default size of pointers in the program and the presence or 
absence of a list of argument types for the function. See your compiler 
guide for specific information about pointer conversions. 

The converted type of each formal parameter determines the interpreta­
tion of the arguments that the function call places on the stack. A type 
mismatch between an actual argument and a formal parameter may cause 
the arguments on the stack to be misinterpreted. For example, if a 16-bit 
pointer is passed as an actual argument, then declared as a long formal 
parameter, the first 32 bits on the stack are interpreted as a long formal 
parameter. This error creates problems not only with the long formal 
parameter, but with any formal parameters that follow it. You can detect 
errors of this kind by declaring function prototypes for all functions. 
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• Example 

struct student { 
char name[20]; 
int id; 
long class; 
struct student *nextstu; 

} student; 

main () 
{ 

} 

/* declaration of function prototype: */ 

int match ( struct student *r, char *n ); 

if (match (student.nextstu, student.name) > 0) { 

} 

/* prototype style function definition */ 

match 
{ 

} 

struct student *r, char *n ) 

int i = 0; 

while r->name[i] == n[i] ) 
if ( r->name[i++] == '\0' 

return (r->id); 
return (0); 

The example contains a structure-type declaration, a prototype of the 
function match, a call to match, and a prototype-style definition of 
match. Note that the same name, student, can be used without conflict 
both for the structure tag and for the structure variable name. 

The match function is declared to have two arguments: the first, 
represented by r, is a pointer to the struct student type; the second, 
represented by n, is a pointer to a value of type char. 

In the definition, the two formal parameters of the match function are 
declared in the formal parameter list in the parentheses following the func­
tion name, with the identifiers rand n. The parameter r is declared as a 
pointer to the struct student type; the parameter n is declared as a 
pointer to a char type value. 
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The function is called with two arguments, both members of the 
student structure. Because there is a prototype of match, the compiler 
performs type checking between the actual arguments and the types 
specified in the prototype and between the actual arguments and the for­
mal par.ameters in the definition. Since the types match, no warnings or 
converSIOns are necessary. 

Note that the array name given as the second argument in the call evalu­
ates to a char pointer. The corresponding formal parameter is also 
declared as a char pointer and is used in subscripted expressions as 
though it were an array identifier. Since an array identifier evaluates to a 
pointer expression, the effect of declaring the formal parameter as char 
*n is the same as declaring it char n [] . 

Within the function, the local variable i is defined and used to monitor 
the current position in the array. The function returns the id structure 
member if the name member matches the array n; otherwise, it returns o. 

7.2.4 Function Body 

A "function body" is a compound statement containing the statements 
that define what the function does. It may also contain declarations of 
variables used by these statements. (See Section 6.3 for a discussion of 
compound statements.) 

All variables declared in a function body have auto storage class unless 
otherwise specified. When the function is called, storage is created for the 
local variables and local initializations are performed. Execution control 
passes to the first statement in the compound statement and continues 
sequentially until a return statement is executed or the end of the func­
tion body is encountered. Control then returns to the point at which the 
function was called. 

A return statement containing an expression must be executed if the 
function is to return a value. The return value of a function is undefined if 
no return statement is executed or if the return statement does not 
include an expression. 

7.3 Function Prototypes (Declarations) 

A "function prototype" declaration specifies the name, return type, and 
storage class of a function. It can also establish types and identifiers of 
some or all of the function's arguments. The prototype has the same for­
mat as the function definition, except that it is terminated by a semicolon 
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immediately following the closing parenthesis and therefore has no body. 
(See Chapter 4, "Declarations," for a detailed description of the syntax of 
function declarations.) 

You can declare a function implicitly, or you can use a "function proto­
type" (sometimes called a "forward declaration") to declare it explicitly. A 
prototype is a declaration that precedes the function definition. In either 
case, the return type must agree with the return type specified in the func­
tion definition. 

If a call to a function precedes its declaration or definition, a default pro­
totype of the function is constructed, giving it int return type. The types 
and number of the actual arguments are used as the basis for declaring the 
formal parameters. Thus a call to the function is an implicit declaration, 
but the prototype generated may not adequately represent a subsequent 
definition of, or call to, the function. 

A prototype establishes the attributes of a function so that calls to the 
function that precede its definition (or occur in other source files) can be 
checked for argument- and return-type mismatches. If you specify the 
static storage-class specifier in a prototype, you must also specify the 
static storage class in the function definition. 

If you specify the extern storage-class specifier or omit the storage-class 
specifier entirely, the function has extern class. (See the Note in Section 
7.2.1, "Storage Class," for an explanation of the Microsoft extension that 
offers some latitude in function storage-class specification.) 

Function prototypes have the following important uses: 

180 

• They establish the return type for functions that return any type 
other than into If you call such a function before you declare or 
define it, the results are undefined. Although functions that return 
int values do not require prototypes, they are recommended. 

• If the prototype contains a full list of parameter types, the types of 
the arguments occurring in a function call or definition can be 
checked. The prototype can include both the type of, and an 
identifier for, each expression that will be passed as an actual argu­
ment. However, such identifiers have scope only until the end of the 
declaration. The prototype can also reflect the fact that the 
number of arguments will be variable, or that there will be no 
arguments passed. 

The parameter list in a prototype is a list of type names, separated 
by commas, corresponding to the actual arguments in the function 
call. The list is used for checking the correspondence of actual 
arguments in the function call with the formal parameters in the 
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function definition. Without such a list, mismatches may not be 
revealed, so the compiler cannot generate diagnostic messages con­
cerning them. (Type checking is further discussed in Section 7.4.1, 
"Actual Arguments.") 

• Prototypes are used to initialize pointers to functions before those 
functions are defined . 

• Example 

main () 
{ 

int a - 0, b = 1; 
float val1= 2.0, val2 = 3.0; 

/* function prototype: */ 

double realadd(double x, double y); 

a = intadd (a, b); /* first call to intadd */ 
vall = realadd(val1, vaI2); 
a = intadd(val1,b); /* second call to intadd */ 

} 

/* functions defined with formal parameters in header: */ 

intadd(int a, int b) 
{ 

return (a + b); 
} 

double realadd(double x, double y) 
{ 

return (x + y); 
} 

In this example, the function intadd is implicitly declared to return an 
int value, since it is called before it is defined. The compiler creates a pro­
totype using the information in the first call. Therefore, when the second 
call to intadd is encountered, the compiler sees the mismatch between 
vall, which is a float, and the int type of the first argument in its self­
created prototype. The float is converted to an int and passed. Note that 
if the calls to intadd were reversed, the prototype created would expect 
a float as the first argument to intadd. When the second call is made, 
the variable a would be converted at the call, but when the value is actu­
ally passed to intadd, a diagnostic message would be issued because the 
int type specified in the definition does not match the float type in the 
compiler-created prototype. 
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The function realadd returns a double value instead of an int value. 
Therefore, the prototype of realadd in the main function is necessary 
because the realadd function is called before it is defined. Note that the 
definition of real add matches the forward declaration by specifying the 
double return type. 

The forward declaration of realadd also establishes the types of its two 
arguments. The actual argument types match the types given in the 
declaration and also match the types of the formal parameters in the 
definition. 

7.4 Function Calls 

• Syntax 

expressa"on([ expres8a"on-Hst]) 

A "function call" is an expression that passes control and actual argu­
ments (if any) to a function. In a function call, expressz"on evaluates to a 
function address and expressz"on-lz"st is a list of expressions (separated by 
commas). The values of these latter expressions are the actual arguments 
passed to the function. If the function takes no arguments, expressz"on-lz"st 
can be empty. 

When the function call is executed: 
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1. The expressions in expressz"on-l£st are evaluated and converted 
using the usual arithmetic conversions. If a function prototype is 
available, the results of these conversions may be further converted 
consistent with the formal parameter declarations. 

2. The expressions in expressz"on-l£st are passed to the formal parame­
ters of the called function. The first expression in the list always 
corresponds to the first formal parameter of the function, the 
second expression corresponds to the second formal parameter, and 
so on through the list. Since the called function uses copies of the 
actual arguments, any changes it makes to the arguments do not 
affect the values of variables from which the copies may have been 
made. 

3. Execution control passes to the first statement in the function. 

4. The execution of a return statement in the body of the function 
returns control and possibly a value to the calling function. If no 
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return statement is executed, control returns to the caller after 
the last statement of the called function is executed. In such cases, 
the return value is undefined. 

Important 

The expressions in the function argument list can be evaluated in any 
order, so arguments whose values may be changed by side effects from 
another argument have undefined values. The sequence point defined 
by the function-call operator guarantees only that all side effects in the 
argument list are evaluated before control passes to the called func­
tion. See Chapter 5, "Expressions and Assignments," for more infor­
mation on sequence points. 

The only requirement in a function call is that the expression before the 
paren theses must evaluate to a function address. This means that a func­
tion can be called through any function-pointer expression. 

A function is called in much the same way it is declared. For instance, 
when you declare a function, you specify the name of the function, fol­
lowed by a list of formal parameters in parentheses. Similarly, when a 
function is called, you need only specify the name of the function, followed 
by an argument list in parentheses. The indirection operator (*) is not 
required to call the function because the name of the function evaluates to 
the function address. 

The same principle applies when you call a function using a pointer. For 
example, suppose a function pointer has the following prototype: 

int (*fpointer) (int numl, int num2); 

The identifier fpointer is declared to point to a function taking two int 
argumen ts, represented by numl and num2, respectively, and returning 
an int value. A function call using fpointer might look like this: 

(* fpointer) (3,4) 

The indirection operator (*) is used to obtain the address of the function 
to which fpointer points. The function address is then used to call the 
function. If a prototype of the pointer to the function precedes the call, 
the same checking will be performed as with any other function. 
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• Examples 

/********************* Example 1 *********************/ 

double *realcomp(double value1, double value2); 
double a, b, *rp; 

rp = realcomp(a, b); 

In Example 1, the realcomp function is called in the statement rp = 
realcomp (a, b);. Two double arguments are passed to the function. 
The return value, a pointer to a double value, is assigned to rp. 

/********************* Example 2 *********************/ 

main () 
{ 

} 

/* function prototypes: */ 

long lift(int), step(int), drop(int); 
void work (int number, long (*function) (int i»; 

int select, count; 

select = 1; 
switch ( select ) { 

} 

case 1: work (count, lift); 
break; 

case 2: work (count, step); 
break; 

case 3: work (count, drop); 

default: 
break; 

/* function definition with formal parameters in header: */ 

void work ( int number, long (*function) (int i) ) 
{ 

} 
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int i; 
long j; 

for (i = j = 0; i < number; i++) 
j += (* function) (i) ; 
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In Example 2, the function call 

work (count, lift); 

in main passes an in teger variable and the address of the function 1 i ft 
to the function work. Note that the function address is passed simply by 
giving the function identifier, since a function identifier evaluates to a 
pointer expression. To use a function identifier in this way, the function 
must be declared or defined before the identifier is used; otherwise, the 
identifier is not recognized. In this case, a prototype for work is given at 
the beginning of the main function. 

The formal parameter function in work is declared to be a pointer to 
a function taking one int argument and returning a long value. The 
parentheses around the parameter name are required; without them, the 
declaration would specify a function returning a pointer to a long value. 

The function work calls the selected function by using the following func­
tion call: 

(* function) (i) ; 

One argument, i, is passed to the called function. 

7.4.1 Actual Arguments 

An actual argument can be any value with fundamental, structure, union, 
or pointer type. Although you cannot pass arrays or functions as parame­
ters, you can pass pointers to these items. 

All actual arguments are passed by value. A copy of the actual argument 
is assigned to the corresponding formal parameter. The function uses this 
copy without affecting the variable from which it was originally derived. 

