

Microsoft" FORTRAN

Reference Manual

Microsoft Corporation

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft Corporation.
The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or
copied only in accordance with the terms of the agreement. It is against
the law to copy Microsoft FORTRAN on magnetic tape, disk, or any other
medium for any purpose other than the purchaser's personal use.

(c: Copyright Microsoft Corporation, 1981, 1982, 1984, 1985

If you have comments about the software or these manuals, please com­
plete the Software Problem Report at the back of this manual and return
it to Microsoft Corporation.

Microsoft, the Microsoft logo, and MS are registered trademarks of
Microsoft Corporation.

Document Number 8205-330-09
Part Number 005-014-029

Contents

Tables v

Introduction Vll

Reference Manual Organization vii
Descri pti ve Devices VUI

L€arning More About FORTRAN IX

1 Language Overview 1

1.1 Microsoft FORTRAN Metacommands 3
1.2 Programs and Compilable Parts of Programs 4
1.3 Input/Output 5
1.4 Statements 7
1.5 Expressions 8
1.6 Names 9
1.7 Types 10
1.8 Lines 11
1.9 Characters 12

2 Terms and Concepts 13

2.1 Notation 15
2.2 Lines and Statements 16
2.3 Data Types 20
2.4 Names 28
2.5 Expressions 31

3 Statements 41

3.1 Categories of Statements 45
3.2 Statement Directory 51

iii

Contents

4 The 1/0 System 129

4.1
4.2
4.3
4.4
4.5

Records 131
Files 132
I/O Statements
Formatted I/O
List-Directed I/O

140
144

156

5 Programs, Subroutines
and Functions 161

5.1 Main Program 163
5.2 Subroutines 163
5.3 Functions 164
5.4 Arguments 173

6 The Microsoft
FORTRAN Metacommands 1 77

6.1 Overview 179
6.2 Metacommand Directory 180

Appendices 197

A Microsoft FORTRAN and
ANSI Subset FORTRAN 199

B ASCII Character Codes 205
C Structure of External Microsoft

FORTRAN Files 207

Index 209

iv

Tables

Table 1.1 Categories of Statements in FORTRAN 8

Table 2.1 Memory Requirements 21

Table 2.2 Arithmetic Operators 32

Table 2.3 Relational Operators 35

Table 2.4 Logical Operators 36

Table 3.1 Specification Statements 46

Table 3.2 Control Statements 48

Table 3.3 I/O Statements 49

Table 3.4 Conversion of Integer Values in V = E 54

Table 3.5 Conversion of Real Values in V = E 55

Table 3.6 Conversion of Complex Values in V = E 56

Table 3.7 Edit Descriptors 89

Table 4.1 Carriage Control Characters 144

Table 5.1 Intrinsic Functions 166

Table 6.1 The Microsoft FORTRAN Metacommands 179

v

Introduction

This is a language reference manual for the Microsoftf) FOR­
TRAN language system. MSTM-FORTRAN conforms to Subset
FORTRAN, as described in ANSI X3.9-1978. MS-FORTRAN
includes extensions to the subset language and some of the fea­
tures of the full ANSI standard, commonly known as FORTRAN
77. See Appendix A, "Microsoft FORTRAN and ANSI Subset
FORTRAN," for details.

The syntactical rules for using FORTRAN are rigorous and
require the programmer to fully define the characteristics of the
solution to a problem in a series of precise statements. Therefore,
we recommend that you have a general understanding of some
dialect of FORTRAN before using this product. This manual is
not a tutorial; for a list of suggested FORTRAN texts, see "Learn­
ing More About FORTRAN" in this introduction.

Reference Manual Organization

Chapter 1, "Language Overview," is general in scope, providing a
broad picture of the MS-FORTRAN language. Later chapters
discuss the elements of the language in more detail.

Chapter 2, "Terms and Concepts," describes the smaller elements
of the language, from notation to data types to expressions, and
explains program structure.

Chapter 3, "Statements," defines MS-FORTRAN statements,
both executable and nonexecutable.

Chapter 4, "The I/O System," provides additional information
about input and output and the MS-FORTRAN file system.

Chapter 5, "Programs, Subroutines, and Functions," describes
the subroutine structure, including argument passing and intrin­
sic (system-provided) functions.

vii

Microsoft FORTRAN Reference Manual

Chapter 6, "The Microsoft FORTRAN Metacommands," de­
scribes the syntax and use of the metacommands.

Appendix A, "Microsoft FORTRAN and ANSI Subset FOR­
TRAN," describes the differences between MS-FORTRAN and
ANSI Subset FORTRAN.

Appendix B, "ASCII Character Codes," is a table of the entire
ASCII character set.

Appendix C describes the structure of external Microsoft
FORTRAN files.

For information on how to use the MS-FORTRAN Compiler and
the details of your specific version of MS-FORTRAN, see the
Microsoft FORTRAN Compiler User's Guide.

Descriptive Devices

The following descriptive devices are used throughout this man­
ual to emphasize elements of the text. Descriptions of Microsoft
syntax requirements for statements can be found in Chapter 3 of
the Microsoft FORTRAN Reference Manual.

CAPS

Italics

[]

viii

Capitalized text indicates statements, files, or com­
mands. The text is capitalized only to elnphasize
procedures, files, compilands, or objects that the
user may encounter. Microsoft FORTRAN is not
case sensitive. Small capitals indicate that you
must press a key named by the text.

Italics indicate user-supplied data; for example,
filenames, variable names, and array names.

Square brackets indicate that the enclosed entry is
optional (e.g., A[w] indicates that either A or A12 is
valid).

Ellipses indicate that an entry may be repeated as
many times as needed or desired. For example, the
EXTERNAL statement is described as follows:

EXTERNAL name [, name]. ..

The syntactic items denoted by name may be re­
peated any number of times, separated by commas.

Introduction

All other punctuation, such as commas, colons, slash marks,
parentheses, and equal signs, must be entered exactly as shown.

Blanks normally have no significance in the description of MS­
FORTRAN statements. The general rules for blanks, covered in
Section 2.1.2, "Blanks," govern the interpretation of blanks in all
contexts.

Pressing the RETURN (or ENTER) key is assumed at the end of every
line you enter in response to a prompt. Only if this is the only
response required is RETURN shown.

Learning More About FORTRAN

The manuals in this package provide complete reference informa­
tion for your implementation of the MS-FORTRAN Compiler.
They do not, however, teach you how to write programs in FOR­
TRAN. If you are new to FORTRAN or need help in learning to
program, we suggest you read any of the following books:

Agelhoff, R., and Richard Mojena. Applied FORTRAN 77,
Featuring Structured Programming. Wadsworth, 1981.

Ashcroft, J., R.H. Eldridge, R.W. Paulson, and G. A. Wilson.
Programming With FORTRAN 77. Granada, 1981.

Friedman, F. and E. Koffman. Problem Solving and Struc­
tured Programming in FORTRAN. Addison-Wesley, 2nd edi­
tion, 1981.

Wagener, J. L. FORTRAN 77: Principles of Programming.
Wiley, 1980.

ix

Chapter 1
Language OvervieW"

1.1 Microsoft FORTRAN Metacommands 3
1.2 Programs and Compilable

Parts of Programs 4

1.3 Input/Output 5
1.4 Statements 7
1.5 Expressions 8
1.6 Names 9
1.7 Types 10
1.8 Lines 11
1.9 Characters 12

1

This chapter provides a summary description of the elements of
the Microsoft FORTRAN (MS-FORTRAN) language. The re­
maining chapters of the manual provide detailed information on
these elements, from the character set to the metacommands.

1.1 Microsoft FORTRAN Metacommands

The metalanguage is the control language for the MS-FORTRAN
Compiler. Metacommands let you specify options that affect the
overall operation of a compilation. For example, with metacom­
mands you can enable or disable generation of a listing file,
runtime error checking code, or use of MS-FORTRAN features
that are not a part of the subset or full language standard. The
metalanguage consists of commands that appear in your source
code, each on a line of its own and each with a dollar sign ($) in
column one. The metalanguage is a level of language designed to
enhance your use of the MS-FORTRAN Compiler. Although most
implementations of FORTRAN have some type of compiler con­
trol, the Microsoft FORTRAN metacommands are not part of
standard FORTRAN (and hence, not portable). These are the
metacommands currently available:

$DEBUG
$DECMATH
$NODEBUG
$D066
$FLOATCALLS
$NOFLOATCALLS
$INCLUDE
$LARGE
$NOTLARGE
$LINESIZE

$LIST
$NOLIST
$MESSAGE
$PAGE
$PAGESIZE
$STORAGE
$STRICT
$NOTSTRICT
$SUBTITLE
$TITLE

See Chapter 6, "The Microsoft FORTRAN Metacommands," for a
complete discussion of metacommands.

3

Microsoft FORTRAN Reference Manual

1.2 Programs and Compilable
Parts of Programs

The MS-FORTRAN Compiler processes program units. A pro­
gram unit may be a main program, a subroutine, a function or a
block data subprogram. You can compile any of these units
separately and later link them together without having to recom­
pile them as a whole.

4

1. Program

Any program unit that does not have a FUNCTION or
SUBROUTINE statement as its first statement. The first
statement may be a PROGRAM statement, but such a
statement is not required. The execution of a program
always begins with the first executable statement in the
main program. Consequently, there must be one and only
one main program in every executable program.

2. Subroutine

A program unit that can be called from other program
units by a CALL statement. When called, a subroutine
performs the set of actions defined by its executable
statements and then returns control to the statement
immediately following the statement that called it. A sub­
routine does not directly return a value, although values
can be passed back to the calling program unit via argu­
ments or common variables.

3. Function

A program unit referred to in an expression. A function
directly returns a value that is used in the computation of
that expression and in addition may pass back values via
arguments. There are three kinds of functions: external,
intrinsic, and statement. (Statement functions cannot be
com piled separately.)

4. Block Data Subprogram

A program unit that provides initial values for variables
in COMMON blocks. Variables are normally initialized
with DATA statements. Variables in COMMON may not
be initialized anywhere other than in block data sub­
programs.

Language Overview

Subroutines and functions let you develop large structured pro­
grams that can be broken into parts. This is advantageous in the
following situations:

1. If a program is large, breaking it into parts makes it easier
to develop, test, and maintain.

2. If a program is large and recompiling the entire source file
is time consuming, breaking the program into parts saves
compilation time.

3. If you intend to include certain routines in a number of
different programs, you can create a single object file that
contains these routines and then link it to each of the
programs in which the routines are used.

4. If a routine could be implemented in any of several ways,
you might place it in a file and compile it separately.
Then, to improve performance, you can alter the imple­
mentation, or even rewrite the routine in assembly lan­
guage or in MS-Pascal, and the rest of your program will
not need to change.

See Chapter 5, "Programs, Subroutines, and Functions," for a
complete discussion of compilable program units.

1.3 Input/Output

Input is the transfer of data from an external medium or an
internal file to internal storage. The transfer process is called
reading. Output is the transfer of data from internal storage to an
external medium or to an internal file. This process is called
writing.

A number of statements in FORTRAN are provided specifically
for the purpose of such data transfer; some 1/0 statements also
specify that some editing of the data be performed.

In addition to the statements that transfer data, there are several
auxiliary 1/0 statements to manipulate the external medium orto
determine or describe the properties of the connection to the
external medium.

5

Microsoft FORTRAN Reference Manual

The following concepts are also important for understanding the
I/O system:

1. Records

The building blocks of the FORTRAN file system. A
record is a sequence of characters or values. There are
three kinds of records: formatted, unformatted, and
endfile.

2. Files

Sequences of records. Files are either external or internal.

An external file is a file on a device or a device itself. An
internal file is a character variable that serves as the
source or destination of some formatted I/O action.

Files have the following properties:

a. a filename (optional)

b. a file position

c. structure (formatted, unformatted, or binary)

d. access method (sequential or direct)

Although a wide variety of file types are possible, most
applications will need just two: implicitly opened and
explicitly opened external, sequential, formatted files.

See Section 3.2, "Statement Directory," for descriptions of indi­
vidual I/O statements. See Chapter 4, "The I/O System," for a
complete discussion of records, files, and formatted data editing.

6

Language Overview

1.4 Statements

Statements perform a number of functions, such as computing,
storing the results of computations, altering the flow of control,
reading and writing files, and providing information for the com­
piler. Statements in FORTRAN fall into two broad classes: execu­
table and nonexecutable.

An executable statement causes an action to be performed. Non­
executable statements do not in themselves cause operations to be
performed. Instead, they specify, describe, or classify elements of
the program, such as entry points, data, or program units. Table
1.2 describes the functional categories of statements.

7

Microsoft FORTRAN Reference Manual

Table 1.1

Categories of Statements in FORTRAN

Category

Assignment

Comment

Control

DATA

FORMAT

110

Specification

Statement
Function
Program
Unit
Heading

Description

Executable. Assigns a value to a variable or an
array element.

Nonexecutable. Allows comments within pro­
gram code.

Executable. Controls the order of execution of
statements.

Nonexecutable. Assigns initial values to vari­
ables.

Nonexecutable. Provides data editing infor­
mation.

Executable. Specifies sources and destinations
of data transfer, and other facets of 110
operation.

Nonexecutable. Defines the attributes of vari­
ables, arrays, and prof,Tfammerfunction names.
Nonexecutable. Defines a simple, locally used
function.
Nonexecutable. Defines the start of a program
unit and specifies its formal arguments.

See Chapter 3, "Statements," for a complete discussion and a
directory of MS-FORTRAN statements.

1.5 Expressions

An expression is a formula for computing a value. It consists of a
sequence of operands and operators. The operands may contain
function invocations, variables, constants, or even other expres­
sions. The operators specify the actions to be performed on the
operands.

8

Language Overview

In the following expression, plus (+) is an operator and A and B
are operands:

A+B

There are four basic kinds of expressions in FORTRAN:

1. arithmetic expressions

2. character expressions

3. relational expressions

4. logical expressions

Each type of expression takes certain types of operands and uses
a specific set of operators. Evaluation of every expression produ­
ces a value of a specific type.

Expressions are not statements, but may be components of
statements. In the following example, the entire line is a state­
ment; only the portion after the equal sign is an expression:

x = 2.0 /3.0 + A * B

See Section 2.5, "Expressions," for a discussion of expressions in
MS-FORTRAN.

1.6 Names

N ames denote the variables, arrays, functions, or subroutines in
your program, whether defined by you or by the MS-FORTRAN
system. A FORTRAN name consists of a sequence of alphanu­
meric characters. The following restrictions apply:

1. The maximum number of characters in a name is 1320
characters (66 characters per line multiplied by twenty
lines).

2. The initial character must be alphabetic; subsequent
characters must be alphanumeric.

3. Blanks are skipped.

4. Only the first six alphanumeric characters are signifi­
cant; the rest are ignored.

9

Microsoft FORTRAN Reference Manual

With these restrictions regarding the make-up of the name, any
valid seqllence of characters can be used for any FORTRAN
name. There are no reserved names as in other languages.

Sequences of alphabetic characters used as keywords by the MS­
FORTRAN Compiler are not confused with user-defined names.
The compiler recognizes keywords by their context and in no way
restricts the use of user-defined names. Thus, for example, a pro­
gram can have an array named IF, READ, or GOTO, with no
error (as long as it otherwise conforms to the rules that all arrays
must obey). However, use of keywords for user-defined names
often interferes with the readability of a program, so the practice
should be avoided.

See Section 2.4, "Names," for more information on the scope and
use of names in MS-FORTRAN.

1.7 Types

Data in MS-FORTRAN belongs to one of five basic types:

1. integer (INTEGER*2 and INTEGER*4)

2. single precision real (REAL*4 or REAL)

3. double precision real (REAL*8 or DOUBLE PRECISION)

4. logical (LOGICAL*2 and LOGICAL*4)

5. complex (COMPLEX*8 and COMPLEX*16)

6. character (CHARACTER)

Data types can be declared. If not declared, the type of a name is
determined by its first letter (either by default or by an IMPLICIT
statement). A type statement can also include dimension infor­
mation.

See Section 2.3, "Data Types," for a more complete discussion of
MS-FORTRAN data types. See Section 3.2, "Statement Direc­
tory," for a detailed description of the type statement.

10

Language Overview

1.8 Lines

Lines are composed of a sequence of characters. Characters
beyond the 72nd on a line are ignored; lines shorter than 72 char­
acters are assumed to be padded with blanks.

The position of characters within a line in FORTRAN is signifi­
cant. Characters in columns 1 through 5 are recognized as a
statement label, a character in column 6 as a continuation indica­
tor, and characters in columns 7 through 72 as the FORTRAN
statements themselves. Comments are recognized by either the
letter "c" or an asterisk (*) in column 1, metacommands by a
dollar sign ($) in column 1.

With some exceptions, blanks are not significant in FORTRAN.
Tab characters have significance in a few circumstances, de­
scribed in Section 2.1, "Notation."

Lines in MS-FORTRAN may serve as any of the following:

1. a metacommand line

2. a comment line

3. an initial line (of a statement)

4. a continuation line (of a statement)

A metacommand line has a dollar sign in column 1 and controls
the operation of the MS-FORTRAN Compiler.

A comment line has either a "C", a "c", or an asterisk in column 1,
or the line is entirely blank and is ignored during processing.

An initial line of a statement has either a blank or a zero in
column 6 and has either all blanks or a statement label in columns
1 through 5.

A continuation line is any line that is not a metacommand line, a
comment line, or an initial line, and which has blanks in columns
1 through 5, and in column 6 has a character that is not a blank or
zero.

11

Microsoft FORTRAN Reference Manual

See Section 2.2, "Lines and Statements," for details on the specific
uses and limitations on the several kinds of lines in MS­
FORTRAN and how statements are combined to form programs
and compilable parts of programs.

1.9 Characters

In the most basic sense, a FORTRAN program is a sequence of
characters. When these characters are submitted to the compiler,
they are interpreted in various contexts as characters, names,
labels, constants, lines, and statements.

The characters used in an MS-FO RTRAN source program belong
to the ASCII character set, a complete listing of which is given in
Appendix B, "ASCII Character Codes." Briefly, however, the
character set may be divided into three groups:

1. the 52 uppercase and lowercase alphabetic characters (A
through Z and a through z)

2. the 10 digits (0 through 9)

3. special characters (all other printable characters in the
ASCII character set)

See Section 2.1, "Notation," for more information about the use of
characters in MS-FORTRAN.

12

Chapter 2

TerlllS and Concepts

2.1 Notation 15

2.1.1 Alphanumeric Characters 15

2.1.2 Blanks 15

2.1.3 Tabs 16

2.1.4 Columns 16

2.2 Lines and Statements 16

2.2.1

2.2.2

2.2.3

2.2.4

2.3

Initial Lines 1 7

Continuation Lines 17

Comment Lines 1 7

Statement Definition and Order

Data Types 20

2.3.1 Integer Data Types 22

2.3.2 The Single Precision
IEEE Real Data Type 23

2.3.3 The Double Precision
IEEE Real Data Type 24

2.3.4 Complex Data Types 26

2.3.5 Logical Data Types 27

2.3.6

2.4

2.4.1

2.4.2

2.5

The Character Data Type 27

Names 28

Scope of FORTRAN Names

Undeclared FORTRAN Names

Expressions 31

29

18

30

13

2.5.1 Arithmetic Expressions 31
2.5.2 In teger Division 33
2.5.3 Type Conversions of

Ari thmetic Operands 33
2.5.4 Character Expressions 34
2.5.5 Relational Expressions 35
2.5.6 Logical Expressions 36
2.5.7 Precedence of Operators 38
2.5.8 Rules for Evaluating Expressions 38
2.5.9 Array Element References 38

14

2.1 Notation

A FORTRAN source program is a sequence of ASCII characters.
The ASCII character codes include:

1. 52 uppercase and lowercase letters (A through Z and a
through z)

2. 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9)

3. special characters (the remaining printable characters of
the ASCII character code)

2.1.1 Alphanumeric Characters

The letters and digits, treated as a single group, are called the
alphanumeric characters. MS-FORTRAN interprets lowercase
letters as uppercase letters in all contexts but character constants
and Hollerith fields. Thus, the following user-defined names are
all equivalent in MS-FORTRAN:

ABCDE abcde AbCdE aBcDe

The collating sequence for the MS-FORTRAN character set is the
ASCII sequence (see Appendix B, "ASCII Character Codes," for a
complete table of the ASCII characters).

2.1.2 Blanks

With the exceptions noted in the following list, the blank charac­
ter has no significance in an MS-FO RTRAN source program and
may therefore be used for improving readability. The exceptions
are the following:

1. Blanks within string constants are significant.

2. Blanks within Hollerith fields are significant.

3. A blank or zero in column 6 distinguishes initial lines
from continuation lines.

15

Microsoft FORTRAN Reference Manual

2.1.3 Tabs

The TAB character has the following significance in an MS­
FORTRAN source program:

1. If the TAB appears in columns 1 through 5, the next
character on the source line is considered to be in column
7.

2. A TAB appearing in columns 6 through 72 is considered
to be a blank, even if it appears in a string or Hollerith
literal.

2.1.4 Columns

The characters in a given line are positioned by columns, with the
first character in column 1, the second in column 2, and so forth.

The column in which a character resides is significant in FOR­
TRAN. Column 1 is used for comment indicators and metacom­
mand indicators. Columns 1 through 5 are reserved for statement
labels and column 6 for continuation indicators.

2.2 Lines and Statements

You can also think of a FO RTRAN source program as a sequence
of lines. Only the first 72 characters in a line are treated as
significant by the compiler, with any trailing characters in aline
ignored. Lines with fewer than 72 characters are assumed to be
padded with blanks to 72 characters.

Note

16

This is not usually important unless the blanks are part of a
Hollerith or literal string. For an illustration, see Section 2.3.6,
"The Character Data Type," which describes character
constants.

Terms and Concepts

2.2.1 Initial Lines

An initial line is any line that is not a comment line or a meta­
command line and that contains a blank or a zero character in
column 6. The first five columns of the line must either be all blank
or contain a label. With the exception of the statement following a
logical IF, FORTRAN statements begin with an initial line.

A statement label is a sequence of one to five digits, at least one of
which must be nonzero. A label may be placed anywhere in
columns 1 through 5 of an initial line. Blanks and leading zeros
are not significant.

2.2.2 Continuation Lines

A continuation line is any line that is not a comment line or a
metacommand line and that contains any character in column 6
other than a blank or a zero. The first five columns of a continua­
tion line must be blanks. A continuation line increases the
amount of room in which to write a statement. Ifitwill not fit on a
single initial line, it may be extended to include up to 19 continua­
tion lines.

2.2.3 Comment Lines

A line is treated as a comment line if anyone of the following
conditions is met:

1. a "c" (or "c") appears in column 1

2. an asterisk (*) appears in column 1

3. the line is empty or contains all blanks

Comment lines do not affect the execution of the FORTRAN
program in any way. Comment lines must be followed imme­
diately by an initial line or another comment line. They must not
be followed by a continuation line.

17

Microsoft FORTRAN Reference Manual

2.2.4 Statement Definition and Order

A FORTRAN statement consists of an initial line, followed by
zero to nineteen continuation lines. A statement may contain as
many as 1320 characters in columns 7 through 72 of the initial
line and columns 7 through 72 of the continuation lines. The END
statement must be written within columns 7 through 72 of an
initial line, and no other statement may have an initial line that
appears to be an END statement. (In the following discussion,
individual statements are simply referred to by name; see Chapter
3, "Statements," for definitions of specific statements and their
properties.)

The FORTRAN language enforces a certain ordering of the
statements and lines that make up a FORTRAN program unit. In
addition, MS-FORTRAN enforces additional requirements in the
ordering of lines and statements in an MS-FORTRAN compiland.

In general, a compiland consists of one or more program units (see
Chapter 5, "Programs, Subroutines, and Functions," for more
information on compilation units and subroutines). The various
rules for ordering statements are illustrated in Figure 2.1 and
described in the paragraphs following.

$0066, $STORAGE metacommands

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA statements

IMPLICIT statements
PARAMETER

Other specification statements Other
statements FORMAT meta-

Statement function statements commands

statements DATA
statements

Executable statements

END statement

Figure 2.1. Order of Statements Within Program Units
and Compilands

18

Terms and Concepts

Within Figure 2.1, the following conventions apply:

1. Classes of lines or statements above or below other
classes must appear in the designated order.

2. Classes of lines or statements may be interspersed with
other classes that appear across from one another.

3. Comment lines may appear throughout the source code
except before a continuation line.

4. The $LARGE and $NOTLARGE metacommands may
not appear within the executable statement section.

5. BLOCK DATA subprograms may not contain statement
function statements, FORMAT statements, or executable
statements.

A subprogram begins with either a SUBROUTINE, FUNCTION
or BLOCK DATA statement and ends with an END statement. A
main program begins with a PROGRAM statement or any
statement other than a SUBROUTINE, FUNCTION, or BLOCK
DATA statement and ends with an END statement. A subpro­
gram or the main program is referred to as a program unit.

Within a program unit, statements must appear in an order con­
sistent with the following rules:

1. A PROGRAM statement, if present, or a SUBROUTINE,
FUNCTION, or BLOCK DATA statement must be the
first statement of the program unit.

2. FORMAT statements may appear anywhere after the
SUBROUTINE or FUNCTION statement, or PROGRAM
statement, if present.

3. Specification statements that define the type of a sym­
bolic constant must appear before the PARAMETER
statement that defines the value of that symbolic con­
stant. The PARAMETER statement that defines a sym­
bolic constant must appear before any other statement
that uses that symbolic constant. Otherwise, a
PARAMETER statement may appear anywhere in the
specification statements.

4. The IMPLICIT statement must precede all specification
statements except the PARAMETER statement. All spec­
ification statements must precede all DATA statements,
statement function statements, and executable state-
ments.

19

Microsoft FORTRAN Reference Manual

5. All DATA statements must appear after the specification
statements. DATA statements may be interspersed with
statement function statements and executable statements.

6. All statement function statements must precede all execu­
table statements.

7. The $D066 and $STORAGE metacommands, if present,
must appear before all other statements; other metacom­
mands may appear anywhere in the program unit.

2.3 Data Types

There are six basic data types in MS-FORTRAN:

1. integer (INTEGER*2 and INTEGER*4)

2. real (REAL*4 or REAL)

3. double precision (REAL*8 or DOUBLE PRECISION)

4. logical (LOGICAL*2 and LOGICAL*4)

5. complex (COMPLEX*8 and COMPLEX*16)

6. character

The properties of, the range of values for, and the form of con­
stants for each type are described in the following pages; mem­
ory requirements are shown in Table 2.1.

20

Terms and Concepts

Table 2.1

Memory Requirements

Type

LOGICAL

LOGICAL*2

LOGICAL*4

INTEGER

INTEGER*2

INTEGER*4

CHARACTER

CHARACTER*n

REAL

REAL*4

REAL*8

DOUBLE PRECISION

COMPLEX

COMPLEX*8

COMPLEX*16

Notes for Table 2.1:

Bytes

20r 4

2

4

2 or 4

2

4

1

n

4

4

8

8

8

8

16

Note

2

3

4

5

6

7

1. Either 2 or 4 bytes are used. The default is 4, but may be set
explicitly to either 2 or 4 with the $STORAGE metacommand.

Note

2. CHARACTER and CHARACTER*l are synonymous.

:3. Maximum n is 127.

4. REAL and REAL*4 are synonymous.

5. REAL*8 and DOUBLE PRECISION are synonymous.

6. COMPLEX and COMPLEX*8 are synonymous.

7. The COMPLEX*16 type is an extension to the full language
standard.

In some implementations, all numeric and logical data types
always start on an even byte boundary.

21

Microsoft FORTRAN Reference Manual

2.3.1 Integer Data Types

The integer data type consists of a subset of the integers. An
integer value is an exact representation of the corresponding
integer. An integer variable occupies two or four bytes of memory,
depending on the setting of the $STORAGE metacommand. A
2-byte integer, INTEGER*2, can contain any value in the range
-32767 to 32767. A 4-byte integer, INTEGER*4, can contain any
value in the range -2,147,483,647 to 2,147,483,647.

Integer constants consist of a sequence of one or more decimal
d:gits or a radix specifier, followed by a string of digits in the
range O ... (radix -1), where values between 10 and 35 are repre­
sented by the letters "A" through "Z", respectively.

A radix specifier consists of the character "#" optionally preceded
by a string of decimal characters that represent the integer value
of the radix. If the string is omitted, the radix is assumed to be 16.
If the radix specifier is omitted, the radix is assumed to be 10.

Either format may be preceded by an optional arithmetic sign,
plus (+) or minus (-). Integer constants must also be in range. A
decimal point is not allowed in an integer constant.

Note

22

The range of values for both 16-bit and 32-bit integers does not
include the most negative number that can be represented in
2's complement arithmetic in that number of bits. These
numbers, 16#8000 and 16#80000000, are treated as "unde­
fined" for error checking purposes.

Although the maximum 32-bit integer value is defined as
2**31-1, the compiler and runtime will read greater values
which are nominally in the range up to 2**32. But these
values will only be read without error if the radix is other than
10. They will be interpreted as the negative numbers with the
corresponding internal representation. For example, 16
#FFFFFFFF will result in all the bits in the 32-bit integer
result being set, and will have an arithmetic value of -1.

