\VId(e:elisd CDs Viewable with Microsoft Windows NT

MICROSOFT® PROFESSIONAL EDITIONS

The Professional s Companion to
Microsoft Internet Information Server

Microsoft

met

Information

R Server Klt

Technical Information and Tools
for Building Better Web Sites

Microsoft Press

Microsoft

Internet
Information

Server
Resource Kit

Micresoft Press

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1998 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Internet Information Server Resource Kit / Microsoft
Corporation.
p- om.
Includes index.
ISBN 1-57231-638-1
1. Microsoft Internet information server. 2. Internet (Computer
network)--Computer programs. 3. Web servers. 1. Microsoft
Corporation.
TKS5105.875.157M534 1998
005.7'13769--dc21 97-48754
CIP
Printed and bound in the United States of America.

123456789 WCWC 3210938

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the Britisl} Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or contact
Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Macintosh is a registered trademark of Apple Computer, Inc. Intel is a registered trademark of Intel
Corporation. ActiveX, BackOffice, FrontPage, Microsoft, Microsoft Press, MS-DOS, PowerPoint,
Slate, Visual Basic, Visual C++, Win32, Windows, and Windows NT are registered trademarks and
Active Channel, Active Desktop, JScript, MSN, NetShow, Outlook, Sidewalk, Visual InterDev, Visual
J++, Visual SourceSafe, and Visual Studio are trademarks of Microsoft Corporation. Other product and
company names mentioned herein may be the trademarks of their respective owners.

The names of companies, products, people, characters, and/or data mentioned herein are fictitious and are
in no way intended to represent any real individual, company, product, or event, unless otherwise stated.

Acquisitions Editor: Casey D. Doyle
Project Editor: Maureen Williams Zimmerman

Special thanks to the IIS Champs

Contributing Writers

Seth Manheim (“Introduction,” Chapter 1, “Internet Information Server Overview,” Appendix A, “Using the IIS Resource Kit
CD”); Jim Morey (Chapter 2, “Managing Content”); Jon Singer (Chapter 3, “Capacity Planning,” Chapter 4, “Performance
Tuning and Optimization™); John Sudds (Chapter 5, “Developing Web Applications,” Chapter 6, “Data Access and
Transactions,” Appendix C, “Debugging Applications and Components”); Shawn Bice, Paolo Branchesi, and
John Butler (Chapter 7, “ISP Administration”); Michael Howard (Chapter 8, “Security”’); John Meade (Chapter 9, “Accessing
Legacy Data and Applications,” Appendix B, “ASP Standards”); Glenn Scott, Bill Colburn, and
Jorge Arturo Herndndez Serrano (Chapter 10, “Migrating Web Sites and Applications”)

Resource Kit Program Manager: Jim Laurel
Documentation Managers: Sue Turner, Robert Davis
Writing Manager: Seth Manheim
Lead Editor: Alexander Price
Technical Editor: Karen Carter-Schwendler
Contributing Editors: Rick May, Rebekka Stahl
Production Manager: Nick Leggett
Production Lead: David Fleischman
Production: Lisa Black
Indexer: Frank Maier
Lead Graphic Designers: Michael McDevitt, Bob Cottington

Design Support: Gary Goodrich »
Lead Software Developer and Tester: Prashant Luthra
Production Support Liaisons: Cathy Pfarr and Kat Reynolds

Technical Consultants:

I Allard, Bruce Baker, Aaron Barth, Dina Berry, Sachin Bhatia, Dave Browning, Kresimir Bozic, Barry Butterklee,
June Blender Cahn, Tom Campbell, Philip Carmichael, Patrick Coston, Howard Davidson, Kris Dinkel, Bill Duemmel,
Matthew Dunn, Peter Durham, Jeff Fink, Dan Fisher, Gordon Garb, Scott Gate, Scott Guthrie, Mary Haggard,
Basil Halhed, Doug Hebenthal, Janice Hertz, Brad Huggins, Stu Klingman, Paul Kreemer, Murali Krishnan, Paul Larsen,
David Lee, Eric Lee, Rich Lowry, John Ludeman, Richard Maring, Christy McCoy, Robert McMurray, Mike Moore,
Dan Morrow, Paul Morse, Mark Mortimore, Jamie Myxter, Susan Nellis, Eric Niebler, Mark O'Brien, Jee Fung Pang,
Sam Patton, Jonathan Perera, Seth Pollack, Jeff Prothero, Saveen Reddy, George Reilly, Joseph Roberts,

Dmitry Robsman, Rob Sanfilippo, Paul Schafer, Darren Stalder, Kavi Singh, Luc Talpe, David Treadwell, Todd Wanke,
Bob Watson, Gary Watts, Todd Weeks, Audrey Wehba, and Mark Whidby.

Contents

Introduction xxi

About the Internet Information Server Resource Kit xxi
Resource Kit Compact Disc xxii

Resource Kit Support Policy xxiii

Chapter 1 Internet Information Server Qverview 1
What’s New in Internet Information Server 4.0 2
Industry-Standard Internet Protocol Services 2
Web Application Development 3
Server Administration 4
Security and Authentication 6
Content Management and Control 6
IIS Architecture 7
Architecture Overview 8
Administrative Architecture 14
Programmability Architecture 16
Resources 18

Chapter 2 Managing Content 21
What Is Content Management? 22
The Content Life Cycle 23
What Makes a Web Page Successful? 23
Elements of a Web Page 24
Creating Content 28
Choosing the Right Team 28
Producer 28
Editor 29
Writer 29
Scripter 29
Graphic Artist 30
Hardware Technician 30
Testing Technician 31
Hand-off Procedure 31)
Tools for Creative Collaboration 31
Staging Content 36

vi

Contents

Testing 36
Appearance Testing 36
Performance Testing 37
WCAT: Web Capacity Analysis Tool 37
Testing Your Site in Stages 40
Budget and Audience 40
Deploying Content 41
Choosing a Release Strategy 41
Backing Up Your Site 42
Deploying Content 42
Publicizing Your Site 43
Monitoring Your Site 43
Case Study: investor.com 43
Overview of Features 44
Team Overview 46
Hand-off Procedure 46
Staging 48
Deployment 48 -
Resources 48
Web Links 48
Books 48

Chapter 3 Capacity Planning 49
Determining the Server’s Requirements 50
Traffic 50
A Deeper Look at Traffic and Content 54
Refreshing a Page - 58
Adding Secure Sockets Layer 59
Web Application Performance 59
Reliability 61
Clustering 61
DNS Round-Robin Distribution and Load Balancing 62
Meeting the Server’s Requirements 63
Hardware Options 63
Minimum and Recommended Hardware Configurations 63
Data Latency and Transfer Rates 64
The Processor 65
The Bus 66
Memory 67
Hard Drives and Controllers 69

Contents

vii

Network Options 73
Network Adapters and Other Hardware 73
Connection Types 74
Local Area Networks 74
WAN/Internet Connections 78
Connection Implications 79
Monitoring the Server 79
What to Check 80
Relevant Counters 81
Your Mileage Will Vary 82
A Case Study: microsoft.com 82
A Snapshot of the Site 83
Hardware 83
+ Network Infrastructure 84
Planning for Spikes 86
When Planning Is Not Enough 86
Working Toward a Resolution 87
Finding a Balance 88
The Hardware 88
The Software 89
The Network 89
The Content 89
Summary 90
Resources 91
Web Links 91
Books 91

Chapter 4 Performance Tuning and Optimization 93
Using This Chapter 94
Monitoring Memory Usage 95
Memory Requirements of an IIS Server 95
Monitoring Overall Server Memory 96
How to Monitor Overall Server Memory 97
Monitoring the Working Set of the IIS Process 99
About the Inetinfo Working Set 100
Using Performance Monitor to Monitor the IIS Working Set 100
Analyzing the Working Set Data 102
Monitoring the IIS Object Cache 103
Using Performance Monitor to Monitor the IIS Object Cache 104
Analyzing the IIS Object Cache Data 106

viii Contents

Monitoring the File System Cache 107
How IIS Uses the File System Cache 107
Using Performance Monitor to Monitor the File System Cache 108
Analyzing the File System Cache Data 110

Suggestions for Optimizing Memory on an IIS Server 113

Preventing Processor Bottlenecks 117

Monitoring Server Processors 117
Using Performance Monitor to Monitor Processor Activity 118
Analyzing Processor Activity Data 119

Monitoring Connections 120
The Performance Overhead of Connections 120
Using IIS Logging to Monitor Connections 122
Using Performance Monitor to Monitor Connections 122
Analyzing Connection Data 123

Monitoring Threads 124
Using Performance Monitor to Monitor IIS Threads 125
Analyzing the IIS Thread Data 125
Optimizing Thread Values 126

Monitoring Interrupts and DPCs 127
Describing Interrupts and DPCs 127
Interrupts and Processor Performance 128
Using Performance Monitor to Monitor Interrupts and DPCs 128
Analyzing Data on Interrupts and DPCs 130

Suggestions for Improving Processor Performance 135

Monitoring Bandwidth and Network Capacity 137

Defining Bandwidth and Network Capacity 137

Monitoring Transmission Rates 138
Using Performance Monitor to Monitor Transmission Rates 139
Analyzing Transmission Rate Data 143

Monitoring File Transfers 144

Monitoring TCP Connections 145
'Using Performance Monitor to Monitor TCP Connections 145
Analyzing TCP Connection Data 146

Using Network Monitor to Monitor Bandwidth 147
Limiting Bandwidth 148
Monitoring Bandwidth Throttling 148
Analyzing Data About Bandwidth Throttling 149

Contents

Suggestions for Maximizing Bandwidth 150
Adjusting the Length of the Connection Queues 150
Using HTTP Keep-Alives 151
Working with “Black Hole” Routers 151
Optimizing Graphics File Sizes 152

Security and Performance 152

The Challenge of Measuring Security Overhead 152

Using WCAT to Measure Security Overhead 153
Components of a WCAT Test 154
Designing a WCAT Test of Security Features 154

Using Performance Monitor to Track Anonymous and
Non-Anonymous Connections 155

Anonymous and Non-Anonymous Connection Counters 156
Using Performance Monitor to Count Not-Found Errors 157
Capacity Planning to Support Security Features 158

Monitoring Web Applications 159
Monitoring Client Requests to Web Applications 159

Using Performance Monitor to Monitor Client Requests 160

Monitoring Servers Running Web Applications 162

Monitoring the Effect of Web Applications on
Overall Server Performance 162

Using WCAT to Simulate Web Applications 162
Using Performance Monitor to Monitor WCAT Tests 164
Tracking Web Application Processes 165
Monitoring ASP and ISAPI Applications 165
Tuning the ASP Queue and Thread Pool 166
Relevant Registry Settings 167
The ASP Queue 169
Other Optimization Steps 170
When Your Site Is Running Smoothly 170
Capacity Planning to Support Web Applications 170
Resources 172
Web Links 172
Books 172

Chapter 5 Developing Web Applications 173
Building on Client/Server 174

Client/Server Revisited 174

The New System Design 175

X Contents

Microsoft Windows DNA 177
The Future of Applications on the Internet 179
Client-Side Technologies 179
Text and HTML 180
Graphics and Multimedia 180
Hyperlinks 180
Client-Side Script 181
Upgrading the Client’s Scripting Engine 181
Java Applets 182
ActiveX Controls 183
Active Documents 184
Cascading Style Sheets 185
Dynamic HTML 187
Data Binding 187
Active Desktop 188
The Icon Layer 188
The HTML Layer 188
Channels 189
Multicast Webcasting 189
Browser Support 189
Limitations of Client Technologies 191
The Middle Tier 191
CGI Applications 192
ISAPI Extensions and Filters 192
Active Server Pages 193
ASP Server-Side Scripting 194
ASP Script Execution Behavior 197
Built-In Objects and Server-Side Components 199
Why Components? 201
Using XRay to View Component Type Libraries 203
ASP Applications 204 '
ASP Session Management 204
Building an ASP Application 209
Selecting Object Scope 214
Design Patterns for Web Applications 215
Factoring Your Application 216
The Survey Sample Application 217

Contents

Xi

Using Forms for Input 218
The Difference between GET and POST 219
Client-Side Form Validation 221
Hidden Form Fields 223
Redirection 224
Client-Side Redirection 227
Redirecting during Session_OnStart 228
The Feedback Sample Application 228
Sending Mail with CDO 229
Checking Spelling with Microsoft Word 230
Out-Of-Process Components 233
Summary 235
Resources 235
Web 235
Links 235
Books 236

Chapter 6 Data Access and Transactions 237
Web Database Access 238
Why a Web Database? 238
Data Publishing Considerations 239
Industrial-strength Information 240
A Word of Caution 241
The Microsoft Data Access Components 242
ODBC and OLEDB 244
ADO and RDS 244
Older Data Access Methods 246
ADC 246
Jet and DAO 246
RDO 247
IDC/IDQ and HTX 247
Client-Side Data Access 248
Client-Tier Elements 251
Data-Aware Controls 251
Business Object Proxies and the RDS.DataSpace Object 254
Data Cache 254
Client Cursor Engine 255
Middle-Tier Elements of Client-Side Data Access 255
Internet Information Server 256
The RDSServer.DataFactory Object 256

Xii Contents

Business Objects 256
The RDS Data Factory and Custom Business Objects 256
Accessing Data from ASP Pages and Components 257

Preparing the Database 257

Connection Strings 257

Data Source Names 258

“DSN-less” Connections 258

Data Source Permissions 259

Security and Microsoft SQL Server 260
The Database Connection 262

Selecting an OLE DB Provider 263

ODBC Connection Pooling 264

Tips for Optimizing Database Connections 265
Recordsets and Cursors 270

Forward-Only Cursors 272

Static versus Dynamic Cursors 273

Keyset Cursors 273

Cursor Concurrency 274

Client Cursors 274

Managing Records in a Recordset 276

Stored Procedures 284

Tips to Optimize Query Performance 286

Transaction Processing on the Web 287

Transactions Defined 288

Extending the Limits of Transactions 289

Transactional ASP 289

Business Objects versus ASP Script 291
Transactional Components 291

Business Logic in Components 291

Participating in Transactions 293 ,

Using Database Access Interfaces with MTS 294

Distribution and Scaling Issues 295
Introducing Microsoft Message Queue 296

Time Independent Transaction Processing with MSMQ 297
Process Isolation and Crash Recovery 299

Applications and Processes 299

Configuring an Isolated Process 301

Security Considerations 302

Contents

Xiii

References 302
Web Links 302
Books 302

Chapter 7 ISP Administration 303
Robustness Features 304
Process Isolation 304
Crash Recovery 305
Site Management 305
Bandwidth Throttling 305
Multihosting Using a Single IP Address 306
Support for Non—-HTTP 1.1 Compliant Browsers 308
Resource Logging (Per—Web-Site Logging) 312
Access Privileges 315
Remote Administration 316
Web Site Operators 317

Remote Administration of Previous Versions of
IIS-Based Web Servers by Using the MMC 317

Customization 319
Redirect 319
Custom Error Messages 320
Custom HTTP Headers 320
Custom HTML Footers 322
PICS Ratings 322
Resources on the IIS Resource Kit CD 323
Sample Scripts on the IIS Resource Kit CD 323
JScript Sample Scripts 328
The HTTPMon Web Farm Performance Monitor Tool 329
Installation 329
Using HTTPMon 329
ISP Sign-Up Server 330
Applying Other Microsoft Technologies Within an ISP 330
Resources 331
Web Links 331
Books 331

Xiv Contents

Chapter 8 Security 333
Guidelines for Creating a Security Policy 334
‘Using the Built-In Security Features of Windows NT Server 4.0 336
A Quick Overview of Windows NT Security Principles 337
The Ramifications of NTFS Security on IIS 339
Securing Windows NT 339
Choosing the Server-Type 340
Physically Locking Access to the Server -~ 340
Disabling Unnecessary Services 342
Configuring Network Settings 343
Protecting the Registry 345
Adding Users and Groups to the Computer 345
Using Strong Passwords in Windows NT 347
Two Other Recommended Security Steps 348
Auditing 348
Configuring IIS for Security 349
IIS Authentication Models 349
Anonymous (Web) Authentication 349
Basic Authentication 350
Windows NT Challenge/Response Authentication 352
Client Certificate Mapping 353
FTP Authentication 353
The IUSR_computername Account 354
File and Directory Security 355
Virtual Directory Security 356
Using Secure Sockets Layer 357
Public and Symmetric Key Cryptography 357
Enabling SSL. 359
SSL in Action 359 '
A Brief Overview of Certificates and Microsoft Certificate Server 359
It’s All a Matter of Trust 359
Microsoft Certificate Server 360
Mapping Client Certificates to Windows NT User Accounts 361
How Access Is Controlled 361
Securing the HTML Administration Tool 365

Contents

Xv

Security for Web Applications 367
DCOM Security 367
Microsoft Transaction Server Security 368
Declarative Security 369
Programmatic Security 369
Scripting Security 369
Accessing Files 370
Server-Based Executable Content Security 370
Microsoft Index Server Security 370
Using FrontPage Extensions 370
FrontPage Access Control List Settings 371
Uploading Content to IIS 373
Accessing Microsoft SQL Server from ASP 373
An End-to-End Example 374
Defending Against Malicious Attacks 383
Accessing Restricted Resources 383
Denial-of-Service Attacks 383
TCP/IP SYN Attack 383
Auditing Access with IIS Logs 390
IIS Security Checklist 390
General Information 390
Windows NT Security Checklist 390
Internet Information Server Checklist 391
Resources 391
Web Links 391
Books 392

Chapter 9 Accessing Legacy Applications and Data 395
Identifying Strategies 396
Connecting to SNA 396
Integrating IIS and Legacy Applications 398
The COM Transaction Integrator 398
Functional Overview of the COM Transaction Integrator 399
COM TI Development Scenarios 400
Using COM TI with IMS 406
Gaining Access to Legacy File Data 406
Legacy File Data and IIS 407

Gaining Access to VSAM and AS/400 files with OLE DB and ADO 407

Functional Overview of the Data Provider 408
Capitalize on Development with the OLE DB/DDM Driver 408

xvi

Contents

- Replicating Legacy Databases 412

Why Replication? 412 _

Replicating DB2 Tables using the Host Data Replicator 412
Migrating Transaction Processes 415

Why Use Transactions? 415

Migrating to Microsoft Transaction Server (MTS) 416

MTS Features and Capabilities 416

Resources 420

Web Links 420

Software Product Documentation 420

Chapter 10 Migrating Web Sites and Applications 421
Migrating CGI Applications to IIS 422
Comparing CGI Applications to IIS Applications 422
Migration Strategies 424
Migrating to Active Server Pages 426
Input Processing 427
Business Logic 430
External Gateway and Database Logic 431
Maintaining State 435
Output Handling 436
Summary 439
Migrating from Netscape Enterprise Server 439
Definition of Terms 439
Netscape Enterprise Server Administration Settings 440
Server Preferences 440
Programs 442
Server Status 443
Configuration Styles 444
Content Management 445
Web Publishing 446
Agents and Search 446
: Auto Catalog 447
Moving User Accounts to IIS 447
Migrating to Active Server Pages 447
Development Tools 448
Dagwood: A Sample Application 448

Contents

Xvii

Migrating from Lotus Domino 458
Migration Overview 458
Typical Migration Scenarios 458
Migration Strategies 459
Elements of a Domino Web Site 460
Document Migration 461
HTML Pages 461
Object Store Migration 463
Application Migration 466
Database Access 466
Forms and Fields 469
Views 470
Navigators 470
Programming 470
Resources 472

Appendix A Using the IIS Resource Kit CD 475
Installation 475 '
Resource Kit Support Policy 475
ISAPI Filters and Applications 476
ASP Caching 476
Authentication Methods 476
Cookie Munger 476
Distributed Authoring and Versioning 477
HTML Compressor 477
IFilter Test Suite 477
Index Server Filter for C and C++ Files 477
ISpy 477
W3Who 477
Components 478
ASPto HTML 478
Collaborative Data Objects 478
Content Rotator 478
Counters 479
HTML Table 479
Load Balancer 479
Page Counter 479
Permission Checker 479
Registry Access 479
Status 480

xviii Contents

Summary Information 480
Tools 480
Tracer 480
Utilities 480
ADOSelect 480
ADSI Administration Scripts 481
Backstab 481
Calendar 481
COM Transaction Integrator for CICS and IMS 481
FrontPage Index Server Query Wizard 481
IIS Host Helper Service 482
HTML Text Filter 482
HTTPCmd 482
HTTPMon 482
IDC2ASP 482
IIS Migration Wizard 482
ISP Sign-up System 482
Javafy 483
JSAPI 483
MetaEdit 483
Microsoft CDF Generator 483
Microsoft Web Capacity Analysis Tool 483
MMC Snap-ins 483
MTS Administrator (HTML) 483
Orville 484
PerkMon 484
Themes 484
WebCheck 484
Xray 484

Appendix B ASP Standards 485
Using ASPin IIS 485
Writing Scripts for Browsers 485
ASP Application Directory Structure 486
Application Root Directory 486
/Classes Directory 487
/Content Directory 487
/Data Directory 487
/DLLs Directory 488
Helper Files 488

Contents

Xix

File Name Extension Standards 488
Extensions for Page Files 488
Extensions for Included Files 488
Connection Pooling 489
Visual Basic Applications as DLLs 489
Object and Variable Initialization 490
Application-Wide Scope for Convenience 490
Declaring Objects with the <OBJECT> Tag 490
VBScript Conventions 491
Comments in Scripts 491
Constant Names 491
. Minimize Context Swifching 491
Dictionary Object: Speed Access to Information 492
Delimiting Lines of Script for Readability 492
Enable Session State Directive 493
Language Default 493
Layout Order of Scripts in ASP Pages 493
Blank Lines in Files 494
Object and Procedure Call Names 494
Object Naming 494
Paths, using MapPath 495
Select Case Statement for Readability 495
Spaces in Scripts 495
Statement Styles 496
String Concatenation 497
String Function 497
Case Values 497
Trimming Values 497
Variable Declaration 497
Variable Names for Consistency 498
Variable Scope for Performance 499
HTML Conventions for ASP Pages 499
Support Text-Only Browsing 499
Checking HTML Files 500
Using the 216-Color Palette 500
Designing for Small Screens 501
Displaying Standard Error Messages 501
Using Object Statements with Embed Statements 501

XX Contents

Appendix C Debugging Applications and Components 503
Active Server Pages 503
Common Mistakes 503
Misspelling Variables 504
Using an Object or Variable Out of Scope 504
Not Using the Web Server to View ASP Pages 504
Using the Scripting Language Inefficiently 504
Mixing Data Types 505
Misusing the Equal Sign 505
Using Procedures Incorrectly 505
Not Handling Errors 505
Making Off-by-One Errors with Collections 506
Forgetting Ending Braces, Delimiters, and Statements 506
Debugging ASP 506
Microsoft Script Debugger 506
Debug Tracing 509
Tracking Events in Global.asa 509
Script Management 510
Establishing a Library of Helper Routines 510
Using Dictionaries to Partition the Session Namespace 511
Improving Script Performance 512
ASP Performance Tips 512
The Tracer Component 513
Debugging ISAPI and Server Components 514
Disabling Debug Exception Catching 514
Debugging Internet Information Server 515
Establishing a Debugging Environment 516
Running IIS as a Process 517
Inability to Create Components 518
Additional Resources 519

Glossary 521
Index 557

Xxi

Introduction

Welcome to the Microsoft Internet Information Server Resource Kit.

The Internet Information Server Resource Kit consists of this book and one
compact disc (CD) containing samples, tools, and utilities for Internet Information
Server version 4.0.

The Internet Information Server Resource Kit provides detailed information on
Microsofte Internet Information Server (IIS). This information is intended as a
supplement to the online documentation included with IIS version 4.0. It does not
replace that documentation as the primary source for learning how to use the
product’s specific features. '

About the Internet Information Server Resource Kit

This book contains the following chapters:

Chapter 1, “Internet Information Server Overview,” describes each of the
technology components included with Internet Information Server 4.0. This
chapter presents a “technology map” that shows where the elements of IIS and
associated products included in the Windows NTe 4.0 Option Pack fit into
different usage scenarios.

Chapter 2, “Managing Content,” concerns the creating, deploying, and testing
of Web page content.

Chapter 3, “Capacity Planning,” discusses issues involved in planning Web
server capacity.

Chapter 4, “Performance Tuning and Optimization,” discusses issues
involved in optimization and tuning your IIS-based Web server and covers some
of the tools you can use for accomplishing these goals. It also provides some
guidelines to help your server recover from bottlenecks.

Chapter 5, “Developing Web Applications,” presents the features and benefits
of the many pieces of underlying technology in IIS, stressing the important
functionality that can be obtained by creating Web applications.

Chapter 6, “Data Access and Transactions,” introduces key components of
Web data access, and discusses how to harness the power of a data-driven
approach for Web content publishing.

xxii

Internet Information Server Resource Kit

Chapter 7, “ISP Administration,” is a guide to running and maintaining an
Internet Service Provider (ISP) operation in the context of Windows NT Server
and Internet Information Server.

- Chapter 8, “Security,” discusses Web server security issues.

Chapter 9, “Accessing Legacy Data and Applications,” discusses how to
employ the Web to make legacy data and applications easily accessible (via the
Internet or the company intranet) to customers and members of the internal
organization using Web browsers. This chapter describes how you can use IIS for
efficient utilization of legacy data and applications in Web solutions based on IIS.

Chapter 10, “Migrating Web Sites and Applications,” discusses the issues
involved in migration of your Web servers from Netscape Enterprise Server
(NES) to IIS 4.0.

Appendix A, “Using the IIS Resource Kit CD,” is an overview of the samples,
components, and utilities included on the compact disc included with the /1S
Resource Kit.

- Appendix B, “ASP Standards,” is an intranet standards planning guide that

provides corporate guidelines for Active Server Pages usage.

Appendix C, “Debugging Applications and Components,” discusses how to
connect to running applications, and step through the source code. The section
includes tips for making Web applications easier to debug.

Glossary of Internet-related terms used in this book.

Resource Kit Compact Disc

The IIS Resource Kit CD includes a variety of tools, components, and utilities to
help you work more efficiently with IIS and Active Server Pages. Sample
applications as well as the source code to the utilities are included that
demonstrate how to write components and IIS filters and applications. Appendix
A, “Using the IIS Resource Kit CD,” provides an overview of the tools provided
on the CD. Complete documentation for each tool is included when you install
from the CD.

Introduction xxiii

Resource Kit Support Policy

The software supplied in the Internet Information Server Resource Kit is not
officially supported. Microsoft does not guarantee the performance of the Internet
Information Server Resource Kit tools, response times for answering questions, or
bug fixes to the tools. However, we do provide several ways for customers who
purchase Internet Information Server or the Internet Information Server Resource
Kit to report bugs and receive possible fixes for their issues. You can submit
feedback on the Internet Information Server Resource Kit by sending e-mail to
Rkinput@microsoft.com. This e-mail address is only for Resource Kit-related
issues. For more general feedback on Microsoft Internet Information Server as
well as Resource Kit issues, send e-mail to Iliswish@microsoft.com.

CHAPTER 1

Internet Information Server]
| Overview

Microsoft Internet Information Server (IIS) is a file and application server for the
Internet and for private intranets. IIS 4.0 is part of the Windows NT Server 4.0
Option Pack, which includes a number of useful server technologies that can be
used in conjuction with IIS to establish a powerful Web computing platform.

This chapter provides an overview of IIS 4.0, including its major new features. It
also describes other components of the Windows NT 4.0 Option Pack, and
" discusses their integration with IIS.

In this chapter:

» What’s New in Internet Information Server 4.0
» JIS Architecture

= Resources

2 Internet Information Server Resource Kit

What’s New in Internet Information Server 4.0

. As part of the Windows NT 4.0 Option Pack, IIS 4.0 is integrated with
Windows NT as well as with a suite of Internet and intranet products. This section
discusses the new features included with IIS 4.0.

Industry-Standard Internet Protocol Services

IIS now includes support for the following industry-standard protocols.

HTTP 1.1 Support IS support for HTTP 1.1 includes the following features:

Pipelining Pipelining allows clients to send many requests before receiving a
response from the Web server, thereby providing a performance boost.

Persistent Connections (Keep-Alives) When a browser connects to a Web
server and requests a page, a connection is established with the server.
Establishing and tearing down connections is an expensive operation for the
Web server, client, and network. By using persistent connections, a client can
use a single or reduced number of connections for multiple requests.

HTTP PUT and DELETE With the PUT and DELETE directives, users can
post and delete files to and from a Web site using any HTTP 1.1 compliant
browser.

Transfer Chunk Encoding Active Server Pages (ASP) now supports the
transfer encoding header, which lets the browser know if a transformation has
been applied to the body of the page being sent.

SMTP Mail IIS now includes a Simple Mail Transfer Protocol (SMTP) mail
service that can send and receive SMTP mail messages. For example, the server
could be programmed to send a confirmation e-mail message to a customer who
submitted a registration form.

A Web server can also receive messages sent to it. For example, if an e-mail
message sent by the Web server cannot be delivered, the non-delivery receipt can
be returned to the Web server's mailbox. A Web administrator could also use the
server’s mailbox to collect customer feedback messages regarding a Web site.

Chapter 1 Internet Information Server Overview 3

NNTP Discussion Groups IIS now includes a Network News Transport Protocol
(NNTP) service with which you can host local discussion groups on a single
server. Because this feature uses the NNTP protocol, any standard news reader
client can be used to participate in these discussion groups. The IIS NNTP service
does not include support for news feeds or replication. If, for example, an
organization wanted to host an Internet news group such as comp.os.windows,
they would need to purchase a product like Microsoft Exchange Server, which
provides support for both news feeds and replication. The same solution applies if
a user wanted to replicate this discussion group across geographically distributed
sites.

RFC 1867 Support Allows programmatic control of file uploads, such as
uploading content from a browser to the Web server. Like the HTTP 1.1 PUT
directive, it provides a way to post files to a remote Web server from a Web
browser.

HTTP Redirects Allows administrators to redirect requests for files to a different
Web site, directory, or file; requests can also be redirected to applications. This
gives administrators the means to ensure that browser requests are always fulfilled
even when content has been removed or moved, or when the name of a virtual
directory has changed.

Web Application Development

IIS offers a number of new technologies to make it easier to create more robust,
scalable Web applications.

Transactional ASP Pages An ASP page and any components it calls can now be
part of a transaction managed by Microsoft Transaction Server. If any portion of
the script fails, the entire transaction is aborted. Information in multiple
distributed databases can be updated without risking the integrity of the data.

Process Isolation ASP and Internet Server API (ISAPI) applications can now run
in processes separate from the main server process. This process isolation
prevents the possibility of an error in one application affecting other applications
on a site—or the server itself. If an application crashes, it is automatically
restarted with the next request, without an administrator manually restarting the
application or the server.

Message Queuing IIS is now integrated with Microsoft Message Queue Server
(MSMQ). An ASP application can send a MSMQ message to a remote source for
deferred processing. MSMQ messages can be grouped with other transacted work
(SQL updates, other MSMQ messages, and so on). This greatly enhances a
developer’s ability to build scalable, fault tolerant applications on IIS.

4

Internet Information Server Resource Kit

Microsoft Script Debugger You can use Microsoft Script Debugger to
interactively test ASP applications written in any Active Scripting language, such
as Visual Basice Scripting Edition (VBScript) or JScript™.

IIS Admin Objects IIS Admin Objects (IISAO) are components that expose the
administration properties of IIS. Developers can use the same programming model
to create customized administration utilities that can run either from a command
line, as a Windowse application, or in a browser, as a Web application.

COM Logging Interface Developers can write Component Object Model (COM)
components that access IIS logging capabilities to provide custom logging.

Failover Clustering Support Failover clustering support in IIS provides integration
with the clustering feature of Windows NT 4.0 Enterprise Edition. Using this
failover capability, two separate Web sites can be hosted on two separate servers,
with failover support for both sites. If one server fails, the other takes over.

Updated Java Virtual Machine Provides developers with a high-performance
virtual machine for creating and running Java components on the server. It
integrates an industry-standard, scalable implementation for building and
deploying Java-based applications.

Component Load and Unload Provides Web developers with the ability to
dynamically load and unload Web application components that run out of process
without having to stop and restart the Web server. This feature also makes it
easier to develop Web applications.

Server Administration

IIS provides the following new administration features:

Multiple Web Site Support With support for HTTP 1.1 host header names, Web
site operators, per-Web-site bandwidth throttling, and enhanced HTML
administration, IIS enables organizations to host multiple departmental intranet
sites and enables ISPs to provide hosting services to multiple public Internet sites.

= Host Header Name Support Through the use of HTTP 1.1 host header
names, multiple Web sites can share the same IP address. For older browsers
that do not support host header names, IIS implements a cookie-based
solution. For browsers that do not support cookies, the IIS Resource Kit CD
offers the Cookie Munger utility, which provides cookie-like functionality for
browsers that do not support cookies.

Chapter 1 Internet Information Server Overview 5

» Web Site Operators Web site Operators are a special group that have limited
administrative privileges on individual Web sites. Operators can administer
properties that affect only their sites. They do not have access to properties
that affect ITS, the Windows NT Server-based computer hosting IIS, or the
network. An ISP that hosts sites for a number of different companies could
assign delegates from each company as the operators for each individual
company’s Web site.

= Bandwidth Throttling Organizations and ISPs running more than one site
on IIS can throttle the bandwidth available to each of the sites individually.
Throttling bandwidth on individual sites assures that bandwidth is available for
all the sites sharing the network bandwidth.

= Remote HTML-Based Administration IIS provides a Web-based
administration tool so that administrators can manage their Web sites remotely
using a standard Web browser.

= Command-Line Administration Using the Windows Scripting Host (WSH),
administrators can automate the administration tasks on the server using any
scripting language supported by Active Server Pages . For example, an
administrator can write a Microsoft Visual Basic script to create a new virtual
directory, and then with WSH, run the script file from the command line to
create a new virtual directory on the Web site. Administrators can write a
single script to target multiple Web sites, or multiple physical servers, to
provide effective grouped server administration.

Microsoft Management Console Microsoft Management Console is a new host
environment for “snap-in” administrative tools. IIS includes a snap-in to
administer IIS and a snap-in to administer Microsoft Transaction Server.

Total Content Control In earlier versions of IIS, most of the configuration
information was set on a per-server basis. With IIS version 4.0, you can set most
properties on a per-file, per-directory, or per-site basis, as well as globally for the
server. Properties set at a higher level are inherited by a lower level. For example
properties set at the site level are inherited at the directory and file level.

6

Internet Information Server Resource Kit

Security and Authentication

The Windows NT Server security model is the same across all operating system
functions. The same features available for file servers and database servers are
available to the IIS Web server. New users can be given limited access to private
network resources such as HTML pages, Web applications, shared files and
printers, corporate databases, and legacy systems on all servers, all of which can
be protected using the same user account and passwords.

Client Authentication Secure Sockets Layer (SSL) 3.0 provides a secure way to
exchange information between clients and servers. Unlike previous SSL
implementations, SSL 3.0 provides a way for the server to verify or authenticate
who the client is without the user having to log on to the server. In IIS 4.0, client
certificates are exposed to both ISAPI and Active Server Pages, so that
programmers can track users through their sites. Also, although it is not enforced,
IIS can “map” a client certificate to a Windows NT user account, so that
administrators can control access to system resources based on the client
certificate. '

Certificate Server With the integrated Certificate Server, organizations can set up
certificate authorities and issue standard X.509 digital certification to clients. This
provides a mechanism for organizations to issue industry-standard X.509
certificates and manage the authentication of users on that basis.

Domain Blocking Using IP Address and Domain Restrictions, administrators can
grant or deny access to any specific content based on the domain name of the
requester. This feature provides a way to allow only users from a specified
domain access to information on the server.

For information on IIS security issues, see Chapter 8, “Security.”

Content Management and Control

IIS 4.0 provides an assortment of tools to manage and control the content of Web
servers.

Integrated Indexing and Searching With Microsoft Index Server, IIS provides full-
text indexing of HTML, Text, Microsoft Office, Adobe PDF, and other file
formats. Using Active Server Pages, ActiveXe Data Objects, and SQL,
organizations can build custom search pages to provide users with the ability to
search for information on an IIS Web site.

Chapter 1 Internet Information Server Overview 7

Content Ratings Administrators can add rating labels to Web page headers. The
default ratings are based on the Platform for Internet Content Selection (PICS)
ratings developed by the Recreational Software Advisory Council (RSAC).
Content is rated according to levels of violence, nudity, sex, and offensive
language. Administrators can also choose a content rating system provided by
another organization.

Content Expiration Content expiration labels give administrators the ability to
control the life of the content in the browsers’ cache. Administrators can use this
feature to prevent stale or time-sensitive content from being stored for longer-
than-necessary periods on the client’s system cache.

Document Footers Administrators can include footer information in an HTML
file that can be appended to the bottom of specified documents.

Custom HTTP Headers ‘Administrators can add a custom HTTP header to a
document or group of documents. This would, for example, allow a client browser
to cache a particular page, but prevent a proxy server from caching it.

One-to-One Content Replication Provides content managers with the ability to
select an entire content tree from one server and, with a single click of a button,
propagate the content to another server.

Custom Errors Using this feature, administrators can return a custom page or run
an application when a user encounters an error. Custom errors provide
administrators with an easy-to-use interface for returning more context-sensitive
error messages from the Web server.

Microsoft Site Server Express Microsoft Site Server Express provides a subset of
the functionality available in Microsoft Site Server. Site Server provides a
comprehensive set of features and management tools for enhancing, deploying,
and managing intranet, Internet, and commerce sites. Site Server Express includes
a site analysis tool, Content Analyzer; a usage analysis tool, Usage Import and
Report Writer; and a content publishing tool, Posting Acceptor.

lIS Architecture

This section describes how the many different components of IIS work together. It
begins with an overview of 1IS as a whole, followed by discussions of its
administrative and programmability architectures.

8

Ihternet Information Server Resodrce Kit

Architecture Overview

IIS is a core product, which means that it is designed to work closely with many
other products, including the products that accompany it on the Windows NT 4.0
Option Pack. Figure 1.1 shows the relationship between IIS and other products
installed as part of the Windows NT 4.0 Option Pack.

Script Index Certificate ICS Site Server
Debugger MTS Server Server F{er Express MSMQ
Data Access
Components

IE

MMC 4.01

Windows NT 4.0

Figure 1.1 IIS architecture

The standard Internet services (FTP and Web servers) reside in a process called
Inetinfo. In addition to the Internet services, this process contains the shared
thread pool, cache, logging, and SNMP services of Internet Information Server.
File Transfer Protocol (FTP) is the protocol used to transfer files between two
computers on a network that uses Transmission Control Protocol/Internet Protocol
(TCP/IP). FTP was one of the earliest protocols used on TCP/IP-based networks
and the Internet. Although the World Wide Web has replaced most functions of
FTP, FTP is still a reliable way to copy files from a client computer to a server
over the Internet.

Internet Information Server is integrated with Microsoft Windows NT Server. IIS
uses the same directory database (user accounts) as Windows NT Server. Using
the same directory database eliminates the need for additional user account
administration. Internet Information Server administration also uses existing
Windows NT Server tools such as Performance Monitor, Event Viewer, and
Simple Network Management Protocol (SNMP) support to maintain similar
administrative procedures.

Chapter 1 Internet Information Server Overview 9

In addition, the following products are tightly integrated with IIS.

Microsoft Management Console Microsoft Management Console (MMC) provides
a framework for various network administration programs. The console hosts
programs, called “snap-ins,” which administrators use to manage their servers.
MMC provides a common framework in which various snap-ins can run, so that
administrators can manage their network products with a single integrated
interface. In addition to providing integration and commonality of administrative
tools, MMC also enables console customization; administrators can pick and
choose specific snap-ins to create management consoles that include only the
exact administrative tools they need. For IIS, MMC hosts Internet Service
Manager as a snap-in. Microsoft Transaction Server includes an MMC snap-in for
administration of its transaction packages. Future releases of Windows NT and all

. BackOfficee products, as well as third-party networking products, will include
MMC snap-ins as their administrative programs.

Microsoft Transaction Server Microsoft Transaction Server (MTS) 2.0 is a
transaction processing system for developing, deploying, and managing
distributed server applications. A transaction is an operation initiated by an
application that succeeds or fails as a whole, even if the operation involves many
steps (for example, ordering, checking inventory, and billing). Transaction
processing is crucial for distributed business applications that require accuracy,
data consistency, and security. With MTS you can work with transactions
effectively, and even package components within transactions. You can develop a
transactional application for a single user and then use simple scripting commands
to scale it for use in a production environment. MTS components are activated
when needed and deactivated when not, thereby conserving server resources and
increasing the number of users who can run your application concurrently. MTS
applications can also be run in separate memory spaces so that their operational
status will not affect other applications; this is called process isolation.

MTS defines a programming model, and provides a run-time environment and
graphical administration tool for managing enterprise applications. MTS is much
more than a transaction-management server, it is also an object manager for
distributed network objects and environments. MTS provides the following:

= Distributed transactions

= Automatic management of processes and threads

= Object instance management

= A distributed security service to control object creation and use

= A graphical interface for system administration and component rnariagement

10

Internet Information Server Resource Kit

Figure 1.2 shows the graphical interface for the MTS snap-in to the Microsoft
Management Console. The installed packages are shown; using this interface you
can add or delete packages or configure MTS as needed.

Console Root 4 , :
= Microsoft Transaction Server 4 X & 0y

Transaction Server Home Page | |5 rprocess 115 Utiities System Utilities
|@] Transaction Server Support Applications
E Computers

-8 My Computer
a0 e
#1-{23 Remote Components
-8, Trace Messages
¢ Transaction List
&) Tiansaction Statistics

Figure 1.2 Microsoft Management Console

Active Server Pages and Microsoft Script Debugger Active Server Pages (ASP) is
a server-side scripting environment that you can use to create dynamic HTML
pages or build powerful Web applications. ASP pages are files that can contain
HTML tags, text, and script commands. The script commands execute on the
server and return HTML pages to the requesting browser. ASP pages can call
ActiveX components to perform tasks, such as connecting to a database or
performing a business calculation. With ASP, you can add interactive content to
your Web pages or build entire Web applications that use HTML pages as the
interface to the user.

Microsoft Script Debugger is designed to help you quickly locate bugs and
interactively test your ASP server-side scripts. Script Debugger, which works with
Windows Internet Explorer version 3.0 or later, includes just-in-time (JIT)
debugging. When a run-time error interrupts execution of your ASP script, the
Script Debugger automatically starts, displays the .asp file with a statement
pointer pointing to the line that caused the error, and generates an error message.
With this type of debugging, your computer suspends further execution of the
program. You must correct the errors with an editing program and save your
changes before you can resume running the script.

Chapter 1 Internet Information Server Overview 11

ANGUAGE 35
<% Option Explicitc

<HTHL>
<HEAD>
<TITLE>Ad Rotator Sample</TITLE>
</HEAD>
<BODY BGCOLOR="White” topmargin="10" leftmargin="10'>

<!-- Display Header -->

<h>Ad Rotator Sample<bry>

khr gize="1" color="§000000">

2 50 s e
o L

Figure 1.3 Microsoft Script Debugger

Microsoft Index Server Index Server is the Microsoft content indexing and
searching solution for IIS. Index Server indexes the full text and properties of
documents stored on an Internet or intranet Web site. Users can formulate queries
by filling in the fields of a simple Web query form. The Web server forwards the
query form to the query engine, which finds the pertinent documents and returns
the results to the client formatted as a Web page. With Index Server, an
administrator (or any user familiar with Web documents) can create simple query
forms. Index Server indexing services can search corporate intranets as well as
sites on the Internet.

In addition to indexing Web pages in HTML format, Index Server indexes
documents formatted by applications such as Microsoft Word and Microsoft
Excel. Using this feature, you can add documents to a Web site without having to
convert them into HTML format.

Microsoft Certificate Server Microsoft Certificate Server is a general-purpose,
customizable server application for managing the issuance, revocation, and
renewal of digital certificates. Certificate Server generates certificates in standard
X.509 version 3 format. Digital certificates are used for public-key cryptography
applications such as server and client authentication under the Secure Sockets
Layer (SSL) or Private Communication Technology (PCT) protocols. With
Certificate Server, organizations can perform authentication on a corporate
intranet or across the Internet through the use of these certificates.

12

Internet Information Server Resource Kit

Internet Connection Services for Remote Access Services Microsoft Internet
Connection Services for Remote Access Services is a collection of software
applications designed to help corporations and ISPs build comprehensive Internet
access solutions, including dial-up Virtual Private Networks (VPNs). Whether
you are building an Internet service or managing a corporate network, Internet
Connection Services helps you implement a custom remote access network. With
Internet Connection Services, you can provide your subscribers or your
employees with seamless connection capabilities, a global dial-up service, and
secure connections over the Internet to a private network. With Internet
Connection Services you can also centrally manage remote access to your
network.

Site Server Express

IIS provides a number of new features that make it easier to manage content and
analyze usage on a Web server. Microsoft Site Server Express, included with IIS,
enables organizations to analyze log file data, crawl a Web site to map content
and check for broken links, and publish content from a browser to a server
running IIS.

Site Server Express offers a subset of the functionality found in Microsoft Site
Server. It includes Content Analyzer, Usage Import and Report Writer, and
Microsoft Posting Acceptor.

= Content Analyzer provides you with the Web site visualization and link-
management tools you need to view and manage your Web site. Webmasters,
content authors, and Web-server administrators can use Content Analyzer to
find broken links, analyze site structure and object properties, manage local
and remote sites, and perform a variety of other Web site management tasks.
Visualization tools include both Cyberbolic and Tree views. The Tree view
provides a linear hierarchical view of the map. The Cyberbolic view depicts
the map items in a web-like structure that emphasizes their interconnected
nature. Link management tools enable you to ensure that your site's links go
where you want, when you want.

» Usage Import and Report Writer makes it easy to collect and analyze IIS log
files from a single server. Nine pre-defined reports give you insight into the
actual requests, users, and organizations that interact with your site. By
extracting this usage information, you can identify trends and gain valuable
insights for making more informed Internet business decisions.

= Microsoft Posting Acceptor is a server add-on tool that Web content providers
can use to publish their content using HTTP POST (RFC 1867). Posting
Acceptor allows IIS and Microsoft Personal Web Server to accept Web
content from Microsoft Web Publishing Wizard and Netscape Navigator 2.02
or later through any standard HTTP connection. In conjunction with Microsoft
Content Replication System (CRS), Posting Acceptor can also distribute
content to multiple servers simultaneously.

Chapter 1 Internet Information Server Overview 13

Microsoft Message Queue Microsoft Message Queue Server (MSMQ) enables
application programs to communicate with other application programs quickly,
reliably and asynchronously by sending and receiving messages. MSMQ features
ActiveX support, security controls, administration tools, and integration with
other strategic Microsoft products such as IIS, MTS, and Certificate Server make
MSMQ the message queuing product of choice for applications running on
Windows 95 and Windows NT. MSMQ is also interoperable with other important
platforms and products via the MSMQ connector.

Microsoft Data Access Components Microsoft Data Access Components provides
programmatic access to all types of data. Data driven client/server applications
deployed over the Web or an intranet can use these components to integrate
information from a variety of sources, both relational (SQL) and non-relational.
Microsoft Data Access Components consist of ActiveX Data Objects (ADO) and
Remote Data Service (RDS), the Microsoft OLE DB Provider for ODBC, and
Open Database Connectivity (ODBC) which are released, documented, and
supported together.

ActiveX Data Objects (ADO) can help you write applications to access and
manipulate data in a database server through an OLE DB Provider. The primary
benefits of ADO are ease of use, high speed, low memory overhead, and a small
disk footprint. ADO supports key features for building client/server and Web
applications.

ADO also features the Remote Data Service (RDS), a high-performance client-
side data caching technology that brings database connectivity to Web
applications. You can use Remote Data Service to build intelligent Web
applications that let you access and update data from any OLE DB Provider,
including ODBC-compliant database management systems (DBMS). Because you
can implement RDS with familiar technology—off-the-shelf visual controls,
HTML, and Microsoft Visual Basic Scripting Edition (VBScript)—Remote Data
Service integrates seamlessly with existing Visual Basic applications, so you can
transport them to the Web.

Microsoft Data Access Components also includes Open Database Connectivity
(ODBC) and the Microsoft OLE DB Provider for ODBC. Used in conjunction
with an appropriate ODBC driver (see the list in the “Microsoft Data Access
Components Overview” section of the IS online documentation), these
components provide access to several popular database management systems,
including Microsoft SQL Server, Oracle databases, Microsoft Access, and several
other desktop databases. ‘

14

Internet Information Server Resource Kit

Administrative Architecture

IIS provides a comprehensive set of tools for managing the Web server and its
components. Administrators are able to use the tools provided by IIS to manage
the Web server or an independent Web site. In addition to these management tools
included with IIS, customers can create their own custom interfaces using the IIS
administration objects that ship with IIS.

Figure 1.4 illustrates the administrative tools provided with Internet Information
Server and how they interact with the IIS Admin Objects (IISAO).

Internet Service Internet Service Command-line Third-party
Manager (MMC) Manager (HTML) Scripts Applications
\ 4
Windows
Scripting Host

IS Admin Objects =

Metabase
Storage

IS Service

Figure 1.4 Administrative architecture

The IIS Admin Objects are programmable COM objects that an ASP script or
custom application can call to change IIS configuration values stored in the IIS
metabase. For example, file and directory access permissions used by IIS are
stored in the metabase. You can efficiently set these permissions for one or many
files and directories with a simple ASP script. The Internet Service Manager snap-
in to the MMC, the HTML-based version of Internet Service Manager, the
Windows Scripting Host, and third-party administration applications use the IIS
Admin Objects to manage IIS.

Chapter 1 Internet Information Server Overview 15

Internet Service Manager With Internet Service Manager, a snap-in for the
Microsoft Management Console, administrators can manage many Internet
Information Server sites from a single location anywhere on the Internet. IIS also
includes a browser-based version of Internet Service Manager, shown in Figure
1.5. Using Internet Service Manager (HTML), an administrator can configure IIS
from almost any computer on the Internet or on a private intranet.

: localhost
@65 Defaul FTP Site
B Default Web Site

| internet

] mana

@8 USHELP

| @@ SCRIPTS

| (@ LSADMPWD

[B cdibin

i B3 samples

i] _pivate

i B _whi bin

{2 _vtienf

{4 _vtiloq

{7 _otipwt

2% Administration Web Site
@48 ISADMIN
8- |ISHELP

| +{] images

| f] {77 isadmin

© Backup] S ishrowser

Configuration

1 Master Properties

Figure 1.5 Internet Service Manager (HTML)

Windows Scripting Host The Windows Scripting Host (WSH) is a language-
independent scripting environment for 32-bit Windows platforms. Microsoft
provides both VBScript and JScript scripting engines with the Windows Scripting
Host. Third-party companies provide ActiveX scripting engines for other
languages such as Perl.

16

Internet Information Server Resource Kit

Programmability Architecture

Web applications are maturing to become mission-critical, line-of-business
applications. Before the Web, most applications were written and executed on
stand-alone computers as single-user applications, and most shared server code
was written and executed within databases. Web applications are deployed in a
distributed, disconnected environment often running on many different servers
and accessing information from many different data stores. IIS adds the necessary
technologies to the Windows NT Server platform so that organizations can
develop and deploy reliable and scalable multiuser Web applications.

Figure 1.6 illustrates the programmability architecture of IIS and the components
described in this section.