Pointers provide a way for a function to access a value by referenc~. Since 
a pointer to a variable holds the address of the variable, the function can 
use this address to access the value of the variable. Pointer arguments 
allow a function to access arrays and functions, even though arrays and 
functions cannot be passed as arguments. 

The expressions in a function call are evaluated and converted as follows: 

• The usual arithmetic conversions are performed on each actual 
argument in the function call. If a prototype is available, the 
resulting argument type is compared to the prototype's 
corresponding formal parameter. If they do not match, either a 
conversion is performed, or a diagnostic message is issued. The for­
mal parameters also undergo the usual arithmetic conversions. 
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• If no prototype is available, the usual arithmetic conversions are 
performed on each actual argument before it is passed to the func­
tion. A prototype is created whose formal parameter types 
correspond to the types of the actual arguments after conversion. 

If the near, far, and huge keywords are implemented, implementation­
dependent conversions on pointer arguments may also be performed. See 
your compiler guide for information about pointer conversions. 

The number of expressions in the expression list must match the number 
of formal parameters, unless the function's prototype or definition expli­
citly specifies a variable number of arguments. In this case, the compiler 
checks as many argumen ts as there are type names in the list of formal 
parameters and converts them, if necessary, as described above. 

If the prototype's formal parameter list contains only the keyword void, 
the compiler expects zero actual arguments in the function call and zero 
formal parameters in the definition. A diagnostic message is issued if it 
finds otherwise. 

The type of each formal parameter also undergoes the usual arithmetic 
conversions. The converted type of each formal parameter determines how 
the arguments on the stack are interpreted; if the type of the formal 
parameter does not match the type of the actual argument, the data on 
the stack may be misinterpreted. 

Note 
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Type mismatches between actual arguments and formal parameters 
can produce serious errors, particularly when the sizes are different. 
The compiler may not be able to detect these errors unless you declare 
complete prototypes of functions prior to calling them. In the absence 
of explicit prototypes, the compiler constructs prototypes from what­
ever information is available in the first reference to the function. 

As an example of a serious error, consider a call to a function with an 
int argument. If the function is defined to take a long, and the 
definition occurs in a different module, the compiler-generated proto­
type will not match the definition, but the error will not be detected 
because the separate modules will compile without diagnostic mes­
sages. 
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• Example 

main () 
{ 

} 

/* function prototype: */ 

void swap (int *numl, int *num2); 
int x, y; 

swap (&x, &y); 

/* function definition: */ 

void swap (int *numl, int *num2) 
{ 

} 

int t; 

t = *numl; 
*numl = *num2; 
*num2 = t; 

Functions 

In this example, the swap function is declared in main to have two argu­
ments, represented respectively by identifiers numl and num2, both of 
which are pointers to int values. The formal parameters numl and num2 
in the prototype-style definition are also declared as pointers to int type 
values. In the function call 

swap (&x, &y) 

the address of x is stored in numl and the address of y is stored in 
num2. Now two names, or "aliases," exist for the same location. Refer­
ences to *numl and *num2 in swap are effectively references to x and 
y in main. The assignments within swap actually exchange the contents 
of x and y. Therefore, no return statemen t is necessary. 

The compiler performs type checking on the arguments to swap because 
the prototype of swap includes argument types for each formal parame­
ter. The identifiers within the parentheses of the prototype and definition 
can be the same or different. What is important is that the types of the 
actual arguments match those of the formal parameter lists in both the 
prototype and the eventual definition. 
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7.4.2 Calls with a Variable 
Number of Arguments 

To call a function with a variable number of arguments, simply specify 
any number of arguments in the function call. If there is a prototype 
declaration of the function, a variable number of arguments can be 
specified by placing a comma followed by three periods (, ... ), the "ellipsis 
notation," at the end of the formal parameter list or list of argument types 
(see Section 4.5, "Function Declarations"). The function call must include 
one argument for each type name declared in the formal parameter list or 
the list of argumen t type. 

Similarly, the formal parameter list (or identifier list, in the obsolescent 
form) in the function definition can end with the ellipsis notation to 
indicate a variable number of arguments. See Section 7.2, "Function 
Definitions," for more information about the form of the formal param­
eter list. 

Note 

To maintain compatibility with previous versions, a Microsoft exten­
sion to the ANSI C standard allows a comma without trailing periods 
(,) at the end of the list of formal parameters to indicate a variable 
number of arguments. See your compiler guide for information on ena­
bling and disabling extensions. 

All the arguments specified in the function call are placed on the stack. 
The number of formal parameters declared for the function determines 
how many of the arguments are taken from the stack and assigned to the 
formal parameters. You are responsible for retrieving any additional argu­
ments from the stack and for determining how many arguments are 
present. See your compiler guide for information about macros that you 
can use to handle a variable number of arguments in a portable way. 

7.4.3 Recursive Calls 

Any function in a C program can be called recursively; that is, it can call 
itself. The C compiler allows any number of recursive calls to a function. 
Each time the function is called, new storage is allocated for the formal 
parameters and for the auto and register variables so that their values 
in previous, unfinished calls are not overwritten. Parameters are only 
directly accessible to the instance of the function in which they are 
created. Previous parameters are not directly accessible to ensuing 
instances of the function. 
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Note that variables declared with static storage do not require new 
storage with each recursive call. Their storage exists for the lifetime of the 
program. Each reference to such a variable accesses the same storage area. 

Although the C compiler does not limit the number of times a function can 
be called recursively, the operating environment may impose a practical 
limit. Since each recursive call requires additional stack memory, too many 
recursive calls can cause a stack overflow. 
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8.1 Introduction 

A "preprocessor directive" is an instruction to the C preprocessor. The C 
preprocessor is a text processor that manipulates the text of a source file 
as the first phase of compilation. Though the compiler ordinarily invokes 
the preprocessor in its first pass, the preprocessor can also be invoked sep­
arately to process text without compiling. 

Preprocessor directives are typically used to make source programs easy to 
change and easy to compile in different execution environments. Directives 
in the source file tell the preprocessor to perform specific actions. For ex­
ample, the preprocessor can replace tokens in the text, insert the contents 
of other files into the source file, or suppress compilation of part of the file 
by removing sections of text. 

The C preprocessor recognizes the following directives: 

# define 
#elif 
# else 
#endif 

#if 
#ifdef 
#ifndef 
# include 

# line 
#undef 

The number sign (# ) must be the first non-white-space character on the 
line containing the directive; white-space characters can appear between 
the number sign and the first letter of the directive. Some directives in­
clude arguments or values. Any text that follows a directive (except an 
argument or value that is part of the directive) must be enclosed in com­
ment delimiters (/ * * I). 
Preprocessor directives can appear anywhere in a source file, but they 
apply only to the remainder of the source file in which they appear. 

A "preprocessor operator" is an operator that is only recognized as an 
operator within the context of preprocessor directives. There are only 
three preprocessor-specific operators: the "stringizing" operator (#), the 
"token-pasting" (# # ) operator, and the defined operator. The first two 
are discussed in the con text of the # define directive in Sections 8.2.2.1 
and 8.2.2.2.The defined operator is discussed in Section 8.4.1, "The # if, 
# elif, # else, and # endif Directives." 

A "pragma" is a "pragmatic," or practical, instruction to the C compiler. 
Pragmas in C source files are typically used to con trol the actions of the 
compiler in a particular portion of a program without affecting the pro­
gram as a whole. (Section 8.6 describes the syntax for pragmas). However, 
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the compiler implementation defines the particular pragmas that are avail­
able and their meanings. See your compiler guide for information about 
the use and effects of specific pragmas. 

8.2 Manifest Constants and Macros 

The # define directive is typically used to associate meaningful identifiers 
with constants, keywords, and commonly used statements or expressions. 
Identifiers that represent constants are called "manifest constants." 
Identifiers that represent statements or expressions are called "macros." 

Once you have defined an identifier, you cannot redefine it to a different 
value without first removing the original definition. However, you can 
redefine the identifier with exactly the same definition. Thus, the same 
definition can appear more than once in a program. 

The #undef directive removes the definition of an identifier. Once you 
have removed the definition, you can redefine the identifier to a different 
value. Sections 8.2.2 and 8.2.3 discuss the # define and #undef direc­
tives, respectively. 

In practical terms there are two types of macros. "Object-like" macros 
take no arguments, while "function-like" macros can be defined to accept 
arguments so that they look and act like function calls. Because macros 
do not generate actual function calls, you can make programs faster by 
replacing function calls with macros. However, macros can create 
problems if you do not define and use them with care. You may have to 
use parentheses in macro definitions with arguments to preserve the 
proper precedence in an expression. Also, macros may not handle expres­
sions with side effects correctly. See the examples in Section 8.2.2 for more 
information. 

8.2.1 Preprocessor Operators 

There are three preprocessor-specific operators, one of which is represen ted 
by the number sign (#), one by a double number sign (# #), and the 
third by the word defined. The "stringizing" operator (# ) preceding a 
macro formal-parameter name in the body of a preprocessor macro causes 
the corresponding actual argumen t to be enclosed in string quotation 
marks. The "token-pasting" operator (# #) allows tokens used as actual 
arguments to be concatenated to form other tokens. These two operators 
are used in the context of the # define directive and are described in Sec­
tions 8.2.2.1 and 8.2.2.2. 
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Finally, the defined operator simplifies the writing of compound expres­
sions in certain macro directives. It is used in conditional compilation, and 
is therefore discussed in Section 8.4.1, "The # if, # elif, # else, and # endif 
Directives." 

8.2.2 The # define Directive 

• Syntax 

# define £dent£j£er subst£tut£on-text 
# define £dent£j£er(parameter-I£st) subst£tut£on-text 

The # define directive substitutes substitution-text for all subsequent 
occurrences of identifier in the source file. The identifier is replaced only 
when it forms a token. (Tokens are described in Chapter 2, "Elements of 
C" and Appendix B, "Syntax Summary.") For instance, identifier is not 
replaced if it appears within a string or as part of a longer identifier. 

If parameter-list appears after identifier, the # define directive replaces 
each occurrence of identifier(parameter-l£st) with a version of the 
substitution-text argument that has actual arguments substituted for for­
mal parameters. 

The substitution-text argument consists of a series of tokens, such as key­
words, constants, or complete statements. One or more white-space char­
acters must separate substitution-text from identzjier (or from the closing 
parenthesis following parameter-list). This white space is not considered 
part of the substituted text, nor is any white space following the last 
token of the text. Text longer than one line can be con tin ued on to the 
next line by placing a backslash (\) before the new-line character. 

The substitut£on-text argument can also be empty. Choosing this option 
removes occurrences of identzjier from the source file. The identifier is still 
considered defined, however, and yields the value 1 when tested with the 
# if directive (discussed in Section 8.4.1). 

The optional parameter-list consists of one or more formal parameter 
names separated by commas. Each name in the list must be unique, and 
the list must be enclosed in parentheses. No spaces can separate identifier 
and the opening parenthesis. The scope of a formal parameter name ex­
tends to the new line that ends substitution-text. 

Formal parameter names appear in substitution-text to mark the places 
where actual values will be substituted. Each parameter name can appear 
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more than once in subst£tution-text, and the names can appear in any 
order. 

The actual argumen ts following an instance of ident£fier in the source file 
are matched to the corresponding formal parameters of parameter-Ust. 
Each formal parameter in subst£tution-text that is not preceded by a string­
izing (# ) or token-pasting (# # ) operator, or followed by a # # operator, 
is replaced by the corresponding actual argument. Any macros in the 
actual argument will be expanded before it replaces the formal parameter. 
(The # and # # operators are described in Sections 8.2.2.1 and 8.2.2.2.) 
The actual-argument list must have the same number of arguments as 
parameter-l£st. 