Terms and Concepts

The following are examples of integer constants:

123
00000123

-#AB05

+1230
32767

2#010111

o
-32767

-36#ABZ07

An integer can be specified in MS-FORTRAN as INTEGER*2,
INTEGER*4, or INTEGER. The first two specify 2-byte and 4-
byte integers, respectively. INTEGER specifies either 2-byte or
4-byte integers, according to the setting of the $STORAGE meta­
command (the default is four bytes).

Important

On many microprocessors, the code required to perform 16-bit
arithmetic is considerably faster and smaller than the corre­
sponding code to perform 32-bit arithmetic. Therefore, unless
you set the MS-FORTRAN $STORAGE metacommand to a
value of2, programs will default to 32-bit arithmetic and may
run more slowly than expected (see Section 6.2.8, "The
$STORAGE Metacommand"). Setting the $STORAGE meta­
command to 2 allows programs to run faster and use less code.

2.3.2 The Single Precision
IEEE Real Data Type

The real data type (REAL or REAL*4) consists of a subset of the
real numbers, the single precision real numbers. A single preci­
sion real value is normally an approximation of the real number
desired and occupies four bytes of memory.

The range of single precision real values is approximately as
follows:

8.43E-37 to 3.37E+38 (positive range)
-3.37E+38 to -8.43E-37 (negative range)
o ~ffO)

The precision is greater than six decimal digits and less than
seven.

23

Microsoft FORTRAN Reference Manual

A basic real constant consists of:

1. an optional sign

2. an integer part

3. a decimal point

4. a fraction part

5. an optional exponent part

The integer and fraction parts consist of one or more decimal
digits, and the decimal point is a period (.). Either the integer part
or the fraction part may be omitted, but not both. Some sample
real constants are:

-123.456
-123.

-.456

+ 123.456
+123

+.456

123.456
123.

.456

The exponent part consists of the letter "E" followed by an
optionally signed integer constant of one or two digits. An expo­
nent indicates that the value preceding it is to be multiplied by ten
to the value of the exponent part's integer.

Some sample exponent parts are:

E12 E-12 E+12 EO

A real constant is either a basic real constant, a basic real con­
stant followed by an exponent part, or an integer constant fol­
lowed by an exponent part. For example:

+1.000E-2
+0.01

l.E-2
100.0E-4

1E-2
.0001E+2

All represent the same real number, one one-hundredth.

2.3.3 The Double Precision
IEEE Real Data Type

The double precision real data type (REAL*8 or DOUBLE PRE­
CISION) consists of a subset of the real numbers, the double
precision real numbers. This subset is larger than the subset for
the REAL (REAL*4) data type.

24

Terms and Concepts

A double precision real value is normally an approximation of the
real number desired. A double precision real value can be a posi­
tive, negative, or zero value and occupies eight bytes of memory.
The range of double precision real values is approximately:

4.19D-307
-1.67D+308
o

to 1.67D+308 (positive range)
to -4.19D-307 (negative range)

(zero)

The precision is greater than 15 decimal digits.

A double precision constant consists of:

1. an optional sign

2. an integer part

3. a decimal point

4. a fraction part

5. a required exponent part

The exponent uses "D" rather than "E" to distinguish it from
single precision. The integer and fraction parts consist of one or
more decimal digits, and the decimal point is a period. Either the
integer part or the fraction part, but not both, may be omitted.

A double precision constant is either a basic real constant fol­
lowed by an exponent part, or an integer constant followed by an
exponent part. For example:

+ 1.123456789D-2
+O.OOOOOOOOlDO

l.D-2
100.0000005D-4

1D-2
.00012345D+2

The exponent part consists of the letter "D" followed by an integer
constant. The integer constant may have a sign as an option. An
exponent indicates that the value preceding it is to be multiplied
by ten to the value of the exponent part's integer. If the exponent
is zero, it must be specified as a zero.

Some sample exponent parts are:

D12 D-12 D+12 DO

25

Microsoft FORTRAN Reference Manual

Single and Double DECIMAL Floating-Point Format

Decimal floating-point numbers consist of a byte containing a
sign bit and a 7-bit exponent in excess 64 notation followed by a
mantissa consisting of 6 (single) and 14 (double) binary coded
decimal digits packed two to a byte (if the exponent byte is zero,
the number is zero.) The notation for decimal floating-point con­
stants follows the same format as standard FORTRAN real and
double precision constants.

The allowable ranges of single precision numbers are:

single + 1.0E-64 to +9.99E+62
-9.99E+62 to -1.0E-64
o

Precision is exactly 6 digits.

(positive range)
(negative range)
(zero)

The allowable ranges for double precision numbers are:

double + 1.0D-64 to +9.999D+62
-9.99D+62 to -1.0D-64
o

Precision is exactly 14 digits.

(positive range)
(negative range)
(zero)

The $DECMATH metacommand causes constants in the source
file to be represented in base-10 format.

2.3.4 Complex Data Types

The COMPLEX*8 data type is an ordered pair of single precision
real numbers with the second component representing an imagi­
nary number. A COMPLEX*8 number occupies 8 bytes of
memory.

A complex constant consists of an optional sign, followed by a left
parenthesis, followed by two integer or real constants separated
by a comma, followed by a right parenthesis.

26

Terms and Concepts

A COMPLEX*16 data item consists of an ordered pair of double
precision real numbers. COMPLEX*16 data items occupy 16
bytes of memory.

Each component (real and imaginary) of a COMPLEX*8 is a
REAL*4. Each component of a COMPLEX*16 is a REAL*8.

2.3.5 Logical Data Types

The logical data type consists of the two logical values .TRUE.
and .F ALSE .. A logical variable occupies two or four bytes of
memory, depending on the setting of the $STORAGE metacom­
mand. The default is four bytes. The significance of a logical
variable is unaffected by the $STORAGE metacommand, which
is present primarily to allow compatibility with the ANSI
requirement that logical, single precision real, and integer varia­
bles are all the same size.

LOGICAL*2 values occupy two bytes. The least significant (first)
byte is either 0 (.FALSE.) or 1 (.TRUE.); the most significant byte
is undefined. LOGICAL*4 variables occupy two words, the least
significant (first) of which contains LOGICAL*2 value. The most
significant word is undefined.

2.3.6 The Character Data Type

The character data type consists of a sequence of ASCII charac­
ters. The length of a character value is equal to the number of
characters in the sequence. The length of a particular constant or
variable is fixed, and must be between 1 and 127 characters. A
character variable occupies one byte of memory for each charac­
ter in the sequence.

Character variables are assigned to contiguous bytes without
regard for word boundaries. However, the compiler assumes that
non character variables that follow character variables always
start on word boundaries.

A character constant consists of a sequence of one or more char­
acters enclosed in a pair of single right quotation marks. Blank
characters are permitted in character constants and are signifi­
cant. The case of alphabetic characters is significant. An apos­
trophe (') within a character constant is represented by two con­
secutive single right quotation marks with no blanks in between.

27

Microsoft FORTRAN Reference Manual

The length of a character constant is equal to the number of
characters between the apostrophes. A pair of apostrophes counts
as a single character. Some sample character constants are:

'A'
"
'Help!'
'A very long CHARACTER constant'
'O"Brien'
""

The last example ("") is a character constant that contains one
apostrophe (single right quotation mark).

FORTRAN permits source lines of up to 72 columns. Shorter lines
are padded with blanks to 72 columns. When a character constant
extends across a line boundary, its value is as if the portion of the
continuation line beginning with column 7 is appended to column
72 of the initial line.

Thus, the following FORTRAN source,

200 CH = 'ABC
X DEF'

is equivalent to:

200 CH = 'ABC (58 blank spaces) ... DEF'

with 58 blank spaces between the C and D being equivalent to the
space from C in column 15 to column 72 plus one blank in column
7 of the continuation line. Very long character constants can be
represented in this manner.

2.4 Names

An MS-FORTRAN name, or identifier, consists of a sequence of
alphanumeric characters (the maximum is 66 characters per line
multiplied by twenty lines). The initial character must be alpha­
betic; subsequent characters must be alphanumeric. Blanks are
skipped. Only the first six characters are significant; the rest are
ignored.

28

Terms and Concepts

A name denotes a user-defined or system-defined variable, array,
or program unit. Any valid sequence of characters can be used for
any FORTRAN name.

There are no reserved names as in other languages. Sequences of
alphabetic characters used as keywords by the MS-FORTRAN
Compiler are not confused with user-defined names. The compiler
recognizes keywords by their context and in no way restricts the
use of user-defined names.

Thus, a program can have, for example, an array named IF,
READ, or GOTO, with no error (as long as it conforms to the rules
that all arrays must obey). However, use of keywords for user­
defined names often interferes with the readability of the pro­
gram, so the practice should be avoided.

2.4.1 Scope of:FORTRAN Names

The scope of a name is the range of statements in which that
name is known, or can be referenced, within a FORTRAN pro­
gram. In general, the scope of a name is either global or local,
although there are several exceptions. A name can only be used in
accordance with a single definition within its scope. The same
name, however, can have different definitions in distinct scopes.

A name with global scope can be used in more than one program
unit (a subroutine, function, or the main program) and still refer to
the same entity. In fact, names with global scope can only be used
in a single, consistent manner within the same program. All
subroutine, function subprogram, and common block names, as
well as the program name, have global scope. Therefore, there
cannot be a function subprogram that has the same name as a
subroutine subprogram or a common data area. Similarly, no two
function subprograms in the same program can have the same
name.

A name with local scope is only visible (known) within a single
program unit. A name with a local scope can be used in another
program unit with a different meaning or with a similar meaning,
but is in no way required to have a similar meaning in a different
scope. The names of variables, arrays, arguments, and statement
functions all have local scope.

29

Microsoft FORTRAN Reference Manual

One exception to the scoping rules is the name given to a common
data block. It is possible to refer to a globally scoped common
block name in the same program unit in which an identical
locally scoped name appears. This is permitted because common
block names are always enclosed in slashes, such as IFROGI,
and are therefore always distinguishable from ordinary names.

Another exception to the scoping rules is made for statement
function arguments. The scope of statement function arguments
is limited to the single statement forming that statement func­
tion. Any otheruse of those names within that statement function
is not permitted, while any other use outside that statement
function is acceptable.

2.4.2 Undeclared FORTRAN Names

As it passes over the executable statements in a program, the
compiler classifies names which it encounters for the first time
(i.e. those not explicitly defined) according to the context.

If the name is used as a variable, its type is inferred from the first
letter of the name; I, J, K, L, M, or N by default are used to initial
integers, while all others are used to initial real numbers. You can
use the IMPLICIT statement to change the association of type
and initial letter. (For more information, see Section 3.2.27, "The
IMPLICIT Statement"). The same rules are used when the name
is used in a function call to determine the type of the function
return values.

When a name is used as the target of a CALL statement, it is
assumed to be that of a subroutine. Similarly, a name used in a
function reference is assumed to be that of a function. If a subrou­
tine or function is part of the same compilation unit (i.e., is in the
same source file), and its definition occurs before the reference to it
in a CALL statement or function reference, the compiler will
check that the number and type of the actual arguments in the
CALL statement or function reference are consistent with those
specified in the corresponding SUBROUTINE or FUNCTION
statement.

30

Terms and Concepts

2.5 Expressions

An expression is a formula for computing a value. It consists of a
sequence of operands and operators. The operands may contain
function invocations, variables, constants, or even other expres­
sions. The operators specify the actions to be performed on the
operands.

FORTRAN has four classes of expressions:

1. arithmetic

2. character

3. relational

4. logical

2.5.1 Arithmetic Expressions

An arithmetic expression produces a value that is of type
INTEGER, REAL, DOUBLE PRECISION or COMPLEX. The
simplest forms of arithmetic expressions are:

1. constants

2. variable references

3. array element references

4. function references

The value of a variable reference or array element reference must
be defined before it can appear in an arithmetic expression.
Moreover, the value of an integer variable must be defined with
an arithmetic value, rather than a statement label value pre­
viously set in an ASSIGN statement.

Other arithmetic expressions are built up from the simple forms in
the preceding list using parentheses and the arithmetic operators
shown in Table 2.2.

31

Microsoft FORTRAN Reference Manual

Table 2.2

Arithmetic Operators

Operator

**
/

*

+

Operation

Exponentiation

Division

Multiplication

Subtraction or
Negation

Addition or Identity

Precedence

Highest

Intermediate

Intermediate

Lowest

Lowest

All of the operators may be used as binary operators, which
appear between their arithmetic expression operands. The plus (+)
and minus (-) may also be unary, and precede their operand.

Operations of equal precedence, except exponentiation, are left­
associative. Exponentiation is right-associative. Thus, each of the
following expressions on the left is the same as the corresponding
expression on the right:

A/8*C

A**8**C

(A/8)*C

A**(8**C)

Arithmetic expressions can be formed in the usual mathematical
sense, as in most programming languages. However, FORTRAN
prohibits two operators from appearing consecutively. For exam­
ple, this is prohibited,

A**-8

while this is allowed:

A **(-8)

Unary minus is also of lowest precedence. Thus, the expression
-A **B is interpreted as -(A **B).

You may use parentheses in an expression to control associativity
and the order in which operators are evaluated.

32

Terms and Concepts

2.5.2 Integer Division

The division of two integers results in a value that is the mathe­
matical quotient of the two values, truncated downward (i.e., toward
zero). Thus, 7/3 evaluates to 2, and (-7)/3 evaluates to -2. Both 9/10
and 9/(-10) evaluate to 0 (zero).

2.5.3 Type Conversions of Arithmetic Operands

When all operands of an arithmetic expression are of the same
data type, the value returned by the expression is also of that type.
When the operands are of different data types, the data type of the
value returned by the expression is the type of the highest-ranked
operand.

The rank of an operand depends on its data type, as shown in the
following list:

1. INTEGER*2 (lowest)

2. INTEGER*4

3. REAL*4

4. REAL*8

5. COMPLEX*8

6. COMPLEX*16 (highest)

For example, an operation on an INTEGER*2 and a REAL*4
element produces a value of data type REAL*4.

Special Case

Operations on operands of types REAL*8 and COMPLEX*8
yield COMPLEX*16 results, not COMPLEX*8 results as sug­
gested in the list.

The data type of an expression is the data type of the result of the
last operation performed in evaluating the expression.

33

Microsoft FORTRAN Reference Manual

The data types of operations are classified as either INTEGER*2,
INTEGER*4, REAL*4, REAL*8, COMPLEX*8, or COMPLEX*16.

Integer operations are performed on integer operands only. A
fraction resulting from division is truncated in integer arithmetic,
not rounded. Thus, the following evaluates to zero, not one:

1/4 + 1/4 + 1/4 + 1/4

Memory allocation for the type INTEGER, without the *2 or *4
length specification, is dependent on the use of the $STORAGE
metacommand. (See the note at the beginning of Section 2.3,
"Data Types," and Section 6.2.12, "The $STORAGE Metacom­
mand," for details.)

Real operations are performed on real operands or combinations
of real and integer operands only. Integer operands are first con­
verted to real data type by giving each a fractional part equal to
zero. Real arithmetic is then used to evaluate the expression. In
the following statement, integer division is performed on I and J,
and a real multiplication on the result and X:

Y = (IIJ)*X

2(.5.4 Character Expressions

A character expression produces a value that is of type CHAR­
ACTER. The forms of character expressions are:

1. character constants

2. character variable references

3. character array element references

4. any character expression enclosed in parentheses

5. character function references

There are no operators that result in character expressions.

34

Terms and Concepts

2.5.5 Relational Expressions

Relational expressions compare the values of two arithmetic or
two character expressions. An arithmetic value may not be com­
pared with a character value, unless the $NOTSTRICT meta­
command has been specified. In this case, the arithmetic expres­
sion is considered to be a character expression. The result of a
relational expression is of type LOGICAL. Relational expressions
can use any of the operators shown in Table 2.3 to compare
values.

Table 2.3

Relational Operators

Operator

.LT.

.LE .

. EQ.

.NE .

. GT.

.GE.

Operation

Less than

Less than or equal to

Equal to

Not equal to

Greater than

Greater than or equal to

All of the relational operators are binary operators and appear
between their operands. There is no relative precedence or associ­
ativity among the relational operands since an expression of the
following form violates the type rules for operands:

A .LT. B .NE. C

Relational expressions may only appear within logical expres­
SIOns.

Relational expressions with arithmetic operands may have one
operand of type INTEGER and one of type REAL. In this case,
the integer operand is converted to type REAL before the rela­
tional expression is evaluated.

35

Microsoft FORTRAN Reference Manual

Relational expressions with character operands compare the
position of their operands in the ASCII collating sequence. An
operand is less than another if it appears earlier in the collating
sequence. If operands of unequal length are compared, the shorter
operand is considered as if it were extended to the length of the
longer operand by the addition of spaces on the right.

2.5.6 Logical Expressions

A logical expression produces a value that is of type LOGICAL.
The simplest forms of logical expressions are:

1. logical constants

2. logical variable references

3. logical array element references

4. logical function references

5. relational expressions

Other logical expressions are built up from the simple forms in the
preceding list by using parentheses and the logical operators of
Table 2.4.

Table 2.4

Logical Operators

Operator

.NOT.

.AND.

.OR.

.EQV.

.NEQV.

Operation

Negation

Conjunction

Inclusive disjunction

Equivalence

Nonequivalence

Precedence

Highest

Intermediate

Intermediate

Lowest

Lowest

The .AND. , .OR. , .EQV. and .NEQV. operators are binary opera­
tors and appear between their logical expression operands. The
.NOT. operator is unary and precedes its operand.

36

Terms and Concepts

Operations of equal precedence are left-associative; thus, for
example,

A .AND. B .AND. C

is equivalent to:

(A .AND. B) .AND. C

As an example of the precedence rules,

.NOT. A .OR. B .AND. C

is interpreted the same as:

(.NOT. A) .OR. (B .AND. C)

Two .NOT. operators cannot be adjacent to each other, although

A .AND .. NOT. B

is an example of an allowable expression with two adjacent
operators.

As another example of the precedence rules and the use of .EQV.
and .NEQV.,

.NOT. A .EQV. B .OR. C .NEQV. D .AND. E

can be interpreted as,

((.NOT. A) .EQV. (B .OR. C)) .NEQV. (D .AND. E)

Logical operators have the same meaning as in standard mathema­
tical semantics, with .OR. being nonexclusive. For example,

.TRUE. .OR. .TRUE.

evaluates to the value:

.TRUE.

37

Microsoft FORTRAN Reference Manual

2.5.7 Precedence of Operators

When arithmetic, relational, and logical operators appear in the
same expression, they abide by the following precedence guide­
lines:

1. Logical (lowest)

2. Relational (intermediate)

3. Arithmetic (highest)

2.5.8 Rules for Evaluating Expressions

Any variable, array element, or function that is referred to in an
expression must be defined at the time the reference is made.
Integer variables must be defined with an arithmetic value,
rather than a statement label value as set by an ASSIGN
statement.

Certain arithmetic operations, such as dividing by zero, are not
mathematically meaningful and are prohibited. Other prohibited
operations include raising a zero-value operand to a zero or nega­
tive power and raising a negative-value operand to a power of
type REAL or DOUBLE PRECISION.

2.5.9 Array Element References

An array elemen t reference iden tifies one elemen t of an array. Its
syntax is as follows:

38

array (sub [, sub] ...)

array is the name of an array.

sub is a subscript expression, that is, an integer expression used in
selecting a specific element of an array. The number of subscript
expressions must match the number of dimensions in the array declar­
ator. The value of a subscript expression must be between one and the
upper limit for the dimension it represents, inclusive.

Terms and Concepts

C EXAMPLE OF ARRAY ELEMENT REFERENCES
DIMENSION A(3,2),B(3,4),C(4,5),D(5,6),V(10)
EQUIVALENCE (X,V(1)). (Y,V(2))
D(I,J) = D(I,J)/PIVOT
C(I,J) = C(I,J) + A(I,K) * B(K,J)
READ(*, *) (V(N),N=1,10)

39

Chapter 3
StateDlents

3.1 Categories of Statements 45

3.1.1 PROGRAM, SUBROUTINE,
FUNCTION and
BLOCK DATA Statements 46

3.1.2 Specification Statements 46

3.1.3 The DATA Statement 47

3.1.4 The FORMAT Statement 47

3.1.5 Assignment Sta temen ts 47

3.1.6 Control Statements 47

3.1.7 I/O Statements 48
3.2 Statement Directory 51

3.2.1 The ASSIGN Statement

3.2.2

3.2.3

3.2.4

3.2.5

3.2.6

3.2.7

(Label Assignment) 51

The Assignment Statement
(Computational) 53

The BACKSPACE Statement

The BLOCK DATA Statement
The CALL Statement 60

The CLOSE Statement 64

The COMMON Statement 66

57

58

3.2.8 The CONTINUE Statement 68

3.2.9 The DATA Statement 69

3.2.10 The DIMENSION Statement 71

3.2.11 The DO Statement 73

41

3.2.12 The ELSE Statement 77

3.2.13 The ELSEIF Statement 78
3.2.14 The END Statement 80
3.2.15 The ENDFILE Statement 81

3.2.16 The ENDIF Statement 82
3.2.17 The EQUIVALENCE Statement 83

3.2.18 The EXTERNAL Statement 86

3.2.19 The FORMAT Statement 88
3.2.20

3.2.21

3.2.22

The FUNCTION Statement (External)
The GOTO Statement (Assigned GOTO)

The GOTO Statement
(Computed GOTO) 94

3.2.23 The GOTO Statement
(Unconditional GOTO) 96

3.2.24 The IF Statement (Arithmetic IF) 97
3.2.25 The IF Statement (Logical IF) 99

3.2.26 The IF THEN ELSE Statement
(Block IF) 100

3.2.27 The IMPLICIT Statement 103

3.2.28 The INQUIRE Statement 105

3.2.29 The INTRINSIC Statement 108
3.2.30 The OPEN Statement 109

3.2.31 The PARAMETER Statement 111

3.2.32 The PAUSE Statement 112
3.2.33 The PROGRAM Statement 113
3.2.34 The READ Statement 114

3.2.35 The RETURN Statement 116

3.2.36 The REWIND Statement 118

42

90

93

3.2.37 The SA VE Statement 119

3.2.38 The Statement Function Statement 120

3.2.39 The STOP Statement 122

3.2.40 The SUBROUTINE Statement 123

3.2.41 The Type Statement 125

3.2.42 The WRITE Statement 127

43

3.1 Categories of Statements

Statements perform a number of functions, such as computing,
storing the results of computations, altering the flow of control,
reading and writing files, and providing information for the
compiler.

FORTRAN statements fall into two broad classes: executable and
nonexecutable. An executable statement causes an action to be
performed. N onexecu ta ble sta temen ts do not in themselves cause
operations to be performed. Instead, they specify, describe, or
classify elements of the program, such as entry points, data, or
program units.

Nonexecutable statements include the following:

1. PROGRAM, SUBROUTINE, FUNCTION, and BLOCK
DATA statements

2. specification statements

3. the DATA statement

4. the FORMAT statement

The executable statements form a much larger group and may be
divided into the following categories:

1. assignment statements

2. control statements

3. I/O statements

Sections 3.1.1 through 3.1.7 describe each of these types of state­
ments, in general terms, in the order in which they are mentioned
in the preceding lists.

Section 3.2, "Statement Directory," is an alpha beticallisting of all
statements. For each statement, the entry gives syntax and pur­
pose, with remarks and examples as appropriate.

Chapter 4, "The I/O System," provides additional information on
input and output in MS-FORTRAN.

45

Microsoft FORTRAN Reference Manual

3.1.1 PROGRAM, SUBROUTINE,
FUNCTION, and
BLOCK DATA Statements

These statements identify the start of a program unit; all are
nonexecutable. For more specific information, see the following
sections: Section 3.2.4, "The BLOCK DATA Statement"; Section
3.2.20, "The FUNCTION Statement"; Section 3.2.33, "The PRO­
GRAM Statement"; Section 3.2.38, "The Statement Function
Statement"; and Section 3.2.40, "The SUBROUTINE Statement."

See also Chapter 5, "Programs, Subroutines, and Functions," for
general information on program units.

3.1.2 Specification Statements

Specification statements in MS-FORTRAN are nonexecutable.
They define the attributes of user-defined variable, array, and
function names. Table 3.1 lists the eight specification statements,
which are described in detail in Section 3.2, "Statement Directory."

Table 3.1

Specification Statements

Statement

COMMON

DIMENSION

EQUIV ALENCES

EXTERNAL

IMPLICIT

INTRINSIC

PARAMETER

SAVE

Type

46

Purpose

Provides for sharing memory between two or
more program units.

Specifies that a user name is an array and defines
the number of its elements.

Specifies that two or more variables or arrays
share the same memory.

Identifies a user-defined name as an external
subroutine or function.

Defines the default type for user-defined names.

Declares that a name is an intrinsic function.

Equates a constant expression with an identifier
(eg., name).

Causes variables to retain their values across
invocations of the procedure in which they are
defined.

Specifies the type of user-defined names.

Statements

Specification statements must precede all statement function
statements and executable statements in a program unit. See
Section 2.2.4, "Statement Definition and Order," for the rules on
the order of specification statements.

3.1.3 The DATA Statement

The DATA statement assigns initial values to variables. DATA
statements are optional, nonexecutable statements and may be
interspersed with statement function statements and executable
statements but must appear after all specification statements.
(See Section 3.2.9, "The DATA Statement," for more information.)

3.1.4 The FORMAT Statement

Format specifications provide explicit editing information for the
data processed by a program. Format specifications may be given
in a FORMAT statement or as character constants. (See Section
3.2.19, "The FORMAT Statement," for a description of the FOR­
MAT statement and Section 4.4, "Formatted 110," for additional
information on formatted data.)

3.1.5 Assignment Statements

Assignment statements are executable statements that assign a
value to a variable or an array element. There are two basic kinds
of assignment statements: computational and label. (See Section
3.2.1, "The ASSIGN Statement," and Section 3.2.2, "The Assign­
ment Statement," respectively, for further information.)

3.1.6 Control Statements

Control statements affect the order of execution of statements in
FORTRAN. The control statements in MS-FORTRAN are shown
in Table 3.2, along with a brief description of the function of each.
See the appropriate entries in Section 3.2, "Statement Directory,"
for further information on each.

47

Microsoft FORTRAN Reference Manual

Table 3.2

Control Statements

Statement

CALL

CONTINUE

DO

ELSE

ELSEIF

END

ENDIF

GOTO

IF

PAUSE

RETURN

STOP

Purpose

Calls and executes a subroutine from another
program unit.

Used primarily as a convenient way to place
statement labels, particularly as the terminal
statement in a DO loop.

Causes repetitive evaluation of the statements
following the DO, through and including the end­
ing statement.

Introduces an ELSE block.

Introduces an ELSEIF block.

Ends execution of a program unit.

Marks the end of a series of statements following
a block IF statement.

Transfers control elsewhere in the program, ac­
cording to the kind of GOTO statement used
(assigned, computed, or unconditional).

Causes conditional execution of some other state­
ment(s), depending on the evaluation of an ex­
pression and the kind of IF statement used
(arithmetic, logical, or block).

Suspends program execution until the RETURN
key is pressed.

Returns control to the program unit that called a
subroutine or function.

Terminates a program.

3.1.7 1/0 Statements

I/O statements transfer data, perform auxiliary I/O operations,
and position files. Table 3.3 lists the MS-FORTRAN I/O state­
ments (each of which is described in detail in Section 3.2, "State­
ment Directory").

48

Table 3.3

liD Statements

Statement

BACKSPACE

CLOSE

ENDFILE

INQUIRE

OPEN

READ

REWIND

WRITE

Statements

Purpose

Positions the file connected to the specified unit to
the beginning of the previous record.

Disconnects the unit specified and prevents sub­
sequent 110 from being directed to that unit.

Writes an end offile record on the file connected to
the specified unit.

Returns values indicating the properties of a
named or unit specifier.

Associates a unit number with an external device
or with a file on an external device.

Transfers data from a file to the items in an iolist.

Repositions a specified unit to the first record in
the associated file.

Transfers data from the items in an iolist to a file.

49

Microsoft FORTRAN Reference Manual

Note

50

Error Handling. If an error is encountered during the process­
ing of a READ, WRITE, or INQUIRE statement, the action
taken depends on the presence and definition of the ERR=
and IOSTAT= specifiers. (See the statement descriptions in
Section 3.2, "Statement Directory," for information about
these specifiers.)

a) Ifneither is present, the program is terminated with an
appropriate runtime error message.

b) If only ERR=slabel2 is present, control is transferred to
the designated label.

c) If only IOSTAT=iocheck is present, iocheck is set to the
appropriate status value and control returns as if the
statement had terminated normally.

d) If both are present, iocheck is set appropriately and
control transfers to slabel2.

Any time an error is encountered in the READ statement, all
the items in the iolist become undefined.

In addition to these I/O statements, there is an I/O intrinsic
function EOF (unit-spec). An EOF function returns a logical
value that indicates whether any data remains beyond the
current position in the file associated with the given unit
specifier. See Section 5.3.2, "Intrinsic Functions," for infor­
mation about this function.