ActiveX Components
A\ A4

ISAPI HTML Active Server Pages > VCit |
ADS! Filters Pages : — CcoMm OLE DB
ActiveX Scripting) VB ADO
Java ODBC
JDBC
A XA
OLETX
— &
Database
Admin Logging Interface ‘L
Object Apps Lo| MTS |e—>»
File /O Other ODBC Server

Windows NT 4.0

Figure 1.6 Programmability architecture

Developing Web applications involves many of the same complexities as
developing multiuser server applications. For instance, when creating a multiuser
application, developers must invest time building complex routines for managing
server process pools, thread pools, database connections, user context, and
transactions usually associated with server applications. IIS and the Windows NT
4.0 Option Pack eliminate much of this complexity by providing new server
technologies. Along with Windows NT Server 4.0, these features provide
developers with a platform for developing Web applications.

For more information on developing Web applications, see Chapter 5,
“Developing Web Applications,” and Chapter 6, “Data Access and Transactions.”

Chapter 1 Internet Information Server Overview 17

ADSI Administration Scripts Using the ADSI administration scripts and the
Windows Scripting Host, you can administer a Web site from the command line.
The IIS Resource Kit includes a set of sample scripts that you can run to perform
many of the common tasks involved in maintaining an ISP or a Web site. For
more information, see Appendix A, “Using the IIS Resource Kit CD.”

ISAPI Filters and Applications ISAPI is an API for developing extensions to the
IIS server and other HTTP servers that support the ISAPI interface. ISAPI filters
are DLLs that allow pre-processing of requests and post-processing of responses,
permitting site-specific handling of HTTP requests and responses. ISAPI
applications are DLLs that can be loaded into the same memory space occupied
by the Web service, and perform some server-side tasks as an interface between
the user and IIS. The IIS Resource Kit CD contains a number of sample ISAPI
filters and applications.

Admin Base Object The IIS Admin Base Object is a fully-distributable COM
object with methods that enable your application to manipulate IIS configuration
keys and data in the memory-resident metabase. You can use the IIS Admin Base
Object to write applications, such as server administration or Web authoring tools,
that check and update the server's configuration by manipulating keys and data in
the metabase. You can also use the IIS Admin Base Object to store your IIS-
related custom application configuration data in the metabase (with faster access)
without filling up the Windows NT system registry.

Logging By using IIS logging, you can track which users access your site and
when they access your site. Tracking users helps to identify security and
performance issues. Logging can be directed either to a log file that can be
processed offline and offers faster performance, or to an ODBC Data Source
Name (DSN) for dynamic evaluation.

IIS provides several logging features that allow customization of the logging
information from an IIS Web site: customized extended logging and resource

logging.

= Customized Extended Logging IIS supports the new industry-standard W3C
extended logging format. The W3C format is a customizable ASCII format
that provides administrators a variety of different fields (items) to record.
Administrators can gather detailed information while limiting log size by
omitting unneeded fields. These fields include about 20 different items,
including date, time, client IP address, and browser type.

= Resource Logging As with most configuration settings in IIS, logging can be
set on a per-file basis. With resource logging, the administrator can choose
which resources are logged, thus improving performance, reducing log file
size, and making it easier to interpret the log files. For example, to reduce the
log file size, the administrator could put all the image files in one directory and
choose not to log the files in that directory.

18 Internet Information Server Resource Kit

Resources

= COM Logging Interface Developers can create custom modules to log
information regarding the Web site. Each module is responsible for processing
request events and writing to a SQL Server data source or its own log file
format. IIS logging capabilities can be extended by “plugging in” additional
logging modules that developers or third-party software vendors create.

ActiveX Components Using development tools such as Visual C++®, Visual
Basic, or Java, you can develop ActiveX components that can be embedded on a
Web page, adding a higher level of interactivity to the page. ActiveX components
can be run on the server, on the client, or both. The IIS online documentation, for
example, uses an ActiveX Control called HTML Help in the left-hand frame of
the browser for its table of contents. Interfacing with OLE DB, ADO, or other
database access methods to access information stored in a Microsoft Access or
SQL Server database, you can write ActiveX components in any ActiveX-
compliant language such as Visual Basic, C++, or Java.

Active Server Pages ASP applications can add functionality to your Web pages as
well. An ASP page is an HTML page that includes server-side script. After the
server-side script on an ASP page runs, the results are returned to the client
browser in the form of a standard HTML document.

CGI "The Common Gateway Interface (CGI) specification is a widely used
method for creating executable programs that run on your Web server. Remote
users can start these executables by filling out an HTML form or by simply
requesting a URL from your server. Arguments following the question mark in the
URL are passed to the CGI application as an environment string, which is parsed
and acted upon.

The following Web sites contain further information and useful resources for IIS
and the Windows NT 4.0 Option Pack.

http://www.microsoft.com/IIS/
The IIS product Web site. Among other things, it provides developer news and
samples, and updates on Internet Information Server.

http://www.microsoft.com/intranet/
The Intranet Solutions Center is a comprehensive Web site designed to provide
everything needed to plan and build an intranet. You can download white
papers, FAQs, case studies, and free intranet solutions written by Microsoft
Solution Providers.

Chapter 1 Internet Information Server Overview 19

http://www.microsoft.com/workshop/
Microsoft’s Site Builder Network home page, a useful resource for
Webmasters and Web application developers.

http://www.microsoft.com/workshop/server/
The Active Server Pages area of the Site Builder Network.

http://www.activeserverpages.com/
A good Active Server Pages resource. The site contains ASP-related articles,
ASP FAQs, tutorials, tools, and free ASP component downloads.

http://www.microsoft.com/merchant/
Microsoft’s Internet commerce Web site, including information on Site Server,
Commerce Server, and the Microsoft Wallet.

http://mspress.microsoft.com/
The Microsoft Presse Web site. Microsoft Press publishes a number of books
and training materials about Microsoft’s products and related technologies.

21

CHAPTER 2

Managing Content 2 |

Regardless of the type of content you put on your site, knowing how to manage
the creation, staging, and deployment of that content is critical to your success.

Publishers and managers who have been given the responsibility of managing
Web site content should find this chapter especially useful. It includes guidelines
regarding the assembly of a Web team, the creation of a hand-off procedure, the
management of creative collaboration, and suggestions for choosing tools to make
the content management process more effective. A case study of Microsoft’s
Investor site is included to demonstrate how the content management strategies
presented in the chapter can be put into practice.

In this chapter:

= What Is Content Management?
= Creating Content

= Staging Content

» Deploying Content

» Case Study: investor.com

= Resources

22 Internet Information Server Resource Kit

What Is Content Management?

Content management is the administration of the overall process of taking your
Web site from its inception to its final distribution on the Internet or your intranet.
This includes tasks such as defining the vision for the site, assembling a team to
make that vision a reality, and managing creative collaboration, team
communication, and scheduling.

Internet vs. Intranet: The Most Important Differences

The most important differences between the Internet and an intranet are
bandwidth, purpose, security, and hardware.

Bandwidth Internet users typically have slow modems and require a lot of
time to download large pages. On an intranet, however, connection speeds
can be in millions of bits per second. This means that large files, high-
resolution graphics, true-color photo files, and multimedia can be supported
easily.

Purpose and security Unlike information on the Internet, intranet sites
are intended to be seen by selected users within an organization. In order to
regulate who has access to your intranet information, you can build security
into your site and network connections by using a firewall application such
as Microsoft Proxy Server. You can also include internal file management
security to ensure that sensitive information can be viewed only by selected
individuals.

Hardware and software uniformity The Internet community uses a wide
range of hardware and software. Intranet hardware and software is much
easier to regulate. You can implement corporate standards to construct an
intranet that includes one type of computer platform, one operating system,
and one Web browser. This simplifies design and testing issues because it
alleviates cross-platform and cross-browser issues.

Chapter2 Managing Content 23

The Content Life Cycle

There are processes for all business endeavors. In print publications, information
is created, edited, and then printed. In manufacturing, an item is engineered,
tested, and fabricated. In the case of a Web site, content must be created, staged,
and deployed. The following graphic illustrates that this process, referred to as the
content life cycle, is continual and ongoing because your Web site content is
dynamic.

Deploy

The content life cycle involves three main phases:

Creation encompasses all elements of your Web pages, including text, graphics,
and sound.

Staging refers to the phase in which you test and refine your site to ensure that it
appears and functions as you intended.

Deployment consists of making your site available to visitors, ensuring that they
can find it, and monitoring how it is used.

What Makes a Weh Page Successful?

Most successful Web pages include design features that enable malleability,
extensibility, dynamic content, and interactivity.

~ Malleability In print media, once a page is printed, the content is static. In order
to change that content, you must print a new version. With a Web site, you can
create or alter content and publish it whenever you want. Depending on the goals
of your site, you may choose to update the content of your site monthly, weekly,
or even daily. You can also update different parts of your site on different
schedules.

24

Internet Information Server Resource Kit

Extensibility A good Web site is also extensible, so that you can add and delete
new pages and features with ease. If the entire architecture of your site is fluid,
you can change it at any time to include new technologies and new features.

Dynamic content and interactivity Web content can be both dynamic and
interactive. Dynamic content, such as a stock ticker tape, can change constantly.
Interactive content allows the visitor to compete in online contests, order
products, or chat with others visiting the site.

Elements of a Web Page

A typical Web page contains elements that can be divided into two groups: 1)
those that provide information; and 2) those that provide functionality. To provide
information to your readers you can use a combination of HTML tags, text,
graphics, and multimedia. To provide functionality (in other words, dynamic
content), you can use scripting and ActiveX components.

Active Server Pages (ASP) applications, cascading style sheets, dynamic HTML,
and channels are new technologies that blur the distinction between these two
categories in that you have greater control over the format and functionality of
your Web pages with them than with HTML alone.

Note Although all Web browsers support HTML, they do not all currently
support the Web page elements described here, nor do they implement these
elements in the same way. Microsoft Internet Explorer, version 4.0 and later,
supports all of these features.

Chapter2 Managing Content 25

Following is a picture of a typical Web page with callouts for several elements,
and brief descriptions.

Text

% Adventice\iiks Tiial Stoie- Microsoft intervier Explores

. Exploration Air &
. AdventureWorks
* Trial Store

GIF —FExplo?ﬁ:m

graphic

hyperlink
Important: This part of the Exploration Air site is still under construction. At
N _ present you cannot buy merchandise but we welcome your feedback on the
JPEG —, = Iayout of the site as well as comments about our range of merchandise as we
graphic

Petzl Spirit Venus Black Diamond Body

cssmpps R D550,

hyperlink

Figure 2.1 The Exploration Air sample site showing common Web page elements.

Hypertext Markup Language (HTML)

HTML is a formatting language used to create Web pages. It consists of tags, or
formatting commands, that are set apart from the page content by the less-than
and greater-than symbols (< >). These tags tell the client’s browser how to render
the page’s content. They control formatting of text, images, and other page
elements.

Text

HTML allows a variety of fonts and styles to be displayed. Just like a printed
page, a Web page can have various formatting, including different fonts, text
colors, font weights and attributes, spacing, columns, and more. Tables and
frames allow even further text-formatting features.

26

Internet Information Server Resource Kit

Graphics

There are many types of graphic files, but the most common are GIF and JPEG.
The GIF image format is typically used for line drawings or diagrams. The JPEG
image format is typically used for photographs.

Hyperlinks

Hyperlinks are text or graphics that, when clicked on, take a visitor from one page
to another on your site, and to other sites.

Multimedia

Multimedia can provide your visitors with a rich and memorable journey through
your site. You can provide streaming audio-video by using products such as
Microsoft NetShow™ to convey content that words alone may not. For example,
you can advertise new products or services on the Internet, or train employees
over an intranet. The “Getting Started” section of the online documentation for
Internet Information Server provides good examples of streaming multimedia.

Scripts

Scripts are small pieces of programming code written into your Web page that add
functionality. They can be written in languages such as JScript or VBScript, and
can be run on the server or the visitor’s browser. Scripts written for the browser
are browser-specific. For example, the Netscape browser object model differs
from the one for Internet Explorer 4.0.

Active Server Pages (ASP) Applications

Active Server Pages applications are basically HTML pages with scripts enclosed
by ASP delimiters (<% and %>). These special delimiters tell the server that these
scripts are to be run on the server; they are not even displayed on the client’s
computer. After the scripts are run and the operations have been accomplished,
the server returns the results to the client in the form of an ordinary HTML
document.

ASP applications can be used to send dynamic content to a visitor of your Web
site regardless of the browser that is used. ASP can perform a variety of tasks such
as interfacing with a database and returning the data to the client. Forms can be
incorporated into the page to allow the user to access information or functionality
on the server. For more information, see Chapter 5, “Developing Web
Applications.”

Chapter 2 Managing Content 27

ActiveX Components

ActiveX technology can also add functionality to your site. ActiveX components
are self-sufficient and self-contained. They can be run on the server, on the client
or on both. Components have been made available that can perform almost any
task, from showing an AVI movie in a Web page to setting up a Web-distributed
interactive schedule and calendar. Components can be written in any ActiveX-
compliant language such as Visual Basic. You can create components for specific
tasks and export them over the Web.

Cascading Style Sheets _

This standard give you the ability to control the look of your entire site, or
sections of it, by using a single page of HTML called a style sheet. Style sheets
define the function of the various HTML tags in your Web pages. For example,
you can define all of the <H1> tags to format text as Arial 18-point italic, bold
font. By placing these definitions in one place and calling or invoking them in
each Web page, you can achieve a consistent look for your entire site without
having to define and redefine each Web page separately. When you want to
change the look of your site, all you have to do is alter the style sheet, and the
changes apply to your entire site.

Dynamic HTML (DHTML)

DHTML is a new technology that builds upon cascading style-sheets so that you
can use scripts to control every aspect of HTML tags and their content. With
scripts, you can precisely control the layout, appearance, and function of your
page. Whereas cascading style sheets are used to define format statically, dynamic
HTML can be used to define format dynamically. You can add interactivity,
dynamic content, dynamic styles, special-effect transitions between pages, and
have graphics or text sections that appear to fade in and out, all without further
requests to the server. You can also import custom fonts to the client so that your
pages appear exactly as you intended.

Channel Definition Format

Channels are a new technology that allow you to inform regular visitors that the
content of your site has been updated. Users who “subscribe” can display pieces
of their favorite Web sites on their desktops and choose to have them updated
automatically, or manually. Once the content is loaded, they can browse those
portions of the site without maintaining an Internet connection.

28

Internet Information Server Resource Kit

Creating Content

Successful Web sites are the outcome of collaboration and careful planning. In
order to plan and manage your site’s content, you need to begin by assembling the
right team.

Choosing the Right Team

The members of your Web team must be more than just experts in their fields.
They must also understand how their contribution fits into the overall vision for
your site.

The following is a list of the staff you might need, and some of the qualifications
you might want to look for when hiring team members. Depending on your plans
and situation, you may create a team that differs from the one listed below—what
follows are simply guidelines.

Producer

For small projects, the producer is usually the driving force behind the look, feel,
and functionality of the site. He or she guides how the content will be arranged,
how the graphics will look, and how the scripts interact with content and media.
For larger projects there may be more than one producer: one for multimedia,
another for scripting, and so on. In this case, each producer would specialize in
one area of expertise and be responsible for managing specific tasks.

There is no definitive job description for a producer—it will vary depending upon
the size and tone of your site. In general, however, the producer should be able to
focus on the “how” (implementation) while you concentrate upon the “what”
(content) of your site. This person should have knowledge and experience in one
or more of the following areas:

= Web site structure and design, including server configuration, scheduling,
versioning, and testing procedures. It would also be desirable for the producer
to be familiar with scripting, as well as server administration.

Chapter2 Managing Content 29

= Knowledge of and experience in the management of Web page content and
layout.

» Ability to manage people in a fast-paced environment.

= Knowledge of release strategies and workflow models, and the ability to
determine what sort of plan is appropriate for a given project.

Editor

The editor helps to set and maintain the site’s style and integrity, is responsible for
the correctness and flow of the text, and sometimes the multimedia content of
your site. Determining and enforcing the schedule is also part of an editor’s
responsibilities. The following qualifications are desirable:

= Attention to detail: The editor is last in the chain of correctness.

= Understanding of the site’s tone, and ability to guide writers and multimedia
staff toward it. '

= Understanding of hand-off procedures.
» Working knowledge of trademark and copyright laws.
= Skill in solving scheduling problems.

Writer

‘Writers must be concerned with technical accuracy and adherence to stylistic
standards, proper word usage, spelling, and grammar. You may want the writer to
have HTML experience, but this is not always necessary due to the availability of
HTML authoring tools such as Microsoft FrontPagee.

Of all the staff you will need, the writers are the ones most likely to be available
from other departments in your company. You may even be able to “borrow” a
writer who could produce special versions of their “for print” work to be put up
on the site.

Scripter

The scripter will develop and debug scripts, ActiveX components, and other
interactive Web elements, and should have the following programming-related
skills:

= Working knowledge of HTML, ASP scripting, JScript (or JavaScript), and
VBScript.
= Ability to determine schedule information relevant to programming.

= Knowledge of how to develop, debug, and streamline scripts and Web
applications.

30

Internet Information Server Resource Kit

= Familiarity with programmatic issues of Web site directory structure.
= Knowledge of issues involved in determining the best level of interactivity.

= Ability to write browser sniffers to determine how to present the content to
various browser types.

= Familiarity with ActiveX Controls, programs that run on browser to add
interactivity or multimedia.

If you are gearing up for the latest technology, you’ll want a scripter with
knowledge of dynamic HTML, XML (extensible HTML), and Channel Definition
Format. Knowledge of IIS is a plus.

Graphic Artist

The graphic artist may not only create the graphic files for your site, but may also
need to create sound and movie files. When hiring a graphic artist, it is important
to find someone who is aware of the distinction between creating graphics for
print and for the Web. A good Web artist will know how to make great-looking
art that takes up little bandwidth. The following skills are desirable:

» Intimate knowledge of high-level graphics platforms.

= Artistic ability—knowing what looks great on a Web page.

= Knowledge of how to balance appearance and bandwidth considerations.

= Experience developing and testing cascading style sheets.

Note Bandwidth is defined as the amount of data per second that can be
transferred from one computer to another. This can be either over a local area
network (LAN), a wide area network (WAN), or over the Internet. Bandwidth is
important to consider because it is a measurement of how long your visitors will
have to wait for your Web pages to load.

Hardware Technician

You may want to consider hiring a hardware technician, especially if you have
multiple servers. This person would set up, configure, test, operate, and maintain
your computers, printers, and other machinery necessary to run and maintain your
site. For smaller sites, these tasks may also be performed by the producer. A
hardware technician should have a strong knowledge of:

» Computer hardware repair, configuration, and troubleshooting.

= MS-DOSe, Windows 95, Windows NT, and other operating systems, as well
as server administration.

Chapter2 Managing Content 31

= Internet and intranet networking and connection technologies, such as TCP/IP,
routing, and firewalls.

= Network security and system backup procedures.

The hardware technician should also be proficient in the mechanical and
electronic repair of computer and other electronic equipment.

Testing Technician

If you have a large or complex site, you may also want to hire a testing technician,
or in some cases, a testing team. For smaller sites the producer and hardware
technician can fill this role. The tester will have many skills in common with the
scripter and the hardware technician, including knowledge of the following:

= Testing strategies, programs, and technologies.
= Computer hardware repair, configuration, and troubleshooting.

= MS-DOS, Windows 95, Windows NT, other operating systems, and Internet
Information Server.

= Internet and intranet networking and connection technologies, including
clustering.

» HTML, ASP scripting, JScript (or JavaScript), VBScript, OCX controls, and
the latest Internet technologies. '

» Good knowledge of network security and system backup procedures.

Hand-off Procedure

Once you have assembled your Web team, it is important to establish a hand-off
procedure for site-related tasks. By deciding who handles each task and how each
part of the project is passed from one team member to the next, you ensure
repeatable success, consistent quality, and a reduction in the impact of personnel

“turnover. For an example of a successful hand-off procedure, see the case study at
the end of this chapter.

Tools for Creative Collaboration

Microsoft has several tools that can help you manage the collaborative efforts of
your team. This topic discusses tools for versioning, group communication,
remote authoring, HTML editing, and overall site management.

32 Internet Information Server Resource Kit

Versioning

As content for your site is being created and edited, you need to be able to track
changes that occur in files, when they were made, and who made them. It is
important to ensure that only one person can work on a file at a given time, and
that corrections by each team member are made to only one version of a file.
Consider using Microsoft Visual SourceSafe™ for versioning.

Visual SourceSafe

A typical Web site can be organized as a main directory, with a starting page,
supporting pages, and subdirectories stored in a directory tree on the Web server.
Copy and paste this folder structure into the Visual SourceSafe Explorer and then
add your Web files to the SourceSafe project tree. The following figure shows an
actual screen from Visual SourceSafe Explorer, showing the database used by the
Visual SourceSafe Web team.

C-}EEQ Documents
=3 External Web

SCH1049B.GIF 711/95 9:50a
4 SCH1049B.ZIP 7/11/95 9:50a
SCH1043C.GIF 7/19/95 12:10a
a SCHECKIT HTM 7711/95 9502

24 Talk to us!

{233 Technical Papers Presentatio SOTHER.HTM Stevenj 12/21/95 1:44p

(7] Visual SourceSafe Utiities @ SourceSafe Intro.fir 12/15/95 4:33p

CT} Internal Web B SourceSafe Intro.hdr 12/19/95 6:50a

{1 MSDN SourceSafe Intro.him 11/07/95 11:24a

@" WinHelp SVERSION.HTHM 7/20/95 12:00a
i ans

Top Tenhtm 7711795 9:50a

Figure 2.2 Visual SourceSafe Explorer showing Web site directory structure.

Under External Web (which represents the main URL root directory) is a
SourceSafe sub-project called “Introducing Microsoft Visual SourceSafe.” This
subproject contains overview information about Visual SourceSafe: white papers,
descriptions of version control advantages, and other materials. As the screen
illustration shows, one file—SOTHER.HTM—is currently checked out by a user
named Stevenj. When Stevenj clicked “Check Out” for this file, a copy was made
in his local working directory on his computer. He is now editing this file locally.
When he completes his changes, he will check the file back into Visual
SourceSafe, thus making the revised file available to the rest of the team.

Chapter2 Managing Content 33

Visual SourceSafe allows you to share files between projects. For instance, the
file “SWHITE.htm” is used on both the External and Internal Web sites. In both
cases, the file exists in subdirectories called Techinfo. In Visual SourceSafe, the
file is shared between the “Techinfo” subprojects under both the “External Web”
and “Internal Web” projects. Visual SourceSafe stores only one copy of the file
internally—so whenever a change is made to this file in either project, that change
is automatically reflected in the other project as well. The benefit is that the
SourceSafe developers, in general, do not have to worry about multiple Web sites.
They can change a file once, and know that the change will propagate to both
Web sites if it should, and will affect only one Web site if the file is used only
once—automatically.

Visual SourceSafe 5.0 includes a feature to check your hyperlinks, to give you an
easy way to test for broken hyperlinks before you publish your content to the
server. The Check Hyperlinks feature works against your working directory or the
shared project on the server, providing you with a concise report outlining any
internal broken hyperlinks.

Visual SourceSafe 5.0 gives you a way to publish your updated content to a test
server, or a live Web server, by using the Deploy command. The Deploy
command is capable of working across corporate proxy servers (firewalls), such
as Microsoft Proxy Server, or deploying Web content to several different Web
servers at once. The Visual SourceSafe administrator configures the Deploy path
and other related variables from the Visual SourceSafe Administrator program.
Inside the Administrator program, you can tag a Visual SourceSafe project as
representing a Web site. Once this association has been established, your
administrator can set other options that apply to the target Web server directory,
proxy server settings, and so on. After the appropriate settings have been
established, authorized users can publish content with the click of a button from
within Visual SourceSafe.

The Shadow Directory feature in Visual SourceSafe is often used to publish
content to an internal staging or test server. Once set by the Visual SourceSafe
administrator, a shadow directory is a central directory on a server that always
echoes the contents of a project. Whenever a developer updates a file in a Visual
SourceSafe project, that file is automatically copied out to the shadow directory.

34

Internet Information Server Resource Kit

Group Communication

Throughout your project, it is essential that all the team members be in constant
communication. Microsoft Outlook™ is a premier communication platform that
can be used to keep your team informed. It may not be practical or even possible
to have regular meetings, so e-mail or group Web pages are communication
options to consider. With IIS and FrontPage you can easily and effectively build
Web pages that can be used to broadcast information to your team regardless of
their location.

Remote Authoring

In today’s world, with the speed of Internet connections and computers rising
almost daily, the definition of “team” is also changing. Before the advent of e-
mail, the Internet, and the tools to administer them, the thought of having authors
on your team who lived and worked on the other side of the globe was untenable.
Now, you can have a writer who works for your Los Angeles—based magazine
from home in New York. You can have a multimedia expert in New Zealand
creating graphics or a scripter working from a laptop computer in Glacier National
Park.

The promise of remote team members using Posting Acceptor, which comes with
the Windows NT 4.0 Option Pack, adds flexibility to the way businesses can
operate. Posting Acceptor is a feature that you install and configure on your server
that allows remote authors to directly contribute to your site. They can create and
edit Web pages and post them directly on your Web site using the HTTP Post
protocol. Using the ActiveX Upload control, contributors can use drag-and-drop
to move files to your Web server. This way, your production team does not have
to convert text files into HTML files—the remote author can send HTML files
directly to your server. Security options can be set so that a password is required
before information can be posted.

HTML Editors

Much of the work involved with creating and editing Web content involves
working with HTML tags. This task can be made much easier by using an HTML
editor with a variety of features that can make the writing and editing process
much easier. Microsoft FrontPage is a tool that has features every team member
can use to speed production and minimize incompatibility. It utilizes a
WYSIWYG (“what you see is what you get”) editor as well as a full-featured
HTML editor. FrontPage Server Extensions in IIS make it possible to integrate
FrontPage documents with your site.

Chapter2 Managing Content 35

Overall Site Management: Content Analyzer

Content Analyzer provides comprehensive site visualization, content analysis,
link management, and reporting capabilities for managing Web sites. Web
administrators, content authors, and Web server administrators can use Content
Analyzer to find broken links, analyze site structure and object properties, manage
local and remote sites, and perform a variety of other Web site management tasks.

At the heart of the Content Analyzer reporting capability is the WebMap, a
compact information base that represents the content and structure of a Web site
and includes a wealth of helpful information about the site’s resources. WebMaps
show your entire Web site in an easy-to-understand, visual format. A WebMap
includes graphical representations of the resources in your site, such as HTML
pages and graphic images; audio, video, and program files; Word files; and
Internet services, such as FTP.

You can choose to see either the Tree view of the map or the Cyberbolic view, or
both. The Tree view provides a linear, hierarchical view of the map. The
Cyberbolic view depicts the map items in a Web-like structure that emphasizes
their interconnected nature. As you work more with the program, you will
discover which view you prefer, and you can switch back and forth as you
perform different tasks or work with different maps.

As you work on your Web site—editing HTML files, moving files, and so on—
hyperlinks can break. Using Content Analyzer, you can quickly find the broken
links in your site and restart the applications you need in order to edit the source
files.

Content Analyzer also helps you keep track of changes made to your site. You can
remap your site after each major revision, and, depending on the remap options
you choose, can retain any annotations from the old map, review a new set of
HTML site reports, and see which areas of the site are new, “orphaned,” or
changed. Comparing different versions of your site can be especially useful if you
want to track the various stages of your site’s development.

Content Analyzer can be used as a unifying hub for all the applications you need
to create and modify. You can configure as many as nine helper applications for
each resource type. If you need to make changes to a page or other object, simply
select the object in the map and launch your chosen application to edit the source
file. Using Content Analyzer in conjunction with helper applications seamlessly
integrates all the desktop tools you use to maintain your Web site.

36 Internet Information Server Resource Kit

Staging Content

Testing

Once the content for your site is created, you need to stage it in preparation for
deployment to the Internet or your intranet.

Staging consists of two parts: testing and refinement. Testing involves running
your site under various circumstances to ensure that it performs properly.
Refinement involves solving any problems found during the testing phase, and
can also prepare the site for subsequent rounds of testing.

If there are problems with your site, it’s important to identify them during testing.
There are two basic types of testing: appearance testing and performance testing.

Appearance Testing

Appearance testing involves making sure that your site will look as intended on
different types of computers, processors, monitors, and different versions of
popular browsers. Different browser types and versions will have various page
element compatibilites. Some will not run graphics or ActiveX Controls.
Consequently, it is necessary to test your page on browser types and versions on
which you think your site will be rendered.

To test appearance, have remote testing partners access the site using different
browsers and hardware. For example, have one tester use a PC compatible
computer using Internet Explorer version 3.0, another using 3.02, and still another
using 4.0. Other testers could test with other popular graphical and text-based
browsers.

Chapter 2 Managing Content 37

Performance Testing

Performance testing is the process of ensuring that your site performs as you
intend it to and that it can handle the expected request load.

Establishing Criteria

It is important to establish performance criteria for your site in order to ensure
reliability and consistent quality. A few issues to consider:

= Estimate the amount of traffic your site will experience daily. Consider the
number of simultaneous users, requests per second, requests per day, and total
data requested and downloaded in megabytes.

= Try to determine any periods of usage “spikes” that might take place, such as
after a new feature is added or after a new advertising campaign. These spikes
will have to be handled by your server and connection.

= Establish an acceptable failure rate for your site. The failure rate is the number
of requests that are not answered or completed per total requests. IIS and
Windows NT have built-in performance counters for this purpose.

= Establish which operating systems and browsers you are willing to support.
Browsers may request and receive data in various ways and this will affect
your server.

= Monitor your site from the very start. Information about usage is invaluable in
re-engineering your site and content, and can tell you where any bottlenecks
might be and help you to balance hardware, software, and network bandwidth.

= Test your site rigorously; test it to the point of failure—know how much your
site can take, and push it to the limit. If real usage outpaces testing, then your
testing procedure needs to be scaled up. ‘

WCAT: Web Capacity Analysis Tool

The Microsoft Web Capacity Analysis Tool (WCAT) tests monitor the response
of an Internet or intranet server to the demands of its clients in a controlled
experimental setting. WCAT is included on the IIS Resource Kit CD. WCAT tests
your server by running simulated workloads on client-server configurations.
Using WCAT, you can test how your Internet Information Server and network
configuration respond to a variety of different client requests for content, data, or
(HTML) pages. The results of these tests can be used to determine the optimal
server and network configuration for your computer running Microsoft

Windows NT Server version 4.0 with Microsoft Internet Information Server (IIS)
version 4.0. WCAT is specially designed to evaluate how Internet servers running
Windows NT Server and Internet Information Server respond to various client
workload simulations.

38

Internet Information Server Resource Kit

You can test different server and network configurations by using the prepared
WCAT content and workload simulations. When you change your hardware and
software configuration and repeat the prepared tests, you can identify how the
new configuration affects server response to the simulated client workload. You
can use WCAT to test servers with single or multiple processors and to test
servers that are connected to multiple networks. The Web Capacity Analysis Tool
provides the following features:

= Prepared, ready-to-run workload simulations to test the most common aspects
of server performance. These simulations provide World Wide Web content
files of varying sizes to test your server’s response to different workloads.

= Prepared workload simulations to test the response of your server to Active
Server Pages (ASP), Internet Server Application Programming Interface
(ISAPI) extensions, and Common Gateway Interface (CGI) applications. You
can run these simulations even if your server does not currently run any ISAPI
extensions or CGI applications.

» Prepared workload simulations to test the response of your server to Secure
Sockets Layer encryption.

» Prepared workload simulations to test the response of your Hypertext
Transport Protocol (HTTP) service to HTTP Keep-Alives. HTTP Keep-Alives
are an optimizing feature of servers and browsers; an HTTP Keep-Alive
maintains a client connection after the initial request is satisfied. HTTP Keep-
Alives are part of the HTTP version 1.1 specification.

= The ability to create and run your own client-server workload simulations.

= The ability to use cookies, a technology supported by some Web sites. Cookies
are a means by which, under the HTTP protocol, a server or script can
maintain state information on the client workstation. Cookies are usually used
to provide Web site customization features.

» The ability to test servers connected to more than one network.

A WCAT test includes four primary components: a server, a client, a controller,
and the network. During a WCAT test, each of these components runs a different
WCAT program.

The WCAT server is a computer configured with Windows NT Server and Internet
Information Server. The WCAT server uses prepared sample content files of
varying lengths that simulate those that a server might provide its clients. A
particular set of prepared content files is associated with a particular WCAT test.
In a WCAT test, the server responds to requests for connections; establishes,
manages, and terminates connections; receives requests for Web content; and
processes client requests and sends responses.

Chapter2 Managing Content 39

You can investigate server performance by subjecting the server to a wide variety
of client demands by varying which prepared test is run. Alternatively, you can
test the effectiveness of changes to server hardware and software by repeatedly
running the same prepared test after hardware and software changes are made.

The WCAT client consists of one or more computers running the WCAT client
application. The prepared tests provided with WCAT are configured to run with
one client computer.

The WCAT client application runs in a single, multithreaded process. Each thread
in the process represents a virtual client. Each virtual client simulates one
connection and page request to the WCAT server. This design enables each client
computer to simulate more than one client. In a WCAT test, you specify what
level of client demand the server is subject to, including the number of client
browsers in the test; the size and type of pages the clients request; the rate at
which clients send requests; the relative frequency at which different specific
pages are requested; the duration of the test.

The WCAT controller is a computer running the WCAT controller application.
The controller is provided to minimize the effect of test administration on test
results; it does so by separating the computer administering the test from the
computers being tested. The controller hardware and software are not monitored
as part of a WCAT test. Once the test is complete, the controller application
collects the test results and writes output files showing the test results.

The input files provide complete instructions for a WCAT test and are stored on
and interpreted by the controller computer. You can either run WCAT with the
controller input files provided with WCAT or design your own tests by creating
new or modified input files.

During a test, WCAT collects statistics on the activity of the clients and the
response of the server and produces detailed reports for later analysis. The
statistics are collected by the WCAT controller in the output files. The controller
writes the output files based on data gathered by the controller and clients. WCAT
produces two types of output files:

= A log file, which includes reports and analysis of the statistical data gathered
during the test. The log file is a comma-separated, variable-length file
designed for use as input for a spreadsheet or data processing program. You
can also use any text editor or word processor to view and edit the log file.

= A performance results file, which presents the data collected from Performance
Monitor counters on the server computer during the test.

WCAT version 4.13 is included on thé IIS Resource Kit CD.

40

Internet Information Server Resource Kit

Testing Your Site in Stages

In establishing your testing strategy, it is advisable to follow an approach that has
been used successfully in the software industry. You can release your site for
testing to increasingly large groups. For example, if you want to test an Internet
Web site, release it in the following stages:

= Internally
= Externally, to a specific testing group
= To alarger testing group

= To the whole Internet community

During these release stages you can continue to test appearance and performance.
The initial internal release can be done throughout the creation and staging
process. If you have a company intranet available, release your site there as you
develop it. Viewers on the intranet can review your site, offer feedback, and
participate in performance testing. You may even want to release your site to the
Internet without advertising its location publicly—Ilet your testing group know
where the site can be found, but do not register it with search engines or other
services. This way your testing group can try out the site under realistic
conditions.

Budget and Audience

The budget needs of the testing process are usually driven by one consideration—
the breadth of your target audience. Although you cannot determine who will visit
your Web site, the technology choices you make will have an effect on who stays
there. For example, if your site uses graphics for navigation or some other
necessary feature, those without graphics-capable browsers will not be able to use
your site. On the other hand, if you are too technologically conservative, you will
lose audience members who want to see the latest Web features.

Chapter2 Managing Content 41

Deploying Content

Deployment involves publishing your site on the Internet or your corporate
intranet. During this phase you should make a backup copy of your site, propagate
your site to the Internet, register it with search engines and other services,
advertise it, and keep your site up-to-date. Below are a few suggestions for
managing the deployment phase of your project.

Choosing a Release Strategy

One of the things you must decide upon during the deployment phase is what type
of release strategy to use. Here are two options:

Progressive Release

In this strategy, the entire site is released in progressive stages in which the
complexity and size of the site increase with time. One advantage of this strategy
is that you can use the lessons that you may have learned in the early releases in
subsequent stages. The other advantage to this approach is that you can break up
the final deadline date into smaller milestones.

Complete Release

In this strategy, you release your entire site when it is finished and complete. By
this time, it is likely to be complex, so thorough staging is critical. Keep in mind
too that this release strategy does not allow you to “learn as you go,” so you will
have to plan your site very carefully and have an exacting hand-off procedure.

42

Internet Information Server Resource Kit

Backing Up Your Site

The only thing worse than discovering that your server has crashed, is finding out
that there is no current backup copy of your site.

There are several common ways to make backups.

Automated backups With some versioning tools, such as Visual SourceSafe,
you can shadow your files to another computer, thus providing an automatic
backup. As files are added and changed in your VSS directory, the changes are
automatically propagated to the shadow directory.

You can also use Microsoft Content Replication System to set up automated
replications of your site to another computer or computers.

Manual backups To back up your files manually, you can copy them, along
with your IIS metabase, to a stable medium such as a removable hard disk or a
read/write CD-ROM disk. If your server or source computer is on a network, you
can drag-and-drop copies of your files to another computer by using Windows
Explorer.

Deploying Content

Before you can go online with your site you must obtain an Internet connection,
or in the case of a corporate intranet, you must establish a network and start IIS.

Your producer and hardware technician will know more about what type of
connection you need and how much bandwidth you’ll require. For more
information on connection types and speeds, see Chapter 3, “Capacity Planning.”

When you are ready to put your site online, there are two strategies possible: 1)
connecting directly to the Internet; or 2) collocation through an Internet service
provider (ISP) (this means that your server is located, or collocated, at the service
provider’s facility).

Connecting Directly This requires that you function as your own Internet
service provider. This strategy is most appropriate for large sites that require a
direct connection to the Internet backbone where high connection speeds can be
achieved.

Connecting Through an ISP This involves hooking your server up at an
Internet service provider. With collocation you can simplify administration, but
you are also limited to a maximum of three T1 connections. This may not be
suitable for large sites or those that anticipate a great deal of traffic.

Chapter 2 Managing Content 43

Publicizing Your Site

There are three main ways that users can learn about the location of your site:
Word of mouth Internet users often e-mail their favorite URLS to other users.

Advertisements You can advertise your site through print media, television,
radio, or even over the Internet itself. Many sites include rectangular banners—
usually at the top of the page—that rotate between different advertisements. These
ads include clickable links to the advertised sites.

Search engines Register with several of these to ensure that your site’s URL
will be returned when an Internet user searches for topics or keywords.

Monitoring Your Site

You can use Usage Import and the Report Writer (which comes with the
Windows NT 4.0 Option Pack) to collect and analyze IIS log files from a single
server. This feature provides 21 predefined reports that can give you insight into
the users and organizations that interact with your site. You can also create

. customized reports to manipulate usage data in ways that best fit your needs. By
extracting this usage information, you can identify trends in your viewer-market
and make informed Internet business decisions.

Case Study: investor.com

Microsoft Investor has the attributes of a successful site as described in this
chapter—it is malleable in that it includes content that is updated at various times
(weekly, daily, and multiple times a day); it is extensible in that it is constantly
being adapted to reflect changes in technology, team views, and reader feedback;
it incorporates dynamic and interactive content including a chat-room, a stock
ticker, and applications for tracking and analyzing stocks. Of particular interest to
content managers is the fact that beneath this complex site lies a fairly simple
content-management process.

Note As with all online projects, the Investor team is constantly looking for ways
to improve and further automate their processes and procedures. This case study
applies to the content-management practices for versions 3 and 4 of the site.

Internet Information Server Resource Kit

ZX Microsoft Investor Version 4.0 - Microsoft Internet E xplorer

h Certral reestment Finde o Trading Help

Tuesdy, Novewder 4, 1997
Dow: ¥+14.74 s&p: T+1.770 MaspaQ: £ +1.170

Sign up here for your FREE oy ih triat of tor's subscription
features!

Jubak's Journal
Earnings and Asian Tigers and bears, oh my! Everyone’s jumpy when the
market is unstable -- but such times can unmask ogres and princes, as a
comparison of Dell and Compag reveals.

Don’t Pay the Price of Panic

October’s mini-crash taught a lesson about mutual-fund risk.
Some managers, like those at Bridgeway Ultra Small Company Fund, made out
like bandits on the rebound.

" New Profits From the Millennium Bug
“ ; Subscription @g{mm This time, the hype is real: There's still time to invest in companies with
i - solutions for computers' super-expensive Year 2000 problem. But be ready for
a quick exit.

Figure 2.3 The Investor home page as it appears in Internet Explorer 4.0, in full
screen view. The stock ticker at the bottom of the window offers continual stock
quotes and news items.

Overview of Features

Microsoft Investor has approximately 750,000 different visitors each month, and
Barron’s recently referred to it as “the best all-round site for investors on the Web
today.” The site offers the following features:

Portfolio Manager An interactive application that allows you to build and
maintain an online investment portfolio. This application can chart and track
investments, set up alert messages that will notify you when a stock reaches a
certain price, customize how your investments are displayed and analyzed, and
much more.

Market Update Includes up-to-date summaries of what is happening in the
market today. This feature provides a bird’s-eye view of the total market with
links to individual articles and stock analyses in the Research Central section.

Chapter2 Managing Content 45

Articles Provides access to regularly-updated columns, including weekly
interviews with leaders in the field. Each article offers an in-depth analysis of a
specific aspect of the market.

Research Central Has interactive applications for charting investment changes,
such as price and value, up-to-date market summaries, stock quotes, and analyses
of the S&P 500, Dow Jones, and NASDAQ, and much more.

Investment Finder A search engine that you can use to find information about
more than 8,000 stocks and bonds.

Discussion Here you can share trading tips and advice with other investors. This
section includes discussion groups centered around specific investments and
investment types as well as a chat room where you can engage in online
conversations.

Trading Here you can sign up and trade online with an investment broker.

Help An extensive online Help system that includes a text-based list of topics,
frequently asked questions (FAQ), a brief tour of the site and its features, a
glossary of investment terms, a summary of membership services, a graphical site
map with links to each page, a systematic product-support guide with a link to
online product support, a page where readers can send in their suggestions, and an
overview of the Investor team.

This site offers two levels of features. Subscribers who pay a monthly fee have
access to the entire site, including features marked with a gold star. Non-paying
visitors do not have access to these subscription features.

Note Investor is optimized for Internet Explorer version 3.0 and later. Some
features of the site, such as the stock ticker at the bottom of the home page, may
not be available with other browsers.

To create this site, the Investor team uses various combinations of the Web page
elements discussed in this chapter. The articles combine text, GIF, and JPEG
image files, as well as hyperlinks. The interactive applications, including the stock
ticker, are ActiveX components. These applications—when viewed in browsers
other than Internet Explorer—are ASP applications that use HTML forms to
interact with users. The navigation controls consist of scripts running in an HTML

page.

46

Internet Information Server Resource Kit

Team Overview

Investor currently has 39 full-time staff and from 15 to 20 freelance writers. The
full-time staff can be divided into these categories:

Editorial The editorial staff includes editors, writers, production staff, and
graphic artists. The editors and writers have strong backgrounds in financial
publications and journalism. The production staff is primarily responsible for
HTML coding.

Program Management This group guides the development of the product,
overseeing the Web site as a whole. Each manager has his or her own area of
responsibility.

Marketing The marketing team is involved in both the advertisements that
appear in the site and the marketing of the site itself.

Development The development team is experienced in software development
and Web site creation. This group is involved in all phases of the content life
cycle.

Testing The testers are responsible for the staging phase of the content life
cycle.

The Investor team also includes two positions that were created specifically to
deal with tasks resulting from features of the site:

Community Manager This person processes user input from e-mail,
newsgroups, and other online sources. This information is used to adapt to and
reflect trends in the Internet market and Investor’s users.

Usability Engineer This team member tests how users interact with the Web
pages that make up the site. This way the usability of the site can be assessed and
adapted to offer visitors and subscribers the richest experience possible.

Hand-off Procedure

In the case of article development, the hand-off procedure used by the Investor
team is process based. For example, articles pass from one team member to the
next in a linear fashion, as on an assembly line.

1. An editor assigns an article to a writer, based on that writer’s suitability. At the
same time, the graphic artists are informed of the general contents of the article
so that they can begin to plan artwork, and the producer begins planning the
coordination of Web-page elements including text, graphics, and scripts.

2. The writer submits the completed article to the assigning editor via e-mail, as a
Microsoft Word document attachment. The file is placed into a shared folder
named Raw Copy, located on a computer at the Investor main office.

Chapter2 Managing Content 47

3. The managing editor assigns a new name to the file, using a naming
convention that includes part of the author’s name and the date that the article
will appear on the site. The article is then copied into a folder named New
Copy. The file in the Raw Copy folder is retained as a backup. |

4. At this point, the assigning editor performs an initial (developmental) edit on
the article.

5. Once the developmental edit is done and the appropriate artwork is created, the
article is given a full edit. It is then copied to a file named The Rim.

6. From here, the article is \‘copyedited, and a headline is created. The file is then
moved to the Ready To Post folder.

7. The production manager moves the file from Ready To Post to another hard
disk, and codes the HTML. When this is done, an e-mail message is sent to the
editorial and testing teams with a link to the file.

8. 'The finished file is then proofread by the editorial team, and the links and
scripts are checked by the testers.

9. After testing and proofreading are complete, the production manager corrects
any errors that are found. The file is then replicated and placed on the staging
server.

10. Deployment is done automatically using the Microsoft Content Replication
System. The contents are replicated to the deployment server and made
available to the public at 2 a.m.

Edit Server
S\
Stage Server

i

LR
(I

Deploy Server

Figure 2.4 The Investor Web site release uses three server computers: one for
editing, another for staging, and a third for deployment.

(2
SO

48 Internet Information Server Resource Kit

Resources

Web Links

Books

Staging

The staging/testing phase of the site involves three main elements: editorial
passes, page-level testing on completed HTML files, and full site-level testing for
all aspects of content. The text of the articles is reviewed during the editorial
process and again later when the HTML is coded, to ensure that no mistakes were
introduced during the editing and production processes. Additionally, each
individual page (including text, graphics, links, and scripts) is tested to make sure

that it appears as intended. Testing is performed on Windows NT and

Windows 95 operating systems running Internet Explorer version 3.0 and later
and Netscape Navigator version 3.0 and later. These browsers are also used on the
Macintosh platform for testing.

Because some browsers may be incompatible with certain features used on the
site, the Investor team creates multiple versions of selected portions of the site.
For example, Research Central is created in two different versions—one for
ActiveX-compatible browsers and another for those that are not. An ASP
application detects the capabilities of a visitor’s browser and redirects them to the
appropriate version of the pages requested.

Deployment

To deploy the site to the Internet, two main steps are taken. First, the completed
site is transferred to a server where final testing and editing take place. Second,
the site is replicated to the deployment server by using the Microsoft Content
Replication System. This dual-server scheme creates a built-in backup of the site.

The following resources provide additional information relevant to content
management.

http://www.microsoft.com/sitebuilder
The Microsoft Site Builder Network includes tips, tricks, and tools for Web
designers, producers, programmers, and more.

Windows NT Server 4.0 Resource Kit (Microsoft Press, 1996-1997).
Network building and maintenance, security issues, Windows NT features that
help with information management, and more.

49

CHAPTER

3

Capacity Planning 3 ‘

Capacity planning for a Web server involves determining the future needs of the
server to whatever extent possible. Because there are so many variables and
intangibles, and because needs change so rapidly, capacity planning is more of an
art than a science, and requires an iterative approach.

This chapter offers ways to determine server needs, discusses options for meeting
those needs, and presents a set of guidelines to use with Performance Monitor so
you can effectively monitor your server. Finally, it provides a real-life example of
capacity planning and performance monitoring.

In this chapter:

Determining the Server’s Requirements
Meeting the Server’s Requirements
Monitoring the Server

A Case Study: www.microsoft.com

Resources

50 Internet Information Server Resource Kit

Determining the Server’s Requirements

Traffic

Server requirements are primarily determined by the amount of traffic the site or
sites hosted by the server will be required to sustain, and by the reliability and
security required.

Traffic is a mixture of incoming requests and outgoing responses. Not
surprisingly, there is a direct relationship between the amount of traffic and the
network bandwidth needed. The more visitors a server receives and the larger the
pages it provides, the more network bandwidth it will require.

To start with a simple example, consider a server that displays HTML text-only
pages that average 5 KB in size (a full page of text is about that size). The server
is connected to the Internet via a DS1 or T1 line, which can transmit data at 1.536
megabits per second (Mbps). (A DS1 line is rated at 1.544 Mbps, but a small
amount of the bandwidth is lost to inherent overhead.) How many 5-KB pages per
second can the server send out under optimum conditions?

To send out a page, the server must first receive a request from a browser. The
browser must establish a TCP connection with the server before it can send a
request. Once the connection is made, the browser sends the request (for example,
GET http://microsoft.com/default.htm), which typically amounts to a few
hundred bytes. After the server receives the request, it begins to send the
requested page. Requests and responses are split into packets and each of these
packets includes header information and other network-protocol overhead. For a
small, 5-KB file, protocol overhead is significant, amounting to about 30 percent
of the file’s size. As files increase in size, overhead accounts for a smaller
percentage of file transfer traffic. For example, overhead for the 53-KB file
examined later in this section amounts to about 14 percent.

Chapter 3 Capacity Pianning 51

The following table shows the traffic generated by a typical request for a 5-KB
page. Note that all of the figures for overhead are estimates. The precise number
of bytes sent varies with each request.

Table 3.1 Traffic Generated by a Request for a 5-KB Page

Traffic type Bytes sent
TCP Connection 172 (est.)
GET Request 256 (est.)
5-KB file 5,120
Protocol overhead 1,364 (est.)
Total 6,912

The total number of bytes sent over the network is 6,912. To find the number of
bits sent, 6,912 bytes is multiplied by 8: 6,912 x 8 = 55,296. A DS1 line can send
1.536 megabits per second. Thus, the number of 5-KB pages that can be sent over
a DS1 line per second is 1,536,000/55,296 or about 28 pages per second.

The following table illustrates the relative speeds of several connection types,
using the hypothetical text-only page from this example. Some of these
connection types are discussed in more detail later in this chapter.

Table 3.2 Comparative Connection Speeds

Connection Type Speed 5 KB Pages Sent per Second
Dedicated PPP/SLIP via 28.8 Kbps 0.5
modem

Frame Relay or fast modem 56 Kbps

ISDN 128 Kbps 2
ADSL 640 Kbps 11
DS1/T1 1.536 Mbps 28
10-Mbs Ethernet 8 Mbps (best case) 136
DS3/T3 44.736 Mbps 760
0C1 51.844 Mbps 880
100-Mbs Ethernet 80 Mbps (best case) 1,360
0C3 155.532 Mbps 2,650
0C12 ' 622.128 Mbps 10,580

1-Gbs Ethernet 800 Mbps (best case) 13,600

52

Internet Information Server Resource Kit

Now suppose you add a small graphic to the 5-KB page. An image, in the form of
a JPEG file that appears on screen as perhaps a one-inch square (the actual size
depends on monitor settings), takes up about as much disk space as the original
text file. Adding one such picture to each page nearly doubles the average page
size, which reduces the number of page requests that the server can send to the
Internet on the DS1 line to about 14 per second, regardless of how fast the
computer itself runs. If there are several such pictures per page, if the pictures are
larger, or if the pages contain other multimedia content, they will take
considerably longer to download. There are only two ways to serve more of them
per second: either remove the pictures from the pages, or connect to the network
using a faster (and more expensive) connection.

A site that serves primarily static HTML is much more likely to run out of
bandwidth than to run out of either processor cycles or the ability to sustain large
numbers of simultaneous connections. A site that performs a lot of dynamic page
generation, on the other hand, uses more processor cycles, and can create
bottlenecks at the processor, memory, disk, or network level. There are no hard-
and-fast rules that apply to all sites, though the general relationship between
bandwidth and CPU utilization for static versus dynamic pages of a given size is
shown in Figure 3.1.