If the name of the macro being defined occurs in substitution-text (even as a 
result of another macro expansion), it is not expanded. 

Arguments with side effects sometimes cause macros to produce unex­
pected results. A given formal parameter may appear more than once in 
substitution-text. If that formal parameter is replaced by an expression 
with side effects, the expression, with its side effects, may be evaluated 
more than once (see Example 4 in Section 8.2.2.2, "Token-Pasting 
Op~rator" ). 

8.2.2.1 Stringizing Operator (#) 

The number-sign or "stringizing" operator (#) is used only with macros 
that take arguments. If it precedes a formal parameter in the macro defi­
nition, the actual argument passed by the macro invocation is enclosed in 
quotation marks and treated as a string literal. The string literal then 
replaces each occurrence of a combination of the stringizing operator and 
formal parameter within the macro definition. White space preceding the 
first token of the actual argument and following the last token of the 
actual argument is ignored. Any white space between the tokens in the 
actual argument is reduced to a single white space in the resulting string 
literal. Thus, if a comment occurs between two tokens in the actual argu­
ment, it is reduced to a single white space. The resulting string literal is 
automatically concatenated with any adjacent string literals from which it 
is separated only by white space. Furthermore, if a character contained in 
the argument normally requires an escape sequence when used in a string 
literal-for example, the quotation-mark (") or backslash (\) characters­
the necessary escape backslash is automatically inserted before the charac­
ter. The following example shows a macro definition that includes the 
stringizing operator and a main function that invokes the macro: 
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#define stringer(x) printf(#x "\n") 

main () 
{ 

stringer (I will be in quotes in the printf function call\n); 
stringer ("I will be in quotes when printed to the screen"\n); 
stringer (This: \" prints an escaped double quote mark); 

} 

Such invocations would be expanded during preprocessing, producing the 
following code: 

printf("I will be in quotes in the printf function call" "\n"); 
printf("\"I will be in quotes when printed to the screen\"" "\n"); 
printf("This \\\" prints an escaped double quote mark"); 

When the program is run, screen output for each line would be as follows: 

I will be in quotes in the printf function call 

"I will be in quotes when printed to the screen" 

This: \" prints an escaped double quote mark 

Note 

The Microsoft extension to the ANSI C standard that previously 
enabled expansion of macro formal arguments appearing in string 
literals and character constants is no longer supported. Code that 
relied on this extension should be rewritten using the stringizing (# ) 
operator. 

8.2.2.2 Token-Pasting Operator (# #) 

The double-number-sign or "token-pasting" operator (# #) is used in 
both object-like and function-like macros. It permits separate tokens to be 
joined into a single token, and therefore cannot be the first or last token in 
the macro definition. 

If a formal parameter in a macro definition is preceded or followed by the 
token-pasting operator, the formal parameter is immediately replaced by 
the unexpanded actual argument. Macro expansion is not performed on 
the argument prior to replacement. Then, each occurrence of the token­
pasting operator in substitution-text is removed, and the tokens preceding 
and following it are concatenated. The resulting token must be a valid 
token. If it is, the token is rescanned for possible replacement if it 
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represents a macro name. Example 7 below shows how tokens can be 
pasted together using the token-pasting operator . 

• Examples 

/******************** Example 1 ********************/ 

#define WIDTH 
#define LENGTH 

80 
(WIDTH + 10) 

Example 1 defines the identifier WIDTH as the integer constant 80 and 
defines LENGTH in terms of WIDTH and the integer constant 10. Each 
occurrence of LENGTH is replaced by (WIDTH + 10). In turn, each 
occurrence of WIDTH + 10 is replaced by the expression (80 + 10). 
The parentheses around WIDTH + 10 are important because they control 
the interpretation in statements such as the following: 

var = LENGTH * 20; 

After the preprocessing stage the statement becomes 

var = (80 + 10) * 20; 

which evaluates to 1800. Without parentheses, the result is 

var = 80 + 10 * 20; 

which evaluates to 280. 

/******************** Example 2 ********************/ 

#define FILEMESSAGE "Attempt to create file \ 
failed because of insufficient space" 

Example 2 defines the identifier FILEMESSAGE. The definition is 
extended to a second line by using the convention of a backslash followed 
by a new-line character. 

/******************** Example 3 ********************/ 

#define REGI 
#define REG2 
#define REG3 

register 
register 

Example 3 defines three identifiers, REG1, REG2, and REG3. REG1 and 
REG2 are defined as the keyword register. The definition of REG3 is 
empty, so each occurrence of REG3 is removed from the source file. These 
directives can be used to ensure that the program's most important 
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variables (declared with REGl and REG2) are given register storage. 
(See the dIscussion of the # if directive in Section 8.4.1 for an expanded 
version of this example.) 

/******************** Example 4 ********************/ 

#define MAX(x,y) ((x) > (y» ? (x) : (y) 

Example 4 defines a macro named MAX. Each occurrence of the identifier 
MAX after the definition in the source file is replaced by the expression 
«x) > (y» ? (x) : (y), where actual values replace the parame­
ters x and y. For example, the occurrence 

MAX (1,2) 

is replaced by 

((1) > (2» ? (1) (2) 

and the occurrence 

MAX(i,s[i]) 

is replaced by 

((i) > (s [i] » ? (i) : (s [i] ) 

Because this macro is easier to read than the corresponding expression, the 
source program is easier to understand. 

Note that arguments with side effects may cause this macro to produce 
unexpected results. For example, the occurrence MAX (i, s [i++]) is 
replaced by «i) > (s [i++]» ? (i) : (s [i++]). The expression 
(s [i ++]) may be evaluated twice, so by the time the ternary expression 
has been fully evaluated, i will have been incremented either once or 
twice, depending on the result of the comparison. 

/******************** Example 5 ********************/ 

#define MULT(a,b) ((a) * (b» 

Example 5 defines the macro MULT. Once the macro is defined, an occur­
rence such as MULT (3, 5) is replaced by (3) * (5). The paren­
theses around the parameters are important because they control the 
interpretation when complex expressions form the arguments to the 
macro. For instance, the occurrence MULT (3 + 4, 5 + 6) is replaced 
by (3 + 4) * (5 + 6),whichevaluatest077.Withoutthe 
parentheses, the result would be 3 + 4 * 5 + 6. This result evaluates 
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to 29 because the multiplication operator (*) has higher precedence than 
the addition operator (+). 

/******************** Example 6 ********************/ 

#define GREETING Hello, World! 
#define show(x) printf(#x) 

main 0 
{ 

} 

show ( x + Z ); 

printf("\n"); 
show(n /* some comment */ + p); 
printf("\n"); 
show(GREETING); /* GREETING is not expanded; */ 
printf("\n"); /* it is stringized instead */ 
show ( , \x ' ) ; 

Example 6 defines two macros, one an object-like macro that expands to 
the string literal Hello, World!, and the other a function-like macro 
called show, which takes one argument. However, the definition of the 
second macro includes the stringizing operator (# ) immediately preced­
ing the formal parameter x. When an argument is passed to the show 
macro, the formal parameter is replaced by the actual argument enclosed 
in double quotation marks, thus "stringizing" it. 

As the preprocessor progresses through the source file, the references to 
show are expanded as follows: 

show ( x + z ); produces printf (tl x + z tI) ; 

show (n /* comment */ + p); produces printf (tin + p"); 

show (GREETING); produces printf (tlGREETING") ; 

and finally, show('\x'); produces printf("'\\x'''); 

When the program is run, the screen output would be: 

x + z 
n + p 
GREETING 
'\x' 
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/******************* Example 7 *********************/ 

#define paster (n) printf ("token" #n II = %d'~, token##n) 

If token9 is declared, and the macro is called with a numeric argument 
like: 

paster (9) 

the macro yields: 

printf("token" "9" " %d", token9) 

which becomes 

printf("token9 = %d", token9) ; 

Example 7 illustrates use of both the "stringizing" and "token-pasting" 
operators in specifying program output. 

8.2.3 The #undefDirective 

!I Syntax 

# under Ment£/£er 

The # undef directive removes the curren..t definition of identifier. Conse­
quently, subsequent occurrences of identzji'er are ignored by the preproces­
sor. To remove a macro definition using # undef, give only the macro 
identzjier; do not give a parameter list. 

You can also apply the # undef directive to an identifier that has no pre­
vious definition. This ensures that the iden tifier is undefined. 

The # undef directive is typically paired with a # define directive to 
create a region in a source program in which an identifier has a special 
meaning. For example, a specific function of the source program can use 
manifest constants to define environment-specific values that do not affect 
the rest of the program. The # undef directive also works with the # if 
directive (see Section 8.4.1) to control conditional compilation of the 
source program. 
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• Example 

#define WIDTH 
#define ADD(X,Y) 

#unde f WI DTH 
#undef ADD 

80 
(X) + (Y) 

In this example, the # under directive removes definitions of a manifest 
constant and a macro. Note that only the identifier of the macro is given. 

8.3 Include Files 

• Syntax 

# include "path-spec" 
# include <path-spec> 

The # include directive adds the contents of a given "include file" to 
another file. You can organize constant and macro definitions into include 
files and then use # include directives to add these definitions to any 
source file. Include files are also useful for incorporating declarations of 
external variables and complex data types. You only need to define and 
name the types once in an include file created for that purpose. 

The # include directive tells the preprocessor to treat the contents of the 
named file as if they appeared in the source program at the point where 
the directive appears. The new text can also contain preprocessor direc­
tives. The preprocessor carries out directives in the new text, then contin­
ues processing the original text of the source file. 

The path-spec is a file name optionally preceded by a directory specifica­
tion. It must name an existing file. The syntax of the file specification 
depends on the operating system on which the program is compiled. 

The preprocessor uses the concept of a "standard" directory or directories 
to search for include files. The location of the standard directories for 
include files depends on the implementation and the operating system. See 
your compiler guide for a definition of the standard directories. 

The preprocessor stops searching as soon as it finds a file with the given 
name. If you specify a complete, unambiguous path specification for the 
include file, between two sets of double quotation marks (" "), the prepro­
cessor searches only that path specification and ignores the standard direc­
tories. 
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If the path-spec enclosed in double quotation marks is an incomplete path 
specification, the preprocessor first searches the "parent" file's directory. A 
parent file is the file containing the # include directive. For example, if 
you include a file named fi1e2 within a file named fi1el, fi1el is 
the parent file. 

Include files can be "nested," that is, an # include directive can appear in 
a file named by another # include directive. For example, fi 1e2, above, 
could include fi1e3. In this case, fi1el would still be the parent of 
fi1e2, but would be the "grandparent" of fi1e3. 

When include files are nested, directory searching begins with the direc­
tories of the parent file, then proceeds through the directories of any 
grandparent files. Thus, searching begins relative to the directory contain­
ing the source curren tly being processed. If the file is not found, the search 
moves to directories specified on the compiler command line. Finally, the 
standard directories are searched. 

If the file specification is enclosed in angle brackets, the preprocessor does 
not search the current working directory. It begins by searching for the file 
in the directories specified on the compiler command line, then in the stan­
dard directories. 

Nesting of include files can continue up to 10 levels. Once the nested 
# include is processed, the preprocessor con tinues to insert the enclosing 
include file into the original source file. 

• Examples 

/******************** Example 1 ********************/ 

#include <stdio.h> 

Example 1 adds the contents of the file named stdio. h to the source 
program. The angle brackets cause the preprocessor to search the stan­
dard directories for stdio. h, after searching directories specified on the 
command line. 