Statements

3.2 Statement Directory

The rest of this chapter is an alphabetical listing of all MS­
FORTRAN statements, giving syntax and function, with notes
and examples as necessary.

3.2.1 The ASSIGN Statement
(Label Assignment)

Syntax

ASSIGN label TO variable

Purpose

Assigns the value of a format or statement label to an integer
variable.

Remarks

label is a format label or statement label.

variable is an integer variable.

Execution of an ASSIGN statement sets the integer variable to
the value of the label. The label can be either a format or a
statement label and must appear in the same program unit as the
ASSIGN statement.

When used in an assigned GOTO statement, a variable must
currently have the value of a statement label. When used as a
format specifier in an input/output statement, a variable must
have the value of a format statement label. The only way to
assign the value of a label to a variable is with the ASSIGN
statement.

51

Microsoft FORTRAN Reference Manual

The value of a label is not necessarily the same as the label
number. For example, the value of IVBL in the following is not
necessarily 400:

ASSIGN 400 TO IVBL

Hence, the variable is undefined as an integer; it cannot be used in
an arithmetic expression until it has been redefined as such (by
computational assignment or a READ statement).

52

3.2.2 The Assignment Statement
(Computational)

Syntax

variable = expression

Purpose

Statements

Evaluates the expression and assigns the resulting value to the
variable or array element specified.

Remarks

variable is a variable or array clement reference.

expression is any expression.

The type of the variable or array element and the type of expres­
sion must be compatible.

1. If the type of the right-hand side is numeric, the type of the
left-hand side must be numeric, and the statement is
called an arithmetic assignment statement.

2. If the type of the right-hand side is logical, the type of the
left-hand side must be logical, and the statement is called
a logical assignment statement.

3. If the type of the right-hand side is character, the type of
the left-hand side must also be character, and the state­
ment is called a character assignment statement. How­
ever, if you have specified the $NOTSTRICT metacom­
mand, the type of left-hand side may be numeric, logical,
or character; the statement is still called a character
assignment sta temen t.

53

Microsoft FORTRAN Reference Manual

If the types of the elements of an arithmetic assignment state­
ment are not identical, the value of the expression is automati­
cally converted to the type of the variable.

The conversion outcomes are given in Tables 3.4, 3.5 and 3.6. The
value of the expression to be converted in the V=E assignment
statement is shown after E in row one. The determining factor in
the conversion, the variable type (V), is listed in column one. The
outcome of the conversion (assignment) is shown in columns two
and three.

Table 3.4

Conversion of Integer Values in V = E

V\E

INTEGER*2

INTEGER*4

REAL*4

REAL*8

COMPLEX*8

COMPLEX*16

54

INTEGER*2

Assign E to V.

Assign E to least sig­
nificant portion of V;
most significant por­
tion is sign extended.

Append fraction (.0) to
E and assign to V.

Append fraction (.0) to
E and assign to V.

Append fraction (.0) to
E and assign to the real
part of V.; represent
imaginary part with o.
Append fraction (.0) to
E and assign to the real
part of V.; represent
imaginary part with o.

INTEGER*4

Assign least significant
portion of E to V; most
significan t portion IS

lost.

Assign E to V.

Append fraction (.0) to
E and assign to V.

Append fraction (.0) to
E and assign to V.

Append fraction (.0) to
E and assign to the real
part of V.; represent
imaginary part with o.
Append fraction (.0) to
E and assign to the real
part of V.; represent
imaginary part with o.

Table 3.5

Conversion of Real Values in V = E

V\E

INTEGER*2

INTEGER*4

REAL*4

REAL*8

COMPLEX*8

COMPLEX*16

REAL*4

Truncate E to
INTEGER*2 and
assign to V.

Truncate E to
INTEGER*4 and
assign to V.

Assign E to V.

Convert E to equival­
ent REAL*8 form and
assign to V.

Assign E to real part of
V; represent imaginary
part with O.

Convert E to equival­
ent of REAL*8 form
and assign real of V;
represent imaginary
part with O.

Statements

REAL*8

Trunca te E to
INTEGER*2 and
assign to V.

Truncate E to
INTEGER*4 and
assign to V.

Round the least signif­
icant portion of E; as­
sign the most signifi­
cant portion to V.

Assign E. to V.

Round the least signif­
icant portion of E; as­
sign the most signifi­
can t portion to V; rep­
resent imaginary part
with O.

Assign E to real of V;
represent imaginary
part with O.

55

Microsoft FORTRAN Reference Manual

Table 3.6

Conversion of Complex Values in V = E

V\E

INTEGER*2

INTEGER*4

REAL*4

REAL*8

COMPLEX*8

COMPLEX*16

COMPLEX*8

Truncate real of E to
INTEGER*2 form and
assign to V; ignore
imaginary part.

Truncate real of E to
INTEGER*4 form and
assign to V.

Assign real part of E to
V.

Convert real part of E
to equivalent REAL*8
form and assign to V.

Assign E to V.

Con vert real and imagi­
nary parts to equival­
ent REAL*8 form and
assign to V.

COMPLEX*16

Truncate real of E to
INTEGER*2 form and
assign to V; ignore
imaginary part.

Truncate real of E to
INTEGER*4 form and
assign to V.

Round the least signifi­
can t portion of real part
ofE;assign the most sig­
nificant portion to V.

Assign real part of E to
V.

Round real and imagi­
nary parts of E; assign
to corresponding parts
ofV.

Assign E to V.

For character assignments, if the length of the expression does
not match the size of the variable, the expression is adjusted, in
the following manner, so that it does match:

1. If the expression is shorter than the variable, the expres­
sion is padded with enough blanks on the right before the
assignment takes place to make the sizes equal.

2. If the expression is longer than the variable, characters
on the right are truncated to make the sizes the same.

Logical expressions of any size can be assigned to logical varia­
bles of any size without affecting the value of the expression.
However, integer and real expressions may not be assigned to
logical variables, nor may logical expressions be assigned to
integer or real variables.

56

Statements

3.2.3 The BACKSPACE Statement

Syntax

BACKSPACE unit-spec

Purpose

Positions the file connected to the specified unit at the beginning
of the preceding record.

Remarks

unit-spec is a required unit specifier; it must not be an internal unit
specifier. See Section 4.3.1, "Elements of 1/0 Statements," for
more information about unit specifiers and other elements of 1/0
statements.

1. If there is no preceding record, the file position is not
changed.

2. If the preceding record is the endfile record, the file is
positioned before the endfile record.

3. If the file position is in the middle of the record, BACK­
SP ACE repositions to the start of that record.

4. If the file is a binary file, the BACKSPACE repositions to
the preceding byte.

Examples

BACKSPACE 5

BACKSPACE LUNIT

57

Microsoft FORTRAN Reference Manual

3.2.4 The BLOCK DATA Statement

Syntax

BLOCK DATA [name]

Purpose

The BLOCK DATA statement identifies a block data subprogram
where the values for the variables and array elements in named
common blocks are initialized.

Remarks

The BLOCK DATA statement must be the first statement in a
block data subprogram.

The optional argument, name, is a global symbolic name for the
subprogram identified by the BLOCK DATA statement. This
name must be unique among the names for local variables or
array elements that are defined in the subprogram which name
labels. name must also be unique among the names given the
main program, external procedures, common blocks, and other
block data subprograms.

58

Statements

Note

Only one unnamed block data subprogram may appear in the
executable program.

A block data subprogram may contain as many named com­
mon blocks and data initializations as desired.

The following restrictions apply to the use of block data
subprograms:

1. Besides BLOCK DATA, only the COMMON, DIMEN­
SION, PARAMETER, IMPLICIT, EQUIVALENCE,
SAVE, DATA, END, and type statements may be used in
the block data subprogram.

2. Named common blocks specified in block data subpro­
grams must have unique names.

3. Only an entity defined in a named common block may be
initially defined in a block data subprogram.

4. If an entity in a named common block is initially defined,
all entities having storage units in the common block
storage sequence must be specified even if they are not all
initially defined.

59

Microsoft FORTRAN Reference Manual

3.2.5 The CALL Statement

Syntax

CALL sname [([arg [, arg]. ..])]

Purpose

Calls and executes a subroutine from another
program unit.

Remarks

sname is the name of the subroutine to be called.

arg is an actual argument, which can be any of
the following:

1. an alternate return specifier (*n)

2. an expression

3. a constant (or constant expression)

4. a variable

5. an array element

6. an array

7. a subroutine name

8. an external function name

9. an intrinsic function permitted to be
passed as an argument

The actual arguments in the CALL statement must agree with
the corresponding formal arguments in the SUBROUTINE
statement, in order, in number, and in type or kind.

The compiler will check for correspondence if the formal argu­
ments are known. To be known, the SUBROUTINE statement
that defines the formal arguments must precede the CALL state
ment in the current compilation.

60

Statements

In addition, if the arguments are integer or logical values, agree­
ment in size is required, according to the following rules:

1. If the formal argument is unknown, its size is determined
by the $STORAGE metacommand (except as noted in
rule 5 of this list). If $STORAGE is not specified, the
default is $STORAGE:4.

2. If the actual argument is a constant (or constant expres­
sion), and the size of the actual argument is smaller than
the size of the formal argument, a temporary variable the
size of the constant will be created for the actual argu­
ment. If the actual argument is larger, an error is
generated:

95 argument type conflict

3. If the actual argumen t is an expression and the size of the
actual argument is smaller than the size of the formal
argument, then a temporary variable the size of the for­
mal argument is created for the actual argument. If the
actual argument is larger, the same error is generated as
in rule 2.

4. If the actual argument is an array or a function, or if the
actual argument is an array element and the formal
argument an array, the compiler will not check for agree­
ment in size.

5. If the actual argument is a variable or an array element
and the formal argument is unknown, the size of the
formal argumen t is assumed to be the same size as the size
of the actual argument.

Thus, you can call separately compiled subroutines whose
formal arguments differ from the size determined by the
$STORAGE metacommand in effect when the CALL is
compiled. However, agreement in size is still required, and
it is your responsibility to ensure this agreement.

If the formal argument is known, then an actual argu­
n1ent that is a variable or an array element is treated as an
expression; that is, a temporary variable for the actual
argument is created if the actual argument is smaller
than the formal argument. Otherwise, the same error
occurs as in rule 2.

61

Microsoft FORTRAN Reference Manual

If the SUBROUTINE statement has no formal arguments, then a
CALL statement referencing that subroutine must not have any
actual arguments. However, a pair of parentheses may follow the
subroutine name.

Execution of a CALL statement proceeds as follows:

1. All arguments that are expressions are evaluated.

2. All actual arguments are associated with their corre­
sponding formal arguments, and the body of the specified
subroutine is executed.

3. Normally, control is returned to the statement following
the CALL statement upon exiting the subroutine, by exe­
cuting either a RETURN statement or an END statement
in that subroutine. If an alternate return in the form of
RETURN e has been used, however, control will return to
the statement specified by the eth alternate return speci­
fier in the CALL statement.

For an illustration of the alternate return feature, see the follow­
ing example:

01 CALL BAR(I,*10,J,*20,*30)
WRITE (*, *) , normal return'
GO TO 40

10 WRITE (*,*) , return to 10'
GO TO 40

20 WRITE (*, *) , return to 20'
GO TO 40

30 WRITE (*, *) , return to 30'
40 WRITE

SUBROUTINE BAR (I,*,J,*,*)
IF (LEQ.10) RETURN 1
IF (LEQ.20) RETURN 2
IF (LEQ.30) RETURN 3
RETURN

(See the SUBROUTINE Statement for more details on alternate
returns.)

62

Statements

A subroutine can be called from any program unit. Microsoft
FORTRAN does not permit recursive subroutine calls. That is, a
subroutine cannot call itself directly, nor can it call another sub­
routine that results in that subroutine being called again before it
returns control to its caller.

Note

MS-FORTRAN Compiler does not detect recursive calls, even
if they are direct.

Example

C EXAMPLE OF CALL STATEMENT

C

IF (IERR .NE. 0) CALL ERROR(IERR)
END

SUBROUTINE ERROR(IERRNO)
WRITE (*, 200) IERRNO

200 FORMAT (1X, 'ERROR', 15, 'DETECTED')
END

63

Microsoft FORTRAN Reference Manual

3.2.6 The CLOSE Statement

Syntax

CLOSE (unit-spec [, STATUS='status']
[, IOSTAT=iocheck])

Purpose

Disconnects the unit specified and prevents subsequent I/O from
being directed to that unit (unless the same unit number is re­
opened, possibly associated with a different file or device). The file
is discarded if the statement includes STATUS='DELETE'.

Remarks

unit-spec is a required unit specifier. It must appear as the first
argument; it must not be an internal unit specifier. See Section
4.3.1, "Elements of I/O Statements," for more information about
unit specifiers and other elements of I/O statements.

status is an optional argument and may be either KEEP or
DELETE. This option is a character constant and must be
enclosed in single quotation marks.

If status is not specified, the default is KEEP, except for files
opened as scratch files, which have DELETE as the default.
Scratch files are always deleted upon normal program termina­
tion, and specifying STATUS='KEEP' for scratch or temporary
files has no effect.

iocheck is an integer variable or integer array element that
becomes defined as (1) a zero ifno error or end of file conditions are
encountered or (2) a processor-dependent positive integer value if
an error condition is encountered or (3) a processor-dependent
negative integer value if an end offile is encountered and no error
condition exists.

CLOSE for unit zero has no effect, since the CLOSE operation is
not meaningful for the keyboard and screen. Opened files do not
have to be explicitly closed. Normal termination of an MS­
FORTRAN program will close each file with its default status.

64

Example

This deletes an existing file:

C CLOSE THE FILE OPENED IN OPEN EXAMPLE,
C DISCARDING THE FILE.

CLOSE(7,STATUS='DELETE')

Statements

65

Microsoft FORTRAN Reference Manual

3.2.7 The COMMON Statement

Syntax

COMMON [/[cname]/] nlist [[,] /[cname]/ nlist] ...

Purpose

Provides for sharing memory between two or more program units.
Such program units can manipulate the same datum without
passing it as an argument.

Remarks

cname is a common block name. If a cname is omitted, then the
blank common block is assumed.

nlist is a list of variable names, array names, and array declara­
tors, separated by commas. Formal argument names and func­
tion names cannot appear in a COMMON statement.

In each COMMON statement, all variables and arrays appearing
in each nlist following a common block name are declared to be in
that common block. Omitting the first cname specifies that all
elements in the first nlist are in the blank common block.

Any common block name can appear more than once in COM­
MON statements in the same program unit. All elements in all
nlists for the same common block are allocated in that common
memory area, in the order they appear in the COMMON
statement(s).

The current implementation of MS-FORTRAN restricts the
occurrence of noncharacter variables to even byte addresses,
which may affect the association of character and noncharacter
variables within a COMMON. Because of the order requirement,
the compiler cannot adjust the position of variables within a
COMMON to comply with the even address restriction. The com­
piler will generate an error message for those associations which
result in a conflict.

66

Statements

The length of a common block is equal to the number of bytes of
memory required to hold all elements in that common block. If
several distinct program units refer to the same named common
block, the common block must be the same length in each pro­
gram unit. Blank common blocks, however, can have different
lengths in different program units. The length of the blank com­
mon block is the maximum length.

Note

On some systems, other restrictions may apply. For example,
the size and alignment of variables in large common blocks
may be restricted.

Example

C EXAMPLE OF BLANK AND NAMED COMMON BLOCKS
PROGRAM MYPROG
COMMON I, J, X, K(10)
COMMON IMYCOMI A(3)

END
SUBROUTINE MYSUB
COMMON I, J, X, K(10)
COMMON IMYCOMI A(3)

END

67

Microsoft FORTRAN Reference Manual

3.2.8 The CONTINUE Statement

Syntax

CONTINUE

Purpose

Execution has no effect on the program.

Remarks

The CONTINUE statement is used primarily as a convenient
point for placing a statement label, particularly as the terminal
statement in a DO loop.

Example

C EXAMPLE OF CONTINUE STATEMENT
DO 10 1= 1,10

IARRAY(I) = 0
10 CONTINUE

68

Statements

3.2.9 The DATA Statement

Syntax

DATA nlist / clistl [[,] nlist / clistl]. ..

Purpose

Assigns initial values to variables.

Remarks

A DATA statement IS an optional, nonexecutable state­
ment. If present, it must appear after all specification
statements but may be interspersed with statement func­
tion and executable statements.

nlist is a list of variables, array elements, or array names.

clist is a list of constants, or a constant preceded by an integer
constant repeat factor and an asterisk, such as:

5*3.14159
3*'Help'
100*0

A repeat factor followed by a constant is the equivalent of a list of
all constants having the specified value and repeated as often as
specified by the repeat constant.

There must be the same number of values in each clist as there are
variables or array elements in the corresponding nlist. The
appearance of an array in an nlist is equivalent to a list of all
elements in that array in memory sequence order. Array elements
must be indexed only by constant subscripts.

Normal type conversion takes place for each noncharacter ele­
ment in a clist. Also, with the $NOTSTRICT metacommand in
effect, a character element in a clist can correspond to a variable
of any type.

69

Microsoft FORTRAN Reference Manual

The character element must have a length that is less than or
equal to the length of that variable or array element. If the length
of the constant is shorter, it is extended to the length of the
variable by adding blank characters to the right. A single charac­
ter constant cannot be used to define more than one variable or
even more than one array element.

Only local variables and array elements can appear in a DATA
statement. Formal arguments, variables in blank common, and
function names cannot be assigned initial values with a DATA
statement.

In a BLOCK DATA subprogram (exclusively) members of named
common blocks may be assigned initial values with a DATA
statement.

Examples

INTEGER N, ORDER, ALPHA

REAL COEF(4), EPS(2)

DATA N /0/, ORDER /3/

DATA ALPHA fA'/

DATA COEF /1.0,2*3.0,1.0/, EPS(1) 1.00001/

70

Statements

3.2.10 The DIMENSION Statement

Syntax

DIMENSION array (dim) [, array (dim)] ...

Purpose

Specifies that a user name is an array and defines the number of
its elements.

Remarks

array is the name of an array.

dim specifies the dimensions of the array and is a list of one to
seven dimension declarators separated by commas.

The number of dimensions in the array is the number of dimen­
sion declarators in the array declarator. The maximum number of
dimensions is seven.

A dimension declarator can be an unsigned integer constant, a
user name corresponding to a nonarray integer formal argument,
a user name corresponding to a nonarray integer variable in a
COMMON block in the same program unit containing the
DIMENSION statement, or an asterisk.

A dimension declarator specifies the upper bound of the dimen­
sion. The lower bound is always one.

If a dimension declarator is an integer constant, then the array
has the corresponding n urn ber of elemen ts in that dimension. An
array has a constant size if all of its dimensions are specified by
integer constants.

If a dimension declarator is an integer formal argument or an
integer variable in COMMON, then that dimension is defined to
be of a size equal to the initial value of the variable upon entry to
the subprogram unit at execution time. In such a case, the array is
called an adjustable-size array.

71

Microsoft FORTRAN Reference Manual

If the dimension declarator is an asterisk, the array is an
assumed-size array and the upper bound of that dimension is not
specified.

All adjustable and assumed-size arrays must also be formal
arguments to the program unit in which they appear. Further­
more, an assumed-size dimension declarator may only appear as
the last dimension in an array declarator.

Array elements are stored in column-major order; the leftmost
subscript changes most rapidly as the array is mapped into con­
tiguous memory addresses.

For example, the following statements

INTEGER*2 A (2, 3)
DATA A 11,2,3,4,5,61

would result in the following mapping (assuming
A is placed at location 1000 in memory):

Array Element Address

A (1, 1) 1000
A (2,1) 1002
A (1, 2) 1004
A (2, 2) 1006
A (1,3) 1008
A (2, 3) 100A

Example

DIMENSION A (2,3), V (10)
CALL SUBR (A,2,V)

Value

1
2
3
4
5
6

SUBROUTINE SUBR (MATRIX, ROWS, VECTOR)
REAL MATRIX, VECTOR
INTEGER ROWS
DIMENSION MATRIX (ROWS,*), VECTOR (10),

+LOCAL (2,4,8)
MATRIX (1,1) = VECTOR (5)

END

72

Statements

3.2.11 The DO Statement

Syntax

DO slabel [,] variable = expr 1, expr2 [, expr3]

Purpose

Repeatedly evaluates the statements following the DO,
through and including the statement with the label slabel.

Remarks

slabel is the statement label of an executable statement.

variable is an integer variable.

exprl, expr2, expr3 are integer expressions.

The label referred to must appear after the DO statement and be
contained in the same program unit. The specified statement is
called the terminal statement of the DO loop and must not be an
unconditional GOTO, assigned GOTO, arithmetic IF, block IF,
ELSE IF, ELSE, ENDIF, RETURN, STOP, END, or DO state­
ment. If the terminal statement is a logical IF, it may contain any
executable statement except those not permitted inside a logical
IF statement.

The range of a DO loop begins with the statement that follows the
DO statement and includes the terminal statement of the DO
loop.

The following restrictions affect the execution of a DO statement:

1. If a DO statement appears in the range of another DO
loop, its range must be entirely contained within the
range of the enclosing DO loop, although the loops may
share a terminal statement.

2. If a DO statement appears within an IF, ELSEIF, or
ELSE block, the range of the associated DO loop must be
entirely contained in the particular block.

73

Microsoft FORTRAN Reference Manual

3. If a block IF statement appears within the range of a DO
loop, its associated ENDIF statement must also appear
within the range of that DO loop.

The DO variable may not be modified in any way by the state­
ments within the range of the DO loop associated with it. Jump­
ing into the range of a DO loop from outside its range is not
permitted. (However, a special feature, added for compatibility
with earlier versions of FORTRAN, does permit "extended range"
DO loops. See Section 6.2.3, "The $D066 Metacommand," for
more information.)

In some circumstances, the value of a DO variable may overflow
as a result of an increment that is performed prior to testing it
against the upper bound. If this happens, your program is techni­
cally in error, but the error is not detected as such by either the
compiler or the runtime. However, if the DO variable has been
either explicitly or implicitly defined as INTEGER*2, and the
possiblity of overflow exists, the arithmetic for the statement will
be carried out in 32-bit mode with the necessary conversions and
the loop will terminate.

For example:

INTEGER*2 1
DO 100 1=32760,32767

100 CONTINUE

If the DO variable is either explicitly or implicitly defined as
INTEGER*4, and an overflow occurs, the value will wrap around,
and the loop will not terminate.

The execution of a DO statement sets the following process in
motion:

74

1. The expressions exprl, expr2, and expr3 are evaluated. If
expr3 is not present, it is assumed that expr3 evaluated to
one.

2. The DO variable is set to the value of the expression,
exprl.

3. The iteration count for the loop is:

MAXO(((expr2-expr1 +expr3)/expr3) ,0)

Statements

The iteration count may be zero if either of the following is
true:

a. expr 1 is greater than expr2 and expr8 is greater
than zero

b. expr 1 is less than expr2 and expr8 is less than zero

However, if the $D066 metacommand is in effect, the
iteration count is at least one. See Section 6.2.2, "The
$D066 Metacommand," for more information about this
feature.

4. The iteration count is tested, and, if it exceeds zero, the
statements in the range of the DO loop are executed.

Following the execution of the terminal statement of a DO loop,
these steps take place:

1. The value of the DO variable is incremented by the value
of expr8 that was computed when the DO statement was
executed.

2. The iteration count is decremented by one.

3. The iteration count is tested, and if it exceeds zero, the
statements in the range of the DO loop are executed again.

The value of the DO variable is well-defined, regardless of
whether the DO loop exits because the iteration count becomes
zero, or because of a transfer of control out of the DO loop.

75

Microsoft FORTRAN Reference Manual

Example

C EXAMPLE OF DO STATEMENTS

C INITIALIZE A 20-ELEMENT REAL ARRAY
DIMENSION ARRAY(20)
DO 1 I = 1, 20
ARRAY(I) = 0.0

C PERFORM A FUNCTION 11 TIMES
DO 2, I = -30, -60, -3
J = 1/3
J = -9-J
ARRAY(J) = MYFUNC(I)
2 CONTINUE

The following shows the final value of a DO variable:

76

C DISPLAY THE NUMBERS 1 TO 11 ON THE SCREEN
DO 200 1=1,10

200 WRITE(*,'(15)')1
WRITE(*,'(15)')1

Statements

3.2.12 The ELSE Statement

Syntax

ELSE

Purpose

Marks the beginning of an ELSE block.

Remarks

The associated ELSE block consists of all of the executable
statements (possibly none) that follow the ELSE statement, up to
but not including the next ENDIF statement at the same IF-level
as this ELSE statement. The matching ENDIF statement must
appear before any intervening ELSE or ELSEIF statements of
the same IF-level. (See Section 3.2.25, "The IF THEN ELSE
Statement," for a discussion of IF-levels.)

Transfer of control into an ELSE block from outside that block is
not permitted.

Example

CHARACTER C

READ (*,'(A)') C
IF (C .EO. 'A') THEN

CALL ASUB
ELSE

CALL OTHER
ENDIF

77

Microsoft FORTRAN Reference Manual

3.2.13 The ELSEIF Statement

Syntax

ELSEIF (expression) THEN

Purpose

Causes execution of a block of statements if expression is true.

Remarks

expression is a logical expression. If its value is true and there is at
least one statement in the ELSEIF block, the next statement
executed is the first statement of the ELSEIF block.

If the expression evaluates to true and the ELSEIF block has no
executable statements, the next statement executed is the next
END IF statement at the same IF -level as the ELSEIF statement.
If the expression evaluates to false, the next statement executed is
the next ELSEIF, ELSE, OR ENDIF statement that has the
same IF-level as the ELSEIF statement. See Section 3.2.26, "The
IF THEN ELSE Statement," for a discussion of IF-levels.

The associated ELSEIF block consists of all the executable
statements (possibly none) that follow, up to the next ELSEIF,
ELSE, or ENDIF statement that has the same IF-level as this
ELSEIF statement.

Following the execution of the last statement in the ELSEIF
block, the next statement to be executed is the next ENDIF state­
ment at the same IF-level as this ELSEIF statement.

Transfer of control into an ELSEIF block from outside that block
is not permitted.

78

Example

CHARACTER C

READ (*,'(A)') C
IF (C .EO. 'A') THEN

CALL ASUB
ELSEIF (C .EO. 'X') THEN

CALL XSUB
ELSE

CALL OTHER
ENDIF

Statements

79

Microsoft FORTRAN Reference Manual

3.2.14 The END Statement

Syntax

END

Purpose

In a subprogram, has the same effect as a RETURN statement;
in the main program, terminates execution of the program.
Always marks the end of the program unit in which it appears.

Remarks

The END statement must appear as the last statement in every
program unit. Unlike other statements, an END statement must
appear alone on an initial line, with no label. No continuation
lines may follow the END statement. No other FORTRAN state­
ment, such as the ENDIF statement, may have an initial line that
appears to be an END statement.

Example

C EXAMPLE OF END STATEMENT
C END STATEMENT MUST BE LAST STATEMENT
C IN A PROGRAM

80

PROGRAM MYPROG
WRITE(*, '(10H HI WORLD!),)
END

Statements

3.2.15 The ENDFILE Statement

Syntax

ENDFILE unit-spec

Purpose

Writes an end of file record as the next record of the file connected
to the specified unit.

Remarks

unit-spec is a required external unit specifier. See Section 4.3.1,
"Elements of 1/0 Statements," for more information about unit
specifiers and other elements of 1/0 statements.

After writing the end of file record, ENDFILE positions the file
after the end of file record. This prohibits further sequential data
transfer until after execution of either a BACKSPACE or REWIND
statement.

An ENDFILE on a direct access file makes all records written
beyond the position of the new end of file disappear.

Example

WRITE (6, *) X
ENDFILE 6
REWIND 6
READ (6,*) Y

81

Microsoft FORTRAN Reference Manual

3.2.16 The ENDIF Statement

Syntax

ENDIF

Purpose

Terminates a block IF statement. Execution of an ENDIF state­
ment itself has no effect on the program.

Remarks

There must be a matching ENDIF statement for every block IF
statement in a program unit, to identify which statements belong
to a particular block IF statement. See Section 3.2.26, "The IF
THEN ELSE Statement," for discussion and examples of block
IFs. .

Example

IF (I .L T. 0) THEN
X =-1
Y =-1

ENDIF

82

Statements

3.2.17 The EQUIVALENCE Statement

Syntax

EQUIVALENCE (nlist) [, (nlist)] ...

Purpose

Specifies that two or more variables or arrays are to share the
same memory.

Remarks

nlist is a list of at least two elements, separated by commas. An
nlist may include variable names, array names, or array element
names; argument names are not allowed. Subscripts must be
integer constants and must be within the bounds of the array they
index. No automatic type conversion occurs if the shared ele­
ments are of different types.

An EQUIVALENCE statement specifies that the memory se­
quences of the elements that appear in the list nlist must have the
same first memory location. Two or more variables are said to be
associated if they refer to the same actual memory. Thus, an
EQUIV ALENCE statement causes its list of variables to become
associated. An array name, if present in an EQUIVALENCE
statement, refers to the first element of the array.