Static pages

Dynamic pages

Network usage ————— P

CPUusage ——P»

Figure 3.1 The relative demands of static and dynamic content.

Chapter 3 Capacity Planning 53

Browser Download Time

The number of pages a server can send is one half of the bandwidth equation. The
other is the time it takes a browser to download a page.

Consider how much time a browser needs to download a page that, including
overhead, amounts to, say, 90 KB. (Pages of that size are not at all unusual.)
That’s 720 kilobits, which takes 25 seconds to download through a 28.8 Kbps
connection if everything is working perfectly, ignoring latencies, which typically
add a few seconds. If there is any blocking or bottlenecking at the server, if the
network is overloaded and slow, or if the user’s connection is slower than the full
28.8 Kbps because of poor line quality, downloading takes longer.

It takes about 52 connections at 28.8 Kbps to saturate the capacity of a DS1 line.
If no more than 52 clients simultaneously request the hypothetical 90-KB page,
and if the server can perform the processing required to keep up with the requests,
the clients will all receive the page in the 25 seconds calculated in the example
(again, ignoring latencies). If 100 clients simultaneously request the same page,
however, the total number of bits to be transferred is 100 times 737,280; it takes
between 47 and 48 seconds for that many bits to travel down a DS1 line.

A DS3 line carries nearly 45 megabits per second, about 30 times as much
capacity as a DS1 line, and it takes almost 1,520 clients at 28.8 Kbps to saturate
its bandwidth. At 2,000 simultaneous connections, it still takes less than 33
seconds to download the page. Figure 3.2 shows this relationship.

A
60
55 47.75 sec at

50 ~ 100 connections
45 -
40 5
35

gg 125 sec. minimum 28.8 Kbps

90— (Client-side speed) 1 DS1 saturates at
15 — 1 54 connections

1
1
1
10- : ;
5 | |
1 1

T T T T T T T T T (1T
10 20 30 40 50 60 70 8 90 100 1550 1560 2000

Concurrent connections at 28.8 Kbps

33 sec. at
2000 connections

DS3 saturates at
1550 connections

Download time in seconds

Figure 3.2 Download time of a 90-KB page

Because users only spend a fraction of their time downloading, the actual number
of users a connection can support is larger than these figures indicate.

54

Internet Information Server Resource Kit

Perceived Latency

It is important to remember that page latency as users perceive it is not precisely
identical to measured latency, nor to the time it takes for a page to display fully. If
the first thing the user sees upon reaching a given page is a set of buttons allowing
further navigation, for example, it may not make much difference if the rest of the
page takes over a minute to download, because the user need not wait for it. If, on
the other hand, the buttons don’t appear until after the rest of the page, the user
must wait until the page is fully displayed. The amount of latency that is
acceptable to users depends to some extent on the kind of information provided by
the page, but is appreciably less than 30 seconds under most circumstances.

Timescale

A timescale between one second and several minutes is appropriate for calculating
or measuring the network bandwidth required or used by a server at times of peak
traffic. If your server uses its entire network bandwidth for more than a few
minutes a day, consider upgrading to a faster connection to the network. Longer-
term measures are also important, because you need a wide distribution of data
when you are performing monitoring to establish a baseline. See the section
“Monitoring the Server,” later in this chapter, for more information about baseline

logging.

A Deeper Look at Traffic and Content

The 5-KB page discussed earlier in this chapter is representative of a text-only
page, but relatively few pages contain only text. The example was deliberately
simplified to provide an overview of network bandwidth usage. This section
examines what happens when a server receives a request for a typical Web page
that includes links to several graphics files. The page is Samples.asp, the
Windows NT 4.0 Option Pack samples home page (the page is installed with the
Windows NT 4.0 Option Pack and can be viewed at
http://localhost/iissamples/default/samples.asp). It is a simple ASP page that
returns ordinary version 2.0 HTML and contains six graphics, as shown in
Figure 3.3.

Chapter 3 Capacity Planning 55

Squiggle.gif
Nav2.gif

We' o IIS 4.0! - Microsoft In‘tmel Exploler

listitle.gif Msft.gif

hnp:Hiissamplesfdgiauh/samp[es.a;p)

Wmdﬁws NT 40
Option Pack

ME

1411

Internet Information Server Samples

Wmdnws NT 4.0 Option Pack includes an early release of a new sample site called
* Please read the file for setup instructions

Please note that to operate the site correctly you must also install Microsoft® SQL
Server 6.5. An evaluation copy of SQL Server 6.5 is on the installation CD or from the

We have put together a series of intranet applications called the ;52552 i

zz:. The beguty of these applications is that whatever your needs, youII fnd
demns user dopumentation, and free downloads of full, working, customlzahle
applications tha} will show you why Microsoft is the intranet platform for you. [tk

©1997|Microsoft Cofporation. Al rights resefved, i 0.

lie.gif lisside.gif

L Samples.asp
Figure 3.3 Samples.asp

The following series of events occur when a browser requests this page:

= First, the client requests a connection, which is started on TCP port 1357.
(TCP port numbers above 1023 are chosen at random for use by various
services.)

= Next, the client issues a GET request, for Samples.asp.

» When that file has been transferred, the client issues a GET request for
Squiggle.gif.

= Almost immediately, before Squiggle.gif has been fully transferred, the client
requests another connection, which is started on the next port, 1358.

= As soon as the second connection has been set up, and before the download of
Squiggle.gif resumes, the client issues a GET request for Msft.gif, on port
1358.

56

Internet Information Server Resource Kit

The process continues, with transfers interleaved between the two connections, as
shown in the Table 3.3.

Table 3.3 Details of a Request for Samples.asp

Action Total Connection Port Data Size Total Size
Packets
1357 Setup 3 1357 0 172
GET Samples.asp 10 1357 5,228 6,495
GET Squiggle.gif 4 1357 2,471 3,199
1358 Setup 3 1358 0 188
GET Msft.gif 2 1358 338 1,011
GET Nav2.gif 4 1358 1,911 2,235
GET ILstitle.gif 27 1357 21,318 23,126
GET le.gif 13 1358 8,609 9,751
GET Iisside.gif 19 1357 14,687 16,134
Total 85 54,562 62,311

The Total Packets column lists the number of TCP packets that were required
either to set up a connection or to transfer a file. The Data Size column lists the
size of the file transfered. The Total Size column lists the size of file with network
overhead included; the difference between the number in the Data Size column
and the one in the Total Size column is the network overhead incurred during the
download (network overhead includes IP, TCP, and HTTP protocol overhead).
Overhead amounted to 7.5 KB—about 14 percent of the download.

By using HTTP 1.1 Keep-Alive headers, the browser needed only two TCP
connections to transfer seven files (Samples.asp and its associated graphics files).
Without Keep-Alives, another kilobyte or so of overhead would have been needed
to set up the additional connections—a relatively small amount. The real cost of
the added connections is the round-trip time required to set up a connection (the
browser contacts the server and waits for its response; the server then waits for the
browser’s acknowledgement of the server’s response).

Chapter 3 Capacity Planning 57

For static objects like GIF files, the object size is reported by the server, using a
“Content-Length:” header entry. (These sizes are automatically determined by
IIS.) This allows the browser to determine approximately how long the active
connection will be used, which affects the browser’s connection strategy. A
browser such as Internet Explorer creates a new connection only when an existing
one is “blocked.” Because of the small size of the files linked to Samples.asp and
the high speed of the connection, the browser was able to download the page with
a small number of concurrent connections. If the order of requests were changed
so that the larger GIF files were downloaded first, or if the connection speed were
slower (the page was downloaded over an intranet), more connections might be
necessary.

Figure 3.4 illustrates how, once the browser has opened a second connection to
the server, it interleaves the two connections to download more than one file at
the same time. The diagram’s vertical lines represent packets.

samples.asp
Conn

squig‘gle.gif iistitle.gif

Port

L

CorITE.gif
msft.gif

|
ie.gif iisside.gif

Figure 3.4 Packet distribution during the download of Samples.asp and linked files

Tip When HEIGHT and WIDTH attributes are included with an image link, the
browser is able to determine in advance how much screen space the image
requires, which allows the browser to render other content more quickly while the
image is being retrieved.

58

Internet Information Server Resource Kit

Refreshing a Page

Now consider what happens if, after having downloaded Samples.asp, the user
clicks the browser’s Refresh button. The resulting network traffic is shown in the
following table:

Table 3.4 Details of a Refresh Request for Samples.asp

Action Total Connection Port Data Size Total Size
Packets
1576 Setup 3 1576 0 172
GET Samples.asp 12 1576 5,228 6,495
GET Squiggle.gif 2 1576 0 612
1577 Setup 3 1577 0 188
GET Msft.gif 2 1577 0 608
GET Nav2.gif 2 1576 0 608
GET Iistitle.gif 2 1576 0 612
GET Ie.gif 2 1577 0 646
GET Iisside.gif 2 1576 0 649
Total 30 5,228 10,590

As before, the browser creates two connections, but this time it retrieves only
Samples.asp. The other files were not retrieved because they hadn’t been modified
since the previous request, and were stored in the browser’s cache. When the
browser requests a file in its cache, it includes the file’s date stamp with the
request, using the If-Modified-Since header. The Web server then determines
whether the file has been modified since the time indicated by the date stamp. If
not, the server replies with a brief “Not Modified” packet.

Although nothing on the page changed, the browser still retrieved Samples.asp.
By default IIS sets HTTP cache-control to prevent browsers from caching ASP
pages, because there is no way to guarantee that an ASP page will be the same the
next time it is requested. A static HTML page, on the other hand, is not retrieved
during a refresh if it is has not been updated. As a result, just changing a file’s
extension from .htm to .asp, without putting any script on the page, causes
refreshes to take longer. You should only use the .asp extension for files that
actually contain scripts.

Chapter 3 Capacity Planning 59

As this example demonstrates, browser (and proxy) caching can dramatically
reduce the expense of retrieving objects on a page. Some publication processes
copy files that haven’t been modified, which gives them new time stamps and thus
“updates” them as far as the system is concerned. Resources are wasted because
client-side caching is eliminated.

Adding Secure Sockets Layer

Now consider what happens when a browser requests Samples.asp using Secure
Sockets Layer (SSL). (A table to show the details of the request isn’t included
here, because the traffic generated by an SSL request is encrypted, which makes it
difficult to see what happens during the request.)

When a browser makes an SSL request for a page, a delay occurs while the server
encrypts the page. When the server send Samples.asp and the six graphics files
linked to it, SSL adds additional network overhead. The server sends 64.6 KB
with SSL, instead of 60.8 KB without it—an increase in overhead to 21 percent
with SSL from 14 percent without it (Samples.asp and related files add up to 53.3
KB).

Once the browser has received the requested files, the user must wait while the
browser decrypts them. SSL also disables proxy and browser caching, so the
considerable performance gains they allow are lost.

The delays introduced by SSL are not trivial. In a test download of Samples.asp
over a single-hub local network, the request using SSL took almost 10 times
longer than the request without it.

All of which is to say that SSL should be used only when necessary—for
example, to ensure the security of financial transactions. SSL has a significant
effect on CPU capacity and a noticeable effect on network capacity as well.

Web Application Performance

If Web applications are an important part of your site, the performance of those
applications is critical in determining the site’s capacity. Testing is the only way
to find out the capacity and performance of a Web application. The WCAT utility
included on the IIS Resource Kit CD is a useful testing tool. Before writing an
application, however, it’s useful to have a sense of the performance capabilities of
different Web application types. In IIS, ISAPI applications running as DLLs in
the IIS process generally offer the best performance. Next is Active Server Pages
(ASP), followed by CGL.

For most applications, the recommendation is to use ASP scripting to call server-
side components. This strategy offers performance comparable to ISAPI
performance with advantage of more rapid development time. For more
information on Web application development strategy, see Chapter 5,
“Developing Web Applications.”

60

Internet Information Server Resource Kit

This section provides some comparative performance data between ISAPI, ASP,
and CGI. Three representative tasks were chosen: pulling data from a database,
instantiating a COM server-side component, and accessing server variables. For
each task, an equivalent script or program was written in ASP, ISAPI, and Perl
(for the CGI case). Here is a more detailed description of the tasks, which were
given the names DataGrab, GetObject, and ServerVars:

= DataGrab Pulls data from a database using a database-access COM
component (written in Visual Basic). The component object provides a method
that can be used to connect to a small Access database, send a SQL query
string, and return the query result.

» GetObject Instantiates a simple COM component, calls a method provided
by that COM component, and sends the result of the call to the client. (The
particular method implemented by the component returns the username by
calling the Windows API function GetUserName().)

= ServerVars Accesses 18 server variables (such as PATH_INFO and
SERVER_SOFTWARE), and sends the results to the client.

The scripts and executables were tested using the Web Capacity Analysis Toolkit
(WCAT). The tests were run with five clients, each running 20 threads, for a total
of 100 virtual clients. The virtual clients fired requests at the server and recorded
how many of the requests were served—how many pages per second the server
was able to serve. The Perl scripts were tested using ActiveState’s Perl for Win32
and Perl for ISAPI packages. Perl for Win32e runs Perl scripts as CGI
applications. Perl for ISAPI runs scripts as DLLs within the IIS process. Perl for
ISAPI generally offers a performance advantage over Perl for Win32 because
each request to a Perl for ISAPI DLL does not generate a new process, as is the
case with CGI applications (Perl for Win32).

Table 3.5 shows the relative performance of the different application types for
different tasks. Note that the figures are relative. They do not record how many
pages per second were served, only the relative ability of different scripts or
executables to serve pages. The worst performing script (GetObject CGI) was set
to 1; all of the other figures are relative to that figure. So, for example, the
ServerVars CGI offers performance that is relatively 33.16 times better than
GetObject CGI. (DataGrab CGI could not be tested, so no figure is provided.)

Table 3.5 Relative Performance of Dynamic Pages

ISAPI ASP Perl for ISAPI CGI
DataGrab 69.37 57.19 29.04 Not available
GetObject 209.14 169.64 38.09 1

ServerVars 560.07 195.97 109.89 33.16

Chapter 3 Capacity Planning 61

Reliability

An important point brought out by these figures is that the relative performance of
different application types depends greatly on the application’s task. For example,
ISAPI offers almost three times better performance than ASP for the ServerVars
task; for the GetObject and DataGrab tasks, however, ISAPI provides only about a
20 percent performance advantage over ASP.

Some sites can afford to fail or go offline; others cannot. Many financial
institutions, for example, require 99.999 percent or better reliability. Even if your
requirements are less rigorous, you may want to consider using RAID arrays for
disk drives and clustering your servers. You might also consider creating a “Web
farm”—multiple servers hosting a single site. In addition to allowing for very
large sites, Web farms introduce greater reliability, since a site’s fate is no longer
tied to a single server. :

Clustering |

The term “failure” commonly brings to mind the idea of a system crash, but in
fact many failures are deliberate: the administrator brings a server down for
routine maintenance or for hardware installation or upgrade. Clustering makes it
possible to take a server down for maintenance or service without causing the site
itself to fail, and also provides reliability in the event of an unscheduled failure.

There are three commonly used cluster configuration types for Web service:

= In active/active clustering, there are no redundant servers. If one computer in
the cluster fails, the other computers take on the increased workload. The
delay or latency of the failover ranges from about 15 to about 150 seconds, and
depends in part on what software packages are running on the servers.

» In active/standby clustering, one computer is designated to take over in the
event that another computer fails. If an active node in such a cluster fails, the
standby node takes over. Failover times are about the same as for active/active
clusters.

» [In fault-tolerant clustering, computers are also paired, but both computers
perform all tasks simultaneously. Failover times are typically less than oné
second.

Windows NT Enterprise Edition Clustering

By using Windows NT Enterprise Edition clustering, an active/active clustering
solution, you can set up applications on two servers (nodes) in a cluster and
provide a single, virtual image of the cluster to clients. If one node fails, the
applications on the failed node become available on the other node. Failover times
range from 20 seconds to 2 minutes. :

62

Internet Information Server Resource Kit

To use the Windows NT clustering feature, you must have two servers that are
connected by a high-speed private network. Each of the servers must have at least
one shared SCSI bus, with a storage device, and at least one storage device that is
not shared. For best reliability, each computer should have its own uninterruptible
power supply.

To LAN To LAN

Figure 3.5 A Windows NT Enterprise Edition cluster.

DNS Round-Robin Distribution and Load Balancing

Domain Name System (DNS) round-robin distribution is a technique used for load
balancing servers. Consider a scenario in which there are four IP address entries
for the same host on a DNS server:

copperhead.glennwo.microsoft.com A 157.55.106.88
copperhead.glennwo.microsoft.com A 157.55.106.193
copperhead.glennwo.microsoft.com A 157.55.107.62
copperhead.glennwo.microsoft.com A 157.55.107.220

If a client sends a query, the DNS server returns all four IP addresses, but
typically the client uses only the first one it receives. The next time the DNS
server receives a query for this host the order of the list is changed in round-robin
fashion (the address that was first in the previous list is last in the new list). When
the client chooses the first IP address in the list, it chooses a different server. This
technique distributes incoming requests evenly among the available IP addresses,
but does not fully balance the load because it is not interactive. That is, the DNS
server does not check the loading of an IP address to be sure it is ready to handle a
request.

Chapter 3 Capacity Planning 63

Interactive Load Balancing

In interactive load balancing, the list of IP addresses returned by the DNS server
is ranked by load. The address with the lowest load is placed first in the ranking.
There are many ways to determine the load level on a given computer, most of
which are sufficiently complex that they are not yet in common use.

Loadbal.dll is an ActiveX component that repeatedly gathers Performance
Monitor counter data on a user-specified list of servers and returns a ranked list
each time it cycles. The Loadbal component is an Automation server, and can be
used by any Automation client. Loadbal is included on the IIS Resource Kit CD.

Loadbal includes a “manual read” capability, so that you can programmatically
scan a list of servers to check their relative loadings.

There are, in addition, third-party load-balancing solutions; in considering
purchasing one of these, you should be sure that it is compatible with
Windows NT and IIS.

‘Meeting the Server’s Requirements

There are a wide variety of options available to site administrators when they
build or upgrade Web servers. This section discusses some of the hardware and
network options available. It does not discuss software, because it is assumed that
you are using Microsoft Windows NT as your operating system and IIS as your
server software.

Hardware Options

The following sections describe the hardware requirements of IIS and some of the
hardware issues involved in server performance.

Minimum and Recommended Hardware Configurations

The following hardware configurations are suggested for Internet Information
Server 4.0:

Table 3.6 Hardware Recommendations for IIS

Item Minimum Recommended
Processor 66 MHz 486 90 MHz Pentium or higher
Level 2 Cache Maximum possible

RAM 32 MB 128 MB or more

64 Internet Information Server Resource Kit

The amount of hard disk space required for IIS installation depends on the options
you choose in Setup. The following table lists approximate requirements.

Table 3.7 Disk Space Requirements for IIS Installation

Setup Option Approximate Disk Space Required
Minimum 30 MB
Typical 50 MB
Full 100 MB

Data Latency and Transfer Rates

Everything that happens in a computer takes time. There are two clocks that
measure this time: the CPU chip’s master clock, and the master clock of the
system bus. Most of the usage of time occurs in three areas:

= Data latency, which is the delay before data appears (and could actually be
considered time that is wasted rather than time that is used).

= Transferring data from source to destination once the flow of data starts.

= CPU processing.

The clock cycle of a CPU chip is a few nanoseconds long. Other parts of a
computer are typically much slower. When the processor needs information that
must be retrieved from disk, for example, it may have to wait as long as several
milliseconds, a million or more of its clock cycles, before any data reaches it.
When the system runs short of RAM it uses virtual memory, which means that it
writes some contents of memory to disk. This has a sérious impact on
performance.

Any time the server gets its data from RAM, of course, it avoids disk latency.
Adding to main memory helps your server avoid using virtual memory and also
increases the size of both the IIS cache and the system file cache. In addition, if
your server has many pages that are visited frequently (too many to fit in the
cache area of main memory), using a disk controller with a large onboard RAM
cache is also likely to enhance performance. On the other hand, if your server
hosts many Web sites or a large database, such a cache probably won’t improve
performance much.

Chapter 3 Capacity Planning 65

RAM also exhibits latency. For example, the internal clock cycle of a 266-MHz
CPU chip is just under 3.8 nanoseconds long. When such a processor reads data
from RAM that has a 60 nanosecond access time, many processor clock cycles
pass before the RAM places any of its contents on the bus. If the processor can get
the same information from cache memory, which is faster, some of that delay is
eliminated. Level 1(L.1) cache actually runs at processor speed, but the amount of
level 1 cache cannot be increased except by changing the processor, because L1
cache is contained within the CPU chip. Many new processors have Level 2 (L2)
cache on the CPU, to help compensate for the fact that the CPU clock runs much
faster than the system bus clock; on-chip L2 cache can run at full CPU clock rate.
L2 cache outside the CPU is usually on a special fast bus; such external L2 cache
is faster than system memory, but slower than L1 cache. In addition, different
types of RAM used in system memory have different characteristics. For further
discussion, see the section “Memory,” later in this chapter.

Data transfer rates are also important. Hard disks continue to improve, and some
can transfer data at tens of megabytes per second, but they still transfer data much
more slowly than processors can handle it. In addition, drives cannot transfer data
at the maximum rate if files are fragmented; it’s a good idea to check for
fragmentation often, and correct it before it becomes a serious issue.

The system bus also exhibits latency. When a peripheral requests the use of the
bus, the interval before control is granted is on the order of 20 microseconds,
which amounts to several thousand processor clock cycles, and dozens of bus
clock cycles.

All of these issues contribute to overhead, and any of them can cause or contribute
to a bottleneck. For example, if requests come in to a Web server that doesn’t
have enough RAM to sustain a suitably large file cache, the pages must be
retrieved from disk; the result is slow service. If the requests come in so rapidly
that the pages cannot be retrieved from disk fast enough to meet them, a
bottleneck develops as the server falls farther and farther behind.

The Processor

The importance of processor performance is sometimes exaggerated. For a site
that consists primarily of static HTML pages, older processors are quite capable
of making full use of any but the fastest network connections. It may, in fact, be
pointless to purchase a computer with several fast processors, if the chances are
that it will be limited by its connection to the network. A server farm built of older
computers, for example those with 486 or slow Pentium processors, can be a good
solution, particularly in corporations or workgroups that have some unused
computers available and anticipate only light traffic.

66

Internet Information Server Resource Kit

On the other hand, processor performance is a significant concern for large sites,
for sites that generate much of their content dynamically, and for sites that run
memory-intensive applications in addition to IIS.

Given the choice between buying, say, two mid-range servers or one high-end
server, how do you decide? Generally, the decision comes down to how dynamic
or static the site is. If the bottlenecks are in throughput (either disk or network), as
tends to be the case with static content, upgrade the disk or network pieces as
needed and purchase multiple computers. If the issue is raw processing power, as
it can be with dynamic content, a more powerful computer will provide better
throughput and a more cost-effective solution.

Adding Processors

Because all processors in a single computer use the same system resources,
adding processors does not enhance performance in a linear way. Going from one
processor to two can give IIS a roughly 50 percent performance increase, and
going from two to three processors is likely to produce an additional 25 percent
increase; beyond three processors, IIS performance does not significantly
improve. On the other hand, if you are doing dynamic page generation, running
applications under Microsoft Transaction Server, or if your Web server also hosts
SQL Server, adding processors can be effective.

Many computers sold as small servers today have two processors, with capacity
for four to six. Larger servers may have several motherboards, each with several
processors.

The Bus

All computers have some sort of main system bus for moving data among the
various hardware components. In addition, some computers have a separate bus
that runs at processor clock rate, which is used for devices that require faster data
transfer rates. Such a bus is called a local or processor-direct bus.

Today, most computers intended for use as servers are based on the PCI system
bus, which currently operates at 50 to 66 MHz; future implementations are
expected to operate at 100 MHz or more. With 64-bit-wide data paths, current
versions of the PCI bus can transfer data at rates in excess of 500 megabytes per
second (MBps). That’s faster than most devices attached to the bus, including all
but the fastest currently available RAM.

Many PCs also have an ISA or EISA bus, for peripherals that use it. The data
paths on these buses are narrower, and the clock rates slower, than those on PCI
buses.

Chapter 3 Capacity Planning 67

Memory

Level 2 cache memory, which is small in comparison with main memory, uses
SRAM (Static RAM), which is faster than DRAM (Dynamic RAM) but is
considerably more expensive. If your server supports external L2 cache, it should
probably have as much as it can handle. Pentium Pro processors, on the other
hand, have a fixed amount of L2 cache, which is actually part of the CPU chip.
Although this design limits the amount of L2 cache (to a maximum of 1 MB, as
this book goes to press), it enables the cache to run at the full clock speed of the
processor.

Main memory in PCs is DRAM. Typical DRAM access times are measured in
tens of nanoseconds. There are several types of DRAM, which operate at different
effective speeds. The first access from a bank of RAM may take 60 nanoseconds
or so (if that’s the rated speed of the chips), but subsequent reads, particularly
those within the same small region of memory, can be faster. Just how much faster
depends on the RAM type, as shown in the following table.

Table 3.8 RAM Type Comparison

RAM type Comment

FPM (Fast Page Mode) Provides modest acceleration on subsequent
access.

EDO (Extended Data Out) Can keep up with PCI bus clock; transfer

rates that can exceed 500 MBps.

SDRAM (DRAM that is synchronized with ~ Supports burst access as fast as 10
the processor’s clock) nanoseconds.

RAMBUS (proprietary DRAM solution) Fastest current implementations allow up to
600 Megabits per second transfer rate.

Slow RAM can cause a bottleneck, as can narrow data buses that limit data
transfer speed. Pentium systems use 64-bit-wide data paths; 72-pin SIMMs use a
32-bit-wide data bus. Thus, most Pentium systems require that SIMMs be
installed in pairs. (Even if the system is capable of using odd numbers of SIMMs,
you should always add SIMMs in pairs, because twice as many memory accesses
are required to retrieve the same amount of data from a single SIMM as from a
pair; performance is impaired.) Systems based on the 486 processor tend to use
32-bit-wide data buses. Even if they are capable of running at the same bus-clock
rate, these systems transfer data between memory and processor more slowly than
Pentium-based systems. If your server performs a lot of dynamic page generation
or frequently serves pages from its cache in RAM, slow memory or a narrow bus
can be a problem.

68

Internet Information Server Resource Kit

In addition, different motherboards support different levels and varieties of
memory. Some, for example, can make full use of FPM and EDO but not
SDRAM; some support interleaving, while others do not. Interleaving is a
technique that divides memory into two (or, rarely, more) banks, and permits
simultaneous reads from those banks. Instead of the usual arrangement, which
would have all data words in order in a single linear array of memory, interleaving
arranges the data with all the even numbered words in bank 0 and all the odd
numbered words in bank 1. When the processor needs a pair of words, it can read
them at the same time by accessing both banks simultaneously. Usually only
identical memory types can be interleaved. Interleaving does not change the
number of wait states for memory access, but does improve the data transfer rate.

How Much Is Enough?

In general, so long as your server’s capacity is not limited by its network
bandwidth, the more RAM the server contains, the better it will perform. One way
to determine how much RAM you need is to sum the sizes of all the applications
and services you expect to run, add the sizes of all the commonly used files, and
add the RAM required by Windows NT and IIS, remembering the 4 MB that the
operating system keeps clear—but this is not always practical. Another way is to
monitor the system’s actual performance, and add RAM as necessary. For more
information, see “Monitoring Memory Usage” in Chapter 4, “Performance Tuning
and Optimization.”

Control of the Working Set

The operating system controls the memory available to each process (the
process’s working set). It can reduce a process’s working set when it needs to. It
does so by writing some of the working set to disk, and then allocating the newly
freed RAM to the process that needs it. Typically, the data that was written to disk
must later be copied back to RAM. These transfers, which are very slow,
constitute a large source of overhead, and can contribute to bottlenecking. It is
important to be aware of the fact that the operating system tries to keep 4 MB of
memory free, and starts reducing the working sets of processes long before it
actually “runs out” of RAM. You must include this “extra” 4 MB if you construct
a memory budget for your server.

A server administrator has some control over the way Windows NT allocates
RAM. If you’re running IIS, it’s a bad idea to set Windows NT to maximize
throughput for file sharing, for example, because at that setting all available
memory is used for the file system cache. For more information, see “Suggestions
for Optimizing Memory on an IIS Server” in Chapter 4, “Performance Tuning and
Optimization.”

Chapter 3 Capacity Planning 69

Paging to disk is not, in and of itself, an indication that something is wrong or that
performance and capacity are bottlenecked. Parts of the operating system, for
example, are specifically written to be paged, so paging is a routine occurrence.
It’s better to think of it in the other sense: if the performance of your server is
impaired, it is possible that too much paging is occurring.

The Swap File

If you are more concerned with performance than with fault tolerance or
correction, you can put the paging (swap) file on a different drive from the
Windows NT system folder to minimize the interaction between system accesses
and swapping accesses. You need to be aware, however, that doing so destroys
your system’s crash-dump capability. If the operating system crashes, it writes the
contents of memory into the swap file, but it can only do so if the paging file is on
the same disk spindle as the Windows NT system folder and if the swap file is
large enough to accommodate that much data. (The swap file must be at least
twice the size of memory.) If you are willing to sacrifice this capability in a
tradeoff between performance and reliability, you can move the swap file to a
different drive or make it much smaller.

Hard Drives and Controllers

Older IDE controllers and drives are too slow for most Web servers, and are not
recommended for Windows NT. IDE is limited to two or four disks per controller,
whereas SCSI is limited to seven or 15, depending on the standard.

Among SCSI controllers, which are preferred for Windows NT, there is a wide
range of available characteristics, including controllers that support RAID in
hardware, controllers with large RAM caches, and so on. The SCSI standard has
evolved into several forms, which are listed in the following table:

Table 3.9 SCSI Standards

Standard Data path width, bits Maximum transfer rate,
’ MBps

SCSI-1 (de facto) 8 5

SCSI-2 8 5

Fast SCSI-2 8 10

Fast/Wide SCSI-2 16 20

Ultra SCSI-3 8 20

Ultra Wide SCSI-3 16 40

70

Internet Information Server Resource Kit -

Make sure that your disk drives are matched to your controller or controllers. It is
pointless, for example, to put a drive that supports high data transfer rates on a
controller that doesn’t. In addition, it’s a bad idea to connect fast and slow devices
to a single bus; it can result in errors.

If you have large or diverse storage requirements, you can use more than one
controller, or a controller that supports multiple buses, to spread the workload and
improve performance.

For more information on SCSI and IDE performance, see the Microsoft TechNet
paper, “SCSI Hardware Performance Considerations for Microsoft Windows
95/Windows NT,” available on http://www.microsoft.com/.

Beyond the space required for operating system and server software, each site has
its own storage requirements. A site that maintains a large database or that serves
large amounts of multimedia content, for example, may require dozens of
gigabytes of disk space, while a site that provides only static HTML with only a
small number of images may be able to get by with a single, smaller drive.

If your site must store and access a lot of data, and particularly if your site has
high reliability requirements, you should consider RAID arrays, particularly some
recently developed proprietary RAID levels that offer multiple redundancy. (See
sidebar.)

Chapter 3 Capacity Planning I

RAID

RAID stands for Redundant Arrays of Independent Disks. 1t is a set of
protocols originally developed at the University of California at Berkeley.
Support for RAID can be implemented either in software or in hardware in
the disk controller. A software implementation is usually undesirable
because it imposes considerable loading on the processor. The

Windows NT Disk Manager supports RAID levels 0, 1, and 5 in software.

RAID levels start at O, which involves data striped across drives without
redundancy, and is therefore not fault-tolerant. Because it is not redundant,
level 0 is sometimes not considered to be RAID. What RAID 0 does is
equalize use across a volume set, filling all of the disks in the set at the
same rate. It also improves performance. One workaround, which is
expensive but offers advantages in performance, is a combination of levels
0 and 1: mirrored striped arrays, usually described as “RAID 10.”

RAID levels continue as follows:

RAID 1 is the simplest kind of redundancy: mirroring. Data written to a
given drive is copied to a shadow or mirror drive, which can be slightly
faster than “RAID 0,” if overlapping reads and parallel writes are possible.
Provides immediate fallback in case of drive failure: the system just keeps
running. Although you can mirror a partition or drive in any partition or
drive of equal or larger size, it is best to use disks of the same size and
model. In a level 1 array there is no speed penalty even with a single failed
drive, an advantage this level has over levels 3, 4, and 5.

RAID 2 uses multiple extra check disks to hold information for Hamming
code error-correction. (Because SCSI drives almost always have onboard
error-correction, and because it requires many drives, level 2 is rarely
used.)

RAID 3 parity information is stored on one drive in a multidrive array; data
is striped across the other drives at the byte level. Read performance is the
same as “RAID 0,” but write performance is degraded because parity
information must be calculated, and because all disk accesses must be
synchronized in order to maintain the correspondence between the data and
the parity information. Large writes and long sequential write series are
fairly fast. If one disk in a level 3 array fails, it is possible to recover the
information from the other disks along with the parity disk. This typically
involves shutting the system down to replace the drive and reconstruct the
data.

72

Internet Information Server Resource Kit

RAID 4 data is striped across drives at the block or track level, with parity
on a single drive as in level 3. Read performance is the same as “RAID 0”;
write performance can be limited by contention for the single parity disk. If
one disk in a level 4 array fails, the information can be recovered from the
other disks along with the parity disk. As with level 3, this typically
involves shutting the system down to replace the drive and reconstruct the
data.

RAID 5 like level 4, but with parity distributed among drives along with
the data. Small writes, especially in multiprocessor systems (in which there
would otherwise be contention for the parity disk), are slightly faster than
in level 3 or 4 systems because there is no single parity disk to act as a
bottleneck. But there is a performance penalty for updates caused by the
fact that parity and data must be read, and parity recalculated, for each
update operation.

Various RAID controllers support different levels. There are also newer
(primarily proprietary) variants of RAID with other level numbers, many of
which offer multiple levels of redundancy for enhanced fault tolerance. For
example, many new controllers support “RAID 10,” which is a
combination of striping (“RAID 0,” not in itself redundant) and mirroring
(RAID 1). This combination offers excellent performance, at some penalty
in price.

It is important to be aware of the performance penalties inherent in all RAID
levels except RAID 0 and RAID 1. If you are concerned about performance but
cannot afford the added expense of “RAID 10,” a level O array and frequent
backups may be an option.

None of the original RAID levels offers more than a single level of redundancy,
and none is an excuse for failure to perform backups. If more than one disk fails
in alevel 3, 4, or 5 array, or if both disks of a mirrored pair in a level 1 array fail,
data is irretrievably lost.

Chapter 3 Capacity Planning 73

Network Options

A network involves hardware and devices that are external to the Web server,
which makes it less susceptible to analysis and control. You can set up a Web
server that is fully capable of doing everything you need it to do, but network
crowding or incompatible network hardware may prevent it from achieving its full
capacity and performance.

Although the number of optical fiber connections is increasing, most computers
still connect to networks via wires. These may be analog telephone lines, digital
telephone lines, or coaxial cables. The wires or optical fibers plug into network
interface cards in the computers. (Some computers have Ethernet or other network
interfaces built in.)

Network Adapters and Other Hardware

Don’t use an 8-bit network adapter in your server or even, for that matter, a 16-bit
adapter, unless your server is very inactivite or is connected to the network via a
very slow connection. The narrower the data bus on the network interface, the
slower the data travels through the card and onto the network. Use modern 32-bit
adapters and avoid the older PIO and coprocessor adapters.

Although the hubs, routers, and cabling that are part of your network are not
themselves part of your server, they are indeed part of your site, and they have a
direct influence on the performance and capacity of the network. For example,
you may have TCP/IP set to deliver packets that cannot be fragmented. Some
older routers, however, may need to fragment packets; if such a router is present
on your network, packets travel out, are bounced back, and must then travel out
again with a bit flipped so they can be fragmented. In the worst case, where all
packets must pass through the router, this problem triples your network traffic.
Thus, what would ordinarily be an improvement in performance becomes a
bottleneck. It is important to match settings to the available equipment.

In addition to hardware, network connections involve software both in the form of
drivers to enable the computers to talk to the network interfaces, and protocols for
transporting data. Networking hardware options operate at a wide range of data
rates, and more or less directly determine the bandwidth of the connection, though
the precise amount of overhead may vary, depending on the protocol or protocols
in use.

74

Internet Information Server Resource Kit

Connection Types

Hardware for network connection ranges from modems that are used in
conjunction with telephone lines at speeds of a few thousands of bits per second,
to optical fiber networks, some of which are as fast as several gigabits per second.
For a table of connection types, see the section “Traffic,” earlier in this chapter.

Software involves layered protocols that interact to permit a wide variety of
devices and connecting links to function together reliably. Networking protocols
and their interactions are too complex for complete coverage here.

Local Area Networks

Many sites connect both to one or more local area networks (LANs), and to the
Internet or other wide area networks (WANSs). These connections are likely to be
of different types, but there are areas of overlap. For example, many LANs use the
same TCP/IP protocol that the Internet uses. One characteristic of LANs is that in
many cdses clients have access to the same network bandwidth as servers. This is
not as often the case on the Internet, for example, where many clients connect via
modem.

LAN:Ss typically operate at high speed, in part because the wiring is in short runs
(and therefore inexpensive), and is locally owned. That is, the lines are not usually
leased from a telephone company or other common carrier. In some cases, a
building may already be wired for LAN connectivity when an organization
acquires or rents it.

Ethernet and Token Ring

The Ethernet and token ring protocols are widely used for local networking. In
principle they operate at high speed, but they are both shared resources, which
means that when any one computer on an Ethernet or token ring is transmitting,
none of the other computers can do so. (When only two computers are present,
this is the equivalent of a half-duplex connection: either computer can send at any
given time, but not both.)

There are several ways to implement the Ethernet protocol in hardware, none of
which affects the rated speed of the network. Standard Ethernet networks,
regardless of whether they move signals on “thick” coaxial cable, “thin” coaxial
cable, or twisted pair, provide a specified bandwidth of 10 megabits per second
(Mbps). Overhead makes it impossible to realize the full capacity; 8 Mbps is a
reasonable expectation.

Chapter3 Capacity Planning 75

Switches that split an Ethernet into subnets are available. These switches have
several ports, each of which is a network that is separate from the others. The
switch routes frames between networks as necessary. Some switches are store-
and-forward devices, and must receive and hold an entire frame before routing it
to its destination network; others perform cut-through switching, which eliminates
the latency associated with store-and-forward operation.

Fast Ethernet involves a backbone that runs at a specified bandwidth of 100
Mbps, but is otherwise similar to standard Ethernet. It’s advisable to test adapters
in both server and client computers, because performance may vary by more than
a factor of two. There is also an emerging 1-gigabit per second Ethernet standard,
which transfers packets on optical fiber or, for short distances, copper wire. It
operates at speeds well in excess of 700 Mbps.

In principle, token ring networks perform better under load than Ethernet
networks, but older token rings run at only 4 megabits per second stated
bandwidth, and as with Ethernet, the stated bandwidth is never realized in
practice. Newer token ring networks operate at 16 Mbps, and can provide
performance that is similar to or slightly better than that of standard Ethernet
networks.

Network Segmenting

An Ethernet network is a shared network, so no single server can use all of the
available bandwidth. For example, if there are 25 servers on a 100 Mbps Ethernet
network, and they are all about equally active, the average bandwidth available to
each computer is 100 megabits divided by 25: 4 Mbps.

A bandwidth of 4 Mbps is enough for a Web server connected to the Internet by a
DS1 line rated at 1.5 Mbps. But what if the Web server needs a larger connection,
say a DS3 link rated at 45 Mbps? In that case, the solution is to segment the
Ethernet network so that the Web server has part of the network to itself and can
use the full 100 Mbps of available bandwidth. With 100 Mbps of bandwith, the
Web server can make full use of the DS3 link.

76

Internet Information Server Resource Kit

The network topology in Figure 3.6 illustrates how a server running IIS is
segmented from the rest of the network. Connected to the server running IIS are
two servers that provide services to IIS, one running SQL Server, the other
running Microsoft Exchange. Each server includes two network cards, so that the
servers can be linked together and each server can use the full 100 Mbps of
bandwidth to communicate with the other servers. Also, Internet traffic does not
share bandwidth with traffic to and from the servers running SQL Server and
Exchange. The server running IIS is connected the rest of the network and to its
link to the Internet through an unshared Ethernet switch.

Internet
Backbone

Figure 3.6 Appropriate technique for connecting a server to the Internet

Chapter3 Capacity Planning 77

Now consider the network topology shown in Figure 3.7. Although this topology
looks similar to the one shown in the previous figure, it is considerably inferior.
First of all, note that the server running IIS is connected to the rest of the network
through a hub, which, unlike the switch in the previous figure, is shared. The HS
server appears to have its own segment, but its connection through the shared hub
means that it shares bandwidth with the rest of the network. Secondly, because the
server running IIS has no direct connection to the servers running SQL Server and
Exhange that service it, Internet traffic competes for bandwidth with traffic to and
from the servers running SQL Server and Exchange.

Internet
Backbone

s

i SQL
s

(Exchange
¢

Figure 3.7 Poor technique for connecting a server to the Internet

Bl Nyl

Fiber Distributed Data Interface

Fiber Distributed Data Interface (FDDI) is a 100-Mbps variant of the token ring
network, and is viable for larger sites despite being considerably more expensive
to install. It is inherently immune to electromagnetic interference because the
signals travel as pulses of light rather than of electricity. This makes FDDI
particularly attractive in electrically noisy environments.

Other High-Speed Optical Fiber

Optical fiber interconnections at speeds in excess of 1 gigabit per second are
available, but are still quite expensive, and are not yet in common use. Such fiber
interconnects can be used with 1-gigabit Ethernet, ATM, and so on.

78

Internet Information Server Resource Kit

WAN/Internet Connections

There are many ways to connect to WANs and the Internet. Because the network
connection is the most likely source of bottlenecking, you should investigate
connection methods that are faster than what is necessary to meet current needs.

Modem

Many users connect to the Internet via modem. Unless it’s a small site, a modem
typically is not a viable way to connect a Web site to the Internet, because of the
serious bandwidth limitation.

ISDN and Frame Relay

ISDN and Frame Relay provide bandwidth ranging from 56 Kbps to 128 Kbps,
and are suitable for small servers. They use specialized telephone lines, and may
not be available in some areas. Both are suitable for small sites.

ADSL

Asymmetric Digital Subscriber Line (ADSL) is an emerging technology that
sends information at relatively high speeds over ordinary (copper wire) telephone
lines. It promises to offer clients connection bandwidths in excess of 500 Kbps at
reasonable cost, but is too new to be widely available at this time. ADSL has been
described as an interim solution to fill the gap between existing modems and
forthcoming optical fiber telephone service. ADSL, if it is available in your area,
is suitable for small to midsize sites.

DS1/T1, DS3/T3, 0C1/3/12/48/192

DS1/T1 and DS3/T3 are high-speed telephone line standards. They provide full-
duplex 1.544 Mbps (DS1) or 44.736 Mbps (DS3) bandwidth, and are suitable for
midsize to large sites. The Microsoft Web site, discussed in “A Large Site
Example,” currently uses eight DS3 lines.

OC1 is a 51.844 Mbps standard, equivalent to DS3 bandwidth, implemented on
SONET (Synchronous Optical NETwork) fiber optic networks. OC3, OC12,
0C48, and OC192 are extensions that carry 155.532, 622.128, about 2488.5, and
about 9954 Mbps, respectively.

Chapter3 Capacity Planning 79

ATM

Asynchronous Transfer Mode (ATM) is not actually a connection type. Rather, it
is a transfer mode in which the information is organized into cells that contain 48
bytes of data and 5 bytes of header information, rather than packets of arbitrary
size. (Some SONET networks, for example, carry their data in IP packets that
have been mapped into ATM cells.) Because the cells are of fixed size, it is
possible to design relatively inexpensive high-performance routers and switches
for use on networks that operate in this mode.

Connection Implications

Some servers connect only to intranets, which are smaller and less complex than
the Internet, and are usually less subject to major variations in behavior. Even on
intranets, however, traffic varies with time, and network loading can cause
changes in capacity. For servers connected to the Internet, Internet traffic can
have a huge influence on throughput and thus on users’ experience.

Monitoring the Server

Monitoring is integral to site management, both for capacity planning and for
troubleshooting and tuning. When you are setting up a Web server, you should
stress test it and monitor it to discover whether its capacity matches your site’s
requirements. When it is in operation, you should monitor it to discern trends.
When a server is in trouble, you monitor it first to track down problems and then
to see whether corrective actions are having the expected results.

Monitoring a Web server is much the same as monitoring a file and print server or
an application server, though there are a few more Windows NT Performance
Monitor objects and counters to consider. Use Performance Monitor to make an
extended baseline log file, covering up to, say, a week of operation. Log relevant
counters for the seven most important objects: Processor, Memory, Disk,
Network, IIS Global, Web Service, and Active Server Pages. Use a polling
interval that is short enough to give you a good picture of activity at your site, but
long enough to keep Performance Monitor from taking up too many CPU cycles
and too much space on disk for the log file. If you change the configuration
significantly, for example by adding more RAM, you need to generate a new
baseline log file, because the existing one no longer reflects your server
accurately. (You can and probably should keep earlier baseline logs for
comparison. Long-term trends may not show up when you view your site at a
shorter timescale.)

80

Internet Information Server Resource Kit

In addition to maintaining an up-to-date baseline, you need to continue to monitor
your Web server on a daily or weekly basis to find trends and to catch impending
bottlenecks.

What to Check

A Web server is similar to a file server in the sense that it takes relatively short
requests and dispenses larger sets of data. It differs in the sense that it must do
more processing than a file server, so you need to watch processor overhead more
carefully. Here are some things to look out for:

Processor Depending on how much dynamic page generation your server
performs, and on whether your site is subject to spikes, as most are, you need to
keep tabs on processor usage.

Memory The IIS cache and the file system cache are good candidates to follow
here. To find out whether you are running out of RAM, or experiencing memory
leaks, however, watch disk activity.

Disk Among the things you can check for are hard page faults. An excessive
number of hard page faults indicates that your server needs more RAM. You must
specifically enable disk counters if you want to monitor disk performance. Just
running Performance Monitor, however, won’t provide any disk activity data. To
enable disk counters, invoke a command line and type diskperf -y or, if you have
a RAID array under hardware control, diskperf -ye. Then restart your server
before running Performance Monitor.

You must decide whether it is more appropriate for you to monitor logical drives
or physical drives. If you have a single large drive, monitor the physical disk. If,

on the other hand, you have a large array with several partitions, it may be useful
or important to monitor each partition separately.

Network You can add the Network Monitor agent for its counters, and the
Network Interface object for its counters. In addition, all protocols have objects,
so NetBEUI, TCP/IP, and IPX/SPX all have their own counters. Remember that
you must install the SNMP agent to see TCP/IP counters, which are important for
IIS. Network usage correlates directly with traffic; if it shows signs of reaching a’
limit during periods of peak traffic and thus compromising your server’s capacity,
consider increasing network bandwidth.

Note that Network counters may give unreliable results on symmetrical
multiprocessor (SMP) computers.

lIS Watch the cache to be sure that IIS has enough memory. If Cache Hits % is
low, especially if your site serves many static HTML files, you may need to
increase cache size beyond the 10 percent of RAM that it defaults to.

Chapter 3 Capacity Planning 81

Relevant Counters

The following table lists Performance Monitor counters that are useful for
monitoring your server. If you find problems, you will need to use these and other
counters to zero in on them. For example, if you see evidence of a memory leak (a
slow rise in committed bytes or pool nonpaged bytes), you should monitor
processes and their threads. One thread or one process will probably show a
continuing increase in memory usage. Similarly, if you see evidence of a disk
bottleneck, you can examine reads and writes separately as you begin to track
down the problem. See the next chapter for specific information on tuning and

troubleshooting.

Table 3.10 Performance Monitor Counters for Baseline Logging

Object:Counter

Ideal Value

Memory: Pages/ sec
Memory: Available Bytes
Memory: Committed Bytes

Memory: Pool Nonpaged Bytes

Processor: % Processor Time

Processor: Interrupts/ sec

Processor: System Processor Queue Length
Disk (Logical or Physical): % Disk Time
Disk (Logical or Physical): Queue Length

Disk (Logical or Physical): Avg. Disk
Bytes/Transfer

Internet Information Server Global: Cache
Hits %

Web Service: Bytes Total/sec

Web Service: Bytes Total/sec

Active Server Pages: Request Wait Time
Active Server Pages: Requests Queued

Active Server Pages: Transactions/Sec

0-20 (if over 80, indicates trouble).
At least 4 MB.

Not more than about 75 percent of physical
memory size.

Steady (slow rise may indicate a memory
leak).

Less than 75 percent.

Depends on processor. Up to 1,000 for
486/66 processors; 3,500 for P90; more
than 7,000 for P200). Lower is better. If the
value is too high, try moving some
hardware devices to a different server.

Less than 2
As low as possible
Less than 2
As high as possible

As high as possible

As high as possible
As high as possible
As low as possible
Zero

As high as possible

82

Internet Information Server Resource Kit

Your Mileage Will Vary

Every server has its own performance and capacity issues. The values listed in
Table 3.8 are guidelines, not absolutes. Also, when you optimize one area you
may interfere with performance in another area. It’s usually safe to add capacity,
but careful monitoring and comparison with past performance is necessary when
you change settings. If you need to run several applications that make intensive
use of one system resource, consider moving applications to another server if you
can.

Although it can be useful to track trends, any one trend won’t necessarily be
helpful at indicating impending bottlenecks. If your server supports 50 users at
average 10 percent processor loading and 100 users at average 25 percent
processor loading, it’s tempting to assume that it could easily support, say, 300
users. But the processor load measure doesn’t tell you how close the server is to
filling up its available network bandwidth. Even 100 users could be too many for
the current network connection, depending on what those users are doing.

One useful way to approach the issues of both management and planning is to
look for places where the flow of information is impeded. Under ordinary
circumstances, the most likely place is the connection between a server and the
Internet. In order to find bottlenecks in existing sites, you need to take
measurements. Almost any server can saturate a 10-Mbps or even 100-Mbs
Ethernet connection.

The importance of close monitoring cannot be overstated. There is no substitute
for hands-on experience of a site and its operating conditions.

A Case Study: microsoft.com

One of the largest and most active sites on the Web, microsoft.com receives over
150 million hits per day and hosts more than 12 gigabytes (GB) of content.
Building a high-traffic Web site of this kind involves careful planning and
constant monitoring to achieve a balance between user demand and the site’s key
components: hardware, software, and network infrastructure. These components
need to be in balance to efficiently handle the content on the site, the number of
hits to the site, and “spikes” of intense usage.

Despite the size of microsoft.com and the special needs that follow from its size,
the processes the Microsoft team follows to plan, deploy, and maintain the site are
relevant to many sites, and are worth examining even if your Web server is
connected only to a small intranet.