/******************** Example 2 ********************/ 

#include "defs.h" 

Example 2 adds the contents of the file specified by de fs . h to the source 
program. The double quotation marks mean that the preprocessor 
searches the directory containing the "parent" source file first. 

203 



Microsoft C Language Reference 

8.4 Conditional Compilation 

This section describes the syntax and use of directives that control "condi­
tional compilation." These directives allow you to suppress compilation of 
parts of a source file by testing a constan t expression or iden tifier to deter­
mine which text blocks will be passed on to the compiler and which text 
blocks will be removed from the source file during preprocessing. 

8.4.1 The #if, #elif, #else, and #endifDirectives 

• Syntax 

# if restrz·cted-constant-expressz"on 
[ text-block] 

[ # elif restrz"cted-constant-expressz"on 
text-block n 

[ # elif restr£cted-constant-expression 
text-block n 

[# else 
text-block n 

#endif 

The #if directive, together with the #elif, #else, and #endif directives, 
controls compilation of portions of a source file. Each #if directive in a 
source file must be matched by a closing #endif directive. Any number of 
# elif directives can appear between the # if and # endif directives, but 
at most one # else directive is allowed. The #else directive, if present, 
must be the last directive before #endif. 

The preprocessor selects one of the given occurrences of text-block for 
further processing. A block specified in text-block can be any sequence of 
text. It can occupy more than one line. Usually text-block is program text 
that has meaning to the compiler or the preprocessor. 

The preprocessor processes the selected text-block and passes it to the com­
piler. If text-block contains preprocessor directives, the preprocessor carries 
ou t those directives. 

Any text blocks not selected by the preprocessor are removed from the file 
during preprocessing. Thus, these text blocks are not compiled. 
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The preprocessor selects a single text-block by evaluating the restricted 
constant expression following each #if or #elif directive until it finds a 
true ( nonzero) restricted constant expression. It selects all text (including 
other preprocessor directives beginning with #) up to its associated #elif, 
# else, or # endif. 

If all occurrences of restricted-constant-expression are false, or if no #elif 
directives appear, the preprocessor selects the text block after the # else 
clause. If the #else clause is omitted, and all instances of restricted­
constant-expression in the # if block are false, no text block is selected. 

Each restricted-constant-expression follows the rules for restricted constant 
expressions discussed in Section 5.2.10. Such expressions cannot contain 
sizeof expressions, type casts, or enumeration constants. However, they 
can contain the preprocessor operator defined in special constant expres­
sions, as shown by the following syn tax: 

defined{ t"dentt"fier) 

This constan t expression is considered true (nonzero) if the £dent£jier is 
currently defined; otherwise, the condition is false (0). An identifier defined 
as empty text is considered defined. 

The # if, # elif, # else, and # endif directives can nest in the text por­
tions of other # if directives. Each nested # else, # elif, or # endif direc­
tive belongs to the closest preceding # if directive. 

• Examples 

/******************** Example 1 ********************/ 

#if defined(CREDIT) 
credit 0: 

#elif defined(DEBIT) 
debit 0: 

#else 
pr interror 0 : 

#endif 

In Example 1, the #if and #endif directives control compilation of one 
of three function calls. The function call to credit is compiled if the 
identifier CREDIT is defined. If the identifier DEBIT is defined, the func­
tion call to debit is compiled. If neither identifier is defined, the call to 
printerror is compiled. Note that CREDIT and credit are distinct 
identifiers in C because their cases are different. 
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/******************** Example 2 ********************/ 

#if DLEVEL > 5 
#define SIGNAL 1 
#i f STACKUSE == 1 

#define STACK 200 
#else 

#define STACK 100 
#endif 

#else 
#define SIGNAL a 
#if STACKUSE == 1 

#define STACK 100 
#else 

#define STACK 50 
#endif 

#endif 

/******************** Example 3 ********************/ 

#i f DLEVEL = a 
#define STACK a 

#elif DLEVEL == 1 
#define STACK 100 

#elif DLEVEL > 5 
display( debugptr ); 

#else 
#define STACK 200 

#endif 

Examples 2 and 3 assume a previously defined manifest constant named 
DLEVEL. 

Example 2 shows two sets of nested # if, # else, and # endif directives. 
The first set of directives is processed only if DLEVEL > 5 is true. Other­
wise, the second set is processed. 

In Example 3, # elif and # else directives are used to make one of four 
choices, based on the value of DLEVEL. The manifest constant STACK is 
set to 0, 100, or 200, depending on the definition of DLEVEL. If DLEVEL 
is greater than 5, display (debugptr) ; is compiled and STACK is not 
defined. 

/******************** Example 4 ********************/ 

#define REG1 
#define REG2 
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#if defined(ML86) 
#define REG3 
#define REG4 
#define REGS 

#else 
#define REG3 register 
#if defined(ML68000) 

#define REG4 
#define REGS 

#else 
#define REG4 
#define REGS 

#endif 
#endif 

register 
register 

register 
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Example 4 uses preprocessor directives to control the meaning of register 
declarations in a portable source file. The compiler assigns register storage 
to variables in the order in which the register declarations appear in the 
source file. If a program contains more register declarations than the 
machine allows, the compiler honors earlier declarations over later ones. 
The program may be less efficient if the variables declared later are more 
heavily used. 

The definitions listed in Example 4 can be used to give priority to the most 
important register declarations. REGl and REG2 are defined as the 
register keyword to declare register storage for the two most important 
variables in the program. For example, in the following fragment, band 
c have higher priority than a or d: 

fune (a) 

REG3 int a; 

{ 

} 

REG! int b; 
REG2 int e; 
REG4 int d; 

When ~86 is defined, the preprocessor removes the REG3 identifier from 
the file by replacing it with empty text. This prevents a from receiving 
register storage at the expense of band c. When ~68000 is defined, 
all four variables are declared to have register storage. When neither 
~86 nor ~68000 is defined, a, b, and c are declared with register 
storage. 
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8.4.2 The #ifdef and #ifndefDirectives 

• Syntax 

# ifdef identifier 
# ifndef identifier 

The # ifdef and # ifndef directives perform the same task as the # if 
directive used with defined( identifier). You can use the # ifdef and 
# ifndef directives anywhere # if can be used. These directives are pro­
vided only for compatibility with previous versions of the language. The 
defined( identifier) constan t expression used with the # if directive is pre­
ferred. 

When the preprocessor encoun ters an # ifdef directive, it checks to see 
whether the identifier is currently defined. If so, the condition is true 
(nonzero); otherwise, the condition is false (0). 

The # ifndef directive checks for the opposite of the condition checked by 
#ifdef. If the identifier has not been defined (or its definition has been 
removed with #undef), the condition is true (nonzero). Otherwise, the 
condition is false (0). 

8.5 Line Control 

• Syntax 

# line constant [ "filename" ] 

The # line directive tells the preprocessor to change the compiler's inter­
nally stored line number and file name to a given line number and file 
name. The compiler uses the line number and file name to refer to errors 
that it finds during compilation. The line number normally refers to the 
current input line, and the file name refers to the current input file. The 
line number is incremented after each line is processed. 

If you change the line number and file name, the compiler ignores the pre­
vious values and continues processing with the new values. The # line 
directive is typically used by program generators to cause error messages 
to refer to the original source file instead of to the generated program. 

The constant value in the # line directive can be any integer constant. 
The filename can be any combination of characters and must be enclosed 
in double quotation marks (" "). If filename is omitted, the previous file 
name remains unchanged. 
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Preprocessor Directives and Pragmas 

The current line number and file name are always available through the 
predefined identifiers _~INE __ and _YILE __ . You can use the 
_~INE __ and _YILE __ identifiers to insert self-descriptive error mes­
sages in to the program text. 

The _YILE __ identifier expands to a string whose contents are the file 
name, surrounded by double quotation marks (" "). 

• Examples 

/******************** Example 1 ********************/ 

#line 151 "copy.c" 

In Example 1, the internally stored line number is set to 151 and the file 
name is changed to copy. c. 

/******************** Example 2 ********************/ 

#define ASSERT(cond) if(!cond)\ 
{printf("assertion error line %d, file (%s)\n", \ 
-LINE_, --.E'ILE_ );} else 

In Example 2, the macro ASSERT uses the predefined identifiers 
_J..,INE __ and _YILE __ to print an error message about the source file 
if a given "assertion" is not true. 

8.6 Pragmas 

11 Syntax 

# pragma character-sequence 

A #pragma is an implementation-defined instruction to the compiler. 
The character-sequence is a series of characters that gives a specific com­
piler instruction and arguments, if any. The number sign (#) must be the 
first non-white-space character on the line containing the pragma; white­
space characters can separate the number sign and the word pragma. 

See your compiler guide for information about the pragmas available in 
your compiler implementation. 
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ApPENDIX A 
DIFFERENCES 

This appendix summarizes differences between Microsoft C and the 
description of the C language found in Appendix A of The C Programmz"ng 
Language by Brian W. Kernighan and Dennis M. Ritchie, published in 
1978 by Prentice-Hall, Inc. The following is a list of the differences with 
cross-references to the corresponding section numbers in The C Program­
mz"ng Language: 

Section Number 
in Kernighan 
and Ritchie 

2.2 

2.3 

2.4.1 

Microsoft C 

Identifiers (including those used in preprocessor 
directives) are significant to 31 characters. 
External iden tifiers are also significan t to 31 
characters. 

The identifiers asm and entry are no longer 
keywords. New keywords are const, volatile, 
enum, signed, and void. (The volatile key­
word is implemented syntactically, but not 
seman tic ally .) The identifiers cdecl, far, for­
tran, huge, near, and pascal may be key­
words, depending on whether the corresponding 
options are enabled when a program is compiled 
(see your DOS user's guide). 

As a result of the method used to assign types to 
hexadecimal and octal constants, these con­
stants 3:lways act like unsigned integers in type 
conversIOns. 
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2.4.3 

2.6 

4 

214 

Hexadecimal bit patterns consisting of a back­
slash (\), the letter x, and up to three hexade­
cimal digits are permitted as character con­
stants (for example, \x012). 

Microsoft C defines three additional escape 
sequences: \ v represents a vertical tab (VT), \" 
represents the double-quotation-mark character, 
and \a represents the bell (also called alert). 

Character constants always have type int, with 
the res~lt that they are sign extended in type 
converSIOns. 

Adjacent quoted string literals are concatenated 
and treated as a single null-terminated string. 

The short type is always 16 bits long, and the 
long type is 32 bits long. The size of an int is 
machine dependent. On 8086/8088, 80186, and 
80286 processors an int is 16 bits long, and on 
80386 and 68000 processors it is 32 bits long. 

The char type is signed by default, with the 
result that a char value is sign extended in type 
conversions. (In some implementations, the 
default for the char type can be changed to 
unsigned at compile time.) 

Two additional unsigned types are supported: 
unsigned char and unsigned long. 

The keyword unsigned or signed can be 
applied as an adjective to an integer type. When 
unsigned appears alone, it means unsigned 
into Similarly, when signed appears alone, it 
means into The additional floating type long 
double is supported, but the long float type is 
no longer recognized. References to long float 
should be recoded to double. 

The type specifiers const and volatile can be 
used as modifiers for any fundamental, aggre­
gate, or pointer type. The const keyword indi­
cates that the object or pointer value will not be 
modified. The volatile keyword means the ob­
ject may be changed by some process beyond the 
control of the currently running program. Both 
the syntax and semantics of const are imple­
mented, but only the syntax of volatile is 
implemented. 



6.4 

6.6 

7.2 

7.14 

8.2 

Differences 

Microsoft C offers an additional fundamental 
type: the enum (enumeration) type. Variables 
of enum type are treated as integers in all 
cases. 