You cannot associate character and noncharacter entities when
the $STRICT metacommand is in effect ($NOTSTRICT is the
default). See the odd byte boundary restriction described in
number 3 in the following list.

Associated character entities may overlap, as in the following
example:

CHARACTER A*4, B*4, C(2)*3
EQUIVALENCE (A,C(1)), (B,C(2))

83

Microsoft FORTRAN Reference Manual

The preceding example can be graphically illustrated as follows:

01 02 03 04 05 06 07

t------A

B

1---- C(1) ---~--C(2)

Restrictions

84

1. You cannot force a variable to occupy more than one
distinct memory location; nor can you force two or more
elements of the same array to occupy the same memory
location. For example, the following statement would
force R to occupy two distinct memory locations or 8(1)
and 8(2) to occupy the same memory location:

C THIS IS AN ERROR
REAL R,S(10)
EQUIVALENCE (R,S(1)),(R,S(2))

2. An EQUIVALENCE statement cannot specify that con­
secutive array elements not be stored in sequential order.
The following, for example, is not permitted:

C THIS IS ANOTHER ERROR
REAL R(1 0),S(1 0)
EQUIVALENCE (R(1),S(1)),

+(R(5),S(6))

3. You cannot equivalence character and noncharacter enti­
ties so that the noncharacter entities can start on an
odd byte boundary.

For entities not in a common block, the compiler will at­
tempt to align the noncharacter entities on word bounda­
ries. An error message will be issued if such an alignment
is not possible because of multiple equivalencing. For ex­
ample, the following would result in an error, since it is not
possible for both variables A and B to be word aligned:

CHARACTER*1 C1 (10)
REAL A,B
EQUIVALENCE (A,C1 (1))
EQUIVALENCE (B,C1 (2))

Statements

For entities in a common block, since positions are fixed, it
is your responsibility to assure word alignment for the
non character entities. An error message will be issued for
any that are not word aligned.

4. An EQUIVALENCE statement cannot associate an ele­
ment of type CHARACTER with a noncharacter element
in a way that causes the noncharacter element to be
allocated on an odd byte boundary. However, there are no
boundary restrictions for equivalencing of character
variables.

5. When EQUIVALENCE statements and COMMON
statements are used together, several additional restric­
tions apply:

a. An EQUIVALENCE statement cannot cause
memory in two different common blocks to be
shared.

b. An EQUIVALENCE statement can extend a
common block by adding memory elements fol­
lowing the common block, but not preceding the
common block.

c. Extending a named common block with an
EQUIV ALENCE statement must not make its
length different from the length of the same
named common block in other program units.

For example, the following is not permitted because it
extends the common block by adding memory preceding
the start of the block:

Example

C THIS IS A MORE SUBTLE ERROR
COMMON IABCDEI R(10)
REAL S(10)
EQUIVALENCE (R(1),S(10))

C CORRECT USE OF EQUIVALENCE STATEMENT
CHARACTER NAME, FIRST, MIDDLE, LAST
DIMENSION NAME(60), FIRST(20),

1 MIDDLE(20), LAST(20)
EQUIVALENCE (NAME(1), FIRST(1)),

1 (NAME(21),MIDDLE(1)),
2 (NAME(41), LAST(1))

85

Microsoft FORTRAN Reference Manual

3.2.18 The EXTERNAL Statement

Syntax

EXTERNAL name [, name] ...

Purpose

Identifies a user-defined name as an external subroutine or
function.

Remarks

name is the name of an external subroutine or function.

Giving a name in an EXTERNAL statement declares it as an
external procedure. Statement function names cannot appear in
an EXTERNAL statement. If an intrinsic function name appears
in an EXTERNAL statement, that name becomes the name of an
external procedure, and the corresponding intrinsic function can
no longer be called from that program unit. A user name can only
appear once in an EXTERNAL statement in any given program
unit.

In assembly language and MS-Pascal, EXTERN means that an
object is defined outside the current compilation or assembly unit.
This is unnecessary in MS-FORTRAN since standard FOR­
TRAN practice assumes that any object referred to but not
defined in a compilation unit is defined externally.

In FORTRAN, therefore, EXTERNAL is used primarily to spec­
ify that a particular user-defined name is a subroutine or function
to be used as a procedural parameter. EXTERNAL may also
indicate that a user-defined function is to replace an intrinsic
function of the same name.

86

Examples

C EXAMPLE OF EXTERNAL STATEMENT
EXTERNAL MYFUNC, MYSUB

C MYFUNC AND MYSUB ARE PARAMETERS TO CALC
CALL CALC (MYFUNC, MYSUB)

C EXAMPLE OF A USER-DEFINED FUNCTION
C REPLACING AN INTRINSIC

EXTERNAL SIN
X = SIN (A,4.2,37)

Statements

87

Microsoft FORTRAN Reference Manual

3.2.19 The FORMAT Statement

Syntax

FORMAT (format-spec)

Purpose

Used in conjunction with formatted I/O statements, provides
information that directs the editing of data.

Remarks

format-spec is a list format specifications, which provide explicit
editing information. The format-spec must be enclosed in paren­
theses. A format specification may take one of the following
forms:

[r] repeatable edit descriptor

nonrepeatable edit descriptor

[r] (format-spec)

The r, if present, is a nonzero, unsigned, integer constant called a
repeat specification.

Up to three levels of nested parentheses are permitted within the
outermost level of parentheses.

Edit descriptors, both repeatable and nonrepeatable, are listed in
Table 3.7 and described in more detail in Section 4.4.2, "Edit
Descriptors. "

You may omit the comma between two list items if the resulting
format specification is not ambiguous; for example, after a P edit
descriptor or before or after the slash (I) edit descriptor.

FORMAT statements must be labeled and, like all nonexecutable
statements, cannot be the target of a branching operation.

88

Statements

Note

Table 3.7

Edit Descriptors

Repeatable

lw
Gw.d
Gw.dEe
Fw.d
Ew.d
Ew.dEe
Dw.d
Lw
A[w]

Notes for Table :3.7

N onrepea table

'xxx' (character constants)
nHxxx (character constants)
nX (positional editing)
/ (terminate record)
\ (don't terminate record)
kP (scale factor)
BN (blanks as blanks or ignored)
BZ (blanks as zeros)
Tc (positional editing)
TRc (positional editing)
TLc (positional editing)
: (format scan terminator)
8P (optional plus character control)
88 (optional plus character control)
8 (optional plus character control)

A) For the repeatable edit descriptors:

1. A, D, E, F, G, I, and Lindicate the manner of editing.

2. (w) and (e) are nonzero, unsigned, integer constants.

:3. (d) is an unsigned integer constant.

B) For the nonrepeatable edit descriptors:

1. (,), H, X, (I), (\), P, BN, BZ, T, TL, TR, S, SS, SP, and
(:) indicate the manner of editing.

2. (x) is any ASCII character.

3. (n) is a nonzero, unsigned, integer constant.

4. (k) is an optionally signed integer constant.

5. (c) is an unsigned integer constant.

Invalid format strings cause warning messages.

See Section 4.4, "Formatted 110," for further information on edit
descriptors and formatted 110.

89

Microsoft FORTRAN Reference Manual

3.2.20 The FUNCTION Statement (External)

Syntax

[type] FUNCTION {name ([farg [, (arg]. ..])

Purpose

Identifies a program unit as a function and supplies its type,
name, and optional formal parameter(s).

Remarks

type is one of the following:

INTEGER
INTEGER*2
INTEGER*4
REAL
REAL*4
REAL*8
DOUBLE PRECISION
LOGICAL
LOGICAL*2
LOGICAL*4
CHARACTER
CHARACTER*n
COMPLEX
COMPLEX*8
COMPLEX*16

{name is the user-defined name of the function.

{arg is a formal argument name.

90

Statements

The function name is global, but it is also local to the function it
names. If type is omitted from the FUNCTION statement, the
function's type is determined by default and by any subsequent
IMPLI CIT or type sta temen ts tha t would determine the type of an
ordinary variable.

If type is present, then the function name cannot appear in any
additional type statements.

Note

CHARACTER-typed functions may not be declared with an
asterisk (*) as a length specifier. For example, the FUNC­
TION statement,

CHARACTER *(*) F(X)

is not allowed.

If a function is CHARACTER-typed, then n may be specified in
the following range (1 <= n <= 127).

The list of argument names defines the number and, with any
subsequent IMPLICIT, EXTERNAL, type, or DIMENSION
statements, the type of arguments to that function. Neither
argument names nor the function name can appear in COM­
MON, DATA, EQUIVALENCE, or INTRINSIC statements.

The function name must appear as a variable in the program unit
that defines the function. Every execution of that function must
assign a value to that variable. The final value of this variable,
upon execution of a RETURN or an END statement, defines the
value of the function.

Note

Alternate return specifiers are not allowed in FUNCTION
statements.

91

Microsoft FORTRAN Reference Manual

After being defined, the value of this variable can be referenced in
an expression, like any other variable. An external function may
return values in addition to the value of the function by assign­
ment to one or more of its formal arguments.

A function can be called from any program unit. However, FOR­
TRAN does not allow recursive function calls, which means that
a function cannot call itself directly, nor can it call another func­
tion if such a call results in that function being called again before
it returns control to its caller. However, recursive calls are not
detected by the compiler, even if they are direct.

Example

C EXAMPLE OF A FUNCTION REFERENCE
C GETNO IS A FUNCTION THAT READS A
C NUMBER FROM A FILE

1=2
10 IF (GETNO(I) .EO. 0.0) GO TO 10

STOP

C

92

END

FUNCTION GETNO(NOUNIT)
READ(NOUNIT, '(F10.5)') R
GETNO = R
RETURN
END

Statements

3.2.21 The GOTO Statement (Assigned GOTO)

Syntax

GOTO name [[,] (slabel [, slabel] ...)]

Purpose

Causes the statement labeled by the label last assigned to name to
be the next statement executed.

Remarks

name is an integer variable name.

slabel is a statement label of an executable statement in the same
program unit as the assigned GOTO statement.

The same statement label may appear repeatedly in the list of
labels. When the assigned GOTO statement is executed, name
must have been assigned the label of an executable statement
found in the same program unit as the assigned GOTO statement.

Including the optional list of labels and selecting the $DEBUG
metacommand results in a runtime error if the label last assigned
to name is not among those listed. Jumping into a DO, IF,
ELSEIF, or ELSE block from outside the block is not permitted.

A special feature, extended range DO loops, does permit jumping
into a DO block. See Section 6.2.3, "The $D066 Metacommand,"
for more information about this feature.

Example

C EXAMPLE OF ASSIGNED GOTO
ASSIGN 10 TO I
GOTO I

10 CONTINUE

93

Microsoft FORTRAN Reference Manual

3.2.22 The GOTO Statement (Computed GOTO)

Syntax

GOTO (slabel [, slabelJ ..) [,] i

Purpose

Transfers control to the statement labeled by the ith label in the
list.

Remarks

slabel is the statement label of an executable statement from the
same program unit as the computed GOTO statement. The same
statement label may be repeated in the list of labels.

i is an integer expression.

If there are n labels in the list of labels and i is out of range, the
computed GOTO statement serves as a CONTINUE statement. i
would be out of range in either of the following cases:

i< 1

i>n

Otherwise, the next statement executed is the one labeled by the
ith label in the list of labels.

Jumping into a DO, IF, ELSEIF, or ELSE block from outside the
block is not permitted. A special feature, extended range DO
loops, does permit jumping into a DO block. See Section 6.2.3,
"The $D066 Metacommand," for more information.

94

Example

C EXAMPLE OF COMPUTED GOTO
I = 1
GOTO (10, 20) I

10 CONTINUE

20 CONTINUE

Statements

95

Microsoft FORTRAN Reference Manual

3.2.23 The GOTO Statement
(Unconditional GOTO)

Syntax

GOTO slabel

Purpose

Transfers control to the statement labeled slabel.

Remarks

slabel is the statement label of an executable statement in the
same program unit as the GOTO statement.

Jumping into a DO, IF, ELSEIF, or ELSE block from outside the
block is not permitted. A special feature, extended range DO
loops, does permit jumping into a DO block. See Section 6.2.3,
"The $D066 Metacommand," for more information about this
feature.

Example

C EXAMPLE OF UNCONDITIONAL GOTO
GOTO 4022

4022 CONTINUE

96

Statements

3.2.24 The IF Statement (Arithmetic IF)

Syntax

IF (expression) slabell, slabel2, slabel8

Purpose

Evaluates the expression and transfers control to the statement
labeled by one of the specified labels, according to the result of the
expression.

Remarks

expression is an integer or real expression.

slabell, slabel2, and slabel3 are statement labels of executable
statements in the same program unit as the arithmetic IF
statement.

The same statement label may appear more than once among the
three labels. The first label is selected if the value of the expression
is less than zero, the second label if the value equals zero, and the
third label if the value is greater than zero. The next statement
executed is the statement labeled by the selected label.

Jumping into a DO, IF, ELSEIF, or ELSE block from outside the
block is not permitted. A special feature, extended range DO
loops, does permit jumping into a DO block. See Section 6.2.3,
"The $D066 Metacommand," for more information about this
feature.

97

Microsoft FORTRAN Reference Manual

Example

C EXAMPLE OF ARITHMETIC IF
1=0
IF (I) 10, 20, 30

10 CONTINUE

20 CONTINUE

30 CONTINUE

98

Statements

3.2.25 The IF Statement (Logical IF)

Syntax

IF (expression) statement

Purpose

Evaluates the logical expression and, if the value of that expres­
sion is .TRUE., executes the statement given. If the expression
evaluates to .FALSE., the statement is not executed and execution
continues as if a CONTINUE statement were encountered.

Remarks

expression is a logical expression.

statement is any executable statement except a DO, block IF,
ELSEIF, ELSE, ENDIF, END, or another logical IF statement.

Example

C EXAMPLE OF LOGICAL IF
IF (I .EQ. 0) J = 2
IF (X .GT. 2.3) GOTO 100

100 CONTINUE

99

Microsoft FORTRAN Reference Manual

3.2.26 The IF THEN ELSE Statement
(Block IF)

Syntax

IF (expression) THEN

Purpose

Evaluates the expression and, if the expression evaluates to
.TRUE., begins executing statements in the IF block. If the
expression evaluates to .F ALSE., control transfers to the next
ELSE, ELSEIF, or ENDIF statement at the same IF-level.

Remarks

expression is a logical expression.

The associated IF block consists of all the executable statements
(possibly none) that appear following the statement, up to but not
including the next ELSEIF, ELSE, or ENDIF statement that has
the same IF-level as this block IF statement.

After execution of the last statement in the IF block, the next
statement executed is the next ENDIF statement at the same
IF-level as this block IF statement. If the expression in this block
IF statement evaluates to .TRUE., and the IF block has no execu­
table statements, the next statement executed is the next ENDIF
statement at the same IF-level as the block IF statement. If the
expression evaluates to .FALSE., the next statement executed is
the next ELSEIF, ELSE, or ENDIF statement at the same IF­
level as the block IF statement.

Transfer of control into an IF block from outside that block is not
permitted.

100

Statements

IF-Levels:

The concept of an IF-level in block IF and associated statements
is described as follows. For any statement, its IF-level is nl minus
n2, where:

1. nl is the number of block IF statements from the begin­
ning of the program unit in which the statement occurs,
up to and including that statement.

2. n2 is the number of ENDIF statements from the begin­
ning of the program unit, up to, but not including, that
statement.

The IF-level of every statement must be greater than or
equal to zero and the IF-level of every block IF, ELSEIF,
ELSE, and ENDIF must be greater than zero. Finally, the
IF-level of every END statement must be zero. The IF­
level defines the nesting rules for the block IF and asso­
ciated statements and defines the extent of IF, ELSEIF,
and ELSE blocks.

Example 1

Simple block IF that skips a group of statements if the expression
is false:

IF(I.L T.10)THEN

ENDIF

Some statements executed
only if I.L T.10

101

Microsoft FORTRAN Reference Manual

Example 2

Block IF with ELSEIF statements:

IF(J.GT.1000)THEN
Some statements executed
only if J.GT.1000

ELSEIF(J.GT.100)THEN
Some statements executed
only if J.GT.100 and J.LE.1000

ELSEIF(J.GT.10)THEN

ELSE

ENDIF

Some statements executed
only if J.GT.10 and J.LE.100

Some statements executed
only if J.LE.10

Example 3

Nesting of constructs and use of an ELSE statement following a
block IF without intervening ELSEIF statements:

102

IF(LL T.100)THEN

ELSE

Some statements executed
only if LL T.1 00

IF(J.LT.10)THEN
Some statements executed
only if LLT.100 and J.L T.10

ENDIF
Some statements executed
only if LL T.100

Some statements executed
only if I.GE.100

IF(J.LT.10)THEN
Some statements executed
only if I.GE.100 and J.L T.10

ENDIF
Some statements executed
only if LGE.100

ENDIF

3.2.27 The IMPLICIT Statement

Syntax

IMPLICIT type (a [, a] ...) [type (a [, a] ...) ...]

Purpose

Defines the default type for user-declared names.

Remarks

type is one of the following types:

INTEGER
INTEGER*2
INTEGER*4
REAL
REAL*4
REAL*8
DOUBLE PRECISION
COMPLEX
COMPLEX*8
COMPLEX*16
LOGICAL
LOGICAL*2
LOGICAL*4
CHARACTER
CHARACTER*n

Statements

a is either a single letter or a range of letters. A range of letters is
indicated by the first and last letters in the range, separated by a
minus sign. The letters for a range must be in alphabetical order.

n (as in CHARACTER*n) may be in the following range (1 <= n
<= 127).

An IMPLICIT statement defines the type and size for all user­
defined names that begin with the letter or letters given. An
IMPLICIT statement applies only to the program unit in which it
appears and does not change the type of any intrinsic function.

103

Microsoft FORTRAN Reference Manual

IMPLICIT types for any specific user name can be overridden or
confirmed if that name is given in a subsequent type statement.
An explicit type in a FUNCTION statement also takes priority
over an IMPLICIT statement. If the type in question is a charac­
ter type, the length is also overridden by a later type definition.

A program unit can have more than one IMPLICIT statement.
However, all IMPLICIT statements must precede all other speci­
fication statements in that program unit. The same letter cannot
be defined more than once in an IMPLI CIT sta tement in the same
program unit.

Example

C EXAMPLE OF IMPLICIT STATEMENT
IMPLICIT INTEGER (A - 8)
IMPLICIT CHARACTER*10 (N)
AGE = 10
NAME = 'PAUL'

104

3.2.28 The INQUIRE Statement

Syntax

INQUIRE (UNIT=unit-spec [, specifier=target] ...)
or INQUIRE (FILE=filename [, specifier=target] ...)

Purpose

Statements

The INQUIRE statement is used to examine the properties of a
connected unit or a named file.

Remarks

The INQUIRE statement determines the attributes of a file and
assigns the values of the attributes named by the specifiers to the
corresponding targets. A target must be a variable or array ele­
mentname.

The INQUIRE statement may be executed at any time. The
values it returns are those that are current at the time of the call.

If you inquire by unit, the unit specifier, UNIT=, must be in the list
but FILE= may not be in the list. If you inquire by file, the file
specifier, FILE=, must be in the list but UNIT= is not allowed.

The discussion of inquiry specifiers that follows summarizes the
specifiers that MS-FORTRAN supports.

UNIT=unit-spec must be the first specifier in an inquire-by-unit.
unit-spec is either:

a) an integer (external unit)

b) an asterisk (*) identifying a processor-determined unit
that is preconnected for formatted sequential access
(external unit)

FILE=filename gives a name for the file in an inquiry by file and
must be the first specifier in an inquire-by-file. The filename must
be a character variable or array element.

105

Microsoft FORTRAN Reference Manual

ERR=slabel2. slabel2 is the statement label of an executable
statement that appears in the same program unit as the error
specifier. If an error occurs, control will be transferred to this
label.

EXIST=logical-exist. logical-exist is a logical variable or logical
array element. Execution of INQUIRE by FILE= sets the variable
.TRUE. if the specified file exists and .FALSE. if the specified file
does not exist. Execution of INQUIRE by UNIT= sets the variable
.TRUE. if the specified unit exists, and .FALSE. otherwise.

NAMED=logical-named. logical-named is a logical variable or a
logical array element. Execution of INQUIRE by UNIT= sets the
variable .TRUE. if the file was opened by name and .FALSE.,
otherwise. If the value of logical-named is .F ALSE., then the file
connected to the unit is a temporary file. This is one way of
distinguishing temporary files from other files.

A unit number is not named if it is not open or it is open to a
scratch file.

IOSTAT=iocheck. iocheck is an integer variable or integer array
element that becomes defined as (1) a zero ifno error or end of file
conditions are encountered or (2) a processor-dependent positive
integer value if an error condition is encountered or (3) a
processor-dependent negative integer value if an end of file is
encountered and no error condition exists.

OPENED=logical-opened. logical-opened is a logical variable or
logical array element. In an inquire-by-file, it is set to .TRUE. if
the named file is currently connected to any unit. Otherwise, it is
set to .FALSE. In an inquire-by-unit, it is set to .TRUE. if any file
is open on the given unit, and .FALSE. otherwise.

NUMBER=num. num is an integer variable or integer array ele­
ment. num becomes undefined if no unit is connected to the file.
Otherwise, in an inquire-by-file, num is set to the unit number
connected to the file.

NAME=filename. filename is a character variable or character
array element. In an inquire-by-unit, filename is set to the name of
the file. filename becomes undefined if the file doesn't have a
name, or if there is no file connected to the unit.

106

Statements

ACCESS=type-access. type-access is a character variable or
character array element that is set to 'SEQUENTIAL' if a file is
connected for sequential access or 'DIRECT' if a file is connected
for direct access. If no file is connected to the given unit, type­
access becomes undefined.

SEQUENTIAL=logical-sequential.logical-sequential is a charac­
ter variable or character array element that is set to 'YES' if
sequential is among the set of allowable access modes for the
connected file, or 'NO' or 'UNKNOWN' otherwise.

DIRECT=logical-direct. logical-direct is character variable or
character array element that is set to 'YES' if direct is among the
set of allowable access modes for the connected file, or 'NO' or
'UNKNOWN' otherwise.

FORM=format-connection. format-connection is a character var­
iable or character array element that is set to 'FORMATIED' if
the file is connected for formatted 1/0 or 'UNFORMATIED'
otherwise.

FORMATIED=logical-formatted. logical-formatted is a charac­
ter variable or character array element that is set to 'YES' if
formatted is among the set of allowable forms of the file; 'NO' or
'UNKN OWN' otherwise.

UNFORMA TIE D=logical-unformatted. logical-unformatted is a
character variable or character array element that is set to 'YES'
if unformatted is among the set of allowable forms of the file; 'NO'
or 'UNKNOWN' otherwise.

RECL=rec-length. rec-length is an integer variable or array ele­
ment name that specifies the length (in bytes) of each record in a
file that is connected for direct access. If the file is connected for
unformatted 1/0 the value will be in processor-dependent units.

NEXTREC=nextrec-num. nextrec-num is an integer variable or
integer array element that is assigned the record number of the
next record in a file that is connected for direct access. The first
record in such a file has record n urn ber 1.

BLANK=blank. blank is a character variable or character array
element thatis set to 'NULL' if the BN edit descriptor is in effector
'ZERO' if BZ is in effect.

107

Microsoft FORTRAN Reference Manual

3.2.29 The INTRINSIC Statement

Syntax

INTRINSIC name1 [, name2]. ..

Purpose

Declares that a name is an intrinsic function.

Remarks

name is an intrinsic function name.

Each user name may appear only once in an INTRINSIC state­
ment. A name that appears in an INTRINSIC statement cannot
appear in an EXTERNAL statement. All names used in an
INTRINSIC statement must be system-defined INTRINSIC
functions. For a list of these functions, see Table 5.1 in Chapter 5,
"Programs, Subroutines, and Functions."

You must specify the name of an intrinsic function in an
INTRINSIC statement if you wish to pass it as an argument.

Example

C EXAMPLE OF INTRINSIC STATEMENT
INTRINSIC SIN, COS

C SIN AND COS ARE ARGUMENTS TO CALC2
X = CALC2 (SIN, COS)

108

3.2.30 The OPEN Statement

Syntax

OPEN (unit-spec [, FILE={name]
[, STATUS='status'] [, ACCESS='access']
[, FORM='format'] [, 10STAT=iocheck]
[, RECL=rec-length])

Purpose

Statements

Associates a unit number with an external device or file on an
external device.

Remarks

unit-spec is a required unit specifier. It must appear as the first
argument; it must not be an internal unit specifier. See Section
4.3.1, "Elements of I/O Statements," for more information about
unit specifiers and other elements of I/O statements.

{name is a character expression. This optional argument, if pres­
ent, must appear as the second argument. If the argument is
omitted, the compiler creates a temporary scratch file with a name
unique to the unit. 'The scratch file is deleted when it is either
explicitly closed or the program terminates normally.

If the filename specified is blank (FILE=' '), the user will be
prompted for a filename at runtime. If opened with STATUS
='OLD', the file itself must exist.

All arguments after {name are optional and can appear in any
order. Except for RECL= and IOSTAT=, these options are charac­
ter constants with optional trailing blanks and must be enclosed
in single quotation marks.

'status' is OLD (the default) or NEW. OLD is for reading or
writing existing files; NEW is for writing new files.

'access' is SEQUENTIAL (the default) or DIRECT.

109

Microsoft FORTRAN Reference Manual

'format' is FORMATTED, UNFORMATTED, or BINARY. If
access is SEQUENTIAL, the default is FORMATTED; if access
is DIRECT, the default is UNFORMATTED.

ioeheek is an integer variable or integer array element that
becomes defined as (1) a zero ifno error or end offile conditions are
encountered or (2) a processor-dependent positive integer value if
an error condition is encountered or (3) a processor-dependent
negative integer value if an end offile is encountered and no error
condition exists.

ree-length (record length) is an integer expression that specifies
the length of each record in bytes. This argument is applicable
only for DIRECT access files, for which it is required.

Associating unit zero to a file has no effect: Unit zero is perman­
ently connected to the keyboard and screen.

Example 1

C PROMPT USER FOR A FILE NAME.
WRITE(*,'(A \)')'Output file name?'

C PRESUME THAT FNAME IS SPECIFIED TO BE
C CHARACTER*64.
C READ THE FILE NAME FROM THE KEYBOARD.

READ(,'(A)') FNAME
C OPEN THE FILE AS FORMATTED SEQUENTIAL
C AS UNIT 7.
C NOTE THAT THE ACCESS SPECIFIED WAS
C UNNECESSARY SINCE IT IS THE DEFAULT.
C FORMATTED IS ALSO THE DEFAULT.

OPEN (7,FI LE =FNAM E,ACCESS='SEQU ENTIA L',
+STATUS='NEW')

Example 2

C OPEN AN EXISTING FILE CREATED BY EDITOR
C CALLED DATA3.TXT AS UNIT 3.

OPEN(3,FILE='DATA3.TXT')

110

Statements

3.2.31 The PARAMETER Statement

Syntax

PARAMETER (p=e [, p=e]. ...)

Purpose

The PARAMETER statement is used to give a constant a sym­
bolic name.

Remarks

The symbolic name (P) must match the type of the expression (e).
For example, if (e) is an arithmetic constant expression, then (P)
must be of that type. If (e) is a logical or character constant
expression, (P) must be of that type. To use a symbolic name in
subsequent expressions, it must be defined in the same or in a
previous PARAMETER statement in the same program unit.

If a constant's symbolic name is not of the default value of either
integer or real and if the symbolic name is not of the default
length, a type-statement or IMPLICIT statement must declare it
before it appears in the source.

A symbolic name cannot be used in format specifications and in
some other contexts for example, in a COMPLEX constant.

If (e) is not of type INTEGER, it must be a constant.

Example 1

PARAMETER (NBLOCKS = 10)

Example 2

REAL MASS
PARAMETER (MASS = 47.3)

Example 3

IMPLICIT REAL (L-M)
PARAMETER (LOAD = 10.0, MASS = 32.2)

111

Microsoft FORTRAN Reference Manual

3.2.32 The PAUSE Statement

Syntax

PAUSE [n]

Purpose

Suspends program execution until the RETURN key is pressed.

Remarks

n is either a character constant or a string of not more than five
digits.

The PAUSE statement suspends execution of the program, pend­
ing an indication that it is to continue. The argument n, if present,
is displayed on the screen as a prompt requesting input from the
keyboard. If n is not present, the following message is displayed
on the screen:

PAUSE. Please press return to continue.

After you press the RETURN key, program execution resumes as if
a CONTINUE statement were executed.

Example

C EXAMPLE OF A PAUSE STATEMENT
IF (IWARN .EQ. 0) GOTO 300
PAUSE 'WARNING: IWARN IS NONZERO'

300 CONTINUE

112

Statements

3.2.33 The PROGRAM Statement

Syntax

PROGRAM program-name

Purpose

Identifies the program unit as a main program and gives it a
name.

Remarks

program-name is the name you have given to your main program.
The program name is a global name. Therefore, it cannot be the
same as that of another external procedure or common block. (It is
also a local name to the main program and must not conflict with
any local name in the main program.) The PROGRAM statement
may only appear as the first statement of a main program.