Chapter 3 Capacity Planning

83

A Snapshot of the Site

The Microsoft Web site is currently hosted on 65 PCs, with a total of 26.75 GB of
RAM and more than 7 terabytes of disk storage (some of which is not shown in
Table 3.11). The site has far more server hardware and bandwidth than necessary
for day-to-day use, but all available capacity is needed for the inevitable spikes
when thousands of concurrent users download, register, or participate in some
type of online activity. Software running on the servers includes:

Microsoft Windows NT Server

Microsoft Internet Information Server

Microsoft Index Server
Microsoft SQL Server

Hardware

The following table shows the size and number of servers used for each service

available on microsoft.com:

Table 3.11 Hardware Configuration of the microsoft.com Web Site

Service Servers CPUs MB RAM GB Disk Comments
per per server per
server server

www.microsoft.com 18 4 P6 512 50 250,000 pages of HTML,
ASP, and ISAPI; plus
250,000 other related files

search.microsoft.com 6 4 P6 256 30 150 requests per min., per
server

http download servers 3 4P5 256 28 2.5 GB of downloadable
software each

FTP servers 3 4 P5 512 16 2.5 GB of downloadable each

SQL servers 4 P5 512 160 750 applications, averages
300 concurrent connections

home.microsoft.com 13 4 P6 512 50

msid.microsoft.com 4 4 P5 256 28

premium.microsoft. com 3 4P6 256 30

support.microsoft.com 3 4 P6 256 30

activex.microsoft.com 2 4 P6 256 30

register.microsoft.com 2 4 P6 512 50

backoffice.microsoft.com 2 4P6 256 28

84

Internet Information Server Resource Kit

Network Infrastructure

To provide greater internal network capacity, the site architecture distributes
servers among four FDDI rings, which run at 100 Mbps. GIGAswitches distribute
incoming traffic among the four rings and outgoing traffic among eight DS3
(44.736 Mb per second each) lines to the Internet. Only three of the four rings
have HTTP download servers, so one ring is always available to service requests
for Web pages, even if a spike of downloads uses up the other rings’ total
capacity.

Prior to moving to this configuration, the microsoft.com team debated whether to
add only two routers and four hubs and forgo the expensive GIGAswitches. Even
though the network capacity would have been the same in either scenario, the new
design provides better failover protection and scalability by including an
intermediate switching device and moving the hubs upstream.

The following diagram illustrates the servers and infrastructure of microsoft.com
currently implemented at the Redmond data center. (There are also Japanese and
European data centers, and various FTP and other servers in other locations
worldwide.)

Chapter 3 Capacity Planning

85

msid.msn.com

SQLNet
Feeder

LAN

"]

Router

Servers

DS3 45
MB/sec

N
N

I

Internet

Distribution Ring Gigaswitch
8 DS3s 45 MB/sec each

Figure 3.8 The microsoft.com network architecture.

86 Internet Information Server Resource Kit

Planning for Spikes

The site’s involvement in the Windows 95 launch led to a surge of activity inside
Microsoft as product and marketing groups added content. During 1996 the
number of hits per month on the site grew from 118 million to over 2 billion. The
product groups’ increased focus on Web-based marketing has fed the ramp-up as
more content is accessed by more users.

Beyond the continuing growth and the regularly occurring periods of peak usage,
irregular spikes and special events place much larger burdens on many Web sites
and servers. For Microsoft, many of these coincide with software releases. The
release of Internet Explorer 4.0 in October, 1997 is a good example: In one week,
more than 2 million users downloaded an average of 18 MB each. Peaks exceeded
6 terabytes per day.

Microsoft’s site has special requirements, but companies of every size need to
plan for spikes, which can occur when they launch a new ad campaign, appear in
a news article, or are linked to a popular Web site. Even a single Web server
connected only to a small LAN can experience spikes in its activity, although if it
serves only a small number of clients, and their needs are not urgent, the impact
won’t be catastrophic. But if it is important to the enterprise that even a few of
those clients be able to access the Web server without delay under all
circumstances, the site manager must build in the relevant capacity.

When Planning Is Not Enough

Spikes are not the only pitfalls. The continued expansion of day-to-day operations
and the ongoing change in orientation from static HTML to dynamically
generated pages and increased interactivity led to unforeseen difficulties at
microsoft.com. Toward the end of 1996, for example, problems began to emerge
at home.microsoft.com as users found error messages appearing on their browsers.
By May 1997 the servers had begun to show signs of blocking as thousands of
delayed access requests backed up. Performance of the Internet Start page went
downhill gradually for two or three weeks, then suddenly took a nosedive. The
site’s existing hardware and software technology was simply unable to keep pace
with demand.

Chapter 3 Capacity Planning 87

Working Toward a Resolution

Because the Internet Start page at home.microsoft.com is the default home page
for the Microsoft Internet Explorer browser, the hit rate at the site is continually
increasing. Each of the servers handles between 2,000 and 4,000 viewers per
second. In May, as access to home.microsoft.com became increasingly difficult, a
task force was formed and given the charter to find a solution. The group met
daily for six weeks, working to return the site to nominal performance.

The first step was to examine the hardware, beginning with the servers—Internet
connection bandwidth was not saturated, and therefore could not be the central
issue. With the number of viewers increasing rapidly, the servers were adding
viewer requests to the queue faster than they were delivering responses. More
servers were added to handle the load, but that alone was not sufficient. The task
force began probing the connections among servers, databases, and viewers to
find and eliminate possible signal breakdowns or bottlenecks. They also initiated
a process of streamlining the site’s HTML and ASP code to make it as lean and
efficient as possible. By mid-June some progress had been made, but it was clear
that something else was wrong.

A Case of External Dependency

The task force began to look at the objects—text files, graphics, and other files
that make up individual Web pages—that were being called by the servers. Some
of those objects are housed in the Microsoft Properties Database (PD), which
receives and stores individual user preferences: news headlines, personalized
home-page options, and stock quotes, for example. Through a process of
elimination, the task force came to suspect the PD of being the main culprit in the
ongoing slowdowns and failures. All of the servers were drawing on the same
central repositories or databases for page elements, like wells drawing on a
common aquifer. In other words, the problem was external to the servers
themselves, and adding more of them only made it worse.

Part of the solution was to cut down the number of requests to that particular set
of databases. New, less demanding ways of personalizing pages were developed,
and the server software was adjusted to work better for the rapidly increasing
numbers of viewers using the site. In addition, the database servers were moved
physically closer to the Web servers in order to allow the team to eliminate
intervening routers and other hardware. Meanwhile, the team continued to
examine the entire process of creating Web pages and serving them to visitors.

88

Internet Information Server Resource Kit

A Case of Internal Dependency

A new Internet Explorer download page was deployed just before the release of
Internet Explorer 4.0. This page was complex, and the path to it led through two
other processor-intensive pages, one of which was the www.microsoft.com home
page. Almost immediately the site began to suffer processor bottlenecks. Analysis
showed that a large number of clients were following a single path into the site,
straight to the Internet Explorer download page, and that there were serious
inefficiencies along that path. Streamlining the ASP code was not sufficient to
resolve the problem. Nor was adding hardware the answer: site engineers
estimated that even an order-of-magnitude increase in the number of servers
wouldn’t be enought to handle the demand. Instead, temporary measures were put
into place:

= Pages involving frames, other than the site’s home page, were reduced to
single panels.

= The download page and both pages leading to it were redesigned as static
HTML, rather than dynamic, pages.

This solution demonstrates another way to deal with spikes: Reduce the load by
temporarily reducing functionality, thereby reducing overhead. Once the load
returns to normal levels, the original functionality can be restored.

Finding a Balance

Building an Internet or intranet site requires balancing server hardware, software,
and network resources, and then maintaining that balance as site traffic grows. It
is important for site managers to be on the lookout for hidden assumptions and
external dependencies that interfere with the balance. The visible or obvious parts
of the balance are hardware, software, network, and content; constant monitoring
keeps the balance in view.

The Hardware |

Hardware is a necessary part of site capacity and performance, and it is important
to select hardware that can be scaled or upgraded easily when demands increase.
The microsoft.com team continually reviews its hardware to be sure that capacity
is staying ahead of demand. The current CPU utilization for microsoft.com is as
high as 40 percent per server; it is purposely kept well below capacity so that the
site can handle spikes.

Chapter3 Capacity Planning 89

The Software

In addition to the Microsoft software used to run the site, the microsoft.com team
has developed a few internal content management utilities by using Visual Basic
and Microsoft Access. For example, a content-tracking tool scans the site each
day and fills a database with information about each of the 250,000 HTML and
ASP pages, including where the links on each page point. When a page is to be
deleted, a check of the database shows other pages that point to that page. Links
on the other pages can be changed before the page is deleted, so someone viewing
them won’t find broken links. ‘

Another document management tool keeps track of who is responsible for each
page and when the page was sent to the servers. Even with thorough testing,
problems—such as errors in ASP pages—sometimes get through and are difficult
to pinpoint among a quarter-million pages of content. The tool provides a list of
pages sent to the servers shortly before the problem appeared, narrowing the
number that have to be investigated.

The Network

In another move to increase network capacity at Microsoft, system engineers
installed two network interface cards in each server. One card is for the FDDI ring
that carries Internet traffic, and the other is for the corporate network, which
handles administration and content replication. With this arrangement,
administrative traffic doesn’t take bandwidth away from Internet traffic.

The Content

Just as the microsoft.com team constantly reviews its hardware capacity to ensure
quick response for the user, it also studies the way it configures its servers to
manage content. Currently, the content is updated eight times a day, with 5 to 7
percent of the total content changing each day. Because each of the 18
www.microsoft.com Web servers contains a complete copy of the site’s content,
each set of changes has to be replicated to every server. The team is investigating
an alternative approach: segmenting content among several clusters of servers
based on product groups. While this would make it possible to adjust the number
and size of servers based on the popularity of the content they dispense, it would
also increase internal network loading and require tracking what content is on
what machine. In late 1997, the trade-offs were still being studied.

90 Internet Information Server Resource Kit

Summary

Ongoing Changes

Groups producing content for microsoft.com want to use the latest Web
publishing features to make their content more eye-catching and interesting to
users. The result is a tug-of-war between content providers, who want users to
have the richest experience possible, and the team running the Web site, which
wants to increase download speeds and the site’s capacity. The site currently has a
size limit of 100 KB per page, including graphics, and prefers that each page be
smaller than 60 KB. The bottom line is that content needs to strike a balance
between being visually interesting, and being as small as possible so as to
improve download performance. Bigger pages take longer to download, which
consumes server time and network bandwidth and, most importantly, irritates
users.

The User Experience Counts

The amount of content a site delivers does not necessarily indicate user
satisfaction. To monitor the user download experience the microsoft.com team
periodically tests the access, search, and download times for specific pages, using
28.8-Kbps modems stationed in various U.S. cities. The January 1997 test showed
that users averaged 50 seconds per task. A more recent test of download times
indicated a 20-second improvement to 30 seconds per task, thanks in part to the
new network design.

Microsoft.com team members are hard-pressed to define a formula for how much
server power, software, and network bandwidth is needed to build a high-traffic
Web site. Instead the team relies on constant monitoring, worst-case planning, and
powerful servers. Their experience and recommendations can be summarized in
four rules of thumb:

= Learn as much as you can about your audience, potential content, marketing
plans, and future initiatives, and then take your best guess.

= When in doubt, choose bigger and faster. You may overbuild today, but you’ll
likely need the extra capacity sooner than you expect.

» Once your site is in operation, watch it closely. Find out which of the three
components—hardware, software, and network bandwidth—is lagging behind,
and bring it into balance with the others.

» Know that nothing will stay static for long. Keep an eye on growth and usage
trends, and be prepared to react (that is, to add or shift hardware, software, or
network capacity) quickly.

Chapter 3 Capacity Planning 91

Resources

Web Links

Books

The following Web sites and books provide additional information relevant to
Web server capacity planning. :

Web site information is current as of the date of publication, but is, of course,
subject to change.

http://esdis.gsfc.nasa.gov/msst/A5_01P.html
NASA paper on optimizing RAID performance with cache.

http://tebbit.eng.umd.edu/nasa/node12.html
Discussion of ATM networking latency.

http://www.canadacomputes.com/tc/Nov96/Cwb.html
Overview of memory types.

http://www.ots.utexas.edu:8080/ethernet/gigabit.html
Description of Gigabit Ethernet, with links to other sources of information on
Ethernet.

Professional Web Site Optimization (Wrox Press Ltd., 1997).
WebMaster in a Nutshell (O’Reilly and Associates, 1997).

Web Server Technology: Advanced Guide for World-Wide Web Information
Providers (Morgan Kaufman Publishers, 1996).

93

CHAPTER

4

Performance Tuning 4 |
and Optimization

Performance tuning and optimization involve monitoring and testing your site,
and changing parameters, settings, and hardware to help your site deliver content
to users more efficiently. This chapter discusses memory, processor, network,
security, and Web application issues. It describes some of the available tools for
monitoring and testing and provides some guidelines to help you recover from
bottlenecks.

In this chapter:

Using This Chapter

Monitoring Memory Usage

Preventing Processor Bottlenecks

Monitoring Bandwidth and Network Capacity
Security and Performance

Monitoring Web Applications

Resources

94 Internet Information Server Resource Kit

Using This Chapter

This chapter suggests several approaches to monitoring and improving the
performance of a site running Internet Information Server (IIS) with Windows NT
4.0 Server. It is intended as a technical guide for network administrators, but
should also be useful for anyone running IIS.

The chapter includes the following five sections:

Monitoring Memory Usage

Memory is discussed first because memory shortages often manifest
themselves as poor performance in other components, especially processors
and disks. It is important to rule out a memory shortage before investigating
other components.

This section presents an overview of some techniques for determining whether
a computer has adequate physical memory to be an efficient Internet server. It
discusses how IIS uses physical memory, including the IIS object cache and
the file system cache, and includes suggestions for tuning some server
parameters to improve memory use.

Preventing Processor Bottlenecks

This section presents a brief discussion of tools and strategies for monitoring
processor use in single-processor and multiple-processor computers running
IIS, and for preventing the processor from becoming a system bottleneck. It
provides information about the role of the processor in servicing client
connections and requests. It includes tips on tuning to balance processor load.

Monitoring Bandwidth and Network Capacity

This section is an overview of some techniques for measuring how much data
a network configuration is able to transmit during periods of average and peak
use. It includes some suggestions for capacity planning based on the number of
files and connections the server is expected to handle.

Security and Performance

A brief discussion of some techniques for monitoring the performance
overhead associated with some common security strategies, such as
Windows NT Challenge/Response authentication and the Secure Sockets
Layer (SSL) protocol.

Chapter 4 Performance Tuning and Optimization 95

Monitoring Web Applications

Applications can be responsible for poor performance and inefficient processor
and memory use. This section builds on the monitoring techniques discussed in
the memory and processor sections. It suggests some ways to monitor the basic
aspects of application performance. It discusses static and dynamic
applications, and explains why some applications perform better than others on
IIS. It also includes some suggestions for mitigating the effects of poor
application performance.

Monitoring Memory Usage

There are four major areas to look at when monitoring IIS memory usage:

Overall server memory usage.

Memory used by the IIS working set—as well as the working sets of any out-
of-process applications.

The IIS object cache. Is it as large as it needs to be? Is it configured in the
most efficient way?

The file system cache.

Memory Requirements of an IIS Server

A server running Internet Information Server should have sufficient physical
memory to keep the following items in physical memory:

Program code for IIS services. This code occupies about 2.5 MB with all
services running simultaneously. This code is part of the working set of the IIS
process, Inetinfo.exe, and can be paged to disk. (Without ASP code, the
working set is roughly 2 MB with all services running.)

Note Each connection adds about 10 KB to the working set. Thus, if there
were, say, 1,000 simultaneous connections, they would cause the working set
to expand by about 10 MB.

Frequently accessed Web page files. The number and size of these files varies
widely with the installation. These files are stored in the file system cache, an
area of physical memory reserved for frequently and repeatedly used pages.
The remaining files are stored on disk until needed.

Frequently used objects. These are objects that are costly to retrieve and are
frequently reused by the service, such as file handles, file directory listings,
and so on. These objects are stored in the /IS Object Cache, a cache
maintained by the IIS service. The IIS Object Cache is also part of the working
set of the IIS process, Inetinfo.exe, and can be paged to disk.

96 Internet Information Server Resource Kit

=]IS log files. IIS maintains one memory-mapped file for each site that has
logging enabled. These files are mapped in 64-KB chunks. The mapped
segments of the log files are part of the working set of the IIS process. Logged
data also appears in the file system cache because data is cached when the file-
mapping objects are written to disk.

= TCB table. TCP maintains a hash table of transmission control blocks (TCBs)
to store data for each TCP connection. A control block is attached to the table
for each active connection. The control block is deleted shortly after the
connection is closed. The TCB table is part of the operating system’s
nonpaged memory pool. As such, the TCB table must remain in physical
memory; it cannot be paged to disk.

= HTTP connection data structures. HTTP maintains pageable data structures to
track its active connections. When these data structures are in physical
memory, they are counted as part of the working set of the IIS process.

= Pool threads. The threads that execute the code for the services are stored in
the nonpaged pool in physical memory, along with other objects used by the
operating system to support IIS. Threads in the nonpaged pool must remain in
physical memory; they cannot be paged to disk.

You can measure your server’s physical memory and measure the amount of
physical memory used directly or indirectly by Internet Information Server. You
can also log the data over time to identify patterns of memory use.

Monitoring Overall Server Memory

Like most well-designed user-mode processes, IIS services derive much of their
benefits from the Windows NT operating system architecture, including the
Windows NT security model, RPC communication, messaging, the file systems,
and other operating system services. Thus, monitoring memory for IIS begins with
monitoring overall server memory, particularly on a multipurpose server.

Monitoring the physical memory of a server running IIS involves measuring the
size of the areas in physical memory used by IIS and assuring that enough space is
available to contain the elements IIS needs to store. The physical memory space
should be sufficient for normal operation and for routine peaks in demand; but
your site may also encounter occasional spikes. If it does, you must decide how
much degradation in performance (if any) you will allow at those times. Routine
peaks on most sites are about twice the average amount of utilization, whereas
spikes can easily be a full order of magnitude beyond the average.

Chapter 4 Performance Tuning and Optimization 97

The Windows NT virtual memory system is designed to be self-tuning. The
Virtual Memory Manager and Cache Manager adjust the size of the file system
cache, the working sets of processes, the paged and nonpaged memory pools, and
the paging files on disk to produce the most efficient use of available physical
memory. Similarly, the IIS service regulates the size of the IIS Object Cache.
Therefore, the primary purpose of monitoring memory in a Windows NT-based
server running IIS is to make sure that the server has enough physical memory,
not to adjust the size of each memory component, as might be the case with other
operating systems.

How to Monitor Overall Server Memory

This section is a brief review of the most important memory monitoring
techniques. Many performance monitoring tools measure system-wide and per-
process memory use. These tools include the Windows NT administrative tools
Task Manager and Performance Monitor, as well as various tools included with
the Windows NT Workstation Resource Kit, including Process Monitor
(Pmon.exe), Process Viewer (Pviewer.exe), Process Explode (Pview.exe), and
PerfLog (Pdlcnfig.exe and Pdlsvc.exe). PerfLog and Performance Monitor can
measure memory use over time.

Here are a few guidelines for using Performance Monitor and PerfLog to monitor
overall server memory use:

= Monitor available memory. Compare the total physical memory available to
Windows NT to the available memory remaining when you are running all
server services. To gather more reliable data, log this value over time, making
certain to include periods of peak activity. The system attempts to keep
available bytes at 4 MB or more, but it is prudent to keep at least 5 percent of
memory available for peak use.

To track available memory, use Performance Monitor or PerfLog to log the
Memory: Available Bytes counter.

= Monitor paging. Continuous high rates of paging indicate a memory shortage.
Paging occurs when code or data requested by an application or service is not
found in physical memory and must be retrieved from disk.

g8

Internet Information Server Resource Kit

Paging is measured in several ways:

Numbers of page faults. Page faults occur when the system cannot find a
requested page in the working set of the process that requested the page.
The system also counts a page fault on a file access if the requested page is
not found in the file system cache.

To measure page faults on working sets and on the file system cache, use
Performance Monitor or PerfLog to log the Memory: Page Faults/sec and
Memory: Cache Faults/sec counters.

Disk reads due to page faults. All page faults interrupt the processor. Only
hard faults, those that require reading from disk, seriously delay system
response. Monitor hard faults and compare the ratio of hard faults to all
page faults. In general, a sustained rate of more than five hard faults per
second indicates a memory shortage. To measure hard faults, use
Performance Monitor or PerfLog to log the Memory: Page Reads/sec
counter. Use the Memory: Page Faults/sec counter as an indicator of all
page faults.

= Monitor the file system cache. The file system cache is the working set of the
file system. This cache is a reserved area in physical memory where the file
system stores its recently used and frequently used data. By default, the system
reserves about 50 percent of physical memory for the file system cache, but the
system trims the cache if it is running out of memory. A large and effective file
system cache is vital to servers running IIS, which function like specialized
file servers. This topic is discussed in more detail in the “Monitoring the File
System Cache” section later in this chapter.

= Monitor the size of the paging files. The paging files on disk back up
" committed physical memory. The larger the paging file, the more memory the
system can commit. Windows NT creates a paging file on the system disk.
You can create a paging file on each logical disk, and enlarge existing files.

To monitor the paging files, use Performance Monitor or PerfLog to log
Process: Page File Bytes: Total.

Chapter 4 Performance Tuning and Optimization 99

= Monitor the size of the paged and nonpaged memory pools. The system’s
memory pools hold objects created and used by applications and the operating
system. The paged pool holds items that can be paged to disk. Items in the
non-paged pool must remain in physical memory. The contents of the memory
pools are accessible only in privileged mode. On servers running Internet
Information Server, IIS threads that service connections are stored in the
nonpaged pool, along with other objects used by the service, such as file
handles.

To monitor the pool space for all processes on the server, use Performance
Monitor or PerfLog to log the Memory: Pool Paged Bytes and Memory: Pool
Nonpaged Bytes counters. To monitor the pool space used directly by Internet
Information Server, log the Process: Pool Paged Bytes: Inetinfo and Process:
Pool Nonpaged Bytes: Inetinfo counters for the Inetinfo process.

These general monitoring techniques are useful for any computer running
Windows NT. The following sections discuss techniques for monitoring
components specific to the IIS service.

Monitoring the Working Set of the lIS Process

A server running IIS must have enough physical memory to support the IIS
process. The physical memory visible to a process is called its working set. If the
working set of the Internet Information Server process is not large enough, IIS is
not able to store its code and frequently used data in physical memory. Therefore,
the IIS services are delayed by having to retrieve code and data from disk.

The system continually adjusts the size of the working set of a process as the
process runs. The amount of space the system provides to the working set depends
on the amount of memory available to the system and the needs of the process.

This section suggests methods for monitoring the size of the IIS working set over
time and explains how to determine whether the working set of the IIS process is
large enough to enable IIS to run efficiently.

100

Internet Information Server Resource Kit

About the Inetinfo Working Set

IIS runs in a pageable user-mode process called Inetinfo.exe. Active Server Pages
and the Web, FTP, and SMTP services run in the Inetinfo process, and share the
threads of the process. Each of the current connections is also given about 10 KB
of memory in the Inetinfo working set.

For IIS to run efficiently, it must be able to maintain all of its code and the most
frequently used files in its working set. In addition, the working set of the Inetinfo
process should be large enough to contain the IIS Object Cache, data buffers for
IIS logging, and the data structures that the Web service uses to track its active
connections.

There is no fixed optimal size for the Inetinfo working set. The requirements of
the working set vary depending upon the number of connections maintained, the
number and size of files, and the use of other supporting services, such as security
features and logging.

You can monitor the IIS process as it runs on your server to determine whether its
working set is large enough to support the IIS services.

Using Performance Monitor to Monitor the IS Working Set

You can use the following Performance Monitor counters to monitor the working
set of Inetinfo.exe. IIS and its component services run in the context of the
Inetinfo process. (You can monitor the IIS Object Cache separately. For more
information, see “Monitoring the IS Object Cache” later in this chapter.)

Chapter 4 Performance Tuning and Optimization 101

Table 4.1 Performance Monitor Counters for the IIS Working Set

Counter

Indicates

Memory: Available Bytes

Process: Working Set: Inetinfo

Process: Page Faults/sec: Inetinfo
Memory: Page Faults/sec

Memory: Page Reads/sec

Memory: Pages Input/sec

The amount of physical memory remaining
and available for use, in bytes. This counter
displays the amount of memory not currently
used by the system or by running processes.
This counter displays the last observed value,
not an average.

The operating system attempts to prevent this
value from falling below 4 MB. The system
often trims the working sets of processes to
maintain the 4 MB minimum available
memory.

Size of the working set of the process, in
bytes. This counter displays the last observed
value, not an average over time.

Hard and soft faults in the working set of the
process.

Hard and soft faults for all working sets
running on the system.

Hard page faults. This counter displays the
number of times the disk is read to satisfy
page faults. This counter displays the number
of read operations, regardless of the number
of pages read in each operation.

A sustained rate of 5 reads/sec or more might
indicate a memory shortage.

One measure of the cost of page faults. This
counter displays the number of pages read to
satisfy page faults. One page is faulted at a
time, but the system can read multiple pages
to prevent further faults.

You should log this data for several days. You can use bookmarks in the
Performance Monitor log to identify times of unusually high and low server

activity.

102

Internet Information Server Resource Kit

Analyzing the Working Set Data

The following sections describe how to use data about the Inetinfo working set to
determine if the server has enough memory to support IIS efficiently.

Available Bytes and the Inetinfo Working Set

If the system has sufficient memory, it can maintain enough space in the Inetinfo
working set so that IIS rarely needs to perform disk operations. One indicator of
memory sufficiency is how much the size of the Inetinfo process working set
varies in response to general memory availability on the server.

You can use the Memory: Available Bytes counter as an indicator of memory
availability and the Process: Working Set: Inetinfo counter as an indicator of the
size of the working set of the Internet Information Server process. Be sure to
examine data collected over time, because these counters display the last value
observed, rather than an average.

Page Faults and the Inetinfo Working Set

When available bytes fall below about 4 MB, the system attempts to provide more
available bytes by taking memory away from the working sets of procésses. This
strategy increases the rate of page faults because each process must now retrieve
data that was once in its working set from disk or from elsewhere in memory.
When the rate of page faults for a particular process rises, the system attempts to
expand the working set of that process to lower the page fault rate. The sizes of
the working sets fluctuate accordingly.

The page fault counters for a process are incremented when the process requests
code or data that is not found in its working set. The data might be found
elsewhere in memory, such as in the file system cache or in the working set of
another process; or in transition to disk. The system might also have to read the
data from disk.

There are two kinds of page faults. The page faults that affect performance
significantly are hard faults, which require reading from disk to retrieve a
referenced page. Soft faults, which are page faults resolved when the page is
found elsewhere in physical memory, interrupt the processor but have much less
effect on performance. Unfortunately, the Process: Page Faults/sec counter
includes both hard and soft faults; there are no counters for measuring the hard
faults attributable to each process separately. However, Memory: Page Reads/sec
and Memory: Pages Input/sec are good indicators of hard faults for the whole
system.

Chapter 4 Performance Tuning and Optimization 103

Compare your data on the size of the Inetinfo working set to the rate of page
faults attributed to the working set. Use the Process: Working Set: Inetinfo
counter as an indicator of the size of the working set. Use the Process: Page
Faults/sec: Inetinfo counter to indicate the rate of page faults for the IIS process.
When you have reviewed data on the varying size of the Inetinfo working set, you
can use its page fault rate to determine whether the system has enough memory to
operate efficiently. If the system is not able to lower the page fault rate to an
acceptable level, you should add memory to improve performance.

Monitoring the IS Object Cache

The IIS service maintains the IIS Object Cache, a cache of objects that Active
Server Pages and the Web, FTP, and SMTP services use frequently.

The Object Cache is also used for objects that are hard to retrieve. The IIS Object
Cache is designed to improve the performance of IIS by keeping these objects
readily available to the process. The primary components of the IIS Object Cache
are open file object handles and directory listings, but the cache also stores other
service-specific objects.

The IIS Object Cache is part of the working set of the IIS process in physical
memory. The Object Cache can be paged to disk if memory is not sufficient to
support a large enough working set for the IIS process. It is important to provide
enough physical memory to maintain the Object Cache in the working set.

You can measure the size and effectiveness of the IIS Object Cache by using
Performance Monitor.

104

Internet Information Server Resource Kit

Using Performance Monitor to Monitor the IIS Object Cache

Performance Monitor includes a set of extensible counters you can use to monitor
the IIS services. These counters are installed in Performance Monitor when you
run IIS Setup.

For descriptions of the IIS counters, select Add to Chart from the Edit menu in
Performance Monitor; then select the counter name and click the Explain button.
Note that many of the IIS counters display the last observed value or a cumulative
count, not an average value or rate.

Performance Monitor includes five performance objects for measuring I1IS

“performance:

» Internet Information Services Global
= Web Service

= Active Server Pages

- FTP Service

= SMTP Server

The following table lists the counters recommended for monitoring the IIS Object
Cache. You should log the counters over time to record trends in the size, content,
and effectiveness of the IIS Object Cache.

Chapter 4 Performance Tuning and Optimization 105

Table 4.2 Performance Monitor Counters for the IIS Object Cache

Counter

Indicates

Internet Information Services Global:

Cache Hits

Internet Information Services Global:

Cache Misses

Internet Information Services Global:

Cache Hits %

A measure of the efficiency of the IIS Object
Cache. These counters demonstrate how often
data sought in the IIS Object Cache is found.
Internet Information Services Global: Cache
Misses indicates how often the system must
search elsewhere in memory or on disk to
satisfy a request.

The first two of these counters display totals
since the service was started. Internet
Information Services Global: Cache Hits %
displays an instantaneous value, not an average
over time.

Internet Information Services Global:

Cache Flushes

How many times an object was deleted from
the IIS Object Cache, either because it timed
out, or because the object changed.

Internet Information Services Global:

Objects

Internet Information Services Global:

Cached File Handles

Internet Information Services Global:

Directory Listings

The number of objects currently stored in the
IIS Object Cache.

Monitoring a Remote Computer

When you are monitoring a server remotely, the Internet Information Services
Global, Active Server Pages, Web Service, FTP Service, and SMTP Server
performance objects and counters appear in Performance Monitor only when the
related IIS service is running on the computer being monitored. If you do not see
these objects in the Add to Chart dialog box, close Performance Monitor on your
computer, start the IIS service on the computer being monitored, and then start

Performance Monitor again.

Note If the objects and counters still do not appear in the Add to Chart dialog

" box, or if they appear intermittently, make certain that no one else is using
Performance Monitor to monitor the remote computer. All remote users must
restart Performance Monitor after the IIS service is started for any of them to see
the IIS counters. Also, check the Event Viewer application event log for errors.
Errors in the service or in loading the counters can also prevent Performance

Monitor from displaying the counters.

106

Internet Information Server Resource Kit

Analyzing the IS Object Cache Data

The Performance Monitor counters for IIS monitor three different aspects of the
TIS Object Cache: its contents, its size, and its performance. This section explains
how to interpret the data you collect by using the Performance Monitor IIS
counters.

Analyzing IIS Object Cache Contents

You can use the Performance Monitor counters to reveal the contents of the IIS
Object Cache. The Objects counter counts all objects. The Cached File Handles
and Directory Listings counters are subsets of the Objects counter. At any given
time, the difference between the total number of objects and the sum of Cached
File Handles and Directory Listings is equal to the number of other objects stored
in the cache. The Directory Listings counter is most important to servers running
the FTP service.

When interpreting the counters, remember that they show the most recently
observed value, not a long-term average, unless they specify otherwise.

Analyzing the Performance of the lIS Object Cache

Cache performance is judged by how often objects sought in the cache are found
there. Frequent cache misses harm performance if they result in disk I/O. There
are no fixed standards for cache performance, although a value of 80 to 90 percent
for Cache Hits % is considered to be excellent for sites with many static files. If
Cache Hits and Cache Hits % are very low or Cache Misses is quite high, the
cache could be too small to function effectively. Adding memory increases the
cache size and should improve its performance.

Cache flushes can also affect the performance of the IIS Object Cache. Cache
flushes are regulated, in part, by an internal timer. The timer activates the object-
cache scavenger, which deletes expired objects. Objects are flushed from the
cache if they change or if they time out before they are reused. If the timer is too
quick, objects can be flushed from the cache too frequently. If the timer is too
slow, objects can be wasting precious physical memory space.

To measure cache flushes, compare the number of cache flushes over time to the
number of cache misses and to the rate of page faults of the IIS process (as
indicated by the Process: Page Faults/sec: Inetinfo counter. It is important to
observe these values over time. Like the other global IIS counters, Cache Flushes
displays an instantaneous value, not an average. If a high rate of cache flushes is
associated with elevated cache misses and page faults, it is possible that the cache
is being flushed too frequently.

Chapter 4 Performance Tuning and Optimization 107

If you suspect that cache flushes are occurring too often or not often enough, you
can change the rate at which unreferenced objects are flushed from the IIS cache.
Make sure you have ample memory before increasing the time between flushes.
The cache flush time defaults to 30 seconds; to change it, add the
ObjectCacheTTL key to the registry if it is not already present. Put this key in:

HKEY_LOCAL_MACHINE\System
\CurrentControlSet
\Services
\Inetinfo
\Parameters

Monitoring the File System Cache

The file system cache is an area of physical memory reserved for frequently and
repeatedly used file system data. This cache is maintained by the Windows NT
Cache Manager for use by all processes. This section explains how IIS uses the
file system cache, how to monitor the size and efficiency of the cache, and how to
interpret the data you collect.

How IIS Uses the File System Cache

The IIS services rely on the operating system to store and retrieve frequently used
Web pages and other files from the file system cache. The file system cache is
particularly useful for servers of static Web pages, because Web pages tend to be
used in repeated, predictable patterns. Files read repeatedly are more likely to be
placed in the cache.

Also, IIS always reads sequentially. Sequential reading takes advantage of a
Windows NT Cache Manager feature called a read ahead. A read ahead occurs
when the Cache Manager’s predictive algorithms detect sequential reading and
begin to read larger blocks of data in each read operation. Read aheads can
provide a significant performance boost to a process.

The IIS services use the file system cache and the IIS Object Cache. Sometimes,
the caches are used together. When a thread of an IIS service needs to open a file,
the thread requests a file handle from the operating system. When the thread
receives the handle, the thread uses the handle to open the file. Then, if space
permits, the thread stores the handle in the IIS Object Cache and the system stores
the file data in the file system cache. Later, if that thread, or any other thread,
needs the file, the file handle can be retrieved from the IIS Object Cache and the
file contents can be retrieved from the file system cache.

108 Internet Information Server Resource Kit

Using Performance Monitor to Monitor the File System

Cache

Performance Monitor includes several counters in the Memory and Cache
performance objects that monitor the size and effectiveness of the file system
cache. The following table lists these counters.

Table 4.3 Performance Monitor Counters for the File System Cache

Counter

Indicates

Memory: Cache bytes

Memory: Cache faults/sec

Cache: MDL Reads/sec

Cache: Pin Reads/sec

Cache: MDL Read Hits %

The size of the cache, in bytes. This counter
displays the last observed value; it is not an
average.

How often data sought in the file system
cache is not found there. The count includes
faults for data found elsewhere in memory,
as well as faults that require disk operations
to retrieve the requested data.

This counter displays the number of faults,
without regard for the number of pages
retrieved in response to the fault.

How often the system attempts to read large
blocks of data from the cache.

Memory Descriptor List (MDL) Reads are
read operations in which the system uses a
list of the physical address of each page to
help it find the page.

MDL Reads are often used to retrieve
cached Web pages and FTP files.

How often the system attempts to read
recently accessed blocks of data from the
cache. This counter is more accurate for
ASP content than the MDL Reads/sec
counter is.

Pin counters display reads of cache data
that is held because it has just been read or
written. They reflect cache data that is used
repeatedly.

How often attempts to find large sections of
data in the cache are successful.

You can use the Cache: MDL Read Hits %
counter to calculate the percentage of MDL

misses. Misses are likely to result in disk
I/o.

continued

Chapter 4 Performance Tuning and Optimization 109

Counter

Indicates

Cache: Pin Read Hits %

Cache: Data Maps/sec

Cache: Read Aheads/sec

Memory: Page Faults/sec

Memory: Page Reads/sec

How often attempts to find recently
accessed sections of data in the cache are
successful. This counter is more accurate
for ASP content than the MDL Read Hits %
counter is.

You can use the Cache: Pin Read Hits %
counter to calculate the percentage of
misses. Misses are likely to result in disk
I/0O. Pin counters display reads of cache
data that is held because it has just been
read or written. They reflect cache data that
is used repeatedly.

How often pages are mapped into the cache
from elsewhere in physical memory or from
disk. :

To measure the percentage of data maps
from elsewhere in physical memory, use
Cache: Data Map Hits %. The inverse of
Cache: Data Map Hits % indicates data
maps from disk.

A measure of sequential reading from the
cache. When the system detects sequential
reading, it anticipates future reads and reads
larger blocks of data. The read ahead
counters are a useful measure of how
effectively an application uses the cache.

Hard and soft faults in the working set of
the process. This counter displays the
number of faults, without regard for the
number of pages retrieved in response to
the fault.

Hard faults in the working sets of processes
and in the file system cache.

You should log this data for several days. You can use bookmarks in Performance
Monitor to note times of unusually high and low server activity.

110

Internet Information Server Resource Kit

Analyzing the File System Cache Data

You can use the data you collect in Performance Monitor to evaluate whether
your server has enough memory to support an effective file system cache. This
evaluation consists of the following three steps:

= Determine how the size of your server’s file system cache varies over time.

= Determine the extent to which the performance of your server’s cache varies
with the size of the cache.

= Verify that the server has enough memory to support an effective cache even
when. the server is most active.

The following sections provide information to help you with this evaluation.

Analyzing Cache Size Data

The Windows NT Cache Manager adjusts the size of the file system cache based
on whether a computer is a workstation or a server, the amount of physical
memory in the computer, and the applications and services the computer is
supporting. In general, it is counterproductive to override the Cache Manager and
manipulate the cache size directly. If the cache is too small to be effective, it is
best to increase the amount of physical memory on the computer, or to redistribute
memory-intensive applications to other servers.

The Performance Monitor Memory: Cache Size counter is a useful indicator of the
size of the file system cache. Task Manager also displays the size of the file
system cache in the File Cache field under Physical Memory on the
Performance tab.

You can use also use Performance Monitor or PerfLog to log the Memory: Cache
Size counter. A log of cache size reveals how the size of the file system cache
changes over time. Compare this data to a measure of general memory
availability, such as data from the Memory: Available Bytes counter. In general,
when memory is scarce, the system trims the cache and when memory is ample,
the system enlarges the cache.

Note the points in the log when the cache is smallest. Keep track of how small the
cache gets and how often the cache is small. Also, note how much system
memory is available when the cache size is reduced. This data is useful when
associating the size of the cache to its performance.

Chapter 4 Performance Tuning and Optimization 111

Analyzing Cache Performance Data

You can use the Performance Monitor data to evaluate the performance of the file
system cache on your server. A hit is recorded when requested files are found in
the cache. A miss or fault is recorded when requested files are not found. Misses
and faults indicate how often the system needs to do extra work to retrieve files
from somewhere other than the cache.

To evaluate the performance of your server’s file system cache, chart a
Performance Monitor log of Cache: MDL Read Hits %. The file system cache is
performing well when this value is highest. Values near 100 percent are not
uncommon on IIS servers with ample memory. Subtract the percentage of hits
from 100 to determine the number of misses. Misses on MDL Reads usually
require disk operations to find the requested data.

MDL Reads are the most common type of read used for retrieving many
contiguous pages. Typically, MDL Reads are the most common read operation on
servers running Internet Information Server. To determine which type of cache
read is most common on your server, create a Performance Monitor report of the
rates of different types of cache reads. Include the Cache: Copy Reads/sec, Cache:
Data Maps/sec, Cache: Fast Reads/sec, Cache: MDL Reads/sec, and Cache: Pin
Reads/sec.

You can also use the Nfemory: Cache Faults/sec counter to indicate how often
data sought in the file system cache is not found there. This value should be as
small as possible. The Memory: Page Faults/sec and Memory: Page Reads/sec
counters are included to help you relate the fault rate of the cache to the fault rate
in the system as a whole. Memory: Cache Faults/sec is a component of Memory:
Page Faults/sec. The ratio of Memory: Cache Faults/sec to Memory: Page
Faults/sec indicates the proportion of faults occurring in the cache as opposed to
the working sets of processes.

A high rate of cache faults can indicate a memory shortage. But it can also
indicate a less than optimal organization of data on disk. If the files used in
sequence are stored on the same logical partitions of the same disk, they are more
likely to benefit from the Windows NT Cache Manager’s optimizing strategies,
such as read aheads. The Memory: Read Aheads/sec counter displays the rate of
sequential reading from the cache.

112

Internet Information Server Resource Kit

Comparing Cache Size and Performance Data

You can determine the extent to which the performance of the file system cache
varies with the size of the cache. Compare the size of the cache over time to the
rate at which data sought in the cache is found there.

Use the Memory: Cache Bytes counter as an indicator of the size of the cache.
Use Memory: Cache Faults/sec as an indicator of the rate of cache misses, and
Cache: MDL Read Hits % as an indicator of the rate of cache hits.

If Memory: Cache Faults/sec rises and Cache: MDL Read Hits % falls when the
file system cache is smaller, the cache might be too small to be of much benefit to
the server. A less effective file system cache is likely to degrade the performance
of an IIS server significantly, especially if the size of the cache is often reduced
due to a general memory shortage.

If cache performance is poor when the cache is small, use the data you have
collected to infer why the cache size is reduced. Choose a period when the cache
is small and note the available memory on the server and the processes and
services running on the server, including the number of simultaneous connections
supported.

When you add physical memory to your server, the system allocates more space
to the file system cache. A larger cache is almost always more efficient. In
addition, defragmenting your disks makes it more likely that related pages are
copied into the cache together and this improves the hit rate of the cache. It is also
a good idea to use the NTFS (rather than the FAT) file system. Finally, consider
reducing the workload on the server by moving some of the load to another
server.

Chapter 4 Performance Tuning and Optimization 113

Suggestions for Optimizing Memory on an lIS Server

Servers running IIS, like all high-performance file servers, benefit from ample
physical memory. Generally, the more memory you add, the more the servers use
and the better they perform. IIS requires a minimum of 32 MB of memory; at least
64 MB is recommended. If you are running memory-intensive applications, your
server could require a much larger amount of memory to run optimally (for
example, most of the servers that service the microsoft.com Web site have 512
MB of memory).

Here are a few suggestions for optimizing memory performance without adding
memory:

Improve data organization. Keep related Web files on the same logical
partitions of a disk. Keeping files together improves the performance of the
file system cache. Also, defragment your disks. Even well-organized files take
more time to retrieve if they are fragmented.

Try disk mirroring or striping. The optimum configuration is to have enough
physical memory to hold all static Web pages. However, if pages must be
retrieved from disk, use mirroring or striping to make reading from disk sets
faster. (See the section on RAID in Chapter 3, “Capacity Planning.”) In some
cases, a caching disk controller may help.

Replace or convert CGI applications. CGI applications use much more
processor time and memory space than equivalent ASP or ISAPI applications.
For more information on ASP, ISAPI, and CGI applications, see the section on
“Monitoring Web Applications,” later in this chapter.

Enlarge paging files. Add paging files and increase the size of your paging
files. Windows NT creates one paging file on the system disk, but you can also
create a paging file on each logical partition of each disk.

Retime the IIS Object Cache. Consider lengthening the period that an unused
object can remain in the cache (use the ObjectCacheTTL setting in the
registry).

Change the balance of the file system cache to the IIS working set. By default,
servers running Windows NT are configured to give preference to the file
system cache over the working sets of processes when allocating memory
space. Although IIS-based servers benefit from a large file system cache, the
Maximize Throughput for File Sharing setting often causes the IIS pageable
code to be written to disk, which results in lengthy processing delays. To avoid
these processing delays, set Server properties to the Maximize Throughput
for Network Applications option.

114

Internet Information Server Resource Kit

» To change Server properties:

1. Double-click the Network icon in Control Panel.

2. Click the Services tab.

3. Click Server to select it, and then click the Properties button.
4

. Click Maximize Throughput for Network Applications, and then click
OK.

5. Restart the computer.

Limit connections. If your server is running out of memory, limiting the
number of connections on the server might help because some physical
memory (about 10 KB per connection) is consumed by the data structures the
system uses to keep track of connections. To limit connections, right-click the
service in Internet Service Manager, then click Properties; change the value in
the Limited To box on the main tab for the service. By default, the FTP
service is limited to 100,000 connections; the Web and SMTP services are not
limited by default.

Eliminate unnecessary services. Windows NT provides some services that are
not required by IIS; all services use memory, so you can conserve memory by
turning off those that your system is not using. See the sidebar “Windows NT
Services and IIS” for details.

Chapter 4 Performance Tuning and Optimization

115

Windows NT Services and IS

The list below outlines the Windows NT services you need to successfully
run IIS. Note that the requirements below are for IIS itself. Your particular
configuration, especially on an intranet, may have different requirements.
For example, on some intranets you may require WINS and DHCP.
Moreover, the fact that a particular service is not required says nothing
about whether it is useful—you must determine that based on your
configuration and particular needs.

Be cautious when disabling Windows NT services; services may exhibit
complex interdependencies. The following listings are intended only as”
guidelines.

Required

= Event Log

= License Logging Service

= Windows NT LM Security Support Provider

= Remote Procedure Call (RPC) Service

» Windows NT Server (or Windows NT Workstation)
= IIS Admin Service

= MSDTC

= Protected Storage

= Server

» Workstation

May Be Required
= RPC Locator. Required for remote administration from this computer.

= Server Service. This can, if necessary, be turned off, but User Manager
requires it, as do some other services.

= Telephony Service. Required if access is via dialup.

116

Internet Information Server Resource Kit

Typically Not Required

The three services listed here are not required unless the administrator
wants to use the Find All Servers option in Internet Service Manager.

NetBIOS Interface.
NWLink NetBIOS.

WINS Client (TCP/IP). May be required for intranet use, particularly if
no DNS server is present.

Not Required

Alerter.
ClipBook Server.

DHCP Client. Not required as long as all Network interfaces use a
single IP address.

Directory Replicator. This is, however, a common service to use on
large multiserver Web installations, to synchronize content among the
servers.

Messenger.

Net Logon. Recommended, but not required if no Windows NT domain
or remote logons are needed.

Network DDE & Network DDE DSDM.
Network Monitor Agent.

Plug & Play. Recommended, but not required.
Simple TCP/IP Services.

Spooler.

TCP/IP NetBIOS Helper.

Uninterruptible Power Supply (UPS).

WINS Client (TCP/IP).

Network Monitor Agent.

NWLink IPX/SPX Compatible Transport (unless you lack TCP/IP or
another transport).

Starting or Stopping Services

To start or stop a service, double-click the Services icon in Control Panel;
select a service and click Start or Stop. To disable a service so that it does
not start again when Windows NT is restarted, click Startup and select
Disabled under Startup Type.

Chapter 4 Performance Tuning and Optimization 117

Preventing Processor Bottlenecks

Servers running IIS rely on the speed and efficiency of their processors. The IIS
code is multithreaded for efficient scaling on single-processor and multiprocessor
computers, and is largely self-tuning. Nonetheless, processor bottlenecks are a
potential problem on very active servers. :

A processor bottleneck occurs when one or more processes occupy nearly all of
the processor time of all processors on the computer. In a bottleneck, the ready
threads of processes must wait in a queue for processor time. All other activity
comes to a halt until the queue is cleared. Processor bottlenecks can occur on
multiprocessor computers even when only a single processor is fully loaded, if the
work in the queue cannot be or is not distributed to the other processors. By
definition, adding or improving other components of the computer, such as
memory, disks, or network connections, does not overcome the performance
problem, and can make it worse if those components increase processor loading.

This section discusses strategies for long-term monitoring of processor activity
and processor queues; describes how IIS uses server processors, and how you can
monitor and measure processor activity; and concludes with suggestions for
preventing processor bottlenecks.

Monitoring Server Processors

The processors in a server running Internet Information Server must support the
operating system and processes unrelated to Internet services, as well as IIS
processes. The processors must also support applications related to Internet
services, such as those that assemble data from SQL Server databases or generate
dynamic Web pages.

You have a choice of several tools you can use to monitor processor performance.
Task Manager, Microsoft Web Capacity Analysis Tool (WCAT, available on the
IIS Resource Kit CD), PerfLog, and Performance Monitor are commonly used to
monitor processors on Windows NT-based servers. Remember that all tools use
system resources. Monitor the processor use of the process in which the tool runs.
Then, before you analyze your data, subtract the processor time of the tool process
from the data.

118

Internet Information Server Resource Kit

Using Performance Monitor to Monitor Processor Activity

You can use PerfLog to log data from the following counters automatically on a
regular or periodic basis, or use Performance Monitor to log the System and

Processor objects.

Table 4.4 Performance Monitor Counters for Processor Activity

Counfér

Indicates

System: Processor Queue Length

Threads waiting for processor time. If this
value exceeds 2 for a sustained period of
time, the processor may be a bottleneck.

System: % Total Processor Time

Processor: % Processor Time

Processor: % Privileged Time

Processor: % User Time

Process: % Processor Time

The sum of processor use on each processor
divided by the number of processors.

Processor use on each processor. This
counter reveals unequal distribution of
processor load.

Proportion of the processor's time spent in
privileged mode. In Windows NT, only
privileged mode code has direct access to
hardware and to all memory in the system.
The Windows NT Executive runs in
privileged mode. Application threads can be
switched to privileged mode to run
operating system services.

Proportion of the processor's time spent in
user mode. User mode is the processor
mode in which applications like the IIS
services run.

The processor use attributable to each
Processor.

You can use the preceding Performance Monitor counters to monitor general

processor performance.

Chapter 4 Performance Tuning and Optimization 119

Paging and Processor Bottlenecks

The most common cause of an apparent processor bottleneck is a memory
bottleneck. If the system does not have enough physical memory to store the code
and data programs needed, the processor spends substantial time paging. Before
adding or upgrading processors or disks, you should monitor the memory in your
server. For more information about monitoring memory, see “Monitoring Memory
Usage,” earlier in this chapter.

Analyzing Processor Activity Data

Of the counters listed, the System: Processor Queue Length counter is the most
important for analyzing processor activity data. This counter displays the number
of ready threads in the single queue shared by all processors. Sustained high rates
of processor activity, which leave little excess capacity to handle peak loads, are
often associated with processor bottlenecks. Processor activity in and of itself
indicates only that the resource is used, not that maximum use of the resource is a
problem. However, a long, sustained queue indicates that ready threads are being
kept waiting because a processor cannot handle the load assigned to it.

A sustained processor queue length of two or more threads (as indicated by the
System: Processor Queue Length Counter) typically indicates a processor
bottleneck. You might consider setting a Performance Monitor alert to notify
administrators when the processor queue length reaches an unacceptable value.

The Processor: % Processor Time counter is most often used as a general measure
of processor activity on both single-processor and multiprocessor computers.
System: % Total Processor Time is included for monitoring system-wide
processor use on multiprocessor computers. On single-processor computers,
System: % Total Processor Time always equals Processor: % Processor Time. On
multiprocessor computers, System: % Total Processor Time represents the active
time of all processors divided by the number of processors.

If the server workload is shared equally among all processors, System: % Total
Processor time is an excellent measure of processor activity. However, this
counter hides bottlenecks resulting from unequal processor loads. (If one
processor is 100 percent busy and three other processors are idle, the % Total
Processor Time is 25 percent.)

Windows NT is designed for efficient scaling and includes several strategies for
balancing processor load. An application, however, can create an imbalance by
setting a processor affinity, which binds a process to a single processor. For
detailed processor monitoring, you need to chart Processor: % Processor Time for
each processor on the computer.

120 Internet Information Server Resource Kit

It’s not unusual to encounter the following challenges in analyzing processor data:

= A large processor queue when all processors are busy. Create a histogram of
Process: % Processor Time for each process. The histogram shows the
processor time consumed by each process.

= A single bar rises above all of the others. The process represented by the bar
might be consuming a disproportionate share of processor time and causing a
bottleneck. Consider replacing the application running in the process, or
moving the process to another server.

= The processors are being shared equally by several processes. Consider
upgrading or adding processors. Multithreaded processes benefit most from
additional processors.

For more information on processor use by applications related to Internet
Information Server, see “Monitoring Web Applications,” later in this chapter.

Monitoring Connections

It is important to determine how your server responds when it is managing
different numbers of connections. When you have collected data on connection
trends, you can associate data about general server performance with the number
of connections being served.

This section discusses Why connections have performance overhead, how you can
use Performance Monitor and other tools to measure the overhead, and how to
interpret the data you gather.

The Performance Overhead of Connections

Each connection that an IIS service establishes consumes some processor time.
The network adapter card interrupts the processor to signal that a client has
requested a connection. Further processing is required to establish and maintain
the connection, to fulfill client requests sent on the connection and, when the
connection is closed, processing is required to delete the structures that serviced
the connection. Each time a connection is established, the load on the server
increases.

Chapter 4 Performance Tuning and Optimization 121

One aspect of connection overhead is the time it takes to search the Transmission
Control Block (TCB) table. TCP creates and maintains transmission control
blocks (TCBs) to store data about connections. This might include data about the
precedence of the connection and its local and remote socket numbers. The TCBs
are stored in a hash table for efficient control. The hash table is stored in the
operating system's nonpaged memory pool.

IIS includes several features to optimize its handling of connections. Among these
features are HTTP Keep-Alives.

HTTP Keep-Alives maintain a connection even after the connection’s initial
request is complete. This feature keeps the connection active and available for
subsequent requests. Keep-Alives are implemented to avoid the substantial cost of
establishing and terminating connections. Both the client and the server must
support Keep-Alives. Keep-Alives are supported by IIS version 1.0 and later,
Internet Explorer version 2.0 and later, and Netscape Navigator version 2.0 and
later.

HTTP Keep-Alives are different from and independent of TCP/IP Keep-Alives.
TCP/IP Keep-Alives are messages sent to determine whether an idle connection is
still active.

HTTP Keep-Alives are enabled in IIS by default. Although Keep-Alives
significantly improve bandwidth performance on most servers, you can modify or
eliminate them if they are not needed. You can also measure their effect on the
performance of your system. To test their effect on the server, you can disable
them, but it is recommended that you re-enable them when the test is concluded,
to maintain the performance of the server.

In the Internet Service Manager, you can disable Keep-Alives by right-clicking a
site, clicking Properties, selecting the Performance tab, and clearing the HTTP
Keep-Alives Enabled check box.

122

Internet Information Server Resource Kit

Using IIS Logging to Monitor Connections

You can use IIS logging to monitor the number of connections your server makes
and to track patterns of client demand for your server. For more information about
configuring and interpreting IIS logs, see the IIS online documentation.

Using Performance Monitor to Monitor Connections

Performance Monitor can monitor the number of simultaneous connections to the
IIS services and the processor use of the process in which the IIS services run.
The following table lists the Performance Monitor counters that monitor
connections to IIS.

Table 4.5 Performance Monitor Counters for IIS Service Connections

Counter Indicates

Web Service: Current Connections The number of connections maintained by

FTP Service: Current Connections the service during the most recent sample
interval.

Web Service: Maximum Connections The largest number of connections

FTP Service: Maximum Connections maintained simultaneously since the server
was started.

Because these counters display the last value they observe, and not an average,
you must log these values over time to collect reliable data.

Also, these counters are likely to exaggerate the number of simultaneous
connections because some some entries might not yet be deleted even though the
connection is closed.

Note The Active Server Pages, Web Service, FTP Service, and SMTP Server
counters collect data at the Open Systems Interconnectivity (OSI) Application
Layer. Counts of TCP/IP connections might not equal HTTP, FTP, and SMTP
connections if any connections were blocked, rejected, or reset between the
Transport and Application layers. For details on monitoring connections at lower
layers, see the section on “Monitoring Bandwidth and Network Capacity,” later in
this chapter. '

Chapter 4 Performance Tuning and Optimization 123

Analyzing Connection Data

By monitoring numbers of connections you can identify patterns of client demand
for your server. Classify the data in your Performance Monitor logs into intervals
by the numbers of connections served during the interval. Observe the length of
the processor queue and the processor use on each processor during periods of
small, moderate, and large numbers of connections. This data shows how your
configuration responds to each load level.

You can identify a processor bottleneck at each interval by:

= A long, sustained processor queue (more than two threads).
= High use rates on one or more processors.

= A curve in the graph of the Current Connections counter on any IIS service
performance object that reaches a high value and then forms a plateau. This
pattern often indicates that additional connections are being blocked or
rejected.

To prevent processor bottlenecks, make certain that a lengthy processor queue
isn't forming when you serve large numbers of connections. Typically, you can
avoid a bottleneck during peak time by setting the connection limit to twice the
average value of Current Connections. If the processor regularly becomes a
bottleneck when servicing large numbers of connections, you might consider
upgrading or adding processors, or limiting the maximum number of connections
on the server. Limiting connections might cause the server to block or reject
connections, but it helps to ensure that accepted connections are processed
promptly.

Adminstrators can use Internet Service Manager to limit the number of
connections for Web and FTP, and SMTP services. Right-click the service, click
Properties, and then change the Limited To value on the site or service tab.

124

Internet Information Server Resource Kit

Monitoring Threads

IIS runs in a multithreaded process designed for efficient scaling on single-
processor and multiprocessor systems. Threads are the sequences of execution in
each process that run the process code on the processor.

In the IS process, there is no simple association between threads and connections
or threads and requests. Nor is there an easily quantifiable relationship between
the optimum number of threads in the process and the number of files served, the
number of requests filled, or the number of connections maintained.

The relationship between threads, connections, and requests is complex because
IIS uses the worker thread model, rather than the simpler, but less efficient,
thread-per-client model. Instead of dedicating a thread to each connection or
request, IIS dedicates one set of threads, the worker threads, to the task of
accepting and monitoring all connections. This frees other threads to do the
remaining work of the application, such as authenticating users; parsing client
requests; locating, opening, and transmitting files; and managing internal data
structures.

Even though you cannot associate individual threads and connections or requests,
you can:

= Count the number of threads in the IIS process.
= Measure the amount of processor time each thread gets.

= Associate the number of threads (and processor activity) with the number of
current connections, number of files served, and other measures of server
activity and performance.

Several tools monitor the threads in a process, including Process Viewer, Process
Explode, PerfLog, and Performance Monitor. Individual threads are difficult to
monitor, especially if they frequently start and stop. Threads are also costly to
measure. Be sure to monitor the overhead (by using Process: % Processor Time)
of the process in which your tool runs, and subtract it from the data you collect.

Chapter 4 Performance Tuning and Optimization 125

Using Performance Monitor to Monitor IIS Threads

You can use Performance Monitor to monitor the threads in the IIS process. The
following table lists the Performance Monitor counters that monitor threads. You
can add to this list any counters you use to associate numbers of threads with
performance, such as Web Service: Current Connections, Web Service: Bytes/sec,
or Server: Logon/sec.

Table 4.6 Performance Monitor Counters for Monitoring IIS Threads

Counter Indicates

Process: Thread Count: Inetinfo The number of threads created by the
process. This counter does not indicate
which threads are busy and which are idle.

This counter displays the last observed
value, not an average.

Thread: % Processor Time: Inetinfo => How much processor time each thread of
Thread # the Inetinfo process is using.

Thread: Context Switches/sec: Inetinfo => How many times the threads of the IIS

Thread # service are switched onto and off of a
processor. This counter is an indicator of
the activity of the threads of the IIS service
process.

Analyzing the IS Thread Data

You can chart the Process: Thread Count: Inetinfo value over time to see how
many threads the Inetinfo process creates and how the numbers of threads vary.
Then, observe the processor time for each thread in the process (Thread: %
Processor Time: Inetinfo => Thread #) during periods of high, medium, and low
server activity (as indicated by the other performance measures).

You should also observe the patterns of context switches over time. Context
switches indicate that the kernel has switched the processor from one thread to
another. A context switch occurs each time a new thread runs, and each time one
thread takes over from another. A large number of threads is likely to increase the
number of context switches. Context switches allow multiple threads to share the
processor, but they also interrupt the processor and might interfere with processor
performance, especially on multiprocessor computers. As long as processor
utilization is under 70 percent, however, this is not an issue.

126

Internet Information Server Resource Kit

Optimizing Thread Values

By default, the IIS process creates up to 10 threads per processor. IIS continually
adjusts the number of threads in its process in response to server activity. For
most systems, this tuning is sufficient to maintain the optimum number of threads,
but you can change the maximum number of threads per processor, if your system
requires it.

If the threads in the IIS process appear to be overworked or underutilized,
consider these tuning strategies:

» If nearly all of the threads of the IIS process are busy nearly all of the time,
and the processors are at or near their maximum capacity, consider distributing
the workload among more servers.

You can also add processors, but do so cautiously. Unnecessary or underused
processors will degrade performance, not improve it.

= If nearly all threads appear busy, but the processors are not always active,
consider increasing the maximum number of threads per processor. Do not
increase the maximum number of threads unless you have processors with
excess capacity. More threads on the same number of processors cause more
interrupts and context switches, and result in less processor time per thread.

To adjust the maximum number of threads in the IIS service process, use a
registry editor to add the MaxPoolThreads value entry to the registry.
MaxPoolThreads does not appear in the registry unless it is added. It must be
added to the following:

HKEY_LOCAL_MACHINE\System
\CurrentControlSet
\Services
\Inetinfo
\Parameters

MaxPoolThreads is calculated in units of threads-per-processor. If this value
entry does not appear in the registry, Internet Information Server allocates a
maximum of 10 threads per processor. Do not set this value below 5 or above 20.

Continue monitoring the system carefully to make sure that changing the number
of threads achieves the desired effect.

Chapter 4 Performance Tuning and Optimization 127

Monitoring Interrupts and DPCs

One of the processor's tasks is to service interrupts and deferred procedure calls
(DPCs) from all of the computer's subsystems. On a busy server running IIS, -
much of the processor's time can be spent servicing interrupts and DPCs,
especially from the disk subsystem and the network adapter cards.

This section describes some methods of measuring how much time your server's
processors are spending handling interrupts and DPCs from the network adapter
cards. It discusses how network card interrupts and DPCs are distributed among
processors in multiprocessor computers, and suggests some methods of tuning
DPC distribution to improve processor performance.

Describing Interrupts and DPCs

Interrupts are very high-priority signals that halt the processor’s activity and
prepare the processor for a new activity, if only very briefly. Interrupts consume
processor time and disrupt the processor’s work, but they are essential to a
preemptive multitasking system.

Client connections involve many interrupts. The network adapter card generates

an interrupt when it receives a new packet or completes a transmission. The

system collects some very basic information and then adds one or more DPCs to
- the queue to handle the next steps in the process.

DPCs are similar to interrupts except that they have a lower Interrupt Request
Level (IRQL). (IRQL is the priority scale used for objects like interrupts. It is
different from the priority scale that the microkernel uses to schedule processes
and threads.) Unlike interrupts, DPCs can be delayed, allowing the processor to
complete higher-priority work. When the DPC gets processor time, the work of
establishing the connection can proceed.

128

Internet Information Server Resource Kit

Interrupts and Processor Performance

Commonly used server processors, such as the Intel Pentium and Pentium Pro,
and RISC processors, can handle thousands of interrupts and DPCs without being
consumed by the task. An active server running IIS at high bandwidth, however,
can interrupt the processor often enough to impede performance.

To help improve processor performance, some newer network card drivers
provide an advanced feature known as interrupt moderation. When the driver
detects a high rate of interrupts from the network adapter card, the interrupt
moderation code disables interrupts and accumulates the interrupts in a buffer
instead of sending them to the processor. When the processor has completed its
work, the interrupts are re-enabled.

Monitoring interrupts and DPCs is an important part of monitoring processor
performance (and network adapter card performance) on a server running IIS. On
a single-processor system, a very high level of interrupts can indicate a problem
with the network card or disk adapter, as well as an overworked processor. On a
multiprocessor system, data about interrupts and DPCs might also reveal a poor
distribution of workload among processors.

Using Performance Monitor to Monitor Interrupts and DPCs

You can use Performance Monitor to monitor the interrupts and DPCs in the IIS
process. The following table lists the Performance Monitor counters that monitor
interrupts and DPCs.

‘When monitoring, chart these counters along with standard measures of processor
time, such as System: Processor Queue Length and Process: % Processor Time:
Inetinfo. If you are monitoring a multiprocessor computer, be sure to include
Processor: % Processor Time. This counter displays the processor use of each
processor over time. You might also include Processor: % Privileged Time
because interrupts and DPCs are processed in privileged mode.

Chapter 4 Performance Tuning and Optimization 129

Table 4.7 Performance Monitor Counters for Interrupt and DPC Monitoring

Counter

Indicates

Processor: % Interrupt Time

Processor: Interrupts/sec

Processor: % DPC Time

Processor: DPCs queued/sec

Pentium: Interrupts/sec (Pentium, but not
Pentium Pro, processors)

Pentium: Hardware interrupts received/sec
(Pentium Pro processors only)

How much time the processor is spending
processing interrupts. Interrupts are
generated when a client requests a
connection or sends data.

If processor time is more than 90 percent
and this value is greater than 15 percent, the
processor is probably overburdened with
interrupts.

The rate at which the processor is handling
interrupts.

How much time the processor is spending
processing deferred procedure calls (DPCs).
DPCs originate when the processor
performs tasks requiring immediate
attention, and then defers the remainder of
the task to be handled at lower priority.
DPCs represent further processing of client
requests.

The rate at which DPCs are added to the
processor’s queue. (This counter does not
measure the number of DPCs in the queue.)

Only INTR and NMI hardware interrupts
are counted.

The rate at which hardware interrupts are
detected by the processor’s internal
counters.

Note The Pentium performance object includes counters that display data on
interrupts and DPCs. Pentium counters are extensible Performance Monitor
counters designed to monitor Pentium processors. The counters are included on
the Windows NT Workstation Resource Kit CD in the Performance Tools group.
You must install the Pentium counters before you can use them. For detailed
instructions, see P5Perf.txt on the Windows NT Workstation Resource Kit CD.

130

Internet Information Server Resource Kit

Analyzing Data on Interrupts and DPCs

When you have collected data on interrupts and DPCs that is representative of the
general activity on your server, you can use the guidelines in this section to help
you interpret the data.

Analyzing Interrupt and DPC Rates

You can observe the rates of interrupts and DPCs during periods of high, medium,
and low server activity. Note the rate of interrupts and DPCs when processor use
is very high, especially when a processor queue is developing. '

A very high rate of interrupts can indicate a problem with a component that
generates interrupts, such as the disk subsystem or a network adapter card. Test
your components and rule out a hardware problem before proceeding.

Analyzing Processor Time

You should observe the proportion of the processor's time that is spent servicing
interrupts and DPCs. Compare the values of the Processor: % Interrupt Time and
Processor: % DPC Time counters to Processor: % Processor Time.

If a busy processor is spending the majority of its time servicing interrupts and
DPCs, the processor probably cannot function effectively and a processor
bottleneck is likely to develop. Consider upgrading or adding processors to handle
the workload.

Alternatively, if the processor has some excess capacity (that is, if the value of
Processor: % Processor Time is less than 85), or if it is spending a relatively small
amount of its time servicing interrupts and DPCs (if the value of Processor: %
Interrupt Time and Processor: % DPC Time are less than 20), you probably do not
have a problem with interrupts and DPCs.

Chapter 4 Performance Tuning and Optimization 131

Analyzing the Distribution of Interrupts and DPCs on Multiprocessor
Computers

The most common interrupt-related problem on multiprocessor computers is not
the rate of interrupts and DPCs, but their distribution among processors. To
determine whether you have a distribution problem:

= Observe the proportion of time each processor is spending servicing interrupts
and DPCs.

= Observe the rate of interrupts and DPCs for each processor.

= Note whether interrupts and DPCs are distributed equally among all processors
or whether one or more processors are servicing all of the interrupts or DPCs.

A busy processor that is servicing all of the system's interrupts or DPCs is likely
to become a bottleneck. The source of the problem is not the number of interrupts
or DPCs but the way that interrupts and DPCs are distributed among the
processors.

The following sections describe common strategies for distributing interrupts and
DPCs on Windows NT-based servers.

Interrupt Distribution

Different processor platforms use different methods to distribute interrupts. The
distribution of interrupts from network adapter cards is controlled by the
Hardware Abstraction Layer (HAL) for each processor platform. The interrupt
scheme implemented by the HAL depends on the capability of the processor.
Some processors include interrupt control hardware, such as the Advanced
Programmable Interrupt Controller (APIC) on some Pentium and Pentium Pro
processors. The APIC allows processors to route interrupts to other processors on
the computer.

You cannot control or modify the distribution of network card interrupts on your
computer. The information in this section is included to help you interpret the
interrupt data you collect and, in particular, to explain one of the reasons why one
processor can be busier than the others. Monitoring the processor that services the
majority of interrupts can help you anticipate or prevent a bottleneck.

132

Internet Information Server Resource Kit

There are many different strategies for distributing interrupts on multiprocessor
computers. Common strategies are:

= No distribution. The traditional method for managing interrupts is to send all
interrupts from all network cards to a single processor, usually the first
(lowest-numbered) processor. If your data shows that all interrupts are being
serviced by a single processor, your system may be using this method.

= Static distribution. Some systems distribute network card interrupts among
processors statically, that is, the distribution doesn't change. These systems
associate each network adapter card with a processor. The interrupts generated
by the network card are always sent to the network card’s associated
processor, regardless of whether the processor is busy or idle.

Typically, these systems associate the first (lowest-numbered) network card
with the first (lowest-numbered) processor and each subsequent network card
with each subsequent processor. If there are more network cards than
processors, the system begins its assignments again with the first processor.

If your data shows that interrupts are distributed rather evenly among
processors, your system could be one that provides static distribution. If one of
the network cards is idle or not used, static distribution results in unequal
distribution of interrupts.

= Dynamic distribution. Some systems distribute interrupts to processors
dynamically based on one or more elements of system data, such as processor
activity, The interrupts generated by a network card can be sent to any one of
the processors.

If your data shows that interrupts are almost always distributed evenly, you
probably have a system that provides dynamic distribution.

Distribution of interrupts to all processors, whether static or dynamic, is
commonly known as symmetric interrupt distribution. Symmetric interrupt
distribution is designed to improve scaling and to prevent a single processor from
becoming a bottleneck while other processors have excess capacity. It is available
on the Microsoft Windows NT 4.0 HAL for Pentium and Pentium Pro processors.
For specific information on the distribution method used for your processor
platform, consult your system vendor.

Strategies for producing the most efficient interrupt distribution systems are
evolving. You cannot change the interrupt distribution scheme on your computer,
but you can coordinate the distribution of DPCs with the distribution of interrupts.

Chapter 4 Performance Tuning and Optimization 133

DPC Distribution

The distribution of DPCs generated by network cards is a function of Ndis.sys, the
Windows NT implementation of the Network Driver Interface Specification
(NDIS). Ndis.sys is a wrapper that shields the details of the network adapter card
from the rest of the operating system. Ndis.sys controls DPC distribution on all
network cards that use miniport drivers, which includes nearly all varieties of
network cards.

Ndis.sys attempts to balance the processor workload generated by interrupts. By
default, Ndis.sys associates each network card with a processor and directs all
DPCs from a network card to the processor associated with that network card.
Ndis.sys attempts to compensate for the burden placed on the lowest-numbered
processor by associating the first network card with the highest-numbered
processor. Each subsequent network card is associated with the next processor in
descending order of processor number.

On many systems, this strategy balances the load. If a server that does not
distribute interrupts has two processors and one network card, Processor O -
services the interrupts and Processor 1 services the DPCs.

Unfortunately, this distribution strategy doesn’t always work as planned:

= DPCs evolve from interrupts. When a DPC is generated from an interrupt, the
DPC must be switched to another processor. The switch requires an
interprocessor interrupt from the sending processor to the receiving processor.
These very high-priority interprocessor interrupts consume additional
processor time.

= Information gathered when the interrupt is processed is stored in the processor
cache. When the DPC generated from the interrupt is switched to another
processor, the data in the cache of the sending processor is flushed and must be
collected again by the receiving processor.

= On many platforms, interrupts are distributed among all processors. Leaving
the DPC on the processor that handled the interrupt reduces the number of
interprocessor interrupts and allows the DPC to use data stored in the
processor cache when the interrupt was serviced.

Fortunately, if DPC distribution is a problem in your system, you can improve
system performance by optimizing DPC distribution.

134

Internet Information Server Resource Kit

Optimizing DPC Distribution
The solutions to poor DPC distribution differ depending on whether the system
distributes interrupts symmetrically:

No distribution. If you are administering a multiprocessor server that does not
distribute interrupts symmetrically, monitor the highest-numbered processor
carefully. If the processor frequently operates at capacity (that is, if Processor:
% Processor Time = 100) and more than half of its time is spent servicing
DPCs (if Processor: % DPC Time > 50), you can improve the performance of
your system by one or more of the following methods:

= Upgrading to a system that distributes interrupts.

= Adding network adapter cards so that you have one network adapter card
for each processor. Ndis.sys then distributes DPCs to all processors.
Generally, you should only add a network adapter card if you also need the
bandwidth because each additional network card has some intrinsic
overhead.

Symmetric distribution. If you are administering a multiprocessor server that
distributes interrupts to all processors, whether statically or dynamically, you
can improve performance by setting the value of the ProcessorAffinityMask
entry in the registry to zero. If the value of ProcessorAffinityMask is zero,
network cards are not associated with processors, and DPCs remain on the
processor that handled the interrupt. ProcessorAffinityMask is located in:

HKEY_LOCAL_MACHINE\System
\CurrentControlSet
\Services
\NDIS
\Parameters

Chapter 4 Performance Tuning and Optimization 135

Suggestions for Improving Processor Performance

The IIS services run in a multithreaded process designed to operate efficiently on
single-processor and multiprocessor computers. An Intel 486, Intel Pentium or
Pentium Pro, or RISC processor should be sufficient to handle more than a
thousand simultaneous connections. Servers with more activity benefit from
multiple processors.

If your data on processor performance indicates that processor queues are
developing regularly or while servicing large numbers of connections, monitor the
memory of your server. Rule out a memory bottleneck or add more memory
before (or in addition to) adding or upgrading processors.

In addition, consider the following suggestions for improving processor
performance:

Redistribute the workload. If nearly all of the threads of the IIS process are
busy nearly all of the time, and the processors are at or near their maximum
capacity, consider distributing the workload among more servers, or
redistributing tasks among servers. You can also add processors, but do so
cautiously. Unnecessary or underused processors will degrade performance,
not improve it.

Add processors. If the workload is distributed evenly, and all threads in the IIS
process continue to be busy nearly all of the time, or if a processor queue
forms when the number of connections rises, add or upgrade processors. You
can avoid a processor bottleneck during peak use by calculating the processor
use on your system when the number of current connections is at its average,
and allowing enough processing power to handle twice the average number of
connections. If it is important to maintain service through spikes of intense
activity, you should consider allowing even more processing power, perhaps
enough to handle ten times the average number of connections.

Upgrade the L2 cache. When adding or upgrading processors, choose
processors with a large secondary (L2) cache. File server applications, such as
Internet Information Server, benefit from a large processor cache because their
instruction paths involve many different components. A large processor cache
(2 MB or more if external, up to 1 MB if on-chip) is recommended to improve
performance on active servers running IIS.

136

Internet Information Server Resource Kit

Improve DPC handling. Platforms that distribute interrupts to all processors do
not benefit from the Windows NTdefault DPC affinity. If you are
administering a multiprocessor computer that distributes interrupts
symmetrically, such as an Intel Pentium or Pentium Pro (P6) system for
Windows NT 4.0, set the value of ProcessorAffinityMask entry in the
registry to zero. DPCs will be handled by the same processor that handled the
interrupt from which the DPC evolved.

Add network adapter cards. If you are administering a multiprocessor system
that does not distribute interrupts symmetrically, you can improve the
distribution of the processor workload by adding network cards so that there is
one network card for every processor. Generally, you only add network cards
when you need to improve the throughput of your system. Network cards, like
any additional hardware, have some intrinsic overhead. However, if one of the
processors is nearly always active (that is, if Processor: % Processor Time =
100) and more than half of its time is spent servicing DPCs (if Processor: %
DPC Time > 50), then adding a network card is likely to improve system
performance, as long as the available network bandwidth is not already
saturated.

Upgrade Network Adapter Cards. If you are adding or upgrading network
adapter cards, choose cards with drivers that support interrupt moderation.
Interrupt moderation prevents the processor from being overwhelmed by bursts

of interrupts. Consult the driver manufacturer for details.

Limit Connections. If you cannot upgrade or add processors, consider reducing
the maximum number of connections that each IIS service accepts. Limiting
connections can result in connections being blocked or rejected, but it helps
ensure that accepted connections are processed promptly.

To limit the number of connections for a service, right-click the service in
Internet Service Manager, click Properties, and then change the Limited To
value on the site or service tab. Reduce the number of allowed connections
until the server can handle twice the average number of connections without
developing a long processor queue.

Redesign the Web Site. You can improve performance and reduce the
processor workload by optimizing database use, optimizing ASP script design,
calling compiled components from ASP scripts, using ISAPI instead of ASP
(and ASP or ISAPI instead of CGI), substituting static Web pages for dynamic
pages, eliminating the use of SSL except where it is necessary, moving trusted
out-of-process applications into the Inetinfo process, and eliminating large
bitmapped images or optimizing them to reduce their size. (For more
information on optimizing ASP scripts, see Appendix B, “ASP Standards.”)

Chapter 4 Performance Tuning and Optimization 137

» Adjust the Maximum ASP Queue Length. If the ASP queue grows too long,
processing time for ASP requests may be unacceptably long. If the maximum
queue length is too short, on the other hand, the server returns “too busy”
errors. For more information on setting this parameter, see the section “Tuning
Your Web Server’s ASP Queue and Thread Pool,” later in this chapter.

= Adjust the Maximum Number of Threads. 1IS tunes the number of threads in its
process dynamically. The dynamic values are usually optimal. In extreme
cases of very active or underused processors, however, it may help to adjust
the maximum number of threads in the Inetinfo process. If you change the
maximum number of threads, continue careful testing to make sure that the
change has improved performance. The difference is usually quite subtle. For
more information, see the section “Tuning Your Web Server’s ASP Queue and
Thread Pool,” later in this chapter.

Monitoring Bandwidth and Network Capacity

The primary functions of IIS are to establish connections for its clients, to receive
and interpret requests, and to deliver files—all as quickly as possible. The pace at
which these vital functions are performed depends, in large part, on two factors:
the effective bandwidth of the link between the server and the network, and on the
capacity of this link and the server to support network resources.

This section examines bandwidth and network capacity on a server running IIS
and suggests methods you can use to measure and improve transmission rates and
connection handling on your server. It is not intended as a comprehensive guide to
network monitoring. Instead, it is a limited presentation of the network-related
issues that are important on servers running IIS.

Defining Bandwidth and Network Capacity

Bandwidth refers to the rate at which data is transmitted and received over a
communication link between a computer and the network. Bandwidth is measured
in several different ways:

= The rate at which bytes are transferred to and from the server.

= The rate at which data packages are sent by the server. Data packages include
frames, packets, segments, and datagrams.

= The rate at which files are sent and received by the server.

138

Internet Information Server Resource Kit

Effective bandwidth varies widely depending upon the transmission capacity of
the link, the server configuration, and the server workload. The values for a single
server also change as it operates, in response to demand and to competition for
shared network resources.

Network capacity is a broader term that refers to the ability of the server and the
communication link to carry network traffic and support multiple resources.
Network capacity is measured, in part, by the number of connections established
and maintained by the server.

The following sections describe in more detail the methods you can use to
measure bandwidth and network capacity on your server.

Monitoring Transmission Rates

The simplest measure of the effective bandwidth of a server is the rate at which
the server sends and receives data. Performance Monitor displays counts of data
transmissions that are collected by many components of the server computer. The
components that collect data each reside in different Open Systems
Interconnectivity (OSI) layers:

= Counters on the Web, FTP, and SMTP server perfonhance objects measure
data transmitted at the OSI Application Layer.

= Counters on the TCP object measure data transmitted at the Transport Layer.
(TCP stands for Transmission Control Protocol.)

= Counters on the IP object measure data at the Network Layer. (IP stands for
Internet Protocol.)

= Counters on the Network Interface object measure data at the Data Link Layer.

As a result of their different positions in the OSI stack, the counters display
different data. For example, the counters at the Application Layer count the bytes
sent before the data is divided into packets and prefixed with protocol headers and
control packets. Counters at the Application Layer measure data in this way
because the data is in this form when the application sends it. Counts at the
Application Layer also do not include retransmitted data.

In addition, the counters display the data in units native to the component
measured. For example, the Web Service object displays data in bytes, and the
TCP object displays data in segments.

Chapter 4 Performance Tuning and Optimization 139

The next section lists and describes the Performance Monitor counters you can
use to measure data sent and received by your server. The following section also
offers help in interpreting the data you collect.

Using Performance Monitor to Monitor Transmission Rates

The following tables list and describe some of the Performance Monitor counters
that can be used for measuring transmission rates. The counters in this table
display the transmission rate observed during the last sample interval. They do not
display a rolling or cumulative average of the rate. Also, the counters that

- represent sums of other counters, such as IP: Datagrams/sec, are simple sums of
the other counters’ values. They are not weighted sums.

For more information about how counter values are calculated, check the counter
type. A counter type determines how Performance Monitor calculates and displays
that particular counter.

Note You must install Simple Network Management Protocol (SNMP) to activate
the counters on the TCP, IP, and Network Interface performance objects in
Performance Monitor. To install SNMP, double-click the Network icon in Control
Panel, select the Services tab, and click Add.

Internet Information Server Resource Kit

The following table lists and describes counters at the Application Layer.

Table 4.8 Performance Monitor Counters for Measuring Transmission Rates at the

Application Layer

Counter

Indicates

Web Service: Bytes Sent/sec
Web Service: Bytes Received/sec

Web Service: Bytes Total/sec

The rate at which the HTTP server application is
sending data, in bytes.

The rate at which the HTTP server application is
receiving data, in bytes.

The rate at which the HTTP server application is
sending and receiving data, in bytes; the sum of Web
Service: Bytes Sent/sec and Web Service: Bytes
Received/sec.

FTP Service: Bytes Sent/sec
FTP Service: Bytes Received/sec

FTP Service: Bytes Total/sec

The rate at which the FTP server application is
sending data, in bytes.

The rate at which the FTP server application is
receiving data, in bytes.

- The rate at which the FTP server application is

sending and receiving data, in bytes; the sum of FTP
Service: Bytes Sent/sec and FTP Service: Bytes
Received/sec.

SMTP Server: Bytes Sent/sec

SMTP Server: Bytes
Received/sec

SMTP Server: Bytes Total/sec

The rate at which the SMTP server application is
sending data, in bytes.

The rate at which the SMTP server application is
receiving data, in bytes.

The rate at which the SMTP server application is
sending and receiving data, in bytes; the sum of
SMTP Server: Bytes Sent/sec and SMTP Server:
Bytes Received/sec.

Chapter 4 Performance Tuning and Optimization 141

The following table lists and describes counters on the TCP object.

Table 4.9 Pérformance Monitor Counters for Measuring Transmission Rates at the
Transport Layer

Counter Indicates

TCP: Segments Sent/sec The rate at which TCP segments are sent by using the
TCP protocol.

TCP: Segments Received/sec The rate at which TCP segments are received by
using the TCP protocol.

TCP: Segments/sec The sum of Segments Sent/sec and Segments
Received/sec.

TCP: Segments Retransmitted/sec ~ The rate at which segments are transmitted that
contain one or more bytes TCP recognizes as having
been transmitted before.

Segments Retransmitted/sec is a proper subset of Segments Sent/sec and
Segments/sec. To determine the proportion of transmissions caused by failed
transmission attempts, divide Segments Retransmitted/sec by Segments Sent/sec.

142

Internet Information Server Resource Kit

The following table lists and describes counters on the IP object.

Table 4,10 Performance Monitor Counters for Measuring Transmission Rates at
the Network Layer

Counter Indicates

IP: Datagrams Sent/sec The rate at which IP datagrams are sent by using the
IP protocol. This counter does not include datagrams
forwarded to another server.

IP: Datagrams Received/sec The rate at which IP datagrams are received from IP
by using IP protocol. This counter does not include
datagrams forwarded to another server.

IP: Datagrams/sec The sum of IP: Datagrams Sent/sec and IP:
Datagrams Received/sec.

IP: Datagrams Forwarded/sec The rate at which IP datagrams are forwarded to their
final destination by the server.

The sum of IP: Datagrams/sec and IP: Datagratns Forwarded/sec represents the
rate at which all IP datagrams are handled by the server.

The following table lists and describes counters on the Network Interface
performance object.

Table 4.11 Performance Monitor Counters for Measuring Transmission Rates at
the Data Link Layer

Counter Indicates

Network Interface: Bytes " The rate at which bytes are sent over each network

Sent/sec: NIC# adapter (that is, over each network interface card, or
NIC). The counted bytes include framing characters.

Network Interface: Bytes The rate at which bytes are received over each

Received/sec: NIC# network adapter. The counted bytes include framing
characters.

Network Interface: Bytes The sum of Network Interface: Bytes Sent/Sec and

Total/sec: NIC# Network Interface: Bytes Received/sec.

The Network Interface counters display data about the network adapters on the
server computer. The first instance of the Network Interface object (Instance 1)
that you see in Performance Monitor represents the loopback. The loopback is a
local path through the protocol driver and the network adapter. All other instances
represent installed network adapters.

Chapter 4 Performance Tuning and Optimization 143

Analyzing Transmission Rate Data

The data provided by these counters is collected by different methods, is
displayed in different units, and represents the view of different system objects.
Some guidelines for interpreting the data follow:

The IIS service counters display the number of bytes transmitted on behalf of
each service that server provides. To calculate the total number of bytes sent or
received by all IIS services, sum the values for each service. You can determine
the proportion of bytes transmitted by each service by computing the ratio of
bytes for one service to the sum of bytes for all services, or for the network.

Data collected by the IIS service counters underestimates the total number of
bytes actually being transmitted to the network by the IIS services. These
values are collected at the Application Layer, so they measure data only. They
do not measure protocol headers, control packets, or retransmitted bytes.

In general, the bytes counted by the services represent approximately 60 to 70
percent of the total number of bytes transmitted by the services on the network.
If the sum of bytes for all services accounts for two-thirds or more of total
network bandwidth, you can assume your network is running at or near the
total capacity of its communications link.

Counters on the TCP and IP performance objects display the rate at which data
is sent and received on a Transmission Control Protocol/Internet Protocol
(TCP/IP) connection at the Transport and Network layers, but they do not
count in bytes. Counters on the IP performance object display data in
datagrams, and counters on the TCP performance object display data in
segments. It is difficult to convert segments to bytes because the bytes per
segment can vary from 8§ KB to 64 KB; the number of bytes per segment
depends upon the size of the TCP/IP receive window and the maximum
segment size negotiated when each connection is established.

Counters on the Network Interface performance object display the rate at
which bytes are transmitted over a TCP/IP connection by monitoring the
counters on the network adapter at the Data Link Layer. The values of these
Network Interface counters include all prepended frame header bytes and bytes
retransmitted. These values provide a relatively accurate estimate of the
numbers of bytes transmitted over the network, but they do not measure the
bytes transmitted to a specific IIS service. :

Despite the difficulty of comparing these counters to each other, they can all be
related to other performance measures, such as the total number of connections
served at a given bandwidth, or processor use at different throughput rates.

144 Internet Information Server Resource Kit

‘Monitoring File Transfers

Each successful request to IIS results in the transfer of at least one file. Most static
Web pages include multiple files, such as a file of text and one or more files of
graphics.

Performance Monitor includes counters for each IIS service. These counters
display the number of files sent and received by the Web Service and the FTP
server. The SMTP server is slightly more complex; its counters indicate messages
sent and messages delivered, as well as messages received.

The file counters are listed and described in the following table.

Table 4.12 Performance Monitor Counters for IIS File Transfers

Counter Indicates

Web Service: Files Sent The number of files or messages sent by the
FTP Service: Files Sent service since the service was started.

SMTP Server: Messages Sent Total

Web Service: Files Received The number of files or messages received
FTP Service: Files Received by the service since the service was started.
SMTP Server: Messages Received Total

Web Service: Files Total The number of files sent and received by
FTP Service: Files Total the service since the service was started.

Files Total is the unweighted sum of Files
Sent and Files Received. The SMTP service
lacks this counter.

The file counters for a particular service can be used as indicators of the network
activity of that service. They can also be associated with other performance
measures to determine the effect of high and low rates of file activity on server
components.

Note, however, that the file counters for an IIS service display cumulative totals
on all traffic since the service was started, regardless of when Performance
Monitor was started. The counters do not display current values or the rate at
which files are transmitted.

To calculate file transmission rates, you can use Performance Data Log Service
(PerfLog) to log the file counters. PerfL.og automatically logs the time at which
measurement is taken. After you have generated a PerfLog log, you can use the
Perflog output files as input to a spreadsheet that associates the time of the
measurement and the file count to derive the transmission rates.

Chapter 4 Performance Tuning and Optimization 145

Monitoring TCP Connections

If the bandwidth of your server is insufficient to handle its workload, it is likely
that clients will be aware of it before the server is. Client requests to the server
will be rejected or will time out, or response will be delayed. On the server side,
the indicators are less clear. The server will continue to establish connections,
receive requests, and transmit data.

Bandwidth shortages are not uncommon. You can detect a bandwidth shortage on -
your server (perhaps even before clients do) by monitoring the success and failure
of connections established and rejected by TCP. When the bandwidth is ample,
the server can establish and serve connections before they time out. If bandwidth
is not sufficient, the connections fail.

The following section describes the Performance Monitor counters recommended
for monitoring the success and failure of connections on your server.

Using Performance Monitor to Monitor TCP Connections

The counters on the TCP object are the best indicators of the success of
connection requests.

The counters on the Web Service and FTP Service performance objects monitor
connections maintained by each IIS service. The counters on these objects display
only successful connection requests. They do not display failed attempts to
connect to these IIS services. Like all counters at the Application Layer, they do
not have information about connections until the connections are established.
Performance Monitor counters that display the number of simultaneous
connections maintained by IIS are discussed in the section “Preventing Processor
Bottlenecks,” earlier in this chapter.

146

Internet Information Server Resource Kit

The following table lists and describes the Performance Monitor counters that

‘monitor the success and failure of connections to TCP.

Table 4.13 Performance Monitor Counters for Monitoring TCP Connection
Successes and Failures

Counter Indicates

TCP: Connections Established =~ The number of simultaneous connections supported by
TCP (at last observation). This counter displays the
number of connections last observed to be in the
ESTABLISHED or CLOSE-WALIT state. It displays the
last observed value only; its value is not an average.

TCP: Connection Failures The number of connections that have failed since the
service was started (regardless of when Performance
Monitor was started). TCP counts a connection as
having failed when it goes directly from sending
(SYNC-SENT) or receiving (SYNC-RCVD) to
CLOSED or from receiving (SYNC-RCVD) to listening
(LISTEN).

TCP: Connections Reset The number of connections reset since the service was
' started (regardless of when Performance Monitor was
started).

TCP counts a connection as having been reset when it
goes directly from ESTABLISHED or CLOSE-WAIT
to CLOSED.

Analyzing TCP Connection Data

- At the TCP level, you should monitor the TCP: Connections Established counter

regularly. You might notice a pattern in which the counter value often reaches, but
rarely exceeds, a maximum (that is, the graphed line rises and then reaches a
plateau). If so, the peak value is likely to indicate the maximum number of
connections that can be established with the current bandwidth and application
workload. If you observe such a pattern, the server probably cannot support any
greater demand. :

Failure to support current or increasing demand also might be evident from the
number of connection failures and resets. The counters that monitor failures and
resets show cumulative values, but you can set Performance Monitor alerts on the
values or use PerfLog to log values over time. You can then use a spreadsheet to
calculate the rates at which connections are rejected and reset. An increasing
number of failures and resets or a consistently increasing rate of failures and
resets might indicate a bandwidth shortage.

Chapter 4 Performance Tuning and Optimization 147

Be cautious when interpreting the number of reset connections shown by the TCP:
Connections Reset counter. Resets do not always indicate dropped or failed
connections. Many browsers try to minimize connection overhead by routinely
closing connections by sending a TCP reset (RST) packet, rather than by closing
the connection with a normal close operation. The TCP: Connections Reset
counter does not distinguish between connections reset because they are dropped
and those reset to close connections abruptly.

Using Network Monitor to Monitor Bandwidth

Network Monitor is a tool you can use to monitor the data sent and received by
the local computer. Network Monitor can:

= Capture or trace data and filter it based on different attributes.

= Monitor throughput based on bytes or frames.

= Monitor bandwidth based on the percentage of the network used.

= Monitor errors, a possible consequence of an overloaded network.

The Windows NT Server CD includes Network Monitor as an optional
Windows NT tool. '

» To install Network Monitor
1. Double-click the Network icon in Control Panel.
2. Click the Services tab, and then click Add.

3. In the Network Service box, double-click Network Monitor Tools and
Agent.

For an overall view of bandwidth, use the Network Monitor Frames Per Second
and Bytes Per Second status bars. Use the % Network Ultilization status bar to
view monitor network capacity used. The # Frames Dropped field indicates the
nuniber of frames that are not processed because the buffers on the network
adapters are full. Frame-dropping occurs when the processor cannot handle the
traffic generated by the network.

148

Internet Information Server Resource Kit

Limiting Bandwidth

If the bandwidth on your server is not sufficient to handle the load imposed by
Internet Information Server, you can limit the amount of bandwidth Internet
Information Server uses for static HTML pages (files with .htm or .html
extensions). This setting affects all services that route directly through IIS, but not
those that are sent to other engines or applications (ASP, ISAPI, CGI, and SQL,
for example).

Remember that per-instance bandwidth throttling is not supported for the FTP
service.

To enable bandwidth throttling

1. In Internet Service Manager, right-click a site, then click Properties and select
the Performance tab.

2. Select the Enable Bandwidth Throttling check box. In the Maximum
network use box, type the maximum amount of bandwidth you want IIS to
use for static HTML pages, in kilobytes per second.

You do not need to restart the server or the service to activate bandwidth
throttling; it is enabled dynamically.

Monitoring Bandwidth Throttling

When you enable bandwidth throttling, IIS activates a set of Performance Monitor
counters to monitor it. You can identify these counters by the presence of the
phrase “Async I/O” in the counter name. These counters are active only when
bandwidth throttling is enabled. (If bandwidth throttling is not enabled, the
counters appear in Performance Monitor, but they always have a value of zero.)

The Async I/O counters are part of the Internet Information Services Global
performance object. They represent totals for all of the IIS services. Bandwidth is
not measured for each service. The following table lists and describes the Async
I/O counters.

Chapter 4 Performance Tuning and Optimization

149

Table 4.14 Performance Monitor Counters for Monitoring Bandwidth Throttling

Counter

Indicates

Internet Information Services Global:
Current Blocked Async I/O Requests

Internet Information Services Global: Total
Allowed Async I/O Requests

Internet Information Services Global: Total
Blocked Async I/O Requests

Internet Information Services Global: Total
Rejected Async I/O Requests

Internet Information Services Global:
Measured Async I/O Bandwidth
Usage/Minute

The number of requests blocked (that is,
held in a buffer until bandwidth is
available) by bandwidth throttling as
reported during the most recent
observation.

The number of requests allowed by
bandwidth throttling since the service was
last started.

The number of requests blocked (that is,
held in a buffer until bandwidth is
available) by bandwidth throttling since the
service was last started.

The number of requests rejected by
bandwidth throttling since the service was
last started.

The number of bytes sent per minute as
indicated by a sample taken by bandwidth
throttling.

Analyzing Data About Bandwidth Throttling

The bandwidth setting determines whether IIS accepts or rejects a request for a
static HTML page, based on periodic samples of the rate at which bytes are sent

on the server.

= If the bandwidth used (as indicated by the sample) approaches the maximum
set by the user, bandwidth throttling blocks read requests but allows write
requests and transmission requests. Read requests are blocked first because
they are likely to result in further requests.

= If the bandwidth used exceeds the maximum set by the user, bandwidth
throttling rejects read requests, blocks large write requests and transmission
requests, and allows small write requests and transmission requests.

To determine how many requests are being blocked and rejected, monitor the
Async I/O counters. These counters display cumulative totals, so it’s best to use
PerfLog to log the counter values. Alternatively, you can use a spreadsheet to
calculate the rate over time. You can also set a Performance Monitor alert to
notify administrators when the number of blocked or rejected requests exceeds a

threshold.

150

Internet Information Server Resource Kit

No rule exists that sets a threshold or appropriate number of blocked and rejected
requests. Tolerance for client delays and rejections is a business rule, not a
performance measure. However, you can use the Async I/O counters to enforce
your business’s standards, at least for static HTML pages.

Suggestions for Maximizing Bandwidth

If the bandwidth on your server is not sufficient to support demand, you can solve
the problem by increasing overall server bandwidth. You can also solve the
problem by increasing the effective bandwidth of existing communication links.
Some suggestions on how to do so follow. Many involve tuning parameters that
can only be modified by editing the Windows NT registry.

Adjusting the Length of the Connection Queues

You might effectively increase existing bandwidth by increasing the length of the
connection queues. Requests for connections to the IIS services are held in queues
until the service is available to respond to the request. A separate queue exists for
each of the IIS services, but all queues have the same maximum size. By default,
each queue can hold up to 15 connection requests. If the queue to a service is full,
any new connection requests are rejected.

The default queue length of 15 connection requests is sufficient for most servers.
However, if your server is rejecting many requests when the services are most
active, you can increase the maximum number of items in the queue. If you
change the queue length, be sure to monitor server processor use, server memory
use, and the connection counters to avoid creating a system bottleneck.

To change the maximum number of connection requests in the queue for each IIS
service, add the ListenBackLog key to the registry. Set the value of
ListenBackLog to the maximum number of connection requests you want the
server to maintain. You must place ListenBackLog in the registry at:

HKEY_LOCAL_MACHINE\System
\CurrentControlSet
\Services
\Inetinfo
\Parameters

Although there are separate queues for each IIS service, the maximum length for
all three of the queues is identical and is determined by this value entry.

Chapter 4 Performance Tuning and Optimization 151

Using HTTP Keep-Alives

To ensure optimal bandwidth, you can also verify that HTTP Keep-Alives are
enabled. HTTP Keep-Alives maintain a connection even after its initial request is
complete. HTTP Keep-Alives are enabled by default, but can be disabled. To
disable them, right-click a site in the Internet Service Manager, then click
Properties; select the Performance tab and clear the HTTP Keep-Alives
Enabled check box.

Working with “Black Hole” Routers

Another way to add effective bandwidth is by detecting and properly responding
to “black hole” routers, which do not send an “ICMP Destination Unreachable”
message when they cannot forward an IP datagram. Instead, they ignore the
datagram. Doing so causes the connection to be reset. Typically, the reason an IP
datagram cannot be forwarded is because the datagram’s maximum segment size
is too large for the receiving server and the Don’t-Fragment bit is set.

To respond effectively to black hole routers, you can enable the Path MTUBH
Detect feature of TCP/IP. Path MTUBH Detect recognizes repeated
unacknowledged transmission and responds by turning off the Don’t-Fragment
bit. After the datagram in question is transmitted successfully, it reduces the
maximum segment size and turns the Don’t-Fragment bit on again.

.Path MTUBH Detect is disabled by default, but you can enable it by adding the
EnablePMTUBHDetect key to the registry and setting its value to 1.
EnablePMTUBHDetect is an optional entry that does not appear in the registry
unless you add it. You must place it in:

HKEY_LOCAL_MACHINE\System
\CurrentControlSet
\Services
\Tcpip
\Parameters

You can disable Path MTUBH Detect by deleting EnablePMTUBHDetect from
the registry or by setting its value to 0.

152 Internet Information Server Resource Kit

Optimizing Graphics File Sizes

Graphics can consume significant bandwidth and result in noticeable network
delay. You can increase effective bandwidth (and improve user experience) by
changing your graphics format to reduce the size of graphics files. Different
graphics formats use different methods of encoding the data. Try different formats
for your graphics, and choose the format that produces the smallest file size.

For example, the Joint Photographic Experts Group (JPEG) format usually
produces the smallest file for a photograph. Graphic Interchange Format (GIF)
usually produces the smallest file for a computer-drawn illustration graphic.

Security and Performance

Performance is not usually a primary consideration when designing a security
strategy for servers running IIS, nor should it be. The intrinsic benefits of
protecting your installation and its code and data from unwarranted access
override performance concerns. Nonetheless, effective security features have
performance overhead—sometimes quite significant overhead—so it is important
to measure the overhead and provide enough excess capacity to accommodate it.

This section describes some techniques for measuring the effects of security
strategies on server performance.

The Challenge of Measuring Security Overhead

Measuring the performance overhead of a security strategy is not simply a matter
of monitoring a separate process or threads. The features of the Windows NT
security model and other IIS security services run in the context of the IIS
process; they are integrated into several different operating system services. You
cannot monitor security features separately from other aspects of the services.

Instead, the most common way to measure security overhead is to run tests
comparing server performance with and without a security feature. The tests
should be run with fixed workloads and a fixed server configuration so that the
security feature is the only variable. During the tests, you probably want to
measure:

Chapter 4 Performance Tuning and Optimization 153

= Processor activity and the processor queue. Authentication, IP address
checking, SSL protocol, and encryption schemes are security features that
require significant processing. You are likely to see increased processor
activity, both in privileged and user mode, and an increase in the rate of
context switches and interrupts. If the processors in the server are not
sufficient to handle the increased load, queues are likely to develop.

s Physical memory used. Security requires that the system store and retrieve
more user information. Also, the SSL protocol uses long keys—40 bits to
1,024 bits long—for encrypting and decrypting the messages.

= Network traffic. You are also likely to see an increase in traffic between the
IIS-based server and the domain controller used for authenticating logons and
verifying IP addresses.

= Latency and delays. The most obvious performance degradation resulting from
complex security features like SSL is the time and effort involved in
encryption and decryption, both of which use lots of processor cycles.
Downloading files from servers using the SSL protocol can be 10 to 100 times
slower than from servers that are not using SSL.

If a server is used both for running IIS and as a domain controller, the proportion
of processor use, memory, and network and disk activity consumed by domain
services is likely to increase significantly. The increased activity can be enough to
prevent the IIS services from running efficiently.

You can run a test that monitors processor, memory, and network activity by
using the Microsoft Web Capacity Analysis Tool (WCAT). You can run WCAT
alone or in conjunction with other tools, such as Performance Monitor. WCAT
and its documentation are included on the IIS Resource Kit CD.

Using WCAT to Measure Security Overhead

WCAT is a script-driven, command-line—based application that tests your server
configuration using a variety of predetermined, unvarying workloads. You can
use WCAT to test how your server responds to different workloads or test the
same workload on varying configurations of the server.

. The WCAT toolkit includes a folder of prepared test workloads. You can also use
WCAT to create your own workloads. WCAT also includes a special option,
ssl.testname, which adds SSL protocol settings to any workload test.

154

Internet Information Server Resource Kit

Components of a WCAT Test

A WCAT test simulates clients and servers communicating over a network.
WCAT ordinarily requires at least three computers for each test:

» At least one computer simulating a client, which runs one or more virtual
clients.

» One computer acting as a server.

= One computer, called a controller, which initiates and monitors the test.

Both client and controller can run on one computer. (In fact, all three functions
can run on a single computer, but this produces skewed results.)

To produce a realistic test, it is best to associate four or more client computers,
each running several virtual clients, with each server. The processors in the client
computers should be at least as fast as the processors in the server computer. If the
client processors are not as fast as the server processors, more client computers
should be associated with each server computer. WCAT works best if the network
that connects the computers has little or no traffic that is not related to the test. It
is preferable to use a link dedicated only to the test. A 100 Mbps or faster network
is recommended.

Designing a WCAT Test of Security Features

To test a security feature, first run a WCAT test with the feature, then run the
same test without the feature. It is important to run the “with feature” and
“without feature” versions of the test on varying workloads. WCAT includes over
200 MB of prepared workloads ranging from 12 files to 1,600 files. You can
create additional tests of workloads with 2,000 or more files.

WCAT has many options for collecting data on the tests:

= You can use WCAT’s log of performance data. The WCAT log can be used as
input to spreadsheet and charting applications. The WCAT user guide explains
how to interpret a WCAT log.

= You can run IIS logging in conjunction with WCAT to count logons and file
accesses.

* You can run Performance Monitor with WCAT. The WCAT run command
includes a <p switch that activates Performance Monitor. You can select
Performance Monitor counters by entering the names of counters in a script
file. WCAT even includes a sample Performance Monitor counter file,
Server.pfc.

Chapter 4 Performance Tuning and Optimization 155

WCAT provides test results in several formats. You can view the test results in a
spreadsheet or charting program, or in Performance Monitor. You can use the
same method to analyze the data of a WCAT test as you use to analyze other
Performance Monitor data on processors, memory, disks, network, and
applications. You should repeat each test several times and average the results to
eliminate unintended variations of the test conditions. Then, compare the results
of the “with feature” and “without feature” tests.

Consistent differences in the results of the tests are likely to indicate the overhead
associated with the security feature. You can use these results to plan
configuration changes to handle the security overhead.

WCAT is the primary tool used for monitoring security overhead. Performance
Monitor also includes a set of counters you can use to monitor one specific aspect
of security: authenticating users.

Using Performance Monitor to Track Anonymous and
Non-Anonymous Connections

Performance Monitor includes counters that display the number of anonymous
and non-anonymous connections to each IIS service. These counters are included
in the Web Service and FTP Service performance objects.

The term non-anonymous is used instead of authenticated to account for custom
authentication schemes that require data from the client other than, or in addition
to, the user name and password. ‘

By themselves, these Performance Monitor counters help you determine the
number and proportion of each type of connection. You can also use the counter
values to project the estimated effect of changing how you handle anonymous and
non-anonymous users. For example, if the vast majority of connections are
anonymous, prohibiting anonymous connections has a more significant impact
than if most connections are non-anonymous.

Combining data from these counters with general measures of server performance,
such as data on processor time, the processor queue, memory, disk reads and
writes, and throughput, is even more useful. Using the combined data, you can
associate varying numbers and proportions of anonymous and non-anonymous
users with their effect on the performance of system components.

156

Internet Information Server Resource Kit

Anonymous and Non-Anonymous Connection Counters

The Performance Monitor counters that display the numbers of anonymous and
non-anonymous connections are called Current Anonymous Users and Current
Non-anonymous Users. These counters actually display connections, not users.
Users who connect more than once are counted once for each time they connect.

The following table lists the Performance Monitor counters for anonymous and
non-anonymous connections. These counters are part of the Web Service and FTP

Service performance objects.

Table 4.15 Performance Monitor Counters for Anonymous and Non-Anonymous

Connections

Counter Indicates

Web Service: How many anonymous and non-anonymous
Anonymous Users/Sec users connect to the IIS service during each
Web Service: second.

Non-Anonymous Users/Sec

Web Service: How many anonymous and non-anonymous
Current Anonymous Users users are currently connected to the IIS service.
FTP Service:

Current Anonymous Users

Web Service:
Current NonAnonymous Users

FTP Service:
Current NonAnonymous Users

Web Service:
Maximum Anonymous Users

FTP Service:
Maximum Anonymous Users

Web Service:
Maximum NonAnonymous Users

FTP Service:
Maximum NonAnonymous Users

The maximum number of anonymous and non-
anonymous users that have been connected
simultaneously to the IIS service since the
service was last started.

Web Service:
Total Anonymous Users

FTP Service:
Total Anonymous Users

Web Service:
Total NonAnonymous Users

FTP Service:
Total NonAnonymous Users

A running total of anonymous and non-
anonymous connections to the IIS service since
the service was last started.

Chapter 4 Performance Tuning and Optimization 157

The anonymous and non-anonymous user counters display the number of
anonymous and non-anonymous connections to the IIS service when the values
were last observed. They do not report averages or rates. These counters might
exaggerate the number of connections because closed connections might not yet
be deleted when the counter is displayed.

The Current Anonymous Users and Current Non-anonymous Users counters
operate based on the following definitions:

= The anonymous user counters display the number of connections whose
requests either did not contain a user name and password or whose user name
and password were ignored because authentication is not permitted on the
server. If anonymous connections are not permitted on the server, the value of
all anonymous user counters is always zero.

= The non-anonymous user counters display the number of connections whose
requests contained a valid user name and password, or whatever authentication
is required by a custom authentication scheme. If authentication is not enabled
on the server, and none of the applications that run on the server request or
require authentication, then the value of all non-anonymous user counters is
always zero.

The anonymous user and non-anonymous user counters count successful
connections only. If a client request for an anonymous connection is rejected and
the client responds with valid authenticating data, the connection is counted as
NON-anonymous.

Using Performance Monitor to Count Not-Found Errors

The Web Service performance object in Performance Monitor includes a counter
that displays not-found errors. Not-found errors are client requests that could not
be satisfied because they included a reference to a Web page or a file that did not
exist.

Many not-found errors occur because Web pages and files are deleted or moved to
another location. However, some can result from user attempts to access
documents that they are not authorized to have.

You can use the Web Service: Not Found Errors/sec counter to track the rate at
which not-found errors are occurring on your server. You can also set a
Performance Monitor alert to notify the Administrator when the rate of not-found
errors exceeds a threshold.

158 Internet Information Server Resource Kit

Following is a brief description of the Web Service: Not Found Errors/sec
counter.

Tablé 4.16 Performance Monitor Counter for Not-Found Errors

Counter Indicates

Web Service: Not Found Errors/sec The number of client read requests that
could not be satisfied because the URL did
not point to a valid file. An increase in not-
found errors may indicate that a file has
been moved without its link being updated.
However, it can also indicate failed
attempts to access protected documents,
such as user lists and file directories.

Capacity Planning to Support Security Features

After you have collected data on the effect of adding security features to your
server configuration, you can use the results to plan configuration changes to
handle the addition workload required to support security features. The following
approaches are recommended:

= Upgrade or add processors. Security features are often very processor-
intensive. In particular, the SSL protocol consumes a significant amount of
processor time. Because Windows NT security features are multithreaded, they
can run simultaneously on multiple processors. Thus, adding processors
improves performance significantly and prevents the processors from
becoming a bottleneck.

= Upgrade the processor cache. For best results, choose a processor with a large
(up to 2 MB) secondary (L2) cache. When encrypting and decrypting data, the
processor spends much of its time reading and writing small units of data to
and from the main memory. If this data can be stored in the processor cache
instead, the data can be retrieved much faster.

= Add memory. If security features cause increased paging or shortages in virtual
memory, adding more memory will help. The physical memory used to support
the security service consumes space that can be used otherwise to cache files.
To accommodate peak use, you should allow for twice as much memory as is
required during times of average use while still maintaining 10 MB of
available memory.

Chapter 4 Performance Tuning and Optimization 159

= Do not add disk space. Any increased disk activity associated with security
features is likely to be the result of a shortage of physical memory, not a need
for more disk space. Security features, such as the SSL protocol, rely primarily
on processors and physical memory, as opposed to the disks.

Security is an integral feature of the IIS services. You can protect your vital data
without sacrificing the performance of your server by planning carefully.

Monitoring Web Applications

Web applications are one of the most exciting recent developments in Web
technology. The power of Web applications has already led to their wide use on
intranets and on the Internet.

If you run Web applications, or plan to, you need to know how to monitor their
overhead. You must also build in sufficient excess capacity to accommodate their
use. The following sections explain how to monitor Web applications, and how to
use the Web Capacity Analysis Tool (WCAT) tool to help predict processor and
memory requirements for ASP, ISAPI, and CGI applications. For a brief of
overview of WCAT, see the section, “Using WCAT to Measure Security
Overhead” earlier in this chapter.

Monitoring Client Requests to Web Applications

The most common indicator of the activity of a Web application is the rate of
requests to the application. Web applications become active when they respond to

. requests, and are generally inactive between requests. The more requests the
application responds to, the more active it is judged to be.

First, measure the activity level of an application. You can then compare the
effect of different levels of activity of a single application on the computer. You
can also compare the effect of the same activity levels of different applications.

160

Internet Information Server Resource Kit

Using Performance Monitor to Monitor Client Requests

Performance Monitor includes a set of counters that measure the rate of requests
to Web applications. These counters are included in the Active Server Pages and
Web Service objects.

The following table lists the counters that count ASP requests. Please note that
with the exception of Active Server Pages: Requests/Sec these counters display
the last observed value, not an average. It is important to log these counters over
time and to display the results in a chart, as opposed to a report.

Table 4.17

Performance Monitor Counters for ASP Requests

Counter

Indicates

Active Server Pages:

Disconnected

Active Server Pages:
Active Server Pages:
Active Server Pages:

Authorized

Active Server Pages:

Active Server Pages:

Active Server Pages:

Active Server Pages

Active Server Pages:

Active Server Pages:

Active Server Pages:

Requests

Requests Executing

Requests Failed Total

Requests Not
Requests Not Found

Requests Queued
Requests Rejected

: Requests Succeeded

Requests Timed Out

Requests Total
Requests/Sec

Total number of disconnected requests

Current number of requests in process
Total number of requests that have failed

Total number of requests that were not
authorized

Total number of requests for pages that
weren’t found

Current size of the ASP queue
Total number of refused requests

Total number of requests that were
processed normally

Total number of requests that timed out and
were not processed

Grand total number: all requests

Current average

Chapter 4 Performance Tuning and Optimization 161

The following table lists the counters that count requests to ISAPI and CGI
applications. Note that these counters display the last observed value, not an
average. It is important to log these counters over time and to display the results
in a chart, as opposed to a report.

Table 4.18 Performance Monitor Counters for ISAPI and CGI Requests

Counter Indicates

Web Service: Current ISAPI Extension How many requests for pages generated by

Requests ISAPI DLLs are being processed
simultaneously.

Web Service: Maximum ISAPI Extension The maximum number of requests for pages

Requests generated by ISAPI DLLs that were
processed simultaneously since the service
started.

Web Service: Total ISAPI Extension The total number of requests for pages

Requests generated by ISAPI DLLs since the service

started. The value of this counter includes
successful and failed requests.

Web Service

Web Service

Web Service

: Current CGI Requests

: Maximum CGI Requests

: Total CGI Requests

How many requests for pages generated by
CGI applications are being processed
simultaneously.

The maximum number of requests for pages
generated by CGI applications that were
processed simultaneously since the service
started.

The total number of requests for pages
generated by CGI applications since the
service started. The value of this counter
includes successful and failed requests.

By themselves, these counters are indirect indicators of processor activity. When
combined with information about server performance, however, these counters
can help you judge the effects of different levels of activity on the performance
and efficiency of your server.

162 Internet Information Server Resource Kit

Monitoring Servers Running Web Applications

This section suggests two approaches to monitoring the effects of Web
applications on general server performance:

= Using Performance Monitor to monitor server performance while running Web
applications on your server.

= Using the Web Capacity Analysis Tool (WCAT) to simulate the effects of
ASP, CGI, and ISAPI applications on your server.

You can also use Performance Monitor to monitor your WCAT tests. The
following sections explain these monitoring techniques in more detail.

Monitoring the Effect of Web Applications on Overall
Server Performance

If you are running Web applications, you can use Performance Monitor to monitor
the effect of these processes on your server. Use Performance Monitor counters to
measure processor and memory use on the server during periods of very high or
very low Web application activity. Log these counters while running one of the
following tests:

= Monitor the effect of a Web application on overall server performance.

Monitor the server while running with and then without the Web application.
Log the counters for several days under similar conditions. Next, compare the
rates of processor use, the average length of the processor queue, the number
of available bytes, and the rate of page faults of the “with application” and
“without application” tests. The difference between the values should be due
to performance and memory overhead of the application.

= Compare the effect on your server of equivalent ASP, ISAPI, and CGI
applications.

If you have scripts that generate the same pages, you can use Performance
Monitor to compare performance. Log server performance while the server is
running each application, separately. Classify the data based on the average
number of requests to the application during each period. Then, compare the
values of the counters during periods when the rates of requests were similar.

Using WCAT to Simulate Web Applications

Even if you do not have any available ASP, ISAPI, or CGI applications, you can
still test the effect of such applications on your server configuration by using
WCAT. WCAT comes with several prepared tests designed for simulating the
effects of ASP, ISAPI, and CGI applications on your server. The following table
lists these tests and provides a brief explanation of each test.

Chapter 4 Performance Tuning and Optimization 163

Table 4.19 WCAT Tests of ASP, ISAPI, and CGI Applications

Test Description

ASP25 25 percent of the workload consists of ASP
requests; the remaining 75 percent
represents requests for static files based on
an average workload.

ASP50 50 percent of the workload consists of ASP
requests; the remaining 50 percent
represents requests for static files based on
an average workload.

ASP75 75 percent of the workload consists of ASP
requests; the remaining 25 percent
represents requests for static files based on
an average workload.

ISAPI25 25 percent of the workload consists of
ISAPI requests; the remaining 75 percent
represents requests for static files based on
an average workload.

ISAPIS0 50 percent of the workload consists of
ISAPI requests; the remaining 50 percent
represents requests for static files based on
an average workload.)

ISAPI7S 775 percent of the workload consists of
ISAPI requests; the remaining 25 percent
represents requests for static files based on
an average workload.

CGI25 25 percent of the workload consists of CGI
requests; the remaining 75 percent
represents requests for static files based on
an average workload.

CGI50 50 percent of the workload consists of CGI
requests; the remaining 50 percent
represents requests for static files based on
an average workload.

CGI75 75 percent of the workload consists of CGI
requests; the remaining 25 percent
represents requests for static files based on
an average workload.

164. Internet Information Server Resource Kit

Using Performance Monitor to Monitor WCAT Tests

You also can use Performance Monitor to monitor server performance during
WCAT tests. The method for activating Performance Monitor during a WCAT
test is described in detail in the WCAT documentation, included on the IIS
Resource Kit CD.

The WCAT run command includes a -p switch that activates Performance
Monitor during a WCAT test. When you include the -p option in the WCAT run
command, the WCAT controller samples and averages selected Performance
Monitor counters during the WCAT test. You can specify the Performance
Monitor counters that you want WCAT to sample by including them in a script
file with a file name extension of .pfc. The name of your .pfc file is part of the
syntax of the -p switch.

The following experiments involve running different WCAT tests in sequence and
monitoring the effect of the test on your server, using Performance Monitor.
When the tests are complete, you can compare the relative effect of each test on
server performance.

Counters for monitoring the WCAT tests are included in Server.pmc, a
Performance Monitor settings file on the IIS Resource Kit CD.

The suggestions for using WCAT and Performance Monitor to test server
performance are:

= To determine the effect of an ASP application on your server, run the ASP25,
ASP50, and ASP75 tests sequentially while logging the Performance Monitor
counters in Server.pmc.

» To determine the effect of an ISAPI application on your server, run the
ISAPI2S, ISAPIS0, and ISAPIT7S tests sequentially while logging the
Performance Monitor counters in Server.pmc.

= To determine the effect of a CGI application on your server, run the CGI25,
CGI50, and CGI75 tests sequentially while logging the Performance Monitor
counters in Server.pmc.

= To compare the effects of, say, CGI to those of ASP, run the CGI75 and
ASP75 tests sequentially while logging the Performance Monitor counters in
Server.pmc. ‘

Chapter 4 Performance Tuning and Optimization 165

To analyze the data from these tests, note any change in processor and memory
use as the proportion of requests for one or another Web application type
increases, or between pairs of Web applications at the same request rate. The
effect of the change in workload varies substantially among server configurations.
You can use this data to determine whether your server is prepared to handle this
workload efficiently. You can vary the workload or vary the server conflguratlon
by adding processors or memory between test trials.

The next section introduces another aspect of monitoring Web applications. In
addition to monitoring general server performance, you can also monitor the
processes in which the applications run.

Tracking Web Application Processes

The most common way to monitor the overhead of Web applications is to monitor
general server performance under varying levels of application activity. This
technique is described in the preceding sections.

In addition to monitoring changes in overall server performance, you can also
monitor the processes in which the applications run. This section suggests some
tools and methods for monitoring the processes in which Web applications run.

Monitoring ASP and ISAPI Applications

By default, ASP and ISAPI applications run within the IIS process, Inetinfo.exe.
You can monitor the processor and memory use of the Inetinfo process, but it is
difficult to distinguish the resource use attributable to Web applications from that
of the rest of the services running under Inetinfo. It is also extremely difficult,
though technically possible, to associate individual threads in Inetinfo with ISAPI
requests. On the other hand, because ASP has its own counter object, it is much
easier to distinguish its processor and memory use.

ASP and ISAPI applications that are marked to run within their own memory
spaces are called out-of-process applications, because they run outside the
Inetinfo process. Because these applications run within their own processes, they
are easier to monitor than in-process applications. You can use most process-
monitoring tools to view the processes in which these applications run.

166

Internet Information Server Resource Kit

Using Process Monitor and Task Manager to Monitor Processes

Process Monitor (Pmon.exe) and the Task Manager Process tab are both useful
for monitoring processes. Although these tools do not log process-specific data
over time and cannot export data for other uses, they are particularly effective for
monitoring short-lived processes. Both tools display a list of all processes running
on the computer, along with different measures of processor and memory use.

Task Manager is integrated into Windows NT. To start Task Manager, press
CTRL+ALT+DEL. Click the Processes tab to see a list of processes running on the
server. You can set the rate at which Task Manager is updated by clicking Update

Speed on the View menu.

The Task Manager Processes tab displays a table listing the running processes
along with performance information about each process. By default, Task
Manager displays the Process Identifier, CPU Usage, CPU Time, and Memory
Usage of each process. You can change the type of performance information
listed about each process. To add or remove a Task performance measure, on the
View menu, click Select Columns, then click a performance measure.

Note The Process Monitor and Task Manager CPU Time and Page Faults
counts are cumulative. These performance measures show how much of a
resource the process has used since the process started. A high value might

indicate that a process has been running for a long time, not that the process is

using the resource at a high rate.

Tuning the ASP Queue and Thread Pool

Under high-load conditions, ASP scripts can create a signficant ASP queue. This
could occur if, for example, a script calls a component that receives more calls
than it can handle. When this happens, incoming requests for the ASP page that
calls the component are placed in a queue and processed on a first-in-first-out
basis. If blocking conditions persist for only a few seconds, queueing smooths out
the fluctuations in the load, and all incoming requests are serviced in a timely
fashion, particularly if enough threads are available to handle other (non-ASP)
requests as they come in. However, when the spikes last for a longer period of
time (30 seconds, say) the queue grows. In the worst case, the queue builds up to
the default maximum of 500 requests, or whatever the setting has been changed
to.

Chapter 4 Performance Tuning and Optimization 167

When a request comes in and the number of queued requests exactly equals the
value of RequestQueueMax, IIS returns a “Server Too Busy” error. This error
accurately reflects the current condition, because incoming requests cannot be
serviced in a timely fashion. If the number of queued requests is under 500 (say
498) the user with the 499th request will be kept waiting for all the other requests
in the queue to be satisfied. This is an acceptable condition if the queue clears
very rapidly (within 15 seconds), but the wait is typically closer to 60 seconds,
which is intolerable to all but the most patient users. After about 15 seconds, most
users click their browser’s Stop button and then click the Refresh button. This
only makes things worse, because the original request remains in the queue, still
waiting to be serviced.

Relevant Registry Settings

The ProcessorThreadMax and RequestQueueMax registry settings for ASP can
have a significant impact on the performance of your site. These settings are
found in the registry at the following location:

HKEY_LOCAL_MACHINE\System
\CurrentControlSet
\Services
\W3SVC
\ASP
\Parameters

Tuning ProcessorThreadMax

The goal in tuning the ProcessorThreadMax value is to bring processor
utilization above 50 percent under load, if possible. It is not possible to calculate
what the appropriate number of threads should be, because live sites are too
dynamic. You should gather statistics by using at least the following Performance
Monitor counters:

= Processor: %Processor Time (for each processor)

= Active Server Pages: Requests/Sec

= Active Server Pages: Requests Rejected

= Active Server Pages: Total Queue Length

= Web Service: Connections/Sec

168

Internet Information Server Resource Kit

Watch these counters on one of your computers during peak load time, using a
1-second Chart interval. If you have a busy site with a variety of work going on
and minimal blocking, you should see the Total Queue Length counter go up and
down. If the Total Queue Length never goes up and you are running at low
processor utilization, you probably have a smooth-running site with more capacity
than you currently need.

If queue length is going up and down and your processors are running below 50
percent utilization, some requests are blocking and you can probably benefit by
increasing the number of threads. Start by changing ProcessorThreadMax from
10 (the default value) to 20. Restart the computer, or restart the Web service. You
should expect to see some increase in processor utilization, and the queue length
should tend to change more rapidly. Increasing the number of threads improves
response time for non-blocking operations by putting the CPU to use satisfying
requests.

The Next Step

If, after increasing ProcessorThreadMax to 20, you continue to see the queue
lengthen and processor utilization actually go down, your server may have some
serious blocking problems. This can occur if threads are waiting for response from
an external resource such as a database. Similarly, if there are bugs in any of the
components, they will tend to surface more quickly as you increase the number of
threads. If your site has a single point of entry, make sure it doesn’t cause
blocking problems; if it does, redesign it. Likewise, if most users follow a single
path through your site, and that path has several pages with blocking problems,
you should redesign the entire path.

If the queue length stays down and processor utilization increases, you can
continue increasing ProcessorThreadMax until you reach your target CPU
utilization (stay under 70 percent, though, and try to keep ProcessorThreadMax
below 100). You may find that the bottleneck is elsewhere; that you have more
computers than you really need; or that your server is not blocking and that high
CPU utilization cannot be achieved. IIS is extremely efficient for static HTML
and non-blocking ASP, so it may require less processing capability than you
expect. ’

Chapter 4 Performance Tuning and Optimization 169

The ASP Queue

Once the number of server threads is adjusted, you can focus attention on the ASP
queue. The goal is to use the queue to handle short-term peaks, ensure consistent
response time, and throttle the system to avoid overload from sustained
unexpected spikes. You can calculate the response time by timing how long it
takes for the queue length to return to zero after it goes up to the maximum value.
On a smoothly running non-blocking site, the queue will typically stay near zero
most of the time, because incoming requests are satisfied quickly.

Tuning RequestQueueMax

Determine your target response time (say, 10 seconds), and keep the queue at a
size that will never hold more than that many seconds of work. (This size depends
on your particular configuration, which you can determine by testing.) The ideal
size for RequestQueueMax is below the limit determined by allowable response
latency, but still above your typical peak load queue size.

A RequestQueuneMax size that is too small will yield too many “Server Too
Busy” errors during load spikes. A value that is too large can cause the site to
appear to be unresponsive. Users will give up, because the site is not meeting
their response time requirements. Watch the queue during routine periods of high
activity; you should see it growing and shrinking normally. Make a note of the
peaks and set RequestQueueMax just above the peak length, so long as that is
under your Response time threshold. (If it isn’t, you may need more memory or
processing power.)

If you have no data, a good starting setting seems to be a 1-to-1 ratio of queue
length to total threads. Example: If you have ProcessorThreadMax set at 25 and
four processors (100 threads) then start with RequestQueueMax at 100 and tune
from there.

170 Internet Information Server Resource Kit

Other Optimization Steps

To minimize queueing and improve response time:

= Use static HTML files rather than Web applications when you can.
- = Use the Server.CreateObject method cautiously.

= Minimize external dependencies: anything that is not on the same computer as
your site is a potential bottleneck.

= Maximize network performance and reliability, relative to external
dependencies.

= Load-test and rate all custom components before deploying them on your site.

= Ensure that every component can execute faster than the highest rate at which
it is called. If a component is called 20 times a second, it must complete each
cycle in much less than 1/20 of a second or it will block. A single blocking
component can ruin the performance of all ASP pages on your site.

= Use Performance Monitor to check your site every week. Keep a close eye on
the results; a single blocking object can impact your entire site.

When Your Site Is Running Smoothly

On a smoothly running site you should see very little queueing, with all routine
peaks staying well below the value of RequestQueueMax throughout the day, as
all components are able to satisfy the load placed on them. Processor utilization
stays close to your target rate during peak load periods.

Capacity Planning to Support Web Applications

Web applications have much higher overhead than static HTML pages. But the
overhead of Web applications should not deter you from using them. By
monitoring applications and estimating their overhead during periods of varying
activity, you can make sure your server is prepared for the increased workload.

Here are some suggestions for optimizing your configuration for Web
applications:

» Upgrade processors. Web applications benefit from faster processors.

= Add processors. Components called by ASP scripts can (and should) be
multithreaded, which means they can run simultaneously on multiple
processors. Adding a second processor to a single-processor system brings the
most benefit. '

Chapter 4 Performance Tuning and Optimization 171

» Add memory. Adding memory may help if application processes are running
within their own processes. (By default, ASP and ISAPI applications run
within the IIS process, but they can be set to run within their own memory
spaces.)

s Defragment your disks. If your cache performance declines over time,
defragment the disk. Your files might have become fragmented over time.

» Redesign your static pages. Running Web applications is slower than serving
static pages. If you are generating pages dynamically to satisfy user
preferences, consider substituting 10 or 20 different static variations for a
single dynamically generated page. If you are generating pages dynamically to
provide frequently updated data, consider redesigning your application so that
it generates a single dynamic page on a fixed schedule and then stores that
page for retrieval until the next update.

» Convert CGI scripts to ASP or ISAPI scripts. ASP and ISAPI applications are
optimized to run on Windows NT. CGI applications are much less efficient.
For more information on converting CGI scripts, see the “Migrating CGI
Applications to IIS” section of Chapter 10, “Migrating Web Sites and
Applications.”

Web applications are continuing to increase in popularity. They constitute an
ever-larger proportion of the average Web server file base. The challenge for
administrators is to preserve speed and efficiency.

172 Internet Information Server Resource Kit

Resources

Web Links

Books

The following Web sites and books provide additional information relevant to
Web server tuning and performance optimization.

Web site information is current as of the date of publication, but is, of course,
subject to change.

http://andrew2.andrew.cmu.edu/rfc/rfc1794.html
Text of RFC 1794, which deals with load balancing.

http://www.network-mag.com/9611/9611web.htm
“Revving up Your Web Server,” an article on improving performance.
Originally published in LAN Magazine.

http://www.network-mag.com/9711/11wan.htm
“Tuning Web Site Performance,” an article originally published in Network
Magazine.

http://www.nightflight.com/htdocs/web-performance.html
Links to several articles on performance.

http://www.starnine.com/webstar/overview.html
“A Model of Web Server Performance,” an article by Louis Slothouber.

Professional Web Site Optimization (Wrox Press Ltd., 1997).
WebMaster in a Nutshell (O’Reilly and Associates, 1997).

Web Server Technology: Advanced Guide for World-Wide Web Information
Providers (Morgan Kaufman Publishers, 1996).

173

CHAPTER 5

Developing Web Applications 5 |

Open Internet standards coupled with the immense popularity of the Web have
changed the architecture of distributed computing forever. The multi-layered
nature of the Web creates an ideal application environment for component-based
development. Applications can be developed and customized quickly, with
advanced system services such as database access and transaction processing.
System resources can be managed and administered remotely. Moreover, new
applications are available immediately, without requiring anything more than a
browser on the user’s system.

This chapter examines the effects that the Web has had on distributed application
development as a whole, and demonstrates how to use Internet Information Server
to develop the n-tier applications of the future. In the process, the chapter will
introduce the technologies Microsoft has developed to implement this new breed
of Web applications.

In this chapter:

= Building on Client/Server

= Client-Side Technologies

» The Middle Tier

s Design Patterns for Web Applications
= Summary

= Resources

174

Internet Information Server Resource Kit

Building on Client/Server

Market analysts predict rapid growth in distributed systems in the coming years.
Some predict that by 2005, the familiar architecture of client/server applications
will be replaced by “super-suites” of interconnected components, operating in
frameworks of highly available distributed systems. In other words, systems with
a single-user focus will no longer be sufficient. Rather, applications will be
assembled from reusable building blocks, using a variety of cooperating
subsystems.

Before delving into the implementation details of building Web applications, it
may be helpful to take a quick look at the architecture of the Web from a
historical perspective.

Client/Server Revisited

Cooperating and communicating applications are typically categorized as either a
client or a server. The client application requests services and data from the
server. The server application responds to client requests. Early client/server
applications were generally data-centric and combined most, if not all, of the
processing logic and user interface within the client application. The server’s task
was simply to process requests for data storage and retrieval.

Client User Interf
ser Interface
@Tl & Navigation
NZ . .
___| Business Logic
DCOM
RPC —_
Data Services
Server

Figure 5.1 Functional diagram of a client/server application

Chapter 5 Developing Web Applications 175

Client/server (or, two-tier) applications perform many of the functions of stand-
alone systems; they present a user interface, gather and process user input,
perform the requested processing, and report the status of the request. Because
servers only provide access to the data, the client uses its local resources to
process it. Out of necessity, the client application is aware of where the data
resides and how it is laid out in the database. Once the server transmits the data,
the client is responsible for formatting and displaying it to the user.

The primary advantage of two-tier applications over monolithic, single-tier
applications is that they give multiple users access to the same data
simultaneously, thereby creating a kind of interprocess communication. Updates
from one computer are instantly available to all computers that have access to the
Server.

However, the server must be willing to trust clients to modify data
appropriately—unless data integrity rules are used, there is no protection against
errors in client logic. Furthermore, client/server connections are hard to manage—
the server is forced to open one connection per client. Finally, because much of
the business logic is spread throughout a suite of client applications, changes in
business processes usually lead to expensive and time-consuming alterations to
source code.

Although two-tier design still continues to drive many small-scale business
applications, an increasing need for faster and more reliable data access, coupled
with decreasing development timelines, has persuaded systems developers to seek
out a new distributed application design.

The New System Design

The new system design distributes computing tasks more evenly between the
client and server. Viewed from a purely functional standpoint, most applications
perform the following three main tasks: gathering user input, storing the input as
data, and manipulating the data as dictated by established operational procedures.
These tasks can be grouped into three or more tiers, which is why the new system
design provides for three-tier, multi-tier, or n-tier applications. The application
tiers are:

.= Client tier The user interface or presentation layer. Through this topmost
layer, the user can input data, view the results of requests, and interact with the
underlying system. On the Web, the browser performs these user-interface
functions. In non-Web-based applications, the client tier is a stand-alone,
compiled front-end application.

176 - Internet Information Server Resource Kit

= Middle tier Components that encapsulate an organization’s business logic.
These processing rules closely mimic everyday business tasks, and can be
single-task oriented, or part of a more elaborate series of tasks in a business
workflow. In a Web application, the middle tier might consist of COM
components registered as part of a Microsoft Transaction Server (MTS)
package or instantiated by an Active Server Pages (ASP) script.

= Third tier A database management system (DBMS) such as a Microsoft SQL
Server database; or an unstructured data store, such as Microsoft Exchange; or
a transaction processing mechanism such as Microsoft Transaction Server, or
Microsoft Message Queue Server. A single application can enlist the services
of one or more of these data providers.

IE h]
@\ t ers
I \I Client Tier

(User Interface
& Navigation)

Middle Tier
(User Interface
& Navigation)

Third Tier
(Data Services)

SQL Oracle Exchange = MSMQ
Server

Figure 5.2 Three-tier architecture on the Web

Application tiers don’t always correspond to physical locations on the network.
For example, the middle and third tiers may coexist on the same server running
both Internet Information Server and SQL Server, or they could be separate. The
middle tier alone may tie together several computers, and sometimes the server
becomes a client itself.

Chapter 5 Developing Web Applications 177

Separating the application into layers isolates each major area of functionality.
The presentation is independent of the business logic, which is separate from the
data. Designing applications in this way has its trade-offs—it requires a little more
analysis and design at the start, but greatly reduces maintenance costs and
increases functional flexibility in the end.

Although the n-tier system architecture is central to Web applications, it isn’t
solely for use on the Internet. One of the many benefits of building reusable
middle-tier components is that they can be used outside of the Web model as well.

The explosive growth of the Internet is a strong motivation for organizations to
adopt n-tier architectures in their products. However, organizations still face
challenges. How can they take advantage of new technologies while preserving
existing investments in people, applications, and data? How can they build
modern, scalable computing solutions that are dynamic and flexible to change?
How can they lower the overall cost of computing while making complex
computing environments work? Microsoft’s answer is Windows DNA.

Microsoft Windows DNA

The Windows Distributed interNet Applications Architecture (Windows DNA) is
Microsoft’s framework for building a new generation of n-tier computing
solutions. Windows DNA defines a framework for delivering solutions that meet
the requirements of corporate computing, the Internet and intranets, and global
electronic commerce, while reducing overall costs of development.

The heart of Windows DNA is the Component Object Model (COM). Windows
DNA architecture makes use of a common set of services, including HTML and
Dynamic HTML, ActiveX Controls, COM components, client-side and server-
side scripting, transactions, security and directory services, database and data
access, systems management and HTML, and component authoring environments.
These services are exposed in a unified way through COM, which enables
applications to interoperate and share components easily.

178 Internet Information Server Resource Kit

HTML/ Script
Authoring

| User Interface & Navigation

Basic | | Dynamic ActiveX Scripting
HTML HTML Controls

Process

Transactions COM ASP
Components | | Scripting

£x

ntegrated Storage

File Database
System

Figure 5.3 The Windows DNA family of technologies

Windows DNA builds on the client-side services of Windows and Microsoft
Internet Explorer, the distributed infrastructure of Windows NT Server and the
BackOffice family, and Microsoft’s integrated tools such as the Visual Studio™
development system. Because Windows DNA architecture uses open protocols
and published interfaces, organizations can integrate third-party products and
solutions. In addition, because Windows DNA architecture embraces an open
approach to Web computing, it builds on the many important standards efforts
approved by bodies such as the World Wide Web Consortium (W3C) and the
Internet Engineering Task Force (IETF).

Although the technologies of Windows DNA are available today, the architecture
provides organizations with a road map for the future. Microsoft is enhancing
Windows DNA with Internet Explorer 4.0 (Dynamic HTML, Active Desktop™),
Internet Information Server 4.0 (Web, component, and transaction services), and
Microsoft Windows NT Server 5.0 (Active Directory, Zero Administration
services). COM+, the evolution of Microsoft’s object model and component
services, will further extend the scope of Windows DNA applications.

For more information on Windows DNA, visit
http://www.microsoft.com/sitebuilder/dna/.

Chapter 5 Developing Web Applications 179

The Future of Applications on the Internet

The Internet promises dramatic new opportunities for savvy businesses.
Businesses can create new computing solutions that improve the responsiveness
of the organization, use the Internet and the Web to reach customers directly, and
effectively connect people with information.

Customers have already started to demand global access to the information they
need, both public and personal. Users increasingly want to use a single client
application for their information access needs, and rely on the versatility of the
server to provide content and services. Users will come to depend on these
applications and want them to be universally available, even to replace local
applications on their desktop systems. They are reluctant to invest time in
installing new software, especially when a single powerful client—a browser—
can deliver such a broad range of capabilities.

Consequently, there is likely to be an explosion of HTML-based server
applications to feed the ubiquitous availability of the powerful Internet client.
Applications will be factored into user-interface-only client components (with
little software required beyond the standard Internet browser), and a middle tier of
server components that have no user interface and provide services to the local
desktop or across the Internet.

The following sections describe the roles that the client and middle-tier play in
distributed Internet and intranet applications. The third tier is discussed in Chapter
6, “Data Access and Transactions.”

Client-Side Technologies

This section presents a survey of the technologies that make up the client-tier of
today’s Web applications. Each technology is considered from the perspective of
what it is, how it works as part of a Web application, and what the issues are
regarding its use. This section does not address how to use these technologies.

Note Not all browsers support all client-side technologies. See “Browser
Support,” at the end of this section for advice on which client-side technologies to
implement.

180 Internet Information Server Resource Kit

Text and HTML

Hypertext Markup Language, or HTML, is the basic formatting language of Web
pages. Just like a printed page, text on a Web page can include a variety of font
faces, colors, font weights and attributes, spacing, and columns. In addition, Web
pages can include tables, frames, and HTML forms. Web applications make heavy
use of tables and forms to display data, organize application elements, and collect
user input.

HTML adheres to a set of standards that makes it useable over the entire Internet,
and on intranets. For more information on HTML standards either visit the World
Wide Web Consortium home page at http://www.w3c.org or consult your HTML
reference materials. See the “Dynamic HTML” section later in this chapter for
information on.the newest extensions to HTML.

Graphics and Multimedia

- Hyperlinks

Graphics and multimedia, if used effectively, can greatly enhance the look and
feel of an application. They can instruct, as well as draw the eye to important
areas of the screen.

Multimedia is an especially powerful tool on an intranet. Using streaming
audio/video, like that available through Microsoft NetShow, you can broadcast
special events as they happen, or use pre-recorded video to train employees in
complex technical operations.

Because of the speed limitations of modems used for most Internet connections,
heavy use of graphics and multimedia over the Internet should be restricted. Low-
resolution graphics, if designed correctly, not only download more quickly but
may actually look better than high-resolution graphics on most computer
monitors.

Hyperlinks connect the parts of your application together, act as the application’s
“menu,” and can perform both client-side and server-side actions. For example,
clicking a hyperlink can cause a page to load in another frame, or can run a client-
side script to change the layout of the page. ’

Hyperlinks are normally embedded directly on the page as text or graphics (such
as an imagemap) where the user can view and click them. They can also be
activated when a form is submitted. Or client-side script can dynamically create
and trigger them.

Chapter 5 Developing Web Applications 181

There are lots of ways to present choices to the user. You can simplify the layout
of a large number of hyperlinks by grouping similar choices together, using a
similar style of presentation, or by hiding and displaying links as appropriate. For
instance, you can choose to display links dynamically, based on the privilege level
of your users. Only visitors with high-level access would be able to view links
that perform advanced or administrative actions.

Client-Side Script

Client-side scripts run within the user’s browser, using the processing power of
the user’s (client) computer. Client-side scripts can be written in any language
supported by the browser; the most common is JavaScript. Some browsers, such
as Internet Explorer, also support Visual Basic Scripting Edition (VBScript).
Client-side scripting enhances Web pages with a variety of custom capabilities.
For example, you can use scripts to perform field edits and calculations,
manipulate the client window, or validate form input. Scripts normally appear
directly on the page they affect, but they can be used to manipulate the content of
pages in another frame or browser window as well.

Upgrading the Client’s Scripting Engine

As a Web author, you will want to make sure your users are able to use the
capabilities you’ve worked hard to provide for them. If your site requires the
latest features of a client-side scripting engine, you should make sure your clients
have the latest version installed. If your clients don’t have the correct scripting
engine, they may receive scripting errors that prevent your pages from loading or
working properly.

Using a bit of client-side code, you can determine whether the client has the
required version of the scripting engine. If the client doesn’t have the required
version, you can prompt the user to install the latest version of the scripting
engine. Change the value of requiredvVersion in the following script to specify
the minimum version requirements for your application.

182 Internet Information Server Resource Kit

Java Applets

<SCRIPT LANGUAGE=JScript><!--
var version;
var requiredVersion = 2;

// Detect script engine version

if (typeof(ScriptEngineMajorVersion) + "" == "undefined")
version = 1;

else
version = ScriptEngineMajorVersion();

// Prompt ciient and navigate to download page.
if (version < requiredVersion) {

if (confirm("This site requires a newer version of JScript. Would you
want to upgrade now?")) {

location.href =

"http://www.microsoft.com/msdownload/scripting.htm";

}
}
--></SCRIPT>

If the client doesn’t download, or can’t download, the latest scripting engine, you
should handle that situation gracefully. For instance, you might want to provide
alternate pages for clients without the latest scripting engine in the same way that
pages in frames can be downgraded for browsers that are not frames-enabled. Or
you can simply notify your client that the latest scripting englne is necessary to
view your site.

Note JavaScript 3.0 is now available and is included with all versions of Internet
Explorer 4.0. JavaScript 3.0 complies fully with the ECMA (European Computer
Manufacturers Association) scripting standard. To learn more about the ECMA
scripting standard, see the ECMA-262 specification at http://www.ecma.ch/, and
to learn about Microsoft’s implementation of this standard, visit the Microsoft
scripting site at http://www.microsoft.com/scripting/.

Java is a programming language designed especially for cross-platform
applications, such as those that must operate on PC, Macintosh, and UNIX
browsers. This cross-platform capability makes Java a natural companion to
HTML for use on the Web and on intranets where users may use a variety of
operating systems. Small, self-contained applications, called applets, can be
written in Java to add fun and functionality. A Java applet can be anything from
an ad banner that rotates between different ads to a complex animation for
employee training.

Chapter 5 Developing Web Applications 183

Java applets are precompiled into “class” files consisting of bytecodes, Java
instructions that are the same no matter which operating system the applet is
running on. When the browser downloads the Java class file, the browser’s built-
in Java virtual machine reads the bytecodes and executes native instructions
appropriate for the local operating system. That’s how Java achieves operating-
system independence.

Java applets are subject to strict security measures, and are usually limited to a
secure processing area, dubbed the “sandbox.” The sandbox prevents malicious
applets from harming your computer, but it also prevents you from creating fully
powerful, interactive Java applications. Internet Explorer 4.0 introduces a new
security model for Java applications, in conjunction with “Security Zones,” so that
users can select the appropriate level of system interaction based on the origin of
the applet. They can choose to lower the security requirements for trusted applets,
enabling more powerful and interactive features.

ActiveX Controls

ActiveX Controls can be used either to customize the user interface, or as “plug-
in” applications (such as the Macromedia Shockwave animation control and the
RealNetworks streaming audio/video player). ActiveX Controls can perform a
variety of tasks, from advanced user interface navigation to real-time interaction
with stock quotes. ActiveX Controls can be written in any language that supports
COM Automation, including Visual Basic, C++, Java, or even COBOL.

ActiveX Controls can be embedded into the HTML page by using the HTML
<OBJECT> tag. If the control does not exist on the users system, it can be
downloaded using the URL specified in the CODEBASE attribute. This tag also
supports component versioning. Once the control is downloaded and installed, the
browser continues to use the cached control until an updated version is available
on the server. The following example demonstrates the CODEBASE parameter:

<OBJECT ID="BoomButton" WIDTH=225 HEIGHT=35
CLASSID="c1sid:56F1BF40-B2D0-11d0-A6D6-00AAQQA7OFC2"
CODEBASE="http://example.microsoft.com/AControl.cabf#Version=1,0,0,1">
</0BJECT>

184 Internet Information Server Resource Kit

A malicious ActiveX control could perform potentially destructive actions on the
user’s computer. To help users determine whether a control is safe to use,
Microsoft has developed security guidelines for vendors to follow when releasing
a control. A control should identify its creator with a “signature” issued by a well-
known security authority, such as VeriSign. Authenticode, Microsoft’s code-
signing technology, assures accountability and authenticity for software
components distributed on the Internet. Only the original owner can modify a
signed control, which prevents tampering by third parties. (For more information
on Authenticode and code-signing, visit http://www.microsoft.com/security/.)

As of this writing, only Internet Explorer 3.0 or later includes native support for
ActiveX Controls. Because browser support for ActiveX Controls isn’t universal,
ActiveX Controls are probably most useful for intranet sites or sites created
especially for Internet Explorer users.

Active Documents

Active Documents (also known as Doc Objects) are documents that can be
embedded in any Active Document container. Microsoft Office Binder and
Internet Explorer are two examples of Active Document containers. An Active
Document exploits the native functionality of the server application used to create
them. Microsoft Word, Excel, and PowerPointe are all Active Document servers
that can create Active Documents for use in Internet Explorer.

Users of Active Documents can create documents using the full power of their
favorite applications, and treat the resulting project as a single entity. For
example, if you have Microsoft Word (or Microsoft Word Viewer), you can open
a Word document in Internet Explorer. The document is displayed just as it is in
Word, except that it is contained inside Internet Explorer. In addition, Word adds
all of its menus, toolbars, and status bars to create a familiar interface.

Like ActiveX Controls, Active Documents can also be signed with a security
certificate, downloaded from the Web (by version), and executed inside any frame
of the browser. Additionally, if Web server security allows, you can edit an
Active Document within the browser and save your changes back to the server.
For this reason, Active Documents are well suited for collaboration and
workgroup applications. ’

For an example of an application that takes advantage of Active Document
technology, see the sidebar “Case Study of a Web Application.”

Chapter 5 Developing Web Applications 185

Cascading Style Sheets

The Cascading Style Sheet (CSS) standard gives authors more control over fonts,
sizes, two-dimensional overlapping, and exact glyph positioning. CSS also
separates formatting information from the Web page content, making it much
easier to design and revise pages.

Style sheets control the appearance of HTML tags; they do not replace them.
Style sheets give you the ability to attach style information to one or more HTML
documents and to any of the tags therein, which greatly expands your control over
the appearance and structure of a page. Formatting information can be applied to
custom tags for a given browser as well as to standard HTML tags.

CSS information can be specified by linking, embedding, or as an inline style
modifier. An HTML document can use any combination of these three methods.
The most common method is linking, because it establishes a basis for embedded
and inline style modifications. An example of a link to a style sheet is shown here:

<LINK REL=STYLESHEET TYPE="text/css"™ HREF="./myCustom.css">

Note Because of changes to the CSS standards recently adopted by the World
Wide Web Consortium (W3C), the CSS support in Internet Explorer 3.0 is not
fully compatible with that found in Internet Explorer 4.0, which supports the new
standard. A detailed description of the latest CSS 2.0 standards is available at
http://www.w3c.org/Style/. '

186

Internet Information Server Resource Kit

Case Study of a Web Application

Microsoft recently introduced a new means of filing employee expense
reports. The old system required employees to prepare expense report
forms, attach receipts, and submit them to their managers, who would
review the forms and submit them to the accounting department. Mistakes
were common, and forms often had to be resubmitted. Once the paperwork
was finished, the reports were painstakingly entered into a database.

To eliminate some of the problems with the existing system, the accounting
department introduced a Web application to control and streamline the
employee reimbursement process. The new application allows the
employee to report expenses using a Microsoft Excel worksheet modeled
after the paper version of the old form. The worksheet validates the data as
it is submitted, catching most user errors up front. When the documents are
ready, the electronic form can be routed to the employee’s manager by e-
mail. After the manager approves the form, a copy is returned to the
accounts department and an approval notification is sent to the employee.
The accounting department then performs all of its final work online,
saving considerable effort.

The new expense-reporting system effectively:

= Improved control Control was a recurrent theme throughout the
design of the application. The worksheet and associated Web site were
carefully designed to ensure that both employees and managers
understood their responsibilities. Using an electronic form meant that
reports could be tracked on their way through the system, making
expense auditing on the back-end faster and more verifiable.

= Reduced labor Because there was less paperwork to be processed, the
company was able to improve control while reducing the labor required
to process and audit expense reports.

= Decreased resources Part of the goal was to reduce paper waste. The
online system requires fewer forms, and hence, fewer resources.

= Decreased payment cycle time The old process took 8 to 10 days
from time of approval to employee reimbursement. Approval sometimes
required weeks. The online solution enables a much faster turnaround
time. In most cases, payment can be made within one or two days of
approval.

Payoffs such as these are a recurrent theme in most Web applications. A
well-designed application can improve the way you work, simply by being
available wherever there’s a browser.

Chapter 5 Developing Web Applications ' 187

Dynamic HTML

Dynamic HTML (DHTML), supported by Internet Explorer 4.0, is an emerging
standard that is more than just an extension to standard HTML. With Dynamic
HTML, you can easily add advanced functionality that was previously difficult to
achieve without client-side controls. For example, you can:

= Hide text and images in your document and keep this content hidden until a
given time elapses or the user wants to view it.

= Animate text and images in your document, independently moving each
element from any point to any point in the document, following a path that you
choose or that you let the user choose.

= Create a ticker that automatically refreshes its content with the latest news,
stock quotes, or other data.

= Create a form, then instantly read, process, and respond to the data the user
enters in the form.

Internet Explorer 4.0 does not require additional support from applets or
embedded controls to achieve these effects. It automatically reformats and
redisplays the DHTML. page to reflect dynamic changes in content styles. It does
not need to reload the document, load a new document or depend on the server to
generate new content. Instead, it uses the power of the user’s computer to
calculate and carry out changes.

Dynamic HTML documents make heavy use of styles and script to process user
input and directly manipulate the HTML tags, attributes, and text in the document.
Through the Internet Explorer 4.0 object model, you can control every property of
every HTML tag to precisely control the layout, appearance and function of your

page.

For more information on Dynamic HTML, visit the Site Builder Dynamic HTML
page at http://www.microsoft.com/workshop/author/dhtml/.

Data Binding

Using DHTML, the results of database queries can be “bound” to HTML
elements, such as the rows of a table. (You can also use databinding ActiveX
Controls, such as the Advanced Data Connector, included in earlier versions of
Internet Explorer.) You can use data binding to remotely view and modify the
results of database queries within the browser. Data binding is a function of the
Remote Data Services (RDS), which is part of the ActiveX Data Objects (ADO)
family of data access components. For more information on RDS and ADO, see
Chapter 6, “Data Access and Transactions.”

188 Internet Information Server Resource Kit

Active Desktop

The Active Desktop is a technology provided with Internet Explorer 4.0 that
displays content from the Internet and intranet on the Microsoft Windows
desktop. The Active Desktop combines:

= Static HTML pages.

= Graphic objects and animations.

» Dynamic HTML, Java, script, or ActiveX documents.

= Subscription content that downloads on a predetermined schedule.

Active Desktop can display any HTML-based page or graphic item. For example,
users can customize their desktops to display stock market quotes or hyperlinks to
Web pages.

The Active Desktop includes two layers: the transparent Icon layer, which
exposes desktop shortcuts for the user and the background HTML layer, which
hosts all desktop components.

The Icon Layer

The Icon Layer extends the features of hyperlinks on a standard Web page, such
as single-click navigation and mouse-over highlighting. It also integrates a Web-
like environment with features familiar to the Window 95 shell, such as drag-and-
drop, file-type associations, double clicking, and so on.

The HTML Layer

The HTML layer is described by a single, local HTML file called Desktop.htm,
which is created and edited automatically by Internet Explorer 4.0. This file
contains:

= HTML tags that represent each desktop component.

= An ActiveX control that enables moving and resizing of the desktop
components and helps to manage the list of desktop components.

= Any other static HTML that the user wants to display in the background. By
default, Desktop.htm just contains a reference to the user’s chosen wallpaper,
which is displayed as the background image of the HTML page.

Users can customize their desktops by installing desktop components designed for
Microsoft Internet Explorer 4.0, or by manually specifying a URL (Uniform
Resource Locator) for an image or floating frame.

Chapter 5 Developing Web Applications 189

Channels

Channels are another Internet Explorer 4.0 technology with which content can be
“pushed” onto a client’s computer. You can set up a subscription channel, which
the visitors to your site can use to subscribe to your content. When you update the
content on that channel, the subscribers are automatically notified, and they can
choose to load the data automatically at chosen times, or to load it manually at
their convenience. Microsoft Internet Explorer 4.0 provides a standard method for
users to schedule information delivery.

Multicast Webcasting

The Webcasting architecture in Internet Explorer 4.0 provides architectural hooks
that allow third parties to provide value-added benefits to enrich the Webcasting
experience. Microsoft provides an open, extensible information delivery
architecture that makes it possible to integrate the market’s existing “push”
products with the Microsoft Internet Explorer 4.0 Webcasting client. Specifically,
you can plug in third-party software that defines new transport protocols or that
provides an alternative delivery mechanism for Active Channels.

By taking advantage of special network hardware, multicast protocols provide
bandwidth-efficient broadcasting of content throughout a corporate network.
Because of Microsoft’s extensible Webcasting architecture, the NetShow
networked multimedia software component in Internet Explorer 4.0 can receive
Active Channel content broadcast with such a protocol.

Browser Support

In intranet scenarios where a single browser type can safely be assumed, you may
design your sites around browser-specific technologies with impunity. (If you do
s0, you should alert your users to this fact with a “Best viewed with” graphic on
the site’s home page.)

On the Internet, however, you can’t assume that everyone has an up-to-date
browser. And, even among newer browsers, several different types are available;
Microsoft, Netscape, and Sun Microsystems have all released browsers with
varying degrees of support for ActiveX, Java, scripting, and HTML. The question
of what functionality to perform on the client depends on the variety and
capabilities of browsers you want to support.

With the lowest-common-denominator approach, pages contain no more
functionality than the least capable browsers can process successfully. Content is
guaranteed to be viewable in its entirety on any browser. Unfortunately, users may
notice, and be disappointed by, the limited functionality this approach requires.

190

Internet Information Server Resource Kit

Some sites provide text-only versions of their pages, or frames-free areas for less
capable browsers. This duplication ensures that all users can get the same
information, but it requires you to develop, test, and maintain multiple versions of
your site. Often the less functional version remains underdeveloped, as the focus
of development tends toward “bells and whistles.”

The best approach may be to develop pages using a medium level of technology,
and to add specific features once you have determined the browser type. This is
often a good middle ground, because all pages can be developed using one set of
design elements and content. The advanced features of the site are made available
only to browsers that support them.

The Browser Capabilities component included with Active Server Pages (ASP)
provides a way to detect the browser type and tailor the returned document to

exploit browser-specific capabilities. For more information on this component,
see the “Scripter’s Reference” section of the IIS online product documentation.

The following table summarizes browser support for different client technologies:

Table 5.1 Support for Client Technologies by Browser

Technology Widely Internet Internet
supported Explorer 3.0x Explorer 4.0 Only
HTML X X X
Graphics and multimedia X X X
JavaScript X X X
(version 2.0) (version 3.0)

VBScript X X
Java applets : X X X
ActiveX Controls X X
Active Documents X X
Cascading Style Sheets X X
Dynamic HTML X
Active Channels X
Active Desktop X

Chapter 5 Developing Web Applications 191

Limitations of Client Technologies

Although it’s possible to create applications that rely exclusively on client-side
technologies, these systems effectively mimic client/server architecture, and are
susceptible to identical shortcomings. There are several reasons why client/server
architecture isn’t suitable for full-scale enterprise applications on the Internet:

= A client application using client-side ActiveX Controls or client-side scripting
is not supported by all browsers. A line-of-business application for the Internet
must work with as many browsers as possible, including those that do not
support HTML tables, frames, Java applets, client-side scripting or ActiveX
Controls.

= Coding business logic as client-side script fails to protect your programming
investment (because the source code is available to all). Java applets and
ActiveX Controls are more secure, but whenever you combine business logic
with user interface, your application becomes harder to support and debug. In
addition, the resulting components are less likely to be reusable in other
applications. '

» Client-centric applications do not take full advantage of the three-tier
programming model. Designs in which the client plays a more than supporting
role typically take on tasks that are better suited for the server, such as ’
resource management and data manipulation.

The Middle Tier

This section discusses what is perhaps the most important layer of Web
programming, the middle tier. It is here that user input is combined with business
logic to perform the work of your site.

The middle tier is not just a single layer of logic. It can consist of many

interrelated technologies, seamlessly combined to create the illusion of a single

multipurpose layer. For example, the client’s request may be preprocessed by an

ISAPI filter, then execute a script to run a custom-built component that

manipulates a database with ActiveX Data Objects (ADO). Technology integrates
- with technology, layer upon layer: a demonstration of true n-tier architecture.

192 Internet Information Server Resource Kit

CGl Applications

In the past, Web server application programming would usually require
developing Common Gateway Interface (CGI) programs or scripts.

Common Gateway Interface applications are most widely used on UNIX systems
to create executable programs that run on the Web server. CGI programs are
typically written in the C language, but can also be written in interpreted
languages such as Perl. Remote users can launch CGI applications on the server
simply by requesting a URL containing the name of the CGI application.
Arguments following the question mark in the URL are passed to the CGI
application as environment strings. The output of a CGI application isn’t much
different from a desktop application; HTTP headers and HTML are generated
using the basic output functions of the language (for example, printf in C).

CGI applications are easy to write, but scale very poorly on Windows NT.
Because a separate process is spawned for each client request, hundreds of clients
create hundreds of instances of the CGI program, each requiring their own
memory space and system resources. This isn’t such a bad thing on UNIX, which
is designed to handle multiple processes with very little overhead. Windows NT,
which is optimized for thread management inside a process, expends more system
resources when creating and destroying application instances.

ISAPI Extensions and Filters

The Internet Server API (ISAPI) was developed specifically for IIS as a high-
performance Windows NT alternative to CGI. An ISAPI extension is a run time
dynamic-link library (DLL) that is usually loaded in the same memory address
space occupied by IIS. Since it is a DLL, only one instance of the ISAPI extension
needs to be loaded at a time. Of course, the ISAPI extension must be thread-safe,
so that multiple client requests can be received simultaneously. Although ISAPI
extensions are more complex than CGI applications, ISAPI uses a relatively
simple API. For each client request, the Web server invokes the
HttpExtensionProc ISAPI call and passes a pointer to an ISAPI Extension
Control Block (ECB), which contains information about the request. The ISAPI
DLL can use server callback functions to access information such as server
variables. The ISAPI ECB also provides the developer with access to some
general-purpose support functions, such as URL redirection, session management,
and response headers, which are not available to CGI applications.

Chapter 5 Developing Web Applications 193

Despite the obvious benefits over CGI, ISAPI extensions present some
maintenance problems. For instance, if you want to make even a minor change to
the HTML returned by an ISAPI extension, you have to recompile and link it.
Also, despite its faster performance and smaller memory requirements, an ISAPI
DLL can cause the Web server to crash if it isn’t thoroughly tested and verified
before being deployed and run in the Web server process.

Fortunately, with IIS 4.0 you can select which ISAPI extensions are loaded in-
process with IIS and which extensions should be loaded in a separate process.
ISAPI extensions in a separate process can be stopped and restarted independently
of the server process, and can be restarted automatically after a crash. Although
out-of-process extensions are slower than in-process ones, being able to isolate
and reload applications under development is a distinct improvement over earlier
versions of IIS. For more information on out-of-process extensions, refer to the
section on “Process Isolation and Crash Recovery” in the next chapter.

ISAPI can also be used to create ISAPI filters. Filters are a fairly new concept in
Web server extensibility—there is no CGI counterpart. ISAPI filters can intercept
specific server events before the server itself handles them. The calling
convention for filters is very similar to that of extensions. When a filter is loaded
(usually as the Web service starts), it indicates what sort of event notifications it
will handle. If these events occur, the filter has the option of processing the
events, passing them on to other filters, or sending them to the server. In this way,
you can use ISAPI filters to provide custom authentication techniques, or to
automatically redirect requests based on HTTP headers sent by the client, such as
Accept-Language.

Filters can be a drag on performance, if they are not written carefully. With IIS
4.0, ISAPI filters can be loaded for the Web server as a whole or for specific Web
sites. They cannot, however, be run out-of-process.

Active Server Pages

Active Server Pages (ASP) was introduced as part of 1IS 3.0, and has been greatly
enhanced for the 4.0 release. ASP greatly simplifies server-side programming so
that you easily create dynamic content and powerful Web-based applications.

ASP scripts can perform the same sorts of tasks as CGI and ISAPI applications,
but are much easier to write and modify. ASP creates a higher level of
interactivity by managing application and session state on the server, thereby
reducing the amount of information that needs to be transmitted back and forth
between the server and the client. ASP makes it easy to work with information
entered into HTML forms, or in the URL as parameters. You can also control
advanced HTTP features from script, such as client-side cookies and client
security certificates.

194

Internet information Server Resource Kit

At the heart of ASP is an ISAPI extension—Asp.dll— that compiles and caches
.asp files in memory at run time using a script interpreter. The IIS script-map
associates the .asp extension to Asp.dll. Because ASP must interpret and compile
scripts before executing them, complex scripts can be about four times slower
than plain HTML, and two to three times slower than ISAPI, when they are first
requested. Afterward, the compiled version of the page is cached in server
memory, making subsequent requests significantly faster and amortizing the
initial cost of compilation over potentially thousands of page requests.

ASP is designed for usability and ease of development, giving you the opportunity
to dramatically decrease the time spent in development. However, it will never
outperform static content, or custom-written, task-focused C++ ISAPI extensions.
Only carefully designed ASP applications, combined with server-side
components, can approach the speed and performance of ISAPI applications.

ASP Server-Side Scripting

You can create highly interactive pages that are independent of the type of
browser used to access those pages. Unlike client-side script, with ASP you can
“hide” your scripting on the server so that you can protect your development ideas
and intellectual property.

ASP script is “language agnostic,” meaning that it isn’t limited to a particular
language. VBScript, JScript, or any language for which a third-party ActiveX
Scripting Engine is available (such as PerlScript, REXX, or Python) can be used
to create ASP scripts.

ASP scripting instructions appear side-by-side with HTML. (In fact, you can
create an ASP page simply by changing the file extension of a plain HTML file to
.asp.) To differentiate between HTML and script meant to run at the server, ASP
uses special tags, called server-side scripting delimiters, to indicate server-side
script: <% and %>. Script appearing inside these delimiters will be invoked on
the server as the page is processed. A special form of these scripting delimiters,
<%= expression %>, can be used as a shorthand for returning values from script.

The following line of server-side- VBScript code returns the current date:

Today is <%= Date %>.

Chapter 5 Developing Web Applications 195

This instruction generates something like the following line (the exact text
depends on the date):

Today is 7/4/98.

Note You can also use the Write method of the ASP Response object to write
the results an expressions to the page. For more information, see “Built-in Objects
and Server-side Components,” later in this chapter.

A slightly more complex example of ASP might use the conditional execution
elements of the scripting language, intermixed with HTML, as follows:

<% If Hour(Now) < 12 Then %>

Good Morning!
<% Elself Hour(Now) < 18 Then %>

Good Afternoon!
<% Else %>

Good Evening!
<% End If %>

You can use more than one scripting language on a single ASP page, though each
page has a primary scripting language. You can use Internet Service Manager to
set the primary scripting language for an application; you use declaratives (also
known as @-directives) to define it for a page.

ASP subroutines and functions can be in any script language, although if you
define them inline with the rest of the script, you’re limited to the primary
scripting language. To change the scripting language of the subroutine, you need
to use HTML <SCRIPT> tags to define them. You will also need to add the
RUNAT=SERVER attribute, to indicate that this script is intended for the server
rather than the client.

196 Internet Information Server Resource Kit

The following example page demonstrates how to combine a variety of scripting
languages and subroutine declaration styles into a single ASP file:

<%@ Language="VBScript" %>
<html1>
<head>

<% Sub InlineSub %>
This text won't be displayed until this subroutine is called.

<% End Sub %>

<script LANGUAGE="VBScript"” RUNAT=Server>
' Immediate script (outside a function)
Response.Write "This text is displayed last"
</script>

<script LANGUAGE="JavaScript"” RUNAT=Server>

function TestJdavaScript(str) {
Response.Write(str);

}

</script>

<script LANGUAGE="Perl1Script" RUNAT=Server>

sub TestPerlScript {
$Response->Write($_[0]1);

}

</script>

</head>

<body BGCOLOR=#FFFFFF>

<%
Response.Write "This is VBScript
"
TestJavaScript "This is JavaScript
"
TestPer1Script "This is PerlScript
"
InTineSub

%>

</body>

</htm1>

Note You can use <SCRIPT> tags to enclose immediate server-side script, but
don’t expect it to be run until the entire page has been processed. Earlier versions
of ASP used <SCRIPT> tags before the introduction of the <% %> delimiters,
but their use for immediate script is now discouraged. You should reserve server-
side <SCRIPT> tags for defining functions and subroutines only.

Chapter 5 Developing Web Applications 197

Use the scripting language that best suits your needs. VBScript contains helpful
string manipulation and financial functions not available in JavaScript. On the
other hand, JavaScript includes support for Regular Expression pattern matching
and an Internet-friendly URL class. You may want to combine the features of
multiple scripting languages to get the greatest level of flexibility and
performance for your application.

ASP Script Execution Behavior

When you write ASP applications, you’re operating in the world of IIS and
HTTP. Web developers who don’t have a firm grasp of this architecture find
themselves puzzled by strange errors in what seems to be straightforward code.

Consider the diagram shown in Figure 5.4.

(.45P)

HTTP Request

3@ HTTP Response

Client (HTML) Server

Figure 5.4 Requesting an ASP file from IIS

When a client browser requests an ASP page, a number of events occur in the
following sequence:

1. The client requests an ASP page by sending an HTTP Request to the Web
server.

2. Because the page has the .asp extension, the server (IIS) recognizes it as a
script-mapped file, and sends the file to the appropriate ISAPI extension (in
this case, Asp.dll) for processing. (This step does not occur when the client
requests an HTML file.)

3. The ASP ISAPI processes any server-side include directives first, before any
server-side script is compiled. Next, the script is executed, and dynamic text, if
any, is incorporated into the page that will be returned to the client. (This step
only happens when the page is first requested. Previously compiled pages are
retrieved from a server-side cache for faster performance.)

198

Internet Information Server Resource Kit

4. The server sends the resulting HTML page back to the client in the form of an
HTTP Response. The page output is sent incrementally as the page is
generated, or all at once if the response is buffered.

5. Once the client receives the response, it loads any client-side objects and
applets, executes any immediate client-side script code and displays the Web
page according to the HTML specification.

While this process looks simple, keep in mind that the client and server could be
hundreds, or even thousands, of miles apart. Therefore, when a problem arises,
you must determine where the error is occurring: on the client or on the server?
Equally important is understanding when each operation takes place. After ASP
completes its processing in step 3 and sends the response in step 4, it moves on to
other activities and other clients. The only way the client can recapture the
server’s attention is to request another page via the HTTP protocol. In other
words, there is no real connection between the client and server. This is a very
important concept.

Sometimes developers try to access server-side scripts or objects from the client,
or conversely, client-side objects or scripts from the server. For example, consider
client-side code that attempts to access one of ASP’s built-in objects, such as the
Session object. The attempt is destined for failure because the code running on the
client has no way of accessing an object located on the server. A typical error
message might appear as follows:

VBS Script Error: Object Required: Session

Now consider an example in which a server-side script attempts to manipulate a
client-side object. Suppose the developer wants to use server-side script to
populate a client-side control called Listbox1, using the following instruction:

<% ListBoxl.AddItem Valuel %>

The problem is that the HTML page, including the list box, does not yet exist
when the server-side code is executed. Therefore, this instruction generates an
error.

On the other hand, you can use server-side code to generate client-side code to
populate a list box. For example, you could create a Window_OnLoad event,
which is executed by the browser as soon as the window and its child controls are
created. The following code uses server-side script to provide the AddItem method
with values stored in the variables Valuel, Value2, and Value3.

Chapter 5 Developing Web Applications 199

<SCRIPT LANGUAGE="VBScript"><!--
Sub Window_OnLoad()
ListBoxl.AddItem "<%= Valuel %>"
ListBoxl.AddItem "<%= Value2 %>"
ListBoxl.AddItem "<%= Value3 %>"
End Sub

" --></SCRIPT>

Note If you use the HTML <SELECT> tag instead of an ActiveX control, the
procedure is slightly more direct. Because a list box created with the <SELECT>
tag is based on HTML code, you can use server-side scripting to generate the
<OPTION> tags. Since the HTML is self-contained, you do not need to place any
code inside a Window_OnLoad event.

Built-In Objects and Server-Side Components

If you have ever written client-side script, you have probably found yourself using
built-in browser objects such as document, form, and window. These objects are
provided as part of the browser’s object model, and make interaction with the
browser much more manageable. Likewise, ASP defines its own object model.

The Response object described earlier is one of ASP’s built-in objects, of which
there are currently six: Server, Application, Session, Request, Response, and
ObjectContext. These objects greatly simplify the interaction between the server
and the client. A description of each appears in the sidebar, “The Built-In ASP
Objects.”

In addition to the built-in ASP objects, you can create and manipulate a variety of
custom server-side components. By combining Active Scripting with server-side
COM components, also known as server-side objects, you extend the
functionality of ASP with powerful, easy-to-use packages. You can instantiate
server-side components by using the CreateObject method of the Server object
and passing it the ProgID of the component you wish to create. Once the
component is instantiated, you can access any of its properties or methods. For
example, the following script instantiates a server-side object with
Server.CreateObject and stores a reference to it in the variable objAdRotator:

<% Set objAdRotator = Server.CreateObject("MSWC.AdRotator") %>

200

Internet Information Server Resource Kit

The Built-In ASP Objects

Active Server Pages provides built-in objects that make it easier for you to
gather information sent with a browser request, to respond to the browser,
and to store information about a particular user.

Server Object

The Server object provides access to methods and properties on the server.
The most frequently used method is the one that creates an instance of an
COM component (Server.CreateObject). Other methods apply URL or
HTML encoding to strings, map virtual paths to physical paths, and set the
timeout period for a script.

Application Object

You use the Application object to store global application settings and
share information among all users of a given ASP application.

Session Object

You use the Session object to store information needed for a particular user
session. Variables stored in the Session object are not discarded when the

‘user jumps between pages in the application; instead, these variables persist

for the entire time the user is accessing pages in an application. You can
also use Session methods to explicitly end a session and set the timeout
period for an idle session.

Request Object

You use the Request object to gain access to any information that is passed
with an HTTP request. This includes name/value pairs passed from an
HTML form using either the POST method or the GET method, cookies,
and client certificates. The Request object also gives you access to binary
data sent to the server, such as file uploads.

Response Object

You use the Response object to control the information you send back to a
user. This includes sending information to the browser, redirecting the
browser to another URL, or setting cookie values.

ObjectContext Object

You use the ObjectContext object to either commit or abort a transaction
initiated by an ASP script. For more information, see Chapter 6, “Data
Access and Transactions.” You can also use this object to access the other
built-in ASP objects from within a component. ‘

Chapter 5 Developing Web Applications 201

To get you started, the default ASP installation includes several task-oriented
components, including the MyInfo, Ad Rotator, and Browser Capabilities
components. When you install the Microsoft Data Access Components (MDAC),
which is included in the Windows NT 4.0 Option Pack, you can also use the
ActiveX Data Objects (ADO) to access information stored in a SQL Server,
Oracle, or Microsoft Access database.

More components are available on the IIS Resource Kit CD, including the
Content Rotator, Page Counter, and Permissions Checker components. You’ll also
find the Collaboration Data Objects (CDO), which you can use to send SMTP
mail and access messages in a Microsoft Exchange Server message store. Of
course, you aren’t limited to these objects. You are strongly encouraged to create
your own objects to enhance your Web site and implement your own style of
business logic.

The following example demonstrates how to instantiate and use the Content
Rotator component, a server-side object used to display different HTML content
each time a Web page is loaded. In this case, it is used to display a “Tip of the
Day” when the page is generated:

<% Set objTip = Server.CreateObject("MSWC.ContentRotator") %>
<%= objTip.ChooseContent("/tips/tiprot.txt") %>

The Content Rotator component works in conjunction with a Content Schedule
File, a specially formatted text file that defines the content text. The schedule file
also defines a weight value, which affects the percentage of time the content is
displayed. This file must be available from the virtual directory root. For example,
depending on the definitions contained in the Tiprot.txt file, the previous example
might generate the following HTML, which is added to the response page’s
output:

Smile! Frowns put people off.

Why Components?

You could spend a lot of time writing ASP script that emulates component
functionality, but there are several reasons not to do so:

.= Script is much slower than a compiled object and will be less likely to scale to
large numbers of users.

= Script doesn’t separate presentation from functionality. Undifferentiated script
scatters business logic throughout the application, making it hard to find bugs
and increasing the cost of maintenance.

= Components are inherently reusable; scripts are not. Components may also be
used by other applications, such as those built in Visual Basic or C++.

202

Internet Information Server Resource Kit

Therefore, your development motto should be: The less script, the better. If you
are serious about performance and application scalability, you should use
components to perform the bulk of your business logic.

So, what makes a good server-side object? Generally, anything that expands the
functionality of the server and scripting language is a candidate for a server-side
object. Some server-side objects generate HTML that cannot be easily generated
by ASP itself. Others perform server functions, like accessing the registry,
sending mail, or administering a resource.

A compact memory footprint, computational speed, and multi-user reentrancy are
high priorities for server-side objects. Component stability is key too. Memory
leaks affect other applications on the server, and badly behaved components can
cause IIS to crash. (If a component is not fully debugged, you can isolate it in its
own process. See “Process Isolation and Crash Recovery” in Chapter 6, “Data
Access and Transactions.”) ‘

Because ASP component objects exist on the server, they should never rely on
user-interface elements, like dialog boxes or pop-ups. When reporting errors, they
should use the Windows NT Event Log, or return detailed error information in the
Err object, so problems can be reported to the user with script.

Reuse, Buy, or Build

When it comes time to procure components for your appllcatlon reuse the objects
you already have if possible. If none of your pre-built objects will do, consider
buying third-party components from a reputable vendor.

If you can’t locate a pre-built component, you will have to build it yourself.
Server-side components can be built using any development tool that supports the
creation of COM Automation servers, such as Visual Basic, Visual J++™, or
Visual C++. As with scripts, choose the component language that suits your
needs. Visual Basic 5.0 creates “Apartment” threaded components that can be
used on a page-by-page basis. If computational speed and multiuser re-entrancy
are important to your application, you should use Visual C or Visual C++ with
ATL 2.0 to develop your component. Visual C and Visual C++ can create “Both”
threaded components that are suitable for use in the Application and Session
scope. (For more information on threading considerations, see “Selecting Object
Scope” later in this chapter.)

For more information on creating a server-side component, see to the “ASP
Tutorial” topics in the “Web Applications” section of the IIS online product
documentation.

Chapter 5 Developing Web Applications 203

‘Using XRay to View Component Type Libraries

As you develop your scripts, the ability to view a component’s methods and
properties is extremely helpful. The XRay object browser, included on the IIS
Resource Kit CD provides the ability to browse a variety of component type
libraries.

Using XRay, you can view type libraries contained in executables, DLLs, and any
OCX, TLB, or OLB file. Component methods and properties are initially
displayed in the left-hand pane sorted by object, but can be “reverse sorted” into a
unique list of members followed by the objects to which they belong. The right-
hand pane can display method prototypes (which include the data types of all
parameters) or Help information if it is available. Figure 5.5 shows how the
Request and Response objects of Asp.dll appear when viewed with XRay.

Request
- BinaryRead
& ClientCertificate
& Cookies
o

'@' Item

& QuerySting
& ServeVariables
25 TotalBytes

%) Response

«@ AddHeader

AppendTolog
BinaryWiite

Figure 5.5 The ASP object library as viewed in Xray

ASP Applications

So far, this chapter has presented several examples of ASP scripts that create
HTML on the fly. Stand-alone pages, however, are only the beginning of what
you can do with ASP. This section discusses how to use the ASP Session and
Application objects to create a coherent application out of an independent series
of ASP files. It also walks you through the different elements of an ASP
application, and discusses how to configure it using Internet Service Manager.

204

Internet Information Server Resource Kit

ASP Session Management

Since HTTP is a stateless protocol, the Web server retains no memory of past
actions and treats each browser request as a one-time event. This statelessness
makes it is difficult for Web developers to create the level of application
interactivity that most users expect. Although persistent application state can be
maintained in a database or stored in files, such solutions are often difficult to
implement, and involve a hefty memory overhead and performance penalty. ASP
surmounts these problems by providing its own session management.

Using the ASP Session object, one of the ASP built-in objects, developers can
store any data they wish, including references to objects they have instantiated.
The Session object is analogous to an associative array, into which values may be
stored and retrieved by using a string (or keyword) as the index.

For example, the following instruction assigns “John Doe” to the MyName entry in
the array:

<% Session("MyName") = "John Doe" %>

The value “John Doe” is retrieved from the Session object by using the MyName
keyword, as shown here:

My name is:

The Session object exists in memory on the server and maintains its state for the
duration of the user’s Web session. The Application object is used in a similar
fashion to store values that persist for the lifetime of the ASP application; it is also
used to share values across user sessions. The values stored in the Session and
Application objects persist between page requests, and can be retrieved at any
point using the keyword to which they were assigned.

Chapter 5 Developing Web Applications 205

You can disable the Session object on a page-by-page basis using the declarative,
<%@ EnableSessionState=False %>. Disabling the Session object does not affect
values that have previously been stored in the Session object. However, it may
speed up the processing of pages that don’t use the Session object. Furthermore,
multiple ASP pages in an HTML frameset may be serialized (run in sequential
order) if they use session state. Disabling the Session object in child frames that
don’t require it will allow the frame requests to execute concurrently.

ASP Sessions Are Cookie-Based

ASP uses HTTP cookies to identify user sessions with unique session keys. Once
an ASP session begins, ASP responds to a user’s request with a Set-Cookie
HTTP header. From that point on, each browser request is identified by the
session ID cookie.

Web Farms and ASP Session State

ASP session information is stored in memory on the Web server, which
creates a challenge for sites using ASP in a Web farm environment. Web
farms balance the load of user requests among a number of Web servers. In
order to use ASP Session management, the same Web server must handle
all requests from a user for the life of the session, a prerequisite that most
load-balancing schemes cannot guarantee.

Several options are available if you want to use ASP in a Web farm:

= Write your own session management logic to replace that provided by
ASP. Keep your session state in a centralized place, such as a database.

» Use a third-party solution. For example, Cisco Systems’ LocalDirector .
hardware load-balancer can ensure that the same client gets the same
server for multiple connections.

= Load-balance new requests, but once a session begins, make sure that all
subsequent requests return to the same server during the life of the
session. This technique is called ASP session-aware load balancing.

206

Internet Information Server Resource Kit

ASP Session-Aware Load Balancing

In this scenario, all new requests continue to use the existing load-
balancing mechanisms (such as round-robin DNS) to distribute requests to
a site’s published URL. Then, during the Session_OnStart event, the ASP
script uses the Response object to Redirect the browser to the
application’s start page using the local computer’s own IP address or
unique name, as follows:

Finally, to ensure the browser will confine its requests to the same Web
farm server, all application links must be relative URLs. Relative URLSs
only specify path information relative to the current location, for example:

...
<FORM METHOD=POST ACTION="./SubDir/FormAction.asp">...</FORM>

When one of these links is selected, the browser will construct the full URL
path using the current address (specified in the redirect) and the relative
URL, thus enabling it to locate the computer hosting the user session.

This technique may not be appropriate for all Web applications. Also, if
users save URLSs using favorites or bookmarks, they will return to a
specific computer which can defeat the purpose of proper load balancing.

Here’s an example of an ASP session ID cookie:

Set-Cookie: ASPSESSIONIDGGGGGJZB=EFENHLNDIIEHJGJOAGICNPEK; path=/

This is different from earlier versions of ASP, which would set the cookie path to
that of the ASP application’s virtual directory. In IIS 4.0, only one cookie is
sufficient for all applications on the server. Once the cookie is received, every
browser request includes the same HTTP cookie header:

Cookie: ASPSESSIONIDGGGGGJZB=EFENHLNDIIEHJGJOAGICNPEK

ASP uses this value to retrieve the correct Session object for the client
connection. All requests to the application directory include the session ID
cookie, even those for static HTML content in subdirectories of the ASP
application. In this example, the cookie does not specify an expiration time, so it
is only valid as long as there is an open client session. The cookie expires when
the user closes the browser.

Chapter 5 Developing Web Applications 207

Note If a user chooses not to accept the ASP cookie (or if the browser fails to
return it in subsequent requests) the application will not be able to map the
browser request to an existing Session object and will create a new one.

It is possible for several browser instances to share the same cookie, which means
that more than one browser window can be accessing different sections of your
application at the same time, but make modifications to the same Session object.
This is especially bad news for applications that make heavy use of session state,
and is another reason to use session state only when necessary.

ASP session IDs are mapped to the in-memory Session object on the server. This
works well when only one server is managing the user session. When using ASP
in a Web farm, however, more than one server may be handling the user’s request.
For more information on how to manage session IDs in a Web farm, see the
sidebar, “Web Farms and ASP Session State.”

ASP Session IDs Are Not Unique

Applications that require a unique user identifier should not use the ASP session
ID. The ASP session ID is unique only for the life of the current application. If the
application restarts, the server may conceivably reassign the same session ID to
another user. In a multiple-server environment, like a Web farm, the likelihood of
duplicate IDs increases. Consequently, it is not advisable to use an ASP-issued
session ID as a unique key for tables, or any persistent user identity.

Instead of using the ASP session ID, you must use a separate mechanism designed
to create unique numbers across multiple servers and sessions. Microsoft
Transaction Server (MTS) includes the component TakeANumber, can be used to
generate unique sequential numbers for user identification. (For more information
on this component, see the sidebar “Take A Number: An MTS Example.”)

208

Internet Information Server Resource Kit

Take A Number: An MTS Example

Microsoft Transaction Server (MTS) includes the TakeANumber
component designed to produce sequential numbers. Because the number is
incremented as part of a transaction, you are guaranteed a unique identifier
that works across sessions and across servers.

The TakeANumber component is installed with MTS, but requires a little
preparation to use. You first need to define a SQL Server table to store the
current number. This table must be named “TakeANumber” and contain
two columns named “NextNumber” (integer type) and
“PropertyGroupName” (string type). The PropertyGroupName column
identifies which counter you are using—more than a single counter can be
stored in the table. Once your table is ready, you need to enter the first
number of the series. The following SQL statement should do the trick:

INSERT INTO TakeANumber VALUES (1234, ‘MyProp’)

Finally, create a File DSN so that the component can connect to the table
you just created. You can create a File DSN with the ODBC Administrator
application in Control Panel. For step-by-step instructions, see “Data
Source Names,” in Chapter 6, “Data Access and Transactions.”

Now you’re ready to use the component. The following instructions
retrieve the next number from the MyProp series:

<%@ Language=VBScript EnableSessionState=False %>

<HTML>

<HEAD><TITLE>Take A Number</TITLE></HEAD>

<BODY BGCOLOR=#FFFFFF>

<% Set tn = Server.CreateObject("MTS_TakeANumber.TakeANumber") %>
Next Number: <%= tn.GetANumber ("TakeANumber.dsn", "MyProp™) %>
</BODY>

</HTML>

As long as each server in your site connects to the same TakeANumber
database, you are guaranteed a unique identifier across servers.

Chapter 5 Developing Web Applications 209

ASP Session ID and Session Security

The cookie approach to session management could become a potential security
problem. If a hacker were able to capture, or guess, the session ID cookie in use
by an active session, he or she could submit valid HTTP requests that included
this cookie. In this manner a hacker could hijack, or steal, a user’s active session.
For example, if a user had supplied valid credit card information, and an ASP
script stored this information in the Session object, a hacker who managed to
hijack the session could make purchases using the stolen session. For this reason,
the following precautions are taken when generating ASP session cookies:

= Session ID values are 32-bit long integers.

= Each time the Web server is restarted, a random Session ID starting value is
selected.

= For each new ASP session that is created, the Session ID value is incremented.

= The 32-bit Session ID is mixed with random data and encrypted to generate a
16-character cookie string. Later, when a cookie is received, the Session ID is
decrypted from the 16-character cookie string.

» The encryption key is randomly selected each time the Web server is restarted.

ASP session ID values are selected from a huge range and are encrypted, making
it difficult to capture a valid cookie. In addition, guessing a valid cookie once
does not make it easy to guess another valid cookie.

If the complexity of the ASP cookie generation algorithm does not meet the
security requirements of your site, user authentication and client certificates can
be used in conjunction with session management to provide even more security to
your Web applications. For more information, see Chapter 8, “Security.”

Building an ASP Application

In its simplest form, an ASP application consists of all the HTML and script files
stored within an application boundary. Before any sessions are created, the
application initializes, instantiates application-scope components, and imports
type-library declarations. From that point on, each connected user has a separate
and distinct session, with its own values and component instances. The rest of this
section explains how application and session management is accomplished.

210 Internet Information Server Resource Kit

Application Boundaries

An ASP-based application consists of all the files in its root virtual directory and
in any subdirectories. An application defines a namespace (also called the
application root), that begins at the root directory and includes all files,
directories, virtual directories contained within—except those that are application
roots themselves or ancestors of another application root. For example, if a virtual
directory “Applications” and its subdirectory “Isolated Applications” are both
application roots, then URLs that contain only “/Application” are part of one
application, and URLSs that contain “/Application/Isolated Application” are part of
the other. Figure 5.6 illustrates how this looks in Internet Service Manager.

E]‘@ * Local Computer *
- Default Web Site

&g MSADC
m-{8 IISHELP
m-{@ SCRIPTS

ISADMPWD

- Application

) Roots
Virtual —

Directories

Figure 5.6 Application roots and virtual directories

In Figure 5.6, the virtual directories ASPS and ISAPIS are contained within the
Applications namespace. The Isolated ASPS and Isolated ISAPIS virtual
directories are part of the other application.

Application developers can enforce a logical division between applications with
separate application roots. Any Application and Session variables created in an
application’s namespace are segregated from the Application and Session
variables of other applications on the server. There is currently no way to view
values from other applications.

If an ASP file appears in a directory for which no application root is defined, it
runs within the context of the global application (the one defined for the Web
server’s root directory, WWWRoot). If the global application is removed, any
stand-alone ASP files in the site will return an application error.

Chapter 5 Developing Web Applications 211

Global.asa

Global.asa is used to store information used globally by the application; it does
not generate content that is displayed to users. Global.asa must be stored in the
starting point (normally the root directory) of the application. An application can
have only one Global.asa file.

Global.asa files contain only the following: Application events, Session events,
object declarations, and type library declarations. If you include script that is not
enclosed by <SCRIPT> tags, or define an object that does not have session or
application scope, the server returns an error. The server ignores tagged script
that the application or session events do not use, as well as any HTML in the
file.

Application and Session Events

Every application has two events associated with it: Application_OnStart and
Application_OnEnd. The script for these events is defined with server-side
<SCRIPT> tags within Global.asa. Event script can be written in any language
supported by the server. Application_OnStart is called once for each
application when the first client makes a request for a page within the
application boundaries. The Application_OnStart event procedure is a good
place to set global state variables and create any objects that will be used by all
users of the application.

After the Application_OnStart event and for each subsequent new session, the
Session_OnStart event occurs. An ASP application should use the

. Session_OnStart event to perform any required session initialization tasks. At
this point, a Session object and a Request object exist. The Session object
includes a unique session ID; the Request object includes fully parsed collections
of values passed by the browser, as well as the server environment variables.

The Session_OnStart event procedure is a good place to redirect to the start page
of your application. If you don’t redirect, the application begins execution with
the document requested in the URL, or it will begin with one of the default
documents configured in Internet Service Manager for the application’s virtual
root. Redirection allows you to control where your application will go first.

Since the Response.Write method is not available during the processing of event
procedures, you won’t immediately be able to report errors if they occur.
However, if you want to notify the user of any problems, you can save the error
text in the Session or Application object (depending on which event handler
caused the error) and report it on the first page that is loaded thereafter.

212

Internet Information Server Resource Kit

A session ends either when it times out or when the Session.Abandon method is
called. When this happens, the Session_OnEnd event procedure is called,
giving you the chance to destroy any object references, and perform any other
session clean up. Of the server built-in objects, only the Application, Session
and Server objects are available to the OnEnd event handlers. Additionally, you
can’t use the MapPath or CreateObject methods of the Server object during
the Session_OnEnd event.

Ending the ASP Session

Unless you have provided a means for explicitly logging off, there is no way to
determine if the user is still actively connected to your application. HTTP is a
stateless protocol, and doesn’t keep track of user connections. The user could be
off on a Web surfing holiday, and may never return.

For this reason, ASP provides a mechanism to close a session when a specified
timeout period expires. If a user begins a session but stops making requests to the
Web application, ASP automatically triggers the Session_OnEnd event. The
timeout period defaults to 20 minutes, but can be adjusted by setting the Timeout
property of the Session object. You can also change the default value by right-
clicking the application’s virtual directory in Internet Service Manager, clicking
Properties, clicking the Configuration button, selecting the App Options tab,
and typing a value in the ASP Script timeout box.

For applications that cache a database connection or consume a lot of server
resources, the session timeout period may represent a time that other users cannot
access server resources. If your application falls into this category, you should
consider letting the user end the session when finished. You can do this by simply
providing a Log Out button. When the button is clicked, the application calls the
Session.Abandon method, which immediately triggers the Session_OnEnd
event.

This session-timeout characteristic of Web applications is equally troublesome to
applications that rely on resources that require user authentication. If the user
ignores a running application for too long, the application will end the session and
log off any connections it has established. If the user makes another request, the
application may not function as expected.

You can avoid this timeout problem with a little planning. One popular method of
detecting session timeouts is by storing the Session object’s SessionID property
as a Session variable. Then, each time the user tries to navigate to a page
requiring a valid connection, you check the current SessionID against the ID
stored in the Session object. If they did not match (or if the Session variable is
empty), you have detected a session timeout, and you can take appropriate action.

Chapter 5 Developing Web Applications 213

Importing Type Library Constants with Global.asa

A COM component typically includes a list of named constants as part of its type
library, along with other information about the component that enables it to be
automated by other applications.

If your Web application uses a COM component that has declared enumerated
data types in its type library, you can import them into your application space in
Global.asa. Doing so makes it possible to refer to the data types declared in the
type library by name from any script within the application boundary. The syntax
for importing a type library is as follows:

<!--METADATA TYPE="TypelLib"
NAME="typelibraryname"

FILE="f7i]le"

UuID="typelibraryuuid"
VERSION="majorversionnumber.minorversionnumber"
-->

You’re required to specify either the FILE or the UUID parameter, but your
application will be more portable if you specify both. The NAME parameter may
come in handy if you have to disambiguate enumerated constants that have the
same name but are from from different type libraries. The following example
imports the constants declared in the ActiveX Data Objects (ADO) type library:

<!--METADATA TYPE="TypelLib" NAME="ADQO"

FILE="C:\Program Files\Common Files\System\ado\msadol5.d11"
UUID="00000200-0000-0010-8000-00AAG06D2EA4" VERSION="2.0"
-->

Declaring Objects in Global.asa

You can declare objects in Global.asa with session or application scope by using
the extended <OBJECT> tag. This tag is placed outside of any <SCRIPT> tags.
In addition to setting ID and CLASSID parameters, you must set SCOPE (either
“Session” or “Application”) and RUNAT=SERVER. This example creates an
instance of the Page Counter component:

<OBJECT ID=GlobalPageCounter SCOPE=Application RUNAT=Server
CLASSID="c1sid:4BOBAE86-567A-11D0-9607-444553540000">
</0BJECT>

214

Internet Information Server Resource Kit

Having defined the GlobalPageCounter object in Global.asa, you can use it from
any ASP file in your application without first retrieving it from the Application or
Session object, or specifically calling Server.CreateObject first.

There have been <%= GlobalPageCounter.Hits("default™) %> hits.

Note The objects declared in Global.asa with <OBJECT> tags are not fully
instantiated until the server processes a script that references that object. This
saves resources by creating objects only as necessary.

Selecting Object Scope

Components can exist and operate within the scope of an application or session,
or they can be created and destroyed on a page by page basis.

Objects stored in the Application are available to all users of the application. The
Application object is a suitable place to store objects, such as a page counter, that
have no user affinity. Normally, values and objects with application scope are
created when the application begins, and are accessed in a read-only fashion by
users of the application. When you make changes to Application object values,
you should use the Lock and Unlock methods to prevent users from accessing
data while it is changing.

In general, very few components should be given application scope. Application
scope components should support the “Both” threading model, as “Apartment”
threaded components force the Application object into a single thread of
execution, and free-threaded components tend to be slower overall. MTS
components should never be given application scope.

The Session object is designed to store information about the current user’s
session. Components stored in this object can exist as long as the user’s session is
active. Since each value and object stored in the Session increases the server’s
memory requirements for each user of the application, you should store values for
only as long as they are necessary, and free them when they are no longer needed.

Page-scope components are created each time the page is requested. Page-scope
components can use any threading model, but only the “Apartment” and “Both”

-models are recommended for scalability purposes.

A Note about Application Testing

Performance testing, especially using multiuser scenarios, is a critical part of Web
application design and development, and needs to be considered as a part of the
overall planning of the application. Performance testing is much more critical for
server applications than for desktop applications, because managing simultaneous
users places higher demands on the application.

Chapter 5 Developing Web Applications 215

Using the Session object to store values increases the memory requirements of
your application, and therefore decreases the number of concurrent users an
application can support. When you build your application, the following three
factors determine how much server memory your application will consume:

= Concurrent sessions The number of sessions that exist at any given moment
is cumulative over the lifetime of the Session object. So, if you have a
Session.Timeout value of 20 minutes, your concurrent sessions will be equal
to the number of connections you expect to service over a 20 minute period.

= Variables and objects per session How many objects or variables are you
storing? A few session settings are fine. Long lists of session-scope variables
(especially if they are components) should be avoided. As the number of
variables increases, the time it takes to retrieve them also increases.

» Size of each variable or object stored Are you storing lengthy strings, or
large component objects? Store them for as long as necessary, and then free
them—replace long strings with empty string and objects with Nothing (or
Null).

For more tips on application optimization and tuning, see Appendix C,
“Debugging Applications and Components.”

Design Patterns for Web Applications

Web application developers may find that the model used by applications on the
Web conflicts with the conceptual model they have developed for other platforms.
For instance, unless you use client-side ActiveX Controls or Java applets, your
user interface is limited to an HTML description of the form inputs or a list of
links to other areas of your site. Despite Dynamic HTML and ASP, most Web-
based applications will never consist of more than an interconnected series of
dynamically generated static states. Click a button, something happens. Click a
link, a new page appears.

This final section of the chapter explores effective Web-application design, and
covers a variety of techniques that you can use to enhance your applications. It
also introduces two sample Web applications, which are available on the IIS
Resource Kit CD.

216 Internet Information Server Resource Kit

Factoring Your Application

A Web application is a hierarchy of interdependent pages, each one representing a
distinct stage of the application. Web applications map an ordered sequence of
input events to a corresponding sequence of output events, using a finite number
of elements.

It’s helpful to name the elements used to build Web applications. Most
applications make use of (or should make use of) the following elements: content,
hyperlinks, forms, components, server-side actions, redirection, and loops.

Content Content—data presented in the form of text, graphics, or even music
or video files—is the most common element in most Web applications.
Content can be presented on static HTML pages or be dynamically generated
by an ASP page. Content elements usually have one well-defined entry point
with links to other pages.

Hyperlink The primary purpose of hyperlinks is to facilitate movement to
other pages or parts of the same page. Site maps, toolbars, hrefs, anchors, form
buttons, and navigational controls are all examples of hyperlinks. These
elements often appear in their own browser frame and control the navigation
throughout the site. They can also appear as a separate index page or table of
contents, which is replaced once a link is selected. Hyperlinks represent a user
choice, very much like a menu option does in a stand-alone application.

Form Forms are used to collect information from the user. Depending on
how a form is designed, what happens when it is submitted may be fixed, or
may change as a condition of the user input. Forms can be chained together
consecutively to create “Web wizards,” and are usually followed by client-side
or server-side actions to process them.

Component A component is any code-level unit that provides a relatively
independent piece of logic that can be used either separately or in combination
with other components throughout the application. Their level of granularity
and scope of responsibility distinguishes components from other application
elements. Components can generate content or provide server-side logic.

Action Action in this case means an action taken by the application in
response to user action. When the user submits a form, for example, the
application takes action (it processes the form). Action pages perform business
logic, such as data entry, calculations, or administrative functions. Action
(processing) can occur both on the server and on the client, and can be used to
generate content such as confirmations or error messages.

Chapter 5 Developing Web Applications 217

= Redirection Redirection is usually more adaptable and flexible if
implemented as a separate ASP page. A redirection page or script can perform
logic to branch the flow of the application. Although it doesn’t actually
perform a redirect, a page containing a frameset can also be considered a
redirection page, since it causes other pages to load.

= Loop Loop pages are ASP pages that refer to themselves to present different
content, depending on user input.

You can create a huge variety of complex applications using just the elements
described in this list.

The Survey Sample Application

The Survey application presents a survey for users to fill out. After a period of
time has passed, users can return to the same Web page to view a compilation of
the results. If a user returns to the survey page after having filled out the survey,
but before the publication date of the compilation, the user is presented with a
notice indicating that each user is allowed to fill out the survey only once. The
Survey application is an example of how a single Web address can present
different content, according to the logic of an application.

Figure 5.7 displays a flowchart of the Survey application:

Action Content
Process Survey Confirmation

No Cooki

onte

Repeat
Confirmation

After Deadline

Action
View Results

Figure 5.7 Flowchart of the Survey application

218

Internet Information Server Resource Kit

The application’s home page, Default.asp, uses redirection to display one of the
following: the survey (Survey.asp), if the user has not already filled it out; the
results of the survey on or after the publication date; or a repeat-visit notice before
the survey-results publication date, if the visitor has already filled out the survey.

The Survey application uses a cookie to determine whether a user has visited:
only if there is no cookie does the application present the survey (users are not
allowed to fill out the survey more than once).

Web applications can be easier to manage if application elements are kept on
separate pages. In the Survey application, some elements are on separate pages;
others are not. For example, the redirection element is separate from the survey
form, but the form’s processing logic is contained on the same page as the survey
(Survey.asp). If the survey were larger, it might make sense to remove the form
processing logic to a separate page—to separate, in effect, data and presentation
from application logic.

Of all the application elements, forms and the redirection are perhaps the most
powerful if used correctly. The next sections describe these in more detail.

Using Forms for Input

The standard method of interacting with Web pages is the HTML form. Forms
can contain any number of inputs, including text entry, command buttons, “radio”

. selection controls, and check boxes. Forms can be as simple as a single button, or

they can contain a complex layout of client-side controls. A Web page may
contain several distinct form structures, each with its own processing logic to be
performed when the form is submitted.

Suppose you want your users to log on to your Web application by providing a
user name and password. To accomplish this task, you create a simple HTML
page with two text fields and a Submit button in an HTML form.

The HTML for the form might look like the following example:

<FORM ACTION="./Logon.asp" METHOD="GET">

Your name: <INPUT TYPE="TEXT" NAME="User">
Your password: <INPUT TYPE="PASSWORD" NAME="Pwd">
<INPUT TYPE="SUBMIT" VALUE="Log On">

</FORM>

Chapter 5 Developing Web Applications 219

When this form is submitted, the values entered by the user are collected and sent
to the server as a request. These values are passed as name/value pairs to the page
referenced in the ACTION attribute of the <FORM> tag, and are appended to the
requested URL after a question mark (?), and separated by ampersands (&). If the
user had entered “John Doe” as the user name, and “Amnesia” as the password,
the following URL would be requested when the Submiit button was clicked.

http://myServer/test/Logon.asp?User=John+Doe&Pwd=Amnesia

Any information appended to the URL like this is said to be URL encoded. URL
encoding replaces reserved characters, like spaces and ampersands, with URL-
neutral characters. The space in “John Doe” is replaced by a plus character (+).
Pluses, equal signs, commas, percent symbols, and question marks also need to be
encoded. These and other special characters can be represented in the format

90 hh, where hh is the hexadecimal value of the ASCII code for that character.

ASP provides a server-side method to perform encoding (and decoding) for your
parameterized URLs, Server.UrlEncode. Whenever you create hyperlinks that
contain name/value pairs, you should always encode them to avoid invalid URL
syntax. Unfortunately, you cannot use this ASP method on the client, since it is a
method of a server-side object. You could write a client-side script function to do
this, but it’s easier to let the form processing logic of the browser do it for you.

The Difference between GET and POST

When the user enters information in a form and clicks Submit, there are two ways
the information can be sent from the browser to the server: in the URL, or within
the body of the HTTP request.

The GET method, which was used above, appends name/value pairs to the URL.
Unfortunately, the length of a URL is limited, so this method only works if there
are only a few parameters. The URL could be truncated if the form uses a large
number of parameters, or if the parameters contain large amounts of data. Also,
parameters passed on the URL are visible in the Address field of the browser—
not the best place for a password to be displayed.

The alternative to GET is the POST method. This method packages the
name/value pairs inside the body of the HTTP request, which makes for a cleaner
URL and imposes no size limitations on the form’s output.

220

Internet Information Server Resource Kit

ASP makes it simple to retrieve name/value pairs. If the form’s output is passed
after the question mark (?) on the URL, as occurs when using the GET request
method, the parameters can be retrieved using the Request.QueryString
collection. Likewise, if the form is sent using the POST method, the form’s output
is be parsed into the Request.Form collection. These collections let you address
the form and URL parameters by name. For example, the value of the form"
variable User can be passed into a VBScript variable with one line of script:

<% UserName = Request.Form("User") %>

You don’t need to specify the collection (Form or QueryString) in which you
expect to find the User parameter. The following is an equally valid method of
searching for the User parameter:

<% UserName = Request("User") %>

In the absence of a specific collection, the Request object will search all of its
collections for a matching parameter. This is meant to be a programming
convenience. However, the ASP Request object also contains collections for
ServerVariables and ClientCertificates, which contain sensitive server and user
authentication information. To avoid the possibility of “spoofed” values, values
entered by the user in the URL, it is highly recommended that you explicitly use
the collection name when searching for parameters from these collections.

The following script combines a form and an action (the script that processes the
form) into a single page. By posting the form data back to the same ASP page that
displays the form, server-side script can process the output of the form. This is
perfectly valid, and for simple script is often more convenient than posting to a
second ASP page.

Chapter 5 Developing Web Applications 221

<%@ Language="VBScript" %>

<l-- FILE: Togon.asp -->

<HTML>

<HEAD><TITLE>Authentication Form</TITLE>
</HEAD>

<BODY BGCOLOR=#FFFFFF>

<% If Request.Form("User") = "" Then %>
<P>Please enter your Name:
<FORM ACTION="./logon.asp"™ METHOD="POST">
Your name: <INPUT TYPE="TEXT" NAME="User">
Your password: <INPUT TYPE="PASSWORD" NAME="Pwd">
<INPUT TYPE="SUBMIT" VALUE="Log On">
</FORM>

<% Else 'User verification and logon code goes here %>
Welcome <%= Request.Form("User") %>!

<% End If %>

</BODY>
</HTML>

Note If you use a separate ASP file to handle the processing of a form, the
Request.Form collection will be emptied when you redirect to the new page. In
order to retain the form values, you must copy them to the Session object from
which they can be accessed on subsequent pages.

Although the sample Authentication Form shown here works, there’s a good
reason why you would not want to use it in practice. Logon information is
sensitive and should be subject to rigorous protection from prying eyes. Although
you can use the POST method to contain the user’s password within the body of
the HTTP response, it is still possible to intercept and read it.

For mission-critical applications, IIS provides both secure authentication
(Windows NT Challenge/Response and Client Certificates), and data encryption
(Secure Sockets Layer). For more information on authentication and encryption,
see Chapter 8, “Security.”

Client-Side Form Validation

Forms require some sort of input. If the user hasn’t entered any information or has
entered a bad combination of information, it makes little sense to go to the trouble
of sending the information back to the server. Forms that are submitted without
preliminary data validation increase the server’s load (and the user’s frustration)
unnecessarily. Validate information as much as possible when the form is
submitted.

222

Internet Information Server Resource Kit

In fact, don’t stop with the client tier. Just in case the client doesn’t support client-
side scripting, validate again as data is passed to the middle tier. Most
importantly, use the data integrity and validation rules of your database to protect
yourself against inadvertent mistakes in your own business logic. This defensive
approach to data validation can save you frustration in the long run; you’ll know
that data is protected at all levels of your application.

To validate form input with client-side script, you need to declare an event-
handler for the submit event of the form. If your form uses a SUBMIT input type,
create an event handler using name of the form followed by “_OnSubmit.” To
submit the form, return True from the validation routine. Return False to abort
the submission and return to the form.

If you prefer to use the BUTTON input type on your form, you’ll need to define
an event handler using the name of the button followed by “_OnClick.” Instead
of returning True to submit the form, however, you will need to call the Submit
method of the Form object explicitly. This method may not be available on some
browsers. ’

The following client-side script verifies that the form’s user name and e-mail
address fields (both required by the form) have been filled in, and submits the
form by returning True from the OnSubmit event-handler:

<script Tanguage="VBScript"><!--

Function FeedbackForm_OnSubmit()
‘--- Disallow submit until the form fields have been validated
FeedbackForm_OnSubmit = False

'--- Get a reference to the form
Set theForm = Document.FeedbackForm

'--- First, check that UserName has been filled in
If Trim(theForm.UserName.Value) = "" Then
MsgBox "Enter your name."”, vbCritical, "Need Input”
theForm.UserName. Focus
Else
'--- Next, check for the e-mail name
If Trim(theForm.UserEmail.Value) = "" Then
MsgBox "Enter your e-mail address."”, vbCritical, "Need Input"”
theForm.UserEmail.Focus
Else
'--- Continue with submission
FeedbackForm_OnSubmit = True
End If i
End If
End Function
-=-></script>

Chapter 5 Developing Web Applications

223

<form name=FeedbackForm action=TeeFeedback.asp method=P0OST>

Tell us how to get in touch with you:</p>

<pre>
Name <input type=TEXT name="UserName"> (Required)
E-mail <input type=TEXT name="UserEmail"> (Required)
Tel <input type=TEXT name="UserTel">

</pre>

<input type=SUBMIT value="Submit Comments">
<input type=RESET value="Clear Form">
</form>

Figure 5.8 shows the form-validation routine at work:

Tell us how to get in touch with you:

T

—

o

Neme |Cherlie Chaplin | (Required)

=

E-mail l

L

Tel

s
S Ly

Figure 5.8 Client-side form input validation

Hidden Form Fields

When you chain forms together to create a “Form wizard,” the information
entered on each form needs to be stored until the last form has been filled in.
There are three ways to pass values between ASP files:

= Accumulate information in the Session object.

= Append information to the end of the URL, and use QueryString to pass it.
» Use hidden HTML form variables.

Sometimes the requirements of your application don’t permit you to store form
data in the Session object, even temporarily. This might be the case for a large-
scale site with thousands of concurrent users, where memory is at a premium.

224 Internet information Server Resource Kit

Redirection

Passing values on the URL works for small amounts of information, but will be
insufficient when the quantity of data is large.

So, although the amount of information passed between the client tier and the
middle tier increases, hidden form fields make it possible to include previously
entered or application-specific information as part of the current form submission.
A hidden form field isn’t displayed to the user, but is sent as a name/value pair
when the form is submitted.

Note You should avoid using hidden form fields to send back information that
you are using for security or authentication purposes. Since they are available as
text in the form body, these values can easily be “spoofed” by anyone who can
view the HTML source. Even an unsophisticated hacker could develop a small
routine to try many possible values in an attempt to crash (or otherwise break)
whatever server code is using the hidden value.

Sometimes, the page being requested by the browser isn’t the one you’d like to
send. For example, suppose a user requests Oldpage.htm, which has been replaced
by NewPage.asp. Standard HTML syntax provides a means whereby you can
redirect (or divert) a request to another location. The syntax looks something like
this:

<HEAD><META HTTP-EQUIV="REFRESH" CONTENT="0;URL=NewPage.asp"></HEAD>

The REFRESH form of the <META> tag was originally included in the HTML
specification to allow a page to repeatedly reload itself after a specified time
lapse. With a small adjustment to its syntax, it becomes an effective method of
redirecting a standard HTML request.

You can also use ASP to redirect a request to another page based on the logic of
your application. The syntax is simple:

Response.Redirect "./NewPage.asp”

The Redirect method of the Response object operatés by sending the “302 Object
Moved” response header, plus the new location of the file, to the client. When it
receives this response, the user’s browser automatically requests the new page.

In the Survey application, described earlier, the entry point of the application
started with a redirection; the final destination of the request is determined
programmatically. If the user hasn’t responded to the survey, the browser is sent
to the survey form. Before the response deadline, return visitors see a repeat-visit
notification. Otherwise, if the response deadline has passed, the results of the
survey appear. One way to accomplish this sleight of hand is to create an ASP file
containing the following script:

Chapter 5 Developing Web Applications 225

<%@ Language=VBScript EnableSessionState=False %>
<%
'--- If survey deadline has passed, redirect to results
If Date > #November 13, 1998# Then
Response.Redirect "./ViewResults.asp”
Else
'--- Look for cookie sent to respondents of the survey
nResponselID = @
For Each cookie in Request.Cookies
If cookie = "MySurvey" Then
nResponseID = CInt(Request.Cookies(cookie))
End If
Next

'--- If no cookie is found, then redirect to survey
If nResponselD = @ Then
Response.Redirect "./Survey.htm"
Else i
'--- Survey already completed
Response.Redirect "./ConfirmRepeat.asp?ID=" & nResponselD
End If
End If
%>

Because redirection depends on HTTP headers, which come at the beginning of
the document, you can’t redirect once text has been sent to the client. If you
redirect in a server-side script after data has been sent to the client, the following
error occurs:

Header Error
The HTTP headers are already written to the client browser. Any HTTP
header modifications must be made before writing page content.

If you can’t know at the beginning of the page whether you need to redirect, you
can use the buffering capabilities of the Response object. If Response.Buffer is
True, HTML output is collected in a buffer and sent all at once to the client. If at
some point you need to redirect to another page, ASP automatically discards any
existing output in the buffer when you call Response.Redirect. You may also use
Response.Clear at any time to clear the buffer and start again.

226

Internet Information Server Resource Kit

The following example demonstrates this concept:

<% '--- Begin buffering the HTML
Response.Buffer = True %>

<htm1>

<body>

HTML text before potential redirect.

<%
On Error Resume Next

--- Script generates an error here

If Err.Number > @ Then
Response.Clear
Response.Redirect "./error.asp”

End If

%>

Once you call Response.Redirect, the script ends and the redirection headers are
sent immediately. Any code following the redirect will not be executed, although
it is required for syntactical correctness.

You can use Response.End to end a response from the server immediately and
send the current output to the browser. Since the response ends at that point, any
HTML that follows is not sent. The following script detects that the user has
connected anonymously (the LOGON_USER server variable is empty) and forces
a logon by returning a “401 Access Denied” message.

<%
strLogon = Request.ServerVariables("LOGON_USER™)
If IsEmpty(strLogon) Or strLogon = "" Then
" Up to this point, no HTML has actually been sent.
Response.Status = "401 Access Denied"
Response. End
End If
%>
<html1>
You are logged on as: <%= strlLogon %>
</html1>

A well-behaved browser will try this page a second time, with logon credentials.
If you don’t use Response.End, the ASP script will execute twice, leading
possibly to unexpected side-effects (such as adding duplicate records to a
database).

Chapter 5 Developing Web Applications 227

Client-Side Redirection

Redirection can also occur in client-side script. A client-side redirect shifts focus
from the current page to another. Client-side redirection can occur as the page is
loaded, or be deferred until the user performs an action, such as clicking a button.

The browser’s object model includes a Location object, which represents the
URL of the content currently displayed in the browser window. The following
example uses this object to reload a frame-dependent page inside its parent frame.
The script (which appears at the top of each frame page) detects that the page has
been loaded as the top frame and changes the browser window location to the
parent frame. (Note that this script can be placed in an include file, to avoid
duplicating it on all your pages.)

<script LANGUAGE=JavaScript><!--
if(top == self) {
var currURL = unescape(window.location.pathname);
var newURL "parentFrame.asp?” + currURL;
var appVer = navigator.appVersion;
var NScp = (navigator.appName == 'Netscape') &&
(CappVer.index0f('3') != -1) ||
(appVer.index0f('4') 1= -1));
var MSIE = (appVer.indexOf('MSIE 4') != -1);
if (NScp || MSIE)
location.replace(newURL);
else
location.href = newURL;

}
//--></script>

This method requires that parentFrame.asp accept the child frame location as a
URL parameter, and deal with it appropriately if it is set. The following script
manages the last part of this redirection:

<%@ Language=VBScript EnableSessionState=False %>

<%
frmSrc = Request.QueryString '--- Get entire URL parameter
If frmSrc = "" Then frmSrc = "homepage.htm"

%>

<frameset rows="60,*" frameborder=0 framespacing=0>
<frame name="nav_fr" src="navbar.htm" scrolling=auto noresize>
<frame name="page_fr" src="<%=frmSrc%>" scrolling=auto>
</frameset>

228 Internet Information Server Resource Kit

Redirecting during Session_OnStart

Redirection during the Session_OnStart event is possible, and sometimes
required by your application (see the sidebar “Web Farms and ASP Session
State,” earlier in this chapter). Here is an example:

Sub Session_OnStart
Response.Redirect "MyStartPage.asp"
End Sub

Not all of the Response object’s methods are available during the
Session_OnStart event. Most notably, you cannot use the Write method to
display messages since the client would never see them. You can however,
redirect to an error message if your application cannot successfully initialize a
new user session.

The Feedback Sample Application

The Feedback application is a form with which Web site users can submit
comments. Users choose whether to send comments as e-mail to the site
administrator or to post them to a forum for viewing by other users. Once users
have written their comments, they have the opportunity to “preview” them before
submitting them. When comments are previewed, the application can also perform
a spelling check. A confirmation page lets the user know that everything worked.

Figure 5.9 displays a flowchart of the application.

Insert News into

Database Content

Confirmation

Form " . Send Mail to
Feedback System Admin

Content

HyperLink
Continue with
Submission

Figure 5.9 Flowchart of Feedback application

Chapter 5 Developing Web Applications 229

Sending Mail with CDO

Microsoft Collaboration Data Objects (CDO) exposes messaging objects that
provide the ability to send and receive mail quickly and easily from within an
application. CDO for NTS interfaces with the SMTP service included with IIS
4.0. When you install the SMTP service, CDO for NTS components are installed
as well. Microsoft Exchange does not have to be installed on the computer on
which CDO for NTS is used.

CDO for NTS supports a number of objects that can be used to access messages
and attachments, and to send mail. Of these, the CDONTS.NewMail object
provides the quickest and easiest way to send an e-mail message. With the
NewMail object, you can create and send a message in one step, as shown in the
following example:

<%
' Construct FROM address--tack on domain part, if missing
strFrom = Request("UserEmail")
If InStr(strFrom,"@") = @ Then
strFrom = strFrom & Application("FeedbackDomain")
End If
strFrom = Request("UserName") & "<" & strfrom & ">"

' Create a Newmail object, and send it off!
Set oMail = Server.CreateObject("CDONTS.NewMail")
oMail.Send strFrom, Application("FeedbackAdministrator”),_
Request("Subject"), Request("Comments")
%>

Note If you plan to install Microsoft Exchange Server on the Web server, the
CDO for NTS objects (except for NewMail, unfortunately) can be configured to
use the SMTP services that Exchange provides. You must run the Internet Mail
Service (IMS) Setup Wizard to configure CDO for NTS correctly. If the IMS
Wizard is not run, CDO for NTS continues to use the SMTP services installed by
IIS 4.0. For more information, see the Exchange Server documentation.

230 Internet Information Server Resource Kit

Checking Spelling with Microsoft Word

The Feedback application provides a spelling check when users preview
comments they want to submit as news items. The Feedback application enlists
the services of Microsoft Word to check spelling. Using the Word.Application
object, you can do almost anything Werd does, including using the proofing tools
to check spelling.

important Microsoft Word is an Active Document server, which runs as a out-of-
process component. Before you can use this application you must set the
AspAllowOutOfProcComponents value in the IIS metabase. For more
information, see the next section, “Out-Of-Process Components.”

Not all methods of the Word Object Library are suitable for Web applications, but
the CheckSpelling method accepts a string as an argument, and returns False if
the string cannot pass the spelling check. Because it has no user interface, and
uses standard data types, it is suitable for automation from a Web page. Here’s the
declaration of CheckSpelling method of the Word.Application component, as
shown by XRay. '

@ CentimetersToPoints ;
% ChangeFileGpenDirectory EE

& CleanSting

% CommandBars

2% CustomDictionaries
& CustomizationContext
< DDEExecute

2% DefaultSaveFarmat
-g& DefaultT ableSeparator

Figure 5.10 ‘ Using XRay to view an component type library

Chapter 5 Developing Web Applications 231

Although the CheckSpelling method correctly parses strings as complete
sentences, you cannot tell which words are misspelled without further
investigation. To avoid duplicating effort, the script breaks the text into individual
words before passing them to CheckSpelling. The following functions are
contained in a server-side include file, Spelling.inc (the complete file is included
on the IIS Resource Kit CD):

<script LANGUAGE=VBScript RUNAT=Server>
Dim cReportedErrors
'--- Checks spelling, and report "bad" words to the user
Sub CheckWord(ByVal strWord)
If Not GlobalWordApp.CheckSpelling(strWord) Then
If cReportedErrors = @ Then Response.Write "Errors detected:
"
Response.Write strWord & "
"
cReportedErrors = cReportedErrors + 1
End If
End Sub

Sub CheckSpelling(ByVal strText)

'--- Reset the global count of errors reported

cReportedErrors = 0

'--- Create Tist of delimiters for parsing words from text
strDelim = Chr(9) & Chr(13) & Chr(10) & " ,.12:;()/-" & Chr(34)
'--- Return tokens from strText, using delimiters in strDelim
--- NOTE: GetToken is defined in the complete source on the CD
x = GetToken(strText, strDelim, strToken)
Do While (x > 0)

CheckWord(strToken)
strText = Mid(strText, x) '--- Remove token from strText
x = GetToken(strText, strDelim, strToken)

Loop

CheckWord(strToken) '--- Check last token

If cReportedErrors = @ Then
Response.Write "<I>No errors detected.</I>"
Else
Response.Write "Total Errors: ™ & cReportedErrors
End If
End Sub
</script>

232 Internet Information Server Resource Kit

On the Preview page, you simply include the spelling library functions and pass
the entire body of text you want to validate (in this case, both Subject and
Comments):

<html>

<head>

<title>Spelling Check</title>

<!-- finclude virtual="./spelling.inc” -->
</head> R

<body BGCOLOR=#FFFFFF>

<h1>Spelling Check</hl>

<% '--- Concatenate multiple fields, and pass all at once
CheckSpelling(Request("Subject") & ™ " & Request("Comments™))

%>

</body>

</html>

. P T
Preview Submission §.§§
i

_______ _ §

i

i

1117/97 1:40:25 PM i%g

This is atest

Let's give the aplication a test drive. §§%§§

Jane Doe (jdoe) i
g
e

e

G

o

o

v
bl

Spelling Check

|
fo

o
|
§§
o
f

Spelling errors detected: 1
aplication

Submit News

Return to Feedback form

Figure 5.11 The Preview page with spelling check

Chapter 5 Developing Web Applications 233

The Global.asa file for the Feedback application instantiates the
Word.Application object, and destroys it when the application ends. The
important sections of Global.asa are shown here:

<object ID=GlobalWordApp SCOPE=Application RUNAT=Server
PROGID="Word.Application.8">
</object>

<script LANGUAGE=VBScript RUNAT=Server>

Sub Application_OnEnd
GlobalWordApp.Quit

End Sub

</script>

Out-Of-Process Components

When the Word.Application object is created, it is launched as an Active
Document server application on the Web server. The client browser can still take
advantage of the application without needing to install it on the local computer.
Since it is an executable rather than a DLL, however, it is run outside the IIS
process as an out-of-process component.

Out-of-process components are different from out-of-process applications (or,
isolated processes). Out-of-process components are COM components that run in
separate processes on the same computer as the client. Out-of-process components
are also called “LocalServers.”

Running Out-Of-Process Components

When Server.CreateObject is used to run an out-of-process component, the
following error can occur:

Server object error 'ASP 0196°
Cannot Taunch out of process component

This error is the result of a safety mechanism in ASP that prevents executables
from being launched directly from ASP. Not all executables are safe to use on the
server, and may pose security risks as well. Because in-process components are
faster, more secure, and can be hosted by MTS, they are much better suited for
server-side use.

Because out-of-process components do not scale as well as component DLLs, the
use of LocalServer components is strongly discouraged if scalability is a top
priority of your site. For many intranet applications, however, it is possible to use
an out-of-process component without adversely affecting your performance.

234

Internet Information Server Resource Kit

Before you can use the Word.Application object in your Web application, you
must first set the IIS metabase property AspAllowOutOfProcComponents to
True. This metabase setting is accessible on both the IIsWebService and
IIsWebVirtualDir Admin objects.

= If you set the AspAllowOutOfProcComponents property to True on the
IIsWebService object, all in-process applications will be able to run
executables from script. An “in-process application” is a virtual root which has
been marked as an application, but which has not been designated to run in a
separate memory space. '

= If you set the AspAllowOutOfProcComponents property to True on the
IIsWebVirtualDir object, and the application is designated to run out-of-
process, only the affected application can run executables from script. If the
application is set to run in-process, the setting will have no effect.

You must have adequate permission to modify the metabase. If you attempt to
modify the metabase from an ASP script as an anonymous user, or a user without
sufficient privileges, you may encounter an “Invalid Syntax” error.

The following example demonstrates the steps required when setting the
AspAllowOutOfProcComponents parameter on the IlsWebService Admin
object:

<%
' Get the IIsWebService Admin object
Set oWebService = GetObject("IIS://LocalHost/W3svc")

' Enable AspAllowQutOfProcComponents
oWebService.Put "AspAllowOutOfProcComponents”, True

' Save the changed value to the metabase
oWebService.SetInfo
%>

Important You must restart the Web service after making this change. You can
restart the service by using the Services application in Control Panel, or from a
command line by typing net stop IISADMIN /y followed by net start W3SVC.

A working version of this script example, Oopcomp.asp, is available on the IIS
Resource Kit CD as part of the Feedback sample application. Before you can run
Word from within the Feedback application, you must use this file to set the
AspAllowOutOfProcComponents metabase setting for the Feedback
application. Then you’ll need to make sure the Feedback application is running in
a separate process, and restart the Web Server service.

Chapter 5 Developing Web Applications 235

Summary

Resources

Web Links

The n-tier paradigm is the culmination of years of technological advancement and
the logical outgrowth of today’s interconnected applications. It extends the
client/server model of by promoting reuse, encouraging good development style,
and simplifying the task of the developer.

The different ways that client-tier and middle-tier technologies work together may
be obscure at first, but should become clear once you’ve designed one or two
distributed Web applications. There may come a time when you can honestly say
that you wouldn’t think of building applications any other way.

The following books and Web sites provide additional information relevant to
developing Web applications.

http://www.15seconds.com/
A free resource for developers working with Microsoft Internet solutions.
There are four main resources: the 15 Seconds newsletter, Stephen Genusa’s
Frequently Asked Questions, List Servers, and the Consultant Program. There
are also book reviews, how-to articles, and job opportunities that deal with
ASP and Microsoft Internet solutions.

http://www.activeserverpages.com
Contains ASP-related articles, ASP FAQs, tutorials, tools, development
discussion, and free ASP component downloads.

http://www.activestate.com
ActiveState Tool Corporation distributes a free PerlScript engine for Active
Scripting platforms, such as ASP and Win32; and an ISAPI implementation of
Perl. The Perl samples in this chapter were tested with ActiveState’s
PerlScript.

http://www.chilisoft.net/
Chilisoft’s Chili! ASP brings the power of ASP to servers other than IIS.
Chili!ASP can host ASP pages and components on a variety of web servers
without any changes to code. Includes support for Windows NT-based
Netscape Web servers.

236

Internet Information Server Resource Kit

Books

http://www.genusa.com/asp/
The premier “unauthorized” support site for ASP. Provides an excellent
collection of ASP resources.

http://support.microsoft.com/support/ .
The Microsoft Knowledge Base (KB) contains many useful articles on Active
Server Pages.

http://www.microsoft.com/intranet/
Microsoft and Hewlett Packard have created the Intranet Solutions Center—a
comprehensive Web site that has everything you need to plan and build an
intranet site. Explore white papers, FAQs, and case studies, or download free
intranet solutions written by top Microsoft Solution Providers.

http://www.microsoft.com/iis/
The official Microsoft site for Internet Information Server 4.0. Provides news,
discussion, and downloads.

http://www.microsoft.com/workshop/server/
This is the Active Server Pages workshop area of Microsoft’s Site Builder
Network, a must-see resource. ‘

Official Microsoft Intranet Solutions (Microsoft Press, 1997).
A tools-based approach to intranet site development using Microsoft Office 97
applications and Microsoft FrontPage 97.

Corning, Working with Active Server Pages (Que Corporation, 1997).
Covers design, development, and implementation of ASP pages. Includes
examples of database-driven customer scenarios using ASP and ADO.

Hettihewa, Windows NT 4 Web Development (Sams.net Publishing, 1996).
Complete Web site design from client to server.

Homer, Professional Active Server Pages (Wrox Press Ltd., 1997).
A highly recommended and comprehensive tutorial of ASP and ADO. Includes
practical techniques for creating n-tier Web applications.

237

CHAPTER 6

Data Access and Transactions 6 |

Information is the lifeblood of the Web, yet more information is not always better.
To be useful, information must be accurate and accessible, and it must conform to
the needs of users. Users should be able to react to, and act upon, the information
presented to them. The tool that makes this flexibility possible is, of course, the
database, an essential element in many Web applications.

The previous chapter introduced the n-tier application model, and described how
to use a combination of client-side scripts and components with Active Server
Pages (ASP) to create dynamic Web-based applications. This chapter builds on
those concepts, introduces essential components of data access, and discusses how
to harness the power of a data driven approach for content publishing and
information management on the Web.

In this chapter:

» Web Database Access

= (Client-side Data Access

= Accessing Data from ASP Pages and Components
= Transaction Processing on the Web

= Resources

238 Internet Information Server Resource Kit

Web Database Access

The Internet is changing the world’s expectations about the availability of
information. What we expect from the Internet and from the Web is changing as
well. Once you’ve visited a site that lets you browse a product catalogue and
initiate a sales transaction online, nothing is more frustrating than visiting another
site that talks about products but doesn’t let you purchase them immediately.

As online commerce and electronic publishing become increasingly common,
sites that provide a higher level of interactivity will replace those that simply
present information. Interactivity and complexity call for information to be stored
in a way that makes it easy to manipulate and modify—thus the central role of the
database in today’s Web applications.

Why a Web Database?

What makes the Web such a good mechanism for accessing a database? When
you use a data management solution as part of your site, you reap the following
benefits:

= Ease of deployment It’s no secret that the World Wide Web is a cheap and
practical alternative to traditional client/server application deployment, and
that it provides immediate cross-platform support on the client side.
Implementing a dynamic Web database solution can be done relatively quickly
and doesn’t require a large team of developers.

= Database Standards The components that enable Web database access are
built on proven standards. Web pages can access data from a variety of
locations, such as Microsoft Access, SQL Server, or any OLE DB or ODBC-
compliant data source.

= Data Security By using IIS, you benefit from the security model of
Windows NT. By using Microsoft Transaction Server (MTS), you
automatically gain the data protection and operational integrity provided by a
distributed transaction coordinator. You have a lot invested in your content—
protect it! (For more information about MTS and transactions, see
“Transaction Processing on the Web” later in this chapter.)

= Dynamic content Applying modifications to HTML from a database is easier
than making manual changes to individual pages. By automating the creation
of HTML from content stored in a database, you save time and make site
management easier. In the end, you can focus on updating your content, not
your HTML.

Chapter 6 Data Access and Transactions 239

Data Publishing Considerations

Before you start hooking databases and HTML together, there are some important
issues to consider:

Tool Support The tools used to develop Web-based applications sometimes
aren’t being updated as fast as the technology is changing. Research and
choose your tools carefully before you implement a large-scale database
project.

Server load Be sure you have sufficient server resources to handle the
increased load of database access. Consider memory, CPU speed, Internet
connection speed, disk subsystems and other critical hardware factors. If you
are expecting heavy database traffic, separate your Web server and database
management system (DBMS) onto two (or more) computers. Also, use existing
database management tools and performance management tools to help
balance your server load.

Database scalability and reliability Determine how much the database is
likely to grow. On average, how often will users access it? What kinds of tasks
will they perform? What is your Web site’s overall growth estimate—in both
content and readership?

Client presentation How will users access the data on your site? Will they
be able to add to it, or modify it? Will the users have their own copies of the
data, or will they only have access to the information while online? Using
Microsoft Data Access Components (MDAC), information can either be
manipulated on the server as part of a server-side query, or be bundled as a
package and transmitted to the client in a process known as “remoting.”
Choosing how the information will be presented to the user is perhaps the
hardest decision you’ll have to make—often a hybrid approach is best.

Static versus Dynamic How much of your site really needs data access?
How often does the content change? Dynamic solutions, especially if they
access a database, are slower than plain HTML pages. If you display data that
doesn’t change frequently, you can improve performance (for your server and
your client) by converting dynamic pages to HTML. (Use the ASP2HTM
conversion utility, found on the IIS Resource Kit CD.)

240

Internet Information Server Resource Kit

Industrial-strength Information

Database-centric publishing is not just a convenience—it’s a form of commerce
applied to the commodity of information. You should consider the content of your
site as you would your company’s product. In addition to providing the latest
information, a good Web administrator makes sure the information suits the needs
of the customer.

Database-centric Publishing

Database-centric Web publishing is a technique in use today by many successful
Internet sites. Instead of authoring in HTML, many sites initially store their
content in a database and combine it with HTML layout tags only when deploying
the content for publication. Combining raw information with a layout template or
HTML boilerplate imbues the content with the same look and feel as other pages
on the site. The end result is a site that has a uniform appearance from page to
page, although the information may have been created by dozens of people.

For instance, Sidewalk.com, Microsoft’s city and entertainment guide site, uses a
custom-built application based on HTML forms and Microsoft SQL Server to
collect content from its contributors. Once the information is entered, it can be
managed separately from the visual representation of the site. Sidewalk.com
employs a large number of freelance correspondents to keep the content flowing,
and a much smaller team of Web administrators to keep their site going.

Intranet and Extranets

If information is your commodity, you certainly don’t want to lose it. Here and
there throughout your organization, someone is daily producing a good idea. If
that idea does not find a home in your process, or in your products, you have lost
an opportunity. The corporate intranet is not only a reliable way to disseminate
information, it is quickly becoming an effective way to present and capture it. It’s
also becoming a means of interacting with companies that contribute to your
business. You can extend your private information and applications onto the Web
and to other companies through a tightly controlled firewall.

You can replace paper forms with online data entry, which can save you money.
Groups can improve their communication and productivity by sharing common
resources, data, and knowledge. The next time you consider writing a document,
consider publishing it—on your company’s intranet.

Chapter 6 Data Access and Transactions pLy|

Content Search and Personalization

Site content in a database can be sorted, filtered, and queried for relevance. It is
surprising how much raw data a site contains. Not every piece of information in
the site is of interest to everyone. Users don’t want to spend time searching
through data, and will be less likely to visit sites with poor search tools. To attract
visitors, many sites provide a list of current headlines, or compilations of topics
that appeal to people with common interests. Others allow the user to select which
items will be displayed on the site’s home page. Without a data-driven solution, it
would be impossible to develop a site that could be tailored to display the latest
items of interest each time a visitor returned.

A Word of Caution

Just because you can access a database doesn’t mean you should. Before you start
building an application, determine whether it is worth the time, effort, and server
resources that will be needed to create and use it.

Suppose you’re creating a site that publishes bus schedules for a hundred routes.
The “static” solution might be an index page—perhaps with an HTML form—that
allows the user to select and view any of a hundred static, route-specific pages.
The “dynamic” solution might use a query page to look up each bus schedule as it
is requested, and return it on a custom, dynamic page.

Both approaches offer the same solution, but the “static” one offers better
performance, for two reasons:

= Delivering a static page demands far less processing than creating the same
page on the fly.

= The static page solution creates each page once; the dynamic page solution
may create a new page for each request (depending on how the server’s cache
is utilized) for information that generally doesn’t change much.

Don’t infer from the example that the data always determines the approach: that
the static approach is best for static data (such as bus schedules), and the dynamic
one is always best for dynamic data. If people need infrequent access to huge
amounts of data, the best solution may be the dynamic approach: a query page.

242

Internet Information Server Resource Kit

The best solution is to provide a controlled mix of static and dynamic pages as
your users require and as your site can support. If you use data access frivolously,
you will be plagued with excessive delays and bottlenecks as pages are generated
over and over again for each request. Judicious use of dynamic data, however,
will enhance and complement the static elements of your site.

The Microsoft Data Access Components

The Universal Data Access initiative is Microsoft’s platform, application, and
tools strategy that defines and delivers standards and technologies essential for
application development. A subset of the Microsoft Windows Distributed interNet
Applications (Windows DNA) architecture, Universal Data Access is designed to
provide high-performance access to a variety of data and information sources on
multiple platforms using a unified programming interface that works with
practically any tool or language.

The Microsoft Data Access Components (MDAC) are the primary technologies
that enable Universal Data Access. MDAC 1.5, which ships with the

Windows NT 4.0 Option Pack, includes the latest versions of ActiveX Data
Objects (ADO), Remote Data Services (RDS), the OLE DB Provider for ODBC,
the ODBC Driver Manager, and updated Microsoft ODBC drivers for Microsoft
SQL Server, Oracle and Microsoft Access. Figure 6.1 shows how these
components interact.

Chapter 6 Data Access and Transactions 243

Browser

SQL Data Non SQL Daté Mainframe and
Legacy Data

SQL Data Mail

Jet Video

FoxPro Other

|

SQL Server _ | Text
|
|

Oracle [Directory Services

Other

Figure 6.1 The Microsoft Data Access Components.

The next few sections describe each of the MDAC technologies. If you already
have a working knowledge of these technologies, you may want to skip ahead and
return to this section later. Most of your applications will use ADO, which is
described in detail later, so ignoring this section now will not prevent you from
understanding the examples later.

244

Internet Information Server Resource Kit

ODBC and OLE DB

The Open DataBase Connectivity (ODBC) standard is a widely recognized
method of accessing data in a variety of relational databases. It is fast,
lightweight, and provides a common method that is not optimized for any specific
data source. Components written in Visual Basic, Java, C, or C++ can call ODBC.

OLE DB is an open specification designed to build on the success of ODBC by
providing an open standard for accessing all kinds of data throughout the
enterprise. OLE DB is a low-level set of interfaces designed for driver vendors

* who want to expose a data source, and for C++ developers wanting to develop

custom data components. Visual Basic, which does not support OLE Automation,
cannot use OLE DB directly.

Applications that use OLE DB fall into two categories: consumers and providers.
A consumer application uses (or consumes) data through the OLE DB interfaces
or components. A provider is any component or data source that allows
consumers to access data in a uniform way through the OLE DB interfaces. In a
sense, an OLE DB Provider is similar to an ODBC driver that provides a uniform
mechanism for accessing relational data.

Whereas ODBC was created to access relational databases, OLE DB interfaces
are designed to communicate with any data source including relational and non-
relational data, such as Microsoft Excel spreadsheets, e-mail, and text files. There
is no restriction on the type of data you can access with OLE DB—relational
databases, ISAM, text, or hierarchical data sources.

Several OLE DB Providers are currently available, including the Microsoft
ODBC Provider, which exposes any ODBC-compliant database through OLE DB.
Developers can implement an OLE DB Provider for whatever data access they
require, if one does not already exist.

ADO and RDS

ActiveX Data Objects (ADO) and Remote Data Service (RDS) use OLE DB to
communicate with data sources. Any application that uses the ADO objects
indirectly consumes from OLE DB. You can use ADO to write both server-side
and client-side applications that can access and manipulate data.

ADO was designed to provide a universal high-level data access method, and is a
collection of OLE Automation objects that can retrieve, update, and create records
using any OLE DB service component. If there is an OLE DB Provider for it, the
data is accessible through the unified object model of ADO.

Chapter 6 Data Access and Transactions 245

ADO exposes a set of “core” functions that all data sources are expected to
implement. Using these core functions, ADO can access the unique features of
specific data sources through OLE DB. Additionally, unlike earlier data access
methods, you no longer need to navigate through a hierarchy to create objects.
You can create most ADO objects independently and reuse objects in different
contexts. The result is fewer ADO object calls and a smaller working set.

There’s a downside to all this flexibility, however. Because ADO is an OLE DB
consumer, the peculiarities of the OLE DB Provider that you are using directly
influence the behavior of ADO. Just because you can write it in ADO, doesn’t
mean that the provider will support it. Often, ADO errors are a direct result of
performing operations not supported by the OLE DB Provider, or the underlying
ODBC data source. As you develop database access components and applications,
keep in mind that there are sometimes several different ways to perform any given
action.

The Remote Data Service (RDS) is a feature of ADO that facilitates client-side
programming by optimizing the transfer of data between the client and the ADO
components in the middle tier. RDS uses ADO as a programming interface
between the code and the data exposed by the underlying OLE DB Provider.

The client-side components of RDS are ActiveX controls that use DCOM or
HTTP to communicate with the server components. Internet Explorer 4.0 includes
the newest RDS client-side components.

Special Note for Internet Explorer 3.x Users MDAC 1.5 provides server
components that are compatible with both the RDS version 1.5 and version 1.1
client-side components. Version 1.5 client-side components are included with
Internet Explorer, and require Internet Explorer 4.0 or higher. For mixed network
environments that may include clients running Internet Explorer 3.x and 4.0, RDS
version 1.1 client-side components are required.

A detailed look at RDS and ADO is included in the section “Client-side Data
Access” later in this chapter

246

Internet Information Server Resource Kit

Older Data Access Methods

It’s usually not a good idea to throw away older technology just to adopt the latest
software craze. The developer’s existing expertise is one consideration. Legacy
applications are another. Fortunately, all of the older data-access technologies
listed in this section are still supported in IIS. But unless you have good business
reasons to use these access methods, use ADO and RDS instead. ADO and RDS
are designed to balance maximum flexibility with programmatic simplicity. For

the majority of cases, no additional means of accessing your data is needed.

ADC

The Advanced Data Connector (ADC) can be thought of as the parent of RDS,
which replaces it. The RDS data remoting technology is inherited directly from
ADC. Because early versions of ADC didn’t support the ADO programming
model, ADC was integrated with ADO to provide a uniform means of accessing
remote data. ADC itself is now considered obsolete; RDS and ADO, which use
the same objects for both the client and middle tiers, have replaced ADC
programming.

ADO invokes RDS when needed in order to provide a common programming

model for accessing either local or remote data. RDS objects are installed with
Internet Explorer 4.0 on your client, or you can download them at run time by

referring to the .cab files shipped with MDAC 1.5 components.

Jet and DAO

The Joint Engine Technology (Jet) database engine is a workstation-based storage

system. Jet databases can be accessed using Data Access Objects (DAO). You can

also access Jet databases with the ODBC drivers provided with Microsoft Access,
but only limited functionality is exposed using these drivers. The Jet engine has
its own query and result-set processors and is capable of executing queries against
homogeneous or heterogeneous data sources. Developers who are familiar with
DAO can use ODBCDirect to bypass the Jet engine when connecting to back-end
data sources.

You don’t need to change programming models depending on whether your data
is stored in a Jet Database or some other data store. ADO provides a common
programming model for accessing Jet data or any other OLE DB data source.

Chapter 6 Data Access and Transactions 247

RDO

Remote Data Objects (RDO) were specifically designed to access remote ODBC
relational data sources, and add a thin object layer to the ODBC API. RDO
performance is, in most cases, close to that of the ODBC API.

RDO was specifically designed to deal with remote intelligent data sources as
opposed to ISAM databases—so it does not support some of the DAO table-based
interfaces or Dynamic Data Exchange (DDE). RDO can execute ordinary table-
based queries, but it is especially adept at building and executing queries against
stored procedures. It also handles all types of result sets including those generated
by multiple result set procedures, those returning output arguments, and those
requiring complex input parameters.

RDO 2.0 provides a high level of control over remote data sources, so it is not
necessary to expose ODBC handles except in the most unusual cases. It also can
create Client Cursors to manage “disconnected” result sets.

ADO provides equivalent functionality and performance to RDO, with an easier-
to-use object model, and can access a larger variety of data stores.

IDC/IDQ and HTX

The Internet Database Connector (IDC) was a precursor to ASP and ADO. An
IDC file contains information used to connect to a specific ODBC data source and
execute a SQL statement to query a database. The query results are automatically
integrated with special tags in a separate HTML template (HTX file). The Index
Database Query (IDQ) format extends the IDC format with specialized query
parameters for Microsoft Index Server searches. Although IIS 4.0 still supports
both of these formats, ADO and the Index Server server-side objects can be
combined with ASP to produce similar results.

Overall, ADO provides a more dynamic and flexible programming model for
accessing data that integrates with the rest of your ASP application.

248

Internet Information Server Resource Kit

Client-Side Data Access

Microsoft Data Access Components are designed for distributed applications that
take advantage of the processing power on client, middle-tier, and database server
computers. These components are part of a simple yet rich programming model
for manipulating data and building applications that are easy to configure and
maintain. ADO, with RDS, enables the Web-application developer to:

» Invoke OLE automation objects on the Web server over both the HTTP and
DCOM protocols.

= Bind ADO Recordset objects to intrinsic Dynamic HTML controls (and other
data-aware controls) hosted in the browser using the Dynamic HTML
“databinding” model.

= Create and manage remote ADO Recordset objects.

ADO is suitable for applications that need a high degree of database accessibility.
ADO normally maintains a persistent connection to the database, but it can invoke
RDS to work with cached, or disconnected, data. ADO uses RDS for applications
in which the client needs to browse records or connect to and modify data.

When you create an ADO application, you can partition it into two or three
logical tiers. You can implement your application on an intranet without using
HTTP; if the client and middle tier components are on computers within a local-
area network (LLAN), you can use DCOM to marshal the interfaces and method
arguments across the network. However, it is much less complicated to take
advantage of IIS and Internet Explorer when building data-centric applications.

Chapter 6 Data Access and Transactions 249

www.webpage.com (html)

ata-aware 2
contro : C.reate Object
Advanced) Client Tier
Data Object | §

Client-side Data Cache Business Object Proxy
ADOR — or
OLE DB RDS DataFactory Proxy

Client Cursor Engine

MIME HTTP
IS
ADISAPI
Middle Tier
ADO Business Object
b e
Client Cursor RDS DataFactory Object

E OLEDB <

Database

Figure 6.2 Process diagram of an ADO application using RDS for data partitioning

250 Internet Information Server Resource Kit

The illustration on the previous page shows how the client-side and server-side
components of a Web-based ADO application work together to process a user’s
query and display information from a database.

1.

10.

11.

12.

The user enters the query text, chooses a preformatted request, or navigates to
a page containing an embedded query.

When an event fires on the Web page, such as the Window_OnLoad routine
or OnClick event of a Search button, ADO creates an RDS Data Factory
proxy (or business object proxy) on the client.

The proxy translates the user request into an HTTP request by formatting the
parameters of the business object method as URL parameters, and then sends
the request to the Web server specified in the RDS Data Control’s Server
property. IIS forwards the HTTP request to an ISAPI extension, normally the
Advanced Data ISAPI (ADISAPI).

. ADISAPI interprets the URL parameters, creates an instance of the requested

business object, and makes the method call. (By default, it calls the Query
method of the server-side RDS Data Factory object.)

. The RDS Data Factory object executes the user’s query via OLE DB (and

ODBQ). It sets the CursorLocation property of the Recordset so that a Client
Cursor Engine is used as its buffering component.

OLE DB passes the complete results of the query to the Client Cursor Engine.
The Client Cursor Engine populates its buffers with the data, including all of
the metadata for tables that are part of the result set.

. The Client Cursor Engine passes a reference to the result set back to the RDS

Data Factory object.

. The RDS Data Factory object creates an instance of an ADO Recordset and

initializes it with the result set. The ADO Recordset is then passed back as the
return value of the original Query call from Step 4.

The RDS Data Factory passes the Recordset back to ADISAPI, which
packages the return value of the call into MIME format.

ADISAPI sends the Recordset over HTTP as multi-part MIME packets to the
business object proxy on the client side.

The client-side proxy unpacks the results of the method call, and re-creates the
Recordset in the client-side Data Cache.

Finally, the embedded RDS Data Control object binds the data in the client-
side Data Cache to the visual controls.

The Client Cursor Engine of RDS caches the set of records returned by the query
on the client computer. The only client actions that require another trip to the
server are updates to the data or requests for new data.

The RDS client-side and server-side components are described in detail in the
following sections.

Chapter 6 Data Access and Transactions 251

Client-Tier Elements

As described in the previous chapter, the client tier provides the visual interface
for presenting and gathering data. In a Web-based RDS application, the Web page
represents the Remote Data Service front end. The RDS client tier usually
contains the following components:

= A Web page containing an RDS.DataControl object and one or more data-
aware controls.

= An RDS Data Factory proxy or a custom business-object proxy.
» A client-side cursor engine and data cache.

Data-Aware Controls

You can bind data-aware controls to data from remote servers, and view, edit, and
update data from the Web page.

The data-binding mechanism for displaying query results on a Web page in
Internet Explorer is the RDS.DataControl object. Each RDS.DataControl binds
one ADO Recordset object, which represents the results of a query, to one or
more data-aware controls (for example, a text box, combo box, grid control, and
so on). It is possible to have more than one RDS.DataControl object on the page.
Each RDS.DataControl object can be connected to a different data source and
contain the results of a separate query. The following script establishes a
connection to a database using a client-side Recordset:

rs.Open "SELECT * FROM Authors"™, "Provider=MS Remote;" &_
"Remote Server=http://mysite;DSN=Pubs;UID=sa;PWD=;"

When this code is executed, ADO invokes RDS to send a request to the query
method on the RDS.DataFactory object on the server. The server-side object
creates an ADO Recordset by executing the query against the specified data
source. The results are then transmitted to the client where the RDS.DataControl
reconstructs the Recordset for the client application. Once the data has been
retrieved, the client can disconnect from the data source, which helps to eliminate
the contention for database connections that sometimes occurs as multiple clients
simultaneously access the same data source.

252

Internet Information Server Resource Kit

Figure 6.3 A data-bound grid control in Internet Explorer

Figure 6.3 shows a data-bound grid control in Internet Explorer. When the page
loads, the grid control is automatically filled with records from the Adventure
Works database. The following listing shows the ASP script used to create this
page. Note that very little of the script actually executes on the server; most of it
operates using objects created on the client.

<!-- ffinclude file="./adcvbs.inc" -->
<HTML>

<HEAD>

<TITLE>A databound grid control</TITLE>
</HEAD>

<BODY BGCOLOR=#FFFFFF>

<t-- RDS.DataControl -->

<OBJECT ID="DATA" WIDTH=1 HEIGHT=1
CLASSID="c1sid:BD96C556-65A3-11D0-983A-00C04FC29E33">.

</0OBJECT>

<!-- Data-aware grid control (note Datasrc parameter) -->
<OBJECT ID="GRID" WIDTH=600 HEIGHT=200 Datasrc="{DATA"

CLASSID="c1sid:ACO5DC80-7DF1-11d0-839E-00AQ24A94B3A">
</0BJECT>

Chapter 6 Data Access and Transactions 253

<SCRIPT Language=VBScript><!--
Sub Window_OnLoad
If DATA.ReadyState <> <%=adcReadyStateComplete%> Then
MsgBox "Query results still arriving, Please wait"
Else
DATA.Server "http://<%=Request.ServerVariables("SERVER_NAME")%>"
DATA.Connect "DSN=AdvWorks"
DATA.SQL = "Select * from Products"”
DATA.Refresh
GRID.Rebind
End if
END SUB
--></SCRIPT>
</B0ODY>
</HTML>

I

When you use the RDS.DataControl object to send a query to a database, the
RDS server-side components return an ADODB.Recordset object to the client.
On the client, the Advance Data Connector proxy creates a client-side cursor and
an ADOR.Recordset object to manipulate the returned records. You don’t
necessarily have to write any ADO-specific code to make this happen—RDS
handles this for you when you use the RDS.DataControl object.

ADOR and ADODB Recordset Objects

A Recordset on either the client or the middle tier behaves in much the
same way. (A Recordset object stores the results of a database query.)
ADODB.Recordset objects on the middle tier have information associated
with them that would not be desirable to download to remote HTML pages.
Unless ADO has been installed on the client, only a lightweight
ADOR.Recordset object is provided.

ADOR and ADODB are component identifiers (ProgIDs) that indicate how
and where the Recordset object will be manipulated.

The type of marshaling protocol in use determines which Recordset type is
made available to the client program. Internet applications and a majority
of intranet applications use HTTP to transmit remote recordsets to the
client, and require the use of the ADOR.Recordset. DCOM and RPC
support both types of Recordset objects, so a client-side object proxy must
choose which one to use based on the available registered types.

For the most part, if the Recordset exists on the client, use the ADOR
ProgID. When writing code, use the ADODB ProgID if the Recordset
exists on the middle tier.

254

Internet Information Server Resource Kit

Business Object Proxies and the RDS.DataSpace Object

RDS uses proxies for business objects to enable client-side components to
communicate with business objects located on the middle tier. Proxies facilitate
the packaging, unpackaging, and transport (marshaling) of the application’s data
across process or computer boundaries. For more information on business objects,
see “Business Objects,” later in this chapter.

The RDS.DataSpace object creates client-side proxies for custom business
objects located on the middle tier. For example, the following client-side script
instantiates a custom Customer component using the RDS.DataSpace object:

<!-- RDS.DataSpace object -->

<object ID=RDSDS WIDTH=1 HEIGHT=1
CLSID="c1sid:BD96C556-65A3-11D0-983A-00CO4FC29E36">

</object>

<script LANGUAGE=VBScript> :
Set objProxyCust = RDSDS.CreateObject("Customer.C1s™, "http://mysite")
Set rs = objProxyCust.GetCustomers

</script>

When you use ADO to open a remote Recordset by specifying “Provider=MS
Remote,” or use the RDS.DataControl to obtain a disconnected Recordset, RDS
calls the RDSServer.DataFactory object on the middle tier for you. You don’t
need to call RDSServer.DataFactory or RDS.DataSpace explicitly.

Data Cache

One of the most important features of the Remote Data Service is its in-memory
data caching on both the client and middle tiers. The data cache:

= Reduces the number of requests for data between client-side application
components and the database server. The performance improvement is
especially noticeable for data access across the Internet.

= Makes data immediately available to client-side application logic, without the
application having to wait for data to travel across the network.

Because the data is cached on the client workstation, a user can quickly scroll
through the data. By using RDS, users also avoid having to know details about the
data source.

Chapter 6 Data Access and Transactions 255

Client Cursor Engine

The Client Cursor Engine is invisible to the use—Remote Data Service calls the
Client Cursor Engine to perform tasks for you automatically. It caches, in memory
(or temporarily on disk, for large sets of data), the set of query results retrieved
from a data source, as well as client updates to those results. It also contains
layout information about the data such as table layouts, row counts, primary and
secondary keys, column names, and timestamps, as well as the actual table data
itself. To manage the cache, the Client Cursor Engine can:

» Create and delete temporary tables.
= Populate tables.
= Manage updates to the data values.

» Provide schema information (such as base tables, key columns, read-write
columns, and computed columns).

= Provide the mechanism to send updates as a batch to the server with minimum
network traffic, by sending only the modified records.

Middle-Tier Elements of Client-Side Data Access

The middle tier is the “bridge” between client computers and database servers.
The components on the middle tier respond to requests from the user (or business
services) in order to execute a business task.

In an RDS application, business objects on the middle tier handle the data request
from the client sent through a transport protocol such as HTTP. Data, in the form
of Recordset objects, is made available as an update to client-side controls
through the OLE DB Provider.

The middle tier usually consists of the following components:

= Internet Information Server (IIS) and ADISAPI
» RDSServer.DataFactory and Business objects

» Server-side data cache

- 256

Internet Information Server Resource Kit

Internet Information Server

The underlying Remote Data Service code uses an ISAPI extension to help create
server-side stubs to communicate with client-side business object proxies. The
Advanced Data ISAPI (ADISAPI) breaks up the MIME packets that pass through
IIS and invokes methods on the server-side Advanced Data Factory object.

The ADISAPI component communicates with business objects for you, and
provides parsing, automation control, and Recordset object marshaling; it also
provides tabular data packaging, streaming, and unpackaging. This ISAPI
extension performs the necessary work to instantiate business objects, invoke their
services through automation interfaces, and process the return parameters for
transport back to the calling client through the tabular data streaming protocol.

The RDSServer.DataFactory Object

The Advanced Data Factory object (RDSServer.DataFactory) resides on the
Web server and is instantiated by the ADISAPI component. It provides read/write
access to specified data sources, but doesn’t contain any data constraint validation
or business rules logic.

The RDSServer.DataFactory object is a SQL query and update control used in
coordination with the ADO remoting components on the client to retrieve and
post data to OLE DB data sources. When you use the RDS.DataControl object’s
methods and properties, the Remote Data Service is calling
RDSServer.DataFactory behind the scenes.

Business Objects

The main application components on the middle tier are business objects that
contain information such as application logic, business rules, and specialized data-
access code to retrieve information from underlying databases.

Business objects can be generic OLE Automation objects created with Visual
Basic, Visual C++, or Java. Your business objects can also use ADO to query and
update the underlying databases. For more information on working with business
objects, see “Transactional Components,” later in this chapter.

In RDS, the lifespan of a business object is as long as the execution of a method
call invoked by the client. Instances of the business objects are created with each
method call, and no interim state is maintained.

The RDS Data Factory and Custom Business Objects

There are two ways to pass a Recordset object back from your server to the client
with the Remote Data Service. You can:

= Use the RDSServer.DataFactory object.

= Create a custom business object that exposes data access methods.

Chapter 6 Data Access and Transactions 257

RDS includes a default business object, the RDSServer.DataFactory object, that
provides read and write access to data sources, but contains no business rules or
application logic. The RDSServer.DataFactory is a server-side business object
(an ActiveX DLL, specifically) that uses ADO to dispatch SQL statements to a
DBMS through the OLE DB Provider, and packages the results for transfer across
the Internet or an intranet.

You can create your own custom ActiveX DLLs to replace the default
RDSServer.DataFactory implementation. Your custom DLL would need to pass
Recordset objects back to the client and could contain methods that aren’t
provided by RDSServer.DataFactory, such as those that encompass a business
rule. For more information on using the Advanced Data Factory object, or writing
your own custom business object, refer to the RDS documentation.

Accessing Data from ASP Pages and Components

You can use either RDS or ADO, or a combination of both technologies, in the
same application. For example, your application can create a custom business
object that uses ADO to manage server-side data, and uses RDS to transfer remote
data to the client tier where the user can interact with it.

Because ADO can be accessed from server-side ASP pages or components, it
doesn’t require any controls on the Web client—a serious consideration for
mixed-browser environments like the Internet. Unlike RDS, a server-side ADO
solu