The keyword void has three different usages. As 
a function-return-type specifier, it indicates that 
the function will not return a value. In an other­
wise empty formal-parameter list, void means 
that no arguments will be passed. In the con­
struction void *, it indicates a pointer to an 
object of unspecified type. 

If the near, far, and huge keywords are en­
abled, pointers of different sizes may be used in 
a program. Operations with pointers of different 
sizes may cause conversion of pointers; the path 
of the conversion is implementation defined. 

Arithmetic conversions carried out by the com­
piler are outlined in Sections 5.3.1 and 5.6 of 
Chapter 5, "Expressions and Assignments." 
Although compatible with the Kernighan and 
Ritchie conversions, Microsoft C conversions are 
described in greater detail, including the specific 
path for each type of conversion. 

In addition to the usual arithmetic conversions, 
conversions between pointers of different sizes 
may be routinely carried out when the near, 
far, and huge keywords are enabled. The path 
of the pointer conversions is implementation 
defined. 

In connection with the sizeof operator, a byte is 
defined as an 8-bit quantity. 

A structure can be assigned to another structure 
of the same type. 

The keywords enum, const, volatile, and void 
are additional type specifiers. The volatile key­
word is implemented syntactically, but not 
semantically. The keywords signed and 
unsigned can serve either as type specifiers or 
as adjectives modifying an integral type. 
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8.4 

8.5 

8.6 

9.7 

216 

Therefore, the following additional combina­
tions are acceptable: 

signed char 
signed short 
signed short int 
signed long 
signed long int 
unsigned char 
unsigned short 
unsigned short int 
unsigned long 
unsigned long int 

The long float type is not recognized. The long 
double type is recognized and treated in all 
instances the same as double. 

The canst and volatile keywords can be used 
to modify any fundamental, aggregate, or 
pointer object. The order of the type specifiers is 
not significan t. 

Optional formal-parameter lists or argument­
type lists can be included in function declara­
tions to notify the compiler of the number and 
types of arguments expected in a function call. 

Bit fields can be declared to be any signed or 
unsigned integral type, except enum. However, 
in expressions, bit fields are always treated as 
unsigned. 

The names of structure and union members are 
not required to be distinct from structure and 
union tags or from the names of other variables. 

No relationship exists between the members of 
two different structure types. 

Unions can be initialized by giving a value for 
the first member of the union. 

The expression of a switch can be any integral 
expression, but the value of the expression is 
always converted to an int type. An enum type 
is permitted for expression. Each of the case 
constan.t expressions is cast to the type of 
expresszon. 



10.1 

12 

12.3 

14.1 

Differences 

New styles for function declarations and 
definitions, as specified in the Draft Proposed 
American National Standard-Programming 
Language C, are completely supported. This 
includes the function prototype declaration, the 
prototype-style definition with formal parame­
ters declared in the header, and the default crea­
tion of prototypes from the first reference to a 
function (if no explicit prototype is provided). 
The old function declaration and definition 
forms are also supported. 

The formal parameter list in a function def­
inition or declaration can end with a comma fol­
lowed by three periods (, •.. ) or just a comma (,) 
to indicate that the number of parameters is 
variable. The latter is supported only for compa­
tibility with older versions of the compiler and 
should not be used in new code. 

The number sign (#) introducing the preproces­
sor directive can be preceded by any combina­
tion of white-space characters. White space can 
also separate the number sign and the prepro­
cessor keyword. 

In addition to preprocessor directives, the source 
file can contain pragmas. Pragmas, like direc­
tives, are introduced by a number sign as the 
first non-white-space character in a line. The 
action defined by a particular pragma is imple­
men tation dependent. 

Three preprocessor-only operators are sup­
ported: the "stringizing" operator (#), the con­
catenation or "token-pasting" operator (# # ), 
and the defined operator. 

The new combination # if defined (identifier) is 
intended to supplant the #ifdef and #ifndef 
directives. Use of the latter directives is dis­
couraged. 

The new directive # elif (else if) is designed for 
use in # if and # if defined blocks. 

A structure or union can be assigned to another 
structure or union of the same type. Structures 
and unions can be passed by value to functions 
and returned by functions. 
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17 

218 

In expressions involving the structure-pointer 
operator (- », the expression preceding the 
arrow must have the same type (or must be cast 
to the same type) as the structure to which the 
member on the rIght-hand side of the arrow 
belongs. 

The listed anachronisms are not recognized. 
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B.l Tokens 

keyword 
identifier 
constant 
string 
operator 
separator 

B.l.l Keywords 

auto 
break 
case 
char 
canst 
continue 
default 
do 

double 
else 
enum 
extern 
float 
for 
goto 
if 

int 
long 
register 
return 
short 
signed 
sizeof 
static 

Syntax Summary 

struct 
switch 
typedef 
union 
unsigned 
void 
volatile* 
while 

The following identifiers may be keywords in some implementations. See 
your compiler guide for information. 

cdecl 
far 
fortran 
huge 
near 
pascal 

B.l.2 Identifiers 

identifier: 
letter 
underscore 
identzf£er letter 
identzJier underscore 
identzJier digit 

letter-Dne of the following: 
abcdefghijklm 
nopqrstuvwxyz 
ABC D E F G H I J I( L M 
NOPQRSTUVWXYZ 

* Semantics not yet implemented 
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underscore: 

dz"gz"t-one of the following: 
0123456789 

B.l.3 Constants 

constant: 
integer-constant 
long-constant 
floating-poz"nt-constant 
char-constant 
enum-constant 

z"nteger-constant: 
o 
decimal-constant 
octal-constant 
hexadecimal-constant 

decimal-constant: 
nonzero-dz"gz"t 
dedmal-constant dz"git 

nonzero-dz"gz"t-one of the following: 
123456789 

octal-constant: 
Ooctal-d£git 
octal-constant octal-dig£t 

octal-dig£t-one of the following: 
01234567 

hexadecimal-constant: 
Oxhexadecz"mal-dig£t 
OXhexadecimal-dig£t 
hexadecimal-constant hexadecimal-d£git 

hexadecz'mal-digz"t-one of the following: 
0123456789 
abcdef 
ABCDEF 

long-constant: 
integer-constant I 
integer-constant L 
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floating-point-constant: 
fractional-constant exponent 
fractional-constant 
digit-seq exponent 

fractional-constant: 
digit-seq. digit-seq 
• digit-seq 
digit-seq. 

digit-seq: 
digit 
digit-seq digit 

exponent: 
e sign digit-seq 
E sign digit-seq 
e digit-seq 
E digit-seq 

sign: 
+ 

char-constant: 
, char' 

char: 
rep-char 
escape-sequence 

rep-char: 
Any single representable character except the single­
quotation-mark ('), backslash (\), or new-line character. 
Note that the single-quotation-mark character cannot 
be used alone in a character constant, and the double­
quotation-mark character cannot be used alone in a 
string literal. 

escape-sequence--one of the following: 
\ ' \ " \ \ \ d \ dd \ ddd 
\xd \xdd \xddd\a \b \f 
\n \r \t \v 

enum-constant: 
identifier 
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B.l.4 Strings 

strz"ng-lz"teral: 
"" 
" char-seq" 

char-seq: 
char 
char-seq char 

B.l.5 Operators 

operator-one of the following: 
! - ++ 
» 
&& 
*= 
&= 
[ ] 

* < 
!= 
I I 
I I 

L~ 
e ) 

/ 
<= 
= 
%= 
I-
1-

% 
> & 
+= 
»= 
?: 
-> 

B.l.6 Separators 

separator-one of the following: 

~ ~ ~ L ~ ~ 

B.2 Expressions 

expresszon: 

224 

z"dentiJier 
constant 
string 
expreSSiOn\eXpreSsion-l£st) 
expression void) 
expression expression] 
expression. identzJier 
expressz"on-> !'dentzj£er 
unary-expresszon 
binary-expression 
ternary-expression 

+ « 
>= 
A 

-= 
«= 



assignm~nt-expression 
( expresszon) 
( type-name) expression 
C onst a nt-exp ressio n 

expression-list: 
expression 
expression-list, expression 

unary-expresszon; 
unop expresszon 
sizeof( expression) 

unop--one of the following: 
- ! * & 

lvalue: 
identifier 
expression[ expression] 
expression. expression 
expression-> expression 
* expression 
( type-name) expression 
( lvalue) 

type-name: 
See Section B.3, "Declarations." 

binary- expression: 
expression binop expression 

binop--one of the following: 
* / % + 
« »< > <= 
>= --!= & 

&& 

ternary- expression: 

I I 
I I 

expression? expression: expression 

assignment- expression: 
lvalue++ 
lvalue-­
++lvalue 
--lvalue 
lvalue assignment-op expression 

assi[Jnment-op--one of the followi!!g: 
\= *= /= %= += --
«= »= &= l= = 

Syntax Summary 
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constant-expressz'on: 
z'dentzJz'er 
constant 
( type-name)co.nstant-expressz'on 
unary-expresswn 
binary-expressz'on 
ternary-expression 
( constant-expression) 

B.3 Declarations 

declaration: 
sc-speczf£er type-speczJier-list declarator-list; 
type-speczJier-Ust declarator-Ust; 
sc-speczJier declarator-list; 
typedef type-speczJier-Ust declarator-list; 

sc-specifier: 
auto 
extern 
register 
static 

type-speczf£er: 
char 
double 
long double 
enum-speczJier 
float 
int 
long 
short 
struct-speczJier 
typedef-name 
union-speczJier 
unsigned 
signed 
const 
volatile 
void 

type-specifier-list: 
type-speczJier 
type-speczJier-list type-specifier 
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enum-speczjz'er: 
enum tag {enum-Ust} 
en urn { enum-list} 
enum tag 

tag: 
identz'f£er 

enum-Ust: 
enumerator 
enum-lz'st , enumerator 

enumerator: 
identzjier 
identzjz'er = constant-expression 

struct-sp ecifier: 
struct tag { member-declaration-list} 
struct { member-declaration-list} 
struct tag 

member-declaration-list: 
member-declaration 
member-decLaration-Ust member-declaration 

member-declaration: 
type-speczjier decLarator-Ust; 
type-speczJier identifier: constant-expression; 
type-speczJier: constant-expression; 

declarator-list: 
declarator 
declarator = initializer 
declarator-list, declarator 

declarator: 
identzf£er 
modzf£er-list identzjier 
decLarator[ ] 
decLarator[ constant-expressz'on] 
* declarator 
declarator(void) 
declarator(Hformal-parameter-list]) 
( declarator) 