If the main program does not have a program statement, it will be
assigned the name MAIN. The name MAIN then cannot be used
to name any other entity.

Example

PROGRAM GAUSS
REAL COEF (10,10), CONST (10)

END

113

Microsoft FORTRAN Reference Manual

3.2.34 The READ Statement

Syntax

READ (unit-spec [, format-spec]
[, IOSTAT=iocheck] [, REC=rec-num]
[, END=slabell] [, ERR=slabel2]) iolist

Purpose

Transfers data from the file associated with unit-spec to the items
in the iolist, assuming that no end of file or error occurs.

Remarks

If the READ is internal, the character variable or character array
element specified by unit-spec is the source of the input; if the
READ is not internal, the source of the input is the external unit.

unit-spec is a required unit specifier, which must appear as the
first argument.

format-spec is a format specifier. It is required for formatted read
as the second argument; it must not appear for unformatted read.

Other arguments, if present, can appear in any order.

iocheck is an integer variable or integer array element that
becomes defined as (1) a zero ifno error or end of file conditions are
encountered or (2) a processor-dependent positive integer value if
an error condition is encountered or (3) a processor-dependent
negative integer value if an end offile is encountered and no error
condition exists. (See Section 3.1.7, "I/O Statements," for details
on error handling).

rec-num is a record number, specified for direct access files only; if
rec-num is given for other than direct files, an error results. The
record n urn ber is a positive integer expression and positions to the
record number rec-num (the first record in the file has record
number 1) before the transfer of data begins. If this argument is
omitted for a direct access file, reading continues sequentially
from the current position in the file.

114

Statements

slabell is an optional statement label in the same program unit as
the READ statement. If this argument is omitted, reading past
the end of the file results in a runtime error. If it is present,
encountering an end of file condition transfers control to the
executable statement specified.

slabel2 is an optional statement label in the same program unit as
the READ statement. If this argument is omitted, I/O errors
result in runtime errors. Ifit is present, I/O errors transfer control
to the executable statement specified. (See Section 3.1.7, "I/O
Statements," for details on error handling).

iolist specifies the entities into which values are transferred from
the file. An iolist may be empty, but ordinarily consists of input
entities and implied DO lists, separated by commas.

See Section 4.3.1, "Elements of I/O Statements," for more infor­
mation about unit specifiers and other elements of I/O statements.

If the file has not been opened by an OPEN statement, an implicit
OPEN operation is performed. This operation is equivalent to the
following statement:

OPEN (unit-spec,FILE=' ',STATUS='OLD',
+ACCESS='SEQUENTIAL',FORM='format')

format is 'FORMA TIED' if the READ statement is formatted
and 'UNFORMA TIED if the READ statement is unformatted.
See Section 3.2.28, "The OPEN Statement," for a description of
the effect of the FILE= parameter.

Example

C SET UP A TWO DIMENSIONAL ARRAY.
DIMENSION IA(10,20)

C READ IN THE BOUNDS FOR THE ARRAY.
C THESE BOUNDS SHOULD BE LESS THAN OR
C EQUAL TO 10 AND 20 RESPECTIVELY.
C THEN READ IN THE ARRAY IN NESTED
C IMPLIED DO LISTS WITH INPUT FORMAT OF
C 8 COLUMNS OF WIDTH 5 EACH.

READ (3,990)IL,JL,((IA(I,J),J=1,JL),
+1=1,IL)

990 FORMAT (215/,(815))

115

Microsoft FORTRAN Reference Manual

3.2.35 The RETURN Statement

Syntax

RETURN [ordinal]

Purpose

Returns control to the calling program unit and, where the actual
arguments of the CALL statement contain alternate return speci­
fiers, can return control to a specific statement.

Remarks

RETURN can only appear in a function or subroutine.

Execution of a RETURN statement terminates execution of the
enclosing subroutine or function. If the RETURN statement is in
a function, the function's value is equal to the current value of the
variable with the same name as the function.

Execution of an END statement in a function or subroutine is
equivalent to execution of a RETURN statement. Thus, either a
RETURN or an END statement, but not both, is required to
terminate a function or subroutine.

[ordinal] defines an ordinal position for an alternate return label
in the formal argument list for the subroutine. (See the SUB­
ROUTINE statement).

116

Example

C EXAMPLE OF RETURN STATEMENT
C THIS SUBROUTINE LOOPS UNTIL
C YOU TYPE "Y"

C

SUBROUTINE LOOP
CHARACTER IN

10 READ(*,'(A1)') IN
IF (IN .EQ. 'Y') RETURN
GOTO 10

C RETURN IMPLIED
END

Statements

The following code fragment is an example of the alternate return
feature:

01 CALL BAR(I,*10,J,*20,*30)
WRITE (*, *) , normal return'
GO TO 40
WRITE

SUBROUTINE BAR (I,*,J,*,*)
IF (LEQ.10) RETURN 1
IF (LEQ.20) RETURN 2
IF (LEQ.30) RETURN 3
RETURN

In this example of a subroutine with alternate return labels fol­
lowing the RETURN statement, RETURN 2 specifies a return to
the second alternate return label in the list, RETURN 3 to the
third and so on.

117

Microsoft FORTRAN Reference Manual

3.2.36 The REWIND Statement

Syntax

REWIND unit-spec

Purpose

Repositions to its initial point the file associated with the specified
unit.

Remarks

unit-spec is a required external unit specifier. See Section 4.3.1,
"Elements of 1/0 Statements," for more information about unit
specifiers and other elements of 1/0 statements.

Example

INTEGER A(80)

WRITE (7,'(8011)') A

REWIND 7

READ (7, '(8011)') A

118

Statements

3.2.37 The SAVE Statement

Syntax

SAVE enamel [, ename2] ...

Purpose

Causes variables to retain their values across invocations of the
procedure in which they are defined.

Remarks

ename is the name of a common block (enclosed in slashes), a
variable or an array. After being saved, the named variables and
all variables in the named common block have defined values if
the current procedure is subsequently re-entered.

Example

C EXAMPLE OF SAVE STATEMENT
SAVE IMYCOM/, MYVAR

119

Microsoft FORTRAN Reference Manual

3.2.38 The Statement Function Statement

Syntax

{name ([farg [, (argJ ..]) = expr

Purpose

Defines a function in one statement.

Remarks

{name is the name of the statement function.

{arg is a formal argument name.

expr is any expression.

The statement function statement is similar in form to the
assignment statement. A statement function statement can only
appear after the specification statements and before any executa­
ble statements in the program unit in which it appears.

A statement function is not an executable statement, since it is
not executed in order as the first statement in its particular pro­
gram unit. Rather, the body of a statement function serves to
define the meaning of the statement function. Like any other
function, a statement function is executed by a function reference
in an expression.

The type of the expression must be assignment compatible with
the type of the statement function name. The list of formal argu­
ment names serves to define the number and type of arguments to
the statement function. The scope of formal argument names is
the statement function. Therefore, formal argument names can
be re-used as other user-defined names in the rest of the program
unit enclosing the statement function definition.

120

Statements

The name of the statement function, however, is local to the
enclosing program unit; it must not be used otherwise, except as
the name of a common block or as the name of a formal argument
to another statement function. In the latter case the type of all
such uses must be the same.

If a formal argument name is the same as another local name,
then a reference to that name within the statement function
defining it always refers to the formal argument, never to the
other usage.

Within the expression expr, references to variables, formal argu­
ments, other functions, array elements, and constants are permit­
ted. Statement function references, however, must refer to state­
ment functions defined prior to the statement function in which
they appear. Statement functions cannot be called recursively,
either directly or indirectly.

A statement function can only be referenced in the program unit
in which it is defined. The name of a statement function cannot
appear in any specification statement, except in a type statement
(which may not define that name as an array) and in a COMMON
statement (as the name of a common block). A statement function
cannot be of type CHARACTER.

Example

C EXAMPLE OF STATEMENT FUNCTION STATEMENT
DIMENSION X(10)

C
ADD(A, B) = A + B

DO 1,1=1,10
X(I) = ADD(Y, Z)
CONTINUE

121

Microsoft FORTRAN Reference Manual

3.2.39 The STOP Statement

Syntax

STOP [n]

Purpose

Terminates the program.

Remarks

n is either a character constant or a string of not more than five
digits.

The argument, n, if present, is displayed on the screen when the
program terminates. If n is not present, the following message is
displayed:

STOP - Program terminated.

Example

C EXAMPLE OF STOP STATEMENT
IF (IERROR .EQ. 0) GOTO 200
STOP 'ERROR DETECTED'

200 CONTINUE

122

3.2.40 The SUBROUTINE Statement

Syntax

SUBROUTINE subroutine-name [([farg
L farg]' .. 1)1

Purpose

Statements

Identifies a program unit as a subroutine, gives it a name, and
identifies the formal arguments to that subroutine. These argu­
ments may include alternate return labels (*).

An alternate return label identifies an ordinal position [e] among
the other alternate return labels in the formal argument list.

For example:

CALL BAR(I, *1 O,J, *20, *30)

SUBROUTINE BAR (I,*,J,*,*)
IF (I.EO.10) RETURN 1
IF (I.EO.20) RETURN 2
IF (I.EO.30) RETURN 3
RETURN

RETURN 2 references the second alternate return label(*) in
SUBROUTINE BAR. The second alternate return label serves as
the symbol for the actual argument *20 (with its alternate return
specifier) in the CALL statement.

Remarks

subroutine-name is the user-defined, global, external name of the
subroutine.

farg is the user-defined name of a formal argument, also known as
a dummy argument. The formal argument may include the alter­
nate return label (*).

123

Microsoft FORTRAN Reference Manual

A subroutine begins with a SUBROUTINE statement and ends
with the next following END statement. It can contain any kind
of statement other than a PROGRAM statement, BLOCK DATA
statement, SUBROUTINE statement, or a FUNCTION state­
ment.

The list of argument names defines the number and, with any
subsequent IMPLICIT, EXTERNAL, type, or DIMENSION
statements, the type of arguments to that subroutine. Argument
names cannot appear in COMMON, DATA, EQUIVALENCE, or
INTRINSIC statements.

The actual arguments in the CALL statement that reference a
subroutine must agree with the corresponding formal arguments
in the SUBROUTINE statement, in order, in number, and in type
or kind.

The compiler will check for correspondence if the formal argu­
ments are known. To be known, the SUBROUTINE statement
that defines the formal arguments must precede the CALL state­
ment in the current compilation. Rules for the correspondence of
formal and actual arguments are described in Section 3.2.5, "The
CALL Statement."

Example

SUBROUTINE GETNUM (NUM,UNIT)
INTEGER NUM, UNIT

10 READ (UNIT,'(110)" ERR=10) NUM
RETURN
END

124

3.2.41 The Type Statement

Syntax

type vnamel [, vname2] ...

Purpose

Specifies the type of user-defined names.

Remarks

type is one of the following data type specifiers:

INTEGER
INTEGER*2
INTEGER*4
REAL
REAL*4
REAL*8
DOUBLE PRECISION
COMPLEX
COMPLEX*8
COMPLEX*16
LOGICAL
LOGICAL*2
LOGICAL*4
CHARACTER
CHARACTER*n

Statements

vname is the symbolic name of a variable, array, or statement
function; or a function subprogram or an array declarator. A type
statement can confirm or override the implicit type of a name. A
type statement can also specify dimension information.

n (as in CHARACTER*n) may be in the following range (1 <= n
<= 127).

A user name for a variable, array, external function, or statement
function may appear in a type statement. Such an appearance
defines the type of that name for the entire program unit. Within a
program unit, a name can have its type explicitly specified by a
type statement only once.

125

Microsoft FORTRAN Reference Manual

A type statement may also confirm the type of an intrinsic func­
tion, but it is not required. The name of a subroutine or main
program cannot appear in a type statement.

The following rules apply to a type statement:

1. A type statement must precede all executable statements.

2. The data type of a symbolic name can be declared explic­
itly only once.

3. A type statement cannot be labeled.

4. A type statement can be used to declare an array by
appending a dimension declarator to an array name.

A symbolic name can be followed by a data type length specifier
of the form *length, where length is one of the acceptable lengths
for the data type being declared. Such a specification overrides the
length attribute that the statement implies and assigns a new
length to the specified item. If both a data type length specifier
and an array declarator are included, the data type length speci­
fier goes last.

Example

C EXAMPLE OF TYPE STATEMENTS

126

INTEGER COUNT, MATRIX(4,4), SUM
REAL MAN, lABS
LOGICAL SWITCH

INTEGER*2 Q, M12*4, IVEC(10)*4
REAL*4 WX1, WX3*4, WX5, WX6*4

CHARACTER NAME*10, CITY*80, CH

3.2.42 The WRITE Statement

Syntax

WRITE (unit-spec [, format-spec]
[, IOSTAT=iocheck 1 [, ERR=slabel]
[, REC=rec-num]) iolist

Purpose

Statements

Transfers data from the iolist items to the file associated with the
specified unit.

Remarks

unit-spec is a required unit specifier and must appear as the first
argument. See Section 4.3.1, "Elements of I/O Statements," for
more information about unit specifiers and other elements of I/O
statements.

format-spec is a format specifier. It is required as the second
argument for a formatted WRITE; it must not appear for an
unformatted WRITE.

The remaining arguments, if present, may appear in any order.

iocheck is an integer variable or integer array element that
becomes defined as (1) a zero ifno error or end offile conditions are
encountered or (2) a processor-dependent positive integer value if
an error condition is encountered or (3) a processor-dependent
negative integer value if an end of file is encountered and no error
condition exists. (See Section 3.1.7, "I/O Statements," for more
information on error-handling.)

slabel is an optional statement label. Hit is not present, I/O errors
result in runtime errors. Hit is present, I/O errors transfer control
to the executable statement specified.

127

Microsoft FORTRAN Reference Manual

rec-num is a record number, specified for direct access files only
(otherwise, an error results). It is a positive integer expression,
specifying the number of the record to be written. The first record
in the file is record n umber 1. If the record n urn ber is omitted for a
direct access file, writing continues from the current position in
the file.

iolist specifies the entities whose values are transferred by the
WRITE statement. An iolist may be empty, but ordinarily con­
sists of output entities and implied DO lists, separated by
commas.

If the WRITE is internal, the character variable or character
array element specified as the unit is the destination of the output;
otherwise, the external unit is the destination.

If the file has not been opened by an OPEN statement, an implicit
open operation is performed. The OPEN operation is equivalent
to the following statement:

OPEN (unit-spec, FILE=' " STATUS='NEW',
+ACCESS='SEQUENTIAL', FORM=format)

format is FORMATTED for a formatted WRITE statement and
UNFORMATTED for an unformatted WRITE statement. See
Section 3.2.30, "The OPEN Statement," for a description of the
effect of the FILE= argument.

Example

C Display message: "One= 1 ,Two= 2,Three= 3"
C on the screen, not doing
C things in the simplest way!

WRITE(*,980)' One=',1, 1 +1 ,'ee=', +(1 +1 +1)
980 FORMAT(A,12,',Two=', 1X,11 ,',Thr',A,12)

128

Chapter 4

The liD SysteDl

4.1 Records 131
4.2 Files 132
4.2.1 File Properties 132
4.2.1.1 Filename 132
4.2.1.2 File Position 133
4.2.1.3 File Structure 133
4.2.1.4 File Access Method 134
4.2.2 Special Properties of Internal Files 134
4.2.3 Units 135
4.2.4 Commonly Used File Structures 136
4.2.5 Other File Structures 137
4.2.6 OLD and NEW Files 138
4.2.7 Limi ta tions 139
4.3 I/O Statements 140
4.3.1 Elements of I/O Statements 140
4.3.1.1 The Unit Specifier 140
4.3.1.2 Format Specifiers in I/O Statements 141
4.3.1.3 Input/Output List 142
4.3.2 Carriage Control 143
4.4 Formatted I/O 144
4.4.1 In teraction Between

Format and I/O List 145
4.4.2 Edit Descriptors for

the FORMAT Statement 147

129

4.4.2.1 Nonrepeatable Edit Descriptors 147

4.4.2.2 Repeatable Edit Descriptors 151

4.5 List-Directed I/O 156

4.5.1 List-Directed Input 156

4.5.2 List-Directed Output 159

130

This chapter supplements the presentation of the IIO statements
in Chapter 3, "Statements." It describes the elements of the MS­
FORTRAN file system, defines the basic concepts of IIO records
and IIO units, and discusses the various kinds of file access
available. It further relates these definitions to how various tasks
are accomplished using the most common forms of files and IIO
statements. The chapter includes a complete program illustrating
the IIO statements and discusses general IIO system limitations.

4.1 Records

The building block of the MS-FO RTRAN file system is the record.
A record is a sequence of characters or values. There are three
kinds of records: formatted, unformatted, and endfile.

1. Formatted

A formatted record is a sequence of characters terminated
by a system-dependent end-of-line marker. Formatted
records are interpreted in a manner consistent with the
way most operating systems and editors interpret lines.

2. Unformatted

An unformatted record is a sequence of values in a system
dependent form. Unformatted files contain a structure
that defines the physical record. Binary files contain only
the values written to them, and the record structure can­
not, in general, be determined from this information.

3. Endfile

The MS-FORTRAN file system simulates a virtual end­
file record after the last record in a file. The way end offile
is represented depends in part on the operating system.

131

Microsoft FORTRAN Reference Manual

4.2 Files

A file is a sequence of records. Files are either external or internal.

1. External

An external file is either a file on a device or the device
itself.

2. Internal

An internal file is a character variable or character array
element that serves as the source or destination of some
formatted I/O operation.

For the remainder of this manual, both internal MS-FORTRAN
files and the files known to the operating system are usually
referred to simply as "files," with context determining meaning.
The OPEN statement provides the link between the two notions of
files; in most cases, the ambiguity disappears after opening a file,
when the two notions coincide.

4.2.1 File Properties

A FORTRAN file has the following properties:

1. name

2. position

3. structure (formatted, unformatted, or binary)

4. access method (sequential or direct)

4.2.1.1 Filename

A file can have a name. If present, a name is a character string
identical to the name by which the file is known to the operating
system. Filenaming conventions are determined by your operat­
ing system.

132

The I/O System

4.2.1.2 File Position

The position of a file is usually set by the previous I/O operation.
A file has an initial point, terminal point, current record, preced­
ing record, and next record.

It is possible to be between records in a file, in which case the next
record is the successor to the previous record, and there is no
current record.

Opening a sequential file positions the file at its beginning. If the
next I/O operation is a WRITE, all old data in the file is discarded.
The file position after sequential WRITEs is at the end of the file,
but not beyond the endfile record.

Executing the ENDFILE statement positions the file beyond the
endfile record, as does a READ statement executed at the end of
the file. You can detect the endfile condition by using the END=
option in a READ statement.

4.2.1.3 File Structure

An external file may be opened as a formatted, unformatted, or
binary file. All internal files are formatted.

1. Formatted

Files consisting entirely of formatted records.

2. Unformatted

Files consisting entirely of unformatted records.

3. Binary

Sequences of bytes with no internal structure.

133

Microsoft FORTRAN Reference Manual

4.2.1.4 File Access Method

An external file is opened as either a sequential file or a direct
access file.

1. Sequential

Files that contain records whose order is determined by
the order in which the records were written (the normal
sequential order). These files must not be read or written
using the REC= option, which specifies a position for
direct access I/O.

2. Direct

Files whose records can be read or written in any order
(they are random access files). Records are numbered
seq uen tially , with the first record n urn bered 1. All records
have the same length, specified when the file is opened;
each record has a unique record number, specified when
the record is written.

In a direct access file, it is possible to write records out of order
(e.g., 9, 5, and 11 in that order), without writing the records in
between. It is not possible to delete a record once written; how­
ever, a record can be overwritten with a new value.

Reading a record that has not been written from a direct access
file will result in an error. Direct access files must reside on disk.
The operating system attempts to extend direct access files if a
record is written beyond the old terminating file boundary; the
success of this operation depends on the existence of room on the
physical device.

4.2.2 Special Properties of Internal Files

An internal file is a character variable or character array element.
The file has exactly one record, which is of the same length as the
character variable or character array element.

If less than the entire record is written, the remaining portion of
the record is filled with blanks. The file position is always at the
beginning of the file prior to execution of the I/O statement.
Internal files permit only formatted, sequential I/O; and only the
I/O statements READ and WRITE may specify an internal file.

134

Thc I/O Systcm

Internal files provide a mechanism for using the formatting
capabilities of the 1/0 system to convert values to and from their
external character representations and their MS-FORTRAN
internal memory representations. That is, reading from an inter­
nal file converts the character values into numeric, logical, or
character values; writing to an internal file converts values into
their (external) character representation. The backslash edit de­
scriptor (\) may not be used with internal files.

4.2.3 Units

A unit is a means of referring to a file. A unit specified in an 1/0
statement is either an external unit specifier or an internal unit
specifier.

1. External unit specifier

An external unit specifier is either an integer expression
or the character * (which stands for the screen, for writing,
and the keyboard, for reading).

In most cases, an external unit specifier value is bound to
a physical device (or files resident on the device) by name,
using the OPEN statement. Once this binding of a unit to
a system filename occurs, MS-FORTRAN 1/0 statements
specify the unit number to refer to the associated external
entity. Once the file is opened, the external unit specifier
value is uniquely associated with a particular external
entity until an explicit CLOSE operation occurs or until
the program terminates.

The only exception to these binding rules is that the unit
value zero is initially associated with the keyboard for
reading and the screen for writing and no explicit OPEN
statement is necessary. The MS-FORTRAN file system
interprets the character * as unit zero.

2. Internal unit specifier

An internal unit specifier is a character variable or char­
acter array element that directly specifies an internal file.

See Section 4.3.1, "Elements of 1/0 Statements," for a discussion
of how these unit specifiers are used.

135

Microsoft FORTRAN Reference Manual

4.2.4 Commonly Used File Structures

Numerous combinations of file structures are possible in MS­
FORTRAN. However, two kinds of files suffice for most appli­
cations:

1. * files

2. named, external, sequential, formatted files

* represents the keyboard and screen, that is, a sequential, for­
matted file, also known as unit zero. When reading from unit zero,
you must enter an entire line; the normal operating system con­
ventions for correcting typing mistakes apply.

An external file can be bound to a system name by anyone of the
following methods:

1. If the file is explicitly opened, the name can be specified in
the OPEN statement.

2. If the file is explici tly opened and the name is specified as
all blanks, the name is read from the command line (if
available). If the command line is unavailable or contains
no name, the user will usually be prompted for the name.

3. If the file is implicitly opened (with a READ or WRITE
statement) the name is obtained as in method 2, described
in the preceding paragraph.

4. If the file is explicitly opened and no name is specified in
the OPEN statement, the file is considered a scratch or
temporary file, and an implementation-dependent name
is assumed.

The following sample program uses * files and named, external,
sequential, formatted files for reading and writing. The I/O
statements themselves are explained in general in Section 4.3,
"I/O Statements." For details of each individual I/O statement,
see the appropriate entries in Section 3.2, "Statement Directory."

136

The I/O System

C COPY A FILE WITH THREE COLUMNS OF INTEGERS,
C EACH 7 COLUMNS WIDE, FROM A FILE WHOSE NAME
C IS ENTERED BY THE USER TO ANOTHER FILE NAMED
C OUT.TXT, REVERSING THE POSITIONS OF THE
C FIRST AND SECOND COLUMNS.

PROGRAM COLSWP
CHARACTER*64 FNAME

C PROMPT TO THE SCREEN BY WRITING TO *.
WRITE(*,900)

900 FORMAT(, INPUT FILE NAME -'\)

C READ THE FILE NAME FROM THE KEYBOARD BY
C READING FROM *.
READ(*,910) FNAME

910 FORMAT(A)

C USE UNIT 3 FOR INPUT; ANY UNIT NUMBER EXCEPT
C OWILL DO.

OPEN(3,FILE=FNAME)

C USE UNIT 4 FOR OUTPUT; ANY UNIT NUMBER EXCEPT
CO AND 3 WILL DO.

OPEN (4,FILE='OUT.TXT',STATUS='NEW')

C READ AND WRITE UNTIL END OF FILE.
100 READ(3,920,END=200) I,J,K

WRITE(4,920)J,I,K
920 FORMAT(317)

GOTO 100
200 WRITE(*,910)'Done'

END

4.2.5 Other File Structures

The less commonly used file structures are appropriate for certain
classes of applications. A very general indication of their intended
uses follows:

1. If random access I/O is needed, as would probably be the
case in a data base, direct access files are necessary.

2. If the data is to be both written and reread by MS­
FORTRAN, unformatted files are perhaps more efficient
in terms of speed, but possibly less efficient in terms of
disk space. The combination of direct and unformatted
files is ideal for a data base created, maintained, and
accessed exclusively by MS-FORTRAN.

137

Microsoft FORTRAN Reference Manual

3. If the data must be transferred without any system inter­
pretation, especially if all 256 possible byte values are to
be transferred, unformatted I/O is necessary.

One use of unformatted I/O is in the control of a device
that has a single-byte, binary interface. Formatted I/O
would, in this example, interpret certain characters, such
as the ASCII representation for RETURN, and fail to
pass them through to the program unaltered.

The number of bytes written for an integer constant is
determined by the $STORAG E metacommand (for details,
see Section 6.2.12, "The $STORAGE Metacommand.")

4. If the data is to be transferred as in the third use described
in this list, but will be read by non-FORTRAN programs,
the BINARY format is recommended. Unformatted files
are blocked internally, and consequently the non­
FORTRAN program must be compatible with this format
to interpret the data correctly. BINARY files contain only
the data written to them. Backspacing over records is not
possible and incomplete records cannot be read from
them.

4.2.6 OLD and NEW Files

A file opened in MS-FORTRAN is either OLD or NEW, but
"opened for reading" is not distinguishable from "opened for
writing." Therefore, you can open OLD (existing) files and write to
them, with the effect of overwriting them.

Similarly, you can alternately WRITE and READ to the same file
(providing that you avoid reading beyond the end of the file, or
reading unwritten records in a direct file). A WRITE to a sequen­
tial file effectively deletes any records that existed beyond the
newly written record.

When a device such as the keyboard or printer is opened as a file, it
normally makes no difference whether it is opened as OLD or
NEW. With disk files, however, opening a file as NEW creates a
new file:

138

1. If a previous file existed with the same name, the previous
file is deleted.

The I/O System

2. If the new file is closed with STATUS='KEEP' or if the
program terminates without doing a CLOSE operation on
that file, a permanent file is created with the name given
when the file was opened.

4.2.7 Limitations

Certain limitations on the use of the MS-FORTRAN I/O system
are described briefly in the following list:

1. Direct files/ direct device association

There are two kinds of devices: sequential and direct. The
files associated with sequential devices are streams of
characters; except for reading and writing, no explicit
motion is allowed. The keyboard, screen, and printer are
all sequential devices.

Direct devices, such as disks, have the additional task of
seeking a specific location. Direct devices can be accessed
either sequentially or randomly, and thus can support
direct files. The MS-FORTRAN I/O system does not
allow direct files on sequential devices.

2. BACKSPACE/BINARY sequential file association

There is no indication in a binary sequential file of record
boundaries; therefore, a BACKSPACE operation on such
files is defined as backing up by one byte. Direct files
contain records of fixed, specified length, so it is possible
to backspace by records on direct unformatted files.

3. Partial READ/BINARY file

The data read from a binary file must correspond in
length to the data written. Unformatted sequential files
differ, in that an internal structure allows part or none of a
record to be read (the unread part is skipped).

4. Side effects of functions called in I/O statements

During execution of any I/O statement, evaluation of an
expression may cause a function to be called. That func­
tion call must not cause any I/O statement to be executed.

139

Microsoft FORTRAN Reference Manual

4.3 1/0 Statements

This section discusses the elements of 1/0 statements in general.
For specific details on each of the seven 1/0 statements OPEN,
CLOSE, READ, WRITE, BACKSPACE, ENDFILE, and RE­
WIND, see the appropriate entries in Section 3.2, "Statement
Directory," in the previous chapter.

In addition to these 1/0 statements, there is an 1/0 intrinsic
function, EOF(unit-spec), which is described in Section 5.3.2,
"Intrinsic Functions." EOF returns a logical value that indicates
whether there is any data remaining in the file after the current
position.

4.3.1 Elements of liD Statements

The various 1/0 statements take certain arguments that specify
sources and destinations of data transfer as well as other facets of
the 1/0 operation. The elements described in this subsection are
the following:

1. unit specifier (unit-spec)

2. format specifier (jormat-spec)

3. input! output list (iolist)

4.3.1.1 The Unit Specifier

The unit specifier, unit-spec, can take one of the following forms in
an 1/0 statement:

140

1. The * specifier

WRITE (*, *) 'Begin output.'

The first (*) in this example refers to the keyboard or
screen and specifies that unit.

The I/O System

2. Integer expression

WRITE (10,*) 'File 10:'

The integer (10) refers to an external file associated with
unit 10. An (*) indicates a unit number zero. Unit specifier
numbers in the range -32767 to 32767 are accepted.

3. Name of a character variable or character array element

CHARACTER*10 STRING
WRITE (STRING, '(110)'} IVAL

The character variable, STRING, refers to an internal file.

See Section 4.2.3, "Units," for a discussion of the difference
between external and internal unit specifiers.

