
Run-Time Library Reference

~ o
rfJ

8 u

Microsoft® C/C++
Version 7.0

Run-Time Library Reference

For MS-DOS® and Windows™ Operating Systems

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit
ment on the part of Microsoft Corporation. The software and/or databases described in this document
are furnished under a license agreement or nondisclosure agreement. The software and/or databases
may be used or copied only in accordance with the terms of the agreement. It is against the law to
copy the software on any medium except as specifically allowed in the license or nondisclosure agree
ment. The licensee may make one copy of the software for backup purposes. No part of this manual
and/or databases may be reproduced or transmitted in any form or by any means, electronic or me
chanical, including photocopying, recording, or information storage and retrieval systems, for any pur
pose other than the licensee's personal use, without the express written permission of Microsoft
Corporation.

© 1989, 1991 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Microsoft, MS, MS-DOS, CodeView, QuickC, and XENIX are registered trademarks and Windows is
a trademark of Microsoft Corporation.

U.S. Patent No. 4955066

AT&T and UNIX are registered trademarks of American Telephone and Telegraph Company.
Hercules is a registered trademark of Hercules Computer Technology.
IBM is a registered trademark of International Business Machines Corporation.
Olivetti is a registered trademark of Ing. C. Olivetti.

Document No. LN24773-1191

1098765432

Contents Overview

Introduction .. ix

Part 1 Overview
Chapter 1
Chapter 2
Chapter 3

U sing the Run-Time Library ... 5
Run-Time Routines by Category .. 17
Global Variables and Standard Types .. 61

Part 2 Run-Time Functions
About the Run-Time Reference .. 75
Alphabetic Function Reference .. 76

Index .. 901

Contents

Introduction .. ix

About the Microsoft® Run-Time Library ... ix
About This Book. ... xii
Other Books of Interest. .. xiii
Document Conventions .. xiv

Part 1 Overview

Chapter 1 Using the Run-Time Library .. 5
1.1 Calling Library Routines .. 5
1.2 Using Header Files ... 6

Including Necessary Definitions ... 6
Including Function Declarations ... 7

1.3 Paths and Filenames ... 8
1.4 Choosing Between Functions and Macros... 9
1.5 Stack Checking on Entry .. 11
1.6 Handling Errors .. 12
1.7 Operating-System Considerations .. 13
1. 8 Floating-Point Support... 14
1.9 Using Huge Arrays with Library Functions ... 16

Chapter 2 Run-Time Routines by Category ... 17
2.1 Buffer Manipulation... 18
2.2 Character Classification and Conversion ... 19
2.3 Data Conversion ... 20
2.4 Directory Control ... 20
2.5 File Handling .. 21
2.6 Graphics .. 22

Low-Level Graphics and Character-Font Functions .. 22
Presentation-Graphics Functions .. 29

2.7 Input and Output. .. 31
Text and Binary Modes ... 32
Stream Routines .. 33

vi Contents

Low-Level Routines .. 38
Increasing the Maximum Number of File Handles and Streams 40
Console and Port I/O ... 43

2.8 Internationalization ... 44
2.9 Math .. 44
2.10 Memory Allocation .. 46

Near and Far Heaps ... 48
Based Heaps .. 49

2.11 Process and Environment Control.. .. 49
2.12 QuickWin .. 53
2.13 Searching and Sorting ... 54
2.14 String Manipulation .. 54
2.15 System Calls ... 55

BIOS Interface .. 55
DOS Interface .. 56

2.16 Time .. 58
2.17 V ariable-Length Argument Lists 59
2.18 Virtual Memory Allocation .. 60

Chapter 3 Global Variables and Standard Types ...••. 61
3.1 _amblksiz .. 61
3 .2 _daylight, _timezone, _tzname... 62
3.3 _doserrno, errno, sys_errlist, sys_nerr .. 63
3.4 _fmode ... 64
3.5 Locale Macros .. 65
3.6 _osmajor, _osminor, _osmode, _osversion, _cpumode 65
3.7 environ ... 66
3.8 _psp .. 66
3.9 _pgmptr .. " 67
3.10 Standard Types ... 67

Part 2 Run-Time Functions
About the Run-Time Reference ... 75
Alphabetic Function Reference .. 76

Index ... 901

Tables

Tables
Table 2.1
Table 3.1
Table Rl
Table R2
Table R3
Table R4
Table R5
Table R6
Table R7
Table R8
Table R9
Table RIO
Table RII
Table RI2

Table R13

Forms of the _spawn and _exec Routines 52
erma Values and Their Meanings.. 64
Hex Values... 160
Type Characters for printf.. .. 587
Flag Characters for printf.. ... 588
How printf Precision Values Affect Type.. 589
Type Characters for scanf.. .. 638
_MRES4COLOR Palette Colors ... 647
_MRESNOCOLOR Mode CGA Palette Colors 648
_MRESNOCOLOR Mode EGA Palette Colors 648
_ORES COLOR Mode Colors .. 648
Manifest Constants for Screen Mode.. 690
VESA Manifest Constants for Screen Mode............................. 691
Modes Selected by _MAXRESMODE and
_MAXCOLORMODE ... 692
Signals and Responses ... 707

Introduction

The Microsoft® run-time library is a set of more than 550 ready-to-use functions
and macros designed for use in C and C++ programs. The run-time library makes
programming easier by providing

• Fast and efficient routines to perform common programming tasks (such as
string manipulation), sparing you the time and effort needed to write such
routines

• Reliable methods of performing operating-system functions (such as opening
and closing files)

The run-time library is important because it provides basic functions not provided
by the C and C++ languages themselves. These functions include input and output,
memory allocation, process control, graphics, and many others.

This book describes the run-time library routines included with Microsoft C/C++
version 7.0. These comprise all of the routines included with earlier versions of
Microsoft C, as well as many new routines.

About the Microsofb Run-Time Library
The Microsoft run-time library contains routines and features that support Ameri
can National Standards Institute (ANSI) C and UNIX C compatibility, DOS and
Microsoft WindowsTM programming, and sophisticated graphics programming.

To ease the task of transporting programs between operating systems and com
pilers, the description of each run-time library routine includes a compatibility
section. A routine with full compatibility has the following entries:

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

(In this book, references to UNIX systems also encompass XENIX® and other
UNIX-like systems.)

x Run-Time Library Reference

ANSI C Compatibility
The run-time library routines are designed for compatibility with the ANSI C
standard, which the Microsoft C and C++ compilers support. Functions that are
ANSI C compatible are marked as ANSI in the compatibility section.

Type Checking
The major innovation of ANSI C is to permit argument-type lists in function proto
types (declarations). Given the information in the function prototype, the compiler
can check later references to the function to make sure that the references use the
correct number and type of arguments and the correct return value.

To take advantage of the compiler's type-checking ability, the include files that ac
company the run-time library have been expanded. In addition to the definitions
and declarations required by library routines, the include files now contain func
tion declarations with argument-type lists. Several new include files have also
been added. The names of these files are chosen to maximize compatibility with
the ANSI C standard and with UNIX and XENIX names.

Underscores and OlDNAMES.lIB
With Microsoft C/C++, all Microsoft-specific run-time functions, constants, varia
bles, type definitions, structures, and macros (such as, respectively, _open,
_ VRES16COLOR, _cpumode, _HEAPINFO, _heapinfo, and __ isascii) are
ANSI compatible. The Microsoft-specific run-time functions, constants, variables,
type definitions, and structures begin with a single underscore; Microsoft-specific
run-time macros begin with two underscores.

For compatibility with previous versions of Microsoft C, Microsoft C/C++ pro
vides a library named OLDNAMES.LIB, which contains alias records mapping
the names to the new names. For instance, open is mapped to _open.

You have to link with OLDNAMES.LIB to link Microsoft C/C++ programs with
object files created by previous versions of Microsoft C. However, by default the
compiler emits a library search record-the only time you must link explicitly
with OLDNAMES.LIB is under one of the following situations:

• Compiling with a combination of the default /Ze option (use Microsoft exten
sions) and the /Zl option (omit default library name from object file)

• Compiling with the default /Ze option (use Microsoft extensions) and a combi
nation of the /link option (linker-control) and the !NOD option (no default
library search)

For more information on the CL command-line options, see Chapter 13 of
Environment and Tools (in the Microsoft C/C++ version 7.0 documentation set).

Introduction xi

Note The compiler views a structure with both an old name and a new name as
two different types; you cannot copy from an old type to a new type. Also, old pro
totypes that take struct pointers use the old struct names in the prototype. So, you
must be consistent-match the old names for routines with the old names for the
parameters and be similarly consistent with the new routine names and parameters.

UNIX C Compatibility
Most of the functions in the Microsoft run-time library are compatible with like
named UNIX routines. For additional compatibility, the math library functions
have been extended to provide exception handling in the same manner as the
UNIX System V math functions. Functions that are UNIX and XENIX compatible
are marked as UNIX in the compatibility section.

DOS and Microsoft WindowsTM Programming

QuickWin

Microsoft run-time library routines are designed to maintain maximum compati
bility between DOS, Windows, and UNIX or XENIX systems. The run-time
library offers a number of operating-system interface routines that allow you to
take advantage of specific DOS and Windows features. Functions that are DOS
and Windows compatible are marked, respectively, as DOS and WIN in the com
patibility section. Note that for Windows the compatibility section also contains
information on dynamic-link library (DLL) compatibility.

Many run-time library functions are designed to work with the Microsoft DOS
Extender. The DOS Extender is a shell between a program and DOS that allows
the program to run in the 32-bit flat memory model. Currently, the Microsoft C
and C++ compilers are hosted under the DOS Extender; when Microsoft C/C++
provides 32-bit targeting, you can use the functions listed as DOS32X compatible
to develop and run 32-bit flat model programs under DOS.

The Microsoft run-time library now contains several QuickWin functions that
make it possible to compile non-Windows DOS programs as simple text-only
Windows applications. DOS programs compiled with the /Mq compiler option
have a limited Windows user interface, including a standard menu bar, standard
online help (for the QuickWin features), and a client (or application) window with
a child (document) window for the C input/output streams stdin, stdout, and
stderr. You can also add other child windows of your own. QuickWin applica
tions support the Windows Clipboard, and you can use standard C functions to
write to and read from a QuickWin application's windows, which behave as
streams. Functions that are QuickWin compatible are marked as QWIN in the
compatibility section.

xii Run-Time Library Reference

Expanded Graphics Library
The Microsoft run-time library contains more than one hundred graphics routines.
The core of this library consists of several dozen low-level graphics routines that
allow your programs to select video modes, set points, draw lines, change colors,
and draw shapes such as rectangles and ellipses. You can display real-valued data,
such as floating-point values, within windows of different sizes by using various
coordinate systems.

The graphics library includes presentation graphics and fonts. The presentation
graphics library provides powerful tools for adding presentation-quality graphics
to your programs. These routines can display data as a variety of graphs, including
pie charts, bar and column charts, line graphs, and scatter diagrams.

The fonts library allows your programs to display various styles and sizes of text
in graphics images or charts. You can use font-manipulation routines with any
graphics routines that display text, including presentation graphics.

About This Book
This book provides a guide to the run-time library provided with Microsoft C/C++.

This book has two parts. Part 1, "Overview," introduces the Microsoft run-time li
brary. It describes general rules for using the library and summarizes the main cate
gories of library routines. Part 1 contains the following chapters:

• Chapter 1, "Using the Run-Time Library," gives general rules for under
standing and using library routines and mentions special considerations that
apply to certain routines. It is recommended that you read this chapter before
using the run-time library; you may also want to turn to Chapter 1 when you
have questions about library procedures.

• Chapter 2, "Run-Time Routines by Category," lists the library routines by cate
gory and discusses considerations that apply to each category. This chapter
makes it easy to locate routines by task. Once you find the routine you want,
turn to the reference page in Part 2 for a detailed description.

• Chapter 3, "Global Variables and Standard Types," describes variables and
types that are used by library routines. Global variables and standard types are
also described in the reference descriptions of the routines that use them.

Part 2, "Run-Time Functions," describes the library routines in alphabetical order.
Once you are familiar with the run-time library rules and procedures, you will
probably use this part most often.

Introduction xiii

Other Books of Interest
The following books cover a variety of topics that you may find useful. They are
listed only for your convenience. With the exception of its own publications,
Microsoft does not endorse these books or recommend them over others on the
same subject.

• Barkakati, Nabajyoti. The Waite Group's Microsoft C Bible. Indianapolis, IN:
Howard W. Sams, 1988.

A topical guide to the Microsoft C run-time library. A similar volume is availa
ble for the Microsoft QuickC® product.

• Campbell, Joe. C Programmer's Guide to Serial Communications. Indi
anapolis, IN: Howard W. Sams & Company, 1987.

A comprehensive guide to the specialized area of serial communication pro
gramming in C.

• Christian, Kaare. C++ Programming. Redmond, WA: Microsoft Press, 1992.

An introduction to object-oriented programming concepts, C++ fundamentals,
and Microsoft C/C++ version 7.0, particularly the Foundation class libraries.

• Harbison, Samuel P., and Guy L. Steele, Jr. C: A Reference Manual, 2d ed.
Englewood Cliffs, NJ: Prentice Hall, 1987.

A comprehensive guide to the C language and the standard library.

• Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language,
2d ed. Englewood Cliffs, NJ: Prentice Hall, 1988.

The first edition of this book is the classic definition of the C language. The
second edition includes new information on the ANSI C standard.

• Lafore, Robert. Microsoft C Programming for the IBM. Indianapolis, IN:
Howard W. Sams & Company, 1987.

The first half of this book teaches C. The second half concentrates on specifics
of the PC environment, such as BIOS calls, memory, and video displays.

• Mark Williams Company. ANSI C: A Lexical Guide. Englewood Cliffs, NJ:
Prentice Hall, 1988.

A dictionary-style guide to the ANSI C standard.

• Plauger, P. J., and Jim Brodie. ANSI and ISO Standard C: A Guidefor
Programmers. Redmond, W A: Microsoft Press, 1992.

A reference to the ANSI and ISO C implementation by the secretary and chair
man of the ANSI- and ISO-authorized C Programming Language Standards
Committee.

xiv Run-Time library Reference

• Plum, Thomas. Reliable Data Structures in C. Cardiff, NJ: Plum Hall, 1985.

An intermediate-level look at data structures using the C language.

• Plum, Thomas, and Jim Brodie. Efficient C. Cardiff, NJ: Plum Hall, 1985.

A guide to techniques for increasing the efficiency of C programs.

• Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in C: The Art of Scientific Computing. New
York: Cambridge University Press, 1988.

A comprehensive look at numerical techniques using the C language.

• Schustack, Steve. Variations in C: Building Professional Applications with
Microsoft C. Second Edition. Redmond, W A: Microsoft Press, 1989.

An intermediate-level guide to developing business applications in C.

• Ward, Robert. Debugging C. Indianapolis, IN: Que Corporation, 1986.

An advanced guide to the theory and practice of debugging C programs.

• Wilton, Richard. Programmer's Guide to PC and PS/2 Video Systems: Maxi
mum Video Performance from the EGA, VGA, HGC, & MCGA. Redmond,
W A: Microsoft Press, 1987.

An advanced guide to all the PC and PS/2 video modes.

Document Conventions
This book uses the following typographic conventions:

Example

STDIO.H

char, _setcolor,
__ far

expression

Description

Uppercase letters indicate filenames, segment names,
registers, and terms used at the operating-system
command level.

Bold type indicates C and C++ keywords, operators,
language-specific characters, and library routines.
Within discussions of syntax, bold type indicates that
the text must be entered exactly as shown.

Many functions and constants begin with either a
single or double underscore. These are part of the
name and are mandatory. For example, to have the
__ cplusplus manifest constant be recognized by the
compiler, you must enter the leading double
underscore.

Words in italics indicate placeholders for information
you must supply, such as a filename.

Example

[option]

#pragma pack {I I 2 }

#include <io.h>

CL [option ...] file ...

while()
{

CTRL+ENTER

"argument"

"C string"

Color Graphics
Adapter (CGA)

Introduction xv

Description

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice among two
or more items. You must choose one of these items
unless double square brackets ([]) surround the
braces.

This font is used for examples, user input, program
output, and error messages in text.

Three dots (an ellipsis) following an item indicate that
more items having the same form may appear.

A column or row of three dots tells you that part of an
example program has been intentionally omitted.

Small capital letters are used to indicate the names of
keys on the keyboard. When you see a plus sign (+)
between two key names, you should hold down the
first key while pressing the second.

The carriage-return key, sometimes marked as a bent
arrow on the keyboard, is called ENTER.

Quotation marks enclose a new term the first time it is
defined in text.

Some C constructs, such as strings, require quotation
marks. Quotation marks required by the language
have the form " " and ' , rather than " " and ' , .

The first time an acronym is used, it is usually spelled
out.

Note Microsoft documentation uses the term "DOS" to refer to both the
MS-DOS® and IBM Personal Computer DOS operating systems. The name
of a specific operating system is used to note features unique to that system.

Using the Run-Time Library

This chapter provides basic information about how to use the Microsoft run-time
library routines. It also describes some special rules, such as path-name and
filename conventions, that apply to particular routines. You should read this chap
ter before you begin to use the run-time library routines, and you may also want to
refer back to it if you have questions about library procedures.

1.1 Calling Library Routines
To use a library routine, simply call it in your program, just as if it is defined there.
For instance, suppose you write the following program and name it SAMPLE.C:

#include <stdio.h>
void maine void)
{

printf("Microsoft C/C++\n");

The program prints Mi crosoft C/C++ by calling the printfroutine, which is part
of the run-time library. Calling a library routine normally involves two groups of
files:

• Header ("include") files that contain declarations, constants, and type defini
tions required by library routines

• Library files that contain the library routines in compiled form

Header files and library files are both included with Microsoft C/C++. Header files
are used when compiling, and library files are used when linking.

You include the necessary header files in your program source code with #include
directives. The description of each library routine in Part 2, "Run-Time Func
tions," tells you what header file the routine requires. Since printfrequires the
STDIO.H header file, the SAMPLE.C program contains the following line:

#include <stdio.h>

6 Run-Time library Reference

This line causes the compiler to insert the contents of STDIO.H into the source file
SAMPLE.C.

After you compile the source file, you link the resulting object (.oBJ) file with the
appropriate library (.LIB) file to create an executable (.EXE) file. Your object file
contains the name of every routine that your program caIls, including library
routines. If a routine is not defined in your program, the linker searches for its
code in a library file and includes that code in the executable file.

NormaIly, the code for standard library routines is contained in the "default li
brary" that you create when installing Microsoft C/C++. Since the linker automat
icaIly searches the default library, you do not need to specify that library's name
when linking your program. The foIlowing command links the example program
with the default library:

link sample",;

If you caIl a library routine that is not contained in the default library, you must
give the linker the name of the library file that contains the routine. For instance, if
your program uses a Microsoft graphics routine, you would link the program using
a line that includes GRAPHICS.LIB:

link sample", graphics.lib;

For more information about instaIling libraries and linking, see Getting Started
and Part 3 of Environment and Tools (both are in the Microsoft C/C++ version 7.0
documentation set) or consult the installation documentation for your compiler.

1.2 Using Header Files
As stated in the previous section, you should include header files when using
library routines. This section describes particular reasons why header files are
required.

Including Necessary Definitions
Many run-time library routines use constants, type definitions, or macros defined
in a header file. To use the routine, you must include the header file containing the
needed definition(s). The foIlowing list gives examples:

Definition

Macro

Example

If a library routine is implemented as a macro, the macro
definition appears in a header file. For instance, the toupper
macro is defined in the header file CTYPE.H.

Definition

Manifest constant

Type definition

Including Function Declarations

Using the Run-Time library 7

Example

Many library routines refer to constants that are defined in
header files. For instance, the _open routine uses constants such
as _O_CREAT, which is defined in the header file FCNTL.H.

Some library routines return a structure or take a structure as an
argument. For example, stream input/output routines use a
structure of type FILE, which is defined in STDIO.H.

The run-time library header files also contain function declarations for every func
tion in the run-time library. These declarations are in the style recommended by
the ANSI C standard. Given these declarations, the compiler can perform "type
checking" on every reference to a library function, making sure that you have used
the correct return type and arguments. Function declarations are sometimes called
"prototypes," since the declaration serves as a prototype or template for every sub
sequent reference to the function.

A function declaration lists the name of the function, its return type, and the
number and type of its arguments. For instance, this is the declaration of the
pow library function from the header file MATH.H:

double pow(double x, double y);

The example declares that pow returns a value of type double and takes two argu
ments of type double. Given this declaration, the compiler can check every refer
ence to pow in your program to ensure that the reference passes two double
arguments to pow and takes a return value of type double.

The compiler can perform type checking only for function references that appear
after the function declaration. Because of this, function declarations normally ap
pear near the beginning of the source file, prior to any use of the functions they
declare.

Function declarations are especially important for functions that return a value of
some type other than int, which is the default. For example, the pow function re
turns a double value. If you do not declare such a function, the compiler treats its
return value as int, which can cause unexpected results.

It is also a good practice to provide declarations for functions that you write. If
you do not want to type the declarations by hand, you can generate them automat
ically by using the /Zg compiler option. This option causes the compiler to
generate ANSI-standard function declarations for every function defined in the cur
rent source file. Redirect this output to a file, then insert the file near the beginning
of your source file.

8 Run-Time Library Reference

Your program can contain more than one declaration of the same function, as long
as the declarations do not conflict. This is important if you have old programs
whose function declarations do not contain argument-type lists. For instance, if
your program contains the declaration

char *calloc();

you can later include the following declaration:

char *calloc(unsigned, unsigned);

Because the two declarations are compatible, even though they are not identical,
no conflict occurs. The second declaration simply gives more information about
function arguments than the first. A conflict would arise, however, if the declara
tions gave a different number of arguments or gave arguments of different types.

Some library functions can take a variable number of arguments. For instance, the
printf function can take one argument or several. The compiler can perform only
limited type checking on such functions, a factor that affects the following library
functions:

• In calls to _cprintf, _cscanf, printf, and scanf, only the first argument (the for
mat string) is type checked.

• In calls to fprintf, fscanf, _snprintf, sprintf, and sscanf, only the first two ar
guments (the file or buffer and the format string) are type checked.

• In calls to _open, only the first two arguments (the path name and the _open
flag) are type checked.

• In calls to _sopen, only the first three arguments (the path name, the _open
flag, and the sharing mode) are type checked.

• In calls to _exec1, _exec1e, _exec1p, and _exec1pe, only the first two argu
ments (the path name and the first argument pointer) are type checked.

• In calls to _spawnl, _spawnle, _spawnlp, and _spawnlpe, only the first three
arguments (the mode flag, the path name, and the first argument pointer) are
type checked.

1.3 Paths and Filenames
Many library routines take strings representing paths and filenames as arguments.
If you plan to transport your programs to the UNIX (or XENIX) operating system,
you should remember that UNIX uses path-name and filename conventions that
are different from those used by DOS. If you do not plan to transport your pro
grams to UNIX, you can skip this section.

Using the Run-Time Library 9

Case Sensitivity
The DOS operating system is not case sensitive (it does not distinguish between
uppercase and lowercase letters). Thus, SAMPLE.C and Sample.C refer to the
same file. However, the UNIX operating system is case sensitive. In UNIX,
SAMPLE.C and Sample.C refer to different files. To transport programs to UNIX,
choose path names and filenames that work correctly in UNIX, since either case
works in DOS. For instance, the following directives are identical in DOS, but
only the second works in UNIX:

#include <STDIO.H>
#include <stdio.h>

Subdirectory Conventions
Under UNIX, certain header files are normally placed in a subdirectory named
SYS. Microsoft C follows this convention to ease the process of transporting pro
grams to UNIX. If you do not plan to transport your programs, you can place the
SYS header files elsewhere.

Path-Name Delimiters
UNIX uses the slash (I) in path names, while DOS uses the backslash (\). To trans
port programs to UNIX, it is advantageous to use path-name delimiters that are
compatible with UNIX whenever possible.

1.4 Choosing Between Functions and Macros
This book uses the words "routine" and "function" interchangeably. However, the
term "routine" actually encompasses both functions and macros. Because func
tions and macros have different properties, you should pay attention to which form
you are using. The descriptions in the reference section indicate whether routines
are implemented as functions or as macros.

Most routines in the Microsoft run-time library are functions. They consist of com
piled C code or assembled Microsoft Macro Assembler (MASM) code. However,
a few library routines are implemented as macros that behave like functions. You
can pass arguments to library macros and invoke them in the same way you in
voke functions.

The main benefit of using macros is faster execution time. Every library macro is
defined with a #define directive in a header file. A macro is expanded (replaced
by its definition) during preprocessing, creating inline code. Thus, macros do not
have the overhead associated with function calls. On the other hand, each use of a
macro inserts the same code in your program, whereas a function definition occurs
only once regardless of how many times it is called. Functions and macros thus
offer a trade-off between speed and size.

10 Run-Time library Reference

Apart from speed and size issues, macros and functions have some other important
differences:

• Some macros treat arguments with side effects incorrectly when the macro eval
uates its arguments more than once (see the example that follows this list). Not
every macro has this effect. To determine if a macro handles side effects as
desired, examine its definition in the appropriate header file.

• A function name evaluates to an address, but a macro name does not. Thus, you
cannot use a macro name in contexts requiring a function pointer. For instance,
you can declare a pointer to a function, but you cannot declare a pointer to a
macro.

• You can declare functions, but you cannot declare macros. Thus, the compiler
cannot perform type checking of macro arguments as it does of function argu
ments. However, the compiler can detect when you pass the wrong number of
arguments to a macro.

The following example demonstrates how some macros can produce unwanted
side effects. It uses the toupper routine.

#include <ctype.h>

int a = 'm';
a = toupper(a++);

The example increments a when passing it as an argument to the toupper
routine, which is implemented as a macro. It is defined in CTYPE.H:

#define toupper(c) ((islower(c» ? _toupper(c) : (c))

The definition uses the conditional operator (? :). The conditional expression eval
uates the argument c twice: once to check if it is lowercase and again to create the
result. This macro evaluates the argument a++ twice, increasing a by 2 instead of
1. As a result, the value operated on by islower differs from the value operated on
by _ toupper.

Like some other library routines, toupper is provided in both macro and function
versions. The header file CTYPE.H not only declares the toupper function but
also defines the toupper macro.

Choosing between the macro version and function version of such routines is easy.
If you wish to use the macro version, you can simply include the header file that
contains the macro definition. Because the macro definition of the routine always
appears after the function declaration, the macro definition normally takes prece
dence. Thus, if your program includes CTYPE.H and then calls toupper, the com
piler uses the toupper macro:

Using the Run-Time Library 11

#include <ctype.h>

int a = 'm';
a = toupper(a);

You can force the compiler to use the function version of a routine by enclosing
the routine's name in parentheses:

#include <ctype.h>

int a = 'm';
a = (toupper) (a);

Because the name toupper is not immediately followed by a left parenthesis, the
compiler cannot interpret it as a macro name. It must use the toupper function.

A second way to do this is to "undefine" the macro definition with the #undef
directive:

#include <ctype.h>
#undef toupper

Since the macro definition no longer exists, subsequent references to toupper use
the function version.

A third way, not generally recommended, to make sure the compiler uses the func
tion version is to declare the function explicitly:

#include <ctype.h>
int toupper(int _c);

Since this function declaration appears after the macro definition in CTYPE.H, it
causes the compiler to use the toupper function.

1.5 Stack Checking on Entry
For certain library routines, the compiler performs stack checking on entry. (The
"stack" is a memory area used for temporary storage.) Upon entry to such a
routine, the stack is checked to determine if it has enough room for the local varia
bles used by that routine. If it does, space is allocated by adjusting the stack
pointer. Otherwise, a "stack overflow" run-time error occurs. If stack checking is
disabled, the compiler assumes there is enough stack space; if there is not, you
might overwrite memory locations in the data segment and receive no warning
unpredictable program behavior may result.

12 Run-Time library Reference

Typically, stack checking is enabled only for functions with large local-variable re
quirements (more than about 150 bytes), since there is enough free space between
the stack and data segments to handle functions with smaller requirements. If the
function is called many times, stack checking slows execution slightly.

Stack checking is enabled for the following library functions:

_execvp scanf system
_execvpe _spawnvp vprintf
fprintf _spawnvpe _ write
fscanf sprintf
printf sscanf

You can enable or disable stack checking with the /Gs and /Ge compiler options
(see Chapter 13 of Environment and Tools) or the check_stack pragma (see
Chapter 7 of the C Language Reference). Both books are in the Microsoft C/C++
version 7.0 documentation set.

1.6 Handling Errors
Many library routines return a value that indicates an error condition. To avoid un
expected results, your code should always check such error values and handle all
of the possible error conditions. The description of each library routine in the refer
ence section lists the routine's return value(s).

Some library functions do not have a set error return. These include functions that
return nothing and functions whose range of return values makes it impossible to
return a unique error value.

To aid in error handling, some functions set the value of a global variable named
errno. If the reference description of a routine states that it sets the errno variable,
you can use errno in two ways:

• Compare errno to the values defined in the header file ERRNO.H.

• Handle errno with the perror or strerror library routine. The perror routine
prints a system error message to the standard error (stderr). The strerror
routine stores the same information in a string for later use.

When you use errno, perror, and strerror, remember that the value of errno
reflects the error value for the last call that set errno. To avoid confusion, you
should always test the return value to verify that an error actually occurred. Once
you determine that an error has occurred, use strerror or perror immediately.
Otherwise, the value of errno may be changed by intervening calls.

Using the Run-Time Library 13

Library math routines set errno by calling the _ matherr or _ matherrllibrary
routine; both are described in the reference section. If you wish to handle math
errors differently from these routines, you can write your own routine and name
it _matherr or _matherrl. Your routine must follow the rules listed in the
_ math err reference description.

The ferror library routine allows you to check for errors in stream input/output
operations. This routine checks if an error indicator has been set for a given
stream. Closing or rewinding the stream automatically clears the error indicator.
You can also reset the error indicator by calling the clearerr library routine.

The feoflibrary routine tests for end-of-file on a given stream. An end-of-file con
dition in low-level input and output can be detected with the _ eof routine or when
a _ read operation returns 0 as the number of bytes read.

The _ grstatus library routine allows you to check for errors after calling certain
graphics library operations. See the reference page on the _grstatus function for
details.

1.7 Operating-System Considerations
The library routines listed in this section behave differently under different
operating-system versions. For more information on an individual routine, see the
description of that routine in the reference section.

Routine

_locking
_sopen
_fsopen

_dosexterr

Restrictions

These routines are effective only in DOS versions 3.0 and later.

The _dosexterr routine provides error handling for system call Ox59
(get extended error) in DOS versions 3.0 and later.

The _dup and _dup2 routines can cause unexpected results in DOS
versions earlier than 3.0. If you use _dup or _dup2 to create a
duplicate file handle for stdin, stdout, stderr, stdaux, or stdprn,
calling the _close function with one handle causes errors in later I/O
operations that use the other handle. This anomaly does not occur in
DOS versions 3.0 and later.

When using the _exec and _spawn families of functions under DOS
versions earlier than 3.0, the value of the argO argument (or argv[O]
to the child process) is not available to the user; a null string ("")
is stored in that position instead. In DOS versions 3.0 and later, the
argO argument contains the complete command path.

14 Run-Time Library Reference

Microsoft CIC++ defines global variables that indicate the version of the current
operating system. You can use these to determine the operating-system version in
which a program is executing. See Chapter 3, "Global Variables and Standard
Types," for more information.

1.8 Floating-Point Support
Microsoft math library routines require floating-point support to perform calcula
tions with real numbers (numbers that can contain fractions). This support can be
provided by the floating-point libraries that accompany your compiler software or
by an 8087, 80287, or 80387 coprocessor. The names of the functions that require
floating-point support are listed below:

acos cos _fmodl _powl
_acosl _cosl _ fmsbintoieee sin
asin cosh _fpreset _sinl
_asinl _coshl frexp sinh
atan _ dieeetomsbin _frexpl _sinhl
_atanl difftime _gcvt sqrt
atan2 _ dmsbintoieee _hypot _sqrtl
_atan21 _ecvt _hypotl _status87
atof exp Idexp strtod
_atold _expl _Idexpl _strtold
Bessel fabs log tan
_cabs 3absl _Iogl _tanl
_cabsl _fcvt loglO tanh
ceil _ fieeetomsbin _loglOI _tanhl
_ceill floor modf
_clear87 _floorl _modfl
_control87 fmod pow

Note that the Bessel routine does not correspond to a single function, but to 12
functions named _jO, _jl, _jn, _yO, _yl, _yn, _jOl, _jll, _jnl, _yOI, _yll, and
_ynl. Also note that the _clear87 and _control87 functions are not available with
the IFPa compiler option.

Using the Run-Time Library 15

Also requiring floating-point support is the printf family of functions (_ cprintf,
fprintf, printf, _snprintf, sprintf, vfprintf, vprintf, _ vsnprintf, and vsprintf).
These functions require support for floating-point input and output if used to print
floating-point values.

The compiler tries to detect whether floating-point values are used in a program so
that supporting functions are loaded only if required. This behavior saves a consid
erable amount of space for programs that do not require floating-point support.

When you use a floating-point type specifier in the format string for a printf or
scanf call, make sure you specify floating-point values or pointers to floating
point values in the argument list. These must correspond to any floating-point type
specifiers in the format string. The presence of floating-point arguments allows the
compiler to detect that floating-point support code is required. If a floating-point
type specifier is used to print an integer argument, for example, floating-point
values will not be detected because the compiler does not actually read the format
string used in the printf and scanf functions. For instance, the following program
produces an error at run time:

void main(void) /* This example causes an error */
{

long f = 10L;
printf("%f", fl;

In the preceding example, the functions for floating-point support are not loaded
because

• No floating-point arguments are given in the call to printf.

• No floating-point values are used elsewhere in the program.

As a result, the following error occurs:

Floating point not loaded

Here is a corrected version of the above call to printf in which the long integer
value is cast to double:

void main(void) /* This example works correctly */
{

}

long f = 10L;
printf("%f", (double) fl;

16 Run-Time library Reference

1.9 Using Huge Arrays with Library Functions
In programs that use small, compact, medium, and large memory models, the com
piler allows you to use arrays exceeding the 64K (kilobyte) limit of physical
memory in these models by explicitly declaring the arrays as __ huge. However,
generally, you cannot pass huge pointers as arguments to run-time library func
tions. In the compact-model library used by compact-model programs and in the
large-model library used by both large-model and huge-model programs, only the
functions listed below use pointer arithmetic that works with huge items:

bseareh _fmemmove mememp
fread _fmemset memepy
fwrite _halloe _memicmp
_fmemeepy _hfree memmove
_fmemehr _lfiod memset
_fmememp _lseareh qsort
_fmemepy _memeepy
_fmemicmp memehr

With this set of functions, you can read from, write to, search, sort, copy, initial
ize, compare, or dynamically allocate and free huge arrays; the huge array can be
passed without difficulty to any of these functions in a compact-, large-, or huge
model program. The model-independent routines in the above list (those beginning
with -0 are available in all memory models.

The memset, memepy, and mememp library routines are available in two ver
sions: as C functions and as intrinsic (inline) code. The function versions of these
routines support huge pointers in compact and large memory models, but the in
trinsic versions do not support huge pointers. (The function version of such
routines generates a call to a library function, whereas the intrinsic version inserts
inline code into your program. For information on how to select the intrinsic ver
sions of library routines, see the /Oi option in Chapter 13 of Environment and
Tools (in the Microsoft C/C++ version 7.0 documentation set) or consult your
compiler documentation.)

Run-Time Routines by Category

Microsoft run-time library routines handle various kinds of tasks. If you know the
type of task you need done, but don't know exactly which routine to use, the cate
gorized lists of routines in this chapter can help. The descriptions here are intended
only to give you a brief overview of the capabilities of the run-time library. For a
complete description of the behavior, syntax, and use of each routine, see Part 2,
"Run-Time Functions."

The main categories of library routines are

• Buffer manipulation

• Character classification and conversion

• Data conversion

• Directory control

• File handling

• Graphics

• Input and output

• Internationalization

• Math

• Memory allocation

• Process and environment control

• QuickWin

• Searching and sorting

• String manipulation

• System calls

• Time

• Variable-length argument lists

• Virtual memory allocation

18 Run-Time library Reference

2.1 Buffer Manipulation
The buffer-manipulation routines are useful for working with areas of memory on
a byte-by-byte basis. A "buffer" is an array of bytes, similar to a character string.
However, unlike strings, buffers are not usually terminated with a null character
(,\0') and can contain non-ASCII data. Therefore, the buffer-manipulation
routines always take a length or count argument. Function declarations for the
buffer-manipulation routines are given in the include files MEMORY.H and
STRING.H, except for the _swab function, which appears in STDLIB.H.

Routines beginning with _f are model independent; the _f stands for far. These
routines are useful in writing mixed-model programs because they can be called
from any program, regardless of the memory model being used.

Routine

_memccpy, _fmemccpy

memchr, _fmemchr

memcmp, _fmemcmp

memcpy, _fmemcpy

_memicmp, _fmemicmp

memmove, _fmemmove

memset, _ fmemset

Use

Copy characters from one buffer to another until a given
character or a given number of characters has been
copied

Return a pointer to the first occurrence, within a
specified number of characters, of a given character in
the buffer
Compare a specified number of characters from two
buffers

Copy a specified number of characters from one buffer to
another
Compare a specified number of characters from two
buffers without regard to the case of the letters
(uppercase and lowercase treated as equivalent)

Copy a specified number of characters from one buffer to
another

Use a given character to initialize a specified number of
bytes in the buffer

Swaps bytes of data and stores them at the specified
location

When the source and target areas overlap, only the memmove and _fmemmove
functions are guaranteed to copy the full source properly. (The memcpy and
_fmemcpy routines do not always copy the full source in such cases.)

Run-Time Routines by Category 19

2.2 Character Classification and Conversion
The character classification and conversion routines allow you to test individual
characters in a variety of ways and to convert between uppercase and lowercase
characters.

Routine

isalnum

isalpha
__ isascii

iscntrl
__ iscsym

__ iscsymf

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit
__ toascii

tolower

_tolower

toupper

_toupper

Use

Tests for alphanumeric character

Tests for alphabetic character

Tests for ASCII character

Tests for control character

Tests for letter, underscore, or digit

Tests for letter or underscore

Tests for decimal digit

Tests for printable character except space

Tests for lowercase character

Tests for printable character

Tests for punctuation character

Tests for white-space character

Tests for uppercase character

Tests for hexadecimal digit

Converts character to ASCII code

Tests character and converts to lowercase if uppercase

Converts character to lowercase (unconditional)

Tests character and converts to uppercase if lowercase

Converts character to uppercase (unconditional)

The classification routines identify characters by finding them in a table of classifi
cation codes. Using these routines to classify characters is generally faster than
writing a test expression such as the following:

if «c >= 0) I I (c <= 0x7f))

All of these routines are implemented in two versions: as functions and as macros.
The function prototypes and macro definitions appear in CTYPE.H. "Choosing
Between Functions and Macros" on page 9 explains how to choose the appropriate
version. The toupper and tolower functions are also declared in the STDLIB.H
header file.

20 Run-Time library Reference

2.3 Data Conversion
The data-conversion routines convert numbers to strings of ASCII characters and
vice versa. These routines are implemented as functions, all of which are declared
in the include file STDLIB.H. The atoffunction, which converts a string to a
floating-point value, is also declared in MATH.H.

Routine

abs

atof

atoi
atol
_atold

_eevt

_fevt
_gevt

_itoa

labs
_ltoa

strtod
strtol
_strtold

strtoul
_ultoa

2.4 Directory Control

Use

Finds absolute value of integer

Converts string to float

Converts string to int
Converts string to long

Converts string to long double

Converts double to string

Converts floating-point number to string
Converts floating-point number to string and stores it in a buffer

Converts int to string

Finds absolute value of long integer

Converts long to string

Converts string to double
Converts string to a long integer

Converts string to long double

Converts string to an unsigned long integer

Converts unsigned long to string

The directory-control routines let a program access, modify, and obtain informa
tion about the directory structure. These routines are functions and are declared in
DIRECT.H.

Routine

_chdir

_chdrive
_getewd

_getdrive
_mkdir

_rmdir

_searehenv

Use

Changes current working directory

Changes current drive
Gets current working directory for the specified drive

Gets current working directory

Makes a new directory

Removes a directory
Searches for a given file on specified paths

Run-Time Routines by Category 21

2.5 File Handling
The file-handling routines let you create, manipulate, and delete files. They also
set and check file-access permissions.

File-handling routines work on a file designated by a path name or by a "file
handle," an integer assigned by the operating system that identifies an open file.
These routines modify or give information about the designated file. Most of them
are declared in the include file lO.H, with the exceptions being the _fstat and
_stat functions (declared in SYS\STAT.H), the 3ullpath routine (declared in
DIRECT.H), and the remove and rename functions (also declared in STDIO.H).

Routine

_access

_chmod

_chsize

_filelength

_fstat

_fullpath

_isatty

_locking

_makepath

_mktemp

remove

rename

_setmode

_splitpath

_stat

_umask

_unlink

Use

Checks file-permission setting

Changes file-permission setting

Changes file size

Gets file length

Gets file-status information on handle

Makes an absolute path name from a relative path name

Checks for character device

Locks areas of file (available with DOS versions 3.0 and later)

Merges path-name components into a single, full path name

Creates unique filename

Deletes file

Renames file

Sets file-translation mode

Splits a path name into component pieces

Gets file-status information on named file

Sets default-permission mask

Deletes file

The _access, _chmod, _fullpath, _makepath, remove, rename, _splitpath,
_ stat, and _ unlink routines operate on files specified by a path name or filename.

The _chsize, _filelength, _fstat, _isatty, _locking, and _setmode routines work
with files designated by a file handle.

The _ mktemp and _ umask routines have functions that are slightly different
from the other routines. The _mktemp routine creates a unique filename; you can
use _mktemp to create unique filenames that do not conflict with the names of ex
isting files. The _ umask routine sets the default permission mask for any new
files created in a program. The mask can override the permission setting given in
the _open or _creat call for the new file.

22 Run-Time library Reference

2.6 Graphics
The Microsoft run-time library includes a set of graphics routines that offer a wide
variety of graphics functions, low-level graphics primitives, font functions, and
presentation graphics (displays such as graphs and pie charts).

Graphics functions are supplied in two libraries that must be explicitly linked with
your program. The GRAPHICS.LIB library provides support for low-level
graphics and character-font routines. The library PGCHART.LIB supports
presentation-graphics routines.

low-level Graphics and Character-Font Functions
The low-level graphics and font functions are declared in the include file
GRAPH.H.

The library can be divided into the eight categories listed below, which correspond
to the different tasks involved in creating and manipulating graphic objects.

Category

Configuring mode and environment

Setting coordinates

Setting low-level graphics palettes

Setting attributes

Creating graphics output

Creating text output

Transferring images

Displaying fonts

Task

Selects the proper display mode for the
hardware and establishes memory areas for
writing and displaying images

Specifies the logical origin and the active
display area within the screen

Specifies a palette mapping for low-level
graphics routines

Specifies background and foreground colors,
fill masks, and line styles for low-level
graphics routines

Draws and fills figures

Writes text on the screen

Stores images in memory and retrieves them

Displays text in character fonts compatible
with Microsoft Windows

The following sections explain each of these categories.

Configuring Mode and Environment
Routines that configure the mode and environment establish the graphics or text
mode of operation, determine the current graphics environment, and control the
display of the cursor.

Routine

_clearscreen

_ getactivepage

_getbkcolor

_ getvideoconfig

_ getvisualpage
_grstatus

_setactivepage

_setbkcolor

_settextrows
_ setvideomode

_setvideomoderows

_setvisualpage

Setting Coordinates

Run-Time Routines by Category 23

Use

Erases the screen and fills it with the current background
color

Gets the current active page number

Returns the current background color

Obtains status of current graphics environment

Gets the current visual page number

Returns the status of the most recent graphics function call

Sets memory area for the active page for writing images

Sets the current background color

Sets the number of text rows

Selects an operating mode for the display screen

Sets the video mode and the number of rows for text
operations

Sets memory area for the current visual page

The "set coordinates" routines set the current text or graphics position and convert
pixel coordinates between the various graphics coordinate systems.

The Microsoft graphics functions recognize three sets of coordinates:

• Fixed physical coordinates

• View coordinates defined by the application

• Window coordinates that can include floating-point values

The functions in this category establish window and view coordinate systems and
translate between physical, view, and window coordinate systems.

Routine

_ getcurrentposition

_getcurrentpositiOIL w
_ getphyscoord
_ getviewcoord

getviewcoord w

getviewcoord wxy

_getwindowcoord

_setcliprgn

_setvieworg

Use

Determines current position in view coordinates

Determines current position in window coordinates

Converts view coordinates to physical coordinates

Converts physical coordinates to view coordinates

Converts window coordinates to view coordinates

Converts window coordinates in _ wxycoord structure to
view coordinates

Converts view coordinates to window coordinates

Limits graphic output to a region of the screen

Positions the view-coordinate origin

24 Run-Time library Reference

Routine

_setviewport

_setwindow

Use

Limits graphics output to a region of the screen and
positions the view-coordinate origin to the upper-left
comer of that region

Defines a floating-point window coordinate system

The default view coordinate system is identical to the physical screen coordinate
system. The physical origin (0, 0) is always in the upper-left comer of the display.
The x axis extends in the positive direction left to right, while the y axis extends in
the positive direction top to bottom.

The physical horizontal and vertical dimensions depend on the hardware display
configuration and the selected mode. These values are accessible at run time by ex
amining the numxpixels and numypixels fields of the _ videoconfig structure re
turned by _getvideoconfig. (The _getvideoconfig routine is listed in the previous
section.)

The _setvieworg function allows you to move the viewport origin to a new posi
tion relative to the physical screen.

Routines that refer to coordinates on the physical screen or viewport require in
teger values. However, in real-world graphing applications, you might wish to use
floating-point values, such as stock prices or average rainfall. The window coordi
nate system allows you to display graphics using floating-point values instead of
integers.

The _ getcurrentposition and _ getcurrentposition_ w routines allow you to
determine the location of the current graphics-output point.

The _setcliprgn function defines a restricted active display area on the screen.
The _ setviewport function does the same thing and also resets the viewport origin
to the upper-left comer of the restricted active display area.

The physical coordinates of any view-coordinate point can be determined with the
_getphyscoord function, and the view coordinates of any physical point can be
determined with the _getviewcoord function.

The view coordinates of any window coordinate can be determined with the
getviewcoord wand _getviewcoord_ wxy functions. The window coordinates
of any view coordinate can be determined with the _getwindowcoord function.

The _setwindow function defines the current viewport as a real-coordinate win
dow bound by the specified floating-point values.

Run-Time Routines by Category 25

Setting low-level Graphics Palettes
Use the low-level palette routines to select or remap color palettes.

Routine

_remapallpalette

_remappalette

_ selectpalette

Use

Changes all color indexes in the current palette

Changes a single color index in the current palette

Selects a predefined palette

Some video modes support a "color palette," which is a table of the color values
that can be displayed together on the screen at any given time. A "color value" is a
long integer representing a color that can be displayed on your system.

In CGA color graphics modes, you can use the _selectpalette routine to choose
one of several predefined palettes.

On EGA, MCGA, VGA, and SVGA video systems, you can "remap" (change) the
palette using the _remappalette or _remapallpalette routines. For instance, the
EGA _ERESCOLOR mode offers a total of 64 color values, of which 16 can be
displayed at a time. In this mode, the palette contains 16 "color indices," or slots to
which you can assign color values.

The _ remappalette routine changes a single color index to a specified color
value. The _ remapallpalette routine changes all of the available palette entries
simultaneously.

Setting Attributes
The low-level output functions that draw lines, arcs, ellipses, and other basic
figures do not specify color or line-style information. Instead, the low-level
graphics functions rely on a set of attributes that are set independently by the
following functions:

Routine

_getarcinfo

_getcolor

_getfillmask

_getlinestyle

_getwritemode

_setcolor

_setfillmask

_setlinestyle

_setwritemode

Use

Determines the endpoints in viewport coordinates of the most
recently drawn arc or pie

Gets the current color

Gets the current fill mask

Gets the current line-style mask

Gets the current logical write mode

Sets the current color

Sets the current fill mask

Sets the current line-style mask

Sets logical write mode for line drawing

26 Run-Time Library Reference

The _getcolor and _setcolor functions get or set the current color index for
graphics and font output. The _ getbkcolor and _ setbkcolor functions get or set
the current background color. (The _ getbkcolor and _ setbkcolor functions are
listed in "Configuring Mode and Environment" on page 22.)

The _ getfillmask and _ setfillmask functions get or set the current fill mask. The
mask is an 8-by-8-bit template array, with each bit representing a pixel. If a bit is
0, the pixel in memory is left untouched, as the mask is transparent to that pixel. If
a bit is 1, the pixel is assigned the current color value. The template is repeated as
necessary over the entire fill area.

The _getlinestyle and _setlinestyle functions get or set the current line style. The
line style is determined by a 16-bit template buffer with each bit corresponding to
a pixel. If a bit is 1, the pixel is set to the current color. If a bit is 0, the pixel is not
changed. The template is repeated for the length of the line.

The _getwritemode and _setwritemode functions get or set the logical write
mode for straight-line drawing. The default mode, _GPSET, causes lines to be
drawn in the current graphics color. Other modes combine the current graphics
color and the original screen image using various logical operations.

Creating Graphics Output
The graphics output functions use a set of specified coordinates and draw various
figures. They use the current or default attributes for line-style mask, fill mask,
write mode, background color, and foreground color.

The name of each function announces its task or the figure it draws, as the
following list indicates:

Routine

_arc, _arc_ w, _arc_ wxy

_ellipse, _ellipsL w,
_ ellipsL wxy

_floodfill, _floodfilL W

_ getcurrentposition,
_ getcurrentpositiolL W

_getpixel, _getpixeL W

_lineto, _lineto_ W

_ pie, _ piL W, _ pie_ wxy

_ polygon, _ polygolL W,

_ polygolL wxy

Use

Draw an arc

Draw an ellipse or circle

Flood-fill an area of the screen with the current color

Obtain the current graphic-output position used by
_lineto and _outgtext

Obtain a pixel's color

Draw a line from the current graphic-output position to a
specified point

Move the current graphic-output position to a specified
point

Draw a pie-slice-shaped figure

Draw or scan-fill a polygon

Routine

_rectangle,
rectangle w,
rectangle wxy

Run-Time Routines by Category 27

Use

Draw or scan-fill a rectangle

_ setpixel, _ setpixeL w Set a pixel's color

Most of these routines are available in several forms, which are indicated by their
names. Output functions without a suffix use the view coordinate system. Func
tions that end with _ w take double values as arguments and use the window
coordinate system. Functions that end with _ wxy use _ wxycoord structures to
define the coordinates and use the window coordinate system.

Circular figures, such as arcs and ellipses, are centered within a "bounding rec
tangle" specified by two points that define the diagonally opposed corners of the
rectangle. The center of the rectangle becomes the center of the figure, and the
rectangle's borders determine the size of the figure.

Creating Text Output
The next group of routines provides text output in both graphics and text modes.
Unlike the standard console 110 library routines, these functions recognize text
window boundaries and use the current text color.

Routine

_displaycursor

_ gettextcolor

_ gettextcursor

_ gettextposition

_ gettextwindow

_outmem

_outtext

_ scrolltextwindow

_settextcolor

_settextcursor

_ settextposition

_ settextwindow

_wrapon

Use

Sets the cursor on or off upon exit from a graphics routine

Obtains the current text color

Returns the current cursor attribute (text modes only)

Obtains the current text-output position

Gets the current text window boundaries

Prints text of a specified length from a memory buffer

Outputs a text string to the screen at the current text position

Scrolls the current text window up or down

Sets the current text color

Sets the current cursor attribute (text modes only)

Relocates the current text position

Defines the current text-display window

Enables or disables line wrap

The _outtext and _outmem routines provide no formatting. If you want to output
integer or floating-point values, you must convert the values into a string variable
(using the sprintffunction) before calling these routines.

28 Run-Time library Reference

The _outtext routine recognizes the \0 (newline character) and \r (carriage return)
sequences. The _ outmem routine treats these sequences as printable graphics
characters.

Transferring Images
The functions in this category transfer screen images between memory and the dis
play, using a buffer allocated by the application, or determine the size in bytes of
the buffer needed to store a given image.

The functions that end with _ w or _ wxy use window coordinates; the other func
tions in this set use view coordinates.

Routine

_getimage,
_ getimage_ w,
_ getimage_ wxy

_ imagesize,
_ imagesize_ w,
_ imagesize_ wxy

_putimage,
_ putimage_ w

Use

Store a screen image in memory

Return the size (in bytes) of the buffer needed to store the
image

Retrieve an image from memory and display it

In some cases, the buffer needed to store an image with the _getimage functions
must be larger than 64K (65,534) bytes. Use the _halloc routine to allocate a
buffer larger than 64K.

Displaying Fonts
The functions listed in this section control the display of font-based characters on
the screen.

Routine

_ getfontinfo

_ getgtextextent

_ getgtextvector

_outgtext

_ registerfonts

_setfont

Use

Obtains the current font characteristics

Determines the width in pixels of specified text in the current
font

Gets orientation of font text output

Outputs text in the current font to the screen at the specified
pixel position

Initializes font library

Finds a single font that matches a specified set of characteristics
and makes this font the current font for use by the _outgtext
function

Run-Time Routines by Category 29

Routine Use

_ setgtextvector

_ ungisterfonts

Sets the current orientation for font text output

Frees memory allocated by _registerfonts

Presentation-Graphics Functions
The presentation-graphics functions are declared in the PGCHART.H include file.
The library can be divided into the three categories listed below, corresponding to
the different tasks involved in creating and manipulating graphic objects:

Category

Displaying presentation graphics

Analyzing presentation-graphics data

Manipulating presentation-graphics
structures

Task

Initializes video structures for presentation
graphics and establishes the default chart
type. Displays presentation-graphics chart:
bar, column, pie, scatter, or line chart.

Analyzes data (does not display chart).

Modifies basic chart structures (e.g., palettes,
cross-hatching styles).

Displaying Presentation Graphics
The functions listed in this section initialize the presentation-graphics library and
display the specified graph type.

Because the _ pg_initchart routine initializes the presentation-graphics library, it
must be called before any other function in the presentation-graphics library. The
_ pg.... defaultchart function initializes the variables in the chart environment.

The other routines in this category display the specified graph. The single-series
versions plot one set of data, and the multiseries versions (those ending with an ms
suffix) plot several sets of data in the same chart style.

Presentation-graphics programs can display text in different font sizes by taking
advantage of font-based characters (see the previous section, "Displaying Fonts").
Call the _ registerfonts and _ setfont routines to select a font before calling the
_ pg.... initchart routine. Subsequent charts use the selected font. You can later call
the _ unregisterfonts routine to restore the default character font and free the
memory previously allocated for fonts.

Note If your program uses the alternate math package-if it is compiled with
IFPa-it cannot use the PGCHART.LIB module.

30 Run-Time library Reference

Routine

_p~chart

_p~chartms

_ p~ chartpie

_ p~ chartscatter

_ p~ chartscatterms

_ p~ defaultchart

_ p~ initchart

Use

Displays a single-series bar, column, or line chart

Displays a multiseries bar, column, or line chart

Displays a pie chart

Displays a scatter diagram for a single series of data

Displays a scatter diagram for more than one series of data

Initializes all necessary variables in the chart environment for
a specified chart type

Initializes the presentation-graphics library

Analyzing Presentation-Graphics Charts
These routines calculate default values for the specified graph type but do not dis
play the chart. The single-series versions analyze one set of data, and the multi
series versions analyze several sets of data in the same chart style.

Routine

_ p~ analyzechart

_ p~ analyzechartms

_ p~ analyzepie

_ p~ analyzescatter

Use

Analyzes a single series of data for a bar, column, or line
chart

Analyzes a multi series of data for a bar, column, or line
chart

Analyzes data for a pie chart

_ p~ analyzescatterms

Analyzes a single series of data for a scatter diagram

Analyzes a multi series of data for a scatter diagram

Manipulating Presentation-Graphics Structures
These functions control low-level aspects of the presentation-graphics package.

Routine

_ p~ getchardef

_ p~ getpalette

_ p~ getstyleset

_ p~hlabeIchart

_ p~ resetpalette

_ p~ resetstyleset

_ p~ setchardef

Use

Retrieves the current 8-by-8-pixel bit map for a specified
character

Retrieves current colors, line styles, fill patterns, and plot
characters for all presentation-graphics palettes

Retrieves the contents of the current styleset

Writes text horizontally on the screen

Sets current colors, line styles, fill patterns, and plot characters
to the default values for the current screen mode

Resets the contents of the current style set to the default value for
the current screen mode

Sets the 8-by-8-pixel bit map for a specified character

Routine

_ p~ setpalette

_ p~ setstyleset
_ pg_ vlabelchart

2.7 Input and Output

Run-Time Routines by Category 31

Use

Sets current colors

Sets the contents ofthe current styleset

Writes text vertically on the screen

The input and output (I/O) routines allow you to read and write data to and from
files and devices. In C, there are no predefined file structures; all data items are
treated as sequences of bytes. The following three types of I/O functions are
available:

• Stream

• Low-level

• Console and port

The stream I/O functions treat data as a stream of individual characters. By
choosing among the many stream functions available, you can process data in
different sizes and formats, from single characters to large data structures. Stream
I/O also provides buffering, which can significantly improve performance.

The low-level I/O routines do not perform buffering and formatting. Instead, they
invoke the operating system's input and output capabilities directly. These
routines let you access files and peripheral devices at a more basic level than the
stream functions.

The console and port I/O routines allow you to read or write directly to a console
(keyboard and screen) or an I/O port (such as a printer port). The port I/O routines
simply read and write data in bytes. With console I/O routines, some additional
options are available, such as detecting whether a character has been typed at the
console. You can also choose between echoing characters to the screen as they are
read or reading characters without echoing.

The run-time library also provides a number of direct DOS I/O system-call
routines. These are described in "System Calls" on page 55.

You can perform file I/O operations in two modes: text and binary. The following
section describes these modes and their use. You can also ensure that the fflush
and _flushall routines write data to storage media rather than to just the operating
system's buffers. See "Stream Routines" on page 33.

32 Run-Time library Reference

Warning! Because stream routines are buffered and low-level routines are not, the
two types of routines are generally incompatible. You should use either stream or
low-level routines consistently for processing a given file.

Text and Binary Modes
Many C and c++ programs use data files for input and output. With DOS, data
files are normally processed in text mode. In this mode, each carriage-return
line-feed (CR-LF) combination is translated into a single line-feed character
during input. During output, each line-feed character is translated into a CR-LF
combination.

Sometimes you may want to process a file without making those translations. In
these cases you use binary mode, which suppresses CR-LF translations.

You can control the file translation mode in the following ways:

• To process a few selected files in binary mode, while retaining the default text
mode for most files, you can specify binary mode when you open the selected
files. The fopen routine opens a file in binary mode when you specify the letter
b in the access-mode string for the file. The _open routine opens a file in bi
nary mode when you specify the _ O_BINARY flag in the oflag argument. For
more information about fopen and _ open, see the reference description of each
routine.

• To process most or all files in binary mode, you can change the default mode to
binary. The global variable _fmode controls the default translation mode,
which is normally text. If you set _fmode to _ O_BINARY, the default mode
is binary except for stdaux and stdprn, which are opened in binary mode by
default.

You can change the value of _fmode in two ways:

• Link with the file BINMODE.OBJ (supplied with Microsoft C/C++). This
changes the initial setting of _fmode to the _O_BINARY flag, causing all
files except stdin, stdout, and stderr to be opened in binary mode.

• Change the value of _fmode directly by setting it to the _O_BINARY flag in
your program. This has the same effect as linking with BINMODE.OBJ.

You can still override the default mode (now binary) for a particular file by
opening it in text mode. Specify the letter t when using fopen, or specify the
0 TEXT flag when using _open.

By default, the stdin, stdout, and stderr files are opened in text mode, and the
stdaux and stdprn files are opened in binary mode. The _setmode routine allows
you to change these defaults or change the mode of a file after it has been opened.
See the reference description of _setmode for details.

Stream Routines

Run-Ti me Routines by Category 33

Stream I/O functions handle data as a continuous stream of characters. To use the
stream functions, you must include the file STDIO.H in your program. This file de
fines constants, types, and structures used in the stream functions, and contains
function declarations and macro definitions for the stream routines.

When a file is opened for I/O using the stream functions, the opened file is as
sociated with a structure of type nLE (defined in STOIO.H) containing basic in
formation about the file. A pointer to the FILE structure is returned when the
stream is opened. Subsequent operations use this pointer (also called the "stream
pointer," or just "stream") to refer to the file.

The stream functions provide for buffered, formatted, or unformatted input and
output. When a stream is buffered, data that is read from or written to the stream is
collected in an intermediate storage location called a "buffer." In write operations,
the output buffer's contents are written to the appropriate final location when the
buffer is full, the stream is closed, or the program terminates normally. The buffer
is said to be "flushed" when this occurs. In read operations, a block of data is
placed in the input buffer. When the input buffer is empty, the next block of data is
transferred into the buffer.

Buffering produces efficient I/O because the system can transfer a large block of
data in a single operation rather than performing an I/O operation each time a data
item is read from or written to a stream. However, if a program terminates abnor
mally, output buffers may not be flushed, resulting in loss of data.

You can use the fflush and _ flushall routines to ensure that the buffer associated
with the specified file or all of the open buffers are flushed to the operating sys
tem. If a file was opened with fopen or _ fdopen and the c flag, or if the program
is linked with COMMODE.OBI, the contents of a flushed buffer are written to
disk.

Some of the constants defined in STDTO.H may be useful in your program. The
manifest constant EOF is defined to be the value returned at end-of-file. NULL is
the null pointer. FILE is the structure that maintains information about a stream.
BUFSIZ defines the default size of stream buffers, in bytes.

Routine

clearerr

fclose

_fcloseall

_fdopen

feof

ferror

fflush

Use

Clears the error indicator for a stream

Closes a stream

Closes all open streams

Associates a stream with an open file handle

Tests for end-of-file on a stream

Tests for error on a stream

Flushes a stream

34 Run-Time Library Reference

Routine

fgetc
_fgetchar

fgetpos

fgets

_fileno

_flushall

fopen

fprintf

fputc

_fputchar

fputs

fread

freopen

fscanf
fseek

fsetpos

_fsopen

ftell
fwrite

getc

getchar

gets
_getw

printf

putc

putchar

puts

_putw

rewind

_rmtmp

scanf

setbuf

setvbuf

_snprintf

sprintf

sscanf

Use

Reads a character from a stream (function version)

Reads a character from stdin (function version)

Gets the position indicator of a stream

Reads a string from a stream

Gets the file handle associated with a stream

Flushes all streams

Opens a stream

Writes formatted data to a stream

Writes a character to a stream (function version)

Writes a character to stdout (function version)

Writes a string to a stream

Reads unformatted data from a stream

Reassigns a FILE pointer to a new file

Reads formatted data from a stream
Moves file position to a given location

Sets the position indicator of a stream

Opens a stream with file sharing

Gets current file position
Writes unformatted data items to a stream

Reads a character from a stream

Reads a character from stdin

Reads a line from stdin

Reads a binary int item from a stream

Writes formatted data to stdout

Writes a character to a stream

Writes a character to stdout

Writes a line to a stream

Writes a binary int item to a stream

Moves file position to beginning of a stream

Removes temporary files created by tmpfile

Reads formatted data from stdin

Controls stream buffering

Controls stream buffering and buffer size

Writes formatted data of a specified length to a string

Writes formatted data to a string

Reads formatted data from a string

Routine

_tempnam

tmpfile

tmpnam

ungetc

vfprintf

vprintf

_vsnprintf

vsprintf

Run-Time Routines by Category 35

Use

Generates a temporary filename in given directory

Creates a temporary file

Generates a temporary filename

Places a character in the buffer

Writes formatted data to a stream

Writes formatted data to stdout

Writes formatted data of a specified length to a string

Writes formatted data to a string

Opening a Stream
A stream must be opened using the _fdopen, fopen, freopen, or _fsopen function
before input and output can be performed on that stream. When opening a stream,
the named stream can be opened for reading, writing, or both, and it can be opened
in either text or binary mode.

The _fdopen, fopen, freopen, and _fsopen functions return a FILE pointer. You
normally assign the pointer value to a variable and use the variable to refer to the
opened stream. For instance, if your program contains the lines

FILE *infile
infile = fopen ("test.dat", "r");

you can use the FILE pointer variable i nfi 1 e to refer to the stream.

Using Predefined Stream Pointers
When a program begins execution, the startup code automatically opens several
streams: standard input, standard output, and standard error. By default, the stand
ard input, standard output, and standard error streams are directed to the console
(keyboard and screen). This means that when a program expects input from the
"standard input," it receives that input from the console. Similarly, a program that
writes to the "standard output" prints its data to the console. Error messages
generated by the library routines are sent to the "standard error," meaning that
error messages appear on the user's console.

With DOS, two additional streams are opened: standard auxiliary and standard
print. The assignment of standard auxiliary and standard print depends on the ma
chine configuration. These streams usually refer to the first serial port and a printer
port, but those ports may not be available on some systems. Be sure to check your
machine configuration before using these streams.

36 Run-Time Library Reference

You can refer to the standard streams with the following predefined stream
pointers:

Pointer

stdin

stdout
stderr
stdaux

stdprn

Stream

Standard input

Standard output

Standard error

Standard auxiliary (DOS only)

Standard print (DOS only)

You can use these pointers in any function that requires a stream pointer as an ar
gument. Some functions, such as getchar and putchar, are designed to use stdin
or stdout automatically. The pointers stdin, stdout, stderr, stdaux, and stdprn
are constants, not variables; do not try to assign them a new stream pointer value.

DOS allows you to redirect a program's standard input and standard output at the
operating-system command level. See your operating-system user's manual for a
complete discussion of redirection.

Within your program, you can use freopen to redirect stdin, stdout, stderr,
stdaux, or stdprn so that it refers to a disk file or to a device. See the reference
description of freopen for more details.

Controlling Stream Buffering
As mentioned earlier, stream routines can use in-memory buffers to speed I/O
operations. Files opened using the stream routines are buffered by default, except
for stdaux and stdprn, which are normally unbuffered. The stdout and stderr
streams are flushed whenever they are full or (if you are writing to a character
device) after each library call.

By using the setbuf or setvbuffunction, you can cause a stream to be unbuffered,
or you can associate a buffer with an unbuffered stream. Buffers allocated by the
system are not accessible to you, but buffers allocated with setbuf or setvbuf refer
to arrays in your program and can be manipulated. Buffers can be any size up to
INT_MAX bytes. This size is set by the manifest constant BUFSIZ in STDIO.H
if you use seftbuf; if you use setvbuf, you can set the size of the buffer yourself.
(See the descriptions of setbuf and setvbuf in the reference section for more
details.)

Note These routines affect only buffers created by the run-time library routines.
They have no effect on buffers created by the operating system.

Run-Time Routines by Category 37

Committing Buffer Contents to Disk
Normally, both the fflush and the _flushall functions pass the contents of a pro
gram buffer to the operating system, which can cache data before writing it to
disk. In the case of a system failure, data cached by the operating system will be
lost. The commit-to-disk feature ensures that the flushed contents of a buffer are
written to storage media.

There are two ways to commit buffer contents to disk:

• Link with the file COMMODE.OBJ (provided with Microsoft C/C++) to set a
global commit flag. The default setting ofthe global flag is "no-commit."

• Set the c "commit" flag with fopen or _fdopen to open the file in commit
mode. The n flag specifies the "no-commit" mode.

COMMODE.OBJ allows existing code to use the commit feature. Any file
specifically opened with either the c or the n flag will behave according to the
flag, regardless of the state of the global commit/no-commit flag. Thus, some files
can be opened with committing contents to disk and some without.

Closing Streams
The fclose and _fcloseall functions close a stream or streams. The fclose routine
closes a single specified stream; _fcloseall closes all open streams except stdin,
stdout, stderr, stdaux, and stdprn. If your program does not explicitly close a
stream, the stream is automatically closed when the program terminates. How
ever, it is a good practice to close a stream when your program is finished with it,
as the number of streams that can be open at a given time is limited.

Reading and Writing Data
The stream functions allow you to transfer data in a variety of ways. You can read
and write binary data (a sequence of bytes), or specify reading and writing by
characters, lines, or more complicated formats.

Reading and writing operations on streams always begin at the current position of
the stream, known as the "file pointer" for the stream. The file pointer is changed
to reflect the new position after a read or write operation takes place. For example,
if you read a single character from a stream, the file pointer is increased by one
byte so that the next operation begins with the first unread character. If a stream is
opened for appending, the file pointer is automatically positioned at the end of the
file before each write operation.

38 Run-Time Library Reference

When switching directly between output and input, there must be an intervening
call to the mush function or to a file-positioning function (fseek, fsetpos, or
rewind). Input can be directly followed by output without an intervening call to a
file-positioning function if the input operation encounters end-of-file.

The fseek and fsetpos functions allow you to position the file pointer anywhere in
a file. The next operation occurs at the position you specified. The rewind routine
positions the file pointer at the beginning of the file. Use the ftell or fgetpos
routine to determine the current position of the file pointer.

The feofmacro detects an end-of-file condition on a stream. Once the end-of-file
indicator is set, it remains set until the file is closed, or until clearerr, fseek,
fsetpos, or rewind is called.

Streams associated with a character-oriented device (such as a console) do not
have file pointers. Data coming from or going to a console cannot be accessed ran
domly. Routines that set or get the file-pointer position (such as fseek, fgetpos,
fsetpos, ftell, or rewind) have undefined results if used on a stream associated
with a character-oriented device.

Detecting Errors
When an error occurs in a stream operation, an error indicator for the stream is set.
You can use the ferror macro to test the error indicator and determine whether an
error has occurred. Once an error has occurred, the error indicator for the stream
remains set until the stream is closed, or until you explicitly clear the error indica
tor by calling clearerr or rewind.

Low-Level Routines
Low-level input and output calls do not buffer or format data. Declarations for the
low-level functions are given in the include files IO.H, FCNTL.H, SYS\TYPES.H,
and SYS\STAT.H. Unlike the stream functions, low-level functions do not require
the include file STDIO.H. However, some common constants are defined in
STDIO.H; for example, the end-of-file indicator (EOF) may be useful. If your
program requires these constants, you must include STDIO.H.

Routine

_close

_commit
_creat
_dup

_dup2

_eof

Use

Closes a file

Flushes a file to disk

Creates a file

Creates a second handle for a file

Reassigns a handle to a file

Tests for end-of-file

Run-Ti me Routines by Category 39

Routine Use

_lseek

_open

_read

_sopen

_tell

_umask

_write

Repositions file pointer to a given location

Opens a file

Reads data from a file

Opens a file for file sharing

Gets current file-pointer position

Sets default file-permission mask

Writes data to a file

Opening a File
You must open a file before performing 110 functions on it. The _ open function
opens a file; it can also create the file when opening it. With DOS versions 3.0 and
later, you can use _sopen to open a file with file-sharing attributes. The _creat
function can create and open a file.

The file can be opened for reading, writing, or both, and opened in either text or bi
nary mode (see "Text and Binary Modes" on page 32). The include file FCNTL.H
must be included when opening a file, as it contains definitions for flags used in
_open. In some cases, the files SYS\TYPES.H and SYS\STAT.H must also be in
cluded; for more information, see the reference description for the _open function.

These functions return a file handle, which is normally assigned to an integer
variable. You use the variable to refer to the opened file.

Reading and Writing Data
Use the _ read and _ write routines to read and write to files. These operations
begin at the current position in the file. The current position is updated each time a
read or write operation occurs.

The _lseek function allows you to place the file pointer anywhere in the file. The
next operation occurs at the position you specified. The _ tell function indicates
the current position of the file pointer. The _ eof routine tests for the end of the file.

Low-level 110 routines set the errno variable when an error occurs. Chapter 3,
"Global Variables and Standard Types," describes errno.

Character-oriented devices, such as the console, do not have file pointers. The
_lseek and _ tell routines have undefined results if used on a handle associated
with a device.

40 Run-Time library Reference

Closing Files
The _close function closes an open file. Open files are automatically closed when
a program terminates. However, it is a good practice to close a file when your pro
gram is finished with it, as there is a limit to the number of files that can be open at
one time.

Using Predefined Handles
When a program begins execution, five files are automatically opened: standard
input, standard output, standard error, standard auxiliary, and standard print.

Low-level routines can access these files using the following predefined handles:

Stream Handle

stdin 0

stdont
stderr 2

stdanx (DOS only) 3

stdprn (DOS only) 4

You can use these file handles without previously opening the files. The files are
opened and the handles are assigned when the program starts.

The _dup and _dup2 functions allow you to assign multiple handles for the same
file. These functions are typically used to associate the predefined file handles
with different files.

With DOS and Windows, you can redirect the standard input and standard output
at the operating-system command level. See your operating-system user's manual
for a complete discussion of redirection.

Increasing the Maximum Number of File Handles and Streams
You can change the maximum number of file handles and streams that your pro
gram can handle. The process is simple and involves changing some constants in
the startup source files, which are provided with Microsoft CIC++, and then com
piling and linking the new startup code with your program. The following sections
describe the process.

Run-Time Routines by Category 41

Increasing File Handles
DOS, Windows, and QuickWin use the value of the constant _NFILE_ to establish
the maximum number of available file handles. To increase the number of file han
dles, edit the startup source file CRTODAT.ASM and change the line

NFl LE_ = 20

so that _ NFl LC is set to the desired maximum. For example, to increase the maxi
mum number of available file handles to 40, change the line as shown here:

NFILC = 40

CRTODAT.ASM contains a section of conditional code that is automatically
enabled when you change the value of _NFILE_.

QuickWin uses the constant _ WFILE_ to establish the maximum number of availa
ble text child windows. You can edit CRTODAT.ASM to change _ WFILE_.
Change the line

WFl LE_ = 20

so that _ W F I LEis set to the desired maximum. For example, to increase the maxi
mum number of available text child windows to 40, change the line as shown here:

WFl LE_ = 40

Note Increasing the number of file handles allows you to use low-level 110 func
tions, such as _open and _read, with more files. However, it does not affect the
number of stream-level 110 files (that is, the number of FILE * streams).

Increasing Streams
To increase the maximum number of streams, edit one or more of the following
source files and constants:

System Source File Constant

DOS _FILE.C _NFILE_

Windows and QuickWin FILRASM _NFILE_

QuickWin WFILE.ASM _WFILE_

42 Run-Time Library Reference

For DOS, Windows, and QuickWin, change the line

NFILE equ 20

to set _ NFl L E_ to the desired maximum. For example, to allow a maximum of 40
streams, change the line as shown here:

NFILE equ 40

In addition, you can change the value of the constant _ WFILE_, found in
WFILE.ASM, to increase the maximum number of available QuickWin text child
windows.

Increasing the number of streams allows you to use stream-level I/O functions,
such as fopen and fread, with more files.

Note The number of low-level file handles must be greater than or equal to the
number of stream-level files. For example, if you increase the value of _NFILE_
in the module _FILE.C, you must also increase the value of _NFILE_ in the mod
ule CRTODAT.ASM. Similarly, if you increase the value of _ WFILE_ in the mod
ule WFILE.ASM, you must also increase the value of _ WFILE_ in the module
CRTODAT.ASM.

Increasing the System Limit
To use more than 20 files at a time, you must increase the file limit imposed on
your process by the operating system.

To increase the system-wide limit, increase the number of files available on your
system as a whole by editing your system configuration file (CONFIG.sYS). For
example, to allow 50 open files at a time on your system, put this statement in the
configuration file:

FILES=50

Using the Modified Startup Files
After you modify one or more of the startup source files, you need to recompile
the file(s) using the batch file CSTARTUP.BAT. Be sure to read the file
README.TXT, which is located in the same directory as CSTARTUP.BAT,
before running the batch file.

To use a new object file, either explicitly link your program with it or replace it in
the appropriate model of the run-time library. For example, after you assemble
CRTODAT.ASM, the object file will be CRTODAT.OBJ.

Run-Time Routines by Category 43

Console and Port 110
The console and port 1/0 routines are implemented as functions and are declared
in the include file CONIO.H. These functions perform reading and writing opera
tions on your console or on the specified port. The _cgets, _cscanf, _getch,
_getche, and _kbhit routines take input from the console, while _cprintf,
_ cputs, _ putch, and _ ungetch write to the console. The input or output of these
functions can be redirected.

Routine

_cgets
_cprintf
_cputs
_cscanf
_getch
_getche
_inp
_inpw

_kbhit

_outp
_outpw
_putch

_ungetch

Use

Reads a string from the console

Writes fonnatted data to the console

Writes a string to the console

Reads fonnatted data from the console

Reads a character from the console

Reads a character from the console and echoes it

Reads one byte from the specified 110 port

Reads a two-byte word from the specified 110 port

Checks for a keystroke at the console

Writes one byte to the specified 110 port

Writes a two-byte word to the specified 110 port

Writes a character to the console

"Ungets" the last character read from the console so that it becomes
the next character read

Note Programs that need only run under DOS can also use a number of direct
DOS 110 system calls (_doLopen, _dOL read, _doLciose, etc.). These are
described in detail in "System Calls" on page 55.

The console or port does not have to be opened or closed before 110 is performed,
so there are no open or close routines in this category. The port 110 routines _inp
and _outp read or write one byte at a time from the specified port. The _inpw and
_outpw routines read and write two-byte words, respectively.

The console 1/0 routines allow reading and writing of strings <_cgets and
_cputs), formatted data <_cscanf and _cprintt), and characters. Several options
are available when reading and writing characters.

The _ putch routine writes a single character to the console. The _ getch and
_ getche routines read a single character from the console: _getche echoes the
character back to the console, while _ getch does not. The _ ungetch routine
"ungets" the last character read; the next read operation on the console begins
with the "ungotten" character.

44 Run-Time Library Reference

The _kbhit routine determines whether a key has been struck at the console. This
routine allows you to test for keyboard input before you attempt to read from the
console.

Note The console I/O routines are not compatible with stream or low-level library
routines and should not be used with them.

2.8 Internationalization

2.9 Math

Internationalization routines are useful for creating different versions of a
program for international markets. These routines are declared in the header file
LOCALE.H, except for strftime, which is declared in TIME.H.

Routine

localeconv

setlocale
strcoll
strftime
strxfrm

Use

Sets a structure with appropriate values for formatting numeric
quantities

Selects the appropriate locale for the program

Compares strings using locale-specific information

Formats a date and time string

Transforms a string based on locale-specific information

Currently only the "C" locale is supported by Microsoft C/C++.

The math routines allow you to perform common mathematical calculations. All
math routines work with floating-point values and therefore require floating-point
support (see "Floating-Point Support" on page 14).

The math library provides two versions of some routines. The first version of the
routine supports double arguments and return values. The second version supports
an 80-bit data type, allowing the routine to take long double arguments and return
a long double value. The second version usually has the same name with the suf
fix I. For instance, the acos routine supports double arguments and return values,
while _acosl supports long double arguments and return values.

Routines which support long double values are not available when you compile
with the /FPa (alternate math) compiler option. The same is true ofthe _clear87,
_controI87, and _status87 routines.

Run-Time Routines by Category 45

Most math declarations are in the include file MATH.H. However, the _clearS7,
_controIS7, _fpreset, and _statusS7 routines are defined in FLOAT.H; the abs
and labs functions are defined in MATH.H and STDLIB.H; and the div and ldiv
routines are declared in STDLIB.H.

Routine

acos, _ acosl

asin, _ asinl

atan, _ atanl

atan2, _atan21

Bessel
_cabs, _cabsl

ceil, _ ceill

_clearS7

_controlS7

cos, _cosl

cosh, _ coshl

_ dieeetomsbin

div

_ dmsbintoieee

exp, _expl

fabs, _fabsl

_fieeetomsbin

floor, _floorl

fmod, _fmodl

_fmsbintoieee

_fpreset

frexp, _frexpl

_hypot, _hypotl

ldexp, _ldexpl

ldiv

log, _logl

loglO, _loglOi
_lrotl, _lrotr

Use

Calculate the arccosine

Calculate the arcsine

Calculate the arctangent

Calculate the arctangent

Calculates Bessel functions

Find the absolute value of a complex number

Find the integer ceiling

Gets and clears the floating-point status word

Gets the old floating-point control word and sets a new control
word value
Calculate the cosine

Calculate the hyperbolic cosine

Converts IEEE double-precision number to Microsoft (MS)
binary format
Divides one integer by another, returning the quotient and
remainder

Converts Microsoft binary double-precision number to IEEE
format

Calculate the exponential function

Find the absolute value

Converts IEEE single-precision number to Microsoft binary
format

Find the largest integer less than or equal to the argument

Find the floating-point remainder

Converts Microsoft binary single-precision number to IEEE
format

Reinitializes the floating-point-math package

Calculate an exponential value

Calculate the hypotenuse of a right triangle

Calculate the product of the argument and 2exp

Divides one long integer by another, returning the quotient and
remainder

Calculate the natural logarithm

Calculate the base-lO logarithm

Shift an unsigned long int item left (_lrotl) or right (_lrotr)

46 Run-Time Library Reference

Routine

_matherr,
_matherrl
__ max, __ min

modf, _ modO

pow, _powl

rand
_rotl, _rotr

sin, _sinl

sinh, _sinhl

sqrt, _sqrtl

srand

_status87

tan, _tanl

tanh, _ tanhl

Use

Handle math errors

Return the larger or smaller of two values

Split the argument into integer and fractional parts

Calculate a value raised to a power

Gets a pseudorandom number
Shift an unsigned int item left (_rotl) or right (_rotr)

Calculate the sine

Calculate the hyperbolic sine

Find the square root
Initializes a pseudorandom series

Gets the floating-point status word

Calculate the tangent

Calculate the hyperbolic tangent

The Bessel routine does not correspond to a single fUnction, but to 12 functions
named _jO, _jl, _jn, _yO, -yl, _yn, _jOl, _jll, _jnl, _yOl, _yll, and _ynl.

The _matherr and _matherrl routines are invoked by the math functions when
errors occur. The _matherr routine handles functions that return a double value,
and _ matherrl handles routines that return a long double.

These routines are defined in the library, but you can redefine them for different
error handling. The user-defined function, if given, must follow the rules given in
the reference description of _matherr and _matherrl.

You are not required to supply a definition for the _matherr routines. If nO defini
tion is present, the default error returns for each routine are used. The reference
description of each routine describes that routine's error returns.

2.10 Memory Allocation
The memory-allocation routines allow you to allocate, free, and reallocate
blocks of memory. Memory-allocation routines are declared in the include file
MALLOC.H. The C++ _ seL new_handler functions allow you to redefine the
action of the C++ new operator and are declared in include file NEW.H.

Routine

_hfreeseg

_hheapseg

calloc, _hcalloc, _fcalloc, _ncalloc

_expand,_hexpand,_fexpand,_nexpand

free, _hfree, _tTree, _free
_freect

_halloc

_heapadd,_hheapadd

_heapchk, _hheapchk, _fheapchk,
_nheapchk
_heapmin, _ hheapmin,
_fheapmin, _nheapmin

_heapset, _hheapset, _fheapset, _nheapset

_heapwalk, _ hheapwalk, _fheapwalk,
_nheapwalk
_hfree

malloc, _hmalloc, _fmalloc, _nmalloc

_memavl

_msize, _hmsize, _fmsize, _Dmsize

realloc, _hrealloc, _frealloc, _nrealloc
_seLnew_handler, _seL hnew_handler,
_seLfnew_handler, _seLhnew_handler,
_seLnnew_handler
_stackavail

Run-Time Routines by Category 47

Use

Allocates a block of memory from
the program's stack

Frees a based heap

Allocates a based heap

Allocate storage for an array

Expand or shrink a block of memory
without moving its location

Free an allocated block

Returns approximate number of items
of given size that could be allocated
in the near heap

Allocates storage for huge array

Add memory to a heap

Check a heap for consistency

Release unused memory in a heap

Fill free heap entries with a specified
value

Return information about each entry
in a heap

Frees a block allocated by _ halloc

Allocate a block of memory

Returns approximate number of bytes
available for allocation in the near
heap

Returns size of largest contiguous
free block in the near heap

Return size of an allocated block

Reallocate a block to a new size

Enable an error-handling mechanism

Returns size of stack space available
for allocation with _a1loca

48 Run-Time Library Reference

Some memory-management routines, such as malloc, are available in different
versions that begin with _ b, ~ f, or _ n. These variations are described in the
following section.

The malloc and free routines allocate and free memory space, respectively, while
a program runs. The malloc routine allocates memory from the "heap," which is
a pool of memory not otherwise used by your program. In tiny-, small-, and
medium-model programs, the heap consists of unused memory in your program's
default data segment. In compact-, large-, and huge-model programs, it is unused
memory outside the default data segment.

The malloc and free routines satisfy the memory-allocation requirements of most
programs. More specialized memory-management routines are discussed below.

The realloc and _ expand routines can expand or shrink an allocated memory
block. They behave differently in cases in which there is not enough room to
expand the block in its current location. In this case, realloc moves the block as
needed, but _ expand does not.

The calloc routine allocates memory for an array and initializes every byte in the
allocated block to O.

The _halloc routine is similar to calloc, except that it can allocate memory for a
huge array (one that exceeds 64K in size). This routine is useful when you need a
very large data object, or if you need to return allocated memory to the operating
system for subsequent calls to the _ spawn family of functions.

Near and Far Heaps
As mentioned in the previous section, heap memory can reside inside or outside
your program's default data segment, depending on what memory model your
program uses. When it lies inside the default data segment, the heap is called the
"near heap," since it can be accessed with near pointers. The "far heap" is memory
that spans one or more segments outside the default data segment. The far heap
can be accessed only with far pointers.

In various memory models, malloc automatically allocates memory from the near
heap or far heap, as appropriate. The run-time library also includes near and far
versions of malloc, free, and other memory-management routines, which allow
you to specify the near and far heaps explicitly. These have the same names as
standard memory routines, but are preceded by _n (for near) or _f (for far).

Based Heaps

Run-Time Routines by Category 49

For instance, the _nmalloc routine always allocates memory from the near heap
and returns a near pointer, no matter which memory model your program uses.
Use _nfree to release memory allocated with _nmalloc.

Similarly, _fmalloc always allocates memory from the far heap and returns a far
pointer, regardless of memory model. Use the _ffree routine to release memory
allocated with _fmalloc.

You can also allocate memory from a "based heap," which is a single segment that
lies outside the default data segment. Based-heap routines generally use the same
names as standard memory routines, but begin with _ b. For instance, _ bmalloc
allocates a memory block from the based heap and _ bfree frees the block.

Based heaps offer the following advantages:

• Localized data. Based heaps allow you to group related data in a single seg
ment. This can simplify the management of related data.

• Faster pointer arithmetic. Although the based heap lies in the far data segment,
pointers to its data items are the same size as near pointers. Thus, pointer arith
metic on items in a based heap is faster than pointer arithmetic on items in the
far heap.

The _ bbeapseg routine allocates a based heap segment, from which you can then
allocate blocks of memory. You can call _ bbeapseg more than once to allocate as
many based-heap segments as needed (within the confines of available memory).

The _ bfreeseg routine frees a based-heap segment. This routine frees every
block in the based-heap segment, whether or not you previously freed the blocks
individually.

Note Near-, far- , and based-heap calls are not ANSI compatible and will make
your program less portable.

2.11 Process and Environment Control
The process-control routines allow you to start, stop, and manage processes from
within a program. Environment-control routines allow you to get and change infor
mation about the operating-system environment.

50 Run-Time Library Reference

A "process" is a program being executed by the operating system. It consists of
the program's code and data, plus information about the process, such as the num
ber of open files. Whenever you execute a program at the operating-system level,
you start a process. All process-control functions except signal are declared in the
include file PROCESS.H. The signal function is declared in SIGNAL.H. The
abort, exit, and system functions are also declared in the STDLIB.H include file.
The environment-control routines (getenv and _putenv) are declared in
STDLIB.H.

Routine

abort

assert

atexit

_cexit

_exeel

_exeele

_exeelp

_exeelpe

_execv

_execve

_execvp

_execvpe

exit

_fatexit

_fonexit

getenv

_getpid

lougjmp

Use

Aborts a process without flushing buffers or calling functions
registered by atexit and _onexit

Tests for logic error

Schedules routines for execution at program termination

Performs the exit termination procedures (such as flushing buffers)
and returns control to the calling program

Performs the _exit termination procedures and returns control to the
calling program

Executes child process with argument list

Executes child process with argument list and given environment

Executes child process using PATH variable and argument list

Executes child process using PATH variable, given environment, and
argument list

Executes child process with argument array

Executes child process with argument array and given environment

Executes child process using PATH variable and argument array

Executes child process using PATH variable, given environment, and
argument array

Calls functions registered by atexit and _ouexit, then flushes all
buffers and closes all open files before terminating the process

Terminates process without processing atexit or _onexit functions or
flushing buffers

Schedules routines for execution at program termination (memory
model independent)

Schedules routines for execution at program termination (memory
model independent)

Gets the value of an environment variable

Gets process ID number

Restores a saved stack environment

Routine

_onexit

perror
_putenv

raise

setjmp

signal
_spawnl

_spawnle

_spawnlp

_spawnlpe

_spawnv

_spawnve

_spawnvp
_spawnvpe

system

Run-Time Routines by Category 51

Use

Schedules routines for execution at program termination

Prints error message

Adds or changes the value of an environment variable

Sends a signal to the calling process

Saves a stack environment

Handles an interrupt signal

Executes child process with argument list

Executes child process with argument list and given environment

Executes child process using PATH variable and argument list

Executes child process using PATH variable, given environment, and
argument list

Executes child process with argument array

Executes child process with argument array and given environment

Executes child process using PATH variable and argument array

Executes child process using PATH variable, given environment, and
argument array

Executes an operating-system command

The atexit and _ onexit routines create a list of functions to be executed when the
calling program terminates. The only difference between the two is that atexit is
part of the ANSI standard. The _onexit function is offered for compatibility with
previous versions of Microsoft C.

The _exit routine terminates a process immediately, whereas exit terminates the
process only after flushing buffers and calling any functions previously registered
by atexit and _onexit. The _cexit and _cexit routines are identical to exit and
_exit, respectively, except that they return control to the calling program without
terminating the process.

The setjmp and longjmp routines save and restore a stack environment. These
allow you to execute a nonlocal goto.

The _exec and _spawn routines start a new process called the "child" process.
The difference between the _exec and _spawn routines is that the _spawn
routines are capable of returning control from the child process to its caller (the
"parent" process). Both the parent process and the child process are present in
memory (unless _P _OVERLAY is specified). In the _exec routines, the child
process overlays the parent process, so returning control to the parent process is
impossible (unless an error occurs when attempting to start execution of the child
process).

52 Run-Time Library Reference

There are eight forms each of the _exec and _spawn routines (see Table 2.1). The
differences among the forms involve the method of locating the file to be executed
as the child process, the method for passing arguments to the child process, and
the method of setting the environment.

Passing an argument list means that the arguments to the child process are listed
separately in the _ exec or _ spawn call. Passing an argument array means that the
arguments are stored in an array, and a pointer to the array is passed to the child
process. The argument-list method is typically used when the number of argu
ments is constant or is known at compile time. The argument-array method is use
ful when the number of arguments must be determined at run time.

Table 2.1 Forms of the _ spawn and _ exec Routines

Argument-Passing
Routines Locating the File Convention Environment Settings

_execl, _spawnl Do not use PATH Argument list Inherited from parent
_execle, Do not use PATH Argument list Pointer to environment
_spawnle table for child process

passed as last argument
_execlp, Use PATH Argument list Inherited from parent
_spawnlp
_execlpe, Use PATH Argument list Pointer to environment
_spawnlpe table for child process

passed as last
argument

_execv, Do not use PATH Argument array Inherited from parent
_spawnv
_execve, Do not use PATH Argument array Pointer to environment
_spawnve table for child process

passed as last
argument

_execvp, Use PATH Argument array Inherited from parent
_spawnvp
_execvpe, Use PATH Argument array Pointer to environment
_spawnvpe table for child process

passed as last
argument

The assert macro is typically used to test for logic errors. It prints a message when
a given "assertion" fails to hold true. Defining the identifier NDEBUG to any
value causes occurrences of assert to be removed from the source file, thus allow
ing you to turn off assertion checking without modifying the source file.

Run-Time Routines by Category 53

2.12 QuickWin
The QuickWin functions make it possible to compile non-Windows DOS pro
grams as simple text-only Windows applications. DOS programs compiled with
the /Mq compiler option have a limited Windows user interface, including a stand
ard menu bar, standard online help (for the QuickWin features), and a client (or ap
plication) window with a child (document) window for the input/output streams
stdin, stdout, and stderr. You can also add other child windows of your own.
QuickWin applications support the Windows Clipboard, and you can use standard
C and C++ functions to write to and read from a QuickWin application's win
dows, which behave as streams.

Unless you use the functions covered in this section, you do not need to alter your
program's source code. However, by using these functions in your source, you can
take advantage of enhanced capabilities in your QuickWin programs.

Note that there are some restrictions on the kinds of DOS programs that can be
compiled with QuickWin. Programs that use graphics or that spawn processes can
not take advantage of QuickWin. For full details about QuickWin, see Chapter 8
of Programming Techniques (in the Microsoft C/C++ version 7.0 documentation
set).

QuickWin programs cannot be run in real mode.

QuickWin uses Windows libraries and the QWIN.LIB library. QuickWin con
stants, structures, and functions are declared in the Windows version of IO.H and
STDIO.H. The /Mq compiler option defines the _ WINDOWS constant, declared
in the Windows version of STDIO.H.

Routine

_fwopen

_wabout

_wclose

_ wgetexit

_wgetfocus

_ wgetscreenbuf

_ wgetsize

_ wmenuclick

_wopen

_ wsetexit

_wsetfocus

_ wsetscreenbuf

_ wsetsize

_wyield

Use

Opens a new window stream

Sets the string that appears in the About dialog box

Closes a window's file handle

Gets a QuickWin program's current exit behavior setting

Returns a file handle to the window with the input focus

Gets a window's current screen-buffer size

Gets a window's current size and position on the screen

Chooses a menu command

Opens a window, returning a file handle to it

Sets the way a QuickWin program behaves when exit is called

Makes a window the active window (sets its focus)

Sets a window's screen-buffer size

Sets a window's size and position on the screen

Yields processor time to Windows for queue servicing

54 Run-Time Library Reference

2.13 Searching and Sorting
Search and sort routines provide binary-search, linear-search, and quick-sort capa
bilities. They are all declared in SEARCH.H.

Routine Use

bsearch
_Ifind

_Isearch

Performs binary search

Performs linear search for given value

Performs linear search for given value, which is added to array if not
found

qsort Performs quick sort

2.14 String Manipulation
The string functions are declared in the include file STRING.H. They allow you to
compare strings, copy them, search for strings and characters, and perform various
other operations.

Routines beginning with _f are model-independent versions of the corresponding
routines and are useful in mixed-model programs. These routines can be called
from any point in the program, regardless of which model is being used.

Routine

strcat, _fstrcat

strchr, _fstrchr

strcmp, _fstrcmp
strcpy, _ fstrcpy

strcspn, _fstrcspn

_strdup, _fstrdup,
_nstrdup

strerror

_strerror
_stricmp, _fstricmp

strlen, _fstrlen
_strlwr, _fstrlwr

strncat, _fstrncat

strncmp, _fstrncmp
strncpy, _fstrncpy
_strnicmp, _fstrnicmp

Use

Append one string to another

Find first occurrence of a given character in a string

Compare two strings

Copy one string to another

Find first occurrence of a character from a given
character set in a string

Duplicate a string

Maps an error number to a message string

Maps a user-defined error message to a string

Compare two strings without regard to case

Find length of string

Convert string to lowercase

Append characters of a string

Compare characters of two strings

Copy characters of one string to another

Compare characters of two strings without regard
to case

Routine

_strnset, _fstrnset

strpbrk, _fstrpbrk

strrchr, _fstrrchr

_strrev, _fstrrev

_strset, _fstrset

strspn, _fstrspn

strstr, _fstrstr

strtok, _fstrtok

_strupr, _fstrupr

Run-Time Routines by Category 55

Use

Set characters of a string to a given character

Find first occurrence of a character from one string in
another

Find last occurrence of a given character in string

Reverse a string

Set all characters of a string to a given character

Find first substring from a given character set in a string

Find first occurrence of a given string in another string

Find next token in a string

Convert a string to uppercase

All string functions work on null-terminated character strings. When working with
character arrays that do not end with a null character, you can use the buffer
manipulation routines, described in "Buffer Manipulation" on page 18.

2.15 System Calls

BIOS Interface

The following routines give access to IBM-PC BIOS interrupts and DOS system
calls. These routines are for DOS application programs only.

The functions in this category provide direct access to the BIOS interrupt services.
They are all declared in BIOS.H.

Routine

_bioLdisk

_bioLequiplist

_bioLkeybrd

_ bioL memsize

_ bioL printer

_ bioL serialcom

_ bioL timeofday

Use

Issues service requests for both hard and floppy disks, using
INTOx13

Performs an equipment check, using INT Ox 11

Provides access to keyboard services, using INT OxI6

Obtains information about available memory, using INT OxI2

Performs printer output services, using INT Ox17

Performs serial communications tasks, using INT OxI4

Provides access to system clock, using INT OxlA

Note BIOS routines are hardware dependent. Some of them may not work as ex
pected on machines whose hardware differs from the IBM Pc.

56 Run-Time Library Reference

DOS Interface
These routines are implemented as functions and declared in DOS.H.

Routine

_bdos

_chailLintr
_disable

_ dOLallocmem

_doLciose

_dOL commit

_doLcreat

_dOLcreatnew

_dOLflndflrst

_dOLflndnext

_dOLfreemem

_doLgetdate

_ dOL getdiskfree

_doLgetdrive

_ dOL getfileattr

_doLgetftime

_doLgettime

_doLgetvect

_dOLopen

_doLread

_doLsetblock

_dOLsetdate

_doLsetdrive

_ dOL setfileattr
_ dos_ setftime

_dOLsettime

Use

Invokes DOS system call; uses only DX and AL registers

Chains one interrupt handler to another

Disables interrupts

Allocates a block of memory, using DOS system call Ox48

Closes a file, using DOS system call Ox3E

Flushes a file to disk, using DOS system call Ox68

Creates a new file and erases any existing file having the same
name, using DOS system call Ox3C

Creates a new file and returns an error if a file having the same
name exists, using DOS system call Ox5B

Finds first occurrence of a given file, using DOS system call
Ox4E

Finds subsequent occurrences of a given file, using DOS system
call Ox4F

Frees a block of memory, using DOS system call Ox49

Gets the system date, using DOS system call Ox2A

Gets information on a disk volume, using DOS system call Ox36

Gets the current default drive, using DOS system call Ox19

Gets current attributes of a file or directory, using DOS system
call Ox43

Gets the date and time a file was last written, using DOS system
call Ox57

Gets the current system time, using DOS system call Ox2C

Gets the current value of a specified interrupt vector, using DOS
system call Ox35

Installs terminate-and-stay-resident (TSR) programs using DOS
system call Ox31

Opens an existing file, using DOS system call Ox3D

Reads a file, using DOS system call Ox3F

Changes the size of a previously allocated block, using DOS
system call Ox4A

Sets the current system date, using DOS system call Ox2B

Sets the default disk drive, using DOS system call OxOE

Sets the current attributes of a file, using DOS system call Ox43

Sets the date and time that the specified file was last written,
using DOS system call Ox57

Sets the system time, using DOS system call Ox2D

Routine

_ dOL setvect

_dOL write

_dosexterr

_enable
_FP_OFF

_FP_SEG

_harderr

_hardresume
_hardretn
_int86

_int86x

_intdos

_intdosx

_segread

Run-Time Routines by Category 57

Use

Sets a new value for the specified interrupt vector, using DOS
system call Ox25

Sends output to a file, using DOS system call Ox40

Obtains in-depth error information from DOS system call Ox59

Enables interrupts

Returns offset portion of a far pointer

Returns segment portion of a far pointer

Establishes a hardware error handler

Returns to DOS after a hardware error

Returns to the application after a hardware error

Invokes DOS interrupts

Invokes DOS interrupts with segment register values

Invokes DOS system call using registers other than DX and AL

Invokes DOS system call using registers other than DX and AL
with segment register values

Returns current values of segment registers

The _ dosexterr function obtains and stores the error information returned by
DOS system call Ox59 (extended error handling). This function is provided for use
with DOS versions 3.0 and later.

The _ bdos routine is useful for invoking DOS calls that use either or both of the
DX (DHIDL) and AL registers for arguments. However, _ bdos should not be
used to invoke system calls that return an error code in AX if the carry flag is set;
since your program cannot detect whether the carry flag is set, it cannot determine
whether the value in AX is a legitimate value or an error value. In this case, the
_intdos routine should be used instead, since it allows the program to detect
whether the carry flag is set. The _intdos routine can also be used to invoke DOS
calls that use registers other than DX and AL.

The _ intdosx routine is similar to the _ intdos routine, but is used when ES is re
quired by the system call, when DS must contain a value other than the default
data segment (for instance, when a far pointer is used), or when making the system
call in a large-model program. When calling _intdosx, give an argument that
specifies the segment values to be used in the call.

The _int86 routine can be used to invoke any interrupt. The _int86x routine is
similar; however, like the _intdosx routine, it is designed to work with large
model programs and far items, as described in the preceding paragraph.

The _FP _OFF and _FP _SEG routines allow easy access to the segment and off
set portions of a far pointer value. _FP _OFF and _FP _SEG are implemented as
macros and defined in DOS.H.

58 Run-Time Library Reference

2.16 Time

The _segread routine returns the current values of the segment registers. This
routine is typically used with the _intdosx and _int86x routines to obtain the
correct segment values.

The _chailLintr routine is useful for chaining interrupt handlers together. The
_ enable routine enables interrupts, while the _ disable routine disables interrupts.

The routines prefixed with _ dOL are all direct system interfaces that use the
system calls noted above. More detailed information on these system calls can be
found in the MS-DOS Encyclopedia (Duncan, ed.; Redmond, W A: Microsoft
Press, 1988) or the Programmer's PC Sourcebook 2nd ed. (Hogan; Redmond,
W A: Microsoft Press, 1991).

Note The DOS interface I/O routines are generally incompatible with console,
low-level, and stream I/O routines. Do not mix different types ofI/O routines in
the same source file.

The time functions allow you to obtain the current time, then convert and store it
according to your particular needs. The current time is always taken from the
system time.

Routine

asctime

clock
ctime

difftime

_ftime

gmtime
localtime

mktime

_strdate

strftime
_strtime

time

_tzset

_utime

Use

Converts time from type struct tm to a character string

Returns the elapsed CPU time for a process

Converts time from type timL t to a character string

Computes the difference between two times

Puts current system time in variable of type struct _ timeb

Converts time from type time_ t to struct tm
Converts time from type time_ t to struct tm with local correction

Converts time to a calendar value

Returns the current system date as a string

Formats a date and time string

Returns the current system time as a string

Gets current system time as type time_ t
Sets external time variables from the environment time variable

Sets file-modification time

The time and _ftime functions return the current time as the number of seconds
elapsed since midnight, on December 31, 1899, Universal Coordinated Time. This
value can be converted, adjusted, and stored in a variety of ways by using the

Run-Time Routines by Category 59

asctime, ctime, gmtime, localtime, and mktime functions. The _ "time function
sets the modification time for a specified file, using either the current time or a
time value stored in a structure.

Note In versions of Microsoft C/C++ prior to 7.0, the time and _ftime functions
return the current time as the number of seconds elapsed since midnight, on
January 1, 1970.

The clock function returns the elapsed CPU time for the calling process.

The 3time function requires two files: SYS\TYPES.H and SYS\TIMEB.H. It is
declared in SYS\TIMEB.H. The _ "time function also requires two include files:
SYS\TYPES.H and SYS\UTIME.H. It is declared in SYS\UTIME.H. The re
mainder of the time functions are declared in the include file TIME.H.

When you want to use _ftime or localtime to make adjustments for local time,
you must define an environment variable named TZ. For more information on TZ
and the global variables _ daylight, _ timezone, and _ tzname, refer to "_day light,
_timezone, and _tzname" on page 62. TZ is also described on the _ tzset reference
page in Part 2 of this book.

The _ strdate and _ strtime routines return strings containing the current date and
time, respectively, in the DOS and Windows date and time format rather than in
the UNIX-style formats.

The strftime function is useful for creating international versions of a program.
See "Internationalization" on page 44.

2.17 Variable-length Argument lists
The va_ arg, VL end, and va_ start routines are macros that provide a portable
way to access the arguments to a function when the function takes a variable num
ber of arguments. Two versions of the macros are available: the macros defined in
the V ARARG.H include file, which are compatible with the UNIX System V defi
nition, and the macros defined in STDARG.H, which conform to the ANSI C
standard.

Routine

va_arg

va_end

va_start

Use

Retrieves argument from list
Resets pointer
Sets pointer to beginning of argument list

For more information on the differences between the two versions and for an ex
planation of how to use the macros, see their descriptions in Part 2 of this book.

60 Run-Time Library Reference

2.18 Virtual Memory Allocation
The virtual memory functions allow you to allocate, free, reallocate, lock, and un
lock blocks of memory. The virtual memory functions are declared in the include
file VMEMORY.H.

Routine

_vfree

_vheapinit

_vheapterm

_vload

_vlock

_ vlockcnt

_Vlllalloc

_Vlllsize

_ vrealloc

_vunlock

Use

Frees an allocated block of virtual memory

Initializes the virtual memory manager

Terminates the virtual memory manager

Loads an allocated block of virtual memory

Locks an allocated block of virtual memory

Returns the number of locks held on a block of virtual memory

Allocates a block of virtual memory

Returns the size of an allocated block of virtual memory

Reallocates a block of virtual memory to a new size

Unlocks a locked block of virtual memory

The _ vheapinit function specifies how much DOS memory the virtual memory
manager can use and whether it should use expanded memory, extended memory,
or disk storage. You must call this function before calling any of the other virtual
memory functions.

The _ vmalloc function returns a handle of type _ vmhnd_ t, which is used to refer
to a block of virtual memory.

The _ vfree, _ vrealloc, _ vload, _ vlock, _ vunlock, _ vlockcnt, and _ vmsize func
tions work on blocks of virtual memory specified by handles of type _ vmdhll(L t.

The _ vheapterm function frees all the resources used by the virtual memory
manager. You must call this function after you have finished using virtual
memory.

Global Variables
and Standard Types

The Microsoft run-time library contains definitions for a number of variables and
standard types used by library routines. You can access these variables and types
by including in your program the files in which they are declared, or by giving
appropriate declarations in your program, as shown in the following sections.

3.1 amblksiz
The _amblksiz variable controls memory heap granularity.

It is declared in the MALLOC.H include file as follows:

extern unsigned int _amblksiz;

The value of _ amblksize is used to control how memory is obtained from the
operating system for the heap. The initial requested size for a segment of memory
for the heap manager is based on the amount of current allocation request plus
overhead for the heap manager's bookkeeping chores-that is, just enough to
satisfy the allocation request at hand (for example, a malloc or calloc). However,
when the heap manager grows a segment, it does so in multiples of _ amblksize.
The value of _ amblksize represents a trade-off between the number of times the
operating system must be called to grow a segment to its maximum size (no more
than 640K for DOS) and the amount of memory potentially wasted (available but
not used) at the end of the heap.

The default value of _amblksize is 8K. The value can be changed by direct assign
ment in your program. For example:

_amblksize = 2048;

The actual value used internally by the heap manager will be the given value,
rounded up to the nearest whole power of 2 (so an _amblksize value of 4K-l is
the same as a value of 4K).

62 Run-Time Library Reference

Note that adjusting the value of _amblksize affects allocation in the near, far, and
based heaps. The value of _amblksize has no effect on huge memory blocks
(those allocated with _halloc and similar functions).

3.2 _daylight, _timezone, _tzname
The _ daylight, _ timezone, and _ tzname variables are global time-zone variables
used in time functions.

They are declared in the TIME.H include file as follows:

extern int _daylight;

extern long _ timezone;

extern char * _ tzname[2];

Some time and date routines use the _ daylight, _ timezone, and _ tzname varia
bles to make local-time adjustments. Whenever a program calls the _ftime,
localtime, or _ tzset function, the value of _ daylight, _ timezone, and _ tzname is
determined from the value of the TZ environment variable. If you do not explicitly
set the value of TZ, the default value of "PST8PDT" is used. The following list
shows each variable and its value:

Variable

_daylight

_timezone

_tzname[O]

_tzname[l]

Value

Nonzero if a daylight-saving-time zone (DST) is specified in TZ;
otherwise, O. Default value is 1.

Difference in seconds between Universal Coordinated Time and the
local time. Default value is 28,800.

Three-letter time-zone name derived from the TZ environment
variable. Default value is "PST" (Pacific standard time).

Three-letter daylight-saving-time-zone name derived from the TZ
environment variable. Default value is "PDT" (Pacific daylight time).
If the DST zone is omitted from TZ, _tzname[l] is an empty string.

Global Variables and Standard Types 63

3.3 _doserrno, errno, sys_errlist, sys_nerr
The _ doserrno, errno, sys_ errlist, and SYL nerr variables contain error codes
and are used by the perror and strerror routines to print error information.

These variables are declared in the STDLIB.H include file. Manifest constants for
the errno variables are declared in the ERRNO.H include file. The declarations
are as follows:

extern int _doserrno;

extern int errno;

extern char *sYLerrlist[];

extern int sYLnerr;

The errno variable is set to an integer value to reflect the type of error that has oc
curred in a system-level call. Each errno value is associated with an error mes
sage, which can be printed with the perror routine or stored in a string with the
strerror routine.

Note that only some routines set the errno variable. If a routine sets errno, the
description of the routine in the reference section says so explicitly.

The value of errno reflects the error value for the last call that set errno. How
ever, this value is not necessarily reset by later successful calls. To avoid confu
sion, test for errors immediately after a call.

The include file ERRNO.H contains the definitions ofthe errno values. However,
not all of the definitions given in ERRNO.H are used in DOS. Some of the values
in ERRNO.H are present to maintain compatibility with the UNIX (and XENIX)
operating system.

The errno values in DOS are a subset of the values for errno in XENIX systems.
Thus, the errno value is not necessarily the same as the actual error code returned
by a DOS system call. To access the actual DOS error code, use the _doserrno
variable, which contains this value.

In general, you should use _doserrno only for error detection in operations involv
ing input and output, since the errno values for input and output errors have DOS
error-code equivalents. In other cases, the value of _doserrno is undefined.

64 Run-Time library Reference

3.4 fmode

The sYLerrlist variable is an array; the perror and strerror routines use it to
process error infonnation. The SYL nerr variable tells how many elements the
SYL errlist array contains.

Table 3.1 gives the errno values for DOS, the system error message for each
value, and the value of each constant. Note that only the ERANGE and ED OM
constants are specified in the ANSI standard.

Table 3.1 errno Values and Their Meanings

Constant Meaning Value

E2BIG Argument list too long 7

EACCES Permission denied 13

EBADF Bad file number 9

EDEADLOCK Resource deadlock would occur 36
EDOM Math argument 33
EEXIST File exists 17

EINVAL Invalid argument 22
EMFILE Too many open files 24
ENOENT No such file or directory 2
ENOEXEC Exec format error 8
ENOMEM Not enough memory 12
ENOSPC No space left on device 28
ERANGE Result too large 34
EXDEV Cross-device link 18

The _fmode variable controls the default file-translation mode.

It is declared in the STDLIB.H include file as follows:

extern int _fmode;

By default, the value of _ fmode is _ 0_ TEXT, causing files to be translated in
text mode (unless specifically opened or set to binary mode). When _fmode is set
to _O_BINARY, the default mode is binary. You can set _fmode to the flag
_ O_BINARY by linking with BINMODE.OBJ or by assigning _fmode the
_O_BINARYvalue.

Global Variables and Standard Types 65

3.5 Locale Macros
The two ANSI macros, MB_ LEN_ MAX and MB_ CUlL MAX, are useful when
writing portable programs for international markets. The following list describes
them and gives the include file where each is defined.

Macro

MB_CULMAX

Description

The MB_CUR_MAX macro, defined in STDLIB.H, expands to
the maximum number of bytes in a multi byte character of the
current locale.

The MB_LEN_MAX macro, defined in LIMITS.H, gives the
maximum number of bytes in a multi byte character.

3.6 _osmajor, _osminor, _osmode, _osversion, _cpumode
The _osmajor, _osminor, _osmode, _osversion, and _cpumode variables
specify the version number of the operating system or the current mode of
operation.

They are declared in the STDLIB.H include file as follows:

extern unsigned char _ osmajor;

extern unsigned char _osminor;

extern unsigned char _ osmode;

extern unsigned char _osversion;

extern unsigned char _ cpumode;

The _osmajor, _osminor, and _osversion variables specify the version number
of DOS or Windows in use. The _ osmajor variable holds the "major" version
number, and the _osminor variable stores the "minor" version number. Thus,
under DOS version 5.0, _osmajor is 5 and _osminor is 0. The _osversion varia
ble holds both values: its low byte contains the major version number and its high
byte contains the minor version number.

These variables are useful for creating programs that run in different versions of
DOS and Windows. For example, you can test the _osmajor variable before
making a call to _ sopen; if the major version number is earlier (less) than 3,
_open should be used instead of _sopen.

66 Run-Time Library Reference

3.7 environ

3.8 _psp

The _osmode variable indicates the curn~ntly running operating system
_DOS_MODE, which is defined as 0, and _ WIN_MODE, which is defined as 2.

The _cpumode variable indicates the mode of the currently running operating
system-_REAL_MODE, which is defined as 0, and _PROT_MODE, which is
defined as 2.

The environ variable is a pointer to the strings in the process environment.

It is declared in the STDLIB.H include file as follows:

extern char *environ[];

The environ variable provides access to memory areas containing process-specific
information.

The environ variable is an array of pointers to the strings that constitute the
process environment. The environment consists of one or more entries of the form

NAME=string

where NAME is the name of an environment variable and string is the value of
that variable. The string can be empty. The initial environment settings are taken
from the operating-system environment at the time of program execution.

The getenv and _ putenv routines use the environ variable to access and modify
the environment table. When _putenv is called to add or delete environment set
tings, the environment table changes size; its location in memory may also change,
depending on the program's memory requirements. The environ variable is ad
justed in these cases and always points to the correct table location.

The _ psp variable contains the segment address of the program segment prefix
(PSP) for the process. It is declared in the STDLIB.H include file as follows:

extern unsigned int _ psp;

The PSP contains execution information about the process, such as a copy of the
command line that invoked the process and the return address on process termina
tion or interrupt. The _ psp variable can be used to form a long pointer to the PSP,
where _ psp is the segment value and ° is the offset value.

Global Variables and Standard Types 67

Note that the _ psp variable is supported only in DOS.

3.9 _pgmptr
The _ pgmptr variable is automatically initialized at startup to point to the full
path of the executing program. It is defined as a global variable in the run-time
library and declared in CRTODAT.ASM, which is part of the startup code. This
code is linked to any module that contains a main function. Declaring _ pgmptr
in your own code is all that is required to make the full path available to your
program:

extern char __ far * _pgmptr;

The following program demonstrates the use of _ pgmptr:

#include <stdio.h>

extern char far *_pgmptr;

void main(void)
{

printf("The full path of the executing program is %Fs\n",
_pgmptr) ;

In DOS versions 3.0 and later, argv[O] also contains a pointer to the full path of
the executing program.

3.10 Standard Types
A number of library routines use values whose types are defined in include files.
The following list describes these types and gives the include file where they are
defined.

Standard Type

cloclLt

_complex

_ diskfree_ t

_diskinfo_t

Description

The cloclL t type, defined in TIME.H, stores time values. It is
used by the clock function.

The _complex structure, defined in MATH.H, stores the real and
imaginary parts of complex numbers. It is used by the _cabs
function.

The _diskfreLt structure, defined in DOS.H, stores disk
information used by the _dos_getdiskfree routine.

The _diskinfo_t structure, defined in BIOS.H, records
information about disk drives returned by the _ bioL disk routine.

68 Run-Time Library Reference

Standard Type

_dostimLt

_DOSERROR

_exception

FILE

fpoLt

lconv

_onexiLt

ptrdifLt

SiZLt

Description

The div_t and ldiv_t structures, defined in STDLIB.H, store the
values returned by the div and ldiv functions, respectively.

The _dosdate_t structure, defined in DOS.H, records the current
system date used in the _doLgetdate and _doLsetdate
routines.

The _dostimLt structure, defined in DOS.H, records the current
system time used in the _doLgettime and _doLsettime
routines.

The _DOSERROR structure, defined in DOS.H, stores values
returned by DOS system ca1l59H (available with DOS versions
3.0 and later).

The _exception structure, defined in MATH.H, stores error
information for math routines. It is used by the _matherr routine.

The FILE structure, defined in STDIO.H, is the structure used in
all stream input and output operations. The fields of the FILE
structure store information about the current state of the stream.

The _find_t structure, defined in DOS.H, stores file-attribute
information returned by the _doLfindfirst and _dos_findnext
routines.

The fgetpos and fsetpos functions use the fpOL t object type,
defined in STDIO.H, to record all the information necessary to
uniquely specify every position within the file.
The jmp_ buf type, defined in SETJMP.H, is an array type rather
than a structure type. A buffer of this type is used by the setjmp
and longjmp routines to save and restore the program
environment.
The lconv type, defined in LOCALE.H, is a structure containing
formatting rules for numeric values in different countries.

The _onexit routine is declared as an _onexiLt pointer type,
which is defined in STDLIB.H.
The ptrdifL t type is used for the signed integral result of the
subtraction of two po~nters.

The _REGS union, defined in DOS.H, stores byte and word
register values to be passed to and returned from calls to the DOS
interface functions.

The si~atomic_ t type, defined in SIGNAL.H, is the integral
type of an object that can be modified as an atomic entity, even in
the presence of asynchronous interrupts. It is used in conjunction
with the signal routine.

The SizLt type, defined in STDDEEH and several other include
files, is the unsigned integral result of the sizeof operator.

Standard Type

_timeb

tm

_utimbuf

_vmhnd_t

wchaLt

_wopeninfo

_wsizeinfo

Global Variables and Standard Types 69

Description

The _SREGS structure, defined in DOS.H, stores the values of
the ES, CS, SS, and DS registers. This structure is used by the
DOS interface functions that require segment register values
(_int86x, _intdosx, and _segread).

The _stat structure, defined in SYS\STAT.H, contains file-status
information returned by the _stat and _fstat routines.

The timL t type, defined in TIME.H, represents time values in
the mktime and time routines.

The _timeb structure, defined in SYS\TIMEB.H, is used by the
_ftime routine to store the current system time.
The tm structure, defined in TIME.H, is used by the asctime,
gmtime, and localtime functions to store and retrieve time
information.

The _ utimbuf structure, defined in SYS\UTIME.H, stores file
access and modification times used by the _ utime function to
change file-modification dates.

The va_list array type, defined in STDARG.H, is used to hold
information needed by the vlLarg macro and the vlLend routine.
The called function declares a variable of type va_list, which can
be passed as an argument to another function.

The _ vmhnd_ t type, defined in VMEMORYH, represents the
handles to blocks of virtual memory. Handles of this type are
returned by _ vmalloc and used by the virtual memory routines.

The wchaLt type, defined in STDDEFH and STDLIB.H, is the
internal type of a wide character. It is required by the ANSI
standard for the C language and is useful when writing portable
programs for international markets.

The _ wopeninfo type is a structure containing information
needed to open a new QuickWin window. It is defined in IO.H.

The _ wsizeinfo type is a structure containing information needed
to initializc the size of a new QuickWin window, to examine the
size of an existing QuickWin window, or to resize an existing
QuickWin window. It is defined in IO.H.

About the Run-Time Reference

The following pages describe, in alphabetical order, the more than 550 functions
and macros in the Microsoft run-time library. In some cases, related routines are
clustered in the same description. For example, the based, near, and far versions of
_heapwalk are in the same discussion, as are the regular and long double versions
of the math functions, such as acos and atan. Differences are noted where appro
priate. Refer to Chapter 2, "Run-Time Routines by Category," or to the index to lo
cate any function that does not appear in the expected position within the
alphabetical reference.

The discussion of each function (or group of functions) is divided into the follow
ing sections:

• Description. Summarizes the routine's effect, names the include file(s) contain-
ing its declaration, illustrates the syntax, and briefly describes the arguments.

• Remarks. Gives a more detailed description of the routine and how it is used.

• Return Value. Describes the value returned by the routine.

• Compatibility. Tells whether the routine is compatible with ANSI C, UNIX,
DOS, QuickWin, Windows, and the DOS Extender (DOS32X).

• See Also. Names related routines.

• Example. Gives a complete program showing the use of the routine.

• Output. Shows the output from the example program.

76 abort

Description

Remarks

Return Value

Compatibility

See Also

abort
Aborts the current process and returns an error code.

#include <process.h>
#include <stdlib.h>

void abort(void);

Required only for function declarations; use either
PROCESS.R or STDLIB.R

The abort function prints the message

abnormal program termination

to stderr, then calls raise(SIGABRT). The action taken in response to the
SIGABRT signal depends on what action has been defined for that signal in a
prior call to the signal function. The default SIGABRT action is for the calling
process to terminate with exit code 3, returning control to the parent process or
operating system.

In Windows, the abort function does not call raise(SIGABRT). Instead, it termi
nates the process with an "Abnormal Program Termination" pop-up message. In
Windows multithread libraries, the abort function does not call raise(SIGABRT).
Instead, it terminates the process with exit code 3.

The abort function does not flush stream buffers or do atexit Lonexit processing.

The abort function does not return control to the caller. Rather, it terminates the
process and, by default, returns an exit code of 3 to the parent process.

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN, WIN, WIN DLL

DOS32X

_exec functions, exit, _exit, raise, sigual, _spawn functions

Example

Output

abort 77

/* ABORT.C: This tries to open a file and aborts if the attempt fails. */

#include <stdio.h>
#include <stdlib.h>

void main(void)
{

}

FILE *stream;

if((stream = fopen("NOSUCHF.ILE", "r" »
{

}

perror("Couldn't open file");
abort() ;

else
fclose(stream);

Couldn't open file: No such file or directory

abnormal program termination

NULL)

78 abs

Description

Remarks

Return Value

abs
Calculates the absolute value.

#include <stdlib.h>
#include <math.h>

int abs(int n);

n

Required only for function declarations; use either
STDLIB.HorMATH.H

Integer value

The abs function returns the absolute value of its integer argument n.

The abs function returns the absolute value of its argument. There is no error
return.

Compatibility Standards: ANSI, UNIX

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_ cabs, fabs, labs

/* ABS.C: This program computes and displays the absolute values of
* several numbers.
*/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

void maine void)
{

i nt i x -4, i y;
long lx -41567L, ly;
double dx -3.141593, dy;

iy = abs(ix);
printf("The absolute value of %d is %d\n", ix, iy);

ly = labs(lx);
printf("The absolute value of %ld is %ld\n", lx, ly);

abs 79

dy = fabs(dx l;
printf("The absolute value of %f is %f\n", dx, dy l;

}

Output The absolute value of -4 is 4
The absolute value of -41567 is 41567
The absolute value of -3.141593 is 3.141593

80 access

Description

Remarks

Return Value

access
Determines file-access permission.