Syntax Summary 
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modifier-list 
modzJier 
modifier-list modifier 

formal-parameter-l£st 
formal-parameter 
formal-parameter-lz'st, formal-parameter 
formal-parameter-list, ••• 
formal-parameter-list, 

formal-parameter 
sc-spec type-spec declarator 
sc-spec type-spec abstract-declarator 

arg-type-lz'st: 
type-name 
arg-type-lz'st, type-name 
arg-type-lz'st, ••• 
arg-type-lz'st, 

type-name: 
type-specifier 
type-specifier abstract-declarator 

abstract-declarator: 
* 
modifier* 

f lrg-type-list) 
* abstract-declarator 
abstract-declarator* 
abstract-declarator[ ] 
abstract-declarator[ constant-expression] 
[ ] abstract-declarator 
[constant-expression] abstract-declarator 
abstract-declarator~VOid) 
abstract-declarator formal-parameter-lz'st) 
abstract-declarator arg-type-l£st) 
( abstract-declarator) 

in it ialz'zer: 
expresszon 
{ initializer-list} 

initializer-list: 
initializer 
initializer-l£st, initializer 

typedef-name: 
identifier 

228 



union-specifier: 
union tag { member-declaration-list} 
union { member-declaration-lz'st} 
union tag 

modifier: 
cdecl 
far 
fortran 
huge 
near 
pascal 

modifier-list 
modifier 
modzJier-list modzJier 

B.4 Statements 

statement: 
break; 
case constant-expression: statement 
compound-statement 
continue; 
default: statement 
do statement while( expression); 
expression; 
for ([ expression]; [expression]; [expression]) statement; 
goto identzJier; 
identifier: statement 
if (expression) statement [else statement] 
, 
return [expression]; 
switch (expression) statement 
while (expression) statement 

compound-statement: 
t [declaration-list] [statement-list]} 

declaration-list: 
declaration 
declaration-list declaration 

statement-list: 
statement 
statement-list statement 

Syntax Summary 
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B.5 Definitions 

de!z'nz'tz'on: 
!unctz"on-def£nz"t£on 
data-de!z"nz"tz"on 

!unctz'on-de!z'nz'tz'on: 
[sc-speczJz'er~ Jtype-speczJz"er~ declarator ([!ormal-parameter-lz'st]) 

compoun -statement 
[sc-speczJz"er~ [type-s;eczJz'er~ declarator ([parameter-lz'stD 

[parameter-decs] compound-statement 

parameter-lz'st: 
f£xed-parameter-list 
varz'able-parameter-lz"st 

!z'xed-parameter-list: 
z'dentzJz'er 
parameter-lz"st , z'dentzJz'er 

varz'able-parameter-lz'st: 
Jz'xed-parameter-lz'st, ••• 
Jixed-parameter-list, 

parameter-decs: 
declaration 
declaration-lz'st declaration 

data-def£n£tion: 
declaratz'on 

B.6 Preprocessor Directives 

directive: 

230 

# define identzJier [( [parameter-list]) ~ [token-seq] 
# elif restricted-constant-expression 
#else 
#endif 
# if restricted-constant-expression 
# ifdef identzJier 
# ifndef £dentzJz'er 
# include II string ll 

# include < string> 
# line digit-seq 
# line d£git-seq string 
# undef £dentzJier 



) 

) 

) 

token-seq: 
token 
token-seq token 

restricted-constant-expression: 
defined (identifier) 
Any constant-expression except sizeof expressions, 
casts, and enumeration constants 

B.7 Pragmas 

pragma: 
# pragma char-seq 

Syntax Summary 
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+ ( addition operator), 123 
& (address-of operator), 119 
< > (angle brackets), 202 
- (arithmetic negation operator), 117 
-> (arrow), in member-selection 

expressions, 109 
\ ~ackslash character), 13, 14, 15 
&, bitwise-AND operator), 128 
- ~ itwise-complement operator) 117 
A bitwise-exclusive-OR operator , 128 

f
' bitwise-inclusive-OR operatori, 128 

} (braces), 91, 151, 153 
] (brackets) 
array declarators, used in, 54, 70 
subscript expressions, used in, 106, 

107 
: (colon), with bit-field structure 

members, 66 
, (comma) 

argument-type lists, used in, 78 
declarations, used in, 62, 76 
function calls, used in, 105, 182 
initialization, used in, 91 
sequential-evaluation operator, 130 

? : lconditional operator), 131 
-- decrement operator), 134 
L i ivision operator), 122 
II H (double brackets), 7 
... (ellipsis notation), 78 
= = (equality operator), 126 
( ) (function modifier), 54 
> (greater-than operator), 126 
>= (greater-than-or-equal-to 

operator), 126 
++ (increment operator), 134 
* (indirection operator), 118 
!= (inequality operator), 126 
< < (left-shift operator), 125 
< (less-than operator), 126 
<= (less-than-or-equal-to operator), 

126 
&& (logical-AND operator), 129 
! (logical-NOT operator), 117 
I I (logical-OR operator), 130 
-> (member-selection operator), 109, 

218 
. (member-selection operator), 109 
* (multiplication operator), 122 
# (number sign), 193 
- (one's complement operator), 117 

o (parentheses) 
complex declarators, used in, 55 
expressions, used in, 111 
function calls, used in, 105 
function declarators, used in, 54, 77 
macros, used in, 199 

* (pointer modifier), 54, 72 
" (quotation marks) 

See also Escape sequences 
# include directives, used in, 202 
notational conventions, 8 
representation, 14, 214 

% (remainder operator), 122 
> > (right-shift operator), 125 
= (simple-assignment operator), 135 
# (stringizing preprocessor operator), 

194 
- (subtraction operator), 124 
? : (ternary operator), 115, 131 
# # (token-pasting operator) 

described, 194, 197 
differences from Kernighan and 

Ritchie, 193 
- (two's complement operator), 117 
+ (unary plus operator) 117 
_ (underscore character), 24 

Abstract declarators, 98 
Actual arguments. See Arguments, 

actual 
Addition operator (+), 123 
Address-of operator (&), 119 
Aggregate data-type category, 53 
Aggregate types 

array, 70 
initialization, 89, 91 
structure, 65 
union, 68 

Anachronisms, 218 
AND operators 

bitwise (&) 128 
logical (&&), 129 

Angle brackets ( < », 202 
ANSI standard 

enabling ANSI, 3 
extensions 3 

Apostrophe (,). See Escape sequences 
argc parameter, 35 
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Argument type checking 
conversions, 186 
default prototypes, 180 
formal parameters, 178 
function calls, 185 
variable-length parameter list, 80 

Arguments 
See also Parameters 
actual 

conversion, 185 
evaluation, order of, 183 
macros, 196, 199 
passing, 185 
pointers, 183, 185 
side effects, 183 
type checking, 185 
variable number, 188 

command line, 35 
formal. See Formal parameters 
main function, 35 
variable number, 78, 188 

Argument-type lists 
abstract declarator, used with, 98 
default prototype, 180 
described, 77 
pointer arguments, used with, 79 
variable length, 78 
void *, used with, 79 
void keyword, used with, 79 

argv parameter, 35 
Arithmetic conversions, 115, 215 
Arithmetic data-type category 53 
Arithmetic negation operator (-), 117 
Array declarators ([ ]), 54, 70 
Arrays 

declarations, 54, 70 
elements, 106 
identifiers, 104 
initialization, 89, 91, 94 
multidimensional, 71, 107 
references to, 104, 106 
storage, 71, 108 
subscripts, 106 

asm keyword, 213 
Assignments 

See also Initialization 
conversions, 140 
defined, 103 
expressions, III 
operators, 133 

Associativity 
modifiers, 55 
operators, 137 

auto storage class, 82, 86, 89 

234 

Backslash character (\), 13, 14, 15 
Backspace escape sequence (\ b), 14 
Bell character (\ a), 14, 214 
Binary expreSSIOns, 110 
Binary operators, table, 17, 115 
Bit fields, 66, 67, 218 
Bitwise-AND operator (&), 128 
Bitwise-complement operator C) 117 
Bitwise-exclusive-OR operator (Al' 128 
Bitwise-inclusive-OR operator (I ,128 
Blocks, 36 
Braces ({ } ) 

compound statement, used in, 151, 
153 

initialization, used in, 91 
Brackets 

array declarators( used in, 54, 70 
double brackets []), 7 
subscript expressions, used in, 106, 

107 
Branch statements, 159, 163 
break statement, 152 
Bytes, size of, 215 

C character set, 11 
Call by reference. See Passing by 

reference 
Call by value. See Passing by value 
Calls. See Function calls 
Carriage-return escape sequence (\ r), 

14 
case keyword, 163 
Case sensitivity, 12, 24, 25 
Casts. See Type casts 
cdeclkeyword, 26, 59, 213 
char type 

conversion, 141 
described, 48 
differences from Kernighan and 

Ritchie, 214 
range of values, 50 
storage, 50 

Character constants 
differences from Kernighan and 

Ritchie, 214 
form, 21 
sign extension, 22 
type, 22 

Character sets, 11 
Characters 

backslash (\), 13, 14, 15 
backspace escape sequence, 14 
bell (\ a), 14, 216 
carriage-return escape sequence (\ r), 

14 



Characters (continued) 
case, 12, 24, 25 
continuation (\), 15 
CTRL+Z, 12 
differences from Kernighan and 

Ritchie, 214 
digits, 12 
double-quotation-mark escape 

sequence (\ "), 14 
end-of-file, 12 
escape sequences, 13 
form-feed escape sequence (\ f), 14 
hexadecimal escape sequences, 14 
horizontal tab escape sequence (\ t), 

14 
letters, 12 
new-line escape sequence (\ n), 14 
octal escape sequences, 14 
punctuation, 12 
single-quotation-mark escape 

sequence (\ '), 14 
special, 12 
underscore (_), 12 
vertical-tab escape sequence (\ v), 14 
white space, 13 

Colon (:), with bit-field structure 
members, 66 

Comma (,) 
argument-type lists, used in, 78 
declarations, used in, 62, 76 
function calls, used in, 105, 182 
initialization, used in, 91 
sequential-evaluation operator (,), 

130 
Command-line arguments, 35 
Comments, 26 
Comparison operators. See Relational 

operators 
Compilation, conditional, 204, 208 
Complement operators C), 117 
Complex declarators, 55, 59 
Compound statements, 153 
Compound-assignment operators, 136 
Concatenation of string literals, 23 
Concatenation operator, differences 

from Kernighan and Ritchie, 217 
Conditional compilation, 204, 208 
Conditional operator (7 :), 131 
Conditional statements, 159, 163 
const 

keyword, 215 
pointer modifier, used as, 73 
type specifier, 49 

Constant expressions 
case, 163 
conversion, 52 
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Constant expressions (continued) 
defined (identifier), 205 
described, 103 
directives, used in, 113, 205 
form, 112 
initializers, 113 
restricted, 113, 205 
switch statement, used in, 163 

Constants 
character. See Character constants 
conversion, 52 
decimal integer, 18, 19 
described, 18 
enumeration, 64 
floating point, 20, 52 
hexadecimal integer 

conversion, 20, 53 
form, 18 
type, 19 

integer 
differences from Kernighan and 

Ritchie, 213 
form, 18 
long, 20 
negative, 19 
octal. See Octal constants 
type, 19 

manifest, 194, 195, 201 
string. See String literals 
summarized, 222 
type, 104 

Continuation character (\), 15 
continue statement, 154 
Control, returning, 162 
Conventions, notational, 6 
Conversions 

actual arguments, 185 
assignment, 140 
constant expressions, 52 
constants, 52 
enumeration types, 146 
floating types, 144 
formal parameters, 176, 186 
function call, 147, 185 
function prototypes, 147 
hexadecimal constants, 53 
implicit, 146 
octal constants, 53 
operator, 147 
pointer types, 145 
range of values, effects on, 52 
signed integral types, 140, 146 
structure types, 146 
type cast, 147 
union types, 146 
unsigned integral types, 142, 146 
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Conversions (continued) 
usual arithmetic, 115, 215 
void type, 147 

CTRL+Z character, 12 

Data type categories, 53 
Data types. See Types 
Decimal integer constants, 18, 19 
Declarations 

defining, 32 
form, 47 
formal parameter names, 77 
formal parameters, 175, 176 
forward. See Function declarations 

(prototypes) 
function. See Function declarations 

(prototypes) 
pointer, 54, 72, 181 
referencing, 32 
storage allocation, 32 
summarized, 228 
type, 95 
typedef, 95, 96 
variable 

See also Variable declarations 
array, 70 
default storage class, 84 
described, 31 
enumeration, 63 
external, 82, 83 
form, 61 
internal, 82, 86 
multidimensional arrays, 71 
pointer, 72 
simple, 62 
structure, 65 
union, 68 