4.3.1.2 Format Specifiers In I/O Statements

The format specifier, format-spec, can take one of the following
forms in an I/O statement:

1. FORMAT Statement label

WRITE (*,990) I,J,K
990 FORMAT (1X,215,13)

The statement label 990 refers to the FORMAT statement
at 990.

2. Integer variable name

ASSIGN 990 TO IFMT
990 FORMAT(1X,215,13)

WRITE(*,IFMT) I,J,K

In the WRITE staten1ent, the integer variable name
(IFMT) refers to FORMAT statement label 990 as as­
signed just before the FORMAT statement. For further
information, see Section 3.2.1, "The ASSIGN Statement."

3. Character expression

WRITE(*,'(1X,215,13)')I,J,K

The value of the character expression is the format for the
data transfer.

141

Microsoft FORTRAN Reference Manual

4. Character variable

CHARACTER*11 FMTCH
FMTCH = '(1X,215,13)'
WRITE(*,FMTCH)I,J,K

In this example, the WRITE statement uses the contents
of the character variable FMTCH as the format specifier
for data transfer.

5. *

WRITE(*,*) I,J,K

In this statement, the second asterisk indicates a list­
directed 1/0 transfer. For more information, see Section
4.5, "List-Directed 1/0."

4.3.1.3 Input/Output List

The input! output list, iolist, specifies the entities whose values are
transferred by READ and WRITE statements. An iolist may be
empty, but ordinarily consists of input or output entities and
implied DO lists, separated by commas.

An input entity can be specified in the iolist of a READ statement
and an output entity in the iolist of a WRITE statement.

142

1. Input entities

An input entity is either a variable name, an array ele­
ment name, or an array name. An array name specifies
all of the elements of the array in memory sequence order.

2. Output entities

In addition to being any of the items listed as input enti­
ties, an output entity can be any other expression not
beginning with the left parenthesis character "(". (The left
parenthesis distinguishes implied DO lists from expres­
sions.)

The 110 System

To distinguish it from an implied DO list, the following
expression

(A+8)*(C+O)

can be written as:

+(A+8)*(C+O)

3. Implied DO lists

Implied DO lists can be specified as items in the I/O list of
READ and WRITE statements and have the following
format:

(iolist, variable = expr 1,
expr2 [, expr3])

iolist is defined the same as for elements of I/O state­
ments (including nested implied DO lists).

variable, exprl, expr2, and expr3 are the same as defined
for the DO statement. That is, variable is an integer vari­
able, while expr 1, expr2, and expr3 are integer expressions.

In a READ statement, the DO variable (or an associated
entity) must not appear as an input list item in the
embedded iolist, but may have been read in the same
READ statement before the implied DO list. The em­
bedded iolist is effectively repeated for each iteration of
variable with appropriate substitution of values for the
DO variable.

In the case of nested implied DO loops, the innermost
(most deeply nested) loop is always executed first.

4.3.2 Carriage Control

The first characters of records written to files are treated as other
characters in the record. However, first characters in records
transferred to unit 0 or *, or to the files PRN, LPTl, or CON, are
not printed. These characters are not interpreted as carriage con­
trol characters. The MS-FORTRAN I/O system recognizes cer­
tain characters as carriage control characters. These characters
and their effects when printed are shown in Table 4.1.

143

Microsoft FORTRAN Reference Manual

Table 4.1

Carriage Control Characters

Character

space

o
1

+ (plus)

Effect

Advances one line.

Advances two lines.

Advances to top of next page (ignored by the
console).

Does not advance (allows overprinting).

Any character other than those listed in the preceding table is
treated as a space and deleted from the print line. If you acci­
dentally omit the carriage control character, the first character of
the record is not printed.

4.4 Formatted 1/0

If a READ or WRITE statement specifies a format, the I/O state­
ment is considered a formatted, rather than an unformatted, I/O
statement (see Section 4.3.1, "Elements in I/O Statements," for
more information on format specification.)

The following five examples are all valid and equivalent means of
specifying a format in an I/O statement and are a review of the
format specifiers listed in Section 4.3.1.

(1) WRITE (*,990) I,J,K
990 FORMAT(1 X,2IS,13)

(2) ASSIGN 990 TO IFMT
990 FORMAT(1 X,2IS,13)

WRITE(*,IFMT) I,J,K

(3) WRITE(* ,'(1 X,2IS,13)') I,J,K

(4) CHARACTER*11 FMTCH
FMTCH = '(1X,2IS,13)'
WRITE(*,FMTCH)I,J,K

(5) WRITE(*,*) I,J,K

144

The I/O System

The format specification must begin with a left parenthesis char­
acter and end with a matching right parenthesis character. The
leading left parenthesis can be preceded by initial blank charac­
ters. Characters beyond the matching right parenthesis are
ignored.

See Section 4.4.2, "Edit Descriptors", and Section 4.5, "List­
Directed I/O", for more details on format editing for data transfer.

4.4.1 Interaction Between Format and 1/0 List

If an iolist contains at least one item, at least one repeatable edit
descriptor must exist in the format specification. In particular, the
empty edit specification, (), can be used only if no items are
specified in the iolist (in which case a WRITE writes a zero length
record and a READ skips to the next record).

Each item in the iolist is associated with a repeatable edit descrip­
tor during the I/O statement execution. In contrast, the remain­
ing format control items interact directly with the record and do
not become associated with items in the iolist.

Note

Two repeatable edit descriptors are required in the FORMAT
statement or format descriptor for each COMPLEX data item
in the iolist.

The items in a format specification are interpreted from left to
right. Repeatable edit descriptors act as if they were present r
times (if omitted, r is treated as a repeat factor of one). A format
specification itself can have a repeat factor, as in:

1 0(5F1 0.4, 2(3x,513))

During the formatted I/O process, the "format controller" scans
and processes the format items as described in the previous para­
graph. When a repeatable edit descriptor is encountered, one of
the following occurs:

145

Microsoft FORTRAN Reference Manual

1. A corresponding item appears in the iolist, in which case
the item and the edit descriptor are associated and I/O of
that item proceeds under format control of the edit
descriptor.

2. No corresponding item appears in the iolist, in which case
the format controller terminates I/O. Thus, for the follow­
ing statements:

I=S
WRITE (*,10) I

10 FORMAT (1X,'I= ',IS,'J= ',IS)

the output would look like this:

1= SJ=

If the format controller encounters the matching final right paren­
thesis of the format specification, or a colon (:) edit descriptor,
and if there are no further items in the iolist, the format controller
terminates I/O.

If, however, there are further items in the iolist, the file is posi­
tioned at the beginning of the next record and the format con­
troller continues by res canning the format, starting at the begin­
ning of the format specification terminated by the last preceding
right parenthesis.

If there is no such preceding right parenthesis, the format con­
troller rescans the format from the beginning. Within the portion
of the format rescanned, there must be at least one repeatable edit
descriptor.

If the rescan of the format specification begins with a repeated
nested format specification, the repeat factor indicates the number
of times to repeat that nested format specification. The rescan
does not change the previously set scale factor or the BN or BZ
blank control in effect.

When the format controller terminates, the remaining characters
of an input record are skipped or an end-of-record is written on
output. An exception to this occurs when the backslash edit de­
scriptor (\) is used.

146

The I/O System

4.4.2 Edit Descriptors for
the FORMAT Statement

Edit or format descriptors in FORTRAN specify the form of a
record and control the editing between the characters in a record
and the internal format of data. There are two types of edit
descriptors: repeatable and nonrepeatable. Both are described in
the following sections of this chapter.

4.4.2.1 Nonrepeatable Edit Descriptors

1. Apostrophe (') editing ('xxxx')

The apostrophe edit descriptor has the form of a character
constant and causes the character constant to be trans­
mitted to the output unit. Embedded blanks are signifi­
cant; two adjacent apostrophes, i.e., single right quotation
marks, must be used to represent a single apostrophe
within a character constant. Apostrophe editing cannot
be used for input (READ). For an example, see "Hollerith
editing (H)."

2. Hollerith editing (H)

The nH edit descriptor transmits the next n characters,
with blanks counted as significant, to the output unit.
Hollerith editing cannot be used for input (READ).

Examples of apostrophe and Hollerith editing:

C EACH WRITE OUTPUTS CHARACTERS
C BETWEEN THE SLASHES: IABC'DEFI

C APOSTROPHE EDITING
WRITE (*,970)

970 FORMAT (' ABC"DEF')
WRITE (*,'(" ABC""DEF")')

C SAME OUTPUT USING HOLLERITH EDITING
WRITE (*,'(8H ABC"DEF)')
WRITE (*,960)

960 FORMAT (8H ABC'DEF)

The leading blank in each case in the preceding examples
is a carriage control character to cause a line feed (car­
riage return) on output.

147

Microsoft FORTRAN Reference Manual

3. Positional editing (Tc, TLc, TRc)

The T, TL,and TR edit descriptors specify the position in
the record to which or from which the next character will
be transmitted. The position specified by a T edit descrip­
tor may be in either direction from the current position.
This allows a record to be processed more than once on
input. On output, the character positions not specified by
the T, TL, and TR edit descriptors are filled with blanks as
if the record were initially filled with blanks.

The Tc edit descriptor specifies that the transmission of
the next character is to occur at the cth character position.
The TRc edit descriptor specifies that the transmission of
the next character is to occur at c characters forward from
the current position. The TLc edit descriptor specifies
that the transmission of the next character is to occur at c
characters backward from the current position.

Note

If the current position is less than or equal to the value of c,
TLc editing will cause transmission to or from position
one of the current record.

You may not use the T descriptors to reposition to the left
once you have positioned beyond position 128 since the
output data are held in a buffer of this size.

4. Positional editing (X)

On input (READ), the nX edit descriptor advances the file
position n characters, skipping n characters. On output
(WRITE), the nX edit descriptor writes n blanks.

5. Optional plus editing (SP, SS and S)

148

The SP, SS, and S edit descriptors can be used to control
optional plus characters in numeric output fields. SP
causes output of the plus sign in all subsequent positions
that the processor recognizes as optional plus fields. SS
causes plus sign suppression in all subsequent positions
that the processor recognizes as optional plus fields. S
restores the default for producing the optional plus sign.

The liD System

6. Slash editing (I)

The slash indicates the end of data transfer on the current
record. On input, the file is positioned to the beginning of
the next record. On output, an end-of-record is written,
and the file is positioned to write on the beginning of the
next record.

7. Backslash editing (\)

Normally when the format controller terminates, the end
of data transmission on the current record occurs. If the
last edit descriptor encountered by the format controller is
a backslash (\), this automatic end-of-record is inhibited,
allowing subsequent 1/0 statements to continue reading
(or writing) from (or to) the same record.

This mechanism is most commonly used to prompt to the
screen and read a response from the same line, as in the
following example:

WRITE (*,'(A\)') 'Input an integer - ->'
READ (*,'(BN,16)') I

The backslash edit descriptor does not inhibit the auto­
matic end-of-record generated when reading from the *
unit; input from the keyboard must always be terminated
by the RETURN key. The backslash edit descriptor may
not be used with internal files.

8. Terminating format control (:)

The colon (:) edit descriptor terminates format control if
there are no more items in the iolist. This tool can be used
to suppress output when some of the characters in the
format do not have corresponding data in the iolist.

9. Scale factor editing (P)

The kP edit descriptor sets the scale factor for subsequent
F and E edit descriptors until the next kP edit descriptor.
At the start of each 1/0 statement, the scale factor is
initialized to zero. The scale factor affects format editing
in the following ways:

a. On input, with F and E editing (providing that no
explicit exponent exists in the field) and F output
editing, the externally represented number equals
the internally represented number multiplied by
lO**k.

149

Microsoft FORTRAN Reference Manual

150

b. On input, with F and E editing, the scale factor
has no effect if there is an explicit exponent in the
input field.

c. On output, with E editing, the real part of the
quantity is output multiplied by 10**k and the
exponent is reduced by k (effectively altering the
column position of the decimal point but not the
value output).

10. Blank interpretation (BN and BZ)

These edit descriptors specify the interpretation of blanks
in numeric input fields. The default, BZ, is set at the start
of each I/O statement. This makes blanks, other than
leading blanks, identical to zeros. If MS-FORTRAN pro­
cesses a BN edit descriptor, however, blanks in subse­
quent input fields are ignored unless, and until, a BZ edit
descri ptor is processed.

The effect of ignoring blanks is to take all the non blank
characters in the input field and treat them as if they were
right-justified in the field with the number of leading
blanks equal to the number of ignored blanks. For
instance, the following READ statement accepts the
characters shown between the slashes as the value 123.
RETURN indicates a carriage return or enter keystroke.

READ(*,100) 1
100 FORMAT (BN,16)

1123
1123
1 123

RETURNI
456RETURNI

RETURNI

BN editing will go into effect automatically when a
READ is associated with a "short" record; "short" mean­
ing that the total number of characters in the input record
is fewer than the combined number of characters speci­
fied by the format descriptors and iolist. The record is
padded on the right with blanks to the required length.
Thus, the following example would result in the value 123,
rather than 12300. RETURN represents a carriage return or
entry keystroke.

READ (*,'(15)') 1
1123RETURNI

The I/O System

The BN edit descriptor, in conjunction with the infinite
blank padding at the end of formatted records, makes
interactive input very convenient.

4.4.2.2 Repeatable Edit Descriptors

The I, F, E, D, and G edit descriptors are used for I/O of numeric
data. The following general rules apply to all numeric edit
descriptors:

1. On input, leading blanks are not significant. Other
blanks are interpreted differently depending on the BN or
BZ flag in effect, but fields that are all blank always
become the value zero. Plus signs are optional. The blanks
supplied by the file system to pad a record to the required
size are also not significant.

2. On input with F, E, D and G editing, an explicit decimal
point appearing in the input field overrides the edit de­
scriptor specification of the decimal point position.

3. On output, the characters generated are right-justified in
the field and padded by leading blanks, if necessary.

4. On output, if the number of characters produced exceeds
the field width or the exponent exceeds its specified width,
the entire field is filled with asterisks.

5. When reading with I, F, E, D, G or L edit descriptors, the
input field may contain a comma, which is considered to
terminate the field. Reading of the next field will start at
the character following the comma. The missing charac­
ters are not significant. For example,

READ (*,'(315)') I,J,K
11, 2, 3,

will result in 1=1, J=20 and K=3.

Note

Do not use this feature if you wish to rely on explicit field
position editing (i.e., using the T, TL orTR edit descriptors.}

151

Microsoft FORTRAN Reference Manual

Individual descriptions of the repeatable edit descriptors follow.

1. Integer editing (I)

The edit descriptor Iw must be associated with an iolist
item of type INTEGER. The field is w characters wide. On
input, an optional sign may appear in the field.

2. F real editing

152

The edit descriptor Fw.d must be associated with an iolist
item of type REAL or REAL*8. The field is w characters
wide, with a fractional part d digits wide. The input field
begins with an optional sign followed by a string of digits
which may contain an optional decimal point. If the
decimal point is present, it overrides the d specified in the
edit descriptor; otherwise, the rightmost d digits of the
string are interpreted as following the decimal point (with
leading blanks converted to zeros, if necessary). Following
this is an optional exponent which is either:

a. + (plus) or - (minus) followed by an integer, or

b. E followed by zero or more blanks followed by an
optional sign followed by an integer.

The output field occupies w digits, d of which fall beyond
the decimal point. The value output is controlled both by
the iolist item and the current scale factor. The output
value is rounded rather than truncated.

3. E and D real editing

The E edit descriptor takes one of the forms Ew.d or
Ew.dEe. The D edit descriptor takes the form Dw.d. All
parameters and rules for the E edit descriptor apply to the
D edit descriptor.

For each form, the field is w characters wide. The e has no
effect on input. The input field for the E and D edit descrip­
tors is identical to that described by an F edit descriptor
with the same wand d.

The form of the output field depends on the scale factor (set
by the P edit descriptor) in effect. For a scale factor of zero,
the output field is a minus sign (if necessary), followed by' a
decimal point, followed by a string of digits, followed by an
exponent field for exponent exp, of one of the forms shown
in the list of scale factors that follows.

The I/O System

Edit Absolute Value Form of
Exponent Descriptor of Exponent

Ew.d

Ew.d

!exp! <= 99

99 < !exp! <= 999

E followed by plus or
minus, followed by the
two-digit exponent

Plus or minus, followed by
the three-digit exponent

Ew.dEe !exp! <= (lO**e)-l E followed by plus or
minus, followed by e dig­
its which are the exponent
with possible leading zeros

Dw.d

Dw.d

!exp! <= 99

99 < ! exp! <= 999

D followed by plus or
minus, followed by the
two-digit exponent

Plus or minus, followed by
the three-digit exponent

The forms Ew.d and Dw.d must not be used if the absolute
value of the exponent to be printed exceeds 999.

The scale factor controls the decimal normalization of the
printed E or D field. If the scale factor, k, is in the range
(-d<k<=O), then the output field contains exactly k leading
zeros after the decimal point and d + k significant digits
after this. If (O<k<d+2), then the output field contains
exactly k significant digits to the left of the decimal point
and (d-k-l) places after the decimal point. Other values of k
are errors.

4. G real editing

The G edit descriptor takes the forms Gw.d and Gw.dEe.
For either form, the input field is w characters wide, with a
fractional part consisting of d digits. If the scale factor is
greater than one, the exponent part consists of e digits.

G input editing is the same as F input editing.

G output editing is dependent on the magnitude of the data
being edited. The following list illustrates the output equi­
valent for the magnitude of data.

153

Microsoft FORTRAN Reference Manual

Data Magnitude

M<O.l

0.1 <= M< 1

1 <= M< 10

10**(d-2) <= M
<10**(d-1)

10**(d-1) <= M
<10**d'

M >= 10**d

Conversion Equivalent

Ew.d

F(w-n).d,nCb'); where n is 4 for
Gw.d; n is e+2 for Gw.dEe, and 'b'
represents a blank character.

F(w-n).(d-1), nC b')

F(w-n).l, nCb')

F(w-n).O, n('b')

Ew.d

5. Two successively interpreted edit descriptors of the types
D, E, F, and G are used to specify the editing of complex
numbers. The types may be used in combination. The first
edit descriptor will specify the real part of the complex
number; the second will specify the imaginary part.

Note

154

Nonrepeatable edit descriptors may appear between the
D, E, F, and G descriptors.

The I/O System

6. Logical editing (L)

The edit descriptor takes the form Lw, indicating that the
field is w characters wide. The iolist element associated
with an L edit descriptor must be of type LOGICAL. On
input, the field consists of optional blanks, followed by an
optional decimal point, followed by T (for true) or F (for
false). Any further characters in the field are ignored, but
accepted on input, so that .TRUE. and .FALSE. are valid
inputs. On output, w-l blanks are followed by either T or
F, as appropriate.

7. Character editing (A)

The forms of the edit descriptor are A or Aw. In the first
form, A acquires an implied field width, w, from the
number of characters in the iolist associated item. The
iolist item may be of any type. If it is not of type CHAR­
ACTER, it is assumed to have one character per byte, so
that its length is as specified in the list of data conversion
equivalents just presented.

On input, if w exceeds or equals the number of characters
in the iolist element, the rightmost characters of the input
field are used as the input characters; otherwise, the input
characters are left-justified in the input iolist item and
trailing blanks are provided.

If the number of characters input is not equal to w, then
the input field will be blankfilled or truncated on the right
to the length of w before being transmitted to the iolist
item. For example, if the following program fragment is
executed,

CHARACTER*10 C
READ(*,'(A15)') C

and the following thirteen characters are typed in at the
keyboard,

'ABCDEFGHIJKLM'

the input field will be filled to fifteen characters:

'ABCDEFGHIJKLM '

155

Microsoft FORTRAN Reference Manual

Then the rightmost ten characters will be transmitted to
the iolist element C:

'FGHIJKLM '

On output, if w exceeds the characters produced by the
iolist item, leading blanks are provided; otherwise, the
leftmost w characters of the iolist item are output.

4.5 List-Directed 1/0

A list-directed record is a sequence of values and value separators.

Each value in a list-directed record is one of the following:

1. a constant

2. a null value

3. either a constant or a null value multiplied by an
unsigned, nonzero, integer constant; that is, r*c (r succes­
sive appearances of the constant c) or r* (r successive null
values). Except in string constants, none of these may
have embedded blanks.

Each value separator in a list-directed record IS one of the
following:

1. a comma, optionally preceded or followed by one or more
contiguous blanks

2. a slash, optionally preceded or followed by one or more
contiguous blanks

3. one or more contiguous blanks between two constants, or
after the last constant

4.5.1 List-Directed Input

Except as noted in the following list, input forms acceptable to
format specifications for a given type are also acceptable for
list-directed formatting.

156

The 110 System

The form of the input value must be acceptable for the type of the
input list item. Never use blanks as zeros. Only use embedded
blanks within character constants, as specified in the following
list. Note that the end-of-record has the effect of a blank, except
when it appears within a character constant.

1. Real or double precision constants

A real or double precision constant must be a numeric
input field; that is, a field suitable for F editing. It is
assumed to have no fractional digits unless there is a
decimal point within the field.

2. Complex constants

The form of a complex constant is an ordered pair of real
or integer constants separated by a comma and sur­
rounded by an opening and a closing parenthesis. The
first constant of the pair is the real part of the the complex
constant and the second is the imaginary part.

3. Logical constants

A logical constant must not include either slashes or
commas among the optional characters permitted for L
editing.

4. Character constants

A character constant is a nonempty string of characters,
enclosed in single quotation marks. Each single quota­
tion mark within a character constant must be repre­
sented by two single quotation marks, with no intervening
blank or end-of-record.

Character constants may be continued from the end of
one record to the beginning of the next; the end of the
record doesn't cause a blank or other character to become
part of the constant. The constant may be continued on as
many records as needed and may include the characters
blank, comma, and slash.

If the length n of the list item is less than or equal to the
length m of the character constant, the leftmost n charac­
ters of the latter are transmitted to the list item.

157

Microsoft FORTRAN Reference Manual

If n is greater than m, the constant is transmitted to the
leftmost m characters of the list item. The remaining n
minus m characters of the list item are filled with blanks.

The effect is the same as if the constant were assigned to
the list item in a character assignment statement.

5. Null values

158

You can specify a null value in one of three ways:

a. no characters between successive value separators

b. no characters preceding the first value separator
in the first record read by each execution of a
list-directed input statement

c. the r* form (described at the beginning of Section
4.5, "List-Directed 1/0")

A null value has no effect on the definition status of the
corresponding input list item. If the input list item is
defined, it retains its previous value; if it is undefined, it
remains so.

A slash encountered as a value separator during execu­
tion of a list-directed input statement stops execution of
that statement after the assignment of the previous value.
Any further items in the input list are treated as if they
were null values.

6. Blanks

All blanks in a list-directed input record are considered to
be part of some value separator, except for the following:

a. blanks embedded in a character constant

b. leading blanks in the first record read by each
execution of a list-directed input statement (unless
immediately followed by a slash or comma)

The I/O System

4.5.2 List-Directed Output

The form of the values produced is the same as required for input,
except as noted in the following list. The list-directed line size is 80
columns.

1. New records are created as necessary, but, except for
character constants, neither the end of a record nor
blanks will occur within a constant.

2. Logical output constants are T for the value true and F for
the value false.

3. Integer output constants are produced with the effect of
an I12 edit descriptor.

4. Real and double precision constants are produced with
the effect of either an F or an E edit descriptor, depending
on the val ue of x in the following range:

10**0 <= x <= 10**7

a. If x is within the range, the constant is produced
using OPF16.7 for single precision and OPF23.14
for double precision.

b. If x is outside the range, the constant is produced
using IPE14.6 for single precision and IPE21.13
for double precision.

5. Character constants produced have the following charac­
teristics:

a. They are not delimited by apostrophes (single
quotation marks).

b. They are neither preceded nor followed by a value
separator.

c. Each internal apostrophe (single quotation mark)
is represented by one externally.

d. A blank character is inserted at the start of any
record that begins with the continuation of a
character constant from the preceding record.

6. Slashes, as value separators, and null values are not pro­
duced by list-directed formatting.

7. In order to provide carriage control when the record is
printed, each output record begins with a blank character.

159

Chapter 5

Progrants, Subroutines,
and Functions

5.1 Main Program 163
5.2 Subroutines 163
5.3 Functions 164
5.3.1 External Functions 165
5.3.2 In trinsic Functions 165
5.3.3 Statement Functions 173
5.4 Arguments 173

161

As described in Section 1.2, "Programs and Compilable Parts of
Programs," a program unit is either a main program, a subrou­
tine, block data subprogram, or a function. Functions and subrou­
tines are collectively called subprograms, or procedures. The
PROGRAM, SUBROUTINE, BLOCK DATA and FUNCTION
statements, as well as the statement function statement, are
described in detail in Section 3.2, "Statement Directory." Related
information is provided in the entries for the CALL and RETURN
statements.

This chapter supplements the discussion of these individual
statements with information on types of functions and a descrip­
tion of the relationship between formal and actual arguments in a
function or subroutine call.

5.1 Main Program

A main program is any program unit that does not have a
FUNCTION, SUBROUTINE, or BLOCK DATA statement as
its first statement. The first statement of a main program may be
a PROGRAM statement. If the main program does not have a
PROGRAM statement, it will be assigned the name MAIN. The
name MAIN then cannot be used to name any other global entity.

The execution of a program always begins with the first executa­
ble statement in the main program. Consequently, there must be
precisely one main program in every executable program.

For further information about programs, see Section 3.2.33, "The
PROGRAM Statement."

5.2 Subroutines

A subroutine is a program unit that can be called from other
program units with a CALL statement. When invoked, a subrou­
tine performs the set of actions defined by its executable state­
ments and then returns control to the statement immediately
following the one that called it or to a statement specified as an
alternate return (see Section 3.2.5, "The CALL Statement.")

163

Microsoft FORTRAN Reference Manual

A subroutine does not directly return a value, although values can
be passed back to the calling program unit via arguments or
common variables.

For further information about subroutines, see Section 3.2.40,
"The SUBROUTINE Statement."

5.3 Functions

A function is referred to in an expression and returns a value that
is used in the computation of that expression. There are three
kinds of functions:

1. external functions

2. intrinsic functions

3. statement functions

Each of these is described in more detail in the following sections.

Reference to a function may appear in an arithmetic or logical
expression. When the function reference is executed, the function
is evaluated and the resulting value used as an operand in the
expression that contains the function reference. The format of a
function reference is as follows:

{name ([arg [, arg] ...])

{name is the user-defined name of an external,
intrinsic, or statement function.

arg is an actual argument.

The rules for arguments for functions are identical to those for
subroutines (except that alternate returns are not allowed) and
are described in Section 3.2.4, "The CALL Statement." Some
additional restrictions that apply for intrinsic functions and for
statement functions are described in Section 5.3.2, "Intrinsic
Functions," and Section 5.3.3, "Statement Functions," respec­
tively.

164

Programs, Subroutines, and Functions

5.3.1 External Functions

An external function is specified by a function program unit. It
begins with a FUNCTION statement and ends with an END
statement. It may contain any kind of statement other than a
PROGRAM statement, FUNCTION statement, or a SUBROU­
TINE statement.

5.3.2 Intrinsic Functions

Intrinsic functions are predefined by the MS-FORTRAN lan­
guage and available for use in an MS-FORTRAN program. Table
5.1 gives the name, definition, argument type, and function type
for all of the intrinsic functions available in MS-FORTRAN, with
additional notes following the table.

An IMPLICIT statement cannot alter the type of an intrinsic
function. For those intrinsic functions that allow several types of
arguments, all arguments in a single reference must be of the
same type.

An intrinsic function name can appear in an INTRINSIC state­
ment. An intrinsic function name also can appear in a type
statement, but only if the type is the same as the standard type of
that intrinsic function.

Arguments to certain intrinsic functions are limited by the defini­
tion of the function being computed. For example, the logarithm
of zero is mathematically undefined, and therefore not permitted.

All angles in Table 5.1 are expressed in radians. All arguments in
an intrinsic function reference must be of the same type. X and Y
are REAL; Z is a COMPLEX; I and J are INTEGER; and C, Cl,
and C2 are character values. Numbers in square brackets in
column 1 refer to the notes following the table.

Furthermore, REAL is equivalent to REAL*4, DOUBLE PRECI­
SION is equivalent to REAL*8. If the specified type of the argu­
ment is INTEGER, the type may be INTEGER*2 or INTEGER*4.
If the specified type of the function is INTEGER, the type will be
the default integer determined by the $STORAGE metacom­
mand. (For further information, see Section 6.2.12, "The $STOR­
AGE Metacommand.")

