
JM1L~,

)MICROSOFT®C
FOR THE MS-DOS® OPERATING SYSTEM

)

) LANGUAGE REFERENCE

Information in this document is subject to change without notice and does
not represent a commitment on the part of Microsoft Corporation. The
software described in this document is furnished under a license agreement
or nondisclosure agreement. The software may be used or copied only in
accordance with the terms of the agreement. The purchaser may make one
copy of the software for backup purposes. No part of this manual may be
reproduced or transmitted in any form or by any means, electronic or (
mechanical, including photocopying and recording, for any purpose other
than the purchaser's personal use without the written permission of
Microsoft Corporation.

~ Copyright Microsoft Corporation, 1984-1987. All rights reserved.
Simultaneously published in the U.S. and Canada.

Microsoft® I :MS® I :MS-DOS® I CodeView® I and XENIX® are registered trademarks
of Microsoft Corporation.

IBM® is a registered trademark of International Business Machines Corporation.

Document Number 410840018-500-R02-0887
Part Number 048-014-098

~~O~F CONTENTS

In trod uction ... 1
1.1 Overview of the C Language.~ 3
1.2 About This Ma,nual .. 4
1.3 Notational Conventions ... 6

2 Elements of C ... 9
2.1 Introduction ... 11
2.2 Character Sets ... 11

2.2.1 Letters, Digits, and Underscore 12
2.2.2 White-Space Characters 12
2.2.3 Punctuation and Special Characters 12
2.2.4 Escape Sequences ... 13
2.2.5 Operators .. 16

2.3 Constants ... 18
2.3.1 Integer Constants .. 18
2.3.2 Floating-Point Constants 20
2.3.3 Character Constants 21
2.3.4 String Literals ... 22

2.4 Identifiers ... 24
2.5 Keywords ... 25
2.6 Comments .. 26
2.7 Tokens ... 27

) 3 Program Structure 29
3.1 Introduction ... 31
3.2 Source Program ... 31
3.3 Source Files .. 33

iii

3.4 Functions and Program Execution 35
3.5 Lifetime and Visibility ... 36

3.5.1 Blocks ... 36
3.5.2 Lifetime .. 37
3.5.3 Visibility ... 37
3.5.4 Summary .. 39

3.6 Naming Classes .. 41

4 Declarations ... 45
4.1 Introduction ... 47
4.2 Type Specifiers ... 48

4.2.1 Storage for Fundamental Types 50
4.2.2 Range of Values ... 52
4.2.3 Data-Type Categories 53

4.3 Declarators ... 54
4.3.1 Pointer, Array, and

Function Declarators 54
4.3.2 Complex Declarators 55
4.3.3 Declarators with Special I<eywords 59

4.4 Variable Declarations ... 61
4.4.1 Simple Variable Declarations 62
4.4.2 Enumeration Declarations 63 .
4.4.3 Structure Declarations 65
4.4.4 Union Declarations .. 68
4.4.5 Array Declarations ... 70
4.4.6 Pointer Declarations 72

4.5 Function Declarations (Prototypes) 76
4.5.1 Formal Parameters ... 76
4.5.2 Return Type ... 77
4.5.3 The List of Formal Parameters 77
4.5.4 Summary .. 79

iv

4.6 Storage Classes .. 82
4.6.1 Variable Declarations

at the External Level. 83
4.6.2 Variable Declarations

at the Internal Level 86
4.6.3 Function Declarations

at the External and Internal Levels 88
4.7 Initialization .. 8g

4.7.1 Fundalnental and Pointer Types gO
4.7.2 Aggregate Types .. g1
4.7.3 String Initializers ... g4

4.8 Type Declarations .. g5
4.8.1 Structure, Union, and

Enumeration Types .. g5
4.8.2 Using typedef Declarations g6

4.g Type Names ... g7

5 Expressions and Assignments 101
5.1 Introduction ... 103
5.2 Operands .. 103

5.2.1 Constants .. 104
5.2.2 Identifiers .. 104
5.2.3 Strings .. 105
5.2.4 Function Calls ... 105
5.2.5 Subscript Expressions 106

5.2.5.1 Unidimensional-Array References 106
5.2.5.2 Multidimensional-Array Reference •........ 107

5.2.6 Member-Selection Expressions 10g
5.2.7 Expressions with Operators 110
5.2.8 Expressions in Parentheses 111
5.2.9 Type-Cast Expressions 112
5.2.10 Constant Expressions 112
5.2.11 Side Effects .. 113
5.2.12 Sequence Points ... 114

v

Operators ... 114
5.3.1 Usual Arithmetic Conversions 115
5.3.2 Complement and Unary Plus Operators 117
5.3.3 Indirection and Address-of Operators 118
5.3.4 The sizeof Operator 120
5.3.5 Multiplicative Operators 121
5.3.6 Additive Operators 123
5.3.7 Shift Operators .. 125
5.3.8 Relational Operators 126
5.3.9 Bitwise Operators ... 128
5.3.10 Logical Operators ... 129
5.3.11 Sequential-Evaluation Operator 130
5.3.12 Conditional Operator 131

5.4 Assignment Operators .. 133
5.4.1 Lvalue Expressions 133
5.4.2 Unary Increment and Decrement 134
5.4.3 Simple Assignment 135
5.4.4 Compound Assignnlent 136

5.5 Precedence and Order of Evaluation 137
5.6 Type Conversions ... 140

5.6.1 Assignment Conversions 140
5.6.1.1 Conversions from

Signed Integral Types 140
5.6.1.2 Conversions from

Unsigned Integral Types 142
5.6.1.3 Conversions from

Floating-Point Types 144
5.6.1.4 Conversions to and from

Pointer Types 145
5.6.1.5 Conversions from Other Types 146

5.6.2 Type-Cast Conversions 147
5.6.3 Operator Conversions 147
5.6.4 Function-Call Conversions 147

6 Statements .. 149

6.1 Introduction ... 151
6.2 The break Statement ... 152

vi

6.3 The Compound Statement 153
6.4 The continue Statelnent ... 154

) 6.5
6.6

The do Statement .. 155
The Expression Statement 156

6.7 The for Statement .. 157
6.8 The goto and Labeled Statements 158
6.9 The if Stateillent .. 159
6.10 The Null Statenlent ... 161
6.11 The return Statenlent .. 162
6.12 The switch Statenlent .. 163
6.13 The while Statement .. 166

7 Functions ... 167
7.1 Introduction ... 16U
7.2 Function Definitions ... 171

7.2.1 Storage Class ... 172
7.2.2 Return Type and Function Name 173
7.2.3 Formal Parameters 175
7.2.4 Function Body ... 17U

7.3 Function Prototypes (Declarations) 17U
7.4 Function Calls .. 182

7.4.1 Actual Arguments .. 185
7.4.2 Calls with a Variable

Number of Arguments 188
7.4.3 Recursive Calls .. 188

)

vii

Preprocessor Directives
and Pragmas .. 191

8.1 Introduction ... 193
8.2 Manifest Constants and Macros 194

8.2.1 Preprocessor Operators 194
8.2.2 The # define Directive 195

8.2.2.1 Stringizing Operator (#) 196
8.2.2.2 Token-Pasting Operator (# #) 197

8.2.3 The # undef Directive 201
8.3 Include Files ... 202
8.4 Conditional Compilation .. 204

8.4.1 The #if, #elif, # else, and
endif Directives .. 204

8.4.2 The # ifdef and # ifndef Directives 208
8.5 Line Control ... 208
8.6 Pragmas ... 209

Appendixes
A Differences ... 213

B Syntax Summary 219
B.1 Tokens ... 221

B.l.l I<eywords .. 221
B.l.2 Identifiers .. 221
B.l.3 constants .. 222
B.l.4 Strings .. 224
B.l.5 Operators .. 224
B.l.6 Separators ... 224

viii

B.2 Expressions .. 224
B.3 Declarations ... 226
B.4 Statements ... 22{)
B.5 Definitions .. 230
B.6 Preprocessor Directives .. 230
B.7 Pragmas ... 231

In d ex .. 233

)

ix

Table 2.1

Table 2.2

Table 2.3
Table 2.4

Table 2.5

Table 2.6

Table 2.7
Table 2.8

Table 3.1

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 5.1

Table 5.2

Table 5.3
Table 5.4

x

Punctuation and Special Characters 13
:Escape Sequellces ... 1-1
Unary Operators .. 16
Binary and Ternary Operators 17
Examples of Integer Constants 10
Types Assigned to
Octal and Hexadecimal Constants 19

Examples of Long Integer Constants 20
Examples of Character Constants 22
Summary of Lifetime and Visibility 39

Fundamental Types 48

Type Specifiers and Abbreviations 50
Storage and Range of Values for
Fundamental Types 51
C Data-'Type Categories 53

Precedence and Associativity
of C Operators .. 137
Conversions froln Signed Integral Types 141

Conversions fron1 Unsigned Integral Types .. 142

Conversions fron1 Floating-Point Types 144

,', I

CHAPTER

INTRODUCTION

1.1 Overview of the C Language 3
1.2 About This Nra,nual .. 4
1.3 Notational Conventions .. 6

)

)

In trod uction

1.1 Overview of the C Language

The C language is a general-purpose programming language known for its
efficiency, economy, and portability. While these characteristics make it a
good choice for almost any kind of programming, C has proven especially
useful in systems programming because it facilitates writing fast, compact
programs that are readily adaptable to other systems. Well-written C pro­
grams are often as fast as assembly-language programs, and they are typi­
cally easier for programmers to read and maintain.

C was designed to combine efficiency and power in a relatively small
language. C does not include built-in functions to perform tasks such as
input and output, storage allocation, screen manipulation, and process
control. To perform such tasks, C programmers rely on run-time libraries.

This design makes C both flexible and compact. Because the language is
relatively sparse, it neither assumes nor imposes a particular programming
model. You can use the run-time rou tines supplied, or tailor your own
variations for special purposes. The design also helps to isolate language
features from processor-specific features in a particular C implementation,
which makes it easier to write portable code. While the strict definition of
the language makes it independent of any particular operating system or
machine, you can easily add system-specific routines to take advantage of
the most efficient features of a particular machine.

Note

Microsoft is committed to conformance wi'th the developing standard
for the C language as set forth in the Draft Proposed American
National Standard-Programming Language C (hereinafter referred to
as the ANSI C standard). Microsoft extensions to the ANSI C standard
are noted in the text. Because the extensions are not a part of the
ANSI C standard, their use may restrict portability of programs be­
tween systems. See your compiler guide for information on enabling
and disabling Microsoft extensions.

The C language includes the following significant features:

• A full set of loop, conditional, and transfer statements to control
program fl?w logically and efficiently and to encourage structured
programmmg.

• A large set of operators. Many of these operators correspond to
common machine instructions, allowing a direct translation in to

3

Microsoft C Language Reference

machine code. The variety of operators allows you to specify
different kinds of operations clearly and with a minimum of code.

• Several sizes of integers, as well as single- and double-precision
floating-point types. You can also design more complex data types,
such as arrays and data structures, to suit specific program needs.

• Declarations of "pointers" to variables and functions. A pointer to
an item corresponds to the item's machine address. Pointers can
make programs more efficient, since they let you refer to items in
the same way the machine does. C also supports pointer arith­
metic, which allows you to access and manipulate memory ad­
dresses directly.

• A C preprocessor that acts on the text of files before they are com­
piled. You can use the C preprocessor to define program constants,
substitute fast macro definitions for function calls, and compile
parts of programs based on specified conditions.

C is a flexible language that leaves many programming decisions up to
you. In keeping with this philosophy, C imposes few restrictions in matters
such as type conversion. Although this characteristic of the language can
make your programming job easier, you must know the language well to
understand how programs will behave.

1.2 About This Manual

The Microsoft C Language Reference defines the C language as imple­
mented by Microsoft Corporation. It is intended as a reference for pro­
grammers experienced in C or other programming languages. Thorough
knowledge of programming fundamentals is assumed.

Note

Appendix A of this manual provides a quick comparison between
Microsoft C and the definition of C found in Appendix A of The C Pro­
gramming Language by Brian W. Kernighan and Dennis M. Ritchie.
Appendix B of this manual summarizes the syntax of the C language as
defined by Microsoft.

The run-time library functions available for use in Microsoft C programs
are discussed in a separate manual, the !vficrosoft C Run- Time Library
Reference.

4

)

Introduction

Consult your compiler guide for an explanation of how to compile and link
C programs on your system; your compiler guide also contains information
specific to the implementation of C on your system.

This manual is organized as follows:

Chapter 2, "Elements of C," describes the letters, numbers, and symbols
that can be used in C programs and the combinations of characters that
have special meanings to the C compiler.

Chapter 3, "Program Structure," discusses the components and structure
of C programs and explains how C source files are organized.

Chapter 4, "Declarations," describes how to specify the attributes of C
variables, functions, and user-defined types. C provides a number of
predefined data types and allows the programmer to declare "aggregate"
types and pointers. Function prototypes, a relatively new feature of C, are
discussed in this chapter, as well as in Chapter 7, "Functions."

Chapter 5, "Expressions and Assignments," describes the operands and
operators that form C expressions and assignments. The chapter also
discusses the type conversions and side effects that may occur when ex­
pressions are evaluated.

Chapter 6, "Statements," describes C statements, which control the flow
of program execution.

Chapter 7, "Functions," discusses C functions. In particular, this chapter
explains function prototypes, formal parameters, and return values, as
well as how to define, declare, and call functions.

Chapter 8, "Preprocessor Directives and Pragmas," describes the instruc­
tions recognized by the C preprocessor, a text processor that is automati­
cally invoked before compilation. This chapter also introduces "pragmas,"
special instructions to the compiler that you may place in source files.

Appendix A, "Differences," lists the differences between Microsoft C and
the description of the C language found in Appendix A of The C Program­
ming Language by Brian W. Kernighan and Dennis M. Ritchie.

Appendix B, "Syntax Summary," summarizes the syntax of the C language
as implemented by Microsoft.

The remainder of this chapter describes the notational conventions used
throughou t the manual.

5

Microsoft C Language Reference

1.3 Notational Conventions

This manual uses the following notational conventions:

Convention

keywords

placeholders

Examples

Input: output

6

Meaning

Bold type indicates text that must be typed
exactly as shown. Text that is shown in bold
type includes C keywords, such as goto and
char, and operators, such as the addition opera­
tor (+) and the multiplication operator (lie).

Terms in italics may appear in syntax descrip­
tions or in the text. In these instances, the terms
are being used as placeholders that you would
replace with specific terms or values in an actual
C program. For example, in

goto name;

name appears in italics to show that this is a
general form for the goto statement. In an
actual program statement, you must supply a
particular identifier for the placeholder name.

Occasionally, italics are used to emphasize par­
ticular words in the text.

Examples of C programs and program elemen ts
appear in a special typeface to look similar to
listings on the screen or the output of commonly
used computer printers:

int x, y;

swap (&ex, &ey);

Some examples show both program output and
user input; in these cases, input is shown in a
darker fon t.

Repeating

) elements ...

[opt£onal £tems]

Introduction

Vertical ellipsis dots are used in program exam­
ples or syn tax to indicate that a portion of the
program is omitted.

In the following example, the vertical ellipsis
dots indicate that zero or more declarations, fol­
lowed by one or more statements, may appear
between the braces:

{
[declarat£on]

statement
[statement]

}

In the following excerpt, two program lines are
shown. The ellipsis dots between the lines indi­
cate that additional program lines appear
between these two lines but are not shown:

int x, y;

swap (&x, &y);

Horizontal ellipsis dots following an item indi­
cate that more items of the same form may
appear. For instance,

= {express£on [, express£on]. .. }

indicates that one or more expressions separated
by commas may appear between the braces
({ }).

Double brackets enclose optional items in syntax
descriptions. For example,

return [express£on];

is a syntax description showing that express£on
is an optional item in the return statement.

Single brackets are used to indicate brackets
used by C-Ianguage array declarations and sub­
script expressions. For instance, a [10] is an
example of brackets in a C su bscript expression.

7

Microsoft C Language Reference

"Defined terms"

lillY +NAMES

8

Quotation marks set off terms defined in the
text. For example, the term "token" appears in
quotation marks when it is defined.

Some C constructs, such as strings, require quo­
tation marks. Quotation marks required by the
language have the form" "rather than " " . For
example,

"abc"

is a C string.

Quotation marks also occasionally indicate a
term that is being used in a colloquial sense.

Names of special key combinations, such as
CTRL+Z, appear in small capital letters.

)"

) CHAPTER

ELEMENTS OF C
2.1 Introduction ... 11
2.2 Character Sets .. 11

2.2.1 Letters, Digits, and Underscore 12
2.2.2 White-Space Characters 12
2.2.3 Punctuation and Special Characters 12
2.2.4 Escape Sequences 13
2.2.5 Operators .. 16

) 2.3 Constants ... 18 ,',
2.3.1 Integer Constants 18
2.3.2 Floating-Point Constants 20
2.3.3 Character Constants 21
2.3.4 String Literals .. 22

2.4 Identifiers ... 24
2.5 I{eywords .. 25
2.6 Comments .. 26
2. 7 Tol<:ens .. 27

)

(

Elements of C

2.1 Introduction

This chapter describes the elements of the C programming language,
including the names, numbers, and characters used to construct a C pro­
gram. The following topics are discussed in the remainder of this chapter:

• Character sets

• Constants

• Identifiers

• Keywords

• Comments

• Tokens

2.2 Character Sets

Two character sets are defined for use in C programs: the "C character
set" and the "representable character set."

The C character set consists of the letters, digits, and punctuation marks
having specific meanings in the C language. You construct a C program by
combining the characters of the C character set into meaningful state­
ments.

The C character set is a subset of the representable character set. The
representable character set includes each letter, digit, and symbol that
can be represented graphically with a single character. The extent of the
representable character set depends on the type of terminal, console, or
character device being used.

All characters in a C program must be part of the C character set. How­
ever, string literals, character constants, comments, and file names in
include directives can include any character from the representable
character set.

Since each character in the C character set has an explicit meaning in the
language, the compiler generates error messages when it finds inappropri­
ate or inappropriately used characters in a program.

Sections 2.2.1 - 2.2.5 describe the characters and symbols of the C charac­
ter set and explain how and when to use them.

11

Microsoft C Language Reference

2.2.1 Letters, Digits, and Underscore

The C character set includes the uppercase and lowercase letters of the
English alphabet, the 10 decimal digits of the Arabic number system, and
the underscore (_) character.

• Uppercase English letters

ABCDEFGHIJKLMNOPQRSTUVWXYZ

• Lowercase English letters

abcdefghijklmnopqrstuvwxyz

• Decimal digits

0123456789

• Underscore character (_)

These characters are used to form the constants, identifiers, and keywords
described later in this chapter.

The C compiler treats uppercase and lowercase letters as distinct charac­
ters. For example, if a lowercase a is specified in an identifier, you cannot
substitute an uppercase A; you must use the lowercase letter.

2.2.2 "White-Space Characters

Space, tab, line-feed, carriage-return, form-feed, vertical-tab, and new-line
characters are called "white-space characters" because they serve the same
purpose as the spaces between words and lines on a printed page. These
characters separate the items you define, such as constants and identifiers,
from other items in a program.

The C compiler treats a CTRL+Z character as an end-of-file indicator. It
ignores any text after the CTRL+Z mark.

The C compiler ignores white-space characters unless you use them as
separators or as components of character constants or string literals.
Therefore, you can use extra white-space characters to make a program
more readable. The compiler also treats comments as white space. (Com­
ments are described in Section 2.6.)

2.2.3 Punctuation and Special Characters

The punctuation and special characters in the C character set have vari­
ous uses, from organizing program text to defining the tasks that the

12

Elements of C

compiler or compiled program will carry out. Table 2.1 lists the punctua­
tion and special characters in the C character set.

Table 2.1

Punctuation and Special Characters

Character Name Character Name

Comma Exclamation mark
Period Vertical bar
Semicolon / Forward slash
Colon \ Backslash

? Question mark Tilde
Single quotation mark + Plus sign

" Double quotation mark # Number sign

(Left parenthesis % Percent sign

) Right parenthesis & Ampersand

[Left bracket Caret

] Right bracket * Asterisk
{ Left brace Minus sign
} Right brace Equal sign

< Left angle bracket > Right angle bracket

These characters have special meanings in C. Their uses are described
throughout this manual. Any punctuation character from the represent­
able character set that does not appear in Table 2.1 can be used only in
string literals, character constants, comments, and file names in # include
directives.

2.2.4 Escape Sequences

Strings and character constants can contain "escape sequences." Escape
sequences are character combinations representing white-space and non­
graphic characters. An escape sequence consists of a backslash (\) followed
by a letter or by a combination of digits.

Escape sequences are typically used to specify actions such as carriage
returns and tab movements on terminals and printers and to provide

13

! !

Microsoft C La.ngua.ge Reference

literal representations of non printing characters and characters that nor­
mally have special meanings, such as the double-quotation-mark character
("). Table 2.2 lists the C escape sequences.

Table 2.2

Escape Sequences

Escape
Sequence

\n
\t
\v
\b
\r
\f
\a
\ '
\"
\\
\ ddd

\xddd

Name

New line
Horizon tal tab

Vertical tab
Backspace
Carriage return
Form feed
Bell (alert)
Single quotation mark
Double quotation mark

Backslash

ASCII character
in octal notation
ASCII character
in hexadecimal notation

If a backslash precedes a character that does not appear in Table 2.2, the
backslash is ignored and the character is represented literally. For exam­
ple, the pattern \c represents the character c in a string literal or char­
acter constant. However, the use of lowercase letters in escape sequences is
reserved by ANSI for future standardization. Therefore, occurrences of
undefined escape sequences, though currently innocuous, could pose future
portability problems.

The sequence \ ddd allows you to specify any character in the ASCII
(American Standard Code for Information Interchange) character set as a
three-digit octal character code. Similarly, the sequence \xddd allows you
to specify any ASCII character as a three-digit hexadecimal character
code. For example, you can give the ASCII backspace character as the nor­
mal C escape sequence (\b), or you can code it as \010 (octal) or \x008
(hexadecimal). .

You can use only the digits a through 7 in an octal escape sequence.
Though you do not need to use all three digits, you must use at least one.

14

Elements of C

For example, you can specify the ASCII backspace character in octal nota­
tion as \10. Similarly, you must use at least one digit for a hexadecimal
escape sequence, but you can omit the second and third digits. Therefore
you could specify the hexadecimal escape sequence for the backspace char­
acter either as \x08 or as \x8.

Note

When you use octal and hexadecimal escape sequences in strings, it is
safest to give all three digits of the escape sequence. If you don't spec­
ify all digits of the escape sequence, and the character immediately fol­
lowing the escape sequence happens to be an octal or hexadecimal
digit, the compiler interprets that character as part of the sequence.
For example, if you printed the string "\x07Bell", the result would
be {ell because \x07B is interpreted as the ASCII left-brace charac­
ter ({). The string \x007Bell lnote the two leading zeros) is the
correct way to represent the bell character followed by the word
Bell. The string \x7Bell' would generate a compiler diagnostic
message because 7BE hexadecimal is too big a number to fit in one
byte.

Escape sequences allow you to send nongraphic control characters to a
display device. For example, the escape character \033 is often used as
the first character of a control command for a terminal or printer. Some
escape sequences are device specific. For instance, the vertical tab and
form feed (\ v and \f) do not affect screen output, but they do perform
appropriate operations for a printer.

Important

You should always represent nongraphic characters by escape
sequences in C programs, since using the characters directly may gen­
erate compiler diagnostic messages.

You can also use the backslash character (\) as a continuation character.
When a new-line character immediately follows the backslash, the com­
piler ignores the backslash and the new line and treats the next line as

15

Microsoft C Language Reference

part of the previous line. This is useful primarily for preprocessor def­
initions longer than a single line. In the past this feature was also used to
create strings longer than one line. However, the string concatenation
feature (see Section 2.3.4, "String Literals") is now preferred for creating
long string literals.

2.2.5 Operators

"Operators" are symbols (both single characters and character combina­
tions) that specify how values are to be manipulated. Each symbol is inter­
preted as a single unit, called a "token." (Tokens are defined in Section
2.7.)

Table 2.3 lists the symbols comprising the C unary operators and names
each operator. Table 2.4 lists the C binary and ternary operators and
names them. You must specify operators exactly as they appear in the
tables, with no white space between the characters of multicharacter op­
erators. Note that three operator symbols (asterisk, minus sign, and am­
persand) appear in both tables. Their interpretation as unary or binary
depends on the context in which they appear. The sizeof operator is not
included in these tables. It consists of a keyword (sizeof) rather than a
symbol, and is listed in Section 2.5.

Table 2.3

Unary Operators

Operator

..,
&

+

Name

Logical NOT
Bitwise complement
Arithmetic negation
Indirection
Address of
Unary plus3

a The unary plus operator is implemented syntactically, but not
semantically.

16

)

Elements of C

Table 2.4

Binary and Ternary Operators

Operator Name Operator Name

+ Addition && Logical AND

Subtraction

* Multiplication 11 Logical OR 11

/ Division Sequential
evaluation

% Remainder 1: Conditionala

« Left shift ++ Increment

» Right shift Decrement

< Less than Simple
assignment

<= Less than or += Addition
equal to assignment

> Greater than Subtraction
assignment

>= Greater than or *= Multiplication
equal to assignment
Equality /= Division

assignment

!= Inequality %= Remainder
assignment

&; Bitwise AND »= Righ t-shift
assignment

Bitwise inclusive «= Left-shift
OR assignment
Bitwise exclusive &= Bitwise-AND-
OR assignment

1_ Bitwise Bitwise 1-

inclusive-OR exclusive-OR
assignment assignment

a The conditional operator is a ternary operator, not a multicharacter operator. A conditional
expression has the following form: expression? expression: expression.

For a complete description of each operator, see Chapter 5, "Expressions
and Assignments."

17

Microsoft C Language Reference

2.3 Constants

A "constant" is a number, character, or character string that can be used
as a value in a program. A constant's value cannot be modified.

The C language has four kinds of constants: integer constants, fioating­
point constants, character constants, and string literals. Sections 2.3.1 -
2.3.4 describe the format and use of each kind of constant.

2.3.1 Integer Constants

• Syntax

d£g£ts

Ood£g£ts

Oxhd£g£ts
OXhd£g£ts

An "integer constant" is a decimal, octal, or hexadecimal number that
represents an integral value in one of the following forms:

• A "decimal constant" has the form digits, where digits represents
one or more decimal digits (0 through g), the first of which is not a
zero.

• An "octal constant" has the form Oodigits, where odigits represents
one or more octal digits (0 through 7). The leading zero is required.

• A "hexadecimal constant" has the form Oxhdigits or OXhdigits,
where hdigits represents one or more hexadecimal di~its (0 through
9 and either uppercase or lowercase "a" through "f"). The leading
Ox or ox is required.

No white-space characters can separate the digits of an integer constant.

Table 2.5 gives examples of the three forms of integer constants.

18

(

)

Elements of C

Table 2.5

Examples of Integer Constants

Decimal Constants Octal Constants Hexadecimal Constants

10
132
32179

012
0204
076663

Oxa or OxA
Ox84
Ox7dB3 or Ox7DB3

Integer constants always specify positive values. If you need to use a nega­
tive value, place a minus sign (-) in front of a constant t.o form a constant
expression with a negative value. (In this case, the minus sign is inter­
preted as the unary arithmetic negation operator.)

Every integer constant is given a type based on its value. A constant's
type determines which conversions must be performed when the constan t
is used in an expression or when the minus sign (-) is applied, as summar­
ized in the following rules:

• Decimal constants are considered signed quantities and are given
int type, or long type if the size of the value requires it.

• Octal and hexadecimal constants are given int, unsigned int,
long, or unsigned long type, depending on the size of the con­
stant. If the constant can be represented as an int, it is given int
type. If it is larger than the maximum positive value that can be
represented by an int, but small enough to be represented in the
same number of bits as an int, it is given unsigned int type.
Similarly, a constan t that is too large to be represen ted as an
unsigned int is given long or unsigned long type, if necessary.

Table 2.6 shows the ranges of values and the corresponding types for octal
and hexadecimal constants on a machine whose int type is 16 bits long.

Table 2.6

Types Assigned to Octal and Hexadecimal Constants

Hexadecimal Range

OxO - Ox7FFF
Ox8000 - OxFFFF
Ox10000 - Ox7FFFFFFF
Ox80000000 - OxFFFFFFFF

Octal Range

0-077777
0100000 - 0177777
0200000 - 017777777777
020000000000 - 037777777777

Type

int
unsigned int
long
unsigned long

19

Microsoft C Language Reference

The consequence of the typing rules shown in Table 2.6 is that hexade­
cimal and octal constants are always zero extended when converted to
longer types. (For a discussion of type conversions, see Chapter 5,
"Expressions and Assignmen ts.")

You can force any integer constant to be given long type by appending
the letter "I" or "L" to the end of the constant. Table 2.7 illustrates some
forms of long integer constants.

Table 2.7

Exam pIes of Long Integer Constants

Decimal Constants Octal Constants Hexadecimal Constants

10L 012L OxaL or OxAL
791 01151 Ox4f1 or Ox4F1

Types are described in Chapter 4, "Declarations," and conversions are
described in Chapter 5, "Expressions and Assignments."

2.3.2 Floating-Point Constants

• Syntax

[d£g£ts] [.d£g£ts] [Ele[-I +] d£g£ts]

A "floating-point constant" is a decimal number that represents a signed
real number. The value of a signed real number includes an integer por­
tion, a fractional portion, and an exponent. The digits are zero or more
decimal digits (0 through 9), and E lor e) is the exponent symbol. You can
omit either the digits before the decimal point (the integer portion of the
value) or the digits after the decimal point (the fractional portion), but
not both. You can leave out the decimal point only if you include an
exponent.

The exponent consists of the exponent symbol (E or e) followed by a con­
stant integer value. The integer value may be negative. No white-space
characters can separate the digits or characters of the constant.

Floating-point constants always specify positive values. However, you can
place a minus sign (-) in front of the constant to form a constant floating­
point expression with a negative value. In this case, the minus sign is
treated as an arithmetic operator.

All floating-point constants have type double.

20

Elements of C

• Examples

The following examples illustrate some forms of floating-point constants
and expressions:

15.75
1.575E1
1575e-2
-0.0025
-2.5e-3
25E-4

You can omit the integer portion of the floating-point constant, as shown
in the following examples:

.75

.0075e2
-.125
-.175E-2

2.3.3 Character Constants

• Syntax

'char'

A "character constant" is formed by enclosing a single character from the
representable character set within single quotation marks (' '). An escape
sequence is regarded as a single character and is therefore valid in a char­
acter constant. Note that escape characters must be represented by escape
sequences or diagnostic messages will be generated. The value of a charac­
ter constant is the numerical value of the character.

In the syntax above, char can be any character from the representable
character set (including any escape sequence) except a single quotation
mark ('), backslash (\), or new-line character. To use a single quotation
mark or backslash character as a character constant, precede it with a
backslash, as shown in Table 2.8. To represent a new-line character, use
the escape sequence \ n.

21

Microsoft C Language Reference

Table 2.8

Examples of Character Constants

Constant

, ,

'a'
'1'

'\b'
'\xlB'

'\ "
'\ \'

Value

Single blank space

Lowercase a

Question mark
Backspace
ASCII escape character

Single quotation mark

Backslash

Character constants have type int, and are therefore sign extended in type
conversions. (See Section 5.6, "Type Conversions," for more information.)

2.3.4 String Literals

• Syntax

II characters" [" characters "] ...

A "string literal" is a sequence of characters from the representable char­
acter set enclosed in double quotation marks (tl tI). The example below is a
simple string literal:

"This is a string literal."

In a string literal, characters is a placeholder for zero or more characters
from the representable character set, including any escape sequence. The
double quotation mark (tI); backslash (\), or new line must be represented
by their escape sequences ~ \", \ \, and \n). Non-printing characters
should always be represented by a corresponding escape sequence. Each
escape sequence is considered a single character.

To force a new line within a string literal, enter the new-line (\n) escape
sequence at the point in the string where you want the line broken, as fol­
lows:

"Enter a number between 1 and lOO\nOr press Return"

22

)

Elements of C

The traditional way to form string literals that take up more than one line
is to type a backslash, tJten press the RETURN key. The backslash causes
the compiler to ignore the following new-line character. For example, the
string literal

"Long strings can be bro\
ken into two or more pieces."

is identical to the string

"Long strings can be broken into two or more pieces."

Two or more string literals separated only by white space will be concat­
enated into a single string. For example, long strings passed as literals to
the printf function may now be continued in any column of a succeeding
line without affecting their appearance when output, if entered as follows:

printf ("This is the first half of the string,"
" this is the second half") ;

As long as each part of the string is enclosed in double quotation marks,
the parts will be concatenated and output as a single string:

This is the first half of the string, this is the second half

String concatenation can be used anywhere you might previously have
used a backslash followed by a new-line character to enter strings longer
than one line. Because ensuing strings can start in any column of the
source code without affecting their on-screen representation, strings can be
positioned to enhance source-code readability. For example, the following
pointer, initialized as two distinct string literals separated only by white
space, is stored as a single string. When properly referenced, as in the fol­
lowing example, it produces a result identical to the previous example:

char *string = "This is the first half of the string,"
" this is the second half" ;

printf ("%s" , string) ;

To use a double quotation mark or backslash within a string literal, pre­
cede it with a backslash, as shown in the following examples:

"First\\Second"

"\"Yes, I do,\" she said."

Note that an escape sequence (such as \ \ or \ ") within a string literal
coun ts as a single character.

23

Microsoft C Language Reference

The characters of a string are stored in order at contiguous memory loca­
tions. A null character (represented by the \0 escape sequence) is auto­
matically appended to, and marks the end of, each string literal. Each
string in a program is generally considered to be distinct; however, two
identical strings are not guaranteed to receive separate storage. Therefore,
programs should not be designed to allow modification of string literals
during execution.

String literals have type array of char (char [D. This means that a string
is an array with elements of type char. The number of elements in the
array is equal to the number of characters in the string, plus one for the
terminating null character.

2.4 Identifiers

• Syntax

letterl_ [letterl digitl-l ..

"Identifiers" are the names you supply for variables, types, functions, and
labels in your program. You create an iden tifier by specifying it in the
declaration of a variable, type, or function. You can then use the identifier
in later program statements to refer to the associated item. Although
statement labels are a special kind of identifier and have their own naming
class, their creation is similar to that of variables and functions. (Declara­
tions are described in Chapter 4, "Declarations." Statement labels are
described in Chapter 6, "Statements.")

An identifier is a sequence of one or more letters, digits, or underscores (_)
that begins with a letter or underscore. Identifiers can contain any number
of characters, but only the first 31 characters are significant to the com­
piler. (Other programs that read the compiler output, such as the linker,
may recognize even fewer characters.)

The C compiler considers uppercase and lowercase letters to be distinct
characters. This feature enables you to create distinct identifiers that have
the same spelling but different cases for one or more of the letters.

An identifier cannot have the same spelling and case as a keyword of the
language. Keywords are described in Section 2.5.

You should not use leading underscores in identifiers you create: identifiers
beginning with an underscore can cause conflicts with the names of system
routines or variables, and produce errors. Programs containing names
beginning with leading underscores are not guaranteed to be portable.

24

)

Elements of C

Note

Some linkers may further restrict the number and type of characters
for globally visible symbols. (Visibility is defined in Section 3.5, "Life­
time and Visibility.") Also the linker, unlike the compiler, may not dis­
tinguish between uppercase and lowercase letters. Consult your linker
documentation for information about naming restrictions imposed by
the linker.

• Examples

The following are examples of identifiers:

j
cnt
tempI
top_o f_page
skip12

Since uppercase and lowercase letters are considered distinct characters,
each of the following iden tifiers is unique:

add
ADD
Add
aDD

2.5 Keywords

"Keywords" are predefined identifiers that have special meanings to the C
compiler. They can be used only as defined. The name of a program item
cannot have the same spelling and case as a C keyword.

The C language has the following keywords:

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

25

Microsoft C Language Reference

You cannot redefine keywords. However, you can specify text to be substi­
tuted for keywords before compilation by using C preprocessor directives
(see Chapter 8, "Preprocessor Directives and Pragmas").

The volatile keyword is implemented syntactically, but currently has no
semantics associated with it. You cannot use volatile as a variable name
III your programs.

The following identifiers may be keywords in some implementations. See
your compiler guide for more information.

cdecl
far
fortran
huge
near
pascal

2.6 Comments

• Syntax

/ * characters * /

A "comment" is a sequence of characters that is treated as a single white­
space character by the compiler, but is otherwise ignored. In a comment,
characters can include any combination of characters from the represent­
able character set, including new-line characters, but excluding the "end
comment" delimiter (lie I). Comments can occupy more than one line, but
they cannot be nested.

Comments can appear anywhere a white-space character is allowed. Since
the compiler treats a comment as a single white-space character, you can­
not include comments within tokens (see Section 2.7 for a definition of
"token"). However, since the compiler ignores the characters of the com­
ment, you can include keywords in comments without producing errors.

To suppress compilation of a large portion of a program or a program seg­
ment that contains comments, bracket the desired portion of code with
the # if and # endif preprocessor directives, rather than "commenting
out" the code (see Section 8.4, "Conditional Compilation").

26

Elements of 0

• Examples

The following examples illustrate some comments:

/* Comments can separate and document
lines of a program. */

/* Comments can contain keywords such as for
and while. */

/***
Comments can occupy several lines.

***/

Since comments cannot contain nested comments, the following example
causes an error:

/* You cannot /* nest */ comments */

The error occurs because the compiler recognizes the first * /, after the
word nest, as the end of the commen t. It tries to process the remaining
text and produces an error when it cannot do so.

2.7 Tokens

In a C source program, the basic element recognized by the compiler is the
character group known as a "token." A token is source-program text the
compiler will not attempt to further analyze into component elements. For
example, the following program fragment uses the word "elsewhere" as the
name of a function. Although else is a keyword in C, there is no confusion
between the function name token and the C keyword token it contains.

main ()
{

int i = 0;

}

if (i)
elsewhere 0

However, if you were to type elsewhere as else where with a space
between "else" and "where," the preceding example would elicit a compiler
diagnostic message noting the lack of a semicolon before the else keyword.

The operators, constants, identifiers, and keywords described in this
chapter are examples of tokens. Punctuation characters such as brackets
U D, braces ({ }), angle brackets « », parentheses, and commas are
also tokens.

27

Microsoft C Language Reference

Tokens are delimited by white-space characters and by other tokens, such
as operators and punctuation characters. To prevent the compiler from
breaking an item down into two or more tokens, white-space charac-
ters are not permitted within an identifier, multicharacter operator, or
keyword.

When the compiler interprets tokens, it includes as many characters as
possible in a single token before moving on to the next token. Because of
this behavior, the compiler may not interpret tokens as you intended if
they are not properly separated by white space .

• Example

Consider the following expression:

i+++j

In this example, the compiler first makes the longest possible operator
(++) from the three plus signs, then processes the remaining plus sign as
an addition operator l+). Thus, the expression is interpreted as (1++) +
(j) ,not (1) + (++ j). In this and similar cases, use white space and
parentheses to avoid ambiguity and insure proper expression evaluation.

28

) CHAPTER,

pROG~STRUCTURE

3.1 Introduction ... 31
3.2 Source Program .. 31
3.3 Source Files .. 33
3.4 Functions and Program Execution 35
3.5 Lifetime and Visibility .. 36

3.5.1 Blocks ... 36
3.5.2 Lifetime ... 37
3.5.3 Visibility .. 37
3.5.4 Summary ... 39

3.6 Nanling Classes ... 41

)

Program Structure

3.1 Introduction

This chapter defines terms used later in this manual to describe the C
language, and discusses the structure of C source programs. It gives an
overview of features of C that are described in detail in other chapters.
The syntax and meaning of declarations and definitions are discussed in
Chapter 4, "Declarations," and Chapter 7, "Functions." The C preproces­
sor and pragmas are described in Chapter 8, "Preprocessor Directives and
Pragmas."

3.2 Source Program

A C "source program" is a collection of any number of directives, prag­
mas, declarations, definitions, and statements. These constructs are dis­
cussed briefly in the following paragraphs. To be valid constructs in Micro­
soft C, each must have the syntax described in this manual, though they
can appear in any order in the program (subject to the rules outlined
throughout this manual). However, order of appearance does affect how
variables and functions can be used in a program. (See Section 3.5, "Life­
time and Visibility," for more information.)

Directives

A "directive" instructs the C preprocessor to perform a specific action on
the text of the program before compilation. Directives are described in
Chapter 8, "Preprocessor Directives and Pragmas."

Pragmas

A "pragma" instructs the compiler to perform a particular action at com­
pile time. Pragmas are described in Chapter 8, "Preprocessor Directives
and Pragmas."

Declarations and Definitions

A "declaration" establishes an association between the name and the attri­
butes of a variable, function, or type. In C, all variables must be declared
before being used.

A "definition" of a variable establishes the same associations as a declara­
tion, but also causes storage to be allocated for the variable. Therefore, all

31

Microsoft C Language Reference

definitions are implicitly declarations, but not all declarations are def­
initions. For example, variable declarations that begin with the extern
storage-class specifier are "referencing," rather than "defining," declara­
tions. Referencing declarations do not cause storage to be allocated and
cannot be initialized (see Section 4.6, "Storage Classes," for more infor­
mation).

Function declarations (or "prototypes") establish the name of the func­
tion, its return type, and, optionally, its formal parameters. A function
definition includes the same elements as the prototype, plus the function
body. If you do not supply an explicit declaration for a function, the com­
piler constructs a prototype from whatever information is available in the
first reference to the function, whether that is a definition or a call. (Func­
tion definitions are discussed further in Chapter 7, "Functions." Function
prototypes are covered in Chapter 4, "Declarations," and Chapter 7,
"Functions.")

Both function and variable declarations may appear inside or outside a
function definition. Any declaration within a function definition is said to
appear at the "internal" or "local" level. A declaration outside all function
definitions is said to appear at the "external" or "global" level.

Variable definitions, like declarations, can appear at the internal level
(within a function definition) or at the external level (ou tside all function
definitions). Function definitions always occur at the external level.

Note that declarations of types (for example, structure, union, and
typedef declarations) that do not include the name of a variable of the
type being declared do not cause storage allocation .

• Example

int x = 1;
int y = 2;

extern int printf(char *, .•.);

main ()

{

32

int z;
int w;

static int v;

/*
/*

/*

/*

/*
/*
/*

/*

Defining declarations */
of external variables */

Function "prototype"
or declaration */

Function definition
for main function */

Definitions for */
two uninitialized */
local variables */

Definition of variable
with global lifetime */

)

Program Structure

extern int u; /* Referencing declaration
of external variable
defined elsewhere */

z = y + x; /* Executable statements */

}

w = y - x;
printf(ltz= %d
printf (ltv= %d

w= %d", z, w);
u= %d", v, u);

The example above illustrates a simple C source program. This source pro­
gram defines the function named main and declares the function named
pr int f with a prototype. The program uses defining declarations to ini­
tialize the global variables x and y. The local variables z and VI are
declared, but not initialized. Storage is allocated for all these variables,
but only x, y, u, and v contain meaningful values when declared
because they are initialized, either explicitly or implicitly. The values in z
and VI are not meaningful until values are assigned to them in the execut­
able statemen ts.

3.3 Source Files

A source program can be divided into one or more "source files." A C
source file is a text file containing all or part of a C source program. (For
example, a source file may contain just a few of the functions that the pro­
gram needs.) When you compile a program, you must separately compile,
and then link, the individual source files comprising the total program.
You can also use the # include directive to combine separate source files
into larger source files before you compile. (See Section 8.3 for information
on "include" files.)

A source file can contain any combination of complete directives, pragmas,
declarations, and definitions. You cannot split items such as function def­
initions or large data structures between source files. The last character
in a source file must be a new-line character.

A source file need not contain executable statements. For example, you
may find it useful to place definitions of variables in one source file and
then declare references to these variables in other source files that use
them. This technique makes the definitions easy to find and change. For
the same reason, manifest constants and macros are often organized into
separate include files that may be referenced in source files as required.

Directives in a source file apply only to that source file and its include files.
Moreover, each directive applies only to the part of the file that follows

33

Microsoft C Language Reference

the directive. To apply a common set of directives to a whole source pro­
gram, you must include the directives in all source files comprising the
program.

Pragmas usually affect a specific region of a source file. The implementa­
tion determines the specific compiler action that a pragma defines. (Your
compiler guide describes the effects of particular pragmas.)

• Example

The following example illustrates a C source program contained in two
source files. Once you have compiled these source files, you can link and
then execute them as a single program.

The main and max functions are assumed to be in separate files, and exe­
cution of the program is assumed to begin with the main function.

/**
Source file 1 - main function

**/

#define ONE 1
#define TWO 2
#define THREE 3

extern int max (int a, int b); /* Function prototype */

main () /* Function definition */
{

}

int w = ONE, x = TWO, y = THREE;
int z = 0;
z = max(x,y);
w = max(z,w);

In Source file 1 (above), a prototype of the max function is declared. This
kind of declaratIOn is sometimes called a "forward declaration." The def­
inition for the main function includes calls to max.

The lines beginning with a number sign (#) are preprocessor directives.
These directives tell the preprocessor to replace the identifiers ONE, TWO,
and THREE with the corresponding number throughout Source file 1.
However, the directives do not apply to Source file 2 (below), which will be
separately compiled and then linked with Source file 1.

34

)

Program Structure

/**
Source file 2 - definition of max function

**/

int max (int a, int b) /* Note formal parameters are
included in function header

{
if (a > b)

return (a) ;
else

return (b) ;
}

Source file 2 contains the function definition for max. This definition
satisfies the calls to max in Source file 1. Note that the definition for
max follows the form specified in the the ANSI C standard. For more
information on this new form and function prototyping, see Chapter 7,
"Functions. "

3.4 Functions and Program Execution

Every C program has a primary (main) function that must be named
main. The main function serves as the starting point for program execu­
tion. It usually controls program execution by directing the calls to other
functions in the program. A program usually stops executing at the end of
main, although it can terminate at other points in the program for a
variety of reasons depending on the execution environment.

The source program usually has more than one function, with each func­
tion designed to perform one or more specific tasks. The main function
can call these functions to perform their respective tasks. When main
calls another function, it passes execution control to the function, so that
execution begins at the first statement in the function. The function re­
turns control when a return statement is executed or when the end of the
function is reached.

You can declare any function, including main, to have parameters. When
one function calls another, the called function receives values for its pa­
rameters from the calling function. These values are called "arguments."
You can declare formal parameters to main so that it can receive values
from outside the program. (Most commonly, these arguments are passed
from the command line when the program is executed.)

When the main function takes parameters, they are traditionally named
argc and argv, although these names are not dictated by the C language.

*/

35

Microsort C Language Rererence

The argc parameter is declared to hold the total number of arguments
passed to main. The argv parameter is declared as an array of pointers;
each element of the array points to a string representation of an argument
passed to main.

Traditionally, if a third parameter is passed to main, that parameter is
named envp, although this name is not required by C. It is an extension to
the ANSI C standard provided by Microsoft C for compatibility with the
XENIX@ Operating System. The envp parameter is a poin ter to a table of
string values that set up the environment in which the program executes.

The operating system supplies values for the argc, argv, and envp parame­
ters, and the user supplies the actual arguments to main. The operating
system, not the C language, determines the argument-passing convention
used on a particular system. For more information, see your compiler
guide.

If you declare formal parameters to a function, you must declare them
when you define the function. Function declarations are described in
Chapter 4, "Declarations," and Chapter 7, "Functions." Function defini­
tions are described in Chapter 7.

3.5 Lifetime and Visibility

To understand how a C program works, you must understand the rules
that determine how variables and functions can be used in the program.
Three concepts are crucial to understanding these rules: the block (or
compound statement), lifetime (sometimes called "extent"), and visIbility
(sometimes called "scope").

3.5.1 Blocks

A "block" is a sequence of declarations, definitions, and statements
enclosed within curly braces. There are two types of blocks in C. The
"compound statement" (discussed more fully in Chapter 6, "Statements")
is one type of block. The other, the "function definition" , consists of a
compound statement comprising the function body plus the function's
associated "header" (the function name, return type, and formal parame­
ters). A block may encompass other blocks, with the exception that no
block can contain a function definition. A block within other blocks is said
to be "nested" within the encompassing blocks.

36

)

Program Structure

Note that, while all compound statements are enclosed within curly
braces, not everything enclosed within curly braces constitutes a com­
pound statement. For example, though the specifications of array, struc­
ture, or enumeration elements may appear within curly braces, they are
not considered compound statements.

3.5.2 Lifetime

"Lifetime" is the period, during execution of a program, in which a vari­
able or function exists. All functions in a program exist at all times during.
its execution.

Lifetime of a variable may be "global" or "local." If its lifetime is global (a
"global item"), it has storage and a defined value for the entire duration of
a program. An item with a local lifetime (a "local item") has storage and a
defined value only within the block where the item is defined or declared.
A local item is allocated new storage each time the program enters that
block, and it loses its storage (and hence its value) when the program exits
the block.

The following rules specify whether a variable has global or local lifetime:

• Variables declared at the external level (that is, outside all blocks
in the program) always have global lifetImes.

o Variables declared at the internal level (that is, within a block)
usually have local lifetimes. However, you can ensure global life­
time for a variable within a block by including the static storage
class specifier in its declaration. Once declared static, the variable
will retain its value from one entry of the block to the next. How­
ever, it will still be "visible" only within its own block and blocks
nested within its own block. (Visibility of objects is discussed
below. See Section 4.6 for a discussion of storage-class specifiers.)

3.5.3 Visibility

An item's "visibility" determines the portions of the program in which it
can be referenced by name. An item is "visible" only in portions of a pro­
gram encompassed by its "scope," which may be limited (in order of
increasing restrictiveness) to the file, function, block, or function proto­
type in which it appears.

In C, only a label name is always confined to function scope. (See Chapter
6, "Statements," for more information on labels and label names). The
scope of any other item is determined by the level at which its declaration
occurs. An item declared at the external level has file scope and is visible

37

Microsoft C Language Reference

everywhere within the file. If its declaration occurs within a block (includ­
ing the list of formal parameters in a function definition), the item s scope
is limited to that block and blocks nested within that block. Formal
parameter names declared in the parameter list of a function prototype
have scope only from the completion of the parameter declaration to the
end of the function declarator.

Note

Although an item with a global lifetime exists throughout the execu­
tion of the source program (for example, an externally declared vari­
able or a local variable declared with the static keyword), it may not
be visible in all parts of the program.

An item is said to be "globally visible" if it is visible, or if you can use
appropriate declarations to make it visible, in all the source files compris­
ing the program. (Visibility between source files, also known as "linkage,"
is discussed in greater detail in Section 4.6, "Storage Classes.")

The following rules govern the visibility of variables and functions within
a program:

38

• Variables declared or defined at the external level (that is, outside
all blocks in the program) are visible from their pOInt of definition
or declaration to the end of the source file. You can use appropri­
ate declarations to make such variables visible in other source files,
as described in Section 4.6, "Storage Classes." However, variables
declared at the external level with the static storage-class specifier
are visible only within the source file in which they are defined.

• In general, variables declared or defined at the internal level (that
is, within a block) are visible only from their point of declaration
or definition to the end of the block actually containing the
definition or declaration. Such variables are known as "local" vari­
ables.

• Variables from outer blocks (including those declared at the exter­
nallevel) are visible in all inner blocks. However, the visibility of
variables is said to "nest" within blocks. For instance, a block
within another block can contain declarations for variables whose
identifiers (names) are the same as variables in enclosing blocks.
Such redefinitions prevail only within the inner block, however.
Outer-block definitions are restored as the inner blocks are exited.

)

)

)

Program Structure

• Functions with static storage class are visible only in the source
file in which they are defined. All other functions are globally
visible. (For more information on function declarations, see Section
4.5.)

3.5.4 Summary

Table 3.1 summarizes the main factors determining lifetime and visibility
of variables and functions. However, the table does not cover all possible
cases. Refer to the previous discussion and to Section 4.6, "Storage
Classes," for more information.

Note
A Microsoft extension to the ANSI C standard provides that functions
declared at an internal level may have global visibility. This feature
should not be relied upon where portability of source code is a con­
sideration. See your compiler guide for information on enabling Micro­
soft extensions.

Table 3.1

Summary of Lifetime and Visibility

Storage
Class

Level ItelIl Specifier LifetilIle Visibility

External Variable static Global Restricted to
definition source file in

which it occurs
Variable extern Global Remainder
declaration of source file
Function static Global Restricted
prototype to single
or definition source file
Function extern Global Remainder
prototype of source file

Internal Variable extern Global Block
declaration
Variable static Global Block
definition
Variable auto or Local Block
definition register

39

-------- ----

Microsoft C Language Reference

• Example

The following program example illustrates blocks, nesting, and visibility of
variables:

#include <stdio.h>

/* i defined at external level: */
int i = 1;

/* main function defined at external level: */
main ()
{

}

/* prints 1 (value of external level i): */
printf("%d\n", i);

/* begin first nested block: */
{

/* i and j defined at internal level: */
int i = 2, j = 3;

/* prints 2, 3: */
printf("%d\n%d\n", i, j);

/* begin second nested block: */
{

/* i is redefined: */
int i = 0;

/* prints 0, 3: */
printf("%d\n%d\n", i, j);

/* end of second nested block: */
}

/* prints 2 (outer definition restored): */
printf("%d\n", i);

/* end of first nested block: */
}

/* prints 1 (external level definition restored): */
printf("%d\n", i);

In this example, there are four levels of visibility: the external level and
three block levels. Assuming that the function print f is defined else­
where in the program, the values will be printed to the screen as noted in
the comments preceding each statement.

40

(

(

(

Program Structure

3.6 Naming Classes

In any C program, identifiers are used to refer to many different kinds of
items. When you write a C program, you provide identifiers for the func­
tions, variables, formal parameters, union members, and other items the
program uses. C allows you to use the same identifier for more than one
program item, as long as you follow the rules outlined in this section.

The compiler sets up "naming classes" to distinguish between the identi­
fiers used for different kinds of items. The names within each class must
be unique to avoid conflict, but an identical name can appear in more
than one naming class. This means that you can use the same identifier
for two or more different items, provided that the items are in different
naming classes. The compiler can resolve references based on the context
of the identifier in the program.

The following list describes the kinds of items you can name in C pro­
grams and the rules for naming them:

Items

Variables and functions

Formal parameters

Naming Class

The names of variables and functions are
in a naming class with formal parame­
ters, typedef names and enumeration
constants. Therefore, variable and func­
tion names must be distinct from other
names in this class that have the same
visibility.

However, you can redefine variable and
function names within program blocks,
as described in Section 3.5, "Lifetime
and Visibility."

The names of formal parameters to a
function are grouped with the names of
the function's variables, so the formal
parameter names should be distinct from
the variable names. You cannot rede­
clare the formal parameters at the top
level of the function. However, the names
of the formal parameters may be rede­
fined (that is, used to refer to different
items) within subsequent blocks nested
within the function body.

41

Microsoft C Language Reference

Enumeration constants

typedef names

Tags

Members

Statement labels

42

En umeration constants are in the same
naming class as variable and function
names. This means that the names of
enumeration constants must be distinct
from all variable and function names
with the same visibility, and distinct
from the names of other enumeration
constants with the same visibility. How­
ever, like variable names, the names of
enumeration constants have nested visi­
bility, so you can redefine them within
blocks. (Nested visibility is discussed in
Section 3.5, "Lifetime and Visibility.")

The names of types defined with the
typedef keyword are in a naming class
with variable and function names.
Therefore, typedef names must be dis­
tinct from all variable and function
names with the same visibility, as well as
from the names of formal parameters
and enumeration constants. Like vari­
able names, names used for typedef
types can be redefined within program
blocks. See Section 3.5, "Lifetime and
Visibility."

Enumeration, structure, and union tags
are grouped in a single naming class.
These tags must be distinct from other
tags with the same visibility. Tags do
not conflict with any other names.

The members of each structure and
union form a naming class. The name of
a member must, therefore, be unique
within the structure or union, but it does
not have to be distinct from other names
in the program, including the names of
members of different structures and
unIOns.

Statement labels form a separate naming
class. Each statement label must be dis­
tinct from all other statement labels in
the same function. Statement labels do
not have to be distinct from other names
or from label names in other functions.

)

• Example

struct student {
char student[20];
int class;
int id;
} student;

Program Structure

Since structure tags, structure members, and variable names are in three
different naming classes, the three items named student in this example
do not conflict. The context of each item allows correct interpretation of
each occurrence of student in the program.

For example, when student appears after the struct keyword, the com­
piler recognizes it as a structure tag. When student appears after a
member-selection operator (-> or .), the name refers to the structure
member. In other contexts, student refers to the structure variable.

43

) CHAPTER,

DECLARATIONS

4.1 Introduction ... 47
4.2 Type Specifiers ... 48

4.2.1 Storage for Fundamental Types 50
4.2.2 Range of Values ... 52
4.2.3 Data-Type Categories 53

4.3 Declarators ... 54
4.3.1 Pointer, Array, and

Function Declarators 54
4.3.2 Complex Declarators 55
4.3.3 Declarators with Special I(eywords 5g

4.4 Variable Declarations .. 61
4.4.1 Simple Variable Declarations 62
4.4.2 Enumeration Declarations 63
4.4.3 Structure Declarations 65
4.4.4 Union Declarations 68
4.4.5 Array Declarations 70
4.4.6 Pointer Declarations 72

4.5 Function Declarations (Prototypes) 76
4.5.1 Formal Parameters 76
4.5.2 Return Type .. 77
4.5.3 The List of Formal Parameters 77
4.5.4 Summary ... 7g

)

CHAPTER

4.6 Storage Classes ... 82
4.6.1 Variable Declarations

at the External Level 83
4.6.2 Variable Declarations

at the Internal Level 86
4.6.3 Function Declarations

at the External and Internal Levels 88
4.7 Initialization ... 89

4.7.1 Fundamental and Pointer Types 90
4.7.2 Aggregate Types ... 9 1
4.7.3 String Initializers .. 94

4.8 Type Declarations ... 95
4.8.1 Structure, Union, and

En umeration Types 95
4.8.2 Using typedef Declarations 96

4.9 Type Names .. 97

46

)

)

)

Declarations

4.1 Introduction

This chapter describes the form and constituents of C declarations for
variables, functions, and types. C declarations have the form

[sc-specif£er] [type-speczJier] declarator[= initializer] [, declarator[= in itiaiz"zer]] ...

where sc-speczjier is a storage-class specifier; type-specifier is the name of a
defined type; and initializer gives the value or sequence of values to be
assigned to the variable being declared. The declarator is an identifier that
can be modified with brackets ([]), asterisks (*), or parentheses (()).

You must explicitly declare all C variables before using them. You can
declare a C function explicitly with a function prototype. If you do not
provide a prototype, one is created automatically from whatever informa­
tion is included in the first reference to the function, whether that refer­
ence is a definition or a call.

The C language includes a standard set of data types. You can add your
own data types by declaring new ones based on types already defined. You
can declare arrays, data structures, and pointers to both variables and
functions.

C declarations require one or more "declarators." A declarator is an iden­
tifier that can be modified with brackets ([]), asterisks (*), or parentheses
(()) to declare an array, ,Pointer, or function type, respectively. When you
declare simple variables (such as character, integer, and floating-point
items), or structures and unions of simple variables, the declarator is just
an identifier.

Four storage-class specifiers are defined in C: auto, extern, register, and
static. The storage-class specifier of a declaration affects how the
declared item is stored and initialized and which parts of a program can
reference the item. Location of the declaration within the source program
and the presence or absence of other declarations of the variable are also
important factors in determining the visibility of variables.

Function prototype declarations are presented in Section 4.5 and in
Chapter 7, "Functions." For information on function definitions, see
Chapter 7.

47

Microsoft C Language Reference

4.2 Type Specifiers

The C language provides definitions for a set of basic data types, called
"fundamen tal" types. Their names are listed in Table 4.1.

Table 4.1

Fundamental Types

Integral Typesa

char

int
short

long

signed
unsigned

enum

Floating-Point
Types

float

double
long doubleb

Other

voidC

canst
volatiled

a The optional keywords signed and unsigned can precede any of
the integral types, except enum, and can also be used alone as type
specifiers, in which case they are understood as signed int and
unsigned int, respectively. When used alone, the keyword int is
assumed to be signed. When used alone, the keywords long and
short are understood as long int and short into

b The long double type is semantically equivalent to double, but
is syntactically distinct.

C The keyword void has three uses: as a function return type, as an
argumentrtype list for a function that will take no arguments, and to
modify a pointer.

d The volatile keyword is implemented syntactically, but not
semantically.

Enumeration types are considered fundamental types. Type specifiers for
enumeration types are discussed in Section 4.8.1.

Note

48

The long float type is no longer supported, and occurrences of it in
old code should be changed to double.

)

Declarations

The signed char, signed int, signed short int, and signed long int
types, together with their unsigned counterparts and enUffi, are called
"integral" types. The float, double, and long double type specifiers are
referred to as "floating" or "floating-point" types. You can use any inte­
gral or floating-point type specifier in a variable or function declaration.

You can use the void type to declare functions that return no value
or to declare a pointer to an unspecified type. When the keyword void
occurs alone within the parentheses following a function name, it is not
interpreted as a type specifier. In that context void indicates only that
the function accepts no arguments. Function types are discussed in
Section 4.5.

The const type specifier is used to declare an object as nonmodifiable. The
const keyword can be used as a modifier for any fundamental or aggregate
type, or to modify a pointer to an object of any type. A typedef may be
modified by a const type specifier. A declaration that includes the key­
word const as a modifier of an aggregate type declarator indicates that
each element of the aggregate type is unmodifiable. If an item is declared
with only the const type specifier, its type is taken to be const into A
const object may be placed in a read-only region of storage.

The volatile type specifier declares an item whose value may legitimately
be changed by something beyond the control of the program in which it
appears. The volatile keyword can be used in the same circumstances as
const (described above). An item may be both const and volatile, in
which case the item could not be legitimately modified by its own pro­
gram, but could be modified by some asynchronous process. The volatile
keyword is implemented syntactically, but not semantically.

You can create additional type specifiers with typedef declarations, as
described in Section 4.8.2. When used in a declaration, such specifiers may
only be modified by the const and volatile modifiers.

Type specifiers are commonly abbreviated, as shown in Table 4.2. Integral
types are signed by default. Thus, if you omit the unsigned keyword from
the type specifier, the integral type is signed, even if you do not specify the
signed keyword.

In some implementations, you can specify a compiler option that changes
the default char type from signed to unsigned. When this option is in
effect, the abbreviation char means the same as unsigned char, and you
must use the signed keyword to declare a signed character value. Com­
piler options are described in your compiler guide.

49

Microsoft C Language Reference

Note

This manual generally uses the abbreviated forms of the type specifiers
listed in Table 4.2 rather than the long forms, and it assumes that the
char type is signed by default. Therefore, throughout this manual,
char stands for signed char.

Table 4.2

Type Specifiers and Abbreviations

Type Specifier

signed chara

signed int

signed short int

signed long int

unsigned charb

unsigned int

unsigned short int

unsigned long int

float

const int
volatile int
const volatile int

Ab breviations

char

signed, int

short, signed short

long, signed long

unsigned

unsigned short

unsigned long

const
volatile
const volatile

a When you make the char type unsigned by default (by
specifying the appropriate compiler option), you cannot
abbreviate signed char.

b When you make the char type unsigned by default (by
specifying the appropriate compiler option), you can
abbreviate unsigned char as char.

4.2.1 Storage for Fundamental Types

Table 4.3 summarizes the storage associated with each fundamental type
and gives the range of values that can be stored in a variable of each type.
Since the void type specifier is only used to denote a function with no
return value or a pointer to an unspecified type, it is not included in the
table. Similarly, the table does not include const or volatile because a
variable type modified by const or volatile retains its storage size and
can contain any value within range for its fundamental type.

50

(

)

Declarations

Table 4.3

Storage and Range of Values for Fundamental Types

Type Storage Range of Values (Internal)

char 1 byte -128 to 127

int implementation
defined

short 2 bytes - 32,768 to 32,767

long 4 bytes - 2,147,483,648 to 2,147,483,647

unsigned char 1 byte o to 255

unsigned implemen tation
defined

unsigned short 2 bytes o to 65,535

unsigned long 4 bytes o to 4,294,967,295

float 4 bytes IEEE-standard notation;
discussed below

double 8 bytes IEEE-standard notation;
discussed below

long double 8 bytes IEEE-standard notation;
discussed below

The char type is used to store the integer value of a member of the
representable character set. That integer value is the ASCII code corre­
sponding to the specified character. Since the char type is interpreted as a
signed, 1-byte integer, a char variable can store values in the range -128
to 127, although only the values from 0 to 127 have character equivalents.
Similarly, an unsigned char variable can store values in the range 0-255.

Note that the C language does not define the storage and range associated
with the int and unsigned int types. Instead, the size of a signed or
unsigned int item is the standard size of an integer on a particular ma­
chine. For example, on a 16-bit machine the int type is usually 16 bits, or
2 bytes. On a 32-bit machine the int type is usually 32 bits, or 4 bytes.
Thus, the int type is equivalent to either the short int or the long int
type, and the unsigned int type is equivalent to either the unsigned
short or the unsigned long type, depending on the implementation.

The type specifiers int and unsigned int (or simply unsigned) define cer­
tain features of the C language (for instance, the enum type discussed
later in Section 4.8.1). In these cases, the definitions of int and unsigned
int for a particular implementation determine the actual storage.

51

Microsoft C Language Reference

Note

The int and unsigned int type specifiers are widely used in C pro­
grams because they allow a particular machine to handle integer
values in the most efficient way for that machine. However, since the
sizes of the int and unsigned int types vary, programs that depend on
a specific int size may not be portable to other machines. To make
programs more portable, you can use expressions with the sizeof
operator (discussed in Section 5.3.4) instead of hard-coded data sizes.
The actual sizes of int and unsigned int are discussed in your com­
piler guide.

Floating-point numbers use the IEEE (Institute of Electrical and Electron­
ics Engineers, Inc.) format. Values with float type have 4 bytes, consisting
of a sign bit, an 8-bit excess-I27 binary exponent, and a 23-bit mantissa.
The mantissa represents a number between 1.0 and 2.0. Since the high­
order bit of the mantissa is always 1, it is not stored in the number. This
representation gives a range of approximately 3.4E-38 to 3.4E+38 for type
float.

Values with double type have 8 bytes. The format is similar to the float
format except that it has an II-bit excess-I023 exponent and a 52-bit
mantissa, plus the implied high-order 1 bit. This format gives a range of
approximately 1. 7E-308 to 1. 7E+308 for type double.

4.2.2 Range of Values

The range of values for a variable is bounded by the minimum and max­
imum values that can be represented internally in a given number of bits.
However, because of C's conversion rules (discussed in detail in Chapter 5,
"Expressions and Assignments"), you cannot always use the maximum or
minimum value for a constant of a particular type in an expression.

For example, the constant expression - 32768 consists of the arithmetic
negation operator (-) applied to the constant value 32,768. Since 32,768 is
too large to represent as a short int, it is given the long type. Conse­
quently, the constant expression -32768 has long type. You can only
represent -32,768 as a short int by type-casting it to the short type. No
information is lost in the type cast, since -32,768 can be represented inter­
nally in 2 bytes.

Similarly, a value such as 65,000 can only be represented as an unsigned
short by type-casting the value to unsigned short type or by giving the

52

)

Declarations

value in octal or hexadecimal notation. The value 65,000 in decimal nota­
tion is considered a signed constant. It is given the long type because
65,000 does not fit into a short. You can cast this long value to the
unsigned short type without loss of information, since 65,000 can fit in 2
bytes when it is stored as an unsigned number.

Octal and hexadecimal constants may have either signed or unsigned
type, depending on their size (see Section 2.3.1, "Integer Constants," for
more information). However, the method used to assign types to octal and
hexadecimal constants ensures that they always behave like unsigned inte­
gers in type conversions.

4.2.3 Data-Type Categories

The C data types fall into two general categories, called scalar and aggre­
gate. Scalar types include pointers and arithmetic types. Arithmetic types
include all floating and integral types, as described in this section. Aggre­
gate types include arrays and structures. Table 4.4 illustrates the cate­
gories of C data types.

Table 4.4

C Data-Type Categories

Data Types Categories

char
int

short
long Integral
signed Types
unsigned Arithmetic
enum Types Scalar

Types

float 1
double Floating

long double Types

Pointers

Arrays } Aggregate
Structures Types

53

Microsoft C La.ngua.ge Reference

4.3 Declarators

• Syntax

z'dent£fz'er
declarator[[constant-expresst'on]]
of< declarator
(declarator)

The C language lets you declare "arrays" of values, "pointers" to values,
and "functions returning" values of specified types. You must use a
"declarator" to declare these items.

A "declarator" is an identifier that may be modified by brackets ([D,
asterisks (lie), or parentheses ()) to declare an array, pointer, or function
type, respectively. Declarators appear in the pointer, array, and function
declarations described later in this chapter (Sections 4.4.6, 4.4.5, and 4.5,
respectively). The following section discusses the rules for forming and
interpreting declarators.

4.3.1 Pointer, Array, and
Function Declarators

When a declarator consists of an unmodified identifier, the item being
declared has a base type. If asterisks (of<) appear to the left of an identifier,
the tJJ2e is modified to a pointer type. It the identifier is followed by brack­
ets (t J), the type is modified to an array type. If the identifier is followed
by parentheses, the type is modified to a function returning type.

A declarator must include a type specifier to be a complete declaration.
The type specifier gives the type of the elements of an array type, the type
of object addressed by a pointer type, or the return type of a function.

The sections on pointer, array, and function declarations later in this
chapter discuss each type of declaration in detail (see Sections 4.4.6, 4.4.5,
and 4.5, respectively).

• Examples

The following examples illustrate the simplest forms of declarators:

54

Declarations

/******************** Example 1 ********************/

int list[20];

Example 1 declares an array of int values named 1 ist.

/******************** Example 2 ********************/

char *cp;

Example 2 declares a pointer named ep to a char value.

/******************** Example 3 ********************/

double func(void);

Example 3 declares a function named fune, with no arguments, that
returns a double value.

4.3.2 Complex Declarators

You can enclose any declarator in paren theses to specify a particular
interpretation of a complex declarator.

A "complex" declarator is an identifier qualified by more than one array,
pointer, or function modifier. You can apply various combinations of
array, pointer, and function modifiers to a single identifier. However, a
declarator may not have the following illegal combinations:

• An array cannot have functions as its elements.

• A function cannot return an array or a function.

In interpreting complex declarators, brackets and parentheses (that is,
modifiers to the righ t of the identifier) take precedence over asterisks (that
is, modifiers to the left of the identifier). Brackets and parentheses have
the same precedence and associate from left to right. After the declarator
has been fully interpreted, the type specifier is applied as the last step. By
using parentheses you can override the default association order and force
a particular in terpretation.

55

Microsort C Language Rererence

A simple way to interpret complex declarators is to read them "from the
inside out," using the following four steps:

1. Start with the identifier and look to the right for brackets or
parentheses (if any).

2. Interpret these brackets or parentheses, then look to the left for
asterisks.

3. If you encounter a right parenthesis at any stage, go back and
apply rules 1 and 2 to everything within the parentheses.

4. Apply the type specifier.

• Examples

/******************** Example 1 ********************/

char ~(~(~v~r)J»!10];

7 6 4 2 1 3 5

In Example 1, the steps are labeled in order and can be interpreted as
follows:

1. The identifier var is declared as

2. a pointer to

3. a function returning

4. a pointer to

5. an array of 10 elements, which are

6. pointers to

7. char values.

Examples 2 through 9 illustrate complex declarations further and show
how parentheses can affect the meaning of a declaration.

/******************** Example 2 ********************/

/* array of pointers to int values */

int *var[S];

In Example 2, the array modifier has higher priority than the pointer
modifier, so var is declared to be an array. The pointer modifier applies
to the type of the array elements; therefore, the array elements are
pointers to int values.

56

Declarations

/******************** Example 3 ********************/

/* pointer to array of int values */

int (*var) [5] ;

In Example 3, parentheses give the pointer modifier higher priority than
the array modifier, and var is declared to be a pointer to an array of five
int values.

/******************** Example 4 ********************/

/* function returning pointer to long */

long *var(long,long);

Function modifiers also have higher priority than pointer modifiers, so
Example 4 declares var to be a function returning a pointer to a long
value. The function is declared to take two long values as arguments.

/******************** Example 5 ********************/

/* pointer to function returning long */

long (*var) (long,long);

Example 5 is similar to Example 3. Parentheses give the pointer modifier
higher priority than the function modifier, and var is declared to be a
pointer to a function that returns a long value. Again, the function takes
two long argumen ts.

/******************** Example 6 ********************/

/* array of pointers to functions
returning structures */

struct both {
int a;
char b;
} (*var[S]) (struct both, struct both);

The elements of an array cannot be functions, but Example 6 demon­
strates how to declare an array of pointers to functions instead. In this
example, var is declared to be an array of five pointers to functions that
return structures with two members. The arguments to the functions are
declared to be two structures with the same structure type, both. Note

57

Microsort C Language Rererence

that the parentheses surrounding *var [5] are required. Without them,
the declaration is an illegal attempt to declare an array of functions, as
shown below:

/* ILLEGAL */
struct both *var[5] (struct both, struct both);

/******************** Example 7 ********************/

/* function returning pointer
to an array of 3 double values */

double (*var (double (*) [3])) [3] ;

Example 7 shows how to declare a function returning a pointer to an
array, since functions returning arrays are illegal. Here var is declared to
be a function returning a pointer to an array of three double values. The
function var takes one argument. The argument, like the return value, is
a pointer to an array of three double values. The argument type is given
by a complex abstract declarator. The parentheses around the asterisk in
the argument type are required; without them, the argument type would
be an array of three pointers to double values. For a discussion and ex­
amples of abstract declarators, see Section 4.9, "Type Names."

/******************** Example 8 ********************/

/* array of arrays of pointers
to pointers to unions */

union sign {
int x;
unsigned y;
} * *var [5] [5] ;

As Example 8 shows, a pointer can point to another pointer, and an array
can contain arrays as elements. Here var is an array of five elements. Each
element is a five-element array of pointers to pointers to unions with two
members.

/******************** Example 9 ********************/

/* array of pointers to arrays
of pointers to unions */

union sign * (*var[5]) [5];

Example 9 shows how the placement of parentheses changes the meaning
of the declaration. In this example, var is a five-element array of pointers
to five-element arrays of pointers to unions.

58

Declarations

4.3.3 Declarators with Special Keywords

Your implementation of Microsoft C may include the following special
keywords:

cdecl

far

fortran

huge

near

pascal

These keywords modify the meaning of variable and function declarations.
See your compiler guide for a full discussion of the effects of these special
keywords.

When a special keyword appears in a declarator, it modifies the item
immediately to the right of the keyword. You can apply more than one
special keyword to the same item. For example, you might modify a func­
tion identifier with both the far keyword and the pascal keyword. In this
case, the order of the keywords does not matter (that is, far pascal and
pascal far have the same effect). Thus the "binding" characteristics of the
special keywords are the same as those of the type specifiers const and
volatile. (Section 4.2, "Type Specifiers," contains descriptions of the
const and volatile keywords.)

You can also use two or more special keywords in different parts of a
declaration to modify the meaning of the declaration. For example, the
following declaration contains two occurrences of the far keyword:

int far * pascal far func(void);

In this example, the pascal and far keywords modify the function
identifier func. The return value of func is declared to be a far pointer
to an int value.

As in any C declaration, you can use parentheses to override the default
interpretation of the declaration. The rules governing complex declarators
(discussed in Section 4.3.2) also apply to declarations that use the special
keywords.

59

Microsoft C Language Reference

• Examples

The following examples show the use of special keywords in declarations:

/******************** Example 1 **~*****************/

int huge database[65000];

Example 1 declares a huge array named database with 65,000 int ele­
ments. The huge keyword modifies the array declarator.

/******************** Example 2 ********************/

char * far * x;

In Example 2, the far keyword modifies the asterisk to its right, making x
a far pointer to a pointer to char. This declaration is equivalent to the
following declaration:

char * (far *x):

/******************** Example 3 ********************/

double near cdecl calc(double,double);

double cdecl near calc(double,double);

Example 3 shows two equivalent declarations. Both declare calc as a
function with the near and cdecl attributes.

/******************** Example 4 ********************/

char far fortran initlist[INITSIZE];

char far *nextchar, far *prevchar, far *currentchar;

Example 4 also shows two declarations. The first declares a far fortran
array of characters named ini tlist, and the second declares three far
pointers named nextchar, prevchar, and currentchar. These
pointers might be used to store the addresses of characters in the
ini tlist array. Note that the far keyword must be repeated before each
declarator.

60

Declarations

/******************** Example 5 ********************/

char far * (far *get~nt)Jint far *);

6 5 2 1 3 4

Example 5 shows a more complex declaration with several occurrences of
the far keyword. The following procedure would be used to interpret this
declaration:

1. The identifier getint is declared as a

2. far pointer to

3. a function taking

4. a single argument that is a far pointer to an int value

5. and returning a far pointer to a

6. char value.

Note that the far keyword always modifies the item immediately to its
right.

4.4 Variable Declarations

• Syntax

[sc-spec2Jier] type-specifier declarator [, declarator] ...

This section describes the form and meaning of variable declarations. In
particular, it explains how to declare the following:

Type of Variable

Simple variables

Description

Single-value variables with integral or
floating-poin t type

Enumeration variables Simple variables with integral type that
hold one value from a set of named integer
constants

Structures

Unions

Variables composed of a collection of
values that may have different types

Variables composed of several values of
different types, which occupy the same
storage space

61

Microsoft C La.ngua.ge Reference

Arrays

Pointers

Variables composed of a collection of ele­
ments with the same type

Variables that point to other variables and
contain variable locations (in the form of
addresses) instead of values

In the general form of a variable declaration, type-specifier gives the data
type of the variable and declarator gives the name of the variable, possibly
modified to declare an array or a pointer type. The type-specifier can be a
compound, as when the type is modified by canst, volatile, or one of the
special keywords described in Section 4.3.3. You can define more than one
variable in a declaration by using multiple declarators, separated by com­
mas. For example, int const far * fp declares a variable named fp as
a far pointer to a nonmodifiable int value.

The sc-specifier gives the storage class of the variable. In some contexts,
you can initialize variables at the time you declare them. For information
about storage classes and initialization, see Sections 4.6 and 4.7, respec­
tively.

4.4.1 Simple Variable Declarations

• Syntax

[sc-specz:r£er~ type-specz:r£er £dentz:r£er [, £dentz:r£er] ... ;

The declaration of a simple variable specifies the variable's name and type.
It can also specify the variable's storage class, as described in Section 4.6.
The Z"dentz"fier in the declaration is the variable's name. The type-specifier
is the name of a defined data type.

You can use a list of identifiers separated by commas (,) to specify several
variables in the same declaration. Each identifier in the list names a vari­
able. All variables defined in the declaration have the same type.

• Examples

/******************** Example 1 ********************/

int x;
int canst y=l;

Example 1 declares a simple variable named x. This variable can hold any
value in the set defined by the int type for a particular implementation.

62

)

Declarations

The simple object y is declared as a constant value of type into It is ini­
tialized to the value 1, and is not modifiable. If the declaration of y was
for an un initialized external, it would receive an initial value of 0, and
that value would be unmodifiable.

/******************** Example 2 ********************/

unsigned long reply, flag;

Example 2 declares two variables named reply and flag. Both variables
have unsigned long type and hold unsigned integral values.

/******************** Example 3 ********************/

double order;

Example 3 declares a variable named order that has double type and
can hold floating-point values.

4.4.2 Enumeration Declarations

• Syntax

enum [tag] {enum-list} [declarator [, declarator] ...];

enum tag [identz:rier [, declarator] ...];

An "enumeration declaration" gives the name of an enumeration variable
and defines a set of named integer constants (the "enumeration set"). A
variable with enumeration type stores one of the values of the enumera­
tion set defined by that type. The integer constants of the enumeration set
have int type; thus, the storage associated with an enumeration variable is
the storage required for a single int value.

Variables of enum type are treated as if they are of type int in all cases.
They may be used in indexing expressions and as operands of all arith­
metic and relational operators.

Enumeration declarations begin with the enum keyword and have the two
forms shown at the beginning of this section and described below:

• In the first form, enum-l£st specifies the values and names of the
enumeration set. (The enum-list is described in detail below.) The

63

Microsoft C Language Reference

optional tag is an identifier that names the enumeration type
defined by enum-list. The declarator names the enumeration vari­
able. You can specify zero or more enumeration variables in a sin­
gle enumeration declaration.

• The second form of the enumeration declaration uses a previously
defined enumeration tag to refer to an enumeration type defined
elsewhere. The tag must refer to a defined enumeration type, and
that enumeration type must be currently visible. Since the
enumeration type is defined elsewhere, enum-list does not appear in
this type of declaration. Declarations of pointers to enumerations
and typedef declarations for enumeration types can use the
enumeration tag before the enumeration type is defined. However,
the enumeration definition must be encountered prior to any actual
use of the typedef declaration or pointer.

If a tag argument appears, but no declarator is given, the declaration con­
stitutes a declaration for an enumeration tag.

An enum-l£st has the following form:

£dent£/ier [= constant-expression]
[, identzJier [= constant-expression] ...]

Each idenUfier in an enumeration list names a value of the enumeration
set. By default, the first identifier is associated with the value 0, the next
identifier is associated with the value 1, and so on through the last
identifier in the declaration. The name of an enumeration constant is
equivalent to its value.

The optional phrase = constant-expression overrides the default sequence
of values. Thus, if £dentifier = constant-expression appears in enum-l£st,
the identifier is associated with the value given by constant-expression.
The constant-expression must have int type and can be negative. The next
identifier in the list is associated with the value of constant-expression + 1,
unless you explicitly associate it with another value.

The following rules apply to the members of an enumeration set:

64

• An enumeration set can contain duplicate constant values. For
example, you could associate the value 0 with two different
identifiers named null and zero in the same set.

• The identifiers in the enumeration list must be distinct from other
identifiers with the same visibility, including ordinary variable
names and identifiers in other enumeration lists.

• Enumeration tags must be distinct from other enumeration, struc­
ture, and union tags with the same visibility.

• A comma is allowed following the last item in the enumeration list.

Declarations

• Examples

/******************** Example 1 ********************/

enum day {
saturday,
sunday = 0,
monday,
tuesday,
wednesday,
thursday,
friday
} workday;

Example 1 defines an enumeration type named day and declares a variable
named workday with that enumeration type. The value 0 is associated
with saturday by default. The identifier sunday is explicitly set to O.
The remaining identifiers are given the values 1 through 5 by default.

/******************** Example 2 ********************/

enum day today = wednesday;

In Example 2, a value from the set defined in Example 1 is assigned to the
variable today. Note that the name of the enumeration constant is used
to assign the value. Since the day enumeration type was previously
declared, only the enumeration tag is necessary.

4.4.3 Structure Declarations

• Syntax

struct [tag] {member-declaration-Ust} [declarator [, declarator] ...];

struct tag[declarator [, declarator] ...];

A "structure declaration" names a structure variable and specifies a
sequence of variable values (called "members" of the structure) that can
have different types. A variable of that structure type holds the entire
sequence defined by that type.

Structure declarations begin with the struct keyword and have two forms:

• In the first form, a member-declaratz'on-lz'st (described in detail in
Section 4.4.3.1) specifies the types and names of the structure
members. The optional tag is an identifier that names the structure
type defined by member-declaratz'on-lz'st.

65

Microsoft C Language Reference

• The second form uses a previously defined structure tag to refer to
a structure type defined elsewhere. Thus, member-declaration-Ust is
not needed as long as the definition is visible. Declarations of
pointers to structures and typedefs for structure types can use the
structure tag before the structure type is defined. However, the
structure definition must be encountered prior to any actual use of
the typedef or pointer.

In both forms, each declarator specifies a structure variable. A declarator
may also modify the type of the variable to a pointer to the structure type,
an array of structures, or a function returning a structure. If tag is given,
but declarator does not appear, the declaration constitutes a type declara­
tion for a structure tag.

Structure tags must be distinct from other structure, union, and enumera­
tion tags with the same visibility.

A member-declaration-list argument contains one or more variable or bit­
field declarations.

Each variable declared in the member-declaration list is defined as a
member of the structure type. Variable declarations within the member­
declaration list have the same form as other variable declarations dis­
cussed in this chapter, except that the declarations cannot contain
storage-class specifiers or initializers. The structure members can have any
variable type: fundamental, array, pointer, union, or structure.

A member cannot be declared to have the type of the structure in which it
appears. However, a member can be declared as a pointer to the structure
type in which it appears as long as the structure type has a tag. This
allows you to create linked lists of structures.

A bit-field declaration has the following form:

type-spedjz"er [£dentt"jier] : constant-expression;

The constant-expression specifies the number of bits in the bit field. The
type-specifier has type int (signed or unsigned) and constant-expression
must be a non-negative integer value. Arrays of bit fields, pointers to bit
fields, and functions returning bit fields are not allowed. The optional
z·dent£jier names the bit field. Unnamed bit fields can be used as "dummy"
fields, for alignment purposes. An unnamed bit field whose width is
specified as 0 guarantees that storage for the member following it in the
member-declaration list begins on an int boundary.

Each ident£fier in a member-declaration list must be unique within the list.
However, they do not have to be distinct from ordinary variable names or
from identifiers in other member-declaration lists.

66

)

)

)

Declarations

Note

A Microsoft extension to the ANSI C standard allows char and long
types (both signed and unsi&ned) for bit fields. Unnamed bit fields
with base type long or char tsigned or unsigned) force alignment to
a boundary appropriate to the base type.

Microsoft C does not implement signed bit fields. The syntax is
allowed, but a bit field specified as signed is treated as unsigned in
all conversions.

• Storage

Structure members are stored sequentially in the order in which they are
declared: the first member has the lowest memory address and the last
member the highest. Storage for each member begins on a memory boun­
dary appropriate to its type. Therefore, unnamed spaces ("holes") may
appear between structure members in memory.

Bit fields are not stored across boundaries of their declared type. For
example, a bit field declared with unsigned int type is packed into the
space remaining (if any) if the previous bit field was of type unsigned into
Otherwise, it begms a new object on an int boundary .

• Examples

/******************** Example 1 ********************/

struct {
float x,y;

} complex;

Example 1 defines a structure variable named complex. This structure
has two members with float type, x and y. The structure type has no tag
and is therefore unnamed.

/******************** Example 2 ********************/

struct employee {

} temp;

char name[20];
int id;
long class;

Example 2 defines a structure variable named temp. The structure has
three members: name, id, and class. The name member is a 20-element

67

Microsoft C Language Reference

array, and id and class are simple members with int and long type,
respectively. The identifier employee is the structure tag.

/******************** Example 3 ********************/

struct employee student, faculty, staff;

Example 3 defines three structure variables: student, faculty, and
staff. Each structure has the same list of three members. The members
are declared to have the structure type employee, defined in Example 2.

/******************** Example 4 ********************/

struct sample {

} x;

char c;
float *pf;
struct sample *next;

Example 4 defines a structure variable named x. The first two members of
the structure are a char variable and a pointer to a float value. The third
member, next, is declared as a pointer to the structure type being defined
(sample).

/******************** Example 5 ********************/

struct {
unsigned icon : 8;
unsigned color : 4;
unsigned underline : 1;
unsigned blink : 1;

} screen [25] [80];

Example 5 defines a two-dimensional array of structures named screen.
The array contains 2000 elements. Each element is an individual structure
containing four bit-field members: icon, color, underline, and
blink.

4.4.4 Union Declarations

• Syntax

union [tag] {member-declaration-Hst} [declarator [, declarator.] ••];

union tag[declarator[, declarator] ...];

68

(

Declarations

A "union declaration" names a union variable and specifies a set of vari­
able values, called "members" of the union, that can have different types.
A variable with union type stores one of the values defined by that type.

Union declarations have the same form as structure declarations, except
that they begin with the union keyword instead of the struct keyword.
The same rules govern structure and union declarations, except that bit­
field members are not allowed in unions.

• Storage

The storage associated with a union variable is the storage required for the
largest member of the union. When a smaller member is stored, the union
variable may contain unused memory space. All members are stored in the
same memory space and start at the same address. The stored value is
overwritten each time a value is assigned to a different member.

• Examples

/******************** Example 1 ********************/

union sign {
int svar;
unsigned uvar;

} number;

Example 1 defines a union variable with sign type and declares a variable
named number that has two members: svar, a signed integer, and uvar,
an unsigned integer. This declaration allows the current value of number
to be stored as either a signed or an unsigned value. The tag associated
with this union type is sign.

/******************** Example 2 ********************/

union {
char *a, b;
float f [20] ;

} jack;

Example 2 defines a union variable named jack. The members of the
union are, in order of their declaration, a pointer to a char value, a char
value, and an array of float values. The storage allocated for jack is the
storage required for the 20-element array f, since f is the longest member
of the union. Because there is no tag associated with the union, its type is
unnamed.

69

Microsoft C Language Rererence

/******************** Example 3 ********************/

union {
struct {

unsigned int icon : 8;
unsigned color : 4;

} windowl;
int screenval;

} screen [25] [80];

Example 3 defines a two-dimensional array of unions named screen. The
array contains 2000 elements. Each element of the array is an individual
union with two members: window! and screenval. The window!
member is a structure with two bit-field members, icon and color. The
screenval member is an into At any given time, each union element
holds either the int represented by screenval or the structure
represented by windowl.

4.4.5 Array Declarations

• Syntax

type-specifier declarator [constant-expression];
type-specifier declarator [);

An "array declaration" names the array and specifies the type of its ele­
ments. It may also define the number of elements in the array. A variable
with array type is considered a pointer to the type of the array elements,
as described in Section 5.2.2, "Identifiers."

Array declarations have the two forms shown at the beginning of this sec­
tion. Their syntax differs as follows:

• In the first form, the constant-expression argument within the
brackets specifies the number of elements in the array. Each ele­
ment has the type given by type-specifier, which can be any type
except void. An array element cannot be a function type.

• The second form omits the constant-expression argument in brack­
ets. You can use this form only if you have initialized the array,
declared it as a formal parameter, or declared it as a reference to
an array explicitly defined elsewhere in the program.

In both forms, declarator names the variable and may modify the
variable's type. The brackets ([]) following declarator modify the declara­
tor to array type.

70

Declarations

You can declare an array of arrays (a "multidimensional" array) by follow­
ing the array declarator with a list of bracketed constant expressions, as
shown below:

type-specifier dec/arator[constant-expression] [constant-expression] ...

Each constant-expression in brackets defines the number of elements in a
given dimension: two-dimensional arrays have two bracketed expressions,
three-dimensional arrays have three, and so on. When you declare a mul­
tidimensional array within a function, you can omit the first constant
expression if you have initialized the array, declared it as a formal parame­
ter, or declared it as a reference to an array explicitly defined elsewhere in
the program.

You can define arrays of pointers to various types of objects by using com­
plex declarators, as described in Section 4.3.2.

• Storage

The storage associated with an array type is the storage required for all of
its elements. The elements of an array are stored in contiguous and
increasing memory locations, from the first element to the last. No blanks
separate the array elements in storage.

Arrays are stored by row. For example, the following array consists of two
rows with three columns each:

cha r A [2] [3] ;

The three columns of the first row are stored first, followed by the three
columns of the second row. This means that the last subscript varies most
quickly.

To refer to an individual element of an array, use a subscript expression,
as described in Section 5.2.5.

• Examples

/******************** Example 1 ********************/

int scores[lO], game;

Example 1 declares an array variable named scores with 10 elements,
each of which has int type. The variable named game is declared as a
simple variable with int type.

71

Microsoft C Language Reference

/******************** Example 2 ********************/

float matrix [10] [15];

Example 2 declares a two-dimensional array named matr ix. The array
has 150 elements, each having float type.

/******************** Example 3 ********************/

struct {
float x,y;
} complex[100];

Example 3 declares an array of structures. This array has 100 elements;
each element is a structure containing two members.

/******************** Example 4 ********************/

extern char *name[];

Example 4 declares the type and name of an array of pointers to char.
The actual definition of name occurs elsewhere.

4.4.6 Pointer Declarations

• Syntax

type-speC£/ier'" [modzlication-spec] declarator;

A "pointer declaration" names a pointer variable and specifies the type of
the object to which the variable points. A variable declared as a pointer
holds a memory address.

The type-speczjier gives the type of the object, which can be any funda­
mental, structure, or union type. Pointer variables can also point to func­
tions, arrays, and other pointers. (For information on declaring more com­
plex pointer types, refer to Section 4.3.2.)

By making type-specifier void, you can delay specification of the type to
which the pointer refers. Such an item is referred to as a "pointer to void"
(void *). A variable declared as a pointer to void can be used to point to
an object of any type. However; in order to perform operations on the
pointer or on the object to which it points, the type to which it points
must be explicitly specified for each operation. Such conversion can be
accomplished with a type cast.

72

Declarations

The modification-spec can be either canst or volatile, or both. These
specify, respectively, that the pointer will not be modified by the program
itself (canst), or that the pointer may legitimately be modified by some
process beyond the control of the program (volatile). (See Section 4.2,
"Type Specifiers," for more information on canst and volatile.)

The declarator names the variable and can include a type modifier. For
example, if declarator represents an array, the type of the pointer is
modified to poin ter to array.

You can declare a pointer to a structure, union, or enumeration type
before you define the structure, union, or enumeration type. However, the
definition must appear before the poin ter can be used as an operand in an
expression. You declare the pointer by using the structure or union tag
(see Example 7 below). Such declarations are allowed because the compiler
does not need to know the size of the structure or union to allocate space
for the pointer variable.

• Storage

The amount of storage required for an address and the meaning of the
address depend on the implementation of the compiler. Pointers to
different types are not guaranteed to have the same length.

In some implementations, you can use the special keywords near, far, and
huge to modify the size of a pointer. Declarations using special keywords
are described in Section 4.3.3. See your compiler guide for more informa­
tion on the meaning and use of these keywords .

• Examples

/******************** Example 1 ********************/

char *message;

Example 1 declares a pointer variable named message. It points to a
variable with char type.

/******************** Example 2 ******************~*/

int *pointers[lO];

Example 2 declares an array of pointers named pointers. The array
has 10 elements; each element is a pointer to a variable with int type.

73

Microsoft C Language Reference

/******************** Example 3 ********************/

int (*pointer) [10];

Example 3 declares a pointer variable named pointer; it points to an
array with 10 elements. Each element in this array has int type.

/******************* Example 4 *********************/

int canst *x;

Example 4 declares a pointer variable, x, to a constant value. The pointer
may be modified to point to a different int value, but the value to which it
points may not be modified.

/****************** Example 5 *********************/

canst int some_object = 5 ;
int other_object = 37;
int *const y = &fixed_object;
const volatile *const Z = &some_object;
*const volatile w = &some_object;

The variable y in Example 5 is declared as a constant pointer to an int
value. The value it points to may be modified, but the pointer itself must
always point to the same location: the address of fixed_object. Simi­
larly, z is a constant pointer, but it is also declared to point to an int
whose value will not be modified by the program. The additional specifier
volatile indicates that although the value of the const int pointed to
by z cannot be modified by the program, it could legitimately be modified
by a process ou tside the program. The declaration of w specifies that the
value pointed to will not be changed and that the program itself will not
modify the pointer. However, some outside process could legitimately
modify the pointer.

/******************* Example 6 ********************/

struct list *next, *previous;

Example 6 declares two pointer variables that point to the structure type
list. This declaration can appear before the definition of the list
structure type (see Example 7), as long as the 1 ist type definition has
the same visibility as the declaration.

74

)

Declarations

/******************** Example 7 ********************/

struct list {

} line;

char *token;
int count;
struct list *next;

Example 7 defines the variable line to have the structure type named
1 ist. The 1 ist structure type has three members: the first member is a
pointer to a char value, the second is an int value, and the third is a
pointer to another list structure.

/******************** Example 8 ********************/

struct id {
unsigned int id_no;
struct name *pname;

} record;

Example 8 declares the variable record to have the structure type id.
Note that pname is declared as a pointer to another structure type named
name. This declaration can appear before the name type is defined.

/*********************** Example 9 ********************/

int i;
void *p;

p = &i;

(int *)p++;

/* p declared as pointer to an object
whose type is not specified */

/* address of integer i assigned to p
but type of p itself is still not
specified. An operation like p++
would not be permitted yet */

/* incrementing p permitted when the
cast converts it to pointer to int */

In Example 9, the pointer variable p is declared, but the void * preceding
the identifier p in the declaration means that p can be used later to point
to any type object. The address of an int value is assigned to p, but no
operations on the pointer itself are permitted unless it is explicitly con­
verted to the type to which it points. Similarly, indirect operations on the
object poin ted to by p are not permitted unless p is converted to a
specific type. Finally, a cast is used to convert p to a pointer to int, and
p is then incremented.

75

Microsoft C Language Reference

4.5 Function Declarations (Prototypes)

• Syntax

[sc-spec] [type-spec] declarator([formal-parameter-list]) [, declarator-list] ... ;

A "function declaration," also called a "function prototype," establishes
the name and return type of a function and may specify the types, formal
parameter names, and number of arguments to the function. A function
declaration does not define the function body. It simply makes information
about the function known to the compiler. This information enables the
compiler to check the types of the actual arguments in ensuing calls to the
function.

If you do not provide a function prototype, the compiler constructs one
from the first reference to the function it encounters, whether a call or a
function definition. Whether such a prototype reflects the correct parame­
ter types can only be assured if the function definition occurs in the same
source file. If the definition occurs in a different module, argument mis­
match errors may not be detected. Function definitions are described in
detail in Section 7.2.

The sc-spec represents a storage-class specifier; it can be either extern or
static. Storage-class specifiers are discussed in Section 4.6.

The type-spec gives the function's return type, and declarator names the
function. If you omit type-spec from a function declaration, the function is
assumed to return a value of type into

The formal-parameter-list is described below.

The final declarator-list indicated in the syntax represents further declara­
tions on the same line. These may be other functions returning values of
the same type as the first function, or declarations of any variables whose
type is the same as the first function's return type. Each such declaration
must be separated from its predecessors and successors by a comma.

4.5.1 Formal Parameters

"Formal parameters" describe the actual arguments that can be passed to
a function. In a function declaration, the parameter declarations establish
the number and types of the actual arguments. They may also include
identifiers of the formal parameters. Though the parameters may be omit­
ted from a function declaration, their inclusion is recommended, and they
are mandatory in a true prototype. The extent of the information in

76

Declarations

the declaration influences the argument checking done on function calls
that appear before the compiler has processed the function definition.

Note

Iden tifiers used to name the formal parameters in the prototype
declaration are descriptive only. They go out of scope at the end of the
declaration. Therefore, they need not be identical to the identifiers
used in the declaration portion of the function definition. Using the
same names may enhance readability, but this use has no other
significance.

4.5.2 Return Type

Functions can return values of any type except arrays and functions.
Therefore, the type-specifier argument of a function declaration can
specify any fundamental, structure, or union tYl?e. You can modify the
function identifier with one or more asterisks t *) to declare a pointer
return type.

Although functions cannot return arrays and functions, they can return
pointers to arrays and functions. You may declare a function that returns
a pointer to an array or function type by modifyin~ the function identifier
with asterisks (*), brackets ([1), and parentheses (t)). Such a function
identifier is known as a "comp1ex declarator." Rules for forming and inter­
preting complex declarators are discussed in Section 4.3.2.

4.5.3 The List of Formal Parameters

All elements of the formal-parameter-list argument appearing within the
parentheses following the function declarator are optional. The two fol­
lowing syntax variations illustrate the possibilities:

[void]
[register] [type-spec] [declarator[[, ... H, ...]]]
If formal parameters are omitted from the function declaration, the
parentheses should contain the keyword void to specify that no arguments
will ever be passed to the function. If the parentheses are left entirely
empty, no information is conveyed about whether arguments will be
passed to the function and no checking of argument types is performed.

77

Microsoft C Language Reference

Note

Empty parentheses in a function declaration or definition represent an
obsolescent form not recommended for new code. Functions accepting
no arguments should be declared with the void keyword replacing the
list of formal parameters. This use of void is interpreted by context,
and is distinct from uses of void as a type specifier.

A declaration in the list of formal parameters can contain the register
storage-class specifier, either alone or combined with a type specifier and
an identifier. If register is not specified, the storage class is auto. The
only explicit storage-class specifier permitted is register. If the
parentheses contain only the register keyword, the formal parameter is
considered to represent an unnamed int for which register storage is
being requested.

If type-spec is included, it can specify the type name for any fundamental,
structure, or union type (such as int). A declarator for a fundamental,
structure, or union type is simply an identifier of a variable having that
type.

The declarator for a pointer, array, or function can be formed by combin­
ing a type specifier, plus the appropriate modifier, with an identifier.
Alternatively, an "abstract declarator" (that is, a declarator without a
specified identifier) can be used. Section 4.9, "Type Names," explains how
to form and interpret abstract declarators.

A full, partial, or empty list of formal parameters can be declared. If the
list contains at least one declarator, a variable number of parameters can
be specified by ending the list with a comma followed by three periods
(, ...), referred to as the "ellipsis notation." A function is expected to have
at least as many arguments as there are declarators or type specifiers
preceding the last comma.

Note

78

To maintain compatibility with previous versions, the compiler accepts
a comma without trailing periods at the end of a declarator list to
indicate a variable number of arguments. However, this is a Microsoft
extension to the ANSI C standard. New code should use the comma
followed by three periods. For information on enabling and disabling
extensions, see your compiler guide.

)

)

)

Declarations

One other special construction is permitted as a formal parameter: void *
represents a pointer to an object of unspecified type. Thus, in a call, the
pointer can be used to reference any type of object after you convert the
pointer (for example, with a cast) to a pointer to the desired type. Note
that before operations can be performed on the pointer or the object it
addresses, the pointer must be explicitly converted. Section 4.4.6, "Pointer
Declarations," provides further information on void *.

4.5.4 Summary

Function prototypes are optional, but strongly recqmmended. If included,
the only elements absolutely required are the name of the function, the
opening and closing parentheses following the name, and the final semi­
colon. If no return type is included, as in the following example, the func­
tion is assumed to return an int:

/***** Obsolescent form of function declaration *****/

minimal_declaration(); /* mayor may not
accept arguments */

A full function prototype is the same as a function definition, except that
instead of having a function "body," it is terminated by a semicolon (;)
immediately following the closing parenthesis.

Any appropriate combination of elements is permitted among the parame­
ter declarations, from no information (as in the obsolescent form in the
example above) to a full prototype of the function. If no prototype at all is
given, a de facto prototype is constructed from information in the first
reference to the function encountered in the source file.

• Examples

/******************** Example 1 ********************

double func(void);

fun (void *);

char *true(long, long);

/* returns a double, but
* accepts no arguments

*/
/* takes a pointer to an

* unspecified type;
* returns an int

*/
/* takes two longs;

* returns pointer to char
*/

79

Microsoft C Language Reference

new (register a, char *); /* takes an int with request
* for register storage, and
* a pointer to char;
* returns an int

*/
void go(int *[], char *b); /* takes an array of pointers

* to int using an abstract
* declarator, and a pointer
* to char; there is no return

*/
void *tu(double v, ...); /* takes at least one double;

* other arguments may also be
* given; returns a pointer
* to an unspecified type

*/

Any information included in the formal parameter list is used to check
actual arguments appearing in calls to the function that occur before the
compiler has processed the function definition.

/******************** Example 2 ********************/

int add(int numl, int num2);

Example 2 is a prototype for a function named add that takes two int
arguments, represented by the identifiers numl and num2, and returns
an int value.

/******************** Example 3 ********************/

double calc 0 ;

Example 3 declares a function named calc that returns a double value.
The obsolescent empty parentheses leave the issue of possible arguments
to the function undefined.

/******************** Example 4 ********************/

char *strfind(char *ptr, ...);

Example 4 is a prototype for a function named str find that returns a
pointer to char. The function accepts at least one argument, declared by
the formal parameter char *ptr, to be a pointer to a char value. The
formal parameter list has one entry and ends with a comma followed by
three periods, indicating that the function may take more arguments.

80

(

)

Declarations

/******************** Example 5 ********************/

void draw(void);

Example 5 declares a function with void return type (returning no value).
The void keyword also replaces the list of formal parameters, so no argu­
ments are expected for this function.

/******************** Example 6 ********************/

double (*sum(double, double» [3J;

In Example 6, sum is declared as a function returning a pointer to an
array of three double values. The sum function takes two double values
as arguments.

/******************** Example 7 ********************/

int (*select(void» (int number);

In Example 7, the function named select is declared to take no argu­
ments and to return a pointer to a function. The pointer return value
points to a function taking one int argument, represented by the identifier
number, and returning an int value.

/******************** Example 8 ********************/

int prt(void *);

In Example 8, the function prt is declared to take a pointer argument of
any type and return an int value. A pointer to any type could be passed
as an argument to prt without producing a type-mismatch warning.

/******************** Example 9 ***********************/

long (*const rainbow [J) (int, ...) ;

Example 9 shows the declaration of an array, named rainbow, of an
unspecified number of constant pointers to functions. Each of these takes
at least one parameter of type int, as well as an unspecified number of
other parameters. Each of the functions pointed to returns a long value.

81

Microsoft C Language Reference

4.6 Storage Classes

The "storage class" of a variable determines whether the item has a "glo­
bal" or "local" lifetime. An item with a global lifetime exists and has a
value throughout the execution of the program. All functions have global
lifetimes.

Variables with local lifetimes are allocated new storage each time execu­
tion control passes to the block in which they are defined. When execution
control passes out of the block, the variables no longer have meaningful
values.

Although C defines only two types of storage classes, it provides the fol­
lowing four storage-class specifiers:

auto
register
static
extern

Items declared with the auto or register specifier have local lifetimes.
Items declared with the static or extern specifier have global lifetimes.

The four storage-class specifiers have distinct meanings because storage­
class specifiers affect the visibility of functions and variables, as well as
their storage class. The term "visibility" refers to the portion of the source
program in which the variable or function can be referenced by name. An
item with a global lifetime exists throughout the execution of the source
program, but it may not be "visible" in all parts of the program. (Visibil­
ity and the related concept of lifetime are discussed in Chapter 3, "Pro­
gram Structure.")

The placement of variable and function declarations within source files
also affects storage class and visibility. Declarations outside all function
definitions are said to appear at the "external level;" declarations within
function definitions appear at the "internal level."

The exact meaning of each storage-class specifier depends on two factors:

• Whether the declaration appears at the external or internal level

• Whether the item being declared is a variable or a function

82

Declarations

Sections 4.6.1-4.6.3 describe the meanings of storage-class specifiers in
each kind of declaration and explain the default behavior when the
storage-class specifier is omitted from a variable or function declaration.

4.6.1 Variable Declarations
at the External Level

In variable declarations at the external level (that is, outside all func­
tions), you can use the static or extern storage-class specifier or omit the
storage-class specifier en tirely . You cannot use the auto and register
storage-class specifiers at the external level.

Variable declarations at the external level are either defin£t£ons of vari­
ables ("defining declarations"), or references to variables defined elsewhere
("referencing declarations").

An external variable declaration that also initializes the variable (impli­
citly or explicitly) is a defining declaration of the variable. A definition at
the external level can take several forms:

• A variable that you declare with the static storage-class specifier.
You can explicitly initialize the static variable with a constant
expression, as described in Section 4.7. If you omit the initializer,
the variable is initialized to 0 by default. For example, static
int k = 16; and static int k; are both considered
definitions of the variable k.

• A variable that you explicitly initialize at the external level. For
example, int j = 3; is a definition of the variable j.

Once a variable is defined at the external level, it is visible throughout the
rest of the source file in which it appears. The variable is not visible prior
to its definition in the same source file. Also, it is not visible in other
source files of the program, unless a referencing declaration makes it visi­
ble, as described below.

You can define a variable at the external level only once within a source
file. If you give the static storage-class specifier, you can define another
variable with the same name and the static storage-class specifier in a
different source file. Since each static definition is visible only within its
own source file, no conflict occurs.

The extern storage-class specifier declares a reference to a variable defined
elsewhere. You can use an extern declaration to make a definition in
another source file visible, or to make a variable visible above its definition

83

Microsoft C Language Reference

in the same source file. Once you have declared a reference to the variable
at the external level, the variable is visible throughout the remainder of
the source file in which the declared reference occurs.

Declarations that use the extern storage-class specifier cannot contain ini­
tializers, since these declarations refer to variables whose values are
defined elsewhere.

For an extern reference to be valid, the variable it refers to must be
defined once, and only once, at the external level. The definition can be in
any of the source files that form the program.

One special case is not covered by the rules outlined above. You can omit
both the storage-class specifier and the initializer from a variable declara­
tion at the external level; for example, the declaration int n; is a valid
external declaration. This declaration can have one of two different mean­
ings, depending on the context:

1. If there is an external defining declaration of a variable with the
same name elsewhere in the program, the current declaration is
assumed to be a reference to the variable in the defining declara­
tion, exactly as if the extern storage-class specifier had been used
in the declaration.

2. If there is no external defining declaration of a variable with the
same name elsewhere in the program, the declared variable is allo­
cated storage at link time and initialized to o. This kind of variable
is known as a "communal" variable. If more than one such declara­
tion appears in the program, storage is allocated for the largest
size declared for the variable. For example, if a program contains
two uninitialized declarations of i at the external level, int i;
and char i;, storage space for an int value is allocated for i at
link time.

Uninitialized variable declarations at the external level are not recom­
mended for any file that might be placed in a library.

84

Declarations

• Example

/**
SOURCE fILE ONE

~***/

extern int i;

main ()
{

i++;
printf ("%d\n",
next 0;

}

int i = 3;

next ()
{

i++;
printf ("%d\n",
other();

}

i) ;

i) ;

/* reference to i,
defined below */

/* i equals 4 */

/* definition of i */

/* i equals 5 */

/**
SOURCE fILE TWO

**/

extern int i;

other 0
{

}

i++;
printf("%d\n", i);

/* reference to i in
first source file */

/* i equals 6 */

The two source files in this example contain a total of three external
declarations of i. Only one declaration contains an initialization; that
declaration, int i = 3; , defines the global variable i with initial
value 3. The extern declaration of i at the top of the first source file
makes the global variable visible above its definition in the file. Without
the extern declaration, the main function could not reference the global
variable i. The extern declaration of i in the second source file also
makes the global variable visible in that source file.

Assuming that the print f function is defined elsewhere in the program,
all three functions perform the same task: they increase i and print it.
The values 4, 5, and 6 are printed.

85

Microsoft C Language Reference

If the variable i had not been initialized, it would have been set to 0
automatically at link time. In this case, the values 1, 2, and 3 would have
been printed.

4.6.2 Variable Declarations
at the Internal Level

You can use any of the four storage-class specifiers for variable declara­
tions at the internal level. When you omit the storage-class specifier from
such a declaration, the default storage class is auto.

The auto storage-class specifier declares a variable with a local lifetime.
An auto variable is visible only in the block in which it is declared.
Declarations of auto variables can include initializers, as discussed in Sec­
tion 4.7. Since variables with auto storage class are not initialized
automatically, you should either explicitly initialize them when you
declare them, or assign them initial values in statements within the block.
The values of uninitialized auto variables are undefined.

A static auto variable can be initialized with the address of any external
or static item, but not with the address of another auto item, because the
address of an auto item is not a constant.

The register storage-class specifier tells the compiler to give the variable
storage in a register, if possible. Register storage usually speeds access
time and reduces code size. Variables declared with register storage class
have the same visibility as auto variables. The number of registers that
can be used for variable storage is machine-dependen t. If no registers are
available when the compiler encounters a register declaration, the vari­
able is given auto storage class and stored in memory. The compiler
assigns register storage to variables in the order in which the declarations
appear in the source file. Register storage, if available, is only guaranteed
for int and pointer types that are the same size as an into

A variable declared at the internal level with the static storage-class
specifier has a global lifetime but is visible only within the block in which
it is declared. Unlike auto variables, static variables keep their values
when the block is exited. You can initialize a static variable with a con­
stant expression. A static variable is initialized only once, when program
execution begins; it is not reinitialized each time the block is entered. If
you do not explicitly initialize a static variable, it is initialized to 0 by
default.

A variable declared -with the extern storage-class specifier is a reference to
a variable with the same name defined at the external level in any of the
source files of the program. The internal extern declaration is used to
make the external-level variable definition visible within the block. Unless
otherwise declared at the external level, a variable declared with the
extern keyword is visible only in the block in which it is declared.

86

Declarations

• Example

int i = 1;

main 0
{

}

other ()
{

}

/* reference to i, defined above: */
extern int i;

/* initial value is zero; a is
visible only within main: */

static int a;

/* b is stored in a register, if possible: */
register int b = 0;

/* default storage class is auto: */
int c = 0;

/* values printed are 1, 0, 0, 0: */
printf("%d\n%d\n%d\n%d\n", i, a, b, c);
other();

/* address of global i assigned to pointer variable */
static int *external_i = &i;

/* i is redefined; global i no longer visible: */
int i = 16;

/* this a is visible only within other: */
static int a = 2;

a += 2;
/* values printed are 16, 4, and 1: */
printf("%d\n%d\n%d\n", i, a, *external_i);

In this example, the variable i is defined at the external level with initial
value 1. An extern declaration in the main function is used to declare a
reference to the external-level i. The static variable a is initialized to 0
by default, since the initializer is omitted. The call to print f (assuming
the pr int f function is defined elsewhere in the source program) prints
the values 1, 0, 0, and 0.

In the other function, the address of the global variable i is used to ini­
tialize the static pointer variable external_i. This works because the
global variable has static lifetime, meaning its address will always be the
same. Next, the variable i is redefined as a local variable with initial
value 16. This redefinition does not affect the value of the external-level
i, which is hidden by the use of its name for the local variable. The value
of the global i is now accessible only indirectly within this block, through
the pointer external i. Attempting to assign the address of the auto

87

Microsoft C La.ngua.ge Reference

variable i to a pointer would not work, since it may be different each
time the block is entered. The variable a is declared as a static variable
and initialized to 2. This a does not conflict with the a in main, since
static variables at the internal level are visible only within the block in
which they are declared.

The variable a is increased by 2, giving 4 as the result. If the other
function were called again in the same program, the initial value of a
would be 4, since internal static variables keep their values when the pro­
gram exits and then re-enters the block in which they are declared.

4.6.3 Function Declarations
at the External and Internal Levels

You can use either the static or the extern storage-class specifier in func­
tion declarations. Functions always have global lifetimes.

The visibility rules for functions vary slightly from the rules for variables,
as follows:

• A function declared to be static is visible only within the source
file in which it is defined. Functions in the same source file can call
the static function, but functions in other source files cannot. You
can declare another static function with the same name in a
different source file without conflict.

• Functions declared as extern are visible throughout all the source
files that make up the program (unless you later redeclare such a
function as static). Any function can call an extern function.

• Function declarations that omit the storage-class specifier are
extern by default.

Note

88

A Microsoft extension to the ANSI C standard provides that function
declarations at the internal level have the same meaning as function
declarations at the external level. This means that a function is visible
from its point of declaration through the rest of the source file.

Declarations

4.7 Initialization

• Syntax

= z"nz"t£al£zer

You can set a variable to an initial value by applying an initializer to the
declarator in the variable declaration. The value or values of the initializer
are assigned to the variable. An equal sign (=) precedes the initializer.

You can initialize variables of any type, provided that you obey the follow­
ing rules:

•

•

•

•

•

•

Declarations that use the extern storage-class specifier cannot
include initializers.

Variables declared at the external level can be initialized. If you do
not explicitly initialize a variable at the external level, it is initial-
ized to 0 by default.

A constant expression can be used to initialize any variable
declared with the static storage-class specifier. Variables declared
to be static are initialized when program execution begins. If you
do not explicitly initialize a static variable, it is initialized to 0 by
default.

Variables declared with the auto and register storage-class
specifiers are initialized each time execution control passes to the
block in which they are declared. If you omit an initializer from the
declaration of an auto or register variable, the initial value of the
variable is undefined.

Aggre~ate types with auto storage class (arrays, structures, and
unions cannot be initialized. Only static aggregates and aggre­
gates eclared at the external level can be initialized.

The initial values for external variable declarations and for all
static variables, whether external or internal, must be constant
expressions. (Constant expressions are described in Section 5.2.10.)
You can use either constant or variable values to initialize auto
and register variables.

Sections 4.7.1 and 4.7.2 describe how to initialize variables of fundamen­
tal, pointer, and aggregate types.

89

Microsoft C Language Reference

4.7.1 Fundamental and Pointer Types

• Syntax

= expression

The value of expressz"on is assigned to the variable. The conversion rules
for assignment apply.

An internally declared static variable can only be initialized with a con­
stant value. Since the address of any externally declared or static variable
is constant, it may be used to initialize an internally declared static
pointer variable. However, the address of an" auto variable cannot be used
as an initializer because it may be different for each execution of the block .

• Examples

/******************** Example 1 ********************/

int x = 10;

In Example 1, x is initialized to the constant expression 10.

/******************** Example 2 ********************/

register int *px = 0;

In Example 2, the pointer px is initialized to 0, producing a "null"
pointer.

/******************** Example 3 ********************/

const int c = (3 * 1024);

Example 3 uses a constant expression to initialize c to a constant value
that cannot be modified.

/******************** Example 4 ********************/

int *b = &x;
int *const a = &z;

Example 4 initializes the pointer b with the address of another variable,
x. The pointer a is initialized with the address of a variable named z.

gO

)

Declarations

However, since it is specified to be a canst, the variable a can only be ini­
tialized, never modified. It always points to the same location.

/******************** Example 5 ********************/

int GLOBAL ;

int function(void)
{

}

int LOCAL ;
static int *lp = &LOCAL; /* Illegal declaration */
static int *gp = &GLOBAL; /* Legal declaration */
register int *rp = &LOCAL; /* Legal declaration */

The global variable GLOBAL is declared in Example 5 at the external
level, so it has global lifetime. The local variable LOCAL has auto storage
class and only has an address during the execution of the function in
which it is declared. Therefore, attempting to initialize the static pointer
variable Ip with the address of LOCAL is not permitted. The static
pointer variable gp can be initialized to the address of GLOBAL because
that address is always the same. Similarly, *rp can be initialized because
rp is a local variable and can have a nonconstant initializer. Each time the
block is entered, LOCAL will have a new address, which will then be
assigned to rp.

4.7.2 Aggregate Types

• Syntax

= {init£alz"zer-Iz"st}

The initz"alizer-list is a list of initializers separated by commas. Each ini­
tializer in the list is either a constant expression or an initializer list.
Therefore, an initializer list enclosed in braces can appear within another
initializer list. This form is useful for initializing aggregate members of an
aggregate type, as shown in the examples in this section.

For each initializer-list, the values of the constant expressions are assigned,
in order, to the corresponding members of the aggregate variable. When a
union is initialized, initializer-list must be a single constant expression.
Th.e value of the constant expression is assigned to the first member of the
unIon.

If initialz"zer-list has fewer values than an aggregate type, the remaining
members or elements of the aggregate type are initialized to O. If
initial£zer-list has more values than an aggregate type, an error results.
These rules apply to each embedded initializer list, as well as to the aggre­
gate as a whole.

91

Microsoft C Language Reference

For example,

int P[4] [3] = {

};

{ 1, 1, 1 },
{ 2, 2, 2 },
{ 3, 3, 3,},
{ 4, 4, 4,},

declares P as a 4-by-3 array and initializes the elements of its first row to
1, the elements of its second row to 2, and so on through the fourth row.
Note that the initializer list for the third and fourth rows contains com­
mas after the last constant expression. The last initializer list ({ 4, 4,
4, }) is also followed by a comma. These extra commas are permitted but
are not required; only commas that separate constant expressions from one
another, and those that separate one initializer list from another, are
required.

If there is no embedded initializer list for an aggregate member, values are
simply assigned, in order, to each member of the subaggregate. Therefore,
the initialization in the previous example is equivalent to the following:

int P[4] [3] = {
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4

};

Braces can also appear around individual initializers in the list.

When you initialize an aggregate variable, you must be careful to use
braces and initializer lists properly. The following example illustrates the
compiler's interpretation of braces in more detail:

typedef struct {
int n1, n2, n3;

} triplet;

triplet nlist[2] [3] = {

};

{{ 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } },
{ { 10,11,12 }, { 13,14,15 }, { 16,17,18 } }

/* Line 1 */
/* Line 2 */

In this example, nl ist is declared as a 2-by-3 array of structures, each
structure having three members. Line 1 of the initialization assigns values
to the first row of nl ist, as follows:

92

1. The first left brace on Line 1 signals the compiler that initialization
of the first aggregate member of nlist (that is, nlist [OJ) is
beginning.

Declarations

2. The second left brace indicates that initialization of the first aggre­
gate member of nl ist [0] (that is, the structure at
nl ist [0] [0]) is beginning.

3. The first right brace ends initialization of the structure
nlist [0] [OJ; the next left brace starts initialization of
nlist [0] [1] .

4. The process continues until the end of the line, where the closing
right brace ends initialization of nl ist [0] .

Line 2 assigns values to the second row of nlist in a similar way.

Note that the outer sets of braces enclosing the initializers on lines 1 and 2
are required. The following construction, which omits the outer braces,
would cause an error:

/* THIS CAUSES AN ERROR */

triplet nlist[2] [3] = {

};

{ 1, 2, 3 },{ 4, 5, 6 },{ 7, 8, 9 },
{ 10,11,12 },{ 13,14,15 },{ 16,17,18 }

/* Line 1 */
/* Line 2 */

In this construction, the first left brace on line 1 starts the initialization of
nlist [0] , which is an array of three structures. The values 1, 2, and 3
are assigned to the three members of the first structure. When the next
right brace is encountered (after the value 3), initialization of nl ist [0]
is complete, and the two remaining structures in the three-structure array
are automatically initialized to o. Similarly, { 4,5, 6 } initializes the
first structure in the second row of nl ist. The remaining two structures
of nl ist [1] are set to O. When the compiler encounters the next initial­
izer list ({ 7, 8, 9 }), it tries to initialize nl ist [2]. Since nl ist has
only two rows, this attempt causes an error .

• Examples

/******************** Example 1 ********************/

struct list {
int i, j, k;
float m [2] [3] ;
} x = {

};

1,
2,
3,
{4.0, 4.0, 4.0}

93

Microsoft C Language Reference

In Example 1, the three int members of x are initialized to 1, 2, and 3,
respectively. The three elements in the first row of m are initialized to 4.0;
the elements of the remaining row of m are initialized to 0.0 by default.

/******************** Example 2 ********************/

union
{

char x [2] [3] ;
int i, j, k;
} Y {{

};

{'1'},
{'4'} }

In Example 2, the union variable y is initialized. The first element of the
union is an array, so the initializer is an aggregate initializer. The initial­
izer list { , 1 ' } assigns values to the first row of the array. Since only one
value appears in the list, the element in the first column is initialized to
the character 1, and the remaining two elements in the row are initialized
to the value zero by default. Similarly, the first element of the second row
of x is initialized to the character 4, and the remaining two elements in
the row are initialized to the value o.

4.7.3 String Initializers

• Syntax

= II characters II
I

You can initialize an array of characters with a string literal. For example,

char coder] = lIabc";

initializes code as a four-element array of characters. The fourth element
is the null character, which terminates all string literals.

If you specify the array size and the string is longer than the specified
array size, the extra characters are simply ignored. For example, the fol­
lowing declaration initializes code as a three-element character array:

char code[3] = "abed";

Only the first three characters of the initializer are assigned to code. The
character d and the string-terminating null character are discarded.
Beware that this creates an unterminated string (that is, one without aD
value to mark its end) and generates a diagnostic message indicating the
condition.

)

Declarations

If the string is shorter than the specified array size, the remaining elements
of the array are initialized to 0 values.

4.8 Type Declarations

A type declaration defines the name and members of a structure or union
type, or the name and enumeration set of an enumeration type. You can
use the name of a declared type in variable or function declarations to
refer to that type. This is useful if many variables and functions have the
same type.

A typedef declaration defines a type specifier for a type. You can use
typedef declarations to construct shorter or more meaningful names for
types already defined by C or for types that you have declared.

4.8.1 Structure, Union, and
Enumeration Types

Declarations of structure, union, and enumeration types have the same
general form as variable declarations of those types. tSections 4.4.2-4.4.4
discuss variable declarations.) However, type declarations and variable
declarations differ in the following ways:

• In type declarations the variable identifier is omitted, since no vari­
able is declared.

• In type declarations tag is required; it names the structure, union,
or enumeration type.

• The member-declaratt'on-list or enum-list defining the type must
appear in the type declaration; the abbreviated form of variable
declarations, in which tag refers to a type defined elsewhere, is not
legal for type declarations.

• Examples

/******************** Example 1 ********************/

enum status {
loss = -1,
bye,
tie = 0,
win
};

95

Microsoft C Language Reference

Example 1 declares an enumeration type named status. The name of the
type can be used in declarations of enumeration variables. The identifier
loss is explicitly set to -1. Both bye and tie are associated with the
value 0, and win is given the value 1.

/******************** Example 2 ********************/

struct student {
char name[20];
int id, class;
};

Example 2 declares a structure type named student. A declaration such
as struct student employee; can be used to define a structure vari­
able with student type.

4.8.2 Using typedef Declarations

• Syntax

typedef type-speczlier declarator [, declarator] ... ;

A typedef declaration is analogous to a variable declaration except that
the typedef keyword replaces a storage-class specifier. A typedef declara­
tion is interpreted in the same way as a variable or function declaration,
but the identifier, instead of assuming the type specified by the declara­
tion, becomes a synonym for the type.

Note that a typedef declaration does not create types. It creates
synonyms for existing types, or names for types that could be specified in
other ways. When a typedef name is used as a type specifier, it can be
combined with certain type specifiers, but not others. Acceptable modifiers
include const and volatile. In some implementations there are additional
special keywords that can be used to modify a typedef. (The special key­
words are described in Section 4.3.3.)

You can declare any type with typedef, including pointer, function, and
array types. You can declare a typedef name for a pointer to a structure
or union type before you define the structure or union type, as long as the
definition has the same visibility as the declaration.

96

)

)

)

Declarations

• Examples

/******************** Example 1 ********************/

typedef int WHOLE;

Example 1 declares WHOLE to be a synonym for into Note that WHOLE
could now be used in a variable declaration such as WHOLE i; or const
WHOLE i;. However, the declaration long WHOLE i; would be illegal.

/******************** Example 2 ********************/

typedef struct club {
char name[30];
int size, year;
} GROUP ;

Example 2 declares GROUP as a structure type with three members. Since a
structure tag, club, is also specified, either the typedef name (GROUP) or
the structure tag can be used in declarations.

/******************** Example 3 ********************/

typede f GROUP * PG;

Example 3 uses the previous typedef name to declare a pointer type. The
type PG is declared as a pointer to the GROUP type, which in turn is
defined as a structure type.

/******************** Example 4 ********************/

typedef void DRAWF(int, int);

Example 4 provides the type DRAWF for a function returning no value and
taking two int arguments. This means, for example, that the declaration
DRAWF box; is equivalent to the declaration void box (int, int);.

4.9 Type Names

A "type name" specifies a particular data type. In addition to ordinary
variable declarations and defined-type declarations, type names are used
in three other contexts: in the formal-parameter lists of function declara­
tions, in type casts, and in sizeof operations. Formal-parameter lists are
discussed in Section 4.5, "Function Declarations." Type casts and sizeof
operations are discussed in Sections 5.6.2 and 5.3.4, respectively.

97

Microsoft C Language Reference

The type names for fundamental, enumeration, structure, and union types
are simply the type specifiers for those types.

A type name for a pointer, array, or function type has the following form:

type-sped/ier abstract-declarator

An abstract-declarator is a declarator without an identifier, consisting of
one or more pointer, array, or function modifiers. The£ointer modifier (*)
always precedes the identifier in a declarator; array ([and function ())
modifiers follow the identifier. Knowing this, you can etermine where the
identifier would appear in an abstract declarator and interpret the
declarator accordingly. See Section 4.3.2 for information and examples of
complex declarators.

Abstract declarators can be complex. Parentheses in a complex abstract
declarator specify a particular interpretation, just as they do for the com­
plex declarators in declarations.

Note

The abstract declarator consisting of a set of empty parentheses, (), is
not allowed because it is ambiguous. It is impossible to determine
whether the implied identifier belongs inside the parentheses (in which
case it is an unmodified type) or before the parentheses (in which case
it is a function type).

The type specifiers established by typedef declarations also qualify as
type names.

• Examples

\ \

/******************** Example 1 **********~*********/

long *

Example 1 gives the type name for "pointer to long" type.

98

Declarations

/******************** Example 2 ********************/

/******************** Example 3 ********************/

int (*) (void)

Examples 2 and 3 show how parentheses modify complex abstract declara­
tors. Example 2 gives the type name for a pointer to an array of five int
values. Example 3 specifies a pointer to a function taking no arguments
and returning an int value.

99

) CHAPTER
EXPRESSIONS
AND ASSIGNMENTS

5.1 Introduction .. 103
5.2 Operands .. 1 03

5.2.1 Constants .. 104
5.2.2 Identifiers .. 104
5.2.3 Strings ... 105
5.2.4 Function Calls .. 105
5.2.5 Subscript Expressions 106

5.2.5.1 Unidimensional-Array References 106
) 5.2.5.2 Multidimensional-Array Reference 107

5.2.6 Member-Selection Expressions 109
5.2.7 Expressions with Operators 110
5.2.8 Expressions in Parentheses 111
5.2.9 Type-Cast Expressions 112
5.2.10 Constant Expressions 112
5.2.11 Side Effects .. 113
5.2.12 Sequence Points .. 114

5.3 Operators .. 114
5:3.1 Usual Arithmetic Conversions 115
5.3.2 Complement and Unary Plus Operators 117
5.3.3 Indirection and Address-of Operators 118
5.3.4 The sizeof Operator 120
5.3.5 Multiplicative Operators 121
5.3.6 Additive Operators 123

)
5.3.7 Shift Operators ... 125
5.3.8 Relational Operators 126
5.3.9 Bitwise Operators 128
5.3.10 Logical Operators 129
5.3.11 Sequential-Evaluation Operator 130
5.3.12 Conditional Operator 131

CHAPTER

5.4 Assignment Operators ... 133 (
5.4.1 Lvalue Expressions 133
5.4.2 Unary Increment and Decrement 134
5.4.3 Simple Assignment 135
5.4.4 Compound Assignment 136

5.5 Precedence and Order of Evaluation 137
5.6 Type Conversions ... 140

102

5.6.1 Assignment Conversions 140
5.6.1.1 Conversions from

Signed Integral Types ...•.........•........ 140
5.6.1.2 Conversions from

Unsigned Integral Types 142
5.6.1.3 Conversions from

Floating-Poin t Types•...•.•..•.. 144
5.6.1.4 Conversions to and from

Pointer Types .•...•.....•....•.....•......... 145
5.6.1.5 Conversions from Other Types .•..•...... 146

5.6.2 Type-Cast Conversions 147
5.6.3 Operator Conversions 147
5.6.4 Function-Call Conversions 147

Expressions and Assignments

5.1 Introduction

This chapter describes how to form expressions and make assignments in
the C language. An "expression" is a combination of operands and opera­
tors that yields ("expresses") a single value.

An "operand" is a constant or variable value that is manipulated in the
expression. Each operand of an expression is also an expression, since it
represents a single value. When an expression is evaluated, the resulting
value depends on the relative precedence of operators in the expression
and on "sequence points" and "side effects," if any. The precedence of
operators determines how operands are grouped for evaluation. Side effects
are changes caused by the evaluation of an expression. In an expression
with side effects, the evaluation of one operand can affect the value of
another. With some operators, the order in which operands are evaluated
also affects the result of the expression. Section 5.2 describes the formats
and evaluation rules for C operands, including discussions of side effects
and sequence points.

"Operators" specify how the operand or operands of the expression are
manipulated. C operators are described in Section 5.3.

In C, assign men ts are considered expressions because an assign men t yields
a value. Its value is the value being assigned. In addition to the simple­
assignment operator (=), C offers complex-assignment operators that both
transform and assign their operands. Assignment operators are described
in Section 5.4.

The value represented by each operand in an expression has a type that
may be converted to a different type in certain contexts. Type conversions
occur in assignments, type casts, function calls, and operations. (Section
5.5 gives the precedence rules for C operators; side effects are discussed in
Section 5.2.11 and type conversions in Section 5.6.)

5.2 Operands

Operands in C include constants, identifiers, strings, function calls, sub­
script expressions, member-selection expressions, or more complex expres­
sions formed by combining operands with operators or enclosing operands
in parentheses. Any operand that yields a constant value is called a "con­
stant expression."

Every operand has a type. The following sections discuss the type of value
each kind of operand represents. An operand can be "cast" (or temporarily

103

Microsoft C Language Reference

converted) from its original type to another type by means of a "type­
cast" operation. A type-cast expression can also form an operand of an
expreSSIOn.

5.2.1 Constants

A constant operand has the value and type of the constant value it repre­
sents. A character constant has int type. An integer constant has int,
long, unsigned int, or unsigned long type, depending on the integer's
size and how the value is specified. Floating-point constants always have
double type. String literals are considered arrays of characters and are
discussed in Section 5.2.3.

5.2.2 Identifiers

An "identifier" names a variable or function. Every identifier has a type
that is established when the identifier is declared. The value of an identi­
fier depends on its type, as follows:

104

• Identifiers of integral and floating types represent values of the
corresponding type.

• An identifier of enum type represents one constant value among a
set of constant values. The value of the identifier is the constant
value. Its type is int, by definition of the enum type.

• An identifier of struct or union type represents a value of the
specified struct or union type.

• An identifier declared as a pointer represents a pointer to a value
of the type specified in the pointer's declaration.

• An identifier declared as an array represents a pointer whose value
is the address of the first array element. The pointer addresses the
type of the array elemen ts. For example, if ser ies is declared to
be a IO-element integer array, the identifier series represents the
address of the array, and the subscript expression series [5]
refers to an integer value which is the sixth element of ser ies.
Subscript expressions are discussed in Section 5.2.5. The address of
an array does not change during program execution, although the
values of the individual elements can change. The pointer value
represented by an array identifier is not a variable, so an array
identifier cannot form the left-hand operand of an assignment
operation.

)

Expressions and Assignments

• An identifier declared as a function represents a pointer whose
value is the address of the function. The pointer addresses a func­
tion returning a value of a specified type. The address of a function
does not change during program execution; only the return value
varies. Thus, function identifiers cannot be left-hand operands in
assign men t operations.

5.2.3 Strings

• Syntax

II stringll [II stringll]

A "string literal" is a character or sequence of adjacent characters
enclosed in double quotation marks. Two or more adjacent string literals
separated only by white space are concatenated into a single string literal.
A string literal is stored as an array of elements with char type and ini­
tialized with the quoted sequence of characters. The string literal is
represented by a pointer whose value is the address of the first array ele­
ment. The address of the string's first element is a constant, so the value
represented by a string expression is a constant.

Since string literals are effectively pointers, they can be used in the same
contexts as pointers, and have the same restrictions as pointers. However,
since they are not variables, neither string literals nor any of their ele­
ments can be the left-hand operand in an assignment operation.

The last character of a string is always the null character. Though the null
character is not visible in the string expression, it is added automatically
as the last element when the string is stored. For example, the string
"abc" actually has four characters rather than three.

5.2.4 Function Calls

• Syntax

expressz'on ([expressz'on-/£s t])

A "function call" consists of an expression followed by an optional
expression-list in parentheses, where

• expression must evaluate to a function address (for example, a
function identifier), and

105

Microsoft C Language Reference

• expression-list is a list of expressions (separated by commas) whose
values (the "actual arguments") are passed to the function. The
expression-Ust argument can be empty.

A function-call expression has the value and type of the function's return
value. If the function's return type is void (that is, the function has been
declared never to return a value), the function-call expression also has
void type. If the called function returns control without executing a
return statement, the value of the function-call expression is undefined.
(See Chapter 7, "Functions," for more information about function calls.)

5.2.5 Subscript Expressions

• Syntax

expressz"onl [expressz"on2]

A subscript expression represents the value at the address that is expres­
sion2 positions beyond expression1. Usually, the value represented by
expressionl is a pointer value, such as an array identifier, and expression2
is an integral value. However, all that is required syntactically is that one
of the expressions be of pointer type and the other be of integral type.
Thus the integral value could be in the expressionl position and the
pointer value could be in the brackets in the expression2, or "subscript,"
position. Whatever the order of values, expression2 must be enclosed in
brackets ([]).

Subscript expressions are generally used to refer to array elements, but
you can apply a subscript to any pointer.

5.2.5.1 Unidimensional-Array References

The subscript expression is evaluated by adding the integral value to the
pointer value, then applying the indirection operator (*) to the result.
lSee Section 5.3.3 for a discussion of the indirection operator.) In effect, for
a one-dimensional array, the following four expressions are equivalent,
assuming that a is a pointer and b is an integer:

a [b]
* (a + b)
* (b + a)
b [a]

Accordin~ to the conversion rules for the addition operator (given in Sec­
tion 5.3.6), the integral value is converted to an address offset by multiply­
ing it by the length of the type addressed by the pointer.

106

(

Expressions and Assignments

For example, suppose the identifier 1 ine refers to an array of int values.
The following procedure is used to evaluate the subscript expression
line[i]:

1. The integer value i is multiplied by the number of bytes defined as
the length of an int item. The converted value of i represents i
int positions.

2. This converted value is added to the original pointer value (1 ine)
to yield an address that is offset i int positions from 1 ine.

3. The indirection operator is applied to the new address. The result
is the value of the array element at that position (intuitively,
line[iD·

Note

The subscript expression

line [0]

represents the value of the first element of 1 ine, since the offset from
the address represented by line is o. Similarly, an expression such as

line [5]

refers to the element offset five positions from 1 ine, or the sixth ele­
ment of the array.

5.2.5.2 Multidimensional-Array Reference

A subscript expression can be subscripted, as follows:

express£onl [express£on2] [express£onB] ...

Subscript expressions associate from left to right. The left-most subscript
expression, expressionl [expression21, is evaluated first. The address that
results from adding expressionl and expression2 forms a pointer expres­
sion; then expressionS is added to this pointer expression to form a new
pointer expression, and so on until the last subscript expression has'been
added. The indirection operator (*) is applied after the last subscripted
expression is evaluated, unless the final pointer value addresses an array
type (see Example 3 below).

107

Microsoft C Language Reference

Expressions with multiple subscripts refer to elements of "multidimen­
sional arrays." A multidimensional array is an array whose elements are
arrays. For example, the first element of a three-dimensional array is an
array with two dimensions.

• Examples

For the following examples, an array named prop is declared with three
elements, each of which is a 4-by-6 array of int values.

int prop [3] [4] [6] ;
int i, *ip, (*ipp) [6] ;

/******************** Example 1 ********************/

i = prop [0] [0] [1] ;

Example 1 shows how to refer to the second individual int element of
prop. Arrays are stored by row, so the last subscript varies the most
quickly; the expression prop [0] [0] [2] refers to the next (third) element
of the array, and so on.

/******************** Example 2 ********************/

i = prop [2] [1] [3] ;

Example 2 shows a more complex reference to an individual element of
prop. The expression is evaluated as follows:

108

1. The first subscript, 2, is multiplied by the size of a 4-by-6 int array
and added to the pointer value prop. The result points to the
third 4-by-6 array of prop.

2. The second subscript, 1, is multiplied by the size of the 6-element
int array and added to the address represented by prop [2J •

3. Each element of the 6-element array is an int value, so the final
subscript, 3, is multiplied by the size of an int before it is added to
prop [2] [1]. The resulting pointer addresses the fourth element
of the 6-elemen t array.

4. The indirection operator is applied to the pointer value. The result
is the int element at that address.

Expressions and Assignments

/******************** Example 3 ********************/

ip = prop [2] [1];

/******************** Example 4 ********************/

ipp = prop[2];

Examples 3 and 4 show cases where the indirection operator is not applied.

In Example 3, the expression prop [2J [1J is a valid reference to the
three-dimensional array prop; it refers to a 6-element array (declared
above Example 1). Since the pointer value addresses an array, the indirec­
tion operator is not applied.

Similarly, the result of the expression prop [2J in Example 4 is a pointer
value addressing a two-dimensional array.

5.2.6 Member-Selection Expressions

• Syntax

express£on. £dent£f£er
express£on-> £dent£f£er

A "member-selection expression" refers to members of structures and
unions. Such an expression has the value and type of the selected member.
As shown above, a member-selection expression can have one of the two
following forms:

1. In the first form, expressz"on.£dent£jier, expressz"on represents a value
of struct or union type, and £dentz"jier names a member of the
specified structure or union.

2. In the second form, expression- > identifier, expression represents
a pointer to a structure or union, and identzjier names a member of
the specified structure or union.

The two forms of member-selection expressions have similar effects. In
fact, an expression involving the pointer selection operator (- » is a
shorthand version of an expression using the period (.) if the expression
before the period consists of the indirection operator (*) applied to a
pointer value. (Section 5.3.3 discusses the indirection operator.) There-

, fore,

109

Microsoft C Language Rererence

expressz'on-> z'dentz'fz'er

is equivalent to

(* expression). identifier

when expression is a pointer value.

• Examples

Examples 1 through 3 refer to the following structure declaration:

struct pair {
int a;
int b;
struct pair *sp;
} item, list[10];

/******************** Example 1 ********************/

item.sp = &item;

In Example 1, the address of the i tern structure is assigned to the sp
member of the structure. This means that i tern contains a pointer to
itself.

/******************** Example 2 ********************/

(item.sp)->a = 24;

In Example 2, the pointer expression i tern. sp is used with the pointer
selection operator (- >) to assign a value to the member a.

/******************** Example 3 ********************/

list[8].b = 12;

Example 3 shows how to select an individual structure member from an
array of structures.

5.2.7 Expressions with Operators

Expressions with operators can be "unary," "binary," or "ternary" expres­
sions. A unary expression consists of either a unary operator ("unop")
prepended to an operand, or the sizeof keyword followed by an expression.

110

)

Expressions and Assignments

The expression can be either the name of a variable or a cast expression. If
expression is a cast expression it must be enclosed in parentheses.

unop operand
sizeof express£on

A binary expression consists of two operands joined by a binary operator
("binop"):

operand Mnop operand

A ternary expression consists of three operands joined by the ternary
operator (? : J:

operand? operand: operand

Sections 5.3.1-5.3.12, describe the operators used in unary, binary, and
ternary expressions.

Expressions with operators also include assignment expressions, which use
unary or binary assignment operators. The unary assignment operators
are the increment (++) and decrement (--) operators~ the binary assign­
ment operators are the simple-assignment operator (=) and the
compound-assignment operators (referred to as "compound-assign-ops").
Each compound-assignment operator is a combination of another binary
operator with the simple-assignment operator. Assignment expressions
have the following forms:

operand++
operand-­
++operand
-- operand
operand = operand
operand compound-assign-op operand

Sections 5.'4.1 - 5.4.4 describe the assignment operators in detail.

5.2.8 Expressions in Parentheses

You can enclose any operand in parentheses without changing the type or
value of the enclosed expression. For example, in the expression

(10 + 5) / 5

the parentheses around 10 + 5 mean that the value of 10 + 5 is the left
operand of the division (/) operator. The result of (10 + 5) / 5 is 3.
Without the parentheses, 10 + 5 / 5 would evaluate to 11.

111

Microsoft C Language Reference

Although parentheses affect the way operands are grouped in an expres­
sion, they cannot guarantee a particular order of evaluation in all cases.
Exceptions resulting from "side effects" are discussed in Section 5.2.11.

5.2.9 Type-Cast Expressions

A type cast provides a method for explicit conversion of the type of an
object in a specific situation. Type-cast expressions have the following
form:

(type-name) operand

Casts can be used to convert objects of any scalar type to or from any
other scalar type. Explicit type casts are constrained by the same rules
that determine the effects of implicit conversions, discussed in Section
5.B.1, "Assignment Conversions." Additional restraints on casts may
result from the actual sizes or representation of specific types on specific
implementations. Representation is discussed in Chapter 4, "Declara­
tions." For information on actual sizes of integral types and pointers, see
your compiler guide.

Any object may be cast to void type. However, if the type-name in a type­
cast expression is not void, then operand cannot be a void expression.
Any expression can be cast to void, but an expression of type void cannot
be cast to any other type. For example, a function with void return type
cannot have its return cast to another type. Note that a void * expression
has a type pointer to void, not type void. If an object is cast to void
type, the resulting expression cannot be assigned to any item. Similarly, a
type-cast object is not an acceptable lvalue, so no assignment can be made
to a type-cast object. Lvalues are discussed in Section 5.4.1. Section 5.6
discusses type-cast conversions and Section 4.9 discusses type names.

5.2.10 Constant Expressions

A constant expression is any expression that evaluates to a constant. The
operands of a constant expression can be integer constants, character con­
stants, floating type constants, enumeration constants, type casts, sizeof
expressions, and other constant expressions. You can use operators to
combine and modify operands as described in Section 5.2.7, with the fol­
lowing restrictions:

•

•

112

You cannot use assignment operators (see Section 5.4) or the
binary sequential-evaluation operator (,) in constant expressions.

You can use the unary address-of operator (&) only in certain ini­
tializations (as described in the last paragraph of this section).

)

Expressions and Assignments

Constant expressions used in preprocessor directives are subject to addi­
tional restrictions. Consequently, they are known as "restricted constant
expressions." A restricted constant expression cannot contain sizeof
expressions, enumeration constants, type casts to any type, or floating­
type constants. It can, however, contain the special constant expression
defined(identzfier). (See Section 8.2.2, "The # define Directive," for more
information about this expression.)

Constant expressions involving floating constants, casts to nonarithmetic
types, and address-of expressions can only appear in initializers. The
unary address-of operator (&) can only be applied to variables with funda­
mental, structure, or union types that are declared at the external level, or
to subscripted array references. In these expressions, a constant expression
that does not include the address-of operator can be added to or sub­
tracted from the address expression.

5.2.11 Side Effects

"Side effects" occur whenever the value of a variable is changed by expres­
sion evaluation. All assignment operations have side effects. Function calls
may also have side effects if they change the value of an externally visible
item, either by direct assignment or by indirect assignment through a
pointer.

The order of evaluation of expressions is defined by the specific implemen­
tation, except when the language guarantees a particular order of evalua­
tion (as ou tlined in Section 5.5).

For example, side effects occur in the following function call:

add (i + 1, i = j + 2)

The arguments of a function call can be evaluated in any order. The
expression i + l.may be evaluated before i = j + 2, or i = j + 2
may be evaluated before i + 1. The result is different in each case.

Since unary increment and decrement operations involve assignments,
such operations can cause side effects, as shown in the following example:

d = 0;
a = b++ = c++ = d++;

In this example, the value of a is unpredictable. The value of d (initially 0)
could be assigned to c, then to b, and then to a before any of the variables
are incremented. In this case, a would be equal to o.

113

Microsoft C Language Rererence

A second way to evaluate this expression begins by evaluating the operand
c++ = d++. The value of d (initially 0) is assigned to c, and then both d
and c are incremented. Next, the value of c, now 1, is assigned to b, and b
is incremented. Finally, the incremented value of b is assigned to a; in this
case, the final value of a is 2.

Since C does not define the order of evaluation of side effects, both evalua­
tion methods discussed above are correct and either may be implemented.
To make sure that your code is portable and clear, avoid statements that
depend on a particular order of evaluation for side effects.

5.2.12 Sequence Points

Expressions involving assignment, unary "increment," unary "decrement,"
or calling a function may have consequences incidental to their evaluation
(side effects). When a "sequence point" is reached, everything preceding
the sequence point, including any side effects, is guaranteed to have been
evaluated before evaluation begins on anything following the sequence
point.

Certain operators act as sequence points, including the following:

• The logical-AND operator (&&)

• The logical-OR operator (l l)
• The ternary operator (?:)
• The sequential-evaluation operator (,)

• The function-call operator (that is, the parentheses following a
function name)

Other sequence points include the end of a full expression (that is, an
expression that is not part of another expression); any initlalizer; an
expression in an expression statement; the control expressions in selection
statements (if or switch) and iteration statements (do, while, or for);
and the expression in a return statement.

5.3 Operators

C operators take one operand (unary operators), two operands (binary
operators), or three operands (the ternary operator). Assignment operators
include both unary or binary operators; Section 5.4 describes the assign­
men t operators.

114

)

Expressions and Assignments

Unary operators appear before their operand and associate from righ t to
left. C includes the following unary operators:

Symbol

- !

* &
sizeof

+

Name

Negation and complement operators

Indirection and address-of operators

Size operator

Unary plus operator

Binary operators associate from left to right. C provides the following
binary operators:

Symbol

* / %
+-
«
< >
&

»
<= >= !=

Name

Multiplicative operators

Additive operators

Shift operators

Relational operators

Bitwise operators

&& I I
I I Logical operators

Sequential-evaluation operator

C has one ternary operator: the conditional operator (? :). It associates
from right to left.

5.3.1 Usual Arithmetic Conversions

Most C operators perform type conversions to bring the operands of an
expression to a common type or to extend short values to the integer size
used in machine operations. The conversions performed by C operators
depend on the specific operator and the type of the operand or operands.
However, many operators perform similar conversions on operands of
integral and floating types. These conversions are known as "arithmetic
conversions" because they apply to the types of values ordinarily used in
arithmetic.

The arithmetic conversions summarized below are called "usual arithmetic
conversions." The discussion of each operator in the following sections

115

Microsort C Language Rererence

specifies whether or not the operator performs the usual arithmetic conver­
sions. It also specifies the additional conversions, if any, the operator per­
forms. This is not a precedence order. It is an outline of an algorithm that
is applied to each binary operator in the expression.

Section 5.6 outlines the specific path of each type of conversion. In deter­
mining which conversions will actually take place, the following algorithm
is applied to each binary operation in the expression:

1. Any operands of float type are converted to double type.

2. If one operand has long double type, the other operand is con­
verted to long double type.

3. If one operand has double type, the other operand is converted to
double type.

4. Any operands of char or short type are converted to int type.

5. Any operands of unsigned char or unsigned short type are con­
verted to unsigned int type.

6. If one operand is of unsigned long type, the other operand is con­
verted to unsigned long type.

7. If one operand is of long type, the other operand is converted to
long type.

8. If one operand is of unsigned int type, the other operand is con­
verted to unsigned int type.

The following example illustrates the application of the preceding algo­
rithm:

long 1:
unsigned char uc;
int i;
f (1 + uc * i);

The preceding example would be converted as follows:

1. uc is converted to an unsigned ~nt (step 5).

2. i is converted to an unsigned int (step 8). The multiplication is
performed and the result is an unsigned Int.

3. uc * i is converted to a long (step 7).

The addition is performed and the result is type long.

116

Expressions and Assignments

5.3.2 Complement and Unary Plus Operators

The C complement operators are discussed in the following list:

Operator

+

• Examples

Description

The arithmetic-negation operator produces the
negative (two's complement) of its operand. The
operand must be an integral or floating value. This
operator performs the usual arithmetic conver­
SIons.

The bitwise-complement operator produces the
bitwise complement of its operand. The operand
must be of integral type. This operator performs
usual arithmetic conversions; the result has the
type of the operand after conversion.

The logical-NOT operator produces the value 0 if
its operand is true (nonzero) and the value 1 if its
operand is false (0). The result has int type. The
operand must be an integral, floating, or pointer
value.

The unary plus operator preceding a parenthesized
expression forces the grouping of the enclosed
operations. It is used with expressions involving
more than one associative or commutative binary
operator.

Note

The unary plus operator (+) is implemented
syntactically in Microsoft C, but has no seman­
tics of any type associated with it.

/******************** Example 1 ********************/

short x = 987;
x = -x;

In Example 1, the new value of x is the negative of 987, or -987.

117

Microsoft C Language Reference

/******************** Example 2 ********************/

unsigned short y = Oxaaaa;
y = Ny;

In Example 2, the new value assigned to y is the one's complement of the
unsigned value Oxaaaa, or Ox5555.

/******************** Example 3 ********************/

if (! (x < y»;

In Example 3, if x is greater than or equal to y, the result of the expres­
sion is 1 (true). If x is less than y, the result is 0 (false).

5.3.3 Indirection and Address-of Operators

The C indirection and address-of operators are discussed in the following
list:

Operator

*

118

Description

The indirection operator accesses a value
indirectly, through a pointer. The operand must be
a pointer value. The result of the operation is the
value addressed by the operand; that is, the value
at the address specified by the operand. The type
of the result is the type that the operand
addresses. If the pointer value is invalid, the result
is undefined. The specific conditions that invali­
date a pointer value are implementation-defined.
The following list includes some of the most com­
mon:

• The pointer is a null pointer.

• The pointer specifies the address of a local item
that is not active at the time of the reference.

• The pointer specifies an address that is inap­
propriately aligned for the type of the object
pointed to.

• The pointer specifies an address not used by
the executing program.

&

• Examples

Expressions and Assignments

The address-of operator gives the address of its
operand. The operand can be any value that is a
valid left-hand value of an assignment operation.
A function designator or array name can also be
the operand of the address-of operator, although in
these cases the operator is superfluous since func­
tion designators and array names are addresses.
(Assignment operations are discussed in Section
5.4.) The result of the address operation is a
pointer to the operand. The type addressed by the
poin ter is the type of the operand.

You cannot apply the address-of operator to a bit­
field member of a structure (described in Section
4.4.3, "Structure Declarations") or to an identifier
declared with the register storage-class specifier
(described in Section 4.6).

Examples 1 through 4 use the following declarations:

int *pa, x;
int a[20];
double d;

/******************** Example 1 ********************/

pa = &a[S];

In Example 1, the address-of operator (&) takes the address of the sixth
element of the array a. The result is stored in the pointer variable pa.

/******************** Example 2 ********************/

The indirection operator (*) is used in Example 2 to access the int
value at the address stored in pa. The value is assigned to the integer
variable x.

119

Microsoft C Language Reference

/******************** Example 3 ********************/

if (x = *&x)
printf("True\n");

In Example 3, the word True would be printed. This example demon­
strates that the result of applying the indirection operator to the address
of x is the same as x.

/******************** Example 4 ********************/

d = * (double *) (&x) ;

Example 4 demonstrates an appropriate application of the rule shown in
Example 3. First the address of x is converted by a type cast to a pointer
to a double type; then the indirection operator is applied to give a result
of type dou hie.

/******************** Example 5 ********************/

int roundup 0 ;

int (*proundup) = roundup;
int (*pround) = &roundup;

In Example 5, the function roundup is declared, and then two pointers to
roundup are declared and initialized. The first pointer proundup is ini­
tialized using only the name of the function, while the second, pround,
uses the address-of operator in the initialization. The initializations are
equivalent.

5.3.4 The sizeof Operator

The sizeof operator gives the amount of storage, in bytes, associated with
an identifier or a type. This operator allows you to avoid specifying
machine-dependent data sizes in your programs.

A sizeof expression has the form

sizeof expression

where expressz"on is either an identifier or a type-cast expression (that is, a
type specifier enclosed in parentheses). If expressz"on is a type-cast expres­
sion, it cannot be void. If it is an identifier, it cannot represent a bit-field
object or a function designator.

When you apply the sizeof operator to an array identifier, the result is the
size of the entire array rather than the size of the pointer represented by
the array iden tifier.

120

Expressions and Assignments

When you apply the sizeaf operator to a structure or union type name, or
to an identifier of structure or union type, the result is the actual size of
the structure or union. This size may include internal and trailing padding
used to align the members of the structure or union on memory boun­
daries. Thus, the result may not correspond to the size calculated by
adding up the storage requirements of the individual members.

• Examples

/******************** Example 1 ********************/

buffer = calloc(lOO, sizeof (int)):

Example 1 uses the sizeaf operator to pass the size of an int, which varies
among machines, as an argument to a function named calloc. The value
returned by the function is stored in bu f fer.

/******************** Example 2 ********************/

static char *strings[] ={
"this is string one",
"this is string two",
"this is string three",

}:
const int string_no = (sizeof strings)/(sizeof strings[O]):

In Example 2, strings is an array of pointers to char. The number of
pointers is the number of elements in the array, but is not specified. It is
easy to determine the number of pointers by using the sizeaf operator to
calculate the number of elements in the array. The canst integer value
str ing_no is initialized to this number. Because it is a canst value,
str ing_no cannot be modified.

5.3.5 Multiplicative Operators

The multiplicative operators perform multiplication (*), division (/)(and
remainder (%) operations. The operands of the remamder operator %)
must be integral. The multiplication (*) and division (/) operators can
take integral- or floating-type operands; the types of the operands can be
differen t.

The multiplicative operators perform the usual arithmetic conversions on
the ope~ands. The type of the result is the type of the operands after
converSIOn.

121

Microsoft C Language Reference

Note

Since the conversions performed by the multiplicative operators do not
provide for overflow or underflow conditions, information may be lost
if the result of a multiplicative operation cannot be represented in the
type of the operands after conversion.

The C multiplicative operators are described below:

Operator

/

%

• Examples

Description

The multiplication operator causes its two
operands to be multiplied.

The division operator causes the first operand to
be divided by the second. If two integer operands
are divided and the result is not an integer, it is
truncated according to the following rules:

• If both operands are positive or unsigned, the
result is truncated toward O.

• If either operand is negative, the direction of
truncation of the result (either toward 0 or
away from 0) is defined by the implementation.
For more information, see your compiler guide.

The result of division by 0 is undefined.

The result of the remainder operator is the
remainder when the first operand is divided by the
second. If either or both operands are positive or
unsigned, the result is positive. If either operand is
negative the sign of the result is defined by the
implementation. (See your compiler guide for more
information.) If the right operand is zero, the
result is undefined.

The declarations shown below are used for all of the following examples:

int i = 10, j = 3, n;
double x = 2.0, y;

122

Expressions a.nd Assignments

/******************** Example 1 ********************/

y = x * i;

In Example 1, x is multiplied by i to give the value 20.0. The result has
double type.

/******************** Example 2 ********************/

n = i / j;

In Example 2, 10 is divided by 3. The result is truncated toward 0, yielding
the integer value 3.

/******************** Example 3 ********************/

n = i % j;

In Example 3, n is assigned the integer remainder, 1, when 10 is divided
by 3.

5.3.6 Additive Operators

The additive operators perform addition (+) and subtraction (-). The
operands can be integral or floating values. Some additive operations can
also be performed on pointer values, as outlined under the discussion of
each operator.

The additive operators perform the usual arithmetic conversions on
integral and floating operands. The type of the result is the type of the
operands after conversion. Since the conversions performed by the additive
operators do not provide for overflow or underflow conditions, information
may be lost if the result of an additive operation cannot be represented in
the type of the operands after conversion.

Addition (+)

The addition operator (+) causes its two operands to be added. Both
operands can have integral or floating types, or one operand can be a
pointer and the other an integer.

When an integer is added to a pointer, the integer value (ZJ is converted by
multiplying it by the size of the value that the pointer addresses. After
conversion, the integer value represents i memory positions, where each
position has the length specified by the pointer type. When the converted
integer value is added to the pointer value, the result is a new pointer

123

Microsoft C Language Reference

value representing the address £ positions from the original address. The
new pointer value addresses a value of the same type as the original
pointer value.

Subtraction (-)

The subtraction operator (-) subtracts the second operand from the first.
The following combinations of operands can be used with this operator:

• Both operands integral or floating type values

• Both operands pointer values to the same type

• The first operand a pointer value and the second operand an
integer

When two pointers are subtracted, the difference is converted to a signed
integral value by dividing the difference by the size of a value of the type
that the pointers address. The size of the integral value is defined by the
type ptrdiff_ t in the standard include file stddef.h. (See Chapter 5 of the
M£cro8ojt C Run-T£me L£brary Reference for more information.) The result
represents the number of memory positions of that type between the two
addresses. The result is only guaranteed to be meaningful for two ele­
ments of the same array, as discussed in "Pointer Arithmetic," later in this
section.

When an integer value is subtracted from a pointer value, the subtraction
operator converts the integer value (z) by multiplying it by the size of the
value that the pointer addresses. After conversion, the integer value
represents £ memory positions, where each position has the length specified
by the pointer type. When the converted integer value is subtracted from
the pointer value, the result is the memory address i positions before the
original address. The new pointer points to a value of the type addressed
by the original pointer value.

Pointer Arithmetic

Additive operations involving a pointer and an integer give meaningful
results only if the pointer operand addresses an array member and the
integer value produces an offset within the bounds of the same array.
When the integer value is converted to an address offset, the compiler
assumes that only memory posi tions of the same size lie between the origi­
nal address and the address plus the offset.

This assumption is valid for array members. By definition, an array is a
series of values of the same type; its elements reside in contiguous memory
locations. However, storage for any types except array elements is not
guaranteed to be completely filled. That is, blanks may appear between

124

Expressions and Assignments

memory positions, even positions of the same type. Therefore, the results
of adding to or subtracting from the addresses of any values but array ele­
ments are undefined.

Similarly, when two pointer values are subtracted, the conversion assumes
that only values of the same type, with no blanks, lie between the
addresses given by the operands.

On machines with segmented architecture (such as the 8086/8088), addi­
tive operations between pointer and integer values may not be valid in
some cases. For example, an operation may result in an address that is
outside the bounds of an array. See your compiler guide for more informa­
tion on memory models.

• Examples

The following declarations are used for both examples:

int i = 4, j;
float x[lO];
float *px;

/******************** Example 1 ********************/

px = &x[4] + i; /* equivalent to px = &x[4+i]; */

In Example 1, the value of i is multiplied by the length of a float and
added to &x [4] . The resulting pointer value is the address of x [8] .

/******************** Example 2 ********************/

j = &x[i] - &x[i-2];

In Example 2, the address of the third element of x (given by x [i - 2J) is
subtracted from the address of the fifth element of x (given by x [i]).
The difference is divided by the length of a float; the result is the integer
value 2.

5.3.7 Shift Operators

The shift operators shift their first operand left (< <) or righ t (> >) by
the number of positions the second operand specifies. Both operands must
be integral values. These operators perform the usual arithmetic conver­
sions; the type of the result is the type of the left operand after conversion.

For leftward shifts, the vacated right bits are set to o. For rightward
shifts, the vacated left bits are filled based on the type of the first operand

125

Microsoft 0 Language Reference

after conversion. If the type is unsigned, they are set to O. Otherwise,
they are filled with copies of the sign bit.

The result of a shift operation is undefined if the second operand is nega­
tive.

Since the conversions performed by the shift operators do not provide for
overflow or underflow conditions, information may be lost if the result of a
shift op~ration cannot be represen ted in the type of the first operand after
converSIOn .

• Example

unsigned int x, y, z:

x = OxOOaa;
y = Ox5500;

z = (x « 8) + (y » 8):

In this example, x is shifted left eight positions and y is shifted right eight
positions. The shifted values are added, giving Oxaa55, and assigned to z.

5.3.8 Relational Operators

The binary relational operators compare their first operand to their second
operand to test the validity of the specified relationship. The result of a
relational expression is 1 if the tested relationship is true and 0 if it is
false. The type of the result is into

The relational' operators test the following relationships:

Operator

<
>
<=
>=

f-.-

Relationship Tested

First operand less than second operand

First operand greater than second operand

First operand less than or equal to second operand

First operand greater than or equal to second operand

First operand equal to second operand

First operand not equal to second operand

The operands can have integral, floating, or pointer type. The types of
the operands can be different. Relational operators perform the usual
arithmetic conversions on integral and floating type operands. In addition,
you can use the following combinations of operand types with relational
operators:

126

Expressions and Assignments

• Both operands of any relational operator can be pointers to the
same type. For the equality (==) and inequality (!=) operators,
the result of the comparison indicates whether or not the two
pointers address the same memory location. For the other rela­
tional operators «, >, <=, and >=), the result of the com­
parison indicates the relative position of two memory addresses.

Since the address of a given value is arbitrary, comparisons
between the addresses of two unrelated values are generally mean­
ingless. However, comparisons between the addresses of different
elemen ts of the same array can be useful, since array elemen ts are
guaranteed to be stored in order from the first element to the last.
The address of the first array element is "less than" the address of
the last element.

• A pointer value can be compared to the constant value 0 for equal­
ity (= =) or inequality (!=). A pointer with a value of 0, called a
"null" pointer, does not point to a memory location.

• Examples

/******************** Example 1 ********************/

int x = 0, y = 0;
x < y

Because x and yare equal, the expression in Example 1 yields the value O.

/******************** Example 2 ********************/

char array[lO] ;
char *p ;

for (p = array; p < &array[lO]; p++)
*p = '\0'

The fragment in Example 2 initializes each element of array to a null
character constant.

/******************** Example 3 ********************/

enum color {red, white, green} col;

if (col - red)

127

Microsort C Language Rererence

Example 3 declares an enumeration variable named col with the tag
color. At any time, the variable may contain an integer value of 0, 1, or
2, which represents one of the elements of the enumeration set color: the
color red, white, or green, respectively. If col contains 0 when the if state­
ment is executed, any statements depending on the if will be executed.

5.3.9 Bitwise Operators

The bitwise operators perform bitwise-AND (&), inclusive-OR (:), and
exclusive-OR C') operations. The operands of bItwise operators must have
integral types, but their types can be different. These operators perform
the usual arithmetic conversions; the type of the result is the type of the
operands after conversion.

The C bitwise operators are described below:

Operator

&

• Examples

Description

The bitwise-AND operator compares each bit of its
first operand to the corresponding bit of its second
operand. If both bits are 1, the corresponding
result bit is set to 1. Otherwise, the corresponding
result bit is set to o.
The bitwise-inclusive-OR operator compares each
bit of its first operand to the corresponding bit of
its second operand. If either bit is 1, the
corresponding result bit is set to 1. Otherwise, the
corresponding result bit is set to o.
The bitwise-exclusive-OR operator compares each
bit of its first operand to the corresponding bit of
its second operand. If one bit is 0 and the other bit
is 1, the corresponding result bit is set to 1. Other­
wise, the corresponding result bit is set to o.

The following declarations are used for these examples:

short i = OxabOO;
short j = Oxabcd;
short n;

128

Expressions and Assignments

/******************** Example 1 ********************/

n = i &. j;

/******************** Example 2 ********************/

n = i I j;

/******************** Example 3 ********************/

n = i - j;

The result assigned to n in the first example is the same as i (OxabOO hex­
adecimal). The bitwise-inclusive OR in Example 2 results in the value
Oxabcd (hexadecimal), while the bitwise-exclusive OR in Example 3 pro­
duces Oxcd (hexadecimal).

5.3.10 Logical Operators

The logical operators perform logical-AND (&&) and logical-OR (: :)
operations. The operands of the logical operators must have integral,
floating, or pointer type. The types of the operands can be different.

The operands of logical-AND and logical-OR expressions are evaluated
from left to right. If the value of the first operand is sufficient to determine
the result of the operation, the second operand is not evaluated. There is a
sequence poin t after the first operand.

Logical operators do not perform the usual arithmetic conversions.
Instead, they evaluate each operand in terms of its equivalence to o.
The result of a logical operation is either 0 or 1. The result's type is into

The C logical operators are described below:

Operator

&&

Description

The logical-AND operator produces the value 1 if
both operands have nonzero values. If either
operand is equal to 0, the result is o. If the first
operand of a logical-AND operation is equal to 0,
the second operand is not evaluated.

129

Microsoft C Language Reference

I I
I I

• Examples

The logical-OR operator performs an inclusive-OR
operation on its operands. The result is 0 if both
operands have 0 values. If either operand has a
nonzero value, the result is 1. If the first operand
of a logical-OR operation has a nonzero value, the
second operand is not evaluated.

The following examples use these declarations:

int w, x, y, z;

/******************** Example 1 ********************/

if (x < y && Y < z)
printf (tl x is less than z\ntl);

In Example 1, the printf function is called to print a message if x is less
than y and y is less than z. If x is greater than y, the second operand (y
< z) is not evaluated and nothing is printed. Note that this could cause
problems in cases where the second operand has side effects that are being
relied on for some other reason.

/******************** Example 2 ********************/

printf (tI%d tl , (x=w :: x==y : : x==z));

In Example 2, if x is equal to either w, y, or z, the second argument to the
printf function evaluates to true and the value 1 is printed. Otherwise,
it evaluates to false and the value 0 is printed. As soon as one of the condi­
tions evaluates to true, evaluation ceases.

5.3.11 Sequential-Evaluation Operator

The sequential-evaluation operator evaluates its two operands sequentially
from left to right. There is a sequence point after the first operand. The
result of the operation has the same value and type as the right operand.
Each operand can be of any type. The sequential-evaluation operator does
not perform type conversions bet'Yeen its operands.

130

)

)

)

Expressions and Assignments

The sequential-evaluation operator, also called the "comma operator," is
typically used to'evaluate two or more expressions in contexts where only
one expression is allowed.

Commas may be used as separators in some contexts. However, you must
be careful not to confuse the use of the comma as a separator with its use
as an operator; the two uses are completely different .

• Examples

/******************** Example 1 ********************/

for (i = j = 1; i + j < 20; i += i, j--);

In Example 1, each operand of the for statement's third expression is
evaluated independently. The left operand, i += i I is evaluated first;
then the right operand, j - -, is evaluated.

/******************** Example 2 ********************/

func_one(x, y + 2, z);
func_two«x--, y + 2), z);

In the function call to func_one, three arguments, separated by commas,
are passed: x, y + 2, and z.

In the function call to func_ two, parentheses force the compiler to inter­
pret the first comma as the sequential-evaluation operator. This function
call passes two arguments to func_two. The first argument is the result
of the sequential-evaluation operation (x- - I Y + 2), which has the
value and type of the expression y + 2; the second argument is z.

5.3.12 Conditional Operator

C has one ternary operator: the conditional operator (? :). It has the fol­
lowing form:

operandl ? operand2 : operandS

The expression operandl must have integral, floating, or pointer type. It is
evaluated in terms of its equivalence to O. A sequence point follows
operand1. Evaluation proceeds as follows:

131

Microsoft C Language Reference

• If operandl does not evaluate to 0, operand2 is evaluated, and the
result of the expression is the value of operand2.

• If operandl evaluates to 0, operandS is evaluated, and the result of
the expression is the value of operandS.

Note that either operand2 or operandS is evaluated, but not both.

The type of the result of a conditional operation depends on the type of
operand2 or operandS, as follows:

• If operand2 or operandS has integral or floating type (their types
can be different), the operator performs the usual arithmetic
convers~ons. The type of the result is the type of the operands after
converSIOn.

• If both operand2 and operandS have the same structure, union, or
pointer type, the type of the result is the same structure, union, or
poin ter type.

• If both operands have type void, the result has type void.

• If either operand is a pointer to an object of any type, and the
other operand is a pointer to void, the pointer to the object is con­
verted to a pointer to void and the result is a pointer to void.

• If either operand2 or operandS is a pointer and the other operand is
a constant expression with the value 0, the type of the result is the
poin ter type.

• Examples

/******************** Example 1 ********************/

j = (i < 0) ? (-i) : (i);

Example 1 assigns the absolute value of i to j. If i is less than 0, - i is
assigned to j. If i is greater than or equal to 0, i is assigned to j.

/******************** Example 2 ********************/

void f1 (void)
void f2 (void)
int x
int y

(x-=y) ? (flO)

132

(f2 0)

Expressions and Assignments

In Example 2, two functions, fl and f2, and two variables, x and y, are
declared. Later in the program, if the two variables have the same value,
the function fl is called. Otherwise, f2 is called.

5.4 Assignment Operators

The assignment operators in C can both transform and assign values in a
single operation. Using a compound-assignment operator to replace two
separate operations can make your programs smaller and more efficien t.

C provides the following assignmen t operators:

Operator

++

=

/=
%=
+=
-=

«=
»=
&=
I­
I-

Operation Performed

Unary increment

Unary decrement

Simple assignment

Multiplication assignment

Division assignment

Remainder assignment

Addition assignment

Subtraction assignment

Left-shift assign men t

Right-shift assignment

Bitwise-AND assignment

Bitwise-inclusive-OR assignment

Bitwise-exclusive-OR assignment

In assignment, the type of the right-hand value is converted to the type of
the left-hand value. The specific conversion path, which depends on the
two types, is outlined in detail in Section 5.6.

5.4.1 Lvalue Expressions

An assignment operation assigns the value of the right-hand operand to
the storage location named by the left-hand operand. Therefore, the left­
hand operand of an assignment operation (or the single operand of a unary
assignment expression) must be an expreSSIOn that refers to a modifiable
memory location.

133

Microsoft C Language Reference

Expressions that refer to memory locations are called "lvalue expressions."
Expressions referring to modifiable locations are modifiable lvalues. One
example of a modifiable lvalue expression is a variable name declared
without the const specifier. The name of the variable denotes a stor-
age location, while the value of the variable is the value stored at that
location.

The following C expressions may be lvalue expressions:

• An identifier of integral, floating, pointer, structure, or union type

• A subscript ([]) expression that does not evaluate to an array or a
function

• A member-selection expression (- > or .), if the selected member
is one of the aforementioned expressions

• A unary-indirection (*) expression that does not refer to an array
or function

• An lvalue expression in paren theses

• A const object (a nonmodifiable lvalue)

Note

Microsoft C includes an extension to the ANSI C standard allowing a
type cast to a pointer type as an lvalue expression, as long as the size
of the object does not change. The following example illustrates this
feature:

char *p
int i;
long 1;

(long *) p = &1 ;
(long) i = 1 ;

/* legal cast */
/* illegal cast */

See your compiler guide for information on enabling and disabling the
Microsoft extensions.

5.4.2 Unary Increment and Decrement

The unary assignment operators (++ and --) increment and decrement
their operand, respectively. The operand must have integral, floating, or
pointer type and must be a modifiable (non-const) lvalue expression.

134

Expressions and Assignments

An operand of in tegral or floating type is incremen ted or decremen ted by
the integer value 1. The type of the result is the same as the operand type.
An operand of pointer type is incremented or decremented by the size of
the object it addresses. An incremented pointer points to the next object;
a decremented pointer points to the previous object.

An increment (++) or decrement (- -) operator can appear either be­
fore or after its operand, with the following results:

• When the operator appears before its operand, the operand is
incremented or decremented and its new value is the result of the
expreSSIOn.

• When the operator appears after its operand, the immediate result
of the expression is the value of the operand before it is incre­
mented or decremented. After that result is applied in context, the
operand is incremented or decremented.

• Examples

/******************** Example 1 ********************/

if (pos++ > 0)
*p++ = *q++;

In Example 1, the variable pes is compared to 0, then incremented. If pes
was positive before being incremented, the next statement is executed.
First, the value of q is assigned to p. Then, q and p are incremented.

/******************** Example 2 ********************/

if (line [--i] != '\n')
return;

In Example 2, the variable i is decremented before it is used as a subscript
to line.

5.4.3 Simple Assignment

The simple-assignment operator assigns its right operand to its left
operand. The conversion rules for assignment apply (see Section 5.6.1).

135

Microsoft C Language Reference

• Example

double x;
int y;

x = y;

In this example, the value of y is converted to double type and assigned
to x.

5.4.4 Compound Assignment

The compound-assignment operators combine the simple-assignment
operator with another binary operator. Compound-assignment operators
perform the operation specified by the additional operator, then assign the
result to the left operand. For example, a compound-assignment expres­
sion such as

expre88£onl += expre88£on2

can be understood as

expre88£onl = expre88£onl + expre88£on2

However, the compound-assignment expression is not equivalent to the
expanded version because the compound-assignment expression evaluates
expressionl only once, while the expanded version evaluates expressionl
twice: in the addition operation and in the assignment operation.

The operands of a compound-assignment operator must be of integral or
floating type. Each compound-assignment operator performs the conver­
sions that the corresponding binary operator performs and restricts the
types of its operands accordingly. The addition-assignment (+=) and
subtraction-assignment (-=) operators may also have a left operand of
pointer type, in which case the right-hand operand must be of integral
type. The result of a compound-assignment operation has the value and
type of the left operand.

• Example

#define MASK OxffOO

n &= MASK;

In this example, a bitwise-inclusive-AND operation is performed on nand
MASK, and the result is assigned to n. The manifest constant MASK is
defined with a # define preprocessor directive (this directive is discussed
in Section 8.2.2.).

136

Expressions and Assignments

5.5 Precedence and Order of Evaluation

The precedence and associativity of C operators affect the grouping and
evaluation of operands in expressions. An operator's precedence is mean­
ingful only if other operators with higher or lower precedence are presen t.
Expressions with higher-precedence operators are evaluated first.

Table 5.1 summarizes the precedence and associativity of C operators, list­
ing them in order of precedence from highest to lowest. Where several
operators appear together in a line or large brace, they have equal pre­
cedence and are evaluated according to their associativity.

Table 5.1

Precedence and Associativity of C Operators

Symbola

() [] . ->
- - ! * &
++ sizeof casts

* / %
+-
« »
< > <= >=
- - !=
&

&&
I I
I I

? :

I

= *= /= %= I += -= «= »=
&= 1= "'=

Type of Operation

Expression

Unaryb

Multiplicative
Additive
Shift
Relational (inequality)
Relational (equality)
Bitwise AND
Bitwise-exclusive OR
Bitwise-inclusive OR
Logical AND
Logical OR
Conditional
Simple and
compound
assignmentC

Sequential evaluation

Associativity

Left to right

Righ t to left

Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Right to left
Right to left

Left to righ t

a Operators are listed In descending order of precedence If several operators appear In the
same line or In a large brace, they have equal precedence

b All unary operators have equal precedence

C All simple and compound-assignment operators have equal precedence

137

Microsoft C Language Reference

As Table 5.1 shows, operands consisting of a constant, an identifier, a
string, a function call, a subscript expression, a member-selection expres­
sion, or a parenthetical expression have the highest precedence and associ­
ate from left to right. Type-cast conversions have the same precedence and
associativity as the unary operators.

An expression can contain several operators with equal precedence. When
several such operators appear at the same level in an expression, evalua­
tion proceeds according to the associativity of the operator, either from
right to left or from left to right. The direction of evaluation does not
affect the results of expressions that include more than one multiplication
(*), addition (+), or binary-bitwise (& : A) operator at the same level.
The compiler is free to evaluate such expressions in any order, even when
parentheses in the expression appear to specify a particular order.

Important

Only the sequential-evaluation (,), logical-AND (&&), logical-OR (: :),
ternary (?:) and function-call operators constitute sequence points, and
therefore guarantee a particular order of evaluation for their operands.
The function-call operator is the set of paren theses following the func­
tion identifier. The sequential-evaluation operator (,) is guaranteed to
evaluate its operands from left to right. (Note that the comma separat­
ing arguments in a function call is not the same as the sequential­
evaluation operator and does not provide any such guaran tee.)
Sequence points are discussed in Section 5.2.12.

The unary plus operator (+) is in tended to force specific groupings in
certain situations. It is implemented syntactically, but not semanti­
cally. See Section 5.3.2, "Complement Operators," for further informa­
tion on unary operators.

Logical operators also guarantee evaluation of their operands from left to
right. However, they evaluate the smallest number of operands needed to
determine the result of the expression. Thus, some operands of the expres­
sion may not be evaluated. For example, in the expression x && y+ +, the
second operand, y++, is evaluated only if x is true (nonzero). Thus, y is
not incremen ted if x is false (0).

~he following list shows the default groupings for several sample expres­
SIOns:

138

Expressions and Assignments

Expression

a & b :: c

a = b :: c

q && r :: s--

Default Grouping

(a & b) :: c

a = (b :: c)

(q && r) :: s - -

In the first expression, the bitwise-AND operator (&) has higher
precedence than the logical-OR operator l: :), so a & b forms the first
operand of the logical-OR operation.

In the second expression, the logical-OR operator (: :) has higher pre­
cedence than the simple-assignment operator (=), so b :: c is grouped
as the right-hand operand in the assignment. Note that the value assigned
to a is either 0 or 1.

The third expression shows a correctly formed expression that may pro­
duce an unexpected result. The logical-AND operator (&&) has higher
precedence than the logical-OR operator (: :), so q && r is grouped as an
operand. Since the logical operators guarantee evaluation of operands
from left to right, q && r is evaluated before s--. However, if q && r
evaluates to a nonzero value, s-- is not evaluated, and s is not decre­
mented. To correct this problem, s- - should appear as the first operand
of the expression, or s should be decremented in a separate operation.

The following expression is illegal and produces a diagnostic message at
compile time:

Illegal Expression Default Grouping

p == 0 ? P += 1: p += 2 (p == ° ? P += 1 : p) += 2

In this expression, the equality operator (= =) has the highest precedence,
so p == ° is grouped as an operand. The ternary operator (? :) has the
next-highest precedence. Its first operand is p == 0, and its second
operand is p += 1. However, the last operand of the ternary operator is
considered to be p rather than p += 2, since this occurrence of p binds
more closely to the ternary operator than it does to the compound­
assignment operator. A syntax error occurs because += 2 does not have a
left-hand operand. You should use parentheses to prevent errors of this
kind and produce more readable code. For example, you could use
parentheses as shown below to correct and clarify the preceding example:

(p == 0) ? (p += 1) : (p += 2)

139

Microsoft C Language Reference

5.6 Type Conversions

Type conversions are performed in the following cases:

• When a value of one type is assigned to a variable of a differ­
ent type

• When a value of one type is explicitly cast to a different type

• When an operator converts the type of its operand or operands
before performing an operation

• When a value is passed as an argument to a function

Sections 5.6.1-5.6.4 outline the rules for each kind of conversion.

5.6.1 Assignment Conversions

In assignment operations, the type of the value being assigned is converted
to the type of the variable that receives the assignment. C allows conver­
sions by assignment between integral and floating types, even if informa­
tion is lost in the conversion. The conversion methods used depend on the
types involved in the assignment, as described in Section 5.3.1, "Usual
Arithmetic Conversion," and Sections 5.6.1.1 - 5.6.1.5.

5.6.1.1 Conversions from Signed Integral Types

A signed integer is converted to a shorter signed integer by truncating the
high-order bits, and to a longer signed integer by sign extension.

When a signed integer is converted to an unsigned integer, the signed
integer is converted to the size of the unsigned integer, and the result is
interpreted as an unsigned value.

No information is lost when a signed integer is converted to a floating
value, except that some precision may be lost when a long int or
unsigned long int value is converted to a float value.

Table 5.2 summarizes conversions from signed integral types. This table
assumes that the char type is signed by default. If you use a compile-time
option to change the default for the char type to unsigned, the conver­
sions given in Table 5.3 for the unsigned char type apply instead of the
conversions in Table 5.2.

140

Expressions and Assignments

Table 5.2

Conversions from Signed Integral Types

From To Method

chara short Sign extend

char long Sign extend

char unsigned char Preserve pattern; high-order bit loses function as
sign bit

char unsigned short Sign extend to short; convert short to unsigned
short

char unsigned long Sign extend to long; convert long to unsigned
long

char float Sign extend to long; convert long to float

char double Sign extend to long; convert long to double

char long double Sign extend to long; convert long to double
short char Preserve low-order byte
short long Sign extend
short unsigned char Preserve low-order byte

short unsigned short Preserve bit pattern; high-order bit loses function
as sign bit

short unsigned long Sign extend to long; convert long to unsigned
long

short float Sign extend to long; convert long to float
short double Sign extend to long; convert long to double
short long double Sign extend to long; convert long to double
long char Preserve low-order byte
long short Preserve low-order word
long unsigned char Preserve low-order byte
long unsigned short Preserve low-order word
long unsigned long Preserve bit pattern; high-order bit loses function

as sign bit
long float Represent as float. If long cannot be represented

exactly, some precision is lost.
long double Represent as double. If long cannot be

represented exactly as a double, some precision is
lost.

long long double Represent as double. If long cannot be
represented exactly as a double, some precision is
lost.

a All char entries assume that the char type is signed by default.

141

Microsoft C Language Reference

Note

The int type is equivalen t to either the short type or the long type,
depending on the implementation. Conversion of an int value
proceeds the same as for a short or a long, whichever is appropriate.

5.6.1.2 Conversions from Unsigned Integral Types

An unsigned integer is converted to a shorter unsigned or signed integer by
truncating the high-order bits, or to a longer unsigned or signed integer by
zero extending.

When an unsigned integer is converted to a signed integer of the same size,
the bit pattern does not change. However, the value it represents changes
if the sign bit is set.

Unsigned integer values are converted to floating values by first converting
the unsigned integer value to a signed long value, then converting that
signed long value to a floating value.

Table 5.3 summarizes conversions from unsigned integral types.

Table 5.3

Conversions from Unsigned Integral Types

From To Method

unsigned char char Preserve bit pattern; high-order bit
becomes sign bit

unsigned char short Zero extend
unsigned char long Zero extend
unsigned char unsigned short Zero extend
unsigned char unsigned long Zero extend
unsigned char float Convert to long; convert long to

float
unsigned char double Convert to long; convert long to

double
unsigned char long double Convert to long; convert long to

double
unsigned short char Preserve low-order byte
unsigned short short Preserve bit pattern; high-order bit

becomes sign bit

142

Expressions and Assignments

Table 5.3 (continued)

From To Method

unsigned short long Zero extend
unsigned short unsigned char Preserve low-order byte

unsigned short unsigned long Zero extend
unsigned short float Convert to long; convert long to

float
unsigned short double Convert to long; convert long to

double
unsigned short long double Convert to long; convert long to

double
unsigned long char Preserve low-order byte
unsigned long short Preserve low-order word
unsigned long long Preserve bit pattern; high-order bit

becomes sign bit
unsigned long unsigned char Preserve low-order byte
unsigned long unsigned short Preserve low-order word
unsigned long float Convert to long; convert long to

float
unsigned long double Convert to long; convert long to

double
unsigned long long double Convert to long; convert long to

double

Note

The unsigned int type is equivalent either to the unsigned short
type or to the unsigned long type, depending on the implementation.
Conversion of an unsigned int value proceeds in the same way as
conversion of an unsigned short or an unsigned long, whichever is
appropriate.

Conversions from unsigned long values to float, double, or long
double are not accurate if the value being converted is larger than the
maximum positive long value.

143

Microsoft C Language Reference

5.6.1.3 Conversions from Floating-Point Types

A float value converted to a double value undergoes no change in value.
A double value converted to a float value is represented exactly, if possi­
ble. Precision may be lost if the value cannot be represented exactly.

A floating value is converted to an integral value by first converting to a
long, then from the long value to the specific integral value, as described
in Table 5.4. The decimal portion of the floating value is discarded in the
conversion to a long; if the result is still too large to fit into a long, the
result of the conversion is undefined.

Table 5.4 summarizes conversions from floating types.

Table 5.4

Conversions from Floating-Point Types

From To Method

float char Convert to long; convert long to char
float short Convert to long; convert long to short
float long Truncate at decimal point. If result is

too large to be represented as long,
result is undefined.

float unsigned short Convert to long; convert long to
unsigned short

float unsigned long Convert to long; convert long to
unsigned long

float double Change internal representation
float long double Change internal representation
double char Convert to float; convert float to char
double short Convert to float; convert float to

short
double long Truncate at decimal point. If result is

too large to be represented as long,
result is undefined.

double unsigned short Convert to long; convert long to
unsigned short

double unsigned long Convert to long; convert long to
unsigned long

144

Expressions and Assignments

Table 5.4 (contz'nued)

From To

double float

long double char

long double short

long double long

long double unsigned short

long double unsigned long

long double float

long double double

Note

Method

Represent as a float. If double value
cannot be represented exactly as float,
loss of precision occurs. If value is too
large to be represented as float, the
result is undefined.
Convert to float; convert float to char

Convert to float; convert float to
short

Truncate at decimal point. If result is
too large to be represented as long,
result is undefined.
Convert to long; convert long to
unsigned short
Convert to long; convert long to
unsigned long
Represent as a float. If double value
cannot be represented exactly as float,
loss of precision occurs. If value is too
large to be represented as float, the
result is undefined.
The long double value is treated as
double.

Conversions from float, double, or long double values to unsigned
long are not accurate if the value being converted is larger than the
maximum positive long value.

5.6.1.4 Conversions to and from Pointer Types

A pointer to one type of value can be converted to a pointer to a different
type. However, the result may be undefined because of the alignment
requirements and sizes of different types in storage.

A pointer to void may be converted to or from a pointer to any type,
without restriction.

145

Microsoft C Language Reference

In some implementations, you can use the special keywords near, far, and
huge to change the size of pointers within a program. The conversion path
depends on your implementation. For example, on an 8086 processor, the
compiler might use a segment-register value to convert a 16-bit pointer to
a 32-bit. pointer. See your compiler guide for information about pointer
converSIOns.

A pointer value can also be converted to an integral value. The conversion
path depends on the size of the pointer and the size of the integral type,
according to the following rules:

• If the size of the pointer is greater than or equal to the size of the
integral type, the pointer behaves like an unsigned value in the
conversion, except that it cannot be converted to a floating value.

• If the poin ter is smaller than the in tegral type, the poin ter is first
converted to a pointer with the same size as the integral type, then
converted to the integral type. The implementation determines
how a pointer is converted to a longer pointer; see your compiler
guide for information about pointer conversions.

Conversely, an integral type can be converted to a pointer type according
to the following rules:

• If the integral type is the same size as the pointer type, the conver­
sion simply causes the integral value to be treated as a pointer (an
unsigned in teger).

• If the size of the integral type is different from the size of the
pointer type, the integral type is first converted to the size of the
pointer, using the conversion paths given in Tables 5.2 and 5.3. It
is then treated as a pointer value.

If the special keywords near, far, and huge are implemented, implicit
conversions may be made on pointer values. In particular, the compiler
may make assumptions about the default size of pointers and convert
passed pointer values accordingly, unless a forward declaration is present
to override the implicit conversion. See your compiler guide for informa­
tion about pointer conversions.

5.6.1.5 Conversions from Other Types

Since an enum value is an int value by definition, conversions to and from
an enum value are the same as those for the int type. An int is equivalent
to either a short or a long, depending on the implementation.

No conversions between structure or union types are allowed.

146

Expressions a.nd Assignments

The void type has no value, by definition. Therefore, it cannot be con­
verted to any other type, and other types cannot be converted to void by
assignment. However, you can explicitly cast a value to void type, as dis­
cussed in Section 5.6.2.

5.6.2 Type-Cast Conversions

You can use type casts to explicitly convert types. A type cast has the
form

(type-name)operand

where type-name is a type and operand is a value to be converted to that
type. (Type names are discussed in Section 4. g.)

The operand is converted as though it had been assigned to a variable of
type-name type. The conversion rules for assignments (outlined in Section
5.6.1) apply to type casts as well.

You can use the type name void in a cast operation, but you cannot
assign the resulting expression to any item.

5.6.3 Operator Conversions

The conversions performed by C operators depend on the operator and on
the type of the operand or operands. Many operators perform the usual
arithmetic conversions, outlined in Section 5.3.1.

C permits some arithmetic with pointers. In pointer arithmetic, integer
values are converted to express memory positions. (See the discussions of
additive operators, Section 5.3.6, and subscript expressions, Section 5.2.5,
for more information.)

5.6.4 Function-Call Conversions

The type of conversion performed on the arguments in a function call
depends on the presence of a function prototype (forward declaration)
with declared argument types for the called function.

If a function prototype is present and includes declared argument types,
the compiler performs type checking. The type-checking process is out­
lined in detail in Chapter 7, "Functions."

147

Microsoft C Language Reference

If no function prototype is present, or if an old-style forward declaration
omits the argument-type list, only the usual arithmetic conversions are
performed on the arguments in the function call. These conversions are
performed independently on each argument in the call. This means that a
float value is converted to a double; a char or short value is converted
to an int; and an unsigned char or unsigned short is converted to an
unsigned into

If the special keywords near, far, and huge are implemented, implicit
conversions may also be made on pointer values passed to functions. You
can override these implicit conversions by providing function prototypes
to allow the compiler to perform type checking. See your compiler guide
for information about pointer conversions.

148

) CHAPTER,

STATEMENTS

6.1 Introduction .. 151
6.2 The break Statement .. 152
6.3 The Compound Statement 153
6.4 The continue Statement 154
6.5 The do Statement ... 155
6.6 The Expression Statement 156

) 6.7 The for Statement .. 157
6.8 The goto and Labeled Statements 158
6.9 The if Statement ... 159
6.10 The Null Statement ... ~i.161
6.11 The return Statelnent ... 162
6.12 The S"\vitch Statement ... 163
6.13 The while Statement ... 166

)

Statements

6.1 Introduction

The statements of a C program control the flow of program execution. In
C, as in other programming languages, several kinds of statements are
available to perform loops, to select other statements to be executed, and
to transfer control. This chapter describes C statements in alphabetical
order, as follows:

break statemen t
compound statement
continue statement
do statemen t
expression statement
for statement

goto and labeled statemen ts
if statement
null statement
return statement
switch statement
while statement

C statements consist of keywords, expressions, and other statements. The
following keywords appear in C statements:

break
case
continue

default
do
else

for
goto
if

return
switch
while

The expressions in C statements are the expressions discussed in Chapter
5, "Expressions and Assignments." Statements appearing within C state­
ments may be any of the statements discussed in this chapter. A statement
that forms a component of another statement is called the "body" of the
enclosing statement. Frequently the statement body is a "compound"
statement: a single statement composed of one or more statements.

The compound statement is delimited by braces ({ }); all other C state­
ments end with a semicolon(;).

Any C statement may begin with an identifying label consisting of a
name and a colon. Since only the goto statement recognizes statement
labels, statement labels are described along with the goto statement in
Section 6.8.

When a C program is executed, its statements are executed in the order in
which they appear in the program, except where a statement explicitly
transfers control to another location.

151

Microsoft C Language Reference

6.2 The break Statement

• Syntax

break;

• Execution

The break statement terminates the execution of the smallest enclosing
do, for, switch, or while statement in which it appears. Control passes to
the statement that follows the terminated statement. A break statement
can appear only within a do, for, switch, or while statement.

Within nested statements, the break statement terminates only the do,
for, switch, or while statement that immediately encloses it. You can
use a return or goto statement to transfer control out of the nested
structure.

• Example

for (i = 0; i < LENGTH; i++) {

}

for (j = 0; j < WIDTH; j++) {
if (lines[i] [j] == '\0') {

lengths[i] = j;
break:

}
}

This example processes an array of variable-length strings stored in
lines. The break statement causes an exit from the interior for loop
aft~r.the.terminat.ing null character (\0) of each string is found and its
posItIOn IS stored In lengths [iJ . Control then returns to the outer for
loop. The variable i is incremented and the process is repeated until i is
greater than or equal to LENGTH.

152

Statements

6.3 The Compound Statement

• Syntax

{
[declaration]

statement
[statement]

}

• Execution

A compound statement typically appears as the body of another state­
ment, such as the if statement. When a compound statement is executed,
its statements are executed in the order in which they appear, except
where a statement explicitly transfers control to another location. Chapter
4, "Declarations," describes the form and meaning of the declarations that
can appear at the head of a compound statement.

Like other C statements, any of the statements in a compound statement
can carry a label. Labeled statements are discussed in Section 6.8.

• Example

if (i > 0) {
line [i] = x;
x++;
i--;

}

In this example, if i is greater than 0, all of the statements in the com­
pound statement are executed in order.

153

Microsoft C Language Reference

6.4 The continue Statement

• Syntax

continue;

• Execution

The continue statement passes control to the next iteration of the do,
for, or while statement in which it appears, bypassing any remaining
statements in the do, for, or while statement body. The next iteration of
a do, for, or while statement is determined as follows:

• Within a do or a while statement, the next iteration starts by re­
evaluating the expression of the do or while statement.

• Within a for statement, the next iteration starts by evaluating the
loop expression of the for statement. Then it evaluates the condi­
tional expression and, depending on the result, either terminates or
iterates the statement body. (The for statement is discussed in
Section 6.7.)

• Example

while (i-- > 0) {

}

x = f(i);
if (x = 1)

continue;
y += x * x;

In this example, the statement body is executed if i is greater than O.
First f (i) is assigned to x; then, if x is equal to 1, the continue state­
ment is executed. The rest of the statements in the body are ignored, and
execution resumes at the top of the loop with the evaluation of i - - > o.

154

)

)

Sta.tements

6.5 The do Statement

• Syntax

do
statement

while (expression);

• Execution

The body of a do statement is executed one or more times until expression
becomes false (0). Execution proceeds as follows:

1. The statement body is executed.

2. The expressz'on is evaluated. If expression is false, the do statement
terminates and control passes to the next statement in the pro­
gram. If expressz'on is true (nonzero), the process is repeated, begin­
ning with step 1.

The do statement may also terminate when a break, goto, or return
statement is executed within the statement body.

• Example

do {
y = f (x) ;
x--;

} while (x > 0);

In this do statement, the two statements y = f (x) ; and x- -; are exe­
cuted, regardless of the initial value of x. Then x > 0 is evaluated. If x
is greater than 0, the statement body is executed again and x > 0 is
reevaluated. The statement body is executed repeatedly as long as x
remains greater than O. Execution of the do statement terminates when x
becomes 0 or negative. The body of the loop is executed at least once.

155

Microsoft C Language Reference

6.6 The Expression Statement

• Syntax

express£on;

• Execution

When an expression statement is executed, the expression is evaluated
according to the rules outlined in Chapter 5, "Expressions and Assign­
ments."

In C, assignments are expressions. The value of the expression is the value
being assigned (sometimes called the "right-hand value").

Function calls are also considered expressions. The value of the expression
is the value, if any, returned by the function. If a function returns a value,
the expression statement usually includes an assignment to store the re­
turned value when the function is called. The value returned by the func­
tion is usually used as an operand in another expression. If the value is to
. be used more than once, it can be assigned to another variable. If the value
is neither used as an operand nor assigned, the function is called but the
return value, if any, is not used.

• Examples

/******************** Example 1 ********************/

x = (y + 3);

In Example 1, x is assigned the value of y + 3.

/******************** Example 2 ********************/

x++;

In Example 2, x is incremented.

/******************** Example 3 ********************/

z = f(x) + 3;

156

(

Statements

Example 3 shows a function-call expression. The value of the expression,
which includes any value returned by the function, is assigned to the vari­
able z.

6. 7 The for Statement

• Syntax

for ([init-expression ~; [cond-expression ~; [loop-expression~)
statement

• Execution

The body of a for statemen t is execu ted zero or more times un til the
optional cond-expression becomes false. You can use the optional
z'nit-expression and loop-expression to initialize and change values during
the for statement's execution.

Execution of a for statement proceeds as follows:

1. The init-expression, if any, is evaluated.

2. The cond-expression, if any, is evaluated. Three results are possi­
ble:

a. If cond-expression is true (nonzero), statement is executed; then
loop-expression, if any, is evaluated. The process then begins
again with the evaluation of cond-expression.

b. If cond-expression is omitted, cond-expressz'on is considered
true, and execution proceeds exactly as described for case a. A
for statement without a cond-expression argument terminates
only when a break or return statement within the statement
body is executed, or when a goto (to a labeled statement out­
side the for statement body) is executed.

c. If cond-expression is false, execution of the for statement ter­
minates and control passes to the next statement in the pro­
gram.

A for statement also terminates when a break, goto, or return state­
ment within the statement body is executed.

157

Microsoft C Language Reference

• Example

for (i = space = tab = 0; i < MAX; i++) {
if (line [i] - , ,)

space++;
if (line [i] -- '\t ') {

tab++;
line [i] = , , . ,

}
}

This example counts space ('\x20') and tab ('\ t') characters in the
array of characters named 1 ine and replaces each tab character with a
space. First i, space, and tab are initialized to O. Then i is compared
with the constant MAX; if i is less than MAX, the statement body is exe­
cuted. Depending on the value of line [i], the body of one or nei­
ther of the if statements is executed. Then i is incremented and tested
against MAX; the statement body is executed repeatedly as long as i is
less than MAX.

6.8 The goto and Labeled Statements

• Syntax

gata name;

name: statement

• Execution

The goto statement transfers control directly to the statement that has
name as its label. The labeled statement is executed immediately after the
goto statement is executed. A statement with the given label must reside
in the same function, and the given label can appear before only one state­
ment in the same function.

A statement label is meaningful only to a goto statement; in any other
context, a labeled statement is executed without regard to the label.

A label name is simply an identifier. (Section 2.4 describes the rules that
govern the construction of iden tifiers.) Each statemen t label must be dis­
tinct from other statement labels in the same function.

158

Statements

Like other C statements, any of the statements in a compound statement
can carry a label. Thus, you can use a goto statement to transfer into a
compound statement. However, transferring into a compound statement is
dangerous when the compound statement includes declarations that ini­
tialize variables. Since declarations appear before the executable state­
ments in a compound statement, transferring directly to an executable
statement within the compound statement bypasses the initializations.
The results are undefined.

• Example

if (errorcode > 0)
goto exit;

exit:
return (errorcode);

In this example, a goto statement transfers control to the point labeled
exi t if an error occurs.

6.9 The if Statement

• Syntax

if (expresst"on)
statementl

[else
statement2]

• Execution

The body of an if statement is executed selectively, depending on the value
of expression, as described below:

1. The expression is evaluated.

a. If expression is true (nonzero), statementl is executed.

b. If expression is false, statement2 is executed.

c. If expression is false and the else clause is omitted, statementl
is ignored.

159

Microsort C Language Rererence

2. Con trol passes from the if state men t to the next statemen t in the
program .

• Examples

/******************** Example 1 ********************/

if (i > 0)
Y = xli:

else {
x = i:
y = f(x):}

In this example, the statement y = xli; is executed if i is greater than
o. If i is less than or equal to 0, i is assigned to x and f (x) is assigned
to y. Note that the statement forming the if clause ends with a semicolon.

Note

C does not offer an "else if' statement, but you can achieve the same
effect by nesting if statements. An if statement may be nested within
either the if clause or the else clause of another if statement.

When nesting if statements and else clauses, use braces to group the
statements and clauses into compound statements that clarify your
intent. If no braces are present, the compiler resolves ambiguities by
pairing each else with the most recent if lacking an else.

/******************** Example 2 ********************/

if (i > 0)
if (j > i)

x = j:
else

x = i;

/* Without braces */

In Example 2, the else clause is associated with the inner if statement. If
i is less than or equal to 0, no value is assigned to x.

/******************** Example 3 ********************/

if (i > 0) { /* With braces */
if (j > i)

x = j:}
else

x = i:

160

Statements

In Example 3, the braces surrounding the inner if statement make the else
clause part of the outer if statement. If i is less than or equal to 0, i is
assigned to x.

6.10 The Null Statement

• Syntax

• Execution

A "null statement" is a statement containing only a semicolon; it may
appear wherever a statement is expected. Nothing happens when a null
statement is executed.

Statements such as do, for, if, and while require that an executable state­
ment appear as the statement body. The null statement satisfies the syn­
tax requirement in cases that do not need a substantive statement body.

As with any other C statement, you can include a label before a null state­
ment. To label an item that is not a statement, such as the closing brace
of a compound statement, you can label a null statement and insert it
immediately before the item to get the same effect.

• Example

for (1 = 0; 1 < 10; 11ne[1++] = 0)

In this example, the loop expression of the for statement line [i++] =0
initializes the first 10 elements of line to o. The statement body is a null
statement, since no further statements are necessary.

161

Microsoft C Language Reference

6.11 The return Statement

• Syntax

return [expre88ion~;

• Execution

The return statement terminates the execution of the function in which it
appears and returns control to the calling function. Execution resumes in
the calling function at the point immediately following the call. The value
of expression, if present, is returned to the calling function. If expression is
omitted, the return value of the function is undefined.

By convention, parentheses enclose the expression argument of the return
statement. However, C does not require the parentheses.

If no return statement appears in a function definition, control automati­
cally returns to the calling function after the last statement of the called
function is executed. The return value of the called function is undefined.
If a return value is not required, declare the function to have void return
type.

• Example

main ()
{

}

void draw(int,int);
long sq(int);

y = sq(x);
draw (x, y);

long sq(x)
int x;
{

return (x * x);
}

162

)

)

)

void draw(x,y)
int x, y;
{

return;
}

Sta.tements

In this example, the main function calls two functions: sq and draw.
The sq function returns the value of x * x to main, where the return
value is assigned to y. The draw function is declared as a void function
and does not return a value. An attempt to assign the return value of
draw would cause a diagnostic message to be issued.

6.12 The switch Statement

• Syntax

switch (expressz"on) {
[declarat£on]

}

[case constant-express£on :]

[statement]

[default:
[statement]]

• Execution

The switch statement transfers control to a statement within its body.
Con trol passes to the statemen t whose case constant-expression matches
the value of switch expression. The switch statement may include any
number of case instances. Execution of the statement body begins at the
selected statemen t and proceeds un til the end of the body or un til a state­
ment transfers control out of the body.

163

Microsoft C La.ngua.ge Reference

The default statement is executed if no case constant-expression is equal
to the value of switch expressz"on. If the default statement is omitted, and
no case match is found, none of the statements in the switch body is exe­
cuted. The default statement need not come at the end; it can appear
anywhere in the body of the switch statement.

The type of switch expressz"on must be integral, but the resulting value is
converted to into Each case constant-expression is then converted using
the usual arithmetic conversions. The value of each case constant­
expression must be unique within the statement body. If the type of
switch expression is larger than int, a diagnostic message is issued.

The case and default labels of the switch statement body are significant
only in the initial test that determines where execution starts in the state­
ment body. All statements between the statement where execution starts
and the end of the body are execu ted regardless of their labels, unless a
statement transfers control out of the body entirely.

Note

Declarations may appear at the head of the compound statement form­
ing the switch body, but initializations included in the declarations
are not performed. The switch statement transfers control directly to
an executable statement within the body, bypassing the lines that con­
tain initializations.

• Examples

/******************** Example 1 ********************/

switch (c) {
case 'A':

}

capa++;
case 'a':

lettera++;
default :

total++;

In Example 1, all three statements of the switch body are executed if c is
equal to 'A'. Execution control is transferred to the first statement
(capa++;) and continues in order through the rest of the body. If c is
equal to 'a', lettera and total are incremented. Only total is incre­
mented if c is not equal to 'A' or 'a'.

164

(

)

/******************** Example 2 ********************/

switch (i) {

}

case -1:
n++;
break;

case 0 :
z++;
break;

case 1 :
p++;
break;

Statements

In Example 2, a break statement follows each statement of the switch
body. The break statement forces an exit from the statement body after
one statement is executed. If i is equal to -1, only n is incremented. The
break following the statement n++; causes execution control to pass out
of the statement body, bypassing the remaining statements. Similarly, if i
is equal to 0, only z is incremented; if i is equal to 1, only p is incre­
mented. The final break statement is not strictly necessary, since control
passes out of the body at the end of the compound statement, but it is
included for consistency.

Multiple Labels

A single statement may carry multiple case labels, as the following exam­
ple shows:

case 'a'
case fbi

case 'c'
case Ide
case Ie'
case ' f' hexcvt(c);

Although you can label any statement within the body of the switch
statement, no statement is required to carry a label. You can freely inter­
mingle statements with and without labels. I(eep in mind, however, that
once the switch statement passes control to a statement within the body,
all following statements in the block are executed, regardless of their
labels.

165

Microsoft C Language Reference

6.13 The while Statement

• Syntax

while (express£on)
statement

• Execution

The body of a while statement is executed zero or more times until expres­
sion becomes false (0). Execution proceeds as follows:

1. The expression is evaluated.

2. If expression is initially false, the body of the while statement is
never executed, and control passes from the while statement to the
next statement in the program.

If expression is true (nonzero), the body of the statement is exe­
cuted and the process is repeated beginning at step l.

The while statement may also terminate when a break, goto, or return
within the statement body is executed.

• Example

while (i >= 0) {

}

stringl[i] = string2[i]:
i--;

This example copies characters from str ing2 to str ingl. If i is greater
than or equal to 0, string2 [iJ is assigned to stringl [iJ and i is
decremented. When i reaches or falls below 0, execution of the while
statement terminates.

166

) CHAPTER

FUNCTIONS

7 .1 Introduction .. 160
7.2 Function Definitions ... 171

7.2.1 Storage Class .. 172
7.2.2 Return Type and Function Name 173
7.2.3 Formal Parameters 175
7.2.4 Function Body ... 170

7.3 Function Prototypes (Declarations) 170
7.4 Function Calls .. 182

7.4.1 Actual Arguments 185
7.4.2 Calls with a Variable

Number of Arguments 188
7.4.3 Recursive Calls ... 188

(

Functions

7.1 Introduction

A function is an independent collection of declarations and statements,
usually designed to perform a specific task. C programs have at least one
function, the main function, and they may have other functions. This
chapter describes how to define, declare, and call C functions.

A function dejinz"tz"on specifies the name of the function, the types and
number of its formal parameters, and the declarations and statements
that determine what it does. These declarations and statements are called
the "function body." The function definition also gives the function's
return type and its storage class. If the return type and storage class are
not stated explicitly, they default to int and extern, respectively.

A function prototype (or declaration) establishes the name, return type,
and storage class of a function fully defined elsewhere in the program. It
can also include declarations giving the types and number of the function's
formal parameters. The formal parameter declarations can name the for­
mal parameters, although such names go out of scope at the end of the
declaration. The storage class register can also be specified for a formal
parameter .

• Example

/** Prototype-Style Function Declarations and Definitions **/

double new_style(int a, double *x); /* Function
Prototype */

double alt_style (int, double *); /* Alternative
Prototype form */

double old":"style 0; /* Obsolescent
* form of function
* declaration

*/
double new_style (int a, double *real) /* Prototype-style */

{ /* Function */
return (*real + a) /* Definition */

}

double alt_style(a , real) /* Old Form of */
double *real /* Function */
int a ; /* Definition */

{
return (*real + a)

}

169

Microsoft C Language Reference

This example contrasts the concise and clear prototype declaration and
definition formats, and illustrates that the function prototype has the
same form as the function definition except that the prototype ends with a
semicolon instead of a function body.

The compiler uses the prototype or declaration to compare the types of
actual arguments in subsequent calls to the function with the function's
formal parameters, even in the absence of an explicit definition of the
function. Explicit prototypes and declarations are optional for functions
whose return type is into However, to ensure correct behavior, you must
declare or define functions with other return types before calling them.
(Function prototype declarations are discussed further in Section 7.3 and
in Chapter 4, "Declarations.")

If no prototype or declaration is provided, a default prototype is created
from whatever information accompanies the first reference to the function
name, whether that reference occurs in a call or a definition. However,
such a default prototype may not adequately represent a subsequent
definition of, or call to, the function.

A function "call" passes execution control from the calling function to the
called function. The actual arguments, if any, are passed by value to the
called function. Execution of a return statement in the called function
returns control and possibly a value to the calling function.

Note

170

The use of function prototypes is strongly recommended. Sometimes
they provide the only basis on which the compiler can enforce correct
argument passing. Prototypes allow the compiler to either diagnose, or
handle correctly, argument mismatches that would otherwise be
undetectable until program execution.

The Microsoft C Compiler can generate function prototypes automati­
cally from program source files. These can then be stored in a file that
can be included in the compilation of the program. See your compiler
guide for more information.

)

7.2 Function Definitions

• Syntax

[sc-specifier] [type-specifier] declarator ([formal-parameter-list])
function-body

Functions

A "function definition" specifies the name, formal parameters, and body of
a function. It can also stipulate the function's return type and storage
class.

The optional sc-specz"jier gives the function's storage class, which must be
either static or extern.

The optional type-specz"jier and mandatory declarator together specify the
function's return type and name. The declarator is a combination of the
identifier that names the function and the parentheses following the func­
tion name.

The formal-parameter-list is a sequence of formal parameter declarations
separated by commas. The following syntax illustrates the form of each
formal parameter in a formal parameter list.

[register] type-specifier [declarator]
[, •.. n

The formal parameter list contains declarations for the function's parame­
ters. If no arguments are to be passed to the function, the list should con­
tain the keyword void. The empty parentheses form «)) can be used, but
is obsolescent and, if used, conveys no information about whether argu­
ments will be passed. The formal parameter list can be full or partial. The
second line of the syntax above shows the "ellipsis notation," a comma fol­
lowed by three periods (, .•.). A partial formal parameter list can be ter­
minated by the ellipsis notation to indicate that there may be more argu­
ments passed to the function, but no more information is given about
them. Type checking is not performed on such arguments. At least one for­
mal parameter must precede the ellipsis notation and the ellipsis notation
must be the last token in the formal parameter list. Without the ellipsis
notation, the behavior of a function is undefined if it receives parameters
in addition to those declared in the formal parameter list. When a proto­
type is available, argument checking and conversion are automatically per­
formed. If no information is given concerning the formal parameters, any
undeclared arguments simply undergo the usual arithmetic conversions.

171

Microsoft C Language Reference

The type-speczfi,er can be omitted only if register storage class is specified
for a value of int type.

The function-body is a compound statement containing local variable
declarations, references to externally declared items, and statements.

Note

The old forms for function declaration and definition are still sup­
ported, but considered obsolescent. Use of the prototype form is
recommended in new code. The old function-definition form is
represented in the following syntax:

[8c-8pecijier] [type-8pecij£er] declarator ([£dent£j£er-U8t])
[parameter-declaration8]
junction-body

The identifier-list is an optional list of identifiers that the function will
use as the names of formal parameters. The parameter-declaration
arguments establish the types of the formal parameters.

Sections 7.2.1-7.2.4 describe the parts of a function definition in detail.

7.2.1 Storage Class

The storage-class specifier in a function definition gives the function either
extern or static storage class. If a function definition does not include a
storage-class specifier, the storage class defaults to extern. You can expli­
citly give the extern storage-class specifier in a function definition, but it
is not required.

A function with static storage class is visible only in the source file in
which it is defined. All other functions, whether they are given extern
storage class explicitly or implicitly, are visible throughout all the source
files that make up the program.

If static storage class is desired, it must be declared on the first
occurrence of a declaration (if any) of the function, and on the definition
of the function.

172

Functions

Note

A Microsoft extension to the ANSI C standard offers some latitude on
functions declared without a storage-class specifier. When the exten­
sions are enabled, a function originally declared without a storage class
(or with extern storage class) is given static storage class if the func­
tion definition is in the same source file and explicitly specifies static
storage class. For information on enabling and disabling extensions,
see your compiler guide.

7.2.2 Return Type and Function Name

• Syntax

[sc-specz:rier] [type-specz,ier] declarator ([formal-parameter-Ust])

The return type of a function establishes the size and type of the value
returned by the function and corresponds to type-specifier in the syntax
above. The type-specifier can specify any fundamental, structure, or union
type. If you do not include type-specifier, the return type int is assumed.

The declarator is the function identifier, which may be modified to a
pointer type. The parentheses following the identifier establish the item as
a function. Functions cannot return arrays or functions, but they can
return pointers to any type, including arrays and functions.

The return type given in the function definition must match the return
type in declarations of the function elsewhere in the program. You need
not declare functions with int return type before you call them, although
prototypes are recommended so that correct argument checking will be
enabled. However, functions with other return types must be defined or
declared before they are called.

A function's return type is used only when the function returns a value. A
function returns a value when a return statement containing an expres­
sion is executed. The expression is evaluated, converted to .the return value
type if necessary, and returned to the point at which the function was
called. If no return statement is executed, or if the return statement does
not contain an expression, the return value is undefined. If the calling
function expects a return value, the behavior of the program is also
undefined.

173

Microsoft C Language Reference

• Examples

/******************* Example 1 *******************/

/* prototype-style definition: */

static add (register x, int y)
{

return (x+y) ;
}

/* old-style definition: */

subtract (x , y)

{

}

int x, y;

return (x-y):

In Example 1, the return type of add is int by default. The function has
static storage class, which means that only functions in the same source
file can call it. The formal parameters declared in the header include one
int value, x, for which register storage is requested, and a second int
value, y. The second function, subtract, is defined in the old form. Its
return type is int by default. The formal parameters are declared between
the header and the opening brace.

/********************* Example 2 *********************/

typedef struct {
char name[20J:
int id:
long class:

} STUDENT:

/* return type is STUDENT: */

STUDENT sortstu (STUDENT a, STUDENT b)
{

return ((a.id < b.id) ? a : b):
}

The second example defines the STUDENT type with a typedef declara­
tion and defines the function sortstu to have STUDENT return type.
The function selects and returns one of its two structure arguments. This
prototype-style definition has the formal parameters declared in the
header. In subsequent calls to the function, the compiler checks to make
sure the argument types are STUDENT. Efficiency would be enhanced by
passing pointers to the structure, rather than the entire structure.

174

)

Functions

/********************* Example 3 *********************/

/* return type is char pointer: */

char *smallstr(sl, s2)
char sl [], s2 [] ;
{

}

int i;

i=O;
while (sl[i] != '\0' && s2[i] != '\0')

i++;
if (sl[i] = '\0')

return (sl):
else

return (s2):

Example 3 uses the old form to define a function returning a poin ter to an
array of characters. The function takes two character arrays (strings) as
arguments and returns a pointer to the shorter of the two strings. A
pointer to an array points to the type of the array elements; thus, the
return type of the function is poin ter to char.

7.2.3 ~ornaalJ>aranneters

"Formal parameters" are variables that receive values passed to a function
by a function call. In a function prototype-style definition, the parentheses
following the function name contain complete declarations of the
function's formal parameters.

Note

In the old form of a function definition, the formal parameters were
declared following the closing parenthesis, immediately before the
beginning of the compound statement constituting the function body.
In that form, an identifier list within the parentheses specifies the
name of each of the formal parameters and the order in which they
take on values in the function call. The identifier list consists of zero or
more identifiers, separated by commas. The list must be enclosed in
parentheses, even if it is empty. This form is obsolescent and should
not be used in new code.

If at least one formal parameter occurs in the formal parameter list,
the list can end with a comma followed by three periods (, ..•). This

175

Microsoft C Language Reference

construction, called the "ellipsis notation," indicates a variable number of
arguments to the function. However, a call to the function is expected to
have at least as many arguments as there are formal parameters before the
last comma. In the obsolescent definition form, the ellipsis notation can
follow the last identifier in the identifier list.

If no arguments are to be passed to the function, the list of formal param­
eters is replaced by the keyword void. This use of void is distinct from its
use as a type specifier.

Note

To maintain compatibility with previous versions, a Microsoft exten­
sion to the ANSI C standard allows a comma without trailing periods
(,) at the end of the list of formal parameters to indicate a variable
number of arguments. However, it is recommended that code be
changed to incorporate the ellipsis notation. See your compiler guide
for information on enabling and disabling extensions.

Formal parameter declarations specify the types, sizes, and identifiers of
values stored in the formal parameters. In the obsolescent function
definition form, these declarations have the same form as other variable
declarations (see Chapter 4, "Declarations"). However, in a function
prototype-style definition, each identifier in the formal-parameter-list must
be preceded by its appropriate type specifier. For example, in the following
(obsolescent form) definition of the function old, double X, Y I Z ;

can be declared simply by separating identifiers with commas:

void old (x, y, z)
double z, y
double x

{

}

void new (double x, double y, double z)
{

}

The function called new is defined in prototype format, with a list of for­
mal parameters in the parentheses. In this form, the type specifier
double must be repeated for each identifier.

176

Functions

The order and type of formal parameters, including any use of the ellipsis
notation, must be the same in all the function declarations (if any) and in
the function definition. The types of the actual arguments in calls to a
function must be assignment compatible with the types of the correspond­
ing formal parameters, up to the point of the ellipsis notation. Arguments
following the ellipsis are not checked. A formal parameter can have any
fundamental, structure, union, pointer, or array type.

The only storage class you can specify for a formal parameter is register.
Undeclared identifiers in the parentheses following the function name are
assumed to have int type. In the old function-definition form, formal
parameter declarations can be in any order.

The identifiers of the formal parameters are used in the function body to
refer to the values passed to the function. These identifiers cannot be
redefined in the outermost block of the function body, but they may be
redefined in inner, nested blocks.

In the obsolescent form, only identifiers appearing in the identifier list can
be declared as formal parameters. Functions having variable-length argu­
ment lists should use the new prototype form. You are responsible for
determining the number of arguments passed, and for retrieving additional
arguments from the stack within the body of the function. (See your com­
piler guide for information about macros that allow you to do this in a
portable way.)

The compiler performs the usual arithmetic conversions independently on
each formal parameter and on each actual argument, if necessary. After
conversion, no formal parameter is shorter than an int, and no formal
parameter has float type. This means, for example, that declaring a for­
mal parameter as a char has the same effect as declaring it as an into

If the near, far, and huge keywords are implemented, the compiler may
also convert pointer arguments to the function. The conversions performed
depend on the default size of pointers in the program and the presence or
absence of a list of argument types for the function. See your compiler
guide for specific information about pointer conversions.

The converted type of each formal parameter determines the interpreta­
tion of the arguments that the function call places on the stack. A type
mismatch between an actual argument and a formal parameter may cause
the arguments on the stack to be misinterpreted. For example, if a 16-bit
pointer is passed as an actual argument, then declared as a long formal
parameter, the first 32 bits on the stack are interpreted as a long formal
parameter. This error creates problems not only with the long formal
parameter, but with any formal parameters that follow it. You can detect
errors of this kind by declaring function prototypes for all functions.

177

Microsoft C Language Reference

• Example

struct student {
char name[20];
int id;
long class;
struct student *nextstu;

} student;

main ()
{

}

/* declaration of function prototype: */

int match (struct student *r, char *n);

if (match (student.nextstu, student.name) > 0) {

}

/* prototype style function definition */

match
{

}

struct student *r, char *n)

int i = 0;

while r->name[i] == n[i])
if (r->name[i++] == '\0'

return (r->id);
return (0);

The example contains a structure-type declaration, a prototype of the
function match, a call to match, and a prototype-style definition of
match. Note that the same name, student, can be used without conflict
both for the structure tag and for the structure variable name.

The match function is declared to have two arguments: the first,
represented by r, is a pointer to the struct student type; the second,
represented by n, is a pointer to a value of type char.

In the definition, the two formal parameters of the match function are
declared in the formal parameter list in the parentheses following the func­
tion name, with the identifiers rand n. The parameter r is declared as a
pointer to the struct student type; the parameter n is declared as a
pointer to a char type value.

178

Functions

The function is called with two arguments, both members of the
student structure. Because there is a prototype of match, the compiler
performs type checking between the actual arguments and the types
specified in the prototype and between the actual arguments and the for­
mal par.ameters in the definition. Since the types match, no warnings or
converSIOns are necessary.

Note that the array name given as the second argument in the call evalu­
ates to a char pointer. The corresponding formal parameter is also
declared as a char pointer and is used in subscripted expressions as
though it were an array identifier. Since an array identifier evaluates to a
pointer expression, the effect of declaring the formal parameter as char
*n is the same as declaring it char n [] .

Within the function, the local variable i is defined and used to monitor
the current position in the array. The function returns the id structure
member if the name member matches the array n; otherwise, it returns o.

7.2.4 Function Body

A "function body" is a compound statement containing the statements
that define what the function does. It may also contain declarations of
variables used by these statements. (See Section 6.3 for a discussion of
compound statements.)

All variables declared in a function body have auto storage class unless
otherwise specified. When the function is called, storage is created for the
local variables and local initializations are performed. Execution control
passes to the first statement in the compound statement and continues
sequentially until a return statement is executed or the end of the func­
tion body is encountered. Control then returns to the point at which the
function was called.

A return statement containing an expression must be executed if the
function is to return a value. The return value of a function is undefined if
no return statement is executed or if the return statement does not
include an expression.

7.3 Function Prototypes (Declarations)

A "function prototype" declaration specifies the name, return type, and
storage class of a function. It can also establish types and identifiers of
some or all of the function's arguments. The prototype has the same for­
mat as the function definition, except that it is terminated by a semicolon

179

Microsort C Language Rererence

immediately following the closing parenthesis and therefore has no body.
(See Chapter 4, "Declarations," for a detailed description of the syntax of
function declarations.)

You can declare a function implicitly, or you can use a "function proto­
type" (sometimes called a "forward declaration") to declare it explicitly. A
prototype is a declaration that precedes the function definition. In either
case, the return type must agree with the return type specified in the func­
tion definition.

If a call to a function precedes its declaration or definition, a default pro­
totype of the function is constructed, giving it int return type. The types
and number of the actual arguments are used as the basis for declaring the
formal parameters. Thus a call to the function is an implicit declaration,
but the prototype generated may not adequately represent a subsequent
definition of, or call to, the function.

A prototype establishes the attributes of a function so that calls to the
function that precede its definition (or occur in other source files) can be
checked for argument- and return-type mismatches. If you specify the
static storage-class specifier in a prototype, you must also specify the
static storage class in the function definition.

If you specify the extern storage-class specifier or omit the storage-class
specifier entirely, the function has extern class. (See the Note in Section
7.2.1, "Storage Class," for an explanation of the Microsoft extension that
offers some latitude in function storage-class specification.)

Function prototypes have the following important uses:

180

• They establish the return type for functions that return any type
other than into If you call such a function before you declare or
define it, the results are undefined. Although functions that return
int values do not require prototypes, they are recommended.

• If the prototype contains a full list of parameter types, the types of
the arguments occurring in a function call or definition can be
checked. The prototype can include both the type of, and an
identifier for, each expression that will be passed as an actual argu­
ment. However, such identifiers have scope only until the end of the
declaration. The prototype can also reflect the fact that the
number of arguments will be variable, or that there will be no
arguments passed.

The parameter list in a prototype is a list of type names, separated
by commas, corresponding to the actual arguments in the function
call. The list is used for checking the correspondence of actual
arguments in the function call with the formal parameters in the

Functions

function definition. Without such a list, mismatches may not be
revealed, so the compiler cannot generate diagnostic messages con­
cerning them. (Type checking is further discussed in Section 7.4.1,
"Actual Arguments.")

• Prototypes are used to initialize pointers to functions before those
functions are defined .

• Example

main ()
{

int a - 0, b = 1;
float val1= 2.0, val2 = 3.0;

/* function prototype: */

double realadd(double x, double y);

a = intadd (a, b); /* first call to intadd */
vall = realadd(val1, vaI2);
a = intadd(val1,b); /* second call to intadd */

}

/* functions defined with formal parameters in header: */

intadd(int a, int b)
{

return (a + b);
}

double realadd(double x, double y)
{

return (x + y);
}

In this example, the function intadd is implicitly declared to return an
int value, since it is called before it is defined. The compiler creates a pro­
totype using the information in the first call. Therefore, when the second
call to intadd is encountered, the compiler sees the mismatch between
vall, which is a float, and the int type of the first argument in its self­
created prototype. The float is converted to an int and passed. Note that
if the calls to intadd were reversed, the prototype created would expect
a float as the first argument to intadd. When the second call is made,
the variable a would be converted at the call, but when the value is actu­
ally passed to intadd, a diagnostic message would be issued because the
int type specified in the definition does not match the float type in the
compiler-created prototype.

181

Microsoft C Language Reference

The function realadd returns a double value instead of an int value.
Therefore, the prototype of realadd in the main function is necessary
because the realadd function is called before it is defined. Note that the
definition of real add matches the forward declaration by specifying the
double return type.

The forward declaration of realadd also establishes the types of its two
arguments. The actual argument types match the types given in the
declaration and also match the types of the formal parameters in the
definition.

7.4 Function Calls

• Syntax

expressa"on([expres8a"on-Hst])

A "function call" is an expression that passes control and actual argu­
ments (if any) to a function. In a function call, expressz"on evaluates to a
function address and expressz"on-lz"st is a list of expressions (separated by
commas). The values of these latter expressions are the actual arguments
passed to the function. If the function takes no arguments, expressz"on-lz"st
can be empty.

When the function call is executed:

182

1. The expressions in expressz"on-l£st are evaluated and converted
using the usual arithmetic conversions. If a function prototype is
available, the results of these conversions may be further converted
consistent with the formal parameter declarations.

2. The expressions in expressz"on-l£st are passed to the formal parame­
ters of the called function. The first expression in the list always
corresponds to the first formal parameter of the function, the
second expression corresponds to the second formal parameter, and
so on through the list. Since the called function uses copies of the
actual arguments, any changes it makes to the arguments do not
affect the values of variables from which the copies may have been
made.

3. Execution control passes to the first statement in the function.

4. The execution of a return statement in the body of the function
returns control and possibly a value to the calling function. If no

Functions

return statement is executed, control returns to the caller after
the last statement of the called function is executed. In such cases,
the return value is undefined.

Important

The expressions in the function argument list can be evaluated in any
order, so arguments whose values may be changed by side effects from
another argument have undefined values. The sequence point defined
by the function-call operator guarantees only that all side effects in the
argument list are evaluated before control passes to the called func­
tion. See Chapter 5, "Expressions and Assignments," for more infor­
mation on sequence points.

The only requirement in a function call is that the expression before the
paren theses must evaluate to a function address. This means that a func­
tion can be called through any function-pointer expression.

A function is called in much the same way it is declared. For instance,
when you declare a function, you specify the name of the function, fol­
lowed by a list of formal parameters in parentheses. Similarly, when a
function is called, you need only specify the name of the function, followed
by an argument list in parentheses. The indirection operator (*) is not
required to call the function because the name of the function evaluates to
the function address.

The same principle applies when you call a function using a pointer. For
example, suppose a function pointer has the following prototype:

int (*fpointer) (int numl, int num2);

The identifier fpointer is declared to point to a function taking two int
argumen ts, represented by numl and num2, respectively, and returning
an int value. A function call using fpointer might look like this:

(* fpointer) (3,4)

The indirection operator (*) is used to obtain the address of the function
to which fpointer points. The function address is then used to call the
function. If a prototype of the pointer to the function precedes the call,
the same checking will be performed as with any other function.

183

Microsoft C Language Reference

• Examples

/********************* Example 1 *********************/

double *realcomp(double value1, double value2);
double a, b, *rp;

rp = realcomp(a, b);

In Example 1, the realcomp function is called in the statement rp =
realcomp (a, b);. Two double arguments are passed to the function.
The return value, a pointer to a double value, is assigned to rp.

/********************* Example 2 *********************/

main ()
{

}

/* function prototypes: */

long lift(int), step(int), drop(int);
void work (int number, long (*function) (int i»;

int select, count;

select = 1;
switch (select) {

}

case 1: work (count, lift);
break;

case 2: work (count, step);
break;

case 3: work (count, drop);

default:
break;

/* function definition with formal parameters in header: */

void work (int number, long (*function) (int i))
{

}

184

int i;
long j;

for (i = j = 0; i < number; i++)
j += (* function) (i) ;

)

Functions

In Example 2, the function call

work (count, lift);

in main passes an in teger variable and the address of the function 1 i ft
to the function work. Note that the function address is passed simply by
giving the function identifier, since a function identifier evaluates to a
pointer expression. To use a function identifier in this way, the function
must be declared or defined before the identifier is used; otherwise, the
identifier is not recognized. In this case, a prototype for work is given at
the beginning of the main function.

The formal parameter function in work is declared to be a pointer to
a function taking one int argument and returning a long value. The
parentheses around the parameter name are required; without them, the
declaration would specify a function returning a pointer to a long value.

The function work calls the selected function by using the following func­
tion call:

(* function) (i) ;

One argument, i, is passed to the called function.

7.4.1 Actual Arguments

An actual argument can be any value with fundamental, structure, union,
or pointer type. Although you cannot pass arrays or functions as parame­
ters, you can pass pointers to these items.

All actual arguments are passed by value. A copy of the actual argument
is assigned to the corresponding formal parameter. The function uses this
copy without affecting the variable from which it was originally derived.

Pointers provide a way for a function to access a value by referenc~. Since
a pointer to a variable holds the address of the variable, the function can
use this address to access the value of the variable. Pointer arguments
allow a function to access arrays and functions, even though arrays and
functions cannot be passed as arguments.

The expressions in a function call are evaluated and converted as follows:

• The usual arithmetic conversions are performed on each actual
argument in the function call. If a prototype is available, the
resulting argument type is compared to the prototype's
corresponding formal parameter. If they do not match, either a
conversion is performed, or a diagnostic message is issued. The for­
mal parameters also undergo the usual arithmetic conversions.

185

Microsoft C Language Reference

• If no prototype is available, the usual arithmetic conversions are
performed on each actual argument before it is passed to the func­
tion. A prototype is created whose formal parameter types
correspond to the types of the actual arguments after conversion.

If the near, far, and huge keywords are implemented, implementation­
dependent conversions on pointer arguments may also be performed. See
your compiler guide for information about pointer conversions.

The number of expressions in the expression list must match the number
of formal parameters, unless the function's prototype or definition expli­
citly specifies a variable number of arguments. In this case, the compiler
checks as many argumen ts as there are type names in the list of formal
parameters and converts them, if necessary, as described above.

If the prototype's formal parameter list contains only the keyword void,
the compiler expects zero actual arguments in the function call and zero
formal parameters in the definition. A diagnostic message is issued if it
finds otherwise.

The type of each formal parameter also undergoes the usual arithmetic
conversions. The converted type of each formal parameter determines how
the arguments on the stack are interpreted; if the type of the formal
parameter does not match the type of the actual argument, the data on
the stack may be misinterpreted.

Note

186

Type mismatches between actual arguments and formal parameters
can produce serious errors, particularly when the sizes are different.
The compiler may not be able to detect these errors unless you declare
complete prototypes of functions prior to calling them. In the absence
of explicit prototypes, the compiler constructs prototypes from what­
ever information is available in the first reference to the function.

As an example of a serious error, consider a call to a function with an
int argument. If the function is defined to take a long, and the
definition occurs in a different module, the compiler-generated proto­
type will not match the definition, but the error will not be detected
because the separate modules will compile without diagnostic mes­
sages.

)

• Example

main ()
{

}

/* function prototype: */

void swap (int *numl, int *num2);
int x, y;

swap (&x, &y);

/* function definition: */

void swap (int *numl, int *num2)
{

}

int t;

t = *numl;
*numl = *num2;
*num2 = t;

Functions

In this example, the swap function is declared in main to have two argu­
ments, represented respectively by identifiers numl and num2, both of
which are pointers to int values. The formal parameters numl and num2
in the prototype-style definition are also declared as pointers to int type
values. In the function call

swap (&x, &y)

the address of x is stored in numl and the address of y is stored in
num2. Now two names, or "aliases," exist for the same location. Refer­
ences to *numl and *num2 in swap are effectively references to x and
y in main. The assignments within swap actually exchange the contents
of x and y. Therefore, no return statemen t is necessary.

The compiler performs type checking on the arguments to swap because
the prototype of swap includes argument types for each formal parame­
ter. The identifiers within the parentheses of the prototype and definition
can be the same or different. What is important is that the types of the
actual arguments match those of the formal parameter lists in both the
prototype and the eventual definition.

187

Microsoft C Language Reference

7.4.2 Calls with a Variable
Number of Arguments

To call a function with a variable number of arguments, simply specify
any number of arguments in the function call. If there is a prototype
declaration of the function, a variable number of arguments can be
specified by placing a comma followed by three periods (, ...), the "ellipsis
notation," at the end of the formal parameter list or list of argument types
(see Section 4.5, "Function Declarations"). The function call must include
one argument for each type name declared in the formal parameter list or
the list of argumen t type.

Similarly, the formal parameter list (or identifier list, in the obsolescent
form) in the function definition can end with the ellipsis notation to
indicate a variable number of arguments. See Section 7.2, "Function
Definitions," for more information about the form of the formal param­
eter list.

Note

To maintain compatibility with previous versions, a Microsoft exten­
sion to the ANSI C standard allows a comma without trailing periods
(,) at the end of the list of formal parameters to indicate a variable
number of arguments. See your compiler guide for information on ena­
bling and disabling extensions.

All the arguments specified in the function call are placed on the stack.
The number of formal parameters declared for the function determines
how many of the arguments are taken from the stack and assigned to the
formal parameters. You are responsible for retrieving any additional argu­
ments from the stack and for determining how many arguments are
present. See your compiler guide for information about macros that you
can use to handle a variable number of arguments in a portable way.

7.4.3 Recursive Calls

Any function in a C program can be called recursively; that is, it can call
itself. The C compiler allows any number of recursive calls to a function.
Each time the function is called, new storage is allocated for the formal
parameters and for the auto and register variables so that their values
in previous, unfinished calls are not overwritten. Parameters are only
directly accessible to the instance of the function in which they are
created. Previous parameters are not directly accessible to ensuing
instances of the function.

188

Functions

Note that variables declared with static storage do not require new
storage with each recursive call. Their storage exists for the lifetime of the
program. Each reference to such a variable accesses the same storage area.

Although the C compiler does not limit the number of times a function can
be called recursively, the operating environment may impose a practical
limit. Since each recursive call requires additional stack memory, too many
recursive calls can cause a stack overflow.

189

) CHAPTER
PREPROCESSOR
DIRECTIVES AND pRAGMAS

8.1 Introduction .. lg3
8.2 Manifest Constants and Macros 1g4

8.2.1 Preprocessor Operators 1 g4
8.2.2 The =1/= define Directive lg5

8.2.2.1 Stringizing Operator (#) 1 g6
8.2.2.2 Token-Pasting Operator (# #) lg7

8.2.3 The =1/= undef Directive 201
8.3 Include Files .. 202
8.4 Conditional Compilation 204

8.4.1 The =l/=if, =l/=elif, =1/= else, and
=1/= endif Directives 204

8.4.2 The =1/= ifdef and =1/= ifndef Directives 208
8.5 Line Control .. 208
8.6 Pragmas .. 20g

)

Preprocessor Directives a.nd Pra.gmas

8.1 Introduction

A "preprocessor directive" is an instruction to the C preprocessor. The C
preprocessor is a text processor that manipulates the text of a source file
as the first phase of compilation. Though the compiler ordinarily invokes
the preprocessor in its first pass, the preprocessor can also be invoked sep­
arately to process text without compiling.

Preprocessor directives are typically used to make source programs easy to
change and easy to compile in different execution environments. Directives
in the source file tell the preprocessor to perform specific actions. For ex­
ample, the preprocessor can replace tokens in the text, insert the contents
of other files into the source file, or suppress compilation of part of the file
by removing sections of text.

The C preprocessor recognizes the following directives:

define
#elif
else
#endif

#if
#ifdef
#ifndef
include

line
#undef

The number sign (#) must be the first non-white-space character on the
line containing the directive; white-space characters can appear between
the number sign and the first letter of the directive. Some directives in­
clude arguments or values. Any text that follows a directive (except an
argument or value that is part of the directive) must be enclosed in com­
ment delimiters (/ * * I).
Preprocessor directives can appear anywhere in a source file, but they
apply only to the remainder of the source file in which they appear.

A "preprocessor operator" is an operator that is only recognized as an
operator within the context of preprocessor directives. There are only
three preprocessor-specific operators: the "stringizing" operator (#), the
"token-pasting" (# #) operator, and the defined operator. The first two
are discussed in the con text of the # define directive in Sections 8.2.2.1
and 8.2.2.2.The defined operator is discussed in Section 8.4.1, "The # if,
elif, # else, and # endif Directives."

A "pragma" is a "pragmatic," or practical, instruction to the C compiler.
Pragmas in C source files are typically used to con trol the actions of the
compiler in a particular portion of a program without affecting the pro­
gram as a whole. (Section 8.6 describes the syntax for pragmas). However,

193

Microsoft C Language Reference

the compiler implementation defines the particular pragmas that are avail­
able and their meanings. See your compiler guide for information about
the use and effects of specific pragmas.

8.2 Manifest Constants and Macros

The # define directive is typically used to associate meaningful identifiers
with constants, keywords, and commonly used statements or expressions.
Identifiers that represent constants are called "manifest constants."
Identifiers that represent statements or expressions are called "macros."

Once you have defined an identifier, you cannot redefine it to a different
value without first removing the original definition. However, you can
redefine the identifier with exactly the same definition. Thus, the same
definition can appear more than once in a program.

The #undef directive removes the definition of an identifier. Once you
have removed the definition, you can redefine the identifier to a different
value. Sections 8.2.2 and 8.2.3 discuss the # define and #undef direc­
tives, respectively.

In practical terms there are two types of macros. "Object-like" macros
take no arguments, while "function-like" macros can be defined to accept
arguments so that they look and act like function calls. Because macros
do not generate actual function calls, you can make programs faster by
replacing function calls with macros. However, macros can create
problems if you do not define and use them with care. You may have to
use parentheses in macro definitions with arguments to preserve the
proper precedence in an expression. Also, macros may not handle expres­
sions with side effects correctly. See the examples in Section 8.2.2 for more
information.

8.2.1 Preprocessor Operators

There are three preprocessor-specific operators, one of which is represen ted
by the number sign (#), one by a double number sign (# #), and the
third by the word defined. The "stringizing" operator (#) preceding a
macro formal-parameter name in the body of a preprocessor macro causes
the corresponding actual argumen t to be enclosed in string quotation
marks. The "token-pasting" operator (# #) allows tokens used as actual
arguments to be concatenated to form other tokens. These two operators
are used in the context of the # define directive and are described in Sec­
tions 8.2.2.1 and 8.2.2.2.

194

)

)

)

Preprocessor Directives and Pragmas

Finally, the defined operator simplifies the writing of compound expres­
sions in certain macro directives. It is used in conditional compilation, and
is therefore discussed in Section 8.4.1, "The # if, # elif, # else, and # endif
Directives."

8.2.2 The # define Directive

• Syntax

define £dent£j£er subst£tut£on-text
define £dent£j£er(parameter-I£st) subst£tut£on-text

The # define directive substitutes substitution-text for all subsequent
occurrences of identifier in the source file. The identifier is replaced only
when it forms a token. (Tokens are described in Chapter 2, "Elements of
C" and Appendix B, "Syntax Summary.") For instance, identifier is not
replaced if it appears within a string or as part of a longer identifier.

If parameter-list appears after identifier, the # define directive replaces
each occurrence of identifier(parameter-l£st) with a version of the
substitution-text argument that has actual arguments substituted for for­
mal parameters.

The substitution-text argument consists of a series of tokens, such as key­
words, constants, or complete statements. One or more white-space char­
acters must separate substitution-text from identzjier (or from the closing
parenthesis following parameter-list). This white space is not considered
part of the substituted text, nor is any white space following the last
token of the text. Text longer than one line can be con tin ued on to the
next line by placing a backslash (\) before the new-line character.

The substitut£on-text argument can also be empty. Choosing this option
removes occurrences of identzjier from the source file. The identifier is still
considered defined, however, and yields the value 1 when tested with the
if directive (discussed in Section 8.4.1).

The optional parameter-list consists of one or more formal parameter
names separated by commas. Each name in the list must be unique, and
the list must be enclosed in parentheses. No spaces can separate identifier
and the opening parenthesis. The scope of a formal parameter name ex­
tends to the new line that ends substitution-text.

Formal parameter names appear in substitution-text to mark the places
where actual values will be substituted. Each parameter name can appear

195

Microsoft C Language Reference

more than once in subst£tution-text, and the names can appear in any
order.

The actual argumen ts following an instance of ident£fier in the source file
are matched to the corresponding formal parameters of parameter-Ust.
Each formal parameter in subst£tution-text that is not preceded by a string­
izing (#) or token-pasting (# #) operator, or followed by a # # operator,
is replaced by the corresponding actual argument. Any macros in the
actual argument will be expanded before it replaces the formal parameter.
(The # and # # operators are described in Sections 8.2.2.1 and 8.2.2.2.)
The actual-argument list must have the same number of arguments as
parameter-l£st.

If the name of the macro being defined occurs in substitution-text (even as a
result of another macro expansion), it is not expanded.

Arguments with side effects sometimes cause macros to produce unex­
pected results. A given formal parameter may appear more than once in
substitution-text. If that formal parameter is replaced by an expression
with side effects, the expression, with its side effects, may be evaluated
more than once (see Example 4 in Section 8.2.2.2, "Token-Pasting
Op~rator").

8.2.2.1 Stringizing Operator (#)

The number-sign or "stringizing" operator (#) is used only with macros
that take arguments. If it precedes a formal parameter in the macro defi­
nition, the actual argument passed by the macro invocation is enclosed in
quotation marks and treated as a string literal. The string literal then
replaces each occurrence of a combination of the stringizing operator and
formal parameter within the macro definition. White space preceding the
first token of the actual argument and following the last token of the
actual argument is ignored. Any white space between the tokens in the
actual argument is reduced to a single white space in the resulting string
literal. Thus, if a comment occurs between two tokens in the actual argu­
ment, it is reduced to a single white space. The resulting string literal is
automatically concatenated with any adjacent string literals from which it
is separated only by white space. Furthermore, if a character contained in
the argument normally requires an escape sequence when used in a string
literal-for example, the quotation-mark (") or backslash (\) characters­
the necessary escape backslash is automatically inserted before the charac­
ter. The following example shows a macro definition that includes the
stringizing operator and a main function that invokes the macro:

196

(

Preprocessor Directives and Pragmas

#define stringer(x) printf(#x "\n")

main ()
{

stringer (I will be in quotes in the printf function call\n);
stringer ("I will be in quotes when printed to the screen"\n);
stringer (This: \" prints an escaped double quote mark);

}

Such invocations would be expanded during preprocessing, producing the
following code:

printf("I will be in quotes in the printf function call" "\n");
printf("\"I will be in quotes when printed to the screen\"" "\n");
printf("This \\\" prints an escaped double quote mark");

When the program is run, screen output for each line would be as follows:

I will be in quotes in the printf function call

"I will be in quotes when printed to the screen"

This: \" prints an escaped double quote mark

Note

The Microsoft extension to the ANSI C standard that previously
enabled expansion of macro formal arguments appearing in string
literals and character constants is no longer supported. Code that
relied on this extension should be rewritten using the stringizing (#)
operator.

8.2.2.2 Token-Pasting Operator (# #)

The double-number-sign or "token-pasting" operator (# #) is used in
both object-like and function-like macros. It permits separate tokens to be
joined into a single token, and therefore cannot be the first or last token in
the macro definition.

If a formal parameter in a macro definition is preceded or followed by the
token-pasting operator, the formal parameter is immediately replaced by
the unexpanded actual argument. Macro expansion is not performed on
the argument prior to replacement. Then, each occurrence of the token­
pasting operator in substitution-text is removed, and the tokens preceding
and following it are concatenated. The resulting token must be a valid
token. If it is, the token is rescanned for possible replacement if it

197

Microsoft C Language Reference

represents a macro name. Example 7 below shows how tokens can be
pasted together using the token-pasting operator .

• Examples

/******************** Example 1 ********************/

#define WIDTH
#define LENGTH

80
(WIDTH + 10)

Example 1 defines the identifier WIDTH as the integer constant 80 and
defines LENGTH in terms of WIDTH and the integer constant 10. Each
occurrence of LENGTH is replaced by (WIDTH + 10). In turn, each
occurrence of WIDTH + 10 is replaced by the expression (80 + 10).
The parentheses around WIDTH + 10 are important because they control
the interpretation in statements such as the following:

var = LENGTH * 20;

After the preprocessing stage the statement becomes

var = (80 + 10) * 20;

which evaluates to 1800. Without parentheses, the result is

var = 80 + 10 * 20;

which evaluates to 280.

/******************** Example 2 ********************/

#define FILEMESSAGE "Attempt to create file \
failed because of insufficient space"

Example 2 defines the identifier FILEMESSAGE. The definition is
extended to a second line by using the convention of a backslash followed
by a new-line character.

/******************** Example 3 ********************/

#define REGI
#define REG2
#define REG3

register
register

Example 3 defines three identifiers, REG1, REG2, and REG3. REG1 and
REG2 are defined as the keyword register. The definition of REG3 is
empty, so each occurrence of REG3 is removed from the source file. These
directives can be used to ensure that the program's most important

198

)

)

)

Preprocessor Directives and Pragmas

variables (declared with REGl and REG2) are given register storage.
(See the dIscussion of the # if directive in Section 8.4.1 for an expanded
version of this example.)

/******************** Example 4 ********************/

#define MAX(x,y) ((x) > (y» ? (x) : (y)

Example 4 defines a macro named MAX. Each occurrence of the identifier
MAX after the definition in the source file is replaced by the expression
«x) > (y» ? (x) : (y), where actual values replace the parame­
ters x and y. For example, the occurrence

MAX (1,2)

is replaced by

((1) > (2» ? (1) (2)

and the occurrence

MAX(i,s[i])

is replaced by

((i) > (s [i] » ? (i) : (s [i])

Because this macro is easier to read than the corresponding expression, the
source program is easier to understand.

Note that arguments with side effects may cause this macro to produce
unexpected results. For example, the occurrence MAX (i, s [i++]) is
replaced by «i) > (s [i++]» ? (i) : (s [i++]). The expression
(s [i ++]) may be evaluated twice, so by the time the ternary expression
has been fully evaluated, i will have been incremented either once or
twice, depending on the result of the comparison.

/******************** Example 5 ********************/

#define MULT(a,b) ((a) * (b»

Example 5 defines the macro MULT. Once the macro is defined, an occur­
rence such as MULT (3, 5) is replaced by (3) * (5). The paren­
theses around the parameters are important because they control the
interpretation when complex expressions form the arguments to the
macro. For instance, the occurrence MULT (3 + 4, 5 + 6) is replaced
by (3 + 4) * (5 + 6),whichevaluatest077.Withoutthe
parentheses, the result would be 3 + 4 * 5 + 6. This result evaluates

199

Microsoft C Language Reference

to 29 because the multiplication operator (*) has higher precedence than
the addition operator (+).

/******************** Example 6 ********************/

#define GREETING Hello, World!
#define show(x) printf(#x)

main 0
{

}

show (x + Z);

printf("\n");
show(n /* some comment */ + p);
printf("\n");
show(GREETING); /* GREETING is not expanded; */
printf("\n"); /* it is stringized instead */
show (, \x ') ;

Example 6 defines two macros, one an object-like macro that expands to
the string literal Hello, World!, and the other a function-like macro
called show, which takes one argument. However, the definition of the
second macro includes the stringizing operator (#) immediately preced­
ing the formal parameter x. When an argument is passed to the show
macro, the formal parameter is replaced by the actual argument enclosed
in double quotation marks, thus "stringizing" it.

As the preprocessor progresses through the source file, the references to
show are expanded as follows:

show (x + z); produces printf (tl x + z tI) ;

show (n /* comment */ + p); produces printf (tin + p");

show (GREETING); produces printf (tlGREETING") ;

and finally, show('\x'); produces printf("'\\x''');

When the program is run, the screen output would be:

x + z
n + p
GREETING
'\x'

200

(

(

)

Preprocessor Directives and Pragmas

/******************* Example 7 *********************/

#define paster (n) printf ("token" #n II = %d'~, token##n)

If token9 is declared, and the macro is called with a numeric argument
like:

paster (9)

the macro yields:

printf("token" "9" " %d", token9)

which becomes

printf("token9 = %d", token9) ;

Example 7 illustrates use of both the "stringizing" and "token-pasting"
operators in specifying program output.

8.2.3 The #undefDirective

!I Syntax

under Ment£/£er

The # undef directive removes the curren..t definition of identifier. Conse­
quently, subsequent occurrences of identzji'er are ignored by the preproces­
sor. To remove a macro definition using # undef, give only the macro
identzjier; do not give a parameter list.

You can also apply the # undef directive to an identifier that has no pre­
vious definition. This ensures that the iden tifier is undefined.

The # undef directive is typically paired with a # define directive to
create a region in a source program in which an identifier has a special
meaning. For example, a specific function of the source program can use
manifest constants to define environment-specific values that do not affect
the rest of the program. The # undef directive also works with the # if
directive (see Section 8.4.1) to control conditional compilation of the
source program.

201

Microsoft C Language Reference

• Example

#define WIDTH
#define ADD(X,Y)

#unde f WI DTH
#undef ADD

80
(X) + (Y)

In this example, the # under directive removes definitions of a manifest
constant and a macro. Note that only the identifier of the macro is given.

8.3 Include Files

• Syntax

include "path-spec"
include <path-spec>

The # include directive adds the contents of a given "include file" to
another file. You can organize constant and macro definitions into include
files and then use # include directives to add these definitions to any
source file. Include files are also useful for incorporating declarations of
external variables and complex data types. You only need to define and
name the types once in an include file created for that purpose.

The # include directive tells the preprocessor to treat the contents of the
named file as if they appeared in the source program at the point where
the directive appears. The new text can also contain preprocessor direc­
tives. The preprocessor carries out directives in the new text, then contin­
ues processing the original text of the source file.

The path-spec is a file name optionally preceded by a directory specifica­
tion. It must name an existing file. The syntax of the file specification
depends on the operating system on which the program is compiled.

The preprocessor uses the concept of a "standard" directory or directories
to search for include files. The location of the standard directories for
include files depends on the implementation and the operating system. See
your compiler guide for a definition of the standard directories.

The preprocessor stops searching as soon as it finds a file with the given
name. If you specify a complete, unambiguous path specification for the
include file, between two sets of double quotation marks (" "), the prepro­
cessor searches only that path specification and ignores the standard direc­
tories.

202

Preprocessor Directives and Pragmas

If the path-spec enclosed in double quotation marks is an incomplete path
specification, the preprocessor first searches the "parent" file's directory. A
parent file is the file containing the # include directive. For example, if
you include a file named fi1e2 within a file named fi1el, fi1el is
the parent file.

Include files can be "nested," that is, an # include directive can appear in
a file named by another # include directive. For example, fi 1e2, above,
could include fi1e3. In this case, fi1el would still be the parent of
fi1e2, but would be the "grandparent" of fi1e3.

When include files are nested, directory searching begins with the direc­
tories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory contain­
ing the source curren tly being processed. If the file is not found, the search
moves to directories specified on the compiler command line. Finally, the
standard directories are searched.

If the file specification is enclosed in angle brackets, the preprocessor does
not search the current working directory. It begins by searching for the file
in the directories specified on the compiler command line, then in the stan­
dard directories.

Nesting of include files can continue up to 10 levels. Once the nested
include is processed, the preprocessor con tinues to insert the enclosing
include file into the original source file.

• Examples

/******************** Example 1 ********************/

#include <stdio.h>

Example 1 adds the contents of the file named stdio. h to the source
program. The angle brackets cause the preprocessor to search the stan­
dard directories for stdio. h, after searching directories specified on the
command line.

/******************** Example 2 ********************/

#include "defs.h"

Example 2 adds the contents of the file specified by de fs . h to the source
program. The double quotation marks mean that the preprocessor
searches the directory containing the "parent" source file first.

203

Microsoft C Language Reference

8.4 Conditional Compilation

This section describes the syntax and use of directives that control "condi­
tional compilation." These directives allow you to suppress compilation of
parts of a source file by testing a constan t expression or iden tifier to deter­
mine which text blocks will be passed on to the compiler and which text
blocks will be removed from the source file during preprocessing.

8.4.1 The #if, #elif, #else, and #endifDirectives

• Syntax

if restrz·cted-constant-expressz"on
[text-block]

[# elif restrz"cted-constant-expressz"on
text-block n

[# elif restr£cted-constant-expression
text-block n

[# else
text-block n

#endif

The #if directive, together with the #elif, #else, and #endif directives,
controls compilation of portions of a source file. Each #if directive in a
source file must be matched by a closing #endif directive. Any number of
elif directives can appear between the # if and # endif directives, but
at most one # else directive is allowed. The #else directive, if present,
must be the last directive before #endif.

The preprocessor selects one of the given occurrences of text-block for
further processing. A block specified in text-block can be any sequence of
text. It can occupy more than one line. Usually text-block is program text
that has meaning to the compiler or the preprocessor.

The preprocessor processes the selected text-block and passes it to the com­
piler. If text-block contains preprocessor directives, the preprocessor carries
ou t those directives.

Any text blocks not selected by the preprocessor are removed from the file
during preprocessing. Thus, these text blocks are not compiled.

204

Preprocessor Directives and Pragmas

The preprocessor selects a single text-block by evaluating the restricted
constant expression following each #if or #elif directive until it finds a
true (nonzero) restricted constant expression. It selects all text (including
other preprocessor directives beginning with #) up to its associated #elif,
else, or # endif.

If all occurrences of restricted-constant-expression are false, or if no #elif
directives appear, the preprocessor selects the text block after the # else
clause. If the #else clause is omitted, and all instances of restricted­
constant-expression in the # if block are false, no text block is selected.

Each restricted-constant-expression follows the rules for restricted constant
expressions discussed in Section 5.2.10. Such expressions cannot contain
sizeof expressions, type casts, or enumeration constants. However, they
can contain the preprocessor operator defined in special constant expres­
sions, as shown by the following syn tax:

defined{ t"dentt"fier)

This constan t expression is considered true (nonzero) if the £dent£jier is
currently defined; otherwise, the condition is false (0). An identifier defined
as empty text is considered defined.

The # if, # elif, # else, and # endif directives can nest in the text por­
tions of other # if directives. Each nested # else, # elif, or # endif direc­
tive belongs to the closest preceding # if directive.

• Examples

/******************** Example 1 ********************/

#if defined(CREDIT)
credit 0:

#elif defined(DEBIT)
debit 0:

#else
pr interror 0 :

#endif

In Example 1, the #if and #endif directives control compilation of one
of three function calls. The function call to credit is compiled if the
identifier CREDIT is defined. If the identifier DEBIT is defined, the func­
tion call to debit is compiled. If neither identifier is defined, the call to
printerror is compiled. Note that CREDIT and credit are distinct
identifiers in C because their cases are different.

205

Microsoft C Language Reference

/******************** Example 2 ********************/

#if DLEVEL > 5
#define SIGNAL 1
#i f STACKUSE == 1

#define STACK 200
#else

#define STACK 100
#endif

#else
#define SIGNAL a
#if STACKUSE == 1

#define STACK 100
#else

#define STACK 50
#endif

#endif

/******************** Example 3 ********************/

#i f DLEVEL = a
#define STACK a

#elif DLEVEL == 1
#define STACK 100

#elif DLEVEL > 5
display(debugptr);

#else
#define STACK 200

#endif

Examples 2 and 3 assume a previously defined manifest constant named
DLEVEL.

Example 2 shows two sets of nested # if, # else, and # endif directives.
The first set of directives is processed only if DLEVEL > 5 is true. Other­
wise, the second set is processed.

In Example 3, # elif and # else directives are used to make one of four
choices, based on the value of DLEVEL. The manifest constant STACK is
set to 0, 100, or 200, depending on the definition of DLEVEL. If DLEVEL
is greater than 5, display (debugptr) ; is compiled and STACK is not
defined.

/******************** Example 4 ********************/

#define REG1
#define REG2

206

register
register

#if defined(ML86)
#define REG3
#define REG4
#define REGS

#else
#define REG3 register
#if defined(ML68000)

#define REG4
#define REGS

#else
#define REG4
#define REGS

#endif
#endif

register
register

register

Preprocessor Directives and Pragmas

Example 4 uses preprocessor directives to control the meaning of register
declarations in a portable source file. The compiler assigns register storage
to variables in the order in which the register declarations appear in the
source file. If a program contains more register declarations than the
machine allows, the compiler honors earlier declarations over later ones.
The program may be less efficient if the variables declared later are more
heavily used.

The definitions listed in Example 4 can be used to give priority to the most
important register declarations. REGl and REG2 are defined as the
register keyword to declare register storage for the two most important
variables in the program. For example, in the following fragment, band
c have higher priority than a or d:

fune (a)

REG3 int a;

{

}

REG! int b;
REG2 int e;
REG4 int d;

When ~86 is defined, the preprocessor removes the REG3 identifier from
the file by replacing it with empty text. This prevents a from receiving
register storage at the expense of band c. When ~68000 is defined,
all four variables are declared to have register storage. When neither
~86 nor ~68000 is defined, a, b, and c are declared with register
storage.

207

Microsoft C Language Reference

8.4.2 The #ifdef and #ifndefDirectives

• Syntax

ifdef identifier
ifndef identifier

The # ifdef and # ifndef directives perform the same task as the # if
directive used with defined(identifier). You can use the # ifdef and
ifndef directives anywhere # if can be used. These directives are pro­
vided only for compatibility with previous versions of the language. The
defined(identifier) constan t expression used with the # if directive is pre­
ferred.

When the preprocessor encoun ters an # ifdef directive, it checks to see
whether the identifier is currently defined. If so, the condition is true
(nonzero); otherwise, the condition is false (0).

The # ifndef directive checks for the opposite of the condition checked by
#ifdef. If the identifier has not been defined (or its definition has been
removed with #undef), the condition is true (nonzero). Otherwise, the
condition is false (0).

8.5 Line Control

• Syntax

line constant ["filename"]

The # line directive tells the preprocessor to change the compiler's inter­
nally stored line number and file name to a given line number and file
name. The compiler uses the line number and file name to refer to errors
that it finds during compilation. The line number normally refers to the
current input line, and the file name refers to the current input file. The
line number is incremented after each line is processed.

If you change the line number and file name, the compiler ignores the pre­
vious values and continues processing with the new values. The # line
directive is typically used by program generators to cause error messages
to refer to the original source file instead of to the generated program.

The constant value in the # line directive can be any integer constant.
The filename can be any combination of characters and must be enclosed
in double quotation marks (" "). If filename is omitted, the previous file
name remains unchanged.

208

)

Preprocessor Directives and Pragmas

The current line number and file name are always available through the
predefined identifiers _~INE __ and _YILE __ . You can use the
_~INE __ and _YILE __ identifiers to insert self-descriptive error mes­
sages in to the program text.

The _YILE __ identifier expands to a string whose contents are the file
name, surrounded by double quotation marks (" ").

• Examples

/******************** Example 1 ********************/

#line 151 "copy.c"

In Example 1, the internally stored line number is set to 151 and the file
name is changed to copy. c.

/******************** Example 2 ********************/

#define ASSERT(cond) if(!cond)\
{printf("assertion error line %d, file (%s)\n", \
-LINE_, --.E'ILE_);} else

In Example 2, the macro ASSERT uses the predefined identifiers
_J..,INE __ and _YILE __ to print an error message about the source file
if a given "assertion" is not true.

8.6 Pragmas

11 Syntax

pragma character-sequence

A #pragma is an implementation-defined instruction to the compiler.
The character-sequence is a series of characters that gives a specific com­
piler instruction and arguments, if any. The number sign (#) must be the
first non-white-space character on the line containing the pragma; white­
space characters can separate the number sign and the word pragma.

See your compiler guide for information about the pragmas available in
your compiler implementation.

209

)
ApPENDIXES

A Differences .. 213
B Syntax Summary ... 21g

ApPENDIX A
DIFFERENCES

This appendix summarizes differences between Microsoft C and the
description of the C language found in Appendix A of The C Programmz"ng
Language by Brian W. Kernighan and Dennis M. Ritchie, published in
1978 by Prentice-Hall, Inc. The following is a list of the differences with
cross-references to the corresponding section numbers in The C Program­
mz"ng Language:

Section Number
in Kernighan
and Ritchie

2.2

2.3

2.4.1

Microsoft C

Identifiers (including those used in preprocessor
directives) are significant to 31 characters.
External iden tifiers are also significan t to 31
characters.

The identifiers asm and entry are no longer
keywords. New keywords are const, volatile,
enum, signed, and void. (The volatile key­
word is implemented syntactically, but not
seman tic ally .) The identifiers cdecl, far, for­
tran, huge, near, and pascal may be key­
words, depending on whether the corresponding
options are enabled when a program is compiled
(see your DOS user's guide).

As a result of the method used to assign types to
hexadecimal and octal constants, these con­
stants 3:lways act like unsigned integers in type
conversIOns.

213

Microsoft C Language Reference

2.4.3

2.6

4

214

Hexadecimal bit patterns consisting of a back­
slash (\), the letter x, and up to three hexade­
cimal digits are permitted as character con­
stants (for example, \x012).

Microsoft C defines three additional escape
sequences: \ v represents a vertical tab (VT), \"
represents the double-quotation-mark character,
and \a represents the bell (also called alert).

Character constants always have type int, with
the res~lt that they are sign extended in type
converSIOns.

Adjacent quoted string literals are concatenated
and treated as a single null-terminated string.

The short type is always 16 bits long, and the
long type is 32 bits long. The size of an int is
machine dependent. On 8086/8088, 80186, and
80286 processors an int is 16 bits long, and on
80386 and 68000 processors it is 32 bits long.

The char type is signed by default, with the
result that a char value is sign extended in type
conversions. (In some implementations, the
default for the char type can be changed to
unsigned at compile time.)

Two additional unsigned types are supported:
unsigned char and unsigned long.

The keyword unsigned or signed can be
applied as an adjective to an integer type. When
unsigned appears alone, it means unsigned
into Similarly, when signed appears alone, it
means into The additional floating type long
double is supported, but the long float type is
no longer recognized. References to long float
should be recoded to double.

The type specifiers const and volatile can be
used as modifiers for any fundamental, aggre­
gate, or pointer type. The const keyword indi­
cates that the object or pointer value will not be
modified. The volatile keyword means the ob­
ject may be changed by some process beyond the
control of the currently running program. Both
the syntax and semantics of const are imple­
mented, but only the syntax of volatile is
implemented.

6.4

6.6

7.2

7.14

8.2

Differences

Microsoft C offers an additional fundamental
type: the enum (enumeration) type. Variables
of enum type are treated as integers in all
cases.

The keyword void has three different usages. As
a function-return-type specifier, it indicates that
the function will not return a value. In an other­
wise empty formal-parameter list, void means
that no arguments will be passed. In the con­
struction void *, it indicates a pointer to an
object of unspecified type.

If the near, far, and huge keywords are en­
abled, pointers of different sizes may be used in
a program. Operations with pointers of different
sizes may cause conversion of pointers; the path
of the conversion is implementation defined.

Arithmetic conversions carried out by the com­
piler are outlined in Sections 5.3.1 and 5.6 of
Chapter 5, "Expressions and Assignments."
Although compatible with the Kernighan and
Ritchie conversions, Microsoft C conversions are
described in greater detail, including the specific
path for each type of conversion.

In addition to the usual arithmetic conversions,
conversions between pointers of different sizes
may be routinely carried out when the near,
far, and huge keywords are enabled. The path
of the pointer conversions is implementation
defined.

In connection with the sizeof operator, a byte is
defined as an 8-bit quantity.

A structure can be assigned to another structure
of the same type.

The keywords enum, const, volatile, and void
are additional type specifiers. The volatile key­
word is implemented syntactically, but not
semantically. The keywords signed and
unsigned can serve either as type specifiers or
as adjectives modifying an integral type.

215

Microsoft C Language Reference

8.4

8.5

8.6

9.7

216

Therefore, the following additional combina­
tions are acceptable:

signed char
signed short
signed short int
signed long
signed long int
unsigned char
unsigned short
unsigned short int
unsigned long
unsigned long int

The long float type is not recognized. The long
double type is recognized and treated in all
instances the same as double.

The canst and volatile keywords can be used
to modify any fundamental, aggregate, or
pointer object. The order of the type specifiers is
not significan t.

Optional formal-parameter lists or argument­
type lists can be included in function declara­
tions to notify the compiler of the number and
types of arguments expected in a function call.

Bit fields can be declared to be any signed or
unsigned integral type, except enum. However,
in expressions, bit fields are always treated as
unsigned.

The names of structure and union members are
not required to be distinct from structure and
union tags or from the names of other variables.

No relationship exists between the members of
two different structure types.

Unions can be initialized by giving a value for
the first member of the union.

The expression of a switch can be any integral
expression, but the value of the expression is
always converted to an int type. An enum type
is permitted for expression. Each of the case
constan.t expressions is cast to the type of
expresszon.

10.1

12

12.3

14.1

Differences

New styles for function declarations and
definitions, as specified in the Draft Proposed
American National Standard-Programming
Language C, are completely supported. This
includes the function prototype declaration, the
prototype-style definition with formal parame­
ters declared in the header, and the default crea­
tion of prototypes from the first reference to a
function (if no explicit prototype is provided).
The old function declaration and definition
forms are also supported.

The formal parameter list in a function def­
inition or declaration can end with a comma fol­
lowed by three periods (, •..) or just a comma (,)
to indicate that the number of parameters is
variable. The latter is supported only for compa­
tibility with older versions of the compiler and
should not be used in new code.

The number sign (#) introducing the preproces­
sor directive can be preceded by any combina­
tion of white-space characters. White space can
also separate the number sign and the prepro­
cessor keyword.

In addition to preprocessor directives, the source
file can contain pragmas. Pragmas, like direc­
tives, are introduced by a number sign as the
first non-white-space character in a line. The
action defined by a particular pragma is imple­
men tation dependent.

Three preprocessor-only operators are sup­
ported: the "stringizing" operator (#), the con­
catenation or "token-pasting" operator (# #),
and the defined operator.

The new combination # if defined (identifier) is
intended to supplant the #ifdef and #ifndef
directives. Use of the latter directives is dis­
couraged.

The new directive # elif (else if) is designed for
use in # if and # if defined blocks.

A structure or union can be assigned to another
structure or union of the same type. Structures
and unions can be passed by value to functions
and returned by functions.

217

Microsoft C La.ngua.ge Reference

17

218

In expressions involving the structure-pointer
operator (- », the expression preceding the
arrow must have the same type (or must be cast
to the same type) as the structure to which the
member on the rIght-hand side of the arrow
belongs.

The listed anachronisms are not recognized.

ApPENDIXB
SYNTAX SUMMARY

B.1 Tol<:ens .. 221
B.1.1 I<.eywords ... 221
B.1.2 Identifiers ... 221
B.1.3 Constants ... 222
B.1.4 Strings ... 224
B.1.5 Operators ... 224
B.1.6 Separators .. 224

B.2 ::Ex.pressions ... 224

B.3 Declarations .. 226

B.4 Statements .. 22g

B.5 Definitions ... 230

B.6 Preprocessor Directives ... 230

B.7 Pragmas .. 231

219

B.l Tokens

keyword
identifier
constant
string
operator
separator

B.l.l Keywords

auto
break
case
char
canst
continue
default
do

double
else
enum
extern
float
for
goto
if

int
long
register
return
short
signed
sizeof
static

Syntax Summary

struct
switch
typedef
union
unsigned
void
volatile*
while

The following identifiers may be keywords in some implementations. See
your compiler guide for information.

cdecl
far
fortran
huge
near
pascal

B.l.2 Identifiers

identifier:
letter
underscore
identzf£er letter
identzJier underscore
identzJier digit

letter-Dne of the following:
abcdefghijklm
nopqrstuvwxyz
ABC D E F G H I J I(L M
NOPQRSTUVWXYZ

* Semantics not yet implemented

221

Microsoft C Language Rererence

underscore:

dz"gz"t-one of the following:
0123456789

B.l.3 Constants

constant:
integer-constant
long-constant
floating-poz"nt-constant
char-constant
enum-constant

z"nteger-constant:
o
decimal-constant
octal-constant
hexadecimal-constant

decimal-constant:
nonzero-dz"gz"t
dedmal-constant dz"git

nonzero-dz"gz"t-one of the following:
123456789

octal-constant:
Ooctal-d£git
octal-constant octal-dig£t

octal-dig£t-one of the following:
01234567

hexadecimal-constant:
Oxhexadecz"mal-dig£t
OXhexadecimal-dig£t
hexadecimal-constant hexadecimal-d£git

hexadecz'mal-digz"t-one of the following:
0123456789
abcdef
ABCDEF

long-constant:
integer-constant I
integer-constant L

222

Syntax Summary

floating-point-constant:
fractional-constant exponent
fractional-constant
digit-seq exponent

fractional-constant:
digit-seq. digit-seq
• digit-seq
digit-seq.

digit-seq:
digit
digit-seq digit

exponent:
e sign digit-seq
E sign digit-seq
e digit-seq
E digit-seq

sign:
+

char-constant:
, char'

char:
rep-char
escape-sequence

rep-char:
Any single representable character except the single­
quotation-mark ('), backslash (\), or new-line character.
Note that the single-quotation-mark character cannot
be used alone in a character constant, and the double­
quotation-mark character cannot be used alone in a
string literal.

escape-sequence--one of the following:
\ ' \ " \ \ \ d \ dd \ ddd
\xd \xdd \xddd\a \b \f
\n \r \t \v

enum-constant:
identifier

223

Microsoft C Language Reference

B.l.4 Strings

strz"ng-lz"teral:
""
" char-seq"

char-seq:
char
char-seq char

B.l.5 Operators

operator-one of the following:
! - ++
»
&&
*=
&=
[]

* <
!=
I I
I I

L~
e)

/
<=
=
%=
I-
1-

%
> &
+=
»=
?:
->

B.l.6 Separators

separator-one of the following:

~ ~ ~ L ~ ~

B.2 Expressions

expresszon:

224

z"dentiJier
constant
string
expreSSiOn\eXpreSsion-l£st)
expression void)
expression expression]
expression. identzJier
expressz"on-> !'dentzj£er
unary-expresszon
binary-expression
ternary-expression

+ «
>=
A

-=
«=

assignm~nt-expression
(expresszon)
(type-name) expression
C onst a nt-exp ressio n

expression-list:
expression
expression-list, expression

unary-expresszon;
unop expresszon
sizeof(expression)

unop--one of the following:
- ! * &

lvalue:
identifier
expression[expression]
expression. expression
expression-> expression
* expression
(type-name) expression
(lvalue)

type-name:
See Section B.3, "Declarations."

binary- expression:
expression binop expression

binop--one of the following:
* / % +
« »< > <=
>= --!= &

&&

ternary- expression:

I I
I I

expression? expression: expression

assignment- expression:
lvalue++
lvalue-­
++lvalue
--lvalue
lvalue assignment-op expression

assi[Jnment-op--one of the followi!!g:
\= *= /= %= += --
«= »= &= l= =

Syntax Summary

225

Microsoft C Language Reference

constant-expressz'on:
z'dentzJz'er
constant
(type-name)co.nstant-expressz'on
unary-expresswn
binary-expressz'on
ternary-expression
(constant-expression)

B.3 Declarations

declaration:
sc-speczf£er type-speczJier-list declarator-list;
type-speczJier-Ust declarator-Ust;
sc-speczJier declarator-list;
typedef type-speczJier-Ust declarator-list;

sc-specifier:
auto
extern
register
static

type-speczf£er:
char
double
long double
enum-speczJier
float
int
long
short
struct-speczJier
typedef-name
union-speczJier
unsigned
signed
const
volatile
void

type-specifier-list:
type-speczJier
type-speczJier-list type-specifier

226

enum-speczjz'er:
enum tag {enum-Ust}
en urn { enum-list}
enum tag

tag:
identz'f£er

enum-Ust:
enumerator
enum-lz'st , enumerator

enumerator:
identzjier
identzjz'er = constant-expression

struct-sp ecifier:
struct tag { member-declaration-list}
struct { member-declaration-list}
struct tag

member-declaration-list:
member-declaration
member-decLaration-Ust member-declaration

member-declaration:
type-speczjier decLarator-Ust;
type-speczJier identifier: constant-expression;
type-speczJier: constant-expression;

declarator-list:
declarator
declarator = initializer
declarator-list, declarator

declarator:
identzf£er
modzf£er-list identzjier
decLarator[]
decLarator[constant-expressz'on]
* declarator
declarator(void)
declarator(Hformal-parameter-list])
(declarator)

Syntax Summary

227

Microsoft C Language Reference

modifier-list
modzJier
modifier-list modifier

formal-parameter-l£st
formal-parameter
formal-parameter-lz'st, formal-parameter
formal-parameter-list, •••
formal-parameter-list,

formal-parameter
sc-spec type-spec declarator
sc-spec type-spec abstract-declarator

arg-type-lz'st:
type-name
arg-type-lz'st, type-name
arg-type-lz'st, •••
arg-type-lz'st,

type-name:
type-specifier
type-specifier abstract-declarator

abstract-declarator:
*
modifier*

f lrg-type-list)
* abstract-declarator
abstract-declarator*
abstract-declarator[]
abstract-declarator[constant-expression]
[] abstract-declarator
[constant-expression] abstract-declarator
abstract-declarator~VOid)
abstract-declarator formal-parameter-lz'st)
abstract-declarator arg-type-l£st)
(abstract-declarator)

in it ialz'zer:
expresszon
{ initializer-list}

initializer-list:
initializer
initializer-l£st, initializer

typedef-name:
identifier

228

union-specifier:
union tag { member-declaration-list}
union { member-declaration-lz'st}
union tag

modifier:
cdecl
far
fortran
huge
near
pascal

modifier-list
modifier
modzJier-list modzJier

B.4 Statements

statement:
break;
case constant-expression: statement
compound-statement
continue;
default: statement
do statement while(expression);
expression;
for ([expression]; [expression]; [expression]) statement;
goto identzJier;
identifier: statement
if (expression) statement [else statement]
,
return [expression];
switch (expression) statement
while (expression) statement

compound-statement:
t [declaration-list] [statement-list]}

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

Syntax Summary

229

Microsoft C Language Reference

B.5 Definitions

de!z'nz'tz'on:
!unctz"on-def£nz"t£on
data-de!z"nz"tz"on

!unctz'on-de!z'nz'tz'on:
[sc-speczJz'er~ Jtype-speczJz"er~ declarator ([!ormal-parameter-lz'st])

compoun -statement
[sc-speczJz"er~ [type-s;eczJz'er~ declarator ([parameter-lz'stD

[parameter-decs] compound-statement

parameter-lz'st:
f£xed-parameter-list
varz'able-parameter-lz"st

!z'xed-parameter-list:
z'dentzJz'er
parameter-lz"st , z'dentzJz'er

varz'able-parameter-lz'st:
Jz'xed-parameter-lz'st, •••
Jixed-parameter-list,

parameter-decs:
declaration
declaration-lz'st declaration

data-def£n£tion:
declaratz'on

B.6 Preprocessor Directives

directive:

230

define identzJier [([parameter-list]) ~ [token-seq]
elif restricted-constant-expression
#else
#endif
if restricted-constant-expression
ifdef identzJier
ifndef £dentzJz'er
include II string ll

include < string>
line digit-seq
line d£git-seq string
undef £dentzJier

)

)

)

token-seq:
token
token-seq token

restricted-constant-expression:
defined (identifier)
Any constant-expression except sizeof expressions,
casts, and enumeration constants

B.7 Pragmas

pragma:
pragma char-seq

Syntax Summary

231

(

LtlliGUAGE REFERENCE INDEX

+ (addition operator), 123
& (address-of operator), 119
< > (angle brackets), 202
- (arithmetic negation operator), 117
-> (arrow), in member-selection

expressions, 109
\ ~ackslash character), 13, 14, 15
&, bitwise-AND operator), 128
- ~ itwise-complement operator) 117
A bitwise-exclusive-OR operator , 128

f
' bitwise-inclusive-OR operatori, 128

} (braces), 91, 151, 153
] (brackets)
array declarators, used in, 54, 70
subscript expressions, used in, 106,

107
: (colon), with bit-field structure

members, 66
, (comma)

argument-type lists, used in, 78
declarations, used in, 62, 76
function calls, used in, 105, 182
initialization, used in, 91
sequential-evaluation operator, 130

? : lconditional operator), 131
-- decrement operator), 134
L i ivision operator), 122
II H (double brackets), 7
... (ellipsis notation), 78
= = (equality operator), 126
() (function modifier), 54
> (greater-than operator), 126
>= (greater-than-or-equal-to

operator), 126
++ (increment operator), 134
* (indirection operator), 118
!= (inequality operator), 126
< < (left-shift operator), 125
< (less-than operator), 126
<= (less-than-or-equal-to operator),

126
&& (logical-AND operator), 129
! (logical-NOT operator), 117
I I (logical-OR operator), 130
-> (member-selection operator), 109,

218
. (member-selection operator), 109
* (multiplication operator), 122
(number sign), 193
- (one's complement operator), 117

o (parentheses)
complex declarators, used in, 55
expressions, used in, 111
function calls, used in, 105
function declarators, used in, 54, 77
macros, used in, 199

* (pointer modifier), 54, 72
" (quotation marks)

See also Escape sequences
include directives, used in, 202
notational conventions, 8
representation, 14, 214

% (remainder operator), 122
> > (right-shift operator), 125
= (simple-assignment operator), 135
(stringizing preprocessor operator),

194
- (subtraction operator), 124
? : (ternary operator), 115, 131
(token-pasting operator)

described, 194, 197
differences from Kernighan and

Ritchie, 193
- (two's complement operator), 117
+ (unary plus operator) 117
_ (underscore character), 24

Abstract declarators, 98
Actual arguments. See Arguments,

actual
Addition operator (+), 123
Address-of operator (&), 119
Aggregate data-type category, 53
Aggregate types

array, 70
initialization, 89, 91
structure, 65
union, 68

Anachronisms, 218
AND operators

bitwise (&) 128
logical (&&), 129

Angle brackets (< », 202
ANSI standard

enabling ANSI, 3
extensions 3

Apostrophe (,). See Escape sequences
argc parameter, 35

233

Language Reference Index

Argument type checking
conversions, 186
default prototypes, 180
formal parameters, 178
function calls, 185
variable-length parameter list, 80

Arguments
See also Parameters
actual

conversion, 185
evaluation, order of, 183
macros, 196, 199
passing, 185
pointers, 183, 185
side effects, 183
type checking, 185
variable number, 188

command line, 35
formal. See Formal parameters
main function, 35
variable number, 78, 188

Argument-type lists
abstract declarator, used with, 98
default prototype, 180
described, 77
pointer arguments, used with, 79
variable length, 78
void *, used with, 79
void keyword, used with, 79

argv parameter, 35
Arithmetic conversions, 115, 215
Arithmetic data-type category 53
Arithmetic negation operator (-), 117
Array declarators ([]), 54, 70
Arrays

declarations, 54, 70
elements, 106
identifiers, 104
initialization, 89, 91, 94
multidimensional, 71, 107
references to, 104, 106
storage, 71, 108
subscripts, 106

asm keyword, 213
Assignments

See also Initialization
conversions, 140
defined, 103
expressions, III
operators, 133

Associativity
modifiers, 55
operators, 137

auto storage class, 82, 86, 89

234

Backslash character (\), 13, 14, 15
Backspace escape sequence (\ b), 14
Bell character (\ a), 14, 214
Binary expreSSIOns, 110
Binary operators, table, 17, 115
Bit fields, 66, 67, 218
Bitwise-AND operator (&), 128
Bitwise-complement operator C) 117
Bitwise-exclusive-OR operator (Al' 128
Bitwise-inclusive-OR operator (I ,128
Blocks, 36
Braces ({ })

compound statement, used in, 151,
153

initialization, used in, 91
Brackets

array declarators(used in, 54, 70
double brackets []), 7
subscript expressions, used in, 106,

107
Branch statements, 159, 163
break statement, 152
Bytes, size of, 215

C character set, 11
Call by reference. See Passing by

reference
Call by value. See Passing by value
Calls. See Function calls
Carriage-return escape sequence (\ r),

14
case keyword, 163
Case sensitivity, 12, 24, 25
Casts. See Type casts
cdeclkeyword, 26, 59, 213
char type

conversion, 141
described, 48
differences from Kernighan and

Ritchie, 214
range of values, 50
storage, 50

Character constants
differences from Kernighan and

Ritchie, 214
form, 21
sign extension, 22
type, 22

Character sets, 11
Characters

backslash (\), 13, 14, 15
backspace escape sequence, 14
bell (\ a), 14, 216
carriage-return escape sequence (\ r),

14

Characters (continued)
case, 12, 24, 25
continuation (\), 15
CTRL+Z, 12
differences from Kernighan and

Ritchie, 214
digits, 12
double-quotation-mark escape

sequence (\ "), 14
end-of-file, 12
escape sequences, 13
form-feed escape sequence (\ f), 14
hexadecimal escape sequences, 14
horizontal tab escape sequence (\ t),

14
letters, 12
new-line escape sequence (\ n), 14
octal escape sequences, 14
punctuation, 12
single-quotation-mark escape

sequence (\ '), 14
special, 12
underscore (_), 12
vertical-tab escape sequence (\ v), 14
white space, 13

Colon (:), with bit-field structure
members, 66

Comma (,)
argument-type lists, used in, 78
declarations, used in, 62, 76
function calls, used in, 105, 182
initialization, used in, 91
sequential-evaluation operator (,),

130
Command-line arguments, 35
Comments, 26
Comparison operators. See Relational

operators
Compilation, conditional, 204, 208
Complement operators C), 117
Complex declarators, 55, 59
Compound statements, 153
Compound-assignment operators, 136
Concatenation of string literals, 23
Concatenation operator, differences

from Kernighan and Ritchie, 217
Conditional compilation, 204, 208
Conditional operator (7 :), 131
Conditional statements, 159, 163
const

keyword, 215
pointer modifier, used as, 73
type specifier, 49

Constant expressions
case, 163
conversion, 52

Language Reference Index

Constant expressions (continued)
defined (identifier), 205
described, 103
directives, used in, 113, 205
form, 112
initializers, 113
restricted, 113, 205
switch statement, used in, 163

Constants
character. See Character constants
conversion, 52
decimal integer, 18, 19
described, 18
enumeration, 64
floating point, 20, 52
hexadecimal integer

conversion, 20, 53
form, 18
type, 19

integer
differences from Kernighan and

Ritchie, 213
form, 18
long, 20
negative, 19
octal. See Octal constants
type, 19

manifest, 194, 195, 201
string. See String literals
summarized, 222
type, 104

Continuation character (\), 15
continue statement, 154
Control, returning, 162
Conventions, notational, 6
Conversions

actual arguments, 185
assignment, 140
constant expressions, 52
constants, 52
enumeration types, 146
floating types, 144
formal parameters, 176, 186
function call, 147, 185
function prototypes, 147
hexadecimal constants, 53
implicit, 146
octal constants, 53
operator, 147
pointer types, 145
range of values, effects on, 52
signed integral types, 140, 146
structure types, 146
type cast, 147
union types, 146
unsigned integral types, 142, 146

235

Language Reference Index

Conversions (continued)
usual arithmetic, 115, 215
void type, 147

CTRL+Z character, 12

Data type categories, 53
Data types. See Types
Decimal integer constants, 18, 19
Declarations

defining, 32
form, 47
formal parameter names, 77
formal parameters, 175, 176
forward. See Function declarations

(prototypes)
function. See Function declarations

(prototypes)
pointer, 54, 72, 181
referencing, 32
storage allocation, 32
summarized, 228
type, 95
typedef, 95, 96
variable

See also Variable declarations
array, 70
default storage class, 84
described, 31
enumeration, 63
external, 82, 83
form, 61
internal, 82, 86
multidimensional arrays, 71
pointer, 72
simple, 62
structure, 65
union, 68

Declarators
abstract, 98
array, 54
complex, 55, 59
described, 54
function, 54
parentheses, enclosed in, 55
poin ter, 54 ,
special keywords, used with, 59

Decrement operator (--), 134
default keyword, 163
Default return type, 77
Default storage class

external variable declarations, 84
function declarations, 88
internal variable declarations, 86

define directive 195
defined (identifier) constant expression,

205

236

defined preprocessor operator, 193,
194, 217

Defining declaration, 83
Definitions

function
described, 32, 169, 171
full prototype form, 171
obsolescent form, 172
storage class, 172
summarized, 230
visibility, 172

removing, 201
storage allocation, 32
variable

described, 32, 83
storage class, 83
summarized, 230
visibility, 83, 86

Differences from Kernighan and
Ritchie, 215

Digits, 12
Dimensions. See Multidimensional

arrays
Directives

constant expressions, used in, 113,
205

define, 195
described, 31, 193
differences from Kernighan and

Ritchie, 217
elif

described, 204
differences from Kernighan and

Ritchie, 217
nesting, 205

else, 204, 205
endif, 204, 205
if, 204, 205, 217
ifdef, 208, 217
ifndef, 208, 217
include, 202
lifetime, 33
line, 208
restricted constant expressions, 113
summarized, 230
#undef, 201

Division operator U), 122
do statement

described, 155
execution

continuation of, 154
termination of, 152

Double brackets ([]), 7
Double quotation mark (It). See

Quotation marks

double type
conversion, 144
described, 48
internal representation, 52
range of values, 50
storage, 50

Double-quotation-mark escape
sequence. See &cape sequences

Elements, 106, 107
elif directive

described, 204
differences from Kernighan and

Ritchie, 217
nesting, 205

Ellipsis notation (...), 7
else directive, 204, 205
else keyword, 159
endif directive, 204, 205
End-of-file character (CTRL+Z), 12
entry keyword, 215
enum type specifier, 63, 215
Enumeration constants, 42, 64
Enumeration expressions, 104
Enumeration set, 63
Enumeration types

conversion, 146
declaration, 63, 95
described, 48
differences from Kernighan and

Ritchie, 215
identifiers, 104
range of values, 50
storage, 50, 63
tags

defined, 42
naming class, 42
type declarations, 95
variable declarations, 63

Enumeration variables, 61
envp, 36
Equality operator (= =), 126
&cape sequences

See a/so Character constants
described, 13
differences from Kernighan and

Ritchie, 214
\' (single quotation mark), 14
\ a ~bell), 14
\ b backspace), 14
\\ backslashJ, 14
\ f (orm feed), 14
\ " (double quotation mark), 14
\n (new line), 14
\ r (carriage return), 14

La.ngua.ge Reference Index

&cape sequences {continued}
\ t (horizon tal tab), 14
\ v (vertical tab), 14

Evaluation
order of, 129, 138
unary plus (+), forcing order with,

117
Execution. See Program execution
Exit from functions, 162
Exponents, 20
Expressions

assignment, 111
binary, 110
case constant, 163
constant. See Constant expressions
described, 103
enumeration, 104
floating type, 104
function call, 106
grouping, 137
integral, 104
list, 105
lvalue, 133
member selection, 109, 218
operators, used in, 110
order of evaluation, 138
parentheses, enclosed in, 111
pointer, 104
side effects, 113
statements, 156
string literal, 105
structure, 104
subscript, 106, 107
summarized, 226
switch, 163, 216
ternary, 110
type cast, 112
unary, 110
union, 104

Extensions to ANSI C standard, 3
extern storage class

described, 82
external variables, 83
function

declarations, 88
definitions, 172

function declarations, 180
internal variables, 86

External declarations
described, 82
function, 88
variable, 83

External level, 32

237

Language Reference Index

far keyword
conversions, 186
described, 59
differences from Kernighan and

Ritchie, 215
listed, 26

Fields. See Bit fields
__ FILE-._ identifier, 209
Files

inclusion, 202
name, changing, 208
nesting, 203

float type
conversion, 144
described, 48
internal representation, 52
range of values, 50
storage, 50

Floating point
constants

form, 20
internal representation, 52
negative, 20

data-type category, 53
expressions, 104
identifiers, 104
types

described, 48
internal representation, 52

types, conversion of, 144
for statement

described, 157
execution continuation, 154
execution termination, 152

Forcing evaluation order, 117
Formal parameters

conversion, 177, 186
declaration, 178
described, 77, 175
following function header, 172
identifiers, 178
list, 171
macro, 196
names, 77
naming class, 41
obsolescent form, 175
storage class, 178
type checking, 178, 186

Form-feed escape sequence (\ f), 14
fortran keyword, 26, 59, 213
Forward declarations. See Function

declarations (prototypes)
Function

body, 172, 179
calls

argument type checking, 185

238

Function (continued)
calls (continued)

arguments,variable number of, 188
conve~ions, 147, 185
described, 170
expressions, 106
form, 105, 182
indirect, 183
operator, used as sequence point,

114
pointe~, use of, 183
recursive, 188

declarations (prototypes)
arguments, variable number of, 78
arguments, without, 79
default return type, 77
default storage class, 88
described, 31, 169, 179
differences from Kernighan and

Ritchie, 21
implicit, 180
parameter list, 80
pointer, 76
pointer arguments, 79
return type, 77, 180
return value, 179
storage class, 88, 180
visibility, 88, 180

definition
full prototype form, 171
obsolescent form, 172

definitions. See Definitions function
modifier (), 54
names. See Identifie~
pointe~, 181, 183
prototypes
conve~ions, 147
defined, 80, 169

return type. See Return type
type. See Return type

Function-like macros, 194
Functions

described, 169
exit from, 162
identifiers, 105
main, 35
naming class, 41
return value, 162

Global
level, 32
lifetime, 37, 82
variables

described, 38
initialization, 89

Global (continued)
variables (cont£nued)

references to, 86
visibility, 37

goto statement, 158
Greater-than operator (», 126
Greater-than-or-equal-to operator

(>=), 126
Grouping, 137

Hexadecimal
constants

See a/so &cape sequences
conversion, 20, 53
differences from Kernighan and

Ritchie, 213
form, 18
sign extension, 20
type, 19

escape sequences, 13, 14, 214
Horizontal-tab escape sequence (\ t), 14
huge keyword

conversion, 186
described, 59
differences from Kernighan and

Ritchie, 215
listed, 26

Identifier lists, 175
Identifiers

See a/so Labels
array, 104
characters allowed, 24
differences from Kernighan and

Ritchie, 215
enumeration, 104
__ FILE-_, 209
floating type, 104
formal parameters, 178
function, 105
integral, 104
length, 24
__ LINE-_, 209
modified, 54
naming classes, 41
pointer, 104
structure, 104
summarized, 221
union, 104

if directive, 204, 205, 217
if statement, 159
ifdef directive, 208, 217
ifndef directive, 208, 217
include directive, 202

Language Reference Index

Include files, 202, 203
Increment operator (++), 134
Indirection operator (*), 118
Inequality operator (!=), 126
Initialization

See a/so Assignments
arrays, 89, 91, 94
auto storage class, 89
constant expressions, 113
differences from Kernighan and

Ritchie, 216
fundamental types, 90
global variables, 89
link time, 84
poin ters, 90
register storage class, 89
restrictions, 89
static variables, 89
string literals, 94
structure variables, 89, 91
union variables, 89, 91

Insertion of files, 202
int type

conversion, 142
described, 48
differences from Kernighan and

Ritchie, 214
portability, 51
range of values, 50, 51
storage, 50

Integer constants
decimal, 18, 19
differences from Kernighan and

Ritchie, 213
hexadecimal, 18, 19, 20
long, 20
negative, 19
octal, 18, 19, 20

Integral
data-type category, 53
expressions, 104
identifiers, 104
types

conversion, 140, 142, 146
described, 48

Internal
declarations, 82, 86
representation, 52

Internal level, 32
Italics, 6
Iterative statements

do, 155
for, 157
while, 166

239

Language Rererence Index

Keywords
differences from Kernighan and

Ritchie, 213
listed, 25, 221
notational conventions, 6
special, 59, 73

See also Special keywords
statements, used in, 151
system dependent, 26

Labeled statements, 158
Labels

See also Identifiers
case, 163
default, 163
described, 151
form, 158
naming class, 42

Left-shift operator « <), 125
Less-than operator «). See Relational

operators
Less-than-or-equal-to operator «=).

See Relational operators
Letters, 12
Lifetime

described, 37
directives, 33
global, 37, 82
local, 37, 82

Line control, 208
line directive, 208
__ LINE-_ identifier, 209
Lines, continuation, 15
Linked lists, 66
Local

level, 32
lifetime, 37, 82
variables, 38, 179

Logical-AND operator ~&&), 129
Logical-NOT operator I), 117
Logical-OR operator (II , 130
long type

conversion, 141
described, 48
differences from Kernighan and

Ritchie, 214
range of values, 50
storage, 50

long-double type, conversion, 145
long-float type, 48
Loops

do statement, 155
for statement, 157
while statement, 166

Lvalue expressions, 133

240

Macros
actual arguments, 196
define directive, 195
described, 194
empty definition, 195
example, with arguments, 199
example, with side effects, 199
function like, 194
object like, 194
side effects of arguments, 196
undef, effect of, 201

Main function, 35
Manifest constants, 194, 195, 201
Members

bit fields, 66
naming class, 42
referring to, 109
structure, 65
union, 68

Member-selection expressions, 109, 218
Member-selection operators (-> and .),

109,218
Modifiers

array, 54, 70
associativity, 55
function, 54
pointer, 54, 72
precedence, 55

Multidimensional arrays(71, 107
Multiplication operator *), 122

Names. See Identifiers
Naming classes, 41, 218
near keyword, ,

conversions, 186
described, 59
differences from Kernighan and

Ritchie~ 215
listed, 26 '

Negation, 117
Nested visibility, 38
New-line escape sequence (\ n), 14
Nongraphic escape sequences, 13
NOT operator (!J. See Logical-NOT

operator
Notational conventions, 6
Null statement, 161
Number sign (#),193

Object-like macros, 194
Octal

constants
conversion, 20, 53

Octal (continued)
constants (continued)

differences from Kernighan and
Ritchie, 213

form, 18
sign extension, 20
type, 19

escape sequences, 13, 14
One's complement operator e), 117
Operands, 103
Operators

addition (+),123
address of (&), 119
arithmetic negation (-), 117
assignment

compound, 136
listed, 133
simple (=), 135

associativIty, 137
binary

described, 115
table, 17

bitwise AND (&), 128
bitwise complement e} 117
bitwise-exclusive OR (), 128
bitwise-inclusive OR (:), 128
complement, 117
compound assiQnment, 136
conditional (? :), 131
conversions 147
decrement (--), 134
differences from Kernighan and

Ritchie, 220
division (J), 122
equality (= =), 126
expression7 used in, 110
increment t++), 134
indirection (*), 118
inequality (!=), 126
left-shift (< <), 125
listed, 16, 226
logical

described, 129
evaluation, order of, 129

logical AND (&&), 129
logical NOT (!), 117
logical OR (: r), 130
multiplication (*), 122
one's complement e), 117
precedence, 137
preprocessor

differences from Kernighan and
Ritchie, 217

stringizing, 217
token pasting, 217

preprocessor specific, listed, 194

Language Reference Index

Operators (continued)
relation a) (~<,<= ,>=),126
remainder ('/0), 122
right shift (> », 125
sequence points, used as, 114
sequential evaluation (,), 130
shift « < and> », 125
simple assignment (=), 135
sizeof, 120
subtraction (-), 124
ternary (? :), 115, 131
two's complement (-), 117
unary, 16, 115

OR operators
bitwise exclusive C'), 128
bitwise inclusive (:), 128
logical (: I), 130

Overview, 3

Parameter list, 80
Parameters

See also Arguments
argc,35
argv, 35
envp, 36
formal. See Formal parameters
macro, 196
main function, 35

Parentheses
complex declarators, used in, 55
expressions, used in, 111
function calls, used in, 105
function declarators, used in, 54, 77
macros, used in, 199

pascal keyword, 26, 59, 213
Passing by

reference, 185
value, 182, 185

Pointer
modifier (*), 54, 72
void (void *),72

Pointer data-type category, 53
Pointers

adding, 124
arithmetic, 124
comparisons, 127
const, modified by, 73
conversion, 145
declarations, 54, 72, 181
differences from Kernighan and

Ritchie, 217
expressions, 104
function calls through, 183
functions, 181, 183
identifiers, 104

241

Language Reference Index

Pointers (continued)
implicit conversion, 146
initialization, 90
storage, 73
structure, 72
subtraction, 125
union, 73
volatile, modified by, 73

Portability, 51
Pound sign (#). See Number sign
Pragmas

described, 31, 193
differences from Kernighan and

Ritchie, 217
form, 209

Precedence
modifiers, 55
operators, 137

Predefined identifiers, 209
Preprocessor directives. See Directives
Preprocessor operators

described, 193
listed, 194

Program execution, 35
Program structure, 31
Prototypes, function, 80, 169

See a/so Function declarations
(prototypes)

Punctuation characters, 12

Quotation marks (")
include directIves, used in, 202
notational conventions, 8
representation, 14, 214

Recursion, 188
Reference, passing by, 185
References to global variables, 83, 86
Referencing declarations, 83
register storage class

described, 86
initialization, 89
internal variables, 86
lifetime, 82

Relational operators (>, <, < = ,> =),
126

Remainder operator (%), 122
Representable character set, 11
Representation, internal, 52
Reserved words. See Keywords
Restricted constant expressions, 113,

205
return statement, 162

242

Return type
declaration, 180
default, 77
described, 77, 173
implicit, 180

Return value, 162, 179
Right-shift operator (> », 125

Scalar data-type category, 53
Selection statements, 159, 163
Sensitivity, case, 12
Separators, 224
Sequence points

described, 103, 114
listed, 114
operators, other than, 114

Sequential-evaluation operator (,), 130
Shift operators « < and> »,125
short type

conversion, 141
described, 48
differences from Kernighan and

Ritchie, 214
range of values, 50
storage, 50

Side effects
expressions, 103, 113
macros, used with, 196, 199
sequence points, used with, 114

Sign extension, 20, 22
signed

char type, 48, 216
int type, 48
keyword, 49, 214
long int type, 217

See also long type
long type, 48, 217
short int type, 48, 217
short type, 48, 217
type, 48, 214

Simple variable declarations, 62
Simple-assignment operator (=), 135
Single-quotation-mark escape sequence

('). See Escape sequences
sizeof operator, 120
Source files, 33
Special characters, 12
Special keywords

See also Keywords, special
conversions, 186
declarators, used with, 73
differences from Kernighan and

Ritchie, 213
Standard directories, 202

Statement labels
described, 151
form, 158
naming class, 42

Statements
body, 151
break, 152
compound, 153
continue, 154
do, 155
expression, 156
for, 157
form, 151
goto, 158
if, 159
keywords, 151
labeled, 151, 158
listed, 151
null, 161
return, 162
summarized, 229
switch, 163
while, 166

static storage class
described, 82
external variables, 83
function

declarations, 88, 180
definitions, 172

initialization, 89
internal variables, 86

Storage
bit fields, 67
global, 82
local, 82
type

char, 50
double, 50
float, 50
int, 50, 51
long, 50
unsigned char, 50
unsigned int, 50, 51
unsigned long, 50
void, 50

types
array, 71, 108
enumeration, 50, 63
pointer, 73
structure, 67
union, 69

Storage allocation for variables, 32
Storage classes

described, 82
external variable declarations, 84
formal parameters, 178

Language Reference Index

Storage classes (cont£nued)
function

declarations, 180
function declarations, 88
function definitions, 172
internal variable declarations, 86

Storage-class specifers
extern. See extern storage class

Storage-class specifiers
auto, 82,86
listed, 82
register, 82, 86
static. See static storage class

String concatenation, 23
String literals

concatenation, 23
form, 22, 105
initializers, 94
length, 24, 105
storage, 24
type, 24

Stringizing preprocessor operator (#)
described, 194, 196
differences from Kernighan and

Ritchie, 217
Strings. See String literals
struct type-specifier, 65
Structures

conversion, 146
declaration, 65, 95
differences from Kernighan and

Ritchie, 215, 216, 217
expressions, 104
identifiers, 104
initialization, 89, 91
members. See Members
pointers to, 73
storage, 67
tags

See also Tags
naming class, 42
type declarations, 95
variable declarations, 66

Subscript expressions, 106, 107
Subtraction operator (-), 124
switch ~tatement

cons~ant expressions, used in, 163
described, 163
differences from Kernighan and

Ritchie, 216
termination of execution, 152

Symbolic constants. See Manifest
constants

Syntax
conventions. See Notational

conventions

243

Language Reference Index

Syntax (continued)
summary, 219

System-dependent keywords, 26

Tab escape sequences, 14
Tags

See also Structure tags
enumeration, 63, 95
naming class, 42
structure, 66, 95
union, 95

Ternary expressions, 110
Ternary operator (? :), 115, 131
Token-pasting preprocessor operator

(##)
described, 194, 197
differences from Kernighan and

Ritchie, 217
Tokens, 16,27,221
Transfer statements

break, 152
continue, 154
goto, 158
labeled statements, 158

Two's complement operator (-),117
Type

checking. See Arguments
declarations, 95
modifiers

differences from Kernighan and
Ritchie, 215

names
argument-type lists, used in, 79
described, 97
sizeof, used with, 120
void, 186

specifiers
abbreviations, 50
const,49
differences from Kernighan and

Ritchie, 214
enum, 48, 63
fundamental types, 48
struct,65
union, 68
volatile, 49

Type-cast conversions, 147
Type-cast expressions

constraints, 112
defined, 112
void, to and from, 112

typedef
declarations, 95, 96
types, 42, 96

244

Types
array

declaration, 54, 70
initialization, 89, 91, 94
multidimensional, 71
storage, 71, 108

char. See char type
const

described, 49
pointers, used with, 72

conversions. See Conversions
differences from Kernighan and

Ritchie, 214
double, 48, 50, 52
enumeration. See Enumeration types
float. See float type
floating point

described, 48
internal representation, 52

function. See Return type
fundamental

declaration, 62
described, 48
differences from Kernighan and

Ritchie, 215
initialization, 90
listed, 48
range of values, 50
storage, 50

into See int type
integral

conversion, 140, 142, 146
described, 48

long double, differences from
Kernighan and Ritchie, 216

long. See long type
long float, 216
pointer

conversion, 145
declaration, 54, 72
implicit conversion, 146
initialization, 90
storage, 73

short. See short type
signed

char, 48, 216
int, 48
long, 48
short, 48

structure
conversion, 146
declaration, 65, 95
initialization, 89, 91
pointers to, 73
storage, 67

typedef, 42, 96

Typ~s (contz'nued)
umon

conversion, 146
declaration, 68, 95
initialization, 89, 91
pointers to, 73
storage, 69

unsigned char. See unsigned char
type

unsigned into See unsigned int type
unsigned long. See unsigned long

type
unsigned short. See unsigned short

type
user defined, 95, 96
void, 49, 50

See also void types
volatile

described, 49
pointers, used with, 73

Unary expressions, 110
Unary operators, table, 16, 115
Unary plus operator (+),117
undef directive, 201
Underscore character (_), 12, 24
Union declarations

types, 95
variables, 68

union type specifier, 68
Unions

conversion, 146
declaration, 68, 95
differences from Kernighan and

Ritchie, 216, 217
expressions, 104
identifiers, 104
initialization, 89, 91
members

described, 68
naming class, 42
referring to, 109

pointers to, 73
storage, 69
tags, 42, 95

unsigned
char type

conversion, 142
described, 48
differences from Kernighan and

Ritchie, 214, 216
range of values, 50
storage, 50

int type
conversion, 143

Language Reference Index

unsigned (contz'nued)
int type (cont£nued)

described, 48
portability, 51
range of values, 50, 51
storage, 50

keyword, 49, 214
long int type. See unsigned long type
long type

conversion, 143
described, 48
differences from Kernighan and

Ritchie, 214, 216
range of values, 50
storage, 50

short int type. See unsigned short
type

short type
conversion, 142
described, 48
differences from Kernighan and

Ritchie, 216
range of values, 50
storage, 50

type, 48, 214
Unspecified type, pointer to (void *),

72
User-defined types. See Types
Usual arithmetic conversions, 115, 217

Values
range of, 50, 51, 52
passing by, 182, 185

Variable names. See Identifiers
Variables

array
declaration, 70
initialization, 91, 94
storage, 71

auto, 82, 86, 89
communal, 84
declarations

See also Declarations, variable
array, 54, 70, 71
described, 31
enumeration, 63
external, 82, 83, 84
form, 61
fundamental types, 62
internal, 82, 86
multidimensional arrays, 71
pointer, 72
simple, 62
structure, 65
summarized, 226

245

Language Reference Index

Variables (contt"nued)
declaratIons (contmued)

union, 68
visibility, 83

definitions
described, 32, 83
summarized, 230
visibility, 83, 86

en umeration, 63
extern, 83, 86
fundamental types, 62, 90
global, 38, 83, 86
lifetime

global, 37, 82, 89
local, 38, 179

local, 38, 179
multidimensional arrays, 71, 107
naming class, 41, 216
pointer, 72, 73, 90
register, 86, 89
simple, 62
static, 83, 86, 89
storage allocation, 32
structure, 65, 67, 91
union, 68, 69, 91
visibility, 83

Vertical-tab escape sequence (\ v), 14,
214

Visibility
described, 37
function declarations, 88, 180
function definitions, 172
global, 37
nested, 38
variable declarations, 83
variable definitions, 83, 86

void
argument-type list, 77, 79
formal parameter list, used in, 215
function-return type, 77
keyword, 215
pointer modifier, used as, 215
pointer to, 72
type name, 186

void type
conversion, 147
described, 48, 49
range of values, 50
storage, 50
type specifier, 215

volatile
keyword, 215
pointer modifier, used as, 73
type specifier, 49

246

while statement
described, 166
execution, continuation of, 154
execution, termination of, 152

White-space characters, 12, 13, 14