Declarators 
abstract, 98 
array, 54 
complex, 55, 59 
described, 54 
function, 54 
parentheses, enclosed in, 55 
poin ter, 54 , 
special keywords, used with, 59 

Decrement operator (--), 134 
default keyword, 163 
Default return type, 77 
Default storage class 

external variable declarations, 84 
function declarations, 88 
internal variable declarations, 86 

# define directive 195 
defined (identifier) constant expression, 

205 

236 

defined preprocessor operator, 193, 
194, 217 

Defining declaration, 83 
Definitions 

function 
described, 32, 169, 171 
full prototype form, 171 
obsolescent form, 172 
storage class, 172 
summarized, 230 
visibility, 172 

removing, 201 
storage allocation, 32 
variable 

described, 32, 83 
storage class, 83 
summarized, 230 
visibility, 83, 86 

Differences from Kernighan and 
Ritchie, 215 

Digits, 12 
Dimensions. See Multidimensional 

arrays 
Directives 

constant expressions, used in, 113, 
205 

# define, 195 
described, 31, 193 
differences from Kernighan and 

Ritchie, 217 
# elif 

described, 204 
differences from Kernighan and 

Ritchie, 217 
nesting, 205 

# else, 204, 205 
# endif, 204, 205 
# if, 204, 205, 217 
# ifdef, 208, 217 
# ifndef, 208, 217 
# include, 202 
lifetime, 33 
# line, 208 
restricted constant expressions, 113 
summarized, 230 
#undef, 201 

Division operator U), 122 
do statement 

described, 155 
execution 

continuation of, 154 
termination of, 152 

Double brackets ([ ]), 7 
Double quotation mark (It). See 

Quotation marks 



double type 
conversion, 144 
described, 48 
internal representation, 52 
range of values, 50 
storage, 50 

Double-quotation-mark escape 
sequence. See &cape sequences 

Elements, 106, 107 
# elif directive 

described, 204 
differences from Kernighan and 

Ritchie, 217 
nesting, 205 

Ellipsis notation ( ... ), 7 
# else directive, 204, 205 
else keyword, 159 
# endif directive, 204, 205 
End-of-file character (CTRL+Z), 12 
entry keyword, 215 
enum type specifier, 63, 215 
Enumeration constants, 42, 64 
Enumeration expressions, 104 
Enumeration set, 63 
Enumeration types 

conversion, 146 
declaration, 63, 95 
described, 48 
differences from Kernighan and 

Ritchie, 215 
identifiers, 104 
range of values, 50 
storage, 50, 63 
tags 

defined, 42 
naming class, 42 
type declarations, 95 
variable declarations, 63 

Enumeration variables, 61 
envp, 36 
Equality operator (= = ), 126 
&cape sequences 

See a/so Character constants 
described, 13 
differences from Kernighan and 

Ritchie, 214 
\' (single quotation mark), 14 
\ a ~bell), 14 
\ b backspace), 14 
\\ backslashJ, 14 
\ f ( orm feed), 14 
\ " (double quotation mark), 14 
\n (new line), 14 
\ r (carriage return), 14 
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&cape sequences {continued} 
\ t (horizon tal tab), 14 
\ v (vertical tab), 14 

Evaluation 
order of, 129, 138 
unary plus (+), forcing order with, 

117 
Execution. See Program execution 
Exit from functions, 162 
Exponents, 20 
Expressions 

assignment, 111 
binary, 110 
case constant, 163 
constant. See Constant expressions 
described, 103 
enumeration, 104 
floating type, 104 
function call, 106 
grouping, 137 
integral, 104 
list, 105 
lvalue, 133 
member selection, 109, 218 
operators, used in, 110 
order of evaluation, 138 
parentheses, enclosed in, 111 
pointer, 104 
side effects, 113 
statements, 156 
string literal, 105 
structure, 104 
subscript, 106, 107 
summarized, 226 
switch, 163, 216 
ternary, 110 
type cast, 112 
unary, 110 
union, 104 

Extensions to ANSI C standard, 3 
extern storage class 

described, 82 
external variables, 83 
function 

declarations, 88 
definitions, 172 

function declarations, 180 
internal variables, 86 

External declarations 
described, 82 
function, 88 
variable, 83 

External level, 32 
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far keyword 
conversions, 186 
described, 59 
differences from Kernighan and 

Ritchie, 215 
listed, 26 

Fields. See Bit fields 
__ FILE-._ identifier, 209 
Files 

inclusion, 202 
name, changing, 208 
nesting, 203 

float type 
conversion, 144 
described, 48 
internal representation, 52 
range of values, 50 
storage, 50 

Floating point 
constants 

form, 20 
internal representation, 52 
negative, 20 

data-type category, 53 
expressions, 104 
identifiers, 104 
types 

described, 48 
internal representation, 52 

types, conversion of, 144 
for statement 

described, 157 
execution continuation, 154 
execution termination, 152 

Forcing evaluation order, 117 
Formal parameters 

conversion, 177, 186 
declaration, 178 
described, 77, 175 
following function header, 172 
identifiers, 178 
list, 171 
macro, 196 
names, 77 
naming class, 41 
obsolescent form, 175 
storage class, 178 
type checking, 178, 186 

Form-feed escape sequence (\ f), 14 
fortran keyword, 26, 59, 213 
Forward declarations. See Function 

declarations (prototypes) 
Function 

body, 172, 179 
calls 

argument type checking, 185 
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Function (continued) 
calls (continued) 

arguments,variable number of, 188 
conve~ions, 147, 185 
described, 170 
expressions, 106 
form, 105, 182 
indirect, 183 
operator, used as sequence point, 

114 
pointe~, use of, 183 
recursive, 188 

declarations (prototypes) 
arguments, variable number of, 78 
arguments, without, 79 
default return type, 77 
default storage class, 88 
described, 31, 169, 179 
differences from Kernighan and 

Ritchie, 21 
implicit, 180 
parameter list, 80 
pointer, 76 
pointer arguments, 79 
return type, 77, 180 
return value, 179 
storage class, 88, 180 
visibility, 88, 180 

definition 
full prototype form, 171 
obsolescent form, 172 

definitions. See Definitions function 
modifier ( ), 54 
names. See Identifie~ 
pointe~, 181, 183 
prototypes 
conve~ions, 147 
defined, 80, 169 

return type. See Return type 
type. See Return type 

Function-like macros, 194 
Functions 

described, 169 
exit from, 162 
identifiers, 105 
main, 35 
naming class, 41 
return value, 162 

Global 
level, 32 
lifetime, 37, 82 
variables 

described, 38 
initialization, 89 



Global (continued) 
variables (cont£nued) 

references to, 86 
visibility, 37 

goto statement, 158 
Greater-than operator (», 126 
Greater-than-or-equal-to operator 

(>=), 126 
Grouping, 137 

Hexadecimal 
constants 

See a/so &cape sequences 
conversion, 20, 53 
differences from Kernighan and 

Ritchie, 213 
form, 18 
sign extension, 20 
type, 19 

escape sequences, 13, 14, 214 
Horizontal-tab escape sequence (\ t), 14 
huge keyword 

conversion, 186 
described, 59 
differences from Kernighan and 

Ritchie, 215 
listed, 26 

Identifier lists, 175 
Identifiers 

See a/so Labels 
array, 104 
characters allowed, 24 
differences from Kernighan and 

Ritchie, 215 
enumeration, 104 
__ FILE-_, 209 
floating type, 104 
formal parameters, 178 
function, 105 
integral, 104 
length, 24 
__ LINE-_, 209 
modified, 54 
naming classes, 41 
pointer, 104 
structure, 104 
summarized, 221 
union, 104 

# if directive, 204, 205, 217 
if statement, 159 
# ifdef directive, 208, 217 
# ifndef directive, 208, 217 
# include directive, 202 
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Include files, 202, 203 
Increment operator (++), 134 
Indirection operator (*), 118 
Inequality operator (!= ), 126 
Initialization 

See a/so Assignments 
arrays, 89, 91, 94 
auto storage class, 89 
constant expressions, 113 
differences from Kernighan and 

Ritchie, 216 
fundamental types, 90 
global variables, 89 
link time, 84 
poin ters, 90 
register storage class, 89 
restrictions, 89 
static variables, 89 
string literals, 94 
structure variables, 89, 91 
union variables, 89, 91 

Insertion of files, 202 
int type 

conversion, 142 
described, 48 
differences from Kernighan and 

Ritchie, 214 
portability, 51 
range of values, 50, 51 
storage, 50 

Integer constants 
decimal, 18, 19 
differences from Kernighan and 

Ritchie, 213 
hexadecimal, 18, 19, 20 
long, 20 
negative, 19 
octal, 18, 19, 20 

Integral 
data-type category, 53 
expressions, 104 
identifiers, 104 
types 

conversion, 140, 142, 146 
described, 48 

Internal 
declarations, 82, 86 
representation, 52 

Internal level, 32 
Italics, 6 
Iterative statements 

do, 155 
for, 157 
while, 166 
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Keywords 
differences from Kernighan and 

Ritchie, 213 
listed, 25, 221 
notational conventions, 6 
special, 59, 73 

See also Special keywords 
statements, used in, 151 
system dependent, 26 

Labeled statements, 158 
Labels 

See also Identifiers 
case, 163 
default, 163 
described, 151 
form, 158 
naming class, 42 

Left-shift operator « <), 125 
Less-than operator «). See Relational 

operators 
Less-than-or-equal-to operator «=). 

See Relational operators 
Letters, 12 
Lifetime 

described, 37 
directives, 33 
global, 37, 82 
local, 37, 82 

Line control, 208 
# line directive, 208 
__ LINE-_ identifier, 209 
Lines, continuation, 15 
Linked lists, 66 
Local 

level, 32 
lifetime, 37, 82 
variables, 38, 179 

Logical-AND operator ~&&), 129 
Logical-NOT operator I), 117 
Logical-OR operator (II , 130 
long type 

conversion, 141 
described, 48 
differences from Kernighan and 

Ritchie, 214 
range of values, 50 
storage, 50 

long-double type, conversion, 145 
long-float type, 48 
Loops 

do statement, 155 
for statement, 157 
while statement, 166 

Lvalue expressions, 133 
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Macros 
actual arguments, 196 
# define directive, 195 
described, 194 
empty definition, 195 
example, with arguments, 199 
example, with side effects, 199 
function like, 194 
object like, 194 
side effects of arguments, 196 
# undef, effect of, 201 

Main function, 35 
Manifest constants, 194, 195, 201 
Members 

bit fields, 66 
naming class, 42 
referring to, 109 
structure, 65 
union, 68 

Member-selection expressions, 109, 218 
Member-selection operators (-> and .), 

109,218 
Modifiers 

array, 54, 70 
associativity, 55 
function, 54 
pointer, 54, 72 
precedence, 55 

Multidimensional arrays( 71, 107 
Multiplication operator *), 122 

Names. See Identifiers 
Naming classes, 41, 218 
near keyword, , 

conversions, 186 
described, 59 
differences from Kernighan and 

Ritchie~ 215 
listed, 26 ' 

Negation, 117 
Nested visibility, 38 
New-line escape sequence (\ n), 14 
Nongraphic escape sequences, 13 
NOT operator (!J. See Logical-NOT 

operator 
Notational conventions, 6 
Null statement, 161 
Number sign (#),193 

Object-like macros, 194 
Octal 

constants 
conversion, 20, 53 



Octal (continued) 
constants (continued) 

differences from Kernighan and 
Ritchie, 213 

form, 18 
sign extension, 20 
type, 19 

escape sequences, 13, 14 
One's complement operator e), 117 
Operands, 103 
Operators 

addition (+),123 
address of (&), 119 
arithmetic negation (-), 117 
assignment 

compound, 136 
listed, 133 
simple (= ), 135 

associativIty, 137 
binary 

described, 115 
table, 17 

bitwise AND (&), 128 
bitwise complement e} 117 
bitwise-exclusive OR ( ), 128 
bitwise-inclusive OR (:), 128 
complement, 117 
compound assiQnment, 136 
conditional (? :), 131 
conversions 147 
decrement (--), 134 
differences from Kernighan and 

Ritchie, 220 
division (J), 122 
equality (= = ), 126 
expression7 used in, 110 
increment t++), 134 
indirection (*), 118 
inequality (!= ), 126 
left-shift ( < <), 125 
listed, 16, 226 
logical 

described, 129 
evaluation, order of, 129 

logical AND (&&), 129 
logical NOT (!), 117 
logical OR ( : r), 130 
multiplication (*), 122 
one's complement e), 117 
precedence, 137 
preprocessor 

differences from Kernighan and 
Ritchie, 217 

stringizing, 217 
token pasting, 217 

preprocessor specific, listed, 194 
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Operators (continued) 
relation a) (~<,<= ,>=),126 
remainder ('/0), 122 
right shift (> », 125 
sequence points, used as, 114 
sequential evaluation (,), 130 
shift « < and> », 125 
simple assignment (= ), 135 
sizeof, 120 
subtraction (-), 124 
ternary (? :), 115, 131 
two's complement (-), 117 
unary, 16, 115 

OR operators 
bitwise exclusive C'), 128 
bitwise inclusive (:), 128 
logical ( : I), 130 

Overview, 3 

Parameter list, 80 
Parameters 

See also Arguments 
argc,35 
argv, 35 
envp, 36 
formal. See Formal parameters 
macro, 196 
main function, 35 

Parentheses 
complex declarators, used in, 55 
expressions, used in, 111 
function calls, used in, 105 
function declarators, used in, 54, 77 
macros, used in, 199 

pascal keyword, 26, 59, 213 
Passing by 

reference, 185 
value, 182, 185 

Pointer 
modifier (*), 54, 72 
void (void *),72 

Pointer data-type category, 53 
Pointers 

adding, 124 
arithmetic, 124 
comparisons, 127 
const, modified by, 73 
conversion, 145 
declarations, 54, 72, 181 
differences from Kernighan and 

Ritchie, 217 
expressions, 104 
function calls through, 183 
functions, 181, 183 
identifiers, 104 
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Pointers (continued) 
implicit conversion, 146 
initialization, 90 
storage, 73 
structure, 72 
subtraction, 125 
union, 73 
volatile, modified by, 73 

Portability, 51 
Pound sign (# ). See Number sign 
Pragmas 

described, 31, 193 
differences from Kernighan and 

Ritchie, 217 
form, 209 

Precedence 
modifiers, 55 
operators, 137 

Predefined identifiers, 209 
Preprocessor directives. See Directives 
Preprocessor operators 

described, 193 
listed, 194 

Program execution, 35 
Program structure, 31 
Prototypes, function, 80, 169 

See a/so Function declarations 
(prototypes) 

Punctuation characters, 12 

Quotation marks (") 
# include directIves, used in, 202 
notational conventions, 8 
representation, 14, 214 

Recursion, 188 
Reference, passing by, 185 
References to global variables, 83, 86 
Referencing declarations, 83 
register storage class 

described, 86 
initialization, 89 
internal variables, 86 
lifetime, 82 

Relational operators (>, <, < = ,> = ), 
126 

Remainder operator (%), 122 
Representable character set, 11 
Representation, internal, 52 
Reserved words. See Keywords 
Restricted constant expressions, 113, 

205 
return statement, 162 
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Return type 
declaration, 180 
default, 77 
described, 77, 173 
implicit, 180 

Return value, 162, 179 
Right-shift operator (> », 125 

Scalar data-type category, 53 
Selection statements, 159, 163 
Sensitivity, case, 12 
Separators, 224 
Sequence points 

described, 103, 114 
listed, 114 
operators, other than, 114 

Sequential-evaluation operator (,), 130 
Shift operators « < and> »,125 
short type 

conversion, 141 
described, 48 
differences from Kernighan and 

Ritchie, 214 
range of values, 50 
storage, 50 

Side effects 
expressions, 103, 113 
macros, used with, 196, 199 
sequence points, used with, 114 

Sign extension, 20, 22 
signed 

char type, 48, 216 
int type, 48 
keyword, 49, 214 
long int type, 217 

See also long type 
long type, 48, 217 
short int type, 48, 217 
short type, 48, 217 
type, 48, 214 

Simple variable declarations, 62 
Simple-assignment operator (=), 135 
Single-quotation-mark escape sequence 

('). See Escape sequences 
sizeof operator, 120 
Source files, 33 
Special characters, 12 
Special keywords 

See also Keywords, special 
conversions, 186 
declarators, used with, 73 
differences from Kernighan and 

Ritchie, 213 
Standard directories, 202 



Statement labels 
described, 151 
form, 158 
naming class, 42 

Statements 
body, 151 
break, 152 
compound, 153 
continue, 154 
do, 155 
expression, 156 
for, 157 
form, 151 
goto, 158 
if, 159 
keywords, 151 
labeled, 151, 158 
listed, 151 
null, 161 
return, 162 
summarized, 229 
switch, 163 
while, 166 

static storage class 
described, 82 
external variables, 83 
function 

declarations, 88, 180 
definitions, 172 

initialization, 89 
internal variables, 86 

Storage 
bit fields, 67 
global, 82 
local, 82 
type 

char, 50 
double, 50 
float, 50 
int, 50, 51 
long, 50 
unsigned char, 50 
unsigned int, 50, 51 
unsigned long, 50 
void, 50 

types 
array, 71, 108 
enumeration, 50, 63 
pointer, 73 
structure, 67 
union, 69 

Storage allocation for variables, 32 
Storage classes 

described, 82 
external variable declarations, 84 
formal parameters, 178 
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Storage classes (cont£nued) 
function 

declarations, 180 
function declarations, 88 
function definitions, 172 
internal variable declarations, 86 

Storage-class specifers 
extern. See extern storage class 

Storage-class specifiers 
auto, 82,86 
listed, 82 
register, 82, 86 
static. See static storage class 

String concatenation, 23 
String literals 

concatenation, 23 
form, 22, 105 
initializers, 94 
length, 24, 105 
storage, 24 
type, 24 

Stringizing preprocessor operator (# ) 
described, 194, 196 
differences from Kernighan and 

Ritchie, 217 
Strings. See String literals 
struct type-specifier, 65 
Structures 

conversion, 146 
declaration, 65, 95 
differences from Kernighan and 

Ritchie, 215, 216, 217 
expressions, 104 
identifiers, 104 
initialization, 89, 91 
members. See Members 
pointers to, 73 
storage, 67 
tags 

See also Tags 
naming class, 42 
type declarations, 95 
variable declarations, 66 

Subscript expressions, 106, 107 
Subtraction operator (-), 124 
switch ~tatement 

cons~ant expressions, used in, 163 
described, 163 
differences from Kernighan and 

Ritchie, 216 
termination of execution, 152 

Symbolic constants. See Manifest 
constants 

Syntax 
conventions. See Notational 

conventions 

243 



Language Reference Index 

Syntax (continued) 
summary, 219 

System-dependent keywords, 26 

Tab escape sequences, 14 
Tags 

See also Structure tags 
enumeration, 63, 95 
naming class, 42 
structure, 66, 95 
union, 95 

Ternary expressions, 110 
Ternary operator (? :), 115, 131 
Token-pasting preprocessor operator 

(## ) 
described, 194, 197 
differences from Kernighan and 

Ritchie, 217 
Tokens, 16,27,221 
Transfer statements 

break, 152 
continue, 154 
goto, 158 
labeled statements, 158 

Two's complement operator (-),117 
Type 

checking. See Arguments 
declarations, 95 
modifiers 

differences from Kernighan and 
Ritchie, 215 

names 
argument-type lists, used in, 79 
described, 97 
sizeof, used with, 120 
void, 186 

specifiers 
abbreviations, 50 
const,49 
differences from Kernighan and 

Ritchie, 214 
enum, 48, 63 
fundamental types, 48 
struct,65 
union, 68 
volatile, 49 

Type-cast conversions, 147 
Type-cast expressions 

constraints, 112 
defined, 112 
void, to and from, 112 

typedef 
declarations, 95, 96 
types, 42, 96 
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Types 
array 

declaration, 54, 70 
initialization, 89, 91, 94 
multidimensional, 71 
storage, 71, 108 

char. See char type 
const 

described, 49 
pointers, used with, 72 

conversions. See Conversions 
differences from Kernighan and 

Ritchie, 214 
double, 48, 50, 52 
enumeration. See Enumeration types 
float. See float type 
floating point 

described, 48 
internal representation, 52 

function. See Return type 
fundamental 

declaration, 62 
described, 48 
differences from Kernighan and 

Ritchie, 215 
initialization, 90 
listed, 48 
range of values, 50 
storage, 50 

into See int type 
integral 

conversion, 140, 142, 146 
described, 48 

long double, differences from 
Kernighan and Ritchie, 216 

long. See long type 
long float, 216 
pointer 

conversion, 145 
declaration, 54, 72 
implicit conversion, 146 
initialization, 90 
storage, 73 

short. See short type 
signed 

char, 48, 216 
int, 48 
long, 48 
short, 48 

structure 
conversion, 146 
declaration, 65, 95 
initialization, 89, 91 
pointers to, 73 
storage, 67 

typedef, 42, 96 



Typ~s (contz'nued) 
umon 

conversion, 146 
declaration, 68, 95 
initialization, 89, 91 
pointers to, 73 
storage, 69 

unsigned char. See unsigned char 
type 

unsigned into See unsigned int type 
unsigned long. See unsigned long 

type 
unsigned short. See unsigned short 

type 
user defined, 95, 96 
void, 49, 50 

See also void types 
volatile 

described, 49 
pointers, used with, 73 

Unary expressions, 110 
Unary operators, table, 16, 115 
Unary plus operator (+),117 
# undef directive, 201 
Underscore character (_), 12, 24 
Union declarations 

types, 95 
variables, 68 

union type specifier, 68 
Unions 

conversion, 146 
declaration, 68, 95 
differences from Kernighan and 

Ritchie, 216, 217 
expressions, 104 
identifiers, 104 
initialization, 89, 91 
members 

described, 68 
naming class, 42 
referring to, 109 

pointers to, 73 
storage, 69 
tags, 42, 95 

unsigned 
char type 

conversion, 142 
described, 48 
differences from Kernighan and 

Ritchie, 214, 216 
range of values, 50 
storage, 50 

int type 
conversion, 143 
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unsigned (contz'nued) 
int type (cont£nued) 

described, 48 
portability, 51 
range of values, 50, 51 
storage, 50 

keyword, 49, 214 
long int type. See unsigned long type 
long type 

conversion, 143 
described, 48 
differences from Kernighan and 

Ritchie, 214, 216 
range of values, 50 
storage, 50 

short int type. See unsigned short 
type 

short type 
conversion, 142 
described, 48 
differences from Kernighan and 

Ritchie, 216 
range of values, 50 
storage, 50 

type, 48, 214 
Unspecified type, pointer to (void *), 

72 
User-defined types. See Types 
Usual arithmetic conversions, 115, 217 

Values 
range of, 50, 51, 52 
passing by, 182, 185 

Variable names. See Identifiers 
Variables 

array 
declaration, 70 
initialization, 91, 94 
storage, 71 

auto, 82, 86, 89 
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