165

Microsoft FORTRAN Reference Manual

Table 5.1

Intrinsic Functions

Type of Type of
Name Definition Argument Function

Type Conversion

INT (generic) Convert to integer (all) INTEGER
INT(X) [1] Convert to integer REAL*4 INTEGER

IFIX(X) Convert to integer REAL*4 INTEGER
IDINT [2] Convert to integer REAL*8 INTEGER

REAL (generic) Convert to REAL*4 (all) REAL*4
REAL(I) [2J Convert to REAL*4 INTEGER REAL*4

DREAL(Z) Return REAL*8 of COMPLEX*16 REAL*8
COMPLEX*16

FLOAT(I) Convert to REAL*4 INTEGER REAL*4
SNGL(X) Convert to REAL*4 REAL*8 REAL*4

DBLE (generic)[3]

Convert to REAL*8 (all) REAL*8

CMPLX(Z,[Y])[4] Convert to COMPLEX*8 (all) COMPLEX*8

DCMPLX(Z,[Y]) Convert to COMPLEXd6 (all) COMPLEX*16

ICHAR(C) [5] Convert to integer CHARACTER INTEGER
CHAR(X) [5] Convert to character INTEGER CHARACTER

Truncation

AINT (generic) Truncate to REAL REAL*4 REAL*4
REAL*8 REAL*8

AINT(X) Truncate to REAL*4 REAL*4 REAL*4
DINT(X) Truncate to REAL*8 REAL*8 REAL*8

Nearest Whole Number

ANINT (generic) Round to REAL REAL*4 REAL*4
REAL*8 REAL*8

ANINT(X) Round to REAL*4 REAL*4 REAL*4
DNINT(X) Round to REAL*8 REAL*8 REAL*8

Nearest Integer

NINT (generic) Round to integer REAL*4 INTEGER
REAL*8 INTEGER

NINT(X) Round to integer REAL*4 INTEGER
IDNINT(X) Round to integer REAL*8 INTEGER

166

Programs, Subroutines, and Functions

Table 5.1 (continued)

Type of Type of
Name Definition Argument Function

Absolute Value

ABS (generic) Absolute value (all) (all)

IABS(I) INTEGER absolute INTEGER INTEGER
ABS(X) REAL*4 absolute REAL*4 REAL*4
DABS(X) REAL*8 absolute REAL*8 REAL*8
CABS(Z) COMPLEX absolute COMPLEX*8 REAL*4

COMPLEX*lG REAL*8

CDABS(Z) COMPLEX*lG absolute COMPLEX*1G REAL*8

Remaindering

MOD (generic) Remainder INTEGER INTEGER
REAL*4 REAL*4
REAL*8 REAL*8

MOD(I,J) INTEGER remainder INTEGER INTEGER
AMOD(X,Y) REAL*4 remainder REAL*4 REAL*4
DMOD(X,Y) REAL*8 remainder REAL*8 REAL*8

Transfer of Sign

SIGN (generic) Transfer of sign INTEGER INTEGER
REAL*4 REAL*4
REAL*8 REAL*8

ISIGN(I,J) INTEGER transfer INTEGER INTEGER
SIGN(X,Y) REAL*4 transfer REAL*4 REAL*4
DSIGN(X,Y) REAL*8 transfer REAL*8 REAL*8

Positive Difference [5]

DIM (generic) Positive difference INTEGER INTEGER
REAL*4 REAL*4
REAL*8 REAL*8

IDIM(I,J) INTEGER difference INTEGER INTEGER
DIM(X,Y) REAL*4 difference REAL*4 REAL*4
DDIM(X,Y) REAL*8 difference REAL*8 REAL*8

Choosing Largest Value

MAX (generic) Return maximum INTEGER INTEGER
REAL*4 REAL*4
REAL*8 REAL*8

MAXO(l,J , ...) INTEGER maximum INTEGER INTEGER
AMAXl(X,Y, ...) REAL*4 maximum REAL*4 REAL*4
AMAXO(I,J, ...) REAL*4 maximum INTEGER REAL*4
MAXl(X,Y, ...) INTEGER maximum REAL*4 INTEGER
DMAXl(X,Y, ...) REAL*8 maximum REAL*8 REAL*8

167

Microsoft FORTRAN Reference Manual

Table 5.1 (continued)

Type of Type of
Name Definition Argument Function

Choosing Smallest Value

MIN (generic) Return minimum INTEGER INTEGER
REAL*4 REAL*4
REAL*8 REAL*8

MINO(I,J , ...) INTEGER minimum INTEGER INTEGER
AMINl(X,Y, ...) REAL*4 minimum REAL*4 REAL*4
AMINO(I,J, ...) REAL*4 minimum INTEGER REAL*4
MINl(X,Y, ...) INTEGER minimum REAL*4 INTEGER
DMINl(X,Y, ...) REAL*8 minimum REAL*8 REAL*8

REAL*8 Product

DPROD(X,Y) REAL*8 product REAL*4 REAL*8

Imaginary Part of
Complex Argument

AIMAG(Z) Reduce imaginary part of COMPLEX*8 REAL*4
ordered pair to REAL*4

DIMAG(Z) Reduce imaginary part of COMPLEXd6 REAL*8
ordered pair to REAL*8

Conjugate of a
Complex Argument

CONJG(Z) Conjugate of COMPLEX*8 COMPLEX*8
COMPLEX*8

DCONJG(Z) Conjugate of COMPLEX*16 COMPLEX*16
COMPLEX*16

Square Root

SQRT (generic) Square root REAL*4 REAL*4
REAL*8 REAL*8
COMPLEX*8 COMPLEX*8
COMPLEX*16 COMPLEXd6

SQRT REAL*4 square root REAL*4 REAL*4
DSQRT REAL*8 square root REAL*8 REAL*8
CSQRT COMPLEX*8 square root COMPLEX*8 COMPLEX*8
CDSQRT COMPLEX*16 square root COMPLEX*16 COMPLEX*16

Exponential

EXP (generic) Exponent REAL*4 REAL*4
REAL*8 REAL*8
COMPLEX*8 COMPLEX*8
COMPLEX*16 COMPLEX*16

EXP(X) REAL*4 e to power REAL*4 REAL*4
DEXP(X) REAL*8 e to power REAL*8 REAL*8
CEXP COMPLEX*8 e to power COMPLEX*8 COMPLEX*8
CDEXP COMPLEX*16 e to power COMPLEX*16 COMPLEX*16

168

Programs, Subroutines, and Functions

Table 5.1 (continued)

Type of Type of
Name Definition Argument Function

Natural Logarithm

LOG (generic) Natural logarithm REAL*4 REAL*4
REAL*8 REAL*8
COMPLEX*8 COMPLEX*8
COMPLEX*lG COMPLEX*16

ALOG(X) Nat'llog of REAL*4 REAL*4 REAL*4
DLOG(X) Nat'llog of REAL*8 REAL*8 REAL*8
CLOG(Z) Nat'llog of Complex COMPLEX*8 COMPLEX*8

CDLOG(Z) Nat'llog of Complex COMPLEX*16 COMPLEX*16

Common Logarithm

LOG 10 (generic) Common logarithm REAL*4 REAL*4
REAL*8 REAL*8

ALOGIO(X) Common log of REAL*4 REAL*4 REAL*4
DLOG1O(X) Common log of REAL*8 REAL*8 REAL*8

Sine

SIN (generic) Sine function REAL*4 REAL*4
REAL*8 REAL*8
COMPLEX*8 COMPLEX*8
COMPLEX*16 COMPLEXd6

SIN(X) REALd sine REAL*4 REAL*4
DSIN(X) REAL*8 sine REAL*8 REAL*8
CSIN(Z) COMPLEX*8 sine COMPLEX*8 COMPLEX*8
CDSIN(Z) COMPLEX*16 sine COMPLEX*16 COMPLEX*16

Cosine

COS (generic) Cosine function REAL*4 REAL*4
REAL*8 REAL*8
COMPLEX*8 COMPLEX*8
COMPLEX*16 COMPLEX*16

COS(X) REAL*4 cosine REAL*4 REAL*4
DCOS(X) REAL*8 cosine REAL*8 REAL*8
CCOS(Z) COMPLEX*8 cosine COMPLEX*8 COMPLEX*8
CDCOS(Z) COMPLEX*16 cosine COMPLEX*16 COMPLEX*16

Tangent

TAN (generic) Tangent function REAL*4 REAL*4
REAL*8 REAL*8

TAN(X) REAL*4 tangent REAL*4 REAL*4
DTAN(X) REAL*8 tangent REAL*8 REAL*8

169

Microsoft FORTRAN Reference Manual

Table 5.1 (continued)

Type of Type of
Name Definition Argument Function

Arc Sine

ASIN (generic) Arc sine function REAL*4 REAL*4
REAL*8 REAL*8

ASIN(X) REAL*4 arc sine REAL*4 REAL*4
DASIN(X) REAL*8 arc sine REAL*8 REAL*8

Arc Cosine

ACOS (generic) Arc cosine function REAL*4 REAL*4
REAL*8 REAL*8

ACOS(X) REAL*4 arc cosine REAL*4 REAL*4
DACOS(X) REAL*8 arc cosine REAL*8 REAL*8

ArcTangent

A TAN (generic) Arc tangent function REAL*4 REAL*4
REAL*8 REAL*8

ATAN(X) REAL*4 arc tangent REAL*4 REAL*4
DATAN(X) REAL*8 arc tangent REAL*8 REAL*8

ATAN2 (generic) Arctan (X/Y) REAL*4 REAL*4
REAL*8 REAL*8

ATAN2(X,Y) REAL*4 arctan of X/V REAL*4 REAL*4
DATAN2(X,Y) REAL*8 arctan of X/V REAL*8 REAL*8

Hyperbolic Sine

SINH (generic) Hyperbolic sine REAL*4 REAL*4
REAL*8 REAL*8

SINH(X) REAL*4 hyperbolic REAL*4 REAL*4
sine

DSINH(X) REAL*8 hyperbolic REAL*8 REAL*8
SIne

Hyperbolic Cosine

COSH (generic) Hyperbolic cosine REAL*4 REAL*4
REAL*8 REAL*8

COSH(X) REAL*4 hyperbolic REAL*4 REAL*4
cosine

DCOSH(X) REAL*8 hyperbolic REAL*8 REAL*8
cosine

Hyperbolic Tangent

TANH (generic) Hyperbolic tangent REAL*4 REAL*4
REAL*8 REAL*8

TANH(X) REAL*4 hyperbolic REAL*4 REAL*4
tangent

DTANH(X) REAL*8 hyperbolic
tangent REAL*8 REAL*8

170

Programs, Subroutines, and Functions

Table 5.1 (continued)

Name Definition

Lexically Greater Than or Equal

LGE(C1,C2) [7] 1st argument
greater than
or equal to 2nd

Lexically Greater Than

LGT(C1,C2) [7] 1st argument
greater than 2nd

Lexically Less Than or Equal

LLE(C1,C2) [7] 1st argument
less than or
equal to 2nd

Lexically Less Than

LLT(C1,C2) [7]

End of File [H]

1st argument
less than 2nd

EOF(I) INTEGER end of file

Notes for Table 5.1:

Type of
Argument

Type of
Function

CHARACTER LOGICAL

CHARACTER LOGICAL

CHARACTER LOGICAL

CHARACTER LOGICAL

INTEGER LOGICAL

1. For X of type INTEGER, INT(X)=X. For X of type REAL or REAL*H, if X
is greater than or equal to zero, then INT(X) is the largest integer not
greater than X, and if X is less than zero, then INT(X) is the most
negative integer not less than X. For X of type REAL, IFIX(X) is the
same as INT(X).

2. For X of type REAL, REAL(X)=X. For X of type INTEGER or REAL*8,
REAL(X) is as much precision ofthe significant part of X as a real datum
can contain. For X of type INTEGER, FLOAT(X) is the same as
REAL(X).

3. For X of type REAL*8, DBLE(X)=X. For X of type INTEGER or REAL,
DBLE(X) is as much precision of the significant part of X as a double
precision datum can contain.

171

Microsoft FORTRAN Reference Manual

Notes for Table 5.1 (continued)

172

4. CMPLX and DCMPLX may have one or two arguments. If there is one
argument, it may be of type integer, real, double precision, complex, or
double precision complex. If there are two arguments, they must be of the
same type and the allowable types are integer, real and double precision.

Where Z=COMPLEX*8, CMPLX(Z)=Z. For Z= INTEGER, REAL, and
REAL*8 then CMPLX(Z)= the complex value whose real part is
REAL(Z) and whose imaginary part is O.

CMPLX(Z,Y)= the complex value whose real part is REAL(Z) and whose
imaginary part is REAL(Y).

Where Z=COMPLEX*16, DCMPLX(Z)=Z. For Z= INTEGER, REAL, and
REAL*8 then DCMPLX(Z)= the complex value whose real part is
REAL*8 and whose imaginary part is O. For Z=COMPLEX*8,
DCMPLX(Z) has a real part equal to DBLE(Z) and an imaginary part
equal to DBLE(AIMAG(Z».
DCMPLX(Z,Y)= the complex value whose real part is REAL*8(Z) and
whose imaginary part is REAL*8(Y).

5. ICHAR converts a character value into an integer value. The integer
value of a character is the ASCII internal representation of that charac­
ter, and is in the range 0 to 255. For any two characters, c1 and c2, (c1
.LE. c2) is .TRUE. if and only if (ICHAR(c1) .LE. ICHAR(c2» is .TRUE.

CHAR(i) returns the ith character in the collating sequence. The value is
of type CHARACTER, length one, while i must be an integer expression
whose value is in the range 0 <= i <= 255.
ICHAR(CHAR(i» = i for 0 <= i <= 255.

CHAR(ICHAR(c» = c for any character c in the character set.
6. DIM(X,Y) is X-V ifX>Y, zero otherwise.

7. LGE(X,Y) returns the value .TRUE. if X = Y orifX follows Y in the ASCII
collating sequence; otherwise it returns .FALSE.

LGT(X,Y) returns .TRUE. if X follows Y in the ASCII collating sequence;
otherwise it returns .FALSE.

LLE(X,Y) returns .TRUE. if X = Y or if X precedes Y in the ASCII
collating sequence; otherwise it returns .F ALSE.
LLT(X,Y) returns .TRUE. if X precedes Y in the ASCII collating
sequence; otherwise it returns .F ALSE.
If the operands are of unequal length, the shorter operand is considered
to be blankfilled on the right to the length of the longer.

8. EOF(I) returns the value .TRUE. ifthe unit specified by its argument is
at or past the end offile record; otherwise it returns .FALSE. The value
of X must correspond to an open file. EOF cannot refer to Unit 0 (the
screen or keyboard).

Programs, Subroutines, and Functions

5.3.3 Statement Functions

A statement function is defined by a single statement and is
similar in form to an assignment statement. A statement function
statement can only appear after the specification statements and
before any executable statements in the program unit in which it
appears.

A statement function is not an executable statement, since it is
not executed in order as the first statement in its particular pro­
gram unit. Rather, the body of a statement function serves to
define the meaning of the statement function. It is executed, as
any other function, by the execution of a function reference in an
expression.

For information on the syntax and use of a statement function
statement, see Section 3.2.38, "The Statement Function State­
ment."

5.4 Arguments

A formal argument is the name by which the argument is known
within a function or subroutine; an actual argument is the specific
variable, expression, array, etc., passed to the procedure in ques­
tion at any specific calling location. The relationship between
formal and actual arguments in a function or subroutine call is
discussed in detail in the following paragraphs.

Arguments pass values into and out of procedures by reference.
The number of actual arguments must be the same as the number
of formal arguments, and the corresponding types must agree.

Upon entry to a subroutine or function, the actual arguments are
associated with the formal arguments, much as an EQUIV AL­
ENCE statement associates two or more arrays or variables, and
COMMON statements in two or more program units associate
lists of variables. This association remains in effect until execu­
tion of the subroutine or function is terminated. Thus, assigning a
value to a formal argument during execution of a subroutine or
function may alter the value of the corresponding actual argument.

173

Microsoft FORTRAN Reference Manual

If an actual argument is a constant, function reference, or an
expression other than a simple variable, assigning a value to the
corresponding formal argument is not permitted, and can have
some strange side effects. In particular, assigning a value to a
formal argument of type CHARACTER, when the actual argu­
ment is a literal, can produce anomalous behavior.

If an actual argument is an expression, it is evaluated just before
the association of formal and actual arguments. If an actual
argument is an array element, its subscript expressions are also
evaluated just before the association, and remain constant
throughout the execution of the procedure, even if they contain
variables that are redefined during the execution of the procedure.

A formal argument that is a variable can be associated with an
actual argument that is a variable, an array element, or an
expression.

A formal argument that is an alternate return (*) can be asso­
ciated with an alternate return specifier (*n) in the CALL state­
ment and is repeatable.

A formal argument that is an array can be associated with an
actual argument that is an array or an array element. The
number and size of dimensions in a formal argument may be
different from those of the actual argument, but any reference to
the formal array must be within the limits of the memory
sequence in the actual array. While a reference to an element
outside these bounds is not detected as an error in a running
MS-FORTRAN program, the results are unpredictable.

A formal argument may also be associated with an external
subroutine, function, or intrinsic function ifit is used in the body
of the procedure as a subroutine or function reference, or if it
appears in an EXTERNAL statement.

A corresponding actual argument must be an external subroutine
or function, declared with the EXTERNAL statement, or an
intrinsic function permitted to be associated with a formal proce­
dure argument. The intrinsic function must have been declared
with an INTRINSIC statement in the program unit where it is
used as an actual argument.

174

Programs, Subroutines, and Functions

All intrinsic functions, except the following, may be associated
with formal procedure arguments:

INT
IFIX
IDINT
FLOAT
SNGL
REAL
DBLE
CMPLX
DCMPLX
ICHAR
CHAR

AMAXO
AMAXI
MAX
MAXO
MAXI
MIN
MINO
MINI
AMINO
AMINI
DMAXI

DMINI
LGE
LGT
LLE
LLT

175

Chapter 6

The Microsoft
FORTRAN MetacoDlDlands

6.1 Overview 1 79
6.2 Metacommand Directory 180
6.2.1 The $DEBUG and

$NODEBUG Metacommands 181

6.2.2 The $DECMATH Metacommand 182
6.2.3 The $D066 Metacommand 183

6.2.4 The $FLOATCALLS and
$NOFLOATCALLS Metacommands 184

6.2.5 The $INCLUDE Metacommand 185

6.2.6 The $LARGE and
$NOTLARGE Metacommands 186

6.2.7 The $LINESIZE Metacommand 188
6.2.8 The $LIST and

$NOLIST Metacommands 189
6.2.9 The $MESSAGE Metacommand 190
6.2.10 The $PAGE Metacommand 191
6.2.11 The $PAGESIZE Metacommand 192

6.2.12 The $STORAGE Metacommand 193
6.2.13 The $STRICT and

$NOTSTRICT Metacommands 194

6.2.14 The $SUBTITLE Metacommand 195
6.2.15 The $TITLE Metacommand 196

177

6.1 Overview

Metacommands are directives that order the MS-FORTRAN
Compiler to process MS-FORTRAN source text in a specific way.
MS-FORTRAN metacommands are described briefly in Table 6.1
and discussed in more detail in the remainder of the chapter.

Table 6.1

The Microsoft FORTRAN Metacommands

Metacommand Action

$DEBUG Turns on runtime checking for integer arithmetic
operations and assigned GOTO values. $NODEBUG
turns checking off. $DEBUG doesn't trigger or sup­
press floating-point exceptions.

$DECMATH Directs the compiler to generate real constants in
decimal floating-point format.

$D066 Causes DO statements to have FORTRAN 66
semantics.

$FLOATCALLS Directs compiler to generate calls to subroutines in
the emulator library. $NOFLOATCALLS causes
the compiler to generate in-line interrupt instructions.

$INCLUDE:'file' Directs compiler to proceed as if file were inserted at
that point.

$LARGE [:name [, name]]

$LINESIZE:n

$LIST

Labels the named array for addressing outside ofthe
DGROUP. $NOTLARGE disables the 'large' func­
tion for the named array. If [name] is· missing, these
commands affect all arrays.

Makes subsequent pages of listing n columns wide.

Sends subsequent listing information to the listing
file. $NOLIST stops generation oflisting information.

$MESSAGE:'quoted string'

$PAGE

$P AGESIZE:n

$STORAGE:n

Sends a quoted character string to the standard out­
put device.

Starts new page of listing.

Makes subsequent pages oflisting n lines long, min­
imum n=15.

Allocates n bytes of memory to all LOGICAL or
INTEGER variables in source.

179

Microsoft FORTRAN Reference Manual

Table 6.1 (continued)

Metacommand Action

$STRICT Disables MS-FORTRAN features not in 1977 subset
or full language standard. $NOTSTRICT enables
them.

$SUBTITLE:'subtitle'
Gives subtitle for subsequent pages of listing.

$TITLE:'title' Gives title for subsequent pages of listing.

Metacommands can be intermixed with MS-FORTRAN source
text within an MS-FORTRAN source program; however, they are
not part of the standard FORTRAN language. Any line of input
to the MS-FORTRAN Compiler that begins with a "$" character
in column one is interpreted as a metacommand and must con­
form to one of the allowable formats.

A metacommand and its arguments (if any) must fit on a single
source line; continuation lines are not permitted. Also, blanks are
significant, so that the following pair is not equivalent:

$8 TRICT
$8TRICT

6.2 Metacommand Directory

The remainder of this chapter is an alphabetical directory of
available MS-FORTRAN metacommands.

180

The Microsoft FORTRAN Metacommands

6.2.1 The $DEBUG and
$NODEBUG Metacommands

Syntax

$[NO]DEBUG

Purpose

Directs the compiler to (1) test integer arithmetic for overflow and
division by zero, (2) test assigned GOTO values against the
allowable list in an assigned GOTO statement, and (3) provide the
runtime error-handling system with source filenames and line
numbers. If any runtime error occurs, the filename and line
number are displayed on the console.

Remarks

The metacommand can appear anywhere in a program. BUG
does not trigger or suppress floating-point exception handling.
MS-FORTRAN conforms to the proposed IEEE Standard for
exception handling for the five following conditions: invalid opera­
tion, divide by zero, overflow, underflow, and precision. See the
Microsoft FORTRAN Compiler User's Guide for information
about exception handling on your system.

The default value of the pair of metacommands, $DEBUG and
$NODEBUG, is $NODEBUG.

181

Microsoft FORTRAN Reference Manual

6.2.2 The $DECMATH Metacommand

Syntax

$DECMATH

Purpose

Directs the compiler (and the runtime for the compiled program)
to have floating-point math performed in base-IO rather than
binary. Specifically, DECMATH forces constants to be repre­
sented in base-IO math format.

Remarks

This metacommand must appear before the first program or sub­
program statement; it can only be preceded by comment lines and
other metacommands in the source and may only be given once.

$DECMATH automatically sets$FLOATCALLS. If$DECMATH
is set, $FLOATCALLS and $NOFLOATCALLS will be ignored.

182

The Microsoft FORTRAN Metacommands

6.2.3 The $D066 Metacommand

Syntax

$D066

Purpose

Causes DO statements to have FORTRAN 66 semantics.

Remarks

$D066 must precede the first declaration or executable statement
of the source file in which it occurs. $D066 may only be preceded
by a comment line or another metacommand. $D066 may only
appear once in the source file.
The FORTRAN 66 semantics are as follows:

1. All DO statements are executed at least once.

2. Extended range is permitted; that is, control may transfer
into the syntactic body of a DO statement. The range of
the DO statement is thereby extended to logically include
any statement that may be executed between a DO state­
ment and its terminal statement. However, the transfer of
control into the range of a DO statement prior to the
execution of the DO statement or following the final exe­
cution of its terminal statement is invalid.

If a program contains no $D066 metacommand, the default is to
FORTRAN 77 semantics, as follows:

1. DO statements may be executed zero times, if the initial
control variable value exceeds the final control variable
value (or the corresponding condition for a DO statement
with negative increment).

2. Extended range is invalid; that is, control may not
transfer into the syntactic body of a DO statement. (Both
standards do permit transfer of control out of the body of a
DO statement.)

183

Microsoft FORTRAN Reference Manual

6.2.4 The $FLOATCALLS and
$NOFLOATCALLS Metacommmands

Syntax

$[NO]FLOATCALLS

Purpose

The $FLOATCALLS metacommand causes your floating-point
operations to be processed by calls to library subroutines.

Remarks

When you enter $FLOATCALLS into your source, call instruc­
tions are generated for real number computations. $NOFLOAT­
CALLS suppresses the default condition and causes the compiler
to generate in-line interrupt instructions rather than subroutine
calls. $FLOATCALLS is the default.

$DECMATH automatically sets $FLOATCALLS; if$DECMATH
is given, neither $FLOATCALLS nor $NOFLOATCALLS may
appear. (See $DECMATH for more information).

184

The Microsoft FORTRAN Metacommands

6.2.5 The $INCLUDE Metacommand

Syntax

$INCLUDE: 'file'

Purpose

Directs the compiler to proceed as though the specified file were
inserted at the point of the $INCLUDE.

Remarks

file is a valid file specification as described for your operating
system.

At the end of the included file, the compiler resumes processing
the original source file at the line following $INCLUDE.

The compiler imposes no limit on nesting levels for $INCLUDE
metacommands. $INCLUDE metacommands are particularly
useful for guaranteeing that several modules use the same decla­
ration for a COMMON block.

185

Microsoft FORTRAN Reference Manual

6.2.6 The $LARGE and
$NOTLARGE Metacommands

Syntax

$[NOT]LARGE [: name [, name]]

Purpose

The $LARGE metacommand is supplied for use on systems
whose memory model makes programs more efficient if the com­
piler can assume that both the size of arrays and the total amount
of non-COMMON data is restricted. $LARGE directs the com­
piler to allocate arrays in a less restricted way and to generate the
less efficient code sequences to reference them. See the Microsoft
FORTRAN Compiler User's Guide for details that apply to your
system.

Remarks

$LARGE may be used without arguments, the "generic" case.
This form may occur anywhere except in the executable section of
a subprogram. $LARGE affects all subprograms that follow its
occurrence in the source file unless a generic $NOTLARGE
metacommand is issued in subsequent code. $NOTLARGE fol­
lows the same rules as $LARG E but has the opposite effect.
$NOTLARGE is the default.

In the region between an END statement (or the start of the
compilation unit) and the executable part of the next subprogram
or main program, the generic form of $LARGE or $NOTLARGE
but not both may occur only once. For example, the following code
fragment is illegal;

186

$LARGE
SUBPROGRAM P

$NOTLARGE
A=1.0

The Microsoft FORTRAN Metacommands

$LARGE and $NOTLARGE can also take valid array variable
names and formal array arguments. The array names must be
followed by a colon. If arrays are specified with $LARGE, the
metacommand must occur in the declarative section of a subpro­
gram, and it only affects the arrays or formal array arguments
declared in that subprogram.

Note

Arrays with explicit dimensions that indicate that they are
bigger than the allowable limit of64K bytes are automatically
allocated to multiple segments outside of the default data
segment. You do not need to issue $LARGE for these arrays.

187

Microsoft FORTRAN Reference Manual

6.2.7 The $LINESIZE Metacommand

Syntax

$LINESIZE:n

Purpose

Formats subsequent pages of the listing n columns wide.

Remarks

n is any positive integer.

If a program contains no $LINESIZE metacommand, a default
line size of 80 characters is assumed. The minimum line size is 40
characters, the maximum is 132 characters.

188

The Microsoft FORTRAN Metacommands

6.2.8 The $LIST and
$NOLIST Metacommands

Syntax

$[NO]LIST

Purpose

Sends subsequent listing information to the listing file specified
when starting the compiler. If no listing file is specified in
response to the compiler prompt, the metacommand has no effect.
$NOLIST directs that subsequent listing information be dis­
carded.

Remarks

$LIST and $NOLIST can appear anywhere in a source file.

The default condition for the pair of meta commands, $LIST and
$NOLIST, is $LIST.

189

Microsoft FORTRAN Reference Manual

6.2.9 The $MESSAGE Metacommand

Syntax

$MESSAGE: ' quoted string'

Purpose

Instructs the compiler to display a quoted string at the standard
output device during the compilation.

Remarks

The $MESSAGE metacommand can be used to send a quoted
string to the standard output device when running MS-FORTRAN
FORl.EXE. For example, the entry

$MESSAGE 'Phase I being compiled'

will deliver the character string in single quotes to the output
device.

The maximum length of the string is 40 characters.

190

The Microsoft FORTRAN Metacommands

6.2.10 The $PAGE Metacommand

Syntax

$PAGE

Purpose

Starts a new page of the listing.

Remarks

If the first character of a line of source text is the ASCII form feed
character (hexadecimal code OCh), it is considered as equivalent
to the occurrence of a $PAGE metacommand at that point.

191

Microsoft FORTRAN Reference Manual

6.2.11 The $PAGESIZE Metacommand

Syntax

$PAGESIZE:n

Purpose

Formats subsequent pages of the listing n lines high.

Remarks

n must be at least 15.

If a program contains no $PAGESIZE metacommand, a default
page size of 66 lines is assumed.

192

The Microsoft FORTRAN Metacommands

6.2.12 The $STORAGE Metacommand

Syntax

$STORAGE:n

Purpose

Allocates n bytes of memory for all variables declared in the
source file as INTEGER or LOGICAL.

Remarks

n is either 2 or 4. Use a value of 2 for code that defaults to 16-bit
arithmetic. See also the important note on performance issues in
Section 2.3, "Data Types."

$STORAGE does not affect the allocation of memory for varia­
bles declared with an explicit length specification, for example, as
INTEGER*2 or LOGICAL*4.