#include <io.h>

#include <errno.h>

Required only for function declarations

Required for definition of errno constants

int _access(char *pathname, int mode);

pathname

mode

File or directory path name

Permission setting

With files, the _access function determines whether the specified file exists and
can be accessed in mode. The possible mode values and their meanings in the
_access call are as follows:

Value

00
02
04

06

Meaning

Check for existence only

Check for write permission

Check for read permission

Check for read and write permission

With directories, _access determines only whether the specified directory exists;
in DOS, all directories have read and write access.

The _access function returns the value 0 if the file has the given mode. A return
value of -1 indicates that the named file does not exist or is not accessible in the
given mode, and errno is set to one of the following values:

Value

EACCES

ENOENT

Meaning

Access denied: the file's permission setting does not allow the
specified access.

File or path name not found.

access 81

Compatibility Standards: UNIX

See Also

Example

Output

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

Use _access for compatibility with ANSI naming conventions of non-ANSI func
tions. Use access and link with OLDNAMES.LIB for UNIX compatibility.

_chmod, _fstat, _open, _stat

/* ACCESS.C: This example uses _access to check the file named "data"
* to see if it exists and if writing is allowed.
*/

#include <io.h>
#include <stdio.h>
#include <stdlib.h>

void main(void
{

/* Check for existence */
if(Caccess("access .c", 0)) != -1)
{

printf("File exists\n");

/* Check for write permission */
if((_access("access.c", 2)) != -1)

printf("File has write permission\n");

File exists
File has write permission

82 acos Functions

Description

Remarks

Return Value

Compatibility

See Also

acos Functions
Calculate the arccosine.

#include <math.h>

#include <errno.h> Required for definition of errno constant

double acos(double x);

long double _acosl(long double x);

x Value whose arccosine is to be calculated

The acos functions return the arccosine of x in the range 0 to 7t radians. The value
of x must be between -1 and 1. The _acosl function is the 80-bit counterpart,
which uses an 80-bit, lO-byte coprocessor form of arguments and return values.
See the reference page on the long double functions for more details on this
data type.

The acos functions return the arccosine result. If x is less than -lor greater than 1,
the function sets errno to EDOM, prints a _DOMAIN error message to stderr,
and returns O. Error handling can be modified with the _matherr (or _matherrl)
routine.

acos

Standards:

16-Bit:

32-Bit:

_acosl

ANSI, UNIX

DOS, QWIN, WIN, WIN DLL

DOS32X

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

asin functions, atan functions, cos functions, _matherr, sin functions, tan
functions

Example

Output

acos Functions 83

/* ASINCOS.C: This program prompts for a value in the range -1 to 1.
* Input values outside this range will produce _DOMAIN error messages.
* If a valid value is entered, the program prints the arcsine and the
* arccosine of that value.
*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

void main(void
{

}

double x, Y;

printf("Enter a real number between -1 and 1: ");
scanf("%If", &x);
y = asin(x);
printf("Arcsine of %f = %f\n", x, Y);
Y = acos(x);
printf("Arccosine of %f = %f\n", x, y);

Enter a real number between -1 and 1: .32696
Arcsine of 0.326960 = 0.333085
Arccosine of 0.326960 = 1.237711

84 alloca

Description

Remarks

alloca
Allocates memory on the stack.

#include <malloc.h> Required only for function declarations

void * _ alloca(size_ t size);

size Bytes to be allocated from stack

The _alloca routine allocates size bytes from the program's stack. The allocated
space is automatically freed when the calling function is exited.

Observe the following restrictions when using _alloca:

• When you compile with optimization on (either by default or by using one of
the /0 options), the stack pointer may not be restored properly in functions that
have no local variables and that also reference the _alloca function. (This re
striction does not apply to DOS32X.) The following program demonstrates the
problem:

1* Compile with CL lAM lOx IFc *1
#include <malloc.h>

void main(void
{

func(10);
}

void func(register int
{

_alloca(i);
}

To ensure that the stack pointer is properly restored, make sure that any func
tion referencing _alloca declares at least one local variable.

• The pointer value returned by _alloca should never be passed as an argument
to free.

• The _alloca function should never be used in an expression that is an argument
to a function.

Return Value

alloca 85

The _alloca routine returns a void pointer to the allocated space, which is
guaranteed to be suitably aligned for storage of any type of object. To get a pointer
to a type other than char, use a type cast on the return value. The return value is
NULL if the space cannot be allocated.

Compatibility Standards: UNIX

See Also

Example

Output

16-Bit: DOS

32-Bit: DOS32X

Use _alloca for compatibility with ANSI naming conventions of non-ANSI func
tions. Use alloca and link with OLDNAMES.LIB for UNIX compatibility.

calloc functions, malloc functions, realloc functions

1* ALLOCA.C: This program checks the stack space available before
* and after using the _alloca function to allocate space on the stack.
*1

#include <malloc.h>
#include <stdio.h>

void main(void)
{

}

char *buffer;

printf("Bytes available on stack: %u\n", _stackavail());

1* Allocate memory for string. *1
buffer = _alloca(120 * sizeof(char));
printf("The _alloca function just allocated");
printf(" memory from the program stack.\n");

printf("Enter a string: ");
gets (buffer);
printf("\"%s\" was stored in the program stack.\n", buffer);
printf("Bytes available on stack: %u\n", _stackavail());

Bytes available on stack: 1744
The _alloca function just allocated memory from the program stack.
Enter a string: Store this on the stack.
"Store this on the stack." was stored in the program stack.
Bytes available on stack: 1614

86 arc Functions

Description

Remarks

arc Functions
Draw elliptical arcs.

#include <graph.h>

short __ far _arc(short xl, short yl, short x2, short y2, short x3, short y3,
short x4, short y4);

short __ far _arc_ w(double xl, double yl, double x2, double y2, double x3,
double y3, double x4, double y4);

short __ far _arc_ wxy(struct _ wxycoord __ far *pwxyl,
struct _ wxycoord __ far *pwxy2, struct _ wxycoord __ far *pwxy3,
struct _ wxycoord __ far *pwxy4);

xl,yl

x2,y2

x3,y3

x4,y4

pwxyl

pwxy2

pwxy3

pwxy4

Upper-left corner of bounding rectangle

Lower-right corner of bounding rectangle

Second point of start vector (center of bounding
rectangle is first point)

Second point of end vector (center of bounding rec
tangle is first point)

Upper-left corner of bounding rectangle

Lower-right corner of bounding rectangle

Second point of start vector (center of bounding
rectangle is first point)

Second point of end vector (center of bounding rec
tangle is first point)

The _arc functions draw elliptical arcs. The center of the arc is the center of the
bounding rectangle, which is defined by points (xl, yl) and (x2, y2) for _arc and
arc wand by points pwxyl and pwxy2 for _arc_ wxy. The arc starts where it in
tersects an imaginary line extending from the center of the arc through (x3, y3) for
_arc and _arc_ wand through pwxy3 for _arc_ wxy. It is drawn counterclock
wise about the center of the arc, ending where it intersects an imaginary line ex
tending from the center of the arc through (x4, y4) for _ arc and _ arc_ w and
through pwxy4 for _arc_ wxy.

Return Value

arc Functions 87

The _arc routine uses the view coordinate system. The _arc wand _arc wxy
functions use the real-valued window coordinate system.

In each case, the arc is drawn using the current color. Since an arc does not define
a closed area, it is not filled.

These functions return a nonzero value if the arc is successfully drawn; otherwise,
they return O.

Compatibility Standards: None

16-Bit: DOS

See Also

Example

32-Bit: None

_ellipse functions, _lineto functions, _pie functions, _rectangle functions,
_setcolor

1* ARC.C: This program draws a simple arc. *1

#include <graph.h>
#include <stdlib.h>
#include <conio.h>

void main(void
{

short x, y;
struct _xycoord xystart, xyend, xyfill;

1* Find a valid graphics mode *1
if(!_setvideomode(MAXRESMODE

ex it (1);

1* Draw arcs *1
x = 100; Y = 100;

arc(x 60, y - 60, x, y, x -

_arc(x + 60, y + 60, x, y, x,
30, y - 60,

y + 30,
x - 60, y - 30) ;
x + 30, y) ;

1* Get endpoints of second arc and enclose the figure, then fill it. *1
_getarcinfo(&xystart, &xyend, &xyfill);
_moveto(xystart.xcoord, xystart.ycoord);
_lineto(xyend.xcoord, xyend.ycoord);

fl oodfi 11 (xyfi 11 .xcoord, xyfi 11 .ycoord, _getcol or());

_getch();
_setvideomode(_DEFAULTMODE);

}

88 asctime

Description

Remarks

Return Value

asctime
Converts a tm time structure to a character string.

#include <time.h>

char *asctime(const struct tm *timeptr);

timeptr Time/date structure

The asctime function converts a time stored as a structure to a character string.
The timeptr value is usually obtained from a call to gmtime or localtime, both of
which return a pointer to a tm structure, defined in TIME.H. (See gmtime for a
complete description of the tm structure fields.)

The tm structure contains the following elements:

Element

int tm_sec

int tllLmin

int tllLhour
inttm_mday
inttm_mon

int tm_year

int tm_wday
int tm_yday
int tm_isdst

Description

Seconds after the minute (0-59)

Minutes after the hour (0-59)

Hours since midnight (0-23)

Day of the month (0-31)

Months since January (0-11)

Years since 1900

Days since Sunday (0-6)

Days since January 1 (0-365)

Daylight-saving-time flag

The string result produced by asctime contains exactly 26 characters and has the
form of the following example:

Wed Jan 02 02:03:55 1980\n\0

A 24-hour clock is used. All fields have a constant width. The newline character
(\n) and the null character ('\0') occupy the last two positions of the string. The
asctime function uses a single statically allocated buffer to hold the return string.
Each call to this routine destroys the result of the previous call.

The asctime function returns a pointer to the character string result. There is no
error return.

asctime 89

Compatibility Standards: ANSI, UNIX

See Also

Example

Output

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

ctime, _ftime, gmtime, localtime, time, _tzset

1* ASCTIME.C: This program places the system time in the long integer aclock,
* translates it into the structure newtime and then converts it to
* string form for output, using the asctime function.
*1

#include <time.h)
#include <stdio.h>

struct tm *newtime;
time_t aclock;

void main(void
{

time(&aclock);

newtime = localtime(&aclock);

1* Print local time as a string *1

1* Get time in seconds *1

1* Convert time to struct tm form *1

printf("The current date and time are: %s\n", asctime(newtime));

The current date and time are: Tue Jun 15 06:57:59 1999

90 asin Functions

Description

Remarks

Return Value

Compatibility

See Also

asin Functions
Calculate the arcsine.

#include <math.h>

#include <errno.h>

double asin(double x);

long double _asinl(long double x);

x Value whose arcsine is to be calculated

The asin functions calculate the arcsine of x in the range -rr12 to rr12 radians. The
value of x must be between -1 and 1. The _ asinl function is the 80-bit counterpart,
which uses an 80-bit, lO-byte coprocessor form of arguments and return values.
See the reference page on the long double functions for more details on this
data type.

The asin functions return the arcsine result. If x is less than -lor greater than 1,
asin sets errno to EDOM, prints a _DOMAIN error message to stderr, and re
turns O.

Error handling can be modified by using the _matherr (or _matherrl) routine.

asin

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_asinl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

acos functions, atan functions, cos functions, _matherr, sin functions, tan
functions

Example

Output

asin Functions 91

/* ASINCOS.C: This program prompts for a value in the range -1 to 1.
* Input values outside this range will produce _DOMAIN error messages.
* If a valid value is entered, the program prints the arcsine and the
* arccosine of that value.
*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

void main(void
{

double x, y;

printf("Enter a real number between -1 and 1: ");
scanf("%If", &x);
y=asin(x);
printf("Arcsine of %f = %f\n", x, y);
y = acos(x);
printf("Arccosine of %f = %f\n", x, y);

Enter a real number between -1 and 1: .32696
Arcsine of 0.326960 = 0.333085
Arccosine of 0.326960 = 1.237711

92 assert

Description

Remarks

Return Value

Compatibility

See Also

assert
Prints an error message and aborts the program.

#include <assert.h>

#include <stdio.h>

void assert(int expression);

expression C expression specifying assertion being tested

The assert routine prints a diagnostic message and calls the abort routine if
expression is false (0). The diagnostic message has the form

Assertion failed: expression. file filename. line linenumber

where filename is the name of the source file and linenumber is the line number of
the assertion that failed in the source file. No action is taken if expression is true
(nonzero).

In Windows, the diagnostic message appears in an "Assertion Failed" pop-up
window.

The assert routine is typically used in program development to identify program
logic errors. The given expression should be chosen so that it holds true only if the
program is operating as intended. After a program has been debugged, the special
"no debug" identifier NDEBUG can be used to remove assert calls from the pro
gram. If NDEBUG is defined (by any value) with a ID command-line option or
with a #define directive, the C preprocessor removes all assert calls from the pro
gram source.

The assert routine is implemented as a macro.

None.

Standards: ANSI, UNIX

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

abort, raise, signal

Example

Output

assert 93

1* ASSERT.C: In this program, the analyze_string function uses the
* assert function to test several conditions related to string and
* length. If any of the conditions fails, the program prints a
* message indicating what caused the failure.
*1

#include (stdio.h>
#include (assert.h>
#include (string.h>

void analyze_string(char *string); 1* Prototype *1

void maine void)
{

char testl[] = "abc", *test2 = NULL, test3[]

printf ("Analyzing string '%s'\n", testl) ;
analyze_stri ng(testl) ;
printf ("Analyzing string '%s'\n", test2) ;
analyze_string(test2) ;
printf ("Analyzing string '%s'\n", test3) ;
analyze_string(test3) ;

1111. ,

1* Tests a string to see if it is NULL, empty, or longer than 0 characters *1
void analyze_string(char * string)
{

}

assert(string != NULL);
assert(*string != '\0');
assert(strlen(string) > 2);

Analyzing string 'abc'
Analyzing string '(null)'

1* Cannot be NULL *1
1* Cannot be empty *1
1* Length must be greater than 2 *1

Assertion failed: string != NULL, file assert.c, line 28

abnormal program termi nati on

94 atan Functions

Description

Remarks

Return Value

Compatibility

atan Functions
Calculate the arctangent of x (atan and _ atanl) and the arctangent of y/x (atan2
and _atan21).

#include <math.h>

double atan(double x);

double atan2(double y, double x);

long double _atanl(long double x);

long double _atan21(long double y, long double x);

x,y Any number

The atan family of functions calculates the arctangent of x, and the atan2 family
of functions calculates the arctangent of y/x. The atan group returns a value in the
range -rrJ2 to 1t/2 radians, and the atan2 group returns a value in the range -1t to 1t

radians. The atan2 functions use the signs of both arguments to determine the
quadrant of the return value. The atan2 functions are well defined for every point
other than the origin, even if x equals 0 and y does not equal O.

The atan family of functions returns the arctangent result. If both arguments of
atan2 or _atan21 are 0, the function sets errno to EDOM, prints a _DOMAIN
error message to stderr, and returns O.

Error handling can be modified by using the _matherr (or _matherrl) routine.

atan, atan2

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN, WIN, WIN DLL

DOS32X

See Also

Example

Output

_atanl, _atan21

Standards: None

16-Bit: DOS, QWIN, WIN, WINDLL

32-Bit: None

atan Functions 95

acos functions, asin functions, cos functions, _matherr, sin functions, tan
functions

/* ATAN.C: This program calculates the arctangent of 1 and -1. */

#include <math.h>
#include <stdio.h>
#include <errno.h>

void maine void)
{

}

double xl, x2, y;

printf("Enter a real number: ");
scanf("%If" , &x1);
y = a ta n (xl);
printf("Arctangent of %f: %f\n", xl, Y);
printf("Enter a second real number: ");
scanf("%If", &x2);
Y = atan2(xl, x2);
pri ntf("Arctangent of %f / %f: %f\n", xl, x2, Y);

Enter a real number: -862.42
Arctangent of -862.420000: -1.569637
Enter a second real number: 78.5149
Arctangent of -862.420000 / 78.514900: -1.480006

96 atexit, _ fatexit

Description

Remarks

Return Value

Compatibility

atexit, _ fatexit
Process the specified function at exit.

#include <stdlih.h> Required only for function declarations

int atexit(void (__ cdecl *June)(void));

int __ far _fatexit(void (__ cdecl __ far *June)(void));

June Function to be called

The atexit function is passed the address of a function (june) to be called when the
program terminates normally. Successive calls to atexit create a register of func
tions that are executed in LIFO (last-in-first-out) order. No more than 32 functions
can be registered with atexit or _ onexit. The functions passed to atexit cannot
take parameters.

For DOS32X, atexit and _onexit use the heap to hold the "register of functions."
Thus, the number of functions that can be registered is limited only by heap
memory.

The _fatexit function is a far version of atexit; it can be used with any memory
model.

Both atexit and _fatexit return 0 if successful, or a nonzero value if an error oc
curs (e.g., if there are already 32 exit functions defined).

atexit

Standards:

16-Bit:

32-Bit:

ANSI

DOS, QWIN, WIN, WIN DLL

DOS32X

Use the ANSI-standard atexit function (rather than the similar _onexit function)
whenever ANSI portability is desired.

See Also

Example

Output

_fatexit

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

abort, exit, _ exit, _ onexit

atexit, _ fatexit 97

/* ATEXIT.C: This program pushes four functions onto the stack of functions
* to be executed when atexit is called. When the program exits, these
* programs are executed on a "last in, first out" basis.
*/

#include <stdlib.h>
#include <stdio.h>
void fnl(void), fn2(void), fn3(void), fn4(void);

void maine
{

atexit(
atexit(
atexit(
atexit(
printf(

void fnl()
{

void)

fnl) ;
fn2) ;
fn3) ;
fn4) ;
"This is executed

pri ntf("next. \n");
}

voidfn2()
{

printf("executed");

void fn3()
{

printf("is");
}

void fn4()
{

printf("This");

This is executed first.
This is executed next.

first.\n") ;

98 atof, atoi, atol, _atold

Description

Remarks

atol, atoi, atol, _atold
Convert strings to double (atof), long double (_atold), integer (atoi), or long
(atol).

#include <math.h>

#include <stdUb.h>

atof, _atold

atof, _atold, atoi, atol

double atof(const char *string);

long double _atold(const char *string);

int atoi(const char * string);

long atol(const char *string);

string String to be converted

These functions convert a character string to a double-precision floating-point
value (atof), an integer value (atoi), a long integer value (atol), or a long double
value (_atold). The input string is a sequence of characters that can be interpreted
as a numerical value of the specified type.

The string size that can be handled by the atof or _ atold function is limited to 100
characters.

The function stops reading the input string at the first character that it cannot rec
ognize as part of a number. This character may be the null character (,\0') termi
nating the string.

The atof and _atold functions expect string to have the following form:

[whites pace] [sign] [digits] [.digits] [{d I Die I E}[sign]digits]

A whites pace consists of space and/or tab characters, which are ignored; sign is
either plus (+) or minus (-); and digits are one or more decimal digits. If no digits
appear before the decimal point, at least one must appear after the decimal point.
The decimal digits may be followed by an exponent, which consists of an intro
ductory letter (d, D, e, or E) and an optionally signed decimal integer.

Return Value

alof, aloi, alol, _alold 99

The atoi and atol functions do not recognize decimal points or exponents. The
string argument for these functions has the form

[whitespace] [sign]digits

where whitespace, sign, and digits are exactly as described above for atof.

Each function returns the double, long double, int, or long value produced by in
terpreting the input characters as a number. The return value is 0 (for atoi), OL (for
atol), and 0.0 (for atof and _atold) if the input cannot be converted to a value of
that type. The return value is undefined in case of overflow.

Compatibility atof, atoi, atol

See Also

Example

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_atold

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_eevt, _fevt, _gevt, strtod

/* ATOF.C: This program shows how numbers stored as strings can be
* converted to numeri c val ues usi ng the atof, atoi, and atol functi ons.
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

char *s; double x; int i; long 1;

s =" -2309.12E-15"; /* Test of atof */
x=atof(s);
printf("atof test: ASCII string: %s\tfloat:

s = "7.8912654773d210"; /* Test of atof */
x = a tof (s);
printf("atof test: ASCII string: %s\tfloat:

%e\n", s, x);

%e\n", s, x);

100 atof, atoi, atol, _atold

Output

s =" -9885 pigs"; 1* Test of atoi *1
i = atoi (s);
printf("atoi test: ASCII string: %s\t\tinteger: %d\n", s,);

s = "98854 dollars"; 1* Test of atol *1
I = a to l(s);
printf("atol test: ASCII string: %s\t\tlong: %ld\n", s, I);

}

atof test:
atof test:
atoi test:
atol test:

ASCII string:
ASCII string:
ASCII stri ng:
ASCII string:

-2309.12E-15
7.8912654773d210

-9885 pigs
98854 dollars

float: -2.309120e-012
float: 7.891265e+210
integer: -9885
long: 98854

Description

Remarks

Return Value

Compatibility

See Also

bdos
Invokes the DOS system call.

#include <dos.h>

int _bdos(int dosfunc, unsigned int dosdx, unsigned int dosal);

dosfunc

dosdx

dosal

Function number

DX register value

AL register value

bdos 101

The _ bdos function invokes the DOS system call specified by dosfunc after
placing the values specified by dosdx and dosal in the DX and AL registers,
respectively. The _ bdos function executes an INT 21R instruction to invoke the
system call. When the system call is complete, _ bdos returns the contents of the
AX register.

The _ bdos function is intended to be used to invoke DOS system calls that either
take no arguments or take arguments only in the DX (DR, DL) and/or AL registers.

Do not use the _ bdos function to call interrupts that modify the DS register. In
stead, use the _intdosx or _int86x function. The _intdosx and _int86x functions
load the DS and ES registers from the segregs argument and also store the DS and
ES registers into segregs after the function call.

This call should not be used to invoke system calls that indicate errors by setting
the carry flag. Since C programs do not have access to this flag, your program can
not determine whether the return value is an error code. The _intdos function
should be used in these cases.

The _ bdos function returns the value of the AX register after the system call has
completed.

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

102 bdos

Example /* BOOS.C: This example calls DOS function 0x9 (display string)
* to display a $-terminated string.

Output

*/

#include <dos.h>

/* Function 0x09 assumes that OS will contain segment of the string.
* This will be true for all memory models if the string is declared near.
*/

char __ near str[] = "Hello world!\r\n$";

void maine void
{

}

/* Offset of string must be in OX, segment in OS. AL is not needed,
* so 0 is used.
*/

_bdos(0x09, (int)str, 0);

Hello world!

Description

Remarks

Bessel Functions
Compute the Bessel function.

#include <math.h>

double _jOe double x);

double _jl(double x);

double _jn(int n, double x);

double _yO(double x);

double -yl(double x);

double _yn(int n, double x);

long double _jOl(long double x);

long double _jnl(int n, long double x);

long double _jll(long double x);

long double _yOl(long double x);

long double _yll(long double x);

long double _ynl(int n, long double x);

Bessel Functions 103

x

n

Floating-point value

Integer order

The _jO, _jl, and _jn routines return Bessel functions of the first kind-orders 0,
1, and n, respectively.

The _yO, _yl, and _yn routines return Bessel functions of the second kind
orders 0, 1, and n, respectively. The argument x must be positive.

104 Bessel Functions

Return Value

The long double versions of these functions are the SO-bit counterparts and use the
SO-bit, lO-byte coprocessor form of arguments and return values. See the reference
page on the long double functions for more details on this data type.

The Bessel functions are explained more fully in most mathematics reference
books, such as the Handbook of Mathematical Functions (Abramowitz and
Stegun; Washington: U.S. Government Printing Office, 1964). These functions are
commonly used in the mathematics of electromagnetic wave theory.

These functions return the result of a Bessel function of x.

For _yO, _yl, or _yn, if x is negative, the routine sets errno to EDOM, prints a
DOMAIN error message to stderr, and returns -HUGE VAL.

Error handling can be modified by using the _matherr (or _matherrl) routine.

Compatibility _jO, _jl, _jn, _yO, _yl, _yn

Standards: UNIX

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _jO, _jl, _jn, _yO, _yl, and _yn for compatibility with ANSI naming con
ventions of non-ANSI functions. Use jO, jl, jn, yO, yl, and yn and link with
OLDNAMES.LIB for UNIX compatibility.

_jOI, _jll, _jnl, _yOI, _yll, _ynl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_matherr

/* BESSEL.C: This program illustrates Bessel functions, including:
* _j0 _jl _jn _y0 _yl _yn
*/

#include <math.h>
#include <stdio.h>

Output

void maine void)
{

double x = 2.387;
i nt n = 3, c;

Bessel Functions 105

pri ntf("Bessel functi ons for x = %f: \n", x);
printf(" Kind\t\tOrder\t\Function\tResult\n\n");
printf(" First\t\t0\t_j0(x)\t\t%f\n", _j0(x));
printf(" First\t\tl\Lj1(x)\t\t%f\n", _j1(x));
fore c = 2; c < 5; c++)

printf(" First\t\t%d\t_jn(n, x)\t%f\n" , c, _jn(c, x));

printf(" Second\t0\t_y0(x)\t\t%f\n", _y0(x);
printf(" Second\t1\t_y1(x)\t\t%f\n", _y1(x);
fore c = 2; c < 5; c++)

printf(" Second\t%d\t_yn(n, x)\t%f\n", c, _yn(c, x));

Bessel functions for x = 2.387000:
Kind Order Function Result

Fi rst 0 _j0(x) 0.009288
Fi rst 1 _j1(x) 0.522941
Fi rst 2 _jn(n, x) 0.428870
Fi rst 3 _jn(n, x) 0.195734
Fi rst 4 _jn(n, x) 0.063131
Second 0 _y0(x) 0.511681
Second 1 _y1(x) 0.094374
Second 2 _yn (n, x) -0.432608
Second 3 _yn(n, x) -0.819314
Second 4 _yn (n, x) -1.626833

106 _ bfreeseg

Description

Remarks

Return Value

Compatibility

See Also

Example

_bfreeseg
Frees a specified based heap.

#include <malloc.h> Required only for function declarations

int _bfreeseg(__ segment seg);

seg Segment selected

The _ bfreeseg function frees a based heap. The seg argument is a based heap re
turned by an earlier call to _ bheapseg. It specifies the based heap to be freed.

The specified segment is freed completely regardless of whether the blocks it con
tains are free or allocated. After a _ bfreeseg call, the seg value is invalid and
should not be used.

The _ bfreeseg function returns 0 if successful and -1 in the case of an error.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

_ bheapseg, calloc functions, free functions, malloc functions, realloc functions

See the example for _ bheapseg.

Description

Remarks

Return Value

Compatibility

See Also

_ hheapseg 107

_hheapseg
Allocates a based heap.

#include <malloe.b> Required only for function declarations

__ segment _bbeapseg(size_t size);

size Segment size to allocate

The _ bbeapseg function allocates a based-heap segment of at least size bytes.
(The block may be larger than size bytes because of space required for alignment
and for maintenance information.)

The value returned by _ bbeapseg is the identifier of the based-heap segment. This
value should be saved and used in subsequent calls to other based-heap functions.
If the original block of memory is depleted (e.g., by calls to _ bmalloe and
_brealloe), the run-time code will try to enlarge the heap as necessary.

The _ bbeapseg function can be called repeatedly. For each call, the run-time
library will allocate a new based-heap segment.

The _ bbeapseg function returns the newly allocated segment selector; save this
value for use in subsequent based-heap functions. A return value of _NULLSEG
indicates failure.

Always check the return from the _ bbeapseg function (especially when it is used
in real mode), even if the amount of memory requested is small.

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

ealloe functions, free functions, malloe functions, realloe functions

108 _ bheapseg

Example 1* BHEAPSEG.C: This program C illustrates dynamic allocation of based
* memory using functions _bheapseg, _bfreeseg, _bmalloc, and _bfree.
*1

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <string.h>

void maine void)
{

__ segment seg;
char __ based(seg
char __ based(seg
char tmpstr[80];
int len;

*outstr, __ based(seg
*pout, __ based(seg

printf("Enter a string: ");
gets(tmpstr);

*instr;
*pin;

1* Request a based heap. Use based so that memory won't be taken from
* near heap.
*1

if((seg = _bheapseg(1000)) NULLSEG
ex it (1);

1* Allocate based memory for two strings. *1
1 en = strlen(tmpstr) ;
if(((instr _bmalloc(seg, 1 en + 1)) _ NULLOFF) II

((outstr = _bmalloc(seg, 1 en + 1)) _ NULLOFF))

exit(1) ;

1* Copy a lowercased string to dynamic memory. The based memory is
* far when addressed as a whole.
*1

_ fstrlwr(_ fstrcpy((char __ far *)instr, (char __ far *)tmpstr));

1* Copy input string to output string in reversed order. When reading
* and writing individual characters from a based heap, the compiler will
* try to process them as near, thus speeding up the processing.
*1

fore pin = instr + len - 1, pout = outstr;
pout < outstr + len; pin--, pout++

*pout = *pin;
*pout = '\0';

Output

_hheapseg 109

/* Display strings. Again, strings as a whole are far. */
printf("Input: %Fs\n", (char far *)instr);
printf("Output: %Fs\n", (char __ far *)outstr);

/* Free blocks and release based heap. */
bfree(seg, instr);
bfree(seg, outstr);

_bfreeseg(seg);

Enter a string: Was I god
Input: was i god
Output: dog i saw

110 bios_ disk

Description

Remarks

bios_disk
Calls BIOS disk services, using INT Ox13.

#include <bios.h>

unsigned _bioLdisk(unsigned service, struct _diskinfo_t *diskinfo);

service

diskinfo

Disk function desired

Disk parameters

The _ bioL disk routine uses INT Ox 13 to provide several disk -access functions.
The service parameter selects the function desired, while the diskinfo structure pro
vides the necessary parameters. Note that the low-level disk operations allowed by
the _ bioL disk routine are very dangerous to use because they perform direct
manipulation of the disk.

The diskinfo structure provides the following parameters:

Element

unsigned drive

unsigned head

unsigned track

unsigned sector

unsigned nsectors

void far *buffer

Description

Drive number

Head number

Track number

Starting sector number

Number of sectors to read, write, or compare

Memory location to write to, read from, or compare

The service argument can be set to one of the following manifest constants:

Constant Function

_DISILFORMAT Formats the track specified by diskinfo. The head and track
fields indicate the track to format. Only one track can be
formatted in a single call. The buffer field points to a set of
sector markers. The format of the markers depends on the type
of disk drive; see a technical reference to the PC BIOS to
determine the marker format. The high-order byte (AH) of the
return value contains the status of the call; 0 equals success. If
there is an error, the high-order byte will contain a set of status
flags, as defined below under Return Value.

Return Value

Constant

bios_ disk 111

Function

Reads one or more disk sectors into memory. This service uses
all fields of the structure pointed to by diskinfo, as defined
earlier in this section. If no error occurs, the function returns 0 in
the high-order byte and the number of sectors read in the low
order byte. If there is an error, the high-order byte (AH) will
contain a set of status flags, as defined below under Return Value.

Forces the disk controller to do a hard reset, preparing for floppy
disk I/O. This is useful after an error occurs in another operation,
such as a read. If this service is specified, the diskinfo argument
is ignored. Status is returned in the 8 high-order bits (AH) of the
return value. If there is an error, the high-order byte will contain
a set of status flags, as defined below under Return Value.

Obtains the status of the last disk operation. If this service is
specified, the diskinfo argument is ignored. Status is returned in
the 8 low-order bits (AL) of the return value. If there is an error,
the low-order byte CAL) will contain a set of status flags, as
defined below under Return Value.

Checks the disk to be sure the specified sectors exist and can be
read. It also runs a CRC (cyclic redundancy check) test. This
service uses all fields (except buffer) of the structure pointed to
by diskinfo, as defined earlier in this section. If no error occurs,
the function returns 0 in the high-order byte (AH) and the
number of sectors compared in the low-order byte (AL). The
error status flags are listed below under Return Value.

Writes data from memory to one or more disk sectors. This
service uses all fields of the structure pointed to by diskinfo, as
defined earlier in this section. If no error occurs, the function
returns 0 in the high-order byte (AH) and the number of sectors
written in the low-order byte (AL). If there is an error, the high
order byte will contain a set of status flags, as defined below
under Return Value.

The _ bioL disk function returns the value in the AX register after the BIOS
interrupt.

Bits Meaning

OxOO No error

OxOI Invalid request or a bad command

Ox02 Address mark not found

Ox03 Disk write protected

Ox04 Sector not found

Ox05 Reset failed

Ox06 Floppy disk removed

Ox07 Drive parameter activity failed

112 bios disk -

Bits Meaning

Ox08 Direct Memory Access (DMA) overrun

Ox09 DMA crossed 64K boundary

OxOA Bad sector flag detected

OxOB Bad track flag detected

OxOC Media type not found

OxOD Invalid number of sectors on format

OxOE Control data access mark detected

OxOF DMA arbitration level out of range

OxlO Data read (CRC or ECC) error

OxIl Corrected data read (ECC) error

Ox20 Controller failure

Ox40 Seek error

Ox80 Disk timed out or failed to respond

OxAA Drive not ready

OxBB Undefined error

OxCC Write fault on drive

OxEO Status error

OxFF Sense operation failed

Compatibility Standards: None

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

/* BDISK.C: This program first attempts to verify a disk by using an
* invalid disk head number. After printing the return value error code,
* the program verifies the disk by using a valid disk head code.
*/

#include <conio.h>
#include <stdio.h>
#include <bios.h>

Output

void main(void)
{

unsigned status = 0;
struct diskinfo_t disk_ info;

dis k_ i n f 0 . d r i ve
disk info.head
disk info.track
di sk_ info. sector
disk info.nsectors

0;
10;
1 ;
2 ;
8;

/* Invalid head number */

printf("Insert disk in drive A: and press any key\n");
_getch();
status = _bios_disk(_DISK_VERIFY, &disk_info);
printf("Return value: 0x%.4x\n", status);
if(status & 0xff00) /* Error if high byte is 0 */

pri ntf("Seek error\n");
else

printf("No seek error\n");

pri ntf("Press any key\n");
_getch();
disk_info.head = 0; /* Valid head number */
status = bios disk(_DISK_VERIFY, &disk_info);
printf("Return value: 0x%.4x\n", status);
if(status & 0xff00) /* Error if high byte is 0 */

printf("Seek error\n");
else

printf("No seek error\n");

Insert disk in drive A: and press any key
Return value: 0x0400
Seek error
Press any key
Return value: 0x0008
No seek error

114 _ bios_ equiplist

Description

Remarks

Return Value

Compatibility

_ bios_ equiplist
Calls BIOS equipment-list service, using INT Oxil.

#include <bios.h>

unsigned _bioLequiplist(void);

The _ bioL equiplist routine uses INT Ox 11 to determine what hardware and
peripherals are currently installed on the machine.

The function returns the AX value, which is a set of bits indicating what equip
ment is installed, as defined below:

Bits

o

2-3

4-5

6-7

8

9-11

12

13

14-15

Meaning

True (1) if disk drive(s) installed

True (1) if math coprocessor installed

System RAM in 16K blocks (16-64K)

Initial video mode:

00 = Reserved

01 = 40 x 25 color

10 = 80 x 25 color

11 = 80 x 25 monochrome

Number of floppy-disk drives installed (00 = 1, 01 = 2, etc.)

False (0) if and only if a Direct Memory Access (DMA) chip is
installed

Number of RS232 serial ports installed

True (1) if and only if a game adapter is installed

True (1) if and only if an internal modem is installed

Number of printers installed

Standards: None

I6-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

Example

Output

/* BEQUIPLI.C: This program checks for the presence of diskettes. */

#include <bios.h>
#include <stdio.h>

void maine void)
{

unsigned equipment;

equipment = _bios_equiplist();
printf("Equipment bits: 0x%.4x\n", equipment);
if(equipment & 0x1000) /* Check for game adapter bit */

printf("Game adapter installed\n");
else

printf("No game adapter installed\n");

Equipment bits: 0x4061
No game adapter installed

Description

Remarks

Calls BIOS keyboard services, using INT Ox16.

#include <bios.h>

unsigned _bioLkeybrd(unsigned service);

service Keyboard function desired

The _ bioL keybrd routine uses INT Ox 16 to access the keyboard services. The
service argument can be any of the following manifest constants:

Constant

_KEYBRD_READ,
_NKEYBRD_READ

_KEYBRD_READY,
_NKEYBRD_READY

Meaning

Reads the next character from the keyboard. If no
character has been typed, the call will wait for
one. If the low-order byte of the return value is
nonzero, the call contains the ASCII value of the
character typed. The high-order byte contains the
keyboard scan code for the character. The
_NKEYBRD_READ constant is used with
enhanced keyboards to obtain the scan codes for
function keys Fll and F12 and the cursor control
keys.

Checks whether a keystroke is waiting to be read
and, if so, reads it. The return value is 0 if no
keystroke is waiting, or it is the character waiting
to be read, in the same format as the
_KEYBRD_READor_NKEYBRD_READ
return. This service does not remove the waiting
character from the input buffer, as does the
_KEYBRD_READor_NKEYBRD_READ
service. The _NKEYBRD_READY constant is
used with enhanced keyboards to obtain the scan
codes for function keys Fll and F12 and the
cursor control keys.

Return Value

Compatibility

Constant

_KEYBRD_SHIFTSTATUS,
NKEYBRD SHIFTS TAT US

Meaning

Returns the current SHIFT-key status.
_KEYBRD_SHIFTSTATUS returns only low
byte. The _NKEYBRD_SHIFTSTATUS
constant is used to get a full16-bit status value.
Any combination of the following bits may be set:

Bit Meaning if True

OOH Rightmost SHIFT key pressed

OIH Leftmost SHIFT key pressed

02H Either CTRL key pressed

3H Either ALT key pressed

04H SCROLL LOCK on

OSH NUMLOCKon

06H CAPS LOCK on

07H In insert mode (INS)

OSH Left CTRL key pressed

09H Left ALT key pressed

OAH Right CTRL key pressed

OBH Right ALT key pressed

OCH SCROLL LOCK key pressed

ODH NUM LOCK key pressed

OEH CAPS LOCK key pressed

OFH SYS REQ key pressed

With the ••• READ and ••• SHIFTSTATUS arguments, the _ bioLkeybrd function
returns the contents of the AX register after the BIOS call.

With the ••• READY argument, _bioLkeybrd returns 0 if there is no key. If there
is a key, _ bioLkeybrd returns the key waiting to be read (i.e., the same value as
_KEYBRD_READ).

With the •.• READ and the ••• READY arguments, the _bioLkeybrd function re
turns -1 if CTRL+BREAK has been pressed and is the next keystroke to be read.

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

Example 1* BKEYBRD.C: This program prints a message on the screen until the

Output

* right SHIFT key is pressed.
*1

#include <bios.h>
#include <stdio.h>

void maine void)
{

while(! Cbios_keybrd(_KEYBRD_SHIFTSTATUS) & 1313131))
printf("Use the right SHIFT key to stop this message\n");

printf("Right SHIFT key pressed\n");

Use the right SHIFT key to stop this message
Use the right SHIFT key to stop this message
Use the right SH I FT key to stop this message
Use the right SHIFT key to stop this message
Right SHIFT key pressed

Description

Remarks

Return Value

bios_memsize 119

bios_ memsize
Calls the BIOS memory-size service, using INT OxI2.

#include <bios.h>

unsigned _ bioLmemsize(void);

The _ bioL memsize routine uses INT Ox 12 to determine the total amount of main
memory installed.

The routine returns the total amount of installed memory in 1 K blocks. The maxi
mum return value is 640, representing 640K of main memory.

Compatibility Standards: None

Example

Output

16-Bit:

32-Bit:

DOS, QWIN, WIN, WINDLL

None

1* BMEMSIZE.C: This program displays the amount of memory installed. *1

#include <bios.h>
#include <stdio.h>

void maine void)
{

unsigned memory;

memory = _bios_memsize();
printf ("The amount of memory installed is: %dK\n", memory);

The amount of memory installed is: 640K

120 _ bios_ printer

Description

Remarks

Return Value

_ bios_ printer
Calls BIOS printer services, using INT Ox17.

#include <bios.h>

unsigned _ bioL printer(unsigned service, unsigned printer, unsigned data);

service

printer

data

Printer function desired

Target printer port

Output data

The _bios_printer routine uses INT Ox17 to perform printer output services for
parallel printers. The printer argument specifies the affected printer, where 0 is
LPTl, 1 is LPT2, and so forth.

Some printers do not support the full set of signals. As a result, the "Out of Paper"
condition, for example, may not be returned to your program.

The service argument can be any of the following manifest constants:

Constant

_PRINTER_STATUS
PRINTER WRITE

Meaning

Initializes the selected printer. The data argument is
ignored.

Returns the printer status. The data argument is ignored.

Sends the low-order byte of data to the printer specified
by printer.

The _ bioL printer function returns the value in the AX register after the BIOS in
terrupt. The high-order byte (AH) of the return value indicates the printer status
after the operation, as defined below:

Bit Meaning if True Bit Meaning if True

0 Printer timed out 4 Printer selected

Not used 5 Out of paper

2 Not used 6 Acknowledge

3 110 error 7 Printer not busy

Compatibility Standards: None

Example

Output

16-Bit: DOS, QWIN, WIN, WINDLL

32-Bit: None

/* BPRINTER.C: This program checks the status of the printer attached to
* LPTl when it is off line, then initializes the printer.
*/

#include <bios.h>
#include <conio.h>
#include <stdio.h>

#defi ne LPn 0

void main(void
(

unsigned status;

printf ("Place printer off line and press any key\n" 1;
_getch(l;

status = _bios_printer(_PRINTER_STATUS, LPn, 0 1;
printf("Status with printer off line: 0x%.4x\n\n", status 1;
pri ntf("Put the pri nter on 1 i ne and then\n" 1;
printf("Press any key to initialize printer\n" 1;
_getch(l;

status = _bios_printer(_PRINTER_INIT, LPn, 0 1;
printf("Status after printer initialized: 0x%.4x\n", status 1;

Place printer off line and press any key
Status with printer off line: 0x0018

Put the printer on line and then
Press any key to initialize printer
Status after printer initialized: 0x0090

122 bios_serialcom

Description

Remarks

bios_ serialcom
Calls BIOS communications services, using INT Ox14.

#incIude <bios.h>

unsigned _ bioLseriaicom(unsigned service, unsigned seriatport,
unsigned data);

service

serialyort

data

Communications service

Serial port to use

Port configuration bits

The _ bioL seriaicom routine uses INT Ox 14 to provide serial communications
services. The serialyort argument is set to 0 for COM1, to 1 for COM2, and
so on.

The _ bioL serial com routine may not be able to establish reliable communica
tions at baud rates in excess of 1,200 baud (_ CO~ 1200) due to the overhead
associated with servicing computer interrupts. Faster data communication rates
are possible with more direct programming of serial-port controllers. See
C Programmer's Guide to Serial Communications for more details on serial
communications programming in C.

The service argument can be set to one of the following manifest constants:

Constant

_COM_SEND

_ COM_ RECEIVE

_CO~STATUS

Service

Sets the port to the parameters specified in the data
argument

Transmits the data characters over the selected serial port

Accepts an input character from the selected serial port

Returns the current status of the selected serial port

Return Value

bios_serialcom 123

The data argument is ignored if service is set to _ COM_RECEIVE or
_ COM_ STATUS. The data argument for _ CO~ INIT is created by combining
(with the OR operator) one or more of the following constants:

Constant Meaning

_COM_CHR7 7 data bits

_COM_CHRS 8 data bits
_COM_STOPI 1 stop bit

_COM_STOP2 2 stop bits

_COM_NOPARITY No parity

_ COM_EVENPARITY Even parity
_ COM_ ODD PARITY Odd parity

_COM_110 110 baud

_COM_ISO 150 baud

_COM_300 300 baud
_COM_600 600 baud

_COM_1200 1,200 baud

_COM_2400 2,400 baud

_COM_4S00 4,800 baud
_COM_9600 9,600 baud

The default value of data is 1 stop bit, no parity, and 110 baud.

The function returns a 16-bit integer whose high-order byte contains status bits.
The meaning of the low-order byte varies, depending on the service value. The
high-order bits have the following meanings:

Bit Meaning if Set

15 Timed out

14 Transmission-shift register empty

13 Transmission-hold register empty

12 Break detected

11 Framing error

10 Parity error

9 Overrun error

8 Data ready

When service is _ COM_SEND, bit 15 will be set if data could not be sent.

124 bios_serialcom

When service is _COM_RECEIVE, the byte read will be returned in the low
order bits if the call is successful. If an error occurs, any of the bits 9, 10, 11, or 15
will be set.

When service is _COM_INIT or _COM_STATUS, the low-order bits are de
fined as follows:

Bit

7

6

5

4
3

2

o

Meaning if Set

Receive-line signal detected

Ring indicator

Data set ready

Clear to send

Change in receive-line signal detected

Trailing-edge ring indicator

Change in data-set-ready status

Change in clear-ta-send status

Note that this function works only with IBM personal computers and true
compatibles.

Compatibility Standards: None

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

/* BSERIALC.C: This program checks the status of serial port COMI. */

#include <bios.h>
#include <stdio.h>

void main(void)
{

}

unsigned coml_status;

coml_status = _bios_serialcom(_COM_STATUS, 0, 0);
printf ("COMI status: 0x%.4x\n", coml_status);

COMI status: 0x6000

Description

Remarks

Return Value

Compatibility

_ bios_ timeofday 125

_ bios_ timeofday
Calls BIOS time and date services, using INT OxlA.

#include <bios.h>

unsigned _ bioL timeofday(unsigned service, long *timeval);

service

time val

Time function desired

Clock count

The _ bioL timeofday routine uses INT OxlA to get or set the clock count. The
service argument can be either of the following manifest constants:

Constant

_ T1ME_ GETCLOCK

_ T1ME_SETCLOCK

Meaning

Copies the current value of the clock count to the
location pointed to by timeval. If midnight has not passed
since the last time the system clock was read or set, the
function returns 0; otherwise, the function returns 1.

Sets the current value of the system clock to the value in
the location pointed to by timeval. There is no return
value.

The _ bioL timeofday function returns the value in the AX register after the BIOS
interrupt.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

126 _ bios_ timeofday

Example /* BTIMEOFD.C: This program gets the current system clock count before and after
* a "do-nothing" loop and displays the difference.

Output

*/

#include <bios.h>
#include <stdio.h>

void main(void)
{

_bios_timeofday(_TIME_GETCLOCK, &begin_tick);
printf("Beginning tick count: %lu\n", begin_tick);
for(i = 1; i <= 900000; i++)

,
bi os timeofday(_ TIME_GETCLOCK, &end_ ti ck);
printf("Ending tick count: %lu\n", end_tick);
printf("Elapsed ticks: %lu\n", end_tick - begin_tick);

Beginning tick count: 1114255
Ending tick count: 1114287
Elapsed ticks: 32

Description

Remarks

bsearch 127

bsearch
Performs a binary search of a sorted array.

#include <stdlib.h>

#include <search.h>

Required for ANSI compatibility

Required only for function declarations

void *bsearch(const void *key, const void *base, size_ t num, size_ t width,
int (__ cdecl *compare)(const void *eleml, const void *elem2));

key

base

num

width

compare

eleml

elem2

Object to search for

Pointer to base of search data

Number of elements

Width of elements

Function that compares two elements: eleml and
elem2

Pointer to the key for the search

Pointer to the array element to be compared with
the key

The bsearch function performs a binary search of a sorted array of num elements,
each of width bytes in size. The base value is a pointer to the base of the array to
be searched, and key is the value being sought.

The compare argument is a pointer to a user-supplied routine that compares two
array elements and returns a value specifying their relationship. The bsearch func
tion calls the compare routine one or more times during the search, passing point
ers to two array elements on each call. The routine compares the elements, then
returns one of the following values:

Value

<0
=0

>0

Meaning

elemlless than elem2

eleml identical to elem2

eleml greater than elem2

If the array you are searching is not in ascending sort order, bsearch does not
work properly. If the array contains duplicate records with identical keys, there is
no way to predict which of the duplicate records will be located by bsearch.

128 bsearch

Return Value The bsearch function returns a pointer to an occurrence of key in the array pointed
to by base. If key is not found, the function returns NULL.

Compatibility Standards: ANSI, UNIX

See Also

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_lfiod, _lsearch, qsort

/* BSEARCH.C: This program reads the command-line arguments, sorting them
* with qsort, and then uses bsearch to find the word "cat."
*/

#include <search.h>
#include <string.h>
#include <stdio.h>

int comparee char **argl, char **arg2); 1* Declare a function for compare *1

void maine int argc, char **argv)
{

}

char **result;
char *key = "cat";
i nt i;

1* Sort using Quicksort algorithm: *1
qsort((char *)argv, argc, sizeof(char *), compare);

fore i = 0; i < argc; ++i
printf("%s ", argv[i]);

/* Output sorted list *1

1* Find the word "cat" using a binary search algorithm: */
result = (char **)bsearch((char *) &key, (char *)argv, arqc.

sizeof(char *), compare);
if(result

pri ntf("\n%s found at %Fp\n", *resul t, resul t);
else

printf("\nCat not found!\n");

int comparee char **argl, char **arg2
{

/* Compare all of both strings: */
return _strcmpi(*argl, *arg2);

[C:\LIBREF] bsearch dog pig horse cat human rat cow goat
bsearch cat cow dog goat horse human pig rat
cat found at 0292:0FD0

Description

Remarks

Return Value

Compatibility

_ cabs, _ cabsl 129

Calculate the absolute value of a complex number.

#include <math.h>

double _ cabs(struct _ complex z);

long double _cabsl(struct _complexl z);

z Complex number

The _cabs and _cabsl functions calculate the absolute value of a complex num
ber, which must be a structure of type _ complex (or _ complexl). The structure z
is composed of a real component x and an imaginary component y. A call to one of
the _cabs routines is equivalent to the following:

sqrt(z.x*z.x + z.y*z.y)

The _cabsl function is the SO-bit counterpart and it uses the SO-bit, lO-byte co
processor form of arguments and return values. See the reference page on the long
double functions for more details on this data type.

On overflow, these functions call_matherr or _matherrl, return HUGE_ VAL,
and set errno to ERANGE.

Standards: UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _cabs for compatibility with ANSI naming conventions of non-ANSI func
tions. Use cabs and link with OLDNAMES.LIB for UNIX compatibility.

130 cabs, _cabsl

See Also

Example

Output

_cabsl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

abs, Cabs, labs

/* CABS.C: Using _cabs, this program calculates the absolute value of
* a complex number.
*/

#include <math.h>
#include <stdio.h>

void maine void 1
{

}

struct _complex number {3.0, 4.0 };
double d;

d = _cabs(number l;
printf("The absolute value of %f + %fi is %f\n",

number.x, number.y, d l;

The absolute value of 3.000000 + 4.000000i is 5.000000

Description

Remarks

Return Value

calloc Functions 131

calloc Functions
Allocate an array in memory with elements initialized to o.

#include <stdlib.h>

#include <malloc.h>

For ANSI compatibility (calloc only)

Required only for function declarations

void *calloc(SiZL t num, SiZL t size);

void __ based(void) * _ bcalloc(__ segment seg, size_ t num, SiZL t size);

void __ far * _fcalloc(SiZL t num, SizLt size);

void __ near * _ncalloc(size_t num, size_t size);

num

size

seg

Number of elements

Length in bytes of each element

Segment selector

The canoc family of functions allocates storage space for an array of num ele
ments, each of length size bytes. Each element is initialized to O.

In large data models (compact-, large-, and huge-model programs), canoc maps
to _fcanoc. In small data models (tiny-, small-, and medium-model programs),
canoc maps to _ ncanoc.

The various calloc functions allocate storage space in the data segments shown in
the list below:

Function

calloc

_bcalloc

_fcalloc

_ncalloc

Data Segment

Depends on data model of program

Based heap, specified by seg segment selector

Far heap (outside default data segment)

Near heap (inside default data segment)

The canoc functions return a pointer to the allocated space. The storage space
pointed to by the return value is guaranteed to be suitably aligned for storage of
any type of object. To get a pointer to a type other than void, use a type cast on the
return value.

132 calloc Functions

The _fealloe and _llealloe functions return NULL if there is insufficient memory
available. The _ bealloe function returns _NULLOFF in this case.

Compatibility ealloe

See Also

Example

Output

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_ bealloe, _ fealloe, _ llealloe

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

free functions, _halloe, _hfree, malloe functions, realloe functions

/* CALLOC.C: This program uses calloc to allocate space for 40 long integers.
* It initializes each element to zero.
*/

#include <stdio.h>
#include <malloc.h>

void maine void)
{

}

long *buffer;

buffer = (long *)calloc(40, sizeof(long));
if(buffer != NULL)

printf("Allocated 40 long integers\n");
else

printf("Can't allocate memory\n" l
);

free(buffer);

Allocated 40 long integers

Description

Remarks

Return Value

Compatibility

See Also

ceil, _ceil! 133

ceil, _ ceill
Calculate the ceiling of a value.

#include <math.h>

double ceil(double x);

long double _ceill(long double x);

x Floating -point value

The ceil and _ ceill functions return a double (or long double) value representing
the smallest integer that is greater than or equal to x.

The _ceill function is the SO-bit counterpart and it uses the SO-bit, lO-byte co
processor form of arguments and return values. See the reference page on the long
double functions for more details on this data type.

These functions return the double or long double result. There is no error return.

ceil

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_ceill

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

floor, fmod

134 ceil, _ceil!

Example

Output

1* FLOOR.C: This example displays the largest integers less than or equal
* to the floating-point values 2.8 and -2.8. It then shows the smallest
* integers greater than or equal to 2.8 and -2.8.
*1

#include <math.h>
#include <stdio.h>

void maine void
{

double y;

y = floor(2.8 l;
printf("The floor of 2.8 is %f\n", y l;
y = floor(-2.8 l;
printf("The floor of -2.8 is %f\n", y l;

y = ceil(2.8 l;
printf("The ceil of 2.8 is %f\n", y l;
y = ceil(-2.8 l;
printf("The ceil of -2.8 is %f\n", y l;

The floor of 2.8 is 2.000000
The floor of -2.8 is -3.000000
The ceil of 2.8 is 3.000000
The ceil of -2.8 is -2.000000

Description

Remarks

Return Value

Compatibility

See Also

_ cexit, _ c_ exit
Perform cleanup operations and return without terminating the process.

#include <process.h>

void _cexit(void);

void _cexit(void);

The _cexit function calls, in LIFO ("last in, first out") order, the functions regis
tered by atexit and _onexit. Then the _cexit function flushes all I/O buffers and
closes all open streams before returning.

The _ c_ exit function is the same as the _ exit function but returns to the calling
process without processing atexit or _onexit or flushing stream buffers.

The behavior of the exit, _ exit, _ cexit, and _ c_ exit functions is described in the
following list:

Function

exit

_cexit

None.

Standards: None

Action

Performs complete C library termination procedures, terminates
the process, and exits with the supplied status code

Performs "quick" C library termination procedures, terminates
the process, and exits with the supplied status code

Performs complete C library termination procedures and returns
to caller, but does not terminate the process

Performs "quick" C library termination procedures and returns
to caller, but does not terminate the process

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

abort, atexit, _exec functions, exit, _onexit, _spawn functions, system

136 _cgets

Description

Remarks

Return Value

Compatibility

See Also

_cgets
Gets a character string from the console.

#include <conio.h> Required only for function declarations

char * _cgets(char *buffer);

buffer Storage location for data

The _cgets function reads a string of characters directly from the console and
stores the string and its length in the location pointed to by buffer. The buffer
argument must be a pointer to a character array. The first element of the array,
buffer[O], must contain the maximum length (in characters) of the string to be
read. The array must contain enough elements to hold the string, a terminating null
character (,\0'), and two additional bytes.

The _cgets function continues to read characters until a carriage-return-line-feed
(CR-LF) combination is read, or the specified number of characters is read. The
string is stored starting at str[2]. If a CR-LF combination is read, it is replaced
with a null character (,\0') before being stored. The _cgets function then stores the
actual length of the string in the second array element, buffer[l].

Because all DOS editing keys are active when you call_cgets, pressing F3 repeats
the last entry.

The _ cgets function returns a pointer to the start of the string, at bLiffer[2]. There
is no error return.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

_ getch, _ getche

Example

Output

_cgets 137

1* CGETS.C: This program creates a buffer and initializes the first byte
* to the size of the buffer - 2. Next, the program accepts an input string
* using _cgets and displays the size and text of that string.
*1

#include (conio.h>
#include (stdio.h>

void main(void)
{

char buffer[82]
char *result;

{ 80}; 1* Maximum characters in first byte *1

printf("Input line of text, followed by carriage return:\n");
result = _cgets(buffer); 1* Input a line of text *1
printf("\nLine length = %d\nText = %s\n", buffer[lJ, result);

Input line of text, followed by carriage return:
This is some text
Line length = 17
Text = This is some text

138 chain_ intr

Description

Remarks

chain_intr
Chains an interrupt from one handler to another.

#include <dos.h>

void _chailLintr(void(__ cdecl __ interrupt __ far *target)());

target Target interrupt routine

The _chain_intr routine passes control from one interrupt handler to another. The
stack and the registers of the first routine are passed to the second, allowing the
second routine to return as if it had been called directly.

The _ chailL intr routine is generally used when a user-defined interrupt handler
begins processing, then chains to the original interrupt handler to finish processing.

Chaining is one oftwo techniques, listed below, that can be used to transfer con
trol from a new interrupt routine to an old one:

• Call_ chailLintr with the interrupt routine as an argument. Do this if your
routine is finished and you want the second interrupt routine to terminate the in
terrupt call.

void __ interrupt new_int(unsigned _es, unsigned _ds,
unsi gned _di, unsigned _ si , ...)

{
++_di; 1* Initi al processing here *1

chain intr(old - int) ; 1* New DI passed to old - int *1
--_di; 1* This is never executed *1

• Call the interrupt routine (after casting it to an interrupt function if necessary).
Do this if you need to do further processing after the second interrupt routine
finishes.

void __ interrupt new_int(unsigned _es, unsigned _ds,
unsigned _di, unsigned _si, ...)

{

++_di;
(*old_int)();

asm mov _di, di

1* Initial processing here *1
1* New DI passed to old_ int *1
1* Put real DI from old_int *1
1* into di for return *1

Return Value

Compatibility

See Also

chain intr 139

Note that the real registers set by the old interrupt function are not automatically
set to the pseudoregisters of the new routine.

Use the _chailLintr function when you do not want to replace the default inter
rupt handler, but you do need to see its input. An example is a TSR (terminate-and
stay-resident) program that checks all keyboard input for a particular "hot key"
sequence.

The _chain_intr function should be used only with C functions that have been de
clared with __ interrupt. The __ interrupt declaration ensures that the proce
dure's entry/exit sequence is appropriate for an interrupt handler.

The _chailLintr function does not return to the caller.

Standards: None

16-Bit: DOS

32-Bit: None

140 ehdir

Description

Remarks

Return Value

chdir
Changes the current working directory.

#include <direct.h>

#include <errno.h>

int _chdir(char *dirname);

dirname

Required only for function declarations

Required for errno constants

Path name of new working directory

The _chdir function changes the current working directory to the directory
specified by dirname. The dirname argument must refer to an existing directory.

This function can change the current working directory on any drive; it cannot be
used to change the default drive itself. For example, if A: is the default drive and
\BIN is the current working directory, the following call changes the current work
ing directory for drive C:

_chdir("c:\\temp");

Notice that you must place two backslashes (\\) in a C string in order to represent
a single backslash (\); the backslash is the escape character for C strings and
therefore requires special handling.

This function call has no apparent immediate effect. However, when the _chdrive
function is called to change the default drive to C:, the current working directory
becomes C:\TEMP.

With DOS, the new directory set by the program becomes the new current work
ing directory.

The _ chdir function returns a value of 0 if the working directory is successfully
changed. A return value of -1 indicates an error, in which case errno is set to
ENOENT, indicating that the specified path name could not be found.

ehdir 141

Compatibility Standards:

16-Bit:

32-Bit:

UNIX

See Also

Example

Output

DOS, QWIN, WIN, WINDLL

DOS32X

Use _chdir for compatibility with ANSI naming conventions of non-ANSI func
tions. Use chdir and link with OLDNAMES.LIB for UNIX compatibility.

_dOLsetdrive, _mkdir, _rmdir, system

/* CHGDIR.C: This program uses the _chdir function to verify that a
* given directory exists. Under real mode that directory also becomes
* the current directory. Under protected mode, it is only the default
* directory for the current process.
*/

#include <direct.h>
#include <stdio.h>
#include <stdlib.h>

void maine int argc, char *argv[]
{

i f(_chdi r(argv[1])
printf("Unable to locate the directory: %s\n", argv[1]);

else
system("dir *.c");

[C:\LIBREF] chgdir \tmp

The volume label in drive C is ZEPPELIN.
Directory of C:\TMP

DUP C
TEST C

2 File(s)

232 4-18-99 11:18a
713 4-07-98 2:49p

14155776 bytes free

142 chdrive

Description

Remarks

Return Value

Compatibility

See Also

Example

chdrive
Changes the current working drive.

#include <direct.h> Required only for function declarations

int _chdrive(int drive);

drive Number of new working drive

The _chdrive function changes the current working drive to the drive specified by
drive. The drive argument uses an integer to specify the new working drive (l=A,
2=B, etc.).

This function changes only the working drive; the _chdir function changes the
working directory.

With DOS, the new drive set by the program becomes the new working drive.

The _ chdrive function returns a value of 0 if the working drive is successfully
changed. A return value of -1 indicates an error.

Standards: None

l6-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

_chdir, _dOLsetdrive, _fullpath, _getcwd, _getdrive, _mkdir, _rmdir,
system

1* GETDRIVE.C illustrates drive functions including:
* _getdrive chdrive _getdcwd
*1

#include <stdio.h>
#include <conio.h>
#include <direct.h>
#include <stdlib.h>

Output

void main(void)
{

int ch, drive, curdrive;
static char path[_MAX_PATH];

/* Save current drive. */
curdrive = _getdrive();

printf("Available drives are: \n");

/* If we can switch to the drive, it exists. */
for(drive = 1; drive <= 26; drive++)

if(!_chdrive(drive))
printf("%c: ", drive + 'A' - 1);

while(1)
{

printf("\nType drive letter to check or ESC to quit: ");
ch = _getch();
if(ch == 27)

break;
if(isalpha(ch))

_putch(ch);

chdrive 143

if(_getdcwd(toupper(ch) - 'A' + 1, path, _MAX_PATH) != NULL
printf("\nCurrent directory on that drive is %s\n", path);

/* Restore original drive. This is only necessary for DOS. Under OS/2
* the current drive of the calling process is always restored.
*/
chdrive(curdrive);

printf("\n");
}

Available drives are:
A: B: C:
Type drive letter to check
Type drive letter to check

or ESC to quit:
or ESC to quit:

Current directory on that drive is A:\

Type drive 1 etter to check or ESC to quit:

q
a

c
Current directory on that drive is C:\LIBREF

Type drive letter to check or ESC to quit:

144 chmod

Description

Remarks

Return Value

chmod
Changes the file-permission settings.

#include <sys\types.h>

#include <sys\stat.h>

#include <errno.h>

#include <io.h> Required only for function declarations

int _chmod(char *filename, int pmode);

filename

pmode

Path name of existing file

Permission setting for file

The _ chmod function changes the permission setting of the file specified by
filename. The permission setting controls read and write access to the file. The
constant expression pmode contains one or both of the manifest constants
_S_IWRITE and _S_IREAD, defined in SYS\STAT.H. Any other values for
pmode are ignored. When both constants are given, they are joined with the
bitwise-OR operator (I). The meaning of the pmode argument is as follows:

Value

_S_IWRITE

_S_IREAD

_S_IREAD I_S_IWRITE

Meaning

Writing permitted

Reading permitted

Reading and writing permitted

If write permission is not given, the file is read-only. Note that all files are always
readable; it is not possible to give write-only permission. Thus the modes
_S_IWRITE and _S_IREAD I _S_IWRITE are equivalent.

The _ chmod function returns the value 0 if the permission setting is successfully
changed. A return value of -1 indicates an error; in this case, errno is set to
ENOENT, indicating that the specified file could not be found.

chmod 145

Compatibility Standards: UNIX

See Also

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _chmod for compatibility with ANSI naming conventions of non-ANSI func
tions. Use chmod and link with OLDNAMES.LIB for UNIX compatibility.

_access, _creat, _fstat, _open, _stat

/* CHMOD.C: This program uses _chmod to change the mode of a file to
* read-only. It then attempts to modify the file.
*/

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>
#include <stdlib.h>

void maine void
{

/* Make file read-only: */
if(_chmod("CHMOD.C", _S_IREAD -1 1

perror("File not found\n" 1;
else

printf("Mode changed to read-only\n" 1;
system("echo /* End of file */ » CHMOD.C" 1;

/* Change back to read/write: */
if(_chmod("CHMOD.C", _S_IWRITE -1 1

perror("File not found\n" 1;
else

printf("Mode changed to read/write\n" 1;

Mode changed to read-only
Access denied
Mode changed to read/write

146 chsize

Description

Remarks

Return Value

Compatibility

See Also

chsize
Changes the file size.

#include <io.h>

#include <errno.h>

Required only for function declarations

int _chsize(int handle, long size);

handle

size

Handle referring to open file

New length offile in bytes

The _chsize function extends or truncates the file associated with handle to the
length specified by size. The file must be open in a mode that permits writing. Null
characters (,\0') are appended if the file is extended. If the file is truncated, all data
from the end of the shortened file to the original length of the file is lost.

In DOS and Windows, the directory update is done when a file is closed. Con
sequently, while a program is running, requests to determine the amount of free
disk space may receive inaccurate results.

The _ chsize function returns the value 0 if the file size is successfully changed. A
return value of -1 indicates an error, and errno is set to one of the following
values:

Value

EACCES
EBADF
ENOSPC

Standards: UNIX

Meaning

Specified file is locked against access.

Specified file is read-only or an invalid file handle.

No space is left on device.

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _ chsize for compatibility with ANSI naming conventions of non-ANSI func
tions. Use chsize and link with OLDNAMES.LIB for UNIX compatibility.

Example

Output

chsize 147

1* CHSIZE.C: This program uses _filelength to report the size of a
* file before and after modifying it with chsize.
*1

1finclude <io.h>
1finclude <fcntl.h>
1finclude <sys\types.h>
1finclude <sys\stat.h>
1finclude <stdio.h>

void main(void)
{

int fh, result;
unsigned int nbytes

1* Open a file *1

BUFSIZ;

if((fh _open("data", _O_RDWR I _O_CREAT, _S_IREAD I S IWRITE» != -1)
{

printf("File length before: %ld\n", _filelength(fh));
if(_chsize(fh, 329678) == 0)

printf("Size successfully changed\n");
else

printf("Problem in changing the size\n");
printf("File length after: %ld\n", _filelength(fh));
_close(fh);

File length before: 0
Size successfully changed
File length after: 329678

148 clear87

Description

Remarks

Return Value

Compatibility

See Also

Example

clear87
Gets and clears the floating-point status word.

#include <f1oat.h>

unsigned int _clear87(void);

The _clear87 function gets and clears the floating-point status word. The floating
point status word is a combination of the 8087/80287 status word and other condi
tions detected by the 8087/80287 exception handler, such as floating-point stack
overflow and underflow.

The bits in the value returned indicate the floating-point status. See the FLOAT.H
include file for a complete definition of the bits returned by _clear87.

Many of the math library functions modify the 8087/80287 status word, with un
predictable results. Return values from _clear87 and _status87 become more reli
able as fewer floating-point operations are performed between known states of the
floating-point status word.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

_controI87, _status87

1* CLEAR8?C: This program creates various floating-point problems,
* then uses _clear8? to report on these problems.
* Compile this program with Optimizations disabled (/Od). Otherwise
* the optimizer will remove the code associated with the unused
* floating-point values.
*1

#include <stdio.h>
#include <float.h>

Output

void maine void)
{

double a = le-40, b;
float x, y;

printf("Status: %.4x - clear\n", _clear87());

/* Store into y is inexact and underflows: */
y = a;
printf("Status: %.4x - inexact, underflow\n", _clear87());

/* y is denormal: */
b = y;
printf("Status: %.4x - denormal\n", _clear87());

Status: 0000 - clear
Status: 0030 - inexact, underflow
Status: 0002 - denormal

clear87 149

150 clearerr

Description

Remarks

Return Value

Compatibility

See Also

Example

clearerr
Resets the error indicator for a stream.

#include <stdio.h>

void clearerr(FILE *stream);

stream Pointer to FILE structure

The clearerr function resets the error indicator and end-of-file indicator for
stream. Error indicators are not automatically cleared; once the error indicator for
a specified stream is set, operations on that stream continue to return an error
value until clearerr, fseek, fsetpos, or rewind is called.

None.

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN, WIN, WIN DLL

DOS32X

_eof, feof, ferror, perror

1* CLEARERR.C: This program creates an error on the standard input
* stream, then clears it so that future reads won't fail.
*1

#include <stdio.h>

void main(void)
{

int c;

1* Create an error by writing to standard input. *1
putc('c', stdin);
if(ferror(stdin))
{

}

perror("Wri te error");
clearerr(stdin);

Output

/* See if read causes an error. */
printf("Will input cause an error? " l;
c = getc(stdin l;
if(ferror(stdin 1
{

perror("Read error" l;
clearerr(stdin l;

Write error: Error 0
Will input cause an error? n

clearerr 151

152 clearscreen

Description

Remarks

Return Value

clearscreen
Clears the specified area of the screen.

#include <graph.h>

void __ far _clearscreen(short area);

area Target area

The _clearscreen function erases the target area, filling it with the current back
ground color. The area argument can be one of the following manifest constants
(defined in GRAPH.H):

Constant Action

_ GCLEARSCREEN Clears and fills the entire screen

_ GVIEWPORT Clears and fills only within the current view port

_GWINDOW Clears and fills only within the current text window

None.

Compatibility Standards: None

See Also

Example

16-Bit: DOS

32-Bit: None

_getbkcolor, _setbkcolor

1* CLRSCRN.C *1
#include <conio.h>
#include <graph.h>
#include <stdlib.h>

void main(void
{

short xhalf, yhalf, xquar, yquar;
struct _videoconfig vc;

/* Find a valid graphics mode. */
i f(!_setvi deomode(MAXRESMODE

ex it (1);

_getvideoconfig(&vc);

xhalf
yhalf
xquar
yquar

vc.numxpixels / 2;
vc.numypixels / 2;
xhalf / 2;
yhalf / 2;

_setviewport(0, 0, xhalf - 1, yhalf
_rectangle(_GBORDER, 0, 0, xhalf -
_ellipse(_GFILLINTERIOR, xquar / 4,

xhal f - (xquar /
_getch() ;
_clearscreen(GVIEWPORT);

_getch();
setvideomode(DEFAULTMODE);

1);
1, yhalf - 1);
yquar / 4,
4), yhalf - (yquar

clearscreen 153

/ 4));

154 clock

Description

Remarks

Return Value

Compatibility

See Also

clock
Calculates the time used by the calling process.

#include <time.h>

clock_ t clock(void);

The clock function tells how much processor time has been used by the calling
process. The time in seconds is approximated by dividing the clock return value
by the value of the CLOCKS_PElLSEC constant.

In other words, the clock function returns the number of processor timer ticks that
have elapsed. A timer tick is approximately equal to l/CLOCKS_PElLSEC
seconds.

In versions of Microsoft C prior to version 6.0, the CLOCKS_PElLSEC
constant was called CL~ TCK.

The clock function returns the product of the time in seconds and the value of the
CLOCKS_PElL SEC constant. If the processor time is not available, the func
tion returns the value -1, cast as clock_ t.

In DOS, clock returns the time elapsed since the process started. This may not be
equal to the actual processor time used by the process.

Standards:

16-Bit:

32-Bit:

ANSI

DOS, QWIN, WIN

DOS32X

difftime, time

Example

Output

clock 155

1* CLOCK.C: This example prompts for how long the program is to run and
* then continuously displays the elapsed time for that period.
*1

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void sleep(clock_t wait);

void maine void)
{

long i = 600000L;
clock t start, finish;
double duration;

1* Delay for a specified time. *1
printf("Delay for three seconds\n");
sleep((clock_tl3 * CLOCKS_PER_SEC);
printf("Done!\n");

1* Measure the duration of an event. *1
printf("Time to do %ld empty loops is");
start = clock();
while(i--)

finish = clock();
duration = (double)(finish - start) I CLOCKS_PER_SEC;
printf("%2.1f seconds\n", duration);

1* Pauses for a specified number of microseconds. *1
void sleep(clock_t wait)
{

}

goal = wait + cl ock();
whil e(goal > cl ock())

Delay for three seconds
Done!
Time to do 600000 empty loops is 2.0 seconds

156 close

Description

Remarks

Return Value

close
Closes a file.

#include <io.h>

#include <errno.h>

int _close(int handle);

handle

Required only for function declarations

Handle referring to open file

The _ close function closes the file associated with handle.

The _ close function returns 0 if the file was successfully closed. A return value of
-1 indicates an error, and errno is set to EBADF, indicating an invalid file-handle
argument.

Compatibility Standards: UNIX

See Also

Example

l6-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _ close for compatibility with ANSI naming conventions of non-ANSI func
tions. Use close and link with OLDNAMES.LIB for UNIX compatibility.

_chsize, _creat, _dup, _dup2, _open, _unlink

/* OPEN.C: This program uses _open to open a file named OPEN.C for input
* and a file named OPEN.OUT for output. The files are then closed.
*/

Ifi ncl ude <fcntl. h>
#include <sys\types.h>
#include <sys\stat.h>
Ifinclude <io.h>
#include <stdio.h>

Output

void main(void)
{

int fh1, fh2;
fh1 = _open("OPEN.C", a RDONLY);
if(fh1 == -1)

perror("open failed on input file");
else
{

printf("open succeeded on input file\n");
_close(fh1);

fh2 = _open("OPEN.OUT", _O_WRONLY I _O_CREAT, S IREAD
if(fh2 == -1)

perror("open failed on output file");
else
{

printf("open succeeded on output file\n");
_close(fh2);

open succeeded on input file
open succeeded on output file

close 157

S IWRITE);

158 commit

Description

Remarks

Return Value

Compatibility

See Also

Example

commit
Flushes a file directly to disk.

#include <io.h>

#include <errno.h>

int _commit(int handle);

handle

Required only for function declarations

Handle referring to open file

The _commit function forces the operating system to write the file associated
with handle to disk. This call ensures that the specified file is flushed immedi
ately-not at the operating system's discretion.

The _ commit function returns 0 if the file was successfully flushed to disk. A
return value of -1 indicates an error, and errno is set to EBADF, indicating an in
valid file-handle argument.

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_creat, _open, _read, _ write

1* COMMIT.C illustrates low-level file 1/0 functions including:

*
*
*

close commit memset _open write

* This is example code, to keep the code simple and readable
* return values are not checked.
*1

#include <io.h>
#include <stdio.h>
#include <fcntl.h>

#define MAXBUF 32

int log_receivable(int I;

void main(void)
{

int fhandle;

commit 159

fhandle = _open("TRANSACT. LOG", _O_APPENO
o BINARY

_O_CREAT I
o RDWR);

log_receivable(fhandle);
closet fhandle);

int log_receivable(int fhandle)
{

1* The log_receivable function prompts for a name and a monetary amount
* and places both values into a buffer (buf). The _write function
* writes the values to the operating system and the commit function
* ensures that they are written to a disk file.
*1

i nt i;
char buf[MAXBUF];

memset(buf, '\0', MAXBUF);
1* Begin Transaction. *1
printf("Enter name: ");
gets(buf);
fort i = 1; buf[i] != '\0'; i++);
1* Write the value as a '\0' terminated string. *1
write(fhandle, buf, i+1);

pri ntf("\n");

memset(buf, '\0', MAXBUF);
printf("Enter amount: $");
gets (buf);
fort i = 1; buf[i] != '\0'; i++);
1* Write the value as a '\0' terminated string. *1
write(fhandle, buf, i+1);

printf("\n");

return _commit(fhandle);
1* The commit function ensures that two important
* safely written to disk. The return value of the
* is returned to the calling function.
*/

pieces of data are
commit function

160 controlS7

Description

Remarks

control87
Gets and sets the floating-point control word.

#include <float.h>

unsigned int _controI87(unsigned int new, unsigned int mask);

new New control-word bit values

mask Mask for new control-word bits to set

The _control87 function gets and sets the floating-point control word. The float
ing-point control word allows the program to change the precision, rounding, and
infinity modes in the floating-point-math package. Floating-point exceptions can
also be masked or unmasked using the _control87 function.

If the value for mask is equal to 0, then _control87 gets the floating-point control
word. If mask is nonzero, then a new value for the control word is set in the follow
ing manner: for any bit that is on (equal to 1) in mask, the corresponding bit in new
is used to update the control word. To put it another way,

fpcntrl = ((fpcntrl & -mask) I (new & mask))

where fpcntrl is the floating-point control word.

The possible values for the mask constant (mask) and new control values (new) are
shown in Table R.I.

Table R.1 Hex Values

Mask Hex Value Constant Hex Value

MCW_EM Ox003F
(Intenupt
exception)

_EM_INVALID OxOOOI
_EM_DENORMAL OxOOO2
_EM_ZERODIVIDE OxOOO4
_EM_OVERFLOW OxOOO8
EM UNDERFLOW OxOOlO
_EM_INEXACT OxOO20

Return Value

Compatibility

See Also

control87 161

Table R.t Hex Values (continued)

Mask Hex Value Constant Hex Value

MCW_IC Ox 1000
(Infinity
control)

_IC_AFFINE Ox I 000

_ IC_PROJECTIVE OxOOOO

MCW_RC OxOCOO
(Rounding
control)

RLCHOP OxOCOO

RC_UP Ox0800

_RC_DOWN Ox0400

_RC_NEAR OxOOOO

MCW]C Ox0300
(Precision
control)

_PC_24 (24 bits) OxOOOO

_PC_53 (53 bits) Ox0200

_PC_64 (64 bits) Ox0300

The bits in the value returned indicate the floating-point control state. See the
FLOAT.H include file for a complete definition of the bits returned by _ control87.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

_clear87, _status87

162 control87

Example 1* CNTRL87.C: This program uses contro187 to output the control word,

Output

* set the precision to 24 bits, and reset the status to the default.
*1

#include <stdio.h>
#include <float.h>

void maine void)
{

}

double a = 0.1;

1* Show original control word and do calculation. *1
printf("Original: 0x%.4x\n", _contro187(0, 0));
printf("%l.lf * %l.lf = %.15e\n", a, a, a * a);

1* Set precision to 24 bits and recalculate. *1
printf("24-bit: 0x%.4x\n", _contro187(_PC24, MCW_PC));
printf("%l.lf * %l.lf = %.15e\n", a, a, a * a);

1* Restore to default and recalculate. *1
printf("Default: 0x%.4x\n", _contro187(CW_DEFAULT, 0xffff));
printf("%l.lf * %l.lf = %.15e\n", a, a, a * a);

Original:
0.1 * 0.1
24-bit :
0.1 * 0.1
Default:
0.1 * 0.1

0x1332
= 1.000000000000000e-002
0x1332
= 9.999999776482582e-003
0x1032
= 1.000000000000000e-002

Description

Remarks

Return Value

Compatibility

cos Functions 163

cos Functions
Calculate the cosine (cos and _cosl) or hyperbolic cosine (cosh and _coshl).

#include <math.h>

double cos(double x);

double cosh(double x);

long double _cosl(long double x);

long double _coshl(long double x);

x Angle in radians

The cos and cosh functions return the cosine and hyperbolic cosine, respectively,
ofx.

The _cosl and _coshl functions are the 80-bit counterparts and use the 80-bit, 10-
byte coprocessor form of arguments and return values. See the reference page on
the long double functions for more details on this data type.

If x is large, a partial loss of significance in the result may occur in a call to cos, in
which case the function generates a _PLOSS error. If x is so large that signifi
cance is completely lost, cos prints a _ TLOSS message to stderr and returns O. In
both cases, errno is set to ERANGE.

If the result is too large in a cosh call, the function returns HUGE_ V AL and sets
errno to ERANGE. This behavior can be changed with _matherr.

cos,cosh

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

164 COS Functions

See Also

Example

Output

_ cosl, _ coshl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

acos functions, asin functions, atan functions, _matherr, sin functions, tan
functions

/* SINCOS.C: This program displays the sine, hyperbolic sine, cosine,
* and hyperbolic cosine of pi / 2.
*/

#include <math.h>
#include <stdio.h>

void maine void)
{

}

double pi = 3.1415926535;
double x, y;

x = pi / 2;
Y = sine x);
printf("sin(%f) = %f\n", x, Y);
Y = sinh(x);
printf("sinh(%f) = %f\n" ,x, y);
Y = cost x);
printf("cos(%f) = %f\n", x, y);
Y = cosh(x);
printf("cosh(%f) = %f\n",x, Y);

sine 1.570796) = 1.000000
sinh(1.570796) = 2.301299
cost 1.570796) = 0.000000
cosh(1.570796) = 2.509178

Description

Remarks

Return Value

Compatibility

See Also

_ cprintf 165

_cprintf
Formats and prints to the console.

#include <conio.h> Required only for function declarations

int _cprintf(char *format [, argument] ...);

format

argument

Format control string

Optional arguments

The _cprintffunction formats and prints a series of characters and values directly
to the console, using the _ putch function to output characters. Each argument (if
any) is converted and output according to the corresponding format specification
in format. The format has the same form and function as the format argument for
the printf function; see printf for a description of the format and arguments.

Note that unlike the fprintf, printf, and sprintf functions, _ cprintf does not trans
late line-feed characters into carriage-return-line-feed (CR-LF) combinations on
output.

The _ cprintf function returns the number of characters printed.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WINDLL

DOS32X

_ cscanf, fprintf, printf, sprintf, vprintf

166 _cprintf

Example 1* CPRINTF.C: This program displays some variables to the console. *1

Output

#include <conio.h>

void main(void
{

int -16, h 29;
unsigned u 62511 ;
char c I A ';
char s[] = "Test";

1* Note that console output does not translate \n as
* standard output does. Use \r\n instead.
*1

_cprintf("%d %.4x %u %c %s\r\n", i, h, U, c, s);

-16 001d 62511 A Test

Description

Remarks

Return Value

Compatibility

See Also

Example

_cputs 167

_cputs
Puts a string to the console.

#include <conio.h> Required only for function declarations

int _cputs(char *string);

string Output string

The _cputs function writes the null-terminated string pointed to by string directly
to the console. Note that a carriage-return-line-feed (CR-LF) combination is not
automatically appended to the string.

If successful, _cputs returns a O. If the function fails, it returns a nonzero value.

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_putch

1* CPUTS.C: This program first displays a string to the console. *1

#include <conio.h>

Output

void main(void
{

}

1* String to print at console. Note the \r (return) character. *1
char *buffer "Hello world (courtesy of _cputs)!\r\n";

_cputs(buffer);

Hello world (courtesy of _cputs)!

168 creat

Description

Remarks

creal
Creates a new file.

#include <sys\types.h>

#include <sys\stat.h>

#include <errno.h>

#include <io.h> Required only for function declarations

int _ creat(char *filename, int pmode);

filename

pmode

Path name of new file

Permission setting

The _ creat function either creates a new file or opens and truncates an existing
file. If the file specified by filename does not exist, a new file is created with the
given permission setting and is opened for writing. If the file already exists and its
permission setting allows writing, _creat truncates the file to length 0, destroying
the previous contents, and opens it for writing.

The permission setting, pmode, applies to newly created files only. The new file re
ceives the specified permission setting after it is closed for the first time. The
integer expression pmode contains one or both of the manifest constants
_S_IWRITE and _S_IREAD, defined in SYS\STAT.H. When both of the con
stants are given, they are joined with the bitwise-OR operator (I). The pmode ar
gument is set to one of the following values:

Value

_S_IWRITE

_S_IREAD

_S_IREAD I_S_IWRITE

Meaning

Writing permitted

Reading permitted

Reading and writing permitted

If write permission is not given, the file is read-only. Note that all files are always
readable; it is not possible to give write-only permission. Thus, the modes
_S_IWRITE and _S_IREAD I_S_IWRITE are equivalent. With DOS ver
sions 3.0 and later, files opened using _creat are always opened in compatibility
mode (see _sopen). With DOS32X, the files are always opened with
_SH_DENYNO.

Return Value

creal 169

The _creat function applies the current file-pennission mask to pmode before
setting the permissions (see _ umask).

Note that the _creat routine is provided primarily for compatibility with previous
libraries. A call to _open with _O_CREAT and _0_ TRUNC in the oflag argu
ment is equivalent to _creat and is preferable for new code.

If successful, _creat returns a handle for the created file. Otherwise, it returns-l
and sets errno to one of the following constants:

Value

EACCES

EMFILE

ENOENT

Meaning

Path name specifies an existing read-only file or specifies a
directory instead of a file

No more handles available (too many open files)

Path name not found

Compatibility Standards: UNIX

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _creat for compatibility with ANSI naming conventions of non-ANSI func
tions. Use creat and link with OLDNAMES.LIB for UNIX compatibility.

_ chmod, _ chsize, _ close, _ dup, _ dup2, _ open, _ sopen, _ umask

/* CREAT.C: This program uses _creat to create the file (or truncate the
* existing file) named data and open it for writing.
*/

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>
#include <stdlib.h>

170 creat

Output

void main(void)
{

int fh;

fh = _creat("data", _S_IREAD I S IWRITE);
if (fh == -1)

perror("Couldn't create data file");
else
{

printf("Created data file.\n");
_close(fh);

Created data file.

Description

Remarks

Return Value

Compatibility

See Also

cscanf 171

cscanf
Reads formatted data from the console.

#include <conio.h> Required only for function declarations

int _cscanf(char *format [, argument] ...);

format

argument

Format-control string

Optional arguments

The _cscanffunction reads data directly from the console into the locations given
by argument. The _getche function is used to read characters. Each optional argu
ment must be a pointer to a variable with a type that corresponds to a type speci
fier informat. The format controls the interpretation of the input fields and has the
same form and function as the format argument for the scanf function; see scanf
for a description offormat.

While _cscanfnormally echoes the input character, it will not do so if the last call
was to _ ungetch.

The _ cscanf function returns the number of fields that were successfully con
verted and assigned. The return value does not include fields that were read but
not assigned.

The return value is EOF for an attempt to read at end-of-file. This may occur
when keyboard input is redirected at the operating system command-line level. A
return value of 0 means that no fields were assigned.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

_ cprintf, fscanf, scanf, sscanf

172 cscanf

Example /* CSCANF.C: This program prompts for a string and uses cscanf to read
* in the response. Then _cscanf returns the number of items matched,

Output

* and the program displays that number.
*/

#include <stdio.h>
#include <conio.h>

void main(void)
{

}

int result, i[3J;

_cprintf("Enter three integers: ");
resul t = _cscanf("%i %i %i", &i [0J, &i [lJ, &i [2J);
_cprintf("\r\nYou entered");
while(result--)

_cprintf("%i" i[resultJ);
_cprintf("\r\n");

Enter three integers: 34 43 987k
You entered 987 43 34

Description

Remarks

Return Value

Compatibility

See Also

ctime 173

ctime
Converts a time stored as a time_ t value to a character string.

#include <time.h> Required only for function declarations

char *ctime(const time_ t *timer);

timer Pointer to stored time

The ctime function converts a time stored as a time_ t value to a character string.
The timer value is usually obtained from a call to time, which returns the number
of seconds elapsed since midnight (00:00:00), December 31,1899, Universal
Coordinated Time.

The string result produced by ctime contains exactly 26 characters and has the
form of the following example:

Wed Jan 02 02:03:55 1980\n\0

A 24-hour clock is used. All fields have a constant width. The newline character
(\n) and the null character (,\0') occupy the last two positions of the string.

Calls to the ctime function modify the single statically allocated buffer used by the
gmtime and the localtime functions. Each call to one of these routines destroys
the result of the previous call. The ctime function also shares a static buffer with
the asctime function. Thus, a call to ctime destroys the results of any previous call
to asctime, localtime, or gmtime.

The ctime function returns a pointer to the character string result. If time repre
sents a date before midnight, December 31, 1899, Universal Coordinated Time,
ctime returns NULL.

Standards: ANSI, UNIX

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

asctime, _ftime, gmtime, localtime, time

174 ctime

Example /* CTIME.C: This program gets the current time in time t form, then uses
* ctime to display the time in string form.

Output

*/

#include <time.h>
#include <stdio.h>

void main(void)
{

time_t ltime;

time(&1 time);
printf("The time is %s\n", ctime(<ime));

The time is Tue Jun 15 16:08:18 1999

Description

Remarks

Return Value

Compatibility

See Also

_dieeetomsbin, _dmsbintoieee 175

_ dieeetomsbin, _ dmsbintoieee
Convert between IEEE double value and Microsoft (MS) binary double value.

#include <math.h>

int _dieeetomsbin(double * src8, double *dst8);

int _dmsbintoieee(double *src8, double *dst8);

src8

dst8

Buffer containing value to convert

Buffer to store converted value

The _ dieeetomsbin routine converts a double-precision number in IEEE (Institute
of Electrical and Electronic Engineers) format to Microsoft (MS) binary format.
The routine _dmsbintoieee converts a double-precision number in MS binary for
mat to IEEE format.

These routines allow C programs (which store floating-point numbers in the IEEE
format) to use numeric data in random-access data files created with those ver
sions of Microsoft Basic that store floating-point numbers in MS binary format,
and vice versa.

The argument src8 is a pointer to the double value to be converted. The result is
stored at the location given by dst8.

These routines do not handle IEEE NANs ("not a number") and infinities. IEEE
denormals are treated as 0 in the conversions.

These functions return 0 if the conversion is successful and 1 if the conversion
causes an overflow.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WINDLL

None

_ fieeetomsbin, _ fmsbintoieee

176 difftime

Description

Remarks

Return Value

difftime
Finds the difference between two times.

#include <time.h> Required only for function declarations

double difftime(time_ t timer 1, timL t timerO);

timerO

timer1

Beginning time

Ending time

The difftime function computes the difference between the supplied time values,
timerO and timer 1.

The difftime function returns, in seconds, the elapsed time from timerO to timer 1.
The value returned is a double-precision number.

Compatibility Standards: ANSI, UNIX

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

time

/* DIFFTIME.C: This program calculates the amount of time needed to
* do a floating-point multiply 50000 times.
*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

Output

void maine void)
{

time_t start, finish;
unsigned loop;
double result, elapsed_time;

difftime 177

printf("This program will do a floating pOint multiply 50000 times\n");
printf("Working ... \n");

}

time(&start);
fore loop = 0; loop < 50000L; loop++)

result = 3.63 * 5.27;
time(&finish);

elapsed_time = difftime(finish, start);
printf("\nProgram takes %6.2f seconds.\n", elapsed_time);

This program will do a floating point multiply 50000 times
Working ...

Program takes 4.00 seconds.

178 disable

Description

Remarks

Return Value

Compatibility

See Also

disable
Disables interrupts.

#include <dos.h>

void _disable(void);

The _disable routine disables interrupts by executing an 8086 eLI machine in
struction. Use _disable before modifying an interrupt vector.

None.

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_enable

Description

Remarks

Return Value

_displaycursor 179

_ displaycursor
Sets the cursor toggle for graphics functions.

#include <graph.h>

short _3ar _displaycursor(short flag);

flag Cursor state

Upon entry into each graphic routine, the screen cursor is turned off. The
_displaycursor function determines whether the cursor will be turned back on
when programs exit graphic routines. Ifflag is set to _GCURSORON, the
cursor will be restored on exit. IfjZag is set to _ GCURSOROFF, the cursor
will be left off.

The function returns the previous value offlag. There is no error return.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

_ gettextcursor, _ settextcursor

/* DISCURS.C: This program changes the cursor shape using _gettextcursor
* and _settextcursor, and hides the cursor using _displaycursor.
*/

#include <conio.h>
#include <graph.h>

180 _ displaycursor

void maine void)
{

short oldcursor;
short newcursor = 0x007; 1* Full block cursor *1

1* Save old cursor shape and make sure cursor is on *1
oldcursor = _gettextcursor();
_clearscreen(_GCLEARSCREEN);
_displaycursor(_GCURSORON);
_outtext("\nOld cursor shape: ");
_getch();

1* Change cursor shape *1
outtext("\nNew cursor shape: ");

_settextcursor(newcursor);
_getch();

1* Restore original cursor shape *1
_outtext("\n");
_settextcursor(oldcursor);

Description

Remarks

Return Value

Compatibility

See Also

div
Computes the quotient and the remainder of two integer values.

#include <stdlih.h>

div _ t div(int numer, int denom);

numer

denom

Numerator

Denominator

div 181

The div function divides numer by denom, computing the quotient and the re
mainder. The div _ t structure contains the following elements:

Element

int quot

int rem

Description

Quotient
Remainder

The sign of the quotient is the same as that of the mathematical quotient. Its
absolute value is the largest integer that is less than the absolute value of the
mathematical quotient. If the denominator is 0, the program will terminate with
an error message.

The div function returns a structure of type div _ t, comprising both the quotient
and the remainder. The structure is defined in STDLIB.H.

Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Idiv

182 div

Example /* DIV.C: This example takes two integers as command-line arguments and
* displays the results of the integer division. This program accepts
* two arguments on the command line following the program name, then
* calls div to divide the first argument by the second. Finally,
* it prints the structure members quot and rem.
*/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void main(int argc, char *argv[])
{

}

int x,y;
div_t diY_result;

x atoi(argv[l]);
y atoi(argv[2]);

printf("x is %d, y is %d\n", x, y);
diY_result = div(x, y);
printf("The quotient is %d, and the remainder is %d\n",

div_result.quot, div_result.rem);

[C:\LIBREF] div 876 13
x is 876, y is 13
The quotient is 67, and the remainder is 5

Description

Remarks

Return Value

Compatibility

See Also

dos_allocmem 183

dos_ allocmem
Allocates a block of memory, using DOS service Ox48.

#include <dos.h>

#include <errno.h>

unsigned _doLaUoemem(unsigned size, unsigned *seg);

size Block size to allocate

seg Return buffer for segment descriptor

The _doLaUoemem function uses DOS service Ox48 to allocate a block of
memory size paragraphs long. (A paragraph is 16 bytes.) Allocated blocks are al
ways paragraph aligned. The segment descriptor for the initial segment of the new
block is returned in the word that seg points to. If the request cannot be satisfied,
the maximum possible size (in paragraphs) is returned in this word instead.

If successful, the _doLalloemem returns o. Otherwise, it returns the DOS error
code and sets errno to ENOMEM, indicating insufficient memory or invalid
arena (memory area) headers.

Standards: None

16-Bit: DOS

32-Bit: None

_aUoea, eaUoe functions, _doLfreemem, _doLsetbloek, _haUoe, maUoe
functions

184 dos_allocmem

Example 1* DALDCMEM.C: This program allocates 20 paragraphs of memory, increases

Output

* the allocation to 40 paragraphs, and then frees the memory space.
*1

#include <dos.h>
#include <stdio.h>

void main(void)
{

unsigned segment;
unsigned maxsize;

1* Allocate 20 paragraphs *1
if(_dos_allocmem(20, &segment) != 0)

pri ntf("all ocati on fai 1 ed\n");
else

printf("allocation successful\n");

1* Increase allocation to 40 paragraphs *1
if(_dos_setblock(40, segment, &maxsize) != 0)

printf("allocation increase failed\n");
else

printf("allocation increase successful\n");

1* free memory *1
if(_dos_ freemem(segment) != 0)

printf("free memory failed\n");
else

printf("free memory successful\n");

allocation successful
allocation increase successful
free memory successful

Description

Remarks

Return Value

dos_close
Closes a file using system call Ox3E.

#include <dos.h>

#include <errno.h>

unsigned _doLclose(int handle);

handle Target file handle

The _dOL close function uses system call Ox3E to close the file indicated by
handle. The file's handle argument is returned by the call that created or last
opened the file.

The function returns 0 if successful. Otherwise, it returns the DOS error code and
sets errno to EBADF, indicating an invalid file handle.

Do not use the DOS interface I/O routines with the console, low-level, or stream
I/O routines.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

_close, _creat, _doLcreat functions, _dos_open, _dOL read, _dOL write,
_dup, _open

1* DOPEN.C: This program uses DOS liD functions to open and close a file. *1

#include <fcntl.h>
#include <stdio.h>
#include <dos.h>

Output

void main(void)
{

int fh;

1* Open file with _dos_open function *1
if(_dos_open("datal". _O_RDONLY. &fh) != 0)

perror("Open failed on input file\n");
else

printf("Open succeeded on input file\n");

1* Close file with dos_close function *1
if(_dos_close(fh) != 0)

perror("Close failed\n");
else

printf("File successfully closed\n");

Open succeeded on input file
File successfully closed

Description

Remarks

Return Value

Compatibility

See Also

Example

dos_commit 187

dos_commit
Flushes a file to disk using system call Ox68.

#include <dos.h>

#include <errno.h>

unsigned _doLcommit(int handle);

handle Target file handle

The _doLcommit function uses system call Ox68 to flush to disk the DOS
buffers associated with the file indicated by handle. It also forces an update on the
corresponding disk directory and the file allocation table. System call Ox68 en
sures that the specified file is flushed directly to disk and not flushed at the operat
ing system's discretion.

The system call used to implement _doLcommit is only available in DOS ver
sions 3.3 and later. Using _doLcommit in earlier versions of DOS results in un
defined behavior.

Do not use the DOS interface I/O routines with the console, low-level, or stream
I/O routines.

The function returns 0 if successful. Otherwise, it returns the DOS error code and
sets errno to EBADF, indicating an invalid file handle.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

_close, _creat, _doLcreat functions, _dOL open, _doLread, _dOL write,
_dup,_open

1* DCOMMIT.C illustrates DOS file liD functions including:
* dos_commit dos_creatnew dos_write
* dos_creat dos_close
*1

188 dos_ commit

#include <dos.h>
#include <errno.h>
#include <conio.h>

void maine void)
{

char saveit[] = "Straight to disk. ",
prompt[] = "File exists, overwrite? [Yin] "
err[] = "Error occured. "
newline[] = "\n\r";

int hfile, ch;
unsigned count;

1* Open file and create, overwriting if necessary. *1
if(_dos_creatnew("COMMIT. LOG", _A_NORMAL, &hfile) != 0)
{

}

if(errno == EEXIST)
{

}

1* Use dos_write to display prompts. Use bdos to call
* function 1 to get and echo keystroke.
*1
dos_write(1, prompt, sizeof(prompt) - 1, &count);

ch = bdos(1, 0, 0) & 0x00ff;
if((ch == 'y') II (ch == 'Y')

_dos_create "COMMIT. LOG", _A_NORMAL, &hfile);
_dos_write(1, newline, sizeof(newline) - 1, &count);

1* Write to file; output passes through operating system's buffers. *1
if(_dos_write(hfile, saveit, sizeof(saveit), &count) != 0)
{

}

dos_write(1, err, sizeof(err) - 1, &count);
dos_write(1, newline, sizeof(newline) - 1, &count);

1* Write directly to file with no intermediate buffering *1
1f(_dos_commit(hfile) != 0)
{

dos_write(1, err, sizeof(err) - 1, &count);
_dos_write(1, newline, sizeof(newline) - 1, &count);

1* Close file. *1
H(_dos_close(hfil e
{

!= 0)

_dos_write(1, err, sizeof(err) - 1, &count);
_dos_write(1, newline, sizeof(newline) - 1, &count);

}

Description

Remarks

Return Value

dos_ creat Functions 189

dos_ creat Functions
Create a new file.

#include <dos.h>

#include <errno.h>

unsigned _doLcreat(char *filename, unsigned attrib, int *handle);

unsigned _doLcreatnew(char *filename, unsigned attrib, int *handle);

filename

attrib

handle

File path name

File attributes

Handle return buffer

The _ dOL creat and _ dOL creatnew routines create and open a new file named
filename; this new file has the access attributes specified in the attrib argument.
The new file's handle is copied into the integer location pointed to by handle. The
file is opened for both read and write access. If file sharing is installed, the file is
opened in compatibility mode.

The _ dOL creat routine uses system call Ox3C, and the _ dOL creatnew routine
uses system call Ox5B. If the file already exists, _doLcreat erases its contents
and leaves its attributes unchanged; however, the _doLcreatnew routine fails if
the file already exists.

If successful, both routines return o. Otherwise, they return the DOS error code
and set errno to one of the following values:

Constant

EACCES

EEXIST
EMFILE

ENOENT

Meaning

Access denied because the directory is full or, for _doLcreat
only, the file exists and cannot be overwritten

File already exists (_doLcreatnew only)

Too many open file handles

Path or file not found

190 dos_creat Functions

Compatibility Standards: None

Example

Output

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

1* DCREAT.C: This program creates a file using the dos creat function. The
* program cannot create a new file using the _dos_creatnew function
* because it already exists.
*1

#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

void maine void)
{

intfhl,fh2;
int result;

i f(_dos_create "data", _A_NORMAL, &fhl) ! = 0)
printf("Couldn't create data file\n");

else
{

}

printf("Created data file.\n");

1* If dos_creat is successful, the dos_creatnew call
* will fail since the file exists
*1

if(_dos_creatnew("data", _A_RDONLY, &fh2) != 0)
printf("Couldn't create data file\n");

else
{

printf("Created data file.\n");
_dos_close(fh2);

Created data file.
Couldn't create data file

Description

Remarks

dos_ find Functions 191

dos_ find Functions
Find the file with the specified attributes or find the next file with the specified
attributes.

#include <dos.h>

#include <errno.h>

unsigned _ dOL findfirst(char *filename, unsigned attrib,
struct _find_t *fileinfo);

unsigned _doLfindnext(struct _find_t *fileinfo);

filename

attrib

file info

Target filename

Target attributes

File-information buffer

The _doLfindfirst routine uses system call Ox4E to return information about the
first instance of a file whose name and attributes match filename and attrib.

The filename argument may use wildcards (* and ?). The attrib argument can be
any of the following manifest constants:

Constant

_A_NORMAL

_A_RDONLY

Meaning

Archive. Set whenever the file is changed, and cleared by
the DOS BACKUP command.

Hidden file. Cannot be found with the DOS DIR
command. Returns information about normal files as
well as about files with this attribute.

Normal. File can be read or written without restriction.

Read-only. File cannot be opened for writing, and a file
with the same name cannot be created. Returns
information about normal files as well as about files with
this attribute.

Subdirectory. Returns information about normal files as
well as about files with this attribute.

192 dos_ find Functions

Constant Meaning

System file. Cannot be found with the DOS DIR
command. Returns information about normal files as
well as about files with this attribute.

Volume ID. Only one file can have this attribute, and it
must be in the root directory.

Multiple constants can be combined (with the OR operator), using the vertical-bar
(I) character.

If the attrib argument to either of these functions is _A_RDONLY,
_A_HIDDEN, _A_SYSTEM, or _A_SUBDIR, the function also returns
any normal attribute files that match the filename argument. That is, a normal
file does not have a read-only, hidden, system, or directory attribute.

Information is returned in a _ find_ t structure, defined in DOS .R. The _ find_ t
structure contains the following elements:

Element

char reserved[21]

char attrib
unsigned WL time
unsigned WL date

long size
char name[13]

Description

Reserved for use by DOS

Attribute byte for matched path

Time of last write to file

Date of last write to file

Length of file in bytes

Null-terminated name of matched file/directory, without
the path

The formats for the WL time and WL date elements are in DOS format and are
not usable by any other C run-time function. The time format is shown below:

Bits

0-4
5-10
11-15

Contents

Number of 2-second increments (0 - 29)

Minutes (0-59)

Hours (0-23)

The date format is shown below:

Bits

0-4
5-8

9-15

Contents

Day of month (1-31)

Month (1-12)

Year (relative to 1980)

Return Value

dos find Functions 193

Do not alter the contents of the buffer between a call to _doLfindfirst and a sub
sequent call to the _doLfindnext function. Also, the buffer should not be altered
between calls to _doLfindnext.

The _doLfindnext routine uses system call Ox4F to find the next name, if any,
that matches the filename and attrib arguments specified in a prior call to
_doLfindfirst. Thefileinfo argument must point to a structure initialized by a pre
vious call to _ dOL findfirst. The contents of the structure will be altered as de
scribed above if a match is found.

If successful, both functions return O. Otherwise, they return the DOS error code
and set errno to ENOENT, indicating that filename could not be matched.

Compatibility Standards: None

Example

Output

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

1* DFIND.C: This program finds and prints all files in the current directory
* with the .c extension.
*1

#include <stdio.h>
#include <dos.h>

void maine void)
{

1* find first .c file in current directory *1
_dos_findfirst("*.c", _A_NORMAL, &cfile);

printf("Listing of .c files\n\n");
printf("File: %s is %ld bytes\n", cfile.name, cfile.size);

1* find the rest of the .c files *1
while(_dos_findnext(&c_file) == 0

printf("File: %s is %ld bytes\n", c_file.name, c_file.size);

Listing of .c files

File: CHDIR.C is 524 bytes
File: SIGFP.C is 2674 bytes
File: MAX.C is 258 bytes
File: CGETS.C is 577 bytes
File: FWRITE.C is 1123 bytes

194 dos_freemem

Description

Remarks

Return Value

dos_ freemem
Releases a block of memory (Ox49).

#include <dos.h>

#include <errno.h>

unsigned _dos_freemem(unsigned seg);

seg Block to be released

The _ dOLfreemem function uses system call Ox49 to release a block of memory
previously allocated by _doLallocmem. The seg argument is a value returned by
a previous call to _doLallocmem. The freed memory may no longer be used by
the application program.

If successful, _doLfreemem returns O. Otherwise, it returns the DOS error code
and sets errno to ENOMEM, indicating a bad segment value (one that does not
correspond to a segment returned by a previous _dos_allocmem call) or invalid
arena headers.

Compatibility Standards: None

See Also

Example

16-Bit: DOS

32-Bit: None

_doLallocmem, _doLsetblock, free functions

/* DALOCMEM.C: This program allocates 20 paragraphs of memory, increases
* the allocation to 40 paragraphs, and then frees the memory space.
*/

/finclude <dos.h>
/finclude <stdio.h>

Output

void main(void)
{

unsigned segment;
unsigned maxsize;

/* Allocate 20 paragraphs */
if(_dos_allocmem(20, &segment) != 0)

printf("allocation failed\n");
else

pri ntf("all ocati on successful \n");

/* Increase allocation to 40 paragraphs */
if(_dos_setblock(40, segment, &maxsize) != 0)

printf("allocation increase failed\n");
else

printf("allocation increase successful\n");

/* Free memory */
i f(_dos_ freemem(segment) ! = 0)

printf("free memory failed\n");
else

pri ntf("free memory successful \n");

allocation successful
allocation increase successful
free memory successful

dos_ freemem 195

Description

Remarks

Return Value

Compatibility

See Also

_ dos_ getdate
Gets current system date using system call Ox2A.

#include <dos.h>

void _doLgetdate(struct _dosdate_t *date);

date Current system date

The _doLgetdate routine uses system call Ox2A to obtain the current system
date. The date is returned in a _ dosdate_ t structure, defined in DOS .R.

The _ dosdate_ t structure contains the following elements:

Element

unsigned char day

unsigned char month

unsigned int year

unsigned char dayofweek

None.

Standards: None

Description

1-31

1-12

1980-2099

0-6 (0 = Sunday)

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_doLgettime, _doLsetdate, _doLsettime, gmtime, localtime, mktime,
_strdate, _strtime, time

Example

Output

/* DGTIME.C: This program gets and displays current date and time values. */

#include <stdio.h>
#include <dos.h>

void maine void)
{

struct dosdate t date;
struct dostime_t time;

/* Get current date and time values */

_dos_getdate(&date);
_dos_gettime(&time);

printf("Today's date is %d-%d-%d\n", date.month, date.day. date.year);
printf("The time is %02d:%02d\n", time.hour, time.minute);

Today's date is 12-15-1999
The time is 18:07

198 _ dos_ getdiskfree

Description

Remarks

Return Value

Compatibility

See Also

_ dos_ getdiskfree
Gets disk information using system call Ox36.

#include <dos.h>

#include <errno.h>

unsigned _doLgetdiskfree(unsigned drive, struct _diskfreL t *diskspace);

drive

diskspace

Drive number (default is 0)

Buffer to hold disk information

The _doLgetdiskfree routine uses system call Ox36 to obtain information on the
disk drive specified by drive. The default drive is 0, drive A is 1, drive B is 2, and
so on. Information is returned in the _diskfreLt structure (defined in DOS.H)
pointed to by diskspace.

The struct_diskfree_t structure contains the following elements:

Element

unsigned totaL clusters

unsigned avaiL clusters

unsigned sectorL per_cluster

unsigned by teL peL sector

Description

Total clusters on disk

Available clusters on disk

Sectors per cluster

Bytes per sector

If successful, the function returns O. Otherwise, it returns a nonzero value and sets
errno to EINV AL, indicating that an invalid drive was specified.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

_doLgetdrive, _doLsetdrive

Example

Output

_dos_getdiskfree 199

1* DGDISKFR.C: This program displays information about the default disk drive.
*1

#include <stdio.h>
#include <dos.h>

void main(void)
{

struct diskfree t drive;

1* Get information on default disk drive 0 *1

_dos_getdiskfree(0, &drive);
printf("total clusters: %d\n", drive.total_clusters);
printf("available clusters: %d\n", drive.avaiLclusters);
printf("sectors per cluster: %d\n", drive.sectors_per_cluster);
printf("bytes per sector: %d\n", drive.bytes_per_sector);

total cl usters: 9013
available clusters: 6030
sectors per cluster: 4
bytes per sector: 512

200 _ dos_ getdrive

Description

Remarks

Return Value

_ dos_ getdrive
Gets the current disk drive using system call Ox19.

#include <dos.h>

void _doLgetdrive(unsigned *drive);

drive Current-drive return buffer

The _doLgetdrive routine uses system call Ox19 to obtain the current disk
drive. The current drive is returned in the word that drive points to: 1 = drive A,
2 = drive B, and so on.

None.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

_ dOL getdiskfree, _ dOL setdrive, _ getdrive

1* DGDRIVE.C: This program prints the letter of the current drive,
* changes the default drive to A, then returns the number of disk drives.
*1

#include <stdio.h>
#include <dos.h>

void main(void)
{

unsigned olddrive, newdrive;
unsigned number_of_drives;

1* Print current default drive information *1
_dos_getdrive(&olddrive);
printf("The current drive is: %c\n", 'A' + olddrive - 1);

Output

1* Set default drive to be drive A *1
printf("Changing default drive to A\n");
_dos_setdrive(I, &number_of_drives);

_ dos_ getdrive 201

1* Get new default drive information and total number of drives *1
_dos_getdrive(&newdrive);
printf("The current drive is: %c\n", 'A' + newdrive - 1);
printf("Number of logical drives: %d\n", number_oLdrives);

1* Restore default drive *1
dos_setdrive(olddrive, &number of_drives);

The current drive is: C
Changing default drive to A
The current drive is: A
Number of 1 ogi cal dri ves: 26

Description

Remarks

Return Value

Compatibility

See Also

Gets the current attributes of a file or directory, using system call Ox43.

#include <dos.h>

#include <errno.h>

unsigned _doLgetfileattr(char *pathname, unsigned *attrib);

pathname

attrib

Full path of target file/directory

Word to store attributes in

The _doLgetfileattr routine uses system call Ox43 to obtain the current attributes
of the file or directory pointed to by pathname. The attributes are copied to the
low-order byte of the attrib word. Attributes are represented by manifest con
stants, as described below:

Constant

_A_HIDDEN

_A_NORMAL

_A_RDONLY

_A_SUBDIR

_~SYSTEM

_A_VOLID

Meaning

Archive. Set whenever the file is changed, or cleared by the
DOS BACKUP command.

Hidden file. Cannot be found by a directory search.

Normal. File can be read or written without restriction.

Read-only. File cannot be opened for a write, and a file with the
same name cannot be created.

Subdirectory.

System file. Cannot be found by a directory search.

Volume ID. Only one file can have this attribute, and it must be
in the root directory.

If successful, the function returns O. Otherwise, it returns the DOS error code and
sets errno to ENOENT, indicating that the target file or directory could not be
found.

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_access, _chmod, _doLsetfileattr, _umask

Example

Output

1* DGFILEAT.C: This program creates a file with the specified attributes,
* then prints this information before changing the file attributes back
* to normal.
*1

#include <stdio.h>
#include <dos.h>

void main(void)
{

}

unsigned oldattrib, newattrib;
int fh;

1* Get and display file attribute *1
_dos_getfileattr("DGFILEAT.C", &oldattrib);
printf("Attribute: 0x%.4x\n", oldattrib);
if((oldattrib & _A_RDONLY) != 0)

printf("Read only file\n");
else

printf("Not a read only file.\n");

1* Reset file attribute to normal file *1
_dos_setfil eattr("DGFILEAT.C", _A_RDONLY);
_dos_getfileattr("DGFILEAT.C", &newattrib);
printf("Attribute: 0x%.4x\n", newattrib);

1* Restore file attribute *1
_dos_setfileattr("DGFILEAT.C", oldattrib);
_dos_getfileattr("DGFILEAT.C", &newattrib);
printf("Attribute: 0x%.4x\n", newattrib);

Attribute: 0x0020
Not a read only file.
Attribute: 0x0001
Attribute: 0x0020

Description

Remarks

Return Value

Compatibility

See Also

_dos_geHtime
Gets the date and time a file was last written, using system call Ox57.

#include <dos.h>

#include <errno.h>

unsigned _doLgetftime(int handle, unsigned *date, unsigned *time);

handle

date

time

Target file

Date-return buffer

Time-return buffer

The _doLgetftime routine uses system call Ox57 to get the date and time that the
specified file was last written. The file must have been opened with a call to
_dOL open or _doLcreat prior to calling _doLgetftime. The date and time are
returned in the words pointed to by date and time. The values appear in the DOS
date and time format:

Time Bits

0-4

5-10

11-15

Date Bits

0-4

5-8

9-15

Meaning

Number of 2-second increments (0 -29)
Minutes (0-59)

Hours (0-23)

Meaning

Day (1-31)

Month (1-12)

Year (1980-2099)

If successful, the function returns o. Otherwise, it returns the DOS error code and
sets errno to EBADF, indicating that an invalid file handle was passed.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

_doLsetftime, _fstat, _stat

Example 1* DGFTIME.C: This program displays and modifies the date and time
* fields of a file.
*1

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

void main(void)
{

}

unsigned new_date = 0x26cf;
unsigned new_time = 0x48e0;
unsigned old_date, old_time;

1* FEDC BA98 7654 3210 *1
1* 0010 0110 1100 1111 12/15/99 *1
1* 0100 1000 1110 0000 9:07 AM *1

int fh;

1* Open file with _dos_open function *1
if(_dos_open("dgftime.obj", _O_RDONLY, &fh) != 0)

exit(1);

1* Get file date and time *1
_dos_getftime(fh, &old_date, &old_time);
printf("Old date field: 0x%.4x\n", old_date);
printf("Old time field: 0x%.4x\n", old_time);
system("dir dgftime.obj");

1* Modify file date and time *1
if(!_dos_setftime(fh, new_date, new_time))
{

}

_dos_getftime(fh, &new_date, &new_time);
printf("New date field: 0x%.4x\n", new_date);
printf("New time field: 0x%.4x\n", new_time);
system("dir dgftime.obj");

1* Restore date and time *1
_dos_setftime(fh, old_date, old_time);

Output Old date field: 0x274f
Old time field: 0x94bb

Volume in drive C is ZEPPELIN
Directory of C:\LIBREF

DGFTIME OBJ 3923 6-15-99 6:37p
1 File(s) 13676544 bytes free

New date field: 0x26cf
New time field: 0x48e0

Volume in drive C is ZEPPELIN
Directory of C:\LIBREF

DGFTIME OBJ 3923 12-15-99 9:07a
1 File(s) 13676544 bytes free

Description

Remarks

Return Value

Compatibility

See Also

_ dos_ gettime
Gets the current system time, using system call Ox2e.

#include <dos.h>

void _dos_gettime(struct _dostime_t *time);

time Current system time

The _dos_gettime routine uses system call Ox2C to obtain the current system
time. The time is returned in a _dostime_ t structure, defined in DOS.H.

The dostime_ t structure contains the following elements:

Element

unsigned char hour
unsigned char minute

unsigned char second

unsigned char hsecond

None.

Standards: None

Description

0-23

0-59

0-59

11100 second; 0-99

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_dos_getdate, _doLsetdate, _dos_settime, gmtime, localtime, _strtime

208 _ dos_ gettime

Example 1* DGTIME.C: This program gets and displays current date and time values. *1

Output

#include <stdio.h>
lfoinclude <dos.h>

void main(void)
{

}

struct _dosdate_t date;
struct _dostime_t time;

1* Get current date and time values *1

_dos_getdate(&date);
_dos_gettime(&time);

printf("Today's date is %d-%d-%d\n", date.month, date.day, date.year);
printf("The time is %02d:%02d\n", time.hour, time.minute);

Today's date is 12-15-1999
The time is 18:07

Description

Remarks

Return Value

Compatibility

See Also

_ dos_ getvect 209

_ dos_ getveet
Gets the current value of the interrupt vector, using system call Ox35.

#include <dos.h>

void (__ cdecl __ interrupt __ far * _doLgetvect(unsigned intnum))();

intnum Target interrupt vector

The _doLgetvect routine uses system call Ox35 to get the current value of the in
terrupt vector specified by intnum.

This routine is typically used in conjunction with the _doLsetvect function. To
replace an interrupt vector, first save the current vector of the interrupt using
_doLgetvect. Then set the vector to your own interrupt routine with
_doLsetvect. The saved vector can later be restored, if necessary, using
_doLsetvect. The user-defined routine may also need the original vector in order
to call that vector or chain to it with _chaiILintr.

The function returns a far pointer for the intnum interrupt to the current handler, if
there is one.

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

210 dos keep

Description

Remarks

_dos_keep
Installs TSR (terminate-and-stay-resident) programs in memory, using system call
Ox3l.

#include <dos.h>

void _doLkeep(unsigned retcode, unsigned memsize);

retcode

memsize

Exit status code

Allocated resident memory (in 16-byte
paragraphs)

The _dos_keep routine installs TSRs (terminate-and-stay-resident programs) in
memory, using system call Ox3l.

The routine first exits the calling process, leaving it in memory. It then returns the
low-order byte of retcode to the parent of the calling process. Before returning ex
ecution to the parent process, _doL keep sets the allocated memory for the now
resident process to memsize 16-byte paragraphs. Any excess memory is returned
to the system.

The _dos_keep function calls the same internal routines called by exit. It there
fore takes the following actions:

• Calls any functions that have been registered by atexit or _onexit calls.

• Flushes all file buffers.

• Restores interrupt vectors replaced by the C startup code. The primary one is in
terrupt 0 (divide by zero). If the emulator math library is used and there is no co
processor, interrupts Ox34 through Ox3D are restored. If there is a coprocessor,
interrupt 2 is restored.

Do not use the emulator math library in TSRs unless you are familiar with the
startup code and the coprocessor. Use the alternate math package if the TSR must
do floating-point math.

Do not run programs that use _dos_keep from inside the Microsoft Programmer's
WorkBench environment, since doing so causes subsequent memory problems.
The _doL keep function terminates the program when executed in the
Programmer's WorkBench environment.

Return Value

Compatibility

See Also

None.

Standards: None

16-Bit: DOS

32-Bit: None

Description

Remarks

_dos_open
Opens a file, using system call Ox3D.

#include <dos.h>

#include <errno.h>

#include <fcntl.h>

#include <share.h>

Access mode constants

Sharing mode constants

unsigned _doLopen(char *filename, unsigned mode, int *handle);

filename

mode

handle

Path to an existing file

Permissions

Pointer to integer

The _doLopen routine uses system call Ox3D to open the existing file pointed to
by filename. The handle for the opened file is copied into the integer pointed to by
handle. The mode argument specifies the file's access, sharing, and inheritance
modes by combining (with the OR operator) manifest constants from the three
groups shown below. At most, one access mode and one sharing mode can be
specified at a time.

Constant Mode Meaning

_O_RDONLY Access Read-only
_O_WRONLY Access Write-only
_O_RDWR Access Both read and write
_SILCOMPAT Sharing Compatibility
_SILDENYRW Sharing Deny reading and writing
_SILDENYWR Sharing Deny writing
_SILDENYRD Sharing Deny reading
_SILDENYNO Sharing Deny neither
_O_NOINHERIT Inheritance by the child File is not inherited

process

Do not use the DOS interface I/O routines in conjunction with the console, low
level, or stream I/O routines.

Return Value If successful, the function returns o. Otherwise, it returns the DOS error code and
sets errno to one of the following manifest constants:

Constant

EACCES

EINVAL

EMFILE
ENOENT

Meaning

Access denied (possible reasons include specifying a directory
or volume ID for filename, or opening a read-only file for write
access)

Sharing mode specified when file sharing not installed, or access
mode value is invalid

Too many open file handles

Path or file not found

Compatibility Standards: None

See Also

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

1* DOPEN.C: This program uses DOS 1/0 functions to open and close a file. *1

Ifinclude <fcntl.h>
#include <stdio.h>
#include <dos.h>

void maine void)
{

}

int fh;

1* Open file with _dos_open function *1
if(_dos_open("datal". _O_RDONLY. &fh) != 0)

perror("Open failed on input file\n");
else

printf("Open succeeded on input file\n");

1* Close file with dos_close function *1
if(_dos_close(fh) != 0)

perror("Close,failed\n");
else

printf("File successfully closed\n");

Open succeeded on input file
File successfully closed

Description

Remarks

Return Value

Compatibility

See Also

dos_read
Reads data from a file, using system call Ox3F.

#include <dos.h>

unsigned _dos_read(int handle, void __ far *buffer, unsigned count,
unsigned *numread);

handle

buffer

count

numread

File to read

Buffer to write to

Number of bytes to read

Number of bytes actually read

The _ dOL read routine uses system call Ox3F to read count bytes of data from the
file specified by handle. The routine then copies the data to the buffer pointed to
by buffer. The integer pointed to by numread will show the number of bytes actu
ally read, which may be less than the number requested in count. If the number of
bytes actually read is 0, it means the routine tried to read at end-of-file.

Do not use the DOS interface liD routines in conjunction with the console, low
level, or stream liD routines.

If successful, the function returns O. Otherwise, it returns the DOS error code and
sets errno to one of the following constants:

Constant

EACCES
EBADF

Standards: None

Meaning

Access denied (handle is not open for read access)

File handle is invalid

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_doLciose, _dos_open, _dOL write, _read

Example

Output

dos_ read 215

1* DREAD.C: This program uses the DOS 1/0 operations to read the contents
* of a file.
*1

#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

void main(void)
(

int fh;
char buffer[50];
unsigned number_read;

1* Open file with _dos_open function *1
if(_dos_open("dread.c", _O_RDONLY, &fh) != 0)

perror("Open failed on input file\n");
else

pri ntf("Open succeeded on input fi 1 e\n");

1* Read data with dos_read function *1
_dos_read(fh, buffer, 50, &number_read);
printf("First 40 characters are: %.40s\n\n", buffer);

1* Close file with dos_close function *1
_dos_close(fh);

Open succeeded on input file
First 40 characters are: 1* DREAD.C: This program uses the DOS II

216 dos_setblock

Description

Remarks

Return Value

Compatibility

See Also

Example

dos_ setblock
Changes the size of a memory segment, using system call Ox4A.

#include <dos.h>

unsigned _doLsetblock(unsigned size, unsigned seg, unsigned *maxsize);

size

seg

maxsize

New segment size

Target segment

Maximum-size buffer

The _doLsetblock routine uses system call Ox4A to change the size of seg, pre
viously allocated by _doLallocmem, to size paragraphs. lfthe request cannot be
satisfied, the maximum possible segment size is copied to the buffer pointed to by
maxsize.

The function returns 0 if successful. If the call fails, it returns the DOS error code
and sets errno to ENOMEM, indicating a bad segment value was passed. A bad
segment value is one that does not correspond to a segment returned from a pre
vious _doLallocmem call, or one that contains invalid arena headers.

Standards: None

16-Bit:

32-Bit:

DOS

None

_doLallocmem, _doLfreemem, realloc functions

/* DALOCMEM.C: This program allocates 20 paragraphs of memory, increases
* the allocation to 40 paragraphs, and then frees the memory space.
*/

#include <dos.h>
#include <stdio.h>

Output

void main(void)
{

unsigned segment;
unsigned maxsize;

1* Allocate 20 paragraphs *1
if(_dos_allocmem(20, &segment) != 0)

printf("allocation failed\n");
else

printf("allocation successful\n");

1* Increase allocation to 40 paragraphs *1
if(_dos_setblock(40, segment, &maxsize) != 0)

printf("allocation increase failed\n");
else

printf("allocation increase successful\n");

1* Free memory *1
if(dos_ freemem(segment) != 0)

printf("free memory failed\n");
else

printf("free memory successful\n");

allocation successful
allocation increase successful
free memory successful

dos_setblock 217

218 dos_setdate

Description

Remarks

Return Value

Compatibility

See Also

dos_ setdate
Sets the current system date, using system call Ox2B.

#include <dos.h>

unsigned _doLsetdate(struct _dosdatLt *date);

date New system date

The _doLsetdate routine uses system call Ox2B to set the current system date.
The date is stored in the _ dosdate_ t structure pointed to by date, defined in
DOS.H. The _dosdate_ t structure contains the following elements:

Element

unsigned char day

unsigned char month

unsigned int year

unsigned char dayofweek

Description

1-31

1-12

1980-2099

0-6 (0 = Sunday)

If successful, the function returns o. Otherwise, it returns a nonzero value and sets
errno to EINV AL, indicating an invalid date was specified.

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_doLgetdate, _doLgettime, _doLsettime, gmtime, localtime, mktime,
_strdate, _strtime, time

Example

Output

dos_setdate 219

/* DSTIME.C: This program changes the time and date values and displays the
* new date and time values.
*/

ifoinclude <dos.h>
ifoinclude <conio.h>
ifoinclude <stdio.h>
ifoinclude <time.h>

void maine void)
{

struct _dosdate_t olddate, newdate
struct _dostime_t oldtime, newtime
char datebuf[40], timebuf[40];

/* Get current date and time values */
_dos_getdate(&olddate);
_dos_gettime(&oldtime);

4 },
3 },

7 }, { 1999 } };
45 }, { 30 }, { 0 } };

printf("%s %s\n", strdate(datebuf), _strtime(timebuf));

/* Modify date and time structures */
dos_setdate(&newdate);

_dos_settime(&newtime);
printf("%s %s\n", _strdate(datebuf), _strtime(timebuf));

/* Restore old date and time */
dos_setdate(&olddate);
dos_settime(&oldtime);

12/15/99
07/04/99

18:26:09
03:45:30

220 dos_setdrive

Description

Remarks

Return Value

dos_ setdrive
Sets the default drive, using system call OxOE.

#include <dos.h>

void _dos_setdrive(unsigned drive, unsigned *numdrives);

drive

numdrives

New default drive

Total drives available

The _doLsetdrive routine uses system call OxOE to set the current default drive
to the drive argument: 1 = drive A, 2 = drive B, and so on. The numdrives argu
ment indicates the total number of drives in the system. If this value is 4, for ex
ample, it does not mean the drives are designated A, B, C, and D; it means only
that four drives are in the system.

There is no return value. If an invalid drive number is passed, the function fails
without indication. Use the _ dos_ getdrive routine to verify whether the desired
drive has been set.

Compatibility Standards: None

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_ dOL getdiskfree, _ dOL getdrive

/* DGDRIVE.C: This program prints the letter of the current drive,
* changes the default drive to A, then returns the number of disk drives.
*/

#include <stdio.h>
#include <dos.h>

Output

void maine void 1
{

unsigned olddrive, newdrive;
unsigned number_of_drives;

1* Print current default drive information *1
_dos_getdrive(&olddrive l;

dos_ setdrive 221

printf("The current drive is: %c\n", 'A' + olddrive - 1 l;

}

1* Set default drive to be drive A *1
pri ntf("Changi ng default dri ve to A \n" l;
_dos_setdrive(1, &number_of_drives l;

1* Get new default drive information and total number of drives *1
_dos_getdrive(&newdrive l;
printf("The current drive is: %c\n", 'A' + newdrive - 1 l;
printf("Number of logical drives: %d\n", number_oCdrives l;

1* Restore default drive *1
dos_setdrive(olddrive, &number of_drives l;

The current drive is: C
Changing default drive to A
The current drive is: A
Number of logical drives: 26

222 dos_ setfileattr

Description

Remarks

Return Value

dos_ setfileattr
Sets the attributes of the file or directory, using system call Ox43.

#incIude <dos.h>

unsigned _doLsetfileattr(char *pathname, unsigned attrib);

pathname

attrib

Full path of target file/directory

New attributes

The _doLsetfileattr routine uses system call Ox43 to set the attributes of the file
or directory pointed to by pathname. The actual attributes are contained in the low
order byte of the attrib word. Attributes are represented by manifest constants, as
described below:

Constant

_A_HIDDEN

_A_NORMAL
_A_RDONLY

_A_SUBDIR

_.LSYSTEM
_.L VOLID

Meaning

Archive. Set whenever the file is changed, or cleared by the
DOS BACKUP command.

Hidden file. Cannot be found by a directory search.

Normal. File can be read or written to without restriction.

Read-only. File cannot be opened for writing, and a file with the
same name cannot be created.

Subdirectory.

System file. Cannot be found by a directory search.

Volume !D. Only one file can have this attribute, and it must be
in the root directory.

The function returns 0 if successful. Otherwise, it returns the DOS error code and
sets errno to one of the following:

Constant

EACCES
ENOENT

Meaning

Access denied; cannot change the volume ID or the subdirectory.

No file or directory matching the target was found.

dos_ setfileattr 223

Compatibility Standards: None

See Also

Example

Output

16-Bit:

32-Bit:

DOS, QWIN, WIN, WINDLL

None

_ dOL getfileattr

1* DGFILEAT.C: This program creates a file with the specified attributes,
* then prints this information before changing the file attributes back
* to normal.
*1

#include <stdio.h>
#include <dos.h>

void maine void)
{

unsigned oldattrib, newattrib;
int fh;

1* Get and display file attribute *1
_dos_getfileattr("DGFILEAT.C", &oldattrib);
printf("Attribute: 0x%.4x\n", oldattrib);
if((oldattrib & _A_RDONLY) != 0)

printf("Read only file\n");
else

printf("Not a read only file.\n");

1* Reset file attribute to normal file *1
_dos setfileattr("DGFILEAT.C", _A_RDONLY);
_dos_getfileattr("DGFILEAT.C", &newattrib);
printf("Attribute: 0x%.4x\n", newattrib);

1* Restore file attribute *1
_dos_setfileattr("DGFILEAT.C", oldattrib);
_dos_getfileattr("DGFILEAT.C", &newattrib);
printf("Attribute: 0x%.4x\n", newattrib);

Attribute: 0x0020
Not a read only file.
Attribute: 0x0001
Attribute: 0x0020

224 dos_setflime

Description

Remarks

Return Value

Compatibility

Sets the date and time for a file, using system call OxS7.

#incIude <dos.h>

unsigned _doLsetftime(int handle, unsigned date, unsigned time);

handle

date

time

Target file

Date of last write

Time of last write

The _doLsetftime routine uses system call OxS7 to set the date and time at which
the file identified by handle was last written to. These values appear in the DOS
date and time format, described in the following lists:

Time Bits

0-4
5-10

11-15

Date Bits

0-4
5-8

9-15

Meaning

Number of two-second increments (0 -29)

Minutes (0-59)

Hours (0-23)

Meaning

Day (1-31)

Month (1-12)

Year since 1980 (for example, 1999 is stored as 9)

If successful, the function returns O. Otherwise, it returns the DOS error code and
sets errno to EBADF, indicating that an invalid file handle was passed.

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

See Also

Example

dos_setftime 225

1* DGFTIME.C: This program displays and modifies the date and time
* fields of a file.
*1

#i ncl ude <fcntl. h>
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

void maine void)
{

}

unsigned new~date = 0x26cf;
unsigned new~time = 0x4Se0;
unsigned old~date, old~time;

1* FEDC BA9S 7654 3210
1* 0010 0110 1100 1111
1* 0100 1000 1110 0000

int fh;

1* Open file with ~dos~open function *1
it(~dos~open("dgftime.obj", ~O~RDONLY, &fh) != 0)

ex it (1);

1* Get file date and time *1
~dos~getftime(fh, &old~date, &old~time);
printf("Old date field: 0x%.4x\n", old~date);
printf("Old time field: 0x%.4x\n", old~time);
system("dir dgftime.obj");

1* Modify file date and time *1
it(!~dos~setftime(fh, new~date, new~ time))
{

}

~dos~getftime(fh, &new~date, &new~time);
printf("New date field: 0x%.4x\n", new date);
printf("New time field: 0x%.4x\n", new~time);
system("dir dgftime.obj");

1* Restore date and time *1
~dos~setftime(fh, old~date, old~time);

*1
12/15/99 *1
9:07 AM *1

226

Output

dos_setftime

Old date field: 0x274f
Old time field: 0x94bb

Volume in drive C is ZEPPELIN
Directory of C:\LIBREF

DGFTIME OBJ 3923 6-15-99 6:37p
1 File(s) 13676544 bytes free

New date field: 0x26cf
New time field: 0x48e0

Volume in drive C is ZEPPELIN
Directory of C:\LIBREF

DGFTIME OBJ 3923 12-15-99 9:07a
1 File(s) 13676544 bytes free

Description

Remarks

Return Value

Compatibility

See Also

dos_seUime 227

Sets the current system time, using system call Ox2D.

#include <dos.h>

unsigned _ dOLsettime(struct _ dostime_ t *time);

time New system time

The _doLsettime routine uses system call Ox2D to set the current system time to
the value stored in the _ dostimL t structure that time points to, as defined in
DOS.H. The _dostimLt structure contains the following elements:

Element

unsigned char hour

unsigned char minute

unsigned char second

unsigned char hsecond

Description

0-23

0-59

0-59

Hundredths of a second; 0 -99

If successful, the function returns O. Otherwise, it returns a nonzero value and sets
errno to EINV AL, indicating an invalid time was specified.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

_doLgetdate, _doLgettime, _doLsetdate, gmtime, localtime, mktime,
_strdate, _strtime

Example 1* DSTIME.C: This program changes the time and date values and displays the

Output

* new date and time values.
*1

#include <dos.h>
#include <conio.h>
#include <stdio.h>
#include <time.h>

void maine void)
{

struct _dosdate_t olddate, newdate
struct _dostime_t oldtime, newtime
char datebuf[40], timebuf[40];

1* Get current date and time values *1
_dos_getdate(&olddate);
_dos_gettime(&oldtime);

{ 4 }, { 7 }, { 1999 } };
{ 3 }, { 45 }, { 30 }, { 0 } };

printf("Is %s\n" , _strdate(datebuf), _strtime(timebuf));

1* Modify date and time structures *1
_dos_setdate(&newdate);
_dos_settime(&newtime);
printf("Is %s\n" , _strdate(datebuf), _strtime(timebuf));

1* Restore old date and time *1
dos_setdate(&olddate);
dos_settime(&oldtime);

12/15/99
07/04/99

18:26:09
03:45:30

Description

Remarks

dos_ setvect 229

dos_ setvect
Sets the current value of the interrupt vector, using system call Ox25.

#include <dos.h>

void _doLsetvect(unsigned intnum,
void(__ cdecl __ interrupt __ far *handler)());

intnum Target-interrupt vector

handler Interrupt handler for which to assign intnum

The _ dOL setvect routine uses system call Ox25 to set the current value of the in
terrupt vector intnum to the function pointed to by handler. Subsequently, when
ever the intnum interrupt is generated, the handler routine will be called. If
handler is a C function, it must have been previously declared with the interrupt
attribute. Otherwise, you must make sure that the function satisfies the require
ments for an interrupt-handling routine. For example, if handler is an assembler
function, it must be a far routine that returns with an IRET instead of a RET.

The interrupt attribute indicates that the function is an interrupt handler. The
compiler generates appropriate entry and exit sequences for the interrupt -handling
function, including saving and restoring all registers and executing an IRET in
struction to return.

The _ dOL setvect routine is generally used with the _ dOL getvect function. To
replace an interrupt vector, first save the current vector of the interrupt using
_dos_getvect. Then set the vector to your own interrupt routine with
_doLsetvect. The saved vector can later be restored, if necessary, using
_doLsetvect. The user-defined routine may also need the original vector in
order to call it or to chain to it with _ chaiIL intr.

Registers and Interrupt Functions
When you call an interrupt function, the DS register is initialized to the C data seg
ment. This allows you to access global variables from within an interrupt function.

230 dos_setvect

In addition, all registers except SS are saved on the stack. You can access these
registers within the function if you declare a function parameter list containing a
formal parameter for each saved register. The following example illustrates such a
declaration:

void __ interrupt __ far i nt_ handl ere unsigned _es, unsigned _ds,
unsigned _di, unsigned _si,
unsigned _bp, unsigned _sp,
unsigned _bx, unsigned _dx,
unsigned _cx, unsigned _ax,
unsigned _ ip, unsigned _cs,
unsigned _flags)

}

The formal parameters must appear in the opposite order from which they are
pushed onto the stack. You can omit parameters from the end of the list in a decla
ration, but not from the beginning. For example, if your handler needs to use only
DI and SI, you must still provide ES and DS, but not necessarily BX or DX.

You can pass additional arguments if your interrupt handler will be called directly
from C rather than by an INT instruction. To do this, you must declare all register
parameters and then declare your parameter at the end of the list.

The compiler always saves and restores registers in the same, fixed order. Thus,
no matter what names you use in the formal parameter list, the first parameter in
the list refers to ES, the second refers to DS, and so on. If your interrupt routines
will use inline assembler, you should distinguish the parameter names so that they
will not be the same as the real register names.

If you change any of the register parameters of an interrupt function while the
function is executing, the corresponding register contains the changed value when
the function returns. For example:

void __ interrupt __ far int_handler(unsigned _es, unsigned _ds,
unsigned _di, unsigned si)

di -1;

This code causes the DI register to contain -1 when the handler function returns.
It is not a good idea to modify the values of the parameters representing the IP and
CS registers in interrupt functions. If you must modify a particular flag (such as
the carry flag for certain DOS and BIOS interrupt routines), use the OR operator
(I) so that other bits in the flag register are not changed.

Return Value

Compatibility

See Also

dos_ setvect 231

When an interrupt function is called by an INT instruction, the interrupt-enable
flag is cleared. If your interrupt function needs to do significant processing, you
should use the _ enable function to set the interrupt flag so that interrupts can be
handled.

Precautions for Interrupt Functions
Since DOS is not reentrant (a DOS interrupt cannot be called from inside a DOS
interrupt), it is usually not safe to call from inside an interrupt function any stand
ard library function that calls DOS INT 21H. Similar precautions apply to many
BIOS functions. Functions that rely on INT 21H calls include 110 functions and
the _ dos family of functions. Functions that rely on the machine's BIOS include
graphics functions and the _ bios family of functions. It is usually safe to use func
tions that do not rely on INT 21H or BIOS, such as string-handling functions.
Before using a standard library function in an interrupt function, be sure that you
are familiar with the action of the library function.

None.

Standards: None

16-Bit: DOS

32-Bit: None

232 dos_ write

Description

Remarks

Return Value

Compatibility

See Also

dos_ write
Writes a buffer to a file, using system call Ox40.

#include <dos.h>

unsigned _dOL write(int handle, void __ far *buffer, unsigned count,
unsigned *numwrt);

handle

buffer

count

numwrt

File to write to

Buffer to write from

Number of bytes to write

Number of bytes actually written

The _dOL write routine uses system call Ox40 to write data to the file that handle
references; count bytes of data from the buffer to which buffer points are written
to the file. The integer pointed to by numwrt will be the number of bytes actually
written, which may be less than the number requested.

Do not use the DOS interface routines with the console, low-level, or stream 110
routines.

If successful, the function returns O. Otherwise, it returns the DOS error code and
sets errno to one of the following manifest constants:

Constant

EACCES

EBADF

Standards: None

Meaning

Access denied (handle references a file not open for write access)

Invalid file handle

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

Example

Output

dos_ write 233

1* DWRITE.C: This program uses DOS liD functions to write to a file. *1

Ifinclude <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

void main(void)
{

char out_buffer[]
int fh;
unsigned n_written;

"Hello";

1* Open file with _dos_creat function *1
if(_dos_creat("data", _A_NORMAL, &fh) == 0
{

}

1* Write data with dos_write function *1
_dos_write(fh, out_buffer, 5, &n_written);
printf("Number of characters written: %d\n", n_written);

_dos_closet fh);
printf("Contents of file are:\n");
system("type data");

Number of characters written: 5
Contents of file are:
Hell a

234 _dosexterr

Description

Remarks

Return Value

Compatibility

dosexterr
Gets register values returned by Ox59.

#include <dos.h>

int _dosexterr(struct _DOSERROR *errorinfo);

errorinfo Extended DOS error information

The _dosexterr function obtains the extended error information returned by DOS
system call Ox59 and stores the values in the structure pointed to by errorinfo.
This function is useful when making system calls with DOS versions 3.0 or later,
which offer extended error handling.

The structure type _DOSERROR is defined in DOS.H. The _DOSERROR
structure contains the following elements:

Element

int exterror

char errclass
char action
char locus

Description

AX register contents

BH register contents

BL register contents

CH register contents

Giving a NULL pointer argument causes _dosexterr to return the value in AX
without filling in the structure fields. See MS-DOS Encyclopedia (Duncan, ed.;
Redmond, WA: Microsoft Press, 1988) or Programmer's PC Sourcebook 2nd ed.
(Hogan; Redmond, W A: Microsoft Press, 1991) for more information on the
register contents.

The _dosexterr function returns the value in the AX register (identical to the
value in the exterror structure field).

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

The _dosexterr function should be used only with DOS versions 3.0 or later.

See Also

Example

Output

perror

1* DOSEXERR.C: This program tries to open the file test.dat.
* If the attempted open operation fails, the program uses
* dosexterr to display extended error information.
*1

#include <dos.h>
#include <io.h>
#include <fcntl.h>
#include <stdio.h>

void main(void)
{

struct DOSERROR doserror;
int fd;

1* Attempt to open a non-existent file *1
i f ((f d = _ 0 pen ("N 0 S U C H F . I L E" , 0 RD 0 N L Y » -1)
{

_dosexterr(&doserror);

dosexterr 235

printf("Error: %d Errclass: %d Action: %d Locus: %d\n",
doserror.exterror, doserror.errclass,

else
{

doserror.action, doserror.locus);

printf("Open succeeded so no extended information printed\n");
closet fd);

Error: 2 Errclass: 8 Action: 3 Locus: 2

Description

Remarks

Return Value

_dup, _dup2
Create a second handle for an open file (_dup), or reassign a file handle (_dup2).

#include <io.h> Required only for function declarations

int _dupe int handle);

int _dup2(int handlel, int handle2);

handle, handlel

handle2

Handle referring to open file

Any handle value

The _dup and _dup2 functions cause a second file handle to be associated with a
currently open file. Operations on the file can be carried out using either file
handle. The type of access allowed for the file is unaffected by the creation of a
new handle.

The _dup function returns the next available file handle for the given file. The
_dup2 function forces handle2 to refer to the same file as handlel. If handle2 is
associated with an open file at the time of the call, that file is closed.

Note that in a QuickWin application you cannot use the _dup and _dup2 func
tions on stdin, stdout, or stderr (defined in STDIO.H). You can, however, use the
_dup and _dup2 functions on other handles.

The _dup function returns a new file handle. The _dup2 function returns 0 to indi
cate success. Both functions return -1 if an error occurs and set errno to one of
the following values:

Value

EBADF

EMFILE

Meaning

Invalid file handle

No more file handles available (too many open files)

_dup, _dup2 237

Compatibility Standards:

16-Bit:

32-Bit:

UNIX

See Also

Example

DOS, QWIN, WIN, WIN DLL

DOS32X

Use _dup and _dup2 for compatibility with ANSI naming conventions of non
ANSI functions. Use dup and dup2 and link with OLDNAMES.LIB for UNIX
compatibility.

1* DUP.C: This program uses the variable old to save the original stdout.
* It then opens a new file named new and forces stdout to refer
* to it. Finally, it restores stdout to its original state.
*1

#include <io.h>
#include <stdlib.h>
#include <stdio.h>

void main(void
{

int old;
FILE *new;

old = _dup(1);

if(old -- -I
{

perror("_dup(
exit(1) ;

1* "old" now refers to "stdout" *1
1* Note: file handle 1 == "stdout" *1

1) failure") ;

write(01 d, "Thi s goes to stdout fi rst\r\n", 27);
if((new = fopen("data", "w")) == NULL)
{

puts("Can't open file 'data'\n");
exit(1);

1* stdout now refers to file "data" *1
if(-1 == _dup2(_ fi 1 eno(new), 1))
{

perror("Can't _dup2 stdout");
exit(1);

puts("This goes to file 'data'\r\n");

1* Flush stdout stream buffer so it goes to correct file *1
fflush(stdout);
fclose(new);

238 _dup, _dup2

Output

1* Restore original stdout *1
_dup2(old, 1);
puts("This goes to stdout\n");
puts("The file 'data' contains:");
system("type data");

This goes to stdout first
This goes to stdout

The file 'data' contains:
This goes to file 'data'

Description

Remarks

Return Value

Compatibility

See Also

ecvt 239

ecvt
Converts a double number to a string.

#include <stdlib.h> Required only for function declarations

char * _ecvt(double value, int count, int *dec, int *sign);

value

count

dec

sign

Number to be converted

Number of digits stored

Stored decimal-point position

Sign of converted number

The _ecvt function converts a floating-point number to a character string. The
value argument is the floating-point number to be converted. The _ecvt function
stores up to count digits of value as a string and appends a null character (,\0'). If
the number of digits in value exceeds count, the low-order digit is rounded. If
there are fewer than count digits, the string is padded with zeros.

Only digits are stored in the string. The position of the decimal point and the sign
of value can be obtained from dec and sign after the call. The dec argument points
to an integer value giving the position of the decimal point with respect to the
beginning of the string. A 0 or negative integer value indicates that the decimal
point lies to the left of the first digit. The sign argument points to an integer indi
cating the sign of the converted number. If the integer value is 0, the number is
positive. Otherwise, the number is negative.

The _ecvt and _fcvt functions use a single statically allocated buffer for the con
version. Each call to one of these routines destroys the result of the previous call.

The _ ecvt function returns a pointer to the string of digits. There is no error return.

Standards: UNIX

16-Bit: DOS, QWIN, WIN, WINDLL

32-Bit: DOS32X

Use _ecvt for compatibility with ANSI narning conventions of non-ANSI func
tions. Use ecvt and link with OLDNAMES.LIB for UNIX compatibility.

atof, atoi, atol, _fcvt, _gcvt

240 ecvt

Example 1* ECVT.C: This program uses ecvt to convert a floating-point
* number to a character string.

Output

*1

#include <stdlib.h>
#include <stdio.h>

void maine void)
{

int
char
int
double

decimal, sign;
*buffer;
precision = 10;
source = 3.1415926535;

buffer = _ecvt(source, preC1Slon, &decimal, &sign);
printf("source: %2.10f buffer: '%s' decimal: %d sign: %d\n",

source, buffer, decimal, sign);
}

source: 3.1415926535 buffer: '3141592654' decimal: 1 sign: 0

"

Description

Remarks

_ ellipse Functions 241

_ ellipse Functions
Draw ellipses.

#include <graph.h>

short __ far _ ellipse(short control, short xl, short y 1 , short x2, short y2);

short __ far _ ellipse_ w(short control, double wxl, double wy 1 , double wx2,
double wy2);

short __ far _ellipse_ wxy(short control, struct _ wxycoord __ far *pwxy 1,
struct _ wxycoord __ far *pw.xy2);

control

xl,yl

x2,y2

wxl, wyl

wx2, wy2

pwxyl

pwxy2

Fill flag

Upper-left corner of bounding rectangle

Lower-right corner of bounding rectangle

Upper-left corner of bounding rectangle

Lower-right corner of bounding rectangle

Upper-left corner of bounding rectangle

Lower-right corner of bounding rectangle

The _ellipse functions draw ellipses or circles. The borders are drawn in the cur
rent color. In the _ ellipse function, the center of the ellipse is the center of the
bounding rectangle defined by the view-coordinate points (xl, yl) and (x2, y2).

In the _ ellipse_ w function, the center of the ellipse is the center of the bounding
rectangle defined by the window-coordinate points (wxl, wyl) and (wx2, wy2).

In the _ ellipse_ wxy function, the center of the ellipse is the center of the bound
ing rectangle defined by the window-coordinate points (pwxyl) and (pwxy2).

If the bounding-rectangle arguments define a point or a vertical or horizontal line,
no figure is drawn.

242 _ ellipse Functions

Return Value

The control argument can be one of the following manifest constants:

Constant Action

_GFILLINTERIOR Uses _floodfill to fill the ellipse using the current fill mask

_ GBORDER Does not fill the ellipse

The control option given by _ GFILLINTERIOR is equivalent to a subsequent
call to the _floodfill function, using the center of the ellipse as the starting point
and the current color (set by _setcolor) as the boundary color.

The _ellipse functions return a nonzero value if the ellipse is drawn successfully;
otherwise, they return O.

Compatibility Standards: None

16-Bit: DOS

See Also

Example

32-Bit: None

_arc functions, _floodfill, _grstatus, _lineto functions, _pie functions,
_polygon functions, _rectangle functions, _setcolor, _setfillmask

1* ELLIPSE.C: This program draws a simple ellipse. *1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void maine void)
{

}

1* Find a valid graphics mode. *1
if(!_setvideomode(MAXRESMODE)

exit(1);

_ell ipse(_GFILLINTERIOR, 80, 50, 240, 150);

1* Strike any key to clear screen. *1
_getch() ;

setvideomode(DEFAULTMODE);

Description

Remarks

Return Value

Compatibility

See Also

enable 243

enable
Enables interrupts.

#include <dos.h>

void _enable(void);

The _enable routine enables interrupts by executing an 8086 STI machine
instruction.

None.

Standards: None

16-Bit:

32-Bit:

_disable

DOS, QWIN, WIN, WIN DLL

None

244 eof

Description

Remarks

Return Value

eof
Tests for end-of-file.

#include <io.h> Required only for function declarations

int _eof(int handle);

handle Handle referring to open file

The _ eof function determines whether the end of the file associated with handle
has been reached.

The _eoffunction returns the value 1 if the current position is end-of-file, or 0 if it
is not. A return value of -1 indicates an error; in this case, errno is set to EBADF,
indicating an invalid file handle.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS, QWIN, WIN, WINDLL

DOS32X

clearerr, feof, ferror, perror

1* EOF.C: This program reads data from a file ten bytes at a time
* until the end of the file is reached or an error is encountered.
*1

ilinclude <io.h>
iii ncl ude <fcntl. h>
#include <stdio.h>
#include <stdlib.h>

Output

void maine void)
{

int fh, count, total
char buf[10];

0· ,

if ((fh = _ open ("_ eof. c" , 0 ROON L Y » - 1)
ex it (1);

1* Cycle until end of file reached: *1
while(!_eof(fh))
{

1* Attempt to read in 10 bytes: *1
if((count = _read(fh, buf, 10» -1)
{

perror("Read error");
break;

1* Total up actual bytes read *1
total += count;

pri ntf("Number of bytes read %d\n", total);
close(fh);

Number of bytes read 715

eof 245

246 exec Functions

Description

Remarks

exec Functions
Load and execute new child processes.

#include <process.h> Required only for function declarations

int _execl(char *cmdname, char *argO, .. , char *argn, NULL);

int _execle(char *cmdname, char *argO, ... char *argn, NULL, char **envp);

int _execlp(char *cmdname, char *argO, ... char *argn, NULL);

int _execlpe(char *cmdname, char *argO, ... char *argn, NULL, char **envp);

int _execv(char *cmdname, char **argv);

int _execve(char *cmdname, char **argv, char **envp);

int _execvp(char *cmdname, char **argv);

int _execvpe(char *cmdname, char **argv, char **envp);

cmdname

argO, ... argn

argv

envp

Path name of file to be executed

List of pointers to arguments

Array of pointers to arguments

Array of pointers to environment settings

The _exec functions load and execute new child processes. When the call is
successful in DOS, the child process is placed in the memory previously occupied
by the calling process. Sufficient memory must be available for loading and ex
ecuting the child process.

All of the _exec functions use the same operating system function. The letter(s) at
the end of the function name determine the specific variation, as shown in the
following list:

Letter

e

p

v

exec Functions 247

Variation

An array of pointers to environment arguments is explicitly passed to
the child process.

Command-line arguments are passed individually to the _ exec
function.

Uses the PATH environment variable to find the file to be executed.

Command-line arguments are passed to the _exec function as an
array of pointers.

The cmdname argument specifies the file to be executed as the child process. It
can specify a full path (from the root), a partial path (from the current working
directory), or just a filename. If cmdname does not have a filename extension or
does not end with a period (.), the _exec function searches for the named file; if
the search is unsuccessful, it tries the same base name, first with the extension
.COM, then with the extension .EXE. If cmdname has an extension, only that ex
tension is used in the search. If cmdname ends with a period, the _ exec calls
search for cmdname with no extension. The _exeelp, _exeelpe, _execvp, and
_execvpe routines search for cmdname (using the same procedures) in the directo
ries specified by the PATH environment variable.

If cmdname contains a drive specifier or any slashes (that is, if it is a relative path
name), the _exec call searches only for the specified file; the path is not searched.
Note that the DOS APPEND command cannot be used with the _exec functions.

Arguments are passed to the new process by giving one or more pointers to charac
ter strings as arguments in the _exec call. These character strings form the argu
ment list for the child process. The combined length of the strings forming the
argument list for the new process must not exceed 128 bytes (in real mode only).
The terminating null character (,\0') for each string is not included in the count,
but space characters (inserted automatically to separate the arguments) are counted.

The argument pointers can be passed as separate arguments (_ exeel, _ exeele,
_ exeelp, and _ exeelpe) or as an array of pointers (_ execv, _ execve, _ execvp, and
_execvpe). At least one argument, argO, must be passed to the child process; this
argument is argv[O] of the child process. Usually, this argument is a copy of the
cmdname argument. (A different value will not produce an error.) Under versions
of DOS earlier than 3.0, the passed value of argO is not available for use in the
child process. However, with DOS versions 3.0 and later, cmdname is available as
argO.

The _exeel, _exeele, _exeelp, and _exeelpe calls are typically used when the
number of arguments is known in advance. The argument argO is usually a pointer
to cmdname. The arguments arg 1 through argn point to the character strings form
ing the new argument list. A null pointer must follow argn to mark the end of the
argument list.

)

248 exec Functions

The _execv, _execve, _execvp, and _execvpe calls are useful when the number
of arguments to the new process is variable. Pointers to the arguments are passed
as an array, argv. The argument argv[O] is usually a pointer to cmdname. The argu
ments argv[1] through argv[n] point to the character strings forming the new argu
ment list. The argument argv[n+ 1] must be a NULL pointer to mark the end of the
argument list.

Files that are open when an _exec call is made remain open in the new process. In
the _execl, _execlp, _execv, and _execvp calls, the child process inherits the en
vironment of the parent. The _ execle, _ execlpe, _ execve, and _ execvpe calls
allow the user to alter the environment for the child process by passing a list of en
vironment settings through the envp argument. The argument envp is an array of
character pointers, each element of which (except for the final element) points to a
null-terminated string defining an environment variable. Such a string usually has
the form

NAME=value

where NAME is the name of an environment variable and value is the string value
to which that variable is set. (Note that value is not enclosed in double quotation
marks.) The final element of the envp array should be NULL. When envp itself is
NULL, the child process inherits the environment settings of the parent process.

A program executed with one of the _exec family of functions is always loaded
into memory as if the "maximum allocation" field in the program's .EXE file
header is set to the default value of OxFFFFH. You can use the EXEHDR utility to
change the maximum allocation field of a program; however, such a program in
voked with one of the _ exec functions may behave differently from a program in
voked directly from the operating-system command line or with one of the
_spawn functions. .

Note that COMMAND. COM checks the first two bytes of a file to determine
whether it is an .EXE file or a .COM file-you can execute a file named by any ex
tension, as long as its content is truly executable.

The _ exec calls do not preserve the translation modes of open files. If the child
process must use files inherited from the parent, the _setmode routine should be
used to set the translation mode of these files to the desired mode.

You must explicitly flush (using fflush or _flushall) or close any stream prior to
the _ exec function call.

Signal settings are not preserved in child processes that are created by calls to
_exec routines. The signal settings are reset to the default in the child process.

Return Value

exec Functions 249

The _exec functions do not normally return to the calling process. If an _exec
function returns, an error has occurred and the return value is -1. The errno varia
ble is set to one of the following values:

Value

E2BIG

EACCES

EMFILE

ENOENT
ENOEXEC

ENOMEM

Meauing

The argument list exceeds 128 bytes, or the space required for
the environment information exceeds 32K.

The specified file has a locking or sharing violation (DOS
version 3.0 or later).

Too many files open (the specified file must be opened to
determine whether it is executable).

File or path name not found.

The specified file is not executable or has an invalid executable
file format.

Not enough memory is available to execute the child process; or
the available memory has been corrupted; or an invalid block
exists, indicating that the parent process was not allocated
properly.

Compatibility Standards: UNIX

See Also

Example

16-Bit:

32-Bit:

DOS

DOS32X

Use _exec for compatibility with ANSI naming conventions of non-ANSI func
tions. Use exec and link with OLDNAMES.LIB for UNIX compatibility.

Because of differences in DOS versions 2.0 and 2.1, child processes generated by
the _ exec family of functions (or by the equivalent _ spawn functions with the
_P _OVERLAY argument) may cause fatal system errors when they exit. If you
are running DOS 2.0 or 2.1, you must upgrade to DOS version 3.0 or later to use
these functions.

Bound programs cannot use the _exec family of functions in real mode.

abort, atexit, exit, _exit, _onexit, _spawn functions, system

/* EXEC.C: This program accepts a number in the range 1 through 8 from the
* command line. Based on the number it receives, it executes one of the
* eight different procedures that spawn the process named child. For
* some of these procedures, the child.exe file must be in the same
* directory; for others, it need only be in the same path.
*/

#include <stdio.h>
#include <process.h>

250 exec Functions

char *my_env[] = {
"THIS=environment will be",
"PASSED=to child.exe by the",
"_EXECLE=and" ,
"_EXECLPE=and" ,
"_ EX ECV E=a nd" ,
" EXECVPE=functions",
NULL
} ;

void maine int argc, char *argv[])
{

char *args[4];
int result;

args[0]
args[l]
args[2]
args[3]

"child"; 1* Set up parameters to send *1
"_execv??" ;
"two";
NULL;

switch(argv[I][0]
{

1* Based on first letter of argument *1

}

case '1':
execl(argv[2], argv[2], "_execl", "two", NULL);

break;
case '2':

_execle(argv[2], argv[2], "_execle", "two", NULL, my_env);
break;

case '3':
_execl p(argv[2], argv[2], "_execl p", "two", NULL);
break;

case '4':
_execl pee argv[2], argv[2], "_execl pe", "two", NULL, my_env);
break;

case '5':
_execv(argv[2], args);
break;

case '6':
execve(argv[2], args, my_env);

break;
case '7':

_execvp(argv[2], args);
break;

case '8':
_execvpe(argv[2], args, my_env);
break;

default:
printf("SYNTAX: EXEC <1-8> <childprogram>\n");
exit(1);

pri ntf("Process was not spawned. \n");
printf("Program 'child' was not found.");

Description

Remarks

Return Value

exit, _ exit 251

exit, exit
Terminate the calling process after cleanup (exit) or immediately (_exit).

#include <process.h>

#include <stdlih.h>

Required only for function declarations

Use either PROCESS.H or STDLIB.H

void exit(int status);

void _exit(int status);

status Exit status

The exit and _ exit functions terminate the calling process. The exit function first
calls, in LIFO (last-in-first-out) order, the functions registered by atexit and
_onexit, then flushes all file buffers before terminating the process. The _exit
function terminates the process without processing atexit or _ onexit functions or
flushing stream buffers. The status value is typically set to 0 to indicate a normal
exit and set to some other value to indicate an error.

Although the exit and _exit calls do not return a value, the low-order byte of
status is made available to the waiting parent process, if one exists, after the
calling process exits. The status value is available to the operating-system batch
command ERRORLEVEL.

The behavior of the exit, _ exit, _ cexit, and _ c exit functions is as follows:

Function

exit

None.

Action

Perfonns complete C library termination procedures, terminates
the process, and exits with the supplied status code.

Performs "quick" C library termination procedures, tenninates
the process, and exits with the supplied status code.

Performs completc C library termination procedures and returns
to caller, but does not terminate the process.

Performs "quick" C library termination procedures and returns
to caller, but does not terminate the process.

252 exit, _ exit

Compatibility exit

See Also

Example

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN

32-Bit: DOS32X

_exit

Standards: None

16-Bit: DOS, QWIN, WIN

32-Bit: DOS32X

abort, atexit, _cexit, _exec functions, _onexit, _spawn functions, system

1* EXITER.C: This program prompts the user for a yes or no and returns
* a DOS error code of 1 if the user answers Y or y; otherwise it
* returns 0. The error code could be tested in a batch file.
*/

#include <conio.h>
#include <stdlib.h>

void main(void
{

char ch;

_cputs("Yes or no? ");
ch = _ getch () ;
_cputs("\r\n");
if(toupper(ch) 'Y')

exit(1);
else

ex it (0);

Description

Remarks

Return Value

Compatibility

See Also

exp, _expl 253

exp, _expl
Calculate the exponential.

#include <math.h>

double exp(double x);

long double _expl(long double x);

x Floating-point value

The exp and _expl functions return the exponential function oftheir floating-point
arguments (x).

The _expl function is the 80-bit counterpart; it uses an 80-bit, lO-byte coprocessor
form of arguments and return values. See the reference page on the long double
functions for more details on this data type.

These functions return eX. The functions return HUGE_ VAL on overflow and set
errno to ERANGE; on underflow, they return 0 but do not set errno. This be
havior can be changed with the _matherr function.

exp

Standards:

16-Bit:

32-Bit:

_expl

Standards:

16-Bit:

32-Bit:

log functions

ANSI, UNIX

DOS, QWIN, WIN, WINDLL

DOS32X

None

DOS, QWIN, WIN, WINDLL

None

254 exp, _ expl

Example 1* EXP. C *1
#include <math.h>
#include <stdio.h>

Output

void maine void)
{

double x = 2.302585093, y;

y = exp(x);
printf("exp(%f) = %f\n", x, Y);

exp(2.302585) 10.000000

Description

Remarks

_ expand Functions 255

_ expand Functions
Change the size of a memory block.

#include <malloc.h> Required only for function declarations

void * _ expand(void *memblock, size_ t size);

void __ based(void) * _bexpand(__ segment seg,
void __ based(void) *memblock, size_ t size);

void __ far * _fexpand(void __ far *memblock, size_t size);

void __ near * _nexpand(void __ near *memblock, size_t size);

memblock

size

seg

Pointer to previously allocated memory block

New size in bytes

Value of base segment

The _ expand family of functions changes the size of a previously allocated
memory block by attempting to expand or contract the block without moving its lo
cation in the heap. The memblock argument points to the beginning of the block.
The size argument gives the new size of the block, in bytes. The contents of the
block are unchanged up to the shorter of the new and old sizes.

The memblock argument can also point to a block that has been freed, as long as
there has been no intervening call to calloc, _ expand, malloc, or realloc. If
memblock points to a freed block, the block remains free after a call to one of the
_expand functions.

The seg argument is the segment address of the __ based heap.

In large data models (compact-, large-, and huge-model programs), _expand
maps to _fexpand. In small data models (tiny-, small-, and medium-model pro
grams), _expand maps to _nexpand.

256 _ expand Functions

Return Value

Compatibility

See Also

The various _ expand functions change the size of the storage block in the data
segments shown in the list below:

Function

_expand

_bexpand

_fexpand
_nexpand

Data Segment

Depends on data model of program
Based heap specified by seg, or in all based heaps if seg is zero
Far heap (outside default data segment)
Near heap (inside default data segment)

The _ expand family of functions returns a void pointer to the reallocated memory
block. Unlike realloc, _expand cannot move a block to change its size. This
means the memblock argument to _ expand is the same as the return value if there
is sufficient memory available to expand the block without moving it.

With the exception of the _ bexpand function, these functions return NULL if
there is insufficient memory available to expand the block to the given size
without moving it. The _ bexpand function returns _NULLOFF if insufficient
memory is available. The item pointed to by memblock will have been expanded
as much as possible in its current location.

The storage space pointed to by the return value is guaranteed to be suitably
aligned for storage of any type of object. The new size of the item can be checked
with one of the _msize functions. To get a pointer to a type other than void, use a
type cast on the return value.

_expand

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_bexpand, _fexpand, _nexpand

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

calloc functions, free functions, malloc functions, _msize functions, realloc
functions

Example

Output

_ expand Functions 257

/* EXPAND.C */
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

void maine void)
{

char *bufchar;

pri ntf("Allocate a 512 el ement buffer\n");
if((bufchar = (char *)calloc(512, sizeof(char)))

ex it (1);
printf("Allocated %d bytes at %Fp\n",

msize(bufchar), (void far *)bufchar);

NU LL)

if((bufchar = (char *)_expand(bufchar, 1024)) == NULL)
pri ntf("Can' t expand");

}

else
printf("Expanded block to %d bytes at %Fp\n",

msize(bufchar), (void __ far *)bufchar);

/* Free memory */
free(bufchar);
exit(0);

Allocate a 512 element buffer
Allocated 512 bytes at 0067:142A
Expanded block to 1024 bytes at 0067:142A

258 labs, _ labsl

Description

Remarks

Return Value

Compatibility

See Also

fabs, _ fabsl
Calculate the absolute value of their floating-point arguments.

#include <math.h>

double fabs(double x);

long double _fabsl(long double x);

x Floating-point value

The fabs and _fabsl functions calculate the absolute value oftheir floating-point
arguments.

The _fabsl function is the 80-bit counterpart; it uses an 80-bit, lO-byte coproces
sor form of arguments and return values. See the reference page on the long
double functions for more details on this data type.

These functions return the absolute value of their arguments. There is no error
return.

fabs

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fabsl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

abs, _cabs, labs

Example

Output

labs, _ labsl 259

/* ABS.C: This program computes and displays the absolute values of
* several numbers.
*/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

void main(void)
{

i nt i x -4, iy;
long lx -41567L, ly;
double dx -3.141593, dy;

iy = abs (ix) ;
printf("The absolute value

ly = 1 a bs (1 x) ;
pri ntf("The absolute value

dy = fabs(dx) ;
printf("The absolute value

}

The absolute value of -4 is 4

of %d

of %ld

of %f

The absolute value of -41567 is 41567

i s %d\n", ix, i y) ;

is %ld\n", 1 x, 1 y) ;

i s %f\n", dx, dy) ;

The absolute value of -3.141593 is 3.141593

260 fclose, _fcloseall

Description

Remarks

Return Value

Compatibility

See Also

fclose, _ fcloseall
Closes a stream (fclose) or closes all open streams (_fcloseall).

#include <stdio.h>

int fclose(FILE * stream);

int _fcloseall(void);

stream Pointer to FILE structure

The fclose function closes stream. The _fcloseall function closes all open streams
except stdin, stdout, stderr (and in DOS, stdaux and stdprn). It also closes and
deletes any temporary files created by tmpfile.

In both functions, all buffers associated with the stream are flushed prior to clos
ing. System-allocated buffers are released when the stream is closed. Buffers as
signed by the user with setbuf and setvbuf are not automatically released.

The fclose function returns 0 if the stream is successfully closed. The _ fcloseall
function returns the total number of streams closed. Both functions return EOF to
indicate an error.

fclose

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fcloseall

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_close, _fdopen, fflush, fopen, freopen

Example

Output

fclose, _fcloseall 261

1* FOPEN. C: Thi s program opens fi 1 es named "data" and "data2". It uses
* fclose to close "data" and fcloseall to close all remaining files.
*1

#include <stdio.h>

FILE *stream, *stream2;

void main(void)
{

}

int numclosed;

1* Open for read (wi 11 fail if 'data does not exi st) *1
if((stream = fopen("data", "r")) == NULL)

printf("The file 'data' was not opened\n");
else

printf("The file 'data' was opened\n");

1* Open for write *1
i f((stream2 = fopen("data2", "w+")) == NULL)

printf("The file 'data2' was not opened\n");
else

printf("The file 'data2' was opened\n");

1* Close stream *1
if(fclose(stream

printf("The file 'data' was not closed\n");

1* All other files are closed: *1
numclosed = _ fcl oseall ();
printf("Number of files closed by fcloseall: %u\n", numclosed);

The file 'data' was opened
The file 'data2' was opened
Number of files closed by _fcloseall: 1

262 fevt

Description

Remarks

Return Value

Compatibility

fevt
Converts a floating-point number to a string.

#incIude <stdlib.h> Required only for function declarations

ehar * _fevt(double value, int count, int *dec, int * sign);

value

count

dec

sign

Number to be converted

Number of digits after decimal point

Pointer to stored decimal-point position

Pointer to stored sign indicator

The _fevt function converts a floating-point number to a null-terminated character
string. The value argument is the floating-point number to be converted. The _fevt
function stores the digits of value as a string and appends a null character (,\0').
The count argument specifies the number of digits to be stored after the decimal
point. Excess digits are rounded off to count places. If there are fewer than count
digits of precision, the string is padded with zeros.

Only digits are stored in the string. The position of the decimal point and the sign
of value can be obtained from dec and sign after the call. The dec argument points
to an integer value; this integer value gives the position of the decimal point with
respect to the beginning of the string. A zero or negative integer value indicates
that the decimal point lies to the left of the first digit. The argument sign points to
an integer indicating the sign of value. The integer is set to 0 if value is positive
and is set to a nonzero number if value is negative.

The _eevt and _fevt functions use a single statically allocated buffer for the con
version. Each call to one of these routines destroys the results of the previous call.

The _fevt function returns a pointer to the string of digits. There is no error return.

Standards: UNIX

16-Bit: DOS, QWIN, WIN, WINnLL

32-Bit: DOS32X

Use _fevt for compatibility with ANSI naming conventions of non-ANSI func
tions. Use fevt and link with OLDNAMES.LIB for UNIX compatibility.

See Also

Example

Output

fevt 263

atof, atoi, atol, _ ecvt, _ gcvt

1* FCVT.C: This program converts the constant 3.1415926535 to a string and
* sets the pointer *buffer to point to that string.
*1

#include <stdlib.h>
#include <stdio.h>

void maine void)
{

int decimal, sign;
char *buffer;
double source 3.1415926535;

buffer fcvt(source, 7, &decimal, &sign);
printf("source: %2.Hlf buffer: '%s' decimal: %d

source, buffer, decimal, sign);

source: 3.1415926535 buffer: '31415927' decimal: 1

sign: %d\n",

sign: 0

264 _fdopen

Description

Remarks

_fdopen
Associates a stream with a file that was previously opened for low-level I/O.

#include <stdio.h>

FILE * _fdopen(int handle, char *mode);

handle

mode

Handle referring to open file

Type of access permitted

The _fdopen function associates an input/output stream with the file identified by
handle, thus allowing a file opened for low-level I/O to be buffered and formatted.
(For an explanation of stream I/O and low-level I/O see "Input and Output" on
page 31.) The mode character string specifies the type of access requested for the
file, as shown below. The following list gives the mode string used in the fopen
and _fdopen functions and the corresponding oflag arguments used in the _open
and _ sopen functions. A complete description of the mode string argument is
given in the remarks section of the fopen function.

Type String

"r"

"w"

"a"

"r+"

"w+"

"a+"

Equivalent Value for _openLsopen

_O_RDONLY
0 WRONLY (usually _0_ WRONLY I_O_CREAT I
_O_TRUNC)

0 WRONLY I_O_APPEND (usually _0_ WRONLY I
_O_CREAT I_O_APPEND)

_O_RDWR
_O_RDWR (usually _O_RDWR I_O_CREAT I
_O_TRUNC)

_O_RDWR I_O_APPEND (usually _O_RDWR I
_O_APPENDI_O_CREAT)

In addition to the values listed above, one of the following characters can be in
cluded in the mode string to specify the translation mode for new lines. These char
acters correspond to the constants used in the _open and _sopen functions, as
shown below:

Mode

t

b

Equivalent Value for _openLsopen

_O_TEXT

_O_BINARY

Return Value

_fdopen 265

If t or b is not given in the mode string, the translation mode is defined by the
default~mode variable _fmode.

In addition to the file attribute and the text or binary mode listed above, the mode
string accepts either c or n to specify commit to disk, or do not commit to disk, re
spectively. These characters have no correspondence to constants used in the
_open and _sopen functions. For more information on the commit feature, see
"Committing Buffer Contents to Disk" on page 3737.

Mode

c

n

Description

Commit to disk, no _open/_sopen equivalent.

No commit, no _openLsopen equivalent. Default.

If cor n is not given in the mode string, n is the default mode.

The _fdopen function returns a pointer to the open stream. A null pointer value in
dicates an error.

Compatibility Standards: UNIX

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _fdopen for compatibility with ANSI naming conventions of non-ANSI func
tions. Use fdopen and link with OLDNAMES.LIB for UNIX compatibility.

The t, c, and n options are not part of the ANSI standard for fopen and _ fdopen,
but are instead Microsoft extensions and should not be used where ANSI portabil
ity is desired.

_dup, _dup2, fclose, _fcloseall, fop en, freopen, _open

1* FDDPEN.C: This program opens a file using low-level 1/0, then uses
* _fdopen to switch to stream access. It counts the lines in the file.
*1

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

266 _fdopen

Output

void maine void)
{

FILE *stream;
int fh, count
char inbuf[128];

0' ,

1* Open a file handle. *1
if((fh =_open("_fdopen.c", 0 RDONLY» -1)

ex it (1);

1* Change handle access to stream access. *1
if((stream = _fdopen(fh, "r" » == NULL)

ex it (1);

while(fgets(inbuf, 128, stream) != NULL)
count++;

1* After _fdopen, close with fclose, not close. *1
fclose(stream);

printf("Lines in file: %d\n", count);

Lines in file: 31

Description

Remarks

Return Value

feof 267

feof
Tests for end-of-file on a stream.

#include <stdio.h>

int feof(FILE *stream);

stream Pointer to FILE structure

The feofroutine (implemented both as a function and as a macro) determines
whether the end of stream has been reached. Once the end of the file is reached,
read operations return an end-of-file indicator until the stream is closed or until
rewind, fsetpos, fseek, or clearerr is called against it.

The feof function returns a nonzero value after the first read operation that at
tempts to read past the end of the file. It returns 0 if the current position is not end
of-file. There is no error return.

Compatibility Standards: ANSI, UNIX

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

clearerr, _ eof, ferror, perror

/* FEOF.C: This program uses feof to indicate when it reaches the end
* of the file FEOF.C. It also checks for errors with ferror.
*/

#include <stdio.h>
#include <stdlib.h>

268 feof

Output

void main(void)
{

}

int count, total 0;
char buffer[100];
FILE *stream;

if((stream = fopen("feof.c", "r"))
exit(1);

1* Cycle until end of file reached: *1
whil e(! feof(stream))
{

1* Attempt to read in 10 bytes: *1

NULL)

count = fread(buffer, sizeof(char), 100, stream);
if(ferror(stream))

}

{

}

perror("Read error");
break;

1* Total up actual bytes read *1
total += count;

printf("Number of bytes read %d\n", total);
fclose(stream);

Number of bytes read 697

Description

Remarks

Return Value

ferror 269

ferror
Tests for an error on a stream.

#include <stdio.h>

int ferror(FILE *stream);

stream Pointer to FILE structure

The ferror routine (implemented both as a function and as a macro) tests for a
reading or writing error on the file associated with stream. If an error has oc
curred, the error indicator for the stream remains set until the stream is closed or
rewound, or until clearerr is called against it.

If no error has occurred on stream, ferror returns O. Otherwise, it returns a non
zero value.

Compatibility Standards: ANSI, UNIX

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

clearerr, _ eof, feof, fop en, perror

/* FEOF.C: This program uses feof to indicate when it reaches the end
* of the file FEOF.C. It also checks for errors with ferror.
*/

#include <stdio.h>
#include <stdlib.h>

270 ferror

Output

void main(void)
{

int count, total 0;
char buffer[100];
FILE *stream;

if((stream = fopen("feof.c", "r"))
exit(1);

1* Cycle until end of file reached: *1
whi 1 e(! feof(stream))
{

1* Attempt to read in 10 bytes: *1

NULL)

count = fread(buffer, sizeof(char), 100, stream);
i f(ferror(stream))
{

}

perror("Read error");
break;

1* Total up actual bytes read *1
total += count;

printf("Number of bytes read %d\n", total);
fclose(stream);

Number of bytes read 697

Description

Remarks

Return Value

Compatibility

See Also

fflush 271

fflush
Flushes a stream.

#include <stdio.h>

int fflush(FILE *stream);

stream Pointer to FILE structure

If the file associated with stream is open for output, fflush writes to that file the
contents of the buffer associated with the stream. If the stream is open for input,
fflush clears the contents of the buffer. The fflush function negates the effect of
any prior call to ungetc against stream.

Buffers are automatically flushed when they are full, when the stream is closed,
or when a program terminates normally without closing the stream. Also,
fflush(NULL) flushes all streams opened for output.

The stream remains open after the call. The fflush function has no effect on an un
buffered stream.

The fflush function returns the value 0 if the buffer was successfully flushed. The
value 0 is also returned in cases in which the specified stream has no buffer or is
open for reading only. A return value of EOF indicates an error.

Note If fflush returns EOF, data may have been lost because of a failed write.
When setting up a critical error handler, it is safest to tum buffering off with the
setvbuffunction or to use low-level 110 routines such as _open, _close, and
_ write instead of the stream 110 functions.

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

fclose, _ flushall, setbuf

272 fflush

Example /* FFLUSH.C */
#include <stdio.h>
#include <conio.h>

Output

void maine void
{

}

int integer;
char string[81];

/* Read each word as a string. */
printf("Enter a sentence of four words with scanf: " 1;
fore integer = 0; integer < 4; integer++ 1
{

}

scanf("%s", string 1;
printf("%s\n", string 1;

/* You must flush the input buffer before using gets. */
fflush(stdin 1;
printf("Enter the same sentence with gets: " 1;
gets(string 1;
printf("%s\n", string 1;

Enter a sentence of four words with scanf: This is a test
This
is
a
test
Enter the same sentence with gets: This is a test
This is a test

Description

Remarks

Return Value

Compatibility

See Also

fgete, _ fgetehar 273

fgelc, _ fgelchar
Read a character from a stream (fgetc) or stdin (_fgetchar).

#include <stdio.h>

int fgetc(FILE *stream);

int _fgetchar(void);

stream Pointer to FILE structure

The fgetc function reads a single character from the current position of the file as
sociated with stream. The character is converted and returned as an int. The func
tion then increments the associated file pointer (if any) to point to the next
character. The _fgetchar function is equivalent to fgetc(stdin).

The fgetc and _fgetchar routines are identical to getc and getchar, but they are
functions rather than macros.

The fgetc and _fgetchar functions return the character read. They return EOF to
indicate an error or end-of-file. Use feof or ferror to distinguish between an error
and an end-of-file condition.

fgetc

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fgetchar

Standards: None

16-Bit: DOS, QWIN

32-Bit: DOS32X

fputc, _fputchar, getc, getchar

274 'gete, _ 'getehar

Example 1* FGETC.C: This program uses getc to read the first 80 input characters
* (or until the end of input) and place them into a string named buffer.
*1

Output

#include <stdio.h>
#include <stdlib.h>

void main(void)
{

FILE *stream;
char buffer[81];
i nt i, ch;

1* Open file to read line from: *1
if((stream = fopen("fgetc.c", Dr" »

exit(0);
NULL)

1* Read in first 80 characters and place them in "buffer": *1
ch fgetc(stream);

}

for(i=0; (i < 80) && (feof(stream) == 0); i++)
{

buffer[i] ch;
ch = fgetc(stream);

}

1* Add null to end string *1
buffer[i] = '\0';
printf("%s\n", buffer);
fclose(stream);

1* FGETC.C: This program uses getc to read the first 80 input characters
1* (or

Description

Remarks

Return Value

Compatibility

See Also

fgetpos
Gets a stream's file-position indicator.

#include <stdio.h>

int fgetpos(FILE *stream, fpOL t *pos);

stream

pos

Target stream

Position-indicator storage

fgetpos 275

The fgetpos function gets the current value of the stream argument's file-position
indicator and stores it in the object pointed to by pos. The fsetpos function can
later use information stored in pos to reset the stream argument's pointer to its
position at the time fgetpos was called.

The pos value is stored in an internal format and is intended for use only by the
fgetpos and fsetpos functions.

If successful, the fgetpos function returns O. On failure, it returns a nonzero value
and sets errno to one of the following manifest constants (defined in STDIO.H):

Constant

EBADF

EINVAL

Meaning

The specified stream is not a valid file handle or is not accessible.

The stream value is invalid.

Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

fsetpos

276 fgetpos

Example /* FGETPOS.C: This program opens a file and reads bytes at several

Output

* different locations.
*/

#include <stdio.h>

void main(void)
{

}

FILE
fpos_ t
int
cha r

*stream;
pos;
va 1 ;
buffer[20];

if((stream = fopen("fgetpos.c", "rb"))
printf("Trouble opening file\n");

else

NULL)

{

/* Read some data and then check the position. */
fread(buffer, sileof(char), 10, stream);
if(fgetpos(stream, &pos) != 0)

perror("fgetpos error");
else
{

fread(buffer, sileof(char), 10, stream);
printf("10 bytes at byte %ld: %.10s\n", pos, buffer);

/* Set a new position and read more data */
pos = 140;
if(fsetpos(stream, &pos) != 0)

perror("fsetpos error");

fread(buffer, sileof(char), 10, stream);
printf("10 bytes at byte %ld: %.10s\n", pos, buffer);

fclose(stream);

10 bytes at byte 10: .C: This p
10 bytes at byte 140: FILE *

Description

Remarks

Return Value

Compatibility

See Also

fgets
Gets a string from a stream.

#include <stdio.h>

char *fgets(char *string, int n, FILE *stream);

string

n

stream

Storage location for data

Number of characters stored

Pointer to FILE structure

fgets 277

The fgets function reads a string from the input stream argument and stores it in
string. Characters are read from the current stream position up to and including the
first newline character ('\n'), up to the end of the stream, or until the number of
characters read is equal to n - 1, whichever comes first. The result is stored in
string, and a null character (,\0') is appended. The newline character, if read, is in
cluded in the string. If n is equal to 1, string is empty (""). The fgets function is
similar to the gets function; however, gets replaces the newline character with
NULL.

If successful, the fgets function returns string. It returns NULL to indicate either
an error or end-of-file condition. Use feof or ferror to determine whether an error
occurred.

Standards: ANSI, UNIX

16-Bit:

32-Bit:

DOS, QWIN, WIN, WINDLL

DOS32X

fputs, gets, puts

278 fgets

Example /* FGETS.C: This program uses fgets to display a line from a file on the

Output

* screen.
*/

#include <stdio.h>

FILE *stream;

void maine void
{

}

char line[100], *result;

if((stream = fopen("fgets.c", "r")) != NULL
{

if(fgets(line, 100, stream == NULL)
printf("fgets error\n");

else
printf("%s", line);

fclose(stream);

/* FGETS.C: This program uses fgets to display a line from a file on the

Description

Remarks

Return Value

Compatibility

See Also

_ fieeetomsbin, _ fmsbintoieee 279

_ fieeetomsbin, _ fmsbintoieee
Convert floating-point numbers between IEEE and Microsoft binary formats.

#include <math.h>

int _fieeetomsbin(float *src4, float *dst4);

int _fmsbintoieee(float *src4, float *dst4);

scr4

dst4

Value to be converted

Converted value

The _fieeetomsbin routine converts a single-precision floating-point number in
IEEE (Institute of Electrical and Electronic Engineers) format to Microsoft (MS)
binary format.

The _fmsbintoieeeroutine converts a floating-point number in Microsoft binary
format to IEEE format.

These routines allow C programs (which store floating-point numbers in the IEEE
format) to use numeric data in random-access data files created with Microsoft
Basic (which stores floating-point numbers in the Microsoft binary format), and
vice versa.

The argument src4 points to the float value to be converted. The result is stored at
the location given by dst4.

These routines do not handle IEEE NANs ("not a number") and infinities. IEEE
denormals are treated as 0 in the conversions.

These functions return 0 if the conversion is successful and I if the conversion
causes an overflow.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

_ dieeetomsbin, _ dmsbintoieee

280 _ filelength

Description

Remarks

Return Value

Compatibility

See Also

Example

_ filelength
Gets the length of a file.

#include <io.h> Required only for function declarations

long _filelength(int handle);

handle Target file handle

The _filelength function returns the length, in bytes, of the target file associated
with handle.

The _ filelength function returns the file length in bytes. A return value of -lL in
dicates an error, and an invalid handle sets errno to EBADF.

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_chsize, _fileno, _fstat, _stat

/* CHSIZE.C: This program uses _filelength to report the size of a
* file before and after modifying it with chsize.
*/

#include <io.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <stdio.h>

Output

void main(void)
{

int fh, result;
unsigned int nbytes BUFSIZ;

/* Open a file */
if((fh _open("data", _O_RDWR I _O_CREAT,

_S_IREAD I _S_IWRlTE)) != -1)
{

_ filelength 281

printf("File length before: %ld\n", _filelength(fh));
if(_chsize(fh, 329678) == 0)

}

}

printf("Size successfully changed\n");
else

printf("Problem in changing the size\n");
printf("File length after: %ld\n", _filelength(fh));
close(fh);

File length before: 0
Size successfully changed
File length after: 329678

282 fileno

Description

Remarks

Return Value

Compatibility

See Also

Example

Output

fileno
Gets the file handle associated with a stream.

#include <stdio.h>

int _fileno(FILE *stream);

stream Pointer to FILE structure

The _fileno routine returns the file handle currently associated with stream. This
routine is implemented both as a function and as a macro.

The _fileno routine returns the file handle. There is no error return. The result is
undefined if stream does not specify an open file.

Standards: UNIX

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

Use _fileno for compatibility with ANSI naming conventions of non-ANSI func
tions. Use fileno and link with OLDNAMES.LIB for UNIX compatibility.

_fdopen, _filelength, fopen, freopen

1* FILENO.C: This program uses fileno to obtain the file handle for
* some standard C streams.
*1

#include <stdio.h>

void main(void
{

pri ntf("The fi 1 e handle for
printf("The fil e handle for
printf("The file handle for

The file handle for stdin is 0
The file handle for stdout is 1
The file handle for stderr is 2

stdin is %d\n", fileno(stdin)) ;
stdout is %d\n", fileno(stdout)) ;
stderr is %d\n", _fileno(stderr)) ;

Description

Remarks

Return Value

Compatibility

See Also

_floodfill, _floodfill_w
Fill an area of a display using the current color and fill mask.

#include <graph.h>

short __ far _ floodfill(short x, short y, short boundary);

short __ far _floodfilL w(double wx, double wy, short boundary);

x,y

wx,wy

boundary

Start point

Start point

Boundary color of area to be filled

The functions in the _floodfill family fill an area of the display, using the current
color and fill mask. The _floodfill routine begins filling at the view-coordinate
point (x, y). The _floodfilL w routine begins filling at the window-coordinate
point (wx, wy).

If this point lies inside the figure, the interior is filled; if it lies outside the figure,
the background is filled. The point must be inside or outside the figure to be filled,
not on the figure boundary itself. Filling occurs in all directions, stopping at the
color of boundary.

The _ floodfill functions return a nonzero value if the fill is successful. They return
o if the fill could not be completed, the starting point lies on the boundary color, or
the start point lies outside the clipping region.

Standards: None

16-Bit: DOS

32-Bit: None

_ellipse functions, _getcolor, _getfillmask, _grstatus, _pie functions,
_setfillmask, _setcliprgn, _setcolor

284 _floodfill, _floodfilLw

Example 1* FLOODFIL.C: This program draws a series of nested rectangles in
* different colors, constantly changing the background color.
*1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void main(void
{

int loop;
int xvar, yvar;

1* find a valid graphics mode *1
if(!_setvideomode(MAXCOLORMODE))

ex it (1);

fort xvar = 163, loop = 0; xvar < 320; loop++, xvar += 3)
{

_setcolor(loop % 16);
yvar = xvar * 5 I 8;
_rectangle(_GBORDER, 320-xvar, 200-yvar, xvar, yvar);
_setcolor(rand() % 16);
_floodfill(0, 0, loop % 16);

}
_getch();
_setvideomode(DEFAULTMODE);

Description

Remarks

Return Value

Compatibility

See Also

floor, _ floorl 285

floor, _ floorl
Calculate the floor of a value.

#include <math.h>

double floor(double x);

long double _floorl(long double x);

x Floating-point value

The floor and _floorl functions return a floating-point value representing the
largest integer that is less than or equal to x.

The _floorl function is the 80-bit counterpart, and it uses the 80-bit, lO-byte co
processor form of arguments and return values. See the reference page on the long
double functions for more details on this data type.

These functions return the floating-point result. There is no error return.

floor

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_floorl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

ceil, fmod

286 floor, _ floorl

Example

Output

1* FLOOR.C: This example displays the largest integers less than or equal
* to the floating-point values 2.8 and -2.8. It then shows the smallest
* integers greater than or equal to 2.8 and -2.8.
*1

#include <math.h>
#include <stdio.h>

void maine void
{

double y;

y = floor(2.8);
printf("The floor of 2.8 is %f\n", y);
y = floor(-2.8);
printf("The floor of -2.8 is %f\n", y);

y = ceil(2.8);
printf("The ceil of 2.8 is %f\n", y);
y = ceil(-2.8);
printf("The ceil of -2.8 is %f\n", y);

The floor of 2.8 is 2.000000
The floor of -2.8 is -3.000000
The ceil of 2.8 is 3.000000
The ceil of -2.8 is -2.000000

Description

Remarks

Return Value

Compatibility

See Also

Example

flushall 287

flushall
Flushes all streams; clears all buffers.

#include <stdio.h>

int _flushall(void);

The _flushall function writes to its associated files the contents of all buffers as
sociated with open output streams. All buffers associated with open input streams
are cleared of their current contents. The next read operation (if there is one) then
reads new data from the input files into the buffers.

Buffers are automatically flushed when they are full, when streams are closed, or
when a program terminates normally without closing streams.

All streams remain open after the call to _flushall.

The _flushall function returns the number of open streams (input and output).
There is no error return.

Standards: None

16-Bit:

32-Bit:

fflush

DOS, QWIN, WIN, WIN DLL

DOS32X

1* FLUSHALL.C: This program uses _flushall to flush all open buffers. *1

#include <stdio.h>

Output

void maine void)
{

int numflushed;

numflushed = _flushall();
printf("There were %d streams flushed\n", numflushed);

There were 3 streams flushed

288 fmod, _fmodl

Description

Remarks

Return Value

Compatibility

See Also

fmod, _fmodl
Calculate the floating-point remainder.

#include <math.h>

double fmod(double x, double y);

long double _fmodl(long double x, long double y);

x,y Floating-point values

The fmod and _fmodl functions calculate the floating-point remainder f of x / y
such that x = i * Y + f, where i is an integer, f has the same sign as x, and the abso
lute value of f is less than the absolute value of y.

The _fmodl function is the 80-bit counterpart; it uses the 80-bit, lO-byte coproces
sor form of arguments and return values. See the discussion of the long double
functions for more details on this data type.

These functions return the floating-point remainder. If y is 0, the function returns O.

fmod

Standards:

16-Bit:

32-Bit:

_fmodl

ANSI, UNIX

DOS, QWIN, WIN, WIN DLL

DOS32X

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

ceil, fabs, floor

Example

Output

fmod, _fmodl 289

/* FMOD.C: This program displays a floating-point remainder. */

#include <math.h>
#include <stdio.h>

void maine void)
{

double x = -10.0, y 3.0, z;

z = fmod(x, y);
printf("The remainder of %.2f / %.2f is %f\n", x, y, z);

The remainder of -10.00 / 3.00 is -1.000000

290 fopen

Description

Remarks

lopen
Opens a file.

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

filename

mode

Path name of file

Type of access permitted

The fopen function opens the file specified by filename. The character string mode
specifies the type of access requested for the file, as follows:

Type

"r"

"w"

"a"

"r+"

"w+"

"a+"

Description

Opens for reading. If the file does not exist or cannot be found, the
Copen call will fail.

Opens an empty file for writing. If the given file exists, its contents
are destroyed.

Opens for writing at the end of the file (appending); creates the file
first if it doesn't exist.

Opens for both reading and writing. (The file must exist.)

Opens an empty file for both reading and writing. If the given file
exists, its contents are destroyed.

Opens for reading and appending; creates the file first if it doesn't
exist.

When a file is opened with the "a" or "a+" access type, all write operations occur
at the end of the file. Although the file pointer can be repositioned using fseek or
rewind, the file pointer is always moved back to the end of the file before any
write operation is carried out. Thus, existing data cannot be overwritten.

When the "r+", "w+", or "a+" access type is specified, both reading and writing
are allowed (the file is said to be open for "update"). However, when you switch
between reading and writing, there must be an intervening fsetpos, fseek, or
rewind operation. The current position can be specified for the fsetpos or fseek
operation, if desired.

Return Value

Compatibility

See Also

lopen 291

In addition to the values listed above, the following characters can be included in
mode to specify the translation mode for newline characters:

Mode

b

c

n

Meaning

Open in text (translated) mode. In this mode, carriage-return-line
feed (CR-LF) combinations are translated into single line feeds (LF)
on input and LF characters are translated to CR-LF combinations on
output. Also, CTRL+Z is interpreted as an end-of-file character on
input. In files opened for reading or for reading/writing, fopen checks
for a CTRL+Z at the end of the file and removes it, if possible. This is
done because using the fseek and ftell functions to move within a file
that ends with a CTRL+Z may cause fseek to behave improperly near
the end of the file.

Open in binary (untranslated) mode; the above translations are
suppressed.

Enable the commit flag for the associated filename so that the
contents of the file buffer are written directly to disk if either fflush
or _flushall is called.

Reset the commit flag for the associated filename to "no-commit".
This is the default. It will also override the global commit flag if you
have linked your program with COMMODE.OBJ. The global
commit flag default is "no-commit" unless you explicitly link your
program with COMMODE.OBJ.

If tor b is not given in mode, the translation mode is defined by the default-mode
variable _fmode. If t or b is prefixed to the argument, the function will fail and re
turn NULL.

For a discussion of text and binary modes see "Input and Output" on page 31.

The fopen function returns a pointer to the open file. A null pointer value indicates
an error.

Standards: ANSI, UNIX

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

Note that the c, n, and t options are not part of the ANSI standard for fopen; they
are Microsoft extensions and should not be used where ANSI portability is desired.

fclose, _fcloseall, _fdopen, ferror, _fileno, freopen, _open, _setmode

292' fopen

Example 1* FOPEN. C: Thi s program opens fil es named "data" and "data2". It uses

Output

* fclose to close "data" and fcloseall to close all remaining files.
*1

#include <stdio.h>

FILE *stream, *stream2;

void maine void)
{

int numclosed;

1* Open for read (will fail if 'data' does not exist) *1
if((stream = fopen("data", "r" » == NULL)

printf("The file 'data' was not opened\n" l;
else

printf("The file 'data' was opened\n");

1* Open for write *1
if((stream2 = fopen("data2", "w+" II == NULL

printf("The file 'data2' was not opened\n" l;
else

printf("The file 'data2' was opened\n");

1* Close stream *1
if(fclose(stream

printf("The file 'data' was not closed\n" l;

1* All other files are closed: *1
numclosed = _fcloseall();
printf("Number of files closed by _fcloseall: %u\n", numclosed);

The file 'data' was opened
The file 'data2' was opened
Number of files closed by _fcloseall: 1

Description

Remarks

Return Value

FP _SEG
Get or set a far-pointer offset (_FP _OFF) or a far-pointer segment (_FP _SEG).

#include <dos.h>

unsigned _FP _OFF(void __ far *address);

unsigned _FP _SEG(void __ far *address);

address Far pointer to memory address

The _FP _OFF and _FP _SEG macros can be used to set or get the offset and seg
ment, respectively, of the far pointer at address.

The _FP _OFF macro returns an offset. The _FP _SEG macro returns a segment
address.

Compatibility Standards: None

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

/* FP SEG.C: This program uses FP SEG and FP_OFF to obtain
* the segment and offset of the long pointer p.
*/

#include <dos.h>
#include <malloc.h>
#include <stdio.h>

void maine void)
{

void __ far *p;
unsigned int seg_val;
unsigned int ofCval;

p = _fmalloc(100);

seg_ val
off val

FP SEG(p);
FP OFF(p);

/* Points pointer at something */

/* Gets address pointed to */

printf("Segment is %.4X; Offset is %.4X\n", seg_val, off val);
}

Output Segment is 00C7; Offset is 0016

Description

Remarks

Return Value

Compatibility

See Also

_ fpreset 295

_fpreset
Resets the floating-point package.

#include <float.h>

void _fpreset(void);

The _fpreset function reinitializes the floating-point-math package. This function
is usually used in conjunction with signal, system, or the _exec or _spawn
functions.

If a program traps floating-point error signals (SIGFPE) with signal, it can safely
recover from floating-point errors by invoking _fpreset and using longjmp.

In DOS versions prior to 3.0, a child process executed by _exec, _spawn, or
system may affect the floating-point state of the parent process if an 8087, 80287,
or 80387 coprocessor is used. If you are using either coprocessor, the following
precautions are recommended:

• The _exec, _spawn, and system functions should not be called during the eval
uation of a floating-point expression.

• The _ fpreset function should be called after these routines if there is a possi
bility of the child process performing any floating-point operations.

None.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

_ exec functions, signal, _ spawn functions

296 _ fpreset

Example 1* FPRESET.C: This program uses signal to set up a routine for handling
* floating-point errors.
*1

#include <stdio.h>
iii nc 1 ude <s i gna 1 . h>
#include <setjmp.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include <string.h>

jmp_buf mark;
int fperr;

1* Address for long jump to jump to *1
1* Global error number *1

void fphandler(int sig, int num); 1* Prototypes *1
void fpcheck(void);

void maine void)
{

double nl, n2, r;
int jmpret;

1* Set up floating-point error handler. The compiler
* will generate a warning because it expects
* signal-handling functions to take only one argument.
*1

if(signal (SIGFPE, fphandler) SIG_ERR)
{

}

fprintf(stderr, "Couldn't set SIGFPE\n");
abort();

1* Save stack environment for return in case of error. First time
* through, jmpret is 0, so true conditional is executed. If an
* error occurs, jmpret will be set to -1 and false conditional
* wi 11 be executed.
*1

jmpret = setjmp(mark);
i f(jmpret == 0)
{

printf("Test for invalid operation - ");
printf("enter two numbers: ");
scanf("%If %If", &nl, &n2);

r = nl I n2;
1* This won't be reached if error occurs. *1
printf("\n\n%4.3g I %4.3g = %4.3g\n", nl, n2, r);

}

r = n1 * n2;
1* This won't be reached if error occurs. *1
printf("\n\n%4.3g * %4.3g = %4.3g\n", n1, n2, r);

else
fpcheck();

_ fpreset 297

1* fphandler handles SIGFPE (floating-point error) interrupt. Note
* that this prototype accepts two arguments and that the prototype
* for signal in the run-time library expects a signal handler to
* have only one argument.

* * The second argument in this signal handler allows processing of
* JPE_INVALID, _FPE_OVERFLOW, JPE_UNDERFLOW, and JPE_ZERODIVIDE
* all of which are Microsoft-specific symbols that augment the
* information provided by SIGFPE. The compiler will generate a
* warning, which is harmless and expected.
*1

void fphandler(int sig, int num)
{

}

1* Set global for outside check since we don't want
* to do liD in the handler.
*1

fperr = num;

1* Initialize floating-point package. *1
_ fpreset();

1* Restore calling environment and jump back to setjmp. Return -1
* so that setjmp will return false for conditional test.
*1

longjmp(mark, -1);

void fpcheck(void)
{

char fpstr[30];

switch(fperr)
{

case FPE_INVALID:
strcpy(fpstr, "Invalid number");
break;

case FPE_OVERFLOW:
strcpy(fpstr, "Overflow");
break;

case FPE_UNDERFLOW:
strcpy(fpstr, "Underflow");
break;

298 _ fpreset

Output

}

}

case FPE_ZERODIVIDE:
strcpy(fpstr, "Divide by zero");
break;

default:
strcpy(fpstr, "Other floating point error");
b rea k;

printf("Error %d: %s\n", fperr, fpstr);

Test for invalid operation - enter two numbers: 5 0
Error 131: Divide by zero

Description

Remarks

Return Value

Compatibility

See Also

fprintf
Prints formatted data to a stream.

#include <stdio.h>

int fprintf(FILE * stream, const char *format [, argument] ...);

stream

format

argument

Pointer to FILE structure

Format-control string

Optional arguments

fprintf 299

The fprintffunction formats and prints a series of characters and values to the out
put stream. Each argument (if any) is converted and output according to the corre
sponding format specification informat.

The format argument has the same form and function that it does for the printf
function; see the Remarks section for the printffunction for more information on
format and argument.

The fprintffunction returns the number of characters printed, or a negative value
in the case of an output error.

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN, WIN

DOS32X

_ cprintf, fscanf, printf, sprintf

300 fprintf

Example 1* FPRINTF.C: This program uses fprintf to format various data and
* print them to the file named FPRINTF.OUT. It then displays

Output

* FPRINTF.OUT on the screen using the system function to invoke
* the OOS TYPE command.
*1

#include <stdio.h>
#include <process.h>

FILE *stream;

void main(void
{

}

int i = 10;
double fp = 1.5;
char s[] = "this is a string";
char c = '\n';

stream fopen("fprintf.out", Ow");
fprintf(stream, "%s%c", s, c);
fprintf(stream, "%d\n", i);
fprintf(stream, "%f\n", fp);
fclose(stream);
system("type fprintf.out");

this is a string
10
1.500000

Descri plion

Remarks

Return Value

Compatibility

See Also

fputc, _ fputchar 301

fputc, _ fputchar
Write a character to a stream (fputc) or to stdout (3putchar).

#include <stdio.h>

int fputc(int c, FILE *stream);

int _fputchar(int c);

c

stream

Character to be written

Pointer to FILE structure

The fputc function writes the single character c to the output stream at the current
position. The _fputchar function is equivalent to fputc(c, stdout).

The fputc and _fputchar routines are similar to putc and putchar, but are func
tions rather than macros.

The fputc and _fputchar functions return the character written. A return value of
EOF indicates an error.

fputc

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN, WIN, WINDLL

DOS32X

_fputchar

Standards: None

16-Bit: DOS, QWIN

32-Bit: DOS32X

fgetc, _fgetchar, putc, putchar

302 fputc, _ fputchar

Example /* FPUTC.C: This program uses fputc and _fputchar to send a character

Output

* array to stdout.
*/

#include <stdio.h>

void maine void)
{

char strptrl[]
char strptr2[]
char *p;

"This is a test of fputc! !\n";
"Thi sis a test of _ fputchar!! \n";

/* Print line to stream using fputc. */
p = strptrl;
whi 1 e((*p != '\0') && fputc(*(p++), stdout

/* Print line to stream using _fputchar. */
p = strptr2;

! = EO F)

while((*p != '\0') && _fputchar(*(P++)) != EOF)

This is a test of fputc!!
This is a test of _fputchar!!

Description

Remarks

Return Value

Compatibility

See Also

Example

fputs
Writes a string to a stream.

#include <stdio.h>

int fputs(const char *string, FILE *stream);

string

stream

String to be output

Pointer to FILE structure

fputs 303

The fputs function copies string to the output stream at the current position. The
terminating null character ('\0') is not copied.

The fputs function returns a nonnegative value if it is successful. If an error oc
curs, it returns EOF.

Standards: ANSI, UNIX

l6-Bit:

32-Bit:

DOS, QWIN, WIN, WINDLL

DOS32X

fgets, gets, puts

1* FPUTS.C: This program uses fputs to write a single line to the
* stdout stream.
*1

#include <stdio.h>

Output

void maine void)
{

fputs("Hello world from fputs.\n", stdout);
}

Hello world from fputs.

304 fread

Description

Remarks

Return Value

Compatibility

See Also

fread
Reads data from a stream.

#include <stdio.h>

SiZLt fread(void *buffer, SizLt size, size_t count, FILE *stream);

buffer

size

count

stream

Storage location for data

Item size in bytes

Maximum number of items to be read

Pointer to FILE structure

The fread function reads up to count items of size bytes from the input stream and
stores them in buffer. The file pointer associated with stream (if there is one) is in
creased by the number of bytes actually read.

If the given stream is opened in text mode, carriage-return-line-feed pairs are re
placed with single line-feed characters. The replacement has no effect on the file
pointer or the return value.

The file-pointer position is indeterminate if an error occurs. The value of a par
tially read item cannot be determined.

The fread function returns the number of full items actually read, which may be
less than count if an error occurs or if the file end is encountered before reaching
count.

The feof or ferror function should be used to distinguish a read error from an end
of-file condition. If size or count is 0, fread returns 0 and the buffer contents are
unchanged.

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

fwrite, _ read

Example

Output

fread 305

1* FREAD.C: This program opens a file named FREAD.OUT and writes 25
* characters to the file. It then tries to open FREAD.OUT and
* read in 25 characters. If the attempt succeeds, the program
* displays the number of actual items read.
*1

#include <stdio.h>

void main(void)
{

FILE *stream;
char list[30];
int i, numread, numwritten;

1* Open file in text mode: *1
if((stream = fopen("fread.out", "w+t")) != NULL)
{

for (i = 0; i < 25; i++)
list[i] = 'z' - i;

1* Write 25 characters to stream *1
numwritten = fwrite(list, sizeof(char), 25, stream);
printf("Wrote %d items\n", numwritten);
fclose(stream);

}

else
printf("Problem opening the file\n");

if ((s t rea m = fop e n ("f rea d . 0 u t", "r+t")) ! = NUL L)
{

1* Attempt to read in 25 characters *1
numread = fread(list, sizeof(char), 25, stream);
printf("Number of items read = %d\n", numread);
printf("Contents of buffer = %.25s\n", list);
fclose(stream);

else
printf("Was not able to open the file\n");

Wrote 25 items
Number of items read = 25
Contents of buffer = zyxwvutsrqponmlkjihgfedcb

306 free Functions

Description

Remarks

free Functions
Deallocate a memory block.

#include <stdlib.h>

#include <malloe.h>

void free(void *memblock);

For ANSI compatibility (free only)

Required only for function declarations

void _bfree(__ segment seg, void __ based(void) *memblock);

void _ffree(void __ far *memblock);

void _nfree(void __ near *memblock);

memblock

seg

Allocated memory block

Based-heap segment selector

The free family of functions deallocates a memory block. The argument
memblock points to a memory block previously allocated through a call to ealloe,
malloe, or realloe. The number of bytes freed is the number of bytes specified
when the block was allocated (or reallocated, in the case of realloe). After the call,
the freed block is available for allocation.

The seg argument specifies the based heap containing the memory block to be
freed by the _ bfree function.

Attempting to free an invalid pointer may affect subsequent allocation and cause
errors. An invalid pointer is one not allocated with the appropriate call.

The following restrictions apply to use of the free, _ bfree, _ffree, and _nfree
functions:

Blocks allocated with:

calloc, malloc, realloc
_ bcalloc, _ bmalloc, _ brealloc

_fcalloe, _fmalloc, _frealloc

_ncalloc, _nmalloc, _nrealloc

Should be freed with:

free
_bfree

_ffree

_nfree

Return Value

free Functions 307

A NULL pointer argument is ignored.

In large data models (compact-, large-, and huge-model programs), free maps to
_ffree. In small data models (tiny-, small-, and medium-model programs), free
maps to _ nfree.

The various free functions deallocate a memory block in the segments shown in
the list below:

Function

free

_bfree
_ffree

_nfree

None.

Data Segment

Depends on data model of program

Based heap specified by seg value

Far heap (outside default data segment)

Near heap (inside default data segment)

Compatibility free

See Also

Example

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN, WIN, WINDLL

DOS32X

_ bfree, _ ffree, _ nfree

Standards: None

16-Bit: DOS, WIN, WIN DLL

32-Bit: None

calloc functions, malloc functions, realloc functions

/* MALLOC.C: This program allocates memory with malloc, then frees
* the memory with free.
*/

#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>

/* Definition of MAX_PATH */

308 free Functions

Output

void maine void)
{

}

char *string;

1* Allocate space for a path name *1
string = malloc(_MAX_PATH);
if(string == NULL)

printf("Insufficient memory available\n");
else

printf("Memory space allocated for path name\n");
free(stri ng);
printf("Memory freed\n");

Memory space allocated for path name
Memory freed

Description

Remarks

Return Value

freect 309

freect
Returns the amount of memory available for memory allocation.

#include <malloc.h> Required only for function declarations

unsigned int _freect(size_ t size);

size Item size in bytes

The _freect function tells you how much memory is available for dynamic
memory allocation in the near heap. It does so by returning the approximate num
ber of times your program can call_ nmalloc (or malloc in small data models) to
allocate an item size bytes long in the near heap (default data segment).

The _ freect function returns the number of calls as an unsigned integer.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS, QWIN, WIN, WINDLL

None

calloc functions, _expand functions, malloc functions, _memavl, _msize func
tions, realloc functions

1* FREECT.C: This program determines how much free space is available for
* integers in the default data segment. Then it allocates space for
* 1,000 integers and checks the space again, using _freect.
*1

#include <malloc.h>
#include <stdio.h>

310 freect

Output

void main(void)
{

}

i nt i;

1* First report on the free space: *1
printf("Integers (approximate) available on heap: %u\n\n",

_freect(sizeof(int)));

1* Allocate space for 1000 integers: *1
for(i = 0; i < 1000; ++i)

malloc(sizeof(int));

1* Report again on the free space: *1
printf("After allocating space for 1000 integers:\n");
printf("Integers (approximate) available on heap: %u\n\n",

_freect(sizeof(int)));

Integers (approximate) available on heap: 15212

After allocating space for 1000 integers:
Integers (approximate) available on heap: 14084

Description

Remarks

freopen 311

freopen
Reassigns a file pointer.

#include <stdio.h>

FILE *freopen(const char *filename, const char *mode, FILE *stream);

filename

mode

stream

Path name of new file

Type of access permitted

Pointer to FILE structure

The freopen function closes the file currently associated with stream and reas
signs stream to the file specified by filename. The freopen function is typically
used to redirect the pre-opened files stdin, stdout, and stderr to files specified by
the user. The new file associated with stream is opened with mode, which is a char
acter string specifying the type of access requested for the file, as follows:

Type

"r"

"w"

"a"

"r+"

"w+"

"a+"

Description

Opens for reading. If the file does not exist or cannot be found, the
freopen call fails.

Opens an empty file for writing. Ifthe given file exists, its contents are
destroyed.

Opens for writing at the end of the file (appending); creates the file first
if it does not exist.

Opens for both reading and writing. (The file must exist.)

Opens an empty file for both reading and writing. If the given file exists,
its contents are destroyed.

Opens for reading and appending; creates the file first if it does not exist.

Use the "w" and "w+" types with care, as they can destroy existing files.

When a file is opened with the "a" or "a+" access type, all write operations take
place at the end of the file. Although the file pointer can be repositioned using
fseek or rewind, the file pointer is always moved back to the end of the file before
any write operation is carried out. Thus, existing data cannot be overwritten.

312 freopen

Return Value

Compatibility

See Also

When the "r+", "w+", or "a+" access type is specified, both reading and writing
are allowed (the file is said to be open for "update"). However, when you switch
between reading and writing, there must be an intervening fsetpos, fseek, or
rewind operation. The current position can be specified for the fsetpos or fseek
operation, if desired.

In addition to the values listed above, one of the following characters may be in
cluded in the mode string to specify the translation mode for new lines.

Mode

t

b

Meaning

Open in text (translated) mode; carriage-retum-line-feed
(CR-LF) combinations are translated into single line-feed (LF)
characters on input; LF characters are translated to CR-LF combinations
on output. Also, CTRL+Z is interpreted as an end-of-file character on
input. In files opened for reading, or writing and reading, the run-time
library checks for a CTRL+Z at the end of the file and removes it, if
possible. This is done because using the fseek and ftell functions to
move within a file may cause fseek to behave improperly near the end
of the file.

Open in binary (untranslated) mode; the above translations are
suppressed.

If t or b is not given in the mode string, the translation mode is defined by the de
fault mode variable _fmode.

See "Input and Output" on page 31 for a discussion of text and binary modes.

The freopen function returns a pointer to the newly opened file. If an error occurs,
the original file is closed and the function returns a NULL pointer value.

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

The t option is not part of the ANSI standard for freopen; it is a Microsoft exten
sion that should not be used where ANSI portability is desired.

fclose, _fcloseall, _fdopen, _fileno, fopen, _open, _setmode

Example

Output

/* FREOPEN.C: This program reassigns stdaux to the file
* named FREOPEN.OUT and writes a line to that file.
*/

#include <stdio.h>
#include <stdlib.h>

FILE *stream;

void main(void
{

/* Reassign "stdaux" to "freopen.out": */
stream = freopen("freopen.out", "w", stdaux);

if(stream == NULL)
fprintf(stdout, "error on freopen\n");

else
{

freopen 313

fprintf(stream, "This will go to the file 'freopen.out'\n");
fprintf(stdout, "successfully reassigned\n");
fclose(stream);

}

system("type freopen.out");

successfully reassigned
This will go to the file 'freopen.out'

314 frexp, _frexpl

Description

Remarks

Return Value

Compatibility

See Also

frexp, _ frexp I
Get the mantissa and exponent of a floating-point number.

#include <math.h>

double frexp(double x, int *expptr);

long double _frexpl(long double x, int *expptr);

x Floating-point value

expptr Pointer to stored integer exponent

The frexp and _frexpl functions break down the floating-point value (x) into a
mantissa (m) and an exponent (n), such that the absolute value of m is greater than
or equal to 0.5 and less than 1.0, and x = m*2n. The integer exponent n is stored at
the location pointed to by expptr.

The _frexpl function is the SO-bit counterpart and uses an SO-bit, lO-byte co
processor form of arguments and return values. See the reference page on the long
double functions for more details on this data type.

These functions return the mantissa. If x is 0, the function returns 0 for both the
mantissa and the exponent. There is no error return.

frexp

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_frexpl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

ldexp functions, modf

Example

Output

frexp, _ frexp I 315

1* FREXP.C; This program calculates frexp(16.4, &n), then displays y
* and n.
*/

#include <math.h>
#include <stdio.h>

void maine void
{

double x, y;
int n;

x = 16.4;
y = frexp(x, &n);
printf("frexp(%f, &n) %f, n %d\n", x, y, n);

frexp(16.400000, &n) 0.512500, n 5

316 fscanf

Description

Remarks

Return Value

Compatibility

See Also

fscanf
Reads formatted data from a stream.

#include <stdio.h>

int fscanf(FILE *stream, const char *format [, argument] ...);

stream

format

argument

Pointer to FILE structure

Format-control string

Optional arguments

The fscanf function reads data from the current position of stream into the loca
tions given by argument (if any). Each argument must be a pointer to a variable
with a type that corresponds to a type specifier informat. The format controls the
interpretation of the input fields and has the same form and function as the format
argument for the scanf function; see scanf for a description offormat.

The fscanf function returns the number of fields that were successfully converted
and assigned. The return value does not include fields that were read but not
assigned.

The return value is EOF for an error or end-of-file on stream before the first con
version. A return value of 0 means that no fields were assigned.

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN, WIN

DOS32X

_cscanf, fprintf, scanf, sscanf

Example

Output

1* FSCANF.C: This program writes formatted data to a file. It
* then uses fscanf to read the various data back from the file.
*1

#include <stdio.h>

FILE *stream;

void maine void
{

long 1;
float fp;
char s[81J;
char c;
int result;

stream = fopen("fscanf.out", "w+");
if(stream == NULL)

pri ntf("The fil e fscanf. out was not opened\n");
else
{

fscanf 317

fprintf(stream, "%s %ld %f%c", "a-string", 65000, 3.14159, 'x');

1* Set pointer to beginning of file: *1
fseek(stream, 0L, SEEK_SET);

1* Read data back from file:
fscanf(stream, "%s", s) ;
fscanf(stream, n%ld", &1
fscanf(stream, n%f" , &fp
fscanf(stream, n%c", &c

1* Output data read: *1
printf("%s\n", s);
pri ntf("%1 d\n", 1);
printf("%f\n", fp);
printf("%c\n", c);

fclose(stream);

a-string
65000
3.141590
x

) ;
) ;

) ;

*1

318 fseek

Description

Remarks

fseek
Moves the file pointer to a specified location.

#include <stdio.h>

int fseek(FILE *stream, long offset, int origin);

stream

offset

origin

Pointer to FILE structure

Number of bytes from origin

Initial position

The fseek function moves the file pointer (if any) associated with stream to a new
location that is offset bytes from origin. The next operation on the stream takes
place at the new location. On a stream open for update, the next operation can be
either a read or a write.

The argument origin must be one of the following constants defined in STDIO.H:

Origin

SEEILCUR
SEEILEND

SEEILSET

Definition

Current position of file pointer

End of file

Beginning of file

The fseek function can be used to reposition the pointer anywhere in a file. The
pointer can also be positioned beyond the end of the file. However, an attempt to
position the pointer in front of the beginning of the file causes an error.

The fseek function clears the end-of-file indicator and negates the effect of any
prior ungetc calls against stream.

When a file is opened for appending data, the current file position is determined
by the last I/O operation, not by where the next write would occur. If no I/O opera
tion has yet occurred on a file opened for appending, the file position is the start of
the file.

Return Value

Compatibility

See Also

Example

fseek 319

For streams opened in text mode, fseek has limited use because carriage-return
line-feed translations can cause fseek to produce unexpected results. The only
fseek operations guaranteed to work on streams opened in text mode are

• Seeking with an offset of 0 relative to any of the origin values

• Seeking from the beginning of the file with an offset value returned from a call
to ftell

If successful, fseek returns O. Otherwise, it returns a nonzero value. On devices in
capable of seeking, the return value is undefined.

Standards: ANSI, UNIX

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

ftell, _lseek, rewind

/* FSEEK.C: This program opens the file FSEEK.OUT and
* moves the pointer to the file's beginning.
*/

#include <stdio.h>

void main(void)
{

FILE *stream;
char line[81];
int result;

stream - fopen("fseek.out", "w+");
if(stream -- NULL)

printf("The file fseek.out was not opened\n");
else
{

fprintf(stream, "The fseek begins here: "
"This is the file 'fseek.out'.\n");

resul t - fseek(stream, 23L, SEEK_SET);
if(result)

perror("Fseek fai 1 ed");
else
{

}

printf("File pointer is set to middle of first line.\n");
fgets(line, 80, stream);
printf("%s", line);

fclose(stream);

320 fseek

Output File pointer is set to middle of first line.
This is the file 'fseek.out'.

Description

Remarks

Return Value

Compatibility

See Also

fsetpos
Sets the stream-position indicator.

#include <stdio.h>

int fsetpos(FILE * stream, const fpOL t *pas) ;

stream

pas

Target stream

Position-indicator storage

fsetpos 321

The fsetpos function sets the file-position indicator for stream to the value of pas,
which is obtained in a prior call to fgetpos against stream.

The function clears the end-of-file indicator and undoes any effects ofthe ungetc
function on stream. After calling fsetpos, the next operation on stream may be
either input or output.

If successful, the fsetpos function returns O. On failure, the function returns a non
zero value and sets errno to one of the following manifest constants (defined in
ERRNO.H):

Constant

EBADF

EINVAL

Meaning

The object that stream points to is not a valid file handle, or the
file is not accessible.

An invalid stream value was passed.

Standards: ANSI

16-Bit:

32-Bit:

fgetpos

DOS, QWIN, WIN, WIN DLL

DOS32X

322 fsetpos

Example 1* FGETPOS.C: This program opens a file and reads bytes at several

Output

* different locations.
*1

#include <stdio.h>

void maine void)
{

FILE
fpos_ t
int
cha r

*stream;
pos;
va 1 ;
buffer[20] ;

if((stream = fopen("fgetpos.c", "rb"»
printf("Trouble opening file\n");

else
{

NULL)

1* Read some data and then check the position. *1
fread(buffer, sileof(char), 10, stream);

}

if(fgetpos(stream, &pos) != 0)
perror("fgetpos error");

else
{

fread(buffer, sileof(char), 10, stream);
printf("10 bytes at byte %ld: %.10s\n", pos, buffer);

}

1* Set a new position and read more data. *1
pos = 140;
if(fsetpos(stream, &pos) != 0)

perror("fsetpos error");

fread(buffer, sileof(char), 10, stream);
printf("10 bytes at byte %ld: %.10s\n", pos, buffer);

fclose(stream);

10 bytes at byte 10: .C: This p
10 bytes at byte 140: FILE *

Description

Remarks

_fsopen 323

_fsopen
Opens a stream with file sharing.

#include <stdio.h>

#include <share.h> shflag constants

FILE * _fsopen(const char *filename, const char *mode, int shflag);

filename

mode

shflag

Filename to open

Type of access permitted

Type of sharing allowed

The _fsopen function opens the file specified by filename as a stream and pre
pares the file for subsequent shared reading or writing, as defined by the mode and
shflag arguments.

The character string mode specifies the type of access requested for the file, as
follows:

Type

"r"

"w"

"a"

f'r+"

"w+"

"a+"

Description

Opens for reading. If the file does not exist or cannot be found, the
_fsopen call will fail.

Opens an empty file for writing. If the given file exists, its contents
are destroyed.

Opens for writing at the end of the file (appending); creates the file
first if it does not exist.

Opens for both reading and writing. (The file must exist.)

Opens an empty file for both reading and writing. If the gi ven file
exists, its contents are destroyed.

Opens for reading and appending; creates the file first if it does not
exist.

Use the "w" and "w+" types with care, as they can destroy existing files.

When a file is opened with the "a" or "a+" access type, all write operations occur
at the end of the file. Although the file pointer can be repositioned using fseek or
rewind, the file pointer is always moved back to the end of the file before any
write operation is carried out. Thus, existing data cannot be overwritten.

324 _fsopen

Return Value

When the "r+", "w+", or "a+" access type is specified, both reading and writing
are allowed (the file is said to be open for "update"). However, when switching be
tween reading and writing, there must be an intervening fsetpos, fseek, or rewind
operation. The current position can be specified for the fsetpos or fseek operation,
if desired.

In addition to the values listed above, one of the following characters can be in
cluded in mode to specify the translation mode for new lines:

Mode

t

b

Meaning

Open in text (translated) mode. In this mode, carriage-retum
line-feed (CR-LF) combinations are translated into single line
feeds (LF) on input and LF characters are translated to CR-LF
combinations on output. Also, CTRL+Z is interpreted as an end
of-file character on input. In files opened for reading or
reading/writing, _fsopen checks for a CTRL+Z at the end of the
file and removes it, if possible. This is done because using the
fseek and ftell functions to move within a file that ends with a
CTRL+Z may cause fseek to behave improperly near the end of
the file.

Open in binary (untranslated) mode; the above translations are
suppressed.

If tor b is not given in mode, the translation mode is defined by the default-mode
variable _fmode. If tor b is prefixed to the argument, the function will fail and
will return NULL.

See "Input and Output" on page 31 for a discussion of text and binary modes.

The argument shflag is a constant expression consisting of one of the following
manifest constants, defined in SHARE.R. If SHARE.COM-or SHARE.EXE for
some versions of DOS-is not installed, DOS ignores the sharing mode. (See your
system documentation for detailed information about sharing modes.)

Constant

_SILCOMPAT

_SILDENYNO

_SILDENYRD

_SILDENYRW
_SILDENYWR

Meaning

Sets compatibility mode

Permits read and write access

Denies read access to file

Denies read and write access to file

Denies write access to file

The _fsopen function should be used only under DOS versions 3.0 and later.
Under earlier versions of DOS, the shflag argument is ignored.

The _fsopen function returns a pointer to the stream. A NULL pointer value indi
cates an error.

_fsopen 325

Compatibility Standards: None

See Also

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

fclose, _fcloseall, _fdopen, ferror, _fileno, fopen, freopen, _open, _setmode,
_sopen

/* FSOPEN.C: This program opens files named "data" and "data2". It uses
* fclose to close "data" and fcloseall to close all remaining files.
*/

#include <stdio.h>
#include <share.h>

FILE *stream;

void maine void
(

}

FILE *stream;

/* Open output file for writing. Using _fsopen allows us to ensure
* that no one else writes to the file while we are writing to it.
*/

if((stream
{

fsopen("outfile", "wt", _SH_DENYWR)) != NULL

fprintf(stream, "No one else in the network can write"
"to this file until we are done.\n");

fclose(stream);

/* Now others can write to the file while we read it. */
system("type outfi 1 e");

No one else in the network can write to this file until we are done.

326 fstat

Description

Remarks

Return Value

fstat
Gets information about an open file.

#include <sys\types.h>

#include <sys\stat.h>

int _fstat(int handle, struct _stat *buffer);

handle

buffer

Handle of open file

Pointer to structure to store results

The _fstat function obtains information about the open file associated with handle
and stores it in the structure pointed to by buffer. The structure, whose type _ stat
is defined in SYS\STAT.H, contains the following fields:

Field

sLatime

sLctime

sLdev

sLmode

sLmtime

sLnlink
sLrdev

sLsize

Value

Time of last access of file.

Time of creation of file.

Either the drive number of the disk containing the file, or Iwndle
in the case of a device (same as sLrdev).

Bit mask for file-mode information. The _S_IFCHR bit is set if
Iwndle refers to a device. The _S_IFREG bit is set if handle
refers to an ordinary file. The read/write bits are set according to
the file's permission mode. (_S_IFCHR and other constants are
defined in SYS\ STAT.H.)

Time of last modification of file.

Always 1.

Either the drive number of the disk containing the file, or handle
in the case of a device (same as sLdev).

Size of the file in bytes.

If handle refers to a device, the size and time fields in the _ stat structure are not
meaningful.

The _fstat function returns the value 0 if the file-status information is obtained. A
return value of -1 indicates an error; in this case, errno is set to EBADF, indicat
ing an invalid file handle.

fstat 327

Compatibility Standards:

16-Bit:

32-Bit:

UNIX

See Also

Example

DOS, QWIN, WIN, WIN DLL

DOS32X

Use _fstat for compatibility with ANSI naming conventions of non-ANSI func
tions. Use fstat and link with OLDNAMES.LIB for UNIX compatibility.

_ access, _ chmod, _ fileiength, _ stat

/* FSTAT.C: This program uses fstat to report the size of a file
* named FSTAT.OUT.
*/

4fi ncl ude <i o. h>
4foinclude <fcntl.h>
4foinclude <time.h>
4foinclude <sys\types.h>
4foinclude <sys\stat.h>
4foinclude <stdio.h>
4foinclude <stdlib.h>
4foinclude <string.h>

void main(void
{

struct _stat buf;
int fh, result;
char buffer[] = "A line to output";

if((fh = _open("Cstat.out", _O_CREAT
exit(1);

_write(fh, buffer, strlen(buffer));

/* Get data associated with "fh": */

result = _fstat(fh, &buf);

/* Check if statistics are valid: */
if(result != 0)

pri ntf("Bad fil e handl e\n");
else
{

o WRONLY

%ld\n", buf.st_size);
%d\n", buf.st_dev);

o TRUNC))

printf("File size
printf("Drive number
printf("Time modified %s", ctime(&buf .st atime));

_close(fh);

-1)

328 fstat

Output File size 16
Drive number 0
Time modified Tue Jun 15 21:38:46 1999

Description

Remarks

Return Value

ftell 329

Hell
Gets the current position of a file pointer.

#include <stdio.h>

long ftell(FILE *stream);

stream Target FILE structure

The ftell function gets the current position of the file pointer (if any) associated
with stream. The position is expressed as an offset relative to the beginning of the
stream.

Note that when a file is opened for appending data, the current file position is de
termined by the last 1/0 operation, not by where the next write would occur. For
example, if a file is opened for an append and the last operation was a read, the file
position is the point where the next read operation would start, not where the next
write would start. (When a file is opened for appending, the file position is moved
to end-of-file before any write operation.) If no 1/0 operation has yet occurred on
a file opened for appending, the file position is the beginning of the file.

The ftell function returns the current file position. The value returned by ftell may
not reflect the physical byte offset for streams opened in text mode, since text
mode causes carriage-return-line-feed translation. Use ftell in conjunction with
the fseek function to return to file locations correctly. On error, the function re
turns -lL and errno is set to one of the following constants, defined in ERRNO.H:

Constant

EBADF

EINVAL

Description

Bad file number. The stream argument is not a valid file-handle value
or does not refer to an open file.

Invalid argument. An invalid stream argument was passed to the
function.

On devices incapable of seeking (such as terminals and printers), or when stream
does not refer to an open file, the return value is undefined.

330 ftell

Compatibility

See Also

Example

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN, WIN, WIN DLL

DOS32X

fgetpos, fseek, _lseek, _ tell

1* FTELL.C: This program opens a file named FTELL.C for reading and
* tries to read 100 characters. It then uses ftell to determine the
* position of the file pointer and displays this position.
*1

#include <stdio.h>

Output

FILE *stream;

void maine void
{

}

long position;
char 1 i st[100];

if((stream = fopen("ftell .c", "rb")) != NULL)
{

}

1* Move the pointer by reading data: *1
fread(list, sizeof(char),100, stream);

1* Get position after read: *1
position = ftell(stream);
printf("Position after trying to read 100 bytes: %ld\n", position);
fclose(stream);

Position after trying to read 100 bytes: 100

Description

Remarks

Return Value

Compatibility

See Also

ftime 331

ftime
Gets the current time.

#include <sys\types.h>

#include <sys\timeb.h>

void _ftime(struct _ timeb *timeptr);

timeptr Pointer to structure defined in SYS\TIMEB.H

The _ftime function gets the current time and stores it in the structure pointed to
by timeptr. The _timeb structure is defined in SYS\TIMEB.H. It contains four
fields (dstflag, millitm, time, and timezone), which have the following values:

Field

dstflag

millitm

time
timezone

Value

Nonzero if daylight saving time is currently in effect for the local
time zone. (See _ tzset for an explanation of how daylight saving
time is determined.)

Fraction of a second in milliseconds. The last digit is always 0 since
millitm is incremented to the nearest one-hundredth of a second.

Time in seconds since midnight (00:00:00), December 31,1899.

Difference in minutes, moving westward, between Universal
Coordinated Time and local time. The value of timezone is set from
the value of the global variable _timezone (see _tzset).

The _ftime function gives values to the fields in the structure pointed to by
timeptr. It does not return a value.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

asctime, ctime, gmtime, localtime, time, _ tzset

332 ftime

Example /* FTIME.C: This program uses ftime to obtain the current time

Output

* and then stores this time in timebuffer.
*/

#include <stdio.h>
#include <sys\timeb.h>
#include <time.h>

void maine void)
{

}

struct _timeb timebuffer;
char *timeline;

_ftime(&timebuffer);
timeline = ctime(& (timebuffer.time));

printf("The time is %.19s.%hu %s",
timeline, timebuffer.millitm, &timeline[20]);

The time is Tue Jun 15 21:40:34.870 1999

Description

Remarks

Return Value

Compatibility

See Also

_ fullpath 333

_ fullpath
Makes an absolute path name from a relative path name.

#include <stdlih.h>

char * _fullpath(char *buffer, const char *pathname, size_t maxlen);

buffer

pathname

maxlen

Full path-name buffer

Relative path name

Length of the buffer pointed to by buffer

The _fullpath routine converts the partial path stored inpathname to a fully qual
ified path that is stored in buffer. Unlike _makepath, the _fullpath routine can be
used with.\ and .. \ in the path.

If the length of the fully qualified path is greater than the value of maxlen, then
NULL is returned; otherwise, the address of buffer is returned.

If the buffer is NULL, _fullpath will allocate a buffer of _MAX_PATH size
using malloc and the maxlen argument is ignored. It is the caller's responsibility
to deallocate this buffer (using free) as appropriate.

If the pathname argument specifies a disk drive, the current directory of this drive
is combined with the path. If the drive is not valid, _fullpath returns NULL.

The _fullpath function returns a pointer to the buffer containing the absolute path
(buffer). If there is an error, _fullpath returns NULL.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

_getcwd, _getdcwd, _makepath, _splitpath

334 _ fullpath

Example 1* FULLPATH.C: This program demonstrates how _fullpath creates a full

Output

* path from a partial path.
*1

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <direct.h>

void main(void
{

while(1)
{

pri ntf("Enter parti al path or ENTER to quit: ");
gets (pa rt);
if(part[0] 0)

break;

if(_fullpath(full, part, MAX_PATH) != NULL)
printf("Full path is: %s\n", full);

else
printf("Inval id path\n");

Enter partial path or ENTER to quit :
Full path is: C:\
Enter partial path or ENTER to quit : .. \include
Full path is: C:\include
Enter parti al path or ENTER to quit : p:
Full path is: P:\
Enter partial path or ENTER to quit: fullpath.c
Full path is: C:\LIBREF\fullpath.c
Enter partial path or ENTER to quit:

Description

Remarks

_fwopen 335

_fwopen
Opens a new file stream for a QuickWin window.

#include <stdio.h>

FILE * _ fwopen(struct _ wopeninfo *wopeninfo,
struct _ wsizeinfo *wsizeinfo, char * mode);

wopeninfo

wsizeinfo

mode

Pointer to a _ wopeninfo structure

Pointer to a _ wsizeinfo structure

Type of access permitted

The _fwopen function is a high-level call that opens a new QuickWin window, re
turning a file-stream pointer. This routine is used only in QuickWin programs; it is
not part of the Windows API. For full details about QuickWin, see Chapter 8 of
Programming Techniques (in the Microsoft C/C++ version 7.0 documentation set).

The _ wopeninfo and _ wsizeinfo structures, declared in STDIO.H, are used to
pass window initialization information, including the window's initial size and
position on the screen. You can pass NULL for these arguments to accept Quick
Win defaults or declare variables of these two structure types and fill in their fields.

If you declare _ wopeninfo and _ wsizeinfo variables, assign the _ WINVER
macro to the _ version field. _ WINVER is the current QuickWin version, defined
in STDIO.H.

For the _ wopeninfo variable, assign a null-terminated string to the _ title field con
taining the desired window title. You can also optionally set the size of the win
dow's screen buffer in the _ wbufsize field. The default is 2,048 bytes, but you can
pass some other number or the value _ WINBUFINF. This causes the buffer to be
reallocated continually so that all window output is retained for scrolling.

For the _ wsizeinfo variable, assign one of the following values to the _ type field:

Value

_ WINSIZEMIN

_ WINSIZEMAX

_ WINSIZECHAR

Meaning

Minimize the window

Maximize the window

Use character coordinates for the window size

336 _fwopen

Return Value

Compatibility

See Also

If the type is _ WINSIZECHAR, you must supply the _x, _y, _h, and _ w values
in the remainder of the structure. They specify the upper-left corner and the height
and width ofthe window (in characters).

The mode parameter is a pointer to the stream I/O mode. The _fwopen function
accepts the same mode values as the STDIO.H fopen function:

Type

"r"
"w"

"r+"

"w+"

Description

Opens for reading

Opens for writing

Opens for both reading and writing

Opens for both reading and writing

In addition to the values listed above, one of the following characters can be in
cluded in mode to specify the translation mode for newline characters:

Mode

t
b

Meaning

Open in text (translated) mode

Open in binary (untranslated) mode

If tor b is not given in mode, the translation mode is defined by the default-mode
variable _ fmode. If t or b is prefixed to the argument, the function fails and re
turns NULL. See "Input and Output" on page 31 for a discussion of text and bi
nary modes.

If _fwopen is successful, the returned stream can be passed to standard STDIO.H
functions such as fread, fwrite, and fprintf. If you write to a stream and then read
from it, or if you read from a stream and then write to it, call the STDIO.H rewind
function between the I/O calls. To close an open window stream, call the
STDIO.H function fclose. If you have opened a window with _fwopen, you can
use the _fileno macro to obtain a file handle, which you can then pass to other
QuickWin calls, such as _ wsetscreenbuf or _ wsetsize.

If successful, the _fwopen function returns a stream pointer (FILE *) to the new
window. A return value of NULL indicates an error.

Standards: None

16-Bit:

32-Bit:

QWIN

None

fclose, _fileno, _ wabout, _ wclose, _ wgetfocus, _ wgetscreenbuf, _ wgetsize,
_ wmenuclick, _ wopen, _ wsetfocus, _ wsetscreenbuf, _ wsetsize, _ wyield

Example

_fwopen 337

1* FOWPEN.C - Demonstrate opening QuickWin windows with _fwopen *1

/foinclude <io.h>
/foinclude <stdio.h>

/fodefine OPENFLAGS Ow" 1* Access permission *1

void maine void)
{

}

struct _wopeninfo wininfo;
char wintitle[32] = "QuickWin ";
FILE *wp;
int nRes;

1* Open information *1
1* Title for window *1
1* FILE ptr to window *1
1* liD result *1

1* Set up window info structure for _fwopen *1
wininfo._version = _WINVER;
wininfo._title = wintitle;
wininfo._wbufsize = _WINBUFDEF;

1* Create a new window *1
1* NULL second argument accepts default size/position *1
wp = _fwopen(&wininfo, NULL, OPENFLAGS);
if(wp == NULL)
{

}

printf("***ERROR: _fwopen\n");
exit(-1);

1* Write in the window *1
nRes = fprintf(wp, "Hello, QuickWin!\n");

1* Close the window *1
nRes = fclose(wp);

exit(0);

338 fwrite

Description

Remarks

Return Value

Compatibility

See Also

fwrite
Writes data to a stream.

#include <stdio.h>

SiZLt fwrite(const void *buffer, SizLt size, SizLt count, FILE *stream);

buffer

size

count

stream

Pointer to data to be written

Item size in bytes

Maximum number of items to be written

Pointer to FILE structure

The fwrite function writes up to count items, of length size each, from buffer to
the output stream. The file pointer associated with stream (if there is one) is incre
mented by the number of bytes actually written.

If stream is opened in text mode, each carriage return is replaced with a carriage
return-line-feed pair. The replacement has no effect on the return value.

The fwrite function returns the number of full items actually written, which may
be less than count if an error occurs. Also, if an error occurs, the file-position in
dicator cannot be determined.

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

fread, _ write

Example

Output

fwrite 339

1* FREAD.C: This program opens a file named FREAD.OUT and writes 25
* characters to the file. It then tries to open FREAD.OUT and
* read in 25 characters. If the attempt succeeds, the program
* displays the number of actual items read.
*1

#include <stdio.h>

void maine void)
{

}

FILE *stream;
char list[30];
int i, numread, numwritten;

1* Open file in text mode: *1
if((stream = fopen("fread .out", "w+t")) != NULL)
{

for (i = 0; i < 25; i++)
list[i] = 'z' - i;

1* Write 25 characters to stream *1
numwritten = fwrite(list, sizeof(char), 25, stream);
printf("Wrote %d items\n", numwritten);
fclose(stream);

else
printf("Problem opening the file\n");

if((stream = fopen("fread .out", "r+t")) != NULL)
{

1* Attempt to read in 25 characters *1
numread = fread(list, sizeof(char), 25, stream);
printf("Number of items read = %d\n", numread);
pri ntf("Contents of buffer = %. 25s\n", 1 i st);
fclose(stream);

}

else
printf("Was not able to open the file\n");

Wrote 25 items
Number of items read = 25
Contents of buffer = zyxwvutsrqponmlkjihgfedcb

340 _gcvt

Description

Remarks

Return Value

Compatibility

See Also

Converts a floating-point value to a string, which it stores in a buffer.

#include <stdlib.h> Required only for function declarations

char * _gcvt(double value, int digits, char *buffer);

value

digits

buffer

Value to be converted

Number of significant digits stored

Storage location for result

The _gcvt function converts a floating-point value to a character string (which in
cludes a decimal point and a possible sign byte) and stores the string in buffer. The
buffer should be large enough to accommodate the converted value plus a terminat
ing null character (,\0'), which is appended automatically. If a buffer size of signif
icant digits + 1 is used, the function will overwrite the end of the buffer. This is
because the converted string includes a decimal point and can contain sign and ex
ponent information. There is no provision for overflow.

The _gcvt function attempts to produce digits significant digits in decimal format.
If this is not possible, it produces digits significant digits in exponential format.
Trailing zeros may be suppressed in the conversion.

The _gcvt function returns a pointer to the string of digits. There is no error return.

Standards:

16-Bit:

32-Bit:

UNIX

DOS, QWIN, WIN

DOS32X

Use _gcvt for compatibility with ANSI naming conventions of non-ANSI func
tions. Use gcvt and link with OLDNAMES.LIB for UNIX compatibility.

atof, atoi, atol, _ecvt, _fcvt

Example

Output

_gcvt 341

/* _GCVT.C: This program converts -3.1415e5 to its string representation. */

#include <stdlib.h>
#include <stdio.h>

void maine void)
{

char buffer[50];
double source = -3.1415e5;

_gcvt(source, 7, buffer);
printf("source: %f buffer: '%s'\n", source, buffer);

_gcvt(source, 7, buffer);
printf("source: %e buffer: '%s'\n", source, buffer);

source: -314150.000000 buffer: '-314150.'
source: -3.141500e+005 buffer: '-314150.'

342 _ getactivepage

Description

Remarks

Return Value

_ getactivepage
Gets the current active page number.

#include <graph.h>

short __ far _getactivepage(void);

The _getactivepage function returns the number of the current active page.

The function returns the number of the current active video page. All hardware
combinations support at least one page (page number 0).

Compatibility Standards: None

See Also

Example

l6-Bit:

32-Bit:

DOS

None

_ getvideoconfig, _ getvisualpage, _ grstatus, _ setactivepage, _ setvideomode,
_ setvisualpage

/* PAGE.C illustrates video page functions including:
* _getactivepage _getvisualpage _setactivepage _setvisualpage
*/

#include <conio.h>
#include <graph.h>
#include <stdlib.h>

void main(void)
{

short oldvpage, oldapage, page, row, col, line;
struct _videoconfig vc;
char buf[80];

_getvideoconfig(&vc);
if(vc.numvideopages < 4

exit(1); /* Fail for or monochrome. */
oldapage = _getactivepage();
oldvpage = _getvisualpage();
_displaycursor(_GCURSOROFF);

1* Draw arrows in different place on each page. *1
for(page = 1; page < 4; page++)
{

_setactivepage(page);
_settextposition(12, 16 * page);
_outtext("»»»»");

while(Lkbhit())

_ getactivepage 343

1* Cycle through pages 1 to 3 to show moving image. *1
for(page = 1; page < 4; page++)

_setvisualpage(page);
_getch();

1* Restore original page (normally 0) to restore screen. *1
_setactivepage(oldapage);
_setvisualpage(oldvpage);
_displaycursor(GCURSORON);

344 _ getarcinfo

Description

Remarks

Return Value

Compatibility

See Also

Example

_ getarcinfo
Determines the endpoints in viewport coordinates of the most recently drawn arc
or pie.

#include <graph.h>

short __ far _getarcinfo(struct _xycoord __ far *start,
struct _xycoord __ far *end, struct _xycoord __ far *fillpoint);

start

end

fillpoint

Starting point of arc

Ending point of arc

Point at which pie fill will begin

The _ getarcinfo function determines the endpoints in viewport coordinates of the
most recently drawn arc or pie.

If successful, the _getarcinfo function updates the start and end _xycoord struc
tures to contain the endpoints (in viewport coordinates) ofthe arc drawn by the
most recent call to one of the _arc or _ pie functions.

In addition,fillpoint specifies a point from which a pie can be filled. This is
useful for filling a pie in a color different from the border color. After a call to
_getarcinfo, change colors using the _setcolor function. Use the color, along
with the coordinates infillpoint, as arguments for the _floodfill function.

The _ getarcinfo function returns a nonzero value if successful. If neither the _ arc
nor the _pie function has been successfully called since the last time the screen
was cleared or a new graphics mode or viewport was selected, the _getarcinfo
function returns O.

Standards: None

16-Bit: DOS

32-Bit: None

_arc functions, _floodfill, _getvideoconfig, _grstatus, _pie functions

See the example for _ arc.

Description

Remarks

Return Value

Compatibility

See Also

Example

_getbkcolor 345

_ getbkcolor
Gets the current background color.

#include <graph.h>

long __ far _getbkcolor(void);

The _getbkcolor function returns the current background color. The default is O.

In a color text mode such as _ TEXTC80, _ setbkcolor accepts, and _ getbkcolor
returns, a color index. For example, _setbkcolor(2L) sets the background color to
color index 2. The actual color displayed depends on the palette mapping for color
index 2. The default for color index 2 is green in a color text mode.

In a color graphics mode such as _ERESCOLOR, _setbkcolor accepts, and
_getbkcolor returns, a color value (as used in _remappalette). The value for the
simplest background colors is given by the manifest constants defined in the
GRAPH.H include file. For example, _setbkcolor(_GREEN) sets the back
ground color in a graphics mode to green. These manifest constants are provided
as a convenience in defining and manipulating the most common colors. In
general, the actual range of colors is much greater.

In most cases, whenever a color argument is long, it refers to a color value, and
whenever it is short, it refers to a color index. The two exceptions are _setbkcolor
and _getbkcolor, described above. For a more complete discussion of colors, see
_ remappalette.

The function returns the current background color. There is no error return.

Standards: None

16-Bit: DOS

32-Bit: None

_ remappalette, _ setbkcolor

See the example for _ getcolor.

346 gete, getehar

Description

Remarks

Return Value

Compatibility

See Also

getc, getchar
Reads a character from a stream (getc), or gets a character from stdin (getchar).

#include <stdio.h>

int getc(FILE * stream);

int getchar(void);

stream Current stream

The getc routine reads a single character from the stream position and increments
the associated file pointer (if there is one) to point to the next character. The
getchar routine is identical to getc(stdin).

The getc and getchar routines are similar to fgetc and _fgetchar, respectively,
but are implemented both as macros and functions.

Both getc and getchar return the character read. A return value of EOF indicates
an error or end-of-file condition. Use ferror or feofto determine whether an error
or end-of-file occurred.

getc

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

getchar

Standards: ANSI, UNIX

16-Bit: DOS, QWIN

32-Bit: DOS32X

fgetc, _fgetchar, _getch, _getche, putc, putchar, ungetc

Example

Output

gete, getehar 347

1* GETC.C: This program uses getchar to read a single line of input
* from stdin, places this input in buffer, then terminates the
* string before printing it to the screen.
*1

#include <stdio.h>

void main(void)
{

char buffer[81];
i nt i, ch;

printf("Enter a line: ");

1* Read in single line from "stdin": *1
fort i = 0; (i < 80) && ((ch = getchar())!= EOF) && (ch!= '\n'); i++)

buffer[i] = ch;

1* Terminate string with null character: *1
buffer[i] = '\0';
printf("%s\n", buffer);

Enter a line: This is a line of text.
This is a line of text.

348 _getch, _getche

Description

Remarks

Return Value

Compatibility

See Also

Example

_getch, _getche
Get a character from the console without echo (_getch) or with echo (_getche).

#include <conio.h>

int _getch(void);

int _getche(void);

Required only for function declarations

The _ getch function reads a single character from the console without echoing.
The _ getche function reads a single character from the console and echoes the
character read. Neither function can be used to read CTRL+C.

When reading a function key or cursor-moving key, the _getch and _getche func
tions must be called twice; the first call returns 0 or OxEO, and the second call re
turns the actual key code.

Both the _getch and _getche functions return the character read. There is no error
return.

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_cgets, getchar, _ungetch

/* GETCH.C: This program reads characters from the keyboard until it
* receives a 'Y' or 'y'.
*/

#include <conio.h>
#include <ctype.h>

Output

void main(void)
{

int ch;

_cputs("Type 'Y' when finished typing keys: ");
do
{

ch = _getch();
ch = toupper(ch);

while(ch != 'Y');

_putch(ch);
_putch('\r');
_putch('\n');

/* Carriage return */
/* Line feed */

Type 'Y' when finished typing keys: Y

_getch, _getche 349

350 _ getcolor

Description

Remarks

Return Value

Compatibility

See Also

Example

_getcolor
Gets the current color.

#include <graph.h>

short __ far _getcolor(void);

The _ getcolor function returns the current graphics color index. The default is the
highest legal index in the current palette.

The _ getcolor function returns the current color index.

Standards: None

16-Bit: DOS

32-Bit: None

_setcolor

1* OUTTXT.C: This example illustrates text output functions:
* _gettextcolor _getbkcolor _gettextposition outtext
* settextcolor setbkcolor _settextposition
*1

#include <conio.h>
#include <stdio.h>
#include <graph.h>

char buffer [80J;

void main(void)
{

1* Save original foreground, background, and text position. *1
short blink, fgd, oldfgd;
long bgd, oldbgd;
struct _rccoord oldpos;

1* Save original foreground, background, and text position. *1
oldfgd = _gettextcolor();
oldbgd = _getbkcolor();
oldpos = _gettextposition();
clearscreen(GCLEARSCREEN);

}

/* First time no blink, second time blinking. */
fore blink: 0; blink <: 16; blink +: 16)
{

/* Loop through 8 background colors. */
fore bgd : 0; bgd < 8; bgd++)
{

_setbkcolor(bgd);

_getcolor 351

_settextposition((short)bgd + «blink / 16) * 9) + 3, 1);
_settextcolor(7);
sprintf(buffer, "Back: %d Fore:", bgd);
_outtext(buffer);

/* Loop through 16 foreground colors. */
fore fgd : 0; fgd < 16; fgd++)
{

}

_getch();

settextcolor(fgd + blink);
sprintf(buffer," %2d", fgd + blink);
_outtext(buffer);

/* Restore original foreground, background, and text position. */
_settextcolor(oldfgd);
_setbkcolor(oldbgd);
_clearscreen(_GCLEARSCREEN);
_settextposition(oldpos.row, oldpos.col);

352 _ getcurrt.ntposition Functions

Description

Remarks

Return Value

_ getcurrentposition Functions
Get the current position and return it as a structure.

#include <graph.h>

struct _xycoord __ far _getcurrentposition(void);

struct _ wxycoord __ far _getcurrentpositio"- w(void);

The _ getcurrentposition functions return the coordinates of the current graphics
output position. The _getcurrentposition function returns the position as an
_xycoord structure, defined in GRAPH.H.

The _xycoord structure contains the following elements:

Element

short xcoord

short ycoord

Description

x coordinate

y coordinate

The _getcurrentposition_ w function returns the position as a _ wxycoord struc
ture, defined in GRAPH.H.

The _ wxycoord structure contains the following elements:

Element

double wx

double wy

Description

window x coordinate

window y coordinate

The current position can be changed by the _lineto, _moveto, and _outgtext
functions.

The default position, set by _ setvideomode, _ setvideomoderows, or
_setviewport, is the center of the viewport.

Only graphics output starts at the current position; these functions do not affect
text output, which begins at the current text position. (See _settextposition for
more information.)

The _getcurrentposition functions return the coordinates of the current graphics
output position. There is no error return.

_getcurrentposition Functions 353

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS

None

_grstatus, _lineto functions, _moveto functions, _outgtext

1* GCURPOS.C: This program sets a random current location, then gets that
* location with _getcurrentposition.
*1

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <graph.h>

char buffer[255];

void main(void)
{

struct _videoconfig vc;
struct _xycoord position;

1* Find a valid graphics mode. *1
if(!_setvideomode(_MAXRESMODE

exit(1);
_getvideoconfig(&vc);

1* Move to random location and report that location. *1
moveto(rand() % vC.numxpixels, rand() % vc.numypixels);

position = _getcurrentposition();
sprintf(buffer, "x = %d, y = %d", position.xcoord, position.ycoord);
_settextposition(1, 1);

outtext(buffer);

_getch();
setvideomode(DEFAULTMODE);

354 _getcwd

Description

Remarks

Return Value

_oetcwd
Gets the current working directory.

#include <direct.h> Required only for function declarations

char * _getcwd(char *buffer, int maxlen);

buffer

maxlen

Storage location for path name

Maximum length of path name

The _getcwd function gets the full path name of the current working directory for
the default drive and stores it at buffer. The integer argument maxlen specifies the
maximum length for the path name. An error occurs if the length of the path name
(including the terminating null character) exceeds maxlen.

The buffer argument can be NULL; a buffer of at least size maxlen (more only if
necessary) will automatically be allocated, using malloc, to store the path name.
This buffer can later be freed by calling free and passing it the _ getcwd return
value (a pointer to the allocated buffer).

Note that _ getcwd returns a string that represents the path name of the current
working directory. Ifthe current working directory is set to the root, the string will
end with a backslash (\). If the current working directory is set to a directory other
than the root, the string will end with the name of the directory and not with a
backslash.

The _ getcwd function returns a pointer to buffer. A NULL return value indicates
an error, and errno is set to one of the following values:

Value

ENOMEM

ERANGE

Meaning

Insufficient memory to allocate maxlen bytes (when a NULL
argument is given as buffer)

Path name longer than maxlen characters

_getcwd 355

Compatibility Standards: UNIX

See Also

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _getcwd for compatibility with ANSI naming conventions of non-ANSI func
tions. Use getcwd and link with OLDNAMES.LIB for UNIX compatibility.

_chdir, _mkdir, _rmdir

1* This program places the name of the current directory in the buffer
* array, then displays the name of the current directory on the screen.
* Specifying a length of _MAX_DIR leaves room for the longest legal
* directory name.
*1

#include <direct.h>
#include <stdlib.h>
#include <stdio.h>

void main(void)
{

1* Get the current working directory: *1
if(_getcwd(buffer, _MAX_DIR) == NULL)

perror("_getcwd error");
else

pri ntf("%s\n", buffer);

C:\LIBREF

356 _ getdcwd

Description

Remarks

Return Value

_getdcwd
Gets full path name of current working directory on the specified drive.

#include <direct.h> Required only for function declarations

char * _getdcwd(int drive, char *buffer, int maxlen);

drive

buffer

maxlen

Disk drive

Storage location for path name

Maximum length of path name

The _getdcwd function gets the full path name of the current working directory
on the specified drive and stores it at buffer. The argument maxlen specifies the
maximum length for the path name. An error occurs if the length of the path name
(including the terminating null character) exceeds maxlen.

The drive argument specifies the drive (0 = default drive, l=A, 2=B, etc.). The
buffer argument can be NULL; a buffer of at least size maxlen (more only if neces
sary) will automatically be allocated, using malloc, to store the path name. This
buffer can later be freed by calling free and passing it the _getdcwd return value
(a pointer to the allocated buffer).

Note that _getdcwd returns a string that represents the path name of the current
working directory. If the current working directory is set to the root, the string will
end with a backslash (\). If the current working directory is set to a directory other
than the root, the string will end with the name of the directory and not with a
backslash.

The _getdcwd function returns buffer. A NULL return value indicates an error,
and errno is set to one of the following values:

Value

ENOMEM

ERANGE

Meaning

Insufficient memory to allocate maxlen bytes (when a NULL
argument is given as buffer)

Path name longer than maxlen characters

_ getdcwd 357

Compatibility Standards: None

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_chdir, _getcwd, _getdrive, _mkdir, _rmdir

1* GETORIVE.C illustrates drive functions including:
* _getdrive chdrive _getdcwd
*1

#include <stdio.h>
#include <conio.h>
#include <direct.h>
#include <stdlib.h>

void maine void)
{

int ch, drive, curdrive;
static char pathC_MAX_PATHJ;

1* Save current drive. *1
curdrive = _getdrive();

printf("Available drives are: \n");

1* If we can switch to the drive, it exists. *1
fore drive = 1; drive <= 26; drive++)

if(!_chdrive(drive))
printf("%c: ", drive + 'A' - 1);

while(1)
{

printf("\nType drive letter to check or ESC to quit: ");
ch = _getch();
if(ch == 27)

break;
if(isalpha(ch))

_putch(ch);
if(_getdcwd(toupper(ch) - 'A' + 1, path, _MAX_PATH) != NULL

printf("\nCurrent directory on that drive is %s\n", path);

1* Restore original drive. This is only necessary for OOS.*I
chdrive(curdrive);

pri ntf("\n");

358 _ getdcwd

Output Available drives are:
A: B: C:
Type drive letter to check or ESC to quit: q
Type drive letter to check or ESC to quit: a
Current directory on that drive is A:\

Type drive letter to check or ESC to quit: c
Current directory on that drive is C:\LIBREF

Type drive letter to check or ESC to quit:

_ getdrive 359

_getdrive
Description Gets the current disk drive.

#include <direct.h>

int _getdrive(void);

Remarks The _getdrive function returns the current (default) drive (1=A, 2=B, etc.).

Return Value The return value is stated above. There is no error return.

Compatibility Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

See Also _chdrive, _doLgetdrive, _doLsetdrive, _getcwd, _getdcwd

Example See the example for _getdcwd.

360 getenv

Description

Remarks

Return Value

Compatibility

See Also

getenv
Gets a value from the current environment.

#include <stdlih.h> Required only for function declarations

char *getenv(const char *varname);

varname Name of environment variable

The getenv function searches the list of environment variables for an entry corre
sponding to varname. Environment variables define the environment in which a
process executes. (For example, the LIB environment variable defines the default
search path for libraries to be linked with a program.) Because the getenv function
is case sensitive, the varname variable should match the case of the environment
variable.

The getenv function returns a pointer to an entry in the environment table. It is,
however, only safe to retrieve the value of the environment variable using the re
turned pointer. To modify the value of an environmental variable, use the _putenv
function.

The getenv and _putenv functions use the copy of the environment contained in
the global variable environ to access the environment. Programs that use the envp
argument to main and the _ putenv function may retrieve invalid information. The
safest programming practice is to use getenv and _ putenv.

The getenv function operates only on the data structures accessible to the run-time
library and not on the environment "segment" created for the process by the oper
ating system.

The getenv function returns a pointer to the environment table entry containing the
current string value of varname. The return value is NULL if the given variable is
not currently defined.

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_putenv

Example

Output

getenv 361

/* GETENV.C: This program uses getenv to retrieve the LIB environment
* variable and then uses _putenv to change it to a new value.
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

char *libvar;

/* Get the value of the LIB environment variable. */
1 i bvar = getenv("LIB");
if(libvar 1= NULL)

printf("Original LIB variable is: %s\n", libvar);

/* Attempt to change path. Note that this only affects the environment
* variable of the current process. The command processor's environment
* is not changed.
*/

_putenv("LIB=c:\\mylib;c:\\yourlib");

/* Get new value. */
1 i bvar = getenv("LIB");
if(libvar 1= NULL)

printf("New LIB variable is: %s\n", libvar);

Original LIB variable is: C:\LIB
New LIB variable is: c:\mylib;c:\yourlib

362 _ getfillmask

Description

Remarks

Return Value

Compatibility

See Also

_ getfillmask
Gets the current fill mask for some graphics routines.

#include <graph.h>

unsigned char __ far * __ far _getfillmask(unsigned char __ far *mask);

mask Mask array

Some graphics routines (_ellipse, _floodfill, _pie, _polygon, and _rectangle)
can fill part or all of the screen with the current color. The fill mask controls the
pattern used for filling.

The _getfillmask function returns the current fill mask. The mask is an 8-by-8-bit
array, in which each bit represents a pixel. If the bit is 1, the corresponding pixel is
set to the current color; if the bit is 0, the pixel is left unchanged. The mask is re
peated over the entire fill area. If no fill mask is set, or if mask is NULL, a solid
(unpatterned) fill is performed using the current color.

If no mask is set, the function returns NULL. Otherwise, it returns the current fill
mask.

Standards: None

16-Bit: DOS

32-Bit: None

_ellipse functions, _floodfill, _pie functions, _polygon functions, _rectangle
functions, _setfillmask

Example

_getfillmask 363

1* GFILLMSK.C: This program illustrates _getfillmask and setfillmask. *1

'include <conio.h>
'include <stdlib.h>
'include <graph.h>

void ellipsemask(short xl, short yl, short x2, short y2, char far *newmask);

unsigned char mask1[8]
unsigned char mask2[8]
char oldmask[8];

0x43, 0x23, 0x7c, 0xf7, 0x8a, 0x4d, 0x78, 0x39 };
0x18, 0xad, 0xc0, 0x79, 0xf6, 0xc4, 0xa8, 0x23 };

void main(void
{

int loop;

1* Find a valid graphics mode. *1
if(Lsetvi deomode(MAXRESMODE)

exit(1);

1* Set first fill mask and draw rectangle. *1
_setfillmask(mask1);
_rectangle(_GFILLINTERIOR, 20, 20, 100, 100);
_getch();

1* Call routine that saves and restores mask. *1
ellipsemask(60, 60, 150, 150, mask2);
_getch();

1* Back to original mask. *1
_ rectangl e(_GFI LLINTERIOR, 120, 120, 190, 190);
_getch() ;

_setvideomode(DEFAULTMODE);
exit(0);

1* Draw an ellipse with a specified fill mask. *1
void ellipsemask(short xl, short y1, short x2, short y2, char
{

unsigned char savemask[8];

_getfillmask(savemask);
_setfillmask(newmask);

1* Save mask
1* Set new mask
1* Use new mask

far *newmask)

_ellipse(_GFILLINTERIOR, xl, yl, x2, y2);
_setfillmask(savemask); 1* Restore original

364 _ getfontinfo

Description

Remarks

Return Value

Compatibility

See Also

Example

_ getfontinfo
Gets the current font characteristics.

#include <graph.h>

short __ far _getfontinfo(struct _fontinfo __ far *fontbuffer);

fontbuffer Buffer to hold font information

The _ getfontinfo function gets the current font characteristics and stores them in a
_fontinfo structure, defined in GRAPH.H.

The _fontinfo structure contains the following elements:

Element

int type

int ascent

int pixwidth

int pixheight

int avgwidth

char filename [81]

char facename [32]

Contents

Specifies vector (1) or bitmapped (0) font

Specifies pixel distance from top to baseline

Specifies the character width in pixels; 0 indicates a
proportional font

Specifies the character height in pixels

Specifies the average character width in pixels

Specifies the filename, including the path

Specifies the font name

The _getfontinfo function returns a negative number if a font has not been regis
tered or loaded.

Standards: None

16-Bit:

32-Bit:

DOS

None

_getgtextextent, _ outgtext, _registerfonts, _setfont, _setgtextvector,
_ unregisterfonts

See the example for _outgtext.

Description

Remarks

Return Value

Compatibility

See Also

Example

_ getgtextextent 365

_ getgtextextent
Gets the width in pixels of font-based text.

#include <graph.h>

short __ far _getgtextextent(const char __ far *text);

text Text to be analyzed

The _getgtextextent function returns the width in pixels that would be required to
print the text string using _ outgtext with the current font.

This function is particularly useful for determining the size of text that uses propor
tionally spaced fonts.

The _ getgtextextent function returns the width in pixels. It returns -1 if a font has
not been registered.

Standards: None

16-Bit: DOS

32-Bit: None

_ getfontinfo, _ outgtext, _ registerfonts, _ setfont, _ unregisterfonts

See the example for _outgtext.

366 _ getgtextvector

Description

Remarks

Return Value

Compatibility

See Also

_ getgtextvector
Changes the orientation of font text output.

#include <graph.h>

struct _xycoord __ far _getgtextvector(void);

The _getgtextvector function gets the current orientation for font text output. The
current orientation is used in calls to the _ outgtext function.

The text-orientation vector, which determines the direction of font-text rotation on
the screen, is returned in a structure of type _xycoord. The xcoord and ycoord
members of the structure describe the vector. The text -rotation options are shown
below:

(x, y)

(l,0)

(0,1)

(-1,0)

(0,-1)

Text Orientation

Horizontal text (default)

Rotated 90 degrees counterclockwise

Rotated 180 degrees

Rotated 270 degrees counterclockwise

The _getgtextvector function returns the current text-orientation vector in a struc
ture of type _xycoord.

Standards: None

16-Bit: DOS

32-Bit: None

_ getgtextextent, _ grstatus, _ outgtext, _ setfont, _ setgtextvector

Description

Remarks

Return Value

_getimage Functions 367

_ getimage Functions
Store images in buffers.

#include <graph.h>

void __ far _getimage(short xl, short yl, short x2, short y2,
char __ huge *image);

void __ far _getimage_ w(double wxl, double wyl, double wx2, double wy2,
char __ huge *image);

void __ far _getimagL wxy(strucL wxycoord __ far *pwxyl,
strucL wxycoord __ far *pwxy2, char __ huge *image);

xl,yl

x2,y2

wxl, wyl

wx2, wy2

pwxyl

pwxy2

image

Upper-left comer of bounding rectangle

Lower-right comer of bounding rectangle

Upper-left comer of bounding rectangle

Lower-right comer of bounding rectangle

Upper-left comer of bounding rectangle

Lower-right comer of bounding rectangle

Storage buffer for screen image

The _getimage functions store the screen image defined by a specified bounding
rectangle into the buffer pointed to by image.

The _ getimage function defines the bounding rectangle with the view coordinates
(xl, yl) and (x2, y2).

The _ getimagL w function defines the bounding rectangle with the window
coordinates (wxl, wyl) and (wx2, wy2).

The _getimagL wxy function defines the bounding rectangle with the window
coordinate pairs pwxyl and pwxy2.

The buffer must be large enough to hold the image. You can determine the size by
calling the appropriate _imagesize function at run time, or by using the formula
described on the _imagesize reference page.

None. Use _grstatus to check success.

368 _ getimage Functions

Compatibility

See Also

Standards: None

16-Bit:

32-Bit:

DOS

None

_grstatus, _imagesize functions, _putimage functions

Example 1* GIMAGE.C: This example illustrates animation routines including:
* _imagesize _getimage _putimage
*1

#include <conio.h>
#include <stddef.h>
#include <stdlib.h>
#include <malloc.h>
#include <graph.h>

short action[5]
char *descrip[5]

{ _GPSET, _GPRESET,
{ "PSET ", "PRESET",

void exitfree(char __ huge *buffer);

void main(void)
{

GXOR,
"XOR

_GOR,
", "OR

GAND
", "AND

} ;
" };

char __ huge *buffer;
long imsize;

1* Far pointer (with fmalloc) could be used. *1

short i, x, y = 30;

if(Lsetvideomode(MAXRESMODE))
exit(1);

1* Measure the image to be drawn and allocate memory for it. *1
imsize = (size_t)_imagesize(-16, -16, +16, +16);
buffer = _halloc(imsize, sizeof(char));
if (buffer (char far *)NULL)

ex it (1);

setcolor(3);
for (i = 0; i < 5; i++)
{

1* Draw ellipse at new position and
x = 50; Y += 40;
_ellipse(_GFILLINTERIOR, x - 15, y
_getimage(x - 16, y - 16, x + 16,
if(_grstatus())

get a

- 15,
Y + 16,

copy of

x + 15,
buffer

exitfree(buffer) ; 1* Quit on error

it. *1

y + 15) ;
) ;

*1

}

}

_ getimage Functions 369

1* Display action type and copy a row of ellipses with that type. *1
_settextposition(1, 1);
_outtext(descrip[i]);
while(x < 260)
{

X += 5;
_putimage(x - 16, y - 16,
if(_grstatus() < 0)

exitfree(buffer);
}
_getch();

buffer, action[i]);
1* Ignore warnings, quit on errors. *1

exitfree(buffer);

void exitfree(char __ huge *buffer)
{

_hfree(buffer);
exit(Lsetvideomode(_DEFAULTMODE));

370 _ getlinestyle

Description

Remarks

Return Value

Compatibility

See Also

Example

_ getlinestyle
Gets the current line style.

#include <graph.h>

unsigned short __ far _getlinestyle(void);

Some graphics routines (_lineto, _polygon, and _rectangle) output straight lines
to the screen. The type of line can be controlled with the current line-style mask.

The _getlinestyle function returns the current line-style mask. The mask is a 16-
bit array in which each bit represents a pixel in the line being drawn. If the bit is 1,
the corresponding pixel is set to the color of the line (the current color). If the bit is
0, the corresponding pixel is left unchanged. The mask is repeated over the length
of the line. The default mask is OxFFFF (a solid line).

If no mask has been set, _getlinestyle returns the default mask.

Standards: None

16-Bit: DOS

32-Bit: None

_lineto functions, _polygon functions, _rectangle functions, _setlinestyle,
_ setwritemode

/* GLINESTY.C: This program illustrates _setlinestyle and _getlinestyle. */

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void zigzag(short xl, short y1, short size);

_ getlinestyle 371

void maine void)
{

}

/* Find a valid graphics mode. */
if(!_setvideomode(MAXCOLORMODE))

exit(1);

/* Set line style and draw rectangle. *1
_setlinestyle(0x4d);
_rectangle(_GBORDER, 10, 10, 60, 60);
_getch();

1* Draw figure with function that changes and restores line style. *1
zigzag(100, 100, 90);
_getch();

/* Original style reused. *1
_rectangle(_GBORDER, 190, 190, 130, 130);
_getch();

setvideomode(DEFAULTMODE);

1* Draw box with changing line styles. Restore original style. */
void zigzag(short xl, short y1, short size)
{

}

short x, y, oldcolor;
unsigned short oldstyle;
unsigned short style[16]

oldcolor = _getcolor();

{ 0x0001, 0x0003, 0x0007, 0x000f,
0x001f, 0x003f, 0x007f, 0x00ff,
0x01ff, 0x03ff, 0x07ff, 0x0fff,
0x1fff, 0x3fff, 0x7fff, 0xffff };

oldstyle = _getlinestyle(); 1* Save old line style. */
fore x = 3, y 3; x < size; x += 3, y += 3)
{

_setcolor(x % 16);
_setlinestyle(style[x % 16]); 1* Set and use new line styles */
_rectangle(_GBORDER, xl - x, y1 - y, xl + x, y1 + y);

}

_setlinestyle(oldstyle);
_setcolor(oldcolor);

1* Restore old line style.

372 _ getphyscoord

Description

Remarks

Return Value

Compatibility

See Also

Example

_ getphyscoord
Gets physical coordinates.

#include <graph.h>

struct _xycoord __ far _getphyscoord(short x, short y);

x,y View coordinates to translate

The _getphyscoord function translates the view coordinates (x, y) to physical
coordinates and returns them in an _xycoord structure, defined in GRAPH.H.

The _xycoord structure contains the following elements:

Element

short xcoord

short ycoord

None.

Standards: None

16-Bit: DOS

32-Bit: None

Description

x coordinate

y coordinate

_getviewcoord functions, _grstatus, _setvieworg, _setviewport

See the example for _setwindow.

Description

Remarks

Return Value

_getpid 373

_getpid
Gets the process identification.

#include <process.h> Required only for function declarations

int _getpid(void);

The _getpid function returns the process ID, an integer that uniquely identifies the
calling process.

The _getpid function returns the process ID. There is no error return.

Compatibility Standards: UNIX

See Also

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _getpid for compatibility with ANSI naming conventions of non-ANSI func
tions. Use getpid and link with OLDNAMES.LIB for UNIX compatibility.

_mktemp

/* GETPID.C: This program uses _getpid to obtain the process ID and
* then prints the ID.
*/

#include <stdio.h>
#include <process.h>

void main(void)
{

}

/* If run from DOS, shows different ID for DOS than for DOS shell.
* If execed or spawned, shows ID of parent.
*/

printf("\nProcess id of parent: %d\n", _getpid());

Process id of parent: 828

374 _ getpixel Functions

Description

Remarks

Return Value

Co m pati b ility

See Also

_ getpixel Functions
Get pixel values.

#include <graph.h>

short __ far _ getpixel(short x, short y);

short _3ar _getpixeL w(double wx, double wy);

x,y

wx,wy

Pixel position

Pixel position

The functions in the _getpixel family return the pixel value (a color index) at a
specified location. The _getpixel function uses the view coordinate (x, y). The
_getpixeL w function uses the window coordinate (wx, wy). The range of possible
pixel values is determined by the current video mode. The color translation of
pixel values is determined by the current palette.

If successful, the function returns the color index. If the function fails (for ex
ample, the point lies outside the clipping region, or the program is in a text mode),
it returns -1.

Standards: None

16-Bit: DOS

32-Bit: None

_getvideoconfig, _grstatus, _remapallpalette, _remappalette,
_selectpalette, _setpixel functions, _setvideomode

Example

_ getpixel Functions 375

1* GPIXEL.C: This program assigns different colors to randomly
* selected pixels.
*1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void main(void)
{

}

short xvar, yvar;
struct _videoconfig vc;

1* Find a valid graphics mode. *1
if(l_setvideomode(_MAXCOLORMODE))

exit(1);
_getvideoconfig(&vc);

1* Draw filled ellipse to turn on certain pixels. *1
_ellipse(_GFILLINTERIDR, vc.numxpixels I 6, vc.numypixels I 6,

vc.numxpixels I 6 * 5, vc.numypixels I 6 * 5);

1* Draw random pixels in random colors ... *1
while(l_kbhit())
{

}

1* ... but only if they are already on (inside the ellipse). *1
xvar = rand() % vc.numxpixels;
yvar = rand() % vc.numypixels;
if(_getpixel(xvar, yvar) 1= 0)
{

}

_setcolor(rand() % 16);
_setpixel(xvar, yvar);

_getch(); 1* Throwaway the keystroke. *1
_setvideomode(_DEFAULTMODE);
exit(0);

376 gets

Description

Remarks

Return Value

Compatibility

See Also

Example

gets
Gets a line from the stdin stream.

#include <stdio.h>

char *gets(char *buffer);

buffer Storage location for input string

The gets function reads a line from the standard input stream stdin and stores it in
buffer. The line consists of all characters up to and including the first newline char
acter (\n). The gets function then replaces the newline character with a null charac
ter (,\0') before returning the line. In contrast, the fgets function retains the
newline character.

If successful, the gets function returns its argument. A NULL pointer indicates an
error or end-of-file condition. Use ferror or feofto determine which one has
occurred.

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN

DOS32X

fgets, fputs, puts

/* GETS.C */

#include <stdio.h)

void maine void)
{

}

char 1 i ne[81];

printf("Input a string: ");
gets(line);
printf("The line entered was: %s\n", line);

gets 377

Output Input a string: This is a string
The line entered was: This is a string

378 _ gettextcolor

Description

Remarks

Return Value

Compatibility

See Also

Example

_ geHextcolor
Gets the current text color.

#include <graph.h>

short _3ar _gettextcolor(void);

The _gettextcolor function returns the color index of the current text color. The
text color is set by the _settextcolor function and affects text output with the
_outtext and _outmem functions only. The _setcolor function sets the color for
font text output using the _outgtext function.

The default is 7 in text modes; it is the highest legal color index of the current
palette in graphics modes.

The _gettextcolor function returns the color index of the current text color.

Standards: None

16-Bit: DOS

32-Bit: None

_ getvideoconfig, _ outmem, _ outtext, _ remappalette, _ selectpalette,
_ setcolor, _ settextcolor

See the example for _gettextposition.

Description

Remarks

Return Value

Compatibility

See Also

Example

_ gettextcursor 379

_ gettextcursor
Gets the current cursor attribute.

#include <graph.h>

short __ far _gettextcursor(void);

The _gettextcursor function returns the current cursor attribute (i.e., the shape).
This function works only in text video modes.

The function returns the current cursor attribute, or -1 if an error occurs (such as a
call to the function in a graphics mode).

Standards: None

16-Bit: DOS

32-Bit: None

_displaycursor, _grstatus, _settextcursor

See the example for _settextcursor.

380 _ gettextposition

Description

Remarks

Return Value

Compatibility

See Also

Example

_ gettextposition
Gets the current text position.

#include <graph.h>

struct _rccoord __ far _gettextposition(void);

The _ gettextposition function returns the current text position as an _ rccoord
structure, defined in GRAPH.H.

The _rccoord structure contains the following elements:

Element

short row

short col

Description

Row coordinate

Column coordinate

The text position given by the coordinates (1,1) is defined as the upper-left comer
of the text window.

Text output from the _outtext and _outmem functions begins at the current text
position. Font text is not affected by the current text position. Font text output
begins at the current graphics output position, which is a separate position. Use the
_moveto function to set the graphics output position.

None.

Standards: None

16-Bit: DOS

32-Bit: None

_getcurrentposition functions, _moveto functions, _outmem, _outtext,
_settextposition, _settextwindow, _ wrapon

/* OUTTXT.C: This example illustrates text output functions:
* _gettextcolor _getbkcolor _gettextposition outtext
* settextcolor setbkcolor _settextposition
*/

#include <conio.h>
#include <stdio.h>
#include <graph.h>

char buffer [80];

void maine void)
{

_ gettextposition 381

/* Save original foreground, background, and text position. */
short blink, fgd, oldfgd;
long bgd, oldbgd;
struct _rccoord oldpos;

/* Save original foreground, background, and text position. */
oldfgd _gettextcolor();
oldbgd = _getbkcolor();
oldpos = _gettextposition();
_clearscreen(_GCLEARSCREEN);

/* First time no blink, second time blinking. */
fore blink = 0; blink <= 16; blink += 16)
{

/* Loop through 8 background colors. */
fore bgd = 0; bgd < 8; bgd++)
{

}

_setbkcolor(bgd);
_settextposition((short)bgd + «blink / 16) * 9) + 3, 1);
_settextcolor(7);
sprintf(buffer, "Back: %d Fore:", bgd);
_outtext(buffer);

/* Loop through 16 foreground colors. */
fore fgd = 0; fgd < 16; fgd++)
{

settextcolor(fgd + blink);
sprintf(buffer, " %2d ", fgd + blink);
_outtext(buffer);

}

_getch();

/* Restore original foreground, background, and text position. */
_settextcolor(oldfgd);
_setbkcolor(oldbgd);
_clearscreen(_GCLEARSCREEN);
_settextposition(oldpos.row, oldpos.col);

382 _ gettextwindow

Description

Remarks

Return Value

Compatibility

See Also

Example

_ gettextwindow
Gets the boundaries of the current text window.

#include <graph.h>

void __ far _gettextwindow(short __ far *rl, short __ far *cl,
short __ far *r2, short __ far *c2);

rl

cl

r2

c2

Top row of current text window

Leftmost column of current text window

Bottom row of current text window

Rightmost column of current text window

The _ gettextwindow function finds the boundaries of the current text window.
The text window is the region of the screen to which output from the _ outtext and
_outmem functions is limited. By default, this is the entire screen, unless it has
been redefined by the _settextwindow function.

The window defined by _settextwindow has no effect on output from the
_outgtext function. Text displayed with _outgtext is limited to the current
viewport.

None.

Standards: None

16-Bit: DOS

32-Bit: None

_ gettextposition, _ outmem, _ outtext, _ scrolltextwindow, _ settextposition,
_settextwindow, _ wrapon

See the example for _scrolltextwindow.

Description

Remarks

_getvideoconfig 383

_ getvideoconfig
Gets graphics video configuration information.

#include <graph.h>

struct _ videoconfig __ far * __ far _getvideoconfig(struct _ videoconfig
_3ar *config);

config Configuration information

The _getvideoconfig function returns the current graphics environment configura
tion in a _ videoconfig structure, defined in GRAPH.H.

The values returned reflect the currently active video adapter and monitor, as well
as the current video mode.

The _ videoconfig structure contains the following members, each of which is of
type short:

Member

numxpixels
numypixels

numtextcols

numtextrows
numcolors

bitsperpixel

numvideopages

adapter
mode

monitor
memory

Contents

Number of pixels on the x axis

Number of pixels on the y axis

Number of text columns available

Number of text rows available

Number of color indices

Number of bits per pixel

Number of available video pages

Active display adapter

Current video mode

Active display monitor

Adapter video memory in kilobytes

384 _getvideoconfig

Return Value

The values for the adapter member of the _ videoconfig structure are given by the
manifest constants shown in the list below. For any applicable adapter (_CGA,
_EGA, or _ VGA), the corresponding Olivetti adapter (_OCGA, _OEGA, or
_OVGA) represents a superset of graphics capabilities.

Adapter Constant

_CGA
_EGA
_HGC

_MCGA

_MDPA

_OCGA
_OEGA

_OVGA
_VGA

_SVGA

Meaning

Color Graphics Adapter

Enhanced Graphics Adapter

Hercules Graphics Card

Multicolor Graphics Array

Monochrome Display Printer Adapter

Olivetti (AT&T) Color Graphics Adapter

Olivetti (AT&T) Enhanced Graphics Adapter

Olivetti (AT&T) Video Graphics Array

Video Graphics Array

Super Video Graphics Array (VESA)

The values for the monitor member of the _ videoconfig structure are given by
the manifest constants listed below:

Monitor Constant

_ANALOG

_ANALOGCOLOR

_ANALOGMONO
_COLOR
_ENHCOLOR

_MONO

Meaning

Analog monochrome and color

Analog color only

Analog monochrome only

Color (or enhanced monitor emulating a color monitor)

Enhanced color

Monochrome monitor

In every text mode, including monochrome, the _getvideoconfig function returns
the value 32 for the number of available colors. The value 32 indicates the range
of values (0-31) accepted by the _settextcolor function. This includes 16 nonnal
colors (0-15) and 16 blinking colors (16-31). Blinking is selected by adding 16 to
the normal color index. Because monochrome text mode has fewer unique display
attributes, some color indices are redundant. However, because blinking is
selected in the same manner, monochrome text mode has the same range (0-31)
as other text modes.

The _ getvideoconfig function returns the video configuration information in a
structure, as noted above. There is no error return.

_ getvideoconfig 385

Compatibility Standards: None

See Also

Example

Output

16-Bit:

32-Bit:

DOS

None

_ setvideomode, _ setvideomoderows

/* GVIDCFG.C: This program displays information about the current
* video configuration.
*/

#include <stdio.h>
#include <graph.h>

void main(void)
{

struct _videoconfig vc;
short c;
cha r b[500];

_getvideoconfig(&vc);

/* Buffer for string */

f* Write all information to a string, then output string. */
c sprintf(b, "X pixels: %d\n", vc.numxpixels) ;
c += spri ntf(b + c, "Y pixels: %d\n", vc.numypixels) ;

c += sprintf(b + c, "Text columns: %d\n", vc.numtextcols) ;
c += spri ntf(b + c, "Text rows: %d\n", vc.numtextrows) ;
c += sprintf(b + c, "Colors: %d\n", vc.numcolors) ;
c += spri ntf(b + c, "Bits/pixel: %d\n", vc.bitsperpixel) ;
c += sprintf(b + c, "Video pages: %d\n", vc.numvideopages) ;
c += spri ntf(b + c, "Mode: %d\n", vc.mode) ;
c += sprintf(b + c, "Adapter: %d\n", vc.adapter) ;
c += sprintf(b + c, "Mon ito r: %d\n", vc.monitor) ;
c += sprintf(b + c, "Memory: %d\n", vc.memory) ;
outtext(b) ;

X pixels: 0
Y pixels: 0
Text columns: 80
Text rows: 25
Colors: 32
Bits/pixel: 0
Video pages: 1
Mode: 3
Adapter: 8
Monitor: 24
Memory: 256

386 _ getviewcoord Functions

Description

Remarks

Return Value

_ getviewcoord Functions
Translate coordinates to view coordinates.

#include <graph.h>

struct _xycoord __ far _getviewcoord(short x, short y);

struct _xycoord __ far _getviewcoor<L w(double wx, double wy);

struct _xycoord __ far _getviewcoor<L wxy(struct _ wxycoord
__ far *pwxyl);

x,y

wx,wy

pwxyl

Physical point to translate

Window point to translate

Window point to translate

The _getviewcoord routines translate the specified coordinates (x, y) from one
coordinate system to view coordinates and then return them in an _xycoord struc
ture, defined in GRAPH.H. The _xycoord structure contains the following
elements:

Element

short xcoord

short ycoord

Description

x coordinate

y coordinate

The various _getviewcoord routines translate in the following manner:

Routine

_ getviewcoord

_ getviewcoord_ w
_ getviewcoord_ wxy

Translation

Physical coordinates (x, y) to view coordinates

Window coordinates (wx, wy) to view coordinates

Window coordinates structure (pwxyl) to view
coordinates

IQ.Microsoft eversion 5.1, the function _getviewcoord was called _getlogcoord.

The _getviewcoord function returns the coordinates as noted above. There is no
error return.

Compatibility

See Also

Example

_ getviewcoord Functions 387

Standards: None

16-Bit: DOS

32-Bit: None

_ getphyscoord, _ getwindowcoord, _ grstatus

See the example for _setwindow.

388 _gelvisualpage

Description

Remarks

Return Value

Compatibility

See Also

Example

_ getvisualpage
Gets the current visual page number.

#include <graph.h>

short __ far _getvisualpage(void,);

The _getvisualpage function returns the current visual page number.

The function returns the number of the current visual page. All hardware combina
tions support at least one page (page number 0).

Standards: None

16-Bit: DOS

32-Bit: None

_getactivepage, _gettextcolor, _gettextposition, _outtext, _setactivepage,
_settextcolor, _settextposition, _settextwindow, _setvideomode,
_ setvisualpage, _ wrapon

See the example for _ getactivepage.

Description

Remarks

Return Value

Compatibility

See Also

_getw 389

_getw
Gets an integer from a stream.

#include <stdio.h>

int _getw(FILE *stream);

stream Pointer to FILE structure

The _getw function reads the next binary value of type int from the file associated
with stream and increments the associated file pointer (if there is one) to point to
the next unread character. The _ getw function does not assume any special align
ment of items in the stream.

The _getw function returns the integer value read. A return value of EOF may
indicate an error or end-of-file. However, since the EOF value is also a legitimate
integer value, feof or ferror should be used to verify an end-of-file or error
condition.

Standards: UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _getw for compatibility with ANSI naming conventions of non-ANSI func
tions. Use getw and link with OLDNAMES.LIB for UNIX compatibility.

The _getw function is provided primarily for compatibility with previous librar
ies. Note that portability problems may occur with _getw, since the size of the int
type and the ordering of bytes within the int type differ across systems.

_putw

390 _oetw

Example 1* GETW.C: This program uses _getw to read a word from a stream,

Output

* then performs an error check.
*1

#include <stdio.h>
#include <stdlib.h>

void main(void 1
{

FILE *stream;
i nt i;

if((stream = fopen("_getw.c", "rb" 1 1
printf("Couldn't open file\n" l;

else
{

1* Read a word from the stream: *1
i = _getw(stream l;

1* If there is an error ... *1
if(ferror(stream 1 1
{

printf("_getw failed\n" l;
clearerr(stream l;

else

NULL 1

printf("First data word in file: 0x%.4x\n", l;
fclose(stream l;

}

First data word in file: 0x2a2f

Description

Remarks

Return Value

Compatibility

See Also

Example

_ getwindowcoord 391

_ getwindowcoord
Translates view coordinates to window coordinates.

#include <graph.h>

struct _ wxycoord __ far _ getwindowcoord(short x, short y);

x,y Viewport coordinate to translate

The _getwindowcoord function translates the view coordinates (x, y) to window
coordinates and returns them in the _ wxycoord structure, defined in GRAPH.H.

The _ wxycoord structure contains the following elements:

Element

double wx
double wy

Description

x coordinate

y coordinate

The function returns the coordinates in the _ wxycoord structure. There is no error
return.

Standards: None

16-Bit: DOS

32-Bit: None

_getphyscoord, _getviewcoord functions, _IDoveto functions, _setwindow

See the example for _setwindow.

392 _ getwritemode

Description

Remarks

Return Value

_ getwritemode
Gets the current logical mode for line drawing.

#include <graph.h>

short __ far _getwritemode(void);

The _ getwritemode function returns the current logical write mode, which is used
when drawing lines with the _lineto, _polygon, and _rectangle functions.

The default value is _GPSET, which causes lines to be drawn in the current
graphics color. The other possible return values are _ GXOR, _ GAND, _ GOR,
and _ GPRESET. See _ putimage for more details on these manifest constants.

The _ getwritemode function returns the current logical write mode, or -1 if not in
graphics mode.

Compatibility Standards: None

See Also

Example

16-Bit: DOS

32-Bit: None

_grstatus, _lineto functions, _putimage functions, _rectangle functions,
_ setcolor, _ setlinestyle, _ setwritemode

1* GWRMODE.C: This program illustrates _getwritemode and _setwritemode. *1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

short wmodes[5J
char *wmstr[5J

{ _GPSET, _GPRESET, _GXOR,
{"PSET " "PRESET", "XOR

_GOR, GAND };
"OR ""AND "};

void box(short x, short y, short size, short writemode, short fillmode);

void main(void)
{

short i, x, y;

1* Find a valid graphics mode. *1
if(!_setvideomode(MAXCOLORMODE))

ex it (1);

x = y = 70;
box(x, y, 50, _GPSET, _GFILLINTERIOR);
_setcolor(2);
box(x, y, 40, _GPSET, _GFILLINTERIOR);
for(i = 0; i < 5; i++)
{

_settextposition(I, 1);
_outtext(wmstr[i J);
box(x += 12, Y += 12, 50, wmodes[iJ, GBORDER);
_getch();

_setvideomode(DEFAULTMODE);
ex it (0);

_ getwritemode 393

void box(short x, short y, short size, short writemode, short fillmode)
{

s ho rt wm, side;

wm = _getwritemode(); 1* Save write mode and set new. *1
_setwritemode(writemode);
_rectangle(fillmode, x - size, y - size, x + size, y + size);

setwritemode(wm); 1* Restore original write mode. *1

394 gmtime

Description

Remarks

gmtime
Converts a time value to a structure.

#include <time.h>

struct tm *gmtime(const time_t *time);

timer Pointer to stored time

The gmtime function converts the timer value to a structure. The timer argument
represents the seconds elapsed since midnight (00:00:00), December 31, 1899,
Universal Coordinated Time. This value is usually obtained from a call to the time
function.

The gmtime function breaks down the timer value and stores it in a structure of
type tm, defined in TIME.H. The structure result reflects Universal Coordinated
Time, not local time.

The fields of the structure type tm store the following values, each of which is
anint:

Field

tIlL sec

tm_min

tm_hour

tm_mday

tm_mon

tm_year

tllLwday

tllLyday

tm_isdst

Value Stored

Seconds

Minutes

Hours (0-24)

Day of month (1-31)

Month (0-11; January = 0)

Year (current year minus 1900)

Day of week (0-6; Sunday = 0)

Day of year (0-365; January 1 = 0)

Always 0 for gmtime

The gmtime, mktime, and localtime functions use a single statically allocated
structure to hold the result. Each call to one of these routines destroys the result of
any previous call.

If timer represents a date before midnight, December 31, 1899, gmtime returns
NULL.

Return Value

gmtime 395

The gmtime function returns a pointer to the structure result. There is no error
return.

Compatibility Standards: ANSI, UNIX

See Also

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

asctime, ctime, _ftime, localtime, time

1* GMTIME.C: This program uses gmtime to convert a long-integer
* representation of Universal Coordinated Time to a structure named newtime,
* then uses asctime to convert this structure to an output string.
*1

#include <time.h>
#include <stdio.h>

void main(void)
{

struct tm *newtime;
long ltime;

time(<ime);

1* Obtain Universal Coordinated Time: *1
newtime = gmtime(<ime);
printf("Universal Coordinated Time is %s\n", asctime(newtime));

Universal Coordinated Time is Wed Jun 16 16:37:53 1999

396 _ grstatus

Description

Remarks

_grstatus
Returns the status of the most recent graphics function call.

#include <graph.h>

short __ far _grstatus(void);

The _ grstatus function returns the status of the most recently used graphics func
tion. The _grstatus function can be used immediately following a call to a
graphics routine to determine if errors or warnings were generated. Return values
less than 0 are errors, and values greater than 0 are warnings.

The following manifest constants are defined in the GRAPH.H header file for use
with the _grstatus function:

Value

0
-1

-2

-3

-4

-5
-6
-7
-8

-9
1

2
3

Constant

_GROK
_GRERROR

_ GRMODENOTSUPPORTED

_ GRNOTINPROPERMODE

_ GRINVALIDPARAMETER

_ GRFONTFILENOTFOUND

_ GRINVALIDFONTFILE
_ GRCORRUPTEDFONTFILE

_ GRINSUFFICIENTMEMORY

_ GRINVALIDIMAGEBUFFER

_ GRNOOUTPUT

_GRCLIPPED

_ GRPARAMETERALTERED

Meaning

Success.

Graphics error.

Requested video mode not
supported.

Requested routine only works in
certain video modes.

One or more parameters invalid.

No matching font file found.

One or more font files invalid.

One or more font files inconsistent.

Not enough memory to allocate
buffer or to complete a _floodfill
operation.

Image buffer data inconsistent.

Nothing drawn.

Output was clipped to viewport.

One or more input parameters was
altered to be within range, or pairs
of parameters were interchanged to
be in the proper order.

_ grstatus 397

After a graphics call, use an if statement to compare the return value of _grstatus
to _ GROK. For example:

if(_grstatus < _GROK
/*handle graphics error*/

The functions listed below cannot cause errors, and they all set _grstatus to
_GROK:

_ display cursor
_ getactivepage
_ getbkcolor
_ getgtextvector
_ gettextcolor

_ gettextposition
_ gettextwindow
_ getvideoconfig
_ getvisualpage
_outmem

_outtext
_ unregisterfonts
_wrapon

See the list below for the graphics functions that affect _grstatus. The list shows
error or warning messages that can be set by the graphics function. In addition to
the error codes listed, any of these functions can produce the _ GRERROR error
code.

Function

_arc functions

_clearscreen

_ellipse functions

_floodfill functions

_getarcinfo

_ getcurrentposition
functions
_getfontinfo
_ getgtextextent

_ getgtextvector

_getimage functions

_ getphyscoord
_getpixel functions
_ gettextcursor

_getviewcoord functions

_getwindowcoord

Possible _grstatus
Error Codes

_GRNOTINPROPERMODE,
_ GRINVALIDPARAMETER

_GRNOTINPROPERMODE,
_ GRINVALIDPARAMETER

Possible _grstatus
Warning Codes

_GRNOOUTPUT,
_GRCLIPPED

_ GRNOTINPROPERMODE, _ GRNOOUTPUT,
_GRINVALIDPARAMETER, _GRCLIPPED
_ GRINSUFFICIENTMEMORY

_GRNOTINPROPERMODE, _GRNOOUTPUT
_GRINVALIDPARAMETER,
_ GRINSUFFICIENTMEMORY
_GRNOTINPROPERMODE

_GRNOTINPROPERMODE

(_GRERROR only)
(_GRERROR only)

_GRPARAMETERALTERED

_ GRNOTINPROPERMODE

_GRNOTINPROPERMODE
_GRNOTINPROPERMODE

_GRNOTINPROPERMODE

_ GRNOTINPROPERMODE

_GRNOTINPROPERMODE

_GRPARAMETERALTERED

398 _grstatus

Possible _ grstatus Possible _grstatus
Function Error Codes Warning Codes

_ getwritemode _ GRNOTINPROPERMODE

_imagesize functions _ GRNOTINPROPERMODE

_lineto functions _ GRNOTINPROPERMODE _ GRNOOUTPUT,
_GRCLIPPED

_moveto functions _ GRNOTINPROPERMODE
_outgtext _ GRNOTINPROPERMODE _ GRCLIPPED,

_ GRNOOUTPUT

_ pie functions _ GRNOTINPROPERMODE, _ GRNOOUTPUT,
_ GRINVALIDPARAMETER, _GRCLIPPED
_ GRINSUFFICIENTMEMORY

_polygon functions _ GRNOTINPROPERMODE, _GRNOOUTPUT,
_ GRINVALIDPARAMETER, _GRCLIPPED
_ GRINSUFFICIENTMEMORY

_ putimage functions _GRERROR, _ GRPARAMETERALTERED,
_ GRNOTINPROPERMODE, _ GRNOOUTPUT
_ GRINVALIDPARAMETER,
_ GRINVALIDIMAGEBUFFER

_rectangle functions _ GRNOTINPROPERMODE, _ GRNOOUTPUT,
_ GRINVALIDPARAMETER, _GRCLIPPED
_ GRINSUFFICIENTMEMORY

_ registerfonts _ GRCORRUPTEDFONTFILE,
_ GRFONTFILENOTFOUND,
_ GRINSUFFICIENTMEMORY,
_ GRINVALIDFONTFILE

_ remappalette _GRERROR,
_ GRINVALIDPARAMETER

_ remap all palette _GRERROR,
_ GRINVALIDPARAMETER

_scrolltextwindow _GRNOOUTPUT
_ selectpalette _ GRNOTINPROPERMODE,

_ GRINVALIDPARAMETER

_ setactivepage _ GRINVALIDPARAMETER

_setbkcolor _ GRINVALIDPARAMETER _ GRPARAMETERALTERED
_setcliprgn _ GRNOTINPROPERMODE _ GRPARAMETERALTERED

_setcolor _ GRNOTINPROPERMODE _ GRPARAMETERALTERED

_setfont _GRERROR,
_ GRFONTFILENOTFOUND,
_ GRINSUFFICIENTMEMORY,
_ GRPARAMETERALTERED

_ setgtextvector _ GRPARAMETERALTERED

_setpixel _ GRNOTINPROPERMODE _GRNOOUTPUT

_grstatus

Possible _grstatus Possible _ grstatus
Function Error Codes Warning Codes

_settextcolor _GRPARAMETERALTERED

_settextcursor _GRNOTINPROPERMODE

_settextposition _GRPARAMETERALTERED

_settextrows _GRINVALIDPARAMETER _GRPARAMETERALTERED
_settextwindow _GRPARAMETERALTERED
_ setvideomode _GRERROR,

_ GRMODENOTSUPPORTED,
_GRINVALIDPARAMETER

_setvideomoderows _GRERROR,
_ GRMODENOTSUPPORTED,
_ GRINVALIDPARAMETER

_ setvieworg _ GRNOTINPROPERMODE

_setviewport _ GRNOTINPROPERMODE _GRPARAMETERALTERED
_setvisualpage _GRINVALIDPARAMETER
_setwindow _GRNOTINPROPERMODE, _GRPARAMETERALTERED

_ GRINVALIDPARAMETER

_ setwritemode _ GRNOTINPROPERMODE,

Return Value

See Also

Compatibility

_GRINVALIDPARAMETER

The _ grstatus function returns the status of the most recently used graphics
function.

_arc functions, _ellipse functions, _floodfill functions, _lineto functions,
_pie functions, _remapallpalette, _setactivepage, _setbkcolor, _setcolor,
_setpixel functions, _settextcolor, _settextcursor, _setvisualpage,
_setwindow, _setwritemode

Standards: None

16-Bit: DOS

32-Bit: None

399

400 halloe

Description

Remarks

Return Value

Compatibility

See Also

halloe
Allocates a huge memory block.

#include <malloc.h> Required only for function declarations

void __ huge * _halloc(long num, size_ t size);

num Number of elements

size Length in bytes of each element

The _ halloc function allocates a huge array from the operating system consisting
of num elements, each of which is size bytes long. Each element is initialized to 0.
If the size ofthe array is greater than 128K (131,072 bytes), the size of an array
element must then be a power of 2.

Use the _hfree function to deallocate a block of memory returned by halloc.

The _ halloc function returns a void huge pointer to the allocated space, which is
guaranteed to be suitably aligned for storage of any type of object. To get a pointer
to a type other than void huge, use a type cast on the return value. If the request
cannot be satisfied, the return value is NULL.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

calloc functions, free functions, _hfree, malloc functions

Example

Output

halluc 401

/* HALLOC.C: This program uses _halloc to allocate space for 30,000 long
* integers, then uses hfree to deallocate the memory.
*/

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>

void maine void l
{

}

long __ huge *hbuf;

/* Allocate huge buffer */
hbuf = (long __ huge *l_halloc(30000L, sizeof(long l l;
if (hbuf == NULL l

printf("Insufficient memory available\n" l;
else

printf("Memory successfully allocated\n" l;

/* Free huge buffer */
_hfree(hbuf l;

Memory successfully allocated

402 hard Functions

Description

Remarks

hard Functions
Handle critical error conditions.

#include <dos.h>

void _harderr(void(__ far *handler)(»;
void _hardresume(int result);

void _hardretn(int error);

handler ()

result

error

New INT Ox24 handler

Handler return parameter

Error to return from

These three functions are used to handle critical error conditions that use DOS in
terrupt Ox24. The _harderr function installs a new critical-error handler for inter
ruptOx24.

When a critical error occurs, control is passed to the function specified in the
_harderr call. The _hardresume and _hardretn functions control how the pro
gram will return from the critical error handler.

The _hardresume function returns to DOS the code that encountered the critical
error.

The _hardretn function returns directly to the application program that issued the
INT Ox21 DOS system call, which, in tum, encountered the critical error.

The _harderr function does not directly install the handler pointed to by handler;
instead, _harderr installs a handler that calls the function referenced by handler.
The handler calls the function with the following parameters:

handler(unsigned deverror, unsigned errcode, unsigned __ far *devhdr);

The deverror argument is the device error code. It contains the AX register value
passed by DOS to the INT Ox24 handler. The errcode argument is the DI register

hard Functions 403

value that DOS passes to the handler. The low-order byte of errcode can be one of
the following values:

Code Meaning

0 Attempt to write to a write-protected disk

1 Unknown unit

2 Drive not ready

3 Unknown command

4 Cyclic-redundancy-check error in data

5 Bad drive-request structure length

6 Seek error

7 Unknown media type

8 Sector not found

9 Printer out of paper

10 Write fault

11 Read fault

12 General failure

The devhdr argument is a far pointer to a device header that contains descriptive
information about the device on which the error occurred. The user-defined han
dler must not change the information in the device-header control block.

Errors on Disk Devices
If the error occurred on a disk device, the high-order bit (bit 15) of the deverror
argument will be set to 0, and the deverror argument will indicate the following:

Bit

15

14

13

12

11

10,9

8

Meaning

Disk error if false (0).

Not used.

"Ignore" response not allowed if false (0).

"Retry" response not allowed if false (0).

"Fail" response not allowed if false (0). Note that DOS changes "fail"
to "abort".

Code

00

01

10

11

Location

DOS

File allocation table

Directory

Data area

Read error if false; write error if true.

404 hard Functions

The low-order byte of deverror indicates the drive in which the error occurred (0 =
drive A, 1 = drive B, etc.).

Errors on Other Devices
If the error occurs on a device other than a disk drive, the high-order bit (bit 15) of
the deverror argument is 1. The attribute word located at offset 4 in the device
header block indicates the type of device that had the error. If bit 15 of the at
tribute word is 0, the error is a bad memory image of the file allocation table. If
the bit is 1, the error occurred on a character device and bits 0 -3 of the attribute
word indicate the type of device, as shown in the following list:

Bit Meaning

0 Current standard input

1 Current standard output

2 Current null device

3 Current clock device

Restrictions on Handler Functions
The user-defined handler function can issue only system calls OxOl through OxOC,
or Ox59. Thus, many of the standard C run-time functions (such as the I/O and
_heap functions) cannot be used in a hardware error handler. System call Ox59
can be used to obtain further information about the error that occurred.

Using _hardresume and _harderr
If the handler returns, it can do so in several different ways:

• Via the return statement

• By calling the _hardresume function

• By calling the _hardretn function

If the handler returns from _hardresume or from a return statement, control
returns to DOS.

The _hardresume function should be called only from within the user-defined
hardware error-handler function. The result supplied to _hardresume must be one
of the following constants:

Constant

_HARDERlLABORT

_HARDERlLFAIL

_HARDERlLIGNORE

_HARDERlLRETRY

Action

Aborts the program by issuing INT Ox24

Fails the system call that is in progress (this is not
supported on DOS 2.x)

Ignores the error

Retries the operation

Return Value

Compatibility

See Also

hard Functions 405

The _hardretn function allows the user-defined hardware error handler to return
directly to the application program rather than returning to DOS. The application
resumes at the point just after the failing I/O function request. The _hardretn
function should be called only from within a user-defined hardware error-handler
function.

The error parameter of _hardretn should be a DOS error code, as opposed to the
XENIX-style error code that is available in errno. Refer to MS-DOS Encyclopedia
(Duncan, ed.; Redmond, Wa.: Microsoft Press, 1988) or Programmer's PC
Sourcebook 2nd ed. (Hogan; Redmond, Wa.: Microsoft Press, 1991) for informa
tion about the DOS error codes that may be returned by a given DOS function call.

If the failing I/O function request is an INT Ox21 function greater than or equal to
function Ox38, _hardretn will then return to the application with the carry flag set
and the AX register set to the _hardretn error parameter. If the failing INT Ox21
function request is less than function Ox38 and the function can return an error, the
AL register will be set to OxFF on return to the application. If the failing INT Ox21
does not have a way of returning an error condition (which is true of certain INT
Ox21 functions below Ox38), the error parameter of _hardretn is not used, and no
error code is returned to the application.

None.

Standards: None

16-Bit: DOS

32-Bit: None

406 _ heapadd Functions

Description

Remarks

Return Value

Compatibility

See Also

_ heapadd Functions
Add memory to the heap (_heapadd) or to the based heap (_bheapadd).

#include <malloe.h> Required only for function declarations

int _heapadd(void __ far *memblock, size_ t size);

int _bheapadd(__ segment seg, void __ based (void) *memblock, size_t size);

seg

buffer

size

Based-heap segment selector

Pointer to heap memory

Size in bytes of memory to add

The _heapadd and _ bheapadd functions add an unused piece of memory to the
heap. The _ bheapadd function adds the memory to the based heap specified by
seg. The _heapadd function looks at the segment value and, if it is DGROUP,
adds the memory to the near heap. Otherwise, _heapadd adds the memory to the
far heap.

These functions return 0 if successful, or -1 if an error occurred.

_headadd

Standards: None

l6-Bit: DOS

32-Bit: DOS32X

_bheadadd

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

free functions, _halloe, _hfree, malloe functions, realloe functions

Example

_heapadd Functions 407

1* HEAPMIN.C: This program illustrates heap management using
* _heapadd and _heapmin.
*1

#include <stdio.h>
#include <conio.h>
#include <process.h>
#include <malloc.h>

void heapdump(char *msg); 1* Prototype *1

char sl[]
char s2[]

"Here are some strings that we use at first, then don't\n" };
"need any more. We'll give their space to the heap.\n" };

void main(void)
{

i nt *p[3], i;

printf("IsIs", sl, s2);
heapdump("Ini ti al heap");

1* Give space of used strings
if (_heapadd(sl, sizeof(sl

printf("Error. \n");
if (_heapadd(s2, sizeof(s2

printf("Error.\n");
heapdump("After adding used

to heap. *1
)) -1)

)) -1

strings") ;

1* Allocate some blocks. Some may use string blocks from _heapadd. *1
fort i = 0; i < 2; i++)

if((p[i] = (int *)calloc(10 * (i + 1), sizeof(int))) == NULL
{

}

- - i ;
break;

heapdump("After allocating memory");

1* Free some of the blocks. *1
freer pel]);
freer p[2]);
heapdump("After freeing memory");

1* Minimize heap. *1
_heapmin();
heapdump("After compacting heap");

408 _ heapadd Functions

Output

1* Walk through heap entries, displaying information about each block. *1
void heapdump(char *msg)
{

}

_HEAPINFO hi;

printf("%s\n", msg);
hi ._pentry = NULL;
while(_heapwa1k(&hi) == _HEAPOK)

printf("\t%s block at %Fp of size %u\t\n",
hi ._usefl ag == _USEDENTRY ? "USED" : "FREE",
hi ._pentry,
hi._si ze);

printf("Press any key.\n");
_getch();

Here are some strings that we use at first, then don't
need any more. We'll give their space to the heap.
Initi al heap

USED block at 2D39:0E9C of size 364
USED block at 2D39:100A of size 36
USED block at 2039:1030 of size 512
FREE block at 2039:1232 of size 460

After adding used strings
FREE block at 2039:0044 of size 52
FREE block at 2D39:007A of size 50
USED block at 2D39:00AE of size 3564
USED block at 2D39:0E9C of size 364
USED block at 2D39:100A of size 36
USED block at 2039:1030 of size 512
FREE block at 2039:1232 of size 460

After allocating memory
USED block at 2039:0044 of size 20
USED block at 2D39:005A of size 40
FREE block at 2039:0084 of size 40
USED block at 2D39:00AE of size 3564
USED block at 2D39:0E9C of size 364
USED block at 2D39:100A of size 36
USED block at 2039: 1030 of size 512
FREE block at 2039:1232 of size 460

After freeing memory
USED block at 2039:0044 of size 20
FREE block at 2D39:005A of size 40
FREE block at 2039:0084 of size 40
USED block at 2D39:00AE of size 3564
USED block at 2D39:0E9C of size 364
USED block at 2D39:100A of size 36
USED block at 2039:1030 of size 512
FREE block at 2039:1232 of size 460

_heapadd Functions 409

After compacting heap
USED block at 2D39:0044 of size 20
FREE block at 2D39:005A of size 82
USED block at 2D39:00AE of size 3564
USED block at 2D39:0E9C of size 364
USED block at 2D39:100A of size 36
USED block at 2D39:1030 of size 512
FREE block at 2D39:1232 of size 12

410 _heapchk Functions

Description

Remarks

_ heapchk Functions
Run consistency checks on the heap.

#include <malloc.h>

int _heapchk(void);

int _hheapchk(__ segment seg);

int _fheapchk(void);

int _nheapchk(void);

seg Specified base heap

The _heapchk routines help to debug heap-related problems by checking for mini
mal consistency of the heap. Each function checks a particular heap, as listed
below:

Function

_heapchk

_hheapchk

_fheapchk

_nheapchk

Heap Checked

Depends on data model of program

Based heap specified by seg value

Far heap (outside the default data segment)

Near heap (inside the default data segment)

In large data models (that is, compact-, large-, and huge-model programs),
_heapchk maps to _fheapchk. In small data models (tiny-, small-, and medium
model programs), _heapchk maps to _nheapchk.

For _heapchk, if the seg value is _NULLSEG, all based heap segments are
checked; otherwise, only the specified one is checked.

Return Value

_ heapchk Functions 411

All four routines return an integer value that is one of the following manifest con
stants (defined in MALLOC.H):

Constant

_HEAPBADBEGIN

_HEAPBADNODE

_HEAPEMPTY
_HEAPOK

Meaning

Initial header information cannot be found, or it is bad.

Bad node has been found, or the heap is damaged.

Heap has not been initialized.

Heap appears to be consistent.

Compatibility _heapchk

Standards: None

See Also

Example

16-Bit: DOS

32-Bit: DOS32X

_hheapchk, _fheapchk

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_nheapchk

Standards: None

16-Bit: DOS

32-Bit: None

_heapset functions, _heapwalk functions

/* HEAPCHK.C: This program checks the heap for consistency
* and prints an appropriate message.
*/

#include <malloc.h>
#include <stdio.h>

412 _ heapchk Functions

Output

void main(void)
{

}

int heapstatus;
char *buffer;

1* Allocate and deallocate some memory *1
if((buffer = (char *)malloc(100 » != NULL

free(buffer);

1* Check heap status *1
heapstatus = _heapchk();
switch(heapstatus)
{

case _HEAPOK:
printf(" OK heap is fine\n");
break;

case HEAPEMPTY:
printf(" OK - heap is empty\n");
break;

case _HEAPBADBEGIN:
printf("ERROR - bad start of heap\n");
break;

case HEAPBADNODE:
printf("ERROR - bad node in heap\n");
break;

OK - heap is fine

Description

Remarks

Return Value

_heapmin Functions 413

_ heapmin Functions
Release unused heap memory to the operating system.

#include <malloc. h>

int _heapmin(void);

int _hheapmin(__ segment seg)

int _theapmin(void);

int _nheapmin(void);

seg Specified based-heap selector

The _ heapmin functions minimize the heap by releasing unused heap memory to
the operating system.

The various _heapmin functions release unused memory in these heaps:

Function

_heapmin

_bheapmin

_tbeapmin

_nheapmin

Heap Minimized

Depends on data model of program.

Based heap specified by seg value; _NULLSEG specifies all
based heaps.

Far heap (outside default data segment).

Near heap (inside default data segment).

In large data models (that is, compact-, large-, and huge-model programs),
_heapmin maps to _theapmin. In small data models (tiny-, small-, and medium
model programs), _heapmin maps to _nheapmin.

For _heapmin, if the supplied seg value is _NULLSEG, all based heap segments
are minimized; otherwise, only the specified one is minimized.

Based-heap segments are never freed (i.e., unlinked from the based heap list
and released back to the operating system) by the _ hheapmin function. The
_ hfreeseg function is used for that purpose.

The _ heapmin functions return 0 if the function completed successfully, or -1 in
the case of an error.

414 _ heapmin Functions

Compatibility

See Also

_heapmin

Standards:

16-Bit:

32-Bit:

None

DOS, QWIN, WIN, WIN DLL

DOS32X

_bheapmin, _theapmin, _nheapmin

Standards:

16-Bit:

32-Bit:

None

DOS, QWIN, WIN, WIN DLL

None

_ bfreeseg, free functions, malloc functions

Description

Remarks

_heapset Functions 415

_ heapset Functions
Check heaps for minimal consistency and set the free entries to a specified value.

#include <malloc.h>

int _heapset(unsigned intjill);

int _hheapset(__ segment seg, unsigned intfill);

int _fheapset(unsigned intfill);

int _nheapset(unsigned intfill);

fill Fill character

seg Specified based-heap segment selector

The _heapset family of routines helps debug heap-related problems in programs
by showing free memory locations or nodes unintentionally overwritten.

The _heapset routines first check for minimal consistency on the heap in a man
ner identical to that of the _ heapchk functions. In addition, the _ heapset func
tions set each byte of the heap's free entries to the fill value. This known val ue
shows which memory locations of the heap contain free nodes and which locations
contain data that were unintentionally written to freed memory.

The various _heapset functions check and fill these heaps:

Function

_heapset

_hheapset

_fheapset

_nheapset

Heap Filled

Depends on data model of program.

Based heap specified by seg value; _NULLSEG specifies all
based heaps.

Far heap (outside default data segment).

Near heap (inside default data segment).

In large data models (that is, compact-, large-, and huge-model programs),
_heapset maps to _fheapset. In small data models (tiny-, small-, and medium
model programs), _heapset maps to _nheapset.

For _heapset, if the seg value is _NULLSEG, all based heap segments are
checked; otherwise, only the specified one is checked.

416 _heapset Functions

Return Value All four routines return an int whose value is one of the following manifest con
stants (defined in MALLOC.H):

Constant

_HEAPBADBEGIN

_HEAPBADNODE

_HEAPEMPTY

_HEAPOK

Meaning

Initial header information cannot be found, or it is
invalid.

Bad node has been found, or the heap is damaged.

Heap has not been initialized.

Heap appears to be consistent.

Compatibility _heapset

Standards:

16-Bit:

32-Bit:

See Also

Example

None

DOS

DOS32X

_ bheapset, _ fbeapset

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_nheapset

Standards: None

16-Bit: DOS

32-Bit: None

_heapchk functions, _heapwalk functions

1* HEAPSET.C: This program checks the heap and fills in free entries
* with the character 'Z'.
*1

#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>

Output

void main(void)
{

int heapstatus;
char *buffer;

_ heapset Functions 417

if((buffer = malloc(1)) NULL) 1* Make sure heap is initialized *1
exit(0);

heapstatus = _heapset('Z');
switch(heapstatus)
{

case HEAPOK:
printf("OK heap is fine\n");
break;

case HEAPEMPTY:
printf("OK - heap is empty\n");
break;

case HEAPBAOBEGIN:

1* Fill in free entries *1

printf("ERROR - bad start of heap\n");
break;

case HEAPBADNODE:
printf("ERROR - bad node in heap\n");
break;

free(buffer);

OK - heap is fine

418 _ heapwalk Functions

Description

Remarks

_heapwalk Functions
Traverse the heap and return information about the next entry.

include <malloc.h>

int _heapwalk(_HEAPINFO *entryirifo);

int _hheapwalk(__ segment seg, _HEAPINFO *entryinfo);

int _fheapwalk(_HEAPINFO *entryirifo);

int _nheapwalk(_HEAPINFO *entryinfo);

entryinfo

seg

Buffer to contain heap information

Based-heap segment selector

The _heapwalk family of routines helps debug heap-related problems in
programs.

The _heapwalk routines walk through the heap, traversing one entry per call, and
return a pointer to a structure of type _ HEAPINFO that contains information
about the next heap entry. The _HEAPINFO type, defined in MALLOC.H, con
tains the following elements:

Element

int far * _pentry
sizLt _size

int _ useflag

Description

Heap entry pointer

Size of heap entry

Entry "in use" flag

A call to _heapwalk that returns _HEAPOK stores the size of the entry in
the _size field and sets the _useflag field to either _FREEENTRY or
_ USEDENTRY (both are constants defined in MALLOC.H). To obtain this infor
mation about the first entry in the heap, pass the _heapwalk routine a pointer to a
_HEAPINFO structure whose _pentry member is NULL.

Return Value

Compatibility

_heapwalk Functions 419

The various _heapwalk functions walk through and gather information on these
heaps:

Function

_beapwalk

_hbeapwalk

_fheapwalk

_nbeapwalk

Heap Walked

Depends on data model of program.

Based heap specified by seg value; _NULLSEG specifies all
based heaps.
Far heap (outside default data segment).

Near heap (inside default data segment).

In large data models (that is, compact-, large-, and huge-model programs),
_heapwalk maps to _fheapwalk. In small data models (tiny-, small-, and
medium-model programs), _heapwalk maps to _nheapwalk.

For _heapwalk, if the seg value is _NULLSEG, all based heap segments will be
traversed; otherwise, only the specified based heap is walked.

All three routines return one of the following manifest constants (defined in
MALLOC.H):

Constant

_HEAPBADBEGIN

_HEAPBADNODE

_HEAPBADPTR

_HEAPEND

_HEAPEMPTY

_HEAPOK

_heapwalk

Standards: None

16-Bit: DOS

32-Bit: DOS32X

Meaning

The initial header information cannot be found, or it is
invalid.
A bad node has been found, or the heap is damaged.

The _ pentry field of the _HEAPINFO structure does not
contain a valid pointer into the heap.

The end of the heap has been reached successfully.

The heap has not been initialized.

No errors so far; the _HEAPINFO structure contains
information about the next entry.

_ bheapwalk, _ fheapwalk

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

420 _ heapwalk Functions

See Also

Example

_nheapwalk

Standards: None

16-Bit: DOS

32-Bit: None

_heapchk functions, _heapset functions

1* HEAPWALK.C: This program "walks" the heap, starting at the beginning
* (_pentry = NULl). It prints out each heap entry's use, location,
* and size. It also prints out information about the overall state
* of the heap as soon as _heapwalk returns a value other than HEAPOK.
*1

#include <stdio.h>
#include <malloc.h>

void heapdump(void);

void main(void)
{

cha r *buffer;

heapdump();
if((buffer = malloc(59)) 1= NULL)
{

heapdump();
free(buffer);

heapdump();

void heapdump(void
{

_HEAPINFO hinfo;
int heapstatus;

hinfo._pentry = NULL;
while((heapstatus = _heapwalk(&hinfo)) == _HEAPOK
{

}

printf("%6s block at %Fp of size %4.4X\n",
(hinfo._useflag == _USEDENTRY ? "USED" : "FREE"),
hinfo._pentry, hinfo._size);

Output

switch(heapstatus)
{

case ~HEAPEMPTY:

_ heapwalk Functions 421

printf("OK - empty heap\n");
break;

case HEAPEND:
printf("OK - end of heap\n");
break;

case HEAPBADPTR:
pri ntf("ERROR - bad poi nter to heap\n");
break;

case HEAPBADBEGIN:
printf("ERROR - bad start of heap\n");
break;

case HEAPBADNODE:
printf("ERROR - bad node in heap\n");
break;

}

USED block at 0067:103E of size 000E
USED block at 0067:104E of size 01F4
USED block at 0067:1244 of size 0026
USED block at 0067:126C of size 0200
FREE block at 0067:146E of size 0B90

OK - end of heap
USED block at 0067:103E of size 000E
USED block at 0067:104E of size 0IF4
USED block at 0067:1244 of size 0026
USED block at 0067:126C of size 0200
USED block at 0067:146E of size 003C
FREE block at 0067:14AC of size 0B52

OK - end of heap
USED block at 0067:103E of size 000E
USED block at 0067:104E of size 0IF4
USED block at 0067:1244 of size 0026
USED block at 0067:126C of size 0200
FREE block at 0067:146E of size 003C
FREE block at 0067:14AC of size 0B52

OK - end of heap

422 hfree

Description

Remarks

Return Value

hfree
Frees a huge memory block.

#include <malloc.h> Required only for function declarations

void _hfree(void __ huge *memblock);

memblock Pointer to allocated memory block

The _hfree function de allocates a memory block; the freed memory is returned to
the operating system. The memblock argument points to a memory block pre
viously allocated through a call to _halloc. The number of bytes freed is the num
ber of bytes specified when the block was allocated.

Note that attempting to free an invalid memblock argument (one not allocated with
_halloc) may affect subsequent allocation and cause errors.

None.

Compatibility Standards: None

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

1* HALLOC.C: This program uses _halloc to allocate space for 30,000 long
* integers, then uses hfree to deallocate the memory.
*1

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>

Output

void maine void)
{

long __ huge *hbuf;

1* Allocate huge buffer *1
hbuf = (long __ huge *)_halloc(30000L, sizeof(long));
if (hbuf == NULL)

printf("Insufficient memory available\n");
else

printf("Memory successfully allocated\n");

1* Free huge buffer *1
hfree(hbuf);

Memory successfully allocated

hfree 423

424 _ hypot, _ hypotl

Description

Remarks

Return Value

Compatibility

See Also

_ hypot, _ hypotl
Calculate the hypotenuse.

#include <math.h>

double _hypot(double x, double y);

long double _hypotl(long double x, long double y);

x,y Floating-point values

The _hypot and _hypotl functions calculate the length of the hypotenuse of a
right triangle, given the ~ngth of the two sides x and y (or xl and yl). A call to
_hypot is equivalent to x2 + l.

The _hypotl function uses the SO-bit, lO-byte coprocessor form of arguments and
return values. See the reference page on the long double functions for more details
on this data type.

The functions return the length of the hypotenuse. If an overflow results, the func
tions return HUGE_ VAL and set errno to ERANGE.

_hypot

Standards:

16-Bit:

32-Bit:

UNIX

DOS, QWIN, WIN, WIN DLL

DOS32X

Use _hypot for compatibility with ANSI naming conventions of non-ANSI func
tions. Use hypot and link with OLDNAMES.LIB for UNIX compatibility.

_hypotl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

Example

Output

_hypot, _hypotl 425

/* HYPOT.C: This program prints the hypotenuse of a right triangle. */

#include <math.h>
#include <stdio.h>

void main(void)
{

}

double x = 3.0, y = 4.0;

printf("If a right triangle has sides %2.1f and %2.1f, "
"its hypotenuse is %2.1f\n", x, y, _hypot(x, Y);

If a right triangle has sides 3.0 and 4.0, its hypotenuse is 5.0

426 _ imagesize Functions

Description

Remarks

Return Value

_ imagesize Functions
Get amount of memory required to store graphics images.

#include <graph.h>

long __ far _imagesize(short xl, short yl, short x2, short y2);

long __ far _imagesizL w(double wxl, double wyl, double wx2, double wy2);

long __ far _imagesize_ wxy(struct _ wxycoord __ far *pwxyl,
struct _ wxycoord __ far *pwxy2);

xl,yl

x2,y2

wxl,wyl

wx2, wy2

pwxyl

pwxy2

Upper-left comer of bounding rectangle

Lower-right comer of bounding rectangle

Upper-left comer of bounding rectangle

Lower-right comer of bounding rectangle

Upper-left comer of bounding rectangle

Lower-right comer of bounding rectangle

The functions in the _imagesize family return the number of bytes needed to store
the image defined by the bounding rectangle and specified by the coordinates
given in the function call.

The _imagesize function defines the bounding rectangle in terms of view
coordinate points (xl, yl) and (x2, y2).

The _imagesizL w function defines the bounding rectangle in terms of window
coordinate points (xl, yl) and (x2, y2).

The _imagesize_ wxy function defines the bounding rectangle in terms of the
window-coordinate pairs pwxy land pwxy2.

The function returns the storage size of the image in bytes. There is no error return.

_ imagesize Functions 427

Compatibility Standards: None

16-Bit: DOS

32-Bit: None

See Also _getimage functions, _getvideoconfig, _putimage functions

Example See the example for _getimage.

428 _inp, _inpw

Description

Remarks

Return Value

Compatibility

See Also

Example

Input a byte (_inp) or a word (_inpw) from a port.

#include <conio.h> Required only for function declarations

int _inp(unsigned port);

unsigned _inpw(unsigned port);

port Port number

The _inp and _inpw functions read a byte and a word, respectively, from the
specified input port. The input value can be any unsigned integer in the range
0-65,535.

The functions return the byte or word read from port. There is no error return.

Standards: None

16-Bit: DOS

32-Bit: None

See the example for _outp.

Description

Remarks

Return Value

Compatibility

See Also

int86 429

int86
Executes an 8086 interrupt.

#include <dos.h>

int _int86(int intnum, union _REGS *inregs, union _REGS *outregs);

intnum

in regs

outregs

Interrupt number

Register values on call

Register values on return

The _int86 function executes the 8086-processor-family interrupt specified by the
interrupt number intnum. Before executing the interrupt, _int86 copies the con
tents of in regs to the corresponding registers. After the interrupt returns, the func
tion copies the current register values to outregs. It also copies the status of the
system carry flag to the cflag field in the outregs argument. The in regs and
outregs arguments are unions of type _REGS. The union type is defined in the
include file DOS.H.

Do not use the _int86 function to call interrupts that modify the DS register. In
stead, use the _int86x function. (The _int86x function loads the DS and ES regis
ters from the segregs parameter and also stores the DS and ES registers into
segregs after the function call.)

The _REGS type is defined in the include file DOS.H.

The return value is the value in the AX register after the interrupt returns. If the
cflag field in outregs is nonzero, an error has occurred; in such cases, the
_doserrno variable is also set to the corresponding error code.

Standards: None

16-Bit: DOS, QWIN, WIN, WINDLL

32-Bit: None

_bdos, _int86x, _intdos, _intdosx

430 int86

Example 1* INT86.C: This program uses int86 to call the BIOS video service

Output

* (INT 10H) to get information about the cursor.
*1

#include <dos.h>
#include <stdio.h>

void maine void)
{

}

union _REGS inregs, outregs;

1* Set up to get cursor information. *1
inregs.h.ah 3; 1* Get Cursor Position function *1
inregs.h.bh = 0; 1* Page 0 *1

1* Execute video interrupt: *1
_int86(0x10, &inregs, &outregs);

1* Display results. *1
printf("Cursor position\n\tRow: %d\n\tColumn: %d\n",

outregs.h.dh, outregs.h.dl);
printf("Cursor shape\n\tStart: %d\n\tEnd: %d\n",

outregs.h.ch, outregs.h.cl);

Cursor position
Row: 2
Column: 0

Cursor shape
Start: 6
End: 7

Description

Remarks

Return Value

Compatibility

See Also

int86x 431

int86x
Executes an 8086 interrupt; accepts segment-register values.

#include <dos.h>

int _int86x(int intnum, union _REGS *inregs, union _REGS *outregs,
struct _ SREGS * segregs);

intnum

in regs

outregs

segregs

Interrupt number

Register values on call

Register values on return

Segment-register values on call

The _int86x function executes the 8086-processor-family interrupt specified by
the interrupt number intnum. Unlike the _int86 function, _int86x accepts seg
ment-register values in segregs, enabling programs that use large-model data seg
ments or far pointers to specify which segment or pointer should be used during
the system call.

Before executing the specified interrupt, _int86x copies the contents of in regs
and segregs to the corresponding registers. Only the DS and ES register values in
segregs are used. After the interrupt returns, the function copies the current regis
ter values to outregs, copies the current ES and DS values to segregs, and restores
DS. It also copies the status of the system carry flag to the cflag field in outregs.

The _REGS and _SREGS types are defined in the include file DOS.H.

Segment values for the segregs argument can be obtained by using either the
_segread function or the _FP _SEG macro.

The return value is the value in the AX register after the interrupt returns. If the
cflag field in outregs is nonzero, an error has occurred; in such cases, the
_doserrno variable is also set to the corresponding error code.

Standards: None

l6-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

432 int86x

Example /* INT86X.C: In this program, _int86x executes an INT 21H instruction

Output

* to invoke DOS system call 43H (change file attributes). The program
* uses _int86x because the file, which is referenced with a far pointer,
* may be in a segment other than the default data segment. Thus, the
* program must explicitly set the OS register with the _SREGS structure.
*/

/linclude <signal.h>
/linclude <dos.h>
/linclude <stdio.h>
/linclude <process.h>

cha r far *filename "_int86x.c";

void maine void
{

}

union REGS inregs, outregs;
struct _SREGS segregs;
int result;

inregs.h.ah 0x43; /* DOS function to change attributes */
inregs.h.al 0; /* Subfunction 0 to get attributes) */
inregs.x.dx _FP_OFF(filename); /* DS:DX points to file name */
segregs.ds _FP_SEG(filename);
result = _int86x(0x21, &inregs, &outregs, &segregs);
if(outregs.x.cflag)

printf("Can't get file attributes; error no. %d\n", result);
else

printf("Attribs = 0x%.4x\n", outregs.x.cx);

Attribs 0x0020

Description

Remarks

Return Value

Compatibility

See Also

intdos
Executes a DOS system call.

#include <dos.h>

int _intdos(union _REGS *inregs, union _REGS *outregs);

in regs

outregs

Register values on call

Register values on return

intdos 433

The _intdos function invokes the DOS system call specified by register values de
fined in in regs and returns the effect of the system call in outregs. The in regs and
outregs arguments are unions of type _REGS. The _REGS type is defined in the
include file DOS.H.

To invoke a system call, _intdos executes an INT 21H instruction. Before execut
ing the instruction, the function copies the contents of in regs to the corresponding
registers. After the INT instruction returns, _intdos copies the current register
values to outregs. It also copies the status of the system carry flag to the cflag field
in outregs. A nonzero cflag field indicates the flag was set by the system call and
also indicates an error condition.

The _intdos function is used to invoke DOS system calls that take arguments for
input or output in registers other than DX (DHlDL) and AL. The _intdos function
is also used to invoke system calls that indicate errors by setting the carry flag.
Under any other conditions, the _ bdos function can be used.

Do not use the _intdos function to call interrupts that modify the DS register.
Instead, use the _intdosx or _int86x function.

The _ intdos function returns the value of the AX register after the system call is
completed. If the cflag field in outregs is nonzero, an error has occurred and
_ doserrno is also set to the corresponding error code.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

_ bdos, _ intdosx

434 intdos

Example , /* I NTDOS. C: Thi s program uses _ i ntdos to invoke DOS system ca 11 2AH
* (gets the current date).

Output

*/

#include <dos.h>
#include <stdio.h>

void maine void)
{

union REGS inregs, outregs;

inregs.h.ah = 0x2a; /* DOS Get Date function: */
_intdos(&inregs, &outregs);
printf("Date: %d/%d/%d\n", outregs.h.dh, outregs.h.dl, outregs.x.cx);

}

Date: 6/16/1999

Description

Remarks

Return Value

intdosx
Executes a DOS system call; accepts segment-register values.

#include <dos.h>

int _intdosx(union _REGS *inregs, union _REGS *outregs,
struct _SREGS *segregs);

in regs

outregs

segregs

Register values on call

Register values on return

Segment-register values on call

intdosx 435

The _intdosx function invokes the DOS system call specified by register values
defined in in regs and returns the results of the system call in outregs. Unlike the
_intdos function, _intdosx accepts segment-register values in segregs, enabling
programs that use large-model data segments or far pointers to specify which seg
ment or pointer should be used during the system call. The _ REGS and _ SREGS
types are defined in the include file DOS.H.

To invoke a system call, _intdosx executes an INT 21H instruction. Before ex
ecuting the instruction, the function copies the contents of in regs and segregs to
the corresponding registers. Only the DS and ES register values in segregs are
used. After the INT instruction returns, _intdosx copies the current register values
to outregs and restores DS. It also copies the status of the system carry flag to the
cflag field in outregs. A nonzero cflag field indicates the flag was set by the sys
tem call and also indicates an error condition.

The _intdosx function is used to invoke DOS system calls that take an argument
in the ES register or that take a DS register value different from the default data
segment.

Segment values for the segregs argument can be obtained by using either the
_segread function or the _FP _SEG macro.

The _intdosx function returns the value of the AX register after the system call is
completed. If the cflag field in outregs is nonzero, an error has occurred; in such
cases, _ doserrno is also set to the corresponding error code.

436 intdosx

Compatibility Standards: None

See Also

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

/* INTDOSX.C Sends a $-terminated string to the standard output device */

#include <dos.h>
#include <stdio.h>

char far *buffer "Dollar-sign terminated string\n\r\n\r$";

void main(void
{

}

union REGS inregs, outregs;
struct _SREGS segregs;

/* Print a $-terminated string on the screen using DOS function 0x09. */
inregs.h.ah = 0x9;
inregs.x.dx = _FP_OFF(buffer);
segregs.ds = _FP_SEG(buffer);
_intdosx(&inregs, &outregs, &segregs);

Dollar-sign terminated string

Description

Remarks

is Functions
Test characters for specified conditions.

#include <ctype.h>

int isalnum(int c);

int isalpha(int c);

int __ isascii(int c);

int iscntrl(int c);

int __ iscsym(int c);

int __ iscsymf(int c);

int isdigit(int c);

int isgraph(int c);

int islower(int c);

int isprint(int c);

int ispunct(int c);

int isspace(int c);

int isupper(int c);

int isxdigit(int c);

c Integer to be tested

is Functions 437

Each function in the is family tests a given integer value, returning a nonzero
value if the integer satisfies the test condition and 0 if it does not. The ASCII char
acter set is assumed.

438 is Functions

Return Value

Compatibility

The is functions and their test conditions are listed below:

Function

isalnum

isalpha
__ isascii

iscntrl
__ iscsym

__ iscsymf

isdigit
isgraph

islower

isprint

ispunct
isspace

isupper

isxdigit

Test Condition

Alphanumeric CA'-'Z', 'a'-'z', or '0'-'9')

Letter C N -'Z' or 'a' -'z')

ASCII character (OxOO - Ox7F)

Control character (OxOO - OxlF or Ox7F)

Letter, underscore, or digit

Letter or underscore

Digit CO'-'9')

Printable character except space C ')
Lowercase letter Ca'-'z')

Printable character (Ox20 - Ox7E)

Punctuation character

White-space character (Ox09 - OxOD or Ox20)

Uppercase letter (' A' -'Z')

Hexadecimal digit C A'-'F' ,'a'-'f', or '0'-'9')

The __ isascii routine produces meaningful results for all integer values. However,
the remaining routines produce a defined result only for integer values correspond
ing to the ASCII character set (that is, only where __ isascii holds true) or for the
non-ASCII value EOF (defined in STDIO.H).

These routines are implemented both as functions and as macros. For details on
choosing a function or a macro implementation, see "Choosing Between Functions
and Macros" on page 9.

These routines return a nonzero value if the integer satisfies the test condition and
o if it does not.

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace,
isupper, isxdigit

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN, WIN, WIN DLL

DOS32X

See Also

Example

is Functions 439

__ isascii

Standards: UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use __ isascii for compatibility with ANSI naming conventions of non-ANSI func
tions. Use isascii and link with OLDNAMES.Lm for UNIX compatibility.

__ iscsym, __ iscsymf

Standards: None

16-Bit: DOS, QWIN, WIN, WINDLL

32-Bit: DOS32X

__ toascii, tolower, toupper functions

/* ISFAM.C: This program tests all characters between 0x0 and 0x7F,
* then displays each character with abbreviations for the character-type
* codes that apply.
*/

#include <stdio.h>
#include <ctype.h>

void maine void)
{

int ch;
fore ch = 0; ch <= 0x7F; ch++
{

pri ntf("%.2x " ch); ,
printf(" %c", isprint(ch
pri ntf("%4s" , isalnum(ch
pri ntf("%35", isalpha(ch
pri ntf("%3s" , isascii(ch
pri ntf("%3s" , iscntrl(ch)

pri ntf("%3s" , __ iscsym(ch
printf("%3s", __ iscsymf(ch
printf("%3s", isdigit(ch)

printf("%3s", isgraph(ch)

pri ntf("%3s" , islower(ch)

printf("%3s", ispunct(ch)

printf(n%3s", isspace(ch)

printf("%3s", isprint(ch)

pri ntf("%3s" , isupper(ch)

pri ntf("%3s", isxdigit(ch
printf("\n") ;

}
}

? ch '\0 ') ;
? "AN" II ..);

? "A" It") ;
? "AS" : "") ;

? "e" "") ;
) ? "CS " : "") ;

) ? "CSF" : "");

? "0") ;
? "Gil) ;
? ilL");

? "pun) ;
? "S") ;
? "PR") ;
? "U");

) ? "X");

440 is Functions

Output 00
01
02

38
39
3a
3b
3c
3d
3e
3f
40
41
42

8 AN
9 AN

;
<

>
?
@

A AN
B AN

AS C
AS C
AS C

AS
AS
AS
AS
AS
AS
AS
AS
AS

A AS
A AS

CS
CS

CS CSF
CS CSF

D G
D G

G
G
G
G
G
G
G
G
G

PR X
PR X

PU PR
PU PR
PU PR
PU PR
PU PR
PU PR
PU PR

PR U X
PR U X

Description

Remarks

Return Value

_ isatty 441

_isatty
Checks for a character device.

#include <io.h> Required only for function declarations

int _isatty(int handle);

handle Handle referring to device to be tested

The _isatty function determines whether handle is associated with a character
device (a terminal, console, printer, or serial port).

The _ isatty function returns a nonzero value if the device is a character device.
Otherwise, the return value is O.

Compatibility Standards: UNIX

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _isatty for compatibility with ANSI naming conventions of non-ANSI func
tions. Use isatty and link with OLDNAMES.LIB for UNIX compatibility.

/* ISATTY.C: This program checks to see whether stdout has been
* redirected to a file.
*/

#include <stdio.h>
1hnclude <io.h>

void main(void
{

}

if(_isatty(_fileno(stdout)))
printf("stdout has not been redirected to a file\n");

else
printf("stdout has been redirected to a file\n");

stdout has not been redirected to a file

442 itoa

Description

Remarks

Return Value

itoa
Converts an integer to a string.

#include <stdlih.h> Required only for function declarations

char * _itoa(int value, char *string, int radix);

value

string

radix

Number to be converted

String result

Base of value

The _ itoa function converts the digits of the given value argument to a null
terminated character string and stores the result (up to 17 bytes) in string. The
radix argument specifies the base of value; it must be in the range 2-36. If radix
equals 10 and value is negative, the first character of the stored string is the minus
sign (-).

The _itoa function returns a pointer to string. There is no error return.

Compatibility Standards:

16-Bit:

32-Bit:

None

See Also

Example

DOS, QWIN, WIN, WIN DLL

DOS32X

1* ITOA.C: This program converts integers of various sizes to strings
* in various radixes.
*1

#include <stdlib.h>
#include <stdio.h>

Output

void main(void)
{

char buffer[20];
i nt i = 3445;
long 1 = -344115L;
unsigned long ul = 1234567890UL;

_ itoa (i , buffer, 10) ;
pri ntf("String of integer %d (radix
_ itoa (i , buffer, 16) ;
printf("String of integer %d (radix
_ itoa(i , buffer, 2) ;
printf("String of integer %d (radix

_ltoa(1, buffer, 16);

ito a 443

10): %s\n", i , buffer) ;

16): 0x%s\n", i , buffer) ;

2) : %s\n", i , buffer) ;

printf("String of long int %ld (radix 16): 0x%s\n", 1, buffer);

_ultoa(ul, buffer, 16);
printf("String of unsigned long %lu (radix 16): 0x%s\n", ul, buffer);

String of integer 3445 (radix 10) : 3445
String of integer 3445 (radix 16) : 0xd75
String of integer 3445 (radix 2) : 110101110101
String of long int -344115 (radix 16): 0xfffabfcd
String of unsigned long 1234567890 (radix 16): 0x499602d2

444 kbhit

Description

Remarks

Return Value

kbhit
Checks the console for keyboard input.

#include <conio.h> Required only for function declarations

int _kbhit(void);

The _ kbhit function checks the console for a recent keystroke. If the function re
turns a nonzero value, a keystroke is waiting in the buffer. The program can then
call_getch or _getche to get the keystroke.

The _kbhit function returns a nonzero value if a key has been pressed. Otherwise,
it returns o.

Compatibility Standards: None

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

1* KBHIT.C: This program loops until the user presses a key.
* If _kbhit returns nonzero, a keystroke is waiting in the buffer.
* The program can call _getch or _getche to get the keystroke.
*1

#include <conio.h>
#include <stdio.h>

void maine void)
{

1* Di spl ay message unti 1 key is pressed. *1
while(Lkbhit())

_cputs("Hit mell ");

1* Use _getch to throw key away. *1
printf("\nKey struck was '%c'\n", _getch());
_getch();

Hit mel I Hit mel I Hit mel I Hit mel I Hit mel I Hit mel I Hit mel I
Key struck was 'k'

Description

Remarks

Return Value

labs 445

labs
Calculates the absolute value of a long integer.

#include <stdlib.h>

#include <math.h>

long labs(long n);

n

Required only for function declarations

Long-integer value

The labs function produces the absolute value of its long-integer argument n.

The labs function returns the absolute value of its argument. There is no error
return.

Compatibility Standards: ANSI

See Also

Example

16-Bit:

32-Bit:

DOS, QWIN, WIN, WINDLL

DOS32X

abs, _ cabs, fabs

1* ABS.C: This program computes and displays the absolute values of
* several numbers.
*1

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

446 labs

Output

void main(void)
{

i nt i x -4, iy;
long lx -41567L, ly;
double dx -3.141593, dy;

iy = abs(ix) ;
pri ntf("The absolute value

ly = labs(lx) ;
pri ntf("The absolute value

dy = fabs(dx) ;
printf("The absolute value

The absolute value of -4 is 4

of %d

of %ld

of %f

The absolute value of -41567 is 41567

is %d\n", ix, iy) ;

is %ld\n", 1 x, ly) ;

is %f\n", dx, dy) ;

The absolute value of -3.141593 is 3.141593

Description

Remarks

Return Value

Compatibility

See Also

Idexp, _Idexpl
Compute a real number from the mantissa and exponent.

#include <math.h>

double ldexp(double x, int exp);

long double _ldexpl(long double x, int exp);

x

exp

Floating-point value

Integer exponent

Idexp, _Idexpl 447

The ldexp and _ldexpl functions calculate the value of x * 2exp.

The ldexp and _ldexpl functions return x * 2exp. If an overflow results, the
functions return ± HUGE_ VAL (depending on the sign of x) and set errno to
ERANGE.

The _ldexpl function uses the SO-bit, lO-byte coprocessor form of arguments and
return values. See the reference page on the long double functions for more details
on this data type.

ldexp

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_ldexpl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

frexp,modf

448 Idexp, _Idexpl

Example /* LDEXP. C */
#include <math.h>
#include <stdio.h>

Output

void main(void)
{

}

double x = 4.0, y;
int p = 3;

y = ldexp(x, p);
printf("%2.1f times two to the power of %d is %2.1f\n", x, p, y);

4.0 times two to the power of 3 is 32.0

Description

Remarks

Return Value

Compatibility

See Also

Idiv
Computes the quotient and remainder of a long integer.

#include <stdlih.h>

ldiv_t ldiv (long int numer, long int denom);

numer

denom

Numerator

Denominator

Idiv 449

The ldiv function divides numer by denom, computing the quotient and the re
mainder. The sign of the quotient is the same as that of the mathematical quotient.
Its absolute value is the largest integer that is less than the absolute value of the
mathematical quotient. If the denominator is 0, the program will terminate with an
error message.

The ldiv function is similar to the div function, with the difference being that the
arguments and the members of the returned structure are all of type long int.

The ldiv_t structure, defined in STDLIB.H, contains the following elements:

Element

long int quot

long int rem

Description

Quotient

Remainder

The ldiv function returns a structure of type ldiv _ t, comprising both the quotient
and the remainder.

Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

div

450 Idiv

Example 1* LDIV.C: This program takes two long integers as command-line

Output

* arguments and displays the results of the integer division.
*1

#include <stdlib.h>
#include <math.h>
#include <stdio.h>

void main(void)
{

}

long x = 5149627, y 234879;
ldiv_t diy_result;

diY_result = ldiv(x, y);
printf("For %ld I %ld, the quotient is ", x, y);
printf("%ld, and the remainder is %ld\n",

div_result.quot, div_result.rem);

For 5149627 I 234879, the quotient is 21, and the remainder is 217168

Description

Remarks

Return Value

Ifind 451

Ifind
Performs a linear search for the specified key.

#include <search.h> Required only for function declarations

void * _lfind(const void *key, const void *base, unsigned int *num,
unsigned int width, int (__ cdecl *compare)(const void *elem),
const void *elem2));

key

base

num

width

compare()

elem}

elem2

Object to search for

Pointer to base of search data

Number of array elements

Width of array elements

Pointer to comparison routine

Pointer to the key for the search

Pointer to the array element to be compared with
the key

The _lfind function performs a linear search for the value key in an array of num
elements; each element is width bytes in size. (Unlike bsearch, _lfind does not
require the array to be sorted.) The base argument is a pointer to the base of the
array to be searched.

The compare argument is a pointer to a user-supplied routine that compares two
array elements and then returns a value specifying their relationship. The _lfind
function calls the compare routine one or more times during the search, passing
pointers to two array elements on each call. This routine must compare the ele
ments, then return one of the following values:

Value

Nonzero
o

Meaning

Elements are different

Elements are identical

If the key is found, _lfind returns a pointer to the element of the array at base that
matches key. If the key is not found, _lfind returns NULL.

452 Ifind

Compatibility Standards: UNIX

See Also

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _lfind for compatibility with ANSI naming conventions of non-ANSI func
tions. Use lfind and link with OLDNAMES.LIB for UNIX compatibility.

bsearch,_lsearch,qsort

/* LFIND.C: This program uses _lfind to search for the word "hello"
* in the command-line arguments.
*/

#include <search.h>
#include <string.h>
#include <stdio.h>

int comparee void *argl, void *arg2);

void maine int argc, char **argv)
{

}

char **result;
char *key = "hello";

result = (char **)_lfind(&key, argv,
&argc, sizeof(char *), compare);

if(result
printf("%s found\n", *result);

else
pri ntf("hell 0 not found! \n");

int compare(void *argl, void *arg2
{

return(_stricmp (* (char**) argl, * (char**) arg2);
}

[C:\LIBREF] lfind What if I said Hello world
Hello found

Description

Remarks

Return Value

Compatibility

See Also

lineto Functions
Draw lines to specified points.

#include <graph.h>

short __ far _lineto(short x, short y);

short __ far _lineto_ w(double wx, double wy);

x,y

wx,wy

End point

End point

lineto Functions 453

The functions in the _lineto family draw a line from the current graphics position
up to and including the destination point. The destination point for the _lineto
function is given by the view-coordinate point (x, y). The destination point for the
lineto w function is given by the window-coordinate point (wx, wy).

The line is drawn using the current color, logical write mode, and line style. If no
error occurs, _lineto sets the current graphics position to the view-coordinate
point (x, y); _lineto_ w sets the current position to the window-coordinate point
(wx, wy).

If you use _floodfill to fill in a closed figure drawn with _lineto calls, the figure
must be drawn with a solid line-style pattern.

The _lineto and _lineto_ w routines return a nonzero value if anything is drawn;
otherwise, they return o.

Standards: None

16-Bit: DOS

32-Bit: None

_getcurrentposition functions, _moveto functions, _setlinestyle

454 lineto Functions

Example /* MOVETO.C: This program draws line segments of different colors. */

#include <graph.h>
#include <stdlib.h>
#include <conio.h>

void main(void)
{

short x, y, xinc, yinc, color 1;
struct _videoconfig v;

}

/* Find a valid graphics mode. */
if(Lsetvideomode(_MAXCOLORMODE))

exit(1);
_getvideoconfig(&v);
xinc v.numxpixels / 50;
yinc v.numypixels / 50;

for(x = 0, y = v.numypixels
{

_setcolor(color++ % 16);
_moveto(x, 0);
_lineto(0, y);

}
_getch() ;

_setvideomode(DEFAULTMODE);
exit(0);

1; x < v.numxpixels; x += xinc, y yinc

Description

Remarks

localeconv 455

localeconv
Gets detailed information on locale settings.

#include <locale.h>

struct lconv *localeconv(void);

The localeconv function gets detailed information on the locale-specific settings
for numeric formatting of the program's current locale. This information is stored
in a structure of type lconv.

The lconv structure, defined in LOCALE.H, contains the following members:

Member

char *decimaL point

char *thousandL sep

char *grouping

char *inL curL symbol

char *currency_symbol

char *molL decimaL point

char *molLthousandLsep

char *mon_grouping

char *POsitivLsign

char *negativLsign

char inLfracdigits

char frac_ digits

Description

Decimal-point character for nonmonetary quantities.

Character used to separate groups of digits to the left
of the decimal point for nonmonetary quantities.

Size of each group of digits in nonmonetary quantities.

International currency symbol for the current locale.
The first three characters specify the alphabetic
international currency symbol as defined in the ISO
4217 Codes for the Representation of Currency and
Funds standard. The fourth character (immediately
preceding the null character) is used to separate the
international currency symbol from the monetary
quantity.

Local currency symbol for the current locale.

Decimal-point character for monetary quantities.

Separator for groups of digits to the left of the decimal
place in monetary quantities.

Size of each group of digits in monetary quantities.

String denoting sign for nonnegative monetary
quantities.

String denoting sign for negative monetary quantities.

Number of digits to the right of the decimal point in
internationally formatted monetary quantities.

Number of digits to the right of the decimal point in
formatted monetary quantities.

456 localeconv

Member

char p_ CL precedes

char "-CL precedes

char "-sign_ posn

Description

Set to 1 if the currency symbol precedes the value for
a nonnegative formatted monetary quantity. Set to 0 if
the symbol follows the value.

Set to 1 if the currency symbol is separated by a space
from the value for a nonnegative formatted monetary
quantity. Set to 0 if there is no space separation.

Set to 1 if the currency symbol precedes the value for
a negative formatted monetary quantity. Set to 0 if the
symbol succeeds the value.

Set to 1 if the currency symbol is separated by a space
from the value for a negative formatted monetary
quantity. Set to 0 if there is no space separation.

Position of positive sign in nonnegative formatted
monetary quantities.

Position of positive sign in negative formatted
monetary quantities.

The char * members of the struct are pointers to strings. Any of these (other than
char *decimaL point) that equals "" is either of zero length or is not supported in
the current locale. The char members of the struct are nonnegative numbers. Any
of these that equals CHAR_MAX is not supported in the current locale.

The elements of grouping and mOIL grouping are interpreted according to the
following rules:

Value

CHAlLMAX
o

n

Interpretation

No further grouping is to be performed.

The previous element is to be repeatedly used for the remainder
of the digits.

The integer value n is the number of digits that make up the
current group. The next element is examined to determine the
size of the next group of digits before the current group.

The values for p_sign_posn and ILsign_posn are interpreted according to the
following rules:

Value

o

2

3

4

Interpretation

Parentheses surround the quantity and currency symbol

Sign string precedes the quantity and currency symbol

Sign string follows the quantity and currency symbol

Sign string immediately precedes the currency symbol

Sign string immediately follows the currency symbol

Return Value

Compatibility

See Also

localeconv 457

The localeconv function returns a pointer to a filled in object of type struct lconv.
The values contained in the object can be overwritten by susequent calls to
localeconv and do not directly modify the object. Calls to the setlocale function
with category values of LC_ALL, LC_MONETARY, or LC_NUMERIC
will overwrite the contents of the structure.

Standards: ANSI

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

setlocale, strcoll, strftime, strxfrm

458 localtime

Description

Remarks

localtime
Converts a time value and corrects for the local time zone.

#include <time.h>

struct tm *localtime(const timL t *timer);

timer Pointer to stored time

The localtime function converts a time stored as a time_ t value and stores the re
sult in a structure of type tm. The long value timer represents the seconds elapsed
since midnight (00:00:00), December 31,1899, Universal Coordinated Time. This
value is usually obtained from the time function.

The fields of the structure type tm store the following values:

Element

int tm_sec

int tIlLmin
int tm_hour
inttm_mday

int tIlLmon
int tm_year

int tIlL wday
int tIlLyday

int tm_isdst

Value Stored

Seconds

Minutes

Hours (0-24)

Day of month (1-31)

Month (0-11; January = 0)

Year (current year minus 1900)

Day of week (0 - 6; Sunday = 0)

Day of year (0-365; January 1 = 0)

Nonzero if daylight saving time is in effect, otherwise 0

Note that the gmtime, mktime, and localtime functions use a single statically allo
cated tm structure for the conversion. Each call to one of these routines destroys
the result of the previous call.

The localtime function makes corrections for the local time zone if the user first
sets the environment variable TZ. When TZ is set, three other environment varia
bles (_ timezone, _daylight, and _ tzname) are automatically set as well. See
_ tzset for a description of these variables.

The TZ variable is not part of the ANSI standard definition of local time but is a
Microsoft extension.

Return Value

localtime 459

The localtime function returns a pointer to the structure result. If the value in
timer represents a date before midnight, December 31,1899, the function returns
NULL.

Compatibility Standards:

16-Bit:

32-Bit:

ANSI, UNIX

See Also

Example

Output

DOS, QWIN, WIN, WINDLL

DOS32X

asctime, ctime, _ftime, gmtime, time, _ tzset

/* LOCALTIM.C: This program uses time to get the current time and
* then uses localtime to convert this time to a structure representing
* the local time. The program converts the result from a 24-hour clock
* to a 12-hour clock and determines the proper extension (AM or PM).
*/

#include <stdio.h>
#include <string.h>
#include <time.h>

void maine void)
{

struct tm *newtime;
char am_pm[] = "AM";
time_t long_time;

timet &long_time);
newtime = localtime(&long_time);

if(newtime->tm_hour < 12
strcpy(am_ pm, "AM1I) ;

if(newtime->tm_hour > 12
newtime->tm - hour -=12;

/* Get time as long integer. */
/* Convert to local time. */

/* Set up extension. */

/* Convert from 24-hour */
/* to 12-hour clock. */

printf("%.19s %s\n", asctime(newtime), am_pm);
}

Fri Jun 16 06:27:02 AM

460 _locking

Description

Remarks

_locking
Locks or unlocks bytes of a file.

#include <sys\locking.h>

#include <io.h> Required only for function declarations

int _locking(int handle, int mode, long nbytes);

handle

mode

nbytes

File handle

File-locking mode

Number of bytes to lock

The _locking function locks or unlocks nbytes bytes of the file specified by
handle. Locking bytes in a file prevents access to those bytes by other processes.
All locking or unlocking begins at the current position of the file pointer and
proceeds for the next nbytes bytes. It is possible to lock bytes past the end of the
file.

The mode argument specifies the locking action to be performed. It must be one of
the following manifest constants:

Constant

_LK_NBRLCK
_LK_RLCK

_LK_UNLCK

Action

Locks the specified bytes. If the bytes cannot be locked,
immediately tries again after 1 second. If, after 10 attempts, the
bytes cannot be locked, returns an error.

Locks the specified bytes. If bytes cannot be locked, returns an
error.

Same as _LILNBLCK.

Same as _LILLOCK.

Unlocks the specified bytes. (The bytes must have been
previously locked.)

More than one region of a file can be locked, but no overlapping regions are
allowed.

When a region of a file is being unlocked, it must correspond to a region that was
previously locked. The _locking function does not merge adj acent regions; if two
locked regions are adjacent, each region must be unlocked separately.

Return Value

_locking 461

Regions should be locked only briefly and should be unlocked before closing a file
or exiting the program.

The _locking function should be used only with DOS versions 3.0 and later; it has
no effect under earlier versions of DOS. Also, file sharing must be loaded to use
the _locking function. Note that with DOS versions 3.0 and 3.1, the files locked
by parent processes may become unlocked when child processes exit.

The _locking function returns 0 if successful. A return value of -1 indicates
failure, and errno is set to one of the following values:

Value

EACCES

EBADF

EDEADLOCK

EINVAL

Meaning

Locking violation (file already locked or unlocked).

Invalid file handle.

Locking violation. This is returned when the _LlLLOCK or
_LlLRLCK flag is specified and the file cannot be locked after
10 attempts.

An invalid argument was given to the function.

Compatibility Standards: UNIX

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _locking for compatibility with ANSI naming conventions of non-ANSI func
tions. Use locking and link with OLDNAMES.LIB for UNIX compatibility.

1* LOCKING.C: This program opens a file with sharing. It locks some
* bytes before reading them, then unlocks them. Note that the program
* works correctly only if the following conditions are met:
* - The file exists
* - The program is run with DOS version 3.0 or later
* with file sharing installed (SHARE.COM or SHARE.EXE), or
* if a Microsoft Networks compatible network is running
*1

#include <io.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <sys\locking.h>
#include <share.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

462 _locking

Output

void main(void)
{

}

int fh, numread;
long pas, result;
char buffer[40];

1* Quit if can't open file or DOS version doesn't support sharing. *1
fh = _sopen("locking.c", _D_RDWR, _SH_DENYNO, _S_IREAD I _S_IWRITE);
if((fh == -1) II Cosmajor < 3))

exit(1);

1* Lock some bytes and read them. Then unlock. *1
if(_locking(fh, LK_NBLCK, 30L) != -1)
{

}

printf("No one can change these bytes while I'm reading them\n");
numread = _read(fh, buffer, 30);
printf("%d bytes read: %.30s\n", numread, buffer);
_locking(fh, LK_UNLCK, 30L);
printf("Now I'm done. Do what you will with them\n");

else
perror("Locking failed\n");

_close(fh);

No one can change these bytes while I'm reading them
30 bytes read: 1* LOCKING.C: This program open
Now I'm done. Do what you will with them

Description

Remarks

Return Value

Compatibility

log Functions
Calculate logarithms.

#include <math.h>

double log(double x);

double loglO(double x);

long double _logl(long double x);

long double _loglOl(long double x);

log Functions 463

x Value whose logarithm is to be found

The log and loglO functions calculate the natural logarithm and the base-I0 loga
rithm, respectively, of x. The _logl and _loglOi functions are the 80-bit counter
parts and use the 80-bit, lO-byte coprocessor form of arguments and return values.
See the reference page on the long double functions for more details on this data
type.

The log functions return the logarithm of the argument x. If x is negative, the func
tions print a _DOMAIN error message to stderr, return the value -HUGE_ VAL,
and set errno to EDOM. If x is 0, the functions print a _SING error message to
stderr, return the value -HUGE_ VAL, and set errno to ERANGE.

Error handling can be modified by using the _matherr or _matherrl routine.

log,loglO

Standards: ANSI, UNIX

I6-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

464 log Functions

See Also

Example

Output

_logl, _loglOi

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

exp, _matherr, pow functions

1* LOG.C: This program uses log and 10g10 to calculate the natural
* logarithm and the base-10 logarithm of 9,000.
*1

#include <math.h>
#include <stdio.h>

void maine void)
{

}

double x = 9000.0;
double y;

y=log(x);
printf("loge %.2f) = %f\n", x, y);
y=10g10(x);
printf("10g10(%.2f) = %f\n", x, y);

loge 9000.00) 9.104980
10g10(9000.00 = 3.954243

long double Functions 465

long double Functions
The 8087 family of numeric coprocessor chips supports the 80-bit precision float
ing-point data type. Beginning with Microsoft eversion 6.0, the long double func
tions, whose names end with I, map the C long double type into this 80-bit,
lO-byte form. Unlike the regular floating-point functions (such as acos), which re
turn values oftype double, these long double functions (such as _acosl) return
values of type long double. The long double functions also return their values on
the coprocessor stack for all calling conventions.

The long double type is also supported by the addition of the "L" prefix for a
floating-point format specification in the printf and scanf family of functions.

The long double versions are described on the reference pages for their regular
counterparts. These are the regular run-time math functions with corresponding
long double equivalents:

Function Long Double Form Function Long Double Form

acos _acosl frexp _frexpl

asin _asinl _hypot _hypotl

atan _atanl Idexp _Idexpl

atan2 _atan21 log _Iogl

atof _atold loglO _loglOi

_cahs _cabsl _matherr _matherrl

ceil _ceill modf _modfl

cos _cosl pow _powl

cosh _coshl sin _sinl

exp _expl sinh _sinhl

fabs _fabsl sqrt _sqrtl

floor _floorl tan _tanl

fmod _fmodl tanh _tanhl

466 longjmp

Description

Remarks

longjmp
Restores stack environment and execution locale.

#include <setjmp.h>

void longjmp(jmp_ buf env, int value);

env

value

Variable in which environment is stored

Value to be returned to setjmp call

The longjmp function restores a stack environment and execution locale pre
viously saved in env by setjmp. The setjmp and longjmp functions provide a way
to execute a nonlocal goto; they are typically used to pass execution control to
error handling or recovery code in a previously called routine without using the
normal call and return conventions.

A call to setjmp causes the current stack environment to be saved in env. A sub
sequent call to longjmp restores the saved environment and returns control to the
point immediately following the corresponding setjmp call. Execution resumes as
if value had just been returned by the setjmp call. The values of all variables (ex
cept register variables) that are accessible to the routine receiving control contain
the values they had when longjmp was called. The values of register variables are
unpredictable.

The longjmp function must be called before the function that called setjmp re
turns. If longjmp is called after the function calling setjmp returns, unpredictable
program behavior results.

The value returned by setjmp must be nonzero. If value is passed as 0, the value 1
is substituted in the actual return.

Observe the following four restrictions when using longjmp:

• Do not assume that the values of the register variables will remain the same.
The values of register variables in the routine calling setjmp may not be re
stored to the proper values after longjmp is executed. Do not use longjmp with
the global register allocation (fOe) option to the CL driver.

• Do not use longjmp to transfer control from within one overlay to within
another. The overlay manager keeps the overlay in memory after a call to
longjmp.

Return Value

Compatibility

See Also

Example

longjmp 467

• Do not use longjmp to transfer control out of an interrupt-handling routine un
less the interrupt is caused by a floating-point exception. In this case, a program
may return from an interrupt handler via longjmp if it first reinitializes the
floating-point math package by calling _fpreset.

• Do not use longjmp or setjmp from a C++ program.

None.

Standards: ANSI, UNIX

16-Bit:

32-Bit:

setjmp

DOS, QWIN, WIN, WIN DLL

DOS32X

See the example for _fpreset.

468 _Irotl, _Irotr

Description

Remarks

Return Value

_Irotl, _Irotr
Rotate bits to the left <_lrotl) or right <_lrotr).

#include <stdlib.h>

unsigned long _lrotl(unsigned long value, int shift);

unsigned long _lrotr(unsigned long value, int shift);

value

shift

Value to be rotated

Number of bits to shift

The _lrotl and _lrotr functions rotate value by shift bits. The _lrotl function
rotates the value left. The _lrotr function rotates the value right. Both functions
"wrap" bits rotated off one end of value to the other end.

Both functions return the rotated value. There is no error return.

Compatibility Standards: None

See Also

Example

Output

16-Bit:

32-Bit:

/* LROT.C */
#include <stdlib.h>
#include <stdio.h>

void main(void)
{

DOS, QWIN, WIN, WIN DLL

DOS32X

unsigned long val = 0x0fac35791;

}

printf("0x%8.8lx rotated left eight times is 0x%8.8lx\n",
val, _lrotl(val, 8));

printf("0x%8.8lx rotated right four times is 0x%8.8lx\n",
val, _lrotr(val, 4));

xfac35791 rotated left eight times is 0xc35791fa
0xfac35791 rotated right four times is 0xlfac3579

Description

Remarks

Return Value

Isearch 469

Isearch
Performs a linear search for a value; adds to end of list if not found.

#include <search.h> Required only for function declarations

void * _lsearch(const void *key, const void *base, unsigned int *num,
unsigned int width, int (__ cdecl *compare)(const void *eleml,
const void *elem2));

key

base

num

width

compare

eleml

elem2

Object to search for

Pointer to base of search data

Number of elements

Width of elements

Pointer to comparison routine

Pointer to the key for the search

Pointer to the array element to be compared with
the key

The _lsearch function performs a linear search for the value key in an array of
num elements, each of width bytes in size. (Unlike bsearch, _lsearch does not re
quire the array to be sorted.) The base argument is a pointer to the base of the
array to be searched.

If key is not found, _lsearch adds it to the end of the array.

The compare argument is a pointer to a user-supplied routine that compares two
array elements and returns a value specifying their relationship. The _lsearch
function calls the compare routine one or more times during the search, passing
pointers to two array elements on each call. This routine must compare the ele
ments, then return one of the following values:

Value

Nonzero
o

Meaning

Elements are different

Elements are identical

If the key is found, _lsearch returns a pointer to the element of the array at base
that matches key. If the key is not found, _lsearch returns a pointer to the newly
added item at the end of the array.

470 Isearch

Compatibility

See Also

Example

Standards: UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _lsearch for compatibility with ANSI naming conventions of non-ANSI func
tions. Use lsearch and link with OLDNAMES.LIB for UNIX compatibility.

bsearch, _lfiod

See the example for _lfiod.

Description

Remarks

Return Value

Iseek 471

Iseek
Moves a file pointer to the specified location.

#include <io.h>

#include <stdio.h>

Required only for function declarations

long _lseek(int handle, long offset, int origin);

handle

offset

origin

Handle referring to open file

Number of bytes from origin

Initial position

The _lseek function moves the file pointer associated with handle to a new loca
tion that is offset bytes from origin. The next operation on the file occurs at the
new location. The origin argument must be one of the following constants, which
are defined in STDIO.H:

Origin

SEEK_SET

SEEK_CUR

SEEK_END

Definition

Beginning of file

Current position of file pointer

End of file

The _lseek function can be used to reposition the pointer anywhere in a file. The
pointer can also be positioned beyond the end of the file. However, an attempt to
position the pointer before the beginning of the file causes an error.

The _lseek function returns the offset, in bytes, of the new position from the begin
ning of the file. The function returns -lL to indicate an error and sets errno to one
of the following values:

Value

EBADF

EINVAL

Meaning

Invalid file handle

Invalid value for origin, or position specified by offset is before
the beginning of the file

On devices incapable of seeking (such as terminals and printers), the return value
is undefined.

472 Iseek

Compatibility Standards: UNIX

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _lseek for compatibility with ANSI naming conventions of non-ANSI func
tions. Use lseek and link with OLDNAMES.LIB for UNIX compatibility.

fseek, _ tell

1* LSEEK.C: This program first opens a file named LSEEK.C.
* It then uses lseek to find the beginning of the file,
* to find the current position in the file, and to find
* the end of the file.
*1

#include <io.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>

void maine void)
{

int fh;
long pas;
char buffer[10];

1* Position of file pointer *1

fh = _open("lseek.c", _O_RDONLY);

1* Seek the beginning of the file: *1
pos = _ lseek(fh, 0L, SEEK_SET);
if(pos == -lL)

perror("_lseek to beginning failed");
else

printf("Position for beginning of file seek %ld\n", pos);

1* Move file pointer a little *1
_read(fh, buffer, 10);

1* Find current position: *1
pos = _ lseek(fh, 0L, SEEK_CUR);
if(pos == -lL)

perror("_ 1 seek to current positi on fail ed");
else

printf("Position for current position seek = %ld\n", pos);

Output

1* Set the end of the file: *1
pos = _lseek(fh, 0L, SEEK_END);
if(pos == -lL)

perror("_lseek to end failed");
else

pri ntf("Positi on for end of fil e seek %1 d\n", pos);

_close(fh);

Position for beginning of file seek = 0
Position for current position seek = 10
Position for end of file seek = 1183

Iseek 473

474 Itoa

Description

Remarks

Return Value

Compatibility

See Also

Example

Iloa
Converts a long integer to a string.

#include <stdJih.h> Required only for function declarations

char * _ltoa(long value, char *string, int radix);

value

string

radix

Number to be converted

String result

Base of value

The _ltoa function converts the digits of value to a null-terminated character
string and stores the result (up to 33 bytes) in string. The radix argument specifies
the base of value, which must be in the range 2-36. If radix equals 10 and value is
negative, the first character of the stored string is the minus sign (-).

The _ltoa function returns a pointer to string. There is no error return.

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

/* ITOA.C: This program converts integers of various sizes to strings
* in various radixes.
*/

#include <stdlib.h>
#include <stdio.h>

Output

void maine void)
{

char buffer[20];
i nt i = 3445;
long 1 = ~344115L;
unsigned long ul = 1234567890UL;

_ itoa (i , buffer, 10) ;
printf("String of integer %d (radix
_ itoa (i , buffer, 16) ;
printf("String of integer %d (radix
_ itoa (i , buffer, 2) ;
printf("String of integer %d (radix

_ltoa(1, buffer, 16);

Itoa 475

10) : %s\n", i , buffer) ;

16) : 0x%s\n", i , buffer) ;

2) : %s\n", i , buffer) ;

printf("String of long int %ld (radix 16): 0x%s\n", 1, buffer);

_ultoa(ul, buffer, 16);
printf("String of unsigned long %lu (radix 16): 0x%s\n", ul, buffer);

String of integer 3445 (radix 10) : 3445
String of integer 3445 (radix 16) : 0xd75
String of integer 3445 (radix 2) : 110101110101
String of long i nt ~344115 (radix 16): 0xfffabfcd
String of unsigned long 1234567890 (radix 16): 0x499602d2

476 _ make path

Description

Remarks

_makepath
Creates a path name from components.

#include <stdlih.h>

void _makepath(char *path, char *drive, char *dir, char *fname, char *ext);

path Full path-name buffer

drive Drive letter

dir Directory path

fname Filename

ext File extension

The _makepath routine creates a single path name, composed of a drive letter,
directory path, filename, and filename extension. The path argument should point
to an empty buffer large enough to hold the complete path name. The constant
_MAX_PATH, defined in STDLIB.H, specifies the maximum size path that the
_makepath function can handle. The other arguments point to buffers containing
the path-name elements:

Buffer

drive

dir

fname

Description

The drive argument contains a letter (A, B, etc.) corresponding to the
desired drive and an optional trailing colon. The _makepath routine
will insert the colon automatically in the composite path name if it is
missing. If drive is a null character or an empty string, no drive letter
and colon will appear in the composite path string.

The dir argument contains the path of directories, not including the
drive designator or the actual filename. The trailing slash is optional,
and either forward slashes (\) or backslashes (\) or both may be
used in a single dir argument. If a trailing slash (/ or \) is not
specified, it will be inserted automatically. If dir is a null character or
an empty string, no slash is inserted in the composite path string.

The fname argument contains the base filename without any
extensions. If fname is NULL or points to an empty string, no
filename is inserted in the composite path string.

Return Value

Buffer

ext

_ make path 477

Description

The ext argument contains the actual filename extension, with or
without a leading period (.). The _makepath routine will insert the
period automatically if it does not appear in ext. If ext is a null
character or an empty string, no period is inserted in the composite
path string.

There are no size limits on any of the above four fields. However, the composite
path must be no larger than the _MAX_PATH constant. The _MAX_PATH
limit permits a path name much larger than current operating-system versions will
handle.

None.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

_ full path, _ splitpath

/* MAKEPATH.C */
#include <stdlib.h>
#include <stdio.h>

void main(void)
{

char path_buffer[_MAX_PATHJ;
char drive[_MAX_DRIVEJ;
char dir[_MAX_DIRJ;
char fname[_MAX_FNAMEJ;
char ext[_MAX_EXTJ;

_makepath(path_buffer, "c", "\ \c60\ \cl i bref\ \", "makepath", "c");
printf("Path created with _makepath: %s\n\n", path_buffer);
_splitpath(path_buffer, drive, dir, fname, ext);
printf("Path extracted with _splitpath:\n");
printf(" Drive: %s\n", drive);
printf(" Dir: %s\n", dir);
printf(" Filename: %s\n", fname);
printf(" Ext: %s\n", ext);

478 _ makepath

Output Path created with _makepath: c:\c60\clibref\makepath.c

Path extracted with _splitpath:
Drive: c:
Dir: \c60\clibref\
Filename: makepath
Ext: . c

Description

Remarks

malloc Functions
Allocate memory blocks.

#include <stdJib.h>

#include <malloc.h>

void *malloc(SizLt size);

malloc Functions 479

For ANSI compatibility (malloc only)

Required only for function declarations

void __ based(void) * _ bmalloc(__ segment seg, SizLt size);

void __ far * _fmalloc(SiZL t size);

void __ near * _nmalloc(SizLt size);

size Bytes to allocate

seg Based heap segment selector

Functions in the malloc family allocate a memory block of at least size bytes. The
block may be larger than size bytes because of space required for alignment and
maintenance information. If size is 0, each of these functions allocates a zero
length item in the heap and returns a valid pointer to that item.

The storage space pointed to by the return value is guaranteed to be suitably
aligned for storage of any type of object. To get a pointer to a type other than void,
use a type cast on the return value.

In large data models (compact-, large-, and huge-model programs), malloc maps
to _fmalloc. In small data models (tiny-, small-, and medium-model programs),
malloc maps to _nmalloc. The _fmalloc function allocates a memory block of at
least size bytes in the far heap, which is outside the default data segment.

The _ bmalloc function allocates a memory block of at least size bytes in the based
heap segment specified by the segment selector seg.

480 malloc Functions

The malloc functions allocate memory in the heap segment specified below:

Function

malloc
_bmalloc

_fmalloc
_nmalloc

Heap Segment

Depends on data model of program

Based heap segment specified by seg value

Far heap (outside default data segment)

Near heap (within default data segment)

The functions listed below call the malloc family of routines. In addition, the
startup code uses malloc to allocate storage for the environlenvp and argv strings
and arrays.

The following routines call malIoc:

calloc fseek
_execv fsetpos
_execve _fullpath
_execvp fwrite
_execvpe getc
_execl getchar
_execle _getcwd
_execlp _getdcwd
_execlpe gets
fgetc _getw
_fgetchar _popen
fgets printf
fprintf putc
fputc putchar
_fputchar _putenv
fputs puts
fread _putw
fscanf _searchenv

The following routines call_nmalIoc:

_nrealloc
_ncalloc
_nstrdup
realloc (in small data models)

_spawnv
_spawnve
_spawnvp
_spawnvpe
_spawnl
_spawnle
_spawnlp
_spawnlpe
_strdup
system
scanf
setvbuf
_tempnam
ungetc
vfprintf
vprintf

Return Value

Compatibility

See Also

The following routines call_fmalloc:

_frealloc
_fcalloc
_fstrdup
realloc (in large data models)

malloc Functions 481

In Microsoft eversion 5.1, the _fmalloc function would retry allocating within
the default data segment (i.e., in the near heap) if sufficient memory was not avail
able outside the default data segment. Since version 6.0, _fmalloc returns NULL
under these conditions.

The _freect, _memavl, and _memmax functions called malloc in Microsoft C
version 5.1 but do not do so in versions 6.0 and 7.0.

The malloc function returns a void pointer to the allocated space. The _nmalloc
function returns a (void __ near *) and _fmalloc returns a (void __ far *). The
_ bmalloc function returns a (void __ based(void) *).
The _ malloc, _ fmalloc, and _ nmalloc functions return NULL if there is insuffi
cient memory available. The _ bmalloc function returns _NULLOFF if there is in
sufficient memory available.

Always check the return from the malloc function, even if the amount of memory
requested is small.

malloc

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_bmalloc, _fmalloc, _nmalloc

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

calloc functions, free functions, realloc functions

482 malloc Functions

Example 1* MALLOC.C: This program allocates memory with malloc, then frees

Output

* the memory with free.
*1

#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>

1* Definition of MAX_PATH *1

void maine void)
{

}

char *string;

1* Allocate space for a path name *1
string = malloc(_MAX_PATH);
if(string == NULL)

printf("Insufficient memory available\n");
else

printf("Memory space allocated for pathname\n");
freer string);
printf("Memory freed\n");

Memory space allocated for pathname
Memory freed

Description

Remarks

_matherr, _matherrl 483

_ math err, _ matherrl
Handle math errors.

#include <math.h> .. ,

int _matherr(struct _exception *except);

int _matherrl(struct _exceptionl *except);

except Pointer to structure containing error information

The _ matherr functions process errors generated by the functions of the math
library. The math functions call the appropriate _matherr routine whenever an
error is detected. The _matherrl function uses the 80-bit, lO-byte coprocessor
form of arguments and return values. See the reference page on the long double
functions for more details on this data type.

The user can provide a different definition of the _matherr or _matherrl func
tion to carry out special error handling.

When an error occurs in a math routine, _matherr is called with a pointer to an
_ exception type structure (defined in MA TH.H) as an argument.

The _exception structure contains the following elements:

Element

int type

char *name

double argl, arg2

double retval

Description

Exception type

Name of function where error occurred

First and second (if any) argument to function

Value to be returned by function

The type specifies the type of math error. It is one of the following values, defined
inMATH.H:

Value

_DOMAIN

_SING

_OVERFLOW

_PLOSS

Meaning

Argument domain error

Argument singularity

Overflow range error

Partial loss of significance

484 _ matherr, _ matherrl

Return Value

Compatibility

See Also

Example

Value

_TLOSS

_UNDERFLOW

Meaning

Total loss of significance

Underflow range error

The structure member name is a pointer to a null-terminated string containing the
name of the function that caused the error. The structure members argl and arg2
specify the values that caused the error. (If only one argument is given, it is stored
in argl.)

The default return value for the given error is retval. If you change the return
value, remember that the return value must specify whether an error actually oc
curred. If the _matherr function returns 0, an error message can be displayed and
errno is set to an appropriate error value. If _matherr returns a nonzero value, no
error message is displayed, and errno remains unchanged.

The _matherr functions should return ° to indicate an error, and a nonzero value
to indicate successful corrective action.

_matherr

Standards: UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _matherr for compatibility with ANSI naming conventions of non-ANSI
functions. Use matherr and link with OLDNAMES.LIB for UNIX compatibility.

_matherrl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

acos functions, asin functions, atan functions, bessel functions, _cabs, cos func
tions, exp, _hypot, log functions, pow, sin functions, sqrt, tan functions

1* MATHERR.C: To use _matherr, you must turn off the Extended Dictionary
* flag within the Microsoft Programmer's WorkBench environment, or use the
* INOE linker option outside the enviroriment. For example:
* CL _matherr.c Ilink INOE
*1

#include <math.h>
#include <string.h>
#include <stdio.h>

Output

_matherr, _matherrl 485

void maine void)
{

/* Do several math operations that cause errors. The matherr
* routine handles DOMAIN errors, but lets the system handle
* other errors normally.
*/

printf("loge -2.0) = %e\n", loge -2.0));
printf("10gI0(-5.0) = %e\n", 10g10(-5.0));
printf("loge 0.0) = %e\n", loge 0.0));

/* Handle several math errors caused by passing a negative argument
* to log or 10g10 (_DOMAIN errors). When this happens, _matherr returns
* the natural or base-10 logarithm of the absolute value of the
* argument and suppresses the usual error message.
*/

int _matherr(struct _exception *except
{

/* Handle _DOMAIN errors for log or 10g10. */
if(except-)type == _DOMAIN)
{

}

else
{

if(strcmp(except-)name, "log") == 0)
{

}

except-)retval = loge -(except-)argl));
printf("Special: using absolute value: Is: DOMAIN error\n",

except-)name);
return 1;

el se i f(strcmp(except-)name, "10gI0") == 0)
{

}

except-)retval = 10g10(-(except-)argl));
printf("Special: using absolute value: Is: DOMAIN error\n",

except-)name);
return 1;

printf("Normal: ");
return 0; /* Else use the default actions */

Special: using absolute value: log: DOMAIN error
loge -2.0) = 6.931472e-001
Special: using absolute value: 10g10: _DOMAIN error
10g10(-5.0) = 6.989700e-001
Normal: log: SING error
loge 0.0) = -1.797693e+308

486 max

Description

Remarks

Return Value

max
Returns the larger of two values.

#include <stdlih.h>

type __ max(type a, type b);

type

a,b

Any numeric data type

Values of any numeric type to be compared

The __ max macro compares two values and returns the value of the larger one.
The arguments can be of any numeric data type, signed or unsigned. Both argu
ments and the return value must be of the same data type.

The macro returns the larger of the two arguments.

Compatibility Standards: None

See Also

Example

Output

16-Bit:

32-Bit:

1* MINMAX.C *1
#include <stdlib.h>
#include <stdio.h>

void maine void
{

int a 10;
int b 21;

DOS, QWIN, WIN, WIN DLL

DOS32X

printf("The larger of %d and %d is %d\n", a, b, max(a, b);
printf("The smaller of %d and %d is %d\n", a, b, mine a, b);

}

The larger of 10 and 21 is 21
The smaller of 10 and 21 is 10

Description

Remarks

Return Value

Compatibility

See Also

mblen, _ fmblen 487

mblen, _ fmblen
Get the length and determine the validity of a multibyte character.

#include <stdJib.h>

int mblen(const char *mbstr, size_ t count);

int __ far _fmblen(const char __ far *mbstr, size_ t count);

mbstr

count

The address of a sequence of bytes (a multibyte
character)

The number of bytes to check

The mblen function returns the length in bytes of a valid multibyte character. It ex
amines count or fewer bytes contained in mbstr. It will not examine more than
MB_CUlLMAXbytes.

The _fmblen function is a model-independent (large-model) form of the mblen
function.

If mbstr is not NULL, both mblen and _ fmblen return the length, in bytes, of the
multibyte character. If mbstr is NULL, or the object that it points to is the wide
character null character (L'\O'), both functions return O. If the object that mbstr
points to does not form a valid multibyte character within the first count charac
ters, both functions return -1.

mblen

Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fmblen

Standards: None

16-Bit: DOS, QWIN, WIN, WINDLL

32-Bit: None

mbstowcs, mbtowc, wcstombs, wctomb, MB_CUlLMAX, MB_LEN_MAX

488 mblen, _ fmblen

Example /* MBLEN.CPP illustrates the behavior of the mblen function. */

Output

#include <stdlib.h>
#include <stdio.h>

void maine void
{

int
char
wchar t

i ;
*pmbc

wc
(char *)malloc(si zeof(char));
L' a' ;

printf("Convert a wide character to multibyte character:\n");
i = wctomb(pmbc, wc);
printf("\tCharacters converted: %u\n", i);
printf("\tMultibyte character: %x\n\n", pmbc);

printf("Find length--in bytes--of multibyte character:\n");
i = mblen(pmbc, MB_CUR_MAX);
printf("\tLength--in bytes--of multibyte character: %u\n", i);
printf("\tWide character: %x\n\n", pmbc);

pri ntf("Attempt to fi nd 1 ength of a NULL poi nter: \n");
pmbc = NULL;
i = mblen(pmbc, MB_CUR_MAX);
printf("\tLength--in bytes--of mUltibyte character: %u\n",);
printf("\tWide character: %x\n\n", pmbc);

printf("Attempt to find length of a wide-character NULL:\n");
wc = L'\0';
wctomb(pmbc, wc);
i = mbl en(pmbc, MB_CUR_MAX);
printf("\tLength--in bytes--of multi byte character: %u\n",);
printf("\tWide character: %x\n", pmbc);

Convert a wide character to multibyte character:
Characters converted: 1
Multibyte character: e56

Find length--in bytes--of multibyte character:
Length--in bytes--of multi byte character: 1
Wide character: e56

Attempt to find length of a NULL pointer:
Length--in bytes--of multibyte character: 0
Wide character: 0

Attempt to find length of a wide-character NULL:
Length--in bytes--of multibyte character: 0
Wide character: 0

Description

Remarks

Return Value

mbstowcs, _ fmbstowcs 489

mbstowcs, fmbstowcs
Convert a sequence of multi byte characters to a corresponding sequence of wide
characters.

#include <stdlib.h>

size_t mbstowcs(wchar_t *wcstr, const char *mbstr, sizLt count);

size_ t __ far _fmbstowcs(wchac t __ far *wcstr, const char __ far *mbstr,
SiZL t count);

wcstr

mbstr

count

The address of a sequence of wide characters

The address of a sequence of multi byte characters

The number of multibyte characters to convert

The mbstowcs function converts count or fewer multibyte characters pointed to by
mbstr to a string of corresponding wide characters that are determined by the cur
rent locale. It stores the resulting wide-character string at the address represented
by wcstr. The result is similiar to a series of calls to the mbtowc function.

If mbstowcs encounters the null character ('\0') either before or when count oc
curs, it converts the null character to a wide-character null character (L'\O') and
stops. Thus, the wide-character string at wcstr is null-terminated only if a null char
acter is encountered during conversion. If the sequences pointed to by wcstr and
mbstr overlap, the behavior is undefined.

The _fmbstowcs function is a model-independent (large-model) form of the
mbstowcs function. It can be called from any point in any program.

Ifmbstowcs or (_fmbstowcs) successfully converts the source string, it returns
the number of converted multi byte characters. If either function encounters an
invalid multibyte character, it returns -1. If the return value is count, the wide
character string is not null-terminated.

490 mbstowcs, _ fmbstowcs

Compatibility mbstowcs

Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fmbstowcs

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

See Also mblen, mbtowc, wcstombs, wctomb, MB_CUR_MAX, MB_LEN_MAX

Example 1* MBSTOWCS.CPP illustrates the behavior of the mbstowcs function. *1

Output

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

}

i nt i;
char *pmbhello
wchar t *pwchello
wchar t *pwc

(char *)malloc(MB_CUR_MAX);
L"Hi";
(wchar t *)malloc(sizeof(wchar t));

printf("Convert to multibyte string:\n");
i = wcstombs(pmbhello, pwchello, MB_CUR_MAX);
printf("\tCharacters converted: %u\n", i);
printf("\tHex value of first");
printf(" multibyte character: %#.4x\n\n", pmbhello);

printf("Convert back to wide-character string:\n");
i = mbstowcs(pwc, pmbhello, MB_CUR_MAX);
printf("\tCharacters converted: %u\n",);
printf("\tHex value of first");
printf(" wide character: %#.4x\n\n", pwc);

Convert to multibyte string:
Characters converted:
Hex value of first multibyte character: 0x0e26

Convert back to wide-character string:
Characters converted: 1
Hex value of first wide character: 0x0e2a

Description

Remarks

Return Value

Compatibility

m btowc, _ fm btowc 491

mhtowc, _ fmhtowc
Convert a multibyte character to a corresponding wide character.

#include <stdlib.h>

int mbtowc(wchact *wchar, const char *mbchar, size_t count);

int __ far _fmbtowc(wchac t __ far *wchar, const char __ far *mbchar,
sizL t count);

wchar

mbchar

count

The address of a wide character (type wchac t)

The address of a sequence of bytes (a multibyte
character)

The number of bytes to check

The mbtowc function converts count or fewer bytes pointed to by mbchar, if
mbchar is not NULL, to a corresponding wide character that is determined by the
current locale. It stores the resulting wide character at wchar, if wchar is not
NULL. It will not examine more than MB_ CUlL MAX bytes.

The _fmbtowc function is a model-independent (large-model) form of the
mbtowc function.

If mbchar is not NULL and if the object that mbchar points to forms a valid multi
byte character, both mbtowc and _fmbtowc return the length in bytes of the multi
byte character.

If mbchar is NULL or the object that it points to is a wide-character null character
(L'\O'), both functions return O. If the object that mbchar points to does not form a
valid multibyte character within the first count characters, they return -1.

mbtowc

Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

492 mbtowc, _fmbtowc

See Also

Example

_fmbtowc

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

mblen, mbtowc, wcstombs, wctomb, MB_ CUlL MAX, MB_LEN_MAX

1* MBTDWC.CPP illustrates the behavior of the mbtowc function. *1

#include <stdlib.h>
#include <stdio.h>

void main(void
{

}

int
char

i . ,
*pmbc

wchar t wc
wchar_t *pwcnull
wchar t *pwc

(char *)malloc(sizeof(char));
L' a I ;

NU LL;
(wchar_t *)malloc(sizeof(wchar_t));

printf("Convert a wide character to multibyte character:\n");
i = wctomb(pmbc, wc);
printf("\tCharacters converted: %u\n", i);
printf("\tMultibyte character: %x\n\n", pmbc);

printf("Convert multibyte character back to a wide character:\n");
i = mbtowc(pwc, pmbc, MB_CUR_MAX);
printf("\tBytes converted: %u\n", i);
printf("\tWide character: %x\n\n", pwc);

pri ntf("Attempt to convert when target is NULL \n");
printf(" returns the length of the multibyte character:\n");
i = mbtowc(pwcnull, pmbc, MB_CUR_MAX);
pri ntf("\tLength of mul ti byte character: %u\n\n", i);

printf("Attempt to convert a NULL pointer to a");
printf(" wide character:\n");
pmbc = NULL;
i = mbtowc(pwc, pmbc, MB_CUR_MAX);
printf("\tBytes converted: %u\n", i);

Output Convert a wide character to multibyte character:
Characters converted: 1
Multibyte character: e36

mbtowc, _ fmbtowc 493

Convert multibyte character back to a wide character:
Bytes converted: 1
Wide character: e3a

Attempt to convert when target is NULL
returns the length of the multibyte character:

Length of multibyte character: 1

Attempt to convert a NULL pointer to a wide character:
Bytes converted: 0

494 memavl

Description

Remarks

Return Value

Compatibility

See Also

Example

memavl
Returns the size of memory available.

#include <malloc.h> Required only for function declarations

sizLt _memavl(void);

The _memavl function returns the approximate size, in bytes, ofthe memory
available for dynamic memory allocation in the near heap (default data segment).
The _memavl function can be used with calloc, malloc, or realloc in tiny, small,
and medium memory models and with _ncalloc, _nmalloc or _nrealloc in any
memory model.

The number returned by the _memavl function may not be the number of contigu
ous bytes. Consequently, a call to malloc requesting allocation of the size returned
by _memavl may not succeed. Use the _memmax function to find the size of the
largest available contiguous block of memory.

The _ memavl function returns the size in bytes as an unsigned integer.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WINDLL

None

calloc functions, _freect, malloc functions, _memmax, realloc functions

1* MEMAVL.C: This program uses _memavl to determine the amount of
* memory available for dynamic allocation. It then uses malloc to
* allocate space for 5,000 long integers and uses memavl again to
* determine the new amount of available memory.
*1

#include <malloc.h>
#include <stdio.h>

Output

void main(void)
{

long *longptr;

memavl 495

printf("Memory available before_nmalloc = %u\n", _memavl());
if((longptr = _nmalloc(5000 * sizeof(long))) != NULL)
{

}

pri ntf("Memory avai 1 abl e after nmalloc = %u\n", memavl ());
nfree(longptr);

Memory available before
Memory available after

nmalloc = 60906
nmalloc = 40390

496 _ memccpy, _ fmemccpy

Description

Remarks

Return Value

Compatibility

_ memccpy, _ fmemccpy
Copy characters from a buffer.

#include <memory.h>

#include <string.h>

Required only for function declarations

Use either STRING.H or MEMORY.H

void * _memccpy(void *dest, void *src, int c, unsigned int count);

void __ far * __ far _fmemccpy(void __ far *dest, void __ far *src, int c,
unsigned int count);

dest

src

c

count

Pointer to destination

Pointer to source

Last character to copy

Number of characters

The _memccpy and _fmemccpy functions copy 0 or more bytes of src to dest,
haIting when the character c has been copied or when count bytes have been
copied, whichever comes first.

The _fmemccpy function is a model-independent (large-model) form of the
_memccpy function. It can be called from any point in any program.

If the character c is copied, _memccpy or _fmemccpy returns a pointer (or far
pointer) to the byte in dest that immediately follows the character. If c is not
copied, both return NULL.

_memccpy

Standards: UNIX

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

Use _memccpy for compatibility with ANSI naming conventions of non-ANSI
functions. Use memccpy and link with OLDNAMES.LIB for UNIX compatibility.

See Also

Example

Output

_fmemccpy

Standards: None

_ memccpy, _ fmemccpy 497

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

memchr, memcmp, memcpy, memset

/* MEMCCPY.C */
#include <memory.h>
#include <stdio.h>
#include <string.h>

char stringl[60] = "The quick brown dog jumps over the lazy fox";

void maine void)
{

}

char buffer[61];
char *pdest;

printf("Function:\t_memccpy 60 characters or to character 's'\n");
printf("Source:\t\t%s\n", stringl);
pdest = _memccpy(buffer, stringl, 's', 60);
*pdest = '\0';
printf("Result:\t\t%s\n", buffer);
printf("Length:\t\t%d characters\n\n", strlen(buffer));

Function: _memccpy 60 characters or to character's'
The quick brown dog jumps over the lazy fox
The quick brown dog jumps

Source:
Result:
Length: 25 characters

498 memchr, _ fmemchr

Description

Remarks

Return Value

Compatibility

See Also

memchr, _ fmemchr
Find characters in a buffer.

#include <memory.h>

#include <string.h>

Required only for function declarations

Use either STRING.H (for ANSI compatibility) or
MEMORY.H

void *memchr(const void *buf, int c, sizL t count);

void __ far * __ far _fmemchr(const void __ far *buf, int c, sizLt count);

buf

c

count

Pointer to buffer

Character to look for

Number of characters

The memchr and _ fmemchr functions look for the first occurrence of c in the
first count bytes of buf They stop when they find c or when they have checked the
first count bytes.

The _fmemchr function is a model-independent (large-model) form of the
memchr function. It can be called from any point in any program.

If successful, memchr or _ fmemchr returns a pointer (or a far pointer) to the first
location of c in buf Otherwise, they return NULL.

memchr

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fmemchr

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_memccpy, memcmp, memcpy, memset, strchr

Example

Output

/* MEMCHR.C */
#include <memory.h>
#include <stdio.h>

int ch = I r I ;

cha r st r[] = "1 azy";

memchr. _ fmemchr 499

char string[] "The quick brown dog jumps over the lazy fox";
char fmtl[]
char fmt2[] =

void maine void
{

char *pdest;
int result;

1 2 3 4 5";
"12345678901234567890123456789012345678901234567890";

printf("String to be searched:\n\t\t%s\n", string l;
printf("\t\t%s\n\t\t%s\n\n", fmt1, fmt2 l;

printf("Search char:\t%c\n", ch);
pdest = memchr(string, ch, sizeof(string));
result = pdest - string + 1;
if(pdest != NULL 1

printf("Result:\t\t%c found at position %d\n\n", ch, result);
else

printf("Result:\t\t%c not found\n");

String to be searched:
The quick brown dog jumps over the lazy fox

1 2 3 4 5
12345678901234567890123456789012345678901234567890

Search char: r
Result: r found at position 12

500 memcmp, _fmemcmp

Description

Remarks

Return Value

memcmp, _fmemcmp
Compare characters in two buffers.

#include <memory.h>

#include <string.h>

Required only for function declarations

Use either STRING.H (for ANSI compatibility) or
MEMORY.H

int memcmp(const void *bufl, const void *buj2, sizLt count);

int __ far _fmemcmp(const void __ far *bufl, const void __ far *buj2,
size_ t count);

bufl

buj2

count

First buffer

Second buffer

Number of characters

The memcmp and _fmemcmp functions compare the first count bytes of bufl
and buj2 and return a value indicating their relationship, as follows:

Value

<0

=0

>0

Meaning

bufl less than huf2

bufl identical to buf2

bufl greater than buf2

The _fmemcmp function is a model-independent (large-model) form of the
memcmp function. It can be called from any point in a program.

There is a semantic difference between the function version of memcmp and its in
trinsic version. The function version supports huge pointers in compact-, large-,
and huge-model programs, but the intrinsic version does not.

The memcmp and _fmemcmp functions return an integer value, as described
above.

memcmp, _fmemcmp 501

Compatibility memcmp

See Also

Example

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fmemcmp

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_memccpy, memchr, memcpy, memset, strcmp, strncmp

1* MEMCMP.C: This program uses memcmp to compare the strings named
* first and second. If the first 19 bytes of the strings are
* equal, the program considers the strings to be equal.
*1

#include <string.h>
#include <stdio.h>

void main(void
{

char first[]
char second[]
int result;

"12345678901234567890";
"12345678901234567891";

printf("Compare '%.19s' to '%.19s' :\n", first, second);
result = memcmp(first, second, 19);
if(result < 0)

printf("First is less than second.\n");
else if(result == 0)

printf("First is equal to second.\n");
else if(result> 0)

printf("First is greater than second.\n");
printf("Compare '%.20s' to '%.20s':\n", first, second);
result = memcmp(first, second, 20);
if(result < 0)

printf("First is less than second.\n");
else if(result == 0)

printf("First is equal to second.\n");
else if(result> 0)

printf("First is greater than second.\n");

502 memcmp, _fmemcmp

Output Compare '1234567890123456789' to '1234567890123456789':
First is equal to second.
Compare '12345678901234567890' to '12345678901234567891':
First is less than second.

Description

Remarks

Return Value

Compatibility

memcpy, _fmemcpy 503

memcpy, _ fmemcpy
Copy characters between buffers.

#include <memory.h>

#include <string.h>

Required only for function declarations

Use either STRING.H (for ANSI compatibility) or
MEMORY.H

void *memcpy(void *dest, const void *src, sizL t count);

void __ far * __ far _fmemcpy(void __ far *dest, const void __ far *src,
size_ t count);

dest New buffer

src Buffer to copy from

count Number of characters to copy

The memcpy and _fmemcpy functions copy count bytes of src to dest. If the
source and destination overlap, these functions do not ensure that the original
source bytes in the overlapping region are copied before being overwritten. Use
memmove to handle overlapping regions.

The _fmemcpy function is a model-independent (large-model) form of the
memcpy function. It can be called from any point in any program.

There is a semantic difference between the function version of memcpy and its in
trinsic version. The function version supports huge pointers in compact-, large-,
and huge-model programs, but the intrinsic version does not.

The memcpy and _fmemcpy functions return the value of dest.

memcpy

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WINDLL

32-Bit: DOS32X

504 memcpy, _fmemcpy

See Also

Example

_fmemcpy

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_memccpy, memchr, memcmp, memmove, memset, strcpy, strncpy

1* MEMCPY.C. Illustrate overlapping copy: memmove handles it
* correctly; memcpy does not.
*1

#include <memory.h>
#include <string.h>
#include <stdio.h>

char string1[60]
char string2[60]
1*

"The quick brown dog jumps over the lazy fox";
"The quick brown fox jumps over the lazy dog";

1 234 5

*
*1

12345678901234567890123456789012345678901234567890

void maine void)
{

}

printf("Function:\tmemcpy without overlap\n");
printf("Source:\t\t%s\n", string1 + 40);
printf("Destination:\t%s\n", string1 + 16);
memcpy(string1 + 16, string1 + 40, 3);
printf("Result:\t\t%s\n", string1);
printf("Length:\t\t%d characters\n\n", strlen(string1));

1* Restore string1 to original contents *1
memcpy(string1 + 16, string2 + 40, 3);

printf("Function:\tmemmove with overlap\n");
printf("Source:\t\t%s\n", string2 + 4);
printf("Destination:\t%s\n", string2 + 10);
memmove(string2 + 10, string2 + 4, 40);
printf("Result:\t\t%s\n", string2);
printf("Length:\t\t%d characters\n\n", strlen(string2));

printf("Function:\tmemcpy with overlap\n");
printf("Source:\t\t%s\n", string1 + 4);
printf("Destination:\t%s\n", string1 + 10);
memcpy(string1 + 10, string1 + 4, 40);
printf("Result:\t\t%s\n", string1);
printf("Length:\t\t%d characters\n\n", strlen(string1));

Output Function:
Source:
Destination:
Result:
Length:

Function:
Source:
Destination:
Result:
Length:

Function:
Source:
Destination:
Result:
Length:

memcpy without overlap
fox
dog jumps over the lazy fox

memcpy, _ fmemcpy 505

The quick brown fox jumps over the lazy fox
43 characters

memmove with overlap
quick brown fox jumps over the lazy dog
brown fox jumps over the lazy dog
The quick quick brown fox jumps over the lazy dog
49 characters

memcpy with overlap
quick brown dog jumps over the lazy fox
brown dog jumps over the lazy fox
The quick quick quick quick quick quick quick quick
50 characters

506 _memicmp, _fmemicmp

Description

Remarks

Return Value

_memicmp, _fmemicmp
Compare characters in two buffers (case-insensitive).

#include <memory.h>

#include <string.h>

Required only for function declarations

Use either STRING.H or MEMORY.H

int _memicmp(void *bufl, void *buj2, unsigned int count);

int __ far _fmemicmp(void __ far *bufl, void _3ar *buj2,
unsigned int count);

bufl

buj2

count

First buffer

Second buffer

Number of characters

The _memicmp and _fmemicmp functions compare the first count characters of
the two buffers bufl and buj2 byte-by-byte. The comparison is made without re
gard to the case of letters in the two buffers; that is, uppercase and lowercase let
ters are considered equivalent. The _memicmp and _fmemicmp functions return
a value indicating the relationship of the two buffers, as follows:

Value

<0

=0

>0

Meaning

buflless than buj2

bufl identical to buj2

bufl greater than buj2

The _fmemicmp function is a model-independent (large-model) form of the
_memicmp function. It can be called from any point in any program.

The _memicmp and _fmemicmp functions return an integer value, as described
above.

_ memicmp, _ fmemicmp 507

Compatibility _memicmp

Standards: UNIX

See Also

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _memicmp for compatibility with ANSI naming conventions of non
ANSI functions. Use memicmp and link with OLDNAMES.LIB for UNIX
compatibility.

_fmemicmp

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_memccpy, memchr, memcmp, memcpy, memset, _stricmp, _strnicmp

/* MEMICMP.C: This program uses _memicmp to compare the first
* 29 letters of the strings named first and second without
* regard to the case of the letters.
*/

#include <memory.h>
#include <stdio.h>
#include <string.h>

void main(void
{

int result;
char first[] = "Those Who Will Not Learn from History";
char second[] = "THOSE WHO WILL NOT LEARN FROM their mistakes";
/* Note that the 29th character is right here A */

printf("Compare '%.29s' to '%.29s'\n", first, second);
result = _memicmp(first, second, 29);
if(result < 0)

printf("First is less than second.\n");
else if(result == 0)

printf("First is equal to second.\n");
else if(result> 0)

printf("First is greater than second.\n");

Compare 'Those Who Will Not Learn from' to 'THOSE WHO WILL NOT LEARN FROM'
First is equal to second.

508 memmax

Description

Remarks

Return Value

memmax
Finds the size of the largest contiguous memory block.

#include <malloc.h>

siZLt _memmax(void);

The _memmax function returns the size (in bytes) of the largest contiguous block
of memory that can be allocated from the near heap (i.e., the default data seg
ment). Calling _nmalloc with the value returned by the _memmax function will
succeed as long as _memmax returns a nonzero value.

The function returns the block size, if successful. Otherwise, it returns 0, indicat
ing that nothing more can be allocated from the near heap.

Compatibility Standards: None

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

malloc functions, _msize functions

/* MEMMAX.C: This program uses _memmax and nmalloc to allocate
* the largest block of memory available in the near heap.
*/

#include <stddef.h>
#include <malloc.h>
#include <stdio.h>

void main(void)
{

size_t contig;
char *p;

Output

1* Determine contiguous memory size *1
contig = _memmax();

memmax 509

printf("Largest block of available memory is %u bytes long\n", contig);
if(contig)
{

p = _nmalloc(contig * sizeof(int));
if(p == NULL)

printf("Error with malloc (should never occur)\n");
else
{

}

printf("Maximum allocation succeeded\n");
free(p);

}

else
printf("Near heap is al ready full \n");

Largest block of available memory is 60844 bytes long
Maximum allocation succeeded

510 memmove, _fmemmove

Description

Remarks

Return Value

Compatibility

See Also

memmove, _fmemmove
Move one buffer to another.

#include <string.h>

void *memmove(void *dest, const void *src, size_t count);

void __ far * __ far _fmemmove(void __ far *dest, const void __ far *src,
size_ t count);

dest

src

count

Destination object

Source object

Number of characters to copy

The memmove and _ fmemmove functions copy count characters from the source
(src) to the destination (dest). If some regions of the source area and the destina
tion overlap, the memmove and _fmemmove functions ensure that the original
source bytes in the overlapping region are copied before being overwritten.

The _fmemmove function is a model-independent (large-model) form of the
memmove function. It can be called from any point in any program.

The memmove and _fmemmove functions return the value of dest.

memmove

Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fmemmove

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_memccpy, memcpy, strcpy, strncpy

Example

memmove, _fmemmove 511

1* MEMCPY.C. Illustrate overlapping copy: memmove handles it
* correctly; memcpy does not.
*1

#include <memory.h>
#include <string.h>
#include <stdio.h>

char stri ng1[60]
char string2[60]
1*

"The quick brown dog jumps over the lazy fox";
"The quick brown fox jumps over the lazy dog";

1 234 5

*
*1

12345678901234567890123456789012345678901234567890

void main(void)
{

}

pri ntf("Functi on: \tmemcpy without overl ap\n");
printf("Source:\t\t%s\n", string1 + 40);
printf("Destination:\t%s\n", string1 + 16);
memcpy(string1 + 16, string1 + 40, 3);
printf("Result:\t\t%s\n", string1);
printf("Length:\t\t%d characters\n\n", strlen(string1));

1* Restore string1 to original contents *1
memcpy(string1 + 16, string2 + 40, 3);

printf("Function:\tmemmove with overlap\n");
printf("Source:\t\t%s\n", string2 + 4);
printf("Destination:\t%s\n", string2 + 10);
memmove(string2 + 10, string2 + 4, 40);
printf("Result:\t\t%s\n", string2);
printf("Length:\t\t%d characters\n\n", strlen(string2));

printf("Function:\tmemcpy with overlap\n");
printf("Source:\t\t%s\n", string1 + 4);
printf("Destination:\t%s\n", string1 + 10);
memcpy(string1 + 10, string1 + 4, 40);
printf("Result:\t\t%s\n", string1);
printf("Length:\t\t%d characters\n\n", strlen(string1));

512 memmove, _fmemmove

Output Function:
Source:
Destination:
Result:
Length:

Function:
Source:
Destination:
Result:
Length:

Function:
Source:
Destination:
Result:
Length:

memcpy without overlap
fox
dog jumps over the lazy fox
The quick brown fox jumps over the lazy fox
43 characters

memmove with overlap
quick brown fox jumps over the lazy dog
brown fox jumps over the lazy dog
The quick quick brown fox jumps over the lazy dog
49 characters

memcpy with overlap
quick brown dog jumps over the lazy fox
brown dog jumps over the lazy fox
The quick quick quick quick quick quick quick quick
513 characters

Description

Remarks

Return Value

Compatibility

memset, _ fmemset 513

memset, _ fmemset
Set buffers to a specified character.

#include <memory.h>

#include <string.h>

Required only for function declarations

Use either STRING.H (for ANSI compatibility) or
MEMORY.H

void *memset(void *dest, int c, size_ t count);

void __ far * __ far _fmemset(void __ far *dest, int c, sizLt count);

dest

c

count

Pointer to destination

Character to set

Number of characters

The memset and _fmemset functions set the first count bytes of dest to the charac
ter c.

The _fmemset function is a model-independent (large-model) form of the
memset function. It can be called from any point in any program.

There is a semantic difference between the function version of memset and its in
trinsic version. The function version supports huge pointers in compact-, large-,
and huge-model programs, but the intrinsic version does not.

The memset and _fmemset functions return the value of dest.

memset

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

514 memset, _ fmemset

See Also

Example

Output

_fmemset

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

_memccpy, memchr, memcmp, memcpy, _strnset

1* MEMSET.C: This program uses memset to set the first four bytes
* of buffer to "*".

#include <memory.h>
#include <stdio.h>

void maine void)
{

char buffer[] = "This is a test of the memset function";

printf("Before: %s\n", buffer);
memset(buffer, '*',4);
printf("After: %s\n", buffer);

Before: This is a test of the memset function
After: **** is a test of the memset function

Description

Remarks

Return Value

min 515

min
Returns the smaller of two values.

#include <stdlih.h>

type __ min(type a, type b);

Any numeric data type type

a,b Values of any numeric type to be compared

The __ min macro compares two values and returns the value of the smaller one.
The arguments can be of any numeric data type, signed or unsigned. Both argu
ments and the return value must be of the same data type.

The macro returns the smaller of the two arguments.

Compatibility Standards: None

See Also

Example

Output

16-Bit:

32-Bit:

/* MINMAX.C */
#include <stdlib.h>
#include <stdio.h>

void main(void
{

int a 10 ;
int b 21 ;

DOS, QWIN, WIN, WIN DLL

DOS32X

printf("The larger of %d and %d is %d\n", a, b, max(a, b l;
printf("The smaller of %d and %d is %d\n", a, b, min(a, b l;

The larger of 10 and 21 is 21
The smaller of 10 and 21 is 10

516 mkdir

Description

Remarks

Return Value

Compatibility

See Also

mkdir
Creates a new directory.

#include <direct.h> Required only for function declarations

int _mkdir(char *dirname);

dirname Path name for new directory

The _mkdir function creates a new directory with the specified dirname. Only
one directory can be created at a time, so only the last component of dirname can
name a new directory.

The _mkdir function does not do any translation of path-name delimiters. All
operating systems accept either H\" or HI" internally as valid delimiters within
path names.

The _mkdir function returns the value 0 if the new directory was created. A re
turn value of -1 indicates an error, and errno is set to one of the following values:

Value

EACCES

ENOENT

Standards: None

Meaning

Directory not created. The given name is the name of an existing
file, directory, or device.

Path name not found.

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_ chdir, _ rmdir

Example

Output

1* MAKEDIR.C *1
#include <direct.h>
#include <stdlib.h>
#include <stdio.h>

void maine void
{

int result;

if(mkdir("\\testtmp" 1 == 0 1
{

mkdir 517

printf("Directory '\\testtmp' was successfully created\n" 1;
system("dir \\testtmp" 1;
if(_rmdir("\\testtmp") == 0

printf("Directory '\\testtmp' was successfully removed\n");
else

printf("Problem removing directory '\\testtmp'\n" 1;

else
printf("Problem creating directory '\\testtmp'\n" 1;

Directory '\testtmp' was successfully created

The volume label in drive C is ZEPPELIN
Directory of C:\TESTTMP

<DIR> 12-19-99 11:20a
<DIR> 12-19-99 11:20a

2 File(s) 12730368 bytes free
Directory '\testtmp' was successfully removed

518 _mktemp

Description

Remarks

Return Value

_mktemp
Creates a unique filename.

#include <io.h> Required only for function declarations

char * _mktemp(char *template);

template Filename pattern

The _mktemp function creates a unique filename by modifying the given
template argument. The template argument has the form:

baseXXXXXX

where base is the part ofthe new filename that you supply, and the X's are place
holders for the part supplied by _mktemp; _mktemp preserves base and replaces
the six trailing X' s with an alphanumeric character followed by a five-digit value.
The five-digit value is a unique number identifying the calling process. The alpha
numeric character is 0 ('0') the first time _mktemp is called with a given template.

In subsequent calls from the same process with copies of the same template,
_mktemp checks to see if previously returned names have been used to create
files. If no file exists for a given name, _mktemp returns that name. If files exist
for all previously returned names, _mktemp creates a new name by replacing the
alphanumeric character in the name with the next available lowercase letter. For
example, if the first name returned is t012345 and this name is used to create a
file, the next name returned will be ta12345. When creating new names,
_mktemp uses, in order, '0' and then the lowercase letters 'a' through 'z'.

Note that the original template is modified by the first call to _ mktemp. If you
then call the _mktemp function again with the same template (i.e., the original
one), you will get an error.

The _mktemp function generates unique filenames but does not create or open
files.

The _mktemp function returns a pointer to the modified template. The return
value is NULL if the template argument is badly formed or no more unique names
can be created from the given template.

_mktemp 519

Compatibility Standards: UNIX

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _mktemp for compatibility with ANSI naming conventions of non-ANSI
functions. Use mktemp and link with OLDNAMES.LIB for UNIX compatibility.

fop en, _ getpid, _ open, _ tempnam, tmpfile

/* MKTEMP.C: The program uses _mktemp to create five unique filenames.
* It opens each filename to ensure that the next name is unique.
*/

#include <io.h>
#include <string.h>
#include <stdio.h>

char *template = "fnXXXXXX";
char *result;
char names[5][9];

void main(void)
{

}

i nt i;
FILE *fp;

fa r (i = 0; i < 5; i ++)
{

strcpy(names[i], template);

/* Attempt to find a unique filename: */
result = _mktemp(names[i]);
if(result == NULL)

printf("Problem creating the template");
else
{

}

if((fp = fopen(result, Ow")) != NULL)
printf("Unique filename is %s\n", result);

else
printf("Cannot open %s\n", result);

fclose(fp);

520 _mktemp

Output Unique filename is fn000686
Unique filename is fna00686
Unique filename is fnb00686
Unique filename is fnc00686
Unique filename is fnd00686

Description

Remarks

Return Value

Compatibility

See Also

mktime 521

mktime
Converts the local time to a calendar value.

#include <time.h>

time_ t mktime(struct tm *timeptr);

timeptr Pointer to time structure

The mktime function converts the supplied time structure (possibly incomplete)
pointed to by timeptr into a fully defined structure with "normalized" values and
then converts it to a time_ t calendar time value. The structure for the tm is de
scribed in the reference page for asctime.

The converted time has the same encoding as the values returned by the time func
tion. The original values of the tIlL wday and tDLyday components of the
timeptr structure are ignored, and the original values of the other components are
not restricted to their normal ranges.

If successful, mktime sets the values of tDL wday and tm_ yday appropriately,
and sets the other components to represent the specified calendar time, but with
their values forced to the normal ranges; the final value of tm_mday is not set
until tDL mon and tDL year are determined.

If timeptr references a date before midnight, December 31, 1899, mktime
returns -1.

Note that the gmtime and localtime functions use a single statically allocated
buffer for the conversion. If you supply this buffer to mktime, the previous
contents will be destroyed.

The mktime function returns the specified calendar time encoded as a value of
type time_ t. If the calendar time cannot be represented, the function returns the
value -1 cast to type time_ t.

Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

asctime, gmtime, localtime, time

522 mktime

Example /* MKTIME.C: The example takes a number of days as input and returns

Output

* the time, the current date, and the specified number of days.
*/

#include <time.h>
#include <stdio.h>

void maine void)
{

struct tm when;
time~t now, result;
int days;

time(&now);
when = *localtime(&now);
printf("Current time is %s\n", asctime(&when));
printf("How many days to look ahead: ");
scanf(HId", &days);

when.tm~mday = when.tm~mday + days;
if((result = mktime(&when)) != (time~t)~1)

printf("In %d days the time will be %s\n",
days, asctime(&when));

else
perror("mktime failed");

Current time is Sat Jun 19 11:45:20 1999

How many days to look ahead: 23
In 23 days the time wi 11 be Mon Jul 12 11 :45:20 1999

Description

Remarks

Return Value

Compatibility

See Also

modf, _ modfl 523

modf, _ modfl
Split a floating-point value into fractional and integer parts.

#include <math.h>

double modf(double x, double *intptr);

long double _modfl(long double x, long double *intptr);

x Floating-point value

intptr Pointer to stored integer portion

The modf functions break down the floating-point value x into fractional and in
teger parts, each of which has the same sign as x. The signed fractional portion of
x is returned. The integer portion is stored as a floating-point value at intptr.

The _modfl function uses the 80-bit, lO-byte coprocessor form of arguments and
return values. See the reference page on the long double functions for more details
on this data type.

The modf and _modfl functions return the signed fractional portion of x. There is
no error return.

modf

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_modfl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

frexp, Idexp

524 modf, _ modfl

Example 1* MODF. C *1
#include <math.h>
#include <stdio.h>

void main(void
{

double x, y, n;

x -14.87654321;
y modf(x, &n);

1* Divide x into its fractional *1
1* and integer parts *1

printf("For %f, the fraction is %f and the integer is %.f\n", x, y, n l;
}

Output For -14.876543, the fraction is -0.876543 and the integer is -14

Description

Remarks

Return Value

Compatibility

See Also

movedata 525

movedata
Moves characters to another segment.

#include <memory.h>

#include <string.h>

Required only for function declarations

Use either STRING.H or MEMORY.H

void _movedata(unsigned int srcseg, unsigned int srcoff, unsigned int destseg,
unsigned int destojf, unsigned int count);

srcseg

srcojf

destseg

destojf

count

Segment address of source

Segment offset of source

Segment address of destination

Segment offset of destination

Number of bytes

The _ movedata function copies count bytes from the source address specified by
srcseg:srcojfto the destination address specified by destseg:destojf.

The _movedata function was intended to move far data in small-model programs.
The newer model-independent_fmemcpy and _fmemmove functions should be
used instead of the _ movedata function. In large-model programs, the memcpy
and memmove functions can also be used.

Segment values for the srcseg and destseg arguments can be obtained by using
either the _segread function or the _FP _SEG macro.

The _movedata function does not handle all cases of overlapping moves cor
rectly. These occur when part of the destination is the same memory area as part
of the source. The memmove function correctly handles overlapping moves.

None.

Standards: None

16-Bit: ~OS, QWIN, WIN, WINOLL

32-Bit: None

526 movedata

Example 1* MOVEOATA.C *1
#include <memory.h>
#include <stdio.h>
#include <string.h>
lfinclude <dos.h>
#include <malloc.h>

Output

cha r far *src "This is a test.";

void main(void
{

}

char __ far *dest;

if((dest = _ fmalloc(80)) != NULL)
{

movedata(FP_SEG(src), FP_OFF(src),
JP_SEG(dest), FP_OFF(dest), fstrlen(src) + 1);

printf("The source data at %Fp is '%Fs'\n", src, src);
printf("The destination data at %Fp is '%Fs'\n", dest, dest);
_ ffree(dest);

The source data at 200A:02B8 is 'This is a test.'
The destination data at 300B:0016 is 'This is a test.'

Description

Remarks

Return Value

moveto Functions 527

moveto Functions
Move current graphics positions.

#include <graph.h>

struct _xycoord __ far _moveto(short x, short y);

struct _ wxycoord __ far _moveto_ w(double wx, double wy);

x,y

wx,wy

View-coordinate point

Window-coordinate point

The _moveto functions move the current position to the specified point. The
_moveto function uses the view-coordinate point (x, y) as the current position.
The _moveto_ w function uses the window-coordinate point (wx, wy) as the cur
rent position. No drawing takes place.

The _moveto function operates only in graphics video modes (e.g.,
_MRES4COLOR). Because it is a graphics function, the color of text is set by
the _ setcolor function, not by the _ settextposition function.

The function returns the coordinates of the previous position. The _ moveto func
tion returns the coordinates in an _xycoord structure. The _xycoord structure,
defined in GRAPH.H, contains the following elements:

Element

short xcoord
short ycoord

Description

x coordinate

y coordinate

The _moveto_ w function returns the coordinates in an _ wxycoord structure, de
fined in GRAPH.H. The _ wxycoord structure contains the following elements:

Element

donble wx
doublewy

Description

x window coordinate

y window coordinate

528 moveto Functions

Compatibility Standards: None

16-Bit: DOS

See Also

Example

32-Bit: None

_lineto functions, _outgtext

1* MOVETO.C: This program draws line segments of different colors. *1

#include <graph.h>
#include <stdlib.h>
#include <conio.h>

void main(void)
{

short x, y, xinc, yinc, color
struct _videoconfig v;

1· ,

1* Find a valid graphics mode. *1

}

if(!_setvideomode(_MAXCOLORMODE))
exit(1);

_getvideoconfig(&v);
xinc v.numxpixels I 50;
yinc v.numypixels I 50;

for(x = 0, y = v.numypixels 1; x < v.numxpixels; x += xinc, y yinc
{

_setcolor(color++ % 16);
_moveto(x, 0);
_lineto(0, y);

}
_getch() ;

_setvideomode(DEFAULTMODE);
exit(0);

Description

Remarks

Return Value

msize Functions 529

msize Functions
Return the size of a memory block allocated in the heap.

#include <malIoc.h> Required only for function declarations

siZLt _msize(void *memblock);

size_t _bmsize(__ segment seg, void __ based(void) *memblock);

size_t _fmsize(void __ far *memblock);

size_t _nmsize(void __ near *memblock);

memblock

seg

Pointer to memory block

Based-heap segment selector

The _ msize family of functions returns the size, in bytes, of the memory block
allocated by a call to the appropriate version of the calloe, malIoe, or realIoc
functions.

In large data models (compact-, large-, and huge-model programs), _msize maps
to _fmsize. In small data models (tiny-, small-, and medium-model programs),
_ msize maps to _ nmsize.

The _ nmsize function returns the size (in bytes) of the memory block allocated
by a call to _nmalloc, and the _fmsize function returns the size (in bytes) of the
memory block allocated by a call to _ fmalloc or _ frealloc. The _ bmsize function
returns the size of a block allocated in segment seg by a call to _ bmalloc,
_ bcalloc, or _ brealIoc.

The location of the memory block is indicated below:

Function

_msize

_bmsize

_fmsize

_nmsize

Data Segment

Depends on data model of program

Based heap segment specified by seg value

Far heap segment (outside default data segment)

Default data segment (inside near heap)

All four functions return the size (in bytes) as an unsigned integer.

530 msize Functions

Compatibility _msize

See Also

Example

Output

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_bmsize, _fmsize, _nmsize

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

calloc functions, _ expand functions, malloc functions, realloc functions

1* REALLOC.C: This program allocates a block of memory for buffer
* and then uses _msize to display the size of that block. Next, it
* uses real lac to expand the amount of memory used by buffer
* and then calls _msize again to display the new amount of
* memory allocated to buffer.
*1

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

void main(void)
{

long *buffer;
size_t size;

if((buffer = (long *)malloc(1000 * sizeof(long)))
ex it (1);

size = msize(buffer);

NULL)

printf("Size of block after malloc of 1000 longs: %u\n", size);

}

1* Reallocate and show new size: *1
if((buffer = realloc(buffer, size + (1000 * sizeof(long)))) NULL)

ex it (1);
size = _msize(buffer);
printf("Size of block after realloc of 1000 more longs: %u\n", size);

free(buffer);
exit(0);

Size of block after mal lac of 1000 longs: 4000
Size of block after realloc of 1000 more longs: 8000

Description

Remarks

Return Value

Compatibility

_ onexit, _ fonexit 531

_ onexit, _ fonexit
Register a routine to be called at exit time.

#include <stdlih.h>

_onexiLt _onexit(_onexiLt June);

_fonexiLt __ far 30nexit(_fonexiLt June);

June Pointer to function to be called at exit

The _onexit function is passed the address of a function (june) to be called when
the program terminates normally. Successive calls to _onexit create a register of
functions that is executed in LIFO (last-in-first-out) order. Except for DOS32X,
no more than 32 functions can be registered with _onexit; _onexit returns the
value NULL if the number of functions exceeds 32. For DOS32X, more than 32
functions can be registered. Because the heap is used, the size of the function regis
ter is only limited by available memory in the heap. The functions passed to
_ onexit cannot take parameters.

The _fonexit function is a far version of _onexit; it can be used with any memory
model.

Neither _onexit nor _fonexit is part of the ANSI definition; instead, both are
Microsoft extensions. The ANSI-standard atexit function does the same thing as
_onexit and should be used instead of _onexit when ANSI portability is desired.

Both _onexit and _fonexit return a pointer to the function if successful and return
NULL if there is no space left to store the function pointer.

_onexit

Standards: UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _onexit for compatibility with ANSI naming conventions of non-ANSI func
tions. Use onexit and link with OLDNAMES.LIB for UNIX compatibility.

532 _ onexit, fonexit

See Also

Example

Output

_fonexit

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

exit

/* ONEXIT.C */
#include <stdlib.h>
#include <stdio.h>

/* Prototypes */
void fnl(void), fn2(void), fn3(void), fn4(void);

void maine void
{

_onexit(fnl);
_onexit(fn2);
_onexit(fn3);
_onexit(fn4);
printf("This is executed first.\n");

}

void fnl()
{

pri ntfC "next.\n");
}

voi d fn2 ()
{

printf("executed ");
}

void fn3()
{

printf("is ") ;
}

void fn4()
{

pri ntfC "This ") ;
}

This is executed first.
This is executed next.

Description

Remarks

_open 533

_open
Opens a file.

#include <fcntl.h>

#include <sys\types.h>

#include <sys\stat.h>

#include <io.h>

int _open(char *filename, int ojlag [, int pmode]);

filename

ojlag

pmode

Filename

Type of operations allowed

Permission mode

The _open function opens the file specified by filename and prepares the file for
subsequent reading or writing, as defined by ojlag. The ojlag argument is an in
teger expression formed from one or more of the manifest constants defined in
FCNTL.H (listed below). When two or more manifest constants are used to form
the ojlag argument, the constants are combined with the bitwise-OR operator (I).
See "File Handling" on page 21 for a discussion of binary and text modes.

The FCNTL.H file defines the following manifest constants:

Constant

_O_BINARY

_O_CREAT

Meaning

Repositions the file pointer to the end of the file before every
write operation.

Opens file in binary (untranslated) mode.

Creates and opens a new file for writing; this has no effect if the
file specified by filename exists.

Returns an error value if the file specified by filename exists.
Only applies when used with _ 0_ CREAT.

Opens file for reading only; if this flag is given, neither
_O_RDWR nor _0_ WRONLY can be given.

Opens file for both reading and writing; if this flag is given,
neither _O_RDONLY nor _0_ WRONLY can be given.

Opens file in text (translated) mode.

534 _open

Constant

_O_WRONLY

Meaning

Opens and truncates an existing file to zero length; the file must
have write permission. The contents of the filc arc destroyed. If
this flag is given, you cannot specify _O_RDONLy'

Opens file for writing only; if this flag is given, neither
_O_RDONLY nor _O_RDWR can be given.

Warning! Use the_O_ TRUNC flag with care, as it destroys the complete con
tents of an existing file.

Either _ O_RDONLY, _ O_RDWR, or _ 0_ WRONLY must be given to specify
the access mode. There is no default value for the access mode.

The pmode argument is required only when _ 0_ CREAT is specified. If the file
exists, pmode is ignored. Otherwise, pmode specifies the file's permission settings,
which are set when the new file is closed for the first time. The pmode is an in
teger expression containing one or both of the manifest constants _S_IWRITE
and _S_IREAD, defined in SYS\STAT.H. When both constants are given, they
are joined with the bitwise-OR operator (I). The meaning of the pmode argument
is as follows:

Value

_S_IWRITE
_S_IREAD

_S_IREAD I_S_IWRITE

Meaning

Writing permitted

Reading permitted

Reading and writing permitted

If write permission is not given, the file is read-only. With DOS, all files are read
able; it is not possible to give write-only permission. Thus the modes
_S_IWRITE and _S_IREAD I_S_IWRITE are equivalent.

The _open function applies the current file-permission mask to pmode before set
ting the permissions (see _ umask).

Thefilename argument used in the _open function is affected by the DOS
APPEND command.

Note that with DOS versions 3.0 and later, a problem occurs when SHARE is in
stalled and a new file is opened with oflag set to _O_CREAT I_O_RDONLY
or _ 0_ CREA T I _ 0 _ WRONL Y and pmode set to _ S_ IREAD. Under these
conditions, the operating system prematurely closes the file during system calls
made within _ open.

Return Value

_open 535

To work around the problem, open the file with the pmode argument set to
_S_IWRITE. Then close the file and use _chmod to change the access mode
back to _S_IREAD. Another workaround is to open the file with pmode set to
_S_IREAD and oflag set to _O_CREAT I_O_RDWR.

The _ open function returns a file handle for the opened file. A return value of -1
indicates an error, and errno is set to one of the following values:

Value

EACCES

EEXIST

EINVAL

EMFILE

ENOENT

Meaning

Given path name is a directory; or an attempt was made to open
a read-only file for writing; or a sharing violation occurred (the
file's sharing mode does not allow the specified operations).

The _ 0_ CREAT and _ O_EXCL flags are specified, but the
named file already exists.

An invalid oflag or pmode argument was given.

No more file handles available (too many open files).

File or path name not found.

Compatibility Standards: UNIX

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _open for compatibility with ANSI naming conventions of non-ANSI func
tions. Use open and link with OLDNAMES.LIB for UNIX compatibility.

_access, _chmod, _close, _creat, _dup, _dup2, fopen, _sopen, _umask

1* OPEN.C: This program uses _open to open a file named OPEN.C for input
* and a file named OPEN.OUT for output. The files are then closed.
*1

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>

536 _open

Output

void main(void)
{

int fh1, fh2;

fhl = _open("OPEN.C", 0 RDONLY);
if(fh1 == -1)

perror("open fai 1 ed on input fi 1 e");
else
{

}

printf("open succeeded on input file\n");
close(fhl);

fh2 = _open("OPEN.OUT", _O_WRONLY I _O_CREAT, S IREAD
if(fh2 == -1)

perror("open failed on output file");
else
{

}

printf("open succeeded on output file\n");
close(fh2);

open succeeded on input file
open succeeded on output file

S IWRITE);

Description

Remarks

Return Value

Compatibility

See Also

_ Dutgtext 537

_outgtext
Prints font-based text in graphics mode.

#include <graph.h>

void __ far _outgtext(const char __ far *text);

text Text string to output

The _outgtext function outputs on the screen the null-terminated string that text
points to. The text is output using the current font at the current graphics position
and in the current color.

No formatting is provided, in contrast to the standard console I/O library routines
such as printf.

After it outputs the text, _outgtext updates the current graphics position.

The _outgtext function operates only in graphics video modes (e.g.,
_MRES4COLOR). Because it is a graphics function, the color of text is set by
the _ setcolor function, not by the _ settextcolor function. Similarly, the position
is affected by the _ moveto function, not by the _ settextposition function.

None.

Standards: None

16-Bit: DOS

32-Bit: None

_moveto functions, _setcolor, _setfont

538 _ outgtext

Example 1* OUTGTXT.C illustrates font output using functions:
* _registerfonts setfont _outgtext
* _unregisterfonts _getfontinfo _getgtextextent
* _setgtextvector
*1

#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <graph.h>

#define NFONTS 6

unsigned char *face[NFONTS]
{

"Courier", "Helvetica", "Times Roman", "Modern", "Script", "Roman"
} ;
unsigned char *options[NFONTS] =
{

"courier", "helv", "tms rmn", "modern", "script", "roman"
} ;

void maine void)
{

unsigned char list[20];
char fondir[_MAX_PATH];
struct _videoconfig vc;
struct _fontinfo fi;
short fontnum, x, y;

1* Read header info from all .FON files in current or given directory. *1
if(_registerfonts("*.FON") <= 0)
{

_outtext("Enter full path where .FON files are located: ");
gets(fondi r);
strcat(fondir, "*.FON");
if(_registerfonts(fondir) <= 0)
{

outtext("Error: can't register fonts");
exit(1);

1* Set highest available graphics mode and get configuration. *1
if(Lsetvideomode(MAXRESMODE))

ex it (1);
_getvideoconfig(&vc);

_ outgtext 539

1* Display each font name centered on screen. *1
for(fontnum = 0; fontnum < NFONTS; fontnum++)
{

1* Build options string. *1
strcat(strcat(strcpy(list, "t'"), options[fontnum]), "'H);
strcat(list, "h30w24b");

clearscreen(GCLEARSCREEN);
if(setfont(list) >= 0)
{

else
{

1* Use length of text and height of font to center text. *1
x = (vc.numxpixels I 2) - (_getgtextextent(face[fontnum]) I 2);
y = (vc.numypixels I 2) + (_getgtextextent(face[fontnum]) I 2);
if(_getfontinfo(&fi))
{

outtext("Error: Can't get font information");
break;

_moveto(x, y);
if(vC.numcolors > 2)

setcolor(fontnum + 2);

1* Rotate and display text. *1
_setgtextvector(I, 0);
_outgtext(face[fontnum]);
_setgtextvector(0, 1);
_outgtext(face[fontnum]);
_setgtextvector(-I, 0);
_outgtext(face[fontnum]);
_setgtextvector(0, -1);
_outgtext(face[fontnum]);

outtext("Error: Can't set font: ");
outtext(list);

}

_getch();

_unregisterfonts();
setvideomode(DEFAULTMODE);

exit(0);

540 Qutmem

Description

Remarks

Return Value

Compatibility

See Also

Dutmem
Prints text of a specified length in graphics mode.

#include <graph.h>

void __ far _outmem(const char __ far *text, short length);

text

length

Text string to output

Length of string to output

The _outmem function outputs the string that text points to. The length argument
specifies the number of characters to output.

Unlike _outtext, the _outmem function prints all characters literally, including
ASCII 10, 13, and 0 as the equivalent graphics characters. No formatting is pro
vided. Text is printed using the current text color, starting at the current text
position.

To output text using special fonts, you must use the _outgtext function.

None.

Standards: None

16-Bit: DOS

32-Bit: None

_outtext, _settextcolor, _settextposition, _settextwindow

Example 1* OUTMEM.C illustrates:
* outmem

#include <stdio.h>
#include <graph.h>

void main(void)
{

}

int i, len;
char tmp[10];

clearscreen(GCLEARSCREEN);
fort i = 0; i < 256; i++)
{

_settextposition((i % 24) + 1, (i 124) * 7);
1 en = spri ntf(tmp, "%3d %c", i, i);
_outmem(tmp, len);

_settextposition(24, 1);

outmem 541

542 _Qutp, _Qutpw

Description

Remarks

Return Value

Compatibility

See Also

_Dulp, _Dulpw
Outputs a byte C_outp) or a word C_outpw) at a port.

#include <conio.h> Required only for function declarations

int _outp(unsigned port, int databyte);

unsigned _outpw(unsigned port, unsigned dataword);

port

databyte

dataword

Port number

Output value

Output value

The _outp and _outpw functions write a byte and a word, respectively, to the
specified output port. The port argument can be any unsigned integer in the range
0- 65,535; byte can be any integer in the range 0 - 255; and dataword can be any
value in the range 0 - 65,535.

The functions return the data output. There is no error return.

Standards: None

16-Bit: DOS

32-Bit: None

Example

_Quip, _QUlpW 543

1* QUTP.C: This program uses _ inp and _outp to make sound of variable tone
* and duration.
*1

#include <conio.h>
#include <stdio.h>
#include <time.h>

void Beep(unsigned duration, unsigned frequency); 1* Prototypes *1
void Sleep(clock_t wait);

void main
{

main)

Beep(698, 700);
Beep(523, 500);

1* Sounds the speaker for a time specified in microseconds by duration
* at a pitch specified in hertz by frequency.
*1

void Beep(unsigned frequency, unsigned duration
{

int control;

1* If frequency is 0, Beep doesn't try to make a sound. *1
if(frequency)
{

1* 75 is about the shortest reliable duration of a sound. *1
if(duration < 75)

duration = 75;

1* Prepare timer by sending 10111100 to port 43. *1
_outp(0x43, 0xb6);

1* Divide input frequency by timer ticks per second and
* write (byte by byte) to timer.
*1

frequency = (unsigned)(1193180L I frequency);
_outp(0x42, (char)frequency);
_outp(0x42, (char)(frequency » 8));

1* Save speaker control byte. *1
control = _ inp(0x61);

1* Turn on the speaker (with bits 0 and 1). *1
_outp(0x61, control I 0x3);

544 _ Qutp, _ Qutpw

}

Sl eep((cl ock_ t)durati on);

/* Turn speaker back on if necessary. */
if(frequency)

_outp(0x61, control);

/* Pauses for a specified number of microseconds. */
void Sleep(clock_t wait)
{

}

goal = wait + cl ock();
whi 1 e(goal > cl ock())

Description

Remarks

Return Value

oultext 545

outtext
Prints text in graphics mode.

#include <graph.h>

void __ far _outtext(const char __ far *text);

text Text string to output

The _outtext function outputs the null-terminated string that text points to. No for
matting is provided, in contrast to the standard console I/O library routines such as
printf. This function will work in any screen mode.

Text output begins at the current text position.

To output text using special fonts, you must use the _ outgtext function.

None.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS

None

_outmem, _settextcolor, _settextposition, _settextwindow, _ wrapon

/* OUTTXT.C: This example illustrates text output functions:
* _gettextcolor _getbkcolor _gettextposition outtext
* settextcolor setbkcolor _settextposition
*/

#include <conio.h>
#include <stdio.h>
#include <graph.h>

char buffer [80J;

546 Quttext

void maine void)
{

}

1* Save original foreground, background, and text position *1
short blink, fgd, oldfgd;
long bgd, oldbgd;
struct _rccoord oldpos;

1* Save original foreground, background, and text position. *1
oldfgd _gettextcolor();
oldbgd = _getbkcolorC);
oldpos = _gettextposition();
clearscreen(_GCLEARSCREEN);

1* First time no blink, second time blinking. *1
fore blink = 0; blink <= 16; blink += 16)
{

1* Loop through 8 background colors. *1
fore bgd = 0; bgd < 8; bgd++)
{

_setbkcolor(bgd);
_settextposition((short)bgd + CCblink I 16) * 9) + 3, 1);
_settextcolorC 7);
sprintfCbuffer, "Back: %d Fore:", bgd);
_outtext(buffer);

1* Loop through 16 foreground colors. *1
fore fgd = 0; fgd < 16; fgd++)
{

}

_settextcolorC fgd + blink);
sprintf(buffer," %2d", fgd + blink);
_outtext(buffer);

}
_getch() ;

1* Restore original foreground, background, and text position. *1
_settextcolorC oldfgd);
_setbkcolor(oldbgd);

clearscreen(GCLEARSCREEN);
_settextpositionC oldpos.row, oldpos.col);

Description

Remarks

Return Value

Compatibility

See Also

perror 547

perror
Prints an error message.

#include <stdio.h> Required only for function declarations

void perror(const char *string);

string String message to print

The perror function prints an error message to stderr. The string argument is
printed first, followed by a colon, then by the system error message for the last li
brary call that produced the error, and finally by a newline character. If string is a
null pointer or a pointer to a null string, perror prints only the system error
message.

The actual error number is stored in the variable errno (defined in ERRNO.H).
The system error messages are accessed through the variable sYLerrlist, which is
an array of messages ordered by error number. The perror function prints the ap
propriate error message by using the errno value as an index to sYLerrlist. The
value of the variable sYLnerr is defined as the maximum number of elements in
the sYLerrlist array.

To produce accurate results, perror should be called immediately after a library
routine returns with an error. Otherwise, the errno value may be overwritten by
subsequent calls.

Under DOS, some of the errno values listed in ERRNO.H are not used. These
additional errno values are reserved for UNIX use. See "_doserrno, errno,
sys_errlist, sys_nerr" on page 63 for a list of errno values used in DOS and the
corresponding error messages. The perror function prints an empty string for any
errno value not used under the operating system.

None.

Standards: ANSI, UNIX

16-Bit: DOS, QWIN

32-Bit: DOS32X

clearerr, ferror, strerror

548 perror

Example 1* PERROR.C: This program attempts to open a file named NOSUCHF.ILE.

Output

* Since this file probably doesn't exist, an error message is displayed.
* The same message is created using perror, strerror, and _strerror.
*1

ifi ncl ude <fcntl. h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void maine void
{

int fh;

if((fh = _open("NOSUCHF.ILE", 0 RDONLY)) -1)
{

}

1* Three ways to create error message: *1
perror("perror says open failed");
printf("strerror says open failed: %s\n", strerror(errno));
printf(_strerror("_strerror says open fai led"));

else
{

}

printf("open succeeded on input file\n");
_close(fh);

perror says open failed: No such file or directory
strerror says open failed: No such file or directory
strerror says open failed: No such file or directory

Description

Remarks

_pg_analyzechart Functions 549

_ pg_ analyzechart Functions
Analyze a series of data.

#include <pgchart.h>

short __ far _p~analyzechart(_chartenv __ far *env,
char __ far * __ far *categories, float __ far *values, short n);

short __ far _p~analyzechartms(_chartenv __ far *env,
char __ far * __ far *categories, float __ far *values, short nseries, short n,
short arraydim, char __ far * __ far *serieslabels);

env

categories

values

nseries

n

arraydim

series labels

Chart environment variable

Array of category variables

Array of data values

Number of series to chart

Number of data values to chart

Row dimension of data array

Array of labels for series

The _ pg_ analyzechart routines analyze a single or multiple series of data
without actually displaying the presentation-graphic image.

The _ pg_analyzechart function fills the chart environment with default values
for a single-series bar, column, or line chart, depending on the type specified by
the call to the _ p~ defaultchart function. The variables calculated by
_ p~ analyzechart reflect the data given in the arguments categories and values.
All arguments are the same as those used with the _ pg_ chart function.

The _pg_analyzechartms function fills the chart environment with default
values for a multiseries bar, column, or line chart, depending on which type is
specified in the _ pg_ defaultchart function. The variables calculated by
_ p~analyzechartms reflect the data given in the arguments categories and
values. All arguments are the same as those used with the _ p~ chartms function.

Boolean flags in the chart environment, such as AUTOSCALE and LEGEND,
should be set to TRUE before calling either _ pg_analyzechart function. This
will ensure that the function will calculate all defaults.

550 _ pg_ analyzechart Functions

Return Value

For a discussion of the chart environment and related topics, see "Presentation
Graphics Functions" on page 29.

The _ pg_ analyzechart and _ pg_ analyzechartms functions return 0 if there
were no errors. A nonzero value indicates a failure.

Compatibility Standards: None

16-Bit: DOS

See Also

Example

32-Bit: None

_pg_chart functions, _p~defaultchart, _pg_initchart

1* PGACHART.C: This example
* analyze functions.
* The example uses
* _pg_analyzechartms
* The same principles apply
* _pg_analyzepie
* _pg_analyzescatter
*1

#include <conio.h>
#include <string.h>
#include <stdlib.h>
#include <graph.h>
#include <pgchart.h>

#define FALSE 0
#define TRUE 1

illustrates presentation-graphics

for
_pg_analyzechart
_pg_analyzescatterms

1* Note data declared as a single-dimension array. The multiseries
* chart functions expect only one dimension. See _pg_chartms
* example for alternate method using multidimension array.
*1

#define TEAMS 4
#define MONTHS 3
float far values[TEAMS * MONTHS]

char
char

far *months[MONTHS]
far *teams[TEAMS] = "Reds",

{.435, .522, .671,
.533, .431, .590,
.723, .624, .488,
.329, .226, .401 };
"May", "June" J "July" };

"Sox", "Cubs", "Mets" };

_ pg_ analyze chart Functions 551

void maine void)
{

}

chartenv env;

1* Find a valid graphics mode. *1
if(Lsetvideomode(MAXRESMODE)

exit(1);

_pg_initchart(); 1* Initialize chart system. *1
1* Default multiseries bar chart *1
_pg_defaultchart(&env, _PG_BARCHART, _PG_PLAINBARS);
strcpy(env.maintitle.title, "Little League Records - Default");
_pg_chartms(&env, months, values, TEAMS, MONTHS, MONTHS, teams);
_getch();
_clearscreen(_GCLEARSCREEN);

1* Analyze multiseries bar chart with autoscale. This sets all
* default scale values. We want y axis values to be automatic.
*1

_pg_defaultchart(&env, _PG_BARCHART, _PG_PLAINBARS);
strcpy(env.maintitle.title, "Little League Records - Customized");
env.xaxis.autoscale ~ TRUE;
_pg_analyzechartms(&env, months, values, TEAMS, MONTHS, MONTHS, teams);

1* Now customize some of the x axis values. Then draw the chart. *1
env.xaxis.autoscale = FALSE;
env.xaxis.scalemax ~ 1.0; 1* Make scale show 0.0 to 1.0. *1
env.xaxis.ticinterval = 0.2; 1* Don't make scale too crowded. *1
env.xaxis.ticdecimals = 3; 1* Show three decimals. *1
strcpy(env.xaxis.scaletitle.title, "Win/Loss Percentage");
_pg_chartms(&env, months, values, TEAMS, MONTHS, MONTHS, teams);
_getch();

_setvideomode(DEFAULTMODE);
exit(0);

552 _ pg_ analyzepie

Description

Remarks

Return Value

Compatibility

See Also

Example

Analyzes a single series of data for a pie chart.

#include <pgchart.h>

short __ far _pg_analyzepie(_chartenv __ far *env,
char __ far * __ far *categories, float __ far *values,
short __ far *explode, short n);

env

categories

values

explode

n

Chart environment variable

Array of category variables

Array of data values

Array of explode flags

Number of data values to chart

The _p~analyzepie function analyzes a single series of data without actually dis
playing the graphic image.

The _ pg_ analyzepie function fills the chart environment for a pie chart using the
data contained in the array values. All arguments are the same as those used in the
_ pg_ chartpie function.

For a discussion of the chart environment and related topics, see "Presentation
Graphics Functions" on page 29.

The _pg_analyzepie function returns 0 if there were no errors. A nonzero value
indicates a failure.

Standards: None

16-Bit: DOS

32-Bit: None

_ pg_ chartpie, _ pg_ defaultchart, _ pg_ initchart

See the example for _pg_analyzechart.

Description

Remarks

_pg_analyzescatter Functions 553

_ pg_ analyzescatter Functions
Analyze a series of data for a scatter chart.

#include <pgchart.h>

short __ far _p~analyzescatter(_chartenv __ far *env, float __ far *xvalues,
float __ far *yvalues, short n);

short __ far _p~analyzescatterms(_chartenv __ far *env,
float __ far *xvalues, float __ far *yvalues, short nseries, short n,
short rowdim, char __ far * __ far *serieslabels);

env

xvalues

yvalues

n

nseries

rowdim

serieslabels

Chart environment structure

Array of x-axis data values

Array of y-axis data values

Number of data values to chart

Number of series to chart

Row dimension of data array

Array of labels for series

The _ pg_analyzescatter set of routines analyzes a single or multiple series of
data without actually displaying the graphic image.

The _ p~analyzescatter function fills the chart environment for a single-series
scatter diagram. The variables calculated by this function reflect the data given in
the arguments xvalues and yvalues. All arguments are the same as those used in
the _ p~ chartscatter function.

The _ p~ analyzescatterms function fills the chart environment for a multi series
scatter diagram. The variables calculated by _ pg_ analyzescatterms reflect the
data given in the arguments xvalues and yvalues. All arguments are the same as
those used in the function _ pg_ chartscatterms.

Boolean flags in the chart environment, such as AUTOSCALE and LEGEND,
should be set to TRUE before calling _pg_analyzescatterms; this ensures that
the function will calculate all defaults.

554 _ pg_ analyzescatter Functions

Return Value

Compatibility

See Also

Example

For a discussion of the chart environment and related topics, see "Presentation
Graphics Functions" on page 29.

The _ pg_ analyzescatter and _ pg_analyzescatterms functions return 0 if there
were no errors. A nonzero value indicates a failure.

Standards: None

16-Bit: DOS

32-Bit: None

_ p~ chartscatter functions, _ pg_ defauitchart, _ p~ initchart

See the example for _pg_analyzechart.

Description

Remarks

_ pg_ chart Functions 555

_pg_chart Functions
Display single-series or multi series charts.

#include <pgchart.h>

short __ far _p~chart(_chartenv __ far *env,
char __ far * __ far *categories, float __ far *values, short n);

short __ far _p~chartms(_chartenv __ far *env,
char __ far * __ far *categories, float __ far *values, short nseries, short n,
short arraydim, char __ far * __ far *serieslabels);

env

categories

values

n

nseries

arraydim

serieslabels

Chart environment variable

Array of category variables

Array of data values

Number of data values to chart

Number of series to chart

Row dimension of data array

Array of labels for series

The _ pg_chart function displays a single-series bar, column, or line chart, de
pending on the type specified in the chart environment variable (env).

The _ pg_ chartms function displays a multi series bar, column, or line chart, de
pending on the type specified in the chart environment. All the series must contain
the same number of data points, specified by the argument n.

The array values is a two-dimensional array containing all value data for every ser
ies to be plotted on the chart. Each column of values represents a single series. The
parameter rowdim is the integer value used to dimension rows in the array declara
tion for values.

For example, the following code fragment declares the identifier va 1 ues to be a
two-dimensional floating-point array with 20 rows and 10 columns:

#define ARRAYDIM 20
float values [ARRAYDIM][10];
short rowdim = ARRAYDIM;

556 _ pg_ chart Functions

Return Value

Note that the number of columns in the values array cannot exceed 10, the maxi
mum number of data series on a single chart. Note also that r owd i m must be
greater than or equal to the argument n, and the column dimension in the array dec
laration must be greater than or equal to the argument nseries. If nand nseries are
set to values less than the full dimensional size of the values array, only part of the
data contained in values will be plotted.

The array series labels holds the labels used in the chart legend to identify each
series.

For a discussion of the chart environment and related topics, see "Presentation
Graphics Functions" on page 29.

The _pg_chart and _pg_chartms functions return 0 if there were no errors. A
nonzero value indicates a failure.

Compatibility Standards: None

See Also

Example

16-Bit: DOS

32-Bit: None

_ pg_ analyzechart functions, _ pg_ defaultchart, _ pg_ initchart

1* PGCHART.C: This example illustrates presentation-graphics support
* routines and single-series chart routines, including
* _pg_ i nitchart _pg_defaultchart _pg_chart _pg_chartpi e
*1

#include <conio.h>
#include <graph.h>
#include <string.h>
#include <stdlib.h>
#include <pgchart.h>

#define COUNTRIES 5
float __ far value[COUNTRIESJ
char __ far *category[COUNTRIESJ
short far explode[COUNTRIESJ =

{ 42.5,
{ "USSR",
{ 0,

14.3, 35.2,
"France","USA",
1, 0,

21. 3,
"UK" ,
1,

32.6 };
"Other" };
o };

_ PD- chart Functions 557

void maine void)
{

}

_chartenv env;
short mode = _VRES16COLOR;

1* Find a valid graphics mode. *1
if(Lsetvideomode(MAXRESMODE

ex it (1);

pg i nitchart();

1* Single-series bar chart *1

1* Initialize chart system. *1

_pg_defaultchart(&env, _PG_BARCHART, PG_PLAINBARS);
strcpy(env.maintitle.title, "Widget Production");
_pg_chart(&env, category, value, COUNTRIES);
_getch();
_clearscreen(_GCLEARSCREEN);

1* Single-series column chart *1
_pg_defaultchart(&env, _PG_COLUMNCHART, PG_PLAINBARS);
strcpy(env.maintitle.title, "Widget Production");
_pg_chart(&env, category, value, COUNTRIES);
_getch();
_clearscreen(GCLEARSCREEN);

1* Pie chart *1
_pg_defaultchart(&env, _PG_PIECHART, _PG_PERCENT);
strcpy(env.maintitle.title, "Widget Production");
_pg_chartpie(&env, category, value, explode, COUNTRIES);
_getch();

_setvideomode(DEFAULTMODE);
exit(0);

Description

Remarks

Return Value

_ PD- chartpie
Displays a pie chart.

#include <pgchart.h>

short __ far _pg_chartpie(_chartenv __ far *env,
char __ far * __ far *categories, float __ far *values, short __ far *explode,
short n);

env

categories

values

explode

n

Chart environment structure

Array of category labels

Array of data values

Array of explode flags

Number of data values to chart

The _ pg_chartpie function displays a pie chart for the data contained in the array
values. Pie charts are formed from a single series of data-there is no multiseries
version of pie charts as there is for other chart types.

The array explode must be dimensioned so that its length is greater than or equal
to the argument n. All entries in explode are either 0 or 1. If an entry is 1, the corre
sponding pie slice is displayed slightly removed from the rest of the pie.

For example, if the explode array is initialized as

short explode[5J = {0, 1, 0, 0, 0};

the pie slice corresponding to the second entry of the categories array will be
displayed "exploded" from the other four slices.

For a discussion of the chart environment and related topics, see "Presentation
Graphics Functions" on page 29.

The _ pg_chartpie function returns 0 if there were no errors. A nonzero value
indicates a failure.

_ pg_ chartpie 559

Compatibility Standards: None

16-Bit: DOS

32-Bit: None

See Also _pg_analyzepie, _pg_defaultchart, _p~initchart

Example See the example for _ pg_ chart.

560 _ pg_ chartscatter Functions

Description

Remarks

_pg_chartscatter Functions
Display scatter charts.

#include <pgchart.h>

short __ far _pg_chartscatter(_chartenv __ far *env, float __ far *xvalues,
float __ far *yvalues, short n);

short __ far _pg_chartscatterms(_chartenv __ far *env, float __ far *xvalues,
float __ far *yvalues, short nseries, short n, short rowdim,
char __ far * __ far *serieslabels);

env

xvalues

yvalues

n

nseries

rowdim

serieslabels

Chart environment structure

Array of x-axis data values

Array of y-axis data values

Number of data values to chart

Number of series to chart

Row dimension of data array

Array of labels for series

The _ pg_ chartscatter function displays a scatter diagram for a single series
of data.

The _pg_chartscatterms function displays a scatter diagram for more than one
series of data.

The arguments xvalues and yvalues are two-dimensional arrays containing data for
the x axis and y axis, respectively. Columns for each array hold data for individual
series; thus the first columns of xvalues and yvalues contain plot data for the first
series, the second columns contain plot data for the second series, and so forth.

The n, rowdim, nseries, and serieslabels arguments fulfill the same purposes as
those used in the _ p~ chartms function. See _ p~ chartms for an explanation of
these arguments.

For a discussion of the chart environment and related topics, see "Presentation
Graphics Functions" on page 29.

Return Value

Compatibility

See Also

Example

_ pg_ chartscatter Functions 561

The _ p~ chartscatter and _ p~ chartscatterms functions return 0 if there were
no errors. A nonzero value indicates a failure.

Standards: None

16-Bit: DOS

32-Bit: None

_p~analyzescatter functions, _p~defaultchart, _p~initchart

See the example for _p~chart.

562 _ pg_ defaultchart

Description

Remarks

_pg_defaullchart
Initializes the chart environment.

#include <pgchart.h>

short __ far _p~defaultchart(_chartenv __ far *env, short charttype,
short chartstyle);

env

charttype

chartstyle

Chart environment structure

Chart type

Chart style

The _p~defaultchart function initializes all necessary variables in the chart en
vironment for the chart type by the variable charttype.

All title fields in the environment structure are blanked. Titles should be set in the
proper fields after calling _ pg_ defaultchart.

The charttype variable can be set to one of the following manifest constants:

Chart Type

_PG_BARCHART

PG COLUMNCHART

_PG_LINECHART
_PG_PIECHART

_PG_SCATTERCHART

Description

Bar chart

Column chart

Line chart

Pie chart

Scatter chart

The chartstyle variable specifies the style of the chart with either the number "1"
or the number "2." Each of the five types of presentation-graphics charts can ap
pear in two different chart styles, as described below:

Chart Type Chart Style 1 Chart Style 2

Bar Side by side Stacked

Column Side by side Stacked

Line Points with lines Points only
Pie Percent No percent

Scatter Points with lines Points only

Return Value

Compatibility

See Also

Example

_ PD- defaultchart 563

In a pie chart, the pieces are "exploded" according to the explode array argument
in the _ pg_ chartpie function. In the "percent" format, percentages are printed
next to each slice. Bar and column charts have only one style when displaying a
single series of data. The styles "side by side" and "stacked" are applicable only
when more than one series appears on the same chart. The first style arranges the
bars or columns for the different series side by side, showing relative heights or
lengths. The stacked style emphasizes relative sizes between bars and columns.

The _ pg_ defaultchart function returns 0 if there were no errors. A nonzero value
indicates a failure.

Standards: None

16-Bit: DOS

32-Bit: None

_ pg_ getchardef, _ pg_ getpalette, _ p~ getstyleset, _ pg_ hlabelchart,
_ pg_ initchart, _ p~ resetpalette, _ p~ resetstyleset, _ pg_ setchardef,
_ pg_ setpalette, _ p~ setstyleset, _ p~ vlabelchart

See the example for _ pg_ chart.

564 _ PO- oetchardef

Description

Remarks

Return Value

Compatibility

See Also

_ pg_ getchardef
Gets the pixel bitmap for the specified character.

#incIude <pgchart.h>

short __ far _pg_getchardef(short charnum, unsigned char __ far *chardef);

charnum

chardef

ASCII number of character

Pointer to 8-by-8 bitmap array

The _pg_getchardeffunction retrieves the current 8-by-8 pixel bitmap for the
character having the ASCII number charnum. The bitmap is stored in the chardef
array.

The _ pg_getchardeffunction returns 0 if there were no errors. A nonzero value
indicates an error.

Standards: None

16-Bit: DOS

32-Bit: None

_ p~ defaultchart, _ p~ initchart, _ pg_ setchardef

Description

Remarks

Return Value

_pg_getpalette 565

_ pg_ getpalette
Gets palette colors, line styles, and patterns.

#include <pgchart.h>

short __ far _p~getpaletteC-paletteentry __ far *palette);

palette Pointer to first palette structure in array

The _ pg_ getpalette function retrieves palette colors, line styles, fill patterns, and
plot characters for all palettes. The pointer palette points to an array of palette
structures that will contain the desired palette values.

The palette used by the presentation-graphics routines is independent of the palette
used by the low-level graphics routines.

The function _ pg_ getpalette returns 0 if there were no errors, and it returns the
value _BADSCREENMODE if current palettes have not been initialized by a
previous call to _ pg_ setpalette.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS

None

/* PGGPAL.C: This example illustrates presentation-graphics palettes
* and the routines that modify them, including
* _pg_getpalette _pg_resetpalette _pg_setstyleset
* _pg_getstyleset _pg_resetstyleset _pg_vlabelchart
* _pg_hlabelchart _pg_setpalette
*/

#include <conio.h>
#include <string.h>
#include <stdlib.h>
#include <graph.h>
#include <pgchart.h>

566 _pg_getpalette

#define TEAMS 2
#define MONTHS 3
float __ far values[TEAMS][MONTHS]

cha r
char

far *months[MONTHS]
far *teams[TEAMS] "Cubs",

{ .435,
{ .533,
{ "May",

"Reds" } ;

.522, .671 },

.431, .401 } } ;
"June", "July" } ;

_fillmap fill1 = { 0x99, 0x33, 0x66, 0xcc, 0x99, 0x33, 0x66, 0xcc };
_fillmap fil12 = { 0x99, 0xcc, 0x66, 0x33, 0x99, 0xcc, 0x66, 0x33 };
_styleset styles;
_palettetype pal;

void main(void)
{

_chartenv env;
short mode = _VRES16COLOR;

1* Find a valid graphics mode. *1
if(!_setvideomode(_MAXRESMODE

ex it (1);

pg initchart(); 1* Initialize chart system.

1* Modify global set of line styles used for borders, grids, and
* data connectors. Note that this change is used before
* _pg_defaultchart, whi ch wi 11 use the styl e set.
*1

_pg_getstyleset(styles); 1* Get styles and modify *1
styles[l] = 0x5555; 1* style 1 (used for *1
_pg_setstyleset(styles); 1* borders)-then set new. *1

1* Modify palette for data lines, colors, fill patterns, and
* characters. Note that the line styles are set in the palette, not
* in the style set, so that only data connectors will be affected.
*1

_pg_getpal ette(pal);
pal[l].plotchar = 16;
pal [2]. pl otchar = 17;

1* Get default palette.
1* Set to ASCII 16 and 17.

memcpy(pal[l]. fi 11, filll, 8);
memcpy(pal[2].fill, fil12, 8);
pal[l].color 3;

1* Copy fill masks to palette. *1

pal[2].color 4;
pal[l].style 0xfcfc;
pal[2].style 0x0303;
_pg_setpal ette(pal);

1* Change palette colors.

1* Change palette line styles. *1

1* Put modified palette. *1

}

_ pg_ getpalette 567

1* Multiseries bar chart *1
strcpy(env.maintitle.title, "Little League Records - Customized");
_pg_chartms(&env, months, (float __ far *)values,

TEAMS, MONTHS, MONTHS, teams);
_getch();
_clearscreen(GCLEARSCREEN);

1* Multiseries line chart *1
_pg_defaultchart(&env, _ PG_ LINECHART, _PG_ POINTANDLINE);
strcpy(env.maintitle.title, "Little League Records - Customized");
_pg_chartms(&env, months, (float __ far *)values,

TEAMS, MONTHS, MONTHS, teams);

1* Print labels. *1
_pg_hlabelchart(&env, (short)(env.chartwindow.x2 * .75),

(short)(env.chartwindow.y2 * .10),
12, "Up and up!");

_pg_vlabelchart(&env, (short)(env.chartwindow.x2 * .75),
(short)(env.chartwindow.y2 * .45),
13, "Sliding down!");

_getch();
_clearscreen(_GCLEARSCREEN);

_pg_resetpalette();
_pg_resetstyleset();

1* Multiseries bar chart *1

1* Restore default palette
1* and style set.

_pg_defaultchart(&env, _PG_BARCHART, PG_PLAINBARS);
strcpy(env.maintitle.title, "Little League Records - Default");
_pg_chartms(&env, months, (float __ far *)values,

TEAMS, MONTHS, MONTHS, teams);
_getch();
_clearscreen(GCLEARSCREEN);

1* Multiseries line chart */
_pg_defaul tchart(&env, _PG_ LINECHART, _PG_POINTANDLINE);
strcpy(env.maintitle.title, "Little League Records - Default");
_pg_chartms(&env, months, (float __ far *)values,

TEAMS, MONTHS, MONTHS, teams);
_getch();

_setvideomode(DEFAULTMODE);
exit(0);

568 _ pg_ getstyleset

Description

Remarks

Return Value

Compatibility

See Also

Example

_ pg_ getstyleset
Gets the contents of the current styleset array.

#include <pgchart.h>

void _3ar _pg_getstyleset(unsigned short _3ar *styleset);

styleset Pointer to current style set array

The _ p~ getstyleset function retrieves the contents of the current sty Ie set array.

None.

Standards:

16-Bit:

None

DOS

32-Bit: None

_ pg_ defaultchart, _ pg_ initchart, _ pg_ resetstyleset, _ p~ setstyleset

See the example for _pg_getpalette.

Description

Remarks

Return Value

Compatibility

See Also

Example

_ pg_ hlabelchart 569

_ pg_ hlabelchart
Writes text horizontally on the screen.

#include <pgchart.h>

short __ far _p~hlabelchart(_chartenv __ far *env, short x, short y,
short color, char __ far *label);

env

x

y

color

label

Chart environment structure

x-coordinate for text

Pixel y-coordinate for text

Color code for text

Label text

The _ pg_ hlabelchart function writes text horizontally on the screen. The argu
ments x and yare pixel coordinates for the beginning location of text relative to
the upper-left corner of the chart window.

The _ pg_hlabelchart functions return 0 if there were no errors. A nonzero value
indicates a failure.

Standards: None

16-Bit: DOS

32-Bit: None

_ pg_ defaultchart, _ pg_initchart, _ pg_ vlabelchart

See the example for _pg_getpaleUe.

570 _ pg_ initchart

Description

Remarks

Return Value

Compatibility

See Also

Example

_ pg_ initchart
Initializes presentation graphics.

#include <pgchart.h>

short __ far _pg_initchart(void);

The _ pg_initchart function initializes the presentation-graphics package. It
initializes the color and style pools, resets the chartline styleset, builds default
palette modes, and reads the presentation-graphics font definition from the disk.
This function is required in all programs that use presentation graphics. The
_ pg_ initchart function must be called before any of the other functions in the
presentation-graphics library.

The _ pg_initchart function assumes a valid graphics mode has been established.
Therefore, it must be called only after a successful call to the library function
_ setvideomode.

Note The _pg_initchart function can only be called after using the
_setvideomode function to establish the video mode. Also, _pg_initchart must
be called after each change of the video mode.

The _ pg_ initchart functions return 0 if there were no errors. A nonzero value in
dicates a failure.

Standards: None

16-Bit: DOS

32-Bit: None

_ pg_ defaultchart, _ pg_ getchardef, _ p~ getpalette, _ pg_ getstyleset,
_ pg_hlabelchart, _ pg_resetpalette, _resetstyleset, _ pg_setchardef,
_ pg_ setpalette, _ p~ setstyleset, _ pg_ vlabelchart, _ setvideomode

See the example for _p~chart.

Description

Remarks

Return Value

Compatibility

See Also

Example

_ pg_ resetpalette 571

_pg_resetpalette
Resets palette colors, line styles, and patterns to default values.

#include <pgchart.h>

short __ far _p~resetpalette(void);

The _ pg_ resetpalette function sets the palette colors, line styles, fill patterns, and
plot characters for the palette to the default for the current screen mode.

The palette used by the presentation-graphics routines is independent of the palette
used by the low-level graphics routines.

The _ pg_ resetpalette function returns 0 if there were no errors. If the screen
mode is not valid, the value _BADSCREENMODE is returned.

Standards: None

16-Bit: DOS

32-Bit: None

_ p~ defaultchart, _ p~ getpalette, _ pg_ initchart, _ p~ setpalette

See the example for _p~getpalette.

572 _ P g_ resetstyl eset

Description

Remarks

Return Value

Compatibility

See Also

Example

_ pg_ resetstyleset
Resets styleset to default values.

#include <pgchart.h>

void __ far _pg_resetstyleset(void);

The _ pg_ resetstyleset function reinitializes the style set to the default values for
the current screen mode.

None.

Standards: None

16-Bit: DOS

32-Bit: None

See the example for _p~getpalette.

Description

Remarks

Return Value

Compatibility

See Also

_ pg_ setchardef 573

_ pg_ setchardef
Sets the pixel bit map for the specified character.

#include <pgchart.h>

short __ far _ p~ setchardef(short charnum, unsigned char __ far *chardef);

charnum ASCII number of character

chardef Pointer to an 8-by-8 bitmap array for the character

The _ p~ setchardef function sets the 8-by-8 pixel bitmap for the character with
the ASCII number charnum. The bitmap is stored in the chardefarray.

The _ p~ setchardef function returns 0 if there was no error. A nonzero value in
dicates an error.

Standards: None

16-Bit: DOS

32-Bit: None

Description

Remarks

Return Value

Compatibility

See Also

Example

_ pg_ setpalette
Sets palette colors, line styles, and patterns.

#include <pgchart.h>

short __ far _pg_setpalette(_paletteentry __ far *palette);

palette Pointer to first palette structure in array

The _ pg_setpalette function sets palette colors, line styles, fill patterns, and plot
characters for all palettes. The pointer palette points to an array of palette struc
tures that contain the desired palette values.

The palette used by the presentation-graphics routines is independent of the palette
used by the low-level graphics routines.

The _ pg_ setpalette function returns 0 if there were no errors. If the new palettes
are not valid, the value _BADSCREENMODE is returned.

Standards: None

16-Bit: DOS

32-Bit: None

_ pg_ defaultchart, _ p~ getpaiette, _ p~ initchart, _ pg_ resetpalette

See the example for _ pg_ getpaiette.

Description

Remarks

Return Value

Compatibility

See Also

Example

_ pg_ setstyleset 575

_ pg_ setstyleset
Sets the current style set.

#include <pgchart.h>

void __ far _p~setstyleset(unsigned short __ far *styleset);

styleset Pointer to new styleset

The _ pg_ setstyleset function sets the current sty leset.

None.

Standards:

16-Bit:

None

DOS

32-Bit: None

_ p~ defaultchart, _ pg_ getstyleset, _ pg_initchart, _ pg_ resetstyleset

See the example for _ pg_ getpalette.

576 _ pg_ vlabelchart

Description

Remarks

Return Value

Compatibility

See Also

Example

_ pg_ vlabelchart

Writes text vertically on the screen.

#include <pgchart.h>

short __ far _pg_ vlabelchart(_chartenv __ far *env, short x, short y,
short color, char __ far *label);

env

x

y

color

label

Chart environment structure

Pixel x coordinate for text

Pixel y coordinate for text

Color code for text

Label text

The _ p~ vlabelchart function writes text vertically on the screen. The arguments
x and yare pixel coordinates for the beginning location of text relative to the upper
left corner of the chart window.

The _ pg_ vlabelchart function returns 0 if there were no errors. A nonzero value
indicates a failure.

Standards: None

16-Bit: DOS

32-Bit: None

See the example for _pg_getpalette.

Description

Remarks

_pie Functions 577

_ pie Functions
Draw wedge-shaped figures.

#include <graph.h>

short __ far _pie(short control, short xl, short yl, short x2, short y2, short x3,
short y3, short x4, short y4);

short __ far _ piL w(short control, double xl, double y l, double x2, double y2,
double x3, double y3, double x4, double y4);

short __ far _piLwxy(short control, struct _ wxycoord __ far *pwxyl,
struct _ wxycoord __ far *pwxy2, struct _ wxycoord __ far *pwxy3,
struct _ wxycoord __ far*pwxy4);

control

xl,yl

x2,y2

x3,y3

x4,y4

pwxyl

pwxy2

pwxy3

pwxy4

Fill-control constant

Upper-left corner of bounding rectangle

Lower-right corner of bounding rectangle

Second point of start vector (center of bounding
rectangle is first point)

Second point of end vector (center of bounding
rectangle is first point)

Upper-left corner of bounding rectangle

Lower-right corner of bounding rectangle

Second point of start vector (center of bounding
rectangle is first point)

Second point of end vector (center of bounding
rectangle is first point)

The _ pie functions draw a pie-shaped wedge by drawing an elliptical arc whose
center and two endpoints are joined by lines.

The center of the pie is the center of the bounding rectangle, which is defined by
points (xl, yl) and (x2, y2) for _pie and _pie_ wand by points pwxyl andpwxy2
for _pie_ wxy. The pie starts where it intersects an imaginary line extending from

578 _ pie Functions

Return Value

Compatibility

See Also

the center of the arc through (x3, y3) for _ pie and _ piL wand through pwxy3 for
_ pie_ wxy. It is drawn counterclockwise about the center of the arc, ending where
it intersects an imaginary line extending from the center of the arc through (x4, y4)
for _ pie and _ pie_ wand through pwxy4 for _ pie_ wxy.

The _ pie routine uses the view coordinate system. The _ pie_ wand _ pie_ wxy
functions use the real-valued window coordinate system. The arc is drawn using
the current color. Since an arc does not define a closed area, it is not filled.

The _ wxycoord structure is defined in GRAPH.H and contains the following
elements:

Element

double wx

double wy

Description

Window x coordinate

Window y coordinate

The wedge is drawn using the current color moving in a counterclockwise direc
tion. The control parameter can be one of the following manifest constants:

Constant

_ GFILLINTERIOR

_GBORDER

Action

Fills the figure using the current color and fill mask

Does not fill the figure

The control option given by _GFILLINTERIOR is equivalent to a subsequent
call to the _floodfill function using the approximate center of the pie as the
starting point and the current color (set by _setcolor) as the boundary color. Use
the _getarcinfo function to find the exact starting point.

These functions return a nonzero value if successful; otherwise, they return o.

Standards: None

l6-Bit:

32-Bit:

DOS

None

_arc functions, _ellipse functions, _floodfill, _getarcinfo, _getcolor, _Iineto
functions, _rectangle functions, _setcolor, _setfillmask

Example 1* PIE.C: This program draws a pie-shaped figure. *1

#include <stdlib.h>
#include <conio.h>
#include <graph.h>

void maine void)
{

1* Find a valid graphics mode. *1
if(!_setvideomode(MAXRESMODE)

ex it (1);

_pie Functions 579

_pie(_GBORDER, 80,50,240,150,240,12,0,150);
_getch();

setvideomode(DEFAULTMODE);
exit(0);

580 _ polygon Functions

Description

Remarks

_ polygon Functions
Draw polygon shapes.

#include <graph.h>

short __ far _polygon(short control, const struct _xycoord __ far *points,
short numpoints);

short __ far _polygolL w(short control, const double __ far *points,
short numpoints);

short __ far _polygolL wxy(short control,
const struct _ wxycoord __ far *points, short numpoints);

control

points

numpoints

Fill flag

Pointer to an array of structures or doubles defin
ing the polygon

Number of points

The _polygon functions draw polygons. The border of the polygon is drawn in
the current color and line style. The _ polygon routine uses the view coordinate
system (expressed in _xycoord structures), and the _polygolL wxy and
polygon w routines use real-valued window coordinates (expressed in
_ wxycoord structures and in pairs of double-precision floating-point values,
respectively).

The argument points is an array of _xycoord or _ wxycoord structures or pairs of
doubles, each of which specifies one of the polygon's vertices. (For _ polygolL w,
points[O] and points[l] specify the x and y coordinates, respectively, of the first
point.) If the first point does not equal the last point, the _ polygon functions use
them to provide a closing edge.

The argument numpoints indicates the number of elements (the number of ver
tices) in the points array. The minimum number of points is 3, the maximum is
16,381.

Return Value

_ polygon Functions 581

The control argument can be one of the following manifest constants:

Constant

_ GFILLINTERIOR

_GBORDER

Action

Fills the polygon with the current fill mask using a scan
fill

Does not fill the polygon

The _setwritemode, _setlinestyle, and _setfillmask functions all affect the out
put from the_ polygon functions.

If you try to fill the polgon with the _floodfill function, the polygon must be
bordered by a solid line-style pattern.

The _ polygon functions return a nonzero value if the arc is successfully drawn;
otherwise, they return O.

Compatibility Standards: None

16-Bit: DOS

See Also

Example

32-Bit: None

_ ellipse functions, _ floodfill, _lineto functions, _ pie functions, _ rectangle
functions, _setcolor, _setfillmask, _setlinestyle, _setwritemode

/* POLYGON.C: This program draws a star-shaped polygon. */

#include (conio.h>
#include <stdlib.h>
#include <graph.h>
#include <math.h>
#include <stdlib.h>

#define PI 3.1415

void main(void
{

short side, radius = 90, x = 0, y
double radians;
struct _xycoord polyside[5];
struct _videoconfig vc;

/* Find a valid graphics mode. */
if(Lsetvideomode(MAXRESMODE

exit(1);

_getvideoconfig(&vc);

0' ,

_setvieworg(vc.numxpixels / 2, vc. numypixels / 2);

582 _ polygon Functions

}

1* Calculate points of star every 144 degrees, then connect them. *1
fore side = 0; side < 5; side++)
{

}

radians = 144 * PI I 180;
polyside[side].xcoord x + (short)(cos(side * radians
polyside[side].ycoord = y + (short)(sin(side * radians

_polygon(_GFILLINTERIOR, polyside, 5);

_getch() ;
setvideomode(DEFAULTMODE);

ex it (0);

* radius);
* radius);

Description

Remarks

Return Value

pow Functions
Calculate x raised to the power of y.

#include <math.h>

double pow(double x, double y);

long double _ powl(long double x, long double y);

x

y

Number to be raised

Powerofx

pow Functions 583

The pow and _ powl functions compute x raised to the power of y.

The _ powl function is the 80-bit counterpart, and it uses an 80-bit, 10-byte co
processor form of arguments and return values. See the reference page on the long
double functions for more details on this data type.

The pow and _ powl functions return the value of xY• If x is not 0.0 and y is 0.0,
pow and _ powl return the value 1. If x is 0.0 and y is negative, pow and _ powl set
errno to EDOM and return 0.0. If both x and yare 0.0, or if x is negative and y is
not an integer, the function prints a _DOMAIN error message to stderr, sets
errno to ED OM, and returns 0.0. If an overflow results, the function sets errno to
ERANGE and returns ± HUGE_ V AL. No message is printed on overflow or
underflow.

The pow function does not recognize integral floating-point values greater than
264, such as 1.0E100.

Compatibility pow

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

584 pOW Functions

See Also

Example

Output

_powl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

exp, log functions, sqrt

/* POW.C */
#include <math.h>
#include <stdio.h>

void main(void)
{

double x = 2.0, y = 3.0, Z;

z = pow(x, y);
printf("%.If to the power of %.If is %.If\n", x, y, z);

2.0 to the power of 3.0 is 8.0

Description

Remarks

printf
Prints formatted output to the standard output stream.

#include <stdio.h>

int printf(const char *format [, argument] ...);

format

argument

Format control

Optional arguments

printf 585

The printf function formats and prints a series of characters and values to the
standard output stream, stdout. The format argument consists of ordinary charac
ters, escape sequences, and (if arguments follow format) format specifications.
The ordinary characters and escape sequences are copied to stdout in order of
their appearance. For example, the line

printf("Line one\n\t\tLine two\n");

produces the output

Line one
Line two

If arguments follow the format string, the format string must contain specifications
that determine the output format for the arguments.

Format specifications always begin with a percent sign (%) and are read left to
right. When the first format specification (if any) is encountered, the value of the
first argument afterformat is converted and output accordingly. The second for
mat specification causes the second argument to be converted and output, and so
on. If there are more arguments than there are format specifications, the extra argu
ments are ignored. The results are undefined if there are not enough arguments for
all the format specifications.

Format Specification Fields
A format specification, which consists of optional and required fields, has the
following form:

%[flags] [width] [.precision] [{F I Nih III L}]type

586 printf

Each field of the format specification is a single character or a number signifying a
particular format option. The simplest format specification contains only the per
cent sign and a type character (for example, %s). The optional fields, which appear
before the type character, control other aspects of the formatting. The fields in a
printf format specification are described in the following list:

Field

type

flags

width

precision

F,N

h,I,L

Description

Required character that detennines whether the associated argument
is interpreted as a character, a string, or a number. (See Table R.2.)

Optional character or characters that control justification of output
and printing of signs, blanks, decimal points, and octal and
hexadecimal prefixes. (See Table R.3.) More than one flag can appear
in a fonnat specification.

Optional number that specifies minimum number of characters
output.

Optional number that specifies maximum number of characters
printed for all or part of the output field, or minimum number of
digits printed for integer values. (See Table R.4.)

Optional prefixes that refer to the "distance" to the object being
printed (near or far).

F and N are not part of the ANSI definition for printf. They are
Microsoft extensions that should not be used if ANSI portability is
desired.

Optional prefixes that determine the size of the argument expected,
as shown below:

Prefix

h

L

Use

Used with the integer types d, i, 0, x, and X to specify
that the argument is short int, or with u to specify short
unsigned int. If used with %p, it indicates a 16-bit
pointer.

Used with d, i, 0, x, and X types to specify that the
argument is long int, or with u to specify long unsigned
int; also used with e, E, f, g, and G types to specify
double rather than float. If used with % p, it indicates a
32-bit pointer.

Used with e, E, f, g, and G types to specify long double.

If a percent sign is followed by a character that has no meaning as a format field,
the character is copied to stdout. For example, to print a percent-sign character,
use %%.

printf 587

Type Field Characters
The type character is the only required format field for the printf function; it ap
pears after any optional format fields. The type character determines whether the
associated argument is interpreted as a character, string, or number (see Table R.2).

Table R.2 Type Characters for printf

Character

d

u

0

x

X

f

e

E

g

G

c

s

n

p

Type

int

int

int

int

int

int

double

double

double

double

double

int

String

Pointer to
integer

Far pointer
to void

Output Format

Signed decimal integer.

Signed decimal integer.

Unsigned decimal integer.

Unsigned octal integer.

Unsigned hexadecimal integer, using "abcdef."

Unsigned hexadecimal integer, using "ABCDEF."

Signed value having the form [-]dddd.dddd, where dddd
is one or more decimal digits. The number of digits be
fore the decimal point depends on the magnitude of the
number, and the number of digits after the decimal point
depends on the requested precision.

Signed value having the form [-]d.dddd e [sign]ddd,
where d is a single decimal digit, dddd is one or more
decimal digits, ddd is exactly three decimal digits, and
sign is + or-.

Identical to the e format, except that E, rather than e,
introduces the exponent.

Signed value printed in for e format, whichever is more
compact for the given value and precision. The e format
is used only when the exponent of the value is less than
-4 or greater than or equal to the precision argument.
Trailing zeros are truncated, and the decimal point
appears only if one or more digits follow it.

Identical to the g format, except that G, rather than g,
introduces the exponent (where appropriate).

Single character.

Characters printed up to the first null character ('\0') or
until the precision value is reached.

Number of characters successfully written so far to the
stream or buffer; this value is stored in the integer whose
address is given as the argument.

Prints the address pointed to by the argument in the form
xxxx:yyyy, where xxxx is the segment and yyyy is the
offset, and the digits x and yare uppercase hexadecimal
digits; %hp indicates a near pointer and prints only the
offset of the address.

588 printf

Flag Directives
The first optional field of the format specification is flag. A flag directive is a char
acter that justifies output and prints signs, blanks, decimal points, and octal and
hexadecimal prefixes. More than one flag directive may appear in a format specifi
cation. (See Table R.3.)

Table R.3 Flag Characters for printf

Flag

+

o

blank (' ')

Meaning

Left justify the result within the given
field width.

Prefix the output value with a sign
(+ or -) if the output value is of a signed
type.

If width is prefixed with 0, zeros are
added until the minimum width is
reached. If 0 and - appear, the 0 is
ignored. If 0 is specified with an integer
format (i, u, x, X, 0, d), the 0 is ignored.

Prefix the output value with a blank if the
output value is signed and positive; the
blank is ignored if both the blank and +
flags appear.

When used with the 0, x, or X fonnat, the
flag prefixes any nonzero output value
with 0, Ox, or OX, respectively.

When used with the e, E, or f fonnat, the
flag forces the output value to contain a
decimal point in all cases.

When used with the g or G fonnat, the #
flag forces the output value to contain a
decimal point in all cases and prevents
the truncation of trailing zeros.

Ignored when used with c, d, i, u, or s.

Width Specification

Default

Right justify.

Sign appears only for
negative signed values (-).

No padding.

No blank appears.

No blank appears.

Decimal point appears
only if digits follow it.

Decimal point appears
only if digits follow it.
Trailing zeros are
truncated.

The second optional field of the format specification is the width specification.
The width argument is a nonnegative decimal integer controlling the minimum
number of characters printed. If the number of characters in the output value is
less than the specified width, blanks are added to the left or the right of the
values-depending on whether the - flag (for left justification) is specified-until
the minimum width is reached. If width is prefixed with 0, zeros are added until
the minimum width is reached (not useful for left-justified numbers).

printf 589

The width specification never causes a value to be truncated. If the number of char
acters in the output value is greater than the specified width, or width is not given,
all characters ofthe value are printed (subject to the precision specification).

The width specification may be an asterisk (*), in which case an int argument
from the argument list supplies the value. The width argument must precede the
value being formatted in the argument list. A nonexistent or small field width does
not cause a truncation of a field; if the result of a conversion is wider than the field
width, the field expands to contain the conversion result.

Precision Specification
The third optional field of the format specification is the precision specification. It
specifies a nonnegative decimal integer, preceded by a period (.), which specifies
the number of characters to be printed, the number of decimal places, or the num
ber of significant digits. (See Table R.4.) Unlike the width specification, the preci
sion specification can cause truncation of the output value, or rounding in the case
of a floating-point value. If precision is specified as zero and the value to be con
verted is zero, the result is no characters output, as shown below:

printf("%.0d", 0); /* No characters output */

The precision specification may be an asterisk (*), in which case an int argument
from the argument list supplies the value. The precision argument must precede
the value being formatted in the argument list.

The interpretation of the precision value and the default when precision is omitted
depend on the type, as shown in Table R.4.

Table R.4 How printf Precision Values Affect Type

Type Meaning

d The precision specifies the minimum
number of digits to be printed. If the

u number of digits in the argument is less
o than precision, the output value is padded
x on the left with zeros. The value is not
X truncated when the number of digits

exceeds precision.

e The precision specifies the number of
E digits to be printed after the decimal

point. The last printed digit is rounded.

Default

Default precision is 1.

Default precision is 6; if
precision is 0 or the period C.)
appears without a number
following it, no decimal point is
printed.

590 printf

Table R.4 (continued)

Type

f

g
G

c
s

Meaning

The precision value specifies the number
of digits after the decimal point. If a
decimal point appears, at least one digit
appears before it. The value is rounded to
the appropriate number of digits.

The precision specifies the maximum
number of significant digits printed.

The precision has no effect.

The precision specifies the maximum
number of characters to be printed.
Characters in excess of precision are not
printed.

Default

Default precision is 6; if
precision is 0, or if the period (.)
appears without a number
following it, no decimal point is
printed.

Six significant digits arc printed,
with any trailing zeros truncated.

Character is printed.

Characters are printed until a
null character is encountered.

If the argument corresponding to a floating-point specifier is infinite, indefinite, or
not a number (NAN), the printffunction gives the following output:

Value

+ infinity

- infinity

Indefinite

NAN

Output

1.#INFrandom-digits

-1.#INFrandom-digits

digit.#INDrandom-digits

digit.#NANrandom-digits

Size and Distance Specification
For printf, the format specification fields F and N refer to the "distance" to the
object being read (near or far), and h and I refer to the "size" of the object being
read (16-bit short or 32-bit long). The following list clarifies this use ofF, N, h, I,
andL:

Program Code

printf (" %Ns");

printf (" %FS");

printf (" %Nn");

printf (" %Fn");

printf (" %hp");

printf (" %lp");

printf (" %Nhn");

printf (" %Nln");

printf (" % Fhn ");

printf (" %Fln");

Action

Print near string

Print far string

Store char count in near int

Store char count in far int

Print a 16-bit pointer (xxxx)

Print a 32-bit pointer (xxxx:xxxx)

Store char count in near short int

Store char count in near long int

Store char count in far short int

Store char count in far int

Return Value

Compatibility

See Also

Example

printf 591

The specifications" %bs" and" %ls" are meaningless to printf. The specifica
tions "%Np" and" %Fp" are aliases for" %bp" and" %lp" for the sake of com
patibility with Microsoft eversion 4.0.

The printf function returns the number of characters printed, or a negative value
in the case of an error.

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN

DOS32X

fprintf, scanf, sprintf, vfprintf, vprintf, vsprintf

1* PRINTF.C illustrates output formatting with printf. *1

#include <stdio.h>

void maine void)
{

char ch = 'h', *string
int count = -9234;
double fp = 251.7366;

1* Display integers. *1

"computer";

pri ntf("Integer formats: \n"
"\tDecimal: %d Justified: %.6d Unsigned: %u\n",
count, count, count, count);

printf("Decimal %d as:\n\tHex: %Xh C hex: 0x%x Octal: %o\n",
count, count, count, count);

1* Display in different radixes. *1
printf("Digits 10 equal :\n\tHex: %i Octal: %i Decimal: %i\n",

0x10, 010, 10 l;

1* Display characters. *1
printf("Characters in field:\n%10c %5c\n", ch, ch);

1* Display strings. *1
printf("Strings in field:\n%25s\n%25.4s\n", string, string);

1* Display real numbers. *1
printf("Real numbers:\n\t%f %.2f %e %E\n", fp, fp, fp, fp);

592 printf

Output

1* Display pointers. *1
printf("Address as:\n\tDefault: %p Near: %Np Far: %Fp\n",

&count, (int __ near *)&count, (int far *)&count);

1* Count characters printed. *1
printf("Display to here:\n");
printf("1234567890123456%n78901234567890\n", &count);
printf("\tNumber displayed: %d\n\n", count);

Integer formats:
Decimal: -9234 Justified: -009234 Unsigned: 56302

Decimal -9234 as:
Hex: DBEEh C hex: 0xdbee Octal: 155756

Digits 10 equal:
Hex: 16 Octal: 8 Decimal: 10

Characters in field:
h h

Strings in field:
computer

Real numbers:
251.736600

Address as:

comp

251.74 2.517366e+002

Default: 141C Near: 141C Far: 0087:141C
Display to here:
123456789012345678901234567890

Number displayed: 16

2.517366E+002

Description

Remarks

Return Value

Compatibility

See Also

pute, putehar 593

pulc, pulchar
Writes a character to a stream (pute) or to stdout (putehar).

#include <stdio.h>

int pute(int c, FILE *stream);

int putehar(int c);

c

stream

Character to be written

Pointer to FILE structure

The pute routine writes the single character c to the output stream at the current
position. The putchar routine is identical to pute(c, stdout).

These routines are implemented as both macros and functions. See "Choosing
Between Functions and Macros" on page 9 for a discussion of how to select
between the macro and function forms.

The pute and putehar routines return the character written, or EOF in the case of
an error. Any integer can be passed to pute, but only the lower 8 bits are written.

pute

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit:

putehar

Standards:

16-Bit:

32-Bit:

DOS32X

ANSI, UNIX

DOS,QWIN

DOS32X

fpute, _fputehar, gete, getehar

594 pute, putehar

Example 1* PUTC.C: This program uses putc to write buffer to a stream.

Output

* If an error occurs, the program will stop before writing the
* entire buffer.
*1

#include <stdio.h>

void main(void)
{

FILE *stream;
char *p, buffer[]
int ch;

"This is the line of output\n";

1* Make standard out the stream and write to it. *1
stream = stdout;
for(p = buffer; (ch!= EOF) && (*p!= '\0'); p++)

ch = putc(*p, stream);

This is the line of output

Description

Remarks

Return Value

_putch 595

_pulch
Writes a character to the console.

#include <conio.h> Required only for function declarations

int _ putch(int c);

c Character to be output

The _ putch function writes the character c directly (without buffering) to the
console.

The function returns c if successful, and EOF if not.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS

DOS32X

_cprintf, _getch, _getche

1* GETCH.C: This program reads characters from the keyboard until it
* receives a 'Y' or 'y'.
*1

#include <conio.h>
#include <ctype.h>

void maine void)
{

int ch;

_cputs("Type 'Y' when finished typing keys: ");
do
{

ch = _getch();
ch = toupper(ch);

} while(ch 1= 'Y');

_putch(ch);
_putch('\r');
_putch('\n');

1* Carriage return *1
1* Line feed *1

596 _putch

Output Type 'Y' when finished typing keys: Y

Description

Remarks

_ putenv 597

_putenv
Creates new environment variables; modifies or removes existing ones.

#include <stdlih.h> Required only for function declarations

int _putenv(char *envstring);

envstring Environment -string definition

The _ putenv function adds new environment variables or modifies the values of
existing environment variables. Environment variables define the environment in
which a process executes (for example, the default search path for libraries to be
linked with a program).

The envstring argument must be a pointer to a string with the form

varname=string

where varname is the name of the environment variable to be added or modified
and string is the variable's value. If varname is already part of the environment, its
value is replaced by string; otherwise, the new varname variable and its string
value are added to the environment. A variable can be removed from the environ
ment by specifying an empty string-that is, by specifying only varname=.

This function affects only the environment that is local to the currently running
process; it cannot be used to modify the command-level environment. When the
currently running process terminates, the environment reverts to the level of the
parent process (in most cases, the operating system level). However, the environ
ment affected by _ putenv can be passed to any child processes created by
_spawn, _exec, or system, and these child processes get any new items added by
_putenv.

Never free a pointer to an environment entry, because the environment variable
will then point to freed space. A similar problem can occur if you pass _ putenv a
pointer to a local variable, then exit the function in which the variable is declared.

The _ putenv function operates only on data structures accessible to the run-time
library and not on the environment "segment" created for a process by the operat
ing system.

598 _putenv

Return Value

Note that environment-table entries must not be changed directly. If an entry must
be changed, use _putenv. To modify the returned value without affecting the en
vironment table, use _strdup or strcpy to make a copy of the string.

The getenv and _ putenv functions use the global variable environ to access the
environment table. The _ putenv function may change the value of environ, thus
invalidating the envp argument to the main function. Therefore, it is safer to use
the environ variable to access the environment information.

The _ putenv function returns 0 if it is successful. A return value of -1 indicates
an error.

Compatibility Standards:

16-Bit:

32-Bit:

UNIX

See Also

Example

DOS, QWIN, WIN, WIN DLL

DOS32X

Use _ putenv for compatibility with ANSI naming conventions of non-ANSI func
tions. Use putenv and link with OLDNAMES.LIB for UNIX compatibility.

getenv,_searchenv

1* GETENV.C: This program uses getenv to retrieve the LIB environment
* variable and then uses _putenv to change it to a new value.
*1

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

}

char *libvar;

1* Get the value of the LIB environment variable. *1
1 i bvar = getenv("LIB");
if(libvar!= NULL)

printf("Original LIB variable is: %s\n", libvar);

1* Attempt to change path. Note that this only affects the environment
* variable of the current process. The command processor's environment
* is not changed.
*1

_putenv("LIB=c:\\mylib;c:\\yourlib");

1* Get new value. *1
libvar = getenv("LIB");
if(libvar!= NULL)

printf("New LIB variable is: %s\n", libvar);

_putenv 599

Output Original LIB variable is: C:\LIB
New LIB variable is: c:\mylib;c:\yourlib

600 _putimage Functions

Description

Remarks

_ putimage Functions
Retrieve images from a buffer.

#include <graph.h>

void __ far _putimage(short x, short y, const char __ huge *image,
short action);

void __ far _putimagL w(double wx, double wy, const char __ huge *image,
short action);

x,y

image

action

wx,wy

Position of upper-left corner of image

Stored image buffer

Interaction with existing screen image

Position of upper-left corner of image

The _ putimage function transfers to the screen the image stored in the buffer that
image points to.

In the _ putimage function, the upper-left corner of the image is placed at the view
coordinate point (x, y). In the _ putimage_ w function, the upper-left corner of the
image is placed at the window coordinate point (wx, wy).

The action argument defines the interaction between the stored image and the one
that is already on the screen. It may be anyone of the following manifest constants
(defined in GRAPH.H):

Constant

_GPRESET

Meaning

Transfers the image over an existing image on the screen. The
resulting image is the logical-AND product of the two images:
points that had the same color in both the existing image and the
new one will remain the same color, while points that have
different colors are joined by logical-AND.

Superimposes the image onto an existing image. The new image
does not erase the previous screen contents.

Transfers the data point-by-point onto the screen. Each point has
the inverse of the color attribute it had when it was taken from
the screen by _getimage, producing a negative image.

Return Value

Compatibility

See Also

Example

Constant

_putimage Functions 601

Meaning

Transfers the data point-by-point onto the screen. Each point has
the exact color attribute it had when it was taken from the screen
by _getimage.
Causes the points on the screen to be inverted where a point
exists in the image buffer. This behavior is like that of the
cursor: when an image is put against a complex background
twice, the background is restored unchanged. This allows you to
move an object around without erasing the background. The
_ GXOR constant is a special mode often used for animation.

None. Use the _ grstatus function to check the result of a call to the _ putimage
functions.

Standards: None

16-Bit:

32-Bit:

DOS

None

_getimage, _grstatus, _imagesize

See the example for _getimage.

602 puts

Description

Remarks

Return Value

Compatibility

See Also

Example

puts
Writes a string to stdout.

#include <stdio.h>

int puts(const char *string);

string String to be output

The puts function writes string to the standard output stream stdout, replacing the
string's terminating null character ('\0') with a newline character (\n) in the output
stream.

The puts function returns a nonnegative value if it is successful. If the function
fails, it returns EOF.

Standards:

16-Bit:

32-Bit:

fputs, gets

ANSI, UNIX

DOS, QWIN

DOS32X

1* PUTS.C: This program uses puts to write a string to stdout. *1

#include <stdio.h>

Output

void main(void
{

puts("Hello world from puts!" l;

Hello world from puts!

Description

Remarks

Return Value

Compatibility

See Also

Writes an integer to a stream.

#include <stdio.h>

int _ putw(int binint, FILE * stream);

binint

stream

Binary integer to be output

Pointer to FILE structure

_putw 603

The _ putw function writes a binary value of type int to the current position of
stream. The _ putw function does not affect the alignment of items in the stream,
nor does it assume any special alignment.

The _ putw function is provided primarily for compatibility with previous librar
ies. Note that portability problems may occur with _putw, since the size of an int
and ordering of bytes within an int differ across systems.

The _ putw function returns the value written. A return value of EOF may indi
cate an error. Since EOF is also a legitimate integer value, ferror should be used
to verify an error.

Standards: UNIX

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

Use _putw for compatibility with ANSI naming conventions of non-ANSI func
tions. Use putw and link with OLDNAMES.LIB for UNIX compatibility.

604 _putw

Example /* PUTW.C: This program uses _putw to write a word to a stream,

Output

* then performs an error check.
*/

#include <stdio.h>
#include <stdlib.h>

void main(void)
{

FILE *stream;
unsigned u;

if((stream fopen("data.out", "wb"))
exit(1);

NULL)

}

fort u = 0; u < 10; u++)
{

_putw(u + 0x2132, stdout);
_putw(u + 0x2132, stream);
if(ferror(stream))
{

pri ntf("_putw fail ed");
clearerr(stream);
exit(1);

printf("\nWrote ten words\n");
fclose(stream);

2!3!4!5!6!7!8!9!:!; !
Wrote ten words

/* Write word to stream. */
/* Make error check. */

Description

Remarks

qsort 605

qsort
Performs a quick sort.

For ANSI compatibility #include <stdlih.h>

#include <search.h> Required only for function declarations

void qsort(void *base, size_ t num, size_ t width,
int(__ cdecl *compare) (const void *eleml, const void *elem2»;

base

num

width

compare

eleml

elem2

Start of target array

Array size in elements

Element size in bytes

Comparison function

Pointer to the key for the search

Pointer to the array element to be compared with
the key

The qsort function implements a quick-sort algorithm to sort an array of num ele
ments, each of width bytes. The argument base is a pointer to the base of the array
to be sorted. The qsort function overwrites this array with the sorted elements.

The argument compare is a pointer to a user-supplied routine that compares two
array elements and returns a value specifying their relationship. The qsort func
tion calls the compare routine one or more times during the sort, passing pointers
to two array elements on each call:

compare((void *) eleml, (void *) elem2);

The routine must compare the elements, then return one of the following values:

Value

<0

=0

>0

Meaning

elem} less than elem2
elem} equivalent to elem2
elem} greater than elem2

The array is sorted in increasing order, as defined by the comparison function. To
sort an array in decreasing order, reverse the sense of "greater than" and "less
than" in the comparison function.

606 qsort

Return Value None.

Compatibility Standards:

16-Bit:

32-Bit:

ANSI, UNIX

See Also

Example

Output

DOS, QWIN, WIN, WIN DLL

DOS32X

bsearch,_lsearch

1* QSORT.C: This program reads the command-line parameters and
* uses qsort to sort them. It then displays the sorted arguments.
*1

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

int compare(void *argl, void *arg2); 1* Prototype *1

void main(int argc, char **argv)
{

i nt i;

1* Eliminate argv[0] from sort: *1
argv++;
argc-;

1* Sort remalnlng args using Quicksort algorithm: *1
qsort((void *)argv, (size_t)argc, sizeof(char *), compare);

1* Output sorted list: *1
fort i = 0; i < argc; ++i)

printf("%s ", argv[i]);
pri ntf("\n");

int compare(void *argl, void *arg2)
{

1* Compare all of both strings: *1
return _stricmp(* (char**) argl, * (char**) arg2);

,
[C:\LIBREF] qsort ~yery good boy deserves favor
boy deserves every favor good

Description

Remarks

Return Value

raise 607

raise
Sends a signal to the executing program.

#include <signal.h>

int raise(int sig);

sig Signal to be raised

The raise function sends sig to the executing program. If a signal-handling routine
for sig has been installed by a prior call to signal, raise causes that routine to be
executed. If no handler routine has been installed, the default action (as listed
below) is taken.

The signal value sig can be one of the following manifest constants:

Signal Meaning Default

SIGABRT Abnormal termination. Terminates the calling
program with exit code 3.

SIGFPE Floating-point error. Terminates the calling
program.

SIGILL Illegal instruction. This signal is not Terminates the calling
generated by DOS, but is supported program.
for ANSI compatibility.

SIGINT CTRL+ C interrupt. Issues INT23H.

SIGSEGV Illegal storage access. This signal is Terminates the calling
not generated by DOS, but is program.
supported for ANSI compatibility.

SIGTERM Termination request sent to the Ignores the signal.
program. This signal is not
generated by DOS, but is supported
for ANSI compatibility.

If successful, the raise function returns O. Otherwise, it returns a nonzero value.

608 raise

Compatibility

See Also

Example

Standards:

16-Bit:

32-Bit:

abort, signal

ANSI

DOS, QWIN, WIN, WIN DLL

DOS32X

See the example for signal.

Description

Remarks

Return Value

rand 609

rand
Generates a pseudorandom number.

#include <stdlih.h> Required only for function declarations

int rand(void);

The rand function returns a pseudorandom integer in the range 0 to
RAND_MAX. The srand routine can be used to seed the pseudorandom-number
generator before calling rand.

The rand function returns a pseudorandom number, as described above. There is
no error return.

Compatibility Standards: ANSI, UNIX

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

srand

1* RAND.C: This program seeds the random-number generator with the
* time, then displays 20 random integers.
*1

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void maine void l
{

}

i nt i;

1* Seed the random-number generator with current time so that
* the numbers will be different every time we run.
*1

srand((unsignedltime(NULL l l;

1* Display 10 numbers. *1
fore i = 0; i < 10; i++)

pri ntf(" %6d\n", rand() l;

610 rand

Output 19471
16395
8268

15582
6489

28356
27042

5276
23070
10930

Description

Remarks

Return Value

read 611

read
Reads data from a file.

#include <io.h> Required only for function declarations

int _read(int handle, void *buffer, unsigned int count);

handle

buffer

count

Handle referring to open file

Storage location for data

Maximum number of bytes

The _read function attempts to read count bytes into buffer from the file as
sociated with handle. The read operation begins at the current position of the file
pointer associated with the given file. After the read operation, the file pointer
points to the next unread character.

The _ read function returns the number of bytes actually read, which may be less
than count if there are fewer than count bytes left in the file, or if the file was
opened in text mode (see below). The return value 0 indicates an attempt to read at
end-of-file. The return value -1 indicates an error, and errno is set to the follow
ing value:

Value

EBADF

Meaning

The given handle is invalid; or the file is not open for reading; or
(DOS versions 3.0 and later) the file is locked.

For 16-bit platforms, if you are reading more than 32K (the maximum size for
type int) from a file, the return value should be of type unsigned int (see the ex
ample that follows). However, the maximum number of bytes that can be read
from a file in one operation is 65,534, since 65,535 (or OxFFFF) is indistinguisha
ble from -1, and therefore cannot be distinguished from an error return.

If the file was opened in text mode, the return value may not correspond to the
number of bytes actually read. When text mode is in effect, each carriage-return
line-feed (CR-LF) pair is replaced with a single line-feed character. Only the single
line-feed character is counted in the return value. The replacement does not affect
the file pointer.

612 read

Note that when files are opened in text mode, a CTRL+Z character is treated as an
end-of-file indicator. When the CTRL+Z is encountered, the read terminates, and the
next read returns 0 bytes. The _lseek function will clear the end-of-file indicator.

Compatibility Standards: UNIX

See Also

Example

Output

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

Use _read for compatibility with ANSI naming conventions of non-ANSI func
tions. Use read and link with OLDNAMES.LIB for UNIX compatibility.

_creat, fread, _open, _ write

1* READ.C: This program opens a file named READ.C and tries to read 60,000
* bytes from that file using read. It then displays the actual
* number of bytes read from READ.C.
*1

#include <fcntl.h>
Ifinclude <io.h>
#include <stdlib.h>
#include <stdio.h>

1* Needed only for 0 RDWR definition *1

char buffer[60000J;

void main(void)
{

}

int fh;
unsigned int nbytes = 60000, bytesread;

1* Open fi 1 e for in_put: *1
if((fh = _open("read.c", _O_RDONLY » == -1)
{

}

perror("open failed on input file");
exit(1);

1* Read in input: *1
if((bytes read = _read(fh, buffer, nbytes)) <= 0)

perror("Problem reading file");
else

printf("Read %u bytes from file\n", bytesread);

closet fh);

Read 747 bytes from file

Description

Remarks

realloc Functions
Reallocate memory blocks.

#include <stdlib.h>

#include <malloc.h>

realloc Functions 613

For ANSI compatibility (realloc only)

Required only for function declarations

void *reaIloc(void *memblock, sizL t size);

void __ based(void) * _ brealloc(__ segment seg,
void __ based(void) *memblock, size_ t size);

void __ far * _frealloc(void __ far *memblock, size_ t size);

void __ near * _nrealloc(void __ near *memblock, size_t size);

memblock

size

seg

Pointer to previously allocated memory block

New size in bytes

Segment selector

The realloc family of functions changes the size of a previously allocated memory
block. The memblock argument points to the beginning of the memory block. If
memblock is NULL (_NULLOFF for _ brealloc), realloc functions in the same
way as malloc and allocates a new block of size bytes. If memblock is not NULL
(_NULLOFF for _ brealloc), it should be a pointer returned by a prior call to
calloc, malloc, or realloc.

The size argument gives the new size of the block, in bytes. The contents of the
block are unchanged up to the shorter of the new and old sizes, although the new
block may be in a different location.

In large data models (that is, compact-, large-, and huge-model programs), realloc
maps to _frealloc. In small data models (tiny-, small-, and medium-model pro
grams), realloc maps to _nrealloc.

614 realloc Functions

Return Value

Compatibility

See Also

The various realloc functions reallocate memory in the heap as specified in the
following list:

Fuuction

realloc

_brealloc

_frealloc

_nrealloc

Heap

Depends on data model of program

Based heap specified by seg value

Far heap (outside default data segment)

Near heap (inside default data segment)

The realloc functions return a void pointer to the reallocated (and possibly
moved) memory block.

The return value is NULL (_NULLOFF for _brealloc) if the size is zero and the
buffer argument is not NULL (_NULLOFF for _ brealloc), or if there is not
enough available memory to expand the block to the given size. In the first case,
the original block is freed. In the second, the original block is unchanged.

The storage space pointed to by the return value is guaranteed to be suitably
aligned for storage of any type of object. To get a pointer to a type other than void,
use a type cast on the return value.

realloc

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_ brealloc, _frealloc, _nrealloc

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

calloc functions, free functions, malloc functions

Example

Output

realloc Functions 615

/* REALLOC.C: This program allocates a block of memory for buffer
* and then uses _msize to display the size of that block. Next, it
* uses realloc to expand the amount of memory used by buffer
* and then calls _msize again to display the new amount of
* memory allocated to buffer.
*/

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

void maine void)
{

long *buffer;
size_t size;

if((buffer = (long *)malloc(1000 * sizeof(long)))
exit(1);

size = msize(buffer);

NULL)

printf("Size of block after malloc of 1000 longs: %u\n", size);

/* Reallocate and show new size: */
if((buffer = realloc(buffer, size + (1000 * sizeof(long)))) NULL)

exit(1);
size = _msize(buffer);
printf("Size of block after realloc of 1000 more longs: %u\n", size);

free(buffer);
exit(0);

Size of block after malloc of 1000 longs: 4000
Size of block after realloc of 1000 more longs: 8000

616 _ rectangle Functions

Description

Remarks

_ rectangle Functions
Draw rectangles.

#include <graph.h>

short __ far _rectangle(short control, short xl, short y1, short x2, short y2);

short __ far _rectanglL w(short control, double wx1, double wy1, double wx2,
double wy2);

short __ far _rectangle_ wxy(short control, struct _ wxycoord __ far *pwxy1,
struct _ wxycoord __ far *pwxy2);

control Fill flag

x1,y1 Upper-left corner

x2,y2 Lower-right corner

wx1,wy1 Upper-left corner

wx2, wy2 Lower-right corner

pwxy1 Upper-left corner

pwxy2 Lower-right corner

The _rectangle functions draw a rectangle with the current line style. The
_ rectangle function uses the view coordinate system. The view coordinate points
(xl, y1) and (x2, y2) are the diagonally opposed corners of the rectangle.

The _rectangle_ w function uses the window coordinate system. The window
coordinate points (wx1, wy 1) and (wx2, wy2) are the diagonally opposed corners of
the rectangle.

The _ rectanglL wxy function uses the window coordinate system. The window
coordinate points (pwxy1) and (pwxy2) are the diagonally opposed corners of the
rectangle. The coordinates for the _rectangle_ wxy routine are given in terms of
an _ wxycoord structure (defined in GRAPH.H), which contains the following
elements:

Element

double wx

double wy

Description

window x coordinate

window y coordinate

Return Value

_rectangle Functions 617

The control parameter can be one of the following manifest constants:

Constant

_ GFILLINTERIOR

_GBORDER

Action

Fills the figure, using a scanfilJ algorithm, with the current
color using the current fill mask

Does not fill the rectangle

If the current fill mask is NULL, no mask is used. Instead, the rectangle is filled
with the current color.

If you try to fill the rectangle with the _floodfill function, the rectangle must be
bordered by a solid line-style pattern.

The function returns a nonzero value if the rectangle is drawn successfully, or 0
if not.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS

None

_arc functions, _ellipse functions, _floodfill, _getcolor, _lineto functions,
_ pie functions, _ polygon, _ setcolor, _ setfillmask

1* RECT.C: This program draws a rectangle. *1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void main(void)
{

1* Find a valid graphics mode. *1
if(!_setvideomode(MAXRESMODE)

ex it (1);

_rectangle(_GBORDER, 80, 50, 240, 150);

_getch();

setvideomode(DEFAULTMODE);

618 _registerfonts

Description

Remarks

Return Value

Compatibility

See Also

Example

_registerfonts
Initializes the fonts graphics system.

#include <graph.h>

short __ far _registerfonts(const char __ far *pathname);

pathname Path name specifying .FON files to be registered

The _ registerfonts function initializes the fonts graphics system. Font files must
be registered with the _registerfonts function before any other font-related library
function (_getgtextextent, _outgtext, _setfont, _unregisterfonts) can be used.

The _registerfonts function reads the specified files and loads font header infor
mation into memory. Each font header takes up about 140 bytes of memory.

The pathname argument is the path specification and filename of valid .FON files.
The pathname can contain standard DOS wildcards.

The font functions affect only the output from the font output function _outgtext;
no other run-time output functions are affected by font usage.

The _registerfonts function returns a positive value which indicates the number
of fonts successfully registered. A negative return value indicates failure. The
following negative values may be returned:

Value

-1

-2
-3

Meaning

No such file or directory.

One or more of the .FON files was not a valid, binary .FON file.

One or more of the .FON files is damaged.

Standards: None

16-Bit: DOS

32-Bit: None

_getfontinfo, _getgtextextent, _grstatus, _outgtext, _setfont,
_ unregisterfonts

See the example for _ outgtext.

Descripti on

Remarks

_remapallpalette, _remappalette 619

_ remapallpalette, _ remappalette
Remap palette colors.

#include <graph.h>

short __ far _remapallpalette(long __ far *colors);

long __ far _remappalette(short index, long color);

Color value array

Color index to reassign

colors

index

color Color value to assign color index to

The _remapallpalette function remaps the entire color palette simultaneously to
the colors given in the colors array. The colors array is an array of long integers
where the size of the array varies from 16 to 64 to 256, depending on the video
mode. The number of colors mapped depends on the number of colors supported
by the current video mode. The _ remapallpalette function works in all video
modes (except _ORESCOLOR mode), but only with EGA, MCGA, VGA, or
SVGA hardware.

The default color values for color text or a 16-color graphics mode are shown
below:

Number Color Number Color

0 Black 8 Dark gray

I Blue 9 Light blue

2 Green 10 Light green

3 Cyan 11 Light cyan

4 Red 12 Light red

5 Magenta J3 Light magenta

6 Brown 14 Yellow

7 White 15 Bright white

The first array element specifies the new color value to be associated with
color index 0 (the background color in graphics modes). After the call to
_ remapallpalette, calls to _ setcolor will index into the new array of colors.
The mapping done by _remapallpalette affects the current display immediately.

620 _ remapallpalette, _ remappalette

The colors array can be larger than the number of colors supported by the current
video mode, but only the first n elements are used, where n is the number of colors
supported by the current video mode, as indicated by the numcolors element of
the _ videoconfig structure.

The long color value is defined by specifying three bytes of data representing the
three component colors: red, green, and blue.

Each of the three bytes represents the intensity of one of the red, green, or blue
component colors, and must be in the range 0-31. In other words, the low-order
six bits of each byte specify the component's intensity and the high-order two bits
should be zero. The fourth (high-order) byte in the long is unused and should be
set to zero. The diagram below shows the ordering of bytes within the long value.

For example, to create a lighter shade of blue, start with lots of blue, add some
green, and maybe a little bit of red. The three-byte color value would be:

blue byte green byte
00011111 00101111
hi gh -------) low order

red byte
00011111

Manifest constants are defined in GRAPH.H for the default color values corre
sponding to color indices 0-15 in color text modes and 16-color graphics modes,
as shown below:

Index Constant Index Constant

0 _BLACK 8 _GRAY

_BLUE 9 _LIGHTBLUE

2 _GREEN 10 _LIGHTGREEN

3 _CYAN 11 _LIGHTCYAN

4 _RED 12 _LIGHTRED

5 _MAGENTA 13 _LIGHTMAGENTA

6 _BROWN 14 _YELLOW

7 _WIDTE 15 _BRIGHTWHITE

The VGA supports a palette of 262,144 (256K) colors in color modes, and the
EGA supports a palette of only 64 different colors. Color values for EGA are
specified in exactly the same way as with the VGA; however, the low-order four
bits of each byte are simply ignored.

The _ remappalette function assigns a new color value color to the color index
given by index. This remapping affects the current display immediately.

The _remappalette function works in all graphics modes, but only with EGA,
MCGA, VGA, or SVGA hardware. An error results if the function is called while
using any other configuration.

Return Value

_remapallpalette, _remappalette 621

The color value used in _remappalette is defined and used exactly as noted above
for _remapallpalette. The range of color indices used with _remappalette de
pends on the number of colors supported by the video mode.

The _remapallpalette and _remappalette functions do not affect the presenta
tion-graphics "palettes," which are manipulated with the _ pg_getpalette,
_ pg_ setpalette, and _ p~ resetpalette functions.

If a VGA or MCGA adapter is connected to an analog monochrome monitor, the
color value is transformed into its gray-scale equivalent, based on the weighted
sum of its red, green, and blue components (30% red + 50% green + 11 % blue).

If successful, _remapallpalette returns nonzero value (short). In case of an error,
_ remapallpalette returns 0 (short).

If successful, _ remappalette returns the color value previously assigned to index,
or -1 if the function is inoperative (not EGA, VGA, SVGA, or MCGA), or if the
color index is out of range. Note that _remapallpalette returns a short value and
_ remappalette returns a long value.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS

None

_getvideoconfig, _selectpalette, _setbkcolor, _setvideomode

1* RMPALPAL.C: This example illustrates functions for assigning
* color values to color indices. Functions illustrated include:
* ~remappalette ~remapallpalette

*1

#include <graph.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>

1* Macro for mixing Red, Green, and Blue elements of color *1
#define RGB(r,g,b) (((long) ((b) « 8 I (g)) « 8) I (r))

long tmp, pal[256];

void maine void)
{

short red, blue, green;
short inc, i, mode, cells, y, y, xinc, yinc;
char buf[40];
struct ~videoconfig vc;

622 _remapallpalette, _remappalette

1* Make sure all palette numbers are valid. *1
fore i = 0; i < 256; i++)

pal[i] = _BLACK;

1* Loop through each graphics mode that supports palettes. *1
fore mode = _MRES4COLOR; mode <= _MRES256COLOR; mode++)
{

if(mode ERESNOCOLOR
mode++;

if(!_setvideomode(mode
continue;

1* Set variables for each mode. *1
_getvideoconfig(&vc);
switch(vc.numcolors)
{

case 256:
cells = 13;
inc = 12;
break;

case 16:
cells = 4;
if((vc .mode

inc 16;
else

inc 32;
break;

case 4:
cells = 2;
inc = 32;
break;

default:
continue;

1* Active bits in this order:

1* ???????? ??bbbbbb ??gggggg ??rrrrrr *1

ERESCOLOR) I I (vc.mode == VRES16COLOR))
1* ???????? ??bb???? ??gg???? ??rr???? *1

1* ???????? ??Bb???? ??Gg???? ??Rr???? *1

1* ???????? ??Bb???? ??Gg???? ??Rr???? *1

xinc vc.numxpixels I cells;
yinc vc.numypixels I cells;

1* Fill palette arrays in BGR order. *1
fore i = 0, blue = 0; blue < 64; blue += inc)

fore green = 0; green < 64; green += inc)
fore red = 0; red < 64; red += inc)
{

pal [i] = RGB(red, green, bl ue);
1* Special case of using 6 bits to represent 16 colors.
* If both bits are on for any color, intensity is set.
* If one bit is set for a color, the color is on.

if(inc == 32
pal[i+8]

i++;
pal[i] I (pal[i] » 1);

}

_remapallpalette, _remappalette 623

1* If palettes available, remap all palettes at once. *1
if(!_remapallpalette(pal))
{

_setvideomode(_DEFAULTMODE);
_outtext("Pal ettes not avai 1 abl e with thi s adapter");
ex it (1);

1* Draw colored squares. *1
fore i = 0, x = 0; x < (xinc * cells); x += xinc

fore y = 0; y < (yinc * cells); y += yinc)
{

_setcolor(i++);
_rectangle(_GFILLINTERIOR, x, y, x + xinc, y + yinc);

1* Note that for 256-color mode, not all colors are shown. The number
* of colors from mixing three base colors can never be the same as
* the number that can be shown on a two-dimensional grid.
*1

sprintf(buf, "Mode %d has %d colors", vc.mode, vc.numcolors);
_setcolor(vc.numcolors I 2);
_outtext(buf);
_getch();

1* Change each palette entry separately in GRB order. *1
fore i = 0, green = 0; green < 64; green += inc)

fore red = 0; red < 64; red += inc)
for(blue = 0; blue < 64; blue += inc
{

}

_getch();

tmp = RGB(red, green, blue);
_remappalette(i, tmp);
if(inc == 32)

_remappalette(i + 8, tmp I (tmp » 1));

i++;

_setvideomode(DEFAULTMODE);
ex it (0);

624 remove

Description

Remarks

Return Value

Compatibility

See Also

Example

remove
Deletes a file.

#include <stdio.h>

#include <io.h>

Required for ANSI compatibility

Use either IO.R or STDIO.R

int remove(const char *path);

path Path name of file to be removed

The remove function deletes the file specified by path.

The function returns 0 if the file is successfully deleted. Otherwise, it returns -1
and sets errno to one of these values:

Value

EACCES

ENOENT

Standards: ANSI

Meaning

Path name specifies a read-only file.

File or path name not found, or path name specifies a directory.

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_unlink

1* REMOVE.C: This program uses remove to delete REMOVE.OBJ. *1

#include <stdio.h>

Output

void maine void)
{

}

if(remove("remove.obj") == -1)
perror("Could not delete 'REMOVE.OBJ'");

else
printf("Deleted 'REMOVE.OBJ'\n");

Deleted 'REMOVE.OBJ'

Description

Remarks

Return Value

Compatibility

rename 625

rename
Renames a file or directory.

#include <stdio.h>

#include <io.h>

Required for ANSI compatibility

Use either IO.H or STDJO.H

int rename(const char *oldname, const char *newname);

oldname

newname

Pointer to old name

Pointer to new name

The rename function renames the file or directory specified by oldname to the
name given by newname. The old name must be the path name of an existing file
or directory. The new name must not be the name of an existing file or directory.

The rename function can be used to move a file from one directory to another by
giving a different path name in the newname argument. However, files cannot be
moved from one device to another (for example, from drive A to drive B). Directo
ries can only be renamed, not moved.

The rename function returns 0 if it is successful. On an error, it returns a nonzero
value and sets errno to one of the following values:

Value

EACCES

ENOENT
EXDEV

Meaning

File or directory specified by newname already exists or could
not be created (invalid path); or oldname is a directory and
newname specifies a different path.

File or path name specified by oldname not found.

Attempt to move a file to a different device.

Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

626 rename

Example /* RENAMER.C: This program attempts to rename a file named RENAMER.OBJ to
* RENAMER.JBO. For this operation to succeed, a file named RENAMER.OBJ

Output

* must exist and a file named RENAMER.JBO must not exist.
*/

#include <stdio.h>

void maine void
{

int result;
char old[] "RENAMER.OBJ", new[]

/* Attempt to rename file: */
result = rename(old, new);
if(result != 0)

"RENAMER.JBO";

printf("Could not rename '%s'\n", old);
else

printf("File '%s' renamed to '%s'\n", old, new);

File 'RENAMER.OBJ' renamed to 'RENAMER.JBO'

Description

Remarks

Return Value

Compatibility

rewind 627

rewind
Repositions the file pointer to the beginning of a file.

#include <stdio.h>

void rewind(FILE * stream);

stream Pointer to FILE structure

The rewind function repositions the file pointer associated with stream to the
beginning of the file. A call to rewind is equivalent to

(void) fseek(stream, OL, SEEILSET);

except that rewind clears the error indicators for the stream, and fseek does not.
Both rewind and fseek clear the end-of-file indicator. Also, fseek returns a value
that indicates whether the pointer was successfully moved, but rewind does not re
turn any value.

You can also use the rewind function to clear the keyboard buffer. Use the
rewind function with the stream stdin, which is associated with the keyboard by
default.

The rewind function has no return value.

Standards: ANSI, UNIX

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

628 rewind

Example

Output

/* REWIND.C: This program first opens a file named REWIND.OUT for input and
* output and writes two integers to the file. Next, it uses rewind to
* reposition the file pointer to the beginning of the file and reads
* the data back in.
*/

#include <stdio.h>

void maine void)
{

}

FILE *stream;
int datal, data2;

datal
data2

1· ,
-37;

if((stream fopen("rewind.out", "w+" » != NULL)
{

}

fprintf(stream, "%d %d", datal, data2);
printf("The values written are: %d and %d\n", datal, data2);
rewind(stream);
fscanf(stream, "%d %d", &data1, &data2);
printf("The values read are: %d and %d\n", datal, data2);
fclose(stream);

The values written are: 1 and -37
The values read are: 1 and -37

Description

Remarks

Return Value

Compatibility

See Also

rmdir 629

rmdir
Deletes a directory.

#include <direct.h> Required only for function declarations

int _rmdir(char *dirname);

dirname Path name of directory to be removed

The _rmdir function deletes the directory specified by dirname. The directory
must be empty, and it must not be the current working directory or the root
directory.

The _ rmdir function returns the value 0 if the directory is successfully deleted. A
return value of -1 indicates an error, and errno is set to one of the following
values:

Value

EACCES

ENOENT

Meaning

The given path name is not a directory; or the directory is not
empty; or the directory is the current working directory or the
root directory.

Path name not found.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WINDLL

DOS32X

_chdir, _mkdir

630 rmdir

Example 1* MAKEDIR.C *1
#include <direct.h>
#include <stdlib.h>
#include <stdio.h>

Output

void maine void
{

int result;

if(mkdir("\\testtmp") == 0)
{

}

printf("Directory '\\testtmp' was successfully created\n");
system("dir \\testtmp");
if(_rmdir("\\testtmp") == 0

printf("Directory '\\testtmp' was successfully removed\n");
else

printf("Problem removing directory '\\testtmp'\n");

else
printf("Problem creating directory '\\testtmp'\n");

Directory '\testtmp' was successfully created

The volume label in drive C is ZEPPELIN.
Directory of C:\TESTTMP

<DIR> 12-19-99 11:20a
<DIR> 12-19-99 11:20a

2 File(s) 12730368 bytes free
Directory '\testtmp' was successfully removed

Description

Remarks

Return Value

Compatibility

See Also

Example

_rmtmp 631

_rmtmp
Removes temporary files.

#include <stdio.h>

int _rmtmp(void);

The _ rmtmp function is used to clean up all the temporary files in the current
directory. The function removes only those files created by tmpfile and should be
used only in the same directory in which the temporary files were created.

The _ rmtmp function returns the number of temporary files closed and deleted.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

_flushall, tmpfile, tmpnam

1* TMPFILE.C: This program uses tmpfile to create a temporary file,
* then deletes this file with _rmtmp.
*1

#include <stdio.h>

void main(void)
{

}

FILE *stream;
char tempstring[] "String to be written";
int i . ,

1* Create temporary files. *1
for(i = 1; i <= 10; i++)
{

}

if((stream = tmpfile(» == NULL)
perror("Could not open new temporary file\n");

else
printf("Temporary file %d was created\n", i);

1* Remove temporary files. *1
printf("%d temporary files deleted\n", _rmtmp());

632 _rmtmp

Output Temporary fil e 1 was created
Temporary fi 1 e 2 was created
Temporary fil e 3 was created
Temporary fil e 4 was created
Temporary fil e 5 was created
Temporary fil e 6 was created
Temporary file 7 was created
Temporary file 8 was created
Temporary file 9 was created
Temporary file 10 was created
10 temporary files deleted

Description

Remarks

Return Value

_ rotl, _ rotr
Rotate bits to the left (_rotl) or right (_rotr).

#include <stdlih.h>

unsigned int _rotl(unsigned int value, int shift);

unsigned int _rotr(unsigned int value, int shift);

value

shift

Value to be rotated

Number of bits to shift

_ rot!, _ rotr 633

The _rotl and _rotr functions rotate the unsigned value by shift bits. The _rotl
function rotates the value left. The _rotr function rotates the value right. Both
functions "wrap" bits rotated off one end of value to the other end.

Both functions return the rotated value. There is no error return.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS, QWIN, WIN, WINDLL

DOS32X

_Irotl, _Irotr

1* ROT.C: This program uses rotr and rotl with different shift
* values to rotate an integer.
*1

#include <stdlib.h>
#include <stdio.h>

void main(void
{

unsigned val 0x0fd93;

pri ntf("0x%4.4x rotated
va 1 , _ rot 1 (va 1 ,

pri ntf("0x%4.4x rotated
va 1 , _ rot r (va 1 ,

}

1 eft th ree times is 0x%4.4x\n",
3)) ;
right four times is 0x%4.4x\n",
4)) ;

634 _ roll, _ rotr

Output 0xfd93 rotated 1 eft three times is 0xec9f
0xfd93 rotated right four times is 0x3fd9

Description

Remarks

scanf
Reads formatted data from the standard input stream.

#include <stdio.h>

int seanf(eonst ehar *format [,argument] ...);

format

argument

Format control

Optional argument

scan. 635

The seanf function reads data from the standard input stream stdin into the loca
tions given by argument. Each argument must be a pointer to a variable with a
type that corresponds to a type specifier informat. The format controls the inter
pretation of the input fields. The format can contain one or more of the following:

• White-space characters: blank (' '); tab (\t); or newline (\n). A white-space char
acter causes seanfto read, but not store, all consecutive white-space characters
in the input up to the next non-white-space character. One White-space charac
ter in the format matches any number (including 0) and combination of white
space characters in the input.

• Non-white-space characters, except for the percent sign (%). A non-white
space character causes seanfto read, but not store, a matching non-white
space character. If the next character in stdin does not match, seanf terminates.

• Format specifications, introduced by the percent sign (%). A format specifica
tion causes seanf to read and convert characters in the input into values of a
specified type. The value is assigned to an argument in the argument list.

The format is read from left to right. Characters outside format specifications are
expected to match the sequence of characters in stdin; the matching characters in
stdin are scanned but not stored. If a character in stdin conflicts with the format
specification, seanf terminates. The character is left in stdin as if it had not been
read.

When the first format specification is encountered, the value of the first input
field is converted according to this specification and stored in the location that is
specified by the first argument. The second format specification causes the second
input field to be converted and stored in the second argument, and so on through
the end of the format string.

636 scanf

An input field is defined as all characters up to the first white-space character
(space, tab, or newline), or up to the first character that cannot be converted ac
cording to the format specification, or until the field width (if specified) is
reached. If there are too many arguments for the given specifications, the extra
arguments are evaluated but ignored. The results are unpredictable if there are not
enough arguments for the format specification.

A format specification has the following form:

%[*] [width] [{F IN}] [{h 11}]type

Each field of the format specification is a single character or a number signifying a
particular format option. The type character, which appears after the last optional
format field, determines whether the input field is interpreted as a character, a
string, or a number. The simplest format specification contains only the percent
sign and a type character (for example, %5).

Each field of the format specification is discussed in detail below. If a percent sign
(%) is followed by a character that has no meaning as a format-control character,
that character and the following characters (up to the next percent sign) are treated
as an ordinary sequence of characters-that is, a sequence of characters that must
match the input. For example, to specify that a percent-sign character is to be
input, use %%.

An asterisk (*) following the percent sign suppresses assignment of the next input
field, which is interpreted as a field of the specified type. The field is scanned but
not stored.

The width is a positive decimal integer controlling the maximum number of char
acters to be read from stdin. No more than width characters are converted and
stored at the corresponding argument. Fewer than width characters may be read if
a white-space character (space, tab, or newline) or a character that cannot be con
verted according to the given format occurs before width is reached.

The optional F and N prefixes allow the user to specify whether the argument is
far or near, respectively. F should be prefixed to an argument pointing to a far
object, while N should be prefixed to an argument pointing to a near object. Note
also that the F and N prefixes are not part of the ANSI definition for scanf, but are
instead Microsoft extensions, which should not be used when ANSI portability is
desired.

The optional prefix I indicates that the long version of the following type is to be
used, while the prefix h indicates that the short version is to be used. The corre
sponding argument should point to a long or double object (with the I character)
or a short object (with the h character). The I and h modifiers can be used with the
d, i, n, 0, x, and u type characters. The I modifier can also be used with the e, f,
and g type characters. The I and h modifiers are ignored if specified for any
other type.

scanf 637

For scanf, Nand F refer to the "distance" to the object being read in (near or far)
and h and I refer to the "size" of the object being read in (l6-bit short or 32-bit
long). The list below clarifies this use of N, F, I, and h:

Program Code Action

seanf("%Ns", &x) ; Read a string into near memory

seanf(n%Fs", &x) ; Read a string into far memory

seanf("%Nd", &x) ; Read an int into near memory

seanf("%Fd", &x) ; Read an int into far memory

seanf("%Nld", &x) ; Read a long int into near memory

seanf("%Fl d", &x) ; Read a long int into far memory

seanf("%Nhp", &x) ; Read a 16-bit pointer into near memory

seanf("%Nlp", &x) ; Read a 32-bit pointer into near memory

seanf("%Fhp", &x) ; Read a 16-bit pointer into far memory

seanf(H%Fl p", &x) ; Read a 32-bit pointer into far memory

The type characters and their meanings are described in Table R.5.

To read strings not delimited by space characters, a set of characters in brackets
([]) can be substituted for the s (string) type character. The corresponding input
field is read up to the first character that does not appear in the bracketed character
set. If the first character in the set is a caret (1\), the effect is reversed: the input
field is read up to the first character that does appear in the rest of the character set.

Note that % [a-z] and % [z-a] are interpreted as equivalent to % [abcde ... zl This is
a common scanf extension, but note that it is not required by the ANSI standard.

To store a string without storing a terminating null character (,\0'), use the specifi
cation %nc, where n is a decimal integer. In this case, the c type character indi
cates that the argument is a pointer to a character array. The next n characters are
read from the input stream into the specified location, and no null character (,\0')
is appended. If n is not specified, the default value for it is 1.

The scanf function scans each input field, character by character. It may stop read
ing a particular input field before it reaches a space character for a variety of rea
sons: the specified width has been reached; the next character cannot be converted
as specified; the next character conflicts with a character in the control string that
it is supposed to match; or the next character fails to appear in a given character
set. For whatever reason, when scanf stops reading an input field, the next input
field is considered to begin at the first unread character. The conflicting character,
if there is one, is considered unread and is the first character of the next input field
or the first character in subsequent read operations on stdin.

638 scanf

Return Value

Table R.S Type Characters for scanf

Character Type of Input Expected

d

o

x

u

U
e,E
f
g,G

c

s

n

p

Decimal integer

Octal integer

Hexadecimal integer l

Decimal, hexadecimal, or octal
integer

Unsigned decimal integer

Unsigned decimal integer

Floating-point value consisting of
an optional sign (+ or -), a series of
one or more decimal digits
containing a decimal point, and an
optional exponent ("e" or "E")
followed by an optionally signed
integer value.

Character. White-space characters
that are ordinarily skipped are read
when c is specified; to read the
next non-white-space character,
use %ls.

String

No input read from stream or
buffer.

Value in the form xxxx:yyyy, where
the digits x and y are uppercase
hexadecimal digits.

Type of Argument

Pointer to int

Pointer to int

Pointer to int

Pointer to int

Pointer to unsigned int

Pointer to unsigned long

Pointer to float

Pointer to char

Pointer to character array large
enough for input field plus a
terminating null character ('\0'),
which is automatically appended.

Pointer to int, into which is stored
the number of characters
successfully read from the stream
or buffer up to that point in the
current call to scanf.

Pointer to far pointer to void

1 Since the input for a %x format specifier is always interpreted as a hexadecimal number, the input should
not include a leading Ox. (If Ox is included, the 0 is interpreted as a hexadecimal input value.)

The scanf function returns the number of fields that were successfully converted
and assigned. The return value may be less than the number requested in the call to
scanf. The return value does not include fields that were read but not assigned.

The return value is EOF ifthe end-of-file or end-of-string is encountered in the
first attempt to read a character.

scanf 639

Compatibility Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN

DOS32X

See Also

Example

Output

fscanf, printf, sscanf, vfprintf, vprintf, vsprintf

/* SCANF.C: This program receives formatted input using scanf. */
#include <stdio.h>

void main(void
{

int i;
fl oat fp;
char c, s[81];
int result;

printf("Enter an integer, a floating-point number, "
"a character and a string:\n" l;

result = scanf("%d %f %c Is", Ii, &fp, &c, s l;

printf("\nThe number of fields input is %d\n", result l;
printf("The contents are: %d %f %c %s\n", i, fp, c, s l;

Enter an integer, a floating-point number, a character and a string:
71
98.6
h
White space stops input

The number of fields input is 4
The contents are: 71 98.599998 h White

640 scrolltextwindow

Description

Remarks

Return Value

Compatibility

See Also

scrolltextwindow
Scrolls a text window.

#include <graph.h>

void __ far _scrolltextwindow(short lines);

lines Number of lines to scroll

The _scrolltextwindow function scrolls a text window (previously defined by the
_ settextwindow function). The lines argument specifies the number of lines to
scroll. A positive value of lines scrolls the window up (the usual direction); a nega
tive value scrolls the window down. Specifying a number larger than the height of
the current text window is equivalent to calling _clearscreen(_GWINDOW). A
value of 0 for lines has no effect on the text.

None.

Standards: None

16-Bit: DOS

32-Bit: None

_gettextposition, _outmem, _outtext, _settextposition, _settextwindow

Example

scrolltextwindow 641

1* SCRTXWIN.C: This program displays text in text windows and then
* scrolls, inserts, and deletes lines.
*1

#include <stdio.h>
#include <conio.h>
#include <graph.h>

void deleteline(void);
void insertline(void);
void status(char *msg);

void maine void
{

short row;
char buf[40];

1* Set up screen for scrolling, a' 1 put text window around scroll area. *1
_settextrows(25);

}

clearscreen(_GCLEARSCREEN);

fore row = 1; row <= 25; row++
{

_settextposition(row, 1);
sprintf(buf, "Line %c
_outtext(buf);

}
_getch();

settextwindow(1, 1, 25, 10);

1* Delete some lines. *1
_settextposition(11, 1);
fore row = 12; row < 20; row++

deleteline();
status("Deleted 8 lines");

1* Insert some lines. *1
_settextposition(5, 1);
fore row = 1; row < 6; row++

insertline();
status("Inserted 5 lines");

1* Scroll up and down. *1
_scrolltextwindow(-7);
status("Scrolled down 7 lines");
_scrolltextwindow(5);
status("Scrolled up 5 lines");
setvideomode(DEFAULTMODE);

%2d", row + 'A' - 1, row);

642 scrolltextwindow

/* Delete lines by scrolling them off the top of the current text window.
* Save and restore original window.
*/

void deleteline()
{

}

short left, top, right, bottom;
struct rccoord rc;

_gettextwindow(&top, &left, &bottom, &right);
rc = _gettextposition();
_settextwindow(rc.row, left, bottom, right);
_scrolltextwindow(_GSCROLLUP);
_settextwindow(top, left, bottom, right);
_settextposition(rc.row, rc.col);

/* Insert some lines by scrolling in blank lines from the top of the
* current text window. Save and restore original window.
*/

void insertline()
{

}

short left, top, right, bottom;
struct rccoord rc;

_gettextwindow(&top, &left, &bottom, &right);
rc = _gettextposition();
_settextwindow(rc.row, left, bottom, right);
_scrolltextwindow(_GSCROLLDOWN);
_settextwindow(top, left, bottom, right);
_settextposition(rc.row, rc.col);

/* Display and clear status in its own window. */
void status(char *msg)
{

short left, top, right, bottom;
struct rccoord rc;

_gettextwindow(&top, &left, &bottom, &right);
_settextwindow(1, 50, 2, 80);
_outtext(msg);
_getch();

clearscreen(GWINDOW);
_settextwindow(top, left, bottom, right);

Description

Remarks

Return Value

Compatibility

See Also

searchenv 643

searchenv
Searches for a file using environment paths.

#include <stdlih.h>

void _searchenv(char *filename, char *varname, char *pathname);

filename

varname

pathname

N arne of file to search for

Environment to search

Buffer to store complete path

The _ searchenv routine searches for the target file in the specified domain. The
varname variable can be any environment variable that specifies a list of directory
paths, such as PATH, LIB, INCLUDE, or other user-defined variables. The
_searchenv function is case-sensitive, so the varname variable should match the
case of the environment variable.

The routine first searches for the file in the current working directory. If it doesn't
find the file, it next looks through the directories specified by the environment
variable.

If the target file is found in one of the directories, the newly created path is copied
into the buffer pointed to by pathname. You must ensure that there is sufficient
space for the constructed path name. If the filename file is not found, pathname
will contain an empty null-terminated string.

The _searchenv function does not return a value.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

getenv, _ putenv

644 searchenv

Example /* SEARCHEN.C: This program searches for a file in a directory

Output

* specified by an environment variable.
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

char pathbuffer[_MAX_PATHJ;
char searchfile[J = "CL.EXE";
char envvar[J = "PATH";
/* Search for file in PATH environment variable: */
_searchenv(searchfile, envvar, pathbuffer);
if(*pathbuffer != '\0')

printf("Path for %s: %s\n", searchfile, pathbuffer);
else

printf("%s not found\n", searchfile);

Path for CL.EXE: C:\BIN\CL.EXE

Description

Remarks

Return Value

_ segread 645

_segread
Gets the current values of segment registers.

#include <dos.h>

void _segread(struct _SREGS *segregs);

segregs Segment-register values

The _segread function fills the structure pointed to by segregs with the current
contents of the segment registers. The _ SREGS union is described in the refer
ence section for _ int86x. This function is intended to be used with the _ intdosx
and _int86x functions to retrieve segment-register values for later use.

None.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

1* SEGREAD.C: This program gets the current segment values with _segread. *1

#include <dos.h>
#include <stdio.h>

void maine void)
{

struct SREGS segregs;
unsigned cs, ds, es, ss;

1* Read the segment register values *1
_segread(&segregs);
cs segregs.cs;
ds segregs.ds;
es segregs.es;
ss segregs.ss;
printf("CS = 0x%.4x DS 0x%.4x

cs, ds, es, ss);
ES 0x%.4x SS 0x%.4x\n",

646 _ segread

Output CS 0x0047

CS 0x2bcc

OS 0x0067

OS 0x2ce8

ES 0x0067

ES 0x2ba3

SS 0x0067

SS 0x2ce8

Description

Remarks

_ selectpalette 647

_ selectpalette
Selects a graphics palette for CGA.

#include <graph.h>

short __ far _selectpalette(short number);

number Palette number

The _selectpalette function works only under the video modes
_MRES4COLOR, _MRESNOCOLOR, and _ORESCOLOR. A CGA palette
consists of a selectable background color (Color 0) and three set colors. Under the
_ MRES4COLOR mode, the number argument selects one of the four predefined
palettes shown in Table R.6.

TableR.6 _MRES4COLOR Palette Colors
Color Index

Palette Number Color 1 Color 2 Color 3

0 Green Red Brown
1 Cyan Magenta White
2 Light green Light red Yellow
3 Light cyan Light magenta Bright white

The _MRESNOCOLOR video mode is used with black-and-white displays, pro
ducing palettes consisting of various shades of gray. It will also produce color
when used with a color display. The number of palettes available depends upon
whether a CGA or EGA hardware package is employed. Under a CGA configura
tion, only the palettes shown in Table R.7 are available. Note that although four
palette numbers are listed, palettes 0 and 1 are identical, as are palettes 2 and 3.

648 _ selectpalette

Return Value

Table R.7 _MRESNOCOLOR Mode CGA Palette Colors
Color Index

Palette Number Color 1 Color 2 Color 3

0 Blue Red White

Blue Red White

2 Light blue Light red Bright white

3 Light blue Light red Bright white

Under the EGA configuration, the three palettes shown in Table R.8 are available
in the _MRESNOCOLOR video mode. Note that although four palette numbers
are listed, palettes 1 and 3 are identical.

Table R.8 _MRESNOCOLOR Mode EGA Palette Colors
Color Index

Palette Number Color 1 Color 2 Color 3

0 Green Red Brown

Cyan Magenta White

2 Light green Light red Yellow

3 Cyan Magenta White

You can use the _ ORES COLOR high resolution video mode for the Olivetti
graphics adapters found in most Olivetti computers and in the AT&T 6300 series
computers. In _ORESCOLOR mode, an argument number in the range 0-15
selects one ofthe colors listed in Table R.9. The background color is always black
in this mode.

Table R.9 _ ORES COLOR Mode Colors
Index Color Index Color

0 Black 8 Dark Grey

Blue 9 Light Blue

2 Green 10 Light Green

3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta

6 Brown 14 Yellow

7 White 15 Bright White

The function returns the value of the previous palette. There is no error return.

_ selectpalette 649

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS

None

_getvideoconfig, _remappaleUe, _setbkcolor, _setvideomode

1* SELPAL.C: This program changes the current CGA palette. *1

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <graph.h>

long bkcolor[8] _BLACK,
_RED,

_ B LU E, _GREEN, _CYAN,
_MAGENTA, _BROWN, WHITE } ;

cha r *bkname [] "BLACK", "BLUE" , "GREEN", "CYAN",
"RED", "MAGENTA", "BROWN" , "WHITE" } ;

void main(void
{

int i, j, k;

if (Lsetvideomode(_MRES4COLOR)
{

printf("No palettes available");
ex it (1);

for(i = 0; i < 4; i++)
{

_selectpalette(i);
for(k = 0; k < 8; k++
{

clearscreen(GCLEARSCREEN);
_setbkcolor(bkcolor[k]);
_settextposition(1, 1);
printf("Background: %s\tPalette:
for(j = 1; j < 4; j++)
{

_setcolor(j);

1* Palette loop

1* Background color loop *1

%d", bkname[k], i);
1* Foreground color loop *1

_ell ipse(_GFILLINTERIOR, 100, j * 30, 220, 80 + (j * 30));

_getch();

}
setvideomode(OEFAULTMOOE);

exit(0);

650 _setactivepage

Description

Remarks

Return Value

Compatibility

See Also

_ setactivepage
Sets the active page.

#include <graph.h>

short __ far _setactivepage(short page);

page Memory page number

For hardware and mode configurations with enough memory to support multiple
screen pages, _setactivepage specifies the area in memory in which output is
written. The page argument selects the current active page. The default page
number is o.
Screen animation can be done by alternating the graphics pages displayed. Use the
_setvisualpage function to display a completed graphics or text page while execut
ing graphics statements in another active page.

These functions can also be used to control text output if you use the text functions
_gettextcursor, _settextcursor, _outtext, _settextposition, _gettextposition,
_settextcolor, _gettextcolor, _settextwindow, and _ wrapon instead of the
standard C-Ianguage I/O functions.

The CGA hardware configuration has only 16K of RAM available to support mul
tiple video pages, and only in the text mode. The EGA and VGA configurations
may be equipped with up to 256K of RAM for multiple video pages in graphics
mode.

If successful, the function returns the page number of the previous active page. If
the function fails, it returns a negative value.

Standards: None

16-Bit: DOS

32-Bit: None

_ getactivepage, _ getvisualpage, _ setvisualpage

Example

_setactivepage 651

1* PAGE.C illustrates video page functions including:
* _getactivepage _getvisualpage _setactivepage _setvisualpage
*1

#include <conio.h>
#include <graph.h>
#include <stdlib.h>

void maine void)
{

short oldvpage, oldapage, page, row, col, line;
struct _videoconfig vc;
char buf[80];

_getvideoconfig(&vc);
if(vc.numvideopages < 4

ex it (1); 1* Fai 1 for monochrome *1
oldapage = _getactivepage();
oldvpage = _getvisualpage();
_displaycursor(_GCURSOROFF);

1* Draw arrows in different place on each page. *1
fore page = 1; page < 4; page++)
{

_setactivepage(page);
_settextposition(12, 16 * page);

outtext("»»»»");

while(!_kbhit())
1* Cycle through pages 1 to 3 to show moving image. *1
fore page = 1; page < 4; page++)

_setvisualpage(page);
_getch();

1* Restore original page (normally 0) to restore screen. *1
_setactivepage(oldapage);
_setvisualpage(oldvpage);
_displaycursor(GCURSORON);
ex it (0);

652 setbkcolor

Description

Remarks

setbkcolor
Sets the current background color.

#include <graph.h>

long __ far _setbkcolor(long color);

color Desired color

The _ setbkcolor function sets the current background color to the color value
color.

In a color text mode (such as _ TEXTC80), _setbkcolor accepts (and
_ getbkcolor returns) a color index. The value for the default colors is given
in a table in the description of the _ settextcolor function. For example,
_setbkcolor(2L) sets the background color to color index 2. The actual color
displayed depends on the palette mapping for color index 2. The default is green
in a color text mode.

In a color graphics mode (such as _ERESCOLOR), _setbkcolor accepts (and
_getbkcolor returns) a color value. The value for the background color is given
by the manifest constants defined in the GRAPH.H include file. For example,
_setbkcolor(_GREEN) sets the background color in a graphics mode to green.
These manifest constants are provided as a convenience in defining and manipulat
ing the most common colors. The actual range of colors is, in general, much
greater.

In general, whenever a color argument is long, it refers to a color value, and when
ever it is short, it refers to a color index. The two exceptions are _setbkcolor and
_ getbkcolor.

Since the background color is color index 0, the _remappalette function will
act identically to the _setbkcolor function. Unlike _remappalette, however,
_setbkcolor does not require an EGA or VGA environment.

In a text mode, the _ setbkcolor function does not affect anything already appear
ing on the display; only the subsequent output is affected. In a graphics mode, it
immediately changes all background pixels.

Return Value

Compatibility

See Also

Example

setbkcolor 653

In text modes, _setbkcolor returns the color index of the old background color. In
graphics modes, _ setbkcolor returns the old color value of color index O. There is
no error return. Use the _ grstatus function to check the status after a call to
_ setbkcolor.

Standards: None

16-Bit: DOS

32-Bit: None

_ getbkcolor, _ grstatus, _ remap palette, _ selectpalette

See the example for _ getcolor.

654 setbuf

Description

Remarks

Return Value

Compatibility

See Also

setbuf
Controls stream buffering.

#include <stdio.h>

void setbuf(FILE * stream, char *buffer);

stream

buffer

Pointer to FILE structure

User-allocated buffer

The setbuf function allows the user to control buffering for stream. The stream
argument must refer to an open file that has not been read or written. If the buffer
argument is NULL, the stream is unbuffered. If not, the buffer must point to a
character array of length BUFSIZ, where BUFSIZ is the buffer size as defined in
STDIO.H. The user-specified buffer, instead of the default system-allocated buffer
for the given stream, is used for I/O buffering.

The stderr and (in DOS only) stdaux streams are unbuffered by default, but can
be assigned buffers with setbuf.

The setbuf function has been subsumed by the setvbuf function, which should be
the preferred routine for new code. The setbuf function is retained for compati
bility with existing code.

None.

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WINDLL

32-Bit: DOS32X

fclose, fflush, fopen, setvbuf

Example

Output

setbuf 655

1* SETBUF.C: This program first opens files named DATAl and DATA2.
* Then it uses setbuf to give DATAl a user-assigned buffer
* and to change DATA2 so that it has no buffer.
*1

#include <stdio.h>

void maine void)
{

char buf[BUFSIZ];
FILE *streaml, *stream2;

if(« streaml
«stream2

fopen("datal", "a")) != NULl) &&
fopen ("data2", "w")) ! = NU Ll))

{

1* "streaml" uses user-assigned buffer: *1
setbuf(streaml, buf);
printf("streaml set to user-defined buffer at: %Fp\n", buf);

1* "stream2" is unbuffered *1
setbuf(stream2, NULL);
printf("stream2 buffering disabled\n");
_ fcl oseall ();

streaml set to user-defined buffer at: 0298:0DF2
stream2 buffering disabled

656 _ setcliprgn

Description

Remarks

Return Value

_ setcliprgn
Sets the clipping region for graphics.

#include <graph.h>

void __ far _setcliprgn(short xl, short yl, short x2, short y2);

xl,yl

x2,y2

Upper-left comer of clip region

Lower-right comer of clip region

The _setcliprgn function limits the display of subsequent graphics output and font
text output to an area of the screen called the "clipping region." The physical
points (xl, y 1) and (x2, y2) are the diagonally opposed sides of a rectangle that
defines the clipping region. This function does not change the view coordinate
system. Rather, it merely masks the screen.

Note that the _setcliprgn function affects graphics and font text output only. To
mask the screen for text output, use the _settextwindow function.

None.

Compatibility Standards: None

See Also

Example

16-Bit: DOS

32-Bit: None

_ settextwindow, _ setvieworg, _ setviewport, _ setwindow

/* SCLIPRGN.C */
#include <stdlib.h>
#include <conio.h>
#include <graph.h>

void main(void)
{

/* Find a valid graphics mode. */
if(Lsetvideomode(MAXRESMOOE)

exit(1);

_ setcliprgn 657

/* Set clip region, then draw an ellipse larger than the region. */
_setcliprgn(0, 0, 200, 125);
_ellipse(_GFILLINTERIOR, 80, 50, 240, 190);

_getch();
setvideomode(DEFAULTMODE);

exit(0);

658 setcolor

Description

Remarks

Return Value

Compatibility

See Also

setcolor
Sets the current color.

#include <graph.h>

short __ far _setcolor(short color);

color Desired color index

The _setcolor function sets the current color index to color. The color parameter
is masked but always within range. The following graphics functions use the cur
rent color: _arc, _ellipse, _floodfill, _lineto, _outgtext, _pie, _polygon,
_ rectangle, and _ setpixel.

The _setcolor function accepts a short value as an argument. It is a color index.

The default color index is the highest numbered color index in the current palette.

Note that the _ setcolor function does not affect the output of the presentation
graphics functions.

This function returns the previous color. If the function fails (e.g., if used in a text
mode), it returns -1.

Standards: None

16-Bit: DOS

32-Bit: None

_arc functions, _ellipse functions, _floodfill, _getcolor, _lineto functions,
_outgtext, _pie functions, _polygon functions, _rectangle functions,
_ selectpalette, _ setpixel functions

Example 1* GPIXEL.C: This program assigns different colors to randomly
* selected pixels.
*1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void maine void)
{

short xvar, yvar;
struct _videoconfig vc;

1* Find a valid graphics mode. *1
if(Lsetvideomode(_MAXCOLORMODE))

ex it (1);
_getvideoconfig(&vc);

1* Draw filled ellipse to turn on certain pixels. *1

setcolor 659

_ellipse(_GFILLINTERIOR, vc.numxpixels I 6, vc.numypixels I 6,
vc.numxpixels I 6 * 5, vc.numypixels I 6 * 5);

1* Draw random pixels in random colors ... *1
while(Lkbhit())
{

}

1* ... but only if they are already on (inside the ellipse). *1
xvar = rand() % vc.numxpixels;
yvar = rand() % vc.numypixels;
if(_getpixel (xvar, yvar) != 0)
{

}

_setcolor(rand() % 16);
_setpixel(xvar, yvar);

_getch();
_setvideomode(
exit(0);

1* Throwaway the keystroke. *1
DEFAULTMODE);

660 setfillmask

Description

Remarks

Return Value

setfillmask
Sets the fill mask.

#include <graph.h>

void __ far _setfillmask(unsigned char __ far *mask);

mask Mask array

The _setfillmask function sets the current fill mask, which determines the fill pat
tern. The mask is an 8-by-8 array of bits in which each bit represents a pixel. A 1
bit sets the corresponding pixel to the current color, while a 0 bit leaves the pixel
unchanged. The pattern is repeated over the entire fill area.

If no fill mask is set (mask is NULL-the default), a solid (unpatterned) fill is
performed using the current color.

None.

Compatibility Standards: None·

See Also

Example

16-Bit: DOS

32-Bit: None

_ellipse functions, _floodfill, _getfillmask, _pie functions, _polygon func
tions, _rectangle functions

/* GFILLMSK.C: This program illustrates _getfillmask and _setfillmask. */

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void ellipsemask(short xl, short yl, short x2, short y2, char __ far *newmask);

unsigned char maskl[B]
unsigned char mask2[B]
char oldmask[B];

{ 0x43, 0x23, 0x7c, 0xf7, 0xBa, 0x4d, 0x7B, 0x39 };
{ 0x1B, 0xad, 0xc0, 0x79, 0xf6, 0xc4, 0xaB, 0x23 };

setfillmask 661

void maine void
{

}

int loop;

1* Find a valid graphics mode. *1
if(!_setvi deomode(MAXRESMOOE)

ex it (1);

1* Set first fill mask and draw rectangle. *1
_setfillmask(mask1);
_rectangle(_GFILLINTERIOR, 20, 20, 100, 100);
_getch();

1* Call routine that saves and restores mask. *1
ell ipsemask(60, 60, 150, 150, mask2);
_getch();

1* Back to ori gi nal mask. *1
_rectangle(_GFILLINTERIOR, 120, 120, 190, 190);
_getch();

_setvideomode(_DEFAULTMODE);
exit(0);

1* Draw an ellipse with a specified fill mask. *1
void ellipsemask(short xl, short y1, short x2, short y2, char
{

unsigned char savemask[8];

_getfi llmask(savemask); 1* Save mask
_setfi 11 mask(newmask) ; 1* Set new mask
_ellipse(_GFILLINTERIOR, xl, y1, x2, y2) ; 1* Use new mask

far *newmask)

*1
*1
*1

setfillmask(savemask); 1* Restore original *1
}

662 setfont

Description

Remarks

seHont
Loads a single font.

#include <graph.h>

short __ far _setfont(const char __ far *options);

options String describing font characteristics

The _ setfont function finds a single font, from the set of registered fonts, that has
the characteristics specified by the options string. If a font is found, it is made the
current font. The current font is used in all subsequent calls to the _ outgtext func
tion. There can be only one active font at any time.

The options string is a set of characters that specifies the desired characteristics of
the font. The _ setfont function searches the list of registered fonts for a font
matching the specified characteristics.

The characteristics that may be specified in the options string are shown in the list
below. Characteristics specified in the options string are not case-sensitive or
position-sensitive.

Characteristic

t 'fontname'

hx

wy

f

p

v

r

b

ox

Description

Typeface.

Character height, where x is the number of pixels.

Character width, where y is the number of pixels.

Find only a fixed-space font (should not be used with the
p characteristic).

Find only a proportionally spaced font (should not be used with
the f characteristic).

Find only a vector font (should not be used with the r
characteristic).

Find only a raster-mapped (bitmapped) font (should not be used
with the v characteristic).

Select a best fit font.

Select font number x, where x is less than or equal to the value
returned by the _registerfonts function. Use this option to "step
through" an entire set of fonts or to save or restore a previously
set font.

setfont 663

You can request as many options as desired, except with fiX, which should be used
alone. If mutually exclusive options are requested (such as the pair f/p or r/v), the
_setfont function ignores them. There is no error detection for incompatible para
meters used with fiX.

Options can be separated by blanks in the options string. Any other character is
ignored by _setfont.

The t (the typeface specification) in options is specified as a "t" followed by
fontname in single quotes. Choose fontname from the following list:

Fontname

Courier

Helv

TmsRmn

Script

Modern

Roman

Description

Fixed-width bitmapped font with serifs

Sans serif proportional bitmapped font

Proportional bitmapped font with serifs

Proportional vector-mapped font of slanted characters formed
from nearly continuous lines

Proportional vector-mapped font without serifs

Proportional vector-mapped font with serifs

A b in the options field causes the _ setfont routine to automatically select the
"best fit" font that matches the other characteristics you have specified. If the b
parameter is specified and at least one font is registered, _setfont will always be
able to set a font and will return a to indicate success.

You can also specify a pixel width and height for fonts. If a nonexistent value is
chosen for either, and the b option is specified, the _setfont function will choose
the closest match. A smaller font size has precedence over a larger size. For ex
ample, if _setfont requests Helv 12 with best fit, and only Helv 10 and Helv 14
are available, _setfont will select Helv 10.

In selecting a font, the _setfont routine uses the following precedence (rated from
highest precedence to lowest):

1. Pixel height

2. Typeface

3. Pixel width

4. Fixed or proportional font

If a nonexistent value is chosen for pixel height and width, the _setfont function
will apply a magnification factor to a vector-mapped font to obtain a suitable font
size. This automatic magnification does not apply if the r (raster-mapped font)
option is specified, or if a specific typeface is requested and no best fit (b) option
is specified.

664 seUont

Return Value

Compatibility

See Also

Example

If you specify the ox parameter, _ setfont will ignore any other specified options
and supply only the font number corresponding to x.

Note that the font functions affect only the output from the font output function
_outgtext; no other run-time output functions are affected by font usage.

The _setfont function returns an index that is suitable for use with ox to indicate
success or a negative value to indicate an error. An error occurs if a request for a
specific font fails and the b option was not specified, or if fonts have not yet been
registered.

Standards: None

16-Bit: DOS

32-Bit: None

_ getfontinfo, _ getgtextextent, _ outgtext, _ registerfonts, _ unregisterfonts

See the example for _ outgtext.

Description

Remarks

Return Value

Compatibility

See Also

Example

_ setgtextvector 665

_ setgtextvector
Changes the orientation of font text output.

#include <graph.h>

struct _xycoord __ far _setgtextvector(short x, short y);

x,y Integers specifying font rotation

The _ setgtextvector function sets the current orientation for font text output to
the vector specified by x and y. The current orientation is used in calls to the
_ outgtext function.

The values of x and y define the vector which determines the direction of rotation
of font text on the screen. The text-rotation options are shown below:

(x, y)

(0,0)

(1,0)

(0, 1)

(-1,0)

(0, -1)

Text Orientation

Unchanged

Horizontal text (default)

Rotated 90 degrees counterclockwise

Rotated 180 degrees

Rotated 270 degrees counterclockwise

If other values are input, only the sign of the input is used. For example, (-3, 0) is
interpreted as (-1, 0).

The _setgtextvector function returns the previous vector in a structure of
_xycoord type. If you pass the _setgtextvector function the values (0, 0), the
function returns the current vector values in the _xycoord structure.

Standards: None

16-Bit:

32-Bit:

DOS

None

_getfontinfo, _getgtextextent, _grstatus, _outgtext, _registerfonts,
_ setfont, _ unregisterfonts

See the example for _ outgtext.

666 setjrnp

Description

Remarks

Return Value

Compatibility

See Also

Example

setjrnp
Saves the current state of the program.

#include <setjmp.h>

int setjmp(jmp_ buf env);

env Variable in which environment is stored

The setjmp function saves a stack environment that can be subsequently restored
using longjmp. Used together this way, setjmp and longjmp provide a way to ex
ecute a "non-local goto." They are typically used to pass execution control to error
handling or recovery code in a previously called routine without using the nonnal
calling or return conventions.

A call to setjmp causes the current stack environment to be saved in env. A sub
sequent call to longjmp restores the saved environment and returns control to the
point just after the corresponding setjmp call. All variables (except register varia
bles) accessible to the routine receiving control contain the values they had when
setjmp was called.

Warning! Neither the setjmp nor the longjmp function is compatible with the
c++ language.

The setjmp function returns ° after saving the stack environment. If setjmp re
turns as a result of a longjmp call, it returns the value argument of longjmp, or if
the value argument of longjmp is 0, setjmp returns 1. There is no error return.

Standards: ANSI, UNIX

16-Bit:

32-Bit:

longjmp

DOS, QWIN, WIN, WIN DLL

DOS32X

See the example for _fpreset.

Description

Remarks

Return Value

Compatibility

See Also

Example

_setlinestyle 667

_ setlinestyle
Sets the line style.

#include <graph.h>

void __ far _ setlinestyle(unsigned short mask);

mask Desired line-style mask

Some graphics routines (_lineto, _polygon, and _rectangle) draw straight lines
on the screen. The type of line is controlled by the current line-style mask.

The _setlinestyle function selects the mask used for line drawing. The mask argu
ment is a 16-bit array, where each bit represents a pixel in the line being drawn. If
a bit is 1, the corresponding pixel is set to the color of the line (the current color).
If a bit is 0, the corresponding pixel is left unchanged. The template is repeated for
the entire length of the line.

The default mask is OxFFFF (a solid line).

None.

Standards: None

16-Bit: DOS

32-Bit: None

_ getlinestyle, _lineto functions, _ polygon functions, _ rectangle functions

See the example for _ getlinestyle.

668 setJocale

Description

Remarks

setlocale
Defines the locale.

#include <locale.h>

char *setlocale(int category, const char *locale);

category

locale

Category affected by locale

N arne of the locale that will control the specified
category

The setlocale function sets the categories specified by category to the locale
specified by locale. The "locale" refers to the locality (country and language) for
which certain aspects of your program can be customized. Some locale-dependent
aspects include the formatting of dates and the display format for monetary values.

The setlocale function is used to set or get the program's current entire locale or
simply portions of the locale information. The category argument specifies which
portion of a program's locale information will be affected. The macros used for
the category argument are listed below:

Category

LC_ALL

LC_COLLATE

LC_CTYPE

LC_TIME

Parts of Program Affected

All categories listed below.

The strcoll and strxfrm functions.

The character-handling functions (except for isdigit, isxdigit,
mbstowcs, and mbtowc, which are unaffected).
Monetary fonnatting infonnation returned by the localeconv
function.

Decimal point character for the formatted output routines
(such as printf), for the data conversion routines, and for the
nonmonetary formatting information returned by the
localeconv function.

The strftime function.

The locale argument is a pointer to a string that specifies the name of the locale. If
locale points to an empty string, the locale is the implementation-defined native en
vironment. A value of "C" specifies the minimal ANSI conforming environment
for C translation. This is the only locale supported in Microsoft C version 6.0 and
Microsoft C/C++ version 7.0.

Return Value

Compatibility

See Also

setlocale 669

If the locale argument is a null pointer, setlocale returns a pointer to the string as
sociated with the category ofthe program's locale. The program's current locale
setting is not changed.

If a valid locale and category are given, setlocale returns a pointer to the string
associated with the specified category for the previous locale. If the locale or cate
gory is invalid, the setlocale function returns a null pointer and the program's cur
rent locale settings are not changed.

The pointer to a string returned by setlocale can be used in subsequent calls to
restore that part of the program's locale information, assuming that your program
does not alter the pointer or the string. Later calls to setlocale will overwrite the
string; you can use the _strdup function to save a specific locale string.

Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

localeconv, mblen, mbstowcs, mbtowc, strcoll, strftime, strxfrm, wcstombs,
wctomb

670 setmode

Description

Remarks

Return Value

setmode
Sets the file translation mode.

#include <fentl.h>

#include <io.h> Required only for function declarations

int _setmode (int handle, int mode);

handle

mode

File handle

New translation mode

The _ setmode function sets to mode the translation mode of the file given by
handle. The mode must be one of the following manifest constants:

Constant

_O_TEXT

Meaning

Sets text (translated) mode. Carriage-retum-line-feed (CR-LF)
combinations are translated into a single line-feed (LF) character
on input. Line-feed characters are translated into CR-LF
combinations on output.

Sets binary (untranslated) mode. The above translations are
suppressed.

The _setmode function is typically used to modify the default translation mode
of stdin, stdout, stderr, stdaux, and stdprn, but can be used on any file. If
_setmode is applied to the file handle for a stream, the _setmode function should
be called before any input or output operations are performed on the stream.

If successful, _setmode returns the previous translation mode. A return value of
-1 indicates an error, and errno is set to one of the following values:

Value

EBADF

EINVAL

Meaning

Invalid file handle

Invalid mode argument (neither _0_ TEXT nor _O_BINARY)

setmode 671

Compatibility Standards: None

See Also

Example

Output

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

_creat, fopen, _open

1* SETMDDE.C: This program uses setmode to change stdin from text
* mode to binary mode.
*1

#include <stdio.h>
#include <fcntl.h>
#include <io.h>

void maine void
{

int result;

1* Set "stdin" to have binary mode: *1
result = setmode(fileno(stdin), _D_BINARY);
if(result == -1)

perror("Cannot set mode");
else

printf("'stdin' successfully changed to binary mode\n");

'stdin' successfully changed to binary mode

672 seC new_ handler Functions

Description

Remarks

set_ new_ handler Functions
Transfer control to your error-handling mechanism if the new operator fails to
allocate memory.

#include <new.h>

_PNH _seLnew_handler(_PNHpNewHandler);

_PNH _seLnnew_handler(_PNH pNewHandler);

_PNH _seLfnew_handler(_PNHpNewHandler);

_PNHH _seLhnew_handler(_PNHHpNewHandler);

_PNHB _seLbnew_handler(_PNHB pNewHandler);

pNewHandler Pointer to a function that you write

Use the C++ _seLnew_handler function to gain control if the new operator fails
to allocate memory. The run-time system automatically calls _seLnew_handler
when new fails.

To use _seLnew_handler, you must write an exception-handling function and
then pass it as an argument to _seLnew_handler. To facilitate the easy declara
tion of this new handler, three pointer-to-function types-_PNH, _PNHH, and
_PNHB-are defined in NEW.H and described in the following table:

Type Description

Pointer to a function that returns type int and takes an argument of
type sizL t. Use sizL t to specify the amount of space to be allocated.

Pointer to a function that returns type int and takes two arguments
the type unsigned long and the type sizL t arguments specified to
the huge new operator.
Pointer to a function that returns type int and takes two arguments
the type __ segment and the type size_t arguments specified to the
based new operator. Your function must ensure the correct binding of
the segment variable to its return value.

Basically, _seLnew_handler is a garbage collection scheme. The run-time sys
tem retries allocation each time your function returns a nonzero value and fails
new if your function returns O.

seC new_ handler Functions 673

An occurrence of one of the _seLnew_handler functions in a program registers
the exception-handling function specified in the argument list with the run-time
system:

#include <new.h>

int handle_program_memory_depletion(size t
{

II Your code

void main(void)
{

set_new_handler(handle_program_memory_depletion);
int *pi = new int[BIG_NUMBERJ;

You can save the function address that was last passed to the _ seL new_handler
function and then reinstate it at a later time:

PNH old_handler = set_new_handler(my_handler);
II Code that requires my_handler
_set_new_handler(old_handler)
II Code that requires old_handler

The _seLnew_handler function is defined in five different forms that allow you
to manage the heap for five different memory models:

Prototype

_PNH _seLnew_handler(_PNH);

_PNH _seLnnew_handler(_PNH);

_PNH _seLfnew_handler(_PNH);

_PNHH _seLhnew_handler(_PNHH);

_PNHB _seLbnew_handler(_PNHB);

Purpose

Default new handler

Manages the near heap

Manages the far heap

Manages the huge heap

Manages based heaps

The _seLnew_handler function automatically maps to either the
_seLnnew_handler or the _seLfnew_handler function, depending on the de
fault data model.

If the default memory model is either small or medium, you can call
_seLfnew_handler to manage the far heap. If the default memory model is
either compact or large, you can call_seLnnew_handler to manage the near
heap.

You can explicitly call the _seLhnew_handler and the _seLbnew_handler
functions to manage both the huge and based heaps.

674 seLnew_handler Functions

Return Value

In a multithreaded environment, handlers are maintained separately for each
process and thread. Each new process lacks installed handlers. Each new thread
gets a copy of its parent thread's new handlers. Thus, each process and thread is in
charge of its own free-store error handling.

The _seLnew_handler function returns a pointer to the allocated program
memory if successful. It returns a 0 if it' s unsuccessful.

Compatibility _seLnew_handler

Standards: None

See Also

Example

16-Bit: DOS, WIN, WIN DLL

32-Bit: DOS32X

_seLbnew_handler, _seLfnew_handler, _seLhnew_handler,
_ seL nnew _ handler

Standards: None

l6-Bit: DOS, WIN, WIN DLL

32-Bit: None

_ bfreeseg, _ bheapseg, calloc, delete, free, malloc, new, realloc

For more information on the new and delete operators, see Chapter 5 of the c++
Language Reference (in the Microsoft C/C++ version 7.0 documentation set).

1* HANDLER.CPP: This program uses _set_new_handler to print an
* error message if the new operator fails.
*1

#include <stdio.h>
#include <new.h>

1* Allocate memory in chunks of size MemBlock. *1
const size_t MemBlock = 1024;

1* Allocate a memory block for the printf function to use in case
* of memory allocation failure; the printf function uses malloc.
* The failsafe memory block must be visible globally because the
* handle_program_memory_depletion function can take one
* argument only.
*1

char * failsafe = new char[128J;

seL new_ handler Functions

1* Declare a customized function to handle memory-allocation failure.
* Pass this function as an argument to set_new_handler.
*1

int handle_program_memory_depletion(size_t);

void maine void
{

II Register existence of a new memory handler.
_set_new_handler(handle_program_memory_depletion);
size_t *pmemdump = new size_t[MemBlockJ;
fore ; pmemdump != 0; pmemdump = new size_t[MemBlockJ);

int handle_program_memory_depletion(size t size
{

II Release character buffer memory.
delete failsafe;
printf("Allocation failed, ");
printf("%u bytes not available.\n", size);
II Tell new to stop allocation attempts.
return 0;

675

676 _setpixel Functions

Description

Remarks

Return Value

Compatibility

See Also

_ setpixel Functions
Set a pixel to the current color.

#include <graph.h>

short _3ar _setpixel(short x, short y);

short __ far _setpixeL w(double wx, double wy);

x,y

wx,wy

Target pixel

Target pixel

The _setpixel and the _setpixeL w functions set a pixel at a specified location to
the current color.

The _setpixel function sets the pixel at the view-coordinate point (x, y) to the
current color.

The _setpixeL w function sets the pixel at the window-coordinate point (wx, wy)
to the current color.

The function returns the previous value of the target pixel. If the function fails (for
example, the point lies outside of the clipping region), it will return -1.

Standards: None

16-Bit: DOS

32-Bit: None

_getpixel functions, _setcolor

Example

_setpixel Functions 677

/* GPIXEL.C: This program assigns different colors to randomly
* selected pixels.
*/

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void main(void)
{

}

short xvar, yvar;
struct _videoconfig vc;

/* Find a valid graphics mode. */
if(!_setvideomode(_MAXCOLORMODE))

exit(1);
_getvideoconfig(&vc);

/* Draw filled ellipse to turn on certain pixels. */
_ellipse(_GFILLINTERIOR, vc.numxpixels / 6, vc.numypixels / 6,

vc.numxpixels / 6 * 5, vc.numypixels / 6 * 5);

/* Draw random pixels in random colors ... */
while('_kbhit())
{

/* ... but only if they are already on (inside the ellipse). */
xvar = rand() % vc.numxpixels;
yvar = rand() % vc.numypixels;
if(_getpixel (xvar, yvar) != (3)

{

}

setcolor(rand() % 16);
_setpixel(xvar, yvar);

_getch();
_setvideomode(

/* Throwaway the keystroke. */
DEFAULTMODE);

exit((3);

678 settextcolor

Description

Remarks

settextcolor
Sets the current text color.

#include <graph.h>

short __ far _settextcolor(short index);

index Desired color index

The _settextcolor function sets the current text color to the color index specified
by index. The default text color is the same as the maximum color index for the
current video mode.

The _settextcolor routine sets the color for the _outtext and _outmem functions
only. It does not affect the color of the printf function or the color of text output
with the _outgtext font routine. Use the _setcolor function to change the color of
font output.

In text color mode, you can specify a color index in the range 0-31. The colors in
the range 0 -15 are interpreted as nonnal (non-blinking). The normal color range
is defined below:

Index Co Index Color

0 Bla 8 Dark gray

Blue 9 Light blue

2 Green 10 Light green

3 Cyan 11 Light cyan

4 Red 12 Light red

5 Magenta 13 Light magenta

6 Brown 14 Yellow

7 White 15 Bright white

Blinking is selected by adding 16 to the normal color value.

Return Value

settextcolor 679

In every text mode, including monochrome, _getvideoconfig returns the value 32
for the number of available colors. The value 32 indicates the range of values
(0-31) accepted by the _settextcolor function. This includes sixteen normal
colors (0-15) and sixteen blinking colors (16 -31). Monochrome text mode has
fewer unique display attributes, so some color values are redundant. However,
because blinking is selected in the same manner, monochrome text mode has the
same range (0-31) as other text modes.

The function returns the color index of the previous text color. There is no error re
turn. Use the _grstatus function to check the status after a call to _settextcolor.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS

None

_gettextcolor, _grstatus, _outmem, _outtext

/* OUTTXT.C: This example illustrates text output functions:
* _gettextcolor _getbkcolor _gettextposition outtext
* settextcolor setbkcolor _settextposition
*/

#include <conio.h>
#include <stdio.h>
#include <graph.h>

char buffer [80J;

void main(void)
{

/* Save original foreground, background, and text position */
short bl ink, fgd, oldfgd;
long bgd, oldbgd;
struct _rccoord oldpos;

/* Save original foreground, background, and text position. */
oldfgd _gettextcolor();
oldbgd = _getbkcolor();
oldpos = _gettextposition();
_clearscreen(_GCLEARSCREEN);

680 settextcolor

1* First time no blink, second time blinking. *1
for(blink = 0; blink <= 16; blink += 16)
{

1* Loop through 8 background colors. *1
for(bgd = 0; bgd < 8; bgd++)
{

}

_setbkcolor(bgd);
_settextposition((short)bgd + «blink I 16) * 9) + 3, 1);
_settextcolor(7);
sprintf(buffer, "Back: %d Fore:", bgd);
_outtext(buffer);

1* Loop through 16 foreground colors. *1
for(fgd = 0; fgd < 16; fgd++)
{

settextcolor(fgd + blink);
sprintf(buffer, " %2d ", fgd + blink);
_outtext(buffer);

}

_getch();

1* Restore original foreground, background, and text position. *1
_settextcolor(oldfgd);
_setbkcolor(oldbgd);
_clearscreen(_GCLEARSCREEN);
_settextposition(oldpos.row, oldpos.col);
ex it (0);

Description

Remarks

Return Value

Compatibility

See Also

settextcursor 681

settextcursor
Sets the current cursor attribute.

#include <graph.h>

short __ far _settextcursor(short attr);

attr Cursor attribute

The _settextcursor function sets the cursor attribute (i.e., the shape) to the value
specified by attr. The high-order byte of attr determines the top line of the cursor
within the character cell. The low-order byte of attr determines the bottom line of
the cursor.

The _settextcursor function uses the same format as the BIOS routines in setting
the cursor. Typical values for the cursor attribute are listed below:

Attribute

Ox0707
Ox0007
Ox0607
Ox2000

Cursor Shape

Underline

Full block cursor

Double underline

No cursor

Note that this function works only in text video modes.

The function returns the previous cursor attribute, or -1 if an error occurs (such as
calling the function in a graphics screen mode).

Standards: None

16-Bit:

32-Bit:

DOS

None

_ displaycursor, _ gettextcursor

682 seHextcursor

Example 1* DISCURS.C: This program changes the cursor shape using _gettextcursor
* and _settextcursor, and hides the cursor using _displaycursor.
*1

#include <conio.h>
#include <graph.h>

void maine void)
{

}

short oldcursor;
short newcursor = 0x007; 1* Full block cursor *1

1* Save old cursor shape and make sure cursor is on. *1
oldcursor = _gettextcursor();
_clearscreen(_GCLEARSCREEN);
_displaycursor(_GCURSORON);

outtext("\nOld cursor shape: ");
_getch();

1* Change cursor shape. *1
_outtext("\nNew cursor shape: ");
_settextcursor(newcursor);
_getch();

1* Restore original cursor shape. *1
_outtext("\n");
_settextcursor(oldcursor);

Description

Remarks

Return Value

_ settextposition 683

_ settextposition
Sets the text position.

#include <graph.h>

struct _rccoord __ far _settextposition(short row, short column);

row, column New output start position

The _settextposition function sets the current text position to the display point
(row, column). The _outtext and _outmem functions (and standard console I/O
routines, such as printf) output text at that point. Note that _settextposition does
not affect the text position for the _outgtext function; use the _moveto function
instead.

The _rccoord structure, defined in GRAPH.H, contains the following elements:

Element

short row

short col

Description

Row coordinate

Column coordinate

The function returns the previous text position in an _rccoord structure, defined
inGRAPH.H.

Compatibility Standards: None

See Also

Example

16-Bit: DOS

32-Bit: None

_ gettextposition, _ moveto, _ outmem, _ outtext, _ settextwindow

1* OUTTXT.C: This example illustrates text output functions:
* _gettextcolor _getbkcolor _gettextposition outtext
* settextcolor setbkcolor _settextposition
*1

#include <conio.h>
#include <stdio.h>
#include <graph.h>

char buffer [80J;

684 _ settextposition

void main(void)
{

1* Save original foreground, background, and text position *1
short bl ink, fgd, oldfgd;
long bgd, oldbgd;
struct _rccoord oldpos;

1* Save original foreground, background, and text position. *1
oldfgd _gettextcolor();
oldbgd = _getbkcolor();
oldpos = _gettextposition();
_clearscreen(_GCLEARSCREEN);

1* First time no blink, second time blinking. *1
fort bl ink = 0; bl ink <= 16; bl ink += 16)
{

1* Loop through 8 background colors. *1
fort bgd = 0; bgd < 8; bgd++)
{

_setbkcolor(bgd);
_settextposition((short)bgd + ((blink I 16) * 9) + 3, 1);
_settextcolor(7);
sprintf(buffer, "Back: %d Fore:", bgd);
_outtext(buffer);

1* Loop through 16 foreground colors. *1
fort fgd = 0; fgd < 16; fgd++)
{

settextcolor(fgd + blink);
sprintf(buffer," %2d ", fgd + blink);
outtext(buffer);

}
_getch();

1* Restore original foreground, background, and text position. *1
_settextcolor(oldfgd);
_setbkcolor(oldbgd);
_clearscreen(_GCLEARSCREEN);
_settextposition(oldpos.row, oldpos.col);

Description

Remarks

Return Value

Compatibility

See Also

settextrows 685

settextrows
Sets the number of screen rows for text modes.

#include <graph.h>

short __ far _settextrows(short rows);

rows Number of text rows

The _settextrows function specifies the number of screen rows to be used in text
modes.

If the constant _MAXTEXTROWS is specified for the rows argument, the
_settextrows function will choose the maximum number of rows available. In text
modes, this is 50 rows on VGA, 43 on EGA, and 25 on others. In graphics modes
that support 30 or 60 rows, _MAXTEXTROWS specifies 60 rows. In SVGA
modes, _MAXTEXTROWS specifies the vertical resolution (as returned in a
_ videoconfig struct by the _ getvideoconfig function) divided by 8.

This function returns the numbers of rows set. The function returns 0 if an error
occurred.

Standards: None

16-Bit: DOS

32-Bit: None

_ getvideoconfig, _ outtext, _ setvideomode, _ setvideomoderows

686 settextrows

Example /* STXTROWS.C: This program attempts to set the screen height. It returns
* an errorlevel code of 1 (fail) or 0 (success) that could be tested in
* a batch file.
*/

#include <graph.h>
#include <stdlib.h>

void maine int argc, char **argv)
{

short rows;

if(! (rows = atoi (argv[l])))
{

outtext("\nSyntax: STXTROWS [25 I 43 I 50] \n");
ex it (1);

/* Make sure new rows are the same as requested rows. */
if(_settextrows(rows) != rows)
{

_outtext("\nlnval id rows\n");
ex it (1);

else
exit(0);

Description

Remarks

Return Value

Compatibility

See Also

Example

settextwindow 687

settextwi nd OW

Creates a text window.

#include <graph.h>

void __ far _settextwindow(short rl, short cJ, short r2, short c2);

rl, cJ

r2, c2

Upper-left comer of window

Lower-right comer of window

The _settextwindow function specifies a window in row and column coordinates
where the text output to the screen by the _outtext or _outmem function is dis
played. The arguments (rJ, c1) specify the upper-left comer of the text window,
and the arguments (r2, c2) specify the lower-right comer of the text window.

Text is output from the top of the text window down. When the text window is
full, the uppermost line scrolls up out of it.

Note that this function does not affect the output of presentation-graphics text
(e.g., labels, axis marks, etc.), the output of the font display routine _outgtext, or
the output of the standard I/O routine printf. Use the _ setviewport function to
control the display area for presentation graphics or fonts.

None. Use the _grstatus function to check conditions of success or failure.

Standards: None

16-Bit: DOS

32-Bit: None

_gettextposition, _gettextwindow, _grstatus, _outmem, _outtext,
_ scrolltextwindow, _ settextposition

See the example for _scrolltextwindow.

688 setvbuf

Description

Remarks

Return Value

setvbuf
Controls stream buffering and buffer size.

#include <stdio.h>

int setvbuf(FILE *stream, char *buffer, int mode, sizLt size);

stream

buffer

mode

size

Pointer to FILE structure

User-allocated buffer

Mode of buffering: _IOFBF (full buffering),
_IOLBF (line buffering), _IONBF (no buffer)

Size of buffer

The setvbuf function allows the program to control both buffering and buffer size
for stream. The stream must refer to an open file that has not been read from or
written to since it was opened. The array pointed to by buffer is used as the buffer,
unless it is NULL, and an automatically allocated buffer size bytes long is used.

The mode must be _IOFBF, _IOLBF, or _IONBF. If mode is _IOFBF or
_IOLBF, then size is used as the size of the buffer. If mode is _IONBF, the
stream is unbuffered and size and buffer are ignored.

Values for mode and their meanings are:

Type Meaning

Full buffering; that is, buffer is used as the buffer and size is used
as the size of the buffer. If buffer is NULL, an automatically
allocated buffer size bytes long is used.

With DOS, the same as __ IOFBF.

No buffer is used, regardless of buffer or size.

The legal values for size are greater than 0 and less than 32,768.

The return value for setvbuf is 0 if successful, and a nonzero value if an illegal
type or buffer size is specified.

Compatibility

See Also

Example

setvbuf 689

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

fclose, mush, fopen, setbuf

/* SETVBUF.C: This program opens two streams named stream1 and stream2.
* It then uses setvbuf to give stream1 a user-defined buffer of 1024
* bytes and stream2 no buffer.
*/

#include <stdio.h>

Output

void maine void)
{

}

char buf[1024];
FILE *stream1, *stream2;

if(«stream1
«stream2

fopen("datal", "a" » != NULL) &&
fopen("data2", "w")) != NULl))

}

if(setvbuf(stream1, buf, _IOFBF, sizeof(buf)!= 0)
printf("Incorrect type or size of buffer for stream1\n");

else
printf("'stream1' now has a buffer of 1024 bytes\n");

if(setvbuf(stream2, NULL, _IONBF, 0) != 0)
printf("Incorrect type or size of buffer for stream2\n");

else
printf("'stream2' now has no bUffer\n");

_ fcl oseall ();

'stream1' now has a buffer of 1024 bytes
'stream2' now has no buffer

690 setvideomode

Description

Remarks

setvideomode
Sets the video mode.

#include <graph.h>

short __ far _setvideomode(short mode);

mode Desired mode

The _setvideomode function selects a screen mode appropriate for a particular
hardware/display configuration. The mode argument can be one of the manifest
constants shown in Tables R.l 0 and R.ll and defined in GRAPH.H. Table R.l 0
describes only standard hardware; however, display hardware that is strictly com
patible with IBM, Hercules, or Olivetti hardware should also work as described.

TableR.10 Manifest Constants for Screen Mode

Mode Type! Size2 Colors3 Adapter4

_DEFAULTMODE Mode existing at
startup

_MAXRESMODE Highest resolution
in graphics mode

_MAXCOLORMODE Maximum colors
in graphics mode

_TEXTBW40 BWIT 40 columns 32 CGA
_TEXTC40 CIT 40 columns 32 CGA

_TEXTBWSO BWIT 80 columns 32 CGA
_TEXTC80 CIT 80 columns 32 CGA
_MRES4COLOR C/G 320 x 200 4 CGA
_MRESNOCOLOR BW/G 320 x 200 4 CGA
_HRESBW BW/G 640 x 200 2 CGA
_TEXTMONO MIT 80 columns 32 MDPA
_HERCMON05 M/GlHercules 720 x 348 2 HGC

graphics

_MRES16COLOR C/G 320 x 200 16 EGA
_HRES16COLOR C/G 640 x 200 16 EGA

_ERESNOCOLOR MIG 640 x 350 4 EGA

_ERESCOLOR C/G 640 x 350 1614 EGA

setvideomode 691

Table R.IO (continued)

Mode Type! Size2 Colors3 Adapter4

_ VRES2COLOR C/G 640 x 480 2 VGA

_ VRES16COLOR C/G 640 x 480 16 VGA
_MRES256COLOR C/G 320 x 200 256 VGA
_ORESCOLOR C/G 640 x 400 1 of 16 OGA

I M indicates monochrome, BW indicates monochrome, C indicates color output, T indicates text, and G
indicates graphics generation,

2 For text modes, size is given in characters (number of columns), For graphics modes, size is given in pixels
(horizontal x vertical),

3 For monochrome displays, the number of colors is the number of attributes or shades of gray.

4 Adapters are the IBM (and compatible) Monochrome Adapter (MDPA), Color Graphics Adapter (CGA),
Enhanced Graphics Adapter (EGA), Video Graphics Array (VGA), Hercules-compatible adapter (HGC),
and Olivetti-compatible adapter (OGA).

5 In _ HERCMONO mode, the text dimensions are 80 columns by 25 rows, with a 9 by 14 character box.
The bottom two scan lines of row 25 are not visible.

Table Rillists the manifest constants that support the Super VGA screen modes
specified by the Video Electronic Standards Association (VESA). Other nonstand
ard Super VGA modes may also be supported. Note that some, or all, of these
manifest constants may be supported by graphics cards that support the VESA
Super Video standard VS891001. Other modes may also be supported; a TSR
driver may be required. For more details on these constants, see Chapter 9 of Pro
gramming Techniques (in the Microsoft C/C++ version 7.0 documentation set).

Table R.ll VESA Manifest Constants for Screen Mode

Mode VESANo. Type! Size Colors Adapter

_ORES256COLOR Ox0100 C/G 640 x400 256 SVGA
_ VRES256COLOR OxOlOl C/G 640 x480 256 SVGA
_SRES16COLOR2 OxOl02 C/G 800 x 600 16 SVGA
_SRES256COLOR2 OxOl03 C/G 800 x 600 256 SVGA
_XRES16COLOR3 Ox0104 C/G 1024 x 768 16 SVGA
_XRES256COLOR3 Ox0105 C/G 1024 x 768 256 SVGA
_ZRES16COLOR4 Ox0106 C/G 1280 x 1024 16 SVGA
_ZRES256COLOR4 OxOl07 C/G 1280 x 1024 256 SVGA

I C indicates color output and G indicates graphics generation.

2 Requires NEC MultiSync 3D or equivalent or better.

3 Requires NEC MultiSync 4D or equivalent or better.

4 Requires NEC MultiSync 5D or equivalent or better.

692 setvideomode

Warning! Do not attempt to seLSRES16COLOR, _SRES256COLOR,
_XRES16COLOR, _XRES256COLOR, _ZRES16COLOR, or
_ZRES256COLOR without ensuring that your monitor can safely handle that
resolution. Otherwise, you may risk damaging your display monitor! Consult your
owner's manual for details.

MAXRESMODE and _MAXCOlORMODE
The two special modes _MAXRESMODE and _MAXCOLORMODE select
the highest resolution or greatest number of colors available with the current hard
ware, respectively. These two modes fail for adapters that do not support graphics
modes. They never select _SRES, _XRES, or _ZRES mode.

Table R.12lists the video mode selected for different adapter and monitor combi
nations when _MAXRESMODE or _MAXCOLORMODE is specified:

Table R.12 Modes Selected by _MAXRESMODE and _MAXCOLORMODE

Adapter/Monitor _MAXRESMODE _MAXCOLORMODE

MDPA fails fails
HGC _HERCMONO _HERCMONO
CGAcolor l _HRESBW _MRES4COLOR
CGA noncolor l _HRESBW _MRESNOCOLOR
OCGA _ORESCOLOR _MRES4COLOR
OEGAcolor _ORESCOLOR _ERESCOLOR
EGA color 256K _HRES16COLOR _HRES16COLOR
EGA color 64K _HRES16COLOR _HRES16COLOR
EGAecd256K _ERESCOLOR _ERESCOLOR
EGAecd64K _ERESCOLOR _HRES16COLOR
EGA mono _ERESNOCOLOR _ERESNOCOLOR
MCGA _ VRES2COLOR _MRES256COLOR
VGA _ VRES16COLOR _MRES256COLOR
OVGA _ VRES16COLOR _MRES256COLOR
SVGA _ VRES256COLOR2 _ VRES256COLOR2

I Color monitor is assumed if the startup text mode was ~ TEXTC80 or ~ TEXTC40 or if the startup mode
was graphics mode. Composite or other noncolor CGA monitor is assumed if startup mode was
~ TEXTBW80 or ~ TEXTBW 40.

2 If ~ VRES256COLOR is supported by the adapter/monitor combination. If not, ~MAXCOLORMODE
will be either ~ORES256COLOR (if supported) or ~MRES256COLOR and ~MAXRESMODE will be
~ VRES16COLOR.

Return Value

setvideomode 693

Hercules Support
You must install the Hercules driver MSHERC.COM before running your pro
gram. Type MSHERC to load the driver. This can be automated by adding a line
to your AUTOEXEC.BAT file.

If you have both a Hercules monochrome card and a color video card, you should
install MSHERC.COM with the IH (/HALF) option. The IH option causes the
driver to use one instead of two graphics pages. This prevents the two video cards
from attempting to use the same memory. You do not need to use the IH option if
you have only a Hercules card. See your Hercules hardware manuals for more
details on compatibility.

To use a mouse, you must follow special instructions for Hercules cards in
Microsoft Mouse Programmer's Reference Guide. (This is sold separately;
it is not supplied with either Microsoft CIC++ or the mouse package.)

The function returns the number of text rows if the function is successful. If an
error is encountered (that is, the mode selected is not supported by the current
hardware configuration), the function returns O.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS

None

_ getvideoconfig, _ settextrows, _ setvideomoderows

1* SVIDMODE.C: This program sets a video mode from a string given on the
* command line.
*1

#include <graph.h>
#include <stdlib.h>
#include <string.h>

short modes[] = { _TEXTBW40, _TEXTC40,
_TEXTC80, _MRES4COLOR,
_HRESBW, _TEXTMONO,
_MRES16COLOR, _HRES16COLOR,
_ERESCOLOR, _VRES2COLOR,
_MRES256COLOR, _ORESCOLOR

} ;
char *names[] {"TEXTBW40", "TEXTC40",

"TEXTC80", "MRES4COLOR",
"HRESBW" , "TEXTMONO" ,
"MRES16COLOR", "HRES16COLOR",
"ERESCOLOR", "VRES2COLOR",
"MRES256COLOR","ORESCOLOR"

} ;

_ TEXTBW80,
_MRESNOCOLOR,
_HERCMONO,
_ ERESNOCOLOR,
_ VRES16COLOR,

"TEXTBW80" ,
"MRESNOCOLOR" ,
"HERCMONO",
"ERESNOCOLOR",
"VRES16COLOR" ,

694 setvideomode

void error(char *msg);

void main(int argc, char *argv[]
{

short i, num = sizeof(modes
struct _videoconfig vc;

/ sizeof(short);

if (a rgc < 2)
error("No argument given");

/* If matching name found, change to corresponding mode. */
fort i = 0; i < num; i++)
{

if(!_strcmpi (argv[1], names[i]))
{

_setvideomode(modes[i]);
outtext("New mode is: ");

_outtext(names[i]);
exit(0);

error("Invalid mode string");

void error(char *msg
{

}

_outtext(msg);
exit(1);

Description

Remarks

Return Value

Compatibility

See Also

setvideomoderows 695

setvideomoderows
Sets the video mode and number of text rows for text modes.

#include <graph.h>

short __ far _setvideomoderows(short mode, short rows);

mode

rows

Desired mode

Number of text rows

The _ setvideomoderows function selects a screen mode for a particular
hardware/display combination. The manifest constants for the screen mode are
given in the reference pages for _setvideomode. The _setvideomoderows func
tion also specifies the number of text rows to be used in a text mode. If the
constant _MAXTEXTROWS is specified for the rows argument, the
_ setvideomoderows function will choose the maximum number of rows availa
ble. In text modes, this is 50 rows on VGA, 43 on EGA, and 25 on others. In
graphics modes that support 30 or 60 rows, _MAXTEXTROWS specifies 60
rows. In SVGA modes, _MAXTEXTROWS specifies the vertical resolution (as
returned in a _ videoconfig struct by the _getvideoconfig function) divided by 8.

The _ setvideomoderows function returns the numbers of rows set. The function
returns 0 if an error occurred (e.g., if the mode is not supported).

Standards: None

16-Bit: DOS

32-Bit: None

_ getvideoconfig, _ settextrows, _ setvideomode

696 setvideomoderows

Example 1* SVMROWS. C *1

#include <stdlib.h>
#include <conio.h>
#include <graph.h>

void maine void 1
{

}

struct _videoconfig config;

1* Set 43-line graphics mode if available. *1
if(!_setvideomoderows(_ERESCOLOR, 43 1 1
{

_outtext("EGA or VGA requi red" l;
exit(1 l;

_getvideoconfig(&config l;

1* Set logical origin to center and draw a rectangle. *1
_setlogorg(config.numxpixels I 2 - I, config.numypixels I 2 - 1 l;
_rectangle(_GBORDER, -80, -50, 80, 50 l;

_getch(l;
setvideomode(DEFAULTMODE l;

exit(0 l;

Description

Remarks

Return Value

Compatibility

See Also

_setvieworg 697

_ setvieworg
Moves the view-coordinate origin to the specified physical point.

#include <graph.h>

struct _xycoord __ far _setvieworg(short x, short y);

x,y New origin point

The _setvieworg function moves the view-coordinate origin (0, 0) to the physical
point (x, y).

The _xycoord structure, defined in GRAPH.H, contains the following elements:

Element

short xcoord
short ycoord

Description

x coordinate

y coordinate

The _setvieworg function replaces the _setlogorg function of Microsoft C
version 5.1.

The function returns the physical coordinates of the previous view origin in an
_xycoord structure, defined in GRAPH.H.

Standards: None

16-Bit: DOS

32-Bit: None

_ getphyscoord, _ getviewcoord, _ getwindowcoord, _ setcliprgn,
_setviewport

698 _ setvieworg

Example 1* SVORG.C: This program sets the view orlgln to the center of
* the screen, then draws a rectangle using the new origin.
*1

#include <stdlib.h>
#include <conio.h>
#include <graph.h>

void maine void)
{

}

struct _videoconfig config;

1* Find a valid graphics mode. *1
if(!_setvideomode(_MAXRESMODE

exit(1);
_getvideoconfig(&config);

1* Set view origin to the center of the screen. *1
_setvieworg(config.numxpixels I 2, config.numypixels I 2);
_rectangle(_GBORDER, -80, -50,80,50);

_getch();
_setvideomode(DEFAULTMODE);
ex it (0);

Description

Remarks

Return Value

Compatibility

See Also

_setviewport 699

_setviewport
Creates a viewport.

#include <graph.h>

void __ far _ setviewport(short xl, short y l, short x2, short y2);

xl,yl

x2,y2

Upper-left corner of viewport

Lower-right corner of viewport

The _setviewport function redefines the graphics viewport. The _setviewport
function defines a clipping region in exactly the same manner as _setcliprgn, and
then sets the view-coordinate origin to the upper-left corner of the region. The
physical points (xl, yl) and (x2, y2) are the diagonally opposed corners of the rec
tangular clipping region. Any window transformation done with the _setwindow
function applies only to the viewport and not to the entire screen. The default view
port is the entire screen.

None. Use the _grstatus function to check for conditions of success or failure.

Standards: None

16-Bit: DOS

32-Bit: None

_grstatus, _setcliprgn, _setvieworg, _setwindow

700 _setviewport

Example /* SVIEWPRT.C: This program sets a viewport and then draws a rectangle
* around it and an ellipse in it.
*/

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void maine void)
{

/* Find a valid graphics mode. */
if(!_setvideomode(MAXRESMODE)

exit(1);

. setviewport(100, 100, 200, 200);
_rectangle(_GBORDER, 0, 0,100,100);
_ellipse(_GFILLINTERIOR, 10, 10, 90, 90);

_getch();
_setvideomode(DEFAULTMODE);
exit(0);

Description

Remarks

Return Value

Compatibility

See Also

Example

_ setvisualpage 701

_ setvisualpage
Sets the visual page.

#include <graph.h>

short __ far _setvisualpage(short page);

page Visual page number

For hardware configurations that have enough memory to support multiple-screen
pages, the _setvisualpage function selects the current visual page. The page argu
ment specifies the current visual page. The default page number is o.

The function returns the number of the previous visual page. If the function fails, it
returns a negative value.

Standards: None

16-Bit: DOS

32-Bit: None

_ getactivepage, _ getvisualpage, _ setactivepage, _ setvideomode

See the example for _ setactivepage.

702 setwindow

Description

Remarks

Return Value

Compatibility

See Also

setwindow
Defines a graphics window coordinate system.

#include <graph.h>

short __ far _setwindow(shortfinvert, double wx1, double wy1, double wx2,
double wy2);

finvert

wx1, wy1

wx2, wy2

Invert flag

Upper-left corner of window

Lower-right corner of window

The _ setwindow function defines a window viewport. The arguments (wx1, wy 1)
specify the upper-left corner of the window, and the arguments (wx2, wy2) specify
the lower-right corner of the window.

The finvert argument specifies the direction of the coordinates. Iffinvert is TRUE,
the y axis increases from the screen bottom to the screen top (Cartesian coordi
nates). Iffinvert is FALSE, the y axis increases from the screen top to the screen
bottom (screen coordinates).

Any window transformation done with the _setwindow function applies only to
the viewport and not to the entire screen.

If wx1 equals wx2 or wy1 equals wy2, the function will fail.

Note that this function only affects output functions suffixed with _ w or _ wxy.

The function returns a nonzero value if successful. If the function fails (e.g., if it is
not in a graphics mode), it returns O.

Standards: None

16-Bit: DOS

32-Bit: None

_arc functions, _ellipse functions, _getwindowcoord, _lineto functions,
_ pie functions, _ setviewport, functions suffixed with _ w or _ wxy

Example

setwindow 703

1* SWINDOW.C: This program illustrates translation between window,
* view, and physical coordinates. Functions used include:
* setwindow _getwindowcoord
* _getphyscoord _getviewcoord_wxy
*1

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

enum boolean
enum display

FALSE, TRUE};
MOVE, DRAW, ERASE };

void main(void)
{

struct _xycoord view, phys;
struct _wxycoord oldwin, newwin;
struct _videoconfig vc;
double xunit, yunit, xinc, yinc;
short color, key, fintersect = FALSE, fdisplay

1* Find a valid graphics mode. *1
if(!_setvideomode(_MAXRESMODE)

exit(1);
_getvideoconfig(&vc);

1* Set a window using real numbers. *1
_setwindow(FALSE, -125.0, -100.0, 125.0, 100.0);

TRUE;

1* Calculate the size of one pixel in window coordinates.
* Then get the current window coordinates and color.
*1

oldwin = _getwindowcoord(1, 1);
newwin = _getwindowcoord(2, 2);
xunit = xinc = newwin.wx - oldwin.wx;
yunit = yinc = newwin.wy - oldwin.wy;
newwin = oldwin = _getcurrentposition_w();
color = _getcolor();

while(1)
{

1* Set flag according to whether current pixel is on, then
* turn pixel on.
*1

if(_getpixel_w(oldwin.wx, oldwin.wy) color)
fintersect TRUE;

else
fintersect FALS E;

_setcolor(color);
_setpixel_w(oldwin.wx, oldwin.wy);

704 setwindow

1* Get and test key. *1
key = _getch();
switch(key)
{

case 27:
setvideomode(

exit(0);
case 32:

fdisplay = MOVE;
continue;

1* ESC Quit
DEFAULTMODE);

1* SPACE Move no color

case 0: 1* Extended code - get next *1
key = _getch();
switch(key)
{

case 72:
newwin.wy
break;

case 77:
newwin.wx
break;

case 80:
newwin.wy
break;

case 75:
newwin.wx
break;

case 82:
fdisplay
continue;

case 83:
fdisplay =
continue;

break;

yinc;

+= xinc;

+= yinc;

xinc;

DRAW;

ERASE;

1* UP -y

1* RIGHT +x

1* DOWN +y

1* LEFT -x

1* INS Draw white

1* DEL Draw black

1* Translate window coordinates to view, view to physical.

*1

*1

*1

*1

*1

*1

* Then check physical to make sure we're on screen. Update screen
* and position if we are. Ignore if not.
*1

view = _getviewcoord_wxy(&newwin);
phys = _getphyscoord(view.xcoord, view.ycoord);
if((phys.xcoord >= 0) && (phys.xcoord < vc.numxpixels) &&

(phys.ycoord >= 0) && (phys.ycoord < vC.numypixels))

1* If display on, draw to new position, else move to new. *1
if(fdi spl ay != MOVE)
{

if(fdisplay == ERASE
_setcolor(0);

_lineto_w(newwin.wx, newwin.wy);

else
{

setcolor(0);
moveto w(newwin.wx, newwin.wy);

/* If there was no intersect, erase old pixel. */
if(!fintersect)

_setpixel_w(oldwin.wx, oldwin.wy);

oldwin = newwin;

else
newwin

ex it (0);

oldwin;

setwindow 705

706 setwritemode

Description

Remarks

Return Value

Compatibility

See Also

Example

setwritemode
Sets the current logical mode for line drawing.

#include <graph.h>

short __ far _setwritemode(short action);

action Interaction with existing screen image

The _setwritemode function sets the current logical write mode, which is used
when drawing lines with the _lineto, _polygon, and _rectangle functions.

The action argument defines the write mode. The possible values are _ GAND,
_GOR, _GPRESET, _GPSET, and _GXOR. See the description of the
_putimage functions for more details on these manifest constants.

The _ setwritemode function returns the previous write mode, or -1 if an error
occurs.

Standards: None

16-Bit: DOS

32-Bit: None

_getwritemode, _grstatus, _lineto functions, _polygon functions, _putimage
functions, _rectangle functions, _setcolor, _setlinestyle

See the example for _getwritemode.

Description

Remarks

signal 707

signal
Sets interrupt signal handling.

#include <signal.h>

void (__ cdecl *signal(int sig, void(__ cdecl *June)
(int sig [, int subeode]))) (int sig);

sig

June

subeode

Signal value

Function to be executed

Optional subcode to the signal number

The signal function allows a process to choose one of several ways to handle an
interrupt signal from the operating system.

The sig argument must be one of the manifest constants described in Table R.13
and defined in SIGNAL.H.

Table R.13 Signals and Responses

Value Mode Meaning Default Action

SIGABRT Real Abnonnal Tenninates the calling
termination program with exit code 3

SIGFPE Real Floating-point error Tenninates the calling
program with exit code 3

SIGILL Real Illegal instruction Tenninates the calling
program with exit code 3

SIGINT Real CTRL+C signal Terminates the calling
program with exit code 3

SIGSEGV Real Illegal storage access Terminates the calling
program with exit code 3

SIGTERM Real Tennination request Terminates the calling
program with exit code 3

Note that SIGILL, SIGSEGV, and SIGTERM are not generated with DOS.
They are included for ANSI compatibility. Thus, you can set signal handlers for
these signals via signal, and you can also explicitly generate these signals by
calling raise.

708 signal

Note also that signal settings are not preserved in child processes created by calls
to _ exec or _ spawn. The signal settings are reset to the default in the child
process.

The action taken when the interrupt signal is received depends on the value of
June. The June argument must be either a function address or one of the manifest
constants defined in SIGNAL.H and listed below:

SIG_DFL
Uses system-default response. The system-default response for all signals is to
abort the calling program. The calling process is terminated with exit code 3,
and control returns to DOS. If the calling program uses stream I/O, buffers
created by the run-time library are not flushed, but buffers created by the operat
ing system are flushed.

SIG_IGN
Ignores interrupt signal. This value should never be given for SIGFPE, since
the floating-point state of the process is left undefined.

Function address
Installs the specified function as the handler for the given signal.

For all signals except SIGFPE, the function is passed the sig argument
SIGINT and executed.

For SIGFPE signals, the function is passed two arguments; namely SIGFPE
and the floating-point error code identifying the type of exception that occurred.

For SIGFPE, the function pointed to by June is passed two arguments, SIGFPE
and an integer error subcode, FPE_xxx; then the function is executed. (See the in
clude file FLOAT.H for definitions of the FPE_xxx subcodes.) The value of June
is not reset upon receiving the signal. In C programs, SIGFPE is the only constant
available when the _ WINDOWS constant is defined. The _ WINDOWS constant
is defined by CL options /GA, /GD, /GE, /GW, and /Gw. To recover from floating
point exceptions, use setjmp in conjunction with longjmp. (See the example
under _ fpreset.) If the function returns, the calling process resumes execution
with the floating-point state of the process left undefined.

If the function returns, the calling process resumes execution immediately follow
ing the point at which it received the interrupt signal. This is true regardless of the
type of signal or operating mode.

Before the specified function is executed with DOS versions 3.x or earlier, the
value of June is set to SIG_DFL. The next interrupt signal is treated as described
above for SIG_DFL, unless an intervening call to signal specifies otherwise. This
allows the program to reset signals in the called function.

Return Value

Compatibility

See Also

signal 709

Since signal-handler routines are normally called asynchronously when an inter
rupt occurs, it is possible that your signal-handler function will get control when a
run-time operation is incomplete and in an unknown state. Certain restrictions
therefore apply to the functions that can be used in your signal-handler routine:

1. Do not issue low-level or standard input and output routines (e.g., printf,
_read, _ write, fread).

2. Do not call heap routines or any routine that uses the heap routines (e.g.,
malloc, _strdup, _putenv).

3. Do not use any function that generates a system call (e.g., _getcwd, time).

4. Do not use the longjmp function unless the interrupt is caused by a floating
point exception (i.e., sig is SIGFPE). In this case, the program should first re
initialize the floating-point package by means of a call to _fpreset.

5. Do not use any overlay routines.

Note With DOS, a program must contain floating-point code if it is to trap the
SIGFPE exception with the signal function. If your program does not have float
ing-point code and it requires the run-time library's signal-handling code, simply
declare a volatile double and initialize it to zero:
volatile double d = 0.0f;

The signal function returns the previous value of June associated with the given
signal. For example, if the previous value of June was SIG_IGN, the return value
will be SIG_IGN.

A return value of SIG_ERR indicates an error, and errno is set to EINV AL.

Standards: ANSI, UNIX

16-Bit:

32-Bit:

DOS, QWIN, WIN, WINDLL

DOS32X

abort, _ exec functions, exit, _ exit, _ fpreset, _ spawn functions

710 signal

Example 1* SIGNAL.C illustrates setting up signal interrupt routines. Functions
* illustrated include signal and raise.

*
* Since C liD functions are not safe inside signal routines, the code
* uses conditionals to use system-level DOS services. Another option
* is to set global flags and do any liD operations outside the
* signal handler.
*1

#include <stdio.h>
#include <conio.h>
#include <signal.h>
#include <process.h>
#include <stdlib.h>
#include <dos.h>
#include <bios.h>

void ctrlchandler(int sig);
void safeout(char *str);
int safein(void);

void main(void)
{

int ch;

1* Prototypes *1

1* Install signal handler to modify CTRL+C behavior. *1
if(signal(SIGINT, ctrlchandler) == SIG_ERR)
{

}

fprintf(stderr, "Couldn't set SIGINT\n");
abort();

1* Loop prints message to screen asking user to
* enter Cntl+C--at which point the ctrlchandler
* si gnal handl er takes control.
*1

do
{

printf("Press Ctrl+C to enter handler.\n");

while(ch = _getch()); 1* Discard keystokes *1

1* A signal handler must take a single argument. The argument can be
* tested within the handler and thus allows a single signal handler
* to handle several different signals. In this case, the parameter
* is included to keep the compiler from generating a warning but is
* ignored because this signal handler only handles one interrupt:
* SIGINT (Ctrl+C).
*1

Output

void ctrlchandler(int sig
{

int c;
char str[] - " II. - ,

1* Disallow CTRL+C during handler. *1
s i 9 n a 1 (S I GIN T, S I G_ I G N);
safeout("User break - abort processing (Yin)? ");
c = safein();
str[0] = c;
II safeout(str);
safeout("\r\n");
if ((c == 'y') II (c

abort();
else
{

'Y'))

1* The CTRL+C interrupt must be reset to our handler since
* by default it is reset to the system handler.
*1

signal(SIGINT, ctrlchandler);
safeout("Press Ctrl+C to enter handler.\r\n");

1* Outputs a string using system level calls. *1
void safeout(char *str)
{

union REGS inregs, outregs;

inregs.h.ah
while(*str
{

0x0e;

inregs.h.al *str++;
int86(0xI0, &inregs, &outregs);

}

1* Inputs a character using system level calls. *1
int safein()
{

return _bi os_ keybrd(KEYBRD_READ) & 0xff;

Press Ctrl+C to enter handler.
AC
User break - abort processing (yin)? y
abnormal program termination

signal 711

712 sin Functions

Description

Remarks

Return Value

Compatibility

sin Functions
Calculate sines and hyperbolic sines.

#include <math.h>

double sine double x);

double sinh(double x);

long double _sinl(long double x);

long double _sinhl(long double x);

x Angle in radians

The sin and sinh functions find the sine and hyperbolic sine of x, respectively. The
_sinl and _sinhl functions are the SO-bit counterparts and use an SO-bit, lO-byte
coprocessor form of arguments and return values. See the reference page on the
long double functions for more details on this data type.

The sin functions return the sine of x. If x is large, a partial loss of significance in
the result may occur, and sin generates a _PLOSS error. If x is so large that signif
icance is completely lost, the sin function prints a _ TLOSS message to stderr and
returns O. In both cases, errno is set to ERANGE.

The sinh function returns the hyperbolic sine of x. If the result is too large, sinh
sets errno to ERANGE and returns ± HUGE_ VAL. Error handling can be
changed with the _matherr function.

sin, sinh

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

See Also

Example

Output

_ sinl, _ sinhl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

sin Functions 713

acos functions, asin functions, atan functions, cos functions, tan functions

1* SINCOS.C: This program displays the sine, hyperbolic sine, cosine,
* and hyperbolic cosine of pi I 2.
*1

#include <math.h>
#include <stdio.h>

void maine void)
{

double pi = 3.1415926535;
double x, y;

x = pi I 2;
y = sine x);
printf("sin(%f) = %f\n", x, y);
y = sinh(x);
printf("sinh(%f) = %f\n" ,x, y);
y = cost x);
printf("cos(%f) = %f\n", x, y);
y = cosh(x);
printf("cosh(%f) = %f\n",x, y);

sine 1.570796) = 1.000000
sinh(1.570796) = 2.301299
cost 1.570796) = 0.000000
cosh(1.570796) = 2.509178

714 _sopen

Description

Remarks

_sopen
Opens a file for file sharing.

#include <fcntl.h>

#include <sys\types.h>

#include <sys\stat.h>

#include <share.h>

#include <io.h> Required only for function declarations

int _sopen(char *filename, int oflag, int shflag [, int pmode]);

filename

oflag

shflag

pmode

Filename

Type of operations allowed

Type of sharing allowed

Permission setting

The _sopen function opens the file specified by filename and prepares the file for
subsequent shared reading or writing, as defined by oflag and shflag. The integer
expression oflag is formed by combining one or more of the following manifest
constants, defined in the file FCNTL.H. When two or more constants are used to
form the argument oflag, the constants are combined with the bitwise-OR
operator (I).

Constant Meaning

Repositions the file pointer to the end of the file before every
write operation.

Opens file in binary (untranslated) mode. (See fopen for a
description of binary mode.)

Creates and opens a new file. This has no effect if the file
specified by filename exists.

Returns an error value if the file specified by filename exists.
This applies only when used with _ 0_ CREAT.

Opens file for reading only. If this flag is given, neither the
_O_RDWR flag nor the _0_ WRONLY flag can be given.

Opens file for both reading and writing. If this flag is given,
neither _O_RDONLY nor _0_ WRONLY can be given.

Constant

_sopen 715

Meaning

Opens file in text (translated) mode. (See fopen for a description
of text mode.)

Opens and truncates an existing file to 0 bytes. The file must
have write permission; the contents of the file are destroyed.

Opens file for writing only. If this flag is given, neither
_O_RDONLY nor _O_RDWR can be given.

The argument shfiag is a constant expression consisting of one of the following
manifest constants, defined in SHARE.H. If SHARE.COM (or SHARE.EXE for
some versions of DOS) is not installed, DOS ignores the sharing mode. (See your
system documentation for detailed information about sharing modes.)

Constant

_SH_DENYRW

_SH_DENYWR

_SH_DENYRD

_Sa.DENYNO

Meaning

Sets compatibility mode. This is the sharing mode used in the
_open function in DOS.

Denies read and write access to file.

Denies write access to file.

Denies read access to file.

Permits read and write access.

The _sopen function should be used only with DOS version 3.0 and later. Under
earlier versions of DOS, the shfiag argument is ignored.

The pmode argument is required only when _ 0_ CREAT is specified. If the file
does not exist, pmode specifies the file's permission settings, which are set when
the new file is closed for the first time. Otherwise, the pmode argument is ignored.
The pmode argument is an integer expression that contains one or both of the
manifest constants _S_IWRITE and _S_IREAD, defined in SYS\STAT.H.
When both constants are given, they are combined with the bitwise-OR operator
(I). The meaning of the pmode argument is as follows:

Value

_S_IWRITE

_S_IREAD

_S_IREAD I_S_IWRITE

Meaning

Writing permitted

Reading permitted

Reading and writing permitted

If write permission is not given, the file is read-only. With DOS, all files are
readable; it is not possible to give write-only permission. Thus, the modes
_S_IWRITE and _S_IREAD I_S_IWRITE are equivalent.

716 _sopen

Return Value

Compatibility

See Also

Example

Note that with DOS versions 3.x with SHARE installed, a problem occurs when
opening a new file with _sopen under the following sets of conditions:

• With oflag set to _ 0_ CREAT 1_ O_RDONL Y or
_O_CREAT 1_0_ WRONLY,pmode set to _S_IREAD, and shflag set to
_SH_COMPAT.

• With oflag set to any combination that includes _O_CREAT I_O_RDWR,
pmode set to _S_IREAD, and shflag set to anything other than
_SH_COMPAT.

In either case, the operating system will prematurely close the file during system
calls made within __ sopen, or the system will generate a sharing violation (INT
24H). To avoid the problem, open the file withpmode set to _S_IWRITE. After
closing the file, call_chmod and change the mode back to _S_IREAD. Another
solution is to open the file withpmode set to _S_IREAD, oflag set to
_O_CREAT I_O_RDWR, and shflag set to _SH_COMPAT.

The _sopen function applies the current file-permission mask to pmode before set
ting the permissions (see _umask).

The _sopen function returns a file handle for the opened file. A return value of-l
indicates an error, and errno is set to one of the following values:

Value

EACCES

EEXIST

EINVAL

EMFILE

ENOENT

Meaning

Given path name is a directory; or the file is read-only but an
open for writing was attempted; or a sharing violation occurred
(the file's sharing mode does not allow the specified operations;
DOS versions 3.0 and later only).

The _ 0_ CREAT and _ 0_ EX CL flags are specified, but the
named file already exists.

An invalid oflag or shflag argument was given.

No more file handles available (too many open files).

File or path name not found.

Standards: None

l6-Bit

32-Bit

DOS, QWIN, WIN, WIN DLL

DOS32X

_close, _creat, fopen, _fsopen, _open, _umask

See the example for _locking.

Description

_spawn Functions 717

_ spawn Functions
Create and execute a new child process for DOS.

#include <stdio.h>

#include <process.h>

int _spawnl(int mode, char *cmdname, char *argO, char *arg 1, ... char *argn,
NULL);

int _ spawnle(int mode, char *cmdname, char *argO, char *arg 1, ... char *argn,
NULL, char **envp);

int _spawnlp(int mode, char *cmdname, char *argO, char *argl, .•. char *argn,
NULL);

int _spawnlpe(int mode, char *cmdname, char *argO,
char *arg 1, ... char *argn, NULL, char **envp);

int _spawnv(int mode, char *cmdname, char **argv);

int _spawnve(int mode, char *cmdname, char **argv, char **envp);

int _spawnvp(int mode, char *cmdname, char **argv);

int _spawnvpe(int mode, char *cmdname, char **argv, char **envp);

mode

cmdname

argO, ... argn

argv

envp

Execution mode for parent process

Path name of file to be executed

List of pointers to arguments

Array of pointers to arguments

Array of pointers to environment settings

718 _spawn Functions

Remarks The _ spawn family of functions creates and executes a new child process.
Enough memory must be available for loading and executing the child process.
The mode argument determines the action taken by the parent process before and
during _spawn. The following values for mode are defined in PROCESS.H:

Value Meaning

Overlays parent process with child, destroying the parent (same
effect as _exec calls).

Suspends parent process until execution of child process is
complete (synchronous _spawn).

The cmdname argument specifies the file which will be executed as the child
process, and can specify a full path (from the root), a partial path (from the current
working directory), or just a filename. If cmdname does not have a filename exten
sion or does not end with a period (.), the _spawn function first tries the .COM ex
tension, then the .EXE extension, and finally the .BAT extension. This ability to
spawn batch files is new beginning with Microsoft C version 6.0.

If cmdname has an extension, only that extension is used. If cmdname ends with a
period, the _spawn calls search for cmdname with no extension. The _spawnlp,
_spawnlpe, _spawnvp, and _spawnvpe routines search for cmdname (using the
same procedures) in the directories specified by the PATH environment variable.

If cmdname contains a drive specifier or any slashes (i.e., if it is a relative path
name), the _spawn call searches only for the specified file and no path searching
is done.

Arguments for the Child Process
Arguments are passed to the child process by giving one or more pointers to char
acter strings as arguments in the _spawn call. These character strings form the ar
gument list for the child process. The combined length of the strings forming the
argument list for the child process must not exceed 128 bytes in real mode. The ter
minating null character (,\0') for each string is not included in the count, but space
characters (automatically inserted to separate arguments) are included.

The argument pointers may be passed as separate arguments (_ spawnl,
_spawnle, _spawnlp, and _spawnlpe) or as an array of pointers (_spawnv,
_spawnve, _spawnvp, and _spawnvpe). At least one argument, argO or argv[O],
must be passed to the child process. By convention, this argument is the name of
the program as it might be typed on the command line by the user. (A different
value will not produce an error.) In real mode, the argv[O] value is supplied by the
operating system and is the fully qualified path name of the executing program. In
protected mode, it is usually the program name as it would be typed on the com
mand line.

_spawn Functions 719

The _spawnl, _spawnle, _spawnlp, and _spawnlpe calls are typically used in
cases where the number of arguments is known in advance. The argO argument is
usually a pointer to cmdname. The arguments argl through argn are pointers to
the character strings forming the new argument list. Following argn, there must be
a NULL pointer to mark the end of the argument list.

The _spawnv, _spawnve, _spawnvp, and _spawnvpe calls are useful when the
number of arguments to the child process is variable. Pointers to the arguments are
passed as an array, argv. The argument argv[O] is usually a pointer to a path name
in real mode or to the program name in protected mode, and argv[1] through
argv[n] are pointers to the character strings forming the new argument list. The ar
gument argv[n+ 1] must be a NULL pointer to mark the end of the argument list.

Environment of the Child Process
Files that are open when a _spawn call is made remain open in the child process.
In the _spawnl, _spawnlp, _spawnv, and _spawnvp calls, the child process in
herits the environment of the parent. The _spawnle, _spawnlpe, _spawnve, and
_spawnvpe calls allow the user to alter the environment for the child process by
passing a list of environment settings through the envp argument. The argument
envp is an array of character pointers, each element of which (except for the final
element) points to a null-terminated string defining an environment variable. Such
a string usually has the form

NAME=value

where NAME is the name of an environment variable and value is the string value
to which that variable is set. (Note that value is not enclosed in double quotation
marks.) The final element of the envp array should be NULL. When envp itself is
NULL, the child process inherits the environment settings of the parent process.

The _spawn functions can pass the child process all information about open files,
including the translation mode, through the C_FILE_INFO entry in the environ
ment that is passed in real mode.

The startup code normally processes this entry and then deletes it from the environ
ment. However, if a _spawn function spawns a non-C process, this entry remains
in the environment. Printing the environment shows graphics characters in the defi
nition string for this entry, since the environment information is passed in binary
form in real mode. It should not have any other effect on normal operations. In
protected mode, the environment information is passed in text form and therefore
contains no graphics characters.

You must explicitly flush (using fflush or _flushall) or close any stream prior to
the _spawn function call.

720 _spawn Functions

Return Value

Compatibility

Starting with Microsoft eversion 6.0, you can control whether or not the open file
information of a process will be passed to its child processes. The external varia
ble _fileinfo (declared in STDLIB.H) controls the passing of C_FILE_INFO in
formation. If _fileinfo is 0, the C_FILE_INFO information is not passed to the
child processes. If _fileinfo is not 0, C_FILE_INFO is passed to child processes.

By default, _fileinfo is ° and thus the C_FILE_INFO information is not passed
to child processes. There are two ways to modify the default value of _fileinfo:

• Link the supplied object file FILEINFO.OBJ into your program. Use the INOE
option to avoid multiple symbol definitions.

• Set the _fileinfo variable to a nonzero value directly within your C program.

The return value from a synchronous _spawn (_P _ WAIT specified for mode) is
the exit status of the child process.

The exit status is ° if the process terminated normally. The exit status can be set to
a nonzero value if the child process specifically calls the exit routine with a non
zero argument. If the child process did not explicitly set a positive exit status, a
positive exit status indicates an abnormal exit with an abort or an interrupt. A re
turn value of -1 indicates an error (the child process is not started). In this case,
errno is set to one of the following values:

Value

E2BIG

EINVAL
ENOENT
ENOEXEC

ENOMEM

Meaning

In DOS, the argument list exceeds 128 bytes, or the space
required for the environment information exceeds 32K.

The mode argument is invalid.

The file or path name is not found.

The specified file is not executable or has an invalid
executable-file format.

Not enough memory is available to execute the child process.

Note that signal settings are not preserved in child processes created by calls to
_spawn routines. The signal settings are reset to the default in the child process.

Standards: None

16-Bit: DOS

32-Bit: DOS32X

To ensure proper overlay initialization and termination, do not use the setjmp or
longjmp function to enter or leave an overlay routine.

See Also

Example

_spawn Functions

abort, atexit, _exec functions, exit, _exit, _onexit, system

/* SPAWN.C: This program accepts a number in the range 1 - 8 from the
* command line. Based on the number it receives, it executes one of the
* eight different procedures that spawn the process named child. For
* some of these procedures, the CHILD.EXE file must be in the
* same directory; for others, it only has to be in the same path.
*/

#include <stdio.h>
#include <process.h>

char *my_env[] =
{

} ;

"THIS=environment will be",
"PASSED=to child.exe by the",
"_SPAWNLE=and" ,
"_SPAWNLPE=and" ,
"_SPAWNVE=and" ,
"_SPAWNVPE=functions",
NULL

void maine int argc, char *argv[])
{

char *args[4];
int result;

/* Set up parameters to be sent: */
args[0] "child";
args[l] "spawn??";
args[2] "two";
args[3] NULL;
switch (argv[1][0]) /* Based on first letter of argument */
{

case '1':
_spawnl (_P_WAIT, argv[2], argv[2], "_spawnl", "two", NULL);
break;

case '2':
_spawnle(_P_WAIT, argv[2], argv[2], "_spawnle", "two",

NULL, my_env);
break;

case '3':
_spawnlp(_P_WAIT, argv[2], argv[2], "_spawnlp", "two", NULL);
break;

case '4':
_spawnlpe(_P_WAIT, argv[2], argv[2], "_spawnlpe", "two",

NULL, my_env);
break;

case '5':
_spawnv(_P_OVERLAY, argv[2], args);
break;

721

722 _ spawn Functions

}

case '6':
_spawnve(_P_OVERLAY, argv[2], args, my_env);
break;

case '7':
_spawnvp(_P_OVERLAY, argv[2], args);
break;

case '8':
_spawnvpe(_P_OVERLAY, argv[2], args, my_env);
break;

default:
printf("SYNTAX: SPAWN <1-8> <childprogram>\n");
ex it (1);

printf("\n\nReturned from SPAWNl\n");

Description

Remarks

Return Value

_ splitpath 723

_splitpath
Breaks a path name into components.

#include <stdlih.h>

void _splitpath(char *path, char *drive, char *dir, char *fname, char *ext);

path Full path name

drive Drive letter

dir Directory path

fname Filename

ext File extension

The _splitpath routine breaks a full path name into its four components. The path
argument should point to a buffer containing the complete path name. The maxi
mum size necessary for each buffer is specified by the manifest constants
_MA~DRIVE, _MAX_DIR, _MAX_FNAME, and _MAX_EXT, defined in
STDLIB.H. The other arguments point to the buffers used to store the path-name
elements:

Buffer

drive

dir

fname

ext

Description

Contains the drive letter followed by a colon C:) if a drive is specified in
path.

Contains the path of subdirectories, if any, including the trailing slash.
Forward slashes C /), backslashes C \), or both may be present in path.

Contains the base filename without any extensions.

Contains the filename extension, if any, including the leading period C.).

The return parameters will contain empty strings for any path-name components
not found in path. You can pass a NULL pointer to _ splitpath for any component
you don't wish to receive.

None.

724 _ splitpath

Compatibility Standards: None

See Also

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fullpath, _makepath

1* MAKEPATH.C *1
#include <stdlib.h>
#include <stdio.h>

void maine void)
{

char path_buffer[_MAX_PATHJ;
char drive[_MAX_DRIVEJ;
char di r[_MAX_DIRJ;
char fname[_MAX_FNAMEJ;
char ext[_MAX_ EXT];

_makepath(path_buffer, "c", "\\c70\\clibref\\", "makepath", "c");
printf("Path created with _makepath: %s\n\n", path_buffer);
_splitpath(path_buffer, drive, dir, fname, ext);
printf("Path extracted with _splitpath:\n");
printf(" Drive: %s\n", drive);
printf(" Dir: %s\n", dir);
printf(" Filename: %s\n", fname);
printf(" Ext: %s\n", ext);

Path created with _makepath: c:\c70\clibref\makepath.c

Path extracted with _splitpath:
Drive: c:
Dir: \c70\clibref\
Filename: makepath
Ext: . c

Description

Remarks

Return Value

Compatibility

sprintf, _snprintf 725

sprintf, _snprintf
Write formatted data to a string.

#include <stdio.h>

int sprintf(char *buffer, const char *format [, argument] ...);

int _snprintf(char *buffer, size_ t count, const char *format [, argument] ...);

buffer

format

argument

count

Storage location for output

Format-control string

Optional arguments

Maximum number of bytes to store

The sprintf function formats and stores a series of characters and values in buffer.
Each argument (if any) is converted and output according to the corresponding for
mat specification in the format. The format consists of ordinary characters and has
the same form and function as the format argument for the printf function. (See
printffor a description of the format and arguments.) A null character is appended
to the end of the characters written, but is not counted in the return value.

The _snprintffunction differs from sprintfin that it stores no more than count
characters to buffer.

Both the sprintf and _ snprintf functions return the number of characters stored in
buffer, not counting the terminating null character. For _snprintf, ifthe number of
bytes required to store the data exceeds count, then count bytes of data are stored
in buffer and -1 is returned.

sprintf

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN, WIN

DOS32X

726 sprintf, _snprintf

See Also

Example

Output

_snprintf

Standards: None

16-Bit: DOS, QWIN, WIN

32-Bit: DOS32X

fprintf, printf, sscanf

/* SPRINTF.C: This program uses sprintf to format various data and
* place them in the string named buffer.
*/

#include <stdio.h>

void main(void)
{

char buffer[200], s[]
i nt i = 35, j;
float fp = 1.7320534;

"computer", c

/* Format and print various data: */
j sprintf(buffer, "\tString:
j += sprintf(buffer + j, "\tCharacter:

+= sprintf(buffer + j, "\tInteger:
j += sprintf(buffer + j, "\tReal:

printf("Output:\n%s\ncharacter count

Output:
String:
Character:
Integer:
Real:

character count

computer
1
35
1.732053

71

, 1 • ;

%s\n", s) ;
%c\n", c) ;
%d\n", i) ;
%f\n", fp) ;

%d\n", buffer, j) ;

Description

Remarks

Return Value

sqrt, _sqrtl 727

sqrt, _ sqrtl
Calculate the square root.

#include <math.h>

double sqrt(double x);

long double _sqrtl(long double x);

x Nonnegative floating-point value

The sqrt functions calculate the square root of x. The _sqrtl function is the SO-bit
counterpart and uses an SO-bit, lO-byte coprocessor form of arguments and return
values.

The sqrt functions return the square-root result. If x is negative, the function prints
a _DOMAIN error message to stderr, sets errno to EDOM, and returns O.

Error handling can be modified by using the _ math err or _ matherrl routine.

Compatibility sqrt

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_sqrtl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

See Also exp, log, _ math err, pow

728 sqrt, _sqrtl

Example 1* SQRT.C: This program calculates a square root. *1

Output

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

void main(void)
{

double question = 45.35, answer;

answer = sqrt(question);
if(errno == EDOM)

printf("Domain error\n");
else

printf("The square root of %.2f is %.2f\n", question, answer);

The square root of 45.35 is 6.73

Description

Remarks

Return Value

Compatibility

See Also

srand 729

srand
Sets a random starting point.

#include <stdlih.h> Required only for function declarations

void srand(unsigned int seed);

seed Seed for random-number generation

The srand function sets the starting point for generating a series of pseudorandom
integers. To reinitialize the generator, use 1 as the seed argument. Any other value
for seed sets the generator to a random starting point.

The rand function is used to retrieve the pseudorandom numbers that are gener
ated. Calling rand before any call to srand will generate the same sequence as
calling srand with seed passed as 1.

None.

Standards: ANSI, UNIX

16-Bit:

32-Bit:

rand

DOS, QWIN, WIN, WINDLL

DOS32X

730 srand

Example 1* RAND.C: This program seeds the random number generator with the

Output

* time, then displays 20 random integers.
*1

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void main(void)
{

i nt i;

1* Seed the random number generator with current time so that
* the numbers will be different every time we run.

srand((unsigned)time(NULL));

1* Display 10 numbers. *1
fort i = 0; i < 10; i++)

printf(" %6d\n", rand());

19471
16395
8268

15582
6489

28356
27042

5276
23070
10930

Description

Remarks

Return Value

Compatibility

See Also

sscanf 731

sscanf
Reads formatted data from a string.

#include <stdio.h>

int sscanf(const char *buffer, const char *format [, argument] ...);

buffer

format

argument

Stored data

Format-control string

Optional arguments

The sscanf function reads data from buffer into the locations given by each
argument. Every argument must be a pointer to a variable with a type that corre
sponds to a type specifier informat. The format controls the interpretation of the
input fields and has the same form and function as the format argument for the
scanf function; see scanf for a complete description of format.

The sscanf function returns the number of fields that were successfully converted
and assigned. The return value does not include fields that were read but not
assigned.

The return value is EOF for an attempt to read at end-of-string. A return value of
o means that no fields were assigned.

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN

32-Bit: DOS32X

fscanf, scanf, sprintf

732 sscanf

Example 1* SSCANF.C: This program uses sscanf to read data items from

Output

* a string named tokenstring, then displays them.
*1

#include <stdio.h>

void maine void)
{

char tokenstring[]
cha r s[81];
char c· ,
int i . ,
float fp;

1* Input various data
sscanf(tokenstring,
sscanf(tokenstring,
sscanf(tokenstring,
sscanf(tokenstring,

"15 12 14 ... ";

from tokenstring:
"%5", s) ;
"%c", &c) ;
"%d" , &i) ;
"%f" , &fp) ;

1* Output the data
pri ntf("Stri ng
printf("Character
printf("Integer:
pri ntf("Real:

read *1

String
Character
Integer:
Real:

15
1
15
15.131313131313

%s\n", s);
%c\n", c);
%d \ n", i);
%f\n", fp);

*1

Description

Remarks

Return Value

stackavail 733

stackavail
Gets the size of the stack available.

#include <malloc.h> Required only for function declarations

size_t _stackavail(void);

The _ stackavail function returns the approximate size (in bytes) of the stack
space available for dynamic memory allocation with _alloca.

The _stackavail function returns the size in bytes as an unsigned integer value.

Compatibility Standards: None

Example

Output

16-Bit:

32-Bit:

DOS, QWIN, WIN, WINDLL

None

1* ALLOCA.C: Checks the stack space available before and after using
* _alloca to allocate space on the stack. As _alloca is incompatible
* with optimizing, compile with optimizations disabled (/Od).
*1

#include <malloc.h>
#include <stdio.h>

void main(void)
{

char *buffer;

printf("Bytes available on stack: %u\n", _stackavail());

1* Allocate memory for string. *1
buffer = alloca(120 * sizeof(char));
printf("Enter a string: ");
gets (buffer);
printf("You entered: %s\n", buffer);

pri ntf("Bytes avai 1 abl e on stack: %u\n", _stackavai 1 ());

Bytes available on stack: 2028
Enter a string: How much stack space will this string take?
You entered: How much stack space will this string take?
Bytes available on stack: 1902

734 stat

Description

Remarks

Return Value

stat
Gets status information on a file.

#include <sys\types.h>

#include <sys\stat.h>

int _stat(char *pathname, struct _stat *buffer);

pathname

buffer

Path name of existing file

Pointer to structure that receives results

The _ stat function obtains information about the file or directory specified by
pathname and stores it in the structure pointed to by buffer. The _stat structure,
defined in the file SYS\STAT.H, includes the following fields:

Field

sLatime

sLctime

sLdev

sLmode

sLmtime

sLnlink

sLrdev

sLsize

Value

Time of last access of file.

Time of creation of file.

Drive number of the disk containing the file (same as sLrdev). Real
mode only.

Bit mask for file-mode information. The _S_IFDIR bit is set if
pathname specifies a directory; the _S_IFREG bit is set if pathname
specifies an ordinary file. User read/write bits are set according to the
file's permission mode; user execute bits are set according to the
filename extension.

Time of last modification of file.

Always 1.

Drive number of the disk containing the file (same as sLdev). Real
mode only.

Size of the file in bytes.

Note that if pathname refers to a device, the size and time fields in the _stat struc
ture are not meaningful. Also, as STAT.H uses the dey _ t type, which is defined in
TYPES.H, you must include TYPES.H before STAT.H in your code.

The _ stat function returns 0 if the file-status information is obtained. A return
value of -1 indicates an error; also, erruo is set to ENOENT, indicating that the
filename or path name could not be found.

stat 735

Compatibility Standards: UNIX

See Also

Example

Output

l6-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _stat for compatibility with ANSI naming conventions of non-ANSI func
tions. Use stat and link with OLDNAMES.LIB for UNIX compatibility.

_access, _fstat

1* STAT.C: This program uses the stat function to report information
* about the file named STAT.C.
*1

#include (time.h>
#include (sys\types.h>
#include (sys\stat.h>
#include (stdio.h>

void maine void
{

struct stat buf;
int fh, result;
char buffer[] = "A line to output";

1* Get data associ ated with "stat. c": *1
result = _state "stat.c", &buf);

1* Check if statistics are valid: *1
if(result != 0)

perror("Problem getting information");
else
{

1* Output some of the
printf("File size
printf("Drive
printf("Time modified

File size 761
Drive C:

statistics: *1
%ld\n", buf.st_size);
%c:\n", buf.sLdev + 'A');
%s", ctime(&buf.st atime

Time modified Mon Jun 14 12:20:08 1999

) ;

736 status87

Description

Remarks

Return Value

Compatibility

See Also

Example

status87
Gets the floating-point status word.

#include <float.h>

unsigned int _status87(void);

The _status87 function gets the floating-point status word. The status word is a
combination of the 8087/80287/80387 status word and other conditions detected
by the 8087/80287/80387 exception handler, such as floating-point stack overflow
and underflow.

The bits in the value returned indicate the floating-point status. See the FLOAT.H
include file for a complete definition ofthe bits returned by _status87.

Note that many of the math library functions modify the 8087/80287 status word,
with unpredictable results. Return values from _clear87 and _status87 become
more reliable as fewer floating-point operations are performed between known
states of the floating-point status word.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

_clear87, _control87

1* STATUS87.C: This program creates various floating-point errors and
* then uses _status87 to display messages indicating these problems.
* Compile this program with optimizations disabled (/Od). Otherwise,
* the optimizer will remove the code related to the unused floating
* point values.
*1

#include <stdio.h>
#include <float.h>

Output

void main(void)
(

double a = le-40, b;
float x, y;

printf("Status = %.4x - clear\n",_status87());

1* Assignment into y is inexact & underflows: *1
y = a;

status87 737

printf("Status = %.4x - inexact, underflow\n", _status87());

1* y is denormal: *1
b = y;
printf("Status = %.4x - inexact underflow, denormal\n", _status87());

1* Clear user 8087: *1
_clear87();

Status
Status
Status

0000 - clear
0030 - inexact, underflow
0032 - inexact underflow, denormal

738 strcat, _ fstrcat

Description

Remarks

Return Value

Compatibility

strcat, _ fstrcat
Append a string.

#include <string.h> Required only for function declarations

char *strcat(char * string 1 , const char * string2);

char __ far * __ far _fstrcat(char __ far *stringl, const char __ far *string2);

stringl

string2

Destination string

Source string

The strcat and _fstrcat functions append string2 to stringl, terminate the result
ing string with a null character, and return a pointer to the concatenated string
(stringl).

The strcat and _fstrcat functions operate on null-terminated strings. The string ar
guments to these functions are expected to contain a null character ('\0') marking
the end ofthe string. No overflow checking is performed when strings are copied
or appended.

The _fstrcat function is a model-independent (large-model) form of the strcat
function. The behavior and return value of _fstrcat are identical to those of the
model-dependent function strcat, with the exception that the arguments and return
values are far pointers.

The return values for these functions are described above.

strcat

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN, WIN, WIN DLL

DOS32X

See Also

Example

Output

_fstreat

Standards: None

16-Bit: DOS, QWIN, WIN, WINDLL

32-Bit: None

strcat, _ fstrcat 739

strneat, strnemp, strnepy, _strnicmp, strrehr, strspn

/* STRCPV.C: This program uses strcpy and strcat to build a phrase. */

#include <string.h>
#include <stdio.h>

void maine void)
{

char string[80];

strcpy(string,
strcat(string,
strcat(string,
strcat(string,
printf("String

}

"Hello world from ") ;
"strcpy ") ;
"and ") ;
"strcat!") ;

= %s\n", string) ;

String Hello world from strcpy and strcat!

740 strchr, _fstrchr

Description

Remarks

Return Value

Compatibility

strchr, _ fstrchr
Find a character in a string.

#include <string.h> Required only for function declarations

char *strchr(const char *string, int c);

char __ far * __ far _fstrchr(const char __ far *string, int c);

string

c

Source string

Character to be located

The strchr and _fstrchr functions return a pointer to the first occurrence of c (con
verted to char) in string. The converted character c may be the null character
('\0'); the terminating null character of string is included in the search. The func
tion returns NULL if the character is not found.

The strchr and _fstrchr functions operate on null-terminated strings. The string
arguments to these functions are expected to contain a null character ('\0') mark
ing the end of the string.

The _fstrchr function is a model-independent (large-model) form of the strchr
function. The behavior and return value of _fstrchr are identical to those of the
model-dependent function strchr, with the exception that the arguments and re
turn values are far.

The return values for these functions are described above.

strchr

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

See Also

Example

_fstrchr

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

strchr, _ fstrchr 741

strcspn, strncat, strncmp, strncpy, _strnicmp, strpbrk, strrchr, strspn, strstr

/* STRCHR.C: This program illustrates searching for a character with
* strchr (search forward) or strrchr (search backward).
*/

#include <string.h>
#include <stdio.h>

int ch = 'r';
char string[]
char fmtl[]
char fmt2[] =

"The quick brown dog jumps over the lazy fox";
1 2 3 4 5";

"12345678901234567890123456789012345678901234567890";

void maine void
{

}

char *pdest;
int result;

printf("String to be searched: \n\t\t%s\n", string);
printf("\t\t%s\n\t\t%s\n\n", fmt1, fmt2);
printf("Search char:\t%c\n", ch);

/* Search forward. */
pdest = strchr(string, ch);
result = pdest - string + 1;
if(pdest != NULL)

printf("Result:\tfirst %c found at position %d\n\n", ch, result l;
else

printf("Result:\t%c not found\n" l;

/* Search backward. *1
pdest = strrchr(stri ng, ch l;
result = pdest - string + 1;
if(pdest != NULL)

printf("Result:\tlast %c found at position %d\n\n", ch, result l;
else

printf("Result:\t%c not found\n");

742 strchr, _fstrchr

Output String to be searched:
The quick brown dog jumps over the lazy fox

1 234 5
12345678901234567890123456789012345678901234567890

Search char: r
Result: first r found at position 12

Result: last r found at position 30

Description

Remarks

Return Value

strcmp, _ fstrcmp 743

strcmp, _ fstrcmp
Compare strings.

#include <string.h> Required only for function declarations

int strcmp(const char *stringl, const char *string2);

int __ far _fstrcmp(const char __ far *stringl, const char __ far *string2);

stringl

string2

String to compare

String to compare

The strcmp and _fstrcmp functions compare stringl and string2lexicographi
cally and return a value indicating their relationship, as follows:

Value

<0

=0

>0

Meaning

stringlless than string2

string 1 identical to string2

stringl greater than string2

The strcmp and _fstrcmp functions operate on null-terminated strings. The string
arguments to these functions are expected to contain a null character ('\0') mark
ing the end of the string.

The _fstrcmp function is a model-independent (large-model) form of the strcmp
function. The behavior and return value of _fstrcmp are identical to those of the
model-dependent function strcmp, with the exception that the arguments are far
pointers.

Both the _stricmp function (described later in this book) and the _strcmpi func
tion compare strings by first converting them to their lowercase forms.

Note that two strings containing characters located between 'z' and 'a' in the
ASCII table (' [', '\', T, , 1\', , _', and' ") compare differently depending on their
case. For example, the two strings, "ABCDE" and "ABCDA", compare one way if
the comparison is lowercase ("abcde" > "abcd A ") and compare the other way
("ABCDE" < "ABCDA") if it is uppercase.

The return values for these functions are described above.

744 strcmp, _ fstrcmp

Compatibility strcmp

Standards:

16-Bit:

32-Bit:

See Also

Example

ANSI, UNIX

DOS, QWIN, WIN, WIN DLL

DOS32X

_fstrcmp

Standards: None

16-Bit: DOS, QWIN, WIN, WINDLL

32-Bit: None

memcmp, _memicmp, strncat, strncmp, strncpy, _strnicmp, strrchr, strspn

1* STRCMP.C *1
#include <string.h>
#include <stdio.h>

char stringl[]
char string2[]

void maine void)
{

char tmp[20];
int result;

"The quick brown dog jumps over the lazy fox";
"The QUICK brown dog jumps over the lazy fox";

1* Case sensitive *1
printf("Compare strings:\n\t%s\n\t%s\n\n", stringl, string2);
result = strcmp stringl, string2);
H(result> 0)

strcpy(tmp, "greater than");
else if(result < 0)

strcpy(tmp, "1 ess than");
else

strcpy(tmp, "equal to");
printf("\tstrcmp: String 1 is %s string 2\n", tmp);

1* Case insensitive (could use equivalent _stricmp) *1
result = _stricmp(stringl, string2);
H(result> 0)

strcpy(tmp, "greater than");
else if(result < 0)

strcpy(tmp, "less than");
else

strcpy(tmp, "equal to");
pri ntf("\ Lstri cmp: Stri ng lis %s stri ng 2\n", tmp);

strcmp, _ fstrcmp 745

Output Compare strings:
The quick brown dog jumps over the 1 azy fox
The QUICK brown dog jumps over the 1 azy fox

strcmp: String 1 is greater than string 2
_stricmp: String 1 is equal to string 2

746 strcoll

Description

Remarks

Return Value

Compatibility

See Also

slreoll
Compares strings using locale-specific information.

#include <string.h> Required only for function declarations

int strcoll(const char *stringl, const char *string2);

stringl

string2

String to compare

String to compare

The strcoll function compares stringl and string2 in a manner determined by the
LC_ COLLATE macro and returns a value indicating their relationship, as
follows:

Value

<0

=0

>0

Meaning

stringlless than string2

string I identical to string 2

string I greater than string2

For more information on the LC_ COLLA TE macro, see the setlocale function.

The strcoll function operates on null-terminated strings. The string arguments to
these functions are expected to contain a null character ('\0') marking the end of
the string.

The strcoll function differs from strcmp in that it uses locale-specific information
to provide locale-specific collating sequences.

The return value for this function is described above.

Standards: ANSI

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

localeconv, setlocale, strcmp, strncmp, strxfrm

Description

Remarks

Return Value

Compatibility

See Also

strcpv, _ fstrcpv 747

strcpy, _ fstrcpy
Copy a string.

#include <string.h> Required only for function declarations

char *strcpy(char *string 1, const char *string2);

char __ far * __ far _fstrcpy(char __ far * string 1, const char __ far * string2);

string1

string2

Destination string

Source string

The strcpy function copies string2, including the terminating null character, to the
location specified by string 1, and returns string 1.

The strcpy and _fstrcpy functions operate on null-terminated strings. The string
arguments to these functions are expected to contain a null character ('\0') mark
ing the end of the string. No overflow checking is performed when strings are
copied or appended.

The _fstrcpy function is a model-independent (large-model) form of the strcpy
function. The behavior and return value of _fstrcpy are identical to those of the
model-dependent function strcpy, with the exception that the arguments and
return values are far pointers.

The return values for these functions are described above.

strcpy

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fstrcpy

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

strcat, strcmp, strncat, strncmp, strncpy, _strnicmp, strrchr, strspn

748 strcpy, _fstrcpy

Example /* STRCPY.C: This program uses strcpy and strcat to build a phrase. */

Output

#include <string.h>
#include <stdio.h>

void maine void)
{

char string[80];

strcpy(string, "Hello world from");
strcat(string, "strcpy ");
strcat(string, "and");
strcat(string, "strcat!");
printf("String = %s\n", string);

String Hello world from strcpy and strcat!

Description

Remarks

Return Value

Compatibility

strcspn, _ fstrcspn 749

strcsp n, _ fstrcsp n
Find a substring in a string.

#include <string.h> Required only for function declarations

size_t strcspn(const char *stringl, const char *string2);

size_t __ far _fstrcspn(const char __ far *stringl, const char __ far *string2);

stringl

string2

Source string

Character set

The strcspn functions return the index of the first character in string 1 belonging to
the set of characters specified by string2. This value is equivalent to the length of
the initial substring of stringl consisting entirely of characters not in string2. Ter
minating null characters are not considered in the search. If string 1 begins with a
character from string2, strcspn returns O.

The strcspn and _fstrcspn functions operate on null-terminated strings. The
string arguments to these functions are expected to contain a null character ('\0')
marking the end of the string.

The _fstrcspn function is a model-independent (large-model) form of the strcspn
function. The behavior and return value of _ fstrcspn are identical to those of the
model-dependent function strcspn, with the exception that the arguments and
return values are far.

The return values for these functions are described above.

strcspn

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN, WIN, WIN DLL

DOS32X

750 strcspn, _ fstrcspn

See Also

Example

Output

_fstrcspn

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

strncat, strncmp, strncpy, _strnicmp, strrchr, strspn

1* STRCSPN.C *1
#include <string.h>
#include <stdio.h>

void main(void)
{

char string[]
int pos;

"xyzabc";

pos = strcspn(string, "abc");
printf("First a, b or c in %s is at character %d\n", string, pos);

First a, b or c in xyzabc is at character 3

Description

Remarks

Return Value

Compatibility

See Also

strdate 751

strdate
Copies a date to a buffer.

#include <time.h>

char * _strdate(char *datestr);

datestr Current date

The _strdate function copies the date to the buffer pointed to by datestr, formatted

mm/dd/yy

where mm is two digits representing the month, dd is two digits representing the
day of the month, and y y is the last two digits of the year. For example, the string

12/05/99

represents December 5, 1999.

The buffer must be at least nine bytes long.

The _ strdate function returns a pointer to the resulting text string datestr.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

asctime, ctime, gmtime, localtime, mktime, time, _ tzset

752 strdate

Example 1* STRTIME.C *1
#include <time.h>
#include <stdio.h>

Output

void maine void
{

}

char dbuffer [9];
char tbuffer [9];

_strdate(dbuffer);
printf("The current date is %s \n", dbuffer);
_strtime(tbuffer);
printf("The current time is %s \n", tbuffer);

The current date is 06/20/99
The current time is 09:33:13

Description

Remarks

Return Value

_strdup Functions 753

_ strdup Functions
Duplicate strings.

#include <string.h> Required only for function declarations

char * _strdup(const char *string);

char __ far * __ far _fstrdup(const char __ far *string);

char __ near * __ far _nstrdup(const char __ far *string);

string Source string

The _strdup function allocates storage space (with a call to malloc) for a copy of
string and returns a pointer to the storage space containing the copied string. The
function returns NULL if storage cannot be allocated.

The _fstrdup and _nstrdup functions provide complete control over the heap
used for string duplication. The _ strdup function returns a pointer to a copy of the
string argument. The space for the string is allocated from the heap specified by
the memory model in use. In large data models (that is, compact-, large-, and huge
model programs), _strdup allocates space from the far heap. In small data models
(tiny-, small-, and medium-model programs), _strdup allocates space from the
near heap.

The _strdup, _fstrdup, and _nstrdup functions operate on null-terminated
strings. The string arguments to these functions are expected to contain a null char
acter ('\0') marking the end of the string.

The _fstrdup function returns a far pointer to a copy of the string allocated in far
memory (the far heap). As with the other model-independent functions, the syntax
and semantics of these functions correspond to those of _ strdup except for the
sizes of the arguments and return values. The _ nstrdup function returns a near
pointer to a copy of the string allocated in the near heap (in the default data
segment).

The return values for these functions are described above.

754 _strdup Functions

Compatibility

See Also

Example

Output

_strdup

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fstrdup, _nstrdup

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

strcat, strcmp, strncat, strncmp, strncpy, _strnicmp, strrchr, strspn

/* STRDUP.C */
#include <string.h>
#include <stdio.h>
#include <conio.h>
iii ncl ude <dos. h>

void maine void)
{

}

char buffer[] = "This is the buffer text";
char *newstring;

printf("Original: %s\n", buffer);
newstring = _strdup(buffer);
printf("Copy: %s\n", newstring);

Ori gi na 1: Thi sis the buffer text
Copy: This is the buffer text

Description

Remarks

strerror, _strerror 755

strerror, strerror
Gets a system error message (strerror) or prints a user-supplied error message
(_strerror).

#include <string.h> Required only for function declarations

char *strerror(int errnum);

char * _strerror(char *string);

errnum

string

Error number

User-supplied message

The strerror function maps errnum to an error-message string, returning a pointer
to the string. The function itself does not actually print the message; for that, you
need to call an output function such as fprintf:

if « _access("datafile",2)) == -1
fprintf(stderr, strerror(NULl));

If string is passed as NULL, _strerror returns a pointer to a string containing the
system error message for the last library call that produced an error. The error
message string is terminated by the newline character (,\n').

If string is not equal to NULL, then _strerror returns a pointer to a string contain
ing (in order) your string message, a colon, a space, the system error message for
the last library call producing an error, and a newline character. Your string mes
sage can be a maximum of 94 bytes long.

Unlike perror, _strerror alone does not print any messages. To print the message
returned by _strerror to stderr, your program will need an fprintf statement, as
shown in the following lines:

if « _access("datafile",2)) == -1)
fpri ntf(stderr, _strerror(NULl));

The actual error number for _strerror is stored in the variable errno. The system
error messages are accessed through the variable sYLerrlist, which is an array
of messages ordered by error number. The _ strerror function accesses the
appropriate error message by using the errno value as an index to the variable
SYL errlist. The value of the variable SYL nerr is defined as the maximum num
ber of elements in the sYLerrlist array.

756 strerror, _strerror

Return Value

Compatibility

See Also

Example

To produce accurate results, _strerror should be called immediately after a
library routine returns with an error. Otherwise, the errno value may be overwrit
ten by subsequent calls.

Note that the _strerror function under Microsoft eversion 5.0 is identical to
the version 4.0 strerror function. The name was altered to permit the inclusion
in Microsoft eversion 5.0 of the ANSI-conforming strerror function. The
_strerror function is not part of the ANSI definition but is instead a Microsoft
extension to it; it should not be used where portability is desired. For ANSI com
patibility, use strerror instead.

The strerror and _strerror functions return a pointer to the error-message string.
The string can be overwritten by subsequent calls to strerror or _strerror,
respectively.

strerror

Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_strerror

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

clearerr, ferror, perror

See the example for perror.

Description

Remarks

strftime 757

strftime
Formats a time string.

#include <time.h> Required only for function declarations

size_t strftime(char *string, size_t maxsize, const char *format,
const struct tm *timeptr);

string

maxsize

format

timeptr

Output string

Maximum length of string

Format control string

tm data structure

The strftime function formats the tm time value in timeptr according to the sup
plied format argument and stores the result in the buffer string. At most, maxsize
characters are placed in the string.

The format argument consists of one or more codes; as in printf, the formatting
codes are preceded by a % sign. Characters that do not begin with a % sign are
copied unchanged to string. The LC_ TIME category of the current locale affects
the output formatting of strftime.

The formatting codes for strftime are listed below:

Format

%a

%A

%b

%B

%c

%d

%H

%1

%j

%m

%M

%p

Description

Abbreviated weekday name

Full weekday name

Abbreviated month name

Full month name

Date and time representation appropriate for the locale

Day of the month as a decimal number (01 - 31)

Hour in 24-hour format (00 - 23)

Hour in 12-hour format (01 - 12)

Day of the year as a decimal number (001 - 366)

Month as a decimal number (01 - 12)

Minute as a decimal number (00 - 59)

Current locale's AM/PM indicator for a 12-hour clock

758 strftime

Return Value

Compatibility

See Also

Example

Format

%S

%U

%w

%W

%x

%X

%y

%Y

%z

%%

Description

Second as a decimal number (00 - 59)

Weck of the year as a decimal number; with Sunday as the first day of
the week (00 - 51)

Weekday as a decimal number (0 - 6; Sunday is 0)

Week of the year as a decimal number; with Monday as the first day of
the week (00 - 51)

Date representation for current locale

Time representation for current locale

Year without the century as a decimal number (00 - 99)

Year with the century as a decimal number

Time zone name or abbreviation; no characters if time zone is unknown

Percent sign

The strftime function returns the number of characters placed in string if the total
number of resulting characters, including the terminating null, is not more than
maxsize.

Otherwise, strftime returns 0, and the contents of the string are indeterminate.

Standards: ANSI

16-Bit: DOS, QWIN, WIN

32-Bit: DOS32X

localeconv, setlocale, strcoll, strxfrm

See the example for time.

Description

Remarks

_stricmp, _ fstricmp 759

_ stricmp, _ fstricmp
Perform a lowercase comparison of strings.

#include <string.h> Required only for function declarations

int _stricmp(const char *string], const char *string2);

int __ far _fstricmp(const char __ far *string 1, const char __ far *string2);

string]

string2

String to compare

String to compare

The _stricmp and _fstricmp functions perform a lexicographical comparison of
lowercase versions of string] and string2 and return a value indicating their rela
tionship, as follows:

Value

<0

=0

>0

Meaning

string 1 less than string 2

string 1 identical to string2

string 1 greater than string2

Note that two strings containing characters located between 'Z' and 'a' in the
ASCII table (' [', '\', ']', '1\', '_', and' ") compare differently depending on their
case. For example, the two strings, "ABCDE" and "ABCDA", compare one way if
the comparison is lowercase ("abcde" > "abcd A ") and compare the other way
("ABCDE" < "ABCDA") if it is uppercase.

The _stricmp and _fstricmp functions operate on null-terminated strings. The
string arguments to these functions are expected to contain a null character ('\0')
marking the end of the string.

The _ fstricmp function is a model-independent (large-model) form of the
_stricmp function. The behavior and return value of _fstricmp are identical to
those of the model-dependent function _stricmp, with the exception that the
arguments are far pointers.

The _strcmpi function is functionally equivalent to _stricmp. It is included in
STRING.H for compatibility with previous versions of Microsoft C. The preferred
form is _ stricmp.

The strcmp function is a case-sensitive version of _stricmp.

760 _stricmp, _fstricmp

Return Value

Compatibility

See Also

Example

The return values for these functions are described above.

_stricmp

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

3stricmp

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

memcmp, _memicmp, strcat, strcpy, strncat, strncmp, strncpy, _strnicmp,
strrchr, _strset, strspn

See the example for strcmp.

Description

Remarks

Return Value

Compatibility

strlen, _ fstrlen 761

strlen, _ fstrlen
Get the length of a string.

#include <string.h> Required only for function declarations

size_ t strlen(const char * string);

size_t _fstrlen(const char __ far *string);

string Null-terminated string

The strlen and _fstrlen functions return the length in bytes of string, not includ
ing the terminating null character ('\0').

The _fstrlen function is a model-independent (large-model) form of the strlen
function. The behavior and return value of _fstrlen are identical to those of the
model-dependent function strlen, with the exception that the argument is a far
pointer.

These functions return the string length. There is no error return.

strlen

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fstrlen

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

762 strlen, _ fstrlen

Example 1* STRLEN. C *1
#include <string.h>
#include <stdio.h>
#include <conio.h>
#include <dos.h>

void main(void)
{

char buffer[61]
i nt 1 en;

"How long am I? " ;

len = strlen(buffer);
printf("'%s' is %d characters long\n", buffer, len);

Output 'How long am I?' is 14 characters long

Description

Remarks

Return Value

Compatibility

See Also

_ strlwr, _ fstrlwr 763

_ strlwr, _ fstrlwr
Convert a string to lowercase.

#include <string.h> Required only for function declarations

char * _strlwr(char *string);

char __ far * __ far _fstrlwr(char __ far *string);

string String to be converted

The _strlwr and _fstrlwr functions convert any uppercase letters in the given
null-terminated string to lowercase. Other characters are not affected.

The _fstrlwr function is a model-independent (large-model) form of the _strlwr
function. The behavior and return value of _ fstrlwr are identical to those of the
model-dependent function _strlwr, with the exception that the argument and
return values are far pointers.

These functions return a pointer to the converted string. There is no error return.

_strlwr

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fstrlwr

Standards: None

16-Bit: DOS, QWIN, WIN, WINDLL

32-Bit: None

764 _ strlwr, _ fstrlwr

Example 1* STRLWR.C: This program uses strlwr and _strupr to create

Output

* uppercase and lowercase copies of a mixed-case string.
*1

#include <string.h>
#include <stdio.h>

void main(void)
{

char string[l00] = "The String to End All Strings!";
char *copyl, *copy2;

copyl = _strlwr(_strdup(string
copy2 = _strupr(_strdup(string
printf("Mixed: %s\n", string) ;
printf("Lower: %s\n", copyl) ;
pri ntf("Upper: %s\n", copy2);

Mixed: The String to End All Strings!
Lower: the string to end all strings!
Upper: THE STRING TO END ALL STRINGS!

) ;
);

Description

Remarks

Return Value

Compatibility

See Also

strncat, _ fstrncat 765

strncat, _ fstrncat
Append characters of a string.

#include <string.h> Required only for function declarations

char *strncat(char *stringl, const char *string2, sizLt count);

char __ far * __ far _fstrncat(char __ far *stringl, const char __ far *string2,
size_ t count);

stringl

string2

count

Destination string

Source string

Number of characters appended

The strncat and _fstrncat functions append, at most, the first count characters of
string2 to string 1, terminate the resulting string with a null character (,\0'), and
return a pointer to the concatenated string (stringl). If count is greater than the
length of string2, the length of string2 is used in place of count.

The _fstrncat function is a model-independent (large-model) form of the strncat
function. The behavior and return value of _ fstrncat are identical to those of the
model-dependent function strncat, with the exception that all the pointer argu
ments and return values are far pointers.

The return values for these functions are described above.

strncat

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fstrncat

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

strcat, strcmp, strcpy, strncmp, strncpy, _strnicmp, strrchr, _strset, strspn

766 strncat, _ fstrncat

Example 1* STRNCAT. C *1
#include <string.h>
#include <stdio.h>

Output

void main(void)
{

char string[80] "This is the initial string!";
char suffix[] = " extra text to add to the string ... ";

1* Combine strings with no more than 19 characters of suffix: *1
printf("Before: %s\n", string);
strncat(string, suffix, 19);
printf("After: %s\n", string);

Before: This is the initial string!
After: This is the initial string! extra text to add

Description

Remarks

Return Value

Compatibility

strncmp, _ fstrncmp 767

strncmp, _ fstrncmp
Compare characters of two strings.

#include <string.h> Required only for function declarations

int strncmp(const char *stringl, const char *string2, SiZL t count);

int __ far _fstrncmp(const char __ far * string 1 ,const char __ far *string2,
size_ t count);

stringl

string2

count

String to compare

String to compare

Number of characters compared

The strncmp and _fstrncmp functions lexicographically compare, at most, the
first count characters of stringl and string2 and return a value indicating the rela
tionship between the substrings, as listed below:

Value

<0

=0

>0

Meaning

stringlless than string2

stringl equivalent to string2

stringl greater than string2

The _ strnicmp function is a case-insensitive version of strncmp.

The _ fstrncmp function is a model-independent (large-model) form of the
strncmp function. The behavior and return value of _fstrncmp are identical to
those of the model-dependent function strncmp, with the exception that all the
arguments and return values are far.

The return values for these functions are described above.

strncmp

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WINDLL

32-Bit: DOS32X

768 strncmp, _ fstrncmp

See Also

Example

_fstrncmp

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

strcat, strcmp, strcpy, strncat, strncpy, strrchr, _strset, strspn

1* STRNCMP.C *1
#include <string.h>
#include <stdio.h>

char stri ngl[]
char string2[]

void main(void)
{

char tmp[20];
int result;

"The quick brown dog jumps over the lazy fox";
"The QUICK brown fox jumps over the lazy dog";

printf("Compare strings:\n\t\t%s\n\t\t%s\n\n", string1, string2);

printf("Function:\tstrncmp (fi rst 10 characters only)\n");
result = strncmp(string1, string2 , 10);
if(result> 0)

strcpy(tmp, "greater than");
else if(result < 0)

strcpy(tmp, "less than");
else

strcpy(tmp, "equal to");
pri ntf("Result: \ t\ tStri ng 1 is %s stri ng 2\n\n", tmp);

printf("Function:\Lstrnicmp (first 10 characters only)\n");
result = _strnicmp(string1, string2, 10);
if(result> 0)

strcpy(tmp, "greater than");
else if(result < 0)

strcpy(tmp, "less than");
else

strcpy(tmp, "equal to");
printf("Result:\t\tString 1 is %s string 2\n\n", tmp);

Output Compare strings:

Function:
Result:

Function:
Result:

strncmp, _ fstrncmp 769

The quick brown dog jumps over the lazy fox
The QUICK brown fox jumps over the lazy dog

strncmp (first 10 characters only)
String 1 is greater than string 2

_strnicmp (first 10 characters only)
String 1 is equal to string 2

770 strncpy, _ fstrncpy

Description

Remarks

Return Value

Compatibility

strncpy, _ fstrncpy
Copy characters of one string to another.

#include <string.h> Required only for function declarations

char *strncpy(char *string1, const char *string2, size_t count);

char __ far * __ far _fstrncpy(char __ far *string1, const char __ far *string2,
SiZL t count);

string 1

string2

count

Destination string

Source string

Number of characters copied

The strncpy and _ fstrncpy functions copy count characters of string 2 to string 1
and return string 1. If count is less than the length of string2, a null character ('\0')
is not appended automatically to the copied string. If count is greater than the
length of string2, the string1 result is padded with null characters ('\0') up to
length count.

Note that the behavior of strncpy and _fstrncpy is undefined if the address
ranges of the source and destination strings overlap.

The _fstrncpy function is a model-independent (large-model) form of the strncpy
function. The behavior and return value of _fstrncpy are identical to those of the
model-dependent function strncpy, with the exception that all the arguments and
return values are far.

The return values for these functions are described above.

strncpy

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

See Also

Example

Output

_fstrncpy

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

strncpv, _ fstrncpv 771

strcat, strcmp, strcpy, strncat, strncmp, _strnicmp, strrchr, _strset, strspn

1* STRNCPY.C *1
#include <string.h>
#include <stdio.h>

void maine void)
{

char string[100] = "Cats are nice usually";

printf("Before: %s\n", string);
strncpy(string, "Dogs", 4);
strncpy(string + 9, "mean", 4);
printf("After: %s\n", string);

Before: Cats are nice usually
After: Dogs are mean usually

772 _strnicmp, _fstrnicmp

Description

Remarks

Return Value

_ strnicmp, _ fstrnicmp
Compare characters of two strings without regard to case.

#include <string.h> Required only for function declarations

int _strnicmp(const char *string], const char *string2, size_ t count);

int __ far _fstrnicmp(const char __ far *string], const char __ far *string2,
size_ t count);

string]

string2

count

String to compare

String to compare

Number of characters compared

The _strnicmp and _fstrnicmp functions lexicographically compare (without re
gard to case), at most, the first count characters of string] and string2 and return a
value indicating the relationship between the substrings, as listed below:

Value

<0

=0

>0

Meaning

stringlless than string2

stringl equivalent to string2

string 1 greater than string2

The strncmp function is a case-sensitive version of _strnicmp.

Note that two strings containing characters located between 'Z' and 'a' in the
ASCII table (' [', '\', ,]" '1\', '_', and "') compare differently depending on their
case. For example, the two strings, "ABCDE" and "ABCDA", compare one way if
the comparison is lowercase ("abcde" > "abcd A ") and compare the other way
(" ABCDE" < "ABCDA ") if it is uppercase.

The _fstrnicmp function is a model-independent (large-model) form of the
_strnicmp function. The behavior and return value of _fstrnicmp are identical to
those of the model-dependent function _strnicmp, with the exception that all the
arguments and return values are far.

The return values for these functions are described above.

Compatibility

See Also

Example

_strnicmp

Standards:

16-Bit:

32-Bit:

_fstrnicmp

Standards:

16-Bit:

32-Bit:

None

DOS, QWIN, WIN, WIN DLL

DOS32X

None

DOS, QWIN, WIN, WINDLL

None

_strnicmp, _fstrnicmp 773

strcat, strcmp, strcpy, strncat, strncpy, strrchr, _strset, strspn

See the example for strncmp.

77 4 _ strnset, _ fstrnset

Description

Remarks

Return Value

Compatibility

See Also

_ strnset, _ fstrnset
Initialize characters of a string to a given character.

#include <string.h> Required only for function declarations

char * _strnset(char *string, int c, SizLt count);

char __ far * __ far _fstrnset(char __ far *string, int c, SizLt count);

string

c

count

String to be initialized

Character setting

Number of characters set

The _strnset and _fstrnset functions set, at most, the first count characters of
string to c (converted to char) and return a pointer to the altered string. If count is
greater than the length of string, the length of string is used in place of count.

The _fstrnset function is a model-independent (large-model) form of the _strnset
function. The behavior and return value of _ fstrnset are identical to those of the
model-dependent function _strnset, with the exception that all the arguments and
return values are far.

The return values for these functions are described above.

_strnset

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fstrnset

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

strcat, strcmp, strcpy, _strset

Example

Output

f* STRNSET.C */
#include <string.h>
#include <stdio.h>

void maine void)
{

char string[15] = "This is a test";

_ strnset, _ fstrnset 775

/* Set not more than 4 characters of string to be *'s */
printf("Before: %s\n", string);
_strnset(string, '*', 4);
printf("After: %s\n", string);

Before: This is a test
After: **** is a test

776 strpbrk, _ fstrpbrk

Description

Remarks

Return Value

Compatibility

See Also

strpbrk, _ fstrpbrk
Scan strings for characters in specified character sets.

#include <string.h> Required only for function declarations

char *strpbrk(const char *stringl, const char *string2);

char __ far * __ far _fstrpbrk(const char __ far *stringl,
const char __ far *string2);

string 1

string2

Source string

Character set

The strpbrk function finds the first occurrence in string 1 of any character from
string2. The terminating null character ('\0') is not included in the search.

The 3strpbrk function is a model-independent (large-model) form of the
strpbrk function. The behavior and return value of _fstrpbrk are identical to
those of the model-dependent function strpbrk, with the exception that all the
arguments and return values are far.

These functions return a pointer to the first occurrence of any character from
string2 in stringl. A NULL return value indicates that the two string arguments
have no characters in common.

strpbrk

Standards: ANSI, UNIX

l6-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fstrpbrk

Standards: None

l6-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

strchr, strrchr

Example

Output

1* STRPBRK.C *1
#include <string.h>
#include <stdio.h>

void main(void)
{

strpbrk, _ fstrpbrk 777

char string[100]
char *result;

"The 3 men and 2 boys ate 5 pigs\n";

}

1 :

2 :

3:

4:

1* Return pointer to first 'a' or 'b' in "string" *1
printf("1: %s\n", string);
result = strpbrk(string, "0123456789");
printf("2: %s\n", result++);
result = strpbrk(result, "0123456789");
printf("3: %s\n", result++);
result = strpbrk(result, "0123456789");
printf("4: %s\n", result);

The 3 men and 2 boys ate 5 pigs

3 men and 2 boys ate 5 pigs

2 boys ate 5 pigs

5 pigs

778 strrchr, _ fstrrchr

Description

Remarks

Return Value

Compatibility

See Also

strrchr, _ fstrrchr
Scan a string for the last occurrence of a character.

#include <string.h> Required only for function declarations

char *strrchr(const char *string, int c);

char __ far * __ far _fstrrchr(const char __ far *string, int c);

string

c

Searched string

Character to be located

The strrchr function finds the last occurrence of c (converted to char) in string.
The string's terminating null character (,\0') is included in the search. (Use strchr
to find the first occurrence of c in string.)

The _fstrrchr function is a model-independent (large-model) form of the strrchr
function. The behavior and return value of _fstrrchr are identical to those of the
model-dependent function strrchr, with the exception that all the pointer argu
ments and return values are far pointers.

These functions return a pointer to the last occurrence of the character in the
string. A NULL pointer is returned if the given character is not found.

strrchr

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fstrrchr

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

strchr, strcspn, strncat, strncmp, strncpy, _strnicmp, strpbrk, strspn

Example

Output

strrchr, _ fstrrchr 779

1* STRCHR.C: This program illustrates searching for a character with
* strchr (search forward) or strrchr (search backward).
*1

#include <string.h>
#include <stdio.h>

int ch = 'r';
char string[]
cha r fmtl[]
char fmt2[] =

"The quick brown dog jumps over the lazy fox";
1 2 3 4 5";

"12345678901234567890123456789012345678901234567890";

void maine void
{

}

char *pdest;
int result;

printf("String to be searched: \n\t\t%s\n", string);
printf("\t\t%s\n\t\t%s\n\n", fmtl, fmt2);
printf("Search char:\t%c\n", ch);

1* Search forward. *1
pdest = strchr(string, ch);
result = pdest - string + 1;
if(pdest != NULL)

printf("Result:\tfirst %c found at position %d\n\n", ch, result);
else

printf("Result:\t%c not found\n");

1* Search backward. *1
pdest = strrchr(string, ch);
result = pdest - string + 1;
if(pdest != NULL)

printf("Result:\tlast %c found at position %d\n\n", ch, result);
else

printf("Result:\t%c not found\n");

String to be searched:
The quick brown dog jumps over the lazy fox

12345
12345678901234567890123456789012345678901234567890

Search char: r
Result: first r found at position 12

Result: last r found at position 30

780 _ strrev , fstrrev

Description

Remarks

Return Value

Compatibility

See Also

_ strrev, _ fstrrev
Reverse characters of a string.

#include <string.h> Required only for function declarations

char * _strrev(char *string);

char __ far * __ far _fstrrev(char __ far *string);

string String to be reversed

The _strrev function reverses the order of the characters in string. The terminat
ing null character (,\0') remains in place.

The _fstrrev function is a model-independent (large-model) form of the _strrev
function. The behavior and return value of _fstrrev are identical to those of the
model-dependent function _strrev, with the exception that the argument and
return value are far pointers.

These functions return a pointer to the altered string. There is no error return.

_strrev

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fstrrev

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

strcpy, _strset

Example

Output

strrev, fstrrev 781

1* STRREV.C: This program checks an input string to see whether it is a
* palindrome: that is, whether it reads the same forward and backward.
*1

#include (string.h>
#include (stdio.h>

void main(void)
{

}

char string[100];
int result;

printf("Input a string and I will tell you if it is a palindrome:\n");
gets(string);

1* Reverse string and compare (ignore case): *1
result = _strcmpi(string, _strrev(_strdup(string)));
if(result == 0)

printf("The string \"%s\" is a palindrome\n\n", string);
else

printf("The string \"%s\" is not a palindrome\n\n", string);

Input a string and I will tell you if it is a palindrome:
Able was I ere I saw Elba
The string "Able was I ere I saw Elba" is a palindrome

782 _ strset, _ fstrset

Description

Remarks

Return Value

Compatibility

See Also

_ strset, _ fstrset
Set characters of a string to a character.

#include <string.h> Required only for function declarations

char * _strset(char *string, int c);

char __ far * __ far _fstrset(char __ far *string, int c);

string

c

String to be set

Character setting

The _strset function sets all of the characters of string to c (converted to char), ex
cept the terminating null character (,\0').

The _fstrset function is a model-independent (large-model) form of the _strset
function. The behavior and return value of _fstrset are identical to those of the
model-dependent function _strset, with the exception that the pointer arguments
and return value are far pointers.

These functions return a pointer to the altered string. There is no error return.

_strset

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fstrset

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

memset, strcat, strcmp, strcpy, _strnset

Example

Output

/* STRSET.C */
#include <string.h>
#include <stdio.h>

void main(void)
{

char string[] = "Fill the string with something";

printf("Before: %s\n", string I;
_strset(string, '*');
printf("After: %s\n", string);

Before: Fill the string with something
After: ******************************

_ strset, _ fstrset 783

784 strspn, fstrspn

Description

Remarks

Return Value

Compatibility

strspn, _ fstrspn
Find the first substring.

#include <string.h> Required only for function declarations

size_t strspn(const char *stringl, const char *string2);

size_t __ far _fstrspn(const char __ far *stringl, const char __ far *string2);

stringl

string2

Searched string

Character set

The strspn function returns the index of the first character in string 1 that does not
belong to the set of characters specified by string2. This value is equivalent to the
length of the initial substring of string 1 that consists entirely of characters from
string2. The null character (,\0') terminating string2 is not considered in the
matching process. If stringl begins with a character not in string2, strspn
returns O.

The _fstrspn function is a model-independent (large-model) form of the strspn
function. The behavior and return value of _fstrspn are identical to those of the
model-dependent function strspn, with the exception that the arguments are far
pointers.

These functions return an integer value specifying the length of the segment in
stringl consisting entirely of characters in string2.

strspn

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

See Also

Example

Output

_fstrspn

Standards: None

16-Bit: DOS, QWIN, WIN, WINDLL

32-Bit: None

strspn, _ fstrspn 785

strcspn, strncat, strncmp, strncpy, _strnicmp, strrchr

/* STRSPN.C: This program uses strspn to determine the length of
* the segment in the string "cabbage" consisting of a's, b's, and c's.
* In other words, it finds the first non-abc letter.
*/

#include <string.h>
#include <stdio.h>

void main(void)
{

}

char string[]
int result;

"cabbage";

result = strspn(string, "abc");
printf("The portion of '%s' containing only a, b, or c "

"is %d bytes long\n", string, result);

The portion of 'cabbage' containing only a, b, or c is 5 bytes long

786 strstr, _ fstrstr

Description

Remarks

Return Value

Compatibility

See Also

strstr, _ fstrstr
Find a substring.

#include <string.h> Required only for function declarations

char *strstr(const char *string1, const char *string2);

char __ far * __ far _fstrstr(const char __ far *string1,
const char __ far *string2);

string1

string2

Searched string

String to search for

The strstr function returns a pointer to the first occurrence of string2 in string 1.

The _fstrstr function is a model-independent (large-model) form of the strstr
function. The behavior and return value of _fstrstr are identical to those of the
model-dependent function strstr, with the exception that the arguments and return
value are far pointers.

These functions return either a pointer to the first occurrence of string2 in string1,
or NULL if they do not find the string.

strstr

Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fstrstr

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

strcspn, strncat, strncmp, strncpy, _strnicmp, strpbrk, strrchr, strspn

Example

Output

/* STRSTR.C */
#include <string.h>
#include <stdio.h>

"lazy";

strstr, _ fstrstr 787

char str[] =
char string[]
char fmtl[]
char fmt2[] =

"The quick brown dog jumps over the lazy fox";
1 2 3 4 5";

"12345678901234567890123456789012345678901234567890";

void maine void
{

}

char *pdest;
int result;

printf("String to be searched:\n\t%s\n", string);
printf("\t%s\n\t%s\n\n", fmt1, fmt2);

pdest = strstr(string, str);
result = pdest - string + 1;
if(pdest != NULL)

printf("%s found at position %d\n\n", str, result);
else

printf("%s not found\n", str);

String to be searched:
The quick brown dog jumps over the lazy fox

1 234 5
12345678901234567890123456789012345678901234567890

lazy found at position 36

788 strtime

Description

Remarks

Return Value

Compatibility

See Also

strtime
Copies the time to a buffer.

#include <time.h>

char * _strtime(char *timestr);

timestr Time string

The _strtime function copies the current time into the buffer pointed to by
timestr. The time is formatted as

hh:mm:ss

where hh is two digits representing the hour in 24-hour notation, mm is two digits
representing the minutes past the hour, and s s is two digits representing seconds.
For example, the string

18:23:44

represents 23 minutes and 44 seconds past 6:00 PM.

The buffer must be at least nine bytes long.

The _ strtime function returns a pointer to the resulting text string timestr.

Standards: None

16-Bit: DOS, QWIN, WIN, WlN DLL

32-Bit: DOS32X

asctime, ctime, gmtime, localtime, mktime, time, _ tzset

Example

Output

/* STRTIME.C */
#include <time.h>
#include <stdio.h>

void maine void
{

char dbuffer [9];
char tbuffer [9];

_strdate(dbuffer);
printf("The current date is %s \n", dbuffer);
_strtime(tbuffer);
printf("The current time is %s \n", tbuffer);

The current date is 06/20/99
The current time is 09:33:13

strtime 789

790 strtad, strtal, _strtald, strtaul

Description

Remarks

strtod, strtol, _strtold, strtoul
Convert strings to a double-precision (strtod), long-double-precision (_strtold),
long-integer (strtol), or unsigned long-integer (strtoul) value.

#include <stdlib.h>

double strtod(const char *nptr, char **endptr);

long strtol(const char *nptr, char **endptr, int base);

long double _strtold(const char *nptr, char **endptr);

unsigned long strtoul(const char *nptr, char **endptr, int base);

nptr

endptr

base

String to convert

Pointer to character that stops scan

Number base to use

The strtod, _strtold, strtol, and strtoul functions convert a character string to a
double-precision value, a long-double value, a long-integer value, or an unsigned
long-integer value, respectively. The input string is a sequence of characters that
can be interpreted as a numerical value of the specified type.

These functions stop reading the string at the first character they cannot recognize
as part of a number. This may be the null character (,\0') at the end of the string.
With strtolor strtoul, this terminating character can also be the first numeric char
acter greater than or equal to base. If endptr is not NULL, a pointer to the charac
ter that stopped the scan is stored at the location pointed to by endptr. If no
conversion could be performed (no valid digits were found or an invalid base was
specified), the value of nptr is stored at the location pointed to by endptr.

The strtod and _ strtold functions expect nptr to point to a string with the
following form:

[whitespace] [sign] [digits] [.digits] [{d I Die I E}[sign]digits]

A whitespace consists of space and tab characters, which are ignored; sign is
either plus (+) or minus (-); and digits are one or more decimal digits. If no digits
appear before the decimal point, at least one must appear after the decimal point.
The decimal digits can be followed by an exponent, which consists of an intro
ductory letter (b, D, e, or E) and an optionally signed decimal integer.

Return Value

Compatibility

strtod, strtol, _strtold, strtoul 791

The first character that does not fit this form stops the scan.

The strtol function expects nptr to point to a string with the following form:

[whitespace] [sign] [0] [{ x I X }] [digits]

The strtoul function expects nptr to point to a string having this form:

[whitespace] [{ + I-}] [0] [{ x I X}] [digits]

If base is between 2 and 36, then it is used as the base of the number. If base is 0,
the initial characters of the string pointed to by nptr are used to determine the base.
If the first character is 0 and the second character is not 'x' or 'X', then the string
is interpreted as an octal integer; otherwise, it is interpreted as a decimal number.
If the first character is '0' and the second character is 'x' or 'X', then the string is
interpreted as a hexadecimal integer. If the first character is' l' through '9', then
the string is interpreted as a decimal integer. The letters' a' through' z' (or' A'
through 'Z') are assigned the values 10 through 35; only letters whose assigned
values are less than base are permitted.

The strtoul function allows a plus (+) or minus (-) sign prefix; a leading minus
sign indicates that the return value is negated.

The strtod and _strtold functions return the value of the floating-point number,
except when the representation would cause an overflow, in which case they re
turn ± HUGE_ VAL. The functions return 0 if no conversion could be performed
or an underflow occurred.

The strtol function returns the value represented in the string, except when the
representation would cause an overflow, in which case it returns LONG_MAX or
LONG_MIN. The function returns 0 if no conversion could be performed.

The strtoul function returns the converted value, if any. If no conversion can be
performed, the function returns O. The function returns ULONG_MAX on
overflow.

In all four functions, errno is set to ERANGE if overflow or underflow occurs.

strtod, strtol

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN, WIN, WINDLL

DOS32X

792 strtad, strtal, _strtald, strtaul

See Also

Example

_strtold

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

strtoul

Standards:

16-Bit:

32-Bit:

atof, atol

ANSI

DOS, QWIN, WIN, WIN DLL

DOS32X

/* STRTOD.C: This program uses strtod to convert a string to a
* double-precision value; strtol to convert a string to long
* integer values; and strtoul to convert a string to unsigned
* long-integer values.
*/

#include <stdlib.h>
#include <stdio.h>

void maine void)
{

char *string, *stopstring;
double X;
long 1 ;
int base;
unsigned long ul;

string = "3.1415926This stopped it";
X = strtod(string, &stopstring);
printf("string = %s\n", string I;
printf(" strtod = %f\n", x I;
printf(" Stopped scan at: %s\n\n", stopstring);

string = "-10110134932This stopped it";
1 = strtol(string, &stopstring, 10);
printf("string = %s\n", string);
printf(" strtol = %ld\n", 1 I;
printf(" Stopped scan at: %s\n\n", stopstring);

Output

strtod, strtol, _strtold, strtoul 793

stri ng = "10110134932";
printf("string = %s\n", string);
/* Convert string using base 2, 4, and 8: */
fore base = 2; base <= 8; base *= 2)
{

/* Convert the string: */
ul = strtoul (stri ng, &stopstri ng, base);
printf(" strtol = %ld (base %d)\n", ul, base);
printf(" Stopped scan at: %s\n", stopstring);

string = 3.1415926This stopped it
strtod = 3.141593
Stopped scan at: This stopped it

string = -10110134932This stopped it
strtol = -2147483647
Stopped scan at: This stopped it

string = 10110134932
strtol = 45 (base 2)
Stopped scan at: 34932
strtol = 4423 (base 4)
Stopped scan at: 4932
strtol = 2134108 (base 8)
Stopped scan at: 932

794 strtok, _ fstrtok

Description

Remarks

Return Value

strtok, _ fstrtok
Find the next token in a string.

#include <string.h> Required only for function declarations

char *strtok(char *string1, const char *string2);

char __ far * __ far _fstrtok(char __ far *string1, const char __ far *string2);

string1

string2

String containing token(s)

Set of delimiter characters

The strtok function reads string1 as a series of zero or more tokens and string2 as
the set of characters serving as delimiters of the tokens in string 1. The tokens in
string 1 may be separated by one or more of the delimiters from string2.

The tokens can be broken out of string1 by a series of calls to strtok. In the first
call to strtok for string 1, strtok searches for the first token in string 1, skipping
leading delimiters. A pointer to the first token is returned. To read the next token
from string 1, call strtok with a NULL value for the string 1 argument. The NULL
string 1 argument causes strtok to search for the next token in the previous token
string. The set of delimiters may vary from call to call, so string2 can take any
value.

The _fstrtok function is a model-independent (large-model) form of the strtok
function. The behavior and return value of _fstrtok are identical to those of the
model-dependent function strtok, with the exception that the arguments and return
value are far pointers.

Note that calls to these functions will modify string1, since each time strtok is
called it inserts a null character (,\0') after the token in string 1.

The first time strtok is called, it returns a pointer to the first token in string 1. In
later calls with the same token string, strtok returns a pointer to the next token in
the string. A NULL pointer is returned when there are no more tokens. All tokens
are null-terminated.

strtok, _ fstrtok 795

Compatibility strtok

See Also

Example

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fstrtok

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

strcspn, strspn

1* STRTOK.C: In this program, a loop uses strtok to print all the tokens
* (separated by commas or blanks) in the string named "string".
*1

#include <string.h>
#include <stdio.h>

char string[]
char seps[]
char *token;

void maine void
{

"A string\tof "tokens\nand some more tokens";
" ,\ t\n";

printf("%s\n\nTokens:\n", string);

1* Establish string and get the first token: *1
token = strtok(string, seps);
while(token != NULL)
{

1* While there are tokens in "string" *1
printf(" %s\n", token);
1* Get next token: *1
token = strtok(NULL, seps);

796 strtok, _ fstrtok

Output A string of "tokens
and some more tokens

Tokens:
A
string
of
tokens
and
some
more
tokens

Description

Remarks

Return Value

Compatibility

See Also

_strupr, _fstrupr 797

_ strupr, _ fstrupr
Convert a string to uppercase.

#include <string.h> Required only for function declarations

char * _strupr(char *string);

char __ far * __ far _fstrupr(char __ far *string);

string String to be capitalized

These functions convert any lowercase letters in the string to uppercase. Other
characters are not affected.

The _ fstrupr function is a model-independent (large-model) form of the _ strupr
function. The behavior and return value of _ fstrupr are identical to those of the
model-dependent function _strupr, with the exception that the argument and
return value are far pointers.

These functions return a pointer to the converted string. There is no error return.

_strupr

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fstrupr

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

798 _ strupr, _ fstrupr

Example /* STRLWR.C: This program uses strlwr and _strupr to create

Output

* uppercase and lowercase copies of a mixed-case string.
*/

#include <string.h>
#include <stdio.h>

void maine void)
{

}

char string[100] = "The String to End All Strings!";
char *copyl, *copy2;

copyl = _strlwr(_strdup(string);
copy2 = _strupr(strdup(string);
printf("Mixed: %s\n", string);
printf("Lower: %s\n", copyl);
printf("Upper: %s\n", copy2);

Mixed: The String to End All Strings!
Lower: the string to end all strings!
Upper: THE STRING TO END ALL STRINGS!

Description

Remarks

Return Value

strxfr~ 799

strxfrm
Transforms a string based on locale-specific information.

#include <string.h> Required only for function declarations

size_t strxfrm(char *string1, const char *string2, size_ t count);

string 1

string2

count

String to which transformed version of string2 is
returned

String to transform

Maximum number of characters to be placed in
string1

The strxfrm function transforms the string pointed to by string2 into a new col
lated form that is stored in string 1. No more than count characters (including the
null character) are transformed and placed into the resulting string.

The transformation is made using the locale-specific information set by the
setlocale function.

After the transformation, a call to strcmp with the two transformed strings will
yield identical results to a call to strcoll applied to the original two strings.

The value of the following expression is the size of the array needed to hold the
transformation of the source string:

1 + strxfrm(NULL, string, 0)

Currently, the run-time library supports the "C" locale only; thus strxfrm is
equivalent to the following:

strncpy(_stringl, _string2, _count);
return(strl en(_stri ng2));

The strxfrm function returns the length of the transformed string, not counting the
terminating null character. If the return value is greater than or equal to count, the
contents of string 1 are unpredictable.

800 strxfrm

Compatibility Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

See Also localeconv, setlocale, strcmp, strncmp, strcoll

Description

Remarks

Return Value

swab 801

swab
Swaps bytes.

#include <stdlib.h> Required only for function declarations

void _swab(char *src, char *dest, int n);

src

dest

n

Data to be copied and swapped

Storage location for swapped data

Number of bytes to be copied and swapped

The _swab function copies n bytes from src, swaps each pair of adjacent bytes,
and stores the result at dest. The integer n should be an even number to allow for
swapping. The _swab function is typically used to prepare binary data for transfer
to a machine that uses a different byte order.

None.

Compatibility Standards: UNIX

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _swab for compatibility with ANSI naming conventions of non-ANSI func
tions. Use swab and link with OLDNAMES.LIB for UNIX compatibility.

/* SWAB.C */
#include <stdlib.h>
#include <stdio.h>

char from[] = "BADCFEHGJILKNMPORQTSVUXWZY";
char toe] = .•.•••....•...••••.......•

void maine void)
{

}

printf("Before:\t%s\n\t%s\n\n", from, to);
_swab(from, to, si zeof(from));
printf("After:\t%s\n\t%s\n\n", from, to);

802 swab

Output Before: BADC FEHGJ ILKNMPORQTSVUXWZY

After: BADC FE{lGJ I LKNMPORQTSVUXWZY
ABCDEFG~IJKLMNOPQRSTUVWXYZ

Description

Remarks

Return Value

system 803

system
Executes a command.

#include <process.h>

#include <stdlih.h>

Required only for function declarations

Use STDLIB.H for ANSI compatibility

int system(const char *command);

command Command to be executed

The system function passes command to the command interpreter, which executes
the string as an operating-system command. The system function refers to the
COMSPEC and PATH environment variables that locate the command-interpreter
file (the file named COMMAND.COM in DOS). If command is a pointer to an
empty string, the function simply checks to see whether or not the command inter
preter exists.

If command is NULL and the command interpreter is found, the function returns a
nonzero value. If the command interpreter is not found, it returns the value 0 and
sets errno to ENOENT. If command is not NULL, the system function returns
the value 0 if the command interpreter is successfully started.

A return value of -1 indicates an error, and errno is set to one of the following
values:

Value

E2BIG

ENOENT
ENOEXEC

ENOMEM

Meaning

In DOS, the argument list exceeds 128 bytes, or the space required
for the environment information exceeds 32K.

The command interpreter cannot be found.

The command-interpreter file has an invalid format and is not
executable.

Not enough memory is available to execute the command; or the
available memory has been corrupted; or an invalid block exists,
indicating that the process making the call was not allocated properly.

804 system

Compatibility Standards: ANSI, UNIX

See Also

Example

Output

16-Bit: DOS

32-Bit: DOS32X

_exec functions, exit, _exit, _spawn functions

1* SYSTEM.C: This program uses system to TYPE its source file. *1

#include <process.h>

void maine void)
{

system("type system.c");

1* SYSTEM.C: This program uses system to TYPE its source file. *1

#include <process.h>

void maine void)
{

system("type system.c");
}

Description

Remarks

Return Value

tan Functions 805

tan Functions
Calculate the tangent (tan and _ tanl) and hyperbolic tangent (tanh and _ tanhl).

#include <math.h>

double tan(double x);

double tanh(double x);

long double _tanl(long double x);

long double _tanhl(long double x);

x Angle in radians

The tan functions return the tangent or hyperbolic tangent of their arguments. The
list below describes the differences between the various tangent functions:

Function

tan

tanh
_tanl
_tanhl

Description

Calculates tangent of x

Calculates hyperbolic tangent of x

Calculates tangent of x (80-bit version)

Calculates hyperbolic tangent of x (80-bit version)

The _ tanl and _ tanhl functions are the 80-bit counterparts and use an 80-bit, 10-
byte coprocessor form of arguments and return values. See the reference page on
the long double functions for more details on this data type.

The tan function returns the tangent of x. If x is large, a partial loss of significance
in the result may occur; in this case, tan sets errno to ERANGE and generates a
_ PLOSS error. If x is so large that significance is totally lost, tan prints a
_ TLOSS error message to stderr, sets errno to ERANGE, and returns O. Error
handling can be modified by using the _matherr function.

There is no error return for tanh.

806 tan Functions

Compatibility tan, tanh

See Also

Example

Output

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_ tanl, _ tanhl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

acos functions, asin functions, atan functions, cos functions, sin functions

/* TAN.C: This program displays the tangent of pi / 4 and the hyperbolic
* tangent of the result.
*/

#include <math.h>
#include <stdio.h>

void main(void)
{

double pi = 3.1415926535;
double x, y;

x = tan(pi / 4);
y = tanh(x);
printf("tan(%f) = %f\n", x, y);
printf("tanh(%f) = %f\n", y, x);

tan(1.000000) = 0.761594
tanh(0.761594) = 1.000000

Description

Remarks

Return Value

tell 807

tell
Gets the position of the file pointer.

#include <io.h> Required only for function declarations

long _ tell(int handle);

handle Handle referring to open file

The _ tell function gets the current position of the file pointer (if any) associated
with the handle argument. The position is expressed as the number of bytes from
the beginning of the file.

A return value of -lL indicates an error, and errno is set to EBADF to indicate an
invalid file-handle argument. On devices incapable of seeking, the return value is
undefined.

Compatibility Standards: None

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

ftell, _lseek

1* TELL.C: This program uses _tell to tell the file pointer position
* after a file read.
*1

/tinclude <io.h>
/tinclude <stdio.h>
/tinclude <fcntl.h>

808 tell

Output

void main(void
{

}

int fh;
long position;
char buffer[500];

if((fh = _open("tell.c", _O_RDONLY » != -1)
{

if(_read(fh, buffer, 500) > 0)
printf("Current file position is: %d\n", _tell(fh));

_close(fh);
}

Current file position is: 425

Description

Remarks

tempnam, tmpnam 809

_ tempnam, tmpnam
Create temporary filenames.

#include <stdio.h>

char * _tempnam(char *dir, char *prefix);

char *tmpnam(char *string);

string

dir

prefix

Pointer to temporary name

Target directory to be used if TMP not defined

Filename prefix

The tmpnam function generates a temporary filename that can be used to open a
temporary file without overwriting an existing file. This name is stored in string. If
string is NULL, then tmpnam leaves the result in an internal static buffer. Thus,
any subsequent calls destroy this value. If string is not NULL, it is assumed to
point to an array of at least L_ tmpnam bytes (the value of L_ tmpnam is defined
in STDIO.H). The function will generate unique filenames for up to TMP _MAX
calls.

The character string that tmpnam creates consists of the path prefix, defined by
the entry P _ tmpdir in the file STDIO.H, followed by a sequence consisting of
the digit characters '0' through '9'; the numerical value ofthis string can range
from 1 to 65,535. Changing the definitions ofL_tmpnam or P _tmpdir in
STDIO.H does not change the operation of tmpnam.

The _ tempnam function allows the program to create a temporary filename for
use in another directory. This filename will be different from that of any existing
file. The prefix argument is the prefix to the filename. The _ tempnam function
uses malloc to allocate space for the filename; the program is responsible for free
ing this space when it is no longer needed. The _ tempnam function looks for the
file with the given name in the following directories, listed in order of precedence:

Directory Used

Directory specified by TMP

dir argument to _ tempnam

Conditions

TMP environment variable is set, and directory
specified by TMP exists.

TMP environment variable is not set, or
directory specified by TMP does not exist.

810 _tempnam, tmpnam

Return Value

Compatibility

See Also

Example

Directory Used Conditions

P _ tmpdir in STDIO.H The dir argument is NULL, or dir is name of
nonexistent directory.

Current working directory P _ tmpdir does not exist.

If the search through the locations listed above fails, _ tempnam returns the value
NULL.

The tmpnam and _ tempnam functions both return a pointer to the name
generated, unless it is impossible to create this name or the name is not unique. If
the name cannot be created or if a file with that name already exists, tmpnam and
_ tempnam return the value NULL.

_tempnam

Standards:

16-Bit:

32-Bit:

UNIX

DOS, QWIN, WIN, WIN DLL

DOS32X

Use _tempnam for compatibility with ANSI naming conventions of non-ANSI
functions. Use tempnam and link with OLDNAMES.LIB for UNIX compatibility.

tmpnam

Standards:

16-Bit:

32-Bit:

tmpfile

ANSI, UNIX

DOS, QWIN, WIN, WIN DLL

DOS32X

/* TEMPNAM.C: This program uses tmpnam to create a unique filename in
* the current working directory, then uses _tempnam to create a unique
* filename with a prefix of stq.
*/

#include <stdio.h>

Output

_tempnam, tmpnam 811

void maine void
{

}

char *namel, *name2;

1* Create a temporary filename for the current working directory: *1
if((namel = tmpnam(NULL)) != NULL)

printf("Is is safe to use as a temporary file.\n", namel);
else

printf("Cannot create a unique filename\n");

1* Create a temporary file name in temporary directory with the
* prefix "stq". The actual destination directory may vary depending
* on the state of the TMP environment variable and the global variable
* P _ tmpdi r.
*1

if((name2 = _tempnam("c:\\tmp", "stq")) != NULL)
printf("Is is safe to use as a temporary file.\n", name2);

else
printf("Cannot create a unique filename\n");

\2 is safe to use as a temporary file.
C:\TMP\stq2 is safe to use as a temporary file.

812 time

Description

Remarks

Return Value

Compatibility

See Also

time
Gets the system time.

#include <time.h> Required only for function declarations

time_ t time(time_ t *timer);

timer Storage location for time

The time function returns the number of seconds elapsed since midnight
(00:00:00), December 31,1899, Universal Coordinated Time, according to the
system clock. The system time is adjusted according to the _ timezone system
variable, which is explained under _ tzset.

The return value is stored in the location given by timer. This parameter may be
NULL, in which case the return value is not stored.

The time function returns the time in elapsed seconds. There is no error return.

Standards: ANSI, UNIX

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

asctime, _ Ctime, gmtime, localtime, _ tzset, _ utime

Example 1* TIMES.C illustrates various time and date functions including:
* time ftime ctime asctime
* localtime gmtime mktime tzset
* strtime strdate strftime

*
* Also the global variable:
* tzname

#include <time.h>
#include <stdio.h>
#include <sys\types.h>
#include <sys\timeb.h>
#include <string.h>

void maine void)
{

char tmpbuf[128], ampm[] "AM";
t i me_ t It i me ;
struct _timeb tstruct;
struct tm *today, *gmt, xmas = { 0, 0, 12, 25, 11, 91 };

time 813

1* Set time zone from TZ environment variable. If TZ is not set,
* PST8PDT is used (Pacific standard time, daylight savings).
*1

_tzset();

1* Display DDS-style date and time. *1
_strtime(tmpbuf);
printf("DOS time:\t\t\t\t%s\n", tmpbuf);
_strdate(tmpbuf);
printf("DOS date:\t\t\t\t%s\n", tmpbuf);

1* Get UNIX-style time and display as number and string. *1
time (& It i me);
printf("Time in seconds since GMT 1/1/70:\t%ld\n", ltime);
printf("UNIX time and date:\t\t\t%s", ctime(<ime));

1* Display GMT. *1
gmt = gmtime(<ime);
printf("Greenwich Mean Time:\t\t\t%s", asctime(gmt));

1* Convert to time
today = localtime(
if(today-tm_hour
{

structure and adjust for PM if necessary. *1
<ime);
12)

strcpy(ampm, "PM");
today-tm_hour -= 12;

}

814 time

Output

}

1* Note how pointer addition is used to skip the first 11 characters
* and printf is used to trim off terminating characters.
*1

printf("12-hour time:\t\t\t\t%.8s %s\n",
asctime(today) + 11, ampm);

1* Print additional time information. *1
ftime(&tstruct);
printf("Plus milliseconds:\t\t\t%u\n", tstruct.millitm);
printf("Zone difference in seconds from GMT:\t%u\n", tstruct.timezone);
printf("Time zone name:\t\t\t\t%s\n", tzname[0]);
printf("Daylight savings:\t\t\t%s\n", tstruct.dstflag ? "YES" : "NO");

1* Make time for noon on Christmas, 1991. *1
if(mktime(&xmas) != (time_t)-l)

printf("Christmas\t\t\t\t%s\n", asctime(&xmas));

1* Use time structure to build a customized time string. *1
today = localtime(<ime);

1* Use strftime to build a customized time string. *1
strftime(tmpbuf, 128,

"Today is %A, day %d of %8 in the year %Y.\n", today);
printf(tmpbuf);

DOS time: 17:36:10
12/15/99 DOS date:

Time in seconds since GMT 1/1/70:
UNIX time and date:
Greenwich Mean Time:
12-hour time:
Plus milliseconds:
Zone difference in seconds from GMT:
Time zone name:
Daylight savings:
Christmas

-1398750726
Wed Dec 15 17:36:10 1999
Thu Dec 16 00:36:10 1999
05:36:10 PM
90
480
PST
NO
Wed Dec 25 12:00:00 1999

Today is Wednesday, day 15 of December in the year 1999.

Description

Remarks

Return Value

Compatibility

See Also

Example

tmpfile 815

Impfile
Creates a temporary file.

#include <stdio.h>

FILE *tmptile(void);

The tmptile function creates a temporary file and returns a pointer to that stream.
If the file cannot be opened, tmptile returns a NULL pointer.

This temporary file is automatically deleted when the file is closed, when the pro
gram terminates normally, or when _rmtmp is called, assuming that the current
working directory does not change. The temporary file is opened in w+b (binary
read/write) mode.

If successful, the tmptile function returns a stream pointer. Otherwise, it returns a
NULL pointer.

Standards:

16-Bit:

32-Bit:

ANSI, UNIX

DOS, QWIN, WIN, WIN DLL

DOS32X

_rmtmp, _ tempnam, tmpnam

1* TMPFILE.C: This program uses tmpfile to create a temporary file,
* then deletes this file with _rmtmp.
*1

#include <stdio.h>

816 tmpfile

Output

void maine void)
{

FILE *stream;
char tempstring[]
i nt i;

"String to be written";

/* Create temporary files. */
fore i = 1; i <= 10; i++)
{

if((stream = tmpfile(» == NULL)
perror("Could not open new temporary file\n");

else
pri ntf("Temporary fi 1 e %d was created\n", i);

}

/* Remove temporary files. */
printf("%d temporary files deleted\n", _rmtmp());

}

Temporary fil e 1 was created
Temporary fil e 2 was created
Temporary fil e 3 was created
Temporary fil e 4 was created
Temporary fil e 5 was created
Temporary fil e 6 was created
Temporary fil e 7 was created
Temporary fil e 8 was created
Temporary fil e 9 was created
Temporary file 10 was created
10 temporary files deleted

Description

Remarks

__ toascii, tolower, toupper Functions 817

__ toascii, tolower, toupper Functions
Convert characters.

#include <ctype.h>

int __ toascii(int c);

int tolower(int c);

int _tolower(int c);

int toupper(int c);

int _ toupper(int c);

c Character to be converted

The __ toascii, tolower, _ tolower, toupper, and _ to upper routines and their
associated macros convert a single character, as described below:

Function Macro Description

__ toascii __ toascii Converts c to ASCII character

tolower tolower Converts c to lowercase if appropriate

_tolower _tolower Converts c to lowercase

toupper toupper Converts c to uppercase if appropriate

_toupper _toupper Converts c to uppercase

The __ toascii routine sets all but the low-order 7 bits of c to 0, so that the con
verted value represents a character in the ASCII character set. If c already repre
sents an ASCII character, c is unchanged.

The tolower routine converts c to lowercase if c represents an uppercase letter.
Otherwise, c is unchanged.

The _ tolower routine is a version of tolower to be used only when c is known to
be uppercase. The result of _ tolower is undefined if c is not an uppercase letter.

The toupper routine convers c to uppercase if c represents an lowercase letter.
Otherwise, c is unchanged.

818 __ toascii, tolower, toupper Functions

Return Value

Compatibility

See Also

Example

The _ toupper routine is a version of toupper to be used only when c is known to
be lowercase. The result of _ toupper is undefined if c is not a lowercase letter.

These routines are implemented both as functions and as macros. To conform to
the ANSI specification, the tolower and toupper routines are also implemented as
functions. The function versions can be used by removing the macro definitions
through #undef directives or by not including CTYPE.H. Function declarations of
tolower and toupper are given in STOLlB.H.

If the /Za compile option is used, the macro form of toupper or tolower is not
used because it evaluates its argument more than once. Since the arguments are
evaluated more than once, arguments with side effects would produce potentially
bad results.

The __ toascii, tolower, _ tolower, toupper, and _ toupper routines return the
converted character c. There is no error return.

__ toascii, _tolower, _toupper

Standards: UNIX

16-Bit: ~OS, QWIN, WIN, WIN OLL

32-Bit: DOS32X

Use __ toascii for compatibility with ANSI naming conventions of non-ANSI
functions. Use toascii and link with OLDNAMES.LlB for UNIX compatibility.

tolower, toupper

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

is functions

/* TOUPPER.C: This program uses toupper and tolower to analyze all
* characters between 0x0 and 0x7F. It also applies _toupper and _tolower
* to any code in this range for which these functions make sense.
*/

#include <conio.h>
#include <ctype.h>
#include <string.h>

char msg[] = "Some of THESE letters are Capitals\r\n";
char *p;

Output

void main(void)
{

_cputs(msg);

__ toascii, tolower, toupper Functions 819

/* Reverse case of message. */
for(p = msg; p < msg + strlen(msg); p++)
{

if(i sl ower(*p))
_putch(_toupper(*p));

else if(isupper(*p))
_putch(_tolower(*p));

else
_putch(*p);

Some of THESE letters are Capitals
sOME OF these LETTERS ARE cAPITALS

820 tzset

Description

Remarks

tzset
Sets time environrp.ent variables.

#include <time.h>

void _ tzset(void);

int _daylight
long _ timezone
char * _ tzname[2]

Required only for function declarations

Global variables set by function

The _ tzset function uses the current setting of the environment variable TZ to as
sign values to three global variables: _daylight, _timezone, and _tzname. These
variables are used by the _ftime and localtime functions to make corrections from
Universal Coordinated Time (UCT) to local time, and by time to compute UCT
from system time.

Use the following syntax to set the TZ environment variable:

set TZ=tzn[+ I-]hh[:mm[:ss]][dzn]

The tzn must be a three-letter time-zone name, such as PST, followed by an option
ally signed number, + -hh, giving the difference in hours between UCT and local
time. To specify the exact local time, the hours can be followed by minutes, :mm;
seconds, :ss; and a three-letter daylight-saving-time zone, dzn, such as PDT. Sepa
rate hours, minutes, and seconds with colons (:). If daylight saving time is never in
effect, as is the case in certain states and localities, set TZ without a value for dzn.

If the TZ value is not currently set, the default is PST8PDT, which corresponds to
the Pacific time zone.

Return Value

tzset 821

Based on the TZ environment variable value, the following values are assigned to
the variables _ daylight, _ timezone, and _ tzname when _ tzset is called:

Variable

_daylight

_timezoue
_tzname[O]

_tzname[lJ

Value

Nonzero value if a daylight-saving-time zone is specified in the
TZ setting; otherwise, 0

Difference in seconds between GMT and local time

String value of the three-letter time-zone name from the TZ
environmental variable

String value of the daylight-saving-time zone, or an empty string
if the daylight-saving-time zone is omitted from the TZ
environmental variable

The default for _daylight is 1; for _timezone, 28,800; for _tzname[O], PST; and
for _tzname[l], PDT. This corresponds to "PST8PDT."

If the DST zone is omitted from the TZ environmental variable, the _daylight
variable will be 0 and the _ftime, gmtime, and localtime functions will return 0
for their DST flags.

None.

Compatibility Standards:

16-Bit:

32-Bit:

UNIX

See Also

Example

DOS, QWIN, WIN, WIN DLL

DOS32X

Use _ tzset for compatibility with ANSI naming conventions of non-ANSI
functions. Use tzset and link with OLDNAMES.LIB for UNIX compatibility.

asctime, _Ctime, gmtime, localtime, time

/* TZSET.C: This program first sets up the time zone by placing the variable
* named TZ=EST5 in the environment table. It then uses tzset to set the
* global variables named _daylight, _timezone, and _tzname.
*/

#include <time.h>
#include <stdlib.h>
#include <stdio.h>

822 tzset

Output

void maine void
{

}

if(_putenv("TZ=EST5EDT") == -1)
{

}

printf("Unable to set TZ\n");
exit (1);

else
{

}

_tzset();
printf("_daylight = %d\n", _daylight);
printf("_timezone = %ld\n", _timezone);
pri ntf("_ tzname[0] = %s\n", _ tzname[0]);

exit(0);

_daylight = 1
timezone = 18000

_tzname[0] = EST

Description

Remarks

Return Value

ultoa 823

ulloa
Converts an unsigned long integer to a string.

#include <stdlih.h> Required only for function declarations

char * _ ultoa(unsigned long value, char * string, int radix);

value

string

radix

Number to be converted

String result

Base of value

The _ ultoa function converts value to a null-terminated character string and stores
the result (up to 33 bytes) in string. No overflow checking is performed. The radix
argument specifies the base of value; it must be in the range 2-36.

The _ ultoa function returns a pointer to string. There is no error return.

Compatibility Standards: None

See Also

Example

16-Bit: DOS, QWIN, WIN, WINDLL

32-Bit: DOS32X

1* ITOA.C: This program converts integers of various sizes to strings
* in various radixes.
*1

#include <stdlib.h>
#include <stdio.h>

824 ultoa

void main(void)
{

char buffer[20];
int i = 3445;
long 1 = -344115L;
unsigned long ul = 1234567890UL;

_ itoa (i , buffer, 10) ;
printf("String of integer %d (radix 10): %s\n", i , buffer) ;
_ itoa (i , buffer, 16) ;
printf("String of integer %d (radix 16): 0x%s\n", i , buffer) ;
_ itoa (i , buffer, 2) ;
pri ntf("String of integer %d (radix 2) : %s\n", i , buffer) ;

_ltoa(1, buffer, 16);
printf("String of long int %ld (radix 16): 0x%s\n", 1, buffer);

_ultoa(ul, buffer, 16);
printf("String of unsigned long %lu (radix 16): 0x%s\n", ul, buffer);

}

Output String of integer 3445 (radix 10): 3445
String of integer 3445 (radix 16): 0xd75
String of integer 3445 (radix 2) : 110101110101
String of long int -344115 (radix 16): 0xfffabfcd
String of unsigned long 1234567890 (radix 16): 0x499602d2

Description

Remarks

Return Value

umask 825

umask
Sets the default file-permission mask.

#include <sys\types.h>

#include <sys\stat.h>

#include <io.h> Required only for function declarations

int _ umask(int pmode);

pmode Default permission setting

The _ umask function sets the file-permission mask of the current process to the
mode specified by pmode. The file-permission mask is used to modify the permis
sion setting of new files created by _ creat, _ open, or _ sopen. If a bit in the mask
is 1, the corresponding bit in the file's requested permission value is set to 0 (disal
lowed). If a bit in the mask is 0, the corresponding bit is left unchanged. The per
mission setting for a new file is not set until the file is closed for the first time.

The argument pmode is a constant expression containing one or both of the
manifest constants _S_IREAD and _S_IWRITE, defined in SYS\STAT.H.
When both constants are given, they are joined with the bitwise-OR operator (I).
The meaning of the pmode argument is as follows:

Value Meaning

Reading not allowed (file is write-only)

Writing not allowed (file is read-only)

For example, if the write bit is set in the mask, any new files will be read-only.

Note that with DOS, all files are readable-it is not possible to give write-only
permission. Therefore, setting the read bit with_umask has no effect on the file's
modes.

The _ umask function returns the previous value of pmode. There is no error
return.

826 umask

Compatibility Standards:

16-Bit:

32-Bit:

UNIX

See Also

Example

Output

DOS, QWIN, WIN, WIN DLL

DOS32X

Use _ umask for compatibility with ANSI naming conventions of non-ANSI func
tions. Use umask and link with OLDNAMES.LIB for UNIX compatibility.

_chmod, _creat, _mkdir, _open

/* UMASK.C: This program uses umask to set the file-permission mask so
* that all future files will be created as read-only files. It also
* displays the old mask.
*/

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>

void main(void
{

}

int oldmask;

/* Create read-only files: */
oldmask = _umask(_S_IWRITE);
printf("Oldmask = 0xl.4x\n", oldmask);

Oldmask 0x0000

Description

Remarks

Return Value

Compatibility

See Also

ungetc
Pushes a character back onto the stream.

#include <stdio.h>

int ungetc(int c, FILE *stream);

c

stream

Character to be pushed

Pointer to FILE structure

ungetc 827

The ungetc function pushes the character c back onto stream and clears the end-of
file indicator. The stream must be open for reading. A subsequent read operation
on the stream starts with c. An attempt to push EOF onto the stream using ungetc
is ignored. The ungetc function returns an error value if nothing has yet been read
from stream or if c cannot be pushed back.

Characters placed on the stream by ungetc may be erased if fflush, fseek, fsetpos,
or rewind is called before the character is read from the stream. The file-position
indicator will have the same value it had before the characters were pushed back.
On a successful ungetc call against a text stream, the file-position indicator is un
specified until all the pushed-back characters are read or discarded. On each
successful ungetc call against a binary stream, the file-position indicator is
stepped down; if its value was 0 before a call, the value is undefined after the call.

Results are unpredictable if the ungetc function is called twice without a read
operation between the two calls. After a call to the fscanf function, a call to
ungetc may fail unless another read operation (such as the getc function) has been
performed. This is because the fscanf function itself calls the ungetc function.

The ungetc function returns the character argument c. The return value EOF indi
cates a failure to push back the specified character.

Standards: ANSI, UNIX

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

getc, getchar, putc, putchar

~8 ung~c

Example 1* UNGETC.C: This program first converts a character representation of an
* unsigned integer to an integer. If the program encounters a character
* that is not a digit, the program uses ungetc to replace it in the stream.
*1

#include <stdio.h>
#include <ctype.h>

void maine void)
{

int ch;
int result = 0;

printf("Enter an integer: ");

1* Read in and convert number: *1
while(«ch = getchar(» != EOF) &&

result = result * 10 + ch - '0';
if(ch != EOF)

isdigit(ch))
1* Use digit. *1

ungetc(ch, stdin); 1* Put non-digit back. *1
printf("Number = %d\nNext character in stream = '%c'\n",

result, getchar());
}

Enter an integer: 521a
Number = 521
Next character in stream 'a'

Description

Remarks

Return Value

_ ungetch 829

_ungetch
Pushes back the last character read from the console.

#include <conio.h> Required only for function declarations

int _ ungetch(int c);

c Character to be pushed

The _ ungetch function pushes the character c back to the console, causing c to be
the next character read by _ getch or _ getche. The _ ungetch function fails if it is
called more than once before the next read. The c argument may not be EOF.

The _ ungetch function returns the character c if it is successful. A return value of
EOF indicates an error.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

DOS

DOS32X

_ cscanf, _ getch, _ getche

1* UNGETCH.C: In this program, a white-space delimited token is read
* from the keyboard. When the program encounters a delimiter,
* it uses _ungetch to replace the character in the keyboard buffer.
*/

#include <conio.h>
#include <ctype.h>
#include <stdio.h>

830 _ungetch

Output

void main(void)
{

char buffer[100];
int count = 0;
int ch;

ch = _getche();
while(isspace(ch)

ch = _getche();
while(count < 99)
{

}

if(i sspace(ch
break;

buffer[count++]
ch = _getche();

1* Skip preceding white space. *1

1* Gather token. *1

1* End of token. *1

ch;

_ungetch(ch); 1* Put back delimiter. *1
buffer[count] = '\0'; 1* Null terminate the token. *1
pri ntf("\ntoken = %s\n", buffer);

White
token White

Description

Remarks

Return Value

Compatibility

See Also

unlink 831

unlink
Deletes a file.

#include <io.h>

#include <stdio.h>

Required only for function declarations

Use either IO.H or STDIO.H

int _ unlink(const char *filename);

filename Name of file to remove

The _ unlink function deletes the file specified by filename.

If successful, _ unlink returns 0; otherwise, it returns -1 and sets errno to one of
the following constants:

Value

EACCES

ENOENT

Meaning

Path name specifies a read-only file

File or path name not found, or path name specified a directory

Standards: UNIX

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

Use _ unlink for compatibility with ANSI naming conventions of non-ANSI func
tions. Use unlink and link with OLDNAMES.LIB for UNIX compatibility.

_ close, remove

832 unlink

Example

Output

1* UNLINK.C: This program uses unlink to delete UNLINK.OBJ. *1

#include <stdio.h>

void main(void
{

}

if(unl ink("_unl ink.obj") == -1)
perror("Could not delete 'UNLINK.OBJ'");

else
printf("Deleted 'UNLINK.OBJ'\n");

Deleted 'UNLINK.OBJ'

Description

Remarks

Return Value

Compatibility

See Also

Example

_ unregisterfonts 833

_ unregisterfonts
Frees memory used by fonts.

#include <graph.h>

void __ far _unregisterfonts(void);

The _ unregisterfonts function frees memory previously allocated and used by the
_registerfonts function. The _ unregisterfonts function removes the header infor
mation for all fonts and unloads the currently selected font data from memory.

Any attempt to use the _ setfont function or the _ outgtext function after calling
_ unregisterfonts results in an error.

None.

Standards: None

16-Bit: DOS

32-Bit: None

_ getfontinfo, _ getgtextextent, _ outgtext, _ registerfonts, _ setfont

See the example for _outgtext.

834 utime

Description

Remarks

Return Value

Compatibility

utime
Sets the file modification time.

#include <sys\types.h>

#include <sys\utime.h>

int _ utime(char *filename, struct _ utimbuf *times);

filename

times

Filename

Pointer to stored time values

The _ utime function sets the modification time for the file specified by filename.
The process must have write access to the file; otherwise, the time cannot be
changed.

Although the _ utimbuf structure contains a field for access time, only the modifi
cation time is set with DOS. If times is a NULL pointer, the modification time
is set to the current time. Otherwise, times must point to a structure of type
_ utimbuf, defined in SYS\UTIME.H. The modification time is set from the
modtime field in this structure.

The _utime function returns the value 0 if the file-modification time was changed.
A return value of -1 indicates an error, and errno is set to one of the following
values:

Value

EACCES

EINVAL
EMFILE

ENOENT

Standards:

16-Bit:

32-Bit:

UNIX

Meaning

Path name specifies directory or read-only file

Invalid argument; the times argument is invalid

Too many open files (the file must be opened to change its
modification time)

File or path name not found

DOS, QWIN, WIN, WIN DLL

DOS32X

Use _utime for compatibility with ANSI naming conventions of non-ANSI func
tions. Use utime and link with OLDNAMES.LIB for UNIX compatibility.

See Also

Example

Output

utime 835

asctime, ctime, _fstat, _ftime, gmtime, locaitime, _stat, time

1* UTIME.C: This program uses utime to set the file-modification time to
* the current time.
*1

#include <stdio.h>
#include <stdlib.h>
#include <sys\types.h>
#include <sys\utime.h>

void maine void
{

1* Show file time before and after. *1
system("dir _utime.c");
if(_utime("_utime.c", NULL) == -1)

perror("_utime failed\n");
else

printf("File time modified\n");
system("dir _utime.c");

The volume label in drive C is ZEPPELIN.
Directory of C:\LIBREF

UTIME C 397 6-20-99 2:11p
1 File(s) 12974080 bytes free

File time modified

The volume label in drive C is ZEPPELIN.
Directory of C:\LIBREF

UTIME C
1 File(s)

397 6-20-99 2:12p
12974080 bytes free

Description

Remarks

Access variable-argument lists.

#include <stdarg.h>

#include <varargs.h>

#include <stdio.h>

Required for ANSI compatibility

Required for UNIX V compatibility

type vLarg(vLlist arg-ptr, type);

void vLend(vLlist arg-ptr);

void vLstart(va_list arg-ptr); UNIX version

void vLstart(vLlist arg-ptr, prev -param); ANSI

type

Pointer to list of arguments

Parameter preceding first optional argument
(ANSI only)

Type of argument to be retrieved

The vLarg, vLend, and vLstart macros provide a portable way to access the
arguments to a function when the function takes a variable number of arguments.
Two versions of the macros are available: the macros defined in STDARG.H con
form to the ANSI C standard, and the macros defined in V ARARGS.H are compat
ible with the UNIX System V definition. The macros are listed below:

Macro

va_alist

va_arg

va_del

vLend

vLlist

vLstart

Description

Name of parameter to called function (UNIX version only)

Macro to retrieve current argument

Declaration ofvLalist (UNIX version only)

Macro to reset arg-ptr

The typedef for the pointer to list of arguments

Macro to set arg-ptr to beginning of list of optional arguments
(UNIX version only)

Both versions of the macros assume that the function takes a fixed number of re
quired arguments, followed by a variable number of optional arguments. The re
quired arguments are declared as ordinary parameters to the function and can be
accessed through the parameter names. The optional arguments are accessed
through the macros in STDARG.H or V ARARGS.H, which set a pointer to the
first optional argument in the argument list, retrieve arguments from the list, and
reset the pointer when argument processing is completed.

The ANSI C standard macros, defined in STDARG.H, are used as follows:

1. All required arguments to the function are declared as parameters in the usual
way. The va_del macro is not used with the STDARG.H macros.

2. The va_ start macro sets argytr to the first optional argument in the list of ar
guments passed to the function. The argument argytr must have va_list type.
The argument prev yaram is the name of the required parameter immediately
preceding the first optional argument in the argument list. If prev yaram is de
clared with the register storage class, the macro's behavior is undefined. The
va_ start macro must be used before va_ arg is used for the first time.

3. The va_arg macro does the following:

• Retrieves a value of type from the location given by argytr

• Increments argytr to point to the next argument in the list, using the size of
type to determine where the next argument starts

The v~ arg macro can be used any number of times within the function to
retrieve arguments from the list.

4. After all arguments have been retrieved, va_end resets the pointer to NULL.

The UNIX System V macros, defined in V ARARGS.H, operate in a slightly differ
ent manner, as follows:

1. Any required arguments to the function can be declared as parameters in the
usual way.

2. The last (or only) parameter to the function represents the list of optional argu
ments. This parameter must be named v~alist (not to be confused with
va_list, which is defined as the type ofva_alist).

3. The va_del macro appears after the function definition and before the opening
left brace of the function. This macro is defined as a complete declaration of the
va_alist parameter, including the terminating semicolon; therefore, no semi
colon should follow va_del.

4. Within the function, the va_ start macro sets argytr to the beginning of the list
of optional arguments passed to the function. The va_ start macro must be used
before v~ arg is used for the first time. The argument argytr must have
va_list type.

Return Value

5. The va_arg macro does the following:

• Retrieves a value of type from the location given by arg-ptr

• Increments arg-ptr to point to the next argument in the list, using the size of
type to determine where the next argument starts

The vLarg macro can be used any number of times within the function to
retrieve the arguments from the list.

6. After all arguments have been retrieved, vLend resets the pointer to NULL.

The va_arg macro returns the current argument; va_start and va_end do not
return values.

Compatibility Standards: ANSI, UNIX

See Also

Example

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

vfprintf

/* VA.C: The program below illustrates passing a variable number of arguments
* using the following macros:
* va_start va_arg va_end
* va_l ist va_decl (UNIX only)
*/

#include <stdio.h>
#define ANSI
#ifdef ANS I
#include <stdarg.h>
int average(int first,
#else
#include <varargs.h>
int average(va_list);
#endif

void maine void
{

/* Comment out for UNIX version
1* ANSI compatible version

. ..);

1* UNIX compatible version

/* Call with 3 integers (-1 is used as terminator). */
printf("Average is: %d\n", average(2, 3, 4, -1));

/* Call with 4 integers. */
printf("Average is: %d\n", average(5, 7, 9, 11, -1));

/* Call with just -1 terminator. */
pri ntf("Average is: %d\n", average(-1));

Output

1* Returns the average of a variable list of integers. *1
#ifdef ANSI 1* ANSI compatible version *1
int average(int first, ...)
{

int count = 0, sum
va_list marker;

0, i = first;

va_start(marker, first);
while(i != -1)
{

sum += i;
count++;

1* Initialize variable arguments. *1

i = va_arg(marker, int);

va end(marker); 1* Reset variable arguments. *1
return(sum? (sum I count) : 0);

}

#else 1* UNIX compatible version must use old-style definition. *1
i nt average(va_al i st)
va_ dc 1
{

int i, count, sum;
va_list marker;

va_start(marker);
fore sum = count 0; (i

sum += i;
va_end(marker);
return(sum? (sum I count)

}

#endif

Average is: 3
Average is: 8
Average is: 0

1* Initialize variable arguments. *1
va_arg(marker, int)) != -1; count++)

1* Reset variable arguments.
o);

840 vfprintf, vprintf, vsprintf, _ vsnprintf

Description

Remarks

vfprintf, vprintf, vsprintf, _ vsnprintf
Write formatted output using a pointer to a list of arguments.

#include <stdio.h>

#include <varargs.h>

#include <stdarg.h>

Required for UNIX System V compatibility

Required for ANSI compatibility

int vfprintf(FILE *stream, const char *format, va_list argptr);

int vprintf(const char *format, va_list argptr);

int vsprintf(char *buffer, const char *format, va_list argptr);

int _ vsnprintf(char *buffer, sizLt count, const char *format, va_list argptr);

stream

format

argptr

buffer

count

Pointer to FILE structure

Format control

Pointer to list of arguments

Storage location for output

Maximum number of bytes

The vfprintf, vprintf, and vsprintf functions format data and output data to the
file specified by stream, to standard output, and to the memory pointed to by
buffer, respectively. The _ vsnprintf function differs from vsprintf in that it writes
not more than count bytes to buffer. These functions are similar to their counter
parts fprintf, printf, and sprintf, but each accepts a pointer to a list of arguments
instead of an argument list.

Theformat argument has the same form and function as theformat argument for
the printf function; see printf for a description offormat.

The argptr parameter has type vLlist, which is defined in the include files
V ARARGS.H and STDARG.H. The argptr parameter points to a list of arguments
that are converted and output according to the corresponding format specifications
in the format.

Return Value

Compatibility

See Also

vfprintf, vprintf, vsprintf, _ vsnprintf 841

The return value for vprintf, vsprintf, and _ vsnprintf is the number of characters
written, not counting the terminating null character. For _ vsnprintf, if the number
of bytes to write exceeds buffer, then count bytes are written and -1 is returned. If
successful, the vfprintfreturn value is the number of characters written. If an out
put error occurs, it is a negative value.

vfprintf, vsprintf

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN

32-Bit: DOS32X

vprintf

Standards: ANSI, UNIX

16-Bit: DOS,QWIN

32-Bit: DOS32X

_vsnprintf

Standards: None

16-Bit: DOS,QWIN

32-Bit: DOS32X

fprintf, printf, sprintf, VlL arg, VlL end, VlL start

842 vfprintf, vprintf, vsprintf, _ vsnprintf

Example 1* VPRINTF.C shows how to use vprintf functions to write new versions
* of printf. The vsprintf function is used in the example.
*1

#include <stdio.h>
#include <graph.h>
#include <string.h>
#include <stdarg.h>
#include <malloc.h>

int wprintf(short row, short col, short clr, long bclr, char *fmt, ...);

void maine void)
{

}

short fgd 0;
long bgd 0L;

_clearscreen(_GCLEARSCREEN);
_outtext("Color text example:\n\n");

1* Loop through 8 background colors. *1
fore bgd = 0L; bgd < 8; bgd++)
{

}

wprintf((int)bgd + 3, 1, 7, bgd, "Back: %d Fore:", bgd);

1* Loop through 16 foreground colors. *1
fore fgd = 0; fgd < 16; fgd++)

wprintf(-1, -1, fgd, -lL, "%2d", fgd);

1* Full-screen window version of printf that takes row, column, textcolor,
* and background color as its first arguments, followed by normal printf
* format strings (except that \t is not handled). You can specify -1 for
* any of the first arguments to use the current value. The function returns
* the number of characters printed, or a negative number for errors.
*1

int wprintf(short row, short col, short clr, long bclr, char *fmt, ...
{

struct _rccoord tmppos;
short ret, size;
va_list marker;
char *buffer;

1* It's probably safe to use a buffer length of 512 bytes or five times
* the length of the format string.

size = strlen(fmt);
size = (size> 512) ? 512 : size * 5;
if((buffer = (char *)malloc(size))

return -1;
NULL)

1* Set text position. *1
tmppos = _gettextposition();
if(row < 1)

row = tmppos.row;
if(col < 1)

col = tmppos .col;
_settextposition(row, col);

vfprintf, vprintf, vsprintf, _ vsnprintf 843

1* Set foreground and background colors. *1
if(cl r >= 0)

settextcolor(cl r);
if(bclr >= 0)

_setbkcolor(bclr);

1* Write text to a string and output the string. *1
va_start(marker, fmt);
ret = vsprintf(buffer, fmt, marker);
va_end(marker);
outtext(buffer);

free(buffer);
return ret;

844 vfree

Description

Remarks

Return Value

Compatibility

See Also

Example

vfree
Deallocates a virtual memory block.

#include <vmemory.h>

void __ far _ vfree(_ vmhnd_ t handle);

handle Handle to previously allocated virtual memory
block

The _ vfree function deallocates a virtual memory block. The argument handle
points to a virtual memory block previously allocated through a call to _ vmalloc
or _ vrealloc. The number of bytes freed is the number of bytes specified when the
block was allocated (or reallocated, in the case of _ vrealloc). The block must be
unlocked before it is freed; use _ vlockcnt to ensure that the block is unlocked.
After the call, the freed block is available for reuse by the virtual heap.

None.

Standards: None

16-Bit: DOS

32-Bit: None

_ vlock, _ vlockcnt, _ vmalloc, _ vrealloc, _ vunlock

See the example for _ vmalloc.

Description

Remarks

_ vheapinit 845

_ vheapinit
Initializes the virtual memory manager.

#include <vmemory.h>

int __ far _ vheapinit(unsigned int dosmin, unsigned int dosmax,
unsigned int swaparea);

dosmin

dosmax

s wapa rea

Minimum amount of DOS memory that must be
available for the virtual memory manager to install
itself, in paragraphs

Maximum amount of DOS memory that the virtual
memory manager can use, in paragraphs

Type of auxiliary memory to use

The _ vheapinit routine initializes the virtual memory manager in preparation
for future allocations. It must be called before any virtual memory blocks are
requested.

The _ vheapinit function may round up the minimum value specified. After round
ing, if the minimum amount of DOS memory is not available, _ vheapinit does
not initialize the virtual memory manager and returns O. The virtual memory
manager requires several kilobytes to function effectively.

If _ V~ALLDOS is specified for the dosmax argument, the virtual memory
manager uses all available DOS memory.

The swaparea argument specifies which types of auxiliary memory the virtual
memory manager can use to hold blocks of memory that are swapped out. The
argument can be one or more of the following manifest constants, combined with
the bitwise-OR operator (I):

Value Meaning

_ VM_EMS Use expanded memory

_ V~XMS Use extended memory

_ VM_DISK Use disk space

_ V~ALLSWAP (_ V~EMS 1_ VM_XMS 1_ V~DISK)

If not all of the specified forms of storage are available, the virtual memory
manager uses what is available.

846 _ vheapinit

Return Value

Compatibility

See Also

Example

After the program is done using virtual memory, it must call_ vheapterm to termi
nate the virtual memory manager. A program can contain multiple pairs of
_ vheapinit L vheapterm calls.

Warningl If the program terminates without a call to _ vheapterm, various system
memory resources may not be available to subsequent programs.

To specify that no minimum amount of memory is required for installation of the
virtual memory manager and to use all available DOS memory in the virtual heap
and all auxiliary storage, use the following command:

if(_vheapinit(0, _VM_ALLDOS, _VM_ALLSWAP) == 0)
/* Error */

The _ vheapinit function returns a nonzero value if the virtual memory manager
was successfully initialized. Otherwise, it returns O.

Standards: None

16-Bit: DOS

32-Bit: None

_vheapterm

See the example for _ vmalloc.

Description

Remarks

Return Value

Compatibility

See Also

Example

_ vheapterm 847

_vheapterm
Terminates the virtual memory manager.

#include <vmemory.h>

void __ far _ vheapterm(void);

The _ vheapterm function terminates the virtual memory manager and releases all
resources that it used.

Warning! If the program terminates without a call to _ vheapterm, various system
memory resources may not be available to subsequent programs.

If the virtual memory manager has not been initialized or has already been termi
nated when _ vheapterm is called, the function returns immediately.

None.

Standards: None

16-Bit: DOS

32-Bit: None

_vheapinit

See the example for _ vmalloc.

848 vload

Description

Remarks

Return Value

Compatibility

See Also

vload
Loads a virtual memory block into DOS memory.

#include <vmemory.h>

void __ far * __ far _ vload(_ vmhmL t handle, int dirty);

handle

dirty

Handle to previously allocated virtual memory
block

Flag indicating whether the block should be writ
ten out or discarded when swapping occurs

The _ vload function loads a virtual memory block into DOS memory and returns
a far pointer to it. The argument handle points to a virtual memory block pre
viously allocated through a call to _ vmalloc or _ vrealloc.

The block of memory is not locked and may be swapped out if the virtual memory
manager needs the memory. Consequently, the pointer returned by _ vload is valid
only until the next call to the virtual memory manager.

The dirty flag indicates whether the block of memory should be written out or
discarded when swapping occurs. It can have one of the following values:

Value

_~CLEAN

_~DIRTY

Meaning

Discard contents of block when swapping occurs

Write contents of block to auxiliary memory when swapping
occurs

The _ vload function returns a far pointer to DOS memory if the virtual memory
block is successfully loaded. If insufficient DOS memory is available, _ vload
returns NULL.

Standards: None

16-Bit: DOS

32-Bit: None

_ vlock, _ vmalloc, _ vunlock

Example

vload 849

1* VLOAD.C: This program loads a block of virtual memory with _vload,
* writes to it, and loads in a new block. It then reloads the first block
* and verifies that its contents haven't changed.
*1

#include <stdio.h>
#include <stdlib.h>
#include <vmemory.h>

void main(void)
{

int i, flag;
_vmhnd_t handle1,

handle2;
int far *buffer1;
int __ far *buffer2;

if (!_vheapinit(0, _VM_ALLDDS, _VM_XMS I _VM_EMS))
{

printf("Could not initialize virtual memory manager. \n");
exit(-1);

}

if (handle1 _vmalloc(100 * sizeof(int))) VM_NULL
(handle2 _vmalloc(100 * sizeof(int))) VM NULL

{
_vheapterm();
exit(-1);

printf("Two blocks of virtual memory allocated.\n");

if ((buffer1 = (int far *)_vload(handle1, _VM_DIRTY))
{

}

_ vheapterm() ;
exit(-1);

II
)

NULL)

printf("buffer1 loaded: valid until next call to VM manager.\n");
for (i = 0; i 100; i++) 1* write to buffer1 *1

bufferl[i] d= i;

if ((buffer2 = (int far *)_vload(handle2, VM DIRTY))
{

}

_ vheapterm() ;
exit(-1);

printf("buffer2 loaded. buffer 1 no longer valid.\n");

NULL)

850 vload

Output

}

if ((buffer1 = (int __ far *)_vload(handle1, _VM_CLEAN »
{

}

_ vheapterm();
exit(-1);

printf("buffer1 reloaded.\n");

flag = 0;
for (i = 0; i 100; i++

if (bufferl[i] ! = i
flag 1;

if !flag)
printf("Contents of buffer1 verified.\n");

_vfree(handle1);
_vfree(handle2);
_ vheapterm();
exit (0);

Two blocks of virtual memory allocated.
buffer1 loaded: valid until next call to VM manager.
buffer2 loaded. buffer 1 no longer valid.
buffer1 reloaded.
Contents of buffer! verified.

NULL)

Description

Remarks

Return Value

Compatibility

See Also

vlock 851

vlock
Loads a virtual memory block into DOS memory and locks it.

#include <vmernory.h>

void __ far * __ far _ vlock(_ vrnhmL t handle);

handle Handle to previously allocated virtual memory
block

The _ vlock function loads a virtual memory block into DOS memory, locks it,
and returns a far pointer to it. The argument handle points to a virtual memory
block previously allocated through a call to _ vrnalloc or _ vrealloc.

A locked virtual memory block will not be swapped out until it is unlocked. A vir
tual memory block can be locked up to 255 times. The pointer returned by _ vlock
remains valid until an equal number of unlock operations is performed.

Since DOS memory may be scarce, try to keep the number of blocks locked at one
time to a minimum and use _ vunlock to unlock them as soon as possible.

The _ vlock function returns a far pointer to DOS memory if the virtual memory
block is successfully loaded and locked. If insufficient DOS memory is available,
_ vload returns NULL.

Standards: None

16-Bit: DOS

32-Bit: None

_ vlockcnt, _ vrnalloc, _ vunlock

852 vlock

Example /* VLOCK.C: This program locks a block of virtual memory using _vlock,
* writes to it, loads in a new block with _vload, and then verifies
* that the contents of the locked block are still accessible. It then
* unlocks the block with _vunlock.
*/

#include <stdio.h>
#include <stdlib.h>
#include <vmemory.h>

void main(void)
{

int i, flag;
_vmhnd_t handle1,

handle2;
int far *buffer1;
int __ far *buffer2;

if (!_vheapinit(0, _VM_ALLDOS, _VM_XMS I _VM_EMS))
{

printf("Could not initialize virtual memory manager. \n");
exit(-1);

}

if

{

}

(handle1 = _vmalloc(100 * sizeof(int))) _VM_NULL
(handle2 = _vmalloc(100 * sizeof(int))) == VM NULL

_ vheapterm() ;
exit(-1);

printf("Two blocks of virtual memory allocated.\n");

if ((buffer1 = (int __ far *)_vlock(handle1)) == NULL
{

_ vheapterm() ;
exit(-1);

printf("buffer1 locked: valid until unlocked.\n");
for (i = 0; i 100; i++) II write to buffer1

bufferl[i] = i;

II
)

if ((buffer2 = (int __ far *)_vload(handle2, VM DIRTY))
{

NULL)

}

_ vheapterm();
exit(-1);

Output

}

printf("buffer2 loaded. buffer 1 still valid.\n");

flag = 0;
for (i = 0; i 100; i++

if (bufferl[i] != i
flag = 1;

if ! fl ag)
printf("Contents of bufferl verified.\n");

_vunlock(handlel, VM DIRTY);
_vfree(handlel);
_vfree(handle2);
_ vheapterm() ;
exit(0);

Two blocks of virtual memory allocated.
bufferl locked: valid until unlocked.
buffer2 loaded. buffer 1 still valid.
Contents of bufferl verified.

vlock 853

854 vlockcnt

Description

Remarks

Return Value

vlockcnt
Returns the number of times a virtual memory block was locked.

#include <vmemory.h>

unsigned int __ far _ vlockcnt(_ vmhmLt handle);

handle Handle to previously allocated virtual memory
block

The _ vlockcnt function returns the number of times a virtual memory block has
been locked. The argument handle points to a virtual memory block previously
allocated through a call to _ vmalloc or _ vrealloc. Use the _ vlockcnt function to
ensure that a block is unlocked before it is freed (using _ vfree).

The _ vlockcnt function returns the number of locks held on the specified virtual
memory block.

Compatibility Standards: None

See Also

Example

16-Bit: DOS

32-Bit: None

_ vlock, _ vmalloc, _ vunlock

/* VCNT.C: This program locks a block of virtual memory five times with
* _vlock, and then unlocks it five times with _vunlock, calling
* _vlockcnt after each operation to report the number of locks held.
*/

#include <stdio.h>
#include <stdlib.h>
#include <vmemory.h>

void maine void l
{

int i, count;
_vmhnd_t handle;
int __ far *buffer;

if (!_vheapinit(a, _VM_ALLDOS, _VM_XMS I _VM_EMS l l
{

vlockcnt 855

printf("Could not initialize virtual memory manager. \n" l;
exit(-1 l;

}

}

if ((handle = _vmalloc(11313 * sizeof(intl II == VM NULL
{

}

_ vheapterm(l ;
exit(-1 l;

printf("Block of virtual memory allocated.\n" l;

printf("Locking ... \n" l;
for (i = a; i 5; i++ l
{

}

if ((buffer = (int __ far *l_vlock(handle II
{

}

_ vheapterm(l ;
exit(-1 l;

count = _vlockcnt(handle l;
printf("%d locks held.\n", count l;

printf("Unlocking ... \n" l;
for (i = a; i 5; i++ l
{

count = _vlockcnt(handle l;
printf("%d locks held.\n", count l;

}

_vfree(handle l;
_ vheapterm(l ;
exit(a l;

NULL l

856

Output

vlockcnt

Block of virtual memory allocated.
Locki ng ...
1 locks held.
2 locks held.
3 locks held.
4 locks held.
5 locks held.
Unlocking . ..
4 locks held.
3 locks held.
2 locks held.
1 locks held.
o locks held.

Description

Remarks

Return Value

Compatibility

See Also

vmalloc 857

vmalloc
Allocates a virtual memory block.

#include <vmemory.h>

_ vmhnd_ t __ far _ vmalloc(unsigned long size);

size Bytes to allocate

The _ vmalloc function allocates a virtual memory block of at least size bytes. The
actual size of the allocated block may be larger than size bytes to allow the virtual
memory manager to operate more efficiently; use _ vmsize to find the actual size
of the block.

The value returned by _ vmalloc is a handle that uniquely identifies the virtual
memory block. This value is not an address and cannot be used to access memory
directly. The value must be passed to either the _ vload or _ vlock function to ob
tain a valid address.

The _ vmalloc function returns a handle to the allocated virtual memory block, or
_ V~NULL if insufficient memory is available or if the requested block size is
too large to load into DOS memory.

Standards: None

16-Bit: DOS

32-Bit: None

_ vfree, _ vmsize, _ vrealloc

858 vmalloc

Example /* VMALLOC.C: This program initializes the virtual memory manager with
* _vheapinit and allocates a block of virtual memory with _vmalloc.

Output

* It then frees the memory with _vfree, and terminates the virtual
* memory manager with _vheapterm.
*/

Hinclude <stdio.h>
Hinclude <stdlib.h>
Hinclude <vmemory.h>

void main(void)
{

}

if (!_vheapinit(0, _VM_ALLDOS, _VM_XMS I _VM_EMS))
{

}

printf("Could not initialize virtual memory manager.\n");
exit(-1);

printf("Requesting 100 bytes of virtual memory.\n");
if ((handle = _vmalloc(100 » == _VM_NULL
{

}

_ vheapterm();
exit(-1);

printf("Received block of virtual memory.\n");
_vfree(handle);
_ vheapterm() ;
exit(0);

Requesting 100 bytes of virtual memory.
Received block of virtual memory.

Description

Remarks

Return Value

Compatibility

See Also

Example

vrnsize 859

vrnsize
Returns the size of a virtual memory block.

#include <vrnernory.h>

unsigned long __ far _ vrnsize(_ vrnhncL t handle):

handle Handle to previously allocated virtual memory
block

The _ vrnsize function returns the size, in bytes, of a virtual memory block. The
argument handle points to a virtual memory block previously allocated through a
call to _ vrnalloc or _ vrealloc. The size returned may be larger than the size re
quested in the call to _ vrnalloc or _ vrealloc.

The _ vrnsize function returns the size (in bytes) of the specified virtual memory
block as an unsigned long.

Standards: None

16-Bit: DOS

32-Bit: None

_vrnalloc

See the example for _ vrealloc.

860 vrealloc

Description

Remarks

Return Value

Compatibility

See Also

vrealloc
Reallocates a virtual memory block.

#include <vmemory.h>

_ vmhnL t __ far _ vrealloc(_ vmhnL t handle, unsigned long size);

handle

size

Handle to previously allocated virtual memory
block

New size in bytes

The _ vrealloc function changes the size of a virtual memory block. If handle is
_ V~NULL, _ vrealloc behaves in the same way as _ vmalloc and allocates a
new block of size bytes. If handle is not _ V~NULL, it must point to a virtual
memory block previously allocated through a call to _ vmalloc or _ vrealloc.

The size argument gives the new size of the block, in bytes. The size of the block
may be larger than size bytes to allow the virtual memory manager to operate
more efficiently; use _ vmsize to find the actual size of the block. The contents of
the block are unchanged up to the shorter of the new and old sizes, although the
new block may be in a different location.

The _ vrealloc functions returns a handle to the reallocated (and possibly moved)
virtual memory block.

The return value is _ ~NULL if the size specified is zero and the handle argu
ment is not _ V~NULL. In this case, the original block is freed.

The return value is also _ V~ NULL if there is not enough available memory to
expand the block to the requested size, if the requested block size is too large to
load into DOS memory, or if the given handle is still locked. In these cases, the
original block is still valid.

Standards: None

l6-Bit: DOS

32-Bit: None

_ vfree, _ vmalloc, _ vmsize

Example

Output

vrealloc 861

/* VRSIZE.C: This program allocates a block of virtual memory with
* _vmalloc and uses _vmsize to display the size of that block. Next,
* it uses _vrealloc to expand the amount of virtual memory and calls
* vmsize again to display the new amount of memory allocated.
*/

#include <stdio.h>
#include <stdlib.h>
#include <vmemory.h>

void maine void)
{

}

vmhnd_t handle;
unsigned long block_size;

if (!_vheapinit(0, _VM_ALLDOS, _VM_XMS I VM_EMS»
{

}

printf("Could not initialize virtual memory manager.\n");
exit(-1);

printf("Requesting 100 bytes of virtual memory.\n");
if ((handle = _vmalloc(100 » == _VM_NULL)
{

}

_ vheapterm() ;
exit(-1);

block_size = _vmsize(handle);
printf("Received %d bytes of virtual memory.\n", block_size);

printf("Resizing block to 200 bytes.\n");
if ((handle = _vrealloc(handle, 200 » VM_NULL
{

}

_ vheapterm() ;
exit(-1);

block_size = _vmsize(handle);
printf("Block resized to %d bytes.\n", block size);

_vfree(handle);
vheapterm();

exit(0);

Requesting 100 bytes of virtual memory.
Received 100 bytes of virtual memory.
Resizing block to 200 bytes.
Block resized to 200 bytes.

862 vunlock

Description

Remarks

Return Value

Compatibility

See Also

Example

vunlock
Unlocks a virtual memory block.

#include <vmemory.h>

void __ far _ vunlock(_ vmhnd_ t handle, int dirty);

handle

dirty

Handle to previously allocated virtual memory
block

Flag indicating whether block should be written
out or discarded when swapping occurs

The _ vunlock function unlocks a virtual memory block. The argument handle
points to a virtual memory block previously allocated through a call to _ vmalloc
or _ vrealloc and locked through a call to _ vlock.

If multiple locks are held on the virtual memory block, the block's lock count is
decremented by one. If the block's lock count goes to zero, the block can be
swapped out by the virtual memory manager. The pointer returned by _ vlock
when the block was first locked then becomes invalid.

The dirty flag indicates whether the block should be written out or discarded when
swapping occurs. It can have one of the following values:

Value

_~CLEAN

_V~DIRTY

None.

Standards: None

16-Bit: DOS

32-Bit: None

Meaniug

Discard contents of block when swapping occurs

Write contents of block to auxiliary memory when swapping
occurs

_ vlock, _ vlockcnt, _ vmalloc

See the example for _ vlock.

Description

Remarks

Return Value

Compatibility

See Also

wabout 863

wabout
Sets the string that appears in the About dialog box of a QuickWin program.

#include <io.h>

int _ wabout(char *string);

string Pointer to a nUll-terminated string

The _ wabout function sets the string that appears in the About dialog box of a
QuickWin program. This routine is used only in QuickWin programs; it is not part
of the Windows API. For full details about QuickWin, see Chapter 8 of Program
ming Techniques (in the Microsoft C/C++ version 7.0 documentation set).

When the user chooses the About command from the Help menu, a dialog box ap
pears containing the string set with _ wabout. If a QuickWin program does not in
clude a call to _ wabout, information about QuickWin itself is displayed by
default.

The maximum string length is 256 bytes.

If successful, _ wabout returns O. A nonzero return value indicates an error.

Standards: None

16-Bit: QWIN

32-Bit: None

_fwopen, _ wclose, _ wgetexit, _ wgetfocus, _ wgetscreenbuf, _ wgetsize,
_ wmenuclick, _ wopen, _ wsetexit, _ wsetfocus, _ wsetscreenbuf, _ wsetsize,
_wyield

864 wabout

Example /* WABOUT.C - Demonstrate setting the About dialog box
* string with wabout
*/

#include <stdio.h>
#include <io.h>

char string[512];

void maine void
{

}

int nRes;

for (; ;
{

}

printf("\nEnter the About string: ");
scanf("%s", string);
printf("\nAbout string = %s\n", string);

printf("Setting about string ... ");
nRes = _wabout(string);
printf("\n_wabout result = %i\n", nRes);

printf("\nTry 'About' in the Help menu\n");

Description

Remarks

Return Value

wclose 865

wclose
Closes a QuickWin window's file handle.

#include <io.h>

int _ wclose(int wfh, int persist);

wfh

persist

File handle to a QuickWin window

Flag indicating whether the window stays on the
screen after closing

The _ wclose function closes a QuickWin window. The window must have been
previously opened with the QuickWin function _ wopen. This routine is used only
in QuickWin programs; it is not part of the Windows API. For full details about
QuickWin, see Chapter 8 of Programming Techniques (in the Microsoft C/C++
version 7.0 documentation set).

To close a window opened with _ wopen, pass its file handle to _ wclose. To close
a window opened with _fwopen, call the STDIO.H function fclose.

The persist flag can have one of the following values:

Value

_ WINNOPERSIST

_ WINPERSIST

Meaning

Erase the closed window

Leave the window on the screen

If the window remains on the screen, another _ wclose call to the same file handle
with _ WINNOPERSIST removes it. While the window remains visible, the user
can copy and paste text in it, choose QuickWin menus, and operate the window's
scroll bars.

Regardless of which persist option is used, the window's file handle is closed to
all further I/O. If a window is opened with the same title as a window closed with
persistence, it will be a different window. Windows closed with persistence count
against the total number of open windows (20 by default).

If successful, _ wclose returns O. A return value of -1 indicates an error; errno is
set to EBADF, indicating an invalid file-handle argument.

866 wclose

Compatibility Standards: None

See Also

Example

16-Bit: QWIN

32-Bit: None

_fwopen, _ wabout, _ wgetexit, _ wgetfocus, _ wgetscreenbuf, _ wgetsize,
_ wmenuclick, _ wopen, _ wsetexit, _ wsetfocus, _ wsetscreenbuf, _ wsetsize,
_wyield

1* WCLOSE.C - Demonstrate closing QuickWin windows *1

Iii ncl ude <fcntl. h>
#include <stdio.h>
#include <io.h>

#define PERSISTFLAG WINNOPERSIST
#define OPENFLAGS 0 RDWR

void maine void
{

}

int wfh;
i nt n Res;

1* File handle for window *1
1* Window write results *1

int wc; 1* Window closure results *1
struct _wopeninfo wininfo; 1* Open information *1

1* Set up window open information *1
wininfo._version = _WINVER;
wininfo._title = "Window Closing";
wininfo._bufsize = _WINBUFDEF;

1* Open a window with _wopen *1
wfh = _wopen(&wininfo, NULL, OPENFLAGS);
if(wfh == -1)
{

printf("***ERROR: On _wopen\n");
exit(-1);

1* Write in the window *1
nRes = write(wfh, "Windows Everywhere!\n", 20);

1* Close the window with wclose *1
we = _welose(wfh, PERSISTFLAG);

ex it (0);

Description

Remarks

Return Value

wcstombs, _ fwcstombs 867

wcstombs, fwcstombs
Convert a sequence of wide characters to a corresponding sequence of multibyte
characters.

#include <stdlib.h>

size_ t wcstombs(char *mbstr, const wchar_ t *wcstr, SiZL t count);

SiZLt __ far _fwcstombs(char __ far *mbstr, const wchar_t __ far *wcstr,
SiZL t count);

mbstr

wcstr

count

The address of a sequence of multibyte characters

The address of a sequence of wide characters

The number of bytes to convert

The wcstombs function converts count or fewer wide characters pointed to by
wcstr to the corresponding multibyte characters and stores the results in the mbstr
array.

If wcstombs encounters the wide-character null character (V\O') either before or
when count occurs, it converts it to the multibyte null character (a 16-bit 0) and
stops. Thus, the multibyte character string at mbstr is null-terminated only if
wcstombs encounters a wide-character null character during conversion. If the
sequences pointed to by wcstr and mbstr overlap, the behavior of wcstombs is
undefined.

The _fwcstombs function is a model-independent (large-model) form of the
wcstombs function.

If either wcstombs or _fwcstombs successfully converts the multibyte string, it re
turns the number of converted multi byte characters, excluding the wide-character
null character. If either function encounters a wide character that cannot be con
verted to a multibyte character, it returns -1 cast to type size_ t.

868 wcstombs. _ fwcstombs

Compatibility wcstombs

Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fwcstombs

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

See Also mblen, mbstowcs, mbtowc, wctomb, MB_ CUR-MAX, MB_LEN_MAX

Example 1* WCSTOMBS.CPP illustrates the behavior of the wcstombs function *1

Output

#include <stdio.h>
#include <stdlib.h>

void maine void
{

i nt i ;
char *pmbbuf (char *)malloc(MB CUR_MAX);
wchar t *pwcEOL L'\0';
wchar t *pwchello L"Hello, world.";

printf("Convert entire wide-character string:\n");
i = wcstombs(pmbbuf, pwchello, MB_CUR_MAX);
printf("\tCharacters converted: %u\n", i);
printf("\tMultibyte character: %s\n\n", pmbbuf l;

pri ntf("Attempt to convert null character: \n");
i = wcstombs(pmbbuf, pwcEOL, MB_CUR_MAX l;
printf("\tCharacters converted: %u\n", i l;
printf("\tMultibyte character: %s\n\n", pmbbuf l;

Convert entire wide-character string:
Characters converted: 1
Multibyte character: H

Attempt to convert null character:
Characters converted: 0
Multibyte character:

Description

Remarks

Return Value

Compatibility

See Also

wctomb, _fwctomb 869

wctomb, _ fwctomb
Convert a wide character to the corresponding multi byte character.

#include <stdlib.h>

int wctomb(char *mbchar, wchaL t wchar);

int __ far _fwctomb(char __ far *mbchar, wchaL t wchar);

mbchar

wchar

The address of a multi byte character

A wide character

The wctomb function converts its wchar argument to the corresponding multibyte
character and stores the result at mbchar.

The _fwctomb function is a model-independent (large-model) form of the
wctomb function. It can be called from any point in any program.

If either wctomb or _fwctomb converts the wide character to a multibyte
character, it returns the number of bytes-which is never greater than
MB_ CUR_MAX-in the wide character. If wchar is the wide-character null
character (L'\O'), wctomb returns o. If the conversion is not possible in the
current locale, wctomb returns -1.

wctomb

Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_fwctomb

Standards: None

16-Bit: DOS, QWIN, WIN, WINDLL

32-Bit: None

mblen, mbstowcs, mbtowc, wcstombs, MB_CUR_MAX, MB_LEN_MAX

870 wctomb, _ fwctomb

Example /* WCTOMB.CPP illustrates the behavior of the wctomb function */

Output

#include <stdio.h>
#include <stdlib.h>

void main(void)
{

in t i;
wchar_t wc = L'a';
char *pmbnull = NULL;
char *pmb = (char *)malloc(sizeof(char));

printf("Convert a wide character:\n");
i = wctomb(pmb, wc);
printf("\tCharacters converted: %u\n", i);
printf("\tMultibyte character: %.ls\n\n", pmb);

printf(~Attempt to convert when target is NULL:\n");
i = wctomb(pmbnull, wc);
printf("\tCharacters converted: %u\n", i);
printf("\tMultibyte character: %.ls\n", pmbnull);

Convert a wide character:
Characters converted:
Multibyte character: a

Attempt to convert when target is NULL:
Characters converted: 0
Multibyte character: (null)

Description

Remarks

Return Value

Compatibility

See Also

_ wgetexit 871

_wgetexit
Returns a value that indicates how a QuickWin program will behave when the exit
function is called.

#include <io.h>

int _ wgetexit(void);

QuickWin programs can optionally keep their windows on the screen after termi
nation. How a program will behave at exit time depends on its current exit be
havior setting. The _ wgetexit function lets you examine the current exit behavior
setting. This routine is used only in QuickWin programs; it is not part of the
Windows API. For full details about QuickWin, see Chapter 8 of Programming
Techniques (in the Microsoft C/C++ version 7.0 documentation set).

If the companion function _ wsetexit has been called previously, _ wgetexit
returns the value that it set. This can be one of the following values:

Value Meaning

_ WINEXITPROMPT Prompt the user at exit time to determine whether the
windows stay on the screen

_ WINEXITNOPERSIST The windows do not stay on the screen and there is no
prompt to the user

_ WINEXITPERSIST The windows stay on the screen at exit

If _ wsetexit has not been called previously, the _ wgetexit function returns
_ WINEXITPERSIST, the default exit behavior. For a description of how to use
this exit behavior, see _ wsetexit.

If successful, _ wgetexit returns the current exit behavior setting value:
_ WINEXITPROMPT, _ WlNEXITNOPERSIST, or _ WINEXITPERSIST. A
return value of -1 indicates an error.

Standards: None

16-Bit: QWIN

32-Bit: None

_fwopen, _ wabout, _ wclose, _ wgetfocus, _ wgetscreenbuf, _ wgetsize,
_ wmenuclick, _ wopen, _ wsetexit, _ wsetfocus, _ wsetscreenbuf, _ wsetsize,
_wyield

872 _ wgetexit

Example 1* FWOPEN.C - Demonstrate opening QuickWin windows with _fwopen
* Also demonstrate setting and getting exit behavior for QuickWin
*1

f/include <io.h>
f/include <stdio.h>

f/define OPENFLAGS Ow" 1* Access permission *1

void main(void)
{

}

struct _wopeninfo wininfo; 1*
char wintitle[32]="QuickWin "; 1*

Open information *1
Title for window *1

1* FILE ptr to window *1
1* 1/0 result *1

FILE *wp;
int nRes;

1* Set up window info structure for _fwopen *1
wininfo._version = _WINVER;
wininfo._title = wintitle;
wininfo._wbufsize = _WINBUFDEF;

1* Check current 'exit behavior' setting
1* Test should be true, since default is
1* So set new behavior to prompt user *1
if(_wgetexit WINEXITPERSIST)

_wsetexit(_WINEXITPROMPT);

1* Create a new window *1
1* NULL second argument accepts default
wp = _fwopen(&wininfo, NULL, OPENFLAGS
if(wp == NULL)
{

}

printf("***ERROR: _fwopen\n");
exit(-1);

1* Write in the window *1

*1
WINEXITPERSIST *1

size/position *1
);

nRes = fprintf(wp, "Hello, QuickWin!\n");

1* Close the window *1
nRes = fclose(wp);

1* On exiting anywhere, user is prompted
* to keep window on screen or not
*1

exit(til);

Description

Remarks

Return Value

_ wgetfocus 873

_wgeHocus
Gets a file handle to the currently active QuickWin window.

#include <io.h>

int _ wgetfocus(void);

The _ wgetfocus function determines which of a QuickWin program's child (docu
ment) windows is active (has the program's "focus"). The routine returns the file
handle of the active child window. If the entire application is not active, the
routine returns the handle ofthe child window that would be active ifthe applica
tion were active. This routine is used only in QuickWin programs; it is not part of
the Windows API. For full details about QuickWin, see Chapter 8 of Program
ming Techniques (in the Microsoft C/C++ version 7.0 documentation set).

If the active window is a closed child window kept on the screen with the
_ WINPERSIST flag (see _ wclose), _ wgetfocus fails.

If successful, _ wgetfocus returns the file handle ofthe active child window. A re
turn value of -1 indicates an error.

Compatibility Standards: None

See Also

Example

16-Bit:

32-Bit:

QWIN

None

_fwopen, _ wabout, _ wclose, _ wgetexit, _ wgetscreenbuf, _ wgetsize,
_ wmenuclick, _ wopen, _ wsetexit, _ wsetfocus, _ wsetscreenbuf, _ wsetsize,
_wyield

/* WGETFOC.C - Demonstrate testing which QuickWin window is the
* active window with _wgetfocus
*/

ffinclude <io.h>
#include <stdio.h>

#define NUMWINS 4 /* Number of windows */
#define OPENFLAGS "w" /* Access permission */

874 _ wgetfocus

void maine void
{

}

inti,nRes;
int sf, gf; 1* Set/Get focus results *1

1* Array of file pointers *1 FILE *wins[NUMWINSJ;

1* Open NUMWINS windows *1
1* NULL arguments accept default characteristics *1
fore i = 0; i < NUMWINS; i++)
{

}

wins[iJ = _fwopen(NULL, NULL, OPENFLAGS);
if(wins[iJ == NULL)
{

}

printf("***ERROR: On _fwopen If%i\n", i);
exit(-1);

1* Write in each window *1
nRes = fprintf(wins[iJ, "Windows!\n");

1* Tile child windows with _wmenuclick *1
nRes = _wmenuclick(WINTILE);
H(nRes == -1)
{

}

printf("***ERROR: _wmenuclick\n");
exit(-1);

1* Pass the focus from window to window *1
fore i = 0; i < NUMWINS; i++)
{

}

sf = _wsetfocus(_fileno(wins[iJ));
gf = _wgetfocus();
if« sf -1) I I (gf == -1)

{

}

II (gf != _fileno(wins[iJ)))

printf("***ERROR: _wsetfocus/_wgetfocus\n");
exit(-1);

nRes = _fcloseall();

exit(0);

Description

Remarks

Return Value

Compatibility

See Also

_ wgetscreenbuf 875

_ wgetscreenbuf
Gets a QuickWin window's current screen-buffer size.

#include <io.h>

long _ wgetscreenbuf(int wfh);

wfh File handle to a QuickWin window

The _ wgetscreenbuffunction returns the size of a QuickWin window screen buff
er. This routine is used only in QuickWin programs; it is not part of the Windows
API. For full details about QuickWin, see Chapter 8 of Programming Techniques
(in the Microsoft C/C++ version 7.0 documentation set).

Each QuickWin child window has a buffer in which the screen-display text for the
window is stored. The buffer size determines how much text is retained and thus
how much output can be viewed by scrolling back through the window.

By default, the screen-buffer size is 2,048 bytes, but this value can be changed.
See _ wsetscreenbuf.

If successful, the _ wgetscreenbuffunction returns the current screen-buffer size
(in bytes) or the value _ WINBUFINF. (A value of _ WINBUFINF signifies that
the size of the screen buffer is unlimited.) A return value of -1 indicates an error.

Standards: None

16-Bit: QWIN

32-Bit: None

_fwopen, _ wabout, _ wclose, _ wgetexit, _ wgetfocus, _ wgetsize, _ wmenuclick,
_ wopen, _ wsetexit, _ wsetfocus, _ wsetscreenbuf, _ wsetsize, _ wyield

876 _ wgetscreenbuf

Example 1* WGSCRBUF.C - Demonstrate examining the current size of a
* QuickWin window's screen buffer
*1

#include <io.h>
#include <stdio.h>

#define NUMWINS
#define OPENFLAGS

void main(void
{

int nSize;
int nRes;
FILE *wp;

4
"w"

1* Open a window *1

1* Number of windows *1
1* Access permission *1

1* Size of screen buffer *1
1* Write result *1
1* File pointer *1

1* NULL arguments accept default characteristics *1
wp = _fwopen(NULL, NULL, OPENFLAGS);
if(wp == NULL)
{

}

printf("***ERROR:_ fwopen\n");
exit(-1);

1* Get the size of its screen buffer *1
nSize = _wgetscreenbuf(_fileno(wp));
nRes fprintf(wp, "Screen buffer holds %i chars\n", nSize l;

nRes wclose(fileno(wp l, _WINPERSIST l;

exit(0 l;

Description

Remarks

_ wgetsize 877

_wgetsize
Gets a QuickWin window's current size and position on the screen.

#include <io.h>

int _ wgetsize(int wjh, int reqtype, struct _ wsizeinfo *wsize);

wjh

reqtype

wsize

File handle to a QuickWin window

Type of request

Pointer to a _ wsizeinfo structure

The _ wgetsize function returns the size and position of the specified child
window. This routine is used only in QuickWin programs; it is not part of the
Windows API. For full details about QuickWin, see Chapter 8 of Programming
Techniques (in the Microsoft C/C++ version 7.0 documentation set).

The wjh argument is a handle to the window file. Use the manifest constant
_ WINFRAMEHAND as the value of wjh to query the size and position of the
parent frame (client or application window). The maximum size ofthe parent
frame may vary according to the hardware specifications of your terminal.

The reqtype argument is the type of request, which can have one of two values:

Value

_ WINCURRREQ

_WINMAXREQ

Meaning

Return the current size of the window

Return the maximum size that the window can grow to
(which cannot exceed the current size of the parent
frame)

The wsize argument is a pointer to a _ wsizeinfo structure (declared in IO.H) that
returns the size and position information. The structure contains a _ type field that
has one of the following values on return:

Value

_ WINSIZEMIN
_ WINSIZEMAX

_ WINSIZECHAR

Meaning

Window is minimized

Window is maximized

Window is of the size specified in the structure's
remaining members

878 _ wgetsize

Return Value

If the type returned is _ WINSIZECHAR, the _x, _y, _h, and _ w values in the
remainder of the structure specify the coordinates of the upper-left corner and the
height and width of the window (in characters). Size returned always indicates the
"client space" available in the parent frame, which means that it does not include
space occupied by title bars and other parts ofthe window.

If successful, _ wgetsize returns 0 and fills in the _ wsizeinfo structure. A return
value of -1 indicates an error.

Compatibility Standards: None

See Also

Example

16-Bit: QWIN

32-Bit: None'

_fwopen, _ wabout, _ wclose, _ wgetexit, _ wgetfocus, _ wgetscreenbuf,
_ wmenuclick, _ wopen, _ wsetexit, _ wsetfocus, _ wsetscreenbuf, _ wsetsize,
_wyield

1* WGETSIZE.C - Demonstrate getting the
* size of a QuickWin window on the screen
*1

/foinclude <io.h>
#include <stdio.h>

#define OPENFLAGS "w"
#define PERSISTFLAG WINPERSIST

1* Access permission *1
1* Keep on screen *1

void maine void
{

int nRes;
FILE *wp;
struct _wsizeinfo ws;

1* Open a window *1

1* Result *1
1* File pointer *1
1* Size information *1

1* NULL arguments accept default characteristics *1
wp = _fwopen(NULL, NULL, OPENFLAGS l;
if(wp == NULL l
{

}

printf("***ERROR:_fwopen\n" l;
exit(-1 l;

}

1* Get the window's size and screen position *1
ws._version = _WINVER;
nRes = _wgetsize(_fileno(wp), _WINCURRREQ, &ws);
if(nRes == -1)
{

pri ntf("***ERROR: _wgetsize\n") ;
exit(-1) ;

nRes fpri ntf(wp, "Size:\n");

nRes fpri ntf(wp, Upper Left: x %d\n", ws. - x
nRes fpri ntf(wp, y %d\n", ws. -Y
nRes fpri ntf(wp, Width: w %d\n", ws. - w
nRes fpri ntf(wp, Height: h %d\n", ws. h

nRes = _wclose(_fileno(wp), PERSISTFLAG);

exit(0);

_ wgetsize 879

) ;
) ;
) ;
) ;

880 wmenuclick

Description

Remarks

Return Value

Compatibility

See Also

Example

wmenuclick
Chooses a QuickWin menu item.

#include <io.h>

int _ wmenuclick(int menuitem);

menu item Constant specifying which menu command to
execute

The _ wmenuclick function emulates the user choosing a command from the
QuickWin Window menu. This routine is used only in QuickWin programs; it is
not part of the Windows API. For full details about QuickWin, see Chapter 8 of
Programming Techniques (in the Microsoft C/C++ version 7.0 documentation set).

The menu item argument is a manifest constant specifying one of four available
menu commands:

Value

_WINTILE

_ WINCASCADE

_WINARRANGE

_ WINSTATBAR

Meaning

Tile the program's child windows

Cascade the program's child windows

Arrange icons at the bottom of the client window area

Toggle the status bar

These are the only menu commands you can choose. Calling the function with one
of these values performs the menu action.

If successful, _ wmenuclick returns O. A return value of -1 indicates an error.

Standards: None

16-Bit:

32-Bit:

QWIN

None

_fwopen, _ wabout, _ wclose, _ wgetexit, _ wgetfocus, _ wgetscreenbuf,
_ wgetsize, _ wopen, _ wsetexit, _ wsetfocus, _ wsetscreenbuf, _ wsetsize

/* WMENUCLK.C - Demonstrate choosing a menu
* command with the QuickWin _wmenuclick function
*/

/finclude <io.h>
/finclude <stdio.h>

/fdefine NUMWINS 4 1* Number of windows *1
1* Access permission *1 /fdefine OPENFLAGS Ow"

void main(void
{

}

int i, nRes;
int wm; 1* Menu click result *1
int sf, gf; 1* Set/Get focus results *1

1* Array of file pointers *1 FILE *wins[NUMWINS];

1* Open NUMWINS windows *1
1* NULL arguments accept default characteristics *1
for(i = 0; i < NUMWINS; i++)
{

}

wins[i] = _fwopen(NULL, NULL, OPENFLAGS);
if(wins[i] == NULL)
{

printf("***ERROR: On _fwopen /f%i\n",);
exit(-1);

1* Write in each window *1
nRes = fprintf(wins[i], "Windows!\n");

1* Tile child windows with wmenuclick *1
wm wmenuclick(WINTILE);
if(wm == -1)
{

printf("***ERROR: wmenuclick\n");
exit(-1);

1* Pass the focus from window to window *1
for(i = 0; i < NUMWINS; i++)
{

}

sf = _wsetfocus(_fileno(wins[i]));
gf = _wgetfocus();
if((sf -1) II (gf == -1)

{

}

II (gf != _fileno(wins[i])))

printf("***ERROR: _wsetfocus/_wgetfocus\n");
exit(-1);

nRes = _fcloseall();

exit(0);

wmenuclick 881

882 _wopen

Description

Remarks

_wopen
Opens a QuickWin window.

#include <io.h>

int _ wopen(struct _ wopeninfo *wopeninfo,
struct _ wsizeinfo *wsizeinfo, int oflag);

wopeninfo

wsizeinfo

oflag

Pointer to a _ wopeninfo structure

Pointer to a _ wsizeinfo structure

Type of operations allowed

The _ wopen function opens a QuickWin window, returning a file handle to the
window. This routine is used only in QuickWin programs; it is not part of the
Windows API. For full details about QuickWin, see Chapter 8 of Programming
Techniques (in the Microsoft C/C++ version 7.0 documentation set).

The _ wopeninfo and _ wsizeinfo structures, declared in IO.H, are used to pass
window initialization information, including the window's initial size and position
on the screen. You can pass NULL for the _ wsizeinfo argument to accept
QuickWin size and positioning defaults, or you can declare a variable of type
_ wsizeinfo and fill in its fields with initial values. You must declare a variable
of type _ wopeninfo and fill in its fields.

For both the _ wopeninfo and _ wsizeinfo variables, set the _ version field to
_ WINVER, which is defined in IO.H.

For the _ wopeninfo variable, assign a null-terminated string to the _ title field con
taining the desired window title. You can also optionally set the size of the win
dow's screen buffer in the _ wbufsize field. The default is 2,048 bytes, but you can
pass some other number or the value _ WINBUFINF. The value _ WlNBUFINF
imposes no limit on the buffer size.

For the _ wsizeinfo variable, if you choose to pass size information, assign one of
the following values to the _ type field:

Value

_ WINSIZEMIN

_ WINSIZEMAX
_ WINSIZECHAR

Meaning

Minimize the window

Maximize the window

Use character coordinates for the window size

Return Value

_wopen 883

If the type is _ WINSIZECHAR, you must supply the _x, _y, _h, and _ w values
in the remainder of the structure. They specify the upper-left corner and the height
and width of the window (in characters).

The _ wopen function is a low-level 110 call. It accepts the following access flags:
_O_BINARY, _O_RDONLY, _O_RDWR, _0_ TEXT, _0_ WRONLY.

These flags can be combined with the bitwise-OR operator (I). See _open for
additional information about the flags.

Unlike the _ open function, _ wopen does not accept the _ 0_ CREA T,
0 TRUNC, or _O_EXCL flag. Using one of these flags results in an error.

If successful, _ wopen returns a QuickWin file handle. A return value of -1
indicates an error; errno is set to one of the following values:

Value

EINVAL

EMFILE

Meaning

An invalid oflag argument was given

No more file handles available (too many open files)

Compatibility Standards: None

See Also

Example

16-Bit: QWIN

32-Bit: None

_fwopen, _ wabout, _ wciose, _ wgetexit, _ wgetfocus, _ wgetscreenbuf,
_ wgetsize, _ wmenuciick, _ wsetexit, _ wsetfocus, _ wsetscreenbuf, _ wsetsize,
_wyield

1* WDPEN.C - Demonstrate opening a QuiekWin
* window with _wopen
*1

#inelude <fentl.h>
iii nel ude <i o. h>
#inelude <stdio.h>

#define PERSISTFLAG
#define DPENFLAGS

WINNDPERSIST
D RDWR

884 _wopen

void main(void
{

}

int wfh; 1* File handle for window *1
int nRes; 1* Window write results *1
struct _wopeninfo wininfo; 1* Open information *1

1* Set up window open information *1
wininfo._version = _WINVER;
wininfo._title = "Window Closing";
wininfo._wbufsize = _WINBUFDEF;

1* Open a window with _wopen *1
1* NULL second argument accepts default size *1
wfh = _wopen(&wininfo, NULL, OPENFLAGS);
if(wfh == -1)
{

printf("***ERROR: On _wopen\n");
exit(-1);

1* Write in the window *1
nRes = write (wfh, "Windows Everywhere!\n", 20);

1* Close the window with wclose *1
nRes = _wclose(wfh, PERSISTFLAG);

exit(0);

Description

Remarks

Return Value

Compatibility

See Also

_wrapon 885

_wrapon
Controls word wrap.

#include <graph.h>

short __ far _ wrapon(short option);

option Wrap condition

The _ wrapon function controls whether text output with both the _outmem and
the _outtext functions wraps to a new line or is simply clipped when the text out
put reaches the edge of the defined text window. The option argument can be one
of the following manifest constants:

Constant

_GWRAPOFF
_GWRAPON

Meaning

Truncates lines at window border

Wraps lines at window border

Note that this function does not affect the output of presentation-graphics routines
or font routines.

The function returns the previous value of option. There is no error return.

Standards: None

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

None

_ outtext, _ outmem, _ scrolltextwindow, _ settextwindow

886 _ wrapon

Example 1* WRAPON. C *1

Output

#include <conio.h>
#include <graph.h>

void main(void)
{

}

_wrapon(_GWRAPON);
while(Lkbhit())

_outtext("Wrap on! ");
_getch();
_outtext("\n\n");

_wrapon(_GWRAPOFF);
while(!_kbhit())

_outtext("Wrap off! ");
_getch();
_outtext("\n\n");

Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap
on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on!

Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wr
ap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap on! Wrap a
n! Wrap on! Wrap on!

Wrap off! Wrap off! Wrap off! Wrap off! Wrap off! Wrap off! Wrap off! Wrap

Description

Remarks

Return Value

write 887

write
Writes data to a file.

#include <io.h> Required only for function declarations

int _ write(int handle, void *buffer, unsigned int count);

buffer

count

Data to be written

Number of bytes

The _ write function writes count bytes from buffer into the file associated with
handle. The write operation begins at the current position of the file pointer (if
any) associated with the given file. If the file is open for appending, the operation
begins at the current end of the file. After the write operation, the file pointer is in
creased by the number of bytes actually written.

The _ write function returns the number of bytes actually written. The return value
may be positive but less than count (for example, when _ write runs out of disk
space before count bytes are written).

A return value of -1 indicates an error. In this case, errno is set to one of the fol
lowing values:

Value

EBADF

ENOSPC

Meaning

Invalid file handle or file not opened for writing

No space left on device

For 16-bit platforms, if you are writing more than 32K (the maximum size for type
int) to a file, the return value should be of type unsigned int. (See the example
that follows.) However, the maximum number of bytes that can be written to a file
at one time is 65,534, since 65,535 (or OxFFFF) is indistinguishable from -1 and
would return an error.

If the file is opened in text mode, each line-feed character is replaced with a
carriage-return-line-feed pair in the output. The replacement does not affect the
return value.

When writing to files opened in text mode, the _ write function treats a CTRL+Z

character as the logical end-of-file. When writing to a device, _ write treats a
CTRL+Z character in the buffer as an output terminator.

888 write

Compatibility Standards: UNIX

See Also

Example

Output

16-Bit:

32-Bit:

DOS, QWIN, WIN, WIN DLL

DOS32X

Use _ write for compatibility with ANSI naming conventions of non-ANSI func
tions. Use write and link with OLDNAMES.LIB for UNIX compatibility.

fwrite, _open, _read

1* WRITE.C: This program opens a file for output and uses write to
* write some bytes to the file.
*1

/finclude <io.h>
/finclude <stdio.h>
/finclude <stdlib.h>
/fi ncl ude <fcntl. h>
/finclude <sys\types.h>
/finclude <sys\stat.h>

char buffer[] = "This is a test of 'write' function";

void main(void
{

int fh;
unsigned byteswritten;

H((fh = _open("write.o", _O_RDWR I _O_CREAT,
_S_IREAD I _S_IWRITE)) !=-1

{
H« byteswritten _write(fh, buffer, sizeof(buffer))) -1)

perror("Write failed");
else

pri ntf("Wrote %u bytes to fi 1 e\n", byteswritten);

_close(fh);
}

}

Wrote 35 bytes to file

Description

Remarks

Return Value

wsetexit 889

wsetexit
Specifies what a QuickWin application does when it exits (with a call to the exit
function).

#include <io.h>

int _ wsetexit(int exb);

exb Desired exit behavior type

QuickWin programs can optionally keep their windows on the screen after termi
nation. How a program behaves at exit time depends on its current exit behavior
setting. The _ wsetexit function sets the exit behavior setting. This routine is used
only in QuickWin programs; it is not part of the Windows API. For full details
about QuickWin, see Chapter 8 of Programming Techniques (in the Microsoft
C/C++ version 7.0 documentation set).

The _ wsetexit function takes one of three arguments:

Value Meaning

_ WINEXITPROMPT Prompt the user at exit time to determine whether the
windows stay on the screen

_ WINEXITNOPERSIST The windows do not stay on the screen and there is no
prompt to the user

_ WINEXITPERSIST The windows stay on the screen at exit

If _ WINEXITPERSIST is passed, or if _ WINEXITPROMPT is passed and the
user chooses to keep the windows on the screen, the windows stay visible, their
contents can be copied and pasted, and their scroll bars can be used, but the win
dows are closed to further I/O. See _ wclose. The default exit behavior is
_ WINEXITPERSIST if you do not call _ wsetexit.

If successful, _ wsetexit returns O. A return value of -1 indicates an error.

890 wsetexit

Compatibility Standards: None

See Also

Example

16-Bit: QWIN

32-Bit: None

_fwopen, _ wabout, _ wclose, _ wgetexit, _ wgetfocus, _ wgetscreenbuf,
_ wgetsize, _ wmenuclick, _ wopen, _ wsetfocus, _ wsetscreenbuf, _ wsetsize,
_ wyield

1* FWOPEN.C - Demonstrate opening QuickWin windows with _fwopen
* Also demonstrate setting and getting exit behavior for QuickWin
*1

fFinclude <io.h>
fFinclude <stdio.h>

fFdefine OPENFLAGS Ow" 1* Access permission *1

void maine void)
{

struct _wopeninfo wininfo;
char wintitle[32J="QuickWin ";
FILE *wp;
int nRes;

1* Open information *1
1* Title for window *1
1* FILE ptr to window *1
1* I/O result *1

1* Set up window info structure for _fwopen *1
wininfo._version = _WINVER;
wininfo._title = wintitle;
wininfo._wbufsize = _WINBUFDEF;

1* Check current 'exit behavior' setting
1* Test should be true, since default is
1* So set new behavior to prompt user *1
if(_wgetexit WINEXITPERSIST)

_wsetexit(_WINEXITPROMPT);

1* Create a new window *1

*1
WINEXITPERSIST *1

1* NULL second argument accepts default size/position *1
wp = _fwopen(&wininfo, NULL, OPENFLAGS);
if(wp == NULL)
{

}

printf("***ERROR: _fwopen\n");
exit(-1);

1* Write in the window *1
nRes = fprintf(wp, "Hello, QuickWin!\n" I;

1* Close the window *1
nRes = fclose(wp I;

1* On exiting anywhere, user is prompted
* to keep window on screen or not
*1

exit((1 I;

wsetexit 891

892 wsetfocus

Description

Remarks

Return Value

Compatibility

See Also

Example

wsetfocus
Makes a QuickWin window the active (focused) window.

#include <io.h>

int _ wsetfocus(int wfh);

wfh File handle to a QuickWin window

The _ wsetfocus function makes a QuickWin window the active window (sets the
program's focus to the window). This routine is used only in QuickWin programs;
it is not part of the Windows API. For full details about QuickWin, see Chapter 8
of Programming Techniques (in the Microsoft C/C++ version 7.0 documentation
set).

If the application has focus, the window gets focus. If not, the window will get the
focus when the application gets focus.

If the program has other child windows, the focused window moves in front of
them and is highlighted. This does not automatically direct I/O to the window. All
I/O calls specify which window they are directed to by passing a stream pointer or
file handle as an argument.

If successful, _ wsetfocus returns o. A return value of -1 indicates that the focus
failed to change.

Standards: None

16-Bit: QWIN

32-Bit: None

_fwopen, _ wabout, _ wclose, _ wgetexit, _ wgetfocus, _ wgetscreenbuf,
_ wgetsize, _ wmenuclick, _ wopen, _ wsetexit, _ wsetscreenbuf, _ wsetsize,
_wyield

1* WSETFOC.C - Demonstrate making a new QuickWin window the active
* window with _wsetfocus

ffoinclude <io.h>
ffoinclude <stdio.h>

ffodefine NUMWINS 4 1* Number of windows *1
1* Access permission *1 ffodefine OPENFLAGS "w"

void main(void
{

}

inti,nRes;
int sf, gf; 1* Set/Get focus results *1

1* Array of file pointers *1 FILE *wins[NUMWINS];

1* Open NUMWINS windows *1
1* NULL arguments accept default characteristics *1
for(i = 0; i < NUMWINS; i++)
{

}

wins[i] = _fwopen(NULL, NULL, OPENFLAGS);
if(wins[i] == NULL)
{

}

pri ntf("***ERROR: On _ fwopen II%i \n", i);
exit(-1);

1* Write in each window *1
nRes = fprintf(wins[i], "Windows!\n");

1* Tile child windows with wmenuclick *1
wm = _wmenuclick(WINTILE);
if(wm == -1)
{

}

printf("***ERROR: _wmenuclick\n");
exit(-1);

1* Pass the focus from window to window *1
for(i = 0; i < NUMWINS; i++)
{

}

sf = _wsetfocus(_fileno(wins[i]));
gf = _wgetfocus();
if((sf -1) II (gf == -1)

{

}

II (gf !=_fileno(wins[i]»)

printf("***ERROR: _wsetfocus/_wgetfocus\n");
exit(-1);

nRes = _fcloseall();

exit(0);

wsetfocus 893

894 wsetscreenbuf

Description

Remarks

Return Value

Compatibility

See Also

wsetscreenbuf
Sets a QuickWin window's screen-buffer size.

#include <io.h>

int _ wsetscreenbuf(int wjh, long bufsiz);

wjh

bufsiz

File handle to a QuickWin window

Desired size of the window's screen buffer (in
bytes)

The _ wsetscreenbuffunction sets the size of a QuickWin window's screen buffer
to bufsiz bytes. This size determines how much text is retained in the buffer and
thus how much text you can scroll back through. This routine is used only in
QuickWin programs; it is not part of the Windows API. For full details about
QuickWin, see Chapter 8 of Programming Techniques (in the Microsoft C/C++
version 7.0 documentation set).

The bufsiz argument can be specified as a number or as one of the following
values:

Value

_WINBUFDEF

_WINBUFINF

Meaning

Use the default window screen-buffer size (2,048 bytes)

Use a window screen buffer of unlimited size

The buffer size simply limits how big the buffer can become. The buffer is always
allocated dynamically, so that it fits its contents. Specifying _ WINBUFINF puts
no upper limit on buffer size. The buffer may grow within the limits of available
memory.

If successful, _ wsetscrecnbuf returns O. A return value of -1 indicates an error.

Standards: None

16-Bit:

32-Bit:

QWIN

None

_fwopen, _ wabout, _ wclose, _ wgetexit, _ wgetfocus, _ wgetscreenbuf,
_ wgetsize, _ wmenuclick, _ wopen, _ wsetexit, _ wsetfocus, _ wsetsize

Example

wsetscreenbuf 895

1* WSSCRBUF.C - Demonstrate setting the size of a QuickWin window's
* screen buffer
* Note: The size is set here to an amount smaller than the default
* size, but you can set it larger as well
*1

#include <io.h>
#include <stdio.h>

#define NUMWINS
#define OPEN FLAGS

4
"w"

1* Number of windows *1
1* Access permission *1

#define NUMLINES 100 1* Lines of text to write *1

void maine void)
{

i nt i;
int nSize;
int nWinBufSize
int nRes;
FILE *wp;

1500L;

1* Open a window *1

1*
1*
1*
1*
1*

Loop variable *1
Old size of screen buffer *1
New size *1
Result *1
File pointer *1

1* NULL arguments accept default characteristics *1
wp = _fwopen(NULL, NULL, OPENFLAGS);
if(wp == NULL)
{

printf("***ERROR:_fwopen\n");
exit(-1);

1* Get the size of its screen buffer *1
nSize = _wgetscreenbuf(_fileno(wp));
nRes = fprintf(wp, "Screen buffer holds %i chars\n", nSize);

1* Reset the screen buffer size *1
nRes = wsetscreenbuf(fileno(wp), nWinBufSize);

1* Write many lines in the window *1
fore i = 0; i < NUMLINES; i++)
{

nRes = fpri ntf(wp, "Ii Wi ndows !\n", i);
}
nRes fprintf(wp, "\nWhen the program ends, click 'No'\n");
nRes fprintf(wp, "and try using the scroll bars\n");

nRes wclose(_fileno(wp), _WINPERSIST);

ex it (0);

896 wsetsize

Description

Remarks

Return Value

Compatibility

wselsize
Sets the size and screen position of a QuickWin window.

#include <io.h>

int _ wsetsize(int wib, struct _ wsizeinfo *wsize);

wfh

wsize

File handle to a QuickWin window

Pointer to a _ wsizeinfo structure

The _ wsetsize function sets the size and position of a QuickWin window. This
routine is used only in QuickWin programs; it is not part of the Windows API. For
full details about QuickWin, see Chapter 8 of Programming Techniques (in the
Microsoft C/C++ version 7.0 documentation set).

The wsize argument points to a _ wsizeinfo structure (declared in IO.H) containing
the new size and position information. The structure contains a _ type field that
can have one of the following values:

Value

_ WINSIZEMIN
_ WINSIZEMAX
_ WINSIZRESTORE
_ WINSIZECHAR

Meaning

Minimize the window

Maximize the window

Restore a previously minimized window

Use character coordinates for the window size

If the type is _ WINSIZECHAR, you must supply the _x, _y, _h, and _ w values
in the remainder ofthe structure. They specify the upper-left comer and the height
and width of the window (in characters).

If successful, _ wsetsize returns O. A return value of -1 indicates an error.

Standards: None

16-Bit: QWIN

32-Bit: None

See Also

Example

wsetsize 897

_fwopen, _ wabout, _ wciose, _ wgetexit, _ wgetfocus, _ wgetscreenbuf,
_ wgetsize, _ wmenuclick, _ wop en, _ wsetexit, _ wsetfocus, _ wsetscreenbuf,
_wyield

1* WSETSIZE.C - Demonstrate setting the
* size of a OuickWin window on the screen
*1

#include <io.h>
#include <stdio.h>

#define OPENFLAGS "w"
#define PERSISTFLAG WINPERSIST

1* Access permission *1
1* Keep on screen *1

void main(void
{

int nRes;
FILE *wp;
struct wsizeinfo ws;

1* Open a window *1

1* Result *1
1* File pointer *1
1* Size information *1

1* NULL arguments accept default characteristics *1
wp = _fwopen(NULL, NULL, OPENFLAGS);
if(wp == NULL)
{

}

printf("***ERROR:_ fwopen\n");
exit(-1);

1* Minimize the window to an icon *1
ws._version = _WINVER;
ws._type = _WINSIZEMIN;

nRes = wsetsize(fileno(wp), &ws);
if(nRes == -1)
{

}

printf("***ERROR: wsetsize\n");
exit(-1);

nRes wclose(fileno(wp), PERSISTFLAG);

ex it ((1);

898 _ wyield

Description

Remarks

Return Value

Compatibility

See Also

_wvield
Yields processor control from a QuickWin program for Windows queue servicing.

#include <io.h>

void _ wyield(void);

The _ wyield function yields control to Windows in order to give processor time to
other Windows applications. This routine is used only in QuickWin programs; it is
not part of the Windows API. For full details about QuickWin, see Chapter 8 of
Programming Techniques (in the Microsoft C/C++ version 7.0 documentation set).

A Windows application must service its message queue periodically to ensure
smooth appearance and performance. Well-behaved QuickWin applications yield
time to other applications and allow the user to switch tasks without having to wait
for the QuickWin program to complete lengthy processing.

The compiler attempts to issue "yield for queue servicing" calls at appropriate
times. But in some cases a program requires additional yield calls, particularly
during lengthy processing loops. If Windows appears sluggish when running a
QuickWin program, insert _ wyield calls into the program to improve Windows'
responsiveness. Note that when an application is servicing the message queue
(yielding) it can be told to stop so the user can work with another running Win
dows application.

None.

Standards: None

16-Bit: QWIN

32-Bit: None

_fwopen, _ wabout, _ wclose, _ wgetexit, _ wgetfocus, _ wgetscreenbuf,
_ wgetsize, _ wmenuclick, _ wopen, _ wsetexit, _ wsetfocus, _ wsetscreenbuf,
_ wsetsize

Example 1* WYIELD.C - Demonstrate yielding processor time from a
* QuickWin program so that other Windows programs can
* process their message queues; uses _wyield
*1

1finclude <io.h>

void computet int a); 1* Function prototype *1

void main(void)
{

i nt 1;

fort 1 = 0;
{

<= 10000; 1++)

_wyield 899

computet) ; 1* Time-consuming function you supply *1

}

if(1 % 1000)
_wyield();

void computet int a)
{

1* Yield once every 1000 loops *1

1* Intensive computations *1

Index

A
abort function, 76-77
Aborting

abort function, 76-77
assert function, 92-93

abs function, 78-79
Absolute value, calculating, 78-79

access function, 80-81
Accessing variable-argument lists, va_arg, va_end

and va_start functions, 836-839
acos function, 82-83
_acosl function, 82-83
Adding memory to heaps,

_heapadd functions, 406-409
_alloca function, 84-85
Allocating memory

3lloca function, 84-85
arrays, calloc functions, 131-132
blocks

_dos_allocmem function, 183-184
_halloc function, 400-401
malloc functions, 479-482

freeing huge memory blocks, _hfree function,
422-423

heaps, _bheapseg function, 107-109
virtual memory blocks, _ vmalloc function, 857-858

_amblksize variable, 61
Analyzing

pie chart data, _pg_analyzepie function, 552
scatter chart data, _pg_analyzescatter functions,

553-554
series of data, _pg_analyzechart functions, 549-551

ANSI compatibility, x
Appending

characters of strings, stmcat and jstrncat
functions, 765-766

strings, strcat and jstrcat functions, 738-739
_arc function, 86-87
arc w function, 86-87
arc wxy function, 86-87
Arccosines, calculating, acos functions, 82-83

Arcs
determining viewpoint coordinate endpoints,

_getarcinfo function, 344
drawing, _arc functions, 86-87

Arcsines, calculating, asin functions, 90-91
Arctangents, calculating, atan functions, 94-95
Argument lists, variable length, 59
Arguments

floating-point, calculating, fabs and jabsl
functions, 258-259

type checking, x, 8
variable, accessing lists, va_arg, va_end and

va_start functions, 836-839
Arrays

searching, bsearch function, 127-128
sorting, qsort function, 605-606
using huge, witb library functions, 16

asctime function, 88-89
asin functions, 90-91
3sinl function, 90-91
assert function, 92-93
atan function, 94-95
atan2 function, 94-95
3tan21 function, 94-95
_atanl function, 94-95
atexit function, 96-97
atoffunction, 98-100
atoi function, 98-100
atol function, 98-100
_atold function, 98-100

B
Background colors

getting, _getbkcolor function, 345
setting current, _setbkcolor function, 652-653

_bcalloc function, 131-132
_bdosfunction,101-102
Bessel functions, 103-105
_bexpand function, 255-257
_bfree function, 306-308
_bfreeseg function, 106
_bheapadd function, 406-409
_bheapchk function, 410-412
_bheapmin function, 413-414

902 Index

_bheapseg function, 107-109
_bheapset function, 415-417
_bheapwalk function, 418-421
BIOS

calling time and date services,
_bios_timeofday function, 125-126

communications services, _bios_serialcom
function, 122-124

disk services, _bios_disk function, 110-113
equipment-list service, _bios_equiplist function,

114-115
interface services routines, 55
keyboard services, _bios_keybrd function, 116-118
memory-size service, _bios_memsize function, 119
printer services, _bios_printer function, 120-121

_bios_disk function, 110-113
_bios_equiplist function, 114-115
_bios_keybrd function, 116-118
_bios_memsize function, 119
_bios_printer function, 120-121
_bios_serialcom function, 122-124
_bios_timeofday function, 125-126
Bitmaps

getting characters, _pg~etchardef function, 564
setting characters, _p~setchardef function, 573

Bits, rotating
_lrotl and _lrotr functions, 468

_rotl and _rotr functions, 633-634
_bmalloc function, 479-482
Bold type, use of, xiv
Books of interest, xiii
Brackets, double, use of, xv
Braces, document conventions, xv
_brealloc function, 613-615
bsearch function, 127-128
Buffer-manipulation routines (list), 18
Buffers

committing contents to disk, 37
controlling, setting size, setvbuf function, 688--689
moving one to another, memmove and

_fmemmove functions, 510-512
QuickWin, getting screen buffer size,

_wgetscreenbuffunction,875-876
setting to specified character, memset and

_fmemset functions, 513-514
stream control, setbuf function, 654-655
writing to files, _dos_write function, 232-233

Bytes
inputting from port, _inp and _inpw functions, 428
locking, unlocking, _locking function, 460-462

Bytes (continued)

c

outputting at port, _outp and
_outpw functions, 542-544

swapping, _swab function, 801-802

_cabs function, 129-130
3absl function, 129-130
Calculating

absolute value
arguments, abs function, 78-79
complex numbers, _cabs and _cabsl functions,

129-130
floating point arguments, fabs and _fabsl

functions, 258-259
long integers, labs function, 445-446

arccosines, acos functions, 82-83
arcsines, asin functions, 90-91
arctangents, atan functions, 94-95
ceilings of values, ceil and 3eill functions,

133-134
cosines, cos functions, 163-164
exponentials, exp and _expl functions, 253-254
floating-point remainders, fmod and _fmodl

functions, 288-289
floors of values, floor and flood functions

285-286 - ,
hypotenuses, _hypot and _hypotl functions,

424-425
logarithms, log functions, 463-464
square roots, sqrt and _sqrtl functions, 727-728
tangents, tan functions, 805-806
time used by calling process, clock function,

154-155
Calling

BIOS
communications services, _bios_serialcom

function, 122-124
disk services, _bios_disk function, 110-113
equipment-list service, _bios_equiplist function,

114-115
keyboard services, _bios_keybrd function, 116-118
memory-size service, _bios_memsize function, 119
printer services, _bios_printer function, 120-121
time and date services, _bios_timeofday function,

125-126
library routines, 5--6
processes, terminating, exit and _exit functions,

251-252
calloc functions, 131-132

Capital letters, small, document conventions, xv
Case sensitivity, operating systems, 9
ceil function, 133-134
_ceill function, 133-134
_cexit function, 135
_cgets function, 136-137
_chain_intr function, 138-139
Chaining interrupts between handlers, _chain_intr

function, 138-139
Changing

current drives, 3hdir function, 142-143
directories, _chdir function, 140-141
file size, _chsize function, 146-147
file-permission settings, _chmod function, 144-145
font text output orientation

_getgtextvector function, 366
_setgtextvector function, 665

memory
block size, _expand functions, 255-257
segment size, _dos_setblock function, 216-217

Character classification and conversion functions
(list), 19

Character devices, checking, _isatty function, 441
Character sets, scanning strings for characters,

strpbrk and jstrpbrk functions, 776-777
Character strings, getting from console, _cgets

function, 136-137
Character-font functions, 22
Characters

appending from strings, strncat and _fstrncat
functions, 765-766

comparing
from two strings, strncmp and jstrncmp functions,

767-769
in two buffers, case-sensitive, _memicmp and

jmemicmp functions, 506-507
in two buffers, memcmp and

_fmemcmp functions, 500-502
of two strings, _strnicmp and _fstrnicmp functions,

772-773
converting

between uppercase and lowercase, 19
multibyte to wide, mbtowc and _fmbtowc

functions, 491-493
series of wide to multibyte, wcstombs and

jwcstombs functions, 867-868
to uppercase, lowercase, ASCII, 817-819
wide to multibyte, wctomb and _fwctomb

functions, 869-870

Characters (continued)
copying

Index 903

between buffers, memcpy and _fmemcpy
functions, 503-505

from buffers, _memccpy and jmemccpy
functions, 496-497

finding
in buffers, memchr and jmemchr functions,

498-499
in strings, strchr and jstrchr functions, 740-742

formatting and printing to console, 3printf
function, 165-166

getting from console, _getch and ~etche
functions, 348-349

getting pixel bitmaps for specified characters,
_pg~etchardef function, 564

moving to another segment, _movedata function,
525-526

multibyte
converting to wide, mbstowcs and jmbstowcs

functions, 489-490
getting length, determining validity, mblen and

_fmblen functions, 487-488
of a string, initializing to given characters, _stmset

and jstrnset functions, 774-775
pixel bitmaps, setting, _pg_setchardef function, 573
pushing back

last read from console, _ungetch function, 829-830
onto streams, ungetc function, 827-828

reading from streams
fgetc and jgetchar functions, 273-274
getc and getchar functions, 346-347

reversing in strings, _strrev and _fstrrev functions,
780-781

scanning strings
for last occurrence, strrchr and jstrrchr functions,

778-779
for specified character sets, strpbrk and _fstrpbrk

functions, 776-777
setting

buffers to specified, memset and _fmemset
functions, 513-514

characters in strings to, _strset and jstrset
functions, 782-783

testing
for specified conditions, is functions, 437-440
individual, 19

writing
to console, _putch function, 595-596
to streams, fputc and _fputchar functions, 301-302

904 Index

Charts
displaying

pie, _pg3hartpie function, 558-559
series or multiseries, _p!Lchart functions, 555-557

initializing environment, _pg_defaultchart
function, 562-563

presentation-graphics, 30
scatter. See Scatter charts

_chdir function, 140-141
_chdrive function, 142-143
Checking

character device, _isatty function, 441
console for keyboard input, _kbhit function, 444
heaps, _heap set functions, 415--417

Child processes
creating, executing, _spawn functions, 717-722
defined, 51
loading and executing, _exec functions, 246-250

_chmod function, 144-145
Choosing

between functions and macros, 9-11
QuickWin menu items, _wmenuclick function,

880-881
_chsize function, 146-147
Cleanup operations during process, _cexit and

3_exit functions, 135
_clear87 function, 148-149
clearerrfunction,150-151
Clearing

floating-point status word, _clear87 function,
148-149

screen area, _clearscreen function, 152-153
_clearscreen function, 152-153
clock function, 154-155
_close function, 156-157
Closing

files
_close function, 156-157
_dos_close function, 185-186

streams, fclose and _fcloseall functions, 260-261
Colors

background
getting, _getbkcolor function, 345
setting current, _setbkcolor function, 652-653

filling display area with, _floodfill and
_floodfilL w functions, 283-284

getting current text, ~ettextcolor function, 378
getting current, _getcolor function, 350-351
getting pixel values, _getpixel functions, 374-375

Colors (continued)
palettes

See also Palettes
getting, _p!Lgetpalette function, 565-567
remapping, _remapallpalette and _remappalette

functions, 619-623
setting

current text, _settextcolor function, 678-680
current, _setcolor function, 658-659
low-level palette routines, 25
pixel to current, _setpixel functions, 676-677

Commands
executing, system function, 803-804
optional items, xv

_commit function, 158-159
Committing to disk, _dos_commit function,

187-188
Communications services, calling BIOS,

_bios_seria1com function, 122-124
COMMODE.OBJ, 33, 37
Comparing

characters in two buffers
memcmp and jmemcmp functions, 500-502
_memicmp and _fmemicmp functions, 506-507

characters of two strings
strncmp and _fstrncmp functions, 767-769
_strnicmp and _fstrnicmp functions, 772-773

strings
lowercase, _stricmp and _fstricmp functions,

759-760
null-terminated, strcmp and _fstrcmp functions,

743-745
using locale-specific information, strcoll function,

746
Compatibility, 75
Computing

Bessel functions, 103-105
quotients and remainders

from long integers, ldiv and ldiv_t functions,
449--450

of two integer values, div function, 181-182
real numbers from mantissa and exponent, Idexp

and _ldexpl functions, 447--448
Consistency checking of heaps, _heapchk

functions, 410--412
Console

checking for keyboard input, _kbhit function, 444
getting characters from

3gets function, 136-137
_getch and ~etche functions, 348-349

110 routines, 43--44

Console (continued)
putting strings to, _cputs function, 167
reading data from, _cscanf function, 171-172
writing characters to, _putch function, 595-596

_control87 function, 160-162
Controlling

stream buffering, buffer size, setvbuf function,
688-689

word wrap, _wrapon function, 885-886
Converting

between IEEE and MS double values,
_dieeetomsbin and _dmsbintoieee functions,
175

characters to ASCII, lower- or uppercase,
__ toascii, tolower, toupper functions, 817-819

double numbers to strings, _ecvt function, 239-240
floating-point

numbers between IEEE and Microsoft binary
format, jieeetomsbin and _fmsbintoieee
functions, 279

numbers to strings, jcvt function, 262-263
values to strings, _gcvt function, 340-341

integers
long to strings, _ltoa function, 474-475
to strings, _itoa function, 442-443
unsigned long to strings, _ultoa function, 823-824

multibyte to wide characters, mbstowcs and
jmbstowcs functions, 489-490

single multibyte to wide characters, mbtowc and
_fmbtowc functions, 491-493

strings
to double-precision or long-integer values, strtod,

strtol, _strtold and strtoul functions, 790-793
to lowercase, _strlwr and _fstrlwr functions,

763-764
to uppercase, _strupr and _fstrupr functions,

797-798
to values, atof, atoi, atol and _atold functions,

98-100
time

local to calendar, mktime function, 521-522
structures to character strings, asctime function,

88-89
to character strings, ctime function, 173-174
values to structures, gmtime function, 394-395
values with zone correction, localtime function,

458-459
wide to multibyte characters

wcstombs and _fwcstombs functions, 867-868
wctomb and _fwctomb functions, 869-870

Index 905

Coordinates
translating to view, _getviewcoord functions,

386-387
translating views to window coordinates,

_getwindowcoord function, 391
Copying

characters
between buffers, memcpy and _fmemcpy

functions, 503-505
from buffers, _memccpy and _fmemccpy

functions, 496-497
dates to buffers, _strdate function, 751-752
strings, strcpy _fstrcpy functions, 747-748
time to buffers, _strtime function, 788-789

cos function, 163-164
cosh function, 163-164
_coshl function, 163-164
Cosines, calculating, cos functions, 163-164
_cosl function, 163-164
_cprintffunction, 165-166
_cpumode variable, 65
_cputs function, 167
_creat function, 168-170
Creating

directories, _mkdir function, 516-517
environment variables, _putenv function, 597-599
file handles, _dup and _dup2 functions, 236-238
filenames

temporary, _tempnam and tmpnam functions,
809-811

unique, _mktemp function, 518-520
files

_creat function, 168-170
_dos_creat functions, 189-190
temporary, tmpfile function, 815-816

graphics output, 26-27
new child process, _spawn functions, 717-722
path names, _makepath function, 476-478
text windows, _settextwindow function, 687
viewports, _setviewport function, 699-700

_cscanffunction, 171-172
CSTARTUP.BAT,42
ctime function, 173-174
Cursors

setting attributes, _settextcursor function, 681-682
setting toggle for graphics, _displaycursor function,

179-180

906 Index

o
Data

analyzing series of, _pg_analyzechart functions,
549-551

reading from files, _read function, 611-612
Data-conversion routines, 20
Date

copying to buffers, _strdate function, 751-752
getting date file written, _dos_getftime function,

204-206
setting for files, _dos_setftime function, 224-226
system

getting, _dos_getdate function, 196-197
setting, _dos_setdate function, 218-219

daylight variable, 62
Deallocating

memory blocks, free functions, 306-308
virtual memory blocks, _ vfree function, 844

Debugging heap-related problems
_heapchk functions, 410-412
_heapset functions, 415-417
_heapwalk functions, 418-421

Defining locales, setlocale function, 668-669
Deleting files

specified by filename, remove function, 624
specified by path, _unlink function, 831-832

_dieeetomsbin function, 175
difftime function, 176-177
Directories

creating, _mkdir function, 516-517
current

changing, _chdir function, 140-141
getting attributes, _dos_getfileattr function,

202-203
getting path names, _getdcwd function, 356-358
getting, _getcwd function, 354-355

removing, _rmdir function, 629-630
renaming, rename function, 625-626
setting attributes, _dos_setfileattr function, 222-223
subdirectory conventions, 9

Directory-control routines, 20
disable function, 178

Disabling interrupts, _disable function, 178
Disk drives, getting current

_dos_getdrive function, 200~201
_getdrive function, 359

Disk services, calling BIOS, _bios_disk
function, 110-113

Disks, getting information, _dos~etdiskfree
function, 198-199

_displaycursor function, 179-180
Displaying charts

pie, _pg_chartpie function, 558-559
scatter, _pg_chartscatter functions, 560-561
single or multiseries, _pg_chart functions, 555-557

div function, 181-182
Dividing integers, div function, 181-182
_dmsbintoieee function, 175
Document conventions, xiv
DOS

compatibility, xi
defined, xv
interface routines

described, 58
(list), 56-57

system calls
_bdos function, 101-102

intdos function, 433-434
=intdosx function, 435-436

DOS Extender described, xi
_dos_allocmem function, 183-184

dos close function, 185-186
=dos=commit function, 187-188

dos creat function, 189-190
=dos=creatnew function, 189-190
_dosjind function, 191-193
_dosjindfirst function, 191-193

dos findnext function, 191-193
- dos - freemem function, 194-195
=dos=getdate function, 196-197
_dos_getdiskfree function, 198-199
_dos_getdrive function, 200-201
_dos_getfileattr function, 202-203
_dos_getftime function, 204-206
_dos_gettime function, 207-208
_dos~etvect function, 209
_dos_keep function, 210-211
_dos_open function, 212-213

dos read function, 214-215
- dos -setblock function, 216-217
=dos=setdate function, 218-219

dos setdrive function, 220-221
- dos - setfileattr function, 222-223
=dos=setftime function, 224-226
_dos_settime function, 227-228
_dos_setvect function; 229-231
_dos_write function, 232-233

doserrno variable, 63-64
=dosexterr function, 234-235

Drawing
elliptical arcs, _arc functions, 86-87
ellipses, _ellipse functions, 241-242
lines

getting mode, _getwritemode function, 392-393
to points, _lineto functions, 453-454

polygons, _polygon functions, 580-582
rectangles, _rectangle functions, 616-617
wedge-shaped figures, _pie functions, 577-579

Drives
changing current, _chdir function, 142-143
default, setting, _dos_setdrive function, 220-221
getting current

_dos_getdrive function, 200--201
_getdrive function, 359

_dup function, 236-238
_dup2 function, 236-238
Duplicating strings, _strdup functions, 753-754

E
3cvt function, 239-240
_ellipse function, 241-242
_ellipse_w function, 241-242
ellipse wxy function, 241-242
Ellipses, drawing, _ellipse functions, 241-242
Ellipsis, document conventions, xv
Elliptical arcs, drawing, _arc functions, 86-87
_enable function, 243
Enabling interrupts, _enable function, 243
environ variable, 66
Environment

control functions, 49-52
creating variables, _putenv function, 597-599
table, getting value from, getenv function, 360-361
time, setting, _tzset function, 820-822

_eof function, 244-245
errno variable, 63-64
Error handling

critical conditions, _hard functions, 402-405
math

_matherr and _matherrl functions, 483-485
routines, 13

stream I/O, 13
transferring control to handler, _seCnew_handler

functions, 672-675
using, 12-13

Error messages
getting, printing, strerror and _strerror functions,

755-756
printing, perror function, 547-548

Index 907

Errors
getting information, _dosexterr function, 234-235
messages. See Error messages
testing on streams, ferror function, 269-270

_exec functions, 246-250
_execl function, 246-250
_execle function, 246-250
_execlp function, 246-250
_execlpe function, 246-250
Executing

8086 interrupts, accepting segment-register values,
_int86x function, 431-432

8086-processor-family interrupt, _int86 function,
429-430

commands, system function, 803-804
DOS system calls

_intdos function, 433-434
_intdosx function, 435-436

new child process, _spawn functions, 717-722
_execv function, 246-250
Exit

processing function at, atexit and jatexit
functions, 96-97

QuickWin applications, specifying, _ wsetexit
function, 889-891

registering routine to be called at, jonexit
and_onexit functions, 531-532

exit function, 251-252
Exiting QuickWin applications, getting value,

_ wgetexit function, 871-872
cxp function, 253-254
_expand function, 255-257
_expl function, 253-254
Exponential functions, calculating powers,

pow functions, 583-584
Exponentials, calculating, exp and _expl functions,

253-254

F
fabs function, 258-259
_fabsl function, 258-259
far functions, use, 18
jatexit function, 96-97
jcalloc function, 131-132
fclose function, 260-261
jcloseall function, 260-261
_fcvt function, 262-263
jdopen function, 264-266
feof function, 267-268
ferror function, 269-270

908 Index

jexpand function, 255-257
fflush function, 271-272
jfree function, 306-308
jgetchar function, 273-274
fgetpos function, 275-276
fgets function, 273-274, 277-278
_fheapchk function, 410-412
_fheapmin function, 413-414
_fheapset function, 415-417
_fheapwa1k function, 418-421
jieeetomsbin function, 279
File handles

closing QuickWin window's, _wclose function,
865-866

creating, reassigning, _dup and _dup2 functions,
236-238

getting, jileno function, 282
increasing maximum number, 40-41
low-level I/O (list), 40
QuickWin Window, _wgetfocus function,

873-874
predefined, 40

File pointers
defined, 37
getting position

associated with handle, _tell function, 807-808
associated with stream, ftell function, 329-330
current, ftell function, 329-330

moving
associated with handle, _lseek function, 471-473
associated with stream, fseek function, 318-320

reassigning, freopen function, 311-313
repositioning, rewind function, 627-628

File sharing, opening stream with, jsopen
function, 323-325

File streams, opening for QuickWin window,
jwopen function, 335-337

File-access permission, _access function, 80-81
File-handling routines, 21
File-permission settings, changing, _chmod

function, 144-145
File-position indicators, getting from streams,

fgetpos function, 275-276
_filelength function, 280-281
Filenames

creating
temporary, _tempnam and tmpnam functions,

809-811
unique, _mktemp function, 518-520

operating system conventions, 8-9
_fileno function, 282

Files
accessing, permission for, _access function, 80-81
attributes, current, _dos~etfileattr function,

202-203
changing size, _chsize function, 146-147
closing

_close function, 156-157
_dos_close function, 185-186
for I/O, 40

creating
_creat function, 168-170
_dos_creat functions, 189-190

date and time written, _dos_getftime function,
204-206

deleting
specified by filename, remove function, 624
specified by path, _unlink function, 831-832

end-of-file testing, 13
finding, _dosjind functions, 191-193
flushing to disk

_commit function, 158-159
COMMODE. OBI, 33, 37
_dos_commit function, 187-188

_fdopen function 264-266
jopen function, 290-292
handling routines, 21
header. See Header files
include, naming conventions, x
increasing system limit, 42
information about open, jstat function, 326-328
length, jilelength function, 280-281
locking bytes in, _locking function, 460-462
low-level 110, reading and writing data, 39
object. See Object (.OBI) files
opening

described, 39
_dos_open function, 212-213
fopen function, 290-292
for file sharing, _sopen function, 714-716
_open function, 553-556

pointers. See File pointers
reading data from

_dos_open function, 214-215
_read function, 611-612

renaming, rename function, 625-626
searching for files using environment paths,

_searchenv function, 643-644
setting

attributes, _dos_setfileattr function, 222-223
modification time, _utime function, 834-835
permission masks, _umask function, 825-826

Files (continued)
setting (continued)

time, date, _dos_setftime function, 224-226
translation mode, _setmode function, 670-671

startup, modified, 42
status information about, _stat function, 734-735
temporary

creating, tmpfile function, 815-816
removing, _rmtmp function, 631-632

testing for end-of-file, _eof function, 244-245
writing

buffers to, _dos_write function, 232-233
data to, _write function, 887-888

Fill masks
getting current, _getfillmask function, 362-363
setting, _setfillmask function, 660-661

Filling display area with color, _floodfill and
floodfill w functions, 283-284

Finding
characters

in buffers, memchr and _fmemchr functions,
498--499

in strings, strchr and _fstrchr functions, 740-742
files with specified attributes, _dosjind functions,

191-193
first substring, strspn and _fstrspn functions,

784-785
fonts, _setfont function, 662-664
largest memory block size, _memmax function,

508-509
next token in string, strtok and jstrtok functions,

794-796
substrings

strcspn and jstrcspn functions, 749-750
strstr and jstrstr functions, 786-787

Floating point
arguments, calculating absolute value, fabs and

jabsl functions, 258-259
control word, getting and setting, _control87

function, 160-162
numbers

converting between IEEE and Microsoft binary
formats, _fieeetomsbin and jmsbintoieee
functions, 279

converting to strings, jcvt function, 262-263
getting mantissa and exponent, frexp and _frexpl

functions, 314-315
packages, resetting, _fpreset function, 295-298
remainders, calculating, fmod and _fmodl

functions, 288-289

Floating point (continued)
status word

Index 909

getting and clearing, _clear87 function, 148-149
getting, _status87 function, 736-737

support, 14-15
values

converting to strings, _gcvt function, 340-341
splitting into mantissa and exponent, modf and

_modfl functions, 523-524
_floodfill function, 283-284
floodfill w function, 283-284
floor function, 285-286
_floor! function, 285-286
_flushall function, 287
Flushing

files to disks
_commit function, 158-159
COMMODE.OBl, 33, 37
_dos_commit function, 187-188
jdopen function, 264-292
fopen function, 290-292

streams
_flushall function, 287
fflush function, 271-272

jmalloc function, 479-482
jmblen function, 487--488
jmbstowcs function, 489--490
jmbtowc function, 491--493
jmemccpy function, 496--497
jmemchr function, 498--499
jmemcmp function, 500-502
jmemcpy function, 503-505
jmemicmp function, 506-507
jmemmove function, 510-512
_fmemset function, 513-514
fmod function, 288-289
jmode variable, 64
jmodl function, 288-289
_fmsbintoieee function, 279
_fonexit function, 531-532
Fonts

displaying, 28-29
finding single, _setfont function, 662-664
freeing memory used by, _unregisterfonts function,

833
getting characteristics, _getfontinfo function, 364
getting width in pixels, _getgtextextent function,

365
initializing fonts graphics system, _registerfonts

function, 618
library, xii

910 Index

fopen function, 290-292
]P _OFF function, 293-294
_FP _SEG function, 293-294
_fpreset function, 295-298
fprintf function, 299-300
fputc function, 301-302
_fputchar function, 301-302
fputs function, 303
fread function, 304-305
_frealloc function, 613-615
free functions, 306-308
_freect function, 309-310
freopen function, 311-313
frexp function, 314-315
_frexpl function, 314--315
fscanffunction, 316-317
fseek function, 318-320
fsetpos function, 321-322
jsopen function, 323-325
_fstat function, 326-328
_fstrcat function, 738-739
jstrchr function, 740-742
_fstrcmp function, 743-745
jstrcpy function, 747-748
_fstrcspn function, 749-750
jstrdup function, 753-754
_fstricmp function, 759-760
_fstrlen function, 761-762
_fstrlwr function, 763-764
jstrncat function, 765-766
jstrncmp function, 767-769
_fstrncpy function, 770-771
_fstrnicmp function, 772-773
jstrnset function, 774-775
_fstrpbrk function, 776-777
jstrrchr function, 778-779
jstrset function, 782-783
_fstrspn function, 784-785
_fstrstr function, 786-787
_fstrtok function, 794-796
_fstrupr function, 797-798
ftell function, 329-330
jtimefunction,331-332
_fullpath function, 333-334
Function declarations in header files, 7-8
Functions

See also Routines
Bessel, 103-105
BIOS interface (list), 55
buffer-manipulation (list), 18
character classification and conversion (list), 19

Functions (continued)
console and port 110 (list), 43
data-conversion (list), 20
defined, 9
difference from macros, 9-11
directory control (list), 20
DOS interface (list), 56-57
file-handling

(list), 21
using, 21

graphics
analyzing presentation (list), 30
configuring mode and environment (list), 22-23
creating output (list), 26--27
creating text output (list), 27
displaying fonts (list), 28-29
displaying presentation (list), 29-30
low-level palette (list), 25
low-level, character-font (list), 22
presentation (list), 29
presentation, manipulating structures (list), 30-31
setting attributes (list), 25
setting coordinates (list), 23-24
transferring images (list), 28

110
(list), 33-35
predefined stream pointers (list), 36

internationalization (list), 44
low-level 110 (list), 38-39
math

described, 44, 46
(list), 45-46

memory allocation (list), 46-47
process and environment (list), 50-51
QuickWin (list), 53
requiring floating-point support (list), 14
_spawn and _exec forms (list), 52
stack checking (list), 12
string manipulation (list), 54-55
time

current (list), 58-59
variables (list), 62

using huge arrays with, 16
variable-length arguments list (list), 59

_fwcstombs function, 867-868
_fwctomb function, 869-870
jwopen function, 335-337
fwrite function, 338-339

G
~cvt function, 340-341
Generating pseudorandom number, rand function,

609-610
_getactivepage function, 342-343
~etarcinfo function, 344
~etbkcolor function, 345
getc function, 346-347
_getch function, 348-349
getchar function, 346-347
_getche function, 348-349
~etcolor function, 350-351
_getcurrentposition functions, 352-353
_getcwd function, 354-355
_getdcwd function, 356-358
_getdrive function, 359
getenv function, 360-361
_getfillmask function, 362-363
_getfontinfo function, 364
_getgtextextent function, 365
_getgtextvector function, 366
~etimage function, 367-369
~etimage_w function, 367-369
_getimage_wxy function, 367-369
_getlinestyle function, 370-371
_getpid function, 373
~etpixe1 function, 374--375
~etpixeLw function, 374--375
gets function, 376-377
_gettextcolor function, 378
_gettextcursor function, 379
_gettextposition function, 380-381
_gettextwindow function, 382
~etvideoconfig function, 383-385
~etviewcoord function, 386-387
_getviewcoord_w function, 386-387
_getviewcoord_wxy function, 386-387
_getvisualpage function, 388
_getw function, 389-390
~etwindowcoord function, 391
~etwritemode function, 392-393
Global variables

3mblksize, 61-62
_cpumode, 65
daytime, 62
_dosermo, 63-64
environment, 66
erma, 63-64
error codes, 63-64
_fmode,64

Global variables (continued)
locale macros, 65
_osmajor, 65
_osminor, 65
_osmode,65
_osversion, 65
_pgmptr,67
_psp,66-67
sys_errlist, 63-64
sys_nerr, 63-64
timezone, 62
tzname,62
using, 61

Index 911

version of current operating system, 14
gmtime function, 394--395
Graphics

character-font, using, 22
displaying fonts, 28-29
environment, configuring routines, 22
error handling, 13
function call status, returning most recent, ~status

function, 396-399
getting

current fill masks, _getfillmask function,
362-363

output position, _getcurrentposition
functions, 352-353

video configuration information,
~etvideoconfig function, 383-385

image-transfer functions, 28
images

getting memory to store, _imagesize functions,
426-427

storing in buffers, ~etimage functions, 367-369
library, expanded, xiii
low-level

palette routines, 25
using, 22

mode, configuring routines, 22
moving current positions, _moveto functions,

527-528
output functions, 26-27
presentation

analyzing charts, 30
functions, 29, 31
initializing, _P!Unitchart function, 570
manipulating structures, 30-31

redefining viewports, _setviewport function,
699-700

routines, 22-31
selecting palettes, _selectpalette function, 647-649

912 Index

Graphics (continued)
setting

attributes, 25-26
clipping region, _setcliprgn function, 656-657
colors, 25
coordinates, 23-24
cursor toggle, _displaycursor function, 179-180

text output routines, 27-28
_grstatus function, 396-399

H
_halloc function, 400-401
Handling errors. See Error handling
_hard functions, 402-405
_harderr function, 402-405
_hardresume function, 402-405
_hardretn function, 402-405
Header files

contents, use, 5
function declarations, 7-8
including necessary definitions, 6
using, 6-8

_heapadd function, 406-409
_heapchk function, 410-412
_heapmin function, 413-414
Heaps

advantages of using based, 49
allocating, _bheapseg function, 107-109
checking, _heapset functions, 415-417
consistency checks, _heapchk functions, 410-412
far

defined, 48
routines, 48

freeing, _bfreeseg function, 106
debugging

_heapchk functions, 410-412
_heapset functions, 415-417
_heapwalk functions, 418-421

memory granularity variable, 61
minimizing, _heapmin functions, 413-414
near

defined, 48
routines, 48

_heapset function, 415-417
_heapwalk function, 418-421
_hfree function, 422-423
_hypot function, 424-425
Hypotenuses, calculating, _hypot and _hypotl

functions, 424-425
_hypotl function, 424-425

1/0 functions
based heaps, 49
buffering, 33
closing files, 40
committing buffer contents to disk, 37
console, 43-44
increasing system limits, 42
low-level routines, 38-39
near and far heaps, 48-49
opening files, 39
port, 43-44
reading and writing data, 39
reading and writing operations, 37-38
searching and sorting routines (list), 54
stream buffering, 36
system calls, 55
text and binary modes, 32
types, 31
using modified startup files, 42
variable-length argument lists, 59
virtual memory allocation, 60

Identification, getting process, _getpid function,
373

IEEE binary format, converting floating-point
numbers to Microsoft binary formats,
_fieeetomsbin and _fmsbintoieee functions,
279

Images
graphics. See Graphics
retrieving from buffers, _putimage functions,

600-601
storing in buffers, _getimage functions, 367-369

_imagesize function, 426-427
_imagesize_w function, 426-427
_imagesize_wxy function, 426-427
Include files, naming conventions, x
Initializing

characters of strings to given characters, _stmset
and jstmset functions, 774-775

chart environment, _pg_defaultchart function,
562-563

fonts graphics system, _registerfonts function, 618
presentation graphics, _pg_initchart function, 570
virtual memory manager, _ vheapinit function,

845-846
_inp function, 428
Inputting bytes or words from port, _inp and _inpw

functions, 428
_inpw function, 428

Installing terminate-and-stay-resident programs,
_dos_keep function, 210-211

_int86 function, 429-430
_int86x function, 431-432
_intdos function, 433-434
_intdosx function, 435-436
Integers

calculatin¥ absolute value of long integers, labs
functIOn, 445-446

converting
long integers to strings, _ltoa function, 474-475
to strings, _itoa function, 442-443
unsigned long integers to strings, _ultoa function

823-824 '
getting from stream, ~etw function, 389-390
testing values, is functions, 437-440
writing to streams, _putw function, 603-604

Internationalization routines, 44
Interrupt vectors, setting, _dos_setvect function,

229-231
Interrupts

8086
exec~ting and accepting segment-register values,

_mt86x function, 431-432
executing, _int86 function, 429-430

chaining between handlers, _chain_intr function
138-139 '

disabling, _disable function, 178
enabling, _enable function, 243
getting vector values, _dos~etvect function, 209
setting signal handling, signal function 707-711

is functions, 437-440 '
isalnum function, 437-440
isalpha function, 437-440
__ isascii function, 437-440
_isatty function, 441
iscntrl function, 437-440
__ iscsym function, 437-440
__ iscsymffunction, 437-440
Italics, use of, xiv
_itoa function, 442-443

J
jO function, 103-105
jOi function, 103-105
j 1 function, 103-105
j 11 function, 103-105
jn function, 103-105
jnl function, 103-105

Index 913

K
_kbhit function, 444
Keyboard, checking console for input, _kbhit

function, 444

L
labs function, 445-446
ldexp function, 447-448
_ldexpl function, 447-448
ldiv function, 449-450
ldiv_t function, 449-450
_lfind function, 451-452
Libraries

linking, 6
procedures generally, 5-16
routines, calling, 5-6

Library files, use, 5
Library routines

calling, 5-6
file and path names, 8-9

Line drawing
getting mode, _getwritemode function, 392-393
setting logical mode for, _setwritemode function

706 '
to points, _lineto functions, 453-454

Lines
drawing. See Line drawing
getting from streams, gets function, 376-377
getting style, ~etlinestyle function, 370-371
setting style, _setlinestyle function, 667

_lineto function, 453-454
lineto w function, 453-454
Linking libraries, 6
Loading

child process and executing, _exec functions,
246-250

virtual memory block into DOS memory
and locking, _ vlock function, 851-853

virtual memory blocks into DOS memory
_ vload function, 848-850

localeconv function, 455-457
Locales

defining, setlocale function, 668-669
macros, 65
settings, getting information on, localeconv

function, 455-457
localtime function, 458-459
Locking bytes in file, _locking function, 460-462
_locking function, 460-462

914 Index

Locks, returning number held on virtual memory
block,_vlockcntfunction, 854-856

log functions, 463-464
log10 function, 463-464
_loglOl function, 463-464
Logarithms, calculating, log functions, 445-446,

463-464
_logl function, 463-464
long double functions, 465
longjmp function, 466-467
_lro11 function, 468
_lrotr function, 468
_lsearch function, 469-470
_lseek function, 471-473
_ltoa function, 474-475

M
Macros

benefits over functions, 9-11
defined,9
locale, 65

_makepath function, 476-478
malloc functions, 479-482
Masks, file-permission-setting, _umask function,

825-826
Math

error handling, _matherr and _matherrl functions,
483-485

routines, 44, 46
_matherr function, 483-485
_matherrl function, 483-485
__ max function, 486
Maximum, returning larger of two values, __ max

function, 486
MB_ CUR_MAX constant, 65
MB_LEN_MAX constant, 65
mblen function, 487-488
mbstowcs function, 489-490
mbtowc function, 491-493
_memavl function, 494-495
_memccpy function, 496-497
memchr function, 498-499
memcmp function, 500-502
memcpy function, 503-505
_memicmp function, 506-507
_memmax function, 508-509
memmove function, 510-512

Memory
adding to heaps, _heapadd functions, 406-409
arrays

allocating, calloc functions, 131-132
using huge, 16

blocks
allocating, _dos_allocmem function, 183-184
allocating, _halloc function, 400-401
changing size, _expand functions, 255-257
deallocating, free functions, 306-308
deallocating virtual, _ vfree function, 844
finding size of largest, _memmax function,

508-509
loading into DOS memory, _vload function,

848-850
returning size allocated in heap, _msize function,

529-530
virtual, allocating, _vmalloc function, 857-858
virtual, loading into DOS memory and locking,

_vlock function, 851-853
virtual, returning number of locks on, _ vlockcnt

function, 854--856
virtual, returning size of, _ vmsize function, 859
virtual, unlocking, _ vunlock function, 862

changing segment size, _dos_setblock function,
216-217

freeing from fonts, _unregisterfonts function, 833
freeing, _hfree function, 422-423
getting to store images, _imagesize functions,

426-427
heaps, minimizing, _heapmin functions, 413-414
manager. See Memory manager
releasing, _dos_freemem function, 194-195
returning amount available for allocation, _freect

function, 309-310
returning available, _memavl function, 494-495
stacks, getting available, _stackavail function, 733

Memory allocation
See also Memory
controlling heap granularity, _amblksize variable,

61
deallocating

blocks, free functions, 306-308
virtual memory blocks, _ vfree function, 844

freeing memory
from fonts, _unregisterfonts function, 833
from heaps, _bfreeseg function, 106

huge array functions (list), 16
malloc functions, 479-482
_memmax function, 508-509
_msize functions, 529-530

Memory allocation (continued)
releasing memory, _dos_freemem function,

194-195
returning amount available for, _freect function,

309-310
routines, 46, 48
stacks

_alloca function, 84-85
_stackavail function, 733

virtual
blocks, number of times locked, _vlock function,

851-853
blocks, _ vmalloc function, 857-858
functions (list), 60

Memory manager
initializing virtual, _ vheapinit function, 845-846
terminating virtual, _ vheapterm function, 847

memset function, 513-514
__ min function, 515
Minimizing heaps, _heapmin functions, 413-414
Minimum, returning smallest of two values, __ min

function, 515
_mkdir function, 516-517
_mktemp function, 21, 518-520
mktime function, 521-522
modf function, 523-524
_modfl function, 523-524
_movedate function, 525-526
_moveto function, 527-528
_moveto_w function, 527-528
Moving

buffers, memmove and _fmemmove functions,
510-512

characters to another segment, _movedate function,
525-526

file pointers, _1 seek function, 471-473
graphics position, _moveto functions, 527-528
view-coordinate origins, _setvieworg function,

697-698
_msize function, 529-530

N
_ncalloc function, 131-132
_nexpand function, 255-257
_nfrealloc function, 613-615
_nfree function, 306-308
_nheapchk function, 410-412
_nheapmin function, 413-414
_nheapset function, 415-417
_nheapwalk function, 418-421

_nmalloc function, 479-482
_nstrdup function, 753-754
Numbers

Index 915

converting double to strings, _ecvt function,
239-240

o

pseudorandom, generating, rand function, 609-610
real, computing from mantissa and exponent, Idexp

and _ldexpl functions, 447-448

Object (.OBJ) files, linking with library files, 6
_onexit function, 531-532
_open function, 533-536
Opening

file streams for Quick Win windows, _fwopen
function, 335-337

files
_dos_open function, 212-213
fopen function, 290-292
for file sharing, _sopen function, 714-716
_open function, 533-536

QuickWin windows, _wopen function, 882-884
streams with file sharing, _fsopen function,

323-325 .
Operating systems

case sensitivity, 9
file and path names, 8-9
general considerations, 13-14
specifying versions, 65
variable mode, 65

_osmajor variable, 65
_os minor variable, 65
_osmode variable, 65
_osversion variable, 65
_outgtext function, 537-539
_outmem function, 540-541
__ outp function, 542-544
Outputting bytes at port, _outp and _outpw

functions, 542-544
_outpw function, 542-544
_outtext function, 545-546

p
Page numbers

active, setting _setactivepage function, 650-651
current active, getting _getactivepage function,

342-343
current visual, getting, _getvisualpage function, 388

Pages, visual, setting, _setvisualpage function, 701

916 Index

Palettes
getting colors, lines, styles, patterns, _pg_getpalette

function, 565-567
remapping colors, Jemapallpalette and

_remappalette functions, 619-623
resetting to default, _pg_resetpalette function, 571
selecting graphics, _selectpalette function, 647-649
setting values, _pg_setpalette function, 574

Parameters. See Arguments
Parent process defined, 51
Path names

breaking into components, _splitpath function,
723-724

creating, _makepath function, 476--478
delimiters, 9
getting current directory, ~etdcwd function,

356-358
making absolute from relative names, jullpath

function, 333-334
operating system conventions, 8-9

perror function, 547-548
_pg_analyzechartms function, 549-551
_pg_analyzechart function, 549-551
_pg_analyzepie function, 552
_pg_analyzescatter function, 553-554
_pg_analyzescatterms function, 553-554
_pg_chart function, 555-557
_pg_chartms function, 555-557
_pg_chartpie function, 558-559
_pg_chartscatter function, 560-561
_pg_chartscatterms function, 560-561
_pg_defaultchart function, 562-563
_pg_getchardef function, 564
_pg_getpalette function, 565-567
_pg_getstyleset function, 568
_pg_hlabelchart function, 569
_pg_initchart function, 570
_pg_resetpalette function, 571
_pg_resetstyleset function, 572
_pg_setchardef function, 573
_pg_setpalette function, 574
_pg_setstyleset function, 575
pg vlabelchart function, 576
_pgmptr variable, 67
Pie charts

analyzing data series for, _pg_analyzepie function,
552

displaying, _pg_chartpie function, 558-559
_pie function, 577-'-579
Pies, determining viewpoint coordinate endpoints,

_getarcinfo function, 344

_pie_w function, 577-579
_pie_wxy function, 577-579
Pixels

converting coordinates, 23
getting values, _getpixel functions, 374-375
setting to current color, _setpixel functions,

676-677
Pointers

far, setting offsets and segments, _FP _OFF and
_FP _SEG functions, 293-294

file. See File pointers
_polygon functions, 580-582
Polygons, drawing, _polygon functions, 580-582
_polygon_w function, 580-582
_polygon_wxy function, 580-582
Ports, I/O routines, 43--44
Position, getting current and returning as structure,

_getcurrentposition functions, 352-353
pow functions, 583-584
Powers, calculating, pow functions, 583-584
Presentation graphics

displaying, 29-30
functions, xii, 29-31
initializing, _pg_initchart function, 570

printf function, 585-592
Printing

data to stream, fprintf function, 299-300
error information, 63
error messages

perrorfunction, 547-548
strerror and _strerror functions, 755-756

font-based text in graphics mode, _outgtext
function, 537-539

output to streams, printf function, 585-592
text

graphics mode, _outtext function, 545-546
of specified length in graphics mode, _outmem

function, 540-541
to console, _cprintffunction, 165-166

Process control functions, 49-52
Processes

child, loading and executing, _exec functions,
246-250

identification, _getpid function, 373
terminating calling, exit and _exit functions,

251-252
Processing at exit, atexit and _fatexit functions,

96-97

Programs
aborting, assert function, 92-93
executing, sending signal to, raise function,

607-608
saving current state, setjmp function, 666

_psp variable, 66-67
purchar function, 593-594
putc function, 593-594
_putch function, 595-596
_putenv function, 597-599
_putimage function, 600-60 I
putimage w function, 600-601
puts function, 602
Putting strings to the console, _cputs function, 167
_putw function, 603-604

Q
qsort function, 605-606
QuickWin

closing window's file handle, _wclose function,
865-866

functions, xi, 53
menu items, choosing, _ wmenuclick function,

880-881
program exit behavior, _ wgetexit function, 871-872
setting strings for About dialog boxes, _ wabout

function, 863-864
specifying exit behavior of application, _ wsetexit

function, 889-891
windows

activating, _ wsetfocus function, 892-893
getting current screen-buffer size, _ wgetscreenbuf

function, 875-876
getting current size, position, _wgetsize function,

877-879
getting file handles, _wgel[ocus function, 873-874
opening, _ wopen function, 882-884
setting screen buffer size, _ wsetscreenbuf function,

894-895
setting size, screen position, _ wsetsize function,

896-897
yielding processor control for Windows queue

servicing, 898-899
Quotation marks, use of, xv
Quotients, computing, ldiv and ldiv_t functions,

449-450

R
raise function, 607-608
rand function, 609-610

Index 917

Random
number generation, rand function, 609-610
starting point, setting, srand function, 729-730

_read function, 611-612
Reading

characters from streams, getc and getchar
functions, 346-347

console data, _cscanf function, 171-172
file data

_dos_open function, 214-215
_read function, 611-612

formatted data
from input stream, scanf function, 635-639
from strings, sscanf function, 731-732

stream data
fread function, 304-305
fscanf function, 316-317

realloc functions, 613-615
Reallocating memory blocks, realloc functions,

613-615
_rectangle function, 616-617
Rectangles, drawing, _rectangle functions, 616-617
_rectangle_w function, 616-617
rectangle wxy function, 616-617
Register values, getting, _dosexterr function,

234-235
_registerfonts function, 618
Registering routine to be called on exit,

_fonexit and _onexit functions, 531-532
Releasing memory block, _dos_freemem function,

194-195
_remapallpalette function, 619-623
_remappalette function, 619-623
Remapping palette colors, _remapallpalette and

_remappalette functions, 619-623
remove function, 624
Removing

directories, _rmdir function, 629-630
files

remove function, 624
temporary, _rmtmp function, 631-632

rename function, 625-626
Renaming

directories, rename function, 625-626
files, rename function, 625-626

Repositioning file pointers, rewind function,
627-628

Resetting
floating-point packages, _fpreset function, 295-298
palette values, _pg_resetpalette function, 571

918 Index

Resetting (continued)
stream error indicator, clearerr function, 150-151
style set to default, _pg_resetsty1eset function, 572

Restoring stack environment and execution locale,
10ngjmp function, 466-467

Reversing characters in strings, _strrev and
jstrrev functions, 780-781

rewind function, 627-628
_rmdir function, 629-630
_ITlltmp function, 631-632
Rotating bits

_Irot! and _lrotr functions, 468
_rot! and _rotr functions, 633-634

_rot! function, 633-634
_rotr function, 633-634
Routines

s

choosing functions or macros, 9-11
described by category, 17-60
registering to be called on exit, jon exit and

_onexit functions, 531-532

Saving current state of program, setjmp function,
666

scanf function, 635-639
Scanning strings

for characters in specified character sets, strpbrk
and jstrpbrk functions, 776-777

for last occurrence of characters, strrchr and
jstrrchr functions, 778-779

Scatter charts
analyzing data series, _pg_analyzescatter functions,

553-554
displaying, _pg_chartscatter functions, 560-561

Screen area, clearing, _clearscreen function,
152-153

Scrolling text in text window, _scrolltextwindow
function, 640-642

_scrolltextwindow function, 640-642
_searchenv function, 643-644
Searching

and sorting routines (list), 54
arrays

for keys, _lfind function, 451-452
for values, _lsearch function, 469-470
with binary search, bsearch function, 127-128

for files using environment paths, _searchenv
function, 643-644

Segment registers, getting current values, _segread
function, 645-646

_segread function, 645-646
_selectpalette function, 647-649
Sending signal to executing programs,

raise function, 607-608
_seCnew_handler function, 672-675
_setactivepage function, 650-651
_setbkcolor function, 652-653
_seCbnew _handler function, 672-675
setbuf function, 654-655
_setcliprgn function, 656-657
_setcolor function, 658-659
_setfillmask function, 660-661
_seCfnew _handler function, 672-675
_setfont function, 662-664
_setgtextvector function, 665
setjmp function, 666
_setlinestyle function, 667
setlocale function, 668-669
_setmode function, 670-671
_seCnnew _handler function, 672-675
_setpixe1 function, 676-677
setpixel w function, 676-677
_settextcolor function, 678-680
_settextcursor function, 681-682
_settextposition function, 683-684
_settextrows function, 685-686
_settextwindow function, 687
Setting

active page, _setactivepage function, 650-651
attributes of files, directories, _dos_setfileattr

function, 222-223
buffers to specified character, memset and

_fmemset functions, 513-514
characters of strings to character, _strset and

_fstrset functions, 782-783
clipping region for graphics, _setcliprgn function,

656-657
colors

background, _setbkcolor function, 652-653
current, _setcolor function, 658-659
text, _settextcolor function, 678-680

cursor
attributes, _settextcursor function, 681-682
toggle for graphics, _displaycursor function,

179-180
date and time for files, _dos_setftime function,

224-226
default drive, _dos_setdrive function, 220-221
far-pointer offsets and segments, _FP _OFF and

_FP _SEG functions, 293-294

Setting (continued)
file default permission mask, _umask function,

825-826
file translation mode, _setmode function, 670-671
fill masks, _setfillmask function, 660--661
floating point control word, _control87 function,

160--162
interrupt

signal handling, signal function, 707-711
vector, _dos_setvect function, 229-231

line drawing logical mode, _setwritemode function,
706

line styles, _setlinestyle function, 667
locales, setlocale function, 668-669
palette values, _pg_setpalette function, 574
pixel bitmaps for specified characters,

_pg_setchardef function, 573
pixels to current color, _setpixel functions, 676-677
screen rows for text, _settextrows function,

685--686
stream position indicators, fsetpos function,

321-322
styleset, _pg_setstyleset function, 575
system

date, _dos_setdate function, 218-219
time, _dos_settime function, 227-228

text position, _settextposition function, 683-684
video mode, _setvideomode function, 690--694
video modes and rows in text modes,

_setvideomoderows function, 695-696
visual pages, _setvisualpage function, 701

_setvbuf function, 688-689
_setvideomode function, 690-694
_setvideomoderows function, 695--696
_setvieworg function, 697-698
_setviewport function, 699-700
_setvisualpage function, 701
_setwritemode function, 706
signal function, 50, 707-711
Signaling executing programs, raise function,

607--608
Sines, calculating, sin functions, 712-713
_snprintf function, 725-726
_sopen function, 714--716
Sorting, qsort function, 605-606
_spawn functions, 717-722
_spawnl function, 717-722
_spawnle function, 717-722
_spawnlp function, 717-722
_spawnlpe function, 717-722
_spawnv function, 717-722

_spawnve function, 717-722
_spawnvp function, 717-722
_spawnvpe function, 717-722
_splitpath function, 723-724

Index 919

Splitting floating point values into mantissa and
exponent, modf and _modfl functions,
523-524

sprintf function, 725-726
sqrt function, 727-728
_sqrtl function, 727-728
Square roots, calculating, sqrt and _sqrtl functions,

727-728
srand function, 729-730
sscanf function, 731-732
_stackavail function, 733
Stacks

allocating memory on, _alloca function, 84--85
checking on entry, 11-12
getting available size, _stackavail function, 733
restoring environment, longjmp function, 466-467

Standard types
(list), 67-69
using, 61, 69

Starting point, setting random, srand function,
729-730

Startup, modifying CSTARTUP.BAT, 42
_stat function, 734-735
Status information

getting on files, _stat function, 734--735
returning graphics function call, ~rstatus function,

396-399
_status87 function, 736-737
Storing images in buffers, _getimage functions,

367-369
strcat function, 738-739
strchr function, 740-742
strcmp function, 743-745
_strcmpi function, 743-745, 759-760
strcoll function, 746
strcpy function, 747-748
strcspn function, 749-750
_strdate function, 751-752
_strdup functions, 753-754
Stream 1/0

buffering, 36
controlling, setbuf function, 654--655
error handling, 13
error testing, 38
predefined pointers, 35-36
routines, 33-35
transferring data, 37-38

920 Index

Stream pointers
defined, 33
predefined, 35-36

Streams
associating with files, _fdopen function, 264-266
buffer control

setbuf function, 654-655
setvbuf function, 688--689

closing
fclose and jcloseall functions, 260-261
functions, 37

end-of-file testing, feof function, 267-268
flushing

_flushall function, 287
fflush function, 271-272

getting
file handles, _fileno function, 282
file-position indicator, fgetpos function, 275-276
integers, ~etw function, 389-390
lines from, gets function, 376-377
strings from, fgets function, 277-278

increasing maximum number, 40-42
opening

functions, 35
with file sharing, _fsopen function, 323-325

pointers. See Stream pointers
printing

data to, fprintf function, 299-300
formatted output to, printf function, 585-592

pushing characters back onto, ungetc function,
827-828

reading characters from
fgetc and jgetchar functions, 273-274
getc and getchar functions, 346-347

reading data from
fread function, 304-305
fscanffunction, 316-317

resetting error indicator, clearerr function, 150-151
setting position indicator, fsetpos function, 321-322
testing for errors, ferror function, 269-270
writing

characters to, fputc and _fputchar functions,
301-302

characters to, putc and putchar functions, 593-594
data from, fwrite function, 338-339
integers to, _putw function, 603-604
strings to, fputs function, 303

strerrorfunction, 755-756
_strerror function, 755-756
strftime function, 757-758
_stricmp function, 743-745, 759-760

String manipulation routines, 54-55
Strings

appending
characters of, strncat and _fstrncat functions,

765-766
strcat and _fstrcat functions, 738-739

comparing
characters from two, strncmp and _fstrncmp

functions, 767-769
characters of two strings, _strnicmp and _fstrnicmp

functions, 772-773
lowercase, _stricmp and _fstricmp functions,

759-760
strcmp and _fstrcmp functions, 743-745
strcoll function, 746

converting
double numbers to, _ecvt function, 239-240
long integers to, _ltoa function, 474-475
to lowercase, _strlwr and _fstrlwr functions,

763-764
to uppercase, _strnpr and _fstrupr functions,

797-798
converting to values

double, atof function, 98-100
integer, _atold function, 98-100
long double, atoi function, 98-100
long, atol function, 98-100

copying, strcpy and _fstrcpy functions, 747-748
duplicating, _strdup functions, 753-754
finding

characters in, strchr and _fstrchr functions, 740-742
next token in, strtok and _fstrtok functions,

794-796
substrings first, strspn and jstrspn functions,

784-785
substrings in, strcspn and _fstrcspn functions,

749-750
substrings, strstr and _fstrstr functions, 786-787

getting
character strings from console, _cgets function,

136-137
from streams, fgets function, 277-278
length, strlen and _fstrlen functions, 761-762

putting to console, _cputs function, 167
reading formatted data from, sscanf function,

731-732
time, formatting, strftime function, 757-758
transforming based on locale-specific information,

strxfrm function, 799-800

Strings (continued)
writing

formatted data to, sprintf function, 725-726
to output, puts function, 602
to streams, fputs function, 303

strlen function, 761-762
_strlwr function, 763-764
strncat function, 765-766
strncmp function, 767-769
strncpy function, 770-771
_strnicmp function, 772-773
_strnset function, 774-775
strpbrk function, 776-777
strrchr function, 778-779
_strset function, 782-783
strspn function, 784-785
strstr function, 786-787
_strtime function, 788-789
strtod function, 790-793
strtok function, 794-796
strtol function, 790-793
_strtold function, 790-793
strtoul function, 790-793
_strupr function, 797-798
strxfrm function, 799-800
Styleset

getting current array, _pg-zetstyleset function, 568
resetting to default, _pg_resetstyleset function, 572
setting current, _pg_setstyleset function, 575

_swab function, 801-802
Swapping bytes, _swab function, 801-802
sys_errlist variable, 63-64
sys_nerr variable, 63-64
System call routines, 55
System date, getting, _dos_getdate function,

196-197
system function, 803-804
System time, getting

T

_dos_gettime function, 207-208
time function, 812-814

tan functions, 805-806
Tangents, calculating, tan functions, 805-806
tanh function, 805-806
_tanhl function, 805-806
_tanl function, 805-806
_tell function, 807-808
_tempnam function, 809-811

Index 921

Terminate-and-stay-resident programs, installing,
_dos_keep function, 210-211

Terminating
atexit function, 96-97
calling processes, exit and _exit functions, 251-252
virtual memory manager, _ vheapterm function, 847

Testing
end-of-file

_eof function, 244-245
on given stream, 13
on streams, feof function, 267-268

streams for errors, ferror function, 269-270
Text

changing orientation
of font text output, -zetgtextvector function, 366
of output, _setgtextvector function, 665

colors, setting, _settextcolor function, 678-680
creating output, 27-28
current cursor attribute in text video mode,

-zettextcursor function, 379
current position, _gettextposition function, 380-381
font-based, getting width in pixels, _getgtextextent

function, 365
modes, setting number of rows,

_setvideomoderows function, 695-696
printing

font-based in graphics mode, _outgtext function,
537-539

graphics mode, _outtext function, 545-546
specified length in graphics mode, _outrnem

function, 540-541
scrolling in text window, _scrolltextwindow

function, 640-642
setting

position, _settextposition function, 683-684
screen rows, _settextrows function, 685-686

windows
creating, _settextwindow function, 687
getting boundaries, -zettextwindow function, 382

writing
horizontally on screen, _pg_hlabelchart function,

569
vertically on screen, _pg3labelchart function, 576

32-bit targeting, DOS Extender described, xi
Time

calculating calling process, clock function, 154-155
calling BIOS time and date services,

_bios_timeofday function, 125-126
converting

local to calendar, mktime function, 521-522
to character strings, ctime function, 173-174

922 Index

Time (continued)
converting (continued)

values and correcting for zone, localtime function,
458-459

values to structures, gmtime function, 394-395
copying to buffers, _strtime function, 788-789
current, getting, _ftime function, 331-332
environment variables, setting, _tzset function,

820-822
finding difference between two times, difftime

function, 176-177
formatting strings, strftime function, 757-758
functions

described,58-59
(list),58

getting time file written, _dos~etftime function,
204-206

setting
file modification, _utime function, 834-835
for files, _dos_setftime function, 224-226

structures, converting to character strings, asctime
function, 88-89

system
getting, _dos~ettimefunction, 207-208
getting, time function, 812-814
setting, _dos_settime function, 227-228

time function, 812-814
timezone variable, 62
tmpfile function, 815-816
tmpnam function, 809-811
__ toascii function, 817-819
Tokens, finding next in string, strtok and _fstrtok

functions, 794-796
tolower function, 817-819
_toupper function, 817-819
Transferring control to error handler,

_seCnew _handler functions, 672-675
Transforming strings based on locale-specific

information, strxfrm function, 799-800
Triangles, calculating hypotenuse, _hypot and

_hypotl functions, 424-425
TSR programs, installing, _dos_keep function,

210-211
Types, standard. See Standard types
tzname variable, 62
_tzset function, 820-822

u
_ultoa function, 823-824
_umask function, 21, 825-826

Underscore, document conventions, xiv
ungetc function, 827-828
_ungetch function, 829-830
UNIX

case sensitivity, 9
compatibility, ix
naming conventions, 8
path-name delimiters, 9
programming, xi
subdirectory conventions, 9

_unlink function, 831-832
Unlocking virtual memory blocks, _ vunlock

function, 862
_unregisterfonts function, 833
Uppercase

converting strings to, _strupr and _fstrupr
functions, 797-798

use of, xiv
_utime function, 834-835

v
va_arg function, 836-839
va_end function, 836-839
Values

calculating
ceilings, ceil and _ceill functions, 133-134
floors, floor and _flood functions, 285-286

getting
environment table, getenv function, 360-361
register, _dosexterr function, 234-235

returning
maximum, __ max function, 486
smallest of two, __ min function, 515

searching for, _lsearch function, 469-470
Variable-length argument lists, 59
Variables, global. See Global variables
va_start function, 836-839
vfprintf function, 840-843
_ vfree function, 844
_ vheapinit function, 845-846
_ vheapterm function, 847
Video

getting graphics configuration information,
_getvideoconfig function, 383-385

mode setting
_setvideomode function, 690-694
_setvideomoderows function, 695-696

View coordinates
moving origins, _setvieworg function, 697-698
translating to window coordinates,

_getwindowcoord function, 391
translating to, _getviewcoord functions, 386-387

Viewports, creating, _setviewport function,
699-700

Virtual memory allocation functions (list), 60
_ vload function, 848-850
_ vlock function, 851-853
_ vlockcnt function, 854-856
_ vmalloc function, 857-858
_ vmsize function, 859
vprintf function, 840-843
_ vrealloc function, 860-861
_ vsnprintf function, 840-843
vsprintf function, 840-843
_ vunlock function, 862

w
_ wabout function, 863-864
_ wclose function, 865-866
wcstombs function, 867-868
wctomb function, 869-870
Wedges, drawing, _pie functions, 577-579
_wgetexit function, 871-872
_wgetfocus function, 873-874
_ wgetscreenbuf function, 875-876
_wgetsize function, 877-879
Windows

compatibility, xi
coordinates, translating view coordinates to,

~etwindowcoord function, 391
creating text, _settextwindow function, 687
getting boundaries of current text windows,

_gettextwindow function, 382
programs, setting strings for About dialog boxes,

_ wabout function, 863-864
QuickWin

activating, _ wsetfocus function, 892-893
getting current screen buffer size, _ wgetscreenbuf

function, 875-876
getting current size and position, _ wgetsize

Index 923

Windows (continued)
scrolling text in, _scrolltextwindow function,

640-642
setting graphics, _setwindow function, 702-705

_wmenuclick function, 880-881
_ wopen function, 882-884
Word wrap, controlling, _wrapon function,

885-886
Words

inputting from port, _inp and _inpw functions, 428
outputting at port, _outp and _outpw functions,

542-544
wrap controlling, _wrapon function, 885-886

_ wrapon function, 885-886
_write function, 887-888
Writing

characters
to console, _putch function, 595-596
to streams, fputc and _fputchar functions, 301-302
to streams, putc and putchar functions, 593-594

data
to files, _write function, 887-888
to streams, fwrite function, 338-339
to strings, sprintffunction, 725-726

formatted output to argument lists, vfprintf, vprintf
and vsprintf functions, 840-843

integers to streams, _putw function, 603-604
strings

to output, puts function, 602
to streams, fputs function, 303
to the console, _cputs function, 167

text
horizontally, _pg_hlabe1chart function, 569
vertically, _p~vlabe1chart function, 576

_ wsetexit function, 889-891
_ wsetfocus function, 892-893
_ wsetscreenbuf function, 894--895
_ wsetsize function, 896-897
_ wyie1d function, 898-899

x
XENIX compatibility, ix

function, 877-879 "
opening file stream for, _fwopen function, 335-337
opening, _ wopen function, 882-884
setting screen-buffer size, _ wsetscreenbuf

function, 894-895
setting size, screen position, _ wsetsize function,

896-897

_yO function, 103-105
_yOl function, 103-105
_y1 function, 103-105
_yll function, 103-105
_yn function, 103-105
_ynl function, 103-105

Microsoft® Product Assistance Request
Microsoft C/C++ Version 7.0

Microsoft Product Support Services
Phone (206) 635-7007

Instructions
If you should need assistance with a Microsoft product, you can contact our Product Support Services group
through the CompuServe® Information Service or by telephone.
CompuServe is an electronic information service accessible by modem. If you have a CompuServe account, log
on to the CompuServe Information Service and type Go Mi crosoft. You will see the Microsoft Connection
menu, from which you can choose the forum that matches the information you need. To set up a CompuServe
account, call CompuServe Customer Service at 800-848-8990 (or (614) 457-8650 in Ohio).
If you want to telephone Product Support Services from the United States, call (206) 635-7007. If you are
calling from another country, please contact the nearest Microsoft subsidiary. (The subsidiaries' phone numbers
are on the preaddressed labels included in the package.) So that we can answer your questions as quickly as
possible, please gather all information that applies to your problem. Note or print out anyon-screen messages
you get when the problem occurs. Have your manual and product disks close at hand and have available all the
information requested on this form when you call.

So that we can assist you more effectively, please be prepared to answer the following questions regarding
your problem, your software, and your hardware.

Diagnosing a Problem
1 Can you reproduce the problem?

Dyes 0 no

Steps to duplicate problem:

2 Does the problem occur with another copy of
the original disk of your Microsoft software?

Dyes 0 no

3 Does the problem occur with another system
(if available)?

Dyes o no

4 If you were running other windowing or
memory-resident software at the same time,
does the problem also occur when you don't
use the other software?

Dyes o no

NameNersion Number

NameNersion Number

5 Which version of the linker are you using? (To
display the version number on your screen, type
LINK at the DOS prompt and press ENTER.) Is
there an older linker in your path?

Version Number

Product

NameNersion Number

Operating System

NameNersion Number

Hardware
Computer

Manufacturer/Model

Capacity (megabyte)

CPU
(e.g .. 80386, 80486)

Note: With DOS, you can run CHKDSK or MEM to
detennine the amount of memory available. With Microsoft
WindowsTM, choose About Program Manager from the Help
menu to detennine the amount of memory available.

Hardware (continued)

• Floppy-disk drives

Number: 01 02

• Hard Disks

Manufacturer/Model

Manufacturer/Model

Peripherals
• Printer/Plotter

Manufacturer/Model

o other

o Serial

Capacity (megabyte)

Capacity (megabyte)

o Parallel

Printer peripherals, such as font cartridges,
downloadable fonts, sheet feeders:

• Mouse

Microsoft Mouse: 0 Bus 0 Serial 0 InPort®

o PS/2® 0 Other

Manufacturer/Model

• Boards

o Add-on RAM board/EMS boards

Manufacturer/ModellTotal Memory

o Graphics-adapter board

Manufacturer/Model

o Other boards installed

Manufacturer/Model

Manufacturer/Model

• Modem

Manufacturer/Model

CD-ROM Player

Manufacturer/Model

Version of Microsoft MS-DOS® CD-ROM
Extensions:

Network
Is your system part of a network? Dyes 0 no

Manufacturer/Model

What software does your network use? What is the
version number of that software?

•••

ADHESIVE REMOVE TO EXPOSE ADHESIVE

EMOVE TO EXPOSE ADHESIVE REMOVE TO EXPOS

ADHESIVE REMOVE TO EXPOSE ADHESIVE

Documentation Feedback - Microsoft® C/C++ Version 7.0
Help us improve our documentation. When you become familiar with this product, complete and return this
form. Comments and suggestions become the property of Microsoft Corporation.

Please answer the following questions about your
programming background and practice.
I. Years of programming experience:

All languages __ C _ C++ __

2. Occupation: ____________ _

3. How long have you used this product?
__ Months

4. What percentage of the time do you compile
and link in one step using CL? __
Separately? __

5. What percentage of the time do you compile
using full optimization (lOx)? __ Using
ANSI compatibility (lZa)? __ What other
options do you use? __________ _

6. What is the primary target operating system for
your programs? DOS __ Windows._
Other _______________ _

Please answer the following questions about the
Microsoft Advisor Help system.

I. Do you use the Microsoft Advisor Help
system? Yes __ No __ Why or why not?

----_._----_._-----

2. Can you find the information you need quickly
and easily? Always __ Most of the time __
Some of the time Seldom

3. What features would make it easier to find the
information you need? ____ _

Please answer the following questions about the
printed documentation.

1. Can you find the information you need quickly
and easily? Always __ Most of the time __
Some of the time __ Seldom __

2. Does the comprehensive index help you find
the information you need? Yes __ No __

3. What features would make it easier to find the
information you need? _________ _

4. Does the organization of the Class Libraries
Reference make it easy to use? Yes __
No __ Comments:

5. Did the C++ tutorial (in C++ Tutorial)
introduce you to C++ programming?
Yes __ No _._ Comments: ______ _

Did the PWB tutorial (in Environment and
Tools) teach you to use the PWB environment?
Yes __ No __ Comments: ______ _

Did the Foundation Class Library tutorial (in
Class Libraries User's Guide) teach you to
program with the Microsoft class libraries?
Yes ___ No __ Comments: _____ _

List additional tutorials you need.

6. Does the Cookbook section of the Class
Libraries User's Guide help you solve specific
programming problems? Yes __ No __
Comments: _____________ _

7. Which chapters of Programming Techniques
are most helpful? ____________ _
Least helpful? ___________ _
What other topics should be covered?

8. Which parts of the printed documentation do
you refer to most frequently?

Least frequently?

How well does the documentation meet your
needs? Rate each from I (does not meet your
needs at all) to 5 (meets your needs perfectly).
__ C Language Reference
__ Class Libraries Reference
__ Class Libraries User's Guide
__ Comprehensive Index and Errors Reference
__ C++ Language Reference
___ c++ Tutorial
___ Environment and Tools
__ Getting Started
__ ProRramming Techniques
__ Run· Time Library Reference
. Source ProfileI' User's Guide
__ Microsoft Advisor Help system

Use the back of this form for additional suggestions and comments. Please note any errors and special
strengths or weaknesses in areas such as programming examples, indexes, and overall organization.

Name

Address

City/State/Zip
(

Phone (home) (work)

May we contact you for additional information about your comments? Yes __ No __

Additional comments:

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.1 08 REDMOND, WA

POSTAGE WILL BE PAID BY ADDRESSEE

MiCl'Osoft e

Microsoft Corporation
Languages-C/C++ 7.0
One Microsoft Way
Redmond WA 98052-9953

11.1 •• I •• I. 11'1111.1 ••• 1.11.1 •• 1.1 ••• 1.1 ••• 11.11 ••• 1

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

".

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

1191 Part No. 24773