If several files of a source program are compiled and linked
together, you should be particularly careful that they are consist­
ent in their allocation of memory for variables (such as actual and
formal parameters) referred to in more than one module.

The $STORAGE metacommand must precede the first declara­
tion statement of the source file in which it occurs.

If a program contains no $STORAGE metacommand, a default
allocation of 4 bytes is used. This default results in INTEGER,
LOGICAL, and REAL variables being allocated the same amount
of memory, as required by the FORTRAN 77 standard.

193

Microsoft FORTRAN Reference Manual

6.2.13 The $STRICT and
$NOTSTRICT Metacommands

Syntax

$[NOT]STRICT

Purpose

$STRICT disables the specific MS-FORTRAN features not found
in the FORTRAN 77 subset or full language standard.

Remarks

The $NOTSTRICT metacommand enables these MS-FORTRAN
features, which are the following:

1. Character expressions may be assigned to non character
variables.

2. Character and noncharacter expressions may be com­
pared.

3. Character and noncharacter variables are al­
lowed in the same COMMON block.

4. Character and noncharacter variables may be equiva­
lenced.

5. N oncharacter variables may be initialized with character
data.

$STRICT and $NOTSTRICT can appear anywhere in a source
file.

The default condition for the pair of metacommands, $STRICT
and $NOTSTRICT, is $NOTSTRICT.

194

The Microsoft FORTRAN Metacommands

6.2.14 The $SUBTITLE Metacommand

Syntax

$SUBTITLE: 'subtitle'

Purpose

Assigns the specified subtitle for subsequent pages of the source
listing (until overridden by another $SUBTITLE metacommand).

Remarks

subtitle is any valid character constant. The maximum length is
40 characters.

If a program contains no $SUBTITLE metacommand, the subti­
tle is a null string.

195

Microsoft FORTRAN Reference Manual

6.2.15 The $TITLE Metacommand

Syntax

$TITLE: 'title'

Purpose

Assigns the specified title for subsequent pages of the listing
(until overridden by another $TITLE metacommand).

Remarks

title is any valid character constant. The maximum length is 40
characters.

If a program contains no $TITLE metacommand, the title is a
null string.

196

Appendices

A Microsoft FORTRAN and
ANSI Subset FORTRAN 199

B ASCII Character Codes 205

C Structure of External
Microsoft FORTRAN Files 207

197

Appendix A

Microsoft FORTRAN and
ANSI Subset FORTRAN

This appendix describes how MS-FORTRAN differs from the
standard subset language. The ANSI standard defines two levels,
full FORTRAN and subset FORTRAN. MS-FORTRAN is a
superset of the latter. The differences between MS-FORTRAN
and the standard subset FORTRAN fall into two general catego­
ries: full language features and extensions to the standard.

A.1 Full Language Features

Several features from the full language are included in this
implementation. In all cases, a program written to comply with
the subset restrictions compiles and executes properly, since the
full language includes the subset constructs.

1. Subscript expressions

The subset does not allow function calls or array element
references in subscript expressions; however, these are
allowed in the full language and in this implementation.

2. DO variable expressions

The subset restricts expressions that define the limits of a
DO statement; the full language does not. MS-FORTRAN
also allows full integer expressions in DO statement limit
computations. Similarly, arbitrary integer expressions
are allowed in implied DO loops associated with READ
and WRITE statements.

199

Microsoft FORTRAN Reference Manual

3. Unit I/O number

MS-FORTRAN allows an I/O unit to be specified by an
integer expression, as does the full language.

4. Expressions in input/output list <iolist>

The subset does not allow expressions to appear in an
<iolist>, whereas the full language does allow expres­
sionsin the <iolist> of WRITE statements. MS-FORTRAN
allows expressions in the <iolist> of a WRITE statement
providing that the expressions do not begin with an
initial left parenthesis.

Note that an expression like (A+B)*(C+D) can be specified
in an output list as +(A+B)*(C+D). Doing so does not gen­
erate any extra code to evaluate the leading plus sign.

5. Double precision and Complex numbers

The subset does not allow double precision real numbers
or complex numbers; MS-FORTRAN provides for them as
in the full language standard.

6. Edit descriptors

MS-FORTRAN allows for D, G, T, TR, TL, S, SS, SP, and
(:) edit descriptors as in the full language standard.

7. Expression in computed GOTO

MS-FORTRAN allows an expression for the selector of a
computed GOTO, consistent with the full, rather than the
su bset, language.

8. Generalized I/O

MS-FORTRAN allows both sequential and direct access
files to be either formatted or unformatted. The subset
language requires direct access files to be unformatted
and sequential files to be formatted.

200

MS-FORTRAN also includes the following:

a. an augmented OPEN statement that takes additional
parameters not included in the subset (see Section
3.2.28, "The OPEN Statement")

b. a form of the CLOSE sta temen t, which is not incl uded
in the subset (see Section 3.2.5, "The CLOSE State­
ment")

Microsoft FORTRAN and ANSI Subset FORTRAN

c. a form of the INQUIRE statement which is not
included in the subset

d. END=, ERR=, IOSTAT=, STATUS=, and FILE= speci­
fiers on I/O statements

9. List-directed I/O

MS-FORTRAN provides for list-directed I/O as described
in the full language standard.

10. Array dimensions

MS-FORTRAN supports seven (7) array dimensions in
conformance with the full language standard.

11. Continuation lines

MS-FORTRAN permits 19 continuation line in confor­
mance with the full language standard.

12. The BLOCK DATA statement

MS-FORTRAN implements the BLOCK DATA state­
ment but does not check for all of the restrictions that
apply in the full language standard.

13. CHARACTER-typed function

Subject to restriction, functions may be of type CHAR­
ACTER.

A.2 Extensions to the Standard

The implemented language also has several minor extensions to
the full language standard.

1. User-defined names greater than six characters are al­
lowed, although only the first six characters are signifi­
cant.

2. Tabs in source files are allowed. See Section 2.1.3, "Tabs,"
for details.

201

Microsoft FORTRAN Reference Manual

3. Metacommands, or compiler directives, have been added
to allow the programmer to communicate certain infor­
mation to the compiler. The metacommand line is charac­
terized by a dollar sign ($) appearing in column 1. A
metacommand line may appear any place that a com­
ment line can appear, although certain metacommands
are restricted as to their location within a program (see
Section 2.2.4, "Statement Definition and Order").

A metacommand line conveys certain compile time in­
formation about the nature of the current compilation to
the MS-FORTRAN Compiler. Metacommands are de­
scribed in Chapter 6, "The Microsoft FORTRAN Meta­
commands."

4. The standard is relaxed when the $NOTSTRICT meta­
command is in effect. This relaxation allows, for example,
such MS-FORTRAN features as assignment of character
to any variable type and initialization of any variable
with character data. See Section 6.2.13, "The $STRICT and
$NOTSTRICT Metacommands, for a complete list of
these features.

5. The backslash (\) edit control character can be used in
format specifications to inhibit normal advancement to
the next record associated with the completion of a READ
or WRITE statement. This is particularly useful when
prompting to an interactive device, such as the screen, so
that a response can appear on the same line as the
prompt. See item 5, Section 4.4.2.1, "Nonrepeatable Edit
Descriptors," for more information.

6. An end of file intrinsic function, EOF, is provided. The
function accepts a unit specifier as an argument and
returns a logical value that indicates whether the speci­
fied unit is at its end of file.

7. Both upper and lowercase source input are allowed. In
most contexts, lowercase characters are treated as indis­
tinguishable from their uppercase counterparts. How­
ever, lowercase is significant in character constants and
Hollerith fields.

8. Binary files are similar to unformatted sequential files
except that they have no internal structure. This allows
the program to create or read files with arbitrary contents,
which is particularly useful for files created by or intended
for programs written in languages other than FORTRAN.

202

Microsoft FORTRAN and ANSI Subset FORTRAN

9. COMPLEX*16; MS-FORTRAN supports a 16 byte repre­
sentation of a complex number (an ordered pair of DOU­
BLE PRECISION numbers).

10. If an input operation READs more characters from a
formatted record than the record contains, the record is
padded with blanks on the right.

11. When READing numeric and logical items using format­
ted input/output, the input fields may be delimited by
commas, overriding the field width specification.

203

AppendixB
ASCII Character Codes

Dec Hex CHR Dec Hex CHR

000 OOH NUL 036 24H $
001 01H SOH 037 25H (%

002 02H STX 038 26H &
003 03H ETX 039 27H

,

004 04H EOT 040 28H (
005 04H ENQ 041 29H)
006 06H ACK 042 2AH *
007 07H BEL 043 2BH +
008 08H BS 044 2CH
009 09H HT 045 2DH
010 OAH LF 046 2EH
011 OBH VT 047 2FH /
012 OCH FF 048 30H 0
013 ODH CR 049 31H 1
014 OEH SO 050 32H 2
015 OFH SI 051 33H 3
016 10H DLE 052 34H 4
017 l1H DC1 053 ;35H 5
018 12H DC2 054 36H 6
019 13H DC3 055 37H 7
020 14H DC4 056 38H 8
021 15H NAK 057 39H 9
022 16H SYN 058 3AH
023 17H ETB 059 3BH ,
024 18H CAN 060 3CH <
025 19H EM 061 3DH
026 1AH SUB 062 3EH >
027 1BH ESCAPE 063 3FH ?
028 1CH FS 064 40H @
029 1DH GS 065 41H A
030 1EH RS 066 42H B
031 1FH US 067 43H C
032 20H SPACE 068 44H D
033 21H ! 069 45H E
034 22H " 070 46H F
035 23H # 071 47H G

205

Microsoft FORTRAN Reference Manual

Dec Hex CHR Dec

072 48H H 101
073 49H I 102
074 4AH J 103
075 4BH K 104
076 4CH L 105
077 4DH M 106
078 4EH N 107
079 4FH 0 108
080 50H P 109
081 51H Q 110
082 52H R 111
083 53H S 112
084 54H T 113
085 55H U 114
086 56H V 115
087 57H W 116
088 58H X 117
089 59H Y 118
090 5AH Z 119
091 5BH [120
092 5CH \ 121
093 5DH] 122
094 5EH A 123
095 5FH 124
096 60H 125
097 61H a 126
098 62H b 127
099 63H c
100 64H d

Dec=decimal, Hex=hexadecimal (H), CHR=character,
LF=Line Feed, FF=Form Feed, CR=Carriage Return,
DEL=Rub Out

206

Hex CHR

65H e
66H f
67H g
68H h
69H
6AH j
6BH k
6CH 1
6DH m
6EH n
6FH 0

70H p
71H q
72H r
73H s
74H t
75H u
76H v
77H w
78H x
79H y
7AH z
7BH
7CH
7DH
EH
7FH DEL

Appendix C
Structure of External
Microsoft FORTRAN Files

The structure of an external MS-FORTRAN file is determined
by its properties. The structures used in MS-FORTRAN are as
follows:

1. Formatted sequential files

Records are separated by carriage return and linefeed
(ASCII hex codes OD and OA, respectively).

Record N D A Record N + 1

2. Unformatted sequential files

I

A logical record is represented as a series of physical
records, each of which has the following structure:

L Data <= 128 bytes L
I

l)
V

Physical record

Each L shown above is a length byte that indicates the
length of the data portion of the physical record. The data
portion of the last physical record contains MOD (length
of logical record, 128) bytes, and the length bytes will
contain the exact size of the data portion.

207

Microsoft FORTRAN Reference Manual

Each of the preceding physical records will contain 128 bytes in
the data portion, while the length byte will contain 129. For
example, if the size of the logical record is 138:

129
128 bytes

129 10
10 bytes

10 of data of data

l____________ _-----------)
V

One logical record

The first byte of the file is reserved and contains the value 75,
which has no other significance.

208

3. Formatted direct files, unformatted direct files, and binary
files

No record boundaries or any other special characters are
used.

Index

ABS, 167
ACOS, 170
AIMAG, 168
AINT, 166
ALOG, 169
ALOG10, 169
AMAXO, 167
AMAX1, 167
AMINO, 168
AMINI, 168
AMOD, 167
ANINT, 166
ASIN, 170
ATAN,170
ATAN2, 170
Absolute value functions, 167
Actual argument, 173
Adjustable-size array, 71
Alphanumeric characters, 15
Alternate return label, 62, 123
Alternate return specifier, 60, 62,

123
Apostrophe editing, 147
Arc cosine functions, 170
Arc sine functions, 170
Arc tangent functions, 170
Arguments, 173
Arithmetic

assignments, 47, 53
errors, 223
expressions, 31
IF statement, 97, 98, 99
integer operations, 33
operators, 32
type conversion, 54

Array
adjustable-size, 71
assumed-size, 72
declarator 71
dimensions, 71

element reference, 38
maximum size, 71
order of elements, 72
subscript expression, 38

ASSIGN statement, 51
Assigned GOTO statement, 93
Assignment statement, 53
Assumed-size array, 72

Backslash editing, 149, 202
BACKSPACE statement, 57
Binary files, 202
Blank

character, significance, 15
interpretation, 150

BLOCK DATA statement, 46, 58
Block IF statement, 100
BN, edit descriptors, 150
BZ, edit descriptors, 150

CABS, 167
CCOS, 169
CDCOS, 169
CDEXP, 168
CDLOG, 169
CDSQRT, 168
CEXP, 168
CHAR, 166
CLOG,169
CMPLX, 166
CONJG, 168
COS, 169
COSH, 170
CSQRT, 168
CALL statement, 60
Carriage control, 143
CHARACTER-typed functions.

See FUNCTION statement.

209

Index

Character
alphanumeric, 15
blanks, 15
constant, 27
data type, 27
edi ting, 155
expressions, 34
standard set, 12, 15
TAB, 16
variable, 27

Choosing largest value
function, 167

Choosing smallest value
function, 168

CLOSE statement, 64
Columns, 16
Comment lines, 17
Common block

saving, 119
size, 67

Common logarithm functions, 169
COMMON statement, 66
Compile time errors, 209
Compiler control, 3
Computational assignment

statement, 53
Computed GOTO statement, 94
Conjugate of Complex argument

function, 168
Constants

double precision, 25
integer, 22
REAL*4,23
REAL*8,25
single precision, 23

Continuation lines, 17
CONTINUE statement, 68
Cosine functions, 169

DABS, 167
DACOS, 170
DASIN,170
DATAN, 170
DATAN2, 170
DBLE, 166

210

DCOMPLX, 166
DCONJG, 168
DCOS, 169
DCOSH, 168
DDIM, 167
DEXP, 168
DIM, 167
DIMAG,168
DINT, 166
DLOG, 169
DLOG10, 169
DMAX1, 167
DMIN1, 168
DMOD, 167
DNINT, 166
DPROD, 168
DREAL, 166
DSIGN, 167
DSIN, 169
DSINH, 170
DSQRT, 168
DTAN, 169
DTANH, 170
DATA statement, 47, 69
Data types

basic, listed, 20
COMPLEX*8,26
COMPLEX*16,27
decimal, 26
double precision, 24
extended integer, 22
ranks, 33
REAL*4,23
REAL*8,24
character, 27
integer, 22
logical, 27
memory requirements, 21

DEBUG metacommand, 179, 181
DECMATH metacommand, 26,

179,182
Defining statements, 18
Dimension declarators, 71
DIMENSION statement, 71
Direct

accesS files, 134, 139

Direct continued
devices, files, 139

DO statement, 73
D066 metacommand, 179,183
Double precision

constant, 25
data type, 24
exponent, 25
range, 25

EOF, 171, 202
EXP, 168
Edit descriptors

A,155
BN,150
BZ,150
D,152
E,152
Fw.d, 89, 152
Gw.d,153
Gw.dEe, 153
IW,152
LW,155
kP,149
\,149
S,89,148
SP, 89,148
SS, 89,148
Tc, 89,148
TLc, 89,148
TRc, 89, 148
format scan terminator (:),89,

149
nonrepeatable, 88, 89, 147
numeric, 151
repeatable, 88, 89, 146
types, 147

Editing
apostrophe, 147
backslash, 149,202
character, 155
complex, 154
Hollerith, 147
integer, 152
logical, 155

Editing continued
numeric, 151
optional plus, 148
positional, 89, 202
real, 152
short records, 150
slash, 149

Index

Elements of I/O statements, 140
ELSE statement, 77
ELSEIF statement, 78

description, 78
in block IF statement, 100
End of file function, 140, 171,202

END statement, 80
End=

option, 133
specifier, 197

ENDFILE statement, 81
ENDIF statement, 82
EQUIVALENCE statement, 83
ERR= specifier, 50, 210
Error checking. See $DEBUG.
Error handling, 50
Evaluation rules, 38
Explicitly opened files, 136
Exponent

double precision, 25
single precision, 24

Exponential functions, 168
Expressions, 8, 31

arithmetic, 32, 38
character, 34
logical,36
relational, 35
restrictions, 38

External
files, 6
unit specifier, 135

EXTERN AL statement, 86

FLOAT, 166
FILE= specifier, 201
Files

access methods, 136
binary, 202

211

Index

Files continued
commonly used structures, 136
device association, 139
direct access, 134, 139
explicitly opened, 136
external, 6, 132
formatted, 133
internal, 6 132, 134
keyboard and screen

(*files), 136
limitations, 139
names, 132
NEW, 138
OLD, 138
position, 132
properties, 6, 132, 134
sequential access, 132, 134
special properties, 134
structure, 133
system, 132
unformatted, 131, 137

FLOAT CALLS metacommand,
184

Formal argument, 173
Format controller, 146
Format scan terminator, 89, 149
Format specification, 141
FORMAT statement, 88,141,147
Formatted files, 132
Formatted records, 131
FORTRAN

character set, 15
file system, 131
I/O system, 5
identifiers, 9, 28
learning about, ix
main program, 4, 19, 163
names, 9, 28
program units, 4, 19, 151
statements, 7, 18, 41
subprogram, 19
subroutines, 4, 19, 163

Function
absolute value, 167
arc cosine, 170
arc sine, 170
arc tangent, 170

212

Function continued
arguments, 173
choosing largest value, 167
choosing smallest value, 168
common logarithm, 169
conjugate of complex

argument, 168
cosine, 169
description of, 4, 164
EOF (end of file), 140, 171
exponential, 168
external, 164
hyperbolic cosine, 170
hyperbolic sine, 170
hyperbolic tangent, 170
imaginary part of complex

argument, 168
intrinsic, 108, 165 to 172
lexically greater than, 171
lexically greater than or equal,

171
lexically less than or equal, 171
lexically less than, 171
name, 90
natural logarithm, 169
nearest integer, 166
nearest whole number, 166
positive difference, 167
REAL*8 product, 168
recursive call, 92
reference to, 164
remaindering, 167
sign, 167
sine, 170
square root, 168
tangent, 164
transfer of sign, 167
truncation, 166
type conversion, 166
types of, 154

FUNCTION statement, 90,165

Generic intrinsics. See Intrinsic
functions.

Global name, 29
GOTO statement, 93, 94, 96

Hollerith editing, 147
Hyperbolic

cosine functions, 170
sine functions, 170
tangent functions, 170

lABS, 167
ICHAR, 166
IDIM,167
IDINT, 166
IDNINT, 166
IFIX, 166
INT, 166
ISIGN, 167
IF-levels, 101
IF statement, 97, 98, 99
IF THEN ELSE statement, 100
IMPLICIT statement, 103
Implied DO lists, 142
INCLUDE metacommand, 179,

185
Initial lines, 17
Input entity, 142
Input/Output statements

BACKSPACE statement, 57
carriage control, 143
character array element, 34,

134, 135
character variable, 34, 134, 135
character expression, 34
CLOSE statement, 64
ENDFILE statement, 81
END= option, 133
entities, 142
file specifier, 105
format specifier, 141
FORMAT statement, 88
iolist, 115, 127, 140, 142,

145,200
IOSTAT= specifier, 50, 106
inquiry specifiers, 105 to 108
OPEN statement, 109
READ statement, 114
REWIND statement, 118
statements, 5, 8, 48,140

Index

Input/Output statements
continued

unit specifier, 140
WRITE statement, 127

INQUIRE statement, 105
Integer

constants, 22
data types, 22
editing, 152
expression, 141
variable name, 93

INTEGER*2, 22, 165
INTEGER*4, 22, 165
Interactive programming

(\) edit descriptor, 149
BN edit descriptor, 150

Internal
files, 6, 132, 134
unit specifier, 135

Internal representations. See
Data types.

Intrinsic function
list of, 166 to 171
name, 108

Intrinsic functions
ABS, 167
ACOS, 170
AIMAG, 168
AINT, 166
ALOG, 164
ALOG10, 169
AMAXO, 167
AMAX1, 167
AMINO, 168
AMINI, 167
AMODS, 166
ANINT, 170
ASIN, 170
ATAN, 170
ATAN2, 170
CABS, 167
CCOS, 169
CDCOS, 169
CDEXP, 168
CDLOG, 169
CDSQRT, 168

213

Index

Intrinsic functions continued
CHAR,166
CLOG, 169
CMPLX, 166
CONJG, 168
COS, 169
COSH, 170
CSQRT, 168
DABS, 167
DACOS, 170
DASIN, 170
DATAN, 170
DATAN2, 170
DBLE, 166
DCMPLX, 166
DCONJG, 168
DCOS, 169
DCOSH, 170
DDIM, 167
DEXP, 168
DIM, 163
DIMAG, 168
DINT, 166
DLOG,169
DLOG10, 169
DMAX1, 167
DMIN1, 168
DMOD, 167
DNINT, 166
DPROD, 168
DREAL, 166
DSIN, 169
DSINH, 170
DSQRT, 168
DTAN, 169
DTANH, 170
EOF, 167, 202
EXP, 168
FLOAT, 166
lABS, 167
ICHAR, 166
IDIM, 167
IDINT, 166
IDNINT, 166
IFIX, 166
INT, 166

214

Intrinsic functions continued
ISIGN, 167
LGE, 171
LGT, 171
LLE, 171
LLT, 171
MAXO, 167
MAXI, 167
MINO,168
MINI, 168
MODS, 167
NINT, 166
SIGN,167
SIN, 169
SINH, 170
SNGL, 166
SQRT, 168
TAN, 169
TANH, 170

INTRINSIC statement, 108
I/O. See Input/Output statements.
iolist, 140, 142, 145
IOSTAT= specifier, 50, 106

LGE, 171
LGT, 171
LLE, 171
LLT, 171
Label, alternate return, 62, 123
Label assignment statement, 53
LARGE metacommand, 179, 186
Language overview, 1
Learning about FORTRAN, ix
Lexically greater than function,

171
Lexically greater than or equal

function, 171
Lexically less than function, 171
Lexically less than or equal

function, 171
Limitations, 139
Lines, 11, 16
LINE SIZE metacommann, 179,

188
LIST metacommand, 179, 189

List-directed
input, 156
output, 159

Local name, 29
Logical data type, 27
Logical expressions, 36
Logical .F ALSE., 27
Logical IF, 99
Logical operators

.AND.,36

.EQV.,36

.NEQV.,36

.NOT.,36

.OR.,36
Logical .TRUE., 27

MAXO,167
MAXI, 167
MINO, 168
MINI, 168
MODS, 167
Main program, 159
MESSAGE metacommand, 190
Metalanguage commands

available, 3
$DEBUG, 179, 181
$DECMATH, 179, 182
$D066, 179, 183
$FLOATCALLS, 179, 184
$INCLUDE, 179, 185
$LARGE, 179, 186
$LINESIZE, 179, 188
$LIST, 179,189
$MESSAGE, 179, 190
$NODEBUG, 181
$NOFLOATCALLS, 179
$NOLIST, 189
$NOTLARGE, 186
$N OTSTRI CT, 194
$PAGE, 179, 191
$PAGESIZE, 179, 192
$STORAGE, 179, 193
$STRICT, 181, 194
$SUBTITLE, 181, 195
$TITLE, 181, 196

NINT, 166
Name

common block, 66
common data block, 30
external subroutine, 86
formal argument, 123
global, 29
integer variable, 93
intrinsic function, 108
local, 29
program, 113
restrictions, 9
subroutine, 60, 123
symbolic, 126
undeclared, 30
user-defined, 123

Index

N aturallogarithm functions, 169
Nearest integer functions, 166
Nearest whole number functions,

166
NEW files, 138
NODE BUG metacommand, 170
NOFLOATCALLS

metacommand,184
NOLIST metacommand, 189
Nonrepeatable edit descriptors,

89, 147
Normal termination, 64
Notation, 15

FORTRAN, 15
statement syntax, viii

NOTLARGE metacommand, 186
NOTSTRICT metacommand, 194
Numeric editing, 151
OLD files, 138
OPEN statement, 109
Operators

arithmetic, 32
classes, 38
logical,36
precedence, 36
relational, 35

Output
entities, 142
See also Input/Output.

215

Index

PAGE metacommand, 179, 191
PAGESIZE metacommand, 179,

192
PARAMETER statement, 111
PAUSE statement, 112
Positional editing, 89, 148
Positive difference functions, 167
Precedence of operators, 36
PROGRAM statement, 113

Radix specifier (#),22
READ statement, 114
Reading short records, 150
Real

constant, 24
editing, 152

REAL*4, 23, 165
REAL*8, 24, 165
REC= option, 134
Records

endfile, 131
formatted, 131
properties, 6
short, 150
unformatted, 131

Recursive functions calls, 92
Reference manual organization,

Vll

Relational
expressions, 35
operators

.EQ.,35

.GT.,35

.LE.,35

.LT.,35

.NE.,35
Remaindering functions, 167
Repeat

factor, 69
specification, 88

Repeatable edit descriptors, 89,
146

RETURN statement, 116
REWIND statement, 118

216

SIGN, 167
SIN, 169
SINH, 170
SNGL, 166
SQRT, 168
SAVE statement, 119
Scale factor editing, 89, 149, 152
Sequential properties, 134
Short records, 150
Sine functions, 169
Single precision data type, 23
Slash editing, 89, 149
Specification statement, 45, 56
Specifiers on I/O statements. See

Input/Output statements.
Square root functions, 168
Statement

arithmetic IF, 97
ASSIGN, 51
assigned GOTO, 93
assignment, 53
BACKSPACE, 57
BLOCK DATA, 46, 58.
block IF, 100
CALL, 60
categories, 7, 45
CLOSE, 64
COMMON, 66
computed GO TO , 94
CONTINUE, 68
DATA, 47, 69
definition, 18
DIMENSION, 71
directory, 51
DO, 73
ELSE, 77
ELSEIF,78
END, 80
ENDFILE,81
ENDIF,82
EQUIVALENCE, 83
EXTERNAL, 86
FORMAT,88
FUNCTION 90, 165
functions, 164, 173

Statement continued
GOTO, 93, 94, 96
IF, 97, 98,99
IF THEN ELSE, 100
I/O, elements, 140
IMPLICIT, 103
INQUIRE, 105
INTRINSIC, 108, 165
labels, 52
lines, 16, 17
logical IF, 99
nesting rules, 102
OPEN, 109
ordering, 18
PARAMETER, 111
PAUSE,112
PROGRAM, 113, 165
READ, 114
RETURN, 116
REWIND, 118
SAVE, 119
specification, 45, 46
statement function, 120
STOP, 122
SUBROUTINE, 123, 165
Type, 125
unconditional GOTO, 96
WRITE, 127

Statement function statement,
120

STATUS= specifier, 210
STOP statement, 122
STORAGE metacommand, 179,

193
STRICT metacommand, 180, 194
SUBROUTINE statement, 123

Index

Subroutines, 4, 165
Subscript expression, 38, 199
SUBTITLE metacommand, 180,

195
Symbolic name, 126
Syntax notation, viii

TAN, 169
TANH, 170
TAB character, 16
Tangent functions, 169
Terminating format control(:), 149
Terms and concepts, 13
TITLE metacommand, 180, 196
Transfer of sign functions, 167
Truncation functions, 166
Type conversion

arithmetic operands, 33
functions, 166 to 171
real values, 55

Type statement, 125

Unconditional GOTO statement,
96

Undeclared FORTRAN names,
30

Unformatted files, 131, 137
UNIT= specifier, 58, 105, 106
Units, 135
User-defined names, 123

WRITE statement, 127

217

MICR~-:::SOFT®
10700 Northup Way, Bellevue, WA 98004

Software
Problem Report

Name __ __

Street __ __

City _____________________ State _____ Zip _____ _

Phone _______________ Date _______ __

Instructions

Use this form to report software bugs, documentation errors, or suggested
enhancements. Mail the form to Microsoft.

Category

__ Software Problem

__ Software Enhancement

Software Description

Documentation Problem
(Document # ________ _

__ Other

Microsoft Product ______________________________________ _

Rev. _________ Registration # _____________ _

Operating System __________________________ _

Rev. _____ Supplier _______________ _

Other Software Used _____________________ _

Rev. ______ Supplier __________________ _

Hardware Description

Manufacturer _______ CPU ______ Memory ___ KB

Disk Size ____ " Density: Sides:

Single__ Single __

Double __ Double __

Peripherals ___________________________ _

Problem Description

Describe the problem. (Also describe how to reproduce it, and your
diagnosis and suggested correction.) Attach a listing if available.

Microsoft Use Only

Tech Support ____ _ Date Received ____ _

Routing Code ____ _ Date Resolved ____ _

Report Number ____ _

Action Taken:

