
Programmers .Guides .
c++ Tutorial
Class Library Users Guide
Programming Techniques

Development System for WindowsTM

Programmer's Guides

Microsoft® Visual C++TM
Development System for WindowsTM
Version 1.0

This volume contains three separate books:
C++ Tutorial
Class Library User's Guide (for the Microsoft Foundation Class Library)
Programming Techniques

Microsoft Corporation

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

©1993 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, Microsoft Press, CodeView, and XENIX are registered trademarks and
Windows, Visual Basic, and Visual C++ are trademarks of Microsoft Corporation in the USA and
other countries.

U.S. Patent No. 4955066

AT&T is a registered trademark of American Telephone and Telegraph Company.
IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.
Olivetti is a registered trademark of Ing. C. Olivetti.
Texas Instruments is a registered trademark of Texas Instruments, Inc.
UNIX is a registered trademark of UNIX Systems Laboratories.
WANG is a registered trademark of WANG Laboratories.

Document No. DB29682-0193
Printed in the United States of America.

c++ Tutorial

iii

Contents

Introduction. .. ix
About This Book. .. ix
Document Conventions. x

Part 1 Introduction to C++

Chapter 1 A First Look at C++ .. 3
U sing Streams for Input and Output. .. 3

The Standard Output Stream. 4
Formatted Output. 5

The Standard Error Stream . 6
The Standard Input Stream .. 6

C++ Comments .. 7
Function Prototypes. 7

Chapter 2 C++ Enhancements to C. .. 11
Default Function Arguments. 11
Placement of Variable Declarations. .. 13

The Scope Resolution Operator .. 14

InIine Functions. 15
The const Qualifier . 17
Enumerations. .. 19

Overloaded Functions . 20
Linkage Specifications . 23

Chapter 3 References... 27
References as Aliases . 27

Initializing a Reference. 29
References and Pointers: Similarities and Differences . 30

References as Function Parameters . 31
References as Return Values .. 35

Summary .. 35

iv Contents

Part 2 Classes

Chapter 4 Introduction to Classes . 39
Creating a New Data Type in C .. 40
Creating a New Data Type in C++ 41

Declaring the Class ... 42

U sing the Class ... 44
Class Members .. 45

Class Member Visibility ... 46
Member Functions .. 46

The Constructor .. 48
The Destructor ... 50

The Creation and Destruction of Objects 50
Accessing Data Members ... 52

Access Functions VS. Public Data Members 56
Returning a Reference ... 56

const Objects and Member Functions 58

Member Objects ... 60
U sing Header and Source Files ... 63

Chapter 5 Classes and Dynamic Memory Allocation . 67
The Free Store . 67

The new Operator ... 68
The delete Operator ... 69
The Free Store and Built-in Types 69

Classes with Pointer Members ... 70
The Assignment Operator ... 75

The this Pointer ... 78
Using *this in a Return Statement 80
Bad Uses of the this Pointer ... 81

Assignment vs. Initialization. 82

The Copy Constructor ... 83
Passing and Returning Objects . 84

Passing and Returning References to Objects 86

Chapter 6 More Features of Classes. 89
Static Members ... 89

Static Data Members .. 90

Static Member Functions ... 92

Contents v

Friends .. 93
Friend Classes . 94

Friend Functions .. 98
Arrays of Class Objects . 99

The Free Store and Class Arrays. 100
Advanced Free Store Techniques. .. 103

The _seCnew _handler Function. .. 103
Overloading the new and delete Operators. 105
Class-Specific new and delete Operators .. 107

Chapter 7 Inheritance and Polymorphism .. 113
Handling Related Types in C .. 113

Handling Related Types in C++ .. 116
Redefining Members of the Base Class .. 120

Derived Class Constructors. .. 122
Conversions Between Base and Derived Classes 123
Collections Using Base Class Pointers 125

Virtual Functions. 127
Polymorphism. .. 130
Dynamic Binding .. 131
How Virtual Functions Are Implemented 132

Pure Virtual Functions .. 134
Destructors in Base and Derived Classes 136

Protected Members .. 137
Public and Private Base Classes. 138

Multiple Inheritance .. 139

Chapter 8 Operator Overloading and Conversion Functions. 143
Operator Overloading .. 143

Rules of Operator Overloading. 145
When Not to Overload Operators , 147

Overloading Operators for a Numeric Class . 148
Defining Operators as Friend Functions 152

Tips for Overloading Arithmetic Operators 153
Overloading Operators for an Array Class 154

Class Conversions. 157
Conversion by Constructor .. 158

Conversion Operators . 160
Ambiguities with Conversions and Operators . 161

Ambiguities Between Conversions. 163

vi Contents

Part 3 Object-Oriented Design

Chapter 9 Fundamentals of Object-Oriented Design .. 169
Features of Object-Oriented Programming. 169

Abstraction. 169

Encapsulation. 174
Class Hierarchies. 177

Designing an Object-Oriented System 180
Identifying the Classes. 181

Assigning Attributes and Behavior. 182
Finding Relationships Between Classes . 184
Arranging Classes into Hierarchies. 185

Chapter 10 Design Example: A Windowing Class .. 191
Examining the Requirements. 191

Designing the Classes . 192
Identifying Candidate Classes. 193
Attributes and Behavior for Windows. 193

Refining the Window Classes . 194
Attributes and Behavior for Events. 195
Identifying Relationships Between Classes. 196

Defining Preliminary Class Interfaces . 197

The Window Classes . 197
The Window Manager .. 201
The Event Hierarchy ... 203
Limitations of Polymorphism in C++ 206

Expanding the Hierarchies ... 208
New Window Classes .. 208
New Control Elements .. 210
What Doesn't Fit in This Hierarchy 212

Index . .. 213

Contents vii

Figures and Tables

Figures
5.1 Default Assignment Behavior. 74
5.2 Correct Assignment Behavior. 77
6.1 A Static Data Member. 90
6.2 Incorrect Behavior for Deleting an Array. 101
6.3 Correct Behavior for Deleting an Array. .. 102
7.1 Data Members in Base and Derived Classes. .. 118
7.2 Employee Class Hierarchy . 120
7.3 How Virtual Functions Are Implemented 133
9.1 Hiding Data with Functions. .. 174
10.1 Character-Based Windows 192
10.2 First Window Class Hierarchy . 195
10.3 Event Hierarchy .. 196
lOA Relationships Between Classes 197
10.5 Event Passing. 203
10.6 Revised Window Class Hierarchy 208
10.7 Final Window Class Hierarchy 211
10.8 Windows with Buttons ... 211

Tables
8.1 Overloadable Operators ... 145

ix

Introduction

The C++ Tutorial provides an introduction to the C++ language and object
oriented programming. This book assumes you are familiar with C, and therefore
doesn't cover the parts of the C++ language that are also found in C. In some
places, this book compares C++ with C in order to demonstrate how the same
problem might be solved in each language.

This book is not an exhaustive description of the C++ language. It introduces the
major features of C++ and gives examples of how they can be used. For more
detailed information on C++, see the C++ Language Reference.

About This Book
The following list summarizes the book's contents:

• Part 1, "Introduction to C++," describes some of the simple enhancements that
C++ has made to C. These features are not object-oriented, but they provide
conveniences that C programmers can readily appreciate.

• Part 2, "Classes," covers the most important elements of C++: classes, inheri
tance, and polymorphism. These features are what make C++ an object-oriented
language.

• Part 3, "Object-Oriented Design," covers the conceptual aspects of object
oriented programming. This section describes how to design an object-oriented
program and provides an in-depth example.

You should read the chapters in order, because each one assumes that you know
the material covered in previous chapters.

x Introduction

Document Conventions
This book uses the following document conventions.

Example

STDIO.H

printf

expression

void main()
{

}

wh; 1 e ()
{

}

Description

Uppercase letters indicate filenames, segment names,
registers, and terms used at the MS-DOS command level.

Boldface letters indicate C or c++ keywords, operators,
language-specific characters, and library functions. Within
discussions of syntax, bold type indicates that the text
must be entered exactly as shown.

Words in italic indicate placeholders for information you
must supply, such as a filename. Italic type is also occa
sionally used for emphasis in the text.

This font is used for example programs, program frag
ments, and the names of user-defined functions and vari
ables. It also indicates user input and screen output.

A vertical ellipsis tells you that part of the example pro
gram has been intentionally omitted.

"inheritance" Quotation marks enclose a new term the first time it is
defined in text.

American National Standards The first time an acronym is used, it is often spelled out.
Institute (ANSI)

PAR T 1

Introduction to C++

Chapter 1 A First Look at C++ . 3
Chapter 2 C++ Enhancements to C. 11
Chapter 3 References ... 27

3

CHAPTER 1

A First Look at C++

The C++ language is derived from C. With few exceptions, it is a superset of C,
meaning that everything available in C is also available in C++. C++ adds some
simple enhancements to C's own features and some major new features that don't
exist in C.

This chapter covers some of the differences in conventions between C and C++.
It begins with a new way of handling input and output, which you'll need to know
for later programs that print results on the screen. This chapter also covers C++
comments and function prototypes.

Using Streams for Input and Output
Here is HELLO.CPP, a very simple C++ program:

#include <iostream.h>
void main()
{

cout « "Hello. world\n";

This program is the C++ version of the C program HELLO.C. However, instead
of including STDIO.H, the program includes IOSTREAM.H, and instead of a
printf call, it uses an unfamiliar syntax with an undefined variable named coot,
the bitwise left shift operator «<), and a string.

4 C++ Tutorial

The Standard Output Stream
In C++, there are facilities for performing input and output known as "streams."
The example programs throughout this book use streams to read and display
information. The name COllt represents the standard output stream. You can use
COllt to display information:

cout « "Hello, world\n";

The string" Hello, W 0 r 1 d \ n " is sent to the standard output device, which is the
screen. The « operator is called the "insertion" operator. It points from what is
being sent (the string) to where it is going (the screen).

Suppose you want to print an integer instead of a string. In C, you would use
printf with a format string that describes the parameters:

pri ntf("%d", amount);

In C++, you don't need the format string:

#include <iostream.h>

void main()
{

int amount = 123;
cout « amount;

The program prints 123.

You can send any built-in data types to the output stream without a format string.
The COllt stream is aware of the different data types and interprets them correctly.

The following example shows how to send a string, an integer, and a character
constant to the output stream using one statement.

#include <iostream.h>

void main()
{

int amount 123;
cout « "The value of amount is " « amount « , ' . . ,

Chapter 1 A First Look at C++ 5

This program sends three different data types to cout: a string literal, the integer
a mo u n t variable, and a character constant ' . ' to add a period to the end of the
sentence. The program prints this message:

The value of amount is 123.

Notice how multiple values are displayed using a single statement: The
« operator is repeated for each value.

Formatted Output
So far, the examples haven't sent formatted output to COllt. Suppose you want to
display an integer using hexadecimal instead of decimal notation. The printf
function handles this well. How does COllt do it?

Note Whenever you wonder how to get C++ to do something that C does, remem
ber that the entire C language is part of C++. In the absence of a better way, you
can revert to C.

C++ associates a set of "manipulators" with the output stream. They change the
default format for integer arguments. You insert the manipulators into the stream
to make the change. The manipulators' names are dec, oct, and hex.

The next example shows how you can display an integer value in its three
possible configurations.

#include <iostream.h>

mainC)
{

int amount = 123;
cout « dec « amount «

« oct « amount «
« hex « amount;

The example inserts each of the manipulators (dec, oct, and hex) to convert the
value in amount into different representations.

This program prints this:

123 173 7b

Each of the values shown is a different representation of the decimal value 123
from the amount variable.

6 C++ Tutorial

The Standard Error Stream
To send output to the standard error device, use cerr instead of cout. You can use
this technique to send messages to the screen from programs that have their
standard output redirected to another file or device.

The Standard Input Stream
In addition to printing messages, you may want to read data from the keyboard.
C++ includes its own version of standard input in the form of cio. The next
example shows you how to use cio to read an integer from the keyboard.

#include <iostream.h>

void main()
{

int amount;
cout « "Enter an amount. .. \n";
cin » amount;
cout « "The amount you entered was" « amount;

This example prompts you to enter an amount. Then cio sends the value that you
enter to the variable amount. The next statement displays the amount using cout
to demonstrate that the cio operation worked.

You can use cio to read other data types as well. The next example shows how to
read a string from the keyboard.

#include <iostream.h>

void main()
{

}

char name[20];
cout « "Enter a name ... \n";
ci n » name;
cout « "The name you entered was" « name;

The approach shown in this example has a serious flaw. The character array is
only 20 characters long. If you type too many characters, the stack overflows and
peculiar things happen. The get function solves this problem. It is explained in
the iostream Class Library Reference. For now, the examples assume that you
will not type more characters than a string can accept.

Chapter 1 A First Look at C++ 7

Note Recall that printf and scanf are not part of the C language proper but are
functions defined in the run-time library. Similarly, the cin and coot streams are not
part of the c++ language. Instead, they are defined in the stream library, which is
why you must include IOSTREAM.H in order to use them. Furthermore, the
meaning of the « and » operators depends on the context in which they are used.
They can display or read data only when used with coot and cin.

c++ Comments
c++ supports the C comment format where /* begins a comment and */ ends it.
But C++ has another comment format, which is preferred by many program
mers. The C++ comment token is the double-slash (1/) sequence. Wherever this
sequence appears (unless it is inside a string), everything to the end of the current
line is a comment.

The next example adds comments to the previous program.

II C++ comments
#include <iostream.h>

void main()
{

char name[20]; II Declare a string
cout « "Enter a name ... \n"; I I Request a name
cin » name; II Read the name
cout « "The name you entered was" « name;

Function Prototypes
In standard C, you can declare a function before you define it. The declaration
describes the function's name, its return value, and the number and types of its
parameters. This feature, called a "function prototype," allows the compiler to
compare the function calls to the prototype and to enforce type checking.

C does not require a prototype for each function. If you omit it, at worst you get a
warning. C++, on the other hand, requires every function to have a prototype.

8 C++ Tutorial

The next example uses a function named dis play to print "Hello, world."

II A program without function prototypes
II Note: This will not compile.
#include <iostream.h>

void main()
{

display("Hello, world");

void display(char *s)

cout « s;
}

Because the dis play function has no prototype, this program does not survive
the syntax-checking phase of the C++ compiler.

The next example adds a function prototype to the previous program. Now the
program compiles without errors.

II A program with a function prototype
#include <iostream.h>

void display(char *s);

void main()
{

display("Hello, world");

void display(char *s)
{

cout « s;

Chapter 1 A First Look at C++ 9

In some C programs, the function definitions declare the types of the parameters
between the parameter list and the function body. C++ requires that function
definitions declare the types of all parameters within the parameter list. For
example:

void display(char *s) II New style required in C++
{

cout « s;

void display(s)
char *s
{

cout « s;

II Error: old style doesn't work

If you define a function before you call it, you don't need a separate prototype;
the function definition acts as the prototype. However, if you don't define the
function until after you call it, or if the function is defined in another file, you
must provide a prototype.

Keep in mind that the prototype requirement is an exception to the general rule
that a C++ compiler can handle a C program. If your C programs do not have
function prototypes and new-style function-declaration blocks, then you must add
them before compiling the programs in C++.

Note If you need to generate new-style function prototypes for existing C
programs, use the CL.EXE program with the /Zg option. See Chapter 1, "CL
Command Reference," in Command-Line Utilities User's Guide for more details.

CHAPTER 2

c++ Enhancements to C

This chapter introduces some simple enhancements and improvements that C++
offers the C programmer. New features covered in this chapter include the
following:

• Default function arguments

• More flexible placement of variable declarations

• The scope resolution operator

• Inline functions

• The const keyword

• Enumerations

• Function overloading

This chapter also describes how to link C and C++ modules together.

Default Function Arguments
A C++ function prototype can list default values for some of the parameters. If
you omit the corresponding arguments when you call the function, the compiler
automatically uses the default values. If you provide your own arguments, the
compiler uses them instead of the defaults. The following prototype illustrates
this feature:

void myfunc(int i = 5, double d = 1.23);

11

12 C++ Tutorial

Here, the numbers 5 and 1.23 are the default values for the parameters. You
could call the function in several ways:

myfunc(12. 3.45);
myfunc (3);
myfunc () ;

II Overrides both defaults
II Same as myfunc(3, 1.23
II Same as myfunc(5, 1.23

If you omit the first argument, you must omit all arguments that follow. You can
omit the second argument, however, and override the default for the first. This
rule applies to any number of arguments~ You cannot omit an argument unless
you omit all the arguments to its right. For example, the following function call is
illegal:

myfunc(, 3.5); II Error: cannot omit only first argument

A syntax like this is error-prone and makes reading and writing function calls
more difficult.

The following example uses default arguments in the show function.

II DEFARG.CPP: A program with default arguments in a function prototype
#include <iostream.h>

void show(int = 1, float 2.3, long = 4);

void main()

show(); /I All three arguments default
show(5); II Provide 1st argument
show(6, 7.8); II Provide 1st and 2nd
show(9, 10.11, 12L); II Provide all three arguments

void show(int first, float second, long third)

{

cout « "\nfirst = " « first;
cout « " second = " « second;
cout « " third = " « third;

}

Chapter 2 C++ Enhancements to C 13

When you run this example, it prints

first = I, second = 2.3, third = 4
first = 5, second = 2.3, third = 4
first = 6, second 7.8, third = 4
first = 9, second = 10.11, third = 12

Default values provide a lot of flexibility. For example, if you usually call a func
tion using the same argument values, you can put them in the prototype and later
call the function without supplying the arguments.

Placement of Variable Declarations
C requires you to declare variables at the beginning of a block. In C++, you can
declare a variable anywhere in the code, as long as you declare it before you ref
erence it. Using this feature, you can place the declaration of a variable closer to
the code that uses it, making the program more readable.

The following example shows how you can position the declaration of a variable
near its first reference.

II Declaring a variable near its first reference
#include <iostream.h>

void maine)
{

cout « "Enter a number: ";
int n;
cin » n;
cout « "The number is: " « n;

The freedom to declare a variable anywhere in a block makes expressions such as
the following one possible:

fore int ctr = 0; ctr < MAXCTR; ctr++)

However, you cannot have expressions such as the following:

if (i nt i == 0) II Error

while(int j == 0 II Error

Such expressions are meaningless, because there is no need to test the value of a
variable the moment it is declared.

14 C++ Tutorial

The following example declares a variable in a block.

II VARDECL.CPP: Variable declaration placement
#include <iostream.h>

void main()
{

fore int lineno = 0; lineno < 3; lineno++)
{

int temp = 22;
cout « "\nThis is line number" « lineno

« " and temp is " « temp;

if(lineno == 4) II lineno still accessible
cout « "\nOops";

II Cannot access temp

This example produces the following output:

This is line number 0 and temp is 22
This is line number and temp is 22
This is line number 2 and temp is 22

Note that the two variables 1 i neno and temp have different scopes. The
1 i n e n 0 variable is in scope for the current block (in this case, until main ends)
~nil ~ 11 hlo('k-" "11 horil-in!'ltp to thp (,llrTpnt onp Ttc C(",Anp hAnT""""'''' h"'Cfl"C' nTh", ... ", _ __ _,_ ___ _ ... _ "....., " ___ '-'.L L-U ..., '-'Y_, "" ,,. -,. V..&., v"'""6..&...I...I.1o.,.) ''1..1...I._..&.'-''

the declaration appears. C++ statements that appear before a variable's declara
tion cannot refer to the variable even though they appear in the same block. The
temp variable, however, goes out of scope when the for loop ends. It is acces
sible only from within the loop.

You should exercise care when declaring variables in places other than the
beginning of a block. If you scatter declarations haphazardly throughout your
program, a person reading your program may have difficulty finding where a
variable is declared.

The Scope Resolution Operator
In C, a local variable takes precedence over a global variable with the same
name. For example, if both a local variable and a global variable are called
count, all occurrences of count while the local variable is in scope refer to the
local variable. It's as if the global variable becomes invisible.

Chapter 2 C++ Enhancements to C 15

In C++, you can tell the compiler to use the global variable rather than the local
one by prefixing the variable with ::, the scope resolution operator. For example:

II SCOPERES.CPP: Scope resolution operator
#include <iostream.h>

int amount - 123; /I A global variable

void main()
{

int amount = 456; /I A 1 oca 1 variable

cout « : : amount; /I Print the global variable
cout « '\n' ;
cout « amount; II Print the 1 oca 1 variable

The example has two variables named amount. The first is global and contains
the value 123. The second is local to the main function. The two colons tell the
compiler to use the global am 0 u n t instead of the local one. The program prints
this on the screen:

123
456

Note that if you have nested local scopes, the scope resolution operator doesn't
provide access to variables in the next outermost scope. It provides access to only
the global variables.

The scope resolution operator gives you more freedom in naming your variables
by letting you distinguish between variables with the same name. However, you
shouldn't overuse this feature; if two variables have different purposes, their
names should reflect that difference.

Inline Functions
C++ provides the inline keyword as a function qualifier. This keyword causes a
new copy of the function to be inserted in each place it is called. If you call an
inline function from 20 places in your program, the compiler inserts 20 copies of
that function into your .EXE file.

Inserting individual copies of functions eliminates the overhead of calling a func
tion (such as loading parameters onto the stack) so your program runs faster.
However, having multiple copies of a function can make your program larger.

16 C++ Tutorial

You should use the inline function qualifier only when the inserted function is
very small or is called from few places.

Inline functions are similar to macros declared with the #define directive; how
ever, inline functions are recognized by the compiler, while macros are imple
mented by a simple text substitution. One advantage of this is that the compiler
performs type checking on the parameters of an inline function. Another advan
tage is that an in line function behaves just as an ordinary function does, without
any of the side effects that macros have. For example:

II INLINE.CPP: A macro vs. an inline function
#include <iostream.h>

#define MAX(A. 8) «A) > (8) ? (A) (8»

inline int max(int a. int b)

if (a > b) return a;
return b;

void main()
{

i nt i. x. y;

x = 23; y = 45;
i = MAX(x++. y++); II Side-effect:

II larger value incremented twice
cout « "x = " « x « " y = " « y « '\n';

x = 23; y = 45;
i = max(x++. y++); II Works as expected
cout « "x = " « x « " y = " « y « '\n';

This example prints the following:

x = 24 y = 47

x = 24 y = 46

If you want a function like max to accept arguments of any type, the way a macro
does, you can use overloaded functions. These are described in the section
"Overloaded Functions" on page 20.

To be safe, always declare inline functions before you make any calls to them. If
an inline function is to be called by code in several source files, put its declaration

Chapter 2 C++ Enhancements to C 17

in a header file. Any modifications to the body of an inline function require
recompilation of all the files that call that function.

The inline keyword is only a suggestion to the compiler. Functions larger than
a few lines are not expanded inline even if they are declared with the inline
keyword.

Note The Microsoft CjC++ compiler supports the __ in line keyword for C, which
has the same meaning as inline does in c++.

The const Qualifier
C++, like C, supports the const qualifier, which turns variables into constants. In
C, the const qualifier specifies that a variable is read-only, except during its one
time initialization. Only through initialization can a program specify a const vari
able's value. C++ goes a step further and treats such variables as if they are true
constant expressions (such as 123). Wherever you can use a constant expression,
you can use a const variable. For example:

II CONST.CPP: The const qualifier
#include <iostream.h>

void main()
{

const int SIZE 5:
char cs[SIZEJ:

cout « "The si ze of cs is" « si zeof cs:

This program is illegal in C, because C does not let you use a const variable to
specify the size of an array. However, even in C++ you cannot initialize a const
variable with anything other than a constant expression. For example, even
though S I Z E is declared within a function, you cannot initialize it with a parame
ter of the function. This means you cannot use const to declare an array whose
size is determined at run time. To dynamically allocate an array in C++, see
Chapter 5, "Classes and Dynamic Memory Allocation."

You can use const declarations as a replacement for constants defined with the
#define directive. C++ lets you place const declarations in header files, which is
illegal in C. (If you try doing this in C, the linker generates error messages if the
header file is included by more than one module in a program.) Constants

18 C++ Tutorial

declared with const have an advantage over those defined by #define in that they
are accessible to a symbolic debugger, making debugging easier.

You can also use const in pointer declarations. In such declarations, the place
ment of const is significant. For example:

char *const ptr = mybuf; II const pointer
*ptr = 'a'; II Change char that p points to; legal
ptr = yourbuf; II Change pointer; error

This declares pt r as a constant pointer to a string. You can modify the string that
pt r points to, but you cannot modify pt r itself by making it point to another
string.

However, the following declaration has a different meaning:

const char *ptr = mybuf; II Pointer to const
ptr = yourbuf; II Change pointer; okay
*ptr = 'a'; II Change char that p points to; error

This declares pt r as a pointer to a constant string. You can modify pt r itself so
that it points to another string, but you cannot modify the string that pt r points
to. In effect, this makes pt r a "read-only" pointer.

You can use const when declaring a function to prevent the function from modi
fying one of its parameters. Consider the following prototype:

II Node is a large structure
int readonly(const struct Node *nodeptr);

This prototype declares that the rea don 1 y function cannot modify the Nod e
structure that its parameter points to. Even if an ordinary pointer is declared
inside the function, the parameter is still safeguarded, because you cannot assign
a read-only pointer to an ordinary pointer. For example:

int readonly(const struct Node *nodeptr)
{

struct Node *writeptr; II Ordinary pointer

writeptr = nodeptr; II Error - illegal assignment
}

If such an assignment were legal, the Node structure could be modified through
wri teptr.

Chapter 2 C++ Enhancements to C 19

Enumerations
An enumeration is a user-defined data type whose values consist of a set of
named constants. In C++, you declare an enumeration with the enurn keyword,
just as in C. In C, declarations of instances of an enumeration must include the
enurn keyword. In C++, an enumeration becomes a data type when you define it.
Once defined, it is known by its identifier alone (the same as with any other type)
and declarations can use the identifier name alone, without including the enurn
qualifier.

The following example demonstrates how a C++ program can reference an enu
meration by using the identifier without the enurn keyword.

II enum as a data type
#include <iostream.h>

enum color { red. orange. yellow. green. blue. violet };

void main()
{

color myFavorite;

myFavorite = blue;

Notice that the declaration of myFavori te uses only the identifier color; the
en urn keyword is unnecessary. Once color is defined as an enumeration, it
becomes a new data type. (In later chapters, you'll see that classes have a similar
property. When a class is defined, it becomes a new data type.)

Each element of an enumeration has an integer value, which, by default, is one
greater than the value of the previous element. The first element has the value 0,
unless you specify another value. You can also specify values for any subsequent
element, and you can repeat values. For example:

enum color { red. orange. yellow. green. blue. violet);
II Values: 0. 1. 2. 3. 4. 5

enum day { sunday = 1. monday.
tuesday. wednesday = 24.
thursday. friday. saturday};

II Values: 1. 2. 3. 24. 25. 26. 27

enum direction { north = 1. south.
east = 1. west };

II Values: 1. 2. 1. 2

20 C++ Tutorial

You can convert an enumeration into an integer. However, you cannot perform
the reverse conversion unless you use a cast. For example:

II ENUM.CPP
enum color { red, orange, yellow, green, blue, violet };

void main()
{

color myFavorite, yourFavorite;
i nt i;

myFavorite = blue;
i = myFavorite;

II yourFavorite = 5;

myFavorite = (color)4;

I I Legal; i = 4

II Error: cannot convert
II from int to color
II Legal

Explicitly casting an integer into an enumeration is generally not safe. If the inte
ger is outside the range of the enumeration or if the enumeration contains dupli
cate values, the result of the cast is undefined.

Overloaded Functions
Function overloading is a C++ feature that can make your programs more read
able. For example, suppose you write one square root function that operates
on integers, another square root function for floating-point variables, and yet
another for doubles. In C, you have to give them three different names, even
though they all perform essentially the same task. But in C++, you can name
them all squa re_root. By doing so, you "overload" the name squa re_root;
that is, you give it more than one meaning.

When you declare multiple functions with the same name, the compiler distin
guishes them by comparing the number and type of their parameters. The fol
lowing example overloads the dis play _ time function to accept either a tm
structure or a time t value.

Chapter 2 C++ Enhancements to C 21

II OVERLOAD.CPP: Overloaded functions for different data formats
#include <iostream.h>
#include <time.h>

void display_time(const struct tm *tim)
{

cout « "1. It is now" « asctime(tim);

void display_time(const time t *tim
{

cout « "2. It is now" « ctime(tim);

void main()

time_t tim = time(NULL);
struct tm *ltim = localtime(&tim);

display_time(ltim);
display_time(&tim);

The example gets the current date and time by calling the time and local time
functions. Then it calls its own overloaded dis play _ time function once for
each of the formats. The compiler uses the type of the argument to choose the
appropriate function for each call.

Depending on what time it is, the previous example prints something like this:

1. It is now Wed Jan 31 12:05:20 1992
2. It is now Wed Jan 31 12:05:20 1992

The different functions described by an overloaded name can have different
return types. This makes it possible to have a max function that compares two
integers and returns an integer, a max function that compares two floats and
returns a float, and so on. However, the functions must also have different
parameter lists. You cannot declare two functions that differ only in their return
type. For example:

int search(char *key);
char *search(char *name); II Error: has same parameter list

The compiler considers only the parameter lists when distinguishing functions
with the same name.

You can also overload a name to describe functions that take different numbers
of parameters but perform similar tasks. For example, consider the C run-time
library functions for copying strings. The strcpy function copies a string from the

22 C++ Tutorial

source to the destination. The strncpy function copies a string but stops copy
ing when the source string terminates or after it copies a specified number of
characters.

The following example replaces strcpy and strncpy with the single function
name string_copy.

II An overloaded function
#include <iostream.h>
#include <string.h>

inline void string_copy(char *dest, const char *src)
{

strcpy(dest, src);

inline void string_copy(char *dest, const char *src, int len)

strncpy(dest, src, len);

static char stringa[20], stringb[20];

void main()
{

string_copy(stringa, "That");
string_copy(stringb, "This is a string", 4);
cout « stringb « " and" « stringa;

This program has two functions named str; n9_copy, which are distinguished
by their different parameter lists. The first function takes two pointers to charac
ters. The second function takes two pointers and an integer. The C++ compiler
tells the two functions apart by examining their different parameter lists.

Default arguments can make one function's parameter list look like another's.
Consider what happens if you give the second str; n9_copy function a default
value for the 1 en parameter, as follows:

string_copy(char *dest, const char *src, int len 10);

In this case, the following function call is ambiguous:

string_copy(stringa, "That"); II Error

This function call matches both the s t r; n 9_ cop Y that takes two parameters and
the one that takes three parameters with a default argument supplied. The com
piler cannot tell which function should be called and gives an error.

Chapter 2 C++ Enhancements to C 23

You shouldn't overload a function name to describe completely unrelated func
tions. For example, consider the following pair:

void home();
char *home(char *name);

II Move screen cursor to (0, 0)
II Look up person's home address
II and return it as a string

Because these functions perform totally different operations, they should have dif
ferent names.

Linkage Specifications
This next feature is not so much a C++ extension to C as a way to let the two lan
guages coexist. A "linkage specification" makes C functions accessible to a C++
program. Because there are differences in the way the two languages work, if you
call functions originally compiled in C you must inform the C++ compiler of that
fact.

The following example uses a linkage specification to tell the C++ compiler that
the functions in MYLIB.H were compiled by a C compiler.

II Linkage specifications
#include <iostream.h>

extern "c"
II The linkage specification

1ft inc 1 u de" my 1 i b . h" I I t e 11 s C++ t hat my 1 i b fun c t ion s
} II were compiled with C

void main()
{

cout « myfunc();

The extern" CIt statement says that everything in the scope of the braces is
compiled by a C compiler. If you do not use the braces, the linkage specification
applies only to the declaration that follows the extern statement on the same line.

You can also put the linkage specification in the header file that contains the
prototypes for the C functions. You don't need to use the extern "c" statement
when you're calling standard library functions because Microsoft includes the
linkage specification in the standard C header files.

Sometimes, however, you need to use linkage specifications for other C header
files. If you have a large library of custom C functions to include in your C++
program and you do not want to port them to C++, you must use a linkage

24 C++ Tutorial

specification. For example, perhaps you have libraries, but not the original source
code.

Occasionally, you need to tell the C++ compiler to compile a function with C
linkages. You would do this if the function was to be called from another function
that was itself compiled with C linkage.

The following example illustrates a function that is to be compiled with C linkage
because it is called from a C function.

II LINKAGE.CPP: Linkage specifications
#include <iostream.h>
#include <stdlib.h>
#include <string.h>

II ------ Prototype for a C function
extern "C" int comp(const void *a, const void *b);

void maine)
{

II

II --------- Array of string pointers to be sorted
static char *brothers[] = {

"Frederick William",
"Joseph Jensen",
"Harry Alan",
"Walter Elsworth",
"Julian Paul"

} ;

II ---------- Sort the strings in alphabetical order
qsort(brothers, 5, sizeof(char *), comp);
II ---------- Display the brothers in sorted order
fore i nt i = 0; i < 5; i++)

cout « '\n' « brothers[i];

---------- A function compiled with C linkage
extern "e"

int comp(const void *a, const void *b)

{

return strcmp(*(char **)a, *(char **)b) ;

}

}

Chapter 2 C++ Enhancements to C 25

This program calls the C qsort function to sort an array of character pointers.
The qsort function expects you to provide a function that compares two items.
But qsort is a C function, so you must provide a C-compatible camp function.
Because this program is a C++ program, you must tell the C++ compiler to use
C linkage for this function alone. Both the prototype and the function definition
have the extern" e" linkage specification.

27

CHAPTER 3

References

This chapter explains how to use references, a new type of variable that C++
provides. References are primarily used to pass parameters to functions and
return values back from functions. However, before you see how references are
useful in those situations, you need to understand the properties of references.
The first four sections of this chapter describe some characteristics of references,
and the later sections explain the use of references with functions.

References as Aliases
You can think of a C++ reference as an alias for a variable-that is, an alternate
name for that variable. When you initialize a reference, you associate it with a
variable. The reference is permanently associated with that variable; you cannot
change the reference to be an alias for a different variable later on.

The unary & operator identifies a reference, as illustrated below:

int actualint;
int &otherint = actualint; II Reference declaration

These statements declare an integer named act u ali n t and tell the compiler that
act u ali n t has another name, 0 the r i n t. Now all operations on either name
have the same result.

28 C++ Tutorial

The following example shows how you can use a variable and a reference to that
variable interchangeably:

II REFDEMO.CPP: The reference
#include <iostream.h>

void main()
{

int actualint 123;
int &otherint actualint;

cout « ' \n ' « actualint;
cout « ' \ n ' « otherint;
otherint++;
cout « '\n' « actualint;
cout « ' \ n ' « otherint;
actualint++;
cout « '\n' « actualint;
cout « '\n' « otherint;

The example shows that operations on 0 the r; n t act upon act u ali n t. The
program displays the following output, showing that 0 the r i n t and act u ali n t
are simply two names for the same item:

123
123
124
124
125
125

A reference is not a copy of the variable to which it refers. Instead, it is the same
variable under a different name.

The following example displays the address of a variable and a reference to that
variable.

II REFADDR.CPP: Addresses of references
#include <iostream.h>

void main()
{

int actualint 123;
int &otherint actualint;

cout « &actual int « ' , « &otherint;

Chapter 3 References 29

When you run the program, it prints the same address for both identifiers, the
value of which depends on the configuration of your system.

Note that the unary operator & is used in two different ways in the example
above. In the declaration of at her; nt, the & is part of the variable's type. The
variable other; nt has the type int &, or "reference to an int." This usage is
unique to C++. In the COllt statement, the & takes the address of the variable it
is applied to. This usage is common to both C and C++.

Initializing a Reference
A reference cannot exist without a variable to refer to, and it cannot be mani
pulated as an independent entity. Therefore, you usually initialize a reference,
explicitly giving it something to refer to, when you declare it.

There are some exceptions to this rule. You need not initialize a reference in the
following situations:

• It is declared with extern, which means it has been initialized elsewhere.

• It is a member of a class, which means it is initialized in the class's constructor
function. (For more information on class constructor functions, see Chapter 4,
"Introduction to Classes.")

• It is declared as a parameter in a function declaration or definition, which means
its value is established when the function is called.

• It is declared as the return type of a function, which means its value is estab
lished when the function returns something.

As you work through the examples in this and later chapters, note that a reference
is initialized every time it is used, unless it meets one of these criteria.

30 C++ Tutorial

References and Pointers: Similarities and Differences
You can also view references as pointers that you can use without the usual
dereferencing notation. In the first example in this chapter, the reference
other; nt can be replaced with a constant pointer, as follows:

int actualint = 123;
int *const intptr = &actualint; II Constant pointer

II points to actualint

A declaration like this makes *; n t p t r another way of referring to act u a 1 ; n t.
Consider the similarities between this and a reference declaration. Any assign
ments you make to *; n t p t r affect act u a 1 ; nt, and vice versa. As described
earlier, a reference also has this property, but without requiring the *, or
indirection operator. And because *; n t p t r is a constant pointer, you cannot
make it point to another integer once it's been initialized to act u a 1 ; n t. Again,
the same is true for a reference.

However, references cannot be manipulated as pointers can. With a pointer, you
can distinguish between the pointer itself and the variable it points to by using the
* operator. For example, ; ntpt r describes the pointer, while *; ntpt r describes
the integer being pointed to. Because you don't use a * with a reference, you can
manipulate only the variable being referred to, not the reference itself.

As a result, there are a number of things that you cannot do to references
themselves:

• Point to them

• Take the address of one

• Compare them

• Assign to them

• Do arithmetic with them

• Modify them

If you try to perform any of these operations on a reference, you instead act on
the variable that the reference is associated with. For example, if you increment
a reference, you actually increment what it refers to. If you take the address of a
reference, you actually take the address of what it refers to.

Chapter 3 References 31

Recall that with pointers, you can use the const keyword to declare constant
pointers and pointers to constants. Similarly, you can declare a reference to a
constant. For example:

int actualint = 123;
const int &otherint = actualint; II Reference to constant int

This declaration makes other; nt a read-only alias for actua 1; nt. You cannot
make any modifications to other; nt, only to actua 1; nt. The similarity to
pointers does not go any further, however, because you cannot declare a constant
reference:

int &const otherint = actualint; II Error

This declaration is meaningless because all references are constant by definition.

As mentioned earlier, the first sections of this chapter are intended to demonstrate
the properties of references, but not their purpose. The previous examples not
withstanding, references should not be used merely to provide another name for
a variable. The most common use of references is as function parameters.

References as Function Parameters
In C, there are two ways to pass a variable as a parameter to a function:

• Passing the variable itself. In this case, the function gets its own copy of the
variable to work on. Creating a new copy of the variable on the stack can be
time-consuming if, for example, the variable is a large structure.

• Passing a pointer to the variable. In this case, the function gets only the address
of a variable, which it uses to access the caller's copy of the variable. This
technique is much faster for large structures.

In C++, you have a third option: passing a reference to the variable. In this case,
the function receives an alias to the caller's copy of the variable.

32 C++ Tutorial

The following example illustrates all three techniques:

II REFPARM.CPP: Reference parameters for reducing
II overhead and eliminating pointer notation
#include <iostream.h>

II ---------- A big structure
struct bigone
{

int serno;
char text[1000]; II A lot of chars

bo = { 123. "This is a BIG structure" };

II -- Three functions that have the structure as a parameter
void valfunc(bigone v1); II Call by value
void ptrfunc(const bigone *p1); II Call by pointer
void reffunc(const bigone &r1); II Call by reference

void maine)
{

valfunc(bo);
ptrfunc(&bo);
reffunc(bo);

II Passing the variable itself
II Passing the address of the variable
II Passing a reference to the variable

II ---- Pass by value
void valfunc(bigone v1
{

}

cout « '\n' « v1.serno;
cout « '\n' « v1.text;

II Pass by pointer
void ptrfunc(const bigone *p1
{

cout « '\n' « pl->serno;
cout « '\n' « pl->text;

II ---- Pass by reference
void reffunc(const bigone &rl
{

cout « '\n' « r1.serno;
cout « '\n' « r1.text;

II Pointer notation

II Reference notation

Chapter 3 References 33

The parameter rl is a reference that is initialized with the variable bo when
reffunc is called. Inside reffunc, the name rl is an alias for boo Unlike the
previous examples of references, this reference has a different scope from that
of the variable it refers to.

When you pass a reference as a parameter, the compiler actually passes the
address of the caller's copy of the variable. Passing a reference is therefore just
as efficient as passing a pointer, and, when passing large structures, far more
efficient than passing by value. Also, the syntax for passing a reference to a vari
able is identical to that for passing the variable itself. No & is needed in the func
tion call statement, and no -> is needed when using the parameter within the
function. Passing a reference thus combines the efficiency of passing a pointer
and the syntactical cleanliness of passing by value.

When you pass a reference as a parameter, any modifications to the parameter
are actually modifications to the caller's copy of the variable. This is significant
because, unlike the syntax of passing a pointer, the syntax of passing a reference
doesn't give any indication that such a modification is possible. For example:

valfunc(bo) ; II Function can't modi fy bo
ptrfunc(&bo) ; II & implies that function can modify bo
reffunc(bo) ; II Same syntax as valfunc;

II implies that function can't modify bo

The syntax for calling ref fun c could make you think that the function cannot
modify the variable you pass. In the case of reffunc, this assumption is correct.
Because reffunc's parameter is a reference to a constant, its parameter is a
read-only alias for the caller's copy of the variable. The reffunc function can
not modify the b 0 variable.

But you can also use an ordinary reference as a parameter instead of a reference
to a constant. This allows the function to modify the caller's copy of the

34 C++ Tutorial

parameter, even though the function's calling syntax implies that it can't. For
example:

II BAD TECHNIQUE: modifying a parameter through a reference

void print(int &parm
{

} ;

cout « pa rm;
parm = 0;

void maine)
{

int a = 5;

print(a); II Parameter is modified;
II unexpected side effect

}

U sing references this way could be very confusing to someone reading your
program.

For precisely this reason, you should use caution when passing references as
function parameters. Don't assume that a reader of your program can tell whether
a function modifies its parameters or not just by looking at the function's name.
Without looking at the function's prototype, it is impossible to tell whether a
function takes a reference or the variable itself. The function's calling syntax
provides no clues.

To prevent such confusion, you should use the following guidelines when writing
functions that take parameters too large to pass by value:

• If the function modifies the parameter, use a pointer.

• If the function doesn't modify the parameter, use a reference to a constant.

These rules are consistent with a common C-programming convention: When you
explicitly take the address of a variable in order to pass it to a function, the func
tion can modify the parameter. By following this convention, you make your C++
program more readable to C programmers. This is strictly a coding convention
and cannot be enforced by the compiler. These rules do not make your programs
correct or more efficient, but they do make them easier to read and understand.

Note that references are only needed when the parameter to be passed is a large,
user-defined type. Parameters of built-in types, such as characters, integers, or
floats, can be efficiently passed by value.

Chapter 3 References 35

References as Return Values

Summary

Besides passing parameters to a function, references can also be used to return
values from a function. For example:

int mynum = 0; II Global variable

int &num()
{

return mynum;

void main()
{

int i ;

num() ;
num() = 5; II mynum set to 5

}

In this example, the return value of the function n urn is a reference initialized
with the global variable rnyn urn. As a result, the expression n urn () acts as an alias
for rnyn urn. This means that a function call can appear on the receiving end of an
assignment statement, as in the last line of the example.

You' lllearn some more practical applications of this technique in Chapter 5,
"Classes and Dynamic Memory Allocation," and Chapter 8, "Operator
Overloading and Conversion Functions."

Passing a reference to a function and returning a reference from a function are
the only two operations that you should perform on references themselves. Per
form other operations on the object a reference refers to.

You will use references extensively when you build C++ classes, the subject of
Part 2. As you do so, remember the following points about references:

• A reference is an alias for an actual variable.

• A reference must be initialized and cannot be changed.

• References are most useful when passing user-defined data types to a function
and when returning values from a function.

36 C++ Tutorial

Reference declarations are sometimes confused with the operation of taking the
address of a variable, because both have the form &identifier. To distinguish
between these two uses of &, remember the following rules:

• When &identifier is preceded by the name of a type, such as int or char, the &
means "reference to" the type. This form of & occurs only in declarations, such
as declaring the type of a reference variable, the type of a parameter, or a func
tion's return type.

• When &identifier is not preceded by the name of a type, the & means "address
of' the variable. This form of & occurs most commonly when passing an argu
ment to a function or when assigning a value to a pointer.

Note that there is no difference between type &identifier and type& identifier.
Both syntax variations declare references.

PAR T 2

Classes

Chapter 4 Introduction to Classes 39
Chapter 5 Classes and Dynamic Memory Allocation 67
Chapter 6 More Features of Classes. 89
Chapter 7 Inheritance and Polymorphism. .. 113
Chapter 8 Operator Overloading and Conversion Functions 143

39

CHAPTER 4

Introduction to Classes

The most important feature of C++ is its support for user-defined types, through a
mechanism called "classes." Classes are far more powerful than the user-defined
types you can create in C. While an instance of a built-in type is called a variable,
an instance of a class is called an "object," hence the phrase "object-oriented
programming." Part 2 of this book describes classes, and Part 3 describes object
oriented programming.

This chapter covers the following topics:

• Declaring a class

• U sing objects of a class

• Data members and member functions

• Constructors and destructors

• const objects and member functions

• Member objects

• Header and source files

Before explaining how to define a class in C++, let's consider one way you can
create a new data type in C.

40 C++ Tutorial

Creating a New Data Type in C
Suppose you're writing a C program that frequently manipulates dates. You
might create a new data type to represent dates, using the following structure:

struct date
{

int month;
int day;
int year;

} ;

This structure contains members for the month, day, and year.

To store a particular date, you can set the members of a date structure to the
appropriate values:

struct date my_date;

mY_date.month = 1;
my_date.day = 23;
my_date.year = 1985;

You cannot print a date by passing a d ate structure to printf. You must either
print each member of the structure individually or write your own function to
print the structure as a whole, as follows:

void display_date(struct date *dt)
{

static char *name[] =

} ;

"zero", "January", "February", "March", "Apri 1", "May",
"June", "July", "August", "September", "October",
"November", "December"

printf("%s %d, %d", name[dt-)month], dt-)day, dt-)year);

This function prints the contents of a d ate structure, printing the month in string
form, then the day and the year.

To perform other operations on dates, such as comparing two of them, you can
compare the structure members individually, or you can write a function that
accepts d ate structures as parameters and does the comparison for you.

Chapter 4 Introduction to Classes 41

When you define a structure type in C, you are defining a new data type. When
you write functions to operate on those structures, you define the operations
permitted on that data type.

This technique for implementing dates has some drawbacks:

• It does not guarantee that a d ate structure contains a valid date. You could
accidentally set the members of a structure to represent a date like February 31,
1985, or you might have an uninitialized structure whose members represent the
one-thousand-and-fifty-eighth day of the eighteenth month of a certain year. Any
function that blindly uses such a variable generates nonsense results.

• Once you've used the d ate data type in your programs, you cannot easily
change its implementation. Suppose later you become concerned about the
amount of space that your d ate variables are taking up. You might decide to
store both the month and day using a single integer, either by using bit fields or
by saving only the day of the year (as a number from 1 to 365). Such a change
would save two bytes per instance. To make this change, every program that
uses the d ate data type must be rewritten. Every expression that accesses the
month or day as separate integer members must be rewritten.

You could avoid these problems with more programming effort. For example,
instead of setting the members of a d ate structure directly, you could use a func
tion that tests the specified values for validity. And instead of reading the mem
bers of the structure directly, you could call functions that returned the value of a
structure's members. Unfortunately, many programmers don't follow such prac
tices when using a new data type in C. They find it more convenient to access the
members of a date structure directly. As a result, their programs are more diffi
cult to maintain.

Unlike C, C++ was designed to support the creation of user-defined data types.
As a result, you don't have to expend as much programming effort to create a
data type that is safe to use.

Creating a New Data Type in C++
With C++, you define both the data type and its operations at once, by declaring a
"class." A class consists of data and functions that operate on that data.

42 C++ Tutorial

Declaring the Class
A class declaration looks similar to a structure declaration, except that it has both
functions and data as members, instead of just data. The following is a prelimi
nary version of a class that describes a date.

II The Date class
#include <iostream.h>

II ------------ a Date class
class Date
{

public:
Date(int mn, int dy, int yr);
void display();
~Date() ;

private:
int month, day, year;

} ;

II Constructor
II Function to print date
II Destructor

II Private data members

This class declaration is roughly equivalent to the combination of an ordinary
structure declaration plus a set of function prototypes. It declares the following:

• The contents of each instance of D ate: the integers m 0 nth, day, and yea r.
These are the class's "data members."

• The prototypes of three functions that you can use with Date: Date, "'Date,
and dis P 1 a y. These are the class's "member functions."

You supply the definitions of the member functions after the class declaration.
Here are the definitions of D ate's member functions:

II Some useful functions
inline int max(int a, int b)

{

if (a > b return a;
return b;

inline int min(int a, int b)

i f(a < b return a;
return b;

}

Chapter 4 Introduction to Classes 43

II ---------- The constructor
Date::Date(int mn, int dy, int yr
{

}

static int length[] = { 0, 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 };

II Ignore leap years for simplicity
month max(1, mn);
month = min(month, 12);

day = max(1, dy);
day = mi n (day, 1 ength [month]);

year = max(1, yr);

II -------- Member function to print date
void Date::display()
{

}

static char *name[]
{

} ;

"zero", "January", "February", "March", "April", "May",
"June", "July", "August", "September", "October",
"November","December"

cout « name[month] « ' , « day «" "« year;

II ---------- The destructor
Date: :~Date()
{

II Do nothing
}

The di spl ay function looks familiar, but the Date and Date functions are
new. They are called the "constructor" and "destructor," respectively, and they
are used to create and destroy objects, or instances of a class. They are described
later in this chapter.

These are not all the member functions that a Date class needs, but they are suf
ficient to demonstrate the basic syntax for writing a class. Later in this chapter,
we'll add more functionality to the class.

44 C++ Tutorial

Here's a program that uses the rudimentary 0 ate class:

II Program that demonstrates the Date class
void main()
{

Date myDate(3. 12. 1985); II Declare a Date
Date yourDate(23. 259. 1966); II Declare an invalid Date

myDate.display();
cout « '\n';
yourDate.display();
cout « '\n';

Because MS-DOS has a DATE command, specify the path explicitly to execute
your own DATE.EXE program.

Using the Class
Once you've defined a class, you can declare one or more instances of that type,
just as you do with built-in types like integers. As mentioned before, an instance
of a class is called an "object" rather than a variable.

In the previous example, the main function declares two instances of the Da te
class called myDate and yourDate:

Date myDate(3. 12. 1985);
Date yourDate(23. 259. 1966);

II Declare a Date
II Declare an invalid Date

These are objects, and each one contains month, day, and year values.

The declaration of an object can contain a list of initializers in parentheses. The
declarations of my 0 ate and you r 0 ate each contain three integer values as their
initializers. These values are passed to the class's constructor, described on
page 48.

Note the syntax for displaying the contents of 0 ate objects. In C, you would pass
each structure as an argument to a function, as follows:

II Displaying dates in C
display_date(&myDate);
display_date(&yourDate);

Chapter 4 Introduction to Classes 45

In C++, you invoke the member function for each object, using a syntax similar
to that for accessing a structure's data member:

II Displaying dates in C++
myDate.display();
yourDate.display();

This syntax emphasizes the close relationship between the data type and the
functions that act on it. It makes you think of the dis play operation as being
part of the Da te class.

However, this joining of the functions and the data appears only in the syntax.
Each D ate object does not contain its own copy of the dis P 1 a y function's code.
Each object contains only the data members.

Class Members
Now consider how the class declaration differs from a structure declaration in C:

class Date
{

public:
Date(int mn, int dy, int yr);
void display();
~Date() ;

private:
int month, day, year;

} ;

II Constructor
II Function to print date
II Destructor

II Private data members

Like a structure declaration, it declares three data members: the integers month,
day, and yea r. However, the class declaration differs from a structure declara
tion in several ways:

• It has the keywords public and private.

• It declares functions, such as dis play.

• It includes the constructor Date and the destructor '"'"'Date.

Let's examine these differences one by one.

46 C++ Tutorial

Class Member Visibility
The private and public labels in the class definition specify the visibility of the
members that follow the labels. The mode invoked by a label continues until
another label occurs or the class definition ends.

Private members can be accessed only by member functions. (They can also be
accessed by friend classes and functions; for more information on friends, see
Chapter 6, "More Features of Classes.") The private members define the internal
workings of the class. They make up the class's "implementation."

Public members can be accessed by member functions, and by any other func
tions in the program as long as an instance of the class is in scope. The public
members determine how the class appears to the rest of the program. They make
up the class's "interface."

The D ate class declares its three integer data members as private, which makes
them visible only to functions within the class. If another function attempts to
access one of these private data members, the compiler generates an error. For
example, suppose you try to access the private data members of a D ate object:

void main()
{

i nt i;
Date myDate(3. 12, 1985);

i = myDate.month;
myDate.day = 1;

II Error: can't read private member
II Error: can't modify private member

By contrast, the dis play function is public, which makes it visible to outside
functions.

You can use the private and public labels as often as you want in a class defini
tion' but most programmers group the private members together and the public
members together. All class definitions begin with the private label as the default
mode, but it improves readability to explicitly label all sections.

The Date class demonstrates a common C++ convention: Its public interface
consists entirely of functions. You can view or modify a private data value only
by calling a public member function designed for that purpose. This convention is
discussed further in the section "Accessing Data Members" on page 52.

Member Functions
The D ate class has a member function named d; s p 1 a y. This function corre
sponds to the di spl ay_date function in C, which prints the contents of a date
structure. However, notice the following differences.

Chapter 4 Introduction to Classes 47

First, consider the way the function is declared and defined. The function's proto
type appears inside the declaration of 0 ate, and when the function is defined, it
is called 0 ate: : dis play (). This indicates that it is a member of the class and
that its name has "class scope." You could declare another function named
dis play outside the class, or in another class, without any conflict. The class
name (combined with ::, the scope resolution operator) prevents any confusion
between the definitions.

You can also overload a member function, just as you can any other function in
C++, as long as each version is distinguishable by its parameter list. All you have
to do is declare each member function's prototype in the class declaration and
prefix its name with the class name and :: when defining it.

Now compare the implementation of the dis play member function with that
of the corresponding function in C, di spl ay_date. The C function refers to
dt. month, dt. day, and dt .yea r. In contrast, the C++ member function refers
to month, day, and yea r; no object is specified. Those data members belong to
the object that the function was called for. For example:

myDate.display();
yourDate.display();

The first time dis P 1 a y is called, it uses the data members of my 0 ate. The sec
ond time it's called, it uses the members of you rDate. A member function auto
matically uses the data members of the "current" object, the object to which it
belongs.

You can also call a member function through a pointer to an object, using the
-> operator. For example:

Date myDate(3, 12, 1985);
Date *datePtr = &myDate;

datePtr-)display();

This code declares a pointer to a Da te object and calls dis play through that
pointer.

You can even call a member function through a reference to an object. For
example:

Date myDate(3, 12, 1985);
Date &otherDate = myDate;

otherDate.display();

This code calls dis P 1 a y through the reference variable 0 the r 0 ate. Because
o the r 0 ate is an alias for my 0 ate, the contents of my 0 ate are displayed.

48 C++ Tutorial

These techniques for calling a member function work only if the function is
declared public. If a member function is declared private, only other member
functions within the same class can call it. For example:

class Date
{

public:
void display();
/I '"

private:

} ;

int daysSoFar();
I I '"

II Public member function

II Private member function

II --------- Display date in form "DOD YYYY"
void Date::display()

cout « daysSoFar()
« " " « year;

II Call private member function

II -------- Compute number of days elapsed
int Date::daysSoFar()
{

}

int total = 0;
static int length[] { 0, 31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31 };

fore int i = 1; i <= month; i++)
total += length[i];

total += day;
retu rn tota 1 ;

Notice that dis play calls day s So Far directly, without preceding it with an
object name. A member function can use data members and other member func
tions without specifying an object. In either case, the "current" object is used
implicitly.

The Constructor
Remember that the d ate structure in C had the drawback of not guaranteeing
that it contained valid values. In C++, one way to ensure that objects always
contain valid values is to write a constructor. A constructor is a special initializa
tion function that is called automatically whenever an instance of your class is

Chapter 4 Introduction to Classes 49

declared. This function prevents errors resulting from the use of uninitialized
objects.

The constructor must have the same name as the class itself. For example, the
constructor for the 0 ate class is named 0 ate.

Look at the implementation of the 0 ate constructor:

Date::Date(int mn, int dy, i nt yr
{

static int length[] = { 0, 31, 28,
31, 31,

II Ignore leap years for simplicity
month = max(1, mn);
month = mine month, 12);

day = max(1, dy);
day = mine day, length[month]);

year = max(1, year);

31, 30,
30, 31,

31, 30,
30, 31 } ;

Not only does this function initialize the object's data members, it also checks
that the specified values are valid; if a value is out of range, it substitutes the
closest legal value. This is another way that a constructor can ensure that objects
contain meaningful values.

Whenever an instance of a class comes into scope, the constructor is executed.
Observe the declaration of my 0 ate in the main function:

Date myDate(3, 12, 1985);

The syntax for declaring an object is similar to that for declaring an integer vari
able. You give the data type, in this case 0 ate, and then the name of the object,
myDate.

However, this object's declaration also contains an argument list in parentheses.
These arguments are passed to the constructor function and are used to initialize
the object. When you declare an integer variable, the program merely allocates
enough memory to store the integer; it doesn't initialize that memory. When you
declare an object, your constructor function initializes its data members.

You cannot specify a return type when declaring a constructor, not even void.
Consequently, a constructor cannot contain a return statement. A constructor
doesn't return a value; it creates an object.

You can declare more than one constructor for a class if each constructor has a
different parameter list; that is, you can overload the constructors. This is useful

50 C++ Tutorial

if you want to initialize your objects in more than one way. This is demonstrated
in the section "Accessing Data Members" on page 52.

You aren't required to define any constructors when you define a class, but it is
a good idea to do so. If you don't define any, the compiler automatically gener
ates a do-nothing constructor that takes no parameters, just so you can declare
instances of the class. However, this compiler-generated constructor doesn't
initialize any data members, so any objects you declare are not any safer than
C structures.

The Destructor
The destructor is the counterpart of the constructor. It is a member function that is
called automatically when a class object goes out of scope. Its purpose is to per
form any cleanup work necessary before an object is destroyed. The destructor's
name is the class name with a tilde (...,) as a prefix.

The Date class doesn't really need a destructor. One is included in this example
simply to show its format.

Destructors are required for more complicated classes, where they're used to
release dynamically allocated resources. For more information on such classes,
see Chapter 5, "Classes and Dynamic Memory Allocation."

There is only one destructor for a class; you cannot overload it. A destructor takes
no parameters and has no return value.

The Creation and Destruction of Objects
The following example defines a constructor and destructor that print messages,
so you can see exactly when these functions are called.

II DEMO.CPP
#include <iostream.h>
#include <string.h>

class Demo
{

public:
Demo(const char *nm);
~Demo();

private:
char name[20];

} ;

Demo::Demo(const char *nm)
{

strncpy(name, nm, 20);

Chapter 4 Introduction to Classes 51

cout « "Constructor called for" « name « '\n';

Demo: : ~Demo ()
{

cout « "Destructor call ed for" « name « '\n';
}

void func()
{

Demo localFuncObject("localFuncObject");
static Demo staticObject("staticObject");

cout « "Inside func" « endl;

Demo globalObject("globalObject");

void main()
{

Demo localMainObject("localMainObject");

cout « "In main, before calling func\n";
func() ;
cout « "In main, after calling func\n";

52 C++ Tutorial

The program prints the following:

Constructor called for globalObject
Constructor called for localMainObject
In main. before calling func
Constructor called for localFuncObject
Constructor called for staticObject
Inside func
Destructor called for localFuncObject
In main. after calling func
Destructor called for localMainObject
Destructor called for staticObject
Destructor called for globalObject

For local objects, the constructor is called when the object is declared and the
destructor is called when the program exits the block in which the object is
declared.

For global objects, the constructor is called when the program begins and the
destructor is called when the program ends. For static objects, the constructor is
called before the first entry to the function in which the static objects are declared
and the destructor is called when the program ends.

Accessing Data Members
As it is currently defined, the D ate class does not permit any access to its indi
vidual month, day, and year components. For example, you cannot read or mod
ify the month value of a Da te object. To remedy this, you can revise the Da te
class as follows:

class Date
{

public:
Date(int mn. int dy. int yr);

int getMonth();
int getDay();
int getYear();
void setMonth(int mn);
void setDay(int dy);
void setYear(int yr);
void display();
~Date();

private:
int month. day. year;

} ;

II
II
II
II
II
II
II
II
II
II

II

Constructor
Member functions:

Get month
Get day
Get year
Set month
Set day
Set year
Print date

Destructor

Private data members

Chapter 4 Introduction to Classes 53

This version of Date includes member functions to read and modify the month,
day, and year members. The function definitions are as follows:

inline int Date::getMonth()

return month;

inline int Date::getDay()

return day;

inline int Date::getYear()

return year;

void Date: :setMonth(int mn
{

month = max(1, mn);
month = mine month, 12);

voi d Date:: setDay (i nt dy
{

static int length[]

day max(1, dy);

0, 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 };

day mi n (day, 1 ength [month]);

void Date::setYear(int yr

year = max(1, yr);

The various get functions simply return the value of the appropriate data mem
ber. However, the set functions do not simply assign a new value to a data
member. These functions also check the validity of the specified value before
assigning it. This is another way to ensure that Da te objects contain valid values.

54 C++ Tutorial

The following example uses these new member functions:

void main()
{

i nt i;
Date deadline(3, 10, 1980);

i = deadline.getMonth();
deadline.setMonth(4);

II Read month value
II Modify month value

deadline.setMonth(deadline.getMonth() + 1); II Increment

Notice that the get functions are declared in line because they're so short.
Because those functions have no function call overhead, calling them is as effi
cient as directly accessing public data members.

Member functions can also be declared inline without using the inline keyword.
Instead, you can place the body of the function inside the class declaration, as
follows:

class Date
{

public:
Date(int mn, int dy, int yr);
int getMonth() { return month;} II Inline member functions
int getDay() { return day; }
int getYear() { return year; }

II etc
} ;

This style of declaration has precisely the same effect as using the inline keyword
with separate function definitions. You can use whichever style you find more
readable.

Now that the class has member functions to set its values, you can change the
way a Date object is constructed. You can overload constructors in the same way

Chapter 4 Introduction to Classes 55

you overload other functions. The following example defines two versions of
Date's constructor, one that takes parameters and one that doesn't:

class Date
{

public:
Date(); II Constructor with no parameters
Date(int mn. int dy. int yr); II Constructor with parameters

I I etc
} ;

Date::Date()
{

month = day = year I; II Initialize data members

Date: :Date(int mn. int dy. int yr)
{

}

setMonth(mn);
setDay (dy);
setYear(yr);

void main()
{

}

Date myDate; II Declare a date without arguments
Date yourDate(12. 25. 1990);

myDate.setMonth(3); II Set values for myDate
myDate.setDay(12);
myDate.setYear(1985);

The declaration of myDate doesn't specify any initial values. As a result, the first
constructor is used to create my D ate and initialize it with the default value
"January 1, 1." The values for myDate are specified later with the set functions.
In contrast, the declaration of you r D ate specifies three arguments. The second
constructor is used to create you r D ate, and this constructor calls the member
functions to set the data members to the specified values. It is legal for a con
structor to call member functions, as long as those functions don't read any
uninitialized data members.

The first constructor in the example above is known as a "default constructor,"
because it can be called without arguments. If you define a default constructor,

56 C++ Tutorial

the compiler calls it automatically in certain situations; for more information,
see page 60, "Member Objects," and page 99, "Arrays of Class Objects," in
Chapter 6.

Access Functions vs. Public Data Members
Writing access functions might seem like a lot of needless work. You may argue
that it's much simpler to declare the data members as public and manipulate them
directly. After all, why call a setMonth and getMonth function when you could
simply access the month member itself?

The advantages of access functions become apparent when we recall the example
of the d ate structure defined in C. Access functions ensure that your objects
never contain invalid values. You can always be sure that you can display the
contents of a D ate object without printing out nonsense.

More importantly, access functions let you change the implementation of your
class easily. For example, remember the scenario in which you decide to encode
the month and day within the bits of a single integer in order to save space. In C,
you have to modify every program that uses date structures. This could involve
thousands of lines of code.

In C++, however, all you have to rewrite are the class's member functions, which
constitute far fewer lines. This change has no effect on any programs that use
your Date class. They can still call getMonth and setMonth, just as they did
before. The use of access functions instead of public members saves you a huge
amount of rewriting.

By using member functions to control access to private data, you hide the repre
sentation of your class. Access functions let you change the implementation of a
class without affecting any of the programs that use it. This convention is known
as "encapsulation," which is one of the most important principles of object
oriented programming. Encapsulation is discussed in more detail in Chapter 9,
"Fundamentals of Object-Oriented Design."

Returning a Reference
Occasionally, you may see a C++ program that declares member functions that
act like public data members. Such functions return references to private data
members. For example:

Chapter 4 Introduction to Classes 57

II BAD TECHNIQUE: Member function that returns a reference
class Date
{

public:
Date(int mn, int dy, int yr);
int &month();
~Date();

II Constructor
II Setlget month
II Destructor

private:

} ;

int month_member,
day_member,
year_member;

II (_member appended to
II distinguish names from
II member functions)

int &Date::month()
{

II

month_member max(1, month_member);
month_member mine month_member, 12);
return month_member;

The month member function returns a reference to the data member. This means
that the function call expression month () can be treated as an alias for the pri
vate data member. For example:

II BAD TECHNIQUE: using member function that returns a reference
void mainO
{

int i;
Date deadline(3, 10, 1980);

i = deadline.month();
deadline.month() = 4;
deadline.month()++;

II Read month value
II Modify month value
II Increment

The member function behaves just like a data member. Consequently, the func
tion call de ad 1 i n e . m 0 nth () can appear on the left side of an assignment, in the
same way that deadl i ne. month_member could if the data member were pub
lic. You can even increment its value with the ++ operator.

You can assign an illegal value to month_member this way, but the month func
tion performs range-checking to correct any such illegal values the next time it is
called. As long as all of Date's other member functions don't access the data
member directly, but always use the month function instead, the Date class
works correctly.

58 C++ Tutorial

You should not use this technique for a variety of reasons. First, the syntax can be
very confusing to people reading your program. Second, range checking is per
formed every time a data member is read, which is inefficient. Finally, and most
importantly, this technique essentially makes the data member public. With this
design, you cannot change the implementation of a private data member without
rewriting all the programs that use the class. If you wanted to encode the month
and day values within a single integer, you would have to change the member
functions and rewrite all the programs that used D ate.

To retain the benefits that member functions offer, you should always give your
classes separate member functions to read and modify private data members.

const Objects and Member Functions
Just as you can use the const keyword when declaring a variable, you can also
use it when declaring an object. Such a declaration means that the object is a
constant, and none of its data members can be modified. For example:

canst Date birthday(7. 4. 1776);

This declaration means that the value of bi rthday cannot be changed.

When you declare a variable as a constant, the compiler can usually identify
operations that would modify it (such as assignment), and it can generate appro
priate errors when it detects them. However, this is not true when you declare an
object as a constant. The compiler can't tell whether a given member function
might modify one of an object's data members, so it plays it safe and prevents
you from calling any member functions for a const object.

However, some member functions don't modify any of an object's data members,
so you should be able to call them for a const object. If you place the const key
word after a member function's parameter list, you declare the member function
as a read-only function that doesn't modify its object. The following example
declares some of the D ate class's member functions as const.

class Date
{

public:
Date(int mn, int dy, int yr);

int getMonth() const;
int getDay() const;
int getYear() const;
void setMonth(int mn) ;

void setDay(int dy) ;

void setYear(int yr);
void display() const;
~Date() ;

private:
int month, day, year;

} ;

inline int Date::getMonth() const

return month;

II etc ...

Chapter 4 Introduction to Classes 59

II Constructor
II Member functions:
II Get month - read-only
II Get day - read-only
II Get year - read-only
II Set month
II Set day
II Set year
II Print date - read-only
II Destructor

II Private data members

The various get functions and the di spl ay function are all read-only functions.
Note that the const keyword is used in both the declaration and the definition of
each member function. These functions can be safely called for a constant object.

With the 0 ate class modified in this way, the compiler can ensure that
bi rthday is not modified:

i nt i;
const Date birthday(7, 4, 1776);

i = birthday.getYear();
birthday.setYear(1492);

I I Legal
II Error: setYear not const

The compiler lets you call the const member function get Yea r for the
bi rthday object, but not the function setYea r, which is a non-const function.

A member function that is declared with const cannot modify any data members
of the object, nor can it call any non-const member functions. If you declare any
of the set functions as const, the compiler generates an error.

You should declare your member functions as const whenever possible. This
allows people using your class to declare constant objects.

60 C++ Tutorial

Member Objects
You can write a class that contains objects as members. This is known as
"composition," the act of making a new class by using other classes as compo
nents. Suppose that you want aPe r son I n f a class that stores a person's name,
address, and birthday. You can give that class a Da te as a member, as follows:

class Person Info
{

public:
II Public member functions ...

private:

} ;

char name[30];
char address[60]:
Date birthday; II Member object

This declaration specifies a private member named bi rthday, which is a Date
object. Note that no arguments are specified in the declaration of bi rthday.
However, this does not mean that the default constructor is called. The
bi rthday object is not constructed until a Person I nfo object is constructed.

To call the constructor for a member object, you must specify a "member initial
izer." Place a colon after the parameter list of the containing class's constructor,
and follow it with the name of the member and a list of arguments. For example,
the constructor for Pe r s on I n fa is written as follows:

class PersonInfo
{

public:
PersonInfo(char *nm. char *addr. int mn. int dy. int yr);
I I ...

private:
/I ...

} ;

PersonInfo::PersonInfo(char *nm. char *addr.
int mn. int dy. int yr

: birthday(mn. dy. yr) II Member initializer

strncpy(name. nm. 30);
strncpy(address. addr. 60);

Chapter 4 Introduction to Classes 61

This syntax causes the Date class constructor to be invoked for the bi rthday
member object, using the three arguments specified. The D ate constructor is
called first, so the b i rthd ay member is initialized before the Pe r s on Info con
structor begins executing. If your class has more than one member object, you
can specify a list of member initializers, separating them with commas.

If you don't use the member initializer syntax, the compiler implicitly calls the
default constructor for the member object before constructing the containing
object. You can then assign values to the member object using its access func
tions. For example, because Date has a default constructor, you could write the
Per son I n f 0 constructor as follows:

Personlnfo::Personlnfo(char *nm, char *addr, int mn, int dy, int yr)
II Default constructor sets birthday to January I, 1
{

strncpy(name, nm, 30);
strncpy(address, addr, 60);
birthday.setMonth(mn);
birthday.setDay(dy);
birthday.setYear(yr);

If the member object's class doesn't define a default constructor, the compiler
generates an error.

However, this is an inefficient technique because the value of bi rthday is set
twice. First it is initialized to January 1, 1, by the default constructor, and then it
is assigned the value specified by the member functions. In general, you should
use member initializers to initialize your member objects, unless the default con
structor performs all the initialization you need.

A member initializer is required when you have a constant member object.
Because a person's birthday never changes, you can declare bi rthday with the

62 C++ Tutorial

const keyword. In this case, omitting the member initializer syntax is fatal. For
example:

class Personlnfo
{

public:
I I ...

private:
char name[30];
char address[60];
const Date birthday; II Constant member object

} ;

Personlnfo: :Personlnfo(char *nm, char *addr, int mn, int dy, int yr)
II Default constructor sets birthday to January 1, 1
{

}

strncpy(name, nm, 30);
strncpy(address, addr, 60
birthday.setMonth(mn);
birthday.setDay(dy);
birthday.setYear(yr);

) ;

II Error
II Error
II Error

Because bi rthday is a const object, you can't call any of its set member func
tions, because those are non-const functions. Thus, you have no way to change
the value of bi rthday from the value that the default constructor initialized it to.

The same is true of any member declared const, even if it's a variable of a built
in type, like an integer. A const integer member cannot be assigned a value in the
constructor; you must use a member initializer. For example:

class Count
{

public:
Count(int i);

private:
const int cnt;

} ;

Count(int i)

II Constructor

II Constant integer member

: cnt(i) II Member initializer for integer
{

}

Chapter 4 Introduction to Classes 63

Use a member initializer to initialize any const member, whether or not it's an
object.

Using Header and Source Files
In C++, it's common practice to divide your source code into header and source
files. You place the class declarations in the header files and place the definitions
of the member functions in the source files. Header files usually have the file
name extension .H, and source files have the filename extension .CPP. For
example, here's a partial header file for the Date class:

II DATE.H
#if !defined(_DATE_H_

class Date
{

} ;

Date();
int getMonth() const;
I I ...

inline Date: :getMonth() const
{

return month;
}

I I etc ...

#endif II DATE H

Notice that this header file contains the definitions for inline member functions.
The compiler must have access to the source code of an inline function in order to
insert the code each time the function is called.

Also note that the header file uses the #if preprocessor directive and the defined
preprocessor operator for conditional compilation. This prevents multiple inclu
sion of header files in a multimodule program.

64 C++ Tutorial

Here's the beginning of a source file for the D ate class:

II DATE.CPP
ifi ncl ude "date. h"

Date::Date()
{

I I ...

I I etc ...

Note that the source file includes its corresponding header file. See the DATE.H
and DATE.CPP example files.

In general, you should use one header file and one source file for each class
unless you are writing very small classes, or classes that are very closely related
and should always be used together.

Roughly speaking, a header file describes a class's interface and a source file
describes its implementation. This distinction is important when your classes may
be used by other programmers. To use the Date class, for example, other pro
grammers would simply include the header file DATE.H in their source files.
Those programmers don't need to see how the member functions are imple
mented; all they need to see are the prototypes of the member functions. As long
as they can link with DATE.OBJ when linking their program, they don't need to
see DATE.CPP. If you rewrite DATE.CPP, you can simply recompile it to pro
duce a new DATE.OBJ file; the other programmers don't need to change their
code.

Unfortunately, it's necessary that some aspects of a class's implementation be
revealed in the header file. The private members of a class are visible in the
header file, even though they aren't accessible. Furthermore, if your class has
inline member functions, their implementation is also visible. If you change the
private members or inline functions of your class, those changes are reflected in
the header file, and all the programmers who use that class must recompile their
code with the new header file. However, they still don't have to rewrite any of
their code, as long as the class's interface hasn't changed-that is, as long as you
haven't changed the prototypes of the public member functions.

You should also consider whether your #include statements need to be in your
header file or your source file. For example, if one of your class's member func
tions takes a time_t structure as a parameter, you have to place #i ncl ude
"t i me • h" in the header file. On the other hand, if the time _ t structure is used
only in the internal computations of a member function, and is not visible to

Chapter 4 Introduction to Classes 65

someone calling the function, then you should place #i n c 1 u de" time. h" in the
source file instead. In the first case, the interface requires TIME.H, and in the
second case, the implementation requires it. Don't place #include statements in
your header files if placing them in the source file suffices.

By separating a class's interface and implementation, you make your classes as
self-contained as possible, so they don't depend on each other's implementation
details. This practice follows the principle of encapsulation, which is discussed in
more detail in Chapter 9, "Fundamentals of Object-Oriented Design."

CHAPTER 5

Classes and Dynamic
Memory Allocation

c++ supports dynamic allocation and deallocation of objects from a pool of
memory called the "free store." This chapter discusses the way objects are
created, destroyed, copied, and converted to objects of other types.

Topics discussed include:

• The free store

• The assignment operator

• The this pointer

• The copy constructor

• Passing and returning objects

• Passing and returning references

Before continuing the discussion of classes, let's consider how you perform
dynamic memory allocation in C++.

The Free Store
In C, the region of memory that is available at run time is called the heap. In
C++, the region of available memory is known as the free store. The difference
between the two lies in the functions you use to access this memory.

To request memory from the heap in C, you use the malloe function. For
instance, you can dynamically allocate a d ate structure as follows:

struct date *dateptr;

dateptr = (struct date *)malloc(sizeof(struct date));

The malloe function allocates a block of memory large enough to hold a date
structure and returns a pointer to it. The malloe function returns a void pointer,

67

68 C++ Tutorial

which you must cast to the appropriate type when you assign it to d ate p t r. You
can now treat that block of memory as a d ate structure.

In C++, however, malloc is not appropriate for dynamically allocating a new
instance of the D ate class, because D ate's constructor is supposed to be called
whenever a new object is created. If you used malloc to create a new D ate
object, you would have a pointer to an uninitialized block of memory. You could
then call member functions for an improperly constructed object, which would
probably produce erroneous results. For example:

Date *datePtr;
i nt i;
datePtr = (Date *)malloc(sizeof(Date));
i = datePtr->getMonth(); II Returns undefined month value

If you use malloc to allocate objects, you lose the safety benefits that constructors
provide. A better technique is to use the new operator.

The new Operator
As an alternative to malloc, C++ provides the new operator for allocating mem
ory from the free store. The malloc function knows nothing about the type of the
variable being allocated; it takes a size as a parameter and returns a void pointer.
In contrast, the new operator knows the class of the object you're allocating, and
it automatically calls the class's constructor to initialize the memory it allocates.
Compare the previous example with the following:

Date *firstPtr. *secondPtr;
i nt i;

firstPtr = new Date;
i = firstPtr->getMonth();

II Default constructor called
II Returns 1 (default value)

secondPtr = new Date(3. 15. 1985);
i = secondPtr->getMonth();

II Constructor called
II Returns 3

The new operator calls the appropriate Da te constructor, depending on whether
you specify arguments or not. This ensures that any objects you allocate are
properly constructed. You also don't have to use the sizeof operator to find the
size of a Date object, because new can tell what size it is.

The new operator returns a pointer, but you don't have to cast it to a different
type when you assign it to a pointer variable. The compiler checks that the type of
the pointer matches that of the object being allocated and generates an error if
they don't match. For example:

Chapter 5 Classes and Dynamic Memory Allocation 69

void *ptr;

ptr = new Date; II Error; type mismatch

If new cannot allocate the memory requested, it returns O. In C++, a null pointer
has the value 0 instead of the value NULL.

The delete Operator
Just as the malloc function has the free function as its counterpart, the new
operator has the delete operator as its counterpart. The delete operator deallo
cates blocks of memory, returning them to the free store for subsequent
allocations.

The syntax for delete is simple:

Date *firstPtr;
i nt i;
firstPtr = new Date(3, 15, 1985); II Constructor called
i = firstPtr->getMonth(); II Returns 3

delete firstPtr; II Destructor called, memory freed

The delete operator automatically calls the destructor for the object before it
deallocates the memory. Because the Date class's destructor doesn't do any
thing, this feature is not demonstrated in this example.

You can only apply delete to pointers that were returned by new, and you can
only delete them once. Deleting a pointer not obtained from new or deleting a
pointer twice causes your program to behave strangely, and possibly to crash. It is
your responsibility to guard against these errors; the compiler cannot detect them.
You can, however, delete a null pointer (a pointer with value 0) without any
adverse effects.

The Free Store and Built-in Types
The new and delete operators can be used not only with classes that you've
defined, but also with built-in types such as integers and characters. For example:

int *ip;

ip = new int;
I I use i p
delete ip;

II Allocate an integer

70 C++ Tutorial

You can also allocate arrays whose size is determined at run time:

int length;
char *cp;

II Assign value to length, depending on user input
cp = new char[length]; II Allocate an array of chars
II Use cp
delete [] cp;

Notice the syntax for declaring an array: You place the array size within brackets
after the name of the type. Also note the syntax for deleting an array: You place
an empty pair of brackets before the name of the pointer. The compiler ignores
any number you place inside the brackets.

You can even allocate multidimensional arrays with new, as long as all of the
array dimensions except the first are constants. For example:

int (*matrix)[10];
int size;

II Assign value to size, depending on user input
matrix = new int[size][10]; II Allocate a 2-D array
II Use matrix
delete [] matrix;

Dynamic allocation of arrays of objects, as opposed to arrays of built-in types, is
discussed in Chapter 6, "More Features of Classes."

Classes with Pointer Members
You can use the new and delete operators from within the member functions of a
class. Suppose you wanted to write a S t r i n 9 class, where each object contains a
character string. It's inappropriate to store the strings as arrays, because you don't
know how long they'll be. Instead, you can give each object a character pointer
as a member and dynamically allocate an appropriate amount of memory for each
object. For example:

Chapter 5 Classes and Dynamic Memory Allocation 71

II See STRNG.H and STRNG.CPP for final versions of this example
#include <iostream.h>
#include <string.h>

II ------- A string class
class String
{

public:
String();
String(canst char *s);
String(char c, int n);
void set(int index, char newchar);
char get(int index) canst;
int getLength() canst { return length;
void display() canst { cout « buf; }
~String();

private:

} ;

int length;
char *buf;

II Default constructor
String: :String()
{

}

bUf = 0;
length = 0;

II ---------- Constructor that takes a const char *
String::String(const char *s)
{

}

length = strlen(s);
buf = new char[length + 1J;
strcpy(buf, s);

II ---------- Constructor that takes a char and an int
String::String(char c, int n)
{

length = n;
buf = new char[length + 1J;
memset(buf, c, length);
buf[lengthJ = '\0'; }

II ---------- Set a character in a String
void String::set(int index, char newchar
{

}

if((index> 0) && (index <= length))
buf[index - 1J = newchar;

72 C++ Tutorial

II ---------- Get a character in a String
char String::get(int index) const
{

if((index> 0) && (index <= length)
return buf[index - 1];
else
return 0;

II ---------- Destructor for a String
String: :~String()
{

delete [] buf; II Works even for empty String; delete 0 is safe

maine)
{

String myString("here's my string");
myString.set(1, 'H');

The S t r i n 9 constructor that takes a character pointer uses the new operator to
allocate a buffer to contain the string. It then copies the contents of the string into
the buffer. As a result, a S t r i n 9 object is not a contiguous block of memory the
way a structure variable is. Each S t r i n 9 object consists of two blocks of mem
ory, one that contains 1 eng t hand b u f, and another that stores the characters
themselves.

If you call sizeof to find the size of a S t r i n 9 object, you get only the size of the
block containing the integer and the pointer. However, different Stri ng objects
may have character buffers of different lengths.

In fact, you can write a member function that changes the length of a S t r i n 9
object's character buffer. For example:

void String::append(const char *addition
{

char *temp;

length += strlen(addition);
temp = new char[length + 1];
strcpy(temp, buf);
strcat(temp, addition);
delete [] buf;
buf = temp;

II Allocate new buffer
II Copy contents of old buffer
II Append new string
II Deallocate old buffer

Chapter 5 Classes and Dynamic Memory Allocation 73

This function appends a new string to the contents of an existing S t r i n 9 object.
For example:

S t r i n 9 my S t r i n 9 ("h ere's my s t r i n 9 ");

myString.append(" and here's more of it");
1/ myString now holds "here's my string and here's more of it"

The S t r i n 9 object defined above is thus dynamically resizable. All the details of
the resizing are handled by the member functions.

The S t r i n 9 class is an example of a class that requires a destructor. When a
S t r i n 9 object goes out of scope, the block of memory containing 1 eng t hand
buf is deallocated automatically. However, the character buffer was allocated
with new, so it must be deallocated explicitly. As a result, the St ri ng class
defines a destructor that uses the delete operator to deallocate the character
buffer. If the class didn't have a destructor, the character buffers would never
be deallocated and the program might eventually run out of memory.

The S t r i n 9 class has potential problems, however. Suppose you added the fol
lowing code to the main function in this example:

String yourString("here's your string");
yourString = myString;

The program constructs a S t r i n 9 object named you r S t r i n 9 and then assigns
the contents of my S t r i n 9 to it. This looks harmless enough, but it actually causes
problems.

When you assign one object to another, the compiler performs a memberwise
assignment; that is, it does the equivalent of the following:

II Hypothetical equivalent of yourString = myString
yourString.length = myString.length;
yourString.buf = myString.buf;

The assignment of the 1 eng t h member is no problem. However, the b u f mem
ber is a pointer. The result of the pointer assignment is that you r S t r i n 9 . b u f

74 C++ Tutorial

and my S t r i n 9 . b u f point to the same location in memory. The two objects share
the same character buffer. This is illustrated in Figure 5.1.

Before assignment

myString

buf ~
6 length

yourString

bUf ~
8 length

Result of you r S t r i n 9 my S t r i n 9 using default assignment behavior:

myString

~
6 length

buf

yourString

16 1 ength

bUf

Figure 5.1 Default Assignment Behavior

This means that any modifications to one of the S t r; n 9 objects affects both of
them. If you call my S t r; n 9 . set (), you modify you r S t r i n 9 as well. This
behavior probably isn't what you desired.

Chapter 5 Classes and Dynamic Memory Allocation 75

More serious problems arise when the objects go out of scope. When the Stri ng
class's destructor is called for my S t r i n g, it deletes the object's b u f pointer,
deallocating the memory that it points to. Then the destructor is called again for
yourStri ng, and it deletes that object's buf pointer. But both bUf members
have the same value, which means the pointer is deleted twice. This can cause
unpredictable results. Furthermore, the original buffer in you r S t r i n g, contain
ing "here's your string," is lost. That block of memory is never deleted.

These problems occur for any class that has pointer members and allocates mem
ory from the free store. The compiler's default behavior for assigning one object
to another is unsatisfactory for such classes. The solution is to replace the com
piler's default behavior by writing a special function to perform the assignment,
called the "assignment operator."

The Assignment Operator
As described in Chapter 2, "C++ Enhancements to C," in C++ you can overload
a function name so that it applies to more than one function. Similarly, you can
overload the assignment operator (the = sign) to have more than one meaning;
you can specify what happens when it is applied to instances of a particular class.
This is known as "operator overloading." Chapter 8, "Operator Overloading and
Conversion Functions," explains operator overloading in greater detail.

To redefine the meaning of the assignment operator for a class, you write a mem
ber function with the name operator=. If your class defines such a function, the
compiler calls it whenever one object is assigned to another. The compiler inter
prets an assignment statement like this

yourstring = mystring;

as a function call that looks like this:

yourstring.operator=(mystring);

In fact, you can explicitly use the second syntax to perform assignments; how
ever, you should use the first syntax because it is more readable.

76 C++ Tutorial

The assignment operator for Stri ng can be written as follows:

II Class Assignment
#include <iostream.h>
#include <string.h>

class String
{

public:
String();
String(const char *s);
String(char c, int n);
void operator=(const String &other);

I I etc ...
} ;

II ----------- Assignment operator
void String::operator=(const String &other)
{

}

length = other.length;
delete [] buf;
buf = new char[length + 1];
strcpy(buf, other.buf);

The assignment operator takes a reference to an object as its parameter. (Note
that a reference to a constant is used, indicating that the function doesn't modify
the object.) To perform the assignment, the function first copies the 1 ength data
member. Next, it deletes the receiving object's b u f pointer, returning that block
of memory to the free store (this is safe even for an uninitialized string, because
deleting a 0 pointer has no effect). Then the function allocates a new buffer and
copies the other buffer's contents into it. This is illustrated in Figure 5.2.

Chapter 5 Classes and Dynamic Memory Allocation 77

Result of yourStri ng my S t r i n 9 after assignment operator has been defined:

myString

buf ~
6 length

yourString

buf ~
6 length

Figure 5.2 Correct Assignment Behavior

Here's a program that uses the new S t r i n 9 class with its assignment operator:

main()
{

}

String myString("here's my string");
myString.display();
cout « '\n';

String yourString("here's your string");
yourString.display();
cout « '\n';

yourString = myString;
yourString.display();
cout « '\n';

This program prints the following messages.

here's my string
here's your string
here's my string

78 C++ Tutorial

What if a programmer using the S t r i n 9 class accidentally assigns an object to
itself? For instance:

myString = myString; II Self-assignment

Few people would write such a statement, but self-assignment can take other
forms. For instance:

String *stringPtr &myString;

II Later ...
myString = *stringPtr; II Inconspicuous self-assignment

What happens during such an assignment? The operator= defined above first
deletes my S t r i n g' s buffer and allocates a new buffer. Then it copies the contents
of my S t r i n g' s newly allocated buffer into itself. This causes unpredictable
behavior in your program.

In order for the operator= function to work safely in all cases, it must check
against self-assignment. This requires the use of the this pointer.

The this Pointer
The this pointer is a special pointer that is accessible to member functions. The
this pointer points to the object for which the member function is called. (There is
no this pointer accessible to static member functions. Static member functions are
described in Chapter 6, "More Features of Classes.")

When you call a member function for an object, the compiler assigns the address
of the object to the this pointer and then calls the function. Every time a member
function accesses one of the class's data members, it is implicitly using the this
pointer.

For example, consider the following C++ code fragment, describing a member
function definition and function call:

void Date::setMonth(int mn)
{

month = mn;

II Member function call
myDate.setMonth(3);

Chapter 5 Classes and Dynamic Memory Allocation 79

This is roughly equivalent to the following C fragment:

II C equivalent of C++ member function
void Date_setMonth(Date *const this. int mn)
{

this->month = mn;

I I Functi on call
Date_setMonth(&myDate. 3);

Notice that the type of this is 0 ate * for member functions of 0 ate; the type is
different for member functions of other classes.

When you write a member function, it is legal to explicitly use the this pointer
when accessing any members, though it is unnecessary. You can also use the
expression *this to refer to the object for which the member function was called.
Thus, in the following example, the three statements are equivalent:

void Date::month_display()
{

}

cout « month;
cout « this->month;
cout « (*this).month;

II These three statements
II do the same thing

A member object can use the this pointer to test whether an object passed as a
parameter is the same object that the member function is called for. For example,
the operator= function for the S t r i n 9 class can be rewritten as follows:

void String::operator=(const String &other)
{

}

if(&other == this
return;

delete [] buf;
length = other.length;
buf = new char[length + 1];
strcpy(buff other.buf);

The function tests whether the address of the 0 the r object is equal to the value
of the this pointer. If so, a self-assignment is being attempted, so the function
exits without doing anything. Otherwise, it performs the assignment as usual.

80 C++ Tutorial

Using *this in a Return Statement
The this pointer can also be used in the return statement of a member function.
In both C and C++, an assignment statement can be treated as an expression,
which has the value of what was being assigned. For example, the statement

i = 3;

is an expression with the value 3.

One result of this is that you can chain together multiple assignment statements:

a = b = c;

The assignment operator is right associative, so the expression is evaluated from
right to left. This means the expression is equivalent to the following:

a = (b = c);

To make your overloaded class assignments work this way, you must make the
assignment function return the result of the assignment. You want the assignment
operator to return the object to which it belongs. You get the address of the object
from the this pointer.

Returning *this involves a simple modification to the assignment operator (in the
operator= function):

String &String: :operator=(canst String &other)
{

}

if(&ather == this
return *this;

delete [] buf;
length = other.length;
buf = new char[length + 1];
strcpy(buf, other.buf);
return *this;

With this version of the operator= function, you can chain together assignments
of Str; ng objects:

herString = yourString = myString;

Note that the function returns a reference to a S t r; n g. This is more efficient than
returning an actual S t r; n 9 object; for more information on returning objects
from functions, see the section "The Copy Constructor" on page 83.

Chapter 5 Classes and Dynamic Memory Allocation 81

The practice of returning *this also explains how the chained co u t statements
used in previous examples work. You have seen many statements similar to the
following:

cout « a « b « c;

The left-shift operator is left-associative, so this expression is evaluated from left
to right. The overloaded left-shift operator returns *this, which is the cout
object, so each variable is printed successively.

Bad Uses of the this Pointer
The this pointer is a const pointer, so a member function cannot change the
pointer's value to make it point to something else. In early versions of C++, the
this pointer was not a const pointer. This made it possible for a programmer to
make assignments to the this pointer in order to perform customized memory
allocation. For example:

II BAD TECHNIQUE: assignment to this
class foo
{

public:

} ;

foo() { this = my_alloc(sizeof(foo));
~foo() { my_dealloc(this); this = 0; }

This type of special processing is not allowed in the current version of C++. If
you need customized memory allocation, you can write your own versions of
new and delete. For more information, see the section "Class-Specific new and
delete Operators" on page 107 in Chapter 6.

Early versions of C++ also let you examine the this pointer to distinguish
between objects allocated on the stack and those allocated with the free store.
On entry to a constructor, the this pointer had a value of 0 if the constructor was
being called for an object allocated with new and had a nonzero value otherwise.
This made it possible for you to perform different processing for dynamically
allocated objects. This behavior is not supported in the current version of C++.

82 C++ Tutorial

Assignment vs. Initialization
Consider the following two code fragments:

i nt i;

i = 3;

and

int i = 3;

In C, these two fragments have the same effect and can be regarded as the same.
In C++, however, they are very different. In the first example, the integer i is
assigned a value. In the second example, it is initialized with a value.

The differences are as follows:

• An assignment occurs when the value of an existing object is changed; an object
can be assigned new values many times.

• An initialization occurs when an object is given an initial value when it is first
declared; an object can be initialized only once.

One way to illustrate the difference is to consider variables declared as const. A
constant variable can only be initialized; it cannot be assigned a new value.
(Similarly, references are initialized with a variable, but they cannot be assigned
a new variable.)

This distinction becomes important when using objects. Consider the previous
examples with the integers replaced by S t r i n 9 objects. Here's an assignment:

String myString("this is my string");
String yourString;

yourString = myString; II Assign one String the value of another

Here's an initialization:

String myString("this is my string");
String yourString = myString; II Initialize one String with another

As previously described, the assignment statement causes the compiler to invoke
the operator= function defined for the class. However, the initialization does not
invoke the same function. The operator= function can only be called for an
object that has already been constructed. In the above example, you r S t r i n 9 is
being constructed at the same time that it receives the value of another object. To

Chapter 5 Classes and Dynamic Memory Allocation 83

construct an object in this way, the compiler invokes a special constructor called
the "copy constructor."

The Copy Constructor
A copy constructor is a constructor that takes an object of the same type as
an argument. It is invoked whenever you initialize an object with the value of
another. It can be invoked with the = sign, as in the example above, or with
function-call syntax. For example, the initialization in the example above could
be rewritten with the following syntax:

String yourString(myString);

This follows the traditional syntax for calling a constructor.

The way the S t r i n 9 class is currently written, the compiler executes the pre
vious statement by initializing each member of you r S t r i n 9 with the values of
the members of my S t r i n g. Just as with the default behavior during assignment,
this is generally undesirable when the class contains pointers as members. The
result of the previous initialization is to give you r S t r i n 9 and my S t r i n 9 the
same character buffer, which can cause errors when the destructor destroys the
objects.

The solution is to write your own copy constructor. The copy constructor for the
S t r i n 9 class can be written as follows:

#include <iostream.h>
#include <string.h>

II ------- string class
class String
{

public:
String();
String(const char *s);
String(char c, int n);
String(const String &other);

I I etc ...
} ;

II ----------- Copy constructor
String::String(const String &other
{

length = other.length;
buf = new char[length + 1];
strcpy(buf, other.buf);

II Copy constructor

84 C++ Tutorial

The implementation of the copy constructor is similar to that of the assignment
operator in that it allocates a new character buffer for the object being created.
Note that the copy constructor actually takes a reference to an object, instead of
an object itself, as a parameter.

In general, there are only a few differences between copy constructors and
assignment operators:

• An assignment operator acts on an existing object, while a copy constructor
creates a new one. As a result, an assignment operator may have to delete the
memory originally allocated for the receiving object.

• An assignment operator must check against self-assignment. The copy construc
tor doesn't have to, because self-initialization is impossible.

• To permit chained assignments, an assignment operator must return *this.
Because it is a constructor, a copy constructor has no return value.

Passing and Returning Objects
There are two other situations besides ordinary declarations in which the copy
constructor may be called:

• When a function takes an object as a parameter.

• When a function returns an object.

The following example shows a function that takes an object as a parameter:

II Function that takes a String parameter
void consume(String parm)
{

II Use the parm object

void main()

String myString("here's my string");

consume(myString);

The function consume takes a Stri ng object passed by value. That means that
the function gets its own private copy of the object.

Chapter 5 Classes and Dynamic Memory Allocation 85

The function's parameter is initialized with the object that is passed as an argu
ment. The compiler implicitly calls the copy constructor to perform this initiali
zation. It does the equivalent of the following:

II Hypothetical initialization of parameter
String parm(myString); II Call copy constructor

Consider what happens if you don't define a copy constructor to handle initiali
zation. As a result of the compiler's default initialization, the function's copy of
the object has the same character buffer as the caller's copy; any operations on
p arm's buffer also modify my S t r i n g' s buffer. More importantly, the parameter
has local scope, so the destructor is called to destroy it when the function finishes
executing. That means that my S t r i n 9 has a pointer to deleted memory, which
makes it unsafe to use after the function is done.

The following example shows a function that returns an object:

II Function that returns a String
String emit()
{

String retValue("here's a return value");

return retValue;

void main()
{

String yourString;

yourString = emit();

The function emi t returns a Stri ng object. The compiler calls the copy con
structor to initialize a hidden temporary object in the caller's scope, using the
object specified in the function's return statement. This hidden temporary object
is then used as the right-hand side of the assignment statement. That is, the com
piler performs the equivalent of the following:

II Hypothetical initialization of return value
String tempe retValue); II Call copy constructor
yourString = temp; II Assignment of temp object

Once again, a copy constructor is needed. Otherwise, the temporary object shares
the same character buffer as ret Val ue, which is deleted when the function fin
ishes executing, and the subsequent assignment to you r S t r i n 9 is not guaranteed
to work.

86 C++ Tutorial

As a rule, you should always define both a copy constructor and an assignment
operator whenever you write a class that contains pointer members and allocates
memory from the free store.

Passing and Returning References to Objects
There is some overhead involved in calling the copy constructor every time an
object is passed by value to a function. However, you can duplicate the effect of
passing the parameter by value, while avoiding the expense of the constructor
call, by passing a reference to a constant object. For example:

void consume(const String &parm)
{

II Use the parm object
}

void main()
{

String myString("here's my string");

consume(myString);
}

The copy constructor is not called when a parameter is passed this way, because a
new object is not being constructed. Instead, a reference is initialized with the
object being passed. The compiler performs the equivalent of the following:

II Hypothetical initialization of reference parameter
const String &parm = myString; II Initialize reference

As a result, the function uses the same object as the caller.

Notice that the const keyword is used. Because a reference to a constant is
passed, the function cannot modify the parameter, so the caller is guaranteed that
the object remains safe. Only const member functions (that is, read-only member
functions) can be invoked on the object.

Note that the copy constructor itself takes a reference to an object, rather than an
object, as its parameter. If the copy constructor took an object itself as a param
eter, it would have to call itself in order to initialize the parameter. This would
cause an infinite recursion.

Returning a reference from a function can also be more efficient than returning
an object. Recall the example of the operator= function:

Chapter 5 Classes and Dynamic Memory Allocation 87

String &String::operator=(const String &other)
{

II ...
return *this;

void main()
{

String myString("here's my string");
String yourString, herString;

herString = yourString = myString;

The copy constructor is not called when the function returns, because a tempo
rary object is not being created: Only a temporary reference is created. When the
he rSt ri ng object receives the value of the you rSt ri ng = mySt ri ng assign
ment statement, the compiler performs the equivalent of the following:

II Hypothetical initialization of reference return value
String &tempRef = yourString; II Initialize reference

II NOTE: yourString == *this
herString = tempRef; II Assignment of temp reference

II Equivalent to herString = yourString

However, you must use caution when returning a reference to objects or variables
other than *this. The rules for returning references are similar to those for return
ing pointers. You cannot return a pointer to an automatic variable. For example:

II BAD TECHNIQUE: returning pointer to automatic variable
int *emitPtr()

int i;

return &i;

The integer i is an automatic variable, so it goes out of scope at the end of the
function. That means the function returns a pointer to an integer that no longer
exists. It is unsafe for the calling program to use such a pointer.

88 C++ Tutorial

The same restriction applies to references:

II BAD TECHNIQUE: returning reference to automatic variable
int &emitRef()
{

int i;

return i;

It is safe, however, to return a reference or a pointer to a variable that has been
dynamically allocated. Dynamically allocated objects remain in existence until
they are deallocated, so references and pointers to them remain valid even after
the function has exited. You can also safely return references or pointers to static
or global variables.

89

CHAPTER 6

More Features of Classes

This chapter describes the following additional features of classes:

• Static members

• Friend classes and functions

• Creating arrays of objects

• The set new handler function

• Writing your own new and delete operators

Static Members
Suppose you write a class S a v i n gsA ceo u n t to represent savings accounts at a
bank. Each object represents a particular customer's account and has data mem
bers storing the customer's name and the account's current balance. The class
also has a member function to increase an account's balance by the interest
earned in one day.

In such a class, how would you represent the daily interest rate? The interest rate
may change, so it has to be a variable instead of a constant. You could make it a
member of the class, but then each object would have its own copy. This is not
only a waste of space, but it also requires you to update every single object each
time the interest rate changes, which is inefficient and could lead to
inconsistencies.

You could make the interest rate a global variable, but then every function would
be able to modify its value. What you want is a kind of global variable for an
individual class. For such situations, C++ lets you declare a member of a class to
be static.

90 C++ Tutorial

Static Data Members
When a data member is declared static, only one copy of it is allocated, no matter
how many instances of the class are declared. However, it can be treated like an
ordinary data member by the class's member functions. If it is declared private,
only the member functions can access it. For example, here's a declaration of a
Savi ngsAccount class that contains a static member called currentRate:

class SavingsAccount
{

public:
SavingsAccount();
void earnInterest() { total += currentRate * total; }
/ / ...

private:

} ;

char name[30];
float total;
static float currentRate;
/ / ...

Only one copy of currentRate exists, and it is accessible to all
Sa vi ngsAccount objects. Whenever the ea rn I nterest member is called for
any Savi ngsAccount object, the same value of currentRate is used. This is
illustrated in Figure 6.1.

name John Smi th name Mary Brown name Bi 11 Shapi ro

total 5000.0 total 10000.0 total 3000.0

currentRate 0.000154

Figure 6.1 A Static Data Member

You can declare a static member public, making it visible to the rest of the pro
gram. You can then access it as if it were an ordinary data member of an object.

For example, if currentRate were a public member, you could access it as
follows:

Chapter 6 More Features of Classes 91

II If currentRate were a public member
void main()
{

Sav;ngsAccount myAccount;

myAccount.currentRate = 0.000154;

However, this syntax is misleading, because it implies that only the interest rate
of my Ace 0 u ntis being modified, when in fact the interest rate of all
Savi ngsAccount objects is being modified. A better way of referring to a static
member is to prefix its name with the class name and the scope resolution opera
tor. For example:

II If currentRate were a public member
void main()
{

SavingsAccount::currentRate 0.000154;

This syntax reflects the fact that the value being modified applies to the class as a
whole, rather than an individual object. You can use this syntax even if you
haven't declared any Savi ngsAccount objects; a static data member exists even
if no instances of the class are declared.

You cannot initialize a static data member from within a constructor of the class,
because the constructor may be called many times and a variable can be initial
ized only once. A static data member must be initialized at file scope, as if it were
a global variable. The access specifier for a static data member is not in effect
during initialization; private static members are initialized in the same way as
public ones. For example:

#include "savings.h"

II Initialize private static member at file scope
float SavingsAccount::currentRate = 0.0001;

SavingsAccount::SavingsAccount()
{

I I ...
}

I I etc

Notice that the initialization is not placed in a header file, because that file may
be included more than once in a program. The initialization is placed in the
source module that contains the definitions of the class's member functions. Also
note that the type of the static member is specified, because it is an initialization

92 C++ Tutorial

rather than an assignment. The static member is being declared at that point, not
inside the class.

Static Member Functions
If you have a member function that accesses only the static data members of a
class, you can declare the function static as well. For example:

II See SAVINGS.H and SAVINGS.CPP for final versions
II of this example
class SavingsAccount
{

public:
SavingsAccount();
void earnlnterest() { total += currentRate * total; }
static void setInterest(float newValue)

{ currentRate = newValue; }
I I . ..

private:

} ;

char name[30];
float total;
static float currentRate;
I I . ..

Static member functions can be called using the same syntax as that used for
accessing static data members. That is:

II Calling a static member function
void main()
{

SavingsAccount myAccount;

myAccount.setInterest(0.000154);
SavingsAccount::setInterest(0.000154);

Because a static member function doesn't act on any particular instance of the
class, it has no this pointer. Consequently, a static member function cannot access
any of the class's nonstatic data members or call any nonstatic member functions,
as doing so would mean implicitly using the this pointer. For example, the func
tion set I n t ere s t cannot access the tot a 1 data member; if it could, which
object's value of tota 1 would it use?

Friends

Chapter 6 More Features of Classes 93

Static members are useful for implementing common resources that all the
objects need, or maintaining state information about the objects. One use of static
members is to count how many instances of a class exist at any particular
moment. This is done by incrementing a static member each time an object is
created and decrementing it each time an object is destroyed. For example:

class Airplane
{

public:
Airplane() { count++; }
static int howMany() { return count; }

~Airplane() { count--; }
private:

static int count;
} ;

II Initialize static member at file scope
int Airplane: :count = 0;

By calling h 0 wM any, you can get the number of Air p 1 an e objects that exist at
any particular time.

As mentioned in Chapter 4, "Introduction to Classes," you should declare your
class's data members private, so that they're inaccessible to functions outside of
the class. This lets you change the implementation of a class without affecting the
programs that use the class.

Sometimes, however, you may find that two or more classes must work together
very closely-so closely that it's inefficient for them to use each other's access
functions. You may want one class to have direct access to another class's private
data. You can permit this by using the friend keyword.

94 C++ Tutorial

Friend Classes
In the following example, the class You r C 1 a 5 5 declares that the
You rOt her C 1 a 5 s class is a friend. This permits member functions of
You rOtherCl ass to directly read or modify the private data of You rCl a S5:

class YourClass

friend class YourOtherClass;
private:

int topSecret;
} ;

class YourOtherClass
{

public:
void change(YourClass yc)

} ;

void YourOtherClass::change(YourClass yc)
{

yc.topSecret++; II Can access private data
}

The friend declaration is not affected by the public or private keywords; you
can place it anywhere in the class's declaration.

Notice that the friend declaration appears in You r C 1 a 5 5. When you write
You r C 1 a 5 5, you specify those classes that you wish to have access to
You r C 1 a 5 s 's private data. Another programmer cannot write a class called
Hi 5 C 1 ass and declare it to be a friend in order to gain access. For example:

class HisClass
{

II Cannot declare itself to be a friend of YourClass
public:

void change(YourClass yc)
} ;

void HisClass::change(YourClass yc)

yc.topSecret++; II Error: can't access private data

Thus, you control who has access to the classes you write.

Chapter 6 More Features of Classes 95

Notice that the friend keyword provides access in one direction only. While
You rOthe rCl ass is a friend of You rC 1 ass, the reverse is not true. Friendship
is not mutual unless explicitly specified as such.

A list class demonstrates the usefulness of friend classes more realistically.
Suppose you want to maintain a list of names and phone numbers, and you want
to be able to specify someone' s name and find his or her phone number. You
could write a class like the following:

#include <string.h>

struct Record

} ;

char name[30];
char number[10];

const int MAXLENGTH 100;

class PhoneList
{

friend class Phonelter;
public:

PhoneList();
int add(const Record &newRec);
Record *search(char *searchKey);

private:
Record aray[MAXLENGTH];
int firstEmpty; II First unused element

} ;

PhoneL i st:: PhoneL i st()
{

firstEmpty = 0;

int PhoneList::add(const Record &newRec
{

}

if(firstEmpty < MAXLENGTH - 1)
{

}

aray[firstEmpty++] = newRec;
return 1; II Indicate success

else return 0;

96 C++ Tutorial

Record *PhoneList: :search(char *searchKey
{

fore int i = 0; i < firstEmpty; i++)
if(!strcmp(aray[i].name. searchKey)

return &aray[i];

return 0;

Each PhoneL i st object contains an array of Record structures. You can add
new entries and search through the existing entries by specifying a name. You
can create as many Ph 0 n eLi s t objects as you need for storing separate lists of
names.

Now suppose you want to examine each of the entries stored in a Ph 0 n eLi s t
object, one by one; that is, you want to "iterate" through all the entries. One way
to do this is to write an iterator class that is a friend of the Ph 0 n eLi s t class.

Here's the friend class Ph 0 n e I t e r:

cl ass Phone Iter
{

public:
PhoneIter(PhoneList &m);
Record *getFirst();
Record *getLast();
Record *getNext();
Record *getPrev();

private:

} ;

PhoneList *const mine;
int currIndex;

II Pointer to a PhoneList object

PhoneIter::PhoneIter(const PhoneList &m)
: mine(&m) II Initialize the constant member

currIndex = 0;

Record *PhoneIter::getFirst()
{

currIndex = 0;
return &(mine->aray[currIndex]);

Record *Phonelter::getLastC)
{

Chapter 6 More Features of Classes 97

currlndex = mine->firstEmpty - 1;
return &(mine->aray[currlndex]);

Record *Phonelter::getNext()
{

if(currlndex < mine->firstEmpty - 1)
{

currlndex++;
return &(mine->aray[currlndex]);

else return 0;

Record *Phonelter::getPrev()
{

if(currlndex > 0
{

currlndex--;
return &(mine->aray[currlndex]);

else return 0;

When you declare a Ph 0 n e I t e r object, you initialize it with a Ph 0 n eLi s t
object. The Ph 0 n e I t e r object stores your current position within the list. Here's
a function that demonstrates the use of a Ph 0 n e I t e r object:

void printList(PhoneList aList)
{

Record *each;
Phonelter anlter(aList);

each = anlter.getFirst();
cout « each->name « ' , « each->number « '\n';
while(each = anlter.getNext())
{

cout « each->name « ' , « each->number « '\n';

By calling the getNext and getPrev member functions, you can move the cur
rent position forward or back, reading the elements in the list at the same time.
With the getFi rst and get Last functions, you can start at either end of the
list.

98 C++ Tutorial

The Ph 0 n e I t e r class is useful because you can declare several iterator objects
for a particular PhoneL i st class. Thus, you can maintain several current posi
tions within the list, like bookmarks, and you can move each one back and forth
independently. This type of functionality is cumbersome to implement using only
member functions.

An important characteristic of the Ph 0 n eLi s t class is that users of the class
don't know that it's implemented with an array. You could replace the array with
a doubly linked list without affecting the class's interface. You would have to
rewrite the add function to append a new node to the linked list and rewrite the
sea r c h function to traverse the list, but the prototypes of those functions would
remain the same as they are now. Programs that call the add and sea r c h func
tions don't have to be modified at all.

If you were to rewrite the Ph 0 n eLi s t class in this way, you would also have to
rewrite the Ph 0 n e I t e r class. Instead of containing the index of the current ele
ment, each Ph 0 n e I t e r object would contain a pointer to the current node. How
ever, the available operations would not change; the class's interface would
remain the same. (Together, the PhoneL i st and PhoneIter classes form an
"abstract" phone list, which is defined only by its operations, not by its internal
workings. Abstraction is discussed in Chapter 9, "Fundamentals of Object
Oriented Design.")

When you use the friend mechanism in C++, you are no longer writing a class
that stands alone; you are writing two or more classes that are always used
together. If you rewrite one class, you must also rewrite the other(s). You should
therefore use the friend mechanism very sparingly; otherwise, you may have to
rewrite large amounts of code whenever you change one class.

Friend Functions
You can also declare a single function with the friend keyword, instead of an
entire class. For example:

class YourClass
{

friend void YourFunction(YourClass yc);
private:

int topSecret;
} ;

void YourFunction(YourClass yc)
{

yc.topSecret++; II Modify private data
}

Chapter 6 More Features of Classes 99

Friend functions are often used for operator overloading. For more information,
see Chapter 8, "Operator Overloading and Conversion Functions."

Arrays of Class Objects
You can declare arrays of objects in the same way that you can declare arrays of
any other data type. For example:

Date birthdays[10];

When you declare an array of objects, the constructor is called for each element
in the array. If you want to be able to declare arrays without initializing them, the
class must have a default constructor (that is, one that can be called without
arguments). In the above example, the default Date constructor is called, initial
izing each element in the array to January 1, 1.

You can also provide initializers for each element in the array by explicitly call
ing the constructor with arguments. If you don't provide enough initializers for
the entire array, the default constructor is called for the remaining elements. For
example:

Date birthdays[10] { Date(2, 10, 1950) ,
Date(9, 16, 1960) ,

Date(7, 31, 1953) ,

Date(1, 3, 1970),
Date(12, 2, 1963) };

The previous example calls the D ate constructor that takes three parameters for
the first five elements of the array, and the default constructor for the remaining
five elements.

Notice the syntax for calling a constructor explicitly. Unlike the usual syntax,
which declares an object and initializes it, this syntax creates an object with a
particular value directly. This is analogous to specifying the integer constant 123
instead of declaring an integer variable and initializing it.

If the class has a constructor that takes only one argument, you can specify just
the argument as the initializer for an element. You can also mix different styles of
initializer. For example:

String message[10] = {"First line of message\n",
"Second line of message\n",
String("Third line of message\n"),
String('-', 25),
String() };

100 C++ Tutorial

In the previous example, the single-parameter constructor is called for the first
three elements of the array, implicitly for the first two elements and explicitly for
the third. The two-parameter constructor is called explicitly for the fourth
element. The default constructor is called explicitly for the fifth element and
implicitly for the remaining five elements.

The Free Store and Class Arrays
You can also use the new operator to dynamically allocate arrays of objects. For
example:

String *text;
text = new String[5];

There is no way to provide initializers for the elements of an array allocated with
new. The default constructor is called for each element in the array.

When you deallocate an array of objects with the delete operator, you must spec
ify a pair of empty brackets to indicate that an array is being deleted. The conse
quences of using the wrong syntax are serious. For example:

delete text; II Incorrect syntax for deleting array

When the previous statement is executed, the compiler treats text as a pointer to
a S t r i n g, so it calls the destructor for the object * t ext, and then it deallocates
the space pointed to by text. However, text points to an entire array, not just a
single object. The destructor is called only for text [0], not for text [1]
through t ext [4 J. As a result, the character buffers allocated for those four
S t r i n 9 objects are never deallocated. This is illustrated in Figure 6.2.

If you use the correct syntax for deleting arrays, the destructor is called properly.
For example:

delete [] text;

This syntax tells the compiler that t ext points to an array. The compiler looks up
the size of the array, which was stored when the array was first allocated with
new. Then the compiler calls the destructor for all the elements in the array, from
t ext [0] to t ext [4]. The destructor deallocates the buffer for each of the
objects in tum, and then the compiler deallocates the space pointed to by text.
This is illustrated in Figure 6.3.

In earlier versions of C++, you had to specify the array size within the brackets
when you called delete, and errors resulted if you specified a different size than
used in the new call. In the latest version of C++, the compiler stores the sizes of
all arrays allocated with new and ignores numbers specified when calling delete.

Steps taken during de 1 ete text;

before deletion

text G---i.~ 4

0

call ~stri ng for *text

text G • 4

deallocate * t ext

text G ·

~

3 5 .. 4~

3 5

4~ 4~

Chapter 6 More Features of Classes 101

4 4

T --
I

I I

4 4

f --
I

I I

I I

Figure 6.2 Incorrect Behavior for Deleting an Array

102 C++ Tutorial

Steps taken during de 1 ete [] text;

before deletion

text GI---....... 4 3 5 4

4t 0 0 T
I

4
.--

..
~

call ""stri ng for *text[0] through text[4]

text G ·

deallocate *text

text G •

• • 4t T
.--

I

Figure 6.3 Correct Behavior for Deleting an Array

I I

Chapter 6 More Features of Classes 103

If you're using a class that has no destructor, it is possible, although inadvisable,
to delete an array of objects without specifying the []. For example, because the
Da te class has no destructor, the following example works:

II BAD TECHNIQUE: deleting array of objects without []
II for a class that has no destructor
Date *appointments;

appointments = new Date[10];
II Use the array
delete appointments; II Same as delete [] appointments;

In this case, the compiler notices that the Date class doesn't have a destructor, so
it immediately deallocates the space pointed to by appoi ntments. Because the
D ate objects have no buffers attached to them, no problems result from the lack
of the destructor calls.

However, you should always use the [] syntax when deleting arrays, even for
classes that have no destructors. The reason is that a class may be reimplemented
later on, and the new implementation could perform dynamic memory allocation
and require a destructor. (For example, you might implement a class using an
array and then switch to a linked list later. The first version doesn't require a
destructor, but the second version does.) If your programs assume that the class
doesn't have a destructor, they might have to be modified later on. By consis
tently using the [] syntax whenever you delete arrays, you ensure that your pro
grams work properly no matter how the class is implemented.

Advanced Free Store Techniques
c++ gives you much more control over dynamic allocation of memory than C
does. The following sections describe ways you can customize the memory allo
cation in your program.

The set new handler Function - - -
The C function malloe returns NULL when it cannot allocate the requested
amount of memory. When programming in C, it is good practice to check for
a NULL return value every time you call malloe. This way, your program can
exit gracefully instead of crashing as a result of trying to dereference a NULL
pointer.

Similarly, the new operator returns 0 when it cannot allocate the requested
amount of memory. Just as in C, you can check for a 0 return value every time
you call new. However, C++ provides a more convenient alternative in the
_set_new_handler function (declared in the include file NEW.H).

104 C++ Tutorial

The _set_new _ handler function takes a function pointer as an argument. This
pointer must point to an error-handling function that you write. By calling
_set_new _ handler, you install this function as the error handler for the free
store. When new cannot allocate the memory requested, it checks to see if an
error handler has been installed. If no error handler is installed (which is the
default), new returns O. If you have installed an error handler, new calls it.

You can write a simple error-handling function that prints an error message and
exits the program. For example:

II Free store exhaustion and the set_new_handler function
#include <iostream.h>
#include <stdlib.h>
#include <new.h>

int all_goneC size_t size
{

cerr « "\n\aThe free store is empty\n";
exitC 1);
return 0;

void main()
{

set_new_handlerC all_gone);
long total = 0;
whileC 1)
{

char *gobble = new char[10000];
total += 10000;
cout « "Got 10000 for a total of " « total « '\n';

This example executes a loop that consumes memory and displays the total
amount of memory currently allocated. When new cannot allocate any more
memory, it calls the a 11_90 n e function, which prints an error message and exits.
Note that the a 1 1_90 n e function takes a parameter of type size _ t, which repre
sents the size of the block requested when new failed, and that it returns an inte
ger. Any error-handling function you write must have this parameter and return
type.

Chapter 6 More Features of Classes 105

The previous example might print the following messages, depending on how
much memory is available:

Got 10000 for a total of 10000
Got 10000 for a total of 20000
Got 10000 for a total of 30000
Got 10000 for a total of 40000
Got 10000 for a total of 50000
The free store is empty

An error-handling function like this removes the need for you to check the return
value of new every time you call it. You can write code to handle the possibility
of memory exhaustion in just one place, rather than throughout your program.

Overloading the new and delete Operators
c++ lets you redefine the behavior of the new and delete operators if you want to
perform customized memory management. For example, suppose you want new
to initialize the contents of a memory block to zero before returning the allocated
memory. You can implement this by writing special functions named operator
new and operator delete. For example:

II Customized new and delete
#include <iostream.h>
#include <stdlib.h>
#include <stddef.h>

II ------------- Overloaded new operator
void *operator new(size_t size)
{

void *rtn = calloc(1. size);
return rtn;

II ----------- Overloaded delete operator
void operator deleteC void *ptr)
{

free(ptr);
}

106 C++ Tutorial

void main()
{

}

II Allocate a zero-filled array
int *ip = new int[10];
II Display the array
for(int i = 0; i < 10; i++

cout « " " « ip[i];
II Release the memory
delete [] ip;

Note that the new operator takes an parameter of type size _ t. This parameter
holds the size of the object being allocated, and the compiler automatically sets
its value whenever you use new. Also note that the new operator returns a void
pointer. Any new operator you write must have this parameter and return type.

In this particular example, new calls the standard C function calloc to allocate
memory and initialize it to zero.

The delete operator takes a void pointer as a parameter. This parameter points to
the block to be deallocated. Also note that the delete operator has a void return
type. Any delete operator you write must have this parameter and return type.

In this example, delete simply calls the standard C function free to deallocate the
memory.

Redefining new to initialize memory this way does not eliminate the call to a
class's constructor when you dynamically allocate an object. Thus, if you allocate
a Date object using your version of new, the Date constructor is still called to
initialize the object after the new operator returns the block of memory.

You can also redefine new to take additional parameters. The following example
defines a new operator that fills memory with the character specified when you
allocate memory.

Chapter 6 More Features of Classes 107

II new and delete with character fill
#include <iostream.h>
#include <stdlib.h>
#include <string.h>
#include <stddef.h>

II ------------- Overloaded new operator
void *operator new(size_t size, int filler
{

}

void *rtn;
if((rtn = malloc(size)) != NULL

memset(rtn, filler, size);
return rtn;

II ----------- Overloaded delete operator
void operator delete(void *ptr)
{

free(ptr);
}

void main()
{

}

II Allocate an asterisk-filled array
char *cp = new(,*,) char[10];
II Display the array
for(int i = 0; i < 10; i++

cout « " " « cp[i];
II Release the memory
delete [] cp;

Notice that when you call this version of new, you specify the additional argu
ment in parentheses.

For information about the behavior of new, delete, and set_new _handler in
mixed-model programs, see Chapter 3, "Managing Memory for 16-Bit C++
Programs," in Programming Techniques.

Class-Specific new and delete Operators
You can also write versions of the new and delete operators that are specific to
a particular class. This lets you perform memory management that is customized
for a class's individual characteristics.

For example, you might know that there will never be more than a certain small
number of instances of a class at anyone time, but they'll be allocated and

108 C++ Tutorial

deallocated frequently. You can use this information to write class-specific
versions of new and delete that work faster than the global versions. You can
declare an array large enough to hold all the instances of the class and then have
new and delete manage the array.

To write class-specific new and delete operators, you declare member functions
named operator new and operator delete. These operators take precedence over
the global new and delete operators, in the same way that any member function
takes precedence over a global function with the same name. These operators are
called whenever you dynamically allocate objects of that class. For example:

II Class-specific new and delete operators
#include <iostream.h>
#include <string.h>
#include <stddef.h>

const int MAXNAMES 100;

class Name

public:
Name(const char *s) { strncpy(name, S, 25); }
void display() const { cout « '\n' « name; }
void *operator new(size_t size);
void operator delete(void *ptr);
~Name() {}; II do-nothing destructor

private:
char name[25];

} ;

II -------- Simple memory pool to handle fixed number of Names
char pool [MAXNAMES] [sizeof(Name)];
int inuse[MAXNAMES];

II -------- Overloaded new operator for the Name class
void *Name::operator new(size_t size)
{

}

fore int p = 0; p < MAXNAMES; p++
if(linuse[p])
{

}

inuse[p] = 1;
return pool + p;

return 0;

Chapter 6 More Features of Classes 109

II --------- Overloaded delete operator for the Names class
void Name::operator delete(void *ptr)
{

inuse[«char *)ptr - pool[0]) I sizeof(Name)] 0;

void main()
{

Name *directory[MAXNAMES];
char name[25];

for(int i = 0; i < MAXNAMES; i++)
{

co u t < < " \ n En t ern a me iF " « i + 1 « ". ".
ci n » name;
directory[i] = new Name(name);

for(i = 0; i < MAXNAMES; i++
{

directory[i]->display();
delete directory[i];

This program declares a global array called pool that can store all the N a me
objects expected. There is also an associated integer array called i nus e, which
contains true/false flags that indicate whether the corresponding entry in the pool
is in use.

When the statement d i recto ry [i] = new Name (name) is executed, the
compiler calls the class's new operator. The new operator finds an unused entry
in poo 1, marks it as used, and returns its address. Then the compiler calls Name's
constructor, which uses that memory and initializes it with a character string.
Finally, a pointer to the resulting object is assigned to an entry in di rectory.

When the statement del e ted ire c tor y [i] is executed, the compiler calls
N a me's destructor. In this example, the destructor does nothing; it is defined only
as a placeholder. Then the compiler calls the class's delete operator. The delete
operator finds the specified object's location in the array and marks it as unused,
so the space is available for subsequent allocations.

110 C++ Tutorial

Note that new is called before the constructor, and that delete is called after the
destructor. The following example illustrates this more clearly by printing mes
sages when each function is called:

II Class-specific new and delete operators with constructor, destructor
#include <iostream.h>
#include <malloc.h>

class Name
{

public:
Name() {cout« "\nName's constructor running"; }
void *operator new(size_t size);
void operator delete(void *ptr);
-Name() { cout « "\nName's destructor running"; }

private:
char name[25];

} ;

II -------- Simple memory pool to handle one Name
char pool[sizeof(Name)];

II -------- Overloaded new operator for the Name class
void *Name::operator new(size_t)
{

cout « "\nName's new running";
return pool;

II --------- Overloaded delete operator for the Name class
void Name::operator delete(void *p)
{

cout « "\nName's delete running";

void maine)
{

cout « "\nExecuting: nm "" new Name";
Name *nm - new Name;
cout « "\nExecuting: delete nm";
delete nm;

Chapter 6 More Features of Classes 111

The previous example does nothing with the class except display the following
messages as the various functions execute:

Executing: nm = new Name
Name's new running
Name's constructor running
Executing: delete nm
Name's destructor running
Name's delete running

One consequence of the order in which new and delete are called is that they are
static member functions, even if they are not declared with the static keyword.
This is because the new operator is called before the class's constructor is called;
the object does not exist yet, so it would be meaningless for new to access any of
its members. Similarly, the delete operator is called after the destructor is called
and the object no longer exists. To prevent new and delete from accessing any
nonstatic members, the operators are always considered static member functions.

The class-specific new and delete operators are not called when you allocate or
deallocate an array of objects; instead the global new and delete are called for
array allocations. You can explicitly call the global versions of the operators
when you allocate a single object by using the scope resolution operator (::). For
example:

Name *nm = ::new Name; II Use global new

If you have also redefined the global new operator, this syntax calls your version
of the operator. The same syntax works for delete.

113

CHAPTER 7

Inheritance and Polymorphism

Besides making it easy for you to define new data types, c++ also lets you
express relationships between those types. This is done with two of C++'s fea
tures: The first is "inheritance," which lets you define one type to be a subcate
gory of another. The second is "polymorphism," which lets you use related types
together.

This chapter describes the mechanics of inheritance and polymorphism. In Part 3,
"Object-Oriented Design," you'll see how these features playa role when you
design a program.

This chapter covers the following topics:

• Base and derived classes

• Redefining members of a base class

• Conversions between base and derived classes

• Virtual functions and late binding

• Abstract classes

• The protected keyword

Before describing in detail C++'s features for handling related types, let's con
sider how you might handle them in C.

Handling Related Types in C
Suppose you need a program that maintains a database of all the employees in a
company. The company has several different types of employee: regular employ
ees, salespersons, managers, temporary employees, and so on, and your program
must be able to handle all of them.

If you're writing this program in C, you could define a structure type called
emp 1 oyee that has fields for the name, birth date, social security number, and
other characteristics. However, each type of employee requires slightly different

114 C++ Tutorial

information. For example, a regular employee's salary is based on an hourly
wage and the number of hours worked, while a salesperson's salary also includes
a commission on the number of sales made, and a manager's salary is a fixed
amount per week.

It's difficult to find a way to represent the information about each employee. You
could define a different structure type for each type of employee, but then you
couldn't write a function that worked on all kinds of employees; you couldn't
pass a manager structure to a function expecting an employee structure.
Another possibility is to include all the possible fields in the emp 1 oyee structure
type, but that would be a waste of space, because several fields would be empty
for any given employee.

One solution in C is to define a structure that contains a union. For example:

/* Example of implementing related types in C */

struct wage_pay
{

} ;

float wage;
float hrs;

struct sales_pay
{

} ;

float wage;
float hrs;
float commission;
float sales_made;

struct mgr_pay
{

float weekly_salary;
} ;

enum { WAGE_EMPLOYEE, SALESPERSON, MANAGER} EMPLOYEE_TYPE;

Chapter 7 Inheritance and Polymorphism 115

struct employee
{

} ;

char name[30];
EMPLOYEE_TYPE type;
union

struct wage_pay worker;
struct sales_pay seller;
struct mgr_pay mgr;

} ; II Anonymous union

The emp 1 oyee structure contains a union of the various salary structures. The
program uses the type field to indicate the type of employee and to keep track of
which form of salary is stored in the union.

Now consider how you would compute the salary of an employee. You might
write a function that looks like this:

1* Example of type-specific processing in C *1

float compute_pay(struct employee *emp)
{

switch(emp->type)
{

case WAGE_EMPLOYEE:
return emp->worker.hrs * emp->worker.wage;
break;

case SALESPERSON:
return emp->seller.hrs * emp->seller.wage +

emp->seller.commissions * emp->seller.sales_made;
b rea k;

case MANAGER:

II
} ;

return emp->mgr.weekly_salary;
break;

This function uses the value of the type field to determine how it accesses the
contents of the union. This way, the function can perform a different salary com
putation for each type of employee.

Salary computation is only one example of a task that is different for each type of
employee. The employee-database program might use unions and switch state
ments for a wide variety of tasks, such as health plan management or vacation
computation.

116 C++ Tutorial

These switch statements have a couple of disadvantages:

• They can be difficult to read, especially if there is common processing for two or
more types. It's also difficult to isolate the code that describes a particular type;
for example, the code to handle the Sal e s Per son class is spread throughout
the program.

• They are difficult to maintain. If you add a new type of employee, you have to
add a new case statement that handles that type to every switch statement in the
program. This makes updating the program error-prone, because it's possible to
overlook a switch statement somewhere. In addition, every time you modify the
code that handles one type, you must recompile the code that handles all the
other types. This can be time-consuming when you're testing code for a new
type of employee.

There are other ways to write this program in C, but they require much more pro
gramming effort. C doesn't provide an easy and maintainable way to express
relations among multiple user-defined types. One of the goals in designing C++
was to remedy C' s weakness in this area.

Handling Related Types in C++
Suppose you're writing the employee-database program in C++. First, define a
class called Emp 1 oyee that describes the common characteristics of all employ
ees. For example:

class Employee
{

public:
Employee();
Emplayee(canst char *nm);
char *getName() canst;

private:
char name[30];

} ;

For simplicity, this Emp 1 oyee class stores only a name, though it could store
many other characteristics as well, such as a birth date, a social security number,
and an address.

Next, you can define a Wa geEmp 1 oyee class that describes a particular type of
employee: those who are paid by the hour. These employees have the character
istics common to all employees, plus some additional ones.

Chapter 7 Inheritance and Polymorphism 117

There are two ways you can use Employee when you define the WageEmpl oyee
class. One way is to give WageEmpl oyee an Employee object as a data member.
However, that doesn't properly describe the relationship between the two types.
A wage-earning employee doesn't contain a generic employee; rather, a wage
earning employee is a special type of employee.

The second possibility is inheritance, which makes one class a special type of
another. You can make WageEmpl oyee inherit from Employee with the follow
ing syntax:

class WageEmployee public Employee
{

public:
WageEmployee(const char *nm);
void setWage(float wg);
void setHours(float hrs);

private:

} ;

float wage;
fl oat hours;

WageEmpl oyee is a "derived class," and Employee is its "base class." To
declare a derived class, you follow its name with a colon and the keyword public,
followed by the name of its base class (you can also use the keyword private;
this is described in the section "Public and Private Base Classes" on page 138). In
the declaration of the derived class, you declare the members that are specific to
it; that is, you describe the additional qualities that distinguish it from the base
class.

Each instance of WageEmpl oyee contains all of Employee's data members, in
addition to its own. You can call any of Employee's or WageEmpl oyee's mem
ber functions for a WageEmpl oyee object. For example:

WageEmployee aWorker("Bi 11 Shapi ro");
char *str;

aWorker.setHours(40.0);
str = aWorker.getName();

II call WageEmployee::setHours
I I ca 11 Employee:: getname

118 C++ Tutorial

Figure 7.1 illustrates the members contained in Employee and WageEmpl oyee.

Employee WageEmployee

name IJOhn Smithl name John Smith

wage 8.0

hours 40.0

Figure 7.1 Data Members in Base and Derived Classes

The member functions of a derived class do not have access to the private mem
bers of its base class. Therefore, the member functions of WageEmp 1 oyee cannot
access the private members of its base class Emp 1 oyee. For example, suppose
you write the following function:

void WageEmployee: :printName() const
{

cout « "Worker's name: "
« name « '\n'; II Error: name is private

II member of Employee

Because n a me is one of the private members of the base class, it is inaccessible to
any member function of WageEmp 1 oyee.

This restriction may seem surprising. After all, if a Wag e Em p loy e e is a kind of
Emp 1 oyee, why shouldn't it have access to its own Emp 1 oyee characteristics?
This restriction is designed to enforce encapsulation. If a derived class had access
to its base class's private data, then anyone could access the private data of a
class by simply deriving a new class from it. The point of making data private is
to prevent programmers who use your class from writing code that depends on its
implementation details, and this includes programmers who write derived classes.
If the original class's implementation were changed, every class that derived
from it would have to be rewritten as well.

Consequently, a derived class must use the·base class's public interface, just as
any other user of the class must. You could rewrite the previous example as
follows:

void WageEmployee::printName() const
{

cout « "Worker's name: "
« getName() « '\n'; II Call Employee::getName

Chapter 7 Inheritance and Polymorphism 119

This function uses Employee's public interface to get the information it needs.

To make this C++ example more like the employee example in C, you can also
define classes that describe salespersons and managers. Because salespersons are
a kind of wage-earning employee, you can derive the Sal e s Per son class from
the WageEmpl oyee class.

class SalesPerson: public WageEmployee
{

public:
SalesPerson(const char *nm);
void setCommission(float comm);
void setSales(float sales);

private:

} ;

float commission;
float salesMade;

A Sa 1 es Pe r s on object contains all the data members defined by Emp 1 oyee
and WageEmpl oyee, as well as the ones defined by Sal esPerson. Similarly,
you can call any of the member functions defined in these three classes for a
Sa 1 es Pe rs on object. (The Emp 1 oyee class is considered an "indirect" base
class of Sal esPerson, while the WageEmpl oyee class is a "direct" base class
of Sa 1 es Person.)

Notice that this declaration means that WageEmpl oyee is both a derived class
and a base class. It derives from the Emp 1 oyee class and serves as the base for
the Sal e s Per son class. You can define as many levels of inheritance as you
want.

Managers are a type of employee that receives a fixed salary. Accordingly, you
can derive the Manager class from Employee, as follows:

class Manager: public Employee
{

public:
Manager(const char *nm);
void setSalary(float salary);

private:
float weeklySalary;

} ;

120 C++ Tutorial

The inheritance relationships among all of these classes are shown in Figure 7.2.
This figure illustrates a "class hierarchy," or a group of user-defined types organ
ized according to their relationship to one another. The class at the top represents
the most general type, and the classes at the bottom represent the more special
ized types. As you'llleam in Part 3, "Object-Oriented Design," designing an
appropriate class hierarchy is one of the most important steps in writing an
object-oriented program.

Employee I

~
SalesPerson

Figure 7.2 Employee Class Hierarchy

Notice that Emp 1 oyee acts as a base class for more than one class
(WageEmpl oyee and Manager). Any number of derived classes can inherit
from a given base class.

Also notice that the Manager class shares members only with Employee. It
doesn't have any of the members defined by Wage Emp 1 oyee or Sa 1 es Person.

Redefining Members of the Base Class
Now consider how to compute the weekly pay of the various types of employees.
You can define a member function for WageEmpl oyee called computePay. For
example:

float WageEmployee: :computePay() const
{

return wage * hours;
}

You can also give the Sal e s Per son class a c omp ute Pay member function, just
as with its base class. As mentioned above, this function cannot access any pri
vate members of WageEmpl oyee, so the following function generates an error:

Chapter 7 Inheritance and Polymorphism 121

float SalesPerson::computePay() const
{

return hours * wage +
commission * salesMade;

II Error: hours and
II wages are private

You must call a public member function of the base class. The following imple
mentation calls such a function, but it does not work either:

float SalesPerson::computePay() const
{

return computePay() + II Bad recursive call
commission * salesMade;

}

The compiler assumes that computePay refers to Sal esPerson's version of
the function. This results in infinite recursion. You must use the scope resolution
operator (::) to specify the base class's version of the function. For example:

float SalesPerson::computePay() const
{

II Call base class's version of compute Pay
return WageEmployee::computePay() +

commission * salesMade;

This technique is commonly used when redefining a member function in a
derived class. The derived class's version calls the base class's version and then
performs any additional operations needed.

When you call a redefined member function for an object of a derived class, the
derived class's version of the function is used. For example, when using a
Sal esPerson object, any call to compute Pay invokes Sal esPerson's version
of the function. For example:

SalesPerson aSeller("John Smith");

aSeller.setHours(40.0);
aSeller.setWage(6.0);
aSeller.setCommission(0.05);
aSeller.setSales(2000.0);
II Call SalesPerson::computePay
cout« "Seller salary: "

« aSeller.computePay() « '\n';

122 C++ Tutorial

Within this class, the computePay function defaults to the definition in the
Sal e s Per son class. Again, to call the base class's version of the function, you
must use the scope resolution operator. For example:

cout « "Seller base salary: "
« aSeller.WageEmployee::computePay() « '\n';

You can also give the Manager class a compute Pay member function:

float Manager::computePay() const
{

return weeklySalary;

This function involves no redefining of the similarly named functions in
WageEmp 1 oyee or Sa 1 es Person, because neither of those classes are derived
or base classes of Manager.

Derived Class Constructors
An instance of a derived class contains all the members of the base class, and all
of those members must be initialized during construction. Consequently, the base
class's constructor has to be called by the derived class's constructor. When you
write the constructor for a derived class, you must specify a "base initializer,"
using syntax similar to that of the member initializer list for constructing member
objects. Place a colon after the argument list of the derived class's constructor,
and follow it with the name of the base class and an argument list. For example:

II Constructor function for WageEmployee
WageEmployee::WageEmployee(const char *nm)

: Employee(nm)
{

wage = 0.0;
hours = 0.0;

II Constructor function for SalesPerson
SalesPerson: :SalesPerson(const char *nm

: WageEmployee(nm)
{

}

commission = 0.0;
salesMade = 0.0;

Chapter 7 Inheritance and Polymorphism 123

II Constructor function for Manager
Manager: :Manager(const char *nm)

: Employee(nm)

weeklySalary = 0.0;

When you declare an object of a derived class, the compiler executes the con
structor for the base class first and then executes the constructor for the derived
class. (If the derived class contains member objects, their constructors are exe
cuted after the base class's constructor, but before the derived class's
constructor.)

You can omit the base initializer if the base class has a default constructor. As
with member objects, however, you should use the base initializer syntax rather
than perform redundant initialization.

If you're defining a derived class that also has member objects, you can specify
both a member initializer list and a base initializer. However, you cannot define
member initializers for member objects defined in the base class, because that
would permit multiple initializations.

Conversions Between Base and Derived Classes
Because a salesperson is a kind of wage-earning employee, it makes sense to
be able to use a Sa 1 es Person object whenever an WageEmp 1 oyee object is
needed. To support this relationship, C++ lets you implicitly convert an instance
of a derived class into an instance of a base class. For example:

WageEmployee aWorker;
Sal esPerson aSell ere "John Smith");

aWorker = aSeller; II Convert SalesPerson to WageEmployee
II derived => base

All the members of the Sal e s Per son object receive the values of the corre
sponding members in the WageEmpl oyee object. However, the reverse assign
ment is not legal:

aSeller = aWorker; II Error; cannot convert

Because Sa 1 es Pe rson has members that WageEmp 1 oyee doesn't, their values
would be undefined after such an assignment. This restriction follows the concep
tual relationship between the types of employee: A worker is not necessarily a
salesperson.

124 C++ Tutorial

You can also implicitly convert a pointer to a derived class object into a pointer to
a base class object. For example:

Employee *empPtr;
WageEmployee aWorker("Bi 11 Shapi ro");
SalesPerson aSeller("John Smith");
Manager aBoss("Mary Brown");

empPtr = &aWorker;
empPtr &aSeller;
empPtr = &aBoss;

II Convert WageEmployee * to Employee *
II Convert SalesPerson * to Employee *
II Convert Manager * to Employee *

You can use a pointer to an Employee to point to a WageEmpl oyee object, a
Sa 1 es Pe r s on object, or a Ma n a ge r object.

When you refer to an object through a pointer, the type of the pointer determines
which member functions you can call. If you refer to a derived class object with a
base class pointer, you can call only the functions defined by the base class. For
example:

SalesPerson aSeller("John Smith");
SalesPerson *salePtr;
WageEmployee *wagePtr;

salePtr
wagePtr

&aSeller;
&aSeller;

wagePtr->setHours(40.0);
salePtr->setWage(6.0);
wagePtr->setSales(1000.0);

II Call WageEmployee::setHours
II Call WageEmployee::setWage
II Error;
II no WageEmployee: :setSales

salePtr->setSales(1000.0); II Call SalesPerson::setSales
salePtr->setCommission(0.05); II Call SalesPerson: :setCommission

Both wagePt rand sal ePt r point to a single Sa 1 es Person object. You cannot
call setSal es through wagePtr, because WageEmpl oyee doesn't define that
member function. You have to use sal e P t r to call the member functions that
Sa 1 es Pe r s on defines.

If you call a member function that is defined by both the base class and the
derived class, the function that is called depends on the type of the pointer. For
example:

float base, total;

base = wagePtr->computePay();
total = salePtr->computePay();

II Call WageEmployee: :computePay
II Call SalesPerson::computePay

Chapter 7 Inheritance and Polymorphism 125

When you use wagePtr, you call the version defined by WageEmpl oyee. When
you use sal e P t r, you call the version defined by Sal e s Per son.

To perform the reverse conversion (that is, from a pointer to a base class to a
pointer to a derived class), you must use an explicit cast.

WageEmployee *wagePtr = &aSeller;
SalesPerson *salePtr;

salePtr = (SalesPerson *)wagePtr; II Explicit cast required
II base => derived

This conversion is dangerous, because you can't be sure what type of object the
base class pointer points to. Suppose empPt r points to something other than a
Sa 1 es Pe r s on object:

Employee *empPtr = &aWorker;
SalesPerson *salePtr;

saleptr = (SalesPerson *)empPtr; II Legal, but incorrect
salePtr->setCommission(0.05); II Error: aWorker has no

II setCommission member

This can cause your program to crash. Accordingly, you should be extremely
careful when converting a base class pointer to a derived class pointer.

Collections Using Base Class Pointers
The conversion from a derived class pointer to a base class pointer is very useful.
For example, if you have a function that expects a pointer to an Emp 1 oyee as a
parameter, you can pass this function a pointer to any type of employee.

One application of this is to maintain a collection of employees. You could write
an Empl oyeeL i st class that maintains a linked list, each node holding a pointer
to an Emp 1 oyee object. For example:

class EmployeeList
{

public:
EmployeeList();
add(Employee *newEmp);
I I ...

private:
/I ...

} ;

126 C++ Tutorial

U sing the add function, you can insert any type of employee into an
Empl oyeeL i st object:

EmployeeList myDept;
WageEmployee *wagePtr;
SalesPerson *salePtr;
Manager *mgrPtr;

II Allocate new objects
wagePtr = new WageEmployee("Bill Shapiro");
salePtr = new SalesPerson("John Smith");
mgrPtr = new Manager("Mary Brown");
II Add them to the list
myDept.add(wagePtr);
myDept.add(salePtr);
myDept.add(mgrPtr);

Once you have a list of employees, you can manipulate its contents using the
Em p loy e e class's interface, even though the list contains all different types of
employees. For example, you can define an iterator class called Emp I te r (like
the one described in Chapter 6, "More Features of Classes"), which can return
each element of an Emp 1 oy eeL i st. Then you can print a list of all the employ
ees' names as follows:

void printNames(EmployeeList &dept)
{

int count = 0;
Employee *person;
Emplter anlter(dept); II Iterator object
person = anlter.getNext();
count++;
cout « count « ' , « person->getName() « '\n';

while(person = anlter.getNext())
{

count++;
cout « count « ' ,

« person->getName() « '\n';
}

Chapter 7 Inheritance and Polymorphism 127

This function iterates through all the elements in the Emp 1 oyee Lis t object
passed as a parameter. For each employee in the list, no matter what type it is, the
iterator returns an Emp 1 oyee pointer. Using this pointer, the function prints out
the employee's name.

The problem with this technique is that you cannot treat an object as anything
more than a generic Emp 1 oyee. For instance, how could you compute the weekly
salary of each employee in the list? If you were to give the Emp 1 oyee class a
computePay function, calling that function wouldn't invoke the computePay
functions defined in the derived classes. As mentioned earlier, the function that is
called is determined by the type of the pointer. Accordingly, calling computePay
using only Emp 1 oyee pointers would perform the same computation for every
type of employee, which is clearly unsatisfactory.

What you need is a way to call each class's individual version of compute Pay
while still using generic Emp 1 oyee pointers. C++ provides a way to do this using
virtual functions.

Virtual Functions
A "virtual function" is a member function that you expect to be redefined in
derived classes. When you call a virtual function through a pointer to a base
class, the derived class's version of the function is executed. This is precisely
the opposite behavior of ordinary member functions.

A virtual function is declared by placing the keyword virtual before the declara
tion of the member function in the base class. Global functions and static mem
bers cannot be virtual functions. The virtual keyword is not necessary in the
declarations in the derived classes; all subsequent versions of a virtual function

128 C++ Tutorial

are implicitly declared virtual. For example, here is a revised version of the
employee class hierarchy that has a virtual compute Pay function:

class Employee
{

public:
Employee(const char *nm);
char *getName() const;
virtual float computePay() const;
virtual ~Employee() {}

private:
char name[30];

} ;

class WageEmployee
{

public Employee

public:
WageEmployee(const char *nm);
void setWage(float wg);
void setHours(float hrs);
float computePay() const; II Implicitly virtual

private:

} ;

float wage;
float hours;

class SalesPerson
{

public WageEmployee

public:
SalesPerson(const char *nm);
void setCommission(float comm);
void setSales(float sales);
float computePay() const; II Implicitly virtual

private:

} ;

float commission;
fl oat sa 1 esMade;

class Manager
{

public Employee

public:
Manager(const char *nm);
void setSalary(float salary);
float computePay() const; II Implicitly virtual

private:
float weeklySalary;

} ;

Chapter 7 Inheritance and Polymorphism 129

The definitions of each class's version of computePay do not have to be modi
fied. However, because computePay has been added to the base class, a defini
tion for that version of the function is needed:

float Employee::computePay() const
{

cout « "No salary computation defined\n";
return 0.0;

This function is needed primarily as a placeholder. It would be called if a plain
Emp 1 oyee object were used, or if one of the derived classes did not provide its
own definition of computePay.

Now consider what happens when computePay is called through an Employee
pointer:

Employee *empPtr;
float salary;

empPtr = &aWorker;
salary = empPtr->computePay(); II Call WageEmployee::computePay
empPtr = &aSeller;
salary = empPtr->computePay(); II Call SalesPerson::computePay
empPtr = &aBoss;
salary = empPtr->computePay(); II Call Manager::computePay

If computePay hadn't been declared virtual, each statement would call
Employee: : compute Pay, which would return 0.0. However, because
com put ePa y is a virtual function, the function executed is different for each
call, even though the calls are exactly the same. The function called is the one
appropriate for the actual object that emp Pt r points to. (You can also use the
scope resolution operator to explicitly specify a different version of the function
if you want.)

130 C++ Tutorial

To calculate the weekly payroll for a department, you can write a function like
the following:

float computePayroll(EmployeeList &dept)
{

float payroll = 0;
Employee *person;
EmpIter anlter(dept);

person = anIter.getFirst();
payroll += person->computePay();
while(person = anIter.getNext()
{

II Call appropriate function
II for each type of employee
payroll += person->computePay();

return payroll;

The statement person->computePay executes the appropriate function, no
matter what type of employee person points to.

Polymorphism
The ability to call member functions for an object without specifying the object's
exact type is known as "polymorphism." The word "polymorphism" means "the
ability to assume many forms," referring to the ability to have a single statement
invoke many different functions. In the above example, the pointer person can
point to any type of employee and the name computePay can refer to any of the
salary computation functions.

Compare this with the implementation in C provided earlier in this chapter. In C,
if all you have is a pointer to an employee, you have to call the compute_pay
function shown earlier, which must execute a switch statement to find the exact
type of employee. In C++, the statement person->computePay() calls the
appropriate function automatically, without requiring you to examine the type of
object that per son points to. (There is only a tiny amount of overhead, as
described in the section "How Virtual Functions are Implemented" on page 132.)
No switch statement is needed.

Computing salaries is just one example of a task that differs depending on the
type of employee. A more realistic Emp 1 oyee class would have several virtual
functions, one for each type-dependent operation. An employee-database

Chapter 7 Inheritance and Polymorphism 131

program would have many functions like computePayroll, all of which
manipulate employees using Emp 1 oyee pointers and virtual functions.

In such a program, all the information about any particular type of employee is
localized in a single class. You don't have to look at every employee-database
function to see how salespersons are handled. All the specialized salesperson
processing is contained in the Sal e s Per son class. It's also easy to add a new
type of employee, due to a property known as "dynamic binding."

Dynamic Binding
At compile time, the compiler cannot identify the function that is called by the
statement per son - > com put ePa y (), because it could be any of several different
functions. The compiler must evaluate the statement at run time, when it can tell
what type of object per son points to. This is known as "late binding" or
"dynamic binding." This behavior is very different from function calls in C, or
nonvirtual function calls in C++. In both these cases, the function call statement
is translated at compile time into a call to a fixed function address. This is known
as "early binding" or "static binding."

Dynamic binding makes it possible for you to modify the behavior of code that
has already been compiled. You can make an existing module handle new types
without having to modify the source and recompile it.

For example, suppose that the function computePayroll and all the other
employee-database functions have been compiled into a module called
EMPUTIL.OBJ. Now suppose that you want to define a new type of employee
called a Con s u 1 tan t and use it with all the existing employee-database
functions.

You don't have to modify the source code for com put ePa y r 0 1 1 or any other
functions in EMPUTIL.OBJ. You simply derive Consul tant from the
Emp 1 oyee class, define its member functions in a new source file
CONSULT.CPP, and compile it into CONSULT.OBJ. Then you modify your
program's user interface to allow users to enter information on consultants.
After you've recompiled that portion of the program, you can link it with
CONSULT.OBJ and EMPUTIL.OBJ to produce a new executable file.

You can then add Consul tant objects to the Empl oyeeL i st object that the
program already maintains. When you compute the payroll, the
com put ePa y r 0 1 1 function works just as it did before. If there are any
Consul tant objects in the list, the statement person-)computePay() auto
matically calls Consul tant: : computePay, even though that function didn't
exist when the statement was first compiled.

132 C++ Tutorial

Dynamic binding makes it possible for you to provide a library of classes that
other programmers can extend even if they don't have your source code. All you
need to distribute are the header files (the .R files) and the compiled object code
(.OBJ or .LIB files) for the hierarchy of classes you've written and for the func
tions that use those classes. Other programmers can derive new classes from
yours and redefine the virtual functions you declared. Then the functions that use
your classes can handle the classes they've defined.

How Virtual Functions Are Implemented
An obvious question about dynamic binding is "how much overhead is
involved?" Is the added convenience gained at the expense of execution speed?
Fortunately, virtual functions are very efficient, so calling one takes only slightly
longer than calling a normal function.

In some situations, a virtual function call can be implemented as a normal func
tion call-that is, using static binding. For example:

SalesPerson aSeller("John Smith");
SalesPerson *salePtr;
float salary;

salePtr = &aSeller;
salary aSeller.computePay();
salary = salePtr->computePay();

II Static binding possible
II Static binding possible

In this example, Sa 1 es Person: : computePay can be called directly because
the type of as ell e r is known. Similarly, the type of the object that sal e P t r
points to is known, and again the function can be called directly. In situations
where the compiler cannot use static binding, such as the statement
pe rs on - >computePay () in the earlier example, the compiler uses dynamic
binding.

Dynamic binding is implemented in c++ through the use of a virtual function
table, or a "v-table." This is an array of function pointers that the compiler con
structs for every class that uses virtual functions. For example, WageEmp 1 oyee,
Sa 1 es Pers on, and Ma na ge r each have their own v-table.

The v-table contains one function pointer for each virtual function in the class. All
of the employee classes have only one virtual function, so all of their v-tables con
tain just one pointer. Each pointer points to the version of the function that is appro
priate to that class. Thus, the v-table for Sal e s Per son has a pointer to
Sa 1 es Pe r son: : compu te P ay, and the v-table for Ma na ge r has a pointer to
Manager: : computePay. This is illustrated in Figure 7.3.

Chapter 7 Inheritance and Polymorphism 133

Employee
Pointer

~,-------------~~~ SalesPerson

Employee
Pointer

name

wage

hours

commission

salesMade

~--------------~~~ SalesPerson

Employee
Pointer

name

wage

hours

commission

salesMade

~--------------~~~ Manager

V·TABLE PTR

SalesPerson's V·TABLE

SalesPerson:: computePay

V·TABLE PTR

.---------, V·TABLE PTR

Employee weeklySa ~::: I ~- -.. Manager' s V·TABLE
Pointer . r L
~--------------~~~ Manager Manager:: compute Pay

namel h r
weeklySal ary I-------I~ nTn

1-. ___ ----I V.TABLE PTR

Figure 7.3 How Virtual Functions Are Implemented

Note that it is not required for a derived class to redefine a virtual function
declared in its base class. For example, suppose Sal e s Per son did not define a
compute Pay function. Then Sa 1 es Person's v-table would contain a pointer to
Wa ge Emp 1 oyee : : comp ute Pay. If Wage Emp 1 oyee in tum did not define
computePay, both classes' v-tables would have pointers to
Employee::computePay.

134 C++ Tutorial

Each instance of a class contains a hidden pointer to the class's v-table. When a
statement like per son -> com put ePa y () is executed, the compiler dereferences
the v-table pointer in the object pointed to by person. The compiler then calls
the computePay function pointed to by the pointer in the v-table. In this way, the
compiler calls a different function for each type of object.

The only difference between a normal function call and a virtual function call is
the extra pointer dereferencing. A virtual function call usually executes as fast as
or faster than the switch statement that would otherwise be used.

Pure Virtual Functions
In the example of the employee-database program, the Emp 1 oyee class defines a
do-nothing computePay function. This solution is somewhat inelegant, because
the function is intended never to be called.

A better solution is to declare computePay as a "pure virtual function." This is
done by specifying an equal sign and a zero after the member function's proto
type, as follows:

class Employee
{

public:
I I ...
virtual float computePay() const 0; II Pure virtual

} ;

A pure virtual function requires no definition; you don't have to write the body of
Employee: : computePay. It is intended to be redefined in all derived classes. In
the base class, the function serves no purpose except to provide a polymorphic
interface for the derived classes.

You cannot declare any instances of a class in which a function is declared as
pure virtual. For example, because compute Pay is now a pure virtual function,
you cannot declare any objects of type Emp 1 oyee.

This restriction is necessary to prevent anyone from calling a pure virtual func
tion for an object. If you could declare a generic Emp 1 oyee object, you could call
computePay for it, which would be meaningless. You can only declare objects
of the derived classes that provide a definition for com put ePa y .

A class that defines pure virtual functions is known as an "abstract class,"
because you cannot declare any instances of it. (Classes that you can declare
instances of are sometimes called "concrete classes.") It is legal, however, to
declare pointers to an abstract class. For example, you can declare Emp 1 oyee
pointers and use them for manipulating objects of derived classes. This is the way
com put ePa y r 0 1 1 and the other employee-database functions work.

Chapter 7 Inheritance and Polymorphism 135

If a derived class does not provide a definition for a pure virtual function, the
function is inherited as pure virtual, and the derived class becomes an abstract
class too. This does not happen with ordinary virtual functions, because when a
derived class omits a definition of an ordinary virtual function, it uses the base
class's version. With pure virtual functions, the derived class cannot use the base
class's version because the base class doesn't have a version. Thus, if
WageEmpl oyee did not define a version of computePay, it would be an abstract
class too.

It's common to write a class hierarchy consisting of one or more abstract classes
at the top that act as base classes for the concrete classes at the bottom. You can
not derive an abstract class from a concrete class.

Sometimes it's useful to write an abstract class that has few or no data members
or code, consisting primarily of pure virtual functions. Most of the data and the
code for the functions is defined when a new class is derived from such a base
class. This is desirable when the base class's interface embodies a set of proper
ties or operations that you'd like many other classes to have, but the implementa
tions of those properties or operations differ for each class.

For example, consider a So rted Lis t class that can store objects of any class.

class SortedList
{

public:
SortedL i st();
void addltem(const SortableObject &newltem);
/ / ...

private:
/ / ...

} ;

A So rted Lis t object stores pointers to objects of class So rta b 1 eObj ect. This
is an abstract class that has pure virtual functions named i sEq u a 1 and
i sLessThan:

class SortableObject
{

public:

} ;

virtual int isEqual(const SortableObject &other) const = 0;
virtual int isLessThan(const SortableObject &other) const = 0;

136 C++ Tutorial

If you want to store names in a So r ted Lis t, you can derive a class called
So r tab 1 eN arne from So r tab 1 eO b j e ct. You can then implement i sEq u a 1 and
is LessThan to perform string comparisons. For example:

class SortableName : public SortableObject
{

public:
int isEqual(const SortableObject &other) const;
int isLessThan(const SortableObject &other) const;

private:
char name[30];

} ;

int SortableName::isEqual(const SortableObject &other) const

return (strncmp(name, other.name, 30) == 0);
} ;

II Similar implementation for isLessThan

Similarly, if you want to store ZIP Codes, you can derive a class So rta b 1 eZ I P
from So r tab 1 eO b j e c t and implement the member functions to compare num
bers. Sortab 1 eObj ect thus provides a template for you to use when writing
your own classes. By itself, Sortab 1 eObj ect isn't a useful class, because it
contains no code or data. You supply those when you derive a class from it.

Destructors in Base and Derived Classes
If destructors are defined for a base and a derived class, they are executed in the
reverse order that the constructors are executed. When an object of a derived
class goes out of scope, the destructor for the derived class is called and then the
destructor for the base class is called.

When destroying dynamically created objects with the delete operator, a problem
can arise. If delete is applied to a base class pointer, the compiler calls the base
class destructor, even if the pointer points to an instance of a derived class.

The solution is to declare the base class's destructor as virtual. This causes the
destructors of all derived classes to be virtual, even though they don't share the
same name as the base class's destructor. Then if delete is applied to a base class
pointer, the appropriate destructor is called, no matter what type of object the
pointer is pointing to.

Notice that Emp 1 oyee has a virtual destructor, even though the destructor does
nothing. Whenever you write a class that has virtual functions, you always should

Chapter 7 Inheritance and Polymorphism 137

give it a virtual destructor, even if the class doesn't need one. The reason is that a
derived class might require a destructor. For example, suppose you derive a class
from Employee called Consul tant, and that derived class defines a destructor.
By defining a virtual destructor in the base class, you ensures that the derived
class's destructor is called when needed.

Note that while destructor functions can be virtual, constructor functions cannot.

Protected Members
Besides the public and private keywords, C++ provides a third keyword control
ling the visibility of a class's members: the protected keyword. Protected mem
bers are just like private members except that they are accessible to the member
functions of derived classes.

As noted earlier, derived classes have no special privileges when it comes to
accessing a class's private members. If you want to permit access by only the
derived classes, and not by anyone else, you can declare some of your data mem
bers as protected. For example:

class Base
{

public:
protected:

int secret;
private:

int topSecret;
} ;

class Derived public Base
{

public:
voi d func();

} ;

void Derived: :func()
{

}

secret = 1;
topSecret = 1;

II Can access protected member
II Error: Can't access private member

138 C++ Tutorial

void main()
{

Base aBase;
Derived aDerived;

aBase.secret = 1;
aBase.topSecret
aDerived.secret =

II
1 ; II
1 ; II

II

Error:
Error:
Error:

Can't access protected member
Can't access private member
Can't access protected member
in derived class either

In this example, the private member topSec ret is inaccessible to the derived
class's member functions, but the protected member sec ret is accessible.
However, the protected member is never accessible to outside functions.

Protected members in the base class are protected members in the derived class
too. Functions using the derived class cannot access its protected members.

You should use the protected keyword with care. If the protected portion of a
base class is rewritten, all the derived classes that used those protected members
must be rewritten as well.

Public and Private Base Classes
The derived classes in this chapter all specify the keyword public in front of the
base class's name. This specifies public derivation, which means that the public
members of the base class are public members of the derived class, and protected
members of the base class are protected members of the derived class.

You can also specify the keyword private in front of the base class's name. This
specifies private derivation, which means that both the public and protected
members of the base class are private members of the derived class. Those mem
bers are accessible to the derived class's member functions, but not to anyone
using the derived class.

Private derivation is rarely used. Someone using the class cannot implicitly con
vert a pointer to a derived class object into a pointer to a base class object, or use
polymorphism. (However, within the member functions of the derived class, you
can perform such conversions and use polymorphism). Private derivation is very
similar to defining a member object of another class; it's a method of using
another class, but it's not appropriate for indicating that one class is a subtype of
another.

Chapter 7 Inheritance and Polymorphism 139

Multiple Inheritance
The previous examples in this chapter demonstrate "single inheritance," where
a class is derived from a single base class. C++ also supports "multiple inheri
tance," where a class can be derived from more than one base class.

For example, suppose you wanted to declare a class Sal e sMa nag e r to describe
employees who have characteristics of both the Sal e s Per son and Man age r
classes:

class SalesManager public SalesPerson, public Manager
{

II
} ;

The Sal e sMa nag e r class inherits all the data members and member functions of
Sal e s Per son and Man age r.

You cannot specify a class as a direct base class more than once (for example,
you cannot enter Manager twice in the list of base classes). However, a class can
be an indirect base class more than once. For example, Sal e sMa nag e r has
Employee as an indirect base class twice: once through Sal esPerson and once
through Man age r. As a result, each Sal e sMa nag e r object contains two copies
of Employee's data members.

If a class acts as an indirect base class more than once, it is more complicated to
call member functions defined by that base class. For example:

SalesManager aSellerBoss;
char *str;

str = aSellerBoss.getName(); II Error: ambiguous

The problem is that the compiler can't tell which copy of Emp 1 oyee should be
used; because each copy's data members might contain different values, the value
returned by getName depends on which copy is used. You must specify which
copy you want, using the scope resolution operator:

str = aSellerBoss.Manager::getName();

This statement uses the name stored in the Man age r 's copy of Em p loy e e 's data
members.

The same ambiguity problem can arise even if an indirect base class is not
repeated. If a base class (either direct or indirect) defines a member with the

140 C++ Tutorial

same name as a member defined in another base class, you must again use the
scope resolution operator to specify whose member you want.

If a class acts as an indirect base more than once, there are also possible ambi
guities when performing conversions between base and derived classes. For
example, suppose you want to convert a pointer to a Sal e sMa nag e r into a
pointer to an Emp 1 oyee:

Employee *empPtr;
SalesManager *salemgrPtr;

empPtr = salemgrPtr; /1 Error: ambiguous

Once again, the compiler can't tell which copy of Emp 1 oyee it should use for
emp Pt r. To disambiguate, you must use a cast:

empPtr = (Manager *)salemgrPtr;

This statement converts sal em 9 r P t r into a pointer to a Man age r and then con
verts that into a pointer to an Em p loy e e. As a result, em p P t r points to
Manager's copy of Employee's data members.

Because sales managers don't have two names and two social security numbers,
the Sal esManager class shouldn't contain two copies of Employee. To avoid
this duplication, you can make Emp 1 oyee a "virtual base class."

To do this, the classes that specify Emp 1 oyee as a direct base class must use the
virtual keyword:

class WageEmployee public virtual Employee
{

I I ...
} ;

class Manager public virtual Employee

I I ...
} ;

Note that only WageEmpl oyee and Manager need to use the virtual keyword.
Sal esPerson and Sal esManager do not, because Employee is an indirect
base class for them.

By making Employee a virtual base class, each instance of Sal esManager now
has only one copy of Emp 1 oyee 's data members; there is no duplication. Any
references to members defined by Emp 1 oyee are unambiguous, and so are con
versions from a Sa 1 esManager pointer to a Emp 1 oyee pointer.

Chapter 7 Inheritance and Polymorphism 141

For a class like Sal e sMa nag e r, virtual base classes save space and allow a more
accurate representation. However, virtual base classes impose a greater process
ing overhead. Consequently, you should use virtual base classes sparingly.

For information on design issues surrounding mUltiple inheritance, see Chapter 9,
"Fundamentals of Object-Oriented Design." For more information on single
inheritance, virtual functions, multiple inheritance, and virtual base classes, see
the C++ Language Reference.

CHAPTER 8

Operator Overloading and
Conversion Functions

143

Classes are useful for representing numeric data types that are not built into the
language. This chapter covers two features of C++ that can make these classes
behave more like the built-in types: operator overloading, which makes it possi
ble for you to use operators with your classes, and conversion functions, which
make it possible for you to convert between classes.

This chapter covers the following topics:

• Overloading operators as member functions

• Overloading operators as friend functions

• Constructors that perform conversions

• Conversion operators

Operator Overloading
Chapter 5, "Classes and Dynamic Memory Allocation," described how you can
redefine the meaning of the assignment operator (=) when it is used to assign
objects of a class you write. That was an example of operator overloading, and
the assignment operator is the operator most commonly overloaded when writing
classes.

You can overload other operators to make your code more readable. For
example, suppose you needed a function that compares 0 ate objects, to see if
one comes before another. You can write a function called 1 e ssT han and use
it as follows:

if(lessThan(myDate. yourDate))
II ...

144 C++ Tutorial

As an alternative, you can overload the less-than operator «) to compare two
Oat e objects. This would allow you to write an expression like the following:

if(myDate < yourDate)
II ...

This format is more intuitive and convenient to use than the previous one.

You have already seen overloaded operators in many examples in the previous
chapters. All of the example programs printed their output with the « operator,
which is overloaded in the iostream class library.

Operator overloading is most useful when writing classes that represent numeric
types. For example, scientific programs often use complex numbers-that is,
numbers with a real and an imaginary component. You could write a class
Camp 1 ex to represent these numbers. To perform tasks such as adding and mul
tiplying complex numbers, you could write functions with names like add and
mu 1 t, but this often results in lengthy statements that are hard to understand. For
example:

a = mult(mult(add(b, C), add(d, e)), f);

Typing an equation in this format is tedious and error-prone, and reading an
unfamiliar equation in this format is even more difficult.

A better alternative is to overload the + and * operators to work on Camp 1 ex
objects. This results in statements like this:

a = (b + c) * (d + e) * f;

This format is easier for both the programmer writing the equation and the pro
grammer who reads it later.

Chapter 8 Operator Overloading and Conversion Functions 145

Rules of Operator Overloading
You can overload any of the following operators:

Table 8.1 Overloadable Operators

+ * % A &

= < > <= >=
++ « » != && II
+= -= *= 1= %= A= &= 1=
«= »= [] () -> ->* new delete

The last two operators, new and delete, are the free store operators, which were
described in Chapter 5, "Classes and Dynamic Memory Allocation." The last
operator before those (->*) is the pointer-to-member operator, which is described
in Chapter 4 of the C++ Language Reference.

Certain operators can be used as either binary or unary operators. For example,
the - operator means subtraction when used as a binary operator and negation
when used as a unary operator. You can overload such operators to have different
meanings in their different usages.

You can use overloaded operators in ways that, if they were not overloaded,
would be meaningless. Consider the following expression:

cout « "Hello";

If the « operator were not overloaded, this expression would left-shift COllt a
number of bits equal to the value of the pointer to the string. The compiler would
generate a run-time error when trying to execute this statement. But the statement
is syntactically legal, so you can write an overloaded operator function that exe
cutes when this statement appears. (For information on overloading the « and
» operators to make your classes work with streams, see the iostream Class
Library Reference.)

146 C++ Tutorial

There are a number of restrictions on operator overloading:

• You cannot extend the language by inventing new operators. For example, you
cannot create your own "exponentiation" operator using the characters **.
Those characters do not form a legal operator in C or C++, and you cannot make
them one. You must limit yourself to existing operators.

• You cannot change an operator's "arity," that is, the number of operands that it
takes. For example, the logical-NOT operator (-) is a unary operator, meaning
that it takes one operand. You cannot use it as a binary operator for built-in
types, so you cannot overload it to act as a binary operator for your class. For
example:

a = ~b; II Legal
a = b ~ c; II Error

• You cannot change an operator's precedence. For example, the multiplication
operator has a higher precedence than the addition operator, so the multiplica
tion is performed first when the following expression is evaluated:

a = b + C * d; II Same as a = b + (c * d);

You cannot overload the * and + operators in such a way that the addition is
performed first. You must use parentheses to alter the order of evaluation. For
example:

a = (b + c) * d; II Parentheses control evaluation

One consequence of this is that the operator you choose may not have the prece
dence appropriate for the meaning you give it. For example, the" operator
might seem an appropriate choice to perform exponentiation, but its precedence
is lower than that of addition, which could confuse people using it.

• You cannot change an operator's associativity. When an operand is between two
operators that have the same precedence, it is grouped with one or the other
depending on its associativity. For example, the addition and subtraction opera
tors are both left-associative, so the following expressions is evaluated from left
to right:

a = b + C - d; II Same as a = (b + c) - d;

You cannot overload the + and - operators in such a way that the subtraction is
performed first. You must use parentheses to alter the order of evaluation. For
example:

a = b + (c - d); II Parentheses control evaluation

Chapter 8 Operator Overloading and Conversion Functions 147

• You cannot change the wayan operator works with built-in data types. For
example, you cannot change the meaning of the + operator for integers.

• You cannot overload the following operators:

Operator Definition

.*

?:

Class member operator

Pointer-to-member operator

Scope resolution operator

Conditional expression operator

c++ lets you overload any of the other operators. However, just because you can
overload an operator doesn't necessarily mean it's a good idea.

When Not to Overload Operators
You should overload operators only when the meaning of the operator is clear
and unambiguous. The arithmetic operators, for example + and *, are meaningful
when applied to numeric classes, such as complex numbers, but not to everything.
For example, consider overloading the + operator for Date objects:

laterDate = myDate + yourDate; II Meaning?

It's anyone's guess what this statement means.

Many programmers overload the + operator for a S t r i n 9 class to perform con
catenation of two S t r i n 9 objects. However, overloading relational operators for
a S t r i n 9 class might not be appropriate:

String myString("John Smith"),
yourString("JOHN SMITH");

if(myString == yourString)
I I ...

II True or false?

A person reading this statement cannot tell whether the comparison being per
formed is case sensitive or not. You could define a separate function to control
case sensitivity, but the combination might not be as clear as using named mem
ber functions.

Sometimes, an overloaded operator clearly suggests a particular meaning to one
programmer but suggests a different meaning to another programmer. For
example, consider having a class Set, where each object represents a collection
of objects. It would be useful to be able to calculate the "union" of two sets, that

148 C++ Tutorial

is, the set that contains the contents of both without duplications. Someone might
pick the && operator for this purpose. For example:

ourSet = mySet && yourSet; II Clearly union

The programmer who wrote this statement might think it clearly indicates that
ou rSet contains everything in mySet combined with everything in you rSet.
But another programmer might use the operator in the following way:

II Intersection or union?
targetSet = wealthySet && unmarriedSet;

Does ta rgetSet contain everyone who is both wealthy and unmarried? Or does
it contains everyone who is either wealthy or unmarried?

Too many overloaded operators, or even a few badly chosen operators, can make
your programs exceedingly difficult to read. Don't use overloaded operators
simply to make it easier for you to type in your programs. Other programmers
may have to maintain your programs later on, and it's much more important that
they be able to understand your code. Accordingly, choose your overloaded
operators with great care, and use them sparingly.

Because numeric classes are usually the best candidates for operator overloading,
let's consider how to overload arithmetic operators for such a class.

Overloading Operators for a Numeric Class
As an example of a numeric class, consider a class called F rae t ion, which
stores a number as the ratio of two long integers. This is useful because many
numbers cannot be expressed exactly in floating-point notation. For example, the
quantity 1/3 is represented as 0.33333. The expression 1/3 + 1/3 + 1/3 should add
up to 1, but represented in floating-point notation it adds up to 0.99999. Over the
course of a lengthy calculation, this type of error is cumulative and can become
quite significant. A F rae t ion class removes this type of error.

To add two F rae t ion objects, you can overload the + operator as follows:

II Overloading the + operator
#include <stdlib.h>
#include <math.h>
#include <iostream.h>

Chapter 8 Operator Overloading and Conversion Functions 149

class Fraction

public:
Fraction();
Fraction(long num, long den);
void display() const;
Fraction operator+(const Fraction &second) const;

private:

} ;

static long gcf(long first, long second);
long numerator,

denominator;

II ----------- Default constructor
Fraction: :Fraction()
{

numerator = 0;
denominator = 1;

II ----------- Constructor
Fraction::Fraction(long num, long den)
{

int factor;

if(den == 0
den = 1;

numerator = num;
denominator den;
if(den < 0)
{

numerator -numerator;
denominator = -denominator;

factor = gcf(num, den);
if(factor> 1)
{

numerator 1= factor;
denominator 1= factor;

II ----------- Function to print a Fraction
void Fraction::display() const
{

cout « numerator « 'I' « denominator;

150 C++ Tutorial

II ----------- Overloaded + operator
Fraction Fraction::operator+(const Fraction &second) const

long factor,
multI,
mult2 ;

factor = gcf(denominator, second.denominator);
multI denominator / factor;
mult2 = second.denominator I factor;

return Fraction(numerator * mult2 + second.numerator * multI,
denominator * mult2);

II ----------- Greatest common factor
II computed using iterative version of Euclid's algorithm
long Fraction::gcf(long first, long second)
{

int temp;

first = labs(first);
second = labs(second);

while(second> 0)
{

temp = first % second;
first = second;
second = temp;

return first;

A Fraet; on object is declared with two integers, the numerator and the denomi
nator. The constructor checks that the denominator is nonzero and nonnegative
and simplifies the fraction if possible. The class defines a private static function
named gef to calculate the greatest common factor of two numbers.

Chapter 8 Operator Overloading and Conversion Functions 151

The following program uses the F rae t ion class and demonstrates the use of the
overloaded + operator.

void main()
{

Fraction a,
b(23, 11),
c(2, 3);

a = b + c;

a.display();
cout « '\n';

The expression b + c is interpreted as b . 0 per a to r+ (c). The operator+
function is called for the b object, using c as a parameter.

An overloaded operator doesn't have to have objects for both operands. You can
add a F rae t ion and an integer as well by writing another function:

Fraction Fraction::operator+(long second) const
{

return Fraction(numerator + second * denominator,
denominator);

This permits statements like the following:

void main()
{

Fraction a,
b(2, 3);

a = b + 1234;

However, you cannot write a statement like this:

a = 1234 + b; II Error

Because operator+ is defined as a member function, the previous statement is
interpreted as follows:

a = (1234).operator+(b); II Error

This statement is clearly an error, because an integer doesn't have a member
function that can be invoked to perform the addition.

152 C++ Tutorial

To allow expressions where a variable of a built-in type is the first operand, you
must use friend functions (described in Chapter 6, "More Features of Classes").

Defining Operators as Friend Functions
To overload an operator using a nonmember function, you define a function
named operator+ that takes two arguments, as follows:

class Fraction

public:

II
} ;

II

Fraction(long num. long den);
Fraction operator+(const Fraction &second) const;
Fraction operator+(long second) const;
friend Fraction operator+(long first.

const Fraction &second);

Fraction operator+(long first. const Fraction &second)

return Fraction(second. numerator + first * second.denominator.
second.denominator);

With a function like this, an expression like this

a = 1234 + b; II Friend function called

is interpreted as follows:

a = operator+(1234. b); II Friend function called

Notice that the friend function requires two parameters while the member func
tion requires only one. The + operator requires two operands. When operator+ is
defined as a member function, the first operand is the object for which it is called,
and the second the parameter. In contrast, when operator+ is defined as a friend
function, both operands are parameters to the function. You cannot define a
friend and a member function that define the same operator.

You can also use either a member function or a friend function to implement a
unary operator. For example, suppose you want to implement the negation (-)
operator. You could do it as a member function that takes no parameters:

Chapter 8 Operator Overloading and Conversion Functions 153

inline Fraction Fraction: :operator-() const

return Fraction(-numerator, denominator);

You could also implement it as a friend function that takes one parameter:

inline Fraction operator-(Fraction &one)
{

return Fraction(-one.numerator, one.denominator);

When you overload an operator using a friend function, you must make at least
one of the function's parameters an object. That is, you cannot write a binary
operator+ function that takes two integers as parameters. This prevents you from
redefining the meaning of operators for built-in types.

Notice that you have to define three separate functions to handle the addition of
F r act ion objects and long integers. If you overload other arithmetic operators,
such as * or /, you must also provide three functions for each operator. A tech
nique for avoiding multiple versions of each operator is described in the section
"Class Conversions" on page 157.

Tips for Overloading Arithmetic Operators
Overloading the + operator does not mean that the += operator is overloaded.
You must overload that operator separately. If you do, make sure that the normal
identity relationships are maintained, that is, a += b has the same effect as
a = a + b.

If you're overloading operators for a class whose objects are relatively large, you
should pass parameters as references rather than by value. Also, be sure to pass
references to constants, which allows constant objects to be operands.

The return type of an overloaded operator depends on the specific operator.
Overloaded + or * operators for the F r act ion class must return F r act ion
objects. Operators such as += and *=, on the other hand, can return references
to F r act ion objects for efficiency. This is because + and * create temporary
objects containing new values, and they cannot return references to objects
created within the function. In contrast, += and *= modify an existing object,
*this, so they can safely return references to that object. (Recall that the
overloaded = operator, described in Chapter 5, "Classes and Dynamic Memory
Allocation," also returns a reference to an object.)

154 C++ Tutorial

Overloading Operators for an Array Class
The array mechanism that is built into C is very primitive; it is essentially an
alternate syntax for using pointers. An array doesn't store its size, and there is
no way to keep someone from accidentally indexing past the end of the array. In
C++, you can define a much safer and more powerful array type using a class.
To make such a class look more like an array, you can overload the subscript
operator ([D.

The following example defines the In tA r ray class, where each object contains
an array of integers. This class overloads the [] operator to perform range
checking.

II Overloaded [] operator
#include <iostream.h>
#include <string.h>

class IntArray
{

public:
IntArray(int len);
int getLength() canst;
int &operator[](int index);
~IntArray();

private:

} ;

int length;
int *aray;

II ------------ Constructor
IntArray::lntArray(int len
{

if(len> 0)
{

else
{

length = len;
aray = new int[len];
II initialize contents of array to zero
memset(aray. 0. sizeof(int) * len);

length = 0;
aray = 0;

Chapter 8 Operator Overloading and Conversion Functions 155

II ------------ Function to return length
inline int IntArray::getLength() const

return 1 ength;

II ------------ Overloaded subscript operator
II Returns a reference
int &IntArray::operator[](int index

static int dummy = 0;

if((index = 0) &&
(index < length)
return aray[index];

else

cout« "Error: index out of range.\n";
return dummy;

II ------------ Destructor
IntArray::-IntArray()
{

delete aray;

void maine)
{

IntArray numbers(10);
i nt i;

fore i = 0; i < 10; i++)
numbers[i] = i; II Use numbers[i] as lvalue

fore i = 0; i < 10; i++)
cout « numbers[i] « '\n';

This program first declares an In tA r ray object that can hold 10 integers. Then
it assigns a value to each element in the array. Notice that the array expression
appears on the left side of the assignment. This is legal because the operator[]
function returns a reference to an integer. Because the expression n umbe r s [i]
acts as an alias for an element in the private array, it can be the recipient of an

156 C++ Tutorial

assignment statement. In this situation, returning a reference is not simply more
efficient-it is necessary.

The operator[] function checks whether the specified index value is within
range or not. If it is, the function returns a reference to the corresponding element
in the private array. If it isn't, the function prints out an error message and returns
a reference to a static integer. This prevents out-of-range array references from
overwriting other regions of memory, though it will probably cause unexpected
program behavior. As an alternative, you could have the operator[] function exit
the program when it receives an out-of-range index value.

As it is currently implemented, the index values for an I ntAr ray object of size n
range from 0 to n-l, but that is not a requirement. You can use any value you
want for the bounds of the array or even have the bounds specified when an
object is declared.

The I ntArray class has a number of advantages over conventional arrays in
C. The size of an I ntArray doesn't have to be a constant; you can determine
the size at run time without having to use the new and delete operators. An
IntArray object also stores its size, so you can pass one to a function without
having to pass the size separately. One possible enhancement is to make
I n tAr ray s resizable, so that you could expand one if it became full.

You can also overload operator[] for classes that aren't implemented as arrays.
For example, you could write a linked list class and allow users to use array nota
tion to access the nodes in the list. You can even use values other than integers
for indexing. For example, consider the following prototype:

int &operator[](const char *key);

This operator[] function takes a string as an index. This permits expressions like
the following:

salary["John Smith"] = 25000;

You could use the string as a key for searching through a data structure, which
could be an array or a linked list or something else. Because it would be difficult
to iterate through such a class using a for loop, this class would probably benefit
from having an iterator implemented with a friend class, as mentioned in
Chapter 6, "More Features of Classes."

The operator[] function takes only one parameter. You cannot give it multiple
parameters to simulate a multidimensional array. For example:

int &SquareArray::operator[](int row, int col); II Error

Chapter 8 Operator Overloading and Conversion Functions 157

You can, however, overload the 0 operator, which can take an arbitrary number
of parameters. For example:

int &SquareArray::operator()(int row, int col);

This allows statements like the following:

SquareArray myArray;

myArray(3, 4) = 1;

Note that this is not standard array notation in C, so it may be confusing for other
programmers reading your code.

The operator[] function cannot be defined as a friend function. It must be a non
static member function.

Class Conversions
Both C and C++ have a set of rules for converting one type to another. These
rules are used in the following situations:

• When assigning a value. For example, if you assign an integer to an variable of
type long, the compiler converts the integer to a long.

• When performing an arithmetic operation. For example, if you add an integer
and a floating-point value, the compiler converts the integer to a float before it
performs the addition.

• When passing an argument to a function-for example, if you pass an integer to
a function that expects a long.

• When returning a value from a function-for example, if you return a float from
a function that has double as its return type.

In all of these situations, the compiler performs the conversion implicitly. You
can make the conversion explicit by using a cast expression.

When you define a class in C++, you can specify the conversions that the com
piler can apply when you use instances of that class. You can define conversions
between classes, or between a class and a built-in type.

158 C++ Tutorial

Conversion by Constructor
Chapter 4, "Introduction to Classes," described constructors, the functions that
create objects. A constructor that takes only one parameter is considered a con
version function; it specifies a conversion from the type of the parameter to the
type of the class. For example, suppose you specify a default value for the
denomi nator parameter of the Fracti on constructor, as follows:

class Fraction
{

public:
Fraction(long num. long den 1);
I I ...

} ;

This constructor not only lets you initialize a F r act ion object using only one
number, it also lets you assign integers to a F r act ion object directly. For
example:

Fraction a(2); II Equivalent to Fraction a(2 . 1);

a = 7; II Equivalent to a = Fraction(7);
II a = Fraction (7. 1);

In the above statement, the compiler uses the single-argument constructor to
implicitly convert an integer into a temporary F r act ion object and then uses
the object for the assignment. Similarly, if you pass an integer to a function that
expects a F r act ion object, the integer is converted before the function is called.

To be more precise, when you pass the F ra ct i on constructor an integer, the
compiler actually performs a standard conversion and a user-defined conversion
at once. For example:

a = 7; II int -> long -> Fraction

The compiler first performs a standard conversion to make the integer into a long
integer. Then it converts the long integer into a F r act ion and performs the
assignment.

One result of defining an implicit conversion is that one operator function can
handle several different types of expression. Suppose you define just one
operator+ function for the F r act ion class:

Chapter 8 Operator Overloading and Conversion Functions 159

class Fraction

public:
Fraction(long num. long den = 1);

} ;

friend Fraction operator+(const Fraction &first.
const Fraction &second);

II ...

The combination of that constructor and that operator function accepts all of
these expressions:

Fraction a.
b(2. 3
c(4. 5

a = b + c;
a b + 1234;
a 1234 + b;
a 1234 + 5678;

) .
) ;

II
II
II
II

Okay as is
a = b + Fraction(1234);
a = Fraction(1234) + b;
a = Fraction(6912);

When the compiler evaluates each expression, it looks for an operator+ function
that fits. If it can't find one, it tries to convert one or more of the operands so that
they match the operator+ function that does exist. As a result, the compiler con
verts the integers into F rae t ion objects and performs the addition on them.

Notice that in the last assignment statement the compiler does not convert the
integers into F rae t ion objects. It is able to add the integers directly. The com
piler then converts the resulting sum into a temporary F rae t ion object to per
form the assignment.

A single-argument constructor defines an implicit conversion that turns instances
of other types into objects of your class, so that your class is the target of the
conversion. You can also define an implicit conversion that turns objects of your
class into instances of other types, making your class the source of the
conversion. To do this, you define a "conversion operator."

160 C++ Tutorial

Conversion Operators
Suppose you want to be able to pass a F r act ion object to a function that expects
a float, that is, you want to convert Fra ct i on objects into floating-point values.
The following example defines a conversion operator to do just that:

II Conversion member function
#include <iostream.h>

class Fraction
{

public:
Fraction(long num, long den 1);
operator float() const;
I I ...

} ;

Fraction::operator float() const
{

return (float)numerator I (float)denominator;

The function operator float converts a Fracti on object to a floating-point
value. Notice that the operator function has no return type and takes no parame
ters. A conversion operator must be a nonstatic member function; you cannot
define it as a friend function.

You can call the conversion operator using one of several syntax variations:

Fraction a;
float f;

f a.operator float();
f float(a) ;

f (float)a;
f a;

II
II
II
II

Convert using explicit call
Convert using constructor syntax
Convert using cast syntax
Convert implicitly

The compiler can perform a standard conversion and a user-defined conversion at
once. For example:

Fraction a(123, 12);
i nt i;

a; II Fraction -> float -> integer

Chapter 8 Operator Overloading and Conversion Functions 161

The compiler first converts the Fra ct i on object into a floating-point number.
Then it performs a standard conversion, making the floating-point number into an
integer, and performs the assignment.

A conversion operator doesn't have to convert from a class to a built-in type. You
can also use a conversion operator that converts one class into another. For
example, suppose you had defined the numeric class Fi xedPoi nt to store fixed
point numbers. You could define a conversion operator as follows:

class Fraction
{

public:
operator FixedPoint() const;

} ;

This operator would permit implicit conversions of a F r act ion object into a
Fi xed Poi nt object.

Conversion operators are useful for defining an implicit conversion from your
class to a class whose source code you don't have access to. For example, if you
want a conversion from your class to a class that resides within a library, you
cannot define a single-argument constructor for that class. Instead, you must use
a conversion operator.

Ambiguities with Conversions and Operators
The inclusion of the 0 per at 0 r flo a t conversion operator creates problems for
the Fra ct i on class. Consider the following statement:

a = b + 1234; II Error: ambiguous
II a (float)b + 1234;
II a = b + Fraction(1234);

The compiler could either convert b to a floating-point number and then add that
together with the integer, or it could convert 1234 to a F r act ion and then add
the two F ra ct i on objects. That is, the compiler could add the two values as
built-in types, or it could add them as objects. The compiler has no basis for
choosing one conversion over the other, so it generates an error.

162 C++ Tutorial

There are a few ways to resolve this ambiguity. One is to use an ordinary member
function to perform addition, instead of overloading the + operator. For example:

class Fraction

friend Fraction add(const Fraction &first,
const Fraction &second);

} ;

Because this function does not look like the + operator, there is no confusion
between adding two values as Fra ct i on objects or adding them as built-in types.

Another solution is to remove an implicit conversion. You could remove the
implicit conversion from an integer to a F r act ion by getting rid of the single
argument constructor. This requires you to rewrite the previous statement as:

a = b + Fraction(1234, 1);

If you wanted to add the values as built-in types, you'd write the following:

a = Fraction(b + 1234, 1);

Or you could remove the implicit conversion from a F r act ion to a floating
point number, by changing the conversion operator into an ordinary member
function. For example:

class Fraction
{

public:
float cvtToFloat() const;
I I ...

} ;

This leaves only one interpretation for the following statement:

a = b + 1234; II a = b + Fraction(1234);

If you wanted to add the two values as built-in types, you'd write the following:

a = b.cvtToFloat() + 1234;

If you wish to retain the convenience of both of these implicit conversions, as
well as use operator overloading, you must explicitly define all three versions of
the operator+ function:

Chapter 8 Operator Overloading and Conversion Functions 163

class Fraction
{

friend Fraction operator+(const Fraction &first,
const Fraction &second);

friend Fraction operator+(long first,
const Fraction &second);

friend Fraction operator+(const Fraction &first,
long second);

II ...
} ;

If all three functions are defined, the compiler doesn't have to perform any con
versions to resolve expressions that mix F rae t ion objects and integers. The
compiler simply calls the function that matches each possibility. This solution
requires more work when writing the class, but it makes the class more usable.

As this example illustrates, you must use care if you define both overloaded
operators and implicit conversions.

Ambiguities Between Conversions
An ambiguity can arise when two classes define the same conversion. For
example:

class FixedPoint;

class Fraction
{

public:
Fraction(FixedPoint value); II FixedPoint -> Fraction

} ;

class FixedPoint
{

public:
operator Fraction(); II FixedPoint -> Fraction

} ;

void main()
{

}

Fraction a;
FixedPoint b;

a = b; II Error; ambiguous
II a Fraction(b);
II a = b.operator Fraction();

164 C++ Tutorial

The compiler cannot choose between the constructor and the conversion operator.
You can explicitly specify the conversion operator, but not the constructor:

a = b.operator Fraction();
a = Fraction(b);
a = (Fraction)b;

II Call conversion operator
II Error: still ambiguous
II Error: still ambiguous

This type of ambiguity is easy to avoid, because it occurs only when the classes
know of each other, which means that they were written by the same program
meres). If you simply remove one of the conversion functions, the problem does
not arise.

Ambiguities can also arise when multiple classes define similar implicit
conversions. For example, suppose you have the F r act ion class and some
associated functions that use Fra ct i on objects, as follows:

class Fraction

public:
Fraction(float value); II float -> Fraction

} ;

void calc(Fraction parm);

You might also have a Fi xedPoi nt class that includes a similar set of associated
functions:

class FixedPoint
{

public:
FixedPoint(float value); II float -> FixedPoint

} ;

void calc(FixedPoint parm);

Now consider what happens if you try to use both the F r act ion and the
Fi xedPoi nt classes in the same program:

void main()
{

calc(12.34); II Error: ambiguous
II calc(Fraction(12.34));
II calc(FixedPoint(12.34));

Chapter 8 Operator Overloading and Conversion Functions 165

The compiler cannot choose which conversion to apply when calling the cal c
function. This type of ambiguity is difficult to avoid, because it can occur even if
F rae t ion and Fix e d Poi n t are written by different programmers. Neither pro
grammer would have noticed the problem because it doesn't appear when either
class is used by itself; the ambiguity arises only when they are used together. This
problem can be solved if the user of the classes explicitly specifies a conversion
by using the constructor for the class desired.

It is difficult to anticipate all possible ambiguities that may involve your class.
When you write a class, you might define only a small number of conversions.
However, when other programmers write their classes, they can also define con
versions involving your class. They can define constructors that convert an object
of your class into an object of one of theirs, or they can define conversion opera
tors that turn an object of one of their classes into an object of one of your
classes.

To reduce the likelihood of ambiguities, you should define implicit conversions
for your classes only when there is a clear need for them. You can always per
form conversions explicitly by using constructors that require more than one
argument, or by using ordinary member functions to perform conversions (for
example, cvtToOtherType).

See the C++ Language Reference for a complete description of the rules govern
ing conversions.

PAR T 3

Object-Oriented Design

Chapter 9 Fundamentals of Object-Oriented Design 169
Chapter 10 Design Example: A Windowing Class 191

169

CHAPTER 9

Fundamentals of
Object-Oriented Design

The preceding chapters covered the basic syntax of the C++ language. This
chapter and the next one discuss object-oriented programming, the style of pro
gramming that C++ is designed to support. This chapter describes the key prin
ciples of object-oriented programming and how to apply them. The next chapter
describes an example program written in C++ using those principles.

The first section of this chapter discusses the major concepts of object-oriented
programming. This chapter then outlines the process of designing an object
oriented program.

Features of Object-Oriented Programming

Abstraction

In the traditional, procedure-oriented view of programming, a program describes
a series of steps to be performed-that is, an algorithm. In the object-oriented
view of programming, a program describes a system of objects interacting. It's
possible to use C++ as a strictly procedural language. An object-oriented
approach, however, lets you take full advantage of C++'s features.

Object-oriented programming involves a few key concepts. The most basic of
these is abstraction, which makes writing large programs simpler. Another is
encapsulation, which makes it easier to change and maintain a program. Finally,
there is the concept of class hierarchies, a powerful classification tool that can
make a program easily extensible. While you can apply these concepts using any
language, object-oriented languages have been specifically designed to support
them explicitly.

"Abstraction" is the process of ignoring details in order to concentrate on
essential characteristics. A programming language is traditionally considered
"high-level" if it supports a high degree of abstraction. For example, consider two
programs that perform the same task, one written in assembly language, one in C.

170 C++ Tutorial

The assembly-language program contains a very detailed description of what the
computer does to perform the task, but programmers usually aren't concerned
with what happens at that level. The C program gives a much more abstract
description of what the computer does, and that abstraction makes the program
clearer and easier to understand.

While traditional languages support abstraction, object-oriented languages pro
vide much more powerful abstraction mechanisms. To understand how, consider
the different types of abstraction.

Procedural Abstraction
The most common form of abstraction is "procedural abstraction," which lets you
ignore details about processes.

There are many levels of procedural abstraction. For example, it's possible to
describe what a program does in even greater detail than assembly language does,
by listing the individual steps that the CPU performs when executing each
assembly language instruction. On the other hand, a program written in the macro
language of an application program can describe a given task on a much higher
level than C does.

When you write a program in a given language, you aren't restricted to using the
level of abstraction that the language itself provides. Most languages allow you to
write programs at a higher level of procedural abstraction, by supporting user
defined functions (also known as procedures or subroutines). By writing your
own functions, you define new terms to express what your program does.

As a simple example of procedural abstraction, consider a program that fre
quently has to check whether two strings are the same, ignoring case:

while (*5 1= ' \0')
{

if ((*5 == *t) II
«*5 >= 'A') &&
((*t >= 'A') &&

5++; t++;

else break;
}

if (*5 == '\0'
printf("equal \n");

else

(*5
(*t

printfC"not equal \n");

<= ' Z') && «*5 + 32) == *t» II
<= ' Z ') && «*t + 32) == *5»)

Chapter 9 Fundamentals of Object-Oriented Design 171

By writing a program this way, you are constantly reminded of the comparisons
that the program performs to check whether two strings are equal. An alternate
way to write this program is to place the string comparison in a function:

if (!_stricmp(s, t))
printf("equal \n");

else
pri ntf ("not equa 1 \n");

The use of _stricmp does more than save you a lot of typing. It also makes the
program easier to understand, because it hides details that can distract you. The
precise steps performed by the function aren't important. What's important is that
a case-insensitive string comparison is being performed.

Functions make large programs easier to design by letting you think in terms of
logical operations, rather than in specific statements of the programming
language.

Data Abstraction
Another type of abstraction is "data abstraction," which lets you ignore details of
how a data type is represented.

For example, all computer data can be viewed as hexadecimal or binary numbers.
However, because most programmers prefer to think in terms of decimal num
bers, most languages support integer and floating-point data types. You can sim
ply type "3.1416" rather than some hexadecimal bytes. Similarly, Basic provides
a string data type, which lets you perform operations on strings intuitively, ignor
ing the details of how they're represented. On the other hand, C does not support
the abstraction of strings, because the language requires you to manipulate strings
as series of characters occupying consecutive memory locations.

Data abstraction always involves some degree of procedural abstraction as well.
When you perform operations on variables of a given data type, you don't know
the format of the data, so you can ignore the details of how operations are per
formed on those data types. How floating-point arithmetic is performed in binary
is, thankfully, something C programmers don't have to worry about.

172 C++ Tutorial

Compared to their capacity for procedural abstraction, most languages have very
limited support for creating new levels of data abstraction. C supports user
defined data types through structures and typedefs. Most programmers use
structures as no more than aggregates of variables. For example:

struct PersonInfo
{

} ;

char name[30];
long phone;
char addressl[30];
char address2[30];

Such a user-defined type is convenient because it lets you manipulate several
pieces of information as a unit instead of individually. However, this type doesn't
provide any conceptual advantage. There's no point in thinking about the struc
ture without thinking about the three pieces of information it contains.

A better example of data abstraction is the FILE type defined in STDIO.H:

typedef struct i obuf
{

char __ far * _ptr;
int _cnt;
char __ fa r *_base;
char _flag;
char _fil e;

FILE;

A FILE structure is conceptually much more than the fields contained within it.
You can think about FILEs without knowing how they're represented. You sim
ply use a FILE pointer with various library functions, and let them handle the
details.

Notice that it's possible to declare a structure without declaring the functions
needed to use the structure. The C language lets you view data abstraction and
procedural abstraction as two distinct techniques, when in fact they're integrally
linked.

Classes
This is where object-oriented programming comes in. Object-oriented languages
combine procedural and data abstraction, in the form of classes. When you define
a class, you describe everything about a high-level entity at once. When using an
object of that class, you can ignore the built-in types contained in the class and
the procedures used to manipulate them.

Chapter 9 Fundamentals of Object-Oriented Design 173

Consider a simple class: polygonal shapes. You might think of a polygon as a
series of points, which can be stored as a series of paired numbers. However, a
polygon is conceptually much more than the sum of its vertices. A polygon has
a perimeter, an area, and a characteristic shape. You might want to move one,
rotate it, or reflect it. Given two polygons, you might want to find their intersec
tion or their union or see if their shapes are identical. All of these properties and
operations are perfectly meaningful without reference to any low-level entities
that might make up a polygon. You can think about polygons without thinking
about the numbers that might be stored in a polygon object, and without thinking
about the algorithms for manipulating them.

With support for combined data abstraction and procedural abstraction, object
oriented languages make it easy for you to create an additional layer of separation
between your program and the computer. The high-level entities you define have
the same advantage that floating-point numbers and printf statements have when
compared to bytes and MOV instructions: They make it easier to write long and
complex applications.

Classes can also represent entities that you usually wouldn't consider data types.
For example, a class can represent a binary tree. Each object is not simply a node
in a tree, the way a C structure is; each object is a tree in itself. It's just as easy
to create multiple binary trees as it is to create one. More importantly, you can
ignore all the nonessential details of a binary tree. What features of a binary tree
are you really interested in? The ability to quickly search for an item, to add or
delete items, and to enumerate all the items in sorted order. It really doesn't mat
ter what data structure you use, as long as you can perform the same set of
operations on it. It might be a tree implemented with nodes and pointers, or a tree
implemented with an array, or some data structure you've never heard of.

Such a class shouldn't be called Bi na ryTree, because that name implies a par
ticular implementation. Based on the operations that can be performed on it, the
class should be called So r ted Lis t or something similar.

By designing your program around abstract entities that have their own set of
operations, rather than using data structures made of built-in types, you make
your program more independent from implementation details. This leads to
another advantage of object-oriented programming: encapsulation.

174 C++ Tutorial

Encapsulation
"Encapsulation," which was mentioned in Chapter 4, "Introduction to Classes,"
is the process of hiding the internal workings of a class to support or enforce
abstraction. This requires drawing a sharp distinction between a class's
"interface," which has public visibility, and its "implementation," which has pri
vate visibility. A class's interface describes what a class can do, while its imple
mentation describes how it does it. This distinction supports abstraction by
exposing only the relevant properties of a class; a user views an object in terms of
the operations it can perform, not in terms of its data structure.

Sometimes encapsulation is defined as the act of combining functions and data,
but this is slightly misleading. You can join functions and data together in a class
and make all the members public, but that is not an example of encapsulation. A
truly encapsulated class "surrounds" or hides its data with its functions, so that
you can access the data only by calling the functions. This is illustrated in
Figure 9.1.

Object with public data members

FUNC

DATA FUNC

FUNC

Object with private data members

FUNC I FUNC

FUNC DATA FUNC

FUNC I FUNC

Figure 9.1 Hiding Data with Functions

Encapsulation is not unique to object-oriented programming. The principle of
"data hiding" in traditional structured programming is the same idea applied to
modules rather than classes. It is common practice to divide a large program into
modules, each of which has a clearly defined interface of functions that the other
modules can use. The aim of data hiding is to make each module as independent
of one another as possible. Ideally, a module has no knowledge of the data struc
tures used by other modules, and it refers to those modules only through their
interfaces. The use of global variables or data structures is kept to a minimum to
limit the opportunity for modules to affect one another.

Chapter 9 Fundamentals of Object-Oriented Design 175

For example, suppose a program needs to maintain a table of information. All the
functions acting on the table could be defined in one module, the file T ABLE.C,
and their prototypes could be declared in a file called T ABLE.H:

/* TABLE.H */
1/include "record.h" /* Get definition of RECORD data type */

void add_item(RECORD *new_item);
RECORD *search_item< char *key);

If any function in the program needs to use the table, it calls one of the functions
defined in TABLE.H. The TABLE.C module might implement the table as an
array, but the other modules don't know about it. If that array is declared static,
it is actually inaccessible outside of T ABLE.C. Only the interface is visible then,
while the implementation is completely hidden.

Data hiding provides a number of benefits. One of them is abstraction, which was
described previously; you can use a module without having to think about how it
works. Another is "locality," which means that changes to one part of the pro
gram don't require changes to the other parts. A program with poor locality is
very fragile; modifying one section causes other sections to break, because they
all depend on one another. A program with good locality is stable and easier to
maintain; the effects of a change are confined to a small portion of the program.
If you change the array in TABLE.C to a linked list or some other data structure,
you don't have to rewrite any module that uses the table.

Hiding data within a module has its limitations. In the example mentioned above,
the TABLE module does not permit you to have more than one table of informa
tion in your program, nor does it let you declare a table that is local to a particular
function. You can gain these capabilities by using structures and pointers. For
example, you could use pointers as handles to tables and write functions that take
a table pointer as a parameter:

/* TABLE.H */
#include "record.h"

/* define TABLE with a typedef */

TABLE *create_table();
void add_item(TABLE *handle, RECORD *new_item);
RECORD *search_item< TABLE *handle, char *key);
void *destroy_table(TABLE *handle);

This technique is considerably more powerful than that used in the previous
example. It lets you use multiple tables at once and have separate tables for

176 C++ Tutorial

different functions. However, the TABLE type provided by this module cannot be
used as easily as built-in data types. For example, local tables are not automati
cally destroyed upon exit from a function. Like dynamically allocated variables,
these tables require extra programming effort to be used properly.

Now consider the corresponding implementation in C++:

II TABLE.H
tFinclude "record.h"

class Table
{

public:
Tabl e();
void addltem(Record *newltem);
Record *searchltem(char *key);
~Table();

private:
/ / ...

} ;

II PROG.CPP
tFinclude "table.h"

void func()
{

Table first, second;

II ...

This class has two advantages over the technique of using table handles in C. The
first one, as mentioned earlier, is ease of use. You can declare instances of Tab 1 e
the same way you declare integers or floating-point numbers, and the same
scoping rules apply to all of them.

Second, and more important, the class enforces encapsulation. In the technique
using table pointers, it is only a matter of convention that programmers do not
access what's behind the table handle. Many programmers may choose to cir
cumvent the interface of functions and manipulate a table directly. If the imple
mentation of a table changes, it's very time consuming to locate every place in
the source code where the programmer's assumptions about the data structure are
now invalid. Such errors might not be detected by the compiler and might remain
undetected until run time, when (for example) a null pointer is dereferenced and
the program fails. Even minor changes to the implementation can create such

Chapter 9 Fundamentals of Object-Oriented Design 177

problems. Sometimes the changes are intended to correct bugs but instead cause
new ones because other functions depend on the specifics of an implementation.

In contrast, by declaring Tab 1 e as a class, you can use the access rules of C++ to
hide the implementation. You don't have to rely on the self-restraint of program
mers who use your class. Any program that attempts to access the private data of
a Tab 1 e object won't compile. This makes it much more likely that locality will
be maintained.

A common reason programmers break convention and access a data structure
directly is that they can easily perform an operation that is cumbersome to do
using only the functions in the interface. A well-designed class interface can
minimize this problem if it reflects the important properties of the class. While no
interface can make all possible operations convenient, it's usually best to forbid
access to a class's internal data structure, even if it means an occasional piece
of inefficient code. The minor loss in convenience is far outweighed by the
increased maintainability of the program that encapsulation provides. By elimi
nating the need to modify most of the modules in a large program whenever a
change is made, object-oriented languages can dramatically reduce the time and
effort needed to develop new systems or update existing ones.

Even if the class interface changes in the future, it is still a good idea to use an
encapsulated class rather than accessible data structures. In most cases, the
changes to the interface can be formulated solely as additions to the existing
interface, providing for upward compatibility. Any code that uses the old inter
face still works correctly. The code has to be recompiled, but that involves only
computer time, not programmer time.

Note that, in C++, encapsulation does not provide a guarantee of safety. A pro
grammer who is intent on using a class's private data can always use the & and *
operators to gain access to them. Encapsulation simply protects against casual
use of a class's internal representation.

Class Hierarchies
One feature of object-oriented programming that is not found at all in procedural
programming is the ability to define a hierarchy of types. In C++, you can define
one class as a subtype, or special category, of another class by deriving it from
that class. You can also express similarities between classes, or define them as
subcategories of a single broad category, by deriving them all from one base
class. By contrast, the C language treats all types as completely independent of
one another.

Identifying a common base class for several classes is a form of abstraction. A
base class is a high-level way to view those classes. It specifies what the derived
classes have in common, so you can concentrate on those shared traits and ignore
their individual characteristics. This abstraction technique lets you view entities

178 C++ Tutorial

in tenns of a small number of categories instead of a large number. This tech
nique is often used in everyday thinking; for example, it's easier to think
"mammals" instead of "lions, tigers, bears ... " and "bears" rather than "grizzly
bears, black bears, polar bears "

Whereas a base class is a generalization of a group of classes, a derived class is a
specialization of another class. A derived class identifies a sUbtype of a previ
ously recognized type and describes it in tenns of its additional characteristics.
For example, lions are mammals, but they also have certain traits not found in all
mammals.

There are two practical benefits of defining a class hierarchy: The derived class
can share the base class's code, or it can share the base class's interface. These
two benefits are not mutually exclusive, though a hierarchy designed for code
reuse often has different characteristics from one designed to give a common
interface.

Inheriting Code
If you are writing a class and want to incorporate the functionality of an existing
class, you can simply derive your class from the existing one. This is a situation
in which inheritance allows code reuse. For example, the Sal e s Per son class in
Chapter 7, "Inheritance and Polymorphism," incorporated the functionality of the
WageEmpl oyee class.

If you're implementing several classes at once that share features, a class hierar
chy can reduce redundant coding. You can describe and implement those com
mon features just once in a base class, rather than repeatedly in each derived
class.

For example, consider a program for designing data entry forms, where users fill
out fields on-screen. The program allows fonns to contain fields that accept
names, fields that accept dates, fields that accept monetary values, and so forth.
Each field accepts only the appropriate type of data. You could make each type
offield a separate class, with names such as NameFi el d, OateFi el d, and
M 0 n ey Fie 1 d, each with its own criteria for validating input. Note that all the
fields share some functionality. Each field is accompanied by a description telling
the user what's requested, and the procedure for defining and displaying that
description is the same for all fields. As a result, all the classes have identical
implementations for their s etP rompt, d i sp 1 ayPrompt, and other functions.

You can save yourself effort as well as reduce the size of the program by defining
a base class called Fi el d that implements those functions. The NameFi el d,
OateFi el d, and MoneyFi el d classes can be derived from Fi el d and inherit
those functions. Such a class hierarchy also reduces the effort required to fix bugs
or add features, because the changes only have to be made in one place.

Chapter 9 Fundamentals of Object-Oriented Design 179

A class hierarchy designed for code sharing has most of its code in the base
classes (near the top of the hierarchy). This way, the code can be reused by many
classes. The derived classes represent specialized or extended versions of the
base class.

Inheriting an Interface
Another inheritance strategy is for a derived class to inherit just the names of its
base class's member functions, not the code; the derived class provides its own
code for those functions. The derived class thus has the same interface as the base
class but performs different things with the same functions.

This strategy lets different classes use the same interface, thus reinforcing the
high-level similarity in their behavior. However, the main benefit of inheriting an
interface is polymorphism, which was exhibited by the Emp 1 oyee class in
Chapter 7, "Inheritance and Polymorphism." All the classes derived from
Emp 1 oyee shared its interface, making it possible to manipulate them as generic
Emp 1 oyee objects.

In the example of the data entry forms, Fie 1 d has a member function called
get Val u e, but the function doesn't do anything useful. N arne Fie 1 d inherits that
member function and provides it with code to validate input as a legal name.
D ate Fie 1 d and M 0 n ey Fie 1 d do the same, each providing different code for the
function. Thus, individual field objects may have various types and exhibit differ
ent behaviors, but they all share the same interface and can all be treated as
Fie 1 d objects.

A data entry form can simply maintain a list of Fie 1 d objects and ignore the dis
tinctions between types of fields. To read values into all the fields, a form can
iterate through its list of Fi e 1 ds and call getVa 1 ue for each without even
knowing what types of fields are defined. The individual fields automatically get
input using their own versions of get Val u e.

The example of the data entry forms uses inheritance for both code sharing and
interface sharing. However, you can also design a class strictly for interface shar
ing by writing an abstract base class. The So r tab 1 eO b j e c t class in Chapter 7 is
an example of a class designed for pure interface sharing. The class's interface
describes the necessary properties for an object to be stored in a SortedL i st
object. However, the So rta b 1 eObj ect class contains no code itself.

A class hierarchy designed for interface sharing has most of its code in the
derived classes (near the bottom of the hierarchy). The derived classes represent
working versions of an abstract model defined by the base class.

180 C++ Tutorial

In summary, classes provide support for abstraction, encapsulation, and hierar
chies. Classes are a mechanism for defining an abstract data type along with all
the accompanying operations. Classes can be encapsulated, compartmentalizing
your program and increasing its locality. Lastly, classes can be organized into
hierarchies, highlighting their relationships to each other while letting you mini
mize redundant coding.

To gain the most benefit from object-oriented programming, you must do more
than simply write your program in C++. The next section describes how you
actually design an object-oriented program.

Designing an Object-Oriented System
In top-down structured programming, the first design step is to specify the pro
gram's intended function. You must answer the question, "What does the pro
gram do?" First you describe the major steps that the program must perform,
using high-level pseudocode or flowcharts, and then you refine that description
by breaking each major step into smaller ones. This technique is known as
"procedural decomposition." It treats a program as a description of a process and
breaks it down into subprocesses.

Object-oriented design differs dramatically from this technique. In object
oriented design, you don't analyze a problem in terms of tasks or processes. Nor
do you describe it in terms of data; you don't begin by asking "What data does
the program act upon?" Instead, you analyze the problem as a system of objects
interacting. The first question you ask is, "What are the objects?" or "What are
the active entities in this program?"

Not only does object-oriented design begin from a different premise from proce
dural decomposition, it proceeds in a different manner. Procedural decomposition
is a top-down approach, starting with an abstract view of the program and ending
with a detailed view. However, object-oriented design is not a top-down
technique. You do not first identify large classes and then break them down into
smaller ones. Nor is it necessarily a bottom-up process, where you start with
small classes and build up from them (though class libraries can be used for this
kind of approach). Object-oriented design involves working at both high and low
levels of abstraction at all stages.

Object-oriented design requires you to do the following:

• Identify the classes

• Assign attributes and behavior

• Find relationships between the classes

• Arrange the classes into hierarchies

Chapter 9 Fundamentals of Object-Oriented Design 181

While you should begin by performing these steps in the order shown, remember
that object-oriented design is an iterative process. If you perform each step in the
process just once, without regard for the later steps, it's unlikely that you'll create
a useful set of classes. Each step in the process may alter the assumptions you
used in a previous step, requiring you to go back and repeat that step with new
information. This does not mean that you shouldn't give any thought to your
initial design. A good initial design is always desirable and will speed up the
development process. However, you should expect revisions to occur. You suc
cessively refine your class descriptions throughout the design process.

Identifying the Classes
The first step is to find the classes that the program needs. This is more difficult
than identifying the primary function of a program. You cannot simply perform a
procedural decomposition of the problem, take the resulting structure types or
data structures, and make them into classes. Your classes must be the central,
active entities in your program.

One technique for identifying classes is to write a description of the program's
purpose, list all the nouns that appear in the description, and choose your classes
from that list. This is a simplistic approach whose success depends on how well
the original description is written, but it can help give you ideas if you are new to
object-oriented design.

It's easiest to identify classes for a program that models physical objects. For
example, if your program handles airline seating reservations, you probably need
an Ai rpl ane class and a Passenger class. If your program is an operating sys
tem, a De vic e class for representing disk drives and printers is a likely candidate
class.

However, many programs don't model physical entities. For these situations, you
must identify the conceptual entities that the program manipulates. Sometimes
these are readily identifiable: A Rectangl e class and a Ci rcl e class are
obvious candidates for a graphic drawing program. In other cases, these are not
as easy to visualize. For example, a compiler might need a SyntaxTree class,
and an operating system might need aPr ace s s class.

Less obvious candidates for classes are events (things that happen to an object)
and interactions (things that happen between objects). For example, a
T ran sac t ion class could represent things such as loans, deposits, or funds
transfers in a bank program. A Command class could represent actions performed
by the user in a program.

You may see possible hierarchies for your classes. If you've identified
Bin a r y F i 1 e and T ext F i 1 e as candidate classes, you might derive them from
a base class called Fi 1 e. However, it is not always obvious when a hierarchy is
appropriate. For instance, a bank program could use a single Transacti on class,

182 C++ Tutorial

or it could use separate Loa n, De p 0 s ; t, and T ran s fer classes derived from
T ran sac t ; 0 n. As with the classes themselves, any hierarchies identified at this
stage are simply candidates to be refined or discarded later in the design process.

All of the above candidate classes are meant to model elements in the problem
you're trying to solve. Your program may also need another category of candi
date classes: those that can be used to implement the other classes you've found.
For instance, you may have identified a class that can be implemented using the
SortedL; st class that you previously wrote. In that case, SortedL; st
becomes a candidate class, even if your program description didn't explicitly
mention sorted lists. In general, it is too early to think about how each class
should be implemented, but it is appropriate to find ways to build classes using
existing class libraries.

Assigning Attributes and Behavior
Once you've identified a class, the next task is to determine what responsibilities
it has. A class's responsibilities fall into two categories:

• The information that an object of that class must maintain. ("What does an
object of this class know?")

• The operations that an object can perform or that can be performed on it.
("What can this object doT')

Every class has "attributes," which are the properties or characteristics that
describe it. For example, a Rectangl e class could have height and width attrib
utes, a GraphCursor class could have a shape (arrow, cross hairs, etc.), and a
F; 1 e class could have a name, access mode, and current position. Every instance
of a class has a "state" that it must remember. An object's state consists of the
current values of all its attributes. For example, a F; 1 e object could have the
name FOO.TXT, the access mode "read-only," and the position "12 bytes from
the beginning of the file." Some attributes may never change value, while others
may change frequently. An attribute's value can be stored as a data member, or it
can be computed each time it is needed.

It is important not to confuse attributes and classes; you should not define a class
to describe an attribute. A Rectangl e class is useful, but He; ght and W; dth
classes probably are not. Deciding whether to have aSh ape class is not so easy.
When a shape is used only to describe a cursor's state, it is an attribute. If a shape
has attributes that can have different values, and a set of operations that can be
performed on it, then it should be a class in itself. Moreover, even if a program
needs aSh ape class, other classes may still have shape as an attribute. The
S hap e objects that a program manipulates are unrelated to the shape of a
G rap h Cur so r object.

Chapter 9 Fundamentals of Object-Oriented Design 183

Every class also has "behavior," which is how an object interacts with other
objects and how its state changes during those interactions. There is a wide vari
ety of possible behaviors for classes. For example, a Ti me object can display its
current state without changing it. A user can push or pop elements off a S t a c k
object, which does change its internal state. One Pol y 9 0 n object can intersect
with another, producing a third.

When deciding what a class should know and what it can do, you must examine it
in the context of the program. What role does the class play? The program as a
whole has information that makes up its state, and behavior that it performs, and
all of those responsibilities must be assigned to one class or another. If there is
information that no class is keeping, or operations that no class is performing, a
new class may be needed. It is also important that the program's work be dis
tributed fairly evenly among classes. If one class contains most of the program,
you should probably split it up. Conversely, if a class does nothing, you should
probably discard it.

The act of assigning attributes and behaviors gives you a much clearer idea of
what constitutes a useful class. If a class's responsibilities are hard to identify, it
probably does not represent a well-defined entity in the program. Many of the
candidate classes found in the first step may be discarded after this step. If certain
attributes and behavior are repeated in a number of classes, they may describe a
useful abstraction not previously recognized. It may be worthwhile to create a
new class containing just those characteristics, for other classes to use.

One common mistake among programmers new to object-oriented programming
is to design classes that are nothing more than encapsulated processes. Instead of
representing types of objects, these classes represent the functions found by a
procedural decomposition. These false classes can be identified during this stage
of the design by their lack of attributes. Such a class doesn't store any state
information; it just has behavior. If, when describing a class's responsibilities,
you say something like, "This class takes an integer, squares it, and returns the
result," you have a function. Another characteristic of such classes is an interface
consisting of just one member function.

Once you've identified the attributes and behavior of a class, you have some
candidate member functions for the class's interface. The behavior you've identi
fied usually implies member functions. Some attributes require member functions
to query or set their state. Other attributes are only apparent in the class's
behavior.

The specific member functions and their parameters and return types won't be
finalized until the end of the design process. Furthermore, implementation issues
play only a small role in the design process at this point. These include questions
such as deciding whether attributes should be stored or computed, what type of
representation should be used, and how to implement the member functions.

184 C++ Tutorial

Finding Relationships Between Classes
The immediate extension of the previous step, deciding the features of each class,
is deciding how the classes use each other's features. While some of the classes
you identify can exist in isolation, many of them cannot. Classes build upon and
cooperate with other classes.

Often one class depends upon another class because it cannot be used unless the
other class exists. This is necessary when one class calls the member functions of
the other class. For example, a Ti me class may have functions that provide con
versions between it and a S t r i n 9 object. Such functions must call the construc
tor and access functions of the S t r i n 9 class.

Another way one class can depend on another is when it has the other class
embedded within it, meaning that it contains objects of the other class as mem
bers. For example, a C ire 1 e object might have a Poi n t object representing its
center, as well as an integer representing its radius.

This type of relationship is called a "containing relationship." Classes that contain
other classes are "aggregate" or "composite" classes. The process of containing
member objects of other classes, known as "composition," is described in
Chapter 4, "Introduction to Classes." Composition is sometimes confused with
inheritance; the distinction between these two is discussed in the next section.

Most relationships between classes arise because one class's interface depends
on another. For example, the class Ci rcl e may have a getCenter function that
returns a Poi n t object, so users must know about Poi n t to use C ire 1 e' s inter
face. However, it is also possible for a class's implementation to depend on
another class. For example, you might design Add res s Boo k with a private mem
ber object of the SortedL i st class. Users of AddressBook don't need to know
anything about SortedL i st. They need only know about the interface of
Ad d res s Boo k. This provides another layer of encapsulation, because it is pos
sible to change the implementation of Add res s Boo k without changing the
interface.

When identifying relationships, you must consider how a class performs its
assigned behavior. Does it need to know information that is maintained by other
classes? Does it use the behavior of other classes? Conversely, do other classes
need to use this class's information or behavior?

Chapter 9 Fundamentals of Object-Oriented Design 185

As you define the relationships between classes more fully, you'll probably
modify some of the decisions you made in previous steps. Information or behav
ior that was previously assigned to one class may be more appropriate in another.
Don't give objects too much information about their context. For example, sup
pose you have a Book class and aLi bra ry class for storing Book objects.
There's no need for a B a a k object to know which Lib r a r y holds it; the
Lib r a r y objects already store that information. By adjusting the borders
between classes, you refine your original ideas of each class's purpose.

You might be tempted to use friend classes when you have one class that needs
special knowledge about another class. However, the friend mechanism in C++
should be used very sparingly, because it breaks the encapsulation of a class.
Modifying one class may require rewriting all its friend classes.

After identifying the relationships that one class has with others, you reach a
closer approximation of the class's interface. You know which attributes require
member functions to set them and which attributes require only query functions.
You have a clearer idea of how best to divide the class's behavior into separate
functions.

Arranging Classes into Hierarchies
Creating class hierarchies is an extension of the first step, identifying classes, but
it requires information gained during the second and third steps. By assigning
attributes and behavior to classes, you have a clearer idea of their similarities and
differences; by identifying the relationships between classes, you see which
classes need to incorporate the functionality of others.

One indication that a hierarchy might be appropriate is the use of a switch state
ment on an object's type. For example, you might design an Account class with
a data member whose value determines whether the account is a checking or

186 C++ Tutorial

savings account. With such a design, the class's member functions might perform
different actions depending on the type of the account:

class Account
{

public:
int withdraw(int amount);
I I ...

private:

} ;

int accountType;
II ...

int Account::withdraw(int amount)
{

switch (accountType
{

case CHECKING:
II perform checking-specific processing
break;

case SAVINGS:

II
} ;

II perform savings-specific processing
break;

A switch statement such as this usually means that a class hierarchy with poly
morphism is appropriate. As described in Chapter 7, "Inheritance and Polymor
phism," polymorphism lets you call member functions for an object without
specifying its exact type, by using virtual functions.

In the example above, the Ace 0 U n t class can be made into an abstract base class
with two derived classes, Say; ngs and Check; ng. The w; thdraw function can
be declared virtual, and the two derived classes can each implement their own
version of it. Then you can call w; t h d raw for an object without examining the
object's precise type.

On the other hand, a hierarchy isn't needed just because you can identify differ
ent categories of a class. For example, is it necessary to have Sedan and Van as
derived classes of Ca r? If you perform the same processing for every type of car,
then a hierarchy is unnecessary. In this case, a data member is appropriate for
storing the type of car.

Chapter 9 Fundamentals of Object-Oriented Design 187

Composition vs. Inheritance
Both composition and inheritance enable a class to reuse the code of another
class, but they imply different relationships. Many programmers automatically
use inheritance whenever they want to borrow the functionality of an existing
class, without considering whether inheritance accurately describes the relation
ship between their new class and the existing one. Composition should be used
when one class has another class, while inheritance should be used when one
class is a kind of another class. For example, a circle is not a kind of point; it has
a point. Conversely, a numeric data field does not contain a generic data field; it
is a data field.

Sometimes it is difficult to determine whether inheritance or composition is
appropriate. For example, is a stack a kind of list with a special set of operations,
or does a stack contain a list? Is a window a kind of text buffer that can display
itself, or does a window contain a text buffer? In such cases, you have to examine
how the class fits in with the other classes in your design.

One indication that inheritance is the appropriate relationship is when you want to
use polymorphism. With inheritance, you can refer to a derived object with a
pointer to its base class and call virtual functions for it. With composition, how
ever, you cannot refer to a composite object with a pointer to one of its member
classes, and you cannot call virtual functions.

If you want to borrow another class's functionality more than once, composition
is probably more appropriate. For example, if you're writing a Fi 1 eStamp class
and you want each object to store a file's creation date, last modification date,
and last read date, composition is clearly preferable to inheritance. Rather than
use a complicated multiple inheritance design, it's much simpler to include three
Oa te objects as members.

Designing Classes for Inheritance
Building class hierarchies usually involves creating new classes as well as
modifying or discarding ones previously identified. Most of the classes identified
during the first step are probably ones that you intend to instantiate. However,
when the common features of several classes are isolated, they often don't
describe a class that is useful to instantiate. As a result, the new classes you create
when forming a hierarchy may be abstract classes, which are not meant to have
instances.

Adding abstract classes increases the ability to reuse a class. For example, you
might create one abstract class that five classes inherit from directly. However, if
two of those deriving classes share features that the others don't, those features
can't be placed in the base class. As a result, they would have to be implemented

188 C++ Tutorial

in each class they appeared in. To prevent this, you can create an intermediate
abstract class that is itself derived from the base but adds new features. The two
classes can inherit their shared characteristics from this class. This also gives you
greater flexibility when extending the hierarchy later on.

However, abstract classes should not be created indiscriminately. As an extreme
example, it's possible to create a series of abstract classes, each of which inherits
from another and adds only one new function. While in theory this promotes
reusability, in practice it creates a very clumsy hierarchy.

It is desirable to place common features as high in a hierarchy as possible to
maximize their reuse. On the other hand, you should not burden a base class with
features that few derived classes use. Attributes and behavior may be shifted up
and down the hierarchy as you decide which features should be placed in a base
class.

Inheritance not only affects the design of class hierarchies, it can also affect the
design of classes that stand alone. Any class you write might later be used as a
base class by another programmer. This requires a refinement to the distinction
between a class's interface and implementation. A class has two types of clients:
classes or functions that use the class, and derived classes that inherit from the
class. When designing a class, you must decide whether you want to define dif
ferent interfaces for these two types of clients. The protected keyword enables
you to make members visible to the derived classes but not to the users. You can
thus give derived classes more information about your class than you give users.

A protected interface can reveal information about a class's implementation,
which violates the principle of encapsulation. Modifying the protected portion of
a class means that all derived classes must be modified too. Accordingly, the
protected keyword should be used with care.

Multiple Inheritance
Multiple inheritance can be useful for maximizing reuse while avoiding base
classes with unnecessary functionality. For example, remember the example of
the abstract base class So r tab 1 eO b j e c t, which has the interface that a class
needs in order to be stored in a So r ted Lis t. Now consider a similar abstract
base class called P r i n tab 1 eO b j e c t, which has an interface that all printable
classes can use. You might have some classes that are printable, some that are
sortable, and some that are both. Multiple inheritance lets you inherit the prop
erties you need from the abstract base classes.

Chapter 9 Fundamentals of Object-Oriented Design 189

This scenario is difficult to model using only single inheritance. To avoid dupli
cating functions in different classes, you'd have to define a base class
P r i n tab 1 e S 0 r tab 1 eO b j e c t and derive all your other classes from it. Certain
classes would have to suppress the functions of the printable interface, while
others would have to suppress the functions of the sortable interface. Such a
class hierarchy is top-heavy, having too much functionality in its base class.

Virtual base classes are often used in hierarchies built around multiple inheri
tance. One drawback of virtual base classes, besides the processing overhead
they entail, is that the need for them only becomes apparent when you design an
entire hierarchy at once. Consider the example of the Sal e sMa nag e r class in
Chapter 7, "Inheritance and Polymorphism." The need to make Emp 1 oyee a
virtual base class doesn't arise until Sa 1 esManager is defined. If you didn't
define Sal e sMa nag e r before the other classes were used in many programs, you
must modify the existing hierarchy, causing extensive recompilation. If modi
fying the hierarchy isn't practical, you must use some other solution instead of
virtual base classes.

Just as with single inheritance, multiple inheritance is often used inappropriately.
Many situations where multiple inheritance is used are better modeled with com
position or with a combination of composition and single inheritance. You should
always examine one of these options when considering multiple inheritance.

Now that you've seen the major steps in designing object-oriented programs, the
next chapter gives a concrete example of how this design technique can be
applied.

191

CHAPTER 10

Design Example:
A Windowing Class

Chapter 9, "Fundamentals of Object-Oriented Design," described a technique for
designing an object-oriented program. This chapter illustrates that technique by
applying it to a design for a simple character-based windowing package, which
could be implemented in C++. The primary purpose of this chapter is not to
describe windowing systems or to demonstrate actual C++ code, but rather to
provide a demonstration of object-oriented design.

The complete implementation of this design is beyond the scope of this book.
However, the decisions that go into the design of these classes should be helpful
in guiding your design of a complete system using C++ classes.

Examining the Requirements
No matter what design technique you employ, you must define what the program
is supposed to do before you can begin designing. Consider how the completed
program should behave.

The windowing package does not form a stand-alone application. It is meant to be
used by a client who is writing a stand-alone program that displays text in mul
tiple, overlapping windows. The windows can scroll in both vertical and horizon
tal directions, so a window can contain more text than it can display at once. The
windows can be manipulated with either the keyboard or the mouse. For example,
the user can scroll a window by moving its cursor with the keyboard cursor keys
or by clicking on its scroll bares) with the mouse. It's possible to create windows
in which the user can enter text or execute commands. (Note that the user is not
necessarily the client; the user is the person who uses the program that the client
has written.)

192 C++ Tutorial

Because a user can interact with only one window at a time, whether scrolling or
entering text, you need a way to specify which window receives input. That win
dow is the "active" window. Only one window can be active at any given time.

The active window must be fully displayed. It cannot have any portion obscured
by other windows. Whenever an inactive window becomes active, it must be
redisplayed over any windows that might cover it (like a sheet of paper being
moved to the top of a stack of paper). The user changes the active window by
clicking the mouse on an inactive window or by entering a keyboard command.

The program is illustrated in Figure 10.1.

TextWin2"J
Once upon ~
a time .. th~
e!"e was a ~
little gi!"~
1 who liue~extWin1
d in a cot~
tage on th~
e edge of ~
a fo!"est w~
ith he!" mow'

Figure 10.1 Character-Based Windows

Designing the Classes
As described in the previous chapter, the major steps in object-oriented design
are:

• Identify the basic classes

• Assign attributes and behavior

• Find the relationships between the classes

• Arrange the classes into hierarchies

The following sections describe how these steps apply to the windowing package,
but the sections don't have an exact one-to-one correspondence with the steps
listed above. That's because the steps are all interrelated, so that more than one
step is performed at the same time, and they're performed iteratively, so that
some steps are performed more than once.

Chapter 10 Design Example: A Windowing Class 193

Identifying Candidate Classes
What classes are needed for this program? An obvious choice is a window class,
where each window is an object. The first candidate class is therefore called Win.

The program handles user actions such as keyboard input and mouse clicks.
These actions are significant, because they can change the state of a window.
There should also be an Eve n t class to describe such user events. For example,
when a user clicks the mouse over a window, an Eve n t object is passed to the
appropriate Win object, and the Win object responds accordingly. This is an
example of a class that describes things that happen to objects.

If there are multiple windows, should the client program be responsible for
keeping track of the active window and directing events to it? That's an unrea
sonable burden to place on the client program. The package should provide a
class that maintains information about all windows and mediates between them
and the user. This candidate class is called Win M gr. This class doesn't model an
entity mentioned in our description of the program. It is created because there is
information that must be maintained by the program, but that information isn't
stored by any other classes.

Because this program frequently manipulates positions, it is convenient to repre
sent positions using a simple Poi n t class, instead of a pair of integers. Similarly,
because the program uses rectangular windows, a Rect class is a reasonable
candidate. These classes are extremely simple ones, being little more than con
venient structures.

Attributes and Behavior for Windows
What information does a Win M 9 r object maintain? Should it store the positions of
the windows? No, because it's more appropriate for each window itself to know
that. However, in keeping with the guideline that objects shouldn't know too
much about their context, a window shouldn't know whether it lies above or
below other windows. Instead, Win M 9 r should maintain the stacking order of the
windows. Because the topmost window is always the active one, Wi nMgr always
knows which window is active.

What can a Wi nMg r object do? It directs user-generated events to the active win
dow, but it can't pass all of them to that window. For example, the user can click
on an inactive window to make it active; such an event cannot be sent to the
active window. Win M 9 r must respond to that event and restack the windows, so
that a newly active window moves from its previous position in the stack to the
top.

What information does a Wi n object maintain? It knows its size and position on
the screen. It stores all the text that it must display, which, for a scrollable
window, includes the text that is outside the window's bounds. The window

194 C++ Tutorial

knows where the displayed section is located relative to the entire text, so it can
position the slider on the scroll bar.

What can a Wi n object do? It can display itself on the screen. It can respond to
the keyboard by moving its cursor, and, if it's an editing window, by modifying
its text. It can also respond to the mouse. It can position the cursor if the mouse is
clicked on the text and scroll the text if the mouse is clicked on the scroll bar.

Refining the Window Classes
Consider the behavior of the scroll bar more closely. If the user clicks on either
end, the text moves one line in the appropriate direction. If the user clicks on
either side of the scroll box (also called the slider), the text moves one page in the
appropriate direction. (We'll ignore dragging on the scroll box itself.)

This is a fairly complex set of responses for a window to perform. Moreover,
a window might have two scroll bars, one vertical and one horizontal, which
requires a lot of repetition in the code for responding to a mouse click. Instead of
making a window responsible for scroll-bar behavior, you can make scroll bars a
separate class. A text window is thus responsible for interpreting mouse clicks on
the text, while a scroll bar is responsible for interpreting mouse clicks on its sur
face. Objects of these two classes interact to perform text scrolling.

What information does a S era 1 1 Bar object maintain? It knows its size, but what
about its position? Suppose it knows its absolute position on the screen. With
such a design, consider how you would move a scrollable window. Not only
would you update the window's position attributes, you'd also have to update
the attributes of both scroll bars. This is an example of giving an object too much
information about its context. By knowing its absolute position, Sc ra 11 Ba r is
implicitly aware of the position of the window containing it. Instead, let
S era 1 1 Bar store only its relative position, as an offset from the comer of the
window that contains it. With this distribution of information, moving a window
requires updating only the window's position attributes.

How is S era 1 1 Bar related to the classes already defined? It has a number of
similarities to the Win class: It knows its size and relative position, and it can
display itself and respond to mouse clicks. You can factor out this common
behavior, place it in a base class, and make scroll bars and text windows derived
classes.

Chapter 10 Design Example: A Windowing Class 195

Thus, the fundamental entities in our program are not text windows but some
thing more primitive. This new class represents a screen area that interacts with
the user as a logical unit, so call it I n t era c tor. It should be an abstract base
class, because there's no such thing as a generic interactive area. A Win is an
I n t era c tor, and so is a S c r 0 1 1 Bar.

The I nteractor class is an example of a class that wasn't among the original
candidate classes but was created after examining the attributes and behavior of
the candidates. The class represents an entity that wasn't immediately evident in
the description of the program. The class hierarchy is shown in Figure 10.2.

I Interactor I

Figure 10.2 First Window Class Hierarchy

Remember that this is only the first approximation of the window class hierarchy,
and that it may change as you design the classes in more detail.

Attributes and Behavior for Events
What information is stored in an Event object? If the event comes from the key
board, the relevant information is the key that was pressed. If the event comes
from the mouse, the relevant information is the location of the mouse cursor and
the status of the mouse buttons. These are two distinct types of event, so you can
make two separate classes, KbdEvent and MouseEvent.

What can a KbdEvent or a MouseEvent do? These classes don't do much,
except report the information they contain. They're little more than fancy
structures.

Even though these two classes don't appear to share anything in common, you
can derive them both from an abstract base class Event as a way of indicating
that both represent types of events. This provides a single means of referring to
both types of events so that, if desired, objects of either type could be passed to a
function. This technique is discussed in more detail in the section "The Event
Hierarchy," page 203.

196 C++ Tutorial

This event hierarchy is shown in Figure 10.3.

Event

Figure 10.3 Event Hierarchy

Identifying Relationships Between Classes
What are the relationships between the classes identified thus far? A text window
can have one or two scroll bars. Each scroll bar is said to be a "child" of the text
window, and the text window is the "parent" of the scroll bares). This can be
represented as a containing relationship, where Win contains one or two instances
of S era 1 1 Bar as member objects. Win therefore uses S era 1 1 Bar.

The interaction between windows and scroll bars requires two-way communica
tion, because using the scroll bar affects the window and moving the window's
cursor affects the scroll bar. As a result, scroll bars must also have knowledge of
text windows. This differs from the situation where, for instance, a circle contains
a point to represent its center; C ire 1 e must know about Poi nt, but the reverse
is not true. S era 1 1 Bar must know about the interface of Win to communicate
with it.

Events are passed to interactors, whether text windows or scroll bars, so
In t era eta r must have a member function that accepts an Eve n t object as a
parameter. Interactor thus uses Event.

Note that Wi n must be defined before Wi nMgr, because Wi nMgr manipulates Wi n
objects. Because it's possible to have an arbitrary number of windows, Wi ns can
not be member objects. Instead, you can make Win M 9 r a collection class, which
allows you to insert or delete Wi n objects. Wi nMgr also uses Events, because it
passes them to the windows.

However, because scroll bars never exist independently and are never stacked on
each other, it is unnecessary for a Win M 9 r to manipulate S era 11 Bar or generic
Interactor objects.

Chapter 10 Design Example: A Windowing Class 197

The relationships between the classes are shown in Figure 10.4.

contains communicates
with

Figure 10.4 Relationships Between Classes

Defining Preliminary Class Interfaces
The hierarchies are very simple at this point, so there's no need to restructure
them. You can wait until later in the design process to work on their organization.
However, it is appropriate to decide which features belong in the base classes and
which belong in the derived classes. This requires a closer examination of the
classes' attributes and behavior, so you should make a first approximation of the
classes' public interfaces.

The Window Classes
The window hierarchy consists of a base In t era c tor class, with Win and
S c roll Bar as derived classes. Let's consider these classes in tum, starting at
the top of the hierarchy and moving down.

Interactors
What are the common characteristics of all interactors, including both text win
dows and scroll bars? They all have a size and a relative position, and this infor
mation must be accessible. They can check whether a given pair of coordinates
falls within their borders, indicating that they should respond to a mouse click. In
addition, all interactors have the ability to display themselves and to respond to
events. However, because there is no way for a generic In t era c tor object to
paint itself or to respond to events, those member functions should be declared as
pure virtual functions.

198 C++ Tutorial

Recall that Poi nt and Rect classes are available for use. Using these classes, we
can write a preliminary interface for In t era c tor as follows:

class Interactor
{

public:
i nt wi dth () ;
int height();
Poi nt ori gi n () ;
int withinBounds(Point pos);
virtual void paint() = 0;
virtual void handleEvent(Event &action) 0;

protected:
Rect area;

} ;

Because of its pure virtual functions, the In t era c tor class cannot be instanti
ated. However, the simple functions wi thi nBounds, wi dth, hei ght, and
or i gin can all be implemented here, because those functions are the same for all
interactors.

Text Windows
The Win class is derived from the In t era c tor class. What additional informa
tion does Wi n maintain, besides that stored by Interactor? As mentioned ear
lier, a text window must store all the text it can display. An array can be used to
hold the text; something dynamically resizable, such as a linked list, is more flex
ible, but for this example each window has a fixed amount of text.

The window might contain one or two scroll bars, or none at all, depending on the
length and width of the text being displayed. Should there be separate classes for
windows with two scroll bars, windows with one, and windows with none? That
seems unnecessary. It's simpler to have a single, flexible window class that can

Chapter 10 Design Example: A Windowing Class 199

have zero, one, or two scroll bars. Because the scroll bars are optional, they
shouldn't be contained as member objects, because that would require a non
scrolling window to store unnecessary objects. Instead, you can use pointers to
S c roll Bars. Win's constructor can allocate S c roll Bar objects if the text is
larger than the window and set the pointers to NULL otherwise.

If the window is scrollable, the text document being displayed is larger than the
window, so the document's dimensions must also be stored. Similarly, it is also
necessary to store the position of the window relative to the document as a whole.
A window can optionally have a title, which must be stored as well. A prelimi
nary interface for Win therefore looks like this:

class Win: public Interactor

publ i c:
void paint();
void handleEvent(Event &action);
void setchar(Point pos, char newchar);
char retchar(Point pos);
void putstr(Point pos, char *newstr);
int rows();
int columns();
void setTitle(char *newtitle);

private:

} ;

ScrollBar *hscroller;
ScrollBar *vscroller;
char *textBuffer;
int textrows, textcolumns;
Point position;
Point cursorPos;
char *title;

II Position of window in text

200 C++ Tutorial

This is a lot of information for one class to maintain. You can create a new class,
Buffer, that stores the text and include it as a member of Wi n. For example:

class Buffer
{

public:
int rows();
int columns();
void setchar(Point pas, char newchar);
char retchar(Point pas);
void putstr(Point pas, char *newstr);

private:

} ;

int width, length;
char *textArray;

class Win public Interactor

public:
void paint();
void handleEvent(Event &action);
void setTitle(char *newtitle);

private:

} ;

ScrollBar *hscroller;
ScrollBar *vscroller;
Buffer canvas;
Point position;
Point cursorPos;
char *title;

II Position of window on text

This design divides the responsibilities of the previous Win class into two catego
ries: storing the text and displaying the text on screen. Each Wi n object contains a
pointer to its associated B u f fer object, which stores the text that the window
displays.

Scroll Bars
What additional information does S era 1 1 Bar maintain, besides that stored by
I ntera eta r? A scroll bar knows whether it is vertical or horizontal, and that
information can be represented as a flag. It knows the position of the scroll box,
which can be represented as a number between 1 and 100.

A scroll bar is constrained to be one character wide if it's vertical, or one charac
ter high if it's horizontal. It cannot exist separately from a text window. A text
window must exist before a scroll bar can be created. The S era 1 1 Bar construc
tor can ensure these conditions.

Chapter 10 Design Example: A Windowing Class 201

Is any other member function needed to use a S c roll Bar object? If the user
scrolls a text window by moving the cursor with the arrow keys, the scroll bar's
scroll box should move. It doesn't seem appropriate to send keyboard events to
the scroll bar; the text window itself should handle those. S c roll Bar should
therefore have a function that sets the scroll box (slider) position, which Wi n can
call. This means the preliminary interface to S c roll Bar looks like this:

class ScrollBar : public Interactor
{

public:
void paint();
void handleEvent(Event &action);
void setSlider(int pos);

private:

} ;

Win *parentWin;
int sliderPos;
int orientation;

How do a scroll bar and its parent interact? When the mouse is clicked on a scroll
bar, the text in the window scrolls and the scroll box moves. A Sc ro 11 Ba r
object must tell its associated Win object to perform a scrolling action; it can do
this by sending a new type of event, a Sc ro 11 Event, that contains the direction
(backward or forwards) and the amount (one line or one page).

Should S c roll Bar move its scroll box by itself? How does it know how far to
move the scroll box? Consider: If the text is four times as long as the window,
scrolling down one page means moving the scroll box one-fourth of the way
down the scroll bar. However, if the text is 20 times as long as the window,
scrolling down one page means moving the scroll box one-twentieth of the way
down the scroll bar. Scrolling one line at a time is similar. Thus, to calculate the
distance the scroll box should move, S c roll Bar would have to know the length
of the document and the height of the window (or the corresponding ratio for
horizontal scrolling). That would be a duplication of responsibilities, because
those values are already stored by Win. Therefore, S c r 0 1 1 Bar does not move its
scroll box when the mouse is clicked. It only adjusts the scroll box when Win
calls its setS1 i der function. Wi n is responsible for computing the proper posi
tion for the scroll box.

The Window Manager
The Win M 9 r class maintains the order of the text windows and passes them
events from the user. You can implement Win M 9 r as a collection class of Win
objects, but what type of collection class should you use?

On the screen, the windows appear stacked like sheets of paper on a desktop,
with the topmost window being the active one. This suggests a collection class

202 C++ Tutorial

that implements a stack data structure. However, a stack data structure permits
access to only the topmost element. Win M 9 r must have access to windows other
than the active one in order to make nonactive windows active. Therefore, a stack
class is inappropriate. Some kind of list class that provides access to all the ele
ments is needed.

Consider the order in which Win M 9 r must access the windows to see which one
should receive a mouse event. More than one window may occupy the position
where the mouse was clicked, but only the exposed one receives the event. To
find the exposed window, Wi nMgr must test the windows in order, starting from
the top of the stack and going to the bottom. However, suppose Win M 9 r must
refresh the screen, painting all the overlapping windows over again. This time,
Win M 9 r must access the windows starting from the bottom of the stack and going
to the top. Thus, Win M 9 r needs a collection class that permits iteration of its ele
ments in both directions.

Accordingly, aLi s t class that allows operations in both directions is appropriate.
Such a class could be implemented with a doubly linked list or an array. The
Win M 9 r class can have a member object of type Lis t.

Most of the behavior of Win M 9 r is implemented by its han d 1 e Eve n t function.
The interface is therefore fairly simple:

class WinMgr
{

public:
void handleEvent(Event &action);
void addWindow(Win *newWindow);
void deleteWindow();
void repaint();

private:
List winlist;

} ;

Consider how Win M 9 r, Win, and S c roll Bar work together in a typical scenario.
(This is illustrated in Figure 10.5.) The user clicks the mouse on a scroll bar in a
text window. An Event object, containing the location at which the click
occurred, is sent to the Win M 9 r object, which queries the windows in order to see
which one is exposed at that location. Wi nMg r then passes the event to the appro
priate Win object, which in tum queries its scroll bars to see if either of them
should receive it. It passes the event to the appropriate S c roll Bar, which checks
the location of the mouse click and interprets it as meaning "scroll forward one
line." The S c roll Bar object creates a new Eve n t object containing this scroll
ing information and sends it to its parent. The text window scrolls the text it con
tains and updates the position of the scroll bar's scroll box.

1. User clicks
on scroll bar.

Chapter 10 Design Example: A Windowing Class 203

MouseEvent

WinMgr

MouseEvent

Win

2. MouseEvent
sent to WinMgr

3. WinMgr passes
MouseEvent
to exposed Win.

4. Win passes
MouseEvent
to ScrollBar.

MouseEvent Scroll Event
5. Scroll Bar sends

ScrollEvent
to its parent.

ScrollBar

Figure 10.5 Event Passing

The Event Hierarchy
Now consider the interfaces to the various event classes. As mentioned earlier,
having Eve n t as a base class for all types of events allows any of them to be
passed to the single han d 1 e Eve n t function in the interface to I n t era c tor.
However, an Interactor needs to know specifically which type of event it's
received, because it has different responses to keyboard events than to mouse
events.

204 C++ Tutorial

For this reason, the Event class defines a virtual getType function, which
returns a constant indicating the type of the event. The interfaces of Eve n t and
its derived classes look like this:

class Event
{

public:
vi rtua 1 EventType getType () 0;

} ;

class KbdEvent public Event
{

public:
EventType getType() { return KBD_EVENT; }
unsigned int val()

private:

} ;

char asci i;
char scancode;

class MouseEvent public Event

public:
EventType getType() { return MOUSE_EVENT; }
Point getPosition()
int getButton()

private:

} ;

Point pos;
int buttons;

Because there is no type associated with generic Eve n t objects, the get T y P e
function is declared as pure virtual. Each derived class overrides getType to
return a unique constant.

Chapter 10 Design Example: A Windowing Class 205

This design is analogous to the use of a union in C:

II Analogous situation in C

struct Event
{

} ;

EventType type;
union

struct KbdEvent keyAction;
struct MouseEvent mouseAction;

} ;

The generic Eve n t interface corresponds to a structure containing a union, and
the Kb dE v e n t and M au seE v e n t classes correspond to possible contents of the
union. The get T y P e function acts like a discriminator field in the structure, indi
eating the current type of the contents of the union.

This design can be extended to include a third type of event, S era 1 1 Eve nt,
which was mentioned in the previous section. This type of event contains the
direction and amount of scrolling that is requested. However, this isn't enough
information to perform scrolling. If a text window contains two scroll bars and
receives a Sc ro 11 Event, it doesn't know whether to scroll the text vertically
or horizontally unless it knows which scroll bar sent the message. Therefore, a
S era 11 Eve n t also contains a pointer to the S era 11 Bar that created it. Its inter
face is as follows:

class Scroll Event public Event
{

public:
EventType getType() { return SCROLL_EVENT; }
int getDirection();
int getDistance();
ScrollBar *getSource();

private:

} ;

int direction;
int distance;
ScrollBar *source;

206 C++ Tutorial

Notice that you can interpret a S c roll Eve n t to have a meaning other than
"scroll text." You can use scroll bars to adjust the volume of a beeper, change
the shading of a colored panel, or perform other similar actions.

A window's handl eEvent function must use a switch statement to determine
the type of event received. For example:

void Win: :handleEvent(Event &action
{

switch(action.getType()
{

case KBD_EVENT:
KbdEvent &keyAction = (KbdEvent &)action; II Cast
II Respond to keyboard event
break;

case MOUSE_EVENT:
MouseEvent &mouseAction (MouseEvent &)action; II Cast
II Respond to mouse event
break;

I I . ..
} ;

Once the type of the event is found, the han d leE v e n t function converts the base
class pointer to a derived class pointer. (This is not generally a safe conversion in
C++, but it works properly in this case because the return value of getType
guarantees the type of the object.) The conversion to a derived class pointer
allows han d leE v e n t to access the information specific to that type of event and
respond with the appropriate action.

To add a new type of event, you must derive a new class from Event. If you
want an existing window class to respond to the new type of event, you have to
change that class's han d leE v e n t function. You can extend the switch statement
by adding a case clause for the new event type.

Limitations of Polymorphism in C++
The event-handling scheme described above sounds like a situation that calls for
polymorphism. It seems like it should be possible to replace the switch statement
with virtual functions. For example, you could give each subclass of Event a

Chapter 10 Design Example: A Windowing Class 207

virtual res po n d function. A different action would be taken for each type of
event, and you could then write the following:

II Hypothetical example with polymorphic Events

void Win::handleEventC Event &action)
{

action.respondC);

However, this would mean that the actions taken for each event would be the
same for every type of interactor. A scroll bar would behave in the same way as
a text window. This is clearly unsatisfactory.

What is needed is a way to vary the behavior of han d 1 e Eve n t on two parame
ters: the type of interactor and the type of event. In C, it would look like this:

handleEventC mylnteractor, currAction);

Such a function in C would contain a giant switch statement based on the type of
interactor, with each case clause containing another switch statement based on
the type of event. Through polymorphism in C++, the interactor parameter can be
removed by giving the interactor class a virtual handl eEvent function, as
follows:

mylnteractor->handleEventC currAction);

Unfortunately, C++ does not allow an additional level of polymorphism, which
would allow you to remove the event parameter. To retain the polymorphism
already in place, you must use a switch statement for the event parameter.

This illustrates a situation where language limitations influence the design.
Because C++ doesn't support an ideal solution, this example program has to use
a technique that's less than optimal. You should remember that, in general, it's
not good practice to use a switch statement to examine an object's type. Only
when your design calls for multiple levels of polymorphism is the technique
permissible. (A technique that avoids the use of switch statements is outlined in
the comments to the source code.)

Remember that the classes' public interfaces are not final until the implementa
tion phase. For the final interfaces and the implementation code for this example,
see the files in the sample program directory.

208 C++ Tutorial

Expanding the Hierarchies
The classes are already in small hierarchies, but now that you have a first
approximation of the class interfaces, it's appropriate to take another look at
those hierarchies and see if they need to be restructured. The goals during this
stage are to maximize reuse of code and to take advantage of polymorphism.
These goals can often be achieved by adding new base classes, so you should
look for opportunities to expand the hierarchies.

New Window Classes
The scrollable text window is useful, but the client may want other kinds of win
dows as well. The client should be able to define a new window class while still
taking advantage of Wi nMgr and the existing event-passing scheme.

You can support this by changing Win to an abstract class descended from
Interactor. We'll change the name of our text window class to TextWi nand
derive it from Win. Win acts as the base for any type of window, including those
the client defines. Wi nMgr treats all windows it manages as generic Wi n objects
and passes events to them. Furthermore, a scroll bar considers its parent to be a
generic Win, so it can be a child of any type of window, not just text windows.

Thus, Wi n provides a polymorphic interface through which Wi nMgr and
Scroll Ba r can access all windows. To a lesser degree, Wi n can also permit
code reuse if you give it the common characteristics of all windows (for example,
a data member to store a title and a function to set the title). The revised window
hierarchy is shown in Figure 10.6.

Figure 10.6 Revised Window Class Hierarchy

Chapter 10 Design Example: A Windowing Class 209

Suppose you want an editable text window. Such a window should have all the
scrolling and cursor movement capabilities of the noneditable window already
defined, plus the ability to accept text from the user. This situation calls for
inheritance.

You can define a class Edi tWi n that derives from TextWi n. Because a pointer
to a derived class object can be treated like a pointer to a base class object, you
can insert these editable windows into Win M gr.

The main difference between TextWi nand Edi tWi n is in their behavior. When
a printable character is received from the keyboard, TextWi n ignores it.
Ed i t Win responds by writing that character at the current cursor location and
moving the cursor one space to the right. Edi tWi nand TextWi n respond identi
cally to all other events, such as mouse clicks or cursor key presses.

The new behavior must be implemented in the handl eEvent function of
Edi tWi n, overriding the handl eEvent function of TextWi n. However, it
is not necessary to reimplement all the behavior that the windows share. The
handl eEvent function of Edi tWi n can call the handl eEvent function of
TextWi n and pass it all events that it doesn't handle itself. For example:

EditWin::handleEventC Event &action
{

} ;

switch C action.getTypeC)
{

} ;

KBD_EVENT:
KbdEvent &keyAction = CKbdEvent &) action;
if C printableC keyAction.val()))

II Modify text buffer. move cursor
else II Pass on other keyboard events

TextWin::handleEventC action);
break;

default: I I Pass on all other events
TextWin::handleEventC action);
break;

In this manner, Edi tWi n can reuse selected portions of TextWi n's event han
dling. This technique, having a derived class's member function call the base
class's member function, can be used in many situations.

210 C++ Tutorial

New Control Elements
A window can contain other interactive elements besides scroll bars. For exam
ple, a window can contain a button that performs some action when pressed. You
can create a new class, Pus h But ton, to represent this type of interactor.

What information does a Pus h But ton store, besides that stored by all
Interactor objects? All buttons have a label indicating what they do; a button
must retain the text string that it displays as its label. What can a Pus h But ton
do? Any button should momentarily reverse its displayed colors to give the user
some feedback. Beyond that, the action performed as a result of pressing the
button is entirely determined by the client. Just as a scroll bar can be used for
different purposes, a button can be used for almost anything. The only thing a
button by itself can do is inform its parent window that it has been pressed. To
do this, a button sends its parent a new type of event, a Pus h Event.

A Pus h Eve n t contains a pointer to the button that created it, so the parent win
dow can identify the button that was pressed. It is then up to the parent to perform
some function in response.

You could define Pus hButton as a descendant of I nteractor, but it is very
similar to the S c roll Bar class. Both are always children of windows and thus
contain a pointer to a parent of class Win. You can create an abstract base class
for both S c r 0 1 1 Bar and Pus h But ton and put the pointer in that class. This new
class is named Con t r 0 1 , because its descendants are all control elements for
windows, and it itself is a descendant of In t era c tor.

By isolating the common features of all control elements, Cont ro 1 provides
some code reuse. In the current design, Cont ro 1 isn't used for polymorphism.
However, in a possible alternate design, Win objects could contain a collection of
generic Con t r 0 1 objects, instead of a fixed number of specific Con t r 0 1 s, such
as two scroll bars. In such a design, Con t r 0 1 would provide a useful abstract
interface to scroll bars, buttons, and any other interactive elements you define.

Chapter 10 Design Example: A Windowing Class 211

The revised hierarchy is shown in Figure 10.7.

Figure 10.7 Final Window Class Hierarchy

You can now define new types of windows, descended from W; n, that contain
buttons. For example, imagine a class L; feW; n that runs the game of Life in a
window. This class can inherit the scrolling and cursor movement functionality of
TextW; n, but it can respond differently to mouse actions in the window, as well
as provide commands through buttons. This is illustrated in Figure 10.8.

TextWin2--;J
Once upon g
a tine .. th~
ere was a :ill
little girW.
I who liu TextWin1
d in a co
tage on t
e edge of
a forest
ith her III

Figure 10.8 Window with Buttons

1 I

212 C++ Tutorial

What Doesn't Fit in This Hierarchy
Is it possible to define pull-down menus as a type of window? Consider a menu's
characteristics. A menu's position is restricted to the top of the screen. Its size is
determined by the number of items it contains and the width of the longest item.
A menu appears only when an entry on the menu bar is activated, and it disap
pears when the command is executed. This type of behavior doesn't fit easily into
the current windowing hierarchy. Pull-down menus thus require a separate hier
archy, which is beyond the scope of this chapter.

Remember that the classes developed here are simply a small example for dem
onstrating the process of object-oriented design. To write a professional window
ing package, you would need to design a much larger class hierarchy. If you want
to write applications with windowing capabilities for the Microsoft® Windows™
operating system, see the Class Library User's Guide and the reference docu
mentation for the Microsoft Foundation Class Library. Also, note that the design
presented in this chapter is only one of several possible designs for the window
ing package described here.

Index

& (address-of operator) 36
& (reference operator)

compared to address-of operator 36
defined 27
example 27
syntax 36
using 28-29

+ (addition operator), overloading 148,150-151
-> (member-selection operator) 47
/* * / (comment delimiters) 7
/ / (comment delimiters) 7
: (colon), specifying base initializer 122
:: (scope resolution operator) 14-15,91,111,121
« (insertion operator) 4, 7
= (assignment operator) See Assignment operator
[] (subscript operator)

A

overloading 154-157
specifying array size 70, 103

Abstract classes
defined 134
design issues 187
using 135-136

Abstraction
base classes 177
classes 172-173
data 171-172
defined 98, 169
implementing 173-175
procedural 170-171

Access control
base classes 138
class members 46
design issues 177

Access functions
defined 56
using 61

Addition operator (+), overloading 148-151
Address-of operator (&) 36
Aliases

defined 27
example 57
references 27-29

Allocating
arrays See Arrays, allocating
dynamic memory 103
memory See Memory allocation

Arguments
default 11-13,22

Arrays
allocating 70, 99-100
deallocating with delete operator 70, 100, 103
declaring 99
deleting 100
initializing 99-100
size, specifying 17

Assigning class attributes and behavior 182
Assignment

class objects 82
initialization, differences between 82

Assignment operator (=)
copy constructors, differences between 84
default behavior for objects 73
example 77
overloading 75-80, 143
returning this pointer 84
use guidelines 85

Attributes
class 182-183
relationships between classes 184

B
Base classes

abstract 187
abstraction 177
defined 117
derived classes

accessing from 118, 137-138
converting to 125

destructors, defining 136
direct 119, 13 9
indirect 119, 139
initializing 122-123
private 138
public 117,138
virtual 140-141,189

Base initializer 122-123
Behavior, class 183-184
Binding, dynamic 131-132

213

214 Index

Bitwise left-shift operator See Insertion operator «<)
Brackets ([D, subscript operator

overloading 154-157
specifying array size 70, 103

c
C language

compared to C++ 3-7, 116
extensions 23
functions, calling from C++ 23

Calling functions 127
calloc function 106
cerr function 6
cin function 6-7
Checking parameters 79
Classes

abstract 134-136
abstraction 172-173
access to, controlling 94
arrays of objects 99
attributes 182-183, 193-195
base See Base classes
behavior 183, 193-195
benefits 176
composite 60-63, 184, 187
concrete 134
data, controlling access to 56
data members 45, 56, 58
declarations 42-44,63
defined 41
derived

base classes, accessing 118, 137-138
converting to base classes 123
defined 117
inheritance 179

design issues
assigning responsibilities 182-183
common mistakes 183
hierarchies 185-189
identifying 181-182
overview 180
relationships 184-185

designing 192-193
destructors 50, 73
friend See Friend classes
hierarchies

abstract classes 135
defined 120
design issues 177-181, 208-212

identifying during design 181
implementation, hiding 174, 177
in header and source files 63-65
inheritance 116-117

Classes (continued)
interface

design 183, 197
implementation 64
visibility 174

iterator 96, 98
member functions See Member functions
memory management, customized 107
objects, lifetime 50, 52
private

base classes 138
vs. friend classes 93-94

private members 46-48
protected members 137-138
public members 46, 48
relationships between 184, 196
static members 89-91
structures, comparison to 42, 45
validating data in 48, 53, 56
visibility 48
with pointer members 70

Collections, base class pointers, using 125
Colon (:), specifying base initializer 122
Comment delimiters 7
Composite classes 60-63, 184, 187
Composition

inheritance, comparison to 187
relationship between classes 184

Concrete classes 134
const keyword 58, 17

memberfunctions 58-59,86
members, initializing 63
objects 58-59,62
parameters 18
pointers 18, 31
variables

access by debugger 18
alternatives to #define 17
defined 17
initializing 17, 82

Constants
defined with const 17
member functions 58-59
objects 58-59,62

Constructors
array allocation 99
base class initialization 122-123
conversion 158-159
copy

assignment operator, differences between 84
calling 85
default 83
invoking 83

Constructors (continued)
copy (continued)

using 84-85
writing 83

default
base initializer 123
calling 55
in array declarations 99-100
using 61

defined 43,48
example 50
executing 49,52,61
execution order 123
global objects 52
member functions, calling 55
member initialization 60-63
new operator, called by 68, 100, 106, 110
objects, creating with 49
overloading 49, 54
required when 61
static objects 52

Conversion functions 158-159
Conversion operator 160-165
Conversions

ambiguities in 161-165
base classes to derived classes 125
by constructors 158-159
derived classes to base classes 123
rules 157

Copy constructors See Constructors, copy
cout function

defined 4
examples 4-7
formatting output with 4-5
manipulators 5
printing multiple variables 81
this pointer used 81
using 4-5

Creating objects 50-52
Customized memory management 107

o
Data

abstraction 171-172
hiding See Encapsulation
reading from keyboard 6
validating

in classes 54
using operator[] 156

Data members
accessing 52
classes 45
defined 42

Data members (continued)
modifying 58
static 89-93

Data types
converting 157
creating 19, 40-41
enumerations 19

Deallocating
arrays 70, 100, 103
memory 76

dec manipulator 5
Declarations

arrays of objects 99
classes 42-44, 63
const objects 58
copy constructors, calling 84
enumerations 19
extern "C" 23
friend classes 94
functions See Function prototypes
member functions 47
objects 44, 49
placement 13-14
pointers 18
references 30
static members 89-93

Decomposition 180
Default arguments 11-13,22
Default constructors

base initializer 123
calling 55
in array declarations 99-100
using 61

Index 215

#define directive, alternative to inline functions 16
defined operator, C++ header files 63
Defining

member functions 42,47
pure virtual functions 134-135

Definitions, member functions, location of 63
delete operator

array deallocation 70, 100, 103
base class pointers, using with 136
class scope 107-111
described 69
memory deallocation 76
overloading 105-106
using 69

Derived classes
base classes

accessing 118, 137-138
converting to 123

defined 117
inheritance 179

Design, object-oriented See Object-oriented design

216 Index

Destructing objects 50-52
Destructors

array deallocation 103
base classes 136
classes requiring 73
deallocating memory 75
defined 43
delete operator, called by 69, 100, 103, 110
example 50
executing 50
execution order 136
global objects 52
naming 50
overloading 50
requirements 50, 73
return value 50
static objects 52
using 73
virtual 136

Direct base classes 119
Directives See Preprocessing directives
Dynamic binding 131-132
Dynamic memory allocation 103

E
Early binding 131
Encapsulation

base classes, accessing 118
benefits 175
defined 56, 174
design principle 174-177
example 174
header files 64-65
member functions 56

enum type 19-20
Enumerations 19-20
Error handling 103-104
Error stream 6
Event classes

designing 193, 195-196
hierarchies 203-206
relationships 196

Event passing 202
Expressions, constants 17
extern "C" keyword, linkage specification 23-25

F
File extensions 63
Finding class relationships 184
Formatting output 4-5
free function 106

Free store
See also delete operator; new operator
defined 67
dynamic memory allocation 103
exhaustion See seCnew _handler function
returning memory to 69

Friend classes
declaring 94
described 93-95
design issues 98, 185
iterator 96
using 97-98

Friend functions
declaring 98
overloading 152-153

Function declarations See Function prototypes
Function definitions 9
Function prototypes

default arguments 11
defined 7
differences from C 7
examples 8
in header files 64
required when 9

Functions
access 56, 61
calling 127
calloc 106
conversion 158-159
error-handling 104
free 106
friend

declaring 98
overloading 152-153

inline 15-17,54,63-64
malloc 67, 103
member See Member functions
operator[] See Subscript operator
overloading

described 20-21
friend 152-153
parameters 21-22
using 23

parameters
const 18
overloading 21
passing 31-33
references 31-3 3

return values, references 35
returning objects 84
_seCnew_handler 103-104
virtual See Virtual functions

G
Global objects 52
Global variables 14-15

H
Header files

contents 64, 91
encapsulation 64-65
file extension 63

hex manipulator 5
Hiding data See Encapsulation
Hierarchies

abstract classes 135
class 177-181,208-212
defined 120
event 203-206
identifying 181

Identifying classes during design 181, 182
#if directive, C++ header files 63
Illegal operators 147
Implementation

modifying 56, 64, 131
private members 46, 56
source files 64-65
visibility 174

#include directive, C++ header files 64
Indirect base classes 119, 139
Inheritance

code reuse 178-179
composition, comparison to 187
defined 113
design issues 177-178,185-189
example 116-117
interface reuse 179
multiple 139-141, 188-189

Initializing
arrays 99-100
assignment, differences between 82
base classes 122-123
canst members 63
copy constructors, using 84-85
default constructors, using 99-100
member objects 60-63
objects 44,49,82-85
references 29, 35, 82
static members 91

Inline functions
benefits 15-16
calling 54

Inline functions (continued)
compiler response 17
declarations 16
defined 15
in header files 63-64
macros, comparison to 16

Input
from keyboard 6
using cin 6

Input stream See cin function
Input/output See I/O handling
Insertion operator «<)

distinguished from bitwise operators 7
using 4

Instances, class 44
Integers

enumerations 20
representations 5-6

Interfaces
designing 183, 197
header files 64-65
inheritance 179
protected 188
public members 46
visibility 174

I/O handling 3-4
10STREAM.H 3, 7
iostreams

cerr function 6
cin function 6
cout function 4-5, 144
manipulators 5

Iterators
described 96
using 98

K
Keyboard, reading data from 6
Keywords

const See canst keyword
delete See delete operator

Index 217

friend See Friend classes; Friend functions
inline See Inline functions
private See private classes; private members
protected 137-138, 188
public See public classes; public members
static See Static binding; Static members; Static objects
virtual See Virtual base classes; Virtual destructors;

Virtual functions

218 Index

L
Late binding 131
Left-shift operator See Insertion operator «<)
Lifetime, objects 50-52
Linkage specifications 23-25
Linking C and C++ modules 23-25
Local variables 15
Locality, design principle 175

M
Macros, inline functions, comparison to 16
malloc function 67-68, 103
Manipulators 5
Member functions

accessing member data 52-56
calling

with constructors 55
with references 47

constant 58-59, 86
constructors 48-49
current object 48
data used by 47
declarations 46
defined 42
defining 42,47
definitions locations 63
destructors 50
encapsulation 56
ensuring valid data for 48
inline 54
invoking 45
member-selection operator (-» 47
operator= 75
overloading 47
private

described 46-48, 56
header files 64
inheritance 117-118
static data members 90

public
described 46-48,56
inheritance 117 -118
static data members 90

pure virtual 134-136
read-only 58
returning references 56-58
returning this 80
static 92, 111
this pointer 78
using new and delete 70

Member functions (continued)
virtual

defined 127
overhead 132-134
pure 134-136
using 129-130

visibility 46-48
Member initializer 60-63
Member objects

composite 60
constant 58-59,62
initializing 60-63

Member-selection operator (-» 47
Memberwise assignment, objects 73
Memory allocation

customized 81
delete operator, using 69, 73
dynamic 103
free store 67
new operator 68-69
strings 72

Memory deallocation
arrays 100
delete operator, using 75

Memory management, customized 107
Mixed-language programming 23-25
Multiple inheritance

N

defined 139
design issues 188-189
example 139-141

Naming destructors 50
new operator

arrays, allocating 70, 100
built-in types, allocating 69
class scope 107-111
classes, allocating 68
overloading 105-106
pointer returned 69

null pointer

o

delete operator 69
new operator 69

Object-oriented decomposition 180
Object-oriented design

abstract classes 187
abstraction 169
attributes, assigning 182-183

Object-oriented design (continued)
behavior, assigning 183, 193
class hierarchies 177-181, 208-212
class relationships 184-187, 196
code inheritance 178
common mistakes 183
data abstraction 171-172
encapsulation See Encapsulation
event classes 195
event hierarchies 203-206
example 191-192
friend classes 98, 185
identifying classes 181
implementing abstraction 172-173
inheritance 177-178, 185-189
interface design 197
interface inheritance 179
iterative approach 181
locality 175
multiple inheritance 139-140, 188-189
polymorphism 186-187,206-207
principles 169, 180-181, 192
procedural abstraction 170-171
refining 194-195
window class 198-202

Objects
argument list 49
constant 58-59, 62
contents 45
creation and destruction 50-52
current 47
declaring 44,49
defined 39,44
global 52
implementing common resources 93
initializing 44, 49, 82-83
lifetime 50-52
member, initializing 60-63
memberwise assignment 73
passing 84
pointers to 47
read-only functions 59
references to 86-88
returning 84-85
scope 75
static 52
syntax 44, 49

oct manipulator 5
Operator+, overloading 148-152
Operator=

copy constructors 84
default behavior for objects 73
overloading 75-80

Operator= (continued)
syntax 75
use guidelines 82

Operator[] function See Subscript operator
Operators

address of (&) 36

Index 219

assignment (=) See Assignment operator
conversion 160-165
delete See delete operator
insertion «<) 4, 7
member-selection (-» 47
new See new operator
operator+, overloading 148-152
operator= See Operator=
overloading See Overloading
preprocessing, defined 63
reference (&)

compared to address-of operator 36
defined 27
example 28
syntax 36
using 27-29

scope resolution (::) 14-15,91, 111, 121
subscript ([])

Output

overloading 154-157
specifying array size 70, 103

formatting 4-5
to screen 4
to standard error 6

Output stream See cout function
Overloading

constructors 49, 54
destructors 50
functions

described 20-21
friend 152-153
parameters 21-22
using 20,23

member functions 47
operators

addition operator 148-151
assignment 75-80, 143
associativity 146
defined 75, 143
delete 76, 105
friend functions 152
guidelines 147-148, 153
illegal operators 147
(list) 145
new 105,106
operator+ 148-152
operator= 75-80

220 Index

Overloading (continued)

p

operators (continued)
precedence 146
restrictions 146
subscript operator ([]) 154-157
using 144

Parameters
checking, this pointer 79
const 18
overloading 21-22
passing to functions 31-33
references

example 32
passing 31, 86
using 31-34,76,84

Passing parameters 31-33
Pointer declarations 18

const, using 18
modifying, restrictions 18

Pointers
constant 18,31
declarations 18
read-only 18
references, comparison to 30-31,33
returning 87
this 78-81

Polymorphism
defined 113, 130
design issues 186-187
limitations 206-207
using 138, 185

Precedence, operator 146
Preprocessor directives

#define 16
#if 63
#include 64

Preprocessor operators, defined 63
printf function, alternatives in C++ 4
Printing

integers 4-6
output formats 4
using cout 4, 81

private classes
base classes 138
vs. friend classes 93-94

private members
described 46-48, 56
header files 64
inheritance 117-118
static data members 90

Procedural abstraction 170-171
Procedural decomposition 180
Protected members

accessing 137-138
design issues 188

Prototypes, function See Function prototypes
public classes, base 138
public members

described 46-48, 56
inheritance 117 -118
static data members 90

Pure virtual functions 134-136

R
Redefining base class members 120-121
Reference operator (&)

compared to address-of operator 36
defined 27
example 28
syntax 36
using 27-29

References
accessing 30
calling member functions 47
declaring 29
defined 27
example 27
guidelines 34-35
initializing 29, 35, 83
operations on 30
parameters

example 32
passing 31, 86
using 31-34, 76,84

pointers, comparison to 30-31,33
read-only 31, 33
returning 35, 56-58, 86-88
summary 35-36
to constant pointers 31
using 28-30

Relationships between classes 184
Resolving ambiguities in conversions 161-165
Responsibilities, class 182-183
Return values

checking 105
references 35

Reusing code, inheritance 178-179
Reusing interfaces 179

s
Scope

determining variable access 15
objects 75
variables 14

Scope resolution operator (::) 14-15,91, 111,121
_seCnew _handler function 103-104
Setting default arguments 11-13
Source files 63-64
Standard error 6
Standard input 6
Standard output 4
State, object 182
Static binding 131
Static members

data members 90-91
declaring 89-93
initializing 91
member functions 92, 111
using 93

Static objects 52
Streams 4
Strings, memory allocation 72
Structures

as user-defined types 40-41
classes, comparison to 42, 45
comparing 40
defining 113
fields 41

Subscript operator ([])
overloading 154-157
specifying array size 70, 103

switch statements
drawbacks of using 115
replacing with polymorphism 185

T
Temporary objects, returning 85
this pointer 78-81, 92
Types

v

checking with inline functions 16
converting 157
user-defined 40

Variables
aliases 27
const 17,82
declarations, placement 13-14
global 15

Variables (continued)
local 15
scope 14

Virtual base classes 140-141, 189
Virtual destructors 136
Virtual functions

defined 127
overhead 132-134
pure 134-136
using 129-130

Visibility of member functions 46-48
V-table 132-134

w
Window classes

designing 193-195
hierarchy 208-212
interfaces 197 - 201
refining 194
relationships 196
requirements 191-192

Index 221

Class Library User's Guide--+

Class Library User's Guide
For the Microsoft® Foundation Class Library

Contents

iii

Introduction .. xiii
Document Conventions .. xiv

Chapter 1 Introducing the Class Library 1

What You Need to Know . 2
Guide to Related Documentation . 2

The Class Library . 3
Class Library Features. 4

The Framework . 5
The Partnership . 7

Benefits .. 8
Introducing Scribble . 9

U sing the Tutorial .. 10
Tutorial Conventions : .. 10

Project Makefiles and STEP Directories for Scribble. 10
The Files You Work With. .. 11

Read Along. .. 12
Work Along ... 12

Scribble Build Information .. 14

Chapter 2 Creating a New Application with AppWizard .. 17
Create the Starter Application for Scribble .. 18

Compile the Starter Files. 23
Run the Starter Application. 24

Chapter 3 Creating the Document. .. 27
Documents. 28

Scribble's Document: Class CScribDoc 32
The Document's Data: Class CStroke 36

Building and Storing Strokes .. 38
Managing the Document. 39

Initializing and Cleaning Up . 39
Managing the Data .. 41

Serializing the Data. 43
Serializing the Document. 44

Serializing Strokes .. 45
In the Next Chapter .. 47

iv Contents

Chapter 4 Creating the View 49
Views ... 50

Scribble's View: Class CScribView 52
Redrawing the View ... 55
Handling Windows Messages in the View 57

Connecting Messages to Code 57
Adding the Message-Handler Functions 60

Compile and Test Scribble .. 64

Chapter 5 Constructing the User Interface with App Studio 67
Edit Scribble's Menus. 68

Adding the Menus .. 68
Edit Scribble's Toolbar ... 77

About the Toolbar .. 78
Add the Thick Line Button to Scribble's Toolbar Bitmap 79

Summary .. 85

Chapter 6 Binding Visual Objects to Code Using ClassWizard 87
Using ClassWizard to Bind Commands 88
Adding Handlers for Commands .. 90

Command Fundamentals ... 91

Binding Scribble's Commands . 100
Which Command-Target Class Gets the Handler? . 1 00

Bind the Toolbar Button to the Thick Line Command. 106
Add New Member Variables to Scribble. 106

Library Support for Writing Message Handlers. 108
Updating User-Interface Objects 108

Update a Command's User Interface 109
Update Scribble's Clear All Menu Item. 111
Update Scribble's Thick Line Menu Item 113

Compiling the New Scribble .. 115

Chapter 7 Adding a Dialog Box. 117
Designing a Dialog Box . 118

Adding the Controls. 118
Modifying the Controls' Properties. 119

Connecting a Class to a Dialog Box 120
Declaring the Class . 121
Declaring the Message-Handling Functions. 124
Mapping the Controls to Member Variables. 127

Implementing the Message Handler 130

Contents v

Invoking the Dialog Box. .. 131
Compile the New Scribble ... 133

Chapter 8 Enhancing Views . .. 135
Updating Multiple Views .. 135

Define a Hint for Scribble ... 137
Pass the Hint After Modifying the Document. .. 140
Use the Hint for Efficient Repainting. 141

Adding Scrolling ... 143

Add Scrolling to Scribble .. 144
Adding Splitter Windows .. 151
Add Splitter Windows to Scribble .. 154
Compile the New Scribble ... 158

Chapter 9 Enhancing Printing. .. 159
How Default Printing Is Done .. 159
The Printing Architecture .. 160

Pagination .. 163
Print-Time Pagination .. 165
Headers and Footers .. 166
Allocating GDI Resources for Printing 167

Enhance Scribble's Printing .. 167

Enlarge the Printed Image. .. 168
Paginate Scribble Documents .. 171
Add a Page Header . 174

The Print Preview Architecture. .. 175
Enhance Scribble's Print Preview .. 177

Compile the New Scribble .. 177

Chapter 10 Adding Context-Sensitive Help .. 179
Division of Labor .. 180
Implementing Context-Sensitive Help with AppWizard 181

The Context-Sensitive Help Option 181

The Message Map ... 183
The Help Project File. .. 184

The MAKEHELP.BATFile 185
See Context-Sensitive Help in Action 186
Adding Help to Scribble . 187

Adding Help After the Fact. .. 187

Help Contexts in Scribble .. 192
Editing Scribble's Help Topics 193

vi Contents

Conclusion '.' .. 198

Chapter 11 General·Purpose Classes. .. 199
Memory Management. 199

Frame Allocation . 199
Heap Allocation ... 200

Memory Allocation on the Frame and on the Heap 200
Resizable Memory Blocks ... 203

Date and Time ... 203
Strings. 204

Basic Operations .. 205
CString Objects Are Values 206

Operations Related to C-Style Strings 207

Chapter 12 The CObject Class . 211
Deriving a Class from CObject .. 211
Accessing Run-Time Class Information. 214

Chapter 13 Collections... 217
How to Make a Type-Safe Collection . 218
Accessing All Members of a Collection. 220

How to Delete All Objects in a CObject Collection. 221
How to Create a Stack Collection. 223
How to Create a Queue Collection 224

Chapter 14 Files and Serialization. .. 227
Files ... 227
Serialization (Object Persistence) 229

Making a Serializable Class 230
Serializing an Object ... 233

Chapter 15 Diagnostics ... 241
Debugging Features ... 241

Dumping Object Contents ... 242

The TRACE Macro .. 243
The ASSERT Macro ... 244

The ASSERT_VALID Macro 245
Overriding the AssertValid Function 245

Detecting Memory Leaks .. 247
Memory Diagnostics ... 248
Detecting a Memory Leak ... 249
Dumping Memory Statistics . 250

Contents vii

Dumping All Objects ... 250
Interpreting an Object Dump. 251

Using DEBUG_NEW to Aid Debugging 253

Chapter 16 Exceptions... 255
Microsoft Foundation Classes Exception Handling 255
Catching Exceptions .. 256
Examining Exception Contents. 258
Freeing Objects in Exceptions .. 258

Handle the Exception Locally 259

Throw Exceptions After Destroying Objects . 260
Throwing Exceptions from Your Own Functions 261

Exceptions in Constructors. 262
Frame Variables and Exceptions . 262

Chapter 17 Programming with vex Controls. .. 265
An Overview of Using VBX Controls 266

Initializing VBX Runtime Support 267
Using ClassWizard to Set Up a VBX Control. 267

Declaring the Control Pointer . 267
Handling VBX Control Messages 268

Adding Code to Create and Use VBX Controls 270
Constructing and Creating the Control 270

Manipulating the Control. ... 270
Destroying the Control. 271

Distributing VBX Controls with Applications. 271

Chapter 18 OLE Support. .. 273
Overview of OLE .. 273

Using OLE ... 273
Embedded vs. Linked Items .. 275

Clients and Servers .. 276
Verbs ... 276

The OLE Classes ... 277
Implementing a Client Application. 279

Defining a Client Document Class . 281
Defining a Client Item Class. 281

The Insert New Object Command 282
The Paste and Paste Link Commands 282

Invoking a Verb on an Item .. 283
The Edit Links Command ... 284

viii Contents

Appendixes

Displaying an Embedded or Linked Item 284

Cutting or Copying Items to the Clipboard 285

Loading/Saving a Compound Document. 286

Implementing a Server Application 286

Defining a Server Class ... 286

Defining a Server Document Class 289

Defining a Server Item Class 290
Registering a Server Application 291

Launching a Server Application 292

Sequences of OLE Function Calls 293

Appendix A Getting Started. 297
What's New in the Class Library 297
Installing the Class Library ... 298

Additional Files .. 298

Appendix B Versions of the Microsoft Foundation Class Library 301
Prebuilt Libraries. 301

Library Naming Conventions 302

DLL Libraries ... 302

How to Build Other Library Versions . 303

Building DLLs .. 303

Building Programs with Code View Information 303

Index , , , , 305

Contents ix

Figures and Tables

Figures
Figure 1.1 Document and View. 6
Figure 1.2 Your Code in the Application Framework . 8
Figure 1.3 Scribble in Action. 9
Figure 1.4 The Project Options Dialog Box . 15
Figure 2.1 App Wizard Dialog Box. .. 19
Figure 2.2 The Document Class in the Classes Dialog Box. 20
Figure 2.3 The View Class in the Classes Dialog Box. 21
Figure 2.4 App Wizard Options Dialog Box. 22
Figure 2.5 Compiling in Visual Workbench. 23
Figure 2.6 The Starter Application . 24
Figure 3.1 Scribble in Action .. 27
Figure 3.2 Objects in Scribble ... 29
Figure 3.3 Document and View .. 30
Figure 3.4 Creating a Document 31
Figure 3.5 One Stroke in Scribble 32
Figure 3.6 Scribble's m_strokeList Data Structure 36
Figure 3.7 Serialization in Scribble 43
Figure 4.1 The View and the Document. 50
Figure 4.2 The Main ClassWizard Dialog Box 58
Figure 4.3 Available Windows Messages in ClassWizard 59
Figure 4.4 The Visual Workbench Editor. 61
Figure 4.5 Scribble Step 1 . 65
Figure 5.1 The App Studio Resource Browser 69
Figure 5.2 The Menu Editor ' 70
Figure 5.3 A Property Page ... 70
Figure 5.4 Menu Editor for IDR_SCRIBTYPE 72
Figure 5.5 Property Page with ID 73
Figure 5.6 Adding the Clear All Menu Item. 74
Figure 5.7 The Pen Menu Dragged into Position. .. 75
Figure 5.8 The Completed Pen Menu 76
Figure 5.9 The Default Toolbar Bitmap 77
Figure 5.10 Scribble with Its Edited Toolbar 78
Figure 5.11 Bitmap Selection in the Resource Browser 79
Figure 5.12 The Bitmap Image Window 80

x Contents

Figures
Figure 5.13 The Grid Settings Dialog Box . 80
Figure 5.14 The Scrolled Bitmap 81
Figure 5.15 The Graphics Palette 82
Figure 5.16 The Bitmap Dragged to the Right 83
Figure 5.17 Bitmap for the Thick Line Button 83
Figure 5.18 The Edited Bitmap .. 84
Figure 6.1 ClassWizard Dialog Box 89
Figure 6.2 Command Architecture. 91
Figure 6.3 Command Target Class Hierarchy. 92
Figure 6,4 Searching Message Maps. 99
Figure 6.5 Clear All in Class Wizard. 102
Figure 6.6 The OnEditClearAll Function Template 103
Figure 6.7 Adding the Data Members. 107
Figure 6.8 ClassWizard Selections for OnUpdateEditClearAll 112
Figure 6.9 Scribble Step 2 ... 115
Figure 7.1 Scribble's Pen Widths Dialog Box . 118
Figure 7.2 Designing the Pen Widths Dialog Box with App Studio 120
Figure 7.3 The Add Class Dialog Box , 122
Figure 7,4 The Class Wizard Dialog Box . 125
Figure 7.5 The Edit Member Variables Dialog Box 128
Figure 7.6 Scribble Version 3 . 134
Figure 8.1 Multiple Views on a Document Without Updating 136
Figure 8.2 A Scrollable View on a Document. 143
Figure 8.3 Scribble with Scrolling Support. 144
Figure 8,4 A Window with Two Views on a Document 152
Figure 8.5 Scribble Document Window Split into Two Panes 153
Figure 8.6 Scribble Version 4 .. 158
Figure 9.1 The Printing Loop. 162
Figure 9.2 Scribble Version 5 .. 178
Figure 10.1 Selecting Context-Sensitive Help 182
Figure 10.2 The Main Index Screen in Compiled Help 195
Figure 10.3 The Main Index Screen in AFXCORE.RTF 196
Figure 10,4 The Pen Menu Topic in the .RTF File 196
Figure 10.5 The Pen Widths and Thick Line Topics in the .RTF File 197
Figure 12.1 Macros Used for Serialization and Run-Time Information 212

Contents xi

Tables
Table 1.1 Tutorial Steps. 11
Table 3.1 Key Objects in an Application . 29
Table 3.2 Document Implementation Responsibilities 32
Table 3.3 CScribDoc Data Members 35
Table 3.4 CScribDoc Member Functions 35
Table 3.5 CStroke Data Members 37
Table 3.6 CStroke Member Functions 38
Table 4.1 View Implementation Responsibilities. 52
Table 4.2 CScribView Data Members 54
Table 4.3 CScrib View Member Functions. 54
Table 6.1 Standard Command Route. 96
Table 6.2 Command and Message-Handler Naming Conventions 110
Table 9.1 CView' s Overridables for Printing. 161
Table 9.2 Page Number Information Stored in CPrintInfo 163
Table 10.1 Help-Related Command IDs 183
Table 13.1 Shape Features ... 218
Table B.1 Class Library Support for Windows Memory Models 301
Table B.2 Library Names ... 302
Table B.3 Commands for Building Library Versions 303

I ntrod uction

This manual contains a tutorial for the Microsoft Foundation Class Library. The
class library is a set of C++ classes that encapsulate the functionality of
applications written for the Microsoft® Windows™ operating system.

Among the features covered in Chapters 1 through 1 0 of the tutorial are the
following:

• Using App Wizard to create a skeletal starter application upon which to build
your program.

xiii

• Implementing a document class to manage your application's data and to write
to and read from files.

• Implementing a "view" class to display your document and manage all user
interaction with it.

• Using App Studio to create and edit your application's resources.

• Using ClassWizard to connect user-interface objects, such as menu items,
buttons, and accelerator keys, to handler functions in your source code.

• Using App Studio to create dialog-template resources and ClassWizard to
encapsulate those resources in dialog classes. Also, arranging for automatic
transfer of data between the controls in a dialog box and member variables of
the dialog class and for automatic validation of data that the user enters.

• Implementing scrolling and splitter windows, enhancing the default printing
capabilities, and adding context -sensitive help to your application.

Chapters 11 through 18 explore additional features of programming with the
Microsoft Foundation Class Library:

• Using the diagnostic and exception-handling facilities.

• Working with files and the "serialization" of objects to and from persistent
storage.

• U sing the collection classes: arrays, lists, and maps.

• Using VBX controls, compatible with Microsoft Visual Basic™.

• Using Object Linking and Embedding (OLE).

xiv Introduction

Document Conventions
This book uses the following typographic conventions:

Example

STDIO.H

char, _ setcolor,
far

expression

[option]

#pragma pack {I I 2}

1Iinclude <io.h>

CL [option ...]file ...

while()
{

}

Description

Uppercase letters indicate filenames, segment names,
registers, and terms used at the operating-system command
level.

Bold type indicates C and C++ keywords, operators,
language-specific characters, and library routines. Within
discussions of syntax, bold type indicates that the text must
be entered exactly as shown.

Many functions and constants begin with either a single or
double underscore. These are part of the name and are
mandatory. For example, to have the __ cplusplus manifest
constant be recognized by the compiler, you must enter the
leading double underscore.

Words in italics indicate placeholders for information you
must supply, such as a filename. Italic type is also used
occasionally for emphasis in the text.

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice among two or
more items. You must choose one of these items unless
double square brackets ([]) surround the braces.

This font is used for examples, user input, program output,
and error messages in text.

Three dots (an ellipsis) following an item indicate that more
items having the same form may appear.

A column or row of three dots tells you that part of an
example program has been intentionally omitted.

Example

CTRL+ENTER

"argument"

"e string"

Color Graphics Adapter
(CGA)

Introduction xv

Description

Small capital letters are used to indicate the names of keys
on the keyboard. When you see a plus sign (+) between two
key names, you should hold down the fIrst key while
pressing the second.

The carriage-return key, sometimes marked as a bent arrow
on the keyboard, is called ENTER.

Quotation marks enclose a new term the first time it is
defIned in text.

Some C constructs, such as strings, require quotation
marks. Quotation marks required by the language have the
form " " and' , rather than" " and ' '.

The first time an acronym is used, it is usually spelled out.

Lines of example code to add to your program are marked
with this symbol.

CHAPTER 1

Introducing the Class Library

In this tutorial, you '11 learn about the class library features and functions by
creating an application for Microsoft Windows called Scribble.

In th is Chapter
The chapter begins with an overview of the Microsoft Foundation Class Library
and its supporting tools. It also covers the following topics:

• Designing programs with the class library

• U sing the tutorial

• Working with the incremental versions of the tutorial program

In Chapters to Come
Use the first ten chapters as an introduction to the Microsoft Foundation Classes or
as a step-by-step tour through the fundamentals of writing applications for
Windows with the class library. Use the remaining chapters to deepen your
knowledge and to learn specific programming techniques for such topics as:

• Managing memory

• Deriving classes from the root base class, CObject

• Accessing run-time information about the class objects in your application

• U sing collection classes for aggregates of data

• "Serializing" files to and from disk

• U sing the facilities for diagnostics and robustness

• Handling exceptions

• Importing custom controls from Microsoft Visual Basic

• Programming for Object Linking and Embedding (OLE)

Use Appendix A for a survey of new features in the Microsoft Foundation Class
Library, general instructions for installing the class library, and the locations of

2 Class Library User's Guide

sample programs and technical notes. Use Appendix B for information about the
prebuilt libraries for the class library and about building other versions.

What You Need to Know
The tutorial assumes that you have some knowledge of C++ and of programming
for Windows. If you've already programmed with the Microsoft Foundation Class
Library, you should find the transition straightforward. For information about
migrating from version 1 of the class library to version 2, see Technical Note 19 in
MFCNOTES.HLP. However, if you've programmed with Windows in C, or with
another C++ environment for Windows, you may find a different program structure
to get used to. But inside that structure much of what you do resembles what you've
done before.

You may wish to consult texts on C++ and on Windows. Microsoft Visual C++TM
includes the C++ Tutorial, and Microsoft Press® publishes Kaare Christian's
Microsoft Guide to C++ Programming and Charles Petzold's Programming
Windows 3.1 (third edition). Another good C++ text is Stanley B. Lippman's C++
Primer (Addison-Wesley, second edition).

With that base of knowledge, you should be able to follow the Microsoft
Foundation Class Library tutorial, especially if you have some C-Ianguage
background.

Beyond those fundamental texts, available shortly after the release of Visual C++
from Microsoft Press, is David J. Kruglinski's Microsoft Visual C/C++
Programming for Windows. That book supplements the tutorial in this manual and
in some areas provides deeper coverage of programming with the Microsoft
Foundation Class Library.

Guide to Related Documentation
For a quick overview of the process of using Microsoft Visual C++, see Presenting
Visual C++: 1n Our Own Words.

For an overview of the class library, see Chapters 1 through 6 in the Class Library
Reference.

For reference information about the classes, global functions, and macros that make
up the class library, see the alphabetic reference in the Class Library Reference.

Programmers using the Microsoft Foundation Class Library rely on several key
tools. App Wizard creates a starter application. App Studio lets you construct your
user interface and edit resources. ClassWizard helps you connect user-interface
objects such as menus to code.

Chapter 1 Introducing the Class Library 3

• For infonnation about using App Wizard, see Chapter 2 in this manual and
Chapter 13 in the Visual Workbench User's Guide.

• For infonnation about using App Studio, see the App Studio User's Guide.

• For infonnation about using Class Wizard, see Chapters 6 and 7 in this manual,
Chapter 9 in the App Studio User's Guide, and Chapter 13 in the Visual
Workbench User's Guide.

For infonnation about using the Visual C++ programming environment, see the
Visual Workbench User's Guide.

For C++ and C run-time library reference infonnation, see the C++ Language
Reference, the C Language Reference, and the Run-Time Library Reference.

The Class Library
The Microsoft Foundation Class Library enables C++ programmers to write
applications for Microsoft Windows. The class library gives you a complete
"application framework." The framework defines an architecture for integrating the
user interface of an application for Windows with the rest of the application. It also
provides implementations for a large set of the user-interface components described
in The Windows Interface: An Application Design Guide, available from
Microsoft Press.

For a summary of what's new in the class library since version 1, see Appendix A.

In the tutorial, you 'llleam to:

• Quickly construct a user interface that follows the Windows Design Guide.

• Easily implement both single document interface (SDI) and multiple document
interface (MDI) applications.

• Implement features that until now were considered difficult or tedious, such as
printing, toolbars, scrolling, splitter windows, print preview, and context
sensitive help.

• Take advantage of the many built-in or reusable components of the class library.

This section lists the main features of the class library and introduces the
application framework and its associated visually-oriented programming tools: App
Studio, App Wizard, and Class Wizard.

4 Class Library User's Guide

Class Library Features
The Microsoft Foundation Class Library has the following features:

• Powerful, visual tools that simplify programming:

• App Wizard, a tool for creating a skeleton starter application on which to
build your application-specific functionality.

• App Studio, a tool for constructing your user interface and editing your
resources.

• ClassWizard, a tool for connecting Windows messages and user-interface
objects such as menus to code.

• A flexible program framework based on document objects that manage data, and
view objects that manage user interaction with their documents.

• Classes that encapsulate the Windows API: windows, dialog boxes, device
contexts, GDI drawing objects, controls, and more.

• Implementations for standard menus, including the following commands and
their associated standard dialog boxes:

• File menu: New, Open, Save, Save As, Print, Print Setup, Print Preview,
Exit commands. Also support for the most-recently-used list of files. Open,
Save, and Save As are supported by the framework's standard serialization
mechanism.

• Edit menu: Paste, Paste Link, and Links commands for OLE. Also support
for OLE verbs.

• View menu: Commands to toggle the display of a toolbar and status bar.

• Window menu: New Window, Tile, Cascade, Hide, Show commands for
multiple document interface (MDI) applications.

• Help menu: Standard Index and Using Help commands.

• Support for routing commands from user-interface objects, such as menu items
and toolbar buttons, to command handlers.

• Support for toolbars and status bars.

• Support for scroller and splitter windows.

• Support for forms and text editing windows.

• Support for printing and print preview.

• A simple program interface for initializing, validating, and accessing the data in
dialog-box controls.

• VBX custom controls, giving access to controls created for Visual Basic.

• Support for Object Linking and Embedding (OLE) integrated with the
document/view architecture and support for OLE user interfaces.

• Support for context-sensitive help.

Chapter 1 Introducing the Class Library 5

• Diagnostic facilities and exception handling.

• Collection classes for managing aggregates of data.

• File classes.

• Compatibility with version 1 of the Microsoft Foundation Class Library.

The tutorial demonstrates many of these features, and the Visual C++ environment
makes them easy and productive to use. The features are embodied in the
framework and the tools.

The Framework
The Microsoft Foundation Class Library is a group of C++ classes collectively
known as an application framework. These classes provide the framework and
essential components of an application for the Windows graphical environment. The
purpose of the framework is to reduce the effort required to design and implement
applications for Windows. The framework embodies the accumulated wisdom of
experienced programmers for the Windows graphical environment.

Note In the documentation, you'll see the terms "application framework" and
"framework" used interchangeably. The classes that make up the framework are
listed and explained in the Class Library Reference. Chapters 1 through 6 of the
Class Library Reference explain how the framework works.

The application framework supplied by the Microsoft Foundation Class Library is
powerful and easy to reuse because the framework is an object -oriented class
library. Instead of editing the framework's source code directly, you derive new,
specialized classes from those in the library. The derived classes inherit all of the
behavior and functionality of their base classes, but you can extend them by adding
new member variables and functions and modify the existing behavior by
overriding inherited member functions.

Key Concepts
The following are central concepts in the application framework:

• At the heart of your application for Windows is an "application object."

The application object manages a list of documents and dispatches commands to
other objects in the program.

• The unit of data that the user works with is a document.

The document maintains, loads, and stores its data.

6 Class Library User's Guide

• The user interacts with a document through a "view" on the document.

A view is a window embedded in the client area of a frame window. It displays
its document's data and takes mouse and keyboard input, which it translates into
selection and editing actions.

• Objects in the user interface, such as menus and buttons, send commands to the
documents, views, and other objects in the application. Those objects carry out
the commands.

Figure 1.1 shows the relationship between a document and its view.

Document: Stores
data in an internally
useful form.

Portion of document
currently visible

- View: Renders the d ata in
a visual form and

- responds to user acti ons. ---- -- -- -.., -- ~
r-_ ;: ---- -- ~ - ·'1

Figure 1.1 Document and View

Working with the Framework
Your main tasks in using the framework are:

• Defining your application's data in its document class(es).

• Defining how the user views and interacts with the data inside a window.

• Connecting menus, buttons, and other user-interface objects to commands, then
defining handler functions to carry out the commands.

Chapter 1 Introducing the Class Library 7

The general process is to use:

• App Wizard to create the files for a skeleton starter application.

The classes in these files are derived from classes in the class library. The files
contain, in particular, a document class, a view class, a frame window class, and
an application class. App Wizard also creates an initial resource file and other
supporting files.

• App Studio to construct the user interface by creating and editing resources.

• ClassWizard to connect user-interface objects to message-handler functions.

• The Microsoft Visual Workbench editor and browser to implement the message
handlers - such as for menu commands.

• The Visual Workbench editor also to edit all of your classes and to control the
development cycle.

• Class Wizard to define automatic processing of dialog data.

The tools described above are summarized in Chapter 13 of the Visual Workbench
User's Guide.

The Partnership
Your work with the Microsoft Foundation Class Library is a partnership. The
source code you add is your part. This includes code to:

• Declare and implement the data structure of a document.

• Serialize the document's data so it persists from one work session to the next,
typically by writing it to and reading it from a file.

• Display the data in a view.

• Process keyboard and mouse-related messages from Windows.

• Handle commands from menus and toolbar buttons.

• Enhance the printing, scrolling, and window-splitting capabilities you get from
the framework.

In addition to the source code that implements your application's functionality,
you're responsible for:

• Using App Studio to create and edit resources that define the user-interface
elements of your program.

8 Class Library User's Guide

Benefits

• Optionally, editing the Rich-Text Fonnat (RTF) files containing help topics for
context-sensitive help.

The role of the framework in this partnership is to provide all of the many features
detailed earlier in this chapter.

The Microsoft Foundation Class Library provides a thorough foundation that allows
you to spend most of your programming effort writing the code that handles your
data rather than reinventing the graphical user interface. For more infonnation
about the application framework, see Chapters 2 through 6 in the Class Library
Reference.

Figure 1.2 shows schematically how your code fits into the framework.

j
I CCmd Target I

I

J J J ~
CWinAj2j2 I I COoe Teml2latel I CWnd COoeument

J j ~
CFrameWnd CView

CYourApp I I CYourFrame II CYourVw II CYourOlg II CYourOoe

Figure 1.2 Your Code in the Application Framework

Framework
Classes

Your
Classes

Because the framework provides so much standard functionality, it's easy to write
applications that follow the recommendations of The Windows Interface: An
Application Design Guide. At the same time, the framework's flexibility and
extensibility don't lock you into Windows Design Guide confonnance, although
deviating from the standard may take a little more work.

Chapter 1 Introducing the Class Library 9

Introducing Scribble
It's a time-honored programming practice to begin work with a new system or
language compiler by writing a program that prints "Hello, World!" on the
display. When you begin programming in a graphical user interface (GUI)
environment such as Microsoft Windows, however, the traditional practice is
hard to follow. There's a fair amount of programming overhead -- well in excess
of the few lines of "Hello, World!" -- simply to get a minimal GUI application
running.

Scribble, the application you build in the tutorial, is a tiny drawing program.
Something like Scribble poses a more realistic trial run in the Windows
programming environment than "Hello, World!" Instead of printing that little
phrase so familiar to programmers, Scribble lets the user draw "Hello, World!"
(or any free-hand drawing) using the mouse, and save the image in a file.

By the end of the tutorial, Scribble has custom menus, a dialog box with automatic
initialization and validation, printing and print preview, scrolling, splitter windows,
context-sensitive Windows Help, and more. That's a fitting list of features for a
GUI "Hello, World!" And, as you'll see, it's still quick to implement, considering
the challenge.

Figure 1.3 shows what Scribble looks like on the screen.

file .Edit ~iew Window Help

II-----------------S-cr-ib-l------------------a~

H e 110
1

WDiid I

I Ready

Figure 1.3 Scribble in Action

10 Class Library User's Guide

Using the Tutorial
Some readers may wish to read the tutorial and study the supplied source code
before venturing on a first framework application of their own. Others may wish to
learn by adding code as they go. The tutorial can be used in either way. For details
on procedure, see "Read Along" on page 12 or "Work Along" on page 12.

Important You must complete a chapter of the tutorial before the version of
Scribble developed in that chapter will run.

Tutorial Conventions
The tutorial uses the following textual conventions:

• The names of all classes, functions, macros, and other items supplied as part of
the Microsoft Foundation Class Library appear in boldface print. For example:

CDocument

CDocument: :OnOpenDocument

DECLARE MESSAGE MAP - -
• The names of all classes, functions, and other items developed as part of the

tutorial- and not supplied by the library - appear in monotype. For example:

CScribDoc
CScribDoc::DeleteContents

You'll often see these conventions used to distinguish items from the two domains.

Project Makefiles and STEP Directories for Scribble
Source code files, project files (also known as makefiles), and other necessary
files for the tutorial are supplied in a group of subdirectories under the
MPc\sAMPLES\sCRIBBLE directory. The tutorial develops the Scribble
application in seven steps; there are six subdirectories, named STEPO through
STEP5, representing the first six steps. Each subdirectory contains the files needed
for one step. For convenience, Table 1.1 correlates chapters, steps, and chapter
content. The second column gives the step completed by the end of the corre
sponding chapter. Each chapter begins where you left off in the previous step.

Chapter 1 Introducing the Class Library 11

Table 1.1 Tutorial Steps

Chapter Step Completed Content

2 0 Starter application (App Wizard)

3 Scribble's document.

4 Scribble's view

5 Menus and toolbar (App Studio)

6 2 Handlers for commands (ClassWizard)

7 3 Dialog boxes (App Studio, ClassWizard)

8 4 Scrolling and splitting

9 5 Printing and print preview

10 6 Context-sensitive help

For each version of Scribble, the project file, called SCRIBBLE.MAK, is stored in
the appropriate subdirectory for the step. Use Table 1.1 to locate the right sub
directory for each chapter.

The Files You Work With
For both of the procedures that follow, you usually need to deal with only a few of
the files:

• Document class files: SCRIBDOC.H and SCRIBDOC.CPP

• View class files: SCRIBVW.H and SCRIBVW.CPP

You may occasionally need to refer to (or edit) SCRIBBLE.H and
SCRIBBLE.CPP, the application class files.

For chapters that use App Studio (5-7), you'll work with SCRIBBLE.RC, the
application's resource file.

You may also occasionally want to examine the other files created by App Wizard
and ClassWizard, but in most cases you won't need to alter them.

Note For Chapter 2, simply follow instructions to create the skeleton starter
application with AppWizard. You can do so easily even if you aren't planning to
add the tutorial code yourself, and it's a good way to learn to use this tool.

Descriptions of the two alternative styles of using the tutorial follow.

12 Class Library User's Guide

Read Along
Use the following procedure if you don't want to type in the code:

~ To read along without typing code

Work Along

1. Print out source files from the STEPn directory appropriate for the chapter.

For example, in Chapter 3, print files for step 1 (see Table 1.1 on page 11).

You can also examine the files by opening them with the Visual Workbench
editor.

For comparison, you can look at the code for the previous step to see what it
looked like before the current chapter's additions.

2. As you read the chapter, examine the code that is added, replaced, or deleted in
the chapter.

The chapters surround the pieces of code they discuss with enough context to
help you locate them in the files.

Probably the most effective way to use the tutorial is to work along:

Work in your own subdirectory. You'll create this subdirectory-call it
MYSCRIB - in Chapter 2 by running App Wizard. You might, for example, make
MYSCRIB a subdirectory of MFc\sAMPLES\sCRIBBLE. As you work along,
you can compare your files in MYSCRIB with the files for the step you're doing in
the appropriate STEPn subdirectory.

As you work on the code for each chapter, use the next two procedures. The first
procedure explains how to use the Visual C++ project file for each Scribble step.
The second procedure explains how to work with the Visual Workbench editor to
add the tutorial code.

~ To open the Visual C++ project for a Scribble step

1. Start Visual Workbench.

2. Choose the Open command on the Project menu.

3. Move to your MYSCRIB subdirectory and select the project file:
SCRIBBLE.MAK. Choose the OK button.

4. Open and edit files as needed, using the File menu and the editor in Visual
Workbench. For more information about opening, editing, and saving files with
Visual Workbench, see the Visual Workbench User's Guide.

~ To work along, typing in the code yourself

1. Begin with the code files you developed in the previous step.

Chapter 1 Introducing the Class Library 13

The idea is to begin with the code as it exists at the end of the step for the
previous chapter and add the new chapter's code to it.

For example, as you begin Chapter 3, your files should match those in the
STEPO directory. When you finish the chapter, your code should be essentially
identical to that in the STEPI directory.

I

2. As you read the chapter, type in all code as it appears in the text.

Be sure to type in all code exactly as it appears, unless you're instructed not to.
Code to be added is marked in the left margin of the tutorial with the special
symbol ~. For example, you might be instructed to type the marked lines in the
following function:

II OnOpenDocument, then ...

CStroke* CScribDoc: :NewStroke(
{

CStroke* pStrokeltem = new CStroke(m_nPenWidth);
m_StrokeList.AddTail(pStrokeltem);
return pStrokeltem;

Don't add code that isn't marked.

The comment above the function supplies contextual information to help you see
where to put the new lines. You'll be told which file to add the lines to.

Sometimes the discussion following a piece of code explains that some lines
were deleted or replaced rather than added. As part of the development of
Scribble, observe why these changes occurred.

3. Also perform all App Studio and ClassWizard steps.

ill chapters that take you through the steps of using one of these tools, invoke the
tool as instructed and follow all steps. Compare the resulting changes to your
source code with the illustrative code in the text. Also, for example, compare the
dialog box you create with the one shown in the tutorial.

These tools are an integral part of programming with the Microsoft Foundation
Class Library.

4. Complete the chapter (in most cases) by compiling the code you worked on as
directed in Chapter 2 of the Visual Workbench User's Guide.

Note This procedure also lets you selectively work on a step. You can begin with
the previous step for any chapter. For example, to do your first work at step 2
(Chapters 5 and 6), begin with the code for step 1, whether you did step 1 yourself
or not.

Each chapter begins with a short reminder of these procedures.

14 Class Library User's Guide

Scribble Build Information
This section explains a few things you'll need to know when you prepare to build
Scribble. General procedures for compiling and linking framework programs in
Visual C++ and running the executable program under Windows are given in
Chapter 2 of the Visual Workbench User's Guide.

The Right Directory
If you're simply reading along with the tutorial without adding code, you can still
compile Scribble at each step to see what it looks like and how it behaves. In this
case, go to the STEP subdirectory for the step indicated at the beginning of a
chapter. For example, in Chapter 4, go to the STEP1 subdirectory. Open the project
from the Visual Workbench Project Open dialog box by double-clicking the file
SCRIBBLE.MAK.

If you're working along, adding code as you read, compile the project in which
you've been editing the files. You should already be in your MYSCRIB
subdirectory and have the project open.

Setting Options
For Scribble, you'll normally want to use the default debug-mode setting.
However:

~ To select debug or release build options

1. From the Options menu in Visual Workbench, choose Project.

2. In the Build Mode group, choose either the Debug or Release radio button.

3. Make sure the check box labeled "Use Foundation Classes" is checked.

4. Choose OK.

Recall that the project type for Microsoft Foundation Class Library programs is
"Windows Application." You can verify this in the Project Options dialog box.
Figure 1.4 shows the Project Options dialog box.

Project Options

~roiect Type: litem ttl. ,itM!l!fiftiu:D!
t8l .Y.se Microsoft Foundation Classes

Customize Build Options

Compiler ...

linker ...

Resources ...

Build Mode

@ .!lebug

o Release

Chapter 1 Introducing the Class Library 15

Ii) OK

Cancel

Help

Figure 1.4 The Project Options Dialog Box

Once you've moved to the right directory and set your options (if needed), you're
ready to build Scribble. Choose one of the Build commands on the Project menu in
Visual Workbench.

Chapter 2 begins the tutorial proper. You'11 create a skeleton application with
App Wizard. In later chapters, you'11 build a more powerful Scribble application
upon that skeleton.

CHAPTER 2

Creating a New Application
With App Wizard

17

Once you've completed your initial application design, you'll typically perform the
following tasks to develop the application with the Microsoft Foundation Class
Library:

• Use App Wizard to create a skeleton application-a set of C++ starter files.

• Use App Studio to construct the user interface.

• Use ClassWizard and the Visual Workbench editor to add application-specific
code to the starter files.

• Use Visual Workbench to test and debug, then add more code.

To create a new Visual C++ project based on the Microsoft Foundation Class
Library, you'll choose the App Wizard command from the Project menu in Visual
Workbench.

App Wizard speeds your work in beginning a new project. In seconds it creates a set
of Visual C++ files that declare skeletal versions of the classes that make up your
application. Key parts of the code that implements these classes are supplied by
App Wizard, based on the options you choose in the App Wizard dialog box. These
files comprise a starter application that you can compile and run immediately. The
starter application contains all the code required to display the windows in which
users will interact with your application.

Once you've created the starter application with AppWizard, you'll complete the
rest of the steps listed above using App Studio to construct the menus and other
user-interface objects, Class Wizard to make connections between those objects and
the code you write to respond to them, and Visual Workbench to edit, compile,
browse, and debug your source-code files.

The steps tend to be iterative-you'll probably weave back and forth between
editing the user interface and writing code all through the development process, and
you may do the steps in a different order, depending on your working style.

This chapter shows you how to create a set of starter files for the Scribble
application that is developed throughout the tutorial. These files contain skeletal

18 Class Library User's Guide

code for several C++ classes-an "application class," a "document class," a "view
class," and a "frame window class." The concepts behind these classes are dis
cussed fully in Chapter 2, "Using the Classes to Write Applications for Windows,"
in the Class Library Reference. You'll also learn more about them in Chapters 3
and 4 of this manual. Details about the created files are available in a text file,
README.TXT, that is created along with the starter files. The contents of the
starter files are discussed in later chapters as needed. For additional information
about the starter files, see Chapter 13 in the Visual Workbench User's Guide.

Without adding a line of code, you can compile the starter application you created
with App Wizard and run the resulting program, which exhibits much of the stan
dard functionality you expect from a program written for the Windows operating
system. The steps needed to compile and run the program are given in the section
"Compile the Starter Application" on page 23 and "Run the Starter Application" on
page 24.

Chapters 3 and 4 show you how to add the application-specific code for Scribble,
the sample application developed in the rest of the tutorial. Chapter 5 shows you
how to construct Scribble's user interface with App Studio. From Chapter 6 and the
chapters that follow, you'll iteratively add more features to Scribble, then test,
revisit App Studio, and so on.

This chapter covers step 0 of the tutorial. If you're working along, adding code as
you read, follow all directions in this chapter. When you finish, you'll have a full
set of starter files in your own subdirectory. On the other hand, if you're reading
along without adding any code, it's still a good idea to work through this chapter to
familiarize yourself with AppWizard. If you prefer, however, you can simply study
the set of files in the MFc\sAMPLEs\sCRIBBLWTEPO subdirectory, which are
identical to those created by App Wizard.

Create the Starter Application for Scribble
This section shows you how to use App Wizard to create the starter application that
forms the beginnings of Scribble. App Wizard lets you specify a number of options.
Then it creates a set of source-code files based on these options from which you
develop your application. This saves a great deal of time and effort and lets you
focus on the application-specific parts of your program.

The procedure described for Scribble applies equally to your own applications. Just
change the names and other values as needed.

Figures 2.1 through 2.4 show App Wizard's dialog boxes with the correct values
entered for Scribble. The following procedure describes how to enter these values.

Chapter 2 Creating a New Application with AppWizard 19

Microsoft Visual C++
Eile f.dit Y:iew Eroject f!.rowse Q.ebug Iools Qptions ~indow Help

MFC AppWizard

I Proiect Harne: l'-sc_ri_bb_le ___ ---'

Proiect Path--------,

c:\msvc\mfc\samples\scribble
\myscrib\scribble. mak

~irectory:

(0 c:\
(0 msvc
(Omfc
(0 samples
~ scribble

New ~ubdirectory:

Imyscrib

Driye:

18 c: mydrive

Figure 2.1 App Wizard Dialog Box

~ To create starter files for Scribble

Iii

I OK

1 Cancel

1 Help

1 Qptions .. .

Classes .. .

1. Start Visual Workbench by double-clicking its icon in the Windows Program
Manager.

2. On the Project menu in Visual Workbench, choose the App Wizard command.

Complete the App Wizard dialog box as described below. You can also run
AppWizard from Program Manager.

3. In the Project Name text box, type scribble

The application's project file will be given this name: in this case,
SCRIBBLE.MAK.

4. In the New Subdirectory text box, delete "scribble" and type myscrib

This names the directory that will contain the project's files.

AppWizard will create this directory if it doesn't exist. For Scribble,
MYSCRIB is a new directory.

5. Specify the path to the project's subdirectory.

Use the list box provided to navigate through the directories on the selected
drive.

As you navigate through the directory structure, the path listed in the dialog box
changes to show where the named subdirectory (MYSCRIB) should be placed.
When the path suits you, stop navigating.

20 Class Library User's Guide

For Scribble, navigate to MFc\sAMPLES\sCRIBBLE (relative to your Visual
C++ installation). Assuming your Visual C++ installation is in directory MSVC
on drive C, the path should look like this in the dialog box:

c:\msvc\mfc\samples\scribble\myscrib\scribble.mak

AppWizard creates a new MYSCRIB subdirectory in the SCRIBBLE directory.

6. Choose the Classes button to check and modify class names and filenames.

The Classes dialog box lets you edit the names of your program's classes and
the files they're in. The dialog box is shown for two different classes in Figures
2.2 and 2.3.

For Scribble, some of the class names must be changed from the defaults that
App Wizard suggests. To edit the information for a class, select the class name in
the drop-down list box at the top of the Classes dialog box.

Microsoft Visual c++ - SCRIBBLE.MAK
file J;dit ~iew Eroject f!.rowse Qebug 100ls .Qptions Window .!::ielp

~ ~ =-1 MFC AppWizard

Classes

New CScribbleApp
Application IriiC~Maiijin~F~ra~me ____ •
!;.Iasses: I'-!l ••.• •

CScribbleView

Class H.ame: Header File:

ICScribDoc I scribdoc.h

Base Class: Implementation File:

I scribdoc.cpp

File E~tension: Doc Jype Name:

IsctJj IScrib

OK

Cancel

Help

Figure 2.2 The Document Class in the Classes Dialog Box

7. Select class "CScribbleDoc" and edit its information as follows:

• Change the class name from "CScribbleDoc" to "CScribDoc."

• Type the file extension scb (don't supply a period).

This is the extension that is appended by default to the names of files that the
user saves with Scribble.

• Change the Document Type Name from "Scribb" to "Scrib."

These are the characters (up to 6) used wherever Scribble's native document
type is referred to. For example, the document type name is used to name the

Chapter 2 Creating a New Application with AppWizard 21

default file, SCRIB 1.SCB, the Windows shell registration name ("Scrib"),
and constants referred to in the code created by App Wizard, such as
IDR SCRIBTYPE.

Figure 2.3 shows the dialog box as it appears with the document class selected.

When you select a class, the available text boxes in the area at the bottom of the
dialog box change to reflect the nature of the chosen class. For all classes, these
extra text boxes include Class Name, Base Class, Header File, and Imple
mentation File. For document classes, additional boxes specify a document File
Extension and a Document Type Name.

You can edit any box whose contents are not dimmed (grayed).

The changes you type will make using the tutorial easier by keeping the names
of your classes and files synchronized with those in the subdirectories provided
for the Scribble steps. What you see on the screen as you work will also match
the figures in the tutorial.

8. Select class "CScribbleView" and edit its information as follows:

Change the class name from "CScribbleView" to "CScribView."

Figure 2.3 shows the dialog box as it appears with the view class selected.

9. Choose the OK button in the Classes dialog box when you finish.

App Wizard provides satisfactory defaults for classes C S c rib b 1 e A p p and
CMa in Frame. You don't have to edit them for Scribble-although you might
want to edit them for another application.

Microsoft Visual Cu - SCRIBBLE.MAK
file J;dit Y:iew Eroject firowse Debug lools Qptions ~indow Help

~ ~ MFC AppWizard

Classes

New CSclibbleApp OK
Application CMainFlame
I;.lasses: CSclibDoc Cancel

Help

Class Harne: H eadel File:

I CSclibView Isclibvw.h

Base Class: Implementation File:

ICView I SClibvw. cpp

Figure 2.3 The View Class in the Classes Dialog Box

22 Class Library User's Guide

10. Accept the default options.

Scribble uses AppWizard's default options. To accept these options, do nothing.

With these options, App Wizard will add code for printing and print preview and
to support a toolbar, and it will supply comments throughout the files it creates
to help you understand where you need to add your own code. By default, the
source code will also support the multiple document interface (MDI).

As an MDI application, Scribble lets the user open multiple documents at the
same time. The alternative is a single document interface (SDI) application,
which allows the user to open only one document at a time.

If you want to see what options are available, you can examine options by
choosing the Options button. Figure 2.4 shows the Options dialog box. For more
information about the options, see Chapter 4 in the Visual Workbench User's
Guide.

---I MFC AppWizard

Proiect Harne: L-l sc_ri_bb_le ___ ---'1 I OK

Options

rzJ iM~t.t.lpi~ji.~:~ij:~~:~U:~:t:~r.f.~:~~::
rzJ Initialloolbar

rzJ ~rinting and Print Preview

D Custom :'lBX Controls
D Context Sensitive H~lp
D Q.lE Client

D EKternal Iwtakelile

rzJ !ienerate Source Comments

Drive:

I ~ c: mvdrive Iii

OK

Cancel

Help

Figure 2.4 App Wizard Options Dialog Box

11. Choose the OK button in the App Wizard dialog box.

AppWizard creates the specified subdirectory if it doesn't exist. Then it creates
all necessary files in the directory. It then opens the project in Visual
Workbench.

The remaining sections of this chapter guide you through the process of compiling
the starter application and running the resulting program to examine its capabilities.

Chapter 2 Creating a New Application with AppWizard 23

Compile the Starter Files
The next two sections show you what the new application files do when compiled
without adding a single line of code.

The starter application you created provides the skeleton of a working application
for the Windows operating system. When you compile the starter files-without
adding a thing - the result is an application that runs, opens and closes windows,
and lets you perform other operations on the windows. Of course, at this stage the
windows have nothing in them. So far, Scribble doesn't scribble.

At this point, Scribble should be the currently open project in Visual Workbench.

~ To compile the starter application

1. Make sure you've set up the environment as explained in Appendix A.

2. Build the application in Visual Workbench.

On the Project menu, choose Build or Rebuild All as shown in Figure 2.5.

3. The starter application is built, producing the file SCRIBBLE.EXE in your new
MYSCRIB subdirectory.

SCRIBBLE.MAK
~Iose

.6uild SCRIBBLE.EXE Shift+FB
Rebuild All SCRIBBLE.EXE AIt+F8
S~op Build
E~ecute SCRIBBLE.EXE Ctrl+F5

8e~ln Q.ependende~>

Scan All Dependencies

boad Workspace SCRIBBLE.WSP ~
.:iave Workspace SCRIBBLE.WSP ~

1 C:\ ... \MYSCRIB\SCRIBBLE.MAK

Figure 2.5 Compiling in Visual Workbench

24 Class Library User's Guide

Run the Starter Application
After you compile the starter application, you can run it from Visual Workbench,
either with breakpoints set or not. You can also run the application from the
Windows Program Manager.

~ To run Scribble for debugging (with breakpoints)

1. From the Debug menu, choose the Breakpoints command and set any
breakpoints you want in your code.

2. From the Debug menu, choose Go to run Scribble.

~ To run Scribble without debugging

• From the Project menu, choose the Execute Target command.

When the starter application runs, an MDI application window appears with a menu
bar containing File, Edit, View, Window, and Help menus and a default toolbar.
The application window contains one open document window, as shown in
Figure 2.6.

Ii Scribl alii

Figure 2.6 The Starter Application

The document window is empty, of course, because you've added no application
specific code yet. But you can move, resize, minimize, maximize, and close the
document window and the application window. You can also use the New command
on the File menu to open new windows. The Open, Save, and Save As commands
are partially functional: at this point, they save empty files. You haven't added all
of the code yet to support these commands. The About command on the Help menu
brings up an About dialog box with default text in it. The default toolbar is partially
functional too: the Open and Save/Save As buttons do the same things as the

Chapter 2 Creating a New Application with AppWizard 25

corresponding menus. And the status bar at the bottom of the application window
displays a description string when you move the mouse pointer over any menu
command.

This minimal application lays the foundation for Scribble and displays much of the
standard behavior you expect in an MOl application written for the Windows
operating system. The next two chapters use Scribble to show you how to develop
the document and view classes that you created in this chapter.

You'll undoubtedly want to examine the source code files you created. To orient
you, AppWizard also creates a text file, README.TXT, in your new application
directory. This file explains the contents and uses of the other new files created by
AppWizard.

27

CHAPTER 3

Creating the Document

In this chapter and the next, you'll add code to the starter application you created in
Chapter 2 with AppWizard. By the end of Chapter 4, you can compile and run the
Scribble program.

Figure 3.1 shows what the Scribble application developed in the tutorial will look
like at the end of Chapter 4 .

. ;;;;
.Eile E.dit ~iew Window Help

II Scribl alii

0, wor d • He

I Ready

Figure 3.1 Scribble in Action

This chapter introduces documents and develops Scribble's document class, an
application-specific class derived from class CDocoment, called CScri bOac.
Chapter 4 introduces views and develops the view class. The two chapters
together introduce many of the fundamental concepts of the framework:
documents, serialization, views, drawing, and messages. Because documents and
views are intimately related, you need to implement both before Scribble is fully
functional.

28 Class Library User's Guide

Documents

In later chapters, you'll incrementally add new features to Scribble: menus, a
working toolbar, a dialog box with automatic initialization and validation of its
controls, scrolling, splitter windows, enhanced printing, and context-sensitive
help.

Your tour of Scribble's code begins with the starter files created by App Wizard
in the previous chapter. You'll add a lot of functionality to Scribble with a small
amount of code. Among the things you'll develop in this chapter are:

• Scribble's data-CSt rake, a class that defines one "stroke" of a drawing.

• Scribble's document-CScri bOac, a class to contain and manage a list of
strokes.

• Scribble's serialization code-code that implements writing and reading
documents.

The code that you must add to fill out the framework in this chapter is in the
following files: SCRIBBLE.R, SCRIBDOC.R, and SCRIBDOC.CPP.

This chapter and Chapter 4 cover step 1 of Scribble. If you want to work along,
adding the code as you go, begin with the files you created with App Wizard in your
MYSCRIB subdirectory in Chapter 2. At this point, your files should consist
entirely of the set of generic starter files that App Wizard created. As you read this
chapter, add or change all lines of code marked with the ~ symbol in the left margin.
At the end of Chapter 4, your files should essentially resemble those in the
SCRIBBLE\STEPI subdirectory.

If, on the other hand, you want to read along without adding code, you can print or
examine the files in the SCRIBBLE\STEPI subdirectory.

Note If you have trouble locating the correct place to add code, try looking at the
corresponding source files in the subdirectory for the completed step. For this
chapter and Chapter 4, use the SCRIBBLE\STEPI subdirectory for this purpose.

If you want to preview Scribble, load the version in SCRIBBLE\STEPI in Visual
Workbench and choose the Build command on the Project menu. Run the program
with the Execute Target command on the Project menu.

At the heart of Scribble are its document and its view. This section explains the role
of the document and introduces Scribble's document class and its members.

At run time, an application written with the Microsoft Foundation Class Library is a
group of cooperating objects that communicate by sending and receiving Windows
messages and by calling each other's member functions. Documents are created by

Chapter 3 Creating the Document 29

document template objects and managed by an application object. Users interact
with a document through a view object, which is framed by a document frame
window object. Figure 3.2 shows graphically the relationships between these key
objects.

Main Frame Window

Arrows show directions
of communication flow.

Figure 3.2 Objects in Scribble

Toolbar

View

Status Bar

Table 3.1 shows how the document and other objects are created and managed in a
framework application.

Table 3.1 Key Objects in an Application

Object

Application

Document template

Document

View

Frame window

Primary Purpose

Manages all other
framework objects.

Creates and manages
documents.

Stores data.

Manages user interaction
with a document.

Frames a view.

Relationships to
Other Objects

Keeps a list of document
templates.

Manages a list of open
documents of a given type.
Creates frame windows and
views to provide a user
interface to the document's
data.

Manages a list of views on
its data.

Attached to a document.
Owned by a frame window.

Owns a view that is attached
to a document.

30 Class Library User's Guide

Definition
A document is the unit of data that a user opens with the Open command on the File
menu and saves with the Save command. The document is responsible for storing
the data and for loading it from and storing it to persistent storage, usually a disk
file. A document typically appears to the user inside a frame window through which
the user manipulates the data.

Figure 3.3 shows the general relationship between a document and its view and
frame window.

Document: Stores
data in an internally
useful form.

Portion of document
currently visible

- ----- -
- ---- - ---

1--_ -
1---_

1--_ -
1---_

Figure 3.3 Document and View

View: Renders the d atain
a visual form and

--- ___ responds to user acti ons.
--- ------

i-

--- --- ----

Documents In the Framework
In the framework, the data and the user's operations on it are managed by two
separate objects. A document is an object that stores your data in its member
variables and reads and writes it through a member function called S e ria 1 i z e.
The user interacts with the document through a separate object called a view. The
view fills the client area of a frame window, where it displays the data and accepts
user input and editing operations. Documents know how to manage data; views
know how to display it and accept operations on it. Figure 3.3 shows this important
relationship graphically.

Chapter 3 Creating the Document 31

Document Creation
When the user opens a document -existing or new - the framework creates a
document object and its associated frame window and view objects. If the document
is associated with a file, the document reads the file and stores its data. The view
obtains data from the document and displays it. Figure 3.4 shows the general
process of creating a new document and its view and frame window. For more
details, see Chapters 2 and 4 in the Class Library Reference.

New~

Construct document object

Construct main frame window
Construct view object

Create document frame window

If Open, serialize data from file
Create view window

Initialize view

Display document in view

---- User begins editing document

Figure 3.4 Creating a Document

Document/View Interaction
When the user modifies data through the view, the view notifies the document. In
tum, the document tells all of its views (some documents have multiple views) to
update their displays with the new information, and the views respond by redrawing
all or part of the visible portion of the document. You 'llieam more about the
view's part in this process in Chapter 4.

In the Microsoft Foundation Class Library, documents are based on class
CDocument. To use CDocument, you derive your own document class from it.
For more detailed information about documents, see Chapters 2 through 4 and class
CDocument in the Class Library Reference.

32 Class Library User's Guide

You and the Document
Table 3.2 shows your responsibilities and those of the framework in implementing a
document.

Table 3.2 Document Implementation Responsibilities

Your Job

Derive a document class from class
CDocument.

Add data members to your class.

Implement application-specific
initialization and cleanup of your
document's data.

Override CDocument's Serialize
member function to specify how your data
is read and written.

The Framework's Job

Provides many document services through
class CDocument.

Calls the appropriate initialization and
cleanup functions at the right times.

Provides implementations of File Open,
Save, and Save As that call your S e ria 1 i z e
override to read and write your data.

Typically, you also add member functions to your derived document class through
which other objects-mainly the view-can access the document's data.

Scribble's Document: Class CScribDoc
Scribble is a simple drawing program. Documents in Scribble store the lines, or
"strokes," that make up a drawing. Because a drawing is typically made up of many
strokes, the document stores a list of all the strokes the user has drawn. Figure 3.5
shows a single stroke drawn in a Scribble document's view.

file .Edit Y:iew Window Help

II Scribl aDl

5

IReady

Figure 3.5 One Stroke in Scribble

Chapter 3 Creating the Document 33

Documents in Scribble are objects of class CScri bOac, which is derived from
CDocument. CScri bOac has a member variable named m_strakeL i st for
storing a list of strokes and member functions to manage the stroke list.

App Wizard writes a skeletal esc rib 0 a c class for you, but you need to add a few
things. In the following procedure, as in similar procedures throughout the tutorial,
you'11 add the indicated code to a named file, using the Visual Workbench editor.
The files are those created by App Wizard. In the code listings below, the lines to
add or change are always preceded by a few existing code lines or a comment to
help you locate the right place in the files. To add code, start Visual Workbench,
open the file named in the procedure, locate the place to add your lines, and type in
the lines that are marked with the symbol ~. For more information about editing
source files, see the Visual Workbench User's Guide.

~ To add member declarations to Scribble's document class

• Complete the declaration of class CScri bOac (in file SCRIBDOC.H). If
you're working along, add the marked lines, which contain new Scribble
specific code, to the file.

II Forward declaration of data structure class
class CStroke;
II The document class
class CScribDoc : public CDocument
{

protected: II Create from serialization only
CScri bDoc();
DECLARE_DYNCREATE(CScribDoc)

II Attributes
protected:

CObList m_strokeList; II Each element is a CStroke

II The document keeps track of the current pen width on
II behalf of all views. We'd like the user interface of
II Scribble to be such that if the user chooses the Pen
II Thick Line command. it will apply to all views. not just
II the view that currently has the focus.

UINT m_nPenWidth; II Current user-selected width
CPen m_penCur; II Pen created according to

II user-selected pen style (width)
public:

CPen* GetCurrentPen() { return &m_penCur; }

34 Class Library User's Guide

II Operations
public:

~ voi d Del eteContents ();
~ CStroke* NewStroke();
~ POSITION GetFi rstStrokePos();
~ CStroke* GetNextStroke(POSITION& pos);

II Implementation
public:

virtual ~CScribDoc();
virtual void Serialize(CArchive& ar); II Overridden for

II document ilo
/lifdef _DEBUG

virtual
vi rtua 1

/lendif
protected:

void AssertValid() const;
void Dump(CDumpContext& dc) const;

void InitDocument();
virtual BOOl OnNewDocument();
virtual BOOl OnOpenDocument(const char* pszPathName);

II Generated message-map functions
protected:

} ;

11{{AFX_MSG(CScribDoc)
II NOTE - the ClassWizard will add and remove member
II functions here. DO NOT EDIT what you see in these
II blocks of AppWizard code!

I/}} AFX_MSG
DEClARE_MESSAGE_MAP()

This code declares a C++ class that defines Scribble's documents. The member
variables and functions provide the typical functionality of a document-they
define and manipulate the document's data, serialize the data to and from files, and
provide diagnostic assistance when you compile a debug version. (Notice the
forward declaration of class CSt r 0 k e, the class used to define the document's data
structure. CScri bOoc needs to know about CStroke. You'll learn about
CStroke later in the chapter.)

Table 3.3 describes the member variables of class CScri bOoc.

Chapter 3 Creating the Document 35

Table 3.3 CScribDoc Data Members

Member

m strokeList

m nPenWidth

Description

A list of strokes. Each item in the list is an object of class
CStroke. The list itself is an object of class CObList, one
of the collection classes supplied by the class library.

A CPen object used to do the drawing. Its main attribute is
its width. The pen is created when the document is
constructed and is used during the creation of new strokes.

The current width of the lines drawn by the pen.

Note By convention, class names begin with an uppercase "e" and member
variable names begin with a lowercase "m_".

Table 3.4 describes the member functions.

Table 3.4 CScribDoc Member Functions

Member

CScribDoc.
""CScribDoc

DeleteContents

GetCurrentPen

Ini tDocument,
On NewDocument,
OnOpenDocument

NewStroke

GetFirstStrokePos

GetNextStroke
Serialize

AssertValid
Dump

Description

A default constructor and a virtual destructor. App Wizard
creates placeholders for these functions. In Scribble, they
remain empty.

Deletes the contents of a document-the strokes that make
up the drawing.

Retrieves a pointer to the current pen object any time it's
needed by the drawing code.

Called when a new document is created or an existing
document is opened. Overriding versions of the
CDocument member functions OnNewDocument and
OnOpenDocument call In i tDocument to initialize the
new document.

Creates a new stroke object and adds it to the list of strokes
in m_strokeL i st.
Returns the position of the first stroke object in
m_s t roke List.
Returns a pointer to the next stroke object in the list.

Overrides the Serialize member function of class
CDocument. The override specifies how to serialize a list
of stroke objects to and from a disk file. App Wizard creates
this function for you in skeletal form.

Tests the validity of an object's internal state.

Dumps the contents of an object's members for
examination during debugging.

36 Class Library User's Guide

You'll add code for most of these member functions in later sections of this chapter.
You'll learn more about Seri ali ze under "Serializing the Data" on page 43. For
more information about AssertValid and Dump, see Chapter 15, "Diagnostics."
You won't add code to these functions for Scribble.

The Document's Data: Class CStroke
In Scribble, a stroke consists of an array of points. As the user drags the mouse to
draw, Scribble collects points and stores them as part of the current stroke. Points
collected from the time the left mouse button is pressed to the time it's released
form one stroke of a Scribble drawing. Figure 3.6 shows Scribble's data structure
schematically. Scribble uses an object of class CPen for drawing.

Document

m_strokeList----I--..... I! ! ! ! I
ooo~ 0000
0000
0000
000
000
000

o
o

COb List of pointers to
CDWordArray objects

Arrays of Points

Figure 3.6 Scribble's m strokeList Data Structure

Each stroke is stored in an object of class CSt r 0 k e, Scribble's primary data
structure. The whole drawing is a list of CSt r 0 k e objects. CSt r 0 k e is a new class,
so you'll have to add its entire declaration to Scribble's source files.

~ To add the CStroke class

• If you're working along, add the code marked below. The declaration for class
CStroke follows that for class CScri bOoc in file SCRIBDOC.H. Here's the
declaration for class CSt ro ke:

Chapter 3 Creating the Document 37

II Declaration of class CScribDoc, then ...
class CStroke : public CObject
{

public:
CStroke(UINT nPenWidth);

protected:
CStroke();
DEClARE_SERIAl(CStroke)

II Attributes
UINT m_nPenWidth; II One width applies to entire stroke
CDWordArray m_pointArray; II Series of connected points

II Operations
public:

void AddPoint(CPoint pt);
Baal DrawStroke(CDC* pDC);

II Helper functions
protected:

CPoint GetPoint(int i) const
{ return CPoint(m_pointArray[i]);

public:
virtual void Serialize(CArchive& ar);

} ;

This code declares a C++ class of stroke objects. The member variables and
functions define and manipulate the data of a stroke and serialize it when the
document is serialized. You '11 add the member function definitions in the next
section.

Table 3.5 lists CSt r 0 k e' s member variables.

Table 3.5 CStroke Data Members

Member

m_pointArray

Description

Stores the width of the pen in effect at the time this stroke was
drawn.

Stores an array containing the points that define this stroke. These
are used to redraw the stroke as needed.

38 Class Library User's Guide

Table 3.6 lists CSt ro ke's member functions.

Table 3.6 CStroke Member Functions

Member

CStroke

AddPoint

DrawStroke

GetPoint

Serialize

Description

The class defines two constructors, one protected and one public.

Adds a new point to the stroke. The point is represented by a
CPoint object that defines the coordinates of the mouse during
drawing. Class CPoint is supplied by the class library.

When the view object redraws the document's data, it calls upon
each stroke object in the stroke list to draw itself by calling its
D raw S t r 0 k e member function.

Returns the CPoint object at a given index in the array of points
that defines this stroke.

To assist the document in making its data persistent, typically on
disk, CSt r 0 k e also overrides the Serialize member function of
CObject to define how a single stroke serializes its points and
other data. For more information about point serialization, see
"Serializing the Data" on page 43.

Building and Storing Strokes
Your next step is to add definitions for CSt r 0 k e' s member functions.

~ To add implementation code for the CStroke members

1. Add the following definitions for CSt r 0 k e 's two empty constructors to the
SCRIBDOC.CPP file:

II Last line of CScribDoc code, then ...
CStroke::CStroke()
{

II This empty constructor should be used by serialization only
}

CStroke::CStroke(UINT nPenWidth)
{

m_nPenWidth = nPenWidth;

The first constructor, declared protected in SCRIBDOC.H, is used only by the
application framework during serialization of CSt r 0 k e objects. Its parameter
list and function body are empty. The second constructor is for public use,
when you need to construct new stroke objects directly. When it constructs a
new stroke object, the public constructor initializes the pen width. CSt r 0 k e
doesn't declare its own destructor-it relies on CObject to provide one by
default.

Chapter 3 Creating the Document 39

2. Add the AddPoi nt member function to the SCRIBDOC.CPP file. The
function adds the latest mouse location to the current stroke's list of points:

II Constructor declarations, then
void CStroke::AddPoint(CPoint pt)
{

m_pointArray.Add(MAKELONG(pt.x, pt.y));

A CStroke object stores its array of points in the m_poi ntArray data
member-an object of class CDWordArray, one of the collection classes
supplied by the class library. A CDWordArray stores 32-bit doublewords. A
CPoint stores its horizontal and vertical coordinates in two 16-bit words, so a
CPoint fits into a doubleword. The AddPoi nt member function invokes a
Windows macro, MAKELONG, to convert the coordinates of a point to a
doubleword and passes the result to the Add member function of class
CDWordArray. Add stores the point as a doubleword at the end of the array.

At this point, class CStroke is not quite complete. You'll add code for the two
remaining member functions, GetPoi nt and DrawStroke, in Chapter 5. These
member functions are used by the view object to draw the data.

Managing the Document
Typically, you must write code to (a) initialize a document's data members and (b)
deallocate memory allocated for the data, release system resources, and perform
other cleanup chores. When a new Scribble document is created, C S c rib Doc must
create a pen for drawing new strokes. When a document is closed, the document
must delete the stroke objects it has stored up.

Initializing and Cleaning Up
Because a document can be created with either the New command or the Open
command on the File menu, C S c rib Doc overrides both the OnNewDocument and
OnOpenDocument member functions of CDocument to perform necessary
document initialization. However, for Scribble, both initializations are the same, so
both overrides call the new member function I nit Doc u me n t.

The framework automatically calls OnNewDocument when a new document is
created or a nap enD 0 cum en t when a document is opened. App Wizard creates a
skeletal version of On NewDocument for you; you must supply OnOpen Document
yourself.

If you're working along, add the marked code lines below to the indicated file.
Because the constructor and destructor created by App Wizard are empty, the
code isn't shown here.

40 Class Library User's Guide

~ To implement initialization for Scribble's documents

1. Add a definition for the I nit Doc urn e n t member function to file
SCRIBDOC.CPP:

II Empty constructor and destructors. then ...
void CScribDoc: :InitDocument()
{

m_nPenWidth = 2; II Default 2-pixel pen width
II Solid black pen
m_penCur.CreatePen(PS_SOlID. m_nPenWidth. RGB(0.0.0));

I nit Doc urn en t sets a default pen width and creates a pen object for drawing.
Pen creation is done through the CPen object, m_p e n Cur, by calling its
CreatePen member function. The arguments specify a solid black pen 2 pixels
wide.

2. Add the following to the override of OnNewDocument created by App Wizard
in file SCRIBDOC.CPP:

II InitDocument. then ...
BOOl CScribDoc::OnNewDocument(
{

if(!CDocument::OnNewDocument())
return FALSE;

In itDocument ();
return TRUE;

3. Finally, add the following override of On Open Document to file
SCRIBDOC.CPP:

II OnNewDocument. then ...
BOOl CScribDoc: :OnOpenDocument(const char* pszPathName
{

if(!CDocument::OnOpenDocument(pszPathName))
return FALSE;

In itDocument ();
return TRUE;

The two overrides call the base-class version of the function before performing
application-specific initialization of the document.

Chapter 3 Creating the Document 41

~ To implement document cleanup

• In file SCRIBDOC.CPP, add the following definition for Del eteContents,
which overrides the DeleteContents member function of CDocument:

II Empty constructor and destructors. then ...
void CScribDoc: :DeleteContents()
{

while(!m_strokeList.IsEmpty()
{

delete m_strokeList.RemoveHead();

Del e t e Con ten t s provides the best place to destroy a document's data when
you want to keep the document object around. The function is called auto
matically by the framework any time it's necessary to delete only the docu
ment's contents. It's called in response to the Close command on the File
menu, when the user closes the document's last open window, and before
creating or opening a document with the New and Open commands.

Scribble's override of De 1 eteContents iterates through the stroke list. For
each stroke object, the function invokes the delete operator. This destroys the
strokes. RemoveHead, a member function of class CObList, then clears the
pointers in the list. Alternatively, this cleanup code could be placed in the
destructor, but De 1 eteContents is reused later in other functions.

Managing the Data
As the user works with documents, the document object must manage a pen and its
list of strokes in the current drawing. Get Cur r e n t Pen is a helper function that
gives restricted, type-safe public access to the protected data member m_p e n Cur.
NewStroke, GetFi rstStrokePos, and GetNextStroke provide public access
to the protected data structure in m_s t r 0 k eLi st.

~ To implement document members for managing Scribble's data

1. Here's the definition for GetCurrentPen (it's already defined inline in file
SCRIBDOC.H, so don't add this code):

II Declaration of CPen m_penCur. then ...
public:

CPen* GetCurrentPen() { return &m_penCur; }

Get Cur r e n t Pen simply returns a pointer to the current pen. Here a public
member function is used to access the pen instead of making m_penCu r
public.

42 Class Library User's Guide

2. Add the NewStrake member function to file SCRIBDOC.CPP. NewStrake
creates a new stroke object and adds it to the stroke list:

II Dump member function, then ...
CStroke* CScribDoc::NewStroke()
{

CStroke* pStrokeItem = new CStroke(m_nPenWidth);
m_strokeList.AddTail(pStrokeItem);
SetModifiedFlag(); II Mark document as modified

II to confirm File Close.
return pStrokeItem;

New S t r a k e uses the C++ new operator to construct a new CSt r a k e object
dynamically, initializing it with the pen width. It uses the CObList member
function Add Tail to add the new stroke to the list. Then it calls the CDocument
member function SetModifiedFlag to flag the changes to the document and
returns a pointer to the stroke.

Note that the new operator never returns NULL. Instead, an exception is
thrown if memory could not be allocated. This would be a good place to
implement an exception handler with the TRY and CATCH macros. For
more information about exception handling, see Chapter 16, "Exceptions."

3. Add the following definition for GetFi rstStrake (file SCRIBDOC.CPP),
which returns the index of the first stroke in m s t r a k eLi s t:
II NewStroke, then ...
POSITION CScribDoc::GetFirstStrokePos()
{

return m_strokeList.GetHeadPosition();
}

Get Fir s t S t r a k ePa s calls the GetHeadPosition member function of class
CObList and returns a pointer of type POSITION to the first stroke object in
the list. POSITION is defined in the class library.

4. Finally, add this definition for GetNextStrake (file SCRIBDOC.CPP), which
returns the stroke object at a given index in the stroke list:

II GetFirstStrokePos, then ...
CStroke* CScribDoc: :GetNextStroke(POSITION& pos
{

return (CStroke*)m_strokeList.GetNext(pos);
}

GetNextSt rake calls the GetNext member function of CObList, which
returns a pointer to a CObject. The pointer must be cast to a pointer to a
CSt rake object (CSt ra ke is derived from CObject).

Chapter 3 Creating the Document 43

The purpose of providing GetFi rstStrokePos and GetNextStroke is to
make the stroke list easily accessible in a type-safe manner. These member
functions mimic the interfaces of the class library's list classes. This makes it
easy to iterate through the list of strokes with clean code like the following
(don't add this code to Scribble):

POSITION pos = pScribDoc->GetFirstStrokePos();
while(pos != NULL)
{

CStroke* pStroke = pScribDoc->GetNextStroke(pos);
II Do something with the stroke ...

Serializing the Data
This section adds code to define file input/output for Scribble documents. The
default I/O implementation in the Microsoft Foundation Class Library is called
"serialization." It provides a mechanism for making a document's data persistent
between work sessions with the program. Given the code added here, serial
ization is automatic when the user chooses the Open, Save, or Save As
commands from the File menu.

Note You don't have to write any code to process the Open, Save, and Save As
commands on the File menu-such as putting up the dialog boxes. The framework
supplies this code.

STORE

1
Document tells stroke
list (a CObList) to
store itself

+
Stroke list tells each stroke
(a CSt ra ke containing a
CDWordArray) to store itself

+
CDWordArray writes a
sequence of doublewords

~ (points) tOc.~.~k ~

~~

LOAD

1
Document tells stroke
list to load itself

+ Stroke list dynamically creates a
new stroke object (CSt r 0 k e)
for each stroke and tells stroke
to load itself

+
CSt r a k e tells its
CDWordArray to load itself

~
CDWordArray reads a
sequence of doublewords

C)fro~~~iSk~

Figure 3.7 Serialization in Scribble

44 Class Library User's Guide

The CScri bOac class declaration in file SCRIBDOC.H begins with the
following lines-the lines contain an important macro invocation needed for
serialization (don't add this code):

class CScribDoc : public CDocument
{

protected: II Create from serialization only.

} ;

CScri bDoc();
DECLARE_DYNCREATE(CScribDoc
II Other declarations ...

App Wizard wrote this code for you.

The DECLARE _ DYNCREA TE macro prepares the class so that document
objects can be dynamically created by the framework.

Serializing the Document
Serializing a document occurs in two stages. First, the framework calls the
document's S e ria 1 i z e member function. Second, that S e ria 1 i z e function
calls the Serialize function of the stroke list. If you're working along, add the
marked lines to the indicated files.

~ To implement serialization for Scribble documents

• Fill in the Seri ali ze member function for class CScri bOac. The
SCRIBDOC.CPP file defines a skeletal version of the function. Here's
S e ria 1 i z e, with one marked line added to adapt the serialization mechanism
to Scribble:

II OnOpenDocument. then ...
void CScribDoc::Serialize(CArchive& ar)
{

if (ar.lsStoring())
{

}

else
{

}

m_strokeList.Serialize(ar);

Chapter 3 Creating the Document 45

App Wizard creates the skeleton of the S e ria 1 i z e member function in class
CScri bOac; you simply fill in the code shown. Later you'll add code in both
branches of the if statement. App Wizard also generates comments of the form

II TODO: Add storing code here

You will typically remove these comments when the functionality has been
implemented.

Serialization uses an object of class CArchive ta manage the connection to a
disk file or other storage. A CArchive object, ar, is passed in as an argument.

A call to the archive object's IsStoring member function determines whether
this is a store or a load operation. If the archive is for storing (saving), the
stroke-list object's own Seri ali ze member function is called to store the
stroke's data to disk. If the archive is for loading, its S e ria 1 i z e member
function is called to load data from the disk file. This constructs new CSt r a k e
objects to fill the list. The stroke list for a document being read in from disk
must already be empty.

Note that the stroke list already exists when S e ria 1 i z e reads data in. That's
because it was declared as an embedded object, like this:

CObList m_strokeList;

rather than as a pointer, like this:

CObList* m_pStrokeList;

For a pointer, you'd use CArchive's extraction (») operator to read the data:

ar » m_pStrokeList; II Example of serializing to a
II referenced (non-embedded) object

But for an embedded object, as in Scribble, you call S e ria 1 i z e directly
because you don't want to create a new CObList object and because you
know the exact type of the object.

Serializi ng Strokes
When the document responds to an Open, Save, or Save As command, it delegates
the real serialization work to the strokes themselves. That is, the document tells the
stroke list to serialize itself, and the stroke list, in tum, tells the individual strokes to
serialize themselves. As a result, all strokes in the document are read from or
written to a file.

46 Class Library User's Guide

~ To implement serialization for stroke objects

1. Add the IMPLEMENT SERIAL macro for CSt r 0 k e.

Throughout the tutorial, Scribble is presented as a series of incremental
versions. When you build successive versions that modify the structure of
CSt r 0 k e, they are incompatible with earlier versions. Attempts to read
CSt r 0 k e data stored by a previous version may fail because the serialization
process expects a different structure. Each time you make such a modification of
CSt r 0 k e, it's valuable to tag the new version with a version number. The
version or "schema" number is checked automatically during serialization. You
can check the schema number in the serialization code to support backward
compatibility, allowing you to read files created with earlier versions of your
application.

II End of CScribDoc code in file SCRIBDOC.CPP
IMPLEMENT_SERIAL(CStroke, CObject, 1)

If you're working along, add the IMPLEMENT_SERIAL macro for
CSt ro ke as shown. The third argument is the schema number, set to 1 for
Scribble step 1.

The IMPLEMENT_SERIAL macro complements the DECLARE_SERIAL
macro invoked in file SCRIBDOC.H. The two macros prepare a class for
serialization.

2. Add a Seri ali ze override for class CStroke in the SCRIBDOC.CPP file.
Like esc rib Doc, CSt r 0 k e also overrides the Serialize member function of
its base class. When the stroke-list object is called to serialize itself, it calls
each stroke object in tum to serialize itself. Here's the code for CStroke's
version of Se ria 1 i ze:

II AddPoint, then ...
void CStroke::Serialize(CArchive& ar)
{

if(ar.lsStoring())
{

ar « (WORD)m_nPenWidth;
m_pointArray.Serialize(ar);

else
{

WORD w;
ar » w;
m_nPenWidth = w;
m_pointArray.Serialize(ar);

Chapter 3 Creating the Document 47

If the archive object is for storing, the stroke's pen-width value is stored in the
archive, and then its array of points is stored. Notice that the CDWordArray
object m_poi ntArray can serialize itself.

If the archive object is for loading, the stroke's data must be read in the same
order it was written: first the pen width, then the array of points. The else
branch of the if statement declares a local variable to receive the width, then
copies that value to m_n Pen Wid t h. It then calls upon the point array to load
its data. See Figure 3.7 on page 43.

Note that the m_n PenWi dth variable is cast to a WORD before it's inserted
in the archive, a r:

ar « (WORO)m_nPenWidth;

The cast is necessary because m_n Pen Wid this declared as type UINT
(unsigned integer). The archive mechanism only supports saving types of
fixed size. UINT, for example, is 16 bits in the Windows version 3.1
operating system and 32 bits in the Windows NT operating system. Using the
WORD cast makes the data files created by your application portable. To
promote machine independence, class CArchive doesn't have an extraction
operator for type int but does have one for type WORD.

Once this code is in place, serialization of Scribble's data is automatic.

In the Next Chapter
In this chapter, you filled in the details of Scribble's document class by defining its
data, providing useful functions through which to manipulate the data, and
specifying how the data objects are written to and read from files. So far, the data
can be initialized and cleaned up but not displayed or worked on by the user.

At this point, Scribble is about half ready to compile. In Chapter 4, you'll complete
the basic Scribble application by developing a view on the document. The view
displays strokes and manages all user input. At the end of that chapter, you'll
compile and test Scribble.

49

CHAPTER 4

Creating the View

In Chapter 3, you completed Scribble's document class. In this chapter, you'll add a
view class that provides a "view on the document." Scribble's view class displays
the strokes of a drawing and accepts user input from the mouse. By the end of this
chapter, you can compile and run Scribble.

Among the things you'll develop in this chapter are:

• Code to display Scribble's strokes- in class CScri bVi ew.

• Code to handle Windows messages as the user draws with the mouse.

You'll also get your first hands-on experience with ClassWizard. ClassWizard lets
you map Windows messages to message-handler member functions in your classes.
As you'll see in Chapter 6, it also lets you map the commands generated by user
interface objects such as menu items, toolbar buttons, and accelerator keys to
message-handler functions.

The code that you must add to fill out the framework in this chapter is mainly in the
following files: SCRIBVW.H and SCRIBVW.CPP. You'll also add two more
member functions to class CSt rake in SCRIBDOC.CPP.

This chapter and Chapter 3 cover step 1 of Scribble. If you want to work along,
adding the code as you go, begin with the files you worked on in Chapter 3 in your
MYSCRIB subdirectory. At this point, your files should consist of the starter files
you created with AppWizard in Chapter 2 and modified in Chapter 3. As you read
this chapter, add all lines of code marked with the ~ symbol in the left margin. At
the end of this chapter, your files should closely resemble those in the
SCRIBBLE\STEPI subdirectory.

If, on the other hand, you want to read along without adding code, you can print or
examine the files in the SCRIBBLE\STEPI subdirectory.

Instructions for compiling Scribble are given at the end of this chapter.

50 Class Library User's Guide

Views
The document object defines, stores, and manages the application's data. But all
user interaction with the document is managed through a view object attached to the
document object. Scribble uses a view object to display a document on the screen or
on a printer. This section explains the role of the view and introduces Scribble's
view class and its members.

As you saw in Chapter 3, when a new document is created in response to a New or
Open command from the File menu, the framework also creates a "document frame
window" and creates a view inside the frame window's client area as a child
window. The view displays the document's data and responds to mouse actions,
keystrokes, menu commands, and other actions as the user works on the document.
It's your task to specify how the view draws your application-specific data and
what it does in response to user actions.

Figure 4.1 illustrates the view's role in relation to the document.

View

GetDocument

OnUpdate

Manages user
interaction with
document

.....

1 Updates data

2. Telis view to
redraw itself

Figure 4.1 The View and the Document

Definition

... -..

Document

m_strokeList

UpdateAllViews

Coordinates ali
views on its data

A view is an object derived from class CView (or from another CView-derived
class, such as CScrollView) that manages user interaction with a document. The
view is attached to a particular document and is a child window that typically fills
the client area of a document frame window. In single document interface (SDI)
applications, the view fills the main frame window. In multiple document interface
(MDI) applications, the document frame window is in tum displayed inside the
main frame window of the application.

Views in the Framework
In the framework, the document manages data, but the view displays it and acts as
intermediary between the user and the document for all input, selection, and editing
in the document. Typically, a document has only one view, although it is possible
for a document to have multiple views, as in the case of splitter windows. A given

Chapter 4 Creating the View 51

view is always associated with only one document. Each Scribble document uses
only one view.

View Creation
A view is created by its parent frame window when the framework creates the
associated document. Both the document and frame objects are created by a
document template object; then the frame window creates the view. Immediately
after creation, the framework calls the view's 0 n I nit i a 1 Up d ate member
function to initialize the view. You'll frequently override the OnlnitialUpdate
member function of class CView to initialize the view object. After creation, when
the document's data changes, the view's OnUpdate member function is called.
You will frequently override the OnUpdate member function to optimize what
portion of the view is redrawn.

Drawing the View's Contents
Each time the view needs to be redrawn, the framework calls its 0 nOr a w member
function. 0 n D raw does the actual drawing, obtaining the data to draw from its
document. However, when more immediate drawing is required, a view can respond
to mouse-related messages, such as WM_LBUTTONDOWN, to do mouse-driven
drawing. You'll see both kinds of drawing in this chapter.

You'll always override the OnDraw member function of class CView to specify
how your document's data is drawn.

Document/View Interaction
A view can access the data stored in its document by calling the CView member
function GetDocument, which returns a pointer to the document object. The view
can call public member functions and access public data members of the document
by using the pointer.

When the user changes data in the view, the view notifies the document and updates
the data stored there. On such occasions, the document typically then calls its
UpdateAIIViews member function to cause any views attached to it to redraw
themselves. For a document with multiple views, this mechanism ensures that all of
them are updated properly.

You and the View
Table 4.1 shows your responsibilities and those of the framework in implementing a
view on a document.

52 Class Library User's Guide

Table 4.1 View Implementation Responsibilities

Your Job

Derive a view class from class CView. For
scrolling, use CScrollView instead. Other
view classes are available as well.

Implement your view's 0 nOr a w member
function.

Map Windows messages and commands to
member functions of your view.

The Framework's Job

App Wizard provides a skeletal view class
for you. Class CView and its derived
classes provide view services.

The framework calls 0 nOr a w at the
appropriate times, passing it a device
context object into which it can draw.

The framework calls your message-handler
member functions in response to the
corresponding Windows messages.

Other view classes include CFormView and CEditView. For more information
about views, see Chapters 2 and 4 and class CView and its derived classes in the
Class Library Reference.

Scribble's View: Class CScribView
The view's job in Scribble is to render strokes as the user draws them with the
mouse and to redraw the view as needed-for example, when the window is
covered by another window and then uncovered.

Views in Scribble are objects of class esc rib View, which is derived from class
CView. CScri bVi ew knows how to access the document's stroke list and can tell
the strokes stored there to draw themselves in the view.

App Wizard writes a skeletal esc rib Vie w class for you, but you need to
implement the 0 nOr a w member function and add a few other things. In the
following procedure, as you did in Chapter 3, you'll add the indicated code to a
named file. Add the lines marked with the ~ symbol in the left margin.

~ To define the working data used by the view

• Add Scribble-specific lines to class CScri bVi ew. File SCRIBVW.H declares
class CScri bVi ew. Lines are added to the code generated by AppWizard to
define some Scribble-specific data items:

class CScribView : public CView
{

Chapter 4 Creating the View 53

protected: II Create from serialization only
CScribView();
DEClARE_DYNCREATE(CScribView)

II Attributes
public:

CScribDoc* GetDocument();

protected:
CStroke*
CPoint

m_pStrokeCur; II The stroke in progress
m_ptPrev; II The last mouse pt in the stroke

I lin progress

II Operations
public:
II Implementation
protected:

public:
vi rtua 1 ~CScri bVi ewe);
virtual void OnDraw(CDC* pDC); II Overridden to draw

II this view
/lifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

/lend if

II Printing support
protected:

virtual BOOl OnPreparePrinting(CPrintInfo* pInfo);
virtual void OnBeginPrinting(CDC* pDC. CPrintInfo* pInfo);
virtual void OnEndPrinting(CDC* pDC. CPrintInfo* pInfo);

II Generated message-map functions
protected:

} ;

11{{AFX_MSG(CScribView)
II NOTE - the ClassWizard will add and remove member
II functions here. DO NOT EDIT what you see in these
II blocks of AppWizard code!

I/} }AFX_MSG
DEClARE_MESSAGE_MAP()

/lifndef DEBUG II Debug version in scribvw.cpp
inline CScribDoc* CScribView::GetDocument()

{ return (CScribDoc*)m_pDocument; }
/lendif

54 Class Library User's Guide

This code declares class CScri bVi ew, the view on the Scribble document's data.
The added lines declare two new protected member variables.

Table 4.2 describes the member variables of class esc rib View.

Table 4.2 CScrib View Data Members

Member Description

A pointer to the stroke currently being
drawn.

A CPoint object containing the previous
mouse coordinates, from which a line will
be drawn to the current coordinates.

The view uses these members to store the information it needs in order to record the
points of a stroke in progress.

Table 4.3 describes the member functions of class CScrib View.

Table 4.3 CScrib View Member Functions

Member

CScri bVi ew,
---CScribView

OnDraw

GetDocument

AssertValid,
Dump

OnPreparePrinting,
OnBegi nPri nt i ng,
OnEndPrinting

Description

With nothing to initialize and no data to destroy, the view's
constructor and destructor are empty.

On D raw updates the view by redrawing its contents. (It's
used to draw both on the screen and on a printer.)

Defined inline in file SCRIBVW.H, Get Document
retrieves a type-safe pointer to the document attached to this
view. The view uses the pointer to call document member
functions, which it must do to access the data it displays.

These diagnostic functions simply call the base-class
functions they override.

These virtual functions override the versions in CView to
specify the application's printing behavior. See Chapter 9
for more information about how Scribble prints.

App Wizard creates the constructor and destructor, Get Doc u men t, Ass e r t Val i d,
Dum p, 0 n Pre par e P r i n tin g, 0 n Beg i n P r i n tin g, and 0 n End P r i n tin 9 for
you. You won't need to alter any of these functions for the tutorial, so they are not
shown in this chapter.

Chapter 4 Creating the View 55

Notice the inline definition of Get Doc urn e n t after the class declaration above. The
debug version of this member function calls the IsKindOf member function defmed
in class CObject and uses the RUNTIME_CLASS macro to retrieve the run-time
class name of the document. For more information about those topics, see class
CObject in the Class Library Reference and Chapter 12, "The CObject Class," in
this manual.

Redrawing the View
When the view, or some part of it, must be redrawn, the framework calls your
override of the 0 n D raw member function.

~ To add implementation code for the view's OnDraw member function

• Add OnDraw to file SCRIBVW.CPP, as defined below:

II Constructor and destructor. then
void CScribView::OnOraw(COC* pOC)
{

}

CScribOoc* pOoc = GetOocument();

II The view delegates the drawing of individual strokes to
I I CStroke:: OrawStroke().
for(POSITION pos = pOoc->GetFirstStrokePos();

pos != NULL;)

CStroke* pStroke = pOoc->GetNextStroke(pos);
pStroke->OrawStroke(pOC);

The view calls upon the individual stroke objects to draw themselves. To do this,
the view needs access to the stroke data stored in the document, so the view's first
task is to obtain a pointer to its document, using Get Document. The view then uses
the pointer to iterate through the stroke list, telling each stroke to draw itself. You
saw the CStroke member functions GetFi rstStrokePos and GetNextStroke
in Chapter 3. When 0 n D raw calls Dr a w S t r 0 k e for a given stroke object, it passes
along the device-context object it received as a parameter. (Having the data draw
itself is only one possible strategy.)

To complete Scribble's drawing, you must also add the DrawStroke member
function to class CSt r 0 k e.

~ To add drawing code for strokes

1. Add the DrawStroke member function to file SCRIBDOC.CPP.lts declaration
is already in place in SCRIBDOC.H. Dr a w S t r 0 k e, called when the view
redraws itself (as described above) looks like this:

56 Class Library User's Guide

II AddPoint. then ...

BOOl CStroke::DrawStroke(CDC* pDC)
{

CPen penStroke;
if(!penStroke.CreatePen(PS_SOlID. m_nPenWidth. RGB(0.0.0»)

return FALSE;
CPen* pOldPen = pDC-)SelectObject(&penStroke);
pDC->MoveTo(GetPoint(0));
fore int i=l; i < m_pointArray.GetSize(); i++
{

pDC->lineTo(GetPoint(i));

pDC->SelectObject(pOldPen);
return TRUE;

Ora wS t r 0 ke is passed a pointer to an object of class CDC. CDC
encapsulates a Windows device context. In programs written with the
Microsoft Foundation Class Library, all graphics calls are made through a
device-context object of class CDC or one of its derived classes.
DrawStroke calls CDC member functions-SelectObject, MoveTo,
LineTo-through the pointer to select a graphic device interface (GDI) pen
into the device context and to move the pen and draw.

DrawStroke next constructs a new CPen object and initializes it with the
current properties by calling the pen's CreatePen member function-note
that this two-stage construction is typical of framework objects. Then
DrawStroke calls SelectObject to select the pen into the device context
(saving the existing pen as pOl dPen) and calls MoveTo to position the pen.
To initialize the pen position, DrawStroke calls the stroke object's
GetPoi nt with an argument of O. GetPoi nt returns the first point in the
stroke's array.

Ora w S t r 0 k e then iterates through the array of points. It calls the device
context's LineTo member function to connect the previous point with the next
point.

Finally, DrawStroke restores the device context to its previous condition by
reinstalling its old pen.

Important Always restore the device context to its original state before
releasing it to Windows. To do so, save the state before you change it. Storing
the old pen in 0 raw S t r 0 ke is an example of how to do this.

2. The GetPoi nt member function called by DrawStroke (and already defined
inline in file SCRIBDOC.H) is a helper function provided to retrieve points
from the stroke's point array. It looks like this (don't add this code):

Chapter 4 Creating the View 57

II Declaration of DrawStroke in class CStroke, then ...
protected:

CPoint GetPoint(int i) const
{ return CPoint(m_pointArray[i]);

GetPoi nt retrieves the doubleword stored at a given index in the point array.
It casts the doubleword to a CPoint.

The addition of DrawStroke completes Scribble's code for drawing in response to
update requests from the framework. However, Scribble also draws in response to
mouse actions, as discussed in the next section.

Handling Windows Messages in the View
To implement mouse-driven drawing in Scribble, it's necessary to write code that
handles several Windows messages related to mouse activity. You will use
Class Wizard to help write this message-handling code.

When the user presses the left mouse button while the pointer is in a Scribble
window, Windows sends the window a WM_LBUTTONDOWN message. When
the user subsequently releases the mouse button within the window, Windows sends
the window a WM _ LBUTTONUP message. Meanwhile, if the user moves the
mouse-as in drawing-Windows sends a WM_MOUSEMOVE message.

How does Scribble handle these messages? They're sent to a window, in this case
the currently active view. The view uses its "message map" to determine whether it
has a member function that can handle the message. For example, on receiving a
WM _ LBUTTONDOWN message, the view finds that it has a "handler"
associated with that message name and calls the handler. The handler is a member
function of class CScri bVi ew.

It's appropriate that the view should handle mouse-drawing messages because it's
in the view that Scribble's drawing takes place. The view represents that part of the
document that can be seen at anyone time.

What do the message-handler functions do? They track mouse activity, drawing in
the view. They also call member functions of the document to update its data. As
the user draws a stroke, the points that make up the stroke are stored in the
document's stroke list.

Connecting Messages to Code
This section takes you through the steps required to connect the three mouse-related
messages needed in Scribble to message-handler member functions of class
CScri bVi ew.

58 Class Library User's Guide

This step will be different from the previous ones. Instead of opening a file in the
Visual Workbench editor and adding lines of code, you'll invoke Class Wizard and
use it to make the connections between Windows messages and their handler
functions. Class Wizard lets you make the connections and generate the handler
functions with a few clicks of the mouse. Class Wizard writes an entry in the
message map for class esc rib View and writes a default member function
definition in the SCRIBVW.CPP file for the handler function. You fill in the
function's code.

You'll learn much more about ClassWizard, messages, message maps, and handler
functions in Chapter 6. For now, if you're working along, you'll invoke
Class Wizard to connect the three mouse-related messages to handler names and to
generate the handlers. Then you'll use the Visual Workbench editor to fill in the
handler functions. If you're reading along instead, you can still tryout Class Wizard
on the starter code you created with App Wizard in Chapter 2. For more information
about ClassWizard, see Chapter 6 in this manual, Chapter 13 in the Visual
Workbench User's Guide, and Chapter 9 in the App Studio User's Guide.

~ To connect the messages to Scribble's code

1. With your Scribble project open in Visual Workbench, invoke Class Wizard by
choosing the Class Wizard command from the Browse menu. The Class Wizard
dialog box appears.

2. In the Class Name edit box, make sure class CScri bVi ew is selected. The
name "CScrib View" and a number of predefined command IDs appear in the
Object IDs list box. Figure 4.2 shows ClassWizard's main dialog box.

ClassWizard

Class H.ame: [riUllllm.i\··li-•••• lliI!1+
scribvw.h, scribvw.cpp

Qbiect IDs:
CScribView
ID APP ABOUT
ID-APP-EXIT
ID=EDlf_coPY'

Messages:

+

OK

Cancel

Add Class __ _

Class !nfo __ _

:g-~g:i-~~iTE Help
ID-EDIT-UNDO

L!.::ID,--F,-!!IL::!::.E..!:.-M!!..!.R~U o!..!FI.=LEc.:...1 ___ +.L-______ ---l I edit Y..mi<hkL.

Member functions:

ID.dek h~I%'tirm I
I ~dit Code I

I

I A.dd Fum~hmt.. I

L-_____________ ---l

Description:

Figure 4.2 The Main Class Wizard Dialog Box

Chapter 4 Creating the View 59

3. In the Object IDs list box, select the name "CScribView." A list of Windows
messages that the view can receive appears in the Messages list box. Figure 4.3
shows ClassWizard with the list of messages.

ClassWizard

Class H.ame: I'-C_Sc_rib_:'I_ie_w ___ --"liI_!
scribvw.h, scribvw.cpp

Object IDs: - Messages: -
+ WM CA.NCELMODE

ID APP ABOUT WM CHAR
ID - APP -EXIT I- WM-CLOSE
ID-EDIT COP'(WM-CREATE
ID -EDIT-CUT WM-DESTROY
ID -EDIT-PASTE WM-DROPFILES
ID -EDIT-UNDO

~
WM-ERASEBKGND

ID -FILE -MRU FILE1 WM-HSCROLL

Member Functions:

~
i-

r-
+

OK

Cancel

Add ClasS-._

Class Inlo __ .

Help

Edit Y..ijjiilbb~ .. 1

IP.dek hmdio1"l I
I Edit Code 1

I

I A.dd F<.mdinn 1

~-------------~

Description:

Figure 4.3 Available Windows Messages in Class Wizard

4. In the Messages list box, select the name of a Windows message for which you
want to define a handler. To begin, select WM _ LBUTTONDOWN.

5. To define a handler function for the message, choose the Add Function button.

The Member Functions list box now lists the member function name
OnLButtonDown and the corresponding message-map macro name
ON_ WM_LBUTTONDOWN. A small hand-shaped icon next to the
WM _ LBUTTONDOWN message in the Messages list box shows that the
connection has been made.

6. Repeat steps 4 and 5 for each additional message: first WM_LBUTTONUP,
then WM MOUSEMOVE.

7. Choose the OK button to close the main Class Wizard dialog box.

At this point, Class Wizard has done the following things to associate each of the
three messages with its handler and to greatly simplify your work:

• Added a function declaration for the handler to the CScri bVi ew class
declaration in file SCRIBVW.H.

• Added a "message-map entry" for the message-to-handler connection in
CScri bVi ew's message map in file SCRIBVW.CPP.

60 Class Library User's Guide

• Added a function definition with a default body-to file SCRIBVW.CPP. For
example, the default function definition for On LButtonDown looks like this
(don't add this code):

void CScribView::OnLButtonDown(UINT nFlags. CPoint point)
{

II TODO: Add your message handler code here
II and/or call default
CView::OnLButtonDown(nFlags. point);

Notice that ClassWizard embeds a comment reminding you what to do and adds
a call to the OnLButtonDown member function of class CView, the base class
of esc rib Vie w.

You'll learn more about message maps, message-handler functions, and their uses
in Chapter 6. For more information about these topics, see Chapter 3 in the Class
Library Reference.

Adding the Message-Handler Functions
With the connections made, it's time to fill in the bodies of the handler functions. If
you're working along, add the marked lines of code.

~ To fill in Scribble's message-handler function bodies

1. Choose the ClassWizard command from the Browse menu in Visual
Workbench.

2. To write the handler code for the WM_LBUTTONDOWN message, select the
On L But ton 0 own handler name in the Member Functions list box.

3. Choose the Edit Code button. The Visual Workbench editor appears, scrolled to
a function definition for 0 n L But ton 0 own. Its body is selected for editing.
Figure 4.4 shows OnLButtonDown in the editor.

ClassWizard creates the following default implementation, which you'll replace
later:

void CScribView::OnLButtonDown(UINT nFlags. CPoint point)
{

CView::OnLButtonDown(nFlags. point);

Chapter 4 Creating the View 61

4. Fill in the member functions as described in the procedures that follow.

///

CScribView message handlers

id CScribView: : OnLButtonDown(UINT nFlags, CPoint point)

_IIJIQM4GW;';·W,;, '_M.44 .;;;'4,,·_1 .. .el$l"I'
CView: :OnLButtonDown(nFlags, point);

Figure 4.4 The Visual Workbench Editor

Initiate Stroke Drawing
The On LButtonDown member function, shown below, is called via the message
map when Windows sends a WM_LBUTTONDOWN message to the view object.
The function begins a new stroke, adding the current location of the mouse to the
stroke and adding the stroke to the document's stroke list. Then On LButton Down
"captures" the mouse-until the left mouse button is released to end the stroke.

~ To add code for OnLButtonDown

1. If you haven't already done so, use the Edit Code button in ClassWizard (or the
Visual Workbench editor) to move to the function definition for
On LButtonDown.

2. Replace the default implementation of the On L But ton D own function body with
the marked lines shown here:

62 Class Library User's Guide

void CScribView::OnLButtonDown(UINT nFlags, CPoint point)
{

II When the user presses the mouse button, she may be
II starting a new stroke, or selecting or de-selecting a
II stroke.

m_pStrokeCur = GetDocument()->NewStroke();
II Add first point to the new stroke
m_pStrokeCur->AddPoint(point);

SetCapture(); I I Capture the mouse unti 1 button up
m_ptPrev = point; II Serves as the MoveTo() anchor point

II for the LineTo() the next point, as
II the user drags the mouse

return;

This version of On LButtonDown doesn't include a call to the base class
version. It completely replaces the inherited behavior.

3. Remove the first parameter name, nFlags, from the declaration of
On L But ton Dow n in order to avoid a compiler warning that this parameter is not
referenced.

void CScribView::OnLButtonDown(UINT, CPoint point)

Once in the editor, you can complete your other message handlers or return to
Class Wizard and select another function.

Terminate Stroke Drawing
The 0 n L But ton U p member function, shown below, ends the current stroke when
the user releases the left mouse button. The function draws a line to connect the last
point, then releases the mouse for use by other windows. The test at the beginning
calls the Windows GetCapture function to determine whether the current window
has control of the mouse. If not, the user is not currently drawing in this view.

• To add code for OnLButtonUp

1. Use the editor to scroll to the 0 n L But ton U p function definition in the same file.

2. Replace the default implementation of the 0 n L But ton Up function body with the
marked lines shown here:

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

3.

Chapter 4 Creating the View 63

II OnLButtonDown, then ...
void CScribView::OnLButtonUp(UINT nFlags, CPoint point
{

}

II Mouse button up is interesting in the Scribble
II application only if the user is currently drawing a new
II stroke by dragging the captured mouse.

if(GetCapture() != this
return; II If this window (view) didn't capture the

II mouse, the user isn't drawing in this window.

CScribDoc* pDoc = GetDocument();

CClientDC dc(this);

CPen* pOldPen = dc.SelectObject(pDoc-)GetCurrentPen());
dc.MoveTo(m_ptPrev);
dc.LineTo(point);
dc.SelectObject(pOldPen);
m_pStrokeCur-)AddPoint(point);

ReleaseCapture(); II Release the mouse capture established
II at the beginning of the mouse drag.

return;

Remove the first parameter name, nFZags, from the declaration of
On L But ton U p in order to avoid a compiler warning that this parameter is not
referenced.

void CScribView: :OnLButtonUp(UINT, CPoint point)

Draw While the Mouse Button is Down
Between the time that the mouse button goes down and the time that it's released,
Scribble tracks the mouse and draws a trace of its movements in the view.
On M 0 use M 0 v e, shown below, is called as the user moves the mouse while drawing
the current stroke. The function connects the latest mouse location with its previous
location and saves the new location as the previous point for the next time the
function is called. To do the drawing, OnMouseMove constructs a local CClientDC
object used to draw in the window's client area.

~ To add code for OnMouseMove

1. Scroll to the OnMouseMove function definition in the same file.

2. Replace the default implementation of the 0 n M 0 use M 0 v e function body with the
marked lines shown here:

64 Class Library User's Guide

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

3.

II OnLButtonUp, then ...
void CScribView::OnMouseMove(UINT nFlags, CPoint point)
{

II Mouse movement is interesting in the Scribble application
II only if the user is currently drawing a new stroke by
II dragging the captured mouse.

if(GetCapture() != this)
return; II If this window (view) didn't capture the

II mouse, the user isn't drawing in this window.

CClientDC dc(this);

m_pStrokeCur->AddPoint(point);

II Draw a line from the previous detected point in the mouse
II drag to the current point.
CPen* pOldPen =

dc.SelectObject(GetDocument()->GetCurrentPen());
dc.MoveTo(m_ptPrev);
dc.LineTo(point);
dc.SelectObject(pOldPen);
m_ptPrev = point;
return;

Remove the first parameter name, nFlags, from the declaration of
On M 0 use M 0 vein order to avoid a compiler warning that this parameter is not
referenced.

void CScribView::OnMouseMove(UINT, CPoint point)

Together, these three member functions handle the three phases of mouse
drawing: beginning to track the mouse, tracking the mouse and connecting points,
and ending mouse tracking.

For more information about the Microsoft Foundation Class Library classes
mentioned in this section, see the Class Library Reference.

Compile and Test Scribble
In this section, if you've been working along, you'll compile your completed
code and tryout the program. If you're simply reading along, use the Scribble
project supplied in your Visual C++ installation as described in step 2 following.

Chapter 4 Creating the View 65

~ To tryout your work in Chapters 3 and 4
1. If you don't have Visual Workbench running, start it by choosing the Visual

Workbench icon in the Program Manager.

2. Open the SCRIBBLE.MAK project (if it's not already open) by choosing Open
on the Project menu and completing the dialog box. The following describes
where to find the appropriate version of the project:

If you're building Scribble after working through the chapter, use the
SCRIBBLE.MAK file in your MYSCRIB directory.

-or-

If you're simply previewing Scribble without adding code, use the
SCRIBBLE.MAK file provided by Visual C++ in the
MFc\sAMPLES\5CRIBBLE\STEP1 subdirectory.

3. On the Project menu, choose Build to compile and link Scribble.

4. If necessary, use the Visual Workbench debugging facilities to find and correct
any errors you made.

For debugging infonnation, see Chapter 11 in the Visual Workbench User's
Guide.

After compiling Scribble, tryout its features. When Scribble runs, an MDI
application window appears with a menu bar containing File, Edit, View, Window
and Help menus and a toolbar and status bar. It has one document window open as
shown in Figure 4.5.

File Edit ~iew Window Help

~-----------------S-cr-ib-l----------------a-mn

0, wor d • He

I Ready

Figure 4.5 Scribble Step 1

66 Class Library User's Guide

~ To give Scribble a try

1. On the Visual Workbench Project menu, choose the Execute Target command to
run Scribble.

2. On the File menu, use the New command to create a new document.

3. Move, resize, minimize, and maximize the document window.

4. Draw "Hello, World!" (or anything) in the window. Then save the file as
HELLO.SCB.

5. Try the Print Preview and Print commands on the File menu.

Note Your printout may show the strokes of your scribbling at a reduced size.
This is because the current version of Scribble uses the MM _TEXT mapping
mode instead of the MM _ LOENGLISH mapping mode. Unlike
MM_LOENGLISH, which Scribble will use at a later stage, MM_TEXT
doesn't acknowledge that a pixel on the printer is much smaller than a pixel
on the screen. Printing will improve later in the tutorial.

6. Close HELLO.SCB and reopen it with the Open button on the toolbar.

7. Create a new document with the New button on the toolbar and draw in the new
document. (Save the new document if you like.)

8. Exit Scribble.

Note During drawing, Scribble samples points as fast as it can (as soon as the
mouse moves). When Scribble's view redraws a stroke, the playback represents
approximately the speed at which the stroke was originally drawn.

This concludes your quick introduction to Scribble. You've seen how to
implement the document with serialization and the view with message handling.
In the next chapter, you'llleam to construct some additional user-interface
components with App Studio. Later chapters add more (and more interesting)
code to Scribble.

CHAPTER 5

Constructing the User Interface
With App Studio

67

Now that you've implemented enough of Scribble by hand to see how it works, it's
time to explore the tools that eliminate much of the handwork.

The next three chapters show how to use some of the powerful tools supplied with
the Microsoft Foundation Class Library.

• This chapter explains how to use App Studio to visually construct Scribble's
menus and toolbar.

• In Chapter 6, you will use Class Wizard and Visual Workbench to bind menu
items and toolbar buttons to commands and define message-handler functions to
process the commands.

• Chapter 7 shows how to use both App Studio and Class Wizard to create a
dialog box and connect it to a menu command.

App Studio, Class Wizard and Visual Workbench automatically add these new
features to the resource and source files that App Wizard created in Chapter 3 and
that you augmented in Chapter 4.

This chapter and Chapter 6 cover step 2 of Scribble. If you want to work along,
adding the code as you go, begin with the files from Chapter 4 in your MYSCRIB
directory. At this point, your files should be very similar to the files in the
SCRIBBLE\STEPI subdirectory. As you read this chapter, perform all App Studio
steps. At the end, your resource file, SCRIBBLE.RC, should closely resemble the
same file in the SCRIBBLE\STEP2 subdirectory. Also in Visual Workbench you'll
make a small addition to the MAINFRM.CPP file. You can compile the new
version of Scribble at the end of Chapter 6.

If, on the other hand, you want to read along without adding code, you can print or
examine the files in the SCRIBBLE\STEP2 subdirectory.

Even if you don't want to add code, however, it's a good idea to work along in this
chapter to familiarize yourself with App Studio and the Visual C++ programming
process. You can begin by making your own copy of the SCRIBBLE\STEPI
subdirectory.

68 Class Library User's Guide

Edit Scribble's Menus
The first task in this chapter is to edit Scribble's menus using the menu editor in
App Studio.

Thanks to App Wizard, Scribble starts out with a skeleton resource file with no
effort on your part. You can look at the file SCRIBBLE.RC among the files
generated in Chapter 2 to see what's there.

Default Menus
The menus App Wizard generates by default include:

• A menu bar to display when Scribble, a multiple document interface (MDI)
application, has no documents open.

They include a basic File menu, a View menu for toggling the visibility of
Scribble's status bar and toolbar, and a basic Help menu.

• A menu bar to display when a Scribble document is open.

They include, besides those above, more File menu commands, an Edit menu
with standard commands, and a Window menu with standard commands
(supplied only for MDI applications, like Scribble).

Note Single document interface (SDI) applications have only one menu bar. The
correct menu bars are generated when you choose between SDI and MDI in
AppWizard.

Scribble's New Menu Commands
The goal in this section is to add a new Clear All command to the Edit menu as well
as a completely new Pen menu with two commands, Thick Line and Pen Widths.
The Clear All command clears the current drawing and deletes its stroke data. The
Thick Line command toggles the thickness of the lines used to draw subsequent
strokes. They can be thick or thin. The Pen Widths command brings up a dialog box
that lets the user set the thick and thin widths in pixels for subsequent drawing.

In the discussion that follows, you'll see how to create the new menu items with
App Studio. In the next chapter, you'll see how to use ClassWizard to connect the
menus to code. And in Chapter 7 you'll see how to create the Pen Widths dialog
box and connect it to the menu command.

Adding the Menus
This section adds all of Scribble's new menus and demonstrates the fundamental
techniques for editing menus with App Studio.

Chapter 5 Constructing the User Interface with App Studio 69

Designing
Because App Studio is highly visual, it is easy for you to design your application's
user interface. For example, you can drag menus around on the menu bar, drag and
drop new controls on a dialog box, use tools to align the elements, and so on.

Beyond that, App Studio lets you test the behavior of your menus and dialog boxes.
While you're editing menus, simply click the menu bar to see a menu drop down.
While you're editing a dialog box, invoke App Studio's Test command to simulate
the actions of the dialog box and its controls. You'll see the Test command in use in
Chapter 7.

Examining and Editing Resources
App Studio lets you work with many resource types: menus, dialog boxes, bitmaps,
string tables, and more. Use the resource browser to select a particular resource
type and then to select a specific resource of that type. The resource browser is the
first window you see when you run App Studio-it's the upper window in Figure
5.1. The figure shows the Menu resource type selected .

. ;;;
File Edit Resource Window Help

II SCRIBBLE.RC (Resource Script) aa
Type:

iJ Accelerator

~Bitmap
~Dialog

[~Icon

!!!!; String Table

Ready

Resources:

~ IDR_MAINFRAME

~ IDR_SCRIBTYPE

(2Iolal)

---~I-----I-- Resource
browser
with Menu
selected in
the Type
list box

Figure 5.1 The App Studio Resource Browser

In the resource browser, you can click a resource type to view a list of the specific
resources of that type. Each resource has an ID and an icon that shows its type.
Then you can click a resource ID and choose the Open button to invoke an editor
for the selected resource. Or you can create a new resource of the selected type by
choosing the New button.

When you select and open a specific resource, such as a menu, App Studio invokes
an editor for that type. For example, the menu editor displays a menu bar showing
all menus defined by the open menu resource. Although you're in editing mode, you
can simulate menu operation by choosing a menu with the mouse (keyboard short
cuts are not available for a menu-in-progress). You can also drag menus to new

70 Class Library User's Guide

locations, add new menus or menu items, and edit the properties of existing menus.
Figure 5.2 shows a menu-editor window.

~--------t- Resource
browser

11"~~~~~==~==~~~fu§====~==~~S--------JL-Menu

editor

,~~:::::::::::~====::;::;:::;-----'=========:!!4-------I-- Properties
1D: IIDR SCRIBTYPE I III window

Figure 5.2 The Menu Editor

As you work with the editor for a resource, the Properties window floats nearby,
showing a "property page" for the resource. (To keep it there, use the "pushpin"
control in the upper left comer, as shown in Figure 5.3.) Figure 5.3 shows the
property page for a menu resource. A property page displays information about the
resource and lets you edit the information. For example, a menu's property page
displays the ID of the command associated with the menu, the menu's caption as it
appears when the menu drops down, and other properties that relate to the menu's
visibility or status. The property page also shows a command-prompt string dis
played when the user moves the mouse over the menu item. In framework programs,
the prompt tells the user what the menu command does. Some resources have
multiple property pages, which you can access through the drop-down list box in the
upper-right comer of the Properties window.

r ~1 W]Menu: Menu Item Properties I General Iii
1D: ,-I _____ ------'11] !;.aption: I.

='-----~=~
[2J .~;.epmdi!j [2J f.opup D Inactive .!l.reak: INone Iii
III ChecLd D !!.rayed D HelP

PromPt I

Figure 5.3 A Property Page

Chapter 5 Constructing the User Interface with App Studio 71

Properties for a selected resource are displayed automatically in the Properties
window. When you select the ID with a single click, check boxes for general pro
perties appear-such as Preload, Moveable, Discardable, and Pure. Usually you
can ignore these. When you open the resource to edit it and select a menu in the
editor window, the property page reflects the properties of the chosen menu item.
Typically, you'll edit these.

When you use App Studio to define a command ID for a menu, App Studio assigns
each such ID a unique value and writes a #define line for it in the file you specify
or RESOURCE.H by default. Automatic definition of such symbols is one of the
advantages of using App Studio. If you enter a duplicate ID, App Studio alerts you
so you can change it.

The command ID and a caption string are required menu properties. For more
information about menu property pages, see the App Studio User's Guide.

Add the Clear All Command to Scribble's Edit Menu
How App Studio handles menus is illustrated when you add the new menu item, the
Clear All command, to Scribble. If you're working along, use the following
procedure:

~ To add Scribble's Clear All Menu Command

1. Start up App Studio: With your Scribble project open in Visual Workbench,
open the resource file SCRIBBLE.RC from the File menu.

If you're working along, use the version of SCRIBBLE.RC in the directory
MFc\sAMPLES\sCRIBBLE\MYSCRIB. If you're reading along, use the
version in the directory MFc\sAMPLES\sCRIBBLE\STEPl.

This launches App Studio, which automatically uses the resource compiler to
compile the file's resources.

When the file has been compiled, the App Studio resource browser lists
Scribble's resource types.

Important Although you can run App Studio as a stand-alone program, it's best
to run it from the Tools menu in Visual Workbench with your project already
open. Or you can run App Studio by opening a .RC file from the Visual
Workbench File menu. Running App Studio from Visual Workbench in either of
these ways allows Visual Workbench to pass useful information about the
project to App Studio.

2. Choose Menu from the Type list box of the resource browser.

72 Class Library User's Guide

Two menu IDs appear in the right-hand list box: IDR_MAINFRAME and
IDR_SCRIBTYPE. IDR _MAINFRAME is the menu resource for the multiple
document interface (MDI) frame window when no documents are displayed in
its child windows. IDR_SCRIBTYPE is the menu resource for the frame
window when a document in a child window has the focus. (Under the multiple
document interface (MDI), the available menus vary depending on context.)
This ID was defined for you by App Wizard. The ID name is based on the
Document Type Name you supplied in App Wizard.

3. Open the IDR_SCRIBTYPE menu resource.

Select the ID in the Resource list box and choose the Open button, or double
click the ID. A menu-editing window appears. You see the menus much as you
would see them in the running application. If the Properties window does not
appear, select Show Properties from the Window menu. The Properties window
now shows the properties of this particular menu resource. Figure 5.4 shows the
menu editor and a general property page for the resource.

rr~~I!~~ii!~~~~!~!~~~~~~[--L Empty

0----_______ -'1 W .c.aption: I
1-----------;;:::====::::;:::::

D .s.eparator D E.opup

D Checked D .G.rayed

Prompt: I

D In.active

DHe.!.p

Figure 5.4 Menu Editor for IDR_SCRIBTYPE

4. Click the Edit menu.

cells

The menu drops down as it would in the application. An empty cell outlined with
a dotted line sits below the last menu item, as shown in Figure 5.4. The cell
defines where you add the next menu item.

For a taste of what you can do with menus, see the box "Drag and Drop" on
page 77.

5. Click the cell at the bottom of the Edit menu.

Chapter 5 Constructing the User Interface with App Studio 73

The cell is highlighted with a fuzzy gray outline. This is where you'll see the
menu's caption after you type it in the Properties window.

6. Type the caption Clear &All in the Caption edit box of the Properties window.

As soon as you start typing, the text you enter appears in the ragged-outlined
cell on the menu. You don't have to select the Caption edit box first.

Type the ampersand character (&) in front of the letter to be used in an access
key combination. As you type &A, for example, the letter A appears
underlined in the menu.

Note If you wanted to specify an accelerator or shortcut key for the menu item,
you'd append its specifier after the caption. For example, to specify CTRL+O as
the accelerator for an Open command, the caption string would read
"Open ... \tCTRL+O" where '\1:" signifies a tab to align the column.

7 . Open the ID drop-down list in the Properties window and start typing the ID for
the Clear All command: ID EDIT C. - -
As soon as you start typing the ID, the drop-down list box scrolls to the first ID
that matches the letters you've typed so far. This behavior occurs because
ID _EDIT_CLEAR _ALL is a command ID predefined by the class library.
App Studio ensures that the ID you enter is unique.

Two IDs that begin with "ID_EDIT_C" appear in the list box. Select the second
one: ID EDIT CLEAR ALL. - - -
Figure 5.5 shows the property page after you've selected the ID.

I-----__ ---;:::==~

o ~eparB.tor 0 Eopup 0 Inactive .!:!.reak: '-INo_ne_---'liJ ... !

o Checked 0 y.rB.yed 0 Help

Prompt: I Erase everything

Figure 5.5 Property Page with ID

You can define your own command IDs, of course. You'll see an example under
"Add Scribble's Pen Menu" on page 74.

8. As soon as you select the predefined ID, the following string appears in the
Prompt edit box: "Erase everything." Change the wording to "Clears the
drawing."

The prompt string is displayed in the status bar, if the application has one, when
the user navigates up and down the menu using the keyboard.

74 Class Library User's Guide

App Wizard predefines this text for the ID _EDIT_CLEAR _ALL symbol. For
an ID that isn't predefined, you should enter a descriptive prompt string. This
context-sensitive menu information is essentially free, so take advantage of it.

That's it. You've added the Clear All command to the Edit menu. It appeared in the
menu as soon as you started typing its caption. Figure 5.6 shows the finished
product.

file Edit Resource Window !:!.elp

SCRIBBLE.RC (Resource Script)

I file Edit View Window Help L.·.·~.·.·····. J
!!ndo Ctrl+Z

Cu! Ctrl+X
.c.opy Ctrl+C

.:<"'" P~,~,t~, ,.,.,.,.,.Gtr.,I,t.V,
Clear All -+.--------------ttit---_#_ New

"'ii"" """.'.""""""""""""""""""""""" 'it menu item

~Menu: Menu Item Properties IGeneral

'= 10: liD_EDIT _CLEAR_ALL I iii kaption: I Clear &AII ------+-+---111-- Properties

D lieparator

D Checked

DEopup

D .G.rayed

1= Prompt: I Clears the drawingl

D l.!lactive

DHe!.p

Figure 5.6 Adding the Clear All Menu Item

6.reak: IJ-N_on_e ___ liI_ filled

Note You don't have to press ENTER or click any buttons to conclude your menu
editing. App Studio automatically stores the edited resource in the resource file.

The most important thing about defining the menu command is assigning it an ID.
To the framework, the ID is the command. At some point, you have to specify what
happens when the user chooses the Clear All menu command; which code will be
executed? You'll learn more about commands in the next chapter.

Add Scribble's Pen Menu
Adding an entire new menu is similar to adding new commands to existing menus.
If you're working along, use the following procedure:

~ To add Scribble's Pen menu

1. With the menu-editor window still showing, click in the ragged-outlined cell at
the right-hand end of the Scribble menu bar (after the Help menu).

Chapter 5 Constructing the User Interface with App Studio 75

This cell serves the same purpose for the top-level menus as the other ragged
outlined cell does for items within a pop-up menu.

2. To position the menu entry, drag the ragged-outlined cell to the left and drop it
between the Edit and View menus. (See the box "Drag and Drop" on page 77.)

3. Type the new menu's caption, &Pen, in the Caption edit box of the Properties
window.

This is the only step needed to define the Pen menu as a whole. The next step is
to define the menu items on the Pen menu.

Figure 5.7 shows the new Pen menu after it has been dragged to its new location
and the menu caption typed in.

'---______ -----'1 iii kaption: I &Penl 1------"--------.;::::===::::;:::::;
to:

III 1ieparator [S] E.opup o Inactive
III Checked 0 .Grayed o Help

Prompt: I

Figure 5.7 The Pen Menu Dragged into Position

Original
position

New
position

4. Press the ENTER key to advance to the first menu item or click the ragged
outlined cell that descends beneath the word "Pen."

5. As you did for the Clear All command, type a caption for the Thick Line
command in the Caption edit box: Thick &Line.

6. Select the ID combo box and type a command ID:
ID PEN THICK OR THIN. - - --

7. Type a command prompt string in the Prompt edit box: Toggles the line
thickness between thin and thick.

No default string appeared because ID_PEN_THICK_OR_THIN is not a
predefined command ID.

8. Click the ragged-outlined cell at the bottom of the Pen meLu, below "Thick
Line."

76 Class Library User's Guide

9. As you did for the Thick Line command, type a caption for the Pen Widths
command: Pen &Widths.

The ampersand (&) appears before the character to be used as an access key.
The ellipses (...) following a menu item's text lets the user know that the item
brings up a dialog box.

10. Type a command ID: ID _PEN_WIDTHS

11. Type a command prompt string: Changes the size of the thin and thick pen

That's all it takes to create the Pen menu. Figure 5.8 shows the completed menu
as it appears in the menu editor.

file Edit Resource Window Help

SCRIBBLE.RC (Resource Script)

.1: ul:m •

I file Edit Een)liew Window Help i ,

~Menu: Menu Item Properties IGeneral

I

l.fJ
:: lO: IID_PEN_WIDTHS IIiJ .c.llption: Ipen &Widths

I---__ -----;::::==:::::::::;~

1!.rellk: II-N_on_e_--,-

I
Iii DSepllmtor

D Checked
DEopup

D limyed

D 1!!.llctive

D HeLP

~ Prompt: I Changes the size of the thin and thick pen

Figure 5.8 The Completed Pen Menu

I -

Chapter 5 Constructing the User Interface with App Studio 77

Drag and Drop
Drag and drop is a common technique in App Studio. You'll find it in the user
interfaces of many of the resource editors. For example, in Chapter 7, you'll see it
used to drag various kinds of controls from a controls palette and drop them into a
dialog box in the dialog editor. Try experimenting in the menu editor: position the
mouse over an outlined box under a menu item; press the left mouse button, and
drag the box up or down the list and drop it where you like by releasing the mouse
button. Notice that when you start to drag, an insertion point appears to orient you
for dropping. You can also drag a whole menu to some other location in the menu
structure, or you can drag a top-level menu to a lower level, to create a hierarchical
menu. If you change your mind, drag the menu back or choose Undo from the Edit
menu.

Connect the Menus to Code
Typically, at this point you would invoke ClassWizard from App Studio's Resource
menu and use it to bind the menu commands to message-handler functions. That
step is postponed until the next chapter in order to keep this chapter focused on App
Studio and constructing the user interface. If you like, you can skip ahead, perform
the command-binding steps in Chapter 6 and then return to this chapter to edit
Scribble's toolbar.

Edit Scribble's Toolbar
The resource file that App Wizard gives you also includes a toolbar bitmap. Figure
5.9 shows the toolbar bitmap. In this section you'll use App Studio's bitmap editor
to add a new button to the bitmap for Scribble.

~ Help buttons

[j~1iII db ~~ ~~?
~ I Print button

I Cut/Copy/Paste buttons

File Save button
File Open button

File New button

Figure 5.9 The Default Toolbar Bitmap

78 Class Library User's Guide

Earlier in the chapter, you added the Pen menu. One of its menu items is the Thick
Line command. In this section, you'll add a Thick Line button to Scribble's toolbar.
Then, in Chapter 6, you'll use ClassWizard to connect both the Thick Line menu
item and the Thick Line toolbar button to the same handler member function. Thus
the Thick Line toolbar button will become an alternative user interface for the
Thick Line menu item. That is, both user-interface objects will have the same
command ID, so they generate the same command message, which invokes the same
handler function.

When the user chooses either the menu item or the toolbar button, the chosen item
sends a command message that toggles Scribble's drawing pen between thin and
thick lines. Figure 5.10 shows Scribble as it appears with the finished toolbar. The
Thick Line button is the eighth button from the left.

file Edit Een ~iew Window .!:!.elp

II Scrib1 alii

Figure S.10 Scribble with Its Edited Toolbar

About the Toolbar
Some of the buttons on Scribble's toolbar already work, as you saw in Chapter 4.
The buttons for opening and saving files are already connected to handlers defined
by the framework. All you had to do to make the file operations functional was
write the Serialize functions for the document and the stroke data structure. The
print button is supported by default.

The Cut, Copy, and Paste buttons on the toolbar will not be implemented for
Scribble. The Help button will not be connected up until a later chapter in the
tutorial.

Although this chapter simply shows you how to add one new button, you could
easily add others or delete unused buttons from the toolbar bitmap.

Chapter 5 Constructing the User Interface with App Studio 79

Add the Thick Line Button to Scribble's Toolbar Bitmap
You'll use App Studio's graphics editor for this task.

~ To edit Scribble's toolbar

1. Start up App Studio from Visual Workbench.

You saw how to do this earlier in the chapter.

2. In the resource browser, choose Bitmap in the type list box.

If the Properties window is not open, open it by choosing the Properties button
in the resource browser window. Click the pushpin so the Properties window
will remain open.

Figure 5.11 shows the resource browser at this stage. In the Properties window,
you see a Preview box with an actual-size image of the bitmap.

3. Select the IDR_MAINFRAME resource ID in the Resources list box.

File Edit Resource Window Help

Type: Resources:

IF Acceler alor
110I11III11111 ~

~Dialog
i"'llcon

iMenu
~ SIring Table

~ ~ ~

(1 total)

I
I Properties ___

II----------++-- Resource
browser with
Bitmap ID
selected

I Resource Iii
ID: 1"111111111'11111, I iii Preview:

o ereload 0 Jliscardable

o Moveable 0 Pyre

~----l Filename: Ires\loolbar,bmp
Read.\' .

Figure 5.11 Bitmap Selection in the Resource Browser

Preview
of bitmap

4. Choose the Open button to Open the IDR_MAINFRAME bitmap resource.

An image window opens showing the bitmap. Below it is the Properties window.
A graphics palette opens as well, showing the tool box, a color indicator, the
color palette, and the option selector. Figure 5.12 shows this configuration. You
may see more or less of the image window than shown in the figure depending
on your screen size.

80 Class Library User's Guide

You may want to drag the graphics palette out of the way on the left -hand side
of the image window.

Pane with normal view

116 Iii

Pane with
zoomed
view

Graphics
palette

Bitmap
editor
window

D liave Compressed Properties
window

Figure 5.12 The Bitmap Image Window

5. Use the window's maximize button to enlarge the image window that shows the
bitmap.

6. From the Image menu Choose Grid Settings.

7. In the Grid Settings dialog box, set the Tile Grid checkbox and choose the OK
button. (Figure 5.13 shows the Grid Settings dialog box.) Leave Pixel Grid
checked as well. The size boxes show a grid size of 16 pixels by 15 pixels. This
is the size of a "tile" -one of the buttons on the toolbar.

Turning on the Tile Grid option places a thin blue rectangle, a guide, around
each tile in the bitmap. These guides make it easier to select and work with a
tile.

Grid Settings

IS] Eixel Grid

lS][iii~§ii~1 --------,

~idth: ~ pixels

H~ight: ~ pixels

OK

Cancel

!::!.elp

Figure 5.13 The Grid Settings Dialog Box

Chapter 5 Constructing the User Interface with App Studio 81

8. Scroll the right-hand pane of the image window (which shows a zoomed image
of the bitmap) until the right -hand end of the bitmap is visible in the center of
the pane.

Notice that the bitmap is outlined by a selection rectangle. In the Properties
window, the Width text box shows the bitmap's current width to be 144 pixels.
Beyond the end of the bitmap is enough space to expand the bitmap by several
tiles.

9. Lengthen the bitmap by one tile: Drag the resizing handle on the right-hand end
of the bitmap to the right by the width of one tile.

The bitmap grows a full tile at a time. Notice that as you drag your bitmap, the
rightmost indicator on the App Studio status bar shows new bitmap dimensions
of "160 x 16." This makes the bitmap wide enough to accommodate another
button.

Beyond the current end of the bitmap you see a white area the size of a tile at the
end, overlaid with the grid. Figure 5.14 shows the bitmap as it appears after
you've lengthened it.

Notice that the Width text box in the Properties window now shows the new
width of the toolbar bitmap to be 160 pixels.

~------H--- White space
at end

Wi.!!th: 1-116_0_-----' Height: 1-115 __ ---' !;.olors: 11-16 __ -->L!I_!

Filename: 1 res\toolbar. bmp o ~aye Compressed

Figure 5.14 The Scrolled Bitmap

82 Class Library User's Guide

Toolbox

Pencil tool

{} ~ ,----,

~~~ 
'~Q 
000 

••• 

Selection tool 

Fill tool 

+---1+- Color indicator 

Color palette 

Brush selector 

Figure 5.15 The Graphics Palette 

10. Enclose the three rightmost button images-a printer, a question mark, and an 
arrow next to a question mark-with the selection rectangle. 

Click the selection tool in the upper-right comer of the graphics palette. 

Figure 5.15 shows the graphics palette and the three tools you'll be using: the 
selection tool, the pencil tool, and the fill tool. 

Position the mouse pointer at the upper-left comer of the printer image and drag 
to the lower-right comer of the question-mark image. Place the lines of the 
crosshairs just inside the blue guides. 

11. Drag the selected images one tile to the right to open up a space for a new 
button. 

Figure 5.16 shows the bitmap after dragging. 



Chapter 5 Constructing the User Interface with App Studio 83 

Selection tracker 

'----------------11-- Space for new tile 

.l;;.olors: 1-1
16 __ ---'-

D ~aye Compressed 

Figure 5.16 The Bitmap Dragged to the Right 

12. Choose the pencil tool from the graphics palette. 

13. Draw the bitmap shown in Figure 5.17. It doesn't have to be exact. 

If you make a mistake, choose the eraser tool. 

Thick Lines 

'------- Thin Lines 

Figure 5.17 Bitmap for the Thick Line Button 

14. Choose the paint-bucket fill tool from the graphics palette. 

15. Choose light gray from the color palette. 

16. Click the fill tool in the new button image to fill its background with the selected 
color. 



84 Class Library User's Guide 

Figure 5.18 shows the completed bitmap as it appears in Scribble. 

D r.ii;1iII db ~~I?I ~ , 1\1 

Figure 5.18 The Edited Bitmap 

17. From the File menu choose Save. 

18. Exit App Studio. 

That completes the task of editing Scribble's toolbar bitmap. In order for the new 
button to work, it must be associated with a command ID. In this case, the Thick 
Line button will be bound to lOP E N_ T H I C K_ 0 R_ T H IN. You defined that ID 
earlier in the property page for the Thick Line menu command, so App Studio has 
already written a #define for the ID in a file called RESOURCE.H. Your only task 
at this point is to associate the ID with the button. If you are working along, add 
lines of code marked with ~. 

Note If you had just created a new button for which there was no existing 
command ID, you'd use the App Studio symbol editor to define a symbol such as 
I D_PEN_ TH I CK_OR_ TH I N. For information about the symbol editor, see Chapter 2 
in the App Studio User's Guide. 

~ To associate the button with its command ID 

1. Start up Visual Workbench if it's not open. 

2. From the File menu in the Visual Workbench editor, open the MAINFRM.CPP 
file. 

3. Scroll to the static array called "buttons." The code maps the buttons to their 
command IDs. 

II Arrays of IDs used to initialize control bars 

II Toolbar buttons - IDs are command buttons 
static UINT BASED_CODE buttons[] = 
{ 

II Same order as in the bitmap 'toolbar.bmp' 
ID_FILE_NEW, 
ID_FILE_OPEN, 
ID_FILE_SAVE, 

ID_SEPARATOR, 
ID_EDIT_CUT, 
ID_EDIT_COPY, 
ID_EDIT_PASTE, 

ID_SEPARATOR, 



Summary 

} ; 

Chapter 5 Constructing the User Interface with App Studio 85 

ID_PEN_THICK_OR_THIN, 
ID_SEPARATOR, 

ID_FILE_PRINT, 
ID_APP_ABOUT, 

This array definition provides a I-to-l mapping based on the positions of the 
button tiles in the toolbar bitmap. The ID _ SEPARATOR entries denote small 
amounts of extra space used to group the button tiles. 

4. Save the file. 

Now the Thick Line button generates precisely the same command as the Thick 
Line menu item. Because of this, the same handler function serves for both. 

Scribble's resource needs are simple, so this chapter introduced only a few of the 
things you can do with App Studio. For information about its many capabilities, see 
the App Studio User's Guide. 

After editing your application's menus and toolbar with App Studio, the next step is 
to connect them to code using Class Wizard. That step is explained in Chapter 6. 





CHAPTER 6 

Binding Visual Objects to Code 
Using ClassWizard 

87 

The version of Scribble you saw in Chapters 3 and 4 added a small amount of code 
to the skeleton starter files created by App Wizard - much less code than you would 
normally have to write to get a comparable application up and running without the 
framework. Considering the small amount of work, the program does quite a lot: 
drawing, saving, printing, even print preview. 

Like all applications written for Windows, Scribble is "message driven." A 
keystroke, mouse click, or other event causes messages to be sent to some part of 
the application that can respond to the event. In Chapter 4, for example, you saw 
how Scribble implements mouse drawing by detecting and responding to messages 
generated by mouse clicks and drags. 

This chapter introduces a category of messages called "commands," which are 
messages to your application from menu items, toolbar buttons, and accelerator 
keys. The expanded version of Scribble developed in this chapter adds two menu 
items that generate commands to toggle the line thickness for drawing and to clear 
all strokes from the current document. The command that toggles line thickness is 
also duplicated by a button on Scribble's toolbar. 

You created the resources for Scribble's new menu items and its new toolbar button 
in Chapter 5. Now you can use ClassWizard to assign a user-interface object, such 
as a menu item, to a command and map the command to a function that handles it. 

In this chapter, you will: 

• Learn the fundamentals of commands and how the framework routes them to 
various "command target" objects in the program for handling. 

• Extend your knowledge of ClassWizard, begun in Chapter 4. 

• Add new command-handling code for Scribble. 

• Connect a toolbar button and a menu item to the same command. 

• Learn how to keep your user-interface objects (menus and toolbar buttons) 
updated since a menu item may be enabled or disabled, a button checked or 
unchecked. 



88 Class Library User's Guide 

This chapter and the previous chapter cover step 2 of Scribble. If you want to work 
along, adding the code as you go, begin with the files from Chapter 5 in your 
MYSCRIB directory. At this point, your files should be very similar to the files in 
the SCRIBBLE\STEPI subdirectory, plus the resource changes you made in 
Chapter 5 with App Studio. As you read this chapter, perform all Class Wizard 
steps and add all lines of code marked in the left margin with the symbol ~. At the 
end of the chapter, your files should closely resemble the files in the 
SCRIBBLE\STEP2 subdirectory. 

If, on the other hand, you want to read along without adding code, you can print or 
examine the files in the SCRIBBLE\STEP2 subdirectory. However, even if you 
don't want to add code, it's a good idea to work along in this chapter to familiarize 
yourself with ClassWizard and the Visual C++ programming process. You can 
begin by making your own copy of the SCRIBBLE\STEPI subdirectory. 

Using ClassWizard to Bind Commands 
In the previous chapters, you created a working Scribble application. In Chapter 4, 
you used Class Wizard to make connections between several standard Windows 
messages related to mouse actions and the code that responds to those actions. Now 
you'll use Class Wizard to add new commands to Scribble. 

In this chapter, you will use ClassWizard to connect menu items, toolbar buttons, 
and other user-interface objects to the code that responds when the user clicks them. 
In Chapter 7, you willll use Class Wizard again to create new classes and perform 
other chores (see the following box, "What ClassWizard Can Do"). 

What ClassWizard Can Do 
ClassWizard is one of the Visual C++ tools that you'll use most frequently. It helps 
you: 

• Connect standard Windows messages to message-handler functions. 

• Connect user-interface objects to message-handler functions. 

• Create new classes, such as dialogs and extra views, documents, or frame 
windows. 

• Add member variables to dialog classes and specify how those variables are to 
be initialized and validated when the dialog box is displayed. 

For more information about the capabilities of Class Wizard, see Chapter 9 in the 
App Studio User's Guide. 



Chapter 6 Binding Visual Objects to Code Using ClassWizard 89 

When the Class Wizard dialog box appears, a drop-down list shows all of the 
classes in your program that can handle commands or Windows messages. When 
you select a class to which you want to map commands, a list box shows you all of 
the visual objects associated with that class: 

• Classes, such as dialogs, views, and frame windows, which can receive standard 
Windows messages. 

• Dialog-box controls, which can generate Windows control-notification 
messages. 

• Command IDs, which are associated with menu items, toolbar buttons, or 
accelerator keys. 

When you select a visual object, a second list box displays a list of the Windows 
messages or commands to which you can connect the visual object. 

To make a connection, you select one of the available messages or commands to 
connect the object to and choose the Add Function button. Another list box shows 
the message or command and the name of its handler function. 

The resulting connection is called a "command binding." Figure 6.1 shows the 
ClassWizard dialog box after a command has been connected to a handler. In some 
cases, a second dialog box appears to let you accept or modify a proposed function 
name. 

ClassWizard 

Class N.ame: ,-I C_Sc_ri_bD_o_c ____ --"liI_!: 

scribdoc. h, scribdoc. cpp 

;:::;;:.!l.b"..:.ie...".c-;:;-t I_D_s: ___ ---.--... iiM.essages: 
CScribDoc + 
ID APP ABOUT 
ID-APP-EXIT 

ID EDIT COPY 
ID -EDIT-CUT 
ID -EDIT-PASTE 
ID-EDIT-UNDO 

Member [unctions: 

UPDATE_COMMAND_UI 

.. 
'------------' 

OK 

Cancel 

Add Class ... 

Class Info ... 

Help 

.II.i.i
ll 
.... ., ..... i

1
i
l!'11!..1 h .... fh_l l .... :.'J ... m' .... h ... m_ ....... 

I Q.elete Function I 
rE·~:i(¢.~:~~) 

Description: Handle a command (from menu, acceL cmd button) 

Figure 6.1 ClassWizard Dialog Box 

After you create a message-handler function, ClassWizard writes an entry for the 
command in the chosen class's "message map" and adds a function declaration to 
the class. Also, Class Wizard writes a function template-a complete member 



90 Class Library User's Guide 

function defmition with an empty function body-in the source files that contain the 
class. ClassWizard then lets you jump directly to the Visual Workbench editor to 
fill in the function template. You 'Illearn more about message maps and message
handler functions later in this chapter. 

Note ClassWizard automatically writes its changes to your files to disk. You need 
to save files explicitly only if you have edited them yourself, as for example when 
you use the Visual Workbench editor to fill in a handler's code. 

You can also use ClassWizard to edit existing message maps and message-handler 
functions. ClassWizard follows a conservative set of rules in writing to your files, 
writing only a few kinds of code to predictable places, so it's safe and easy to use. 

Warning If you delete a command binding with Class Wizard, its message-map 
entry is deleted, but the message-handler function, and any references to it in your 
other code, are not deleted. You must edit those items by hand. 

Because you may want to bind commands either while you're editing user-interface 
objects that generate commands or while you're editing code, you can invoke 
Class Wizard from the Resource menu in App Studio or from the Browse menu in 
Visual Workbench. 

Typically, you will invoke ClassWizard from App Studio while you're editing 
menus, dialog boxes, and other user-interface objects. ClassWizard uses the current 
selection in App Studio to jump quickly to the appropriate class for the selected 
visual object. 

You may want to work something like this: create several menu items or other user
interface objects, call up ClassWizard and connect the first object to a handler, and 
jump to the Visual Workbench editor to write the handler. Then return to 
Class Wizard and repeat the process for each of the other objects. Or you may 
prefer to create the user-interface objects, use ClassWizard to make all of the 
connections, and then jump to Visual Workbench to fill in all of the handler 
functions. The tools are flexible enough to support whichever working style you 
prefer. 

Adding Handlers for Commands 
Once you've created the user-interface objects-such as menus, accelerators, and 
toolbar buttons-that generate commands, you must bind them to the code that 
carries out the commands. This section explains the fundamentals of commands in 
the framework and explains how to use ClassWizard to bind user-interface objects 
to commands and commands to code. 



Chapter 6 Binding Visual Objects to Code Using ClassWizard 91 

Command Fundamentals 
Before using Class Wizard to bind commands, you'll need to know more about the 
related concepts and terms. In addition to this section, you'll find more information 
about these concepts in Chapter 2 of the Class Library Reference. 

Edit Clear All Clears all 
menu item I D_ED IT _C LEAR_ALL Document object On Ed i tCl ea rA 11 () document data 

User-interface Command -target message map 
object is selected ---.... ~I ON COMMAND ----.Command handler ~ Takes action 

Command -
Updating user- • ON_UPDATE_COMMAND_UI ~Updatecommand ~Updates 
interface object UI handler user-interface 

In idle loop or 
menu popup 

Figure 6.2 Command Architecture 

Command Concepts and Terms 

object 

OnUpdateEditClearAll() 

Enables/Disables 
menu item 

Figure 6.2 illustrates the concepts that make up the command architecture of the 
Microsoft Foundation Class Library. Among the concepts covered in this chapter 
are: 

• Commands, messages, and control notifications 

A command is an instruction to your program to perform a certain action. Unlike 
a function call, a command is a "message" that is routed to various "command 
target" objects, each of which has an opportunity to carry out the instruction. 
Examples of commands include the Open, Save, and Save As commands on the 
File menu. 

Important To the class library, a command is identical to its ID. A menu item, 
toolbar button, or dialog box control is bound to a command by giving the item 
the same ID. 

Commands are based on the WM _ COMMAND Windows message. 
Commands can be sent to frame windows, documents, views, the application 
itself, and other kinds of objects. These objects are discussed as "command 
targets" on the next page. For more about commands and other Windows 
messages, see Chapter 2 in the Class Library Reference. 



92 Class Library User's Guide 

• User-interface objects (command generators) and updating 

Menu items, buttons, and similar elements of the user interface can cause 
Windows to generate commands. The framework routes commands to the other 
objects in your program that carry them out. Keep in mind that these user
interface objects are not C++ objects. 

You can also use commands to update the visual state of menu items and 
buttons-for example, enabling them if they're available to the user in a given 
situation and disabling them if they're unavailable. For more information, see 
"Updating User-Interface Objects" on page 108. 

• Command targets 

Many objects in your program can receive and respond to commands. These 
objects are called "command targets" and are derived from class CCmdTarget. 
Command-target objects contain their own message maps and message-handler 
functions. Figure 6.3 shows most of the hierarchy of command-target classes in 
the class library. For a complete list see Class Library Reference, 
Chapter 1. 

j 
I CCmd Target I 

I 

~ ~ 1 
CWinA~~ I I CDoe Tem~latel I CWnd 

~ j 
CFrameWnd CView 

Figure 6.3 Command Target Class Hierarchy 

~ 
CDoeument 

~ 

Framework 
Classes 

Your 
Classes 



Chapter 6 Binding Visual Objects to Code Using ClassWizard 93 

• Command bindings 

A binding associates two things, such as a menu item and the command it in
vokes. Commands are assigned at one end of the command routing to the user
interface objects that generate them. This is done, for example, by equating the 
command's ID with the ID of a menu item. At the other end of the routing, com
mands are mapped to the name of a message-handler function. This is done by 
connecting the command ID and the name of the function. 

You normally do this task with ClassWizard, which you can invoke from either 
App Studio or Visual Workbench. Usually, you'll bind some commands as you 
construct the user interface with App Studio. Later, you'll probably revisit 
Class Wizard as you work with code in the Visual Workbench editor. 

Note You can assign a command ID to more than one user-interface object. 
Scribble binds its Thick Line command to both a menu item and a toolbar 
button. The same message-handler function and message-map entry work for 
both sources of the command. 

• Message maps 

How does a command target know it can handle a command? For that matter, 
how does any object know it can handle a message? The answer is the message 
map of the object's class. 

Each command-target object has a message map. Message maps are tables that 
connect commands with the names of the member functions that handle the 
commands. These functions are called "message handlers." When a command 
target object receives a message, the object's message map is used to determine 
which handler function to call for the message. Message maps are used in dis
patching Windows messages. 

You don't typically have to write message-map entries manually-ClassWizard 
does the job for you. For more information, see "Message Maps" on page 99. 

• Message handlers 

Command-target classes have member functions designated to handle any com
mands to which the target can respond. These functions are called "message 
handlers." Message handlers are explained under "Message Handlers" on page 
100. In this tutorial, the terms "handler," "message handler," and "message
handler function" are equivalent. 

A considerable part of writing an application is writing message-handler 
functions that determine how a document, view, or other class responds to a 
command. 

• Command routing 



94 Class Library User's Guide 

The class library provides a standard mechanism for routing commands from the 
user-interface objects that generate them to the command targets that handle 
them. This standard routing ensures that your objects receive the commands they 
need to handle. For details, see "Command Routing" on page 95. Table 6.1, on 
page 96, illustrates the standard command routing. 

Message Maps 
Each command-target class defines a message map that contains an entry for each 
command or other message that the target can handle. Here's a sample from 
Scribble's document class, esc rib Doc (this is code that Class Wizard writes, as 
you'll see shortly): 

BEGIN_MESSAGE_MAPC CScribDoc. CDocument ) 
11{{AFX_MSG_MAPCCScribDoc) 
ON_COMMANDC ID_EDIT_CLEAR_ALL. OnEditClearAll 
ON_COMMANDC ID_PEN_THICK_OR_THIN. OnPenThickOrThin 
II ... More entries 
I/} JAFX_MSG_MAP 

END_MESSAGE_MAPC ) 

ClassWizard places this code in file SCRIBDOC.CPP. The 
BEGIN MESSAGE MAP and END MESSAGE MAP macros bracket the - - - -
map and provide code that takes care of creating the map at run time. Between the 
bracketing macros are message-map entries, one per command that the document 
can handle. 

The BEGIN _MESSAGE _MAP macro specifies two arguments: the name of the 
class that the message map belongs to (C S c rib Doc in the example) and the name 
of the base class from which that class is derived (CDocument in the example). 

Notice the special comment lines: 

11{{AFX_MSG_MAPCCScribDoc) 
I/} JAFX_MSG_MAP 

The Class Wizard tool uses these comments to locate the message map of a class for 
which it is binding commands. All message-map entries are written between these 
comment lines. 

Important Use ClassWizard to create and edit all message-map entries. If you add 
them manually, you may not be able to edit them with ClassWizard later. If you add 
them outside the bracketing comments, ClassWizard can't edit them at all. You can 
use this feature to add entries you don't want ClassWizard to touch. 



Chapter 6 Binding Visual Objects to Code Using ClassWizard 95 

A message-map entry looks like this: 

Each entry has three parts: 

• The ON COMMAND macro. 

• ThecommandID;hereitwouldbe ID_PEN_THICK_OR_THIN. 

• The name of the message-handler function for the command; here it's 
OnPenThickOrThin. 

The result of this macro is an entry in the message map whose parts connect the 
command ID to the handler. 

When the target object receives a command message, it checks the message map. If 
the command matches an entry, the message-handler function, a member function of 
the target class, is called for that object. 

The message map has one other required element. In addition to the 
BEGIN_MESSAGE _MAP and END_MESSAGE _MAP macros in your .CPP 
file, you must use the DECLARE_MESSAGE _MAP macro in your class 
declaration in the.H file. It's a convention of the Microsoft Foundation Class 
Library to put DECLARE _MESSAGE_MAP at the end of the class declaration, 
but it can go anywhere. The macro is not sensitive to C++ access-control keywords. 
Message maps are always protected; you should specify the access control for any 
following sections. Keep in mind that AppWizard and ClassWizard do this work 
for you. 

When you began your Scribble development project with App Wizard, all parts of 
your message maps and the macros listed above had already been created for you 
except the entries for specific commands such as ID _EDIT _ CLEAR _ALL and 
I D_P E N_ TH I C K_O R_ TH I N. You will add those with ClassWizard. 

Command Routing 
How does a command from a menu or other user-interface object find its handler 
function? Commands are routed through a standard sequence of command-target 
objects, one of which is expected to have a handler for the command. 

OnCmdMsg 
To accomplish this routing, each command target calls the OnCmdMsg member 
function of the next command target in the sequence. Command targets use 
OnCmdMsg to determine whether they can handle a command and, if they can't, 
route it to another command target. 

Each command-target class overrides the OnCmdMsg member function. The 
overrides let each class route commands to a particular next target. A frame 



96 Class Library User's Guide 

window, for example, always routes commands to its current child window or view. 
Table 6.1 shows the standard command routing for all command targets. 

The default CCmdTarget implementation of OnCmdMsg uses the message map 
of the command-target class to search for a handler function for each command 
message it receives. If it finds a match, it calls the handler. Message map searching 
is explained in the section "Searching Message Maps" on page 97. 

Different command-target classes check their own message maps at different times. 
Typically, a class routes the command to certain other objects to give them first 
chance at the command. If none of those objects handle the command, the original 
class checks its own message map. Then, if it can't supply a handler itself, it may 
route the command to yet more command targets. Table 6.1 shows how each of the 
classes structures this sequence. The general order in which a command target 
routes a command is: 

1. To its children 

2. To itself 

3. To other command targets 

How expensive is this routing mechanism? Compared to what your handler does in 
response to a command, the cost of the routing is low. Bear in mind that commands 
are generated, and thus routed, only when the user chooses a menu or a button. 

Table 6.1 Standard Command Route 

When an object of this type 
receives a command ... 

Frame window 

View 

Document 

Dialog 

... it gives itself and other command-target 
objects a chance to handle the command in this 
order: 

1. Active child window or view 

2. This frame window 

3. Application (CWinApp object) 

1. This view 

2. Document attached to the view 

1. This document 

2. Document template attached to the document 

1. This dialog 

2. Window that owns the dialog 

3. Application (CWinApp object) 



Chapter 6 Binding Visual Objects to Code Using ClassWizard 97 

If the command is not handled by any object along the routing, the application 
object passes it to Windows for default processing. 

An Example 
To illustrate, consider a command message from the Clear All item in Scribble's 
Edit menu. In Scribble, the handler function for this command happens to be a 
member function of class esc rib Doc. Here's how that command reaches its 
handler after the user chooses the menu item: 

1. The main frame receives the command message first. 

2. In the case of an MDI frame window, the main frame gives the currently active 
MDI child window a chance to handle the command. 

3. Because of the standard routing, the frame window now gives its view a chance 
to handle the command before checking its own message map. 

4. Unlike the frame, the view checks its own message map first. 

5. Finding no handler, the view next routes the command to its associated 
document. 

6. The document checks its message map and, in this case, does find a handler, 
which gets called-and the routing stops. 

If the document did not have a handler, it would route the command next to its 
document template. Then the command would return to the view and then to the 
frame window. Finally, the child frame would check its message map. If that check 
failed as well, the command would be routed back to the MDI frame and then to the 
application object - the ultimate destination of unhandled commands. 

Searching Message Maps 
The previous section focused on commands, a particular category of Windows 
messages. There are two other categories of messages: standard Windows messages 
(with the WM _ prefix) and control-notification messages (such as 
BN_ CLICKED, which is sent by a button). 

The OnCmdMsg routing mechanism uses message maps in command-target 
classes to search for a handler function for each command message. Message maps 
are also used to locate handlers for standard Windows messages and control
notification messages, the other categories of Windows messages. In Chapter 4, you 
saw how the view's message map is used to map three mouse-related Windows 
messages to their handlers in the view. This section explains how message maps are 
searched. 

Windows Messages 
Standard Windows messages and control-notification messages are sent only to 
windows. Messages in these categories are never routed like commands from one 



98 Class Library User's Guide 

command target to another. Standard messages are sent to frame windows, dialog 
boxes, views, and other kinds of windows. Control-notification messages are sent 
from controls (child windows) to their parent windows. 

All windows have message maps. (As do all command-target objects.) Windows 
can handle a wider variety of messages in their message maps then other command 
targets such as documents, document templates, and the application object. 

The Search 
When a window receives an incoming Windows message (not a command), it 
searches its message map for a corresponding handler function. However, the 
phrase "searches its own message map" needs a little clarification. 

It's possible to make a window an object of class CWnd directly, without deriving 
a new class. But in most cases the window receiving a message is an object of some 
class derived from CWnd. For example, Scribble's main application window class, 
CMa in Frame, is derived from CFrameWnd, which in turn is derived from CWnd. 
By the nature of C++ class derivation, a CMa in Frame is a CFrameWnd. It also is 
a CWnd. Because of this, the handler functions for some of the messages that a 
CMa in Frame receives might actually be defined in CFrameWnd or even CWnd. 

How does a CMa in Frame find a message handler defined not in CMa in Frame 
itself but in one of its base classes? The answer is that part of the definition of any 
message map, including CMai nFrame's, is the name of the immediate base class. 
Recall the way you use the BEGIN_MESSAGE_MAP macro: 

BEGIN_MESSAGE_MAP(CMainFrame. CFrameWnd) 

The base class named in the second argument gives the receiving window a way to 
locate the message map of the base class. That message map, in tum, provides the 
name of the next-higher base class, and so on. 

Thus, when it receives a standard Windows message, a CMa in Frame is able to 
search not only the CMa in Frame message map but also the message maps defined 
for CFrame Wnd and CWnd. Figure 6.4 illustrates the search process. 



Chapter 6 Binding Visual Objects to Code Using ClassWizard 99 

Member functions 
Yes 

Member functions 
Yes 

Figure 6.4 Searching Message Maps 

Message 
Map 

Message 
Map 

If Class has a handler 
for the message, call it. 

If Derived Class can't handle 
message, check the message 
map of the base class. 

If Class has a handler for the 
message, call it. 

There are a few exceptions to the rule that a window handles noncommand mes
sages itself. Control-notification messages, scrolling messages, and a few WM_ 
messages are actually delegated to the control that sent the message or to the view 
for possible handling before the parent window checks its message map(s). This is 
done to support self-drawing controls, VBX controls, and scrolling views. 

Command-Target Message Maps 
Because command-target classes other than windows also have message maps, you 
might expect them to be searched in the same way. Indeed they are. The difference, 
of course, is that the only messages being searched for in this case are commands. 
When the search will take place in a given command target depends on the standard 
command routing and how the command target's class implements its OnCmdMsg 
override. But the search still encompasses not only the message map of the 
command-target class but also of its base class(es). 



100 Class Library User's Guide 

For example, in Scribble, when a CScri bOac searches its message map-at the 
appropriate point in the routing, as shown in Table 6.1-it also searches the 
message map of CDocument, the base class of esc rib 0 a c, if needed. 

Message Handlers 
A message handler is a member function of a command-target class. Its purpose is 
to respond when called through the message map. 

You declare message handlers as member functions of your classes. For example, 
in Chapter 4 you saw three message-handler functions for mouse actions: 
On LButtanOawn, OnMaus eMave, and On LButtanUp. These were declared as 
members of class CScri bVi ew, Scribble's view class. In this chapter, you'll 
see handlers for several commands, including the Clear All and Thick Line 
commands, declared as members of CScri bOac, the document class. 

Chapter 2 in the Class Library Reference explains some rules for the names and 
parameter signatures of message-handler functions. In this chapter you'll see how to 
create message handlers from Class Wizard. 

For more information about commands, messages, message maps, and the command 
architecture in the Microsoft Foundation Class Library, see Chapter 2 in the Class 
Library Reference. 

Binding Scribble's Commands 
This section explains the issues and procedures involved in binding Scribble's Clear 
All and Thick Line commands to their handlers using Class Wizard. (The Pen 
Widths command is bound in the next chapter.) 

Which Command-Target Class Gets the Handler? 
Before you can bind Scribble's Clear All command to a message-handler function 
in the document class, there's a problem to solve. Where should you put the handler 
for a command? Where should you put attributes, such as a line thickness value? In 
the document class? In the view class? Somewhere else? 

Consider the specific case of Scribble first. Scribble has one document class (some 
applications might have several kinds of documents-such as text documents and 
graphics documents) and one view class (some documents might have more than 
one way to view their data-for example, as text or as an outline). 

Scribble's Clear All command has two effects: it deletes data in the document and it 
causes the view to be redrawn with no strokes. Should the handler for Clear All be 
located in the document or the view? Scribble's esc rib 0 a c class houses the 
application's data structure, the stroke list. Clear All's primary effect is to delete 



Chapter 6 Binding Visual Objects to Code Using ClassWizard 101 

the data. Redrawing the view afterwards is secondary. Hence, it makes sense to 
locate the OnE d i tel ear All handler in the document. 

Scribble's Thick Line command is more interesting. This command toggles the 
current value of a line thickness variable between thick and thin. Should the handler 
for Thick Line be located in the view because it affects how Scribble's data is 
drawn? This seems reasonable, but consider what happens when, in a later chapter, 
Scribble gets splitter window functionality. In that case, each pane of the splitter 
window is really a new view on the same data. Should each of these views house its 
own line thickness information (and its own pen)? It seems a better solution to store 
that information in the document instead, where all of the views can access it. Keep 
in mind that this is a decision specific to Scribble's user interface, where it's 
desirable that the pen width commands apply to all views, not just the one with the 
current focus. You might choose to organize things differently in another 
application. 

Now consider a hypothetical application with more than one view on a document 
and perhaps even more than one frame window for the same document. Should 
handlers and attributes be part of the document, one of the frame windows, or one 
of the views? Should an attribute be duplicated in more than one view or frame 
window? 

Here are some guidelines that may help: 

• In general, put handlers in the command-target class where they have the 
greatest effect. 

• When attributes are shared by multiple views or frame windows, put them in the 
common document. 

• If attributes are not shared, put them in the view(s) or window(s) that use them. 

Bind Scribble's Clear All Command 
As discussed above, Scribble's Clear All command is bound to the document class. 
If you're working along, use the following procedure: 

~ To bind Scribble's Clear All command 

1. Invoke Class Wizard (from App Studio or from Visual Workbench). 

2. Use the Class Name list box in the ClassWizard dialog box to select the 
CScri bOac class. 

If you invoke ClassWizard from App Studio, the currently selected object, such 
as a menu or dialog resource, is automatically selected in ClassWizard. 

Recall the decision to handle the command from the document rather than the 
view. That's why the handler for Clear All will be placed in CScri bOac. 



102 Class Library User's Guide 

After you select a class, the Object IDs list box shows all of the visual objects 
managed by the class-the available items that can be mapped to functions. 
These might include controls (for a dialog resource) and commands from menus 
and accelerator tables. The list may also include class names. 

3. In the Object IDs list box, select the ID _ EDIT _CLEAR_ALL command. 

You see COMMAND and UPDATE COMMAND UI in the Messages list 
box. For commands, these are always the choices you ~ee. In other cases, you 
might see other things listed-a list of Windows messages, for example, when 
the selected item is the name of a window or view class. 

4. In the Messages list box, select COMMAND. 

Later in the chapter, you'll see how UPDATE_COMMAND_UI is used. 

Figure 6.5 shows the selections from steps 2, 3, and 4. 

ClassWizard 

Class N.ame: ,--I C_Sc_rib_D_oc ____ -"liI_!: 

seribdoe. h, seribdoe. epp 

.!lbject IDs: 

CSeribDoe 
ID APP ABOUT 
ID-APP-EXIT 

ID EDIT COPY 
ID -EDIT-CUT 

.!!lessages: 

+ 

OK 

Cancel 

Add Class __ _ 

Class !nfo __ _ 

!!elp 

ID -EDIT-PASTE 
L.:.:ID:-.-E=D:.:....:.IT.-::-U::..:..:N=DO=---_---..J,.. ... '--______ --' I Edit y"miabk:. .. 1 
Member functions: 

1 p.deh hmc(iml I 

I .Edit Code 1 
I

I Add Function ___ I 

~---------------' 

Description: Handle a command (from menu, aeeeL emd button] 

Figure 6.5 Clear All in Class Wizard 

5. Choose the Add Function button. 

This brings up a dialog box with a proposed name for the new handler function. 

6. In the Add Member Function dialog box, accept the name 0 nEd i tel ear A 11 
by choosing the OK button. 

Although you could change that name, don't. The name fits the handler's 
functionality and its connection to the menu item very well. The proposed name 
is synthesized from the command name and message type. 

Several things are added to your source files when you add a member function: 

• A message-map entry is added to the class's message map (in the .CPP file 
for the class). 



Chapter 6 Binding Visual Objects to Code Using ClassWizard 103 

• A member function declaration is added to the class declaration (in the .R 
file for the class). 

• A member function template definition is added to the .CPP file. 

These changes are made to your source files after you finish editing the class. 

After you add the function, its name appears in the Member Functions list box 
beside the ID to which it maps. 

7. In the ClassWizard dialog box, select the new handler's name, 
OnE d i tel ear All, from the Member Functions list box. 

8. Choose the Edit Code button. 

The Visual Workbench editor opens file SCRIBDOC.CPP with the function 
template for 0 nEd i tel ear A 11 displayed. Figure 6.6 shows the function 
definition template. 

File Edit View Project Browse Debug Tools Options Window Help 

.. 

<1> Output 

m nPenWidth = w; 
m=pointArray.Serialize(ar); 

Figure 6.6 The OnEditClear All Function Template 

9. Fill in the 0 nEd i tel ear A 11 message-handler function. 

The function looks like this (you add the lines marked with ~): 

+ 

+ .. 



104 Class Library User's Guide 

void CScribDoc::OnEditClearAll( 
{ 

Del eteContents ( ); 
SetModifiedFlag(); 
UpdateAllViews( NULL ); 

SetModified Flag is a member function of class CDocument. It marks the 
document as changed so the framework won't prompt the user to save the 
document when it closes. 

10. In the File menu choose the Save command to save changes to the 
SCRIBDOC.CPP file. 

This is the only file you changed by adding the new member function. 

How do the commands work? The new message handler first calls 
De 1 eteCantents to destroy the document's stroke data. (This version of 
De 1 eteCantents, from Chapter 4, overrides CDocument's DeleteContents 
member function.) Then OnE d i t C 1 ear A 11 calls the U pdateAlIViews member 
function inherited from CDocument to cause all views of the data to be updated. 
The document's view is redrawn, this time with no data. UpdateAlIViews takes a 
NULL argument because the document is modifying itself. The parameter is 
normally used to pass a pointer to the view that modified the document, but that 
doesn't apply here. 

The 0 e 1 e t e Can ten t s member function iterates through the list of strokes. For 
each stroke, it gets the next stroke and invokes the delete operator on it. For more 
information about working with list classes, see Chapter 13, "Collections." 

When you finish adding OnE d i t C 1 ear A 11 , you're still in the Visual Workbench 
editor. To continue binding commands, invoke Class Wizard again from Visual 
Workbench's Browse menu. 

Bind Scribble's Thick Line Command 
Like the Clear All command, the Thick Line command will be handled by the 
document. Recall the discussion under "Which Command-Target Class Gets the 
Handler?" on page 100. 

~ To bind Scribble's Thick Line command 

1. If you're not in ClassWizard, invoke it from Visual Workbench's Browse menu. 

2. Select the CScri bOac class. 

3. In the Object IDs list box, select the ID_PEN_THICK_OR_THIN command. 

4. In the Messages list box, select COMMAND. 

5. Choose the Add Function button. 



Chapter 6 Binding Visual Objects to Code Using ClassWizard 105 

6. In the Add Member Function dialog box, accept the name 0 n Pen T hie k 0 r T hi n 
by choosing the OK button. 

7. In the Class Wizard dialog box, choose the Edit Code button. 

If Visual Workbench is not running, you get a warning. Start Visual Workbench 
from the Windows Program Manager. 

8. Fill in the OnPenThi ckOrThi n message-handler function. 

The function looks like this (you add the lines marked with ~): 

void CScribDoc::OnPenThickOrThin( ) 
{ 

II Toggle the state of the pen between thin and thick. 
m_bThickPen = !m_bThickPen; 

II Change the current pen to reflect the new width. 
ReplacePen( ); 

The 0 n Pen T hie k 0 r T hi n message handler first toggles the state of a Boolean 
variable, m_bThi ckPen. If the variable is now TRUE, the pen will be thick. 
Otherwise, it will be thin. Then the handler calls a helper function, 
Rep 1 ace Pen, to reset the current pen to the new width. 

9. Next, use the Visual Workbench editor to add Rep 1 a cePen to file 
SCRIBDOC.CPP (Rep 1 a ce Pen is not a message handler, so you don't add 
it with ClassWizard). Here it is: 

II OnPenThickOrThin. then ... 
void CScribDoc::ReplacePen( ) 
{ 

m_nPenWidth = m_bThickPen ? m_nThickWidth : m_nThinWidth; 
II Change the current pen to reflect the new width. 
m_penCur.DeleteObject( ); 
m_penCur.CreatePen( PS_SOLID. m_nPenWidth. RGB(0.0.0) ); 

The Rep 1 acePen member function uses the C++ conditional operator (?:) to 
determine the pen width and return its value. Then it calls the DeieteObject 
member function of the current pen object and creates a new solid black pen 
with CreatePen, setting its attributes, including its width. 

10. Besides adding the Repl acePen function definition to SCRIBDOC.CPP, you 
must also add a function prototype to the esc rib Doc class declaration in file 
SCRIBDOC.H. If you're working along, you can open that file with Visual 
Workbench, locate the class declaration as partially shown immediately 
following, and add the marked line: 



106 Class Library User's Guide 

class CScribDoc : public CDocument 
{ 

protected: II Create from serialization only. 

II Attributes 

II Operations 
public: 

void DeleteContents( ); 

II Implementation 
protected: 

voi d Rep 1 ace Pen ( ); 

} ; 

11. To add this improved way of updating the pen, locate the In i t Doc urn e n t 
member function in SCRIBDOC.CPP and change the function to match this 
code: 

void CScribDoc::InitDocument() 
{ 

ReplacePen(); II Initialize pen according to current width 

To match the function as shown, besides adding the marked line you must delete 
the following lines (added in Chapter 4): 

m_nPenWidth = 2; II Default 2 pixel pen width 
II Solid, black pen 
m_penCur.CreatePen( PS_SOLID, m_nPenWidth, RGB( 0,0,0 ) ); 

The line you added calls Rep 1 ace Pen to set up the pen with its new width. 

12. Choose the Save All command on Visual Workbench's File menu to save 
changes to both the SCRIBDOC.H and SCRIBDOC.CPP files. 

Bind the Toolbar Button to the Thick Line Command 
Scribble's Thick Line command is now bound to the Thick Line toolbar button as 
well as to the Thick Line menu item. Either user-interface object generates 
precisely the same command. This duplication is accomplished simply by giving the 
menu item (above) and the button (as in Chapter 5) the same ID as the command: 
ID PEN THICK OR THIN. - - --

Add New Member Variables to Scribble 
In addition to storing the current pen width in m_n Pen Wid t h, class esc rib Doc 
needs to keep track of whether the pen is currently thick or thin and how "thick" 



Chapter 6 Binding Visual Objects to Code Using ClassWizard 107 

and "thin" are defined (in pixels). In Chapter 7, you will add code to allow the user 
to define these values with a dialog box. For now, defaults are hard coded. 

~ To add the new data members, use the Visual Workbench editor, as shown in 
Figure 6.7 

tected: // create from serialization only 
CScribDoc() ; 
DEClARE_DYNCREATE(CScribDoc) 

m_strokelist; // Each member of the list is a 

// The document keeps track of the current pen width on behalf of 
// all views. We'd like the user interface of Scribble to be such 
// that if the user chooses the Draw Thick line command, it will appl 
// to all views, not just the view that currently has the focus. 

urNT 
BOOl 
UINT 
UINT 
CPen 

m nPenWidth; 
m-bThickPen; 
m-nThinWidth; 
m-nThickWidth; 
m=penCur; 

// Current user-selected pen widt 
// Thick currently selected or 
// Current definition of thin 
// Current definition of thick 
// Pen created according to 
// user-selected pen style (width 

GetCurrentPen() return &m_penCur; } 

Figure 6.7 Adding the Data Members 

1. Open the file SCRIBDOC.H. 

2. Find the class declaration for class esc rib Doc. 

It begins: 

class CScribDoc 
{ ... 

public CDocument 

Locate the section labeled "/ / At t rib ute s : " . 

3. Add the following marked lines after the protected keyword and the existing 
m strokeL i st and m_nPenWi dth declarations: 



108 Class Library User's Guide 

II Attributes: 
public: 
protected: 
COblist m_strokelist; II Each member of list is a stroke 
I I ... comments ... 
UINT m_nPenWidth; 
BOOl m_bThickPen; 

II Current user-selected pen width 
II Thick currently selected or not 

UINT 
UINT 
CPen 

m_nThinWidth; II Current definition of thin 
m_nThickWidth; II Current definition of thick 

II Pen created according to 
II user-selected pen style (width) 

II Additional code ... 

4. Add the following lines to In i tDocument in SCRIBDOC.CPP: 

void CScribDoc::InitDocument() 
{ 

m_bThickPen = FALSE; 
m_nThinWidth = 2; II Default thin pen is 2 pixels wide 
m nThickWidth 5; II Default thick pen is 5 pixels wide 
ReplacePen(); II Initialize pen according to current width 

} 

The added lines specify that the pen is initially thin and define the meanings of 
"thin" and "thick." 

5. Save files SCRIBDOC.H and SCRIBDOC.CPP. 

Library Support for Writing Message Handlers 
To implement your handlers, call upon the many services and classes provided by 
the Microsoft Foundation Class Library. 

The classes, supplemented by standard C run-time functions and Windows 
Application Programming Interface (API) functions that aren't encapsulated by the 
library, let you use object-oriented programming methods in your message handlers 
and customize the functionality to suit your needs. For more information about these 
classes, see Chapters 1 through 6 in the Class Library Reference. The general
purpose (non-Windows) classes are also covered in more detail in the later chapters 
of this manual. 

Updating User-Interface Objects 
When a menu drops down in your application, the user expects to see some menu 
items enabled (available) and others dimmed (grayed to show they're unavailable) 
depending on the current context. Some menu items may have a check mark. 
Similarly, the user expects to see some toolbar buttons enabled and others disabled 



Chapter 6 Binding Visual Objects to Code Using ClassWizard 109 

and perhaps checked (depressed). The framework provides a direct, command
based way to set the state of the menus and toolbar buttons as conditions in the 
program change. 

Update a Command's User Interface 
To update a menu in traditional programming for Windows, you get a handle to the 
menu and call the Windows EnableMenuItem function. Under the Microsoft 
Foundation Class Library, however, you can use messages to let the most 
appropriate command-target object update the menu status automatically. This 
delegates the task of enabling and disabling menu items and buttons to the object 
that possesses the most contextual information relating to the menu or button. 

The idea is to search the default command routing for objects that can enable or 
disable menu items before the user actually sees the menu. (Updating for buttons 
will be explained shortly.) 

The command-routing mechanism is fast and costs you very little as long as the 
update handlers you write don't do a lot of calculation. 

Update Menu Items 
When the user clicks the mouse in the menu bar, the framework-before showing 
the menu items-sends out command update messages to the command targets. A 
message is sent for each item on the menu. The important thing to realize is that all 
items on the menu are updated before the menu drops down and the user sees it. 

Figure 6.2 on page 91 shows how menu items are updated and menu commands are 
carried out. 

Messages to update user-interface objects are routed and handled like commands. 
The framework searches the standard command routing as if the command was 
actually being executed. If it finds a message-map entry for the initialization 
message, it passes a pointer to a CCmdUI object representing the menu item -or 
other user-interface object-to the command target. The target should use this 
pointer in its command user-interface handler to update the menu. 

The items on a particular menu might be handled by one or several command-target 
objects. If you've mapped the items to handlers, the handlers will be found along 
the routing and called to update the items' state. Items with no handlers are not 
updated. 



110 Class Library User's Guide 

To have your application handle user-interface initialization messages, your 
command-target objects-application, windows, views, documents-in general 
must do two things: 

1. Use ClassWizard to include an ON_UPDATE_COMMAND_UI entry in their 
message maps with arguments for the command ID and the name of the 
message-handler function. 

Usually you'll pair this message-map entry with one for carrying out the 
command. For example, Scribble's document includes message-map entries for 

ON_UPDATE_COMMAND_UI( ID_PEN_THICK_OR_THIN, OnUpdatePenThickOrThin 
ON_COMMAND( ID_PEN_THICK_OR_THIN, OnPenThickOrThin ) 

and 

ON_UPDATE_COMMAND_UI( ID_EDIT_CLEAR_ALL, OnUpdateEditClearAll 
ON_COMMAND( ID_EDIT_CLEAR_ALL, OnEditClearAll ) 

The way ON_UPDATE _ COMMAND _ UI is handled is almost identical for 
the Clear All and Thick Line commands except that for Clear All the menu item 
is enabled or disabled, while for Thick Line the menu item is checked or 
unchecked. 

2. Provide a message-handler function that does the menu updating. 

The On Upda te PenTh i c kO rTh in handler uses its pointer to a CCmdUI object 
to call an Enable member function. An object of class CCmdUI is associated 
with each menu item (and toolbar button). This object provides an interface 
through which to update the menu or button. The framework passes your update
handler function a pointer to the object. 

Table 6.2 summarizes the command and message-handler naming conventions 
used in the source-code files of the class library and sample applications, 
including the conventions for user-interface updating. 

Table 6.2 Command and Message-Handler Naming Conventions 

Item 

CommandID 

Message handler 

Command UI handler 

Convention 

ID_XXX 

onXxx 

OnUpdateXxx 

Update Toolbar Buttons 

Example 

ID_EDIT_CLEAR_ALL 

OnEditClearAll 

On UpdateEditClearAll 

Like menus, toolbar buttons show their availability or status (some controls have 
more than two possible states) with some kind of visual feedback. You can use 
almost the same update mechanism to update these user-interface objects. 



Chapter 6 Binding Visual Objects to Code Using ClassWizard 111 

Menu initialization is automatic in the framework, occurring when the application 
receives a WM _ INITMENVPOPVP message. For buttons, searching the 
command routing is done in the idle loop. When there are no pending messages in 
its message queue, a window enters an idle loop. During the idle loop, the command 
routing is searched for buttons in much the same way as for menus. (Y ou can also 
do other useful processing in the idle loop. See "Idle Loop Processing" in Chapter 2 
in the Class Library Reference and the Onldle member function of class 
CWinApp.) 

The CCmdUI Structure 
The CCmdVI structure defined by the class library supplies a common interface to 
both menus and controls. That is, for either kind of user-interface object, you can 
call the same member functions of CCmdUI to update the object. 

This common program interface is one major advantage of initializing your user
interface objects with ON _ VPDATE _COMMAND_VI. You can, for example, 
readily replace or duplicate a menu command with a command generated by a 
toolbar button. The same message-map entry and handler function in the command 
target will work. 

Another major advantage of initializing user-interface objects using CCmdVI is 
that much of the process is automated and all commands are handled in a uniform 
way. The same object handles both the command and updating of the user-interface 
object. 

Note For advanced programmers: CCmdUI also works for indicators in status 
bars and normal buttons in dialog bars. 

Update Scribble's Clear All Menu Item 
This section presents the steps you will take to prepare the code required to update 
the Clear All menu item on Scribble's Edit menu. This command is handled by the 
document object, which has the necessary information on whether there are any 
strokes in the current drawing to clear. If you're working along, the following 
procedure guides you through the process. 

~ To add an update handler for Scribble's Clear All menu 

1. Invoke Class Wizard. 

2. Select class CScri bDoc. 

3. In the Object IDs list box, select the ID _EDIT_ CLEAR_ALL command. 

4. In the Messages list box, select UPDATE_COMMAND _VI. 



112 Class Library User's Guide 

Figure 6.8 shows the selections made in steps 2,3, and 4: 

ClassWizard 

Class N.ame: ,-I C_Sc_ri_bD_o_c ____ --"liI ... :! 

scribdoc. h, scribdoc. cpp 

.!lbiectlDs: 
CScribDoc 
ID_APP _ABOUT 
ID APP EXIT 

ID EDIT COPY' 
ID -EDIT-CUT 

Messages: 
.. oi!!J COMMAND 

OK 

Cancel 

Add Class __ _ 

Class Info __ _ 

Help 

ID -EDIT-PASTE 
"",IDc--E=D,-,-!IT...:-U=.N=D",,-O __ ----'-+_ '--______ -----' 1 edit y"mi,hbL. I 
Member Functions: 

OnE ditClearAIl ONJD_EDIT_CLEAR_ALL:COMMAND I Add Function ___ I 

Description: Callback for menu and button enabling!gra}'ing 

1.1>'.dde hmdiol'l I 
Edit Code 

Figure 6.8 ClassWizard Selections for OnUpdateEditClearAll 

5. Choose the Add Function button. 

6. In the Add Member Function dialog box, accept the name 
OnUpdateEdi tCl ea rA 11 by choosing the OK button. 

7. In the Class Wizard dialog box, choose the Edit Code button. 

8. Fill in the OnUpdateEdi tCl ea rA 11 update handler function when the Visual 
Workbench editor opens. 

The function looks like this (you add the marked lines): 

void CScribDoc: :OnUpdateEditClearAll( CCmdUI* pCmdUI 
{ 

II Enable the user-interface object (menu item or tool
II bar button) if the document is non-empty, i.e., has 
II at least one stroke. 
pCmdUI->Enable( !m_strokeList.lsEmpty( ) ); 

9. Save changes to file SCRIBDOC.CPP. 

Notice that the 0 n Up d ate Ed i t C 1 ear All handler takes one argument, a pointer to 
a CCmdUI object that contains information about the Clear All menu item on the 
Edit menu. 

The pointer to a CCmdUI object, pCmdU I, is used to access a CCmdUI member 
function, Enable. Enable takes one Boolean argument. In this code, the expression 
! m_s t ra ke Lis t . I s Empty ( ) evaluates to zero if the document has at least one 



Chapter 6 Binding Visual Objects to Code Using ClassWizard 113 

stroke to clear. If the expression evaluates to nonzero (no strokes), the menu item is 
disabled (and dimmed or grayed). 

Note When the user pulls down a menu, the update handlers for all items on the 
menu are called before the user sees the menu displayed. It's important, then, to 
make your update handlers fast. 

When you add an update command for the ClearAll menu item, Class Wizard also 
writes a message-map entry in the document's message map in file 
SCRIBDOC.CPP that looks like this: 

BEGIN_MESSAGE_MAP( CScribDoc. CDocument ) 
ON_UPDATE_COMMAND_UI( ID_EDIT_CLEAR_ALL. OnUpdateEditClearAll ) 
II Other message-map entries 

END_MESSAGE_MAP( ) 

The ON UPDATE COMMAND UI macro resembles the ON COMMAND - -
macro that you saw earlier for the 0 nEd i tel ear All message handler. 

In addition, Class Wizard adds a new member function declaration for 
On U p d ate Ed i tel ear All to the esc rib 0 a c class declaration in file 
SCRIBDOC.H. The function declaration looks like this: 

afx_msg void OnUpdateEditClearAll( CCmdUI* pCmdUI ); 

Update Scribble's Thick Line Menu Item 
Updating the Thick Line menu is very similar to updating the Clear All menu. In 
this case, however, rather than enabling or disabling the menu item, the handler puts 
a check mark beside the item or removes an existing check mark. If you're working 
along, do the following procedure. 

~ To add an update handler for the Thick Line menu 

1. Invoke Class Wizard. 

2. Select class CScri bOac. 

3. In the Object IDs list box, select the ID_PEN_THICK_OR_THIN command. 

4. In the Messages list box, select UPDATE_COMMAND _ UI. 

5. Choose the Add Function button. 

6. In the Add Member Function dialog box, accept the name 
OnUpdatePenThi ckOrThi n by choosing the OK button. 

7. In the Class Wizard dialog box, choose the Edit Code button. 

8. Fill in the OnUpdatePenThi ckOrThi n update handler function when the 
Visual Workbench editor opens. 



114 Class Library User's Guide 

The function looks like this (you add the marked lines): 

void CScribDoc: :OnUpdatePenThickOrThin( CCmdUI* pCmdUI 
{ 

II Add check mark to Pen Thick Line menu item if the current 
II pen width is "thick." 
pCmdUI->SetCheck( m_bThickPen ); 

9. Save changes to file SCRIBDOC.CPP. 

Rather than enabling or disabling the menu command, this handler uses the pointer 
to a CCmdUI object to call the SetCheck member function. SetCheck puts a 
check mark in front of the menu item's text, "Thick Line," if its argument evaluates 
to TRUE, or unchecks the menu item if FALSE. In this case, the expression 
m bThi ckPen is a member variable of CScri bOac. It evaluates TRUE if the line 
thickness is currently set to thick. Since the value of m_b T h i c k Pen is passed to 
SetCheck, the effect is to toggle the menu item's check mark on or off as the line 
thickness changes. 

The ON_UPDATE _ COMMAND _ UI message-map entry and the 
OnUpdatePenTh i ckOrTh in message handler serve to update the state of the 
Thick Line button on the toolbar as well as the Thick Line menu item. The code line 

pCmdUI->SetCheck( m_bThickPen ); 

adjusts the state of the toolbar button as well as updating the checked state of the 
menu item. For a toolbar button, "checked" means depressed. 

In this example, the user would previously have reset the line thickness. The next 
time the user chooses the Pen menu (or the toolbar button), the user-interface 
update mechanism takes care of updating the check mark to match the current 
thickness. Similarly, the toolbar button's state toggles between a "pressed down" 
appearance and a normal appearance. 

As with the update handler for Clear All, Class Wizard adds a message-map entry 
for OnUpdatePenTh i ckOrThi n to the document's message map in file 
SCRIBDOC.CPP: 

BEGIN_MESSAGE_MAP( CScribDoc, CDocument ) 
ON_UPDATE_COMMAND_UI(ID_PEN_THICK_OR_THIN,OnUpdatePenThickOrThin) 
II Other message-map entries 

END_MESSAGE_MAP( ) 

Class Wizard also adds a member function declaration to the document class 
declaration in file SCRIBDOC.H: 

afx_msg void OnUpdatePenThickOrThin( CCmdUI* pCmdUI ); 



Chapter 6 Binding Visual Objects to Code Using ClassWizard 115 

Compiling the New Scribble 
How does Scribble behave with these new commands in place? Compile the new 
step-2 version of Scribble and find out. 

Run the new version of Scribble from the Project menu. 

Draw some strokes with the default thin pen. Then change the line thickness with 
the Thick Line command on the Pen menu and draw some new strokes. Clear all 
strokes from the drawing with the Clear All command on the Edit menu. Figure 6.9 
shows this version of Scribble . 

. ;;;; 
file .Edit Een 'iiew Window Help 

II----------------S-cr-ib-l-----------------aln 

I Ready 

Figure 6.9 Scribble Step 2 

Exit Scribble. 

This completes step 2 in the tutorial. You now have a basic understanding of 
commands. In later chapters you'll build on that foundation. 

In the next chapter, you'll implement a command that invokes a dialog box and then 
processes the results in its message handler. 





117 

CHAPTER 7 

Adding a Dialog Box 

Chapters 5 and 6 added new commands to Scribble in two steps: first, by using App 
Studio to add new menu items; and second, by using Class Wizard to define 
message handlers and bind them to the commands. Recall that in Chapter 5, you 
added menu items for three new commands: Edit Clear All, Thick Pen, and Pen 
Widths. In contrast, Chapter 6 discussed binding only the first two of these 
commands. 

The reason for this omission is that the Pen Widths command is somewhat different 
from the other two commands. Both the Edit Clear All and Thick Pen commands 
execute to completion as soon as the user selects them. By contrast, the Pen Widths 
command requires more information from the user. The command invokes a dialog 
box, one that lets the user specify exactly how thin the Thin Pen should be and how 
thick the Thick Pen should be for subsequent drawing. Before you can write a 
message handler for this command, you have to design the dialog box that it invokes 
and define a new class to manage the dialog box. That's what you'll do in this 
chapter. 

This chapter develops a modal dialog box using the same general procedure that 
chapters 5 and 6 used for adding menu commands: first using App Studio to design 
the dialog box's appearance, and then using Class Wizard to define message 
handlers and bind them to the dialog box. Along the way, you'll see a feature of 
Class Wizard that greatly simplifies the process of gathering data from a dialog box 
and checking the data's validity. 

This chapter describes the following topics: 

• Designing a dialog box using App Studio. 

• U sing Class Wizard to connect a class to a dialog box. 

• Invoking a dialog box from your application. 

This chapter covers step 3 of Scribble. If you want to work along, adding the code 
as you go, begin with the files from Chapter 6 in your SCRIBBLE\MYSCRIB 
subdirectory. At this point, these files should closely resemble those in the 
SCRIBBLE\STEP2 subdirectory. As you read the chapter, perform all ClassWizard 



118 Class Library User's Guide 

steps and add all the code that's marked with the symbol ~. At the end, your files 
should closely resemble the files in the SCRIBBLE\STEP3 subdirectory. 

If, on the other hand, you want to read along without adding code, you can print or 
view the files in the SCRIBBLE\STEP3 subdirectory. 

Designing a Dialog Box 
Figure 7.1 shows the Pen Widths dialog box that you will create. 

Pen Widths 

Thin Pen Width: [] 
T hick Pen Width: [J 

Default OK I Cancel 

Figure 7.1 Scribble's Pen Widths Dialog Box 

The Pen Width dialog box will have the following behavior: for either the Thin or 
Thick Pen width, the user can enter any number between 1 and 20. If the user enters 
a value outside of this range, Scribble displays a message box stating the legal 
range; after dismissing the message box, the user can enter new values. To reset the 
pen widths to their default values, the user chooses the Default button. To use the 
currently displayed widths for any subsequent drawing, the user chooses the OK 
button. To cancel the operation, the user chooses the Cancel button. 

Adding the Controls 
App Studio provides a graphical editor for designing the appearance of a dialog 
box. This editor displays a palette of available controls (such as radio buttons, 
check boxes, and pushbuttons) and an empty dialog box, which is the starting point 
for the dialog box you're designing. You select controls from the palette and 
position them on your dialog box. You can move the controls around or resize them 
directly using the mouse. 

There are two steps in designing a dialog box: the first is adding the controls you 
want, and the second is editing the captions, IDs, and other properties for the 
controls. 



Chapter 7 Adding a Dialog Box 119 

~ To add controls to the Pen Widths dialog box 

1. With your Scribble project open in Visual Workbench, choose the Open 
command from the File menu and load the resource file SCRIBBLE.RC. This 
launches App Studio, and a resource browser window appears. 

2. Choose the New button to create a new resource. 

3. Select Dialog from the list of resource types and choose OK. A dialog editor 
window appears displaying a dialog box that contains two buttons labeled OK 
and Cancel. The palette of the available controls appears nearby. 

4. Add two edit controls. You can add and reposition controls using the "drag and 
drop" method described in Chapter 5. 

5. Add two static text controls to contain the descriptions for the two edit controls. 
Again, you can use the drag and drop method. 

6. Add a third pushbutton to the ones already present. 

Modifying the Controls' Properties 
To customize the captions and IDs for the controls you've added, you must open the 
App Studio property page for each control. In Chapter 5, you saw that menus and 
individual menu items have property pages; in the same way, dialog boxes and 
dialog controls have property pages describing their attributes. 

~ To edit the captions and IDs for the controls in the Pen Widths dialog box 

1. If the property page is not currently displayed, double-click the dialog box itself 
and then click the push-pin button on the property page to keep it open. If the 
property page is already displayed, click the dialog box to display its properties. 
Change its ID to IDD_PEN_ WIDTHS and change its caption to "Pen Widths." 

2. Click the first edit box to display its property page. Change its ID to 
IDC_THIN_PEN_ WIDTH. Then click the second edit box to display its 
property page. Change its ID to IDC_ THICK_PEN_ WIDTH. 

3. Click the first text box to display its property page. Change the caption of the 
text box to read "Thin Pen Width:". Then bring up the property page for the 
other text box, and change its caption to read "Thick Pen Width:". Resize each 
text box so that the entire caption is visible; you can do this by dragging on the 
sizing handles on the sides of the text box. 

You won't have to refer to the IDs of the text boxes, so you can leave them with 
their default values (both have the value IDC_STATIC). 

4. Click the pushbutton you added to display its property page. Change its caption 
to "Default" and its ID to IDC_DEFAULT_PEN_ WIDTHS. 



120 Class Library User's Guide 

Note that App Studio has predefined the OK and Cancel buttons. If you want to 
look at the property pages for these buttons, click on them in tum. They have 
IDOK and IDCANCEL, respectively, as their IDs. Notice that the OK button 
has the Default Button check box chosen; this makes the OK button the default 
if the user immediately presses the ENTER key. 

Dialog -
editor 

window 

'"'I 100 PEN WIDTHS (Dialog) l ""1'" 
00 1I§>I'ElUtDDIDD!1 ~ ~ 1IE!lllIllrni LJ 

'"'I Pen Widths 

Thin Pen Width: D 
Thick Pen Width: D 

1 Default I ~: """~: :::::::1 1 Cancel I 

[~l 'JDialog:Push Button Properties I General 

.. 
... ~ 

A ~ 

CJ 0 

[ZJ @ 

§m -. ~ 
l!El [il 
f} 

Iii 
!D: IIDOK! I Ii] .caption: I-IO_K _____ -----1 

[ZJ ~isible [ZJ !iroup 

D Qisabled [ZJ I.abstop 

[ZJ Def~ult Button 

DQwner Draw 

r-- Control 
palette 

- Property 
page 

Figure 7.2 Designing the Pen Widths Dialog Box with App Studio 

You can clean up the dialog box's appearance by selecting one or more of the 
controls and using the commands on the Layout menu to align them, make them the 
same size, etc. If you want to see what the dialog box will look like when it's 
actually invoked, choose the Test command from the Resource menu. This displays 
the dialog box as it will appear in Scribble. Exit Test mode by choosing either the 
OK or Cancel button on the dialog box or by pressing the ESC key. 

When you're satisfied with the way your dialog box looks, choose the File Save 
command. App Studio saves the template for your dialog box in the .RC file that 
you're working in, SCRIBBLE.RC in this case. 

For more information about editing dialog boxes with App Studio, see Chapter 3 of 
the App Studio User's Guide. 

Connecting a Class to a Dialog Box 
Once you've specified the appearance of your dialog box, you must specify its 
behavior. This requires deriving a class from CDialog that implements your dialog 
box and connecting the class to the resource you created in the previous section. 

In general, to connect a class to a dialog box: 



Chapter 7 Adding a Dialog Box 121 

1. Declare a class to represent the dialog box. 

2. Declare handler functions for the messages you want to handle. 

3. Map the controls to member variables of the dialog class and define what (if 
any) validation rules should be applied to each. 

You could do all of this manually, but Class Wizard provides a graphical user 
interface that lets you do it quickly and easily. It generates a header and an 
implementation file for your dialog class complete with function prototypes, skeletal 
function definitions, a message map, and a data map. 

The following sections show how these steps are accomplished for Scribble's Pen 
Widths dialog box. 

Declaring the Class 
As you saw in Chapter 6, ClassWizard lets you connect a graphical object (such as 
a menu command or a toolbar button) to a class. The commands described in that 
chapter are handled by the esc rib Doc class, the document class generated by 
AppWizard. 

AppWizard doesn't provide any classes for dialog boxes, so you must declare a 
new class to control the Pen Widths dialog box. 

~ To declare a new dialog class 

1. At this point, the App Studio dialog editor window is still open, displaying the 
Pen Width dialog box. Pull down the Resource menu and select the Class Wizard 
command. The Class Wizard dialog box appears, and then on top of it the Add 
Class dialog box appears. ClassWizard knows that a class hasn't been defined 
yet, so it displays this dialog box to allow you to define one. 

2. For the class name, enter "CPenWidthsDlg." Notice that the class type is 
already set to "CDialog," which is the type ClassWizard assumes because you 
were using the dialog editor. 

3. For the header file, ClassWizard offers the candidate name "penwidth.h"; it has 
created this name based on the class name. Change the name to "pendlg.h." 

4. For the implementation file, change the name to "pendlg.cpp." 

5. Choose the Create Class button. The Class Wizard dialog box regains the focus, 
now displaying the name "CPen WidthsDlg" and the IDs for the controls in the 
Pen Widths dialog box, as shown in Figure 7.3. 



122 Class Library User's Guide 

Add Class 

Cancel 

Class Name: 

I CPenWidlhsDlg 

Header File: I Creale Class I 
I'-'-pe_n---:dlg:-.h __ --'II Browse ... I 

Class !ype: Implemenlalion File: ,--_---. 

ICDialog Iii Ipendlg.cPP II Bro,!!se ... I !!elp 

J!ialog 10: IIOD_PEN_WIDTHS Iii Ilmporl Class ... I 

Figure 7.3 The Add Class Dialog Box 

In the previous chapters, you've been adding code to the SCRIBDOC.H/CPP and 
SCRIBVW.H/CPP files exclusively, which were created initially by AppWizard. In 
this chapter you will work with two new files: PENDLG.H and PENDLG.CPP, 
which you specified in the Add Class dialog box. Class Wizard automatically adds 
these files to the project. 

Here's the initial version of PENDLG.H that Class Wizard generates once you've 
completed the Add Class dialog box: 

class CPenWidthsDlg : public CDialog 
{ 

II Construction 
public: 

CPenWidthsDlg(CWnd* pParent NULL); 

II Dialog Data 
11{{AFX_DATA{CPenWidthsDlg) 
enum { IDD = IDD_PEN_WIDTHS }; 

II standard constructor 

II NOTE: the ClassWizard will add data members here 
I/} }AFX_DATA 

II Implementation 
protected: 

} ; 

virtual void DoDataExchange(CDataExchange* pDX);11 DDX/DDV support 

II Generated message map functions 
11{{AFX_MSG(CPenWidthsDlg) 

II Note: the ClassWizard will add member functions here 
I/} }AFX_MSG 
DECLARE_MESSAGE_MAP() 

This file contains a declaration for C Pen Wid t h sOl g, the class that implements the 
Pen Widths dialog box. At this point, the class contains two member functions: a 
constructor and the 000 a t a Ex c han 9 e function, which is described later on. 

As described in Chapter 6, the file contains comment lines that begin / / { {A F X_ 
and / /} } A F X_. Recall that Class Wizard uses those comment lines to fmd the 
sections of code that it maintains. There are two such sections in the header file, 



Chapter 7 Adding a Dialog Box 123 

each delimited by slightly different comments: the AFX_DATA section, containing 
the declarations of the dialog data members; and the A F X_M S G section, containing 
the declarations of the message handlers. In general, you shouldn't manually edit 
any declarations that appear in these sections. 

Here's the initial version of PENDLG.CPP that ClassWizard generates once 
you've completed the Add Class dialog box: 

ffinclude "stdafx.h" 
41include "scribble.h" 
41include "pendlg.h" 

41ifdef _DEBUG 
ffundef THIS_FILE 
static char BASED CODE THIS_FILE[] = __ FILE __ : 
1J:endif 

//////////////////////////////////////////////////////////////////// 

// CPenWidthsDlg dialog 

CPenWidthsDlg: :CPenWidthsDlg(CWnd* pParent /*=NULL*/ 
: CDialog(CPenWidthsDlg::IDD, pParent) 

//{{AFX_DATA_INIT(CPenWidthsDlg) 
// Note: the ClassWizard will add member initialization here 

//JJAFX_DATA_INIT 

void CPenWidthsDlg::DoDataExchange(CDataExchange* pOX) 

CDialog::DoDataExchange(pDX): 
//{{AFX_DATA_MAP(CPenWidthsDlg) 

// Note: the ClassWizard will add DDX and DDV calls here 
//JJAFX_DATA_MAP 

BEGIN_MESSAGE_MAP(CPenWidthsDlg, CDialog) 
//{{AFX_MSG_MAP(CPenWidthsDlg) 

// Note: the ClassWizard will add message map macros here 
/ /} JAFX_MSG_MAP 

END_MESSAGE_MAP() 

//////////////////////////////////////////////////////////////////// 

// CPenWidthsDlg message handlers 

This file contains an empty message map and empty function definitions for the 
constructor and the DaDa ta Excha nge member function. The DaDa ta Excha nge 
function will be described later in this chapter. 



124 Class Library User's Guide 

Notice that the constructor has a base initializer for CDialog. The CDialog 
constructor that it invokes creates a modal dialog box, and it takes two parameters: 
the ID of the dialog resource and a pointer to the parent window. For the first 
parameter Class Wizard has specified C Pen Wid t h s D 1 9 : : I D D. This is an 
enumerated value that is defined in the A F X_D A T A section in the class declaration. 
This enumerated value is equal to IDD _PEN_ WIDTHS, the ID you specified in the 
section "Modifying the Controls' Properties" on page 119. Thus the dialog class is 
associated with the dialog resource you created. 

Also notice that the implementation file, like the header file, contains sections 
delimited by / / { { and / /} }, in which ClassWizard will insert code later. 

Declaring the Message-Handling Functions 
The CDialog class defines default handlers for the OK and Cancel buttons. The 
Pen Widths dialog box contains a third pushbutton, the Default button. For 
C Pen Wid t h s D 1 9 to respond when the user chooses this button, you must define a 
new message handler and bind it to the Default pushbutton. 

Binding a message handler to a control in a dialog box is essentially the same as 
binding a message handler to a menu command, which was described in Chapter 6; 
both are accomplished by adding an entry to a class's message map using 
Class Wizard. 

After completing the Add Class dialog box in the previous section, the Class Wizard 
dialog box is active. This is the same dialog box that was described in Chapter 6, 
but notice the following differences: 

• The dialog class, not the document or view class, is the one that will handle the 
message. Consequently, the Class Name box displays "CPenWidthsDlg." 

• The Object IDs list box displays the IDs of all the controls in the dialog box, not 
the commands in a menu. 

• The message being handled is a Windows control notification message, not an 
application-specific command. As a result, the Message box displays more than 
just COMMAND and UPDATE_COMMAND_UI; it displays all the 
messages that can be sent by the object that's highlighted in the Object IDs box. 
For example, if IDC_THIN_PEN_ WIDTH - which is the ID of the first edit 
box - is highlighted in the Object IDs box, the Message box displays all the 
control notification messages that an edit box can generate, such as 
EN_SETFOCUS, EN_KILLFOCUS, and EN_UPDATE. 

Despite these differences, the procedure for adding a message handler is the same. 



Chapter 7 Adding a Dialog Box 125 

~ To add a message handler for the Default button 

1. In the Object IDs list box, highlight IDC_DEFAULT_PEN_ WIDTHS. Recall 
that this is the ID of the Default button. Notice that the Message list box shows 
all the notification messages that a pushbutton can send, that is, 
BN CLICKED and BN DOUBLECLICKED. - -

2. In the Messages list box, highlight the BN _CLICKED message. Notice the 
description in the status bar: "Indicates the user clicked a button." 

3. Choose the Add Function button. The Add Member Function dialog box 
appears, displaying the candidate name, "OnClickedDefaultPenWidths." 
Class Wizard has synthesized this name based on the object's ID and the 
message name. 

4. Change the name to "OnDefaultPenWidths" and then choose the OK button. 
The name "OnDefaultPen Widths" appears in the Member Function list box and 
a hand-shaped icon appears next to the entry for BN_ CLICKED in the 
Message box. 

At this point, you could choose the Edit Code button to fill in the definition of the 
OnDefaul tPenWi dths message handler, the way you did with the message 
handlers for menu commands in Chapter 6. However, the purpose of this function is 
to manipulate member variables of the dialog class. Right now the 
C Pen Wid t h s D 1 9 class doesn't have any member variables defined; those members 
will be defined in the next section. Consequently, you will implement 
OnDefaul tPenWi dths later in the chapter, after you've added the member 
variables. 

Class Rame: ICPenWidthsDlg 

pendlg.h, pendlg.cpp 

ClassWizard 

Iii 

Object IDs· Messages· -
CPenWidthsD Ig 

BN_DOUBLECLICKED 
IDC THICK PEN WIDTH 
IDCTHIN PEN WIDTH 
IDcANCEL -
IDOK 

OK 

Cancel 

Add Class ... 

Class Info ... 

Help 

I Edit Variables... I 

........ , ..... '.' ... '1 1 1l<Jd Fw",'~" I 
I Q.elete Function I 
I .edit Lod~J I 

Description: Indicates the user clicked a button 

Figure 7.4 The Class Wizard Dialog Box 



126 Class Library User's Guide 

Here are the changes that ClassWizard makes to PENDLG.H after you've defined 
the message handler (these changes are saved to the file when you close the 
ClassWizard dialog box): 

class CPenWidthsDlg : public CDialog 
{ 

II Construction 
public: 

CPenWidthsDlg(CWnd* pParent NULL); 

II Dialog Data 
11{{AFX_DATA{CPenWidthsDlg) 
enum { IDD = IDD_PEN_WIDTHS }; 
II Note: the ClassWizard will add data members here 
I/} }AFX_DATA 

II Implementation 
protected: 

} ; 

virtual void DoDataExchange(CDataExchange* pOX); II DDX/DDV support 

II Generated message map functions 
11{{AFX_MSG(CPenWidthsDlg) 
afx_msg void OnDefaultPenWidths(); 
I/} }AFX_MSG 
DECLARE_MESSAGE_MAP() 

Notice that ClassWizard has inserted a prototype for a member function named 
OnDefaultPenWidths. 

ClassWizard makes the following changes to PENDLG.CPP after you've defined 
the message handler (these changes are saved to the file when you close the 
ClassWizard dialog box): 

#include "stdafx.h" 
#include "scribble.h" 
#include "pendlg.h" 

I I ... 

BEGIN_MESSAGE_MAP(CPenWidthsDlg, CDialog) 
11{{AFX_MSG_MAP(CPenWidthsDlg) 
ON_BN_CLICKED(IDC_DEFAULT_PEN_WIDTHS, OnDefaultPenWidths) 
I/} }AFX_MSG_MAP 

END_MESSAGE_MAP() 



Chapter 7 Adding a Dialog Box 127 

//////////////////////////////////////////////////////////////////// 

// CPenWidthsDlg message handlers 

void CPenWidthsDlg::OnDefaultPenWidths() 
{ 

// TODD: Add your control notification handler code here 

Notice that Class Wizard has inserted an entry in the message map indicating that 
the member function 0 nO e f a u 1 t Pen Wid t h s is a message handler that is invoked 
wheneverthecontrolIDC DEFAULT PEN WIDTHS sends aBN CLICKED - - - -
message. Class Wizard has also generated an empty function definition for the 
message handler. You'll fill in the implementation for the function later in the 
chapter. 

Mapping the Controls to Member Variables 
Scribble must be able to retrieve the values that the user enters in the Thin Pen and 
Thick Pen edit boxes. The Microsoft Foundation Class Library defines a 
mechanism that automates the process of gathering values from a dialog box; this 
mechanism is called a "data map." In the same way that a message map binds a 
user-interface element with a member function, a data map binds a dialog-box 
control with a member variable. The value of the member variable reflects the 
status or the contents of the control. By adding entries to C Pen Wid t h sOl g' s data 
map, you can retrieve the values entered in the Thin Pen and Thick Pen edit boxes. 

For Scribble, the widths of the thin and thick pens must be between 1 and 20. You 
can enforce these conditions by using the automated data validation that data maps 
provide. If the user enters values that fall outside this range, the application displays 
a message box stating the legal range and allows the user to enter new values. 

At this point, the Class Wizard dialog box is still on the screen. Choose the Edit 
Variables button. The Edit Member Variables dialog box appears, as shown in 
Figure 7.S. This dialog box contains a list box displaying the mapping between 
controls and member variables. At the moment the box displays only the IDs for the 
controls, because you haven't yet specified which member variables the controls 
correspond to. 

~ To map the controls of the Pen Widths dialog box to member variables 

1. Select IDC THIN PEN WIDTH and then choose the Add Variable button. - - -
The Add Member Variable dialog box appears. 

2. In the Member name edit box, enter "m_nThinWidth." 

3. In the Variable Type list box, choose "int." 



128 Class Library User's Guide 

4. Choose OK to add the member variable to the class. Notice that the member 
name and type you specified now appear in the Control list box and two new 
edit boxes appear to receive the validation parameters appropriate for an integer. 

5. In the Minimum and Maximum edit boxes, enter "I" and "20" respectively. 

6. Repeat steps 1 through 5 for the control IDC _THICK_PEN _ WIDTH. Enter 
"m_nThickWidth" for the member name, choose "int," and enter lower and 
upper limits of 1 and 20. 

7 . Choose the Close button to exit the Add Member Variable dialog box. 

You've now completed the data map connecting the Pen Widths dialog box to the 
PenWi dthsDl 9 class. 

Edit Member Variables 

Class Harne: CPenWidthsDlg 

pen dig. h, pendlg. cpp 

I;.ontrol Type 

IDC DEFAULT PEN WIDTHS 
Member 

Close 

Help 

IDC THIN PEN WIDTH int 
IDcANCEL -

I Add Variable ___ I 
IDOK 

1 Delete Variable I 

Description: int with validation 

Minimum Value: Ma.!!.imum Value: 

IL-l _____ ---'I 120 

Figure 7.5 The Edit Member Variables Dialog Box 

ClassWizard makes the following changes to PENDLG.H after you've mapped the 
controls to member variables (these changes are saved to the file after you close the 
ClassWizard dialog box): 

class CPenWidthsDlg : public CDialog 
{ 

II Construction 
public: 

CPenWidthsDlg(CWnd* pParent NULL); 

II Dialog Data 
11{{AFX_DATA{CPenWidthsDlg) 
enum { IDD = IDD_PEN_WIDTHS }; 
int m_nThinWidth; 
int m_nThickWidth; 
I/} }AFX_DATA 



Chapter 7 Adding a Dialog Box 129 

// Implementation 
protected: 

} ; 

vi rtual void DoDataExchangeCCDataExchange* pOX); / / DDX/DDV support 

// Generated message map functions 
//{{AFX_MSGCCPenWidthsDlg) 
afx_msg void OnDefaultPenWidthsC); 
/ /} }AFX_MSG 
DECLARE_MESSAGE_MAPC) 

Notice that Class Wizard has inserted declarations of member variables in the data 
map. These are the member variables you specified in the Add Member Variable 
dialog box. 

ClassWizard makes the following changes to PENDLG.CPP after you've mapped 
the controls to member variables (these changes are saved to the file when you 
close the ClassWizard dialog box): 

11 inc 1 u de" s t d a f x . h " 
1Iinclude "scribble.h" 
1Iinclude "pendlg.h" 

//////////////////////////////////////////////////////////////////// 

// CPenWidthsDlg Dialog 

// 

CPenWidthsDlg: :CPenWidthsDlgCCWnd* pParent /*=NULL*/) 
: CDialogCCPenWidthsDlg::IDD, pParent) 

} 

//{{AFX_DATA_INITCCPenWidthsDlg) 
m_nThinWidth = 0; 
m_ThickWidth = 0; 
//}}AFX_DATA_INIT 

void CPenWidthsDlg::DoDataExchangeCCDataExchange* pOX) 
{ 

} 

II 

CDialog::DoDataExchangeCpDX); 
//{{AFX_DATA_MAPCCPenWidthsDlg) 
DDX_TextCpDX, IDC_THIN_PEN_WIDTH, m_nThinWidth); 
DDV_MinMaxIntCpDX, m_nThinWidth, 1, 20); 
DDX_TextCpDX, IDC_THICK_PEN_WIDTH, m_nThickWidth); 
DDV_MinMaxIntCpDX, m_nThickWidth, 1, 20); 
/ /} }AFX_DATA_MAP 



130 Class Library User's Guide 

Notice that ClassWizard has initialized the member variables in the constructor and 
provided an implementation for the 000 a t a Ex c han 9 e function. The framework 
calls 000 a t a Ex c han 9 e whenever values have to be moved between the member 
variables in the class and the controls in the dialog box on screen (for example, 
when first displaying the dialog box on the screen or when the user closes the dialog 
box by choosing OK). 

The DoData Exchange function is implemented using DDX and DDV function 
calls.'A DDX (for Dialog Data eXchange) function specifies which control in the 
dialog box corresponds to a particular member variable and transfers the data 
between the two. A DDV (for Dialog Data Validation) function specifies the 
validation parameters for a particular member variable, ensuring that its value is 
legal. The DDX and DDV function calls shown above reflect the mapping and 
validation parameters you specified with Class Wizard. 

Notice that the DDV function call for a given member variable immediately follows 
the DDX function call for that variable. This is a rule you must follow if you choose 
to manually edit the contents of the data map. 

For more information about ClassWizard, see Chapter 9 of the App Studio User's 
Guide. 

Implementing the Message Handler 
Recall that Class Wizard provided an empty function definition for the 
On 0 e f au 1 t Pen Wid t h s message handler, which is called when the user chooses 
the Default button. Now that the CPenWi dthsDl 9 class contains the necessary 
member variables, it's time to fill in that function definition. This function sets the 
contents of the edit boxes to the default widths of the thin and thick pens. 

~ To implement the message handler for the Default button 

1. From the Class Wizard dialog box, highlight "OnDefaultPen Widths" in the 
Member Functions list box and then choose the Edit Code button. (The Edit 
Code button may be disabled if you are running App Studio without running 
Visual Workbench; in this case, launching Visual Workbench will enable the 
button.) The Edit Code button transfers you to Visual Workbench, opens 
PENDLG.CPP, and displays the definition for OnDefaul tPenWi dths. 

2. Fill in the 0 nO e f a u 1 t Pen Wid t h s function with the following code: 



Chapter 7 Adding a Dialog Box 131 

void CPenWidthsDlg::OnDefaultPenWidths() 

m_nThinWidth = 2; 
m_nThickWidth = 5; 
UpdateData(FALSE); II causes DoDataExchange() 

II bSave=FALSE means don't save from screen, rather, write 
II to screen 

The function sets m nTh; nW; dth and m nTh; ckW; dth to their default values 
and then calls UpdateData, a member function defined by CWnd (the base 
class of CDialog). 

The U pdateData member function calls the DoD a t a Ex c han 9 e function to 
move values between the member variables and the controls displayed on the 
screen. The direction in which the data values are moved is specified by the 
argument to UpdateData. The default value of this argument is TRUE, which 
moves data from the controls to the member variables. A value of FALSE 
moves data from the member variables to the controls. The 
On De fa u 1 t Pen W ; d t h s member function passes FALSE, causing the default 
values to be displayed in the edit boxes on the screen. 

3. Save and close the file PENDLG.CPP and return to App Studio. The dialog 
editor window is still visible, displaying the Pen Widths dialog box you 
designed. Click on the push-pin button on the property page so that it is 
unpinned, then double-click the close box on the dialog editor window. Now 
only the App Studio resource browser window for SCRIBBLE.RC should be 
visible. 

Invoking the Dialog Box 
By now you've specified almost everything about the Pen Widths dialog box: its 
appearance, the data map for its edit controls, and the message handlers for its 
pushbuttons. There's only one thing that remains to be specified: when the dialog 
box should be invoked. 

At the moment there is no programmatic connection between the Pen Widths menu 
item and the Pen Widths dialog box; that is, the menu item and the dialog box are 
not bound together. You must explicitly bind them by invoking the Pen Widths 
dialog box from within the message handler for the Pen Widths command. 

How do you invoke a dialog box? The first step is to declare a C Pen W; d t h s D 1 9 
object. This doesn't display the dialog box on the screen, it just constructs the C++ 
object that manages the dialog box. To display the dialog box, you must call the 
DoModal member function defined by the CDialog class. 

The Pen Widths dialog box is a "modal" dialog, which means that once invoked, it 
takes control of the application (it puts the program in a different "mode"). The user 



132 Class Library User's Guide 

can do no other work in the application while the dialog box is displayed and must 
dismiss the dialog box, typically by choosing the OK or Cancel button, to continue 
with the application. The DoModal function continues executing as long as the 
dialog box is displayed on the screen. When the user chooses the OK or Cancel 
button, the DoModal function returns IDOK or IDCANCEL, respectively, and 
the application can continue. 

Now you can write a message handler for the Pen Widths command. Which class 
should get the handler? Recall that in Chapter 6 you added declarations for the 
m_n T hie k Wid t h and m_n T h i n Wid t h member variables to the esc rib Doc class, 
because the document needs to keep track of the widths of the thick and thin pens 
(this allows multiple views to share the same pen widths). Since the document class 
has to maintain those values, it should get the handler for the Pen Widths command. 

~ To bind the Pen Widths command 

1. From the Type box in the App Studio resource browser window for 
SCRIBBLE.RC, choose Menu. 

2. Open the IDR _ SCRIBTYPE menu resource you edited in Chapter 5. 

3. From the Resource menu, choose the Class Wizard command. The Class Wizard 
dialog box appears. 

4. In the Class Name drop down list, choose "CScribDoc." 

5. In the Object IDs box, highlight the ID _PEN_WIDTHS command. 

6. In the Messages box, highlight COMMAND. 

7. Choose the Add Function button. 

8. Choose the OK button to accept the candidate name "OnPenWidths." 

9. Choose the Edit Code button. This returns you to the Visual Workbench session 
and opens the file SCRIBDOC.CPP. 

10. Make the following additions to SCRIBDOC.CPP: 

#include "stdafx.h" 
1ii ncl ude "scri bbl e. h" 
#include "scribdoc.h" 

1ii ncl ude "pendl g. h" 

I I ... 

void CScribDoc::OnPenWidths() 
{ 

CPenWidthsDlg dlg; 
II Initialize dialog data 
dlg.m_nThinWidth = m_nThinWidth; 
dlg.m_nThickWidth = m_nThickWidth; 



II Invoke the dialog box 
if (dlg.OoModal() == lOOK) 
{ 

Chapter 7 Adding a Dialog Box 133 

II retrieve the dialog data 
m_nThinWidth = dlg.m_nThinWidth; 
m_nThickWidth = dlg.m_nThickWidth; 

II Update the pen used by views when drawing new strokes 
II to reflect the new pen widths for "thick" and "thin". 
ReplacePen(); 

11. Save SCRIBDOC.CPP. In App Studio, save SCRIBBLE.RC. 

When modifying SCRIBDOC.CPP, it's necessary to include PENDLG.H, so that 
the message handler has access to the dialog class you've created. The 
OnPenWi dths function declares a CPenWi dthsDl 9 object and sets the values of 
the m nTh i c k Wid t hand m_n T hi n Wid t h member variables to the current widths 
of the thick and thin pens. Then the function calls the DoModal function, which 
displays the dialog box on the screen and takes control of the system until the user 
exits the dialog box. If the user exits the dialog box by choosing the OK button, the 
function changes the current thick and thin pen widths to the new values; if the user 
chooses the Cancel button, the old values are retained. Finally, the function calls the 
Rep 1 ace Pen member function to make the document's pen use the current widths. 

When does the application perform the data exchange and validation defined in the 
DoDataExchange function? Recall that DoDataExchange is called by the 
UpdateData member function. Just before the dialog box is first displayed on the 
screen, the framework calls the U pdateData function with an argument of FALSE, 
which sets the contents of the edit boxes to the values of the member variables. If 
the user exits the dialog box by choosing the OK button, the framework calls 
UpdateData with an argument of TRUE, which retrieves the contents of the edit 
boxes and sets the values of the member variables accordingly. (If the user exits by 
choosing the Cancel button, the framework doesn't call UpdateData.) 

You don't have to handle the UPDA TE _COMMAND _ UI message for the Pen 
Widths menu item, because the menu item doesn't need to be updated. The 
command is never disabled, since it's always legal to change the widths of the pens, 
and there's no need to add or remove a check mark, because the command isn't a 
toggle. 

Compile the New Scribble 
How does Scribble behave now that a dialog box has been added? Compile the new 
version of Scribble and find out. 



134 Class Library User's Guide 

~ To compile Scribble 

• From the Project menu in the Visual Workbench, choose the Rebuild All 
command. 

Run the new version of Scribble. Draw some strokes with the default thick pen and 
the default thin pen. Then use the Pen Widths dialog to change the thickness of the 
pens and draw some new strokes . 

•• 111 
file fdit Een ~iew Window .!::!.elp 

~--------------S-cr-ib-l--------------a-1I1 

Ready 

Figure 7.6 Scribble Version 3 

Exit Scribble. 

This completes step 3 in the tutorial. 

In the next chapter you'll implement the updating of multiple views, scrolling, and 
splitter windows. 



135 

CHAPTER 8 

Enhancing Views 

In the previous chapters, you've seen how a view acts as an intermediary between a 
document and the user: the view displays a document on the screen and interprets 
mouse actions as operations on the document. You've also seen how a view 
cooperates with a frame window so that the frame window implements the generic 
window behavior while the view provides the application-specific functionality. 

However, there are additional benefits to having a view class that is separate from 
the document and the frame window, benefits which Scribble hasn't demonstrated 
yet. This chapter describes how to take advantage of the division of labor between 
these classes to add special features to your application's user interface. 

This chapter covers the following topics: 

• Updating multiple views on the same document. 

• Scrolling a view. 

• Splitting a window. 

This chapter covers step 4 of Scribble. If you want to work along, adding the code 
as you go, begin with the files from Chapter 7 in your SCRIBBLE\MYSCRIB 
subdirectory. At this point, these files should closely resemble those in the 
SCRIBBLE\STEP3 subdirectory. As you read the chapter, add all the code that's 
marked with the symbol ~. At the end, your files should closely resemble the files in 
the SCRIBBLE\STEP4 subdirectory. 

If, on the other hand, you want to read along without adding code, you can print or 
examine the files in the SCRIBBLE\STEP4 subdirectory. 

Updating Multiple Views 
Suppose you have a drawing open in Scribble and you choose the New Window 
command on the Window menu. This action opens a new document window 
displaying the same drawing. The document object now has two view objects 
connected to it. Now consider what would happen if you added some new strokes in 



136 Class Library User's Guide 

one of the document windows. Would the new strokes appear in the other window 
simultaneously? No, not as Scribble is currently implemented, because each 
window is unaware of what's happening in the other windows. (This is illustrated in 
Figure 8.1.) You would have to wait until the other window is repainted (for 
instance, if you minimized and then restored it). Then its On 0 raw function would 
display the drawing again, including the new strokes. 

file ~dit f!en Y:iew Window .!:ielp 

II Scribl:l alil Scribl :2 

o 
Ready 

Figure 8.1 Multiple Views on a Document Without Updating 

How can you ensure that all the views attached to a document reflect changes to the 
document as soon as they are made? Each view must notify the other views 
whenever it has modified the document. The Microsoft Foundation Class Library 
provides a standard mechanism for notifying views of modifications to a document 
through the UpdateAIlViews member function of the CDocument class. 

The U pdateAlIViews function traverses the list of views attached to the document. 
For each view in the list (except the one that made the modifications), it calls the 
OnUpdate member function of the CView class. The OnUpdate function is where 
the view responds to changes in the document; the default implementation of the 
function invalidates the client area of the view, causing it to be repainted. The 
simplest way for you to use this updating mechanism in your application is to call 
the document's UpdateAIlViews function whenever a view modifies a document in 
response to a user action. 



Chapter 8 Enhancing Views 137 

You can also perfonn more efficient repainting with this updating mechanism if you 
use the parameters of the U pdateAllViews function. Here is the declaration of 
UpdateAllViews: 

virtual void UpdateAllViews(CView* pSender. LPARAM lHint = 0L. 
CObject* pHint = NULL); 

The first argument identifies the view that made the modifications to the document. 
This is specified to keep the UpdateAIlViews function from perfonning a redun
dant notification; typically the view that made the modifications doesn't need to be 
told about them. The second two arguments are "hints." You can use these hints to 
describe the modifications that the view made. 

The UpdateAIlViews function gives the hints to every view attached to the 
document (except the one that made the modifications) by passing them as 
parameters to the OnUpdate member function. You can override OnUpdate to 
interpret those hints and update only the area of the display that corresponds to the 
modified portion of the document. Thus, if another view is displaying a completely 
different portion of the document, it doesn't have to perfonn any repainting at all. 

To infonn other views of modifications: 

1. Define a type of hint that describes a modification to a document. 

2. When a view modifies the document, create a hint describing the modification 
made and pass it to UpdateAllViews. 

3. Override OnUpdate to use the hint so that only the portion of the screen 
corresponding to the modification gets updated. 

These steps are described in more detail below, using Scribble as an example. 

Defi ne a Hint for Scri bble 
When a stroke is added to a drawing in Scribble, the rectangular region that 
contains the new stroke is the only area that needs to be updated; the remainder of 
the drawing can be left alone. Therefore, a logical choice for a hint in Scribble is 
the bounding rectangle of the new stroke. 

~ To define bounding rectangles for strokes 

1. Instead of creating a separate class to represent the hint, it's more convenient to 
store the bounding rectangle for each stroke in the CSt r 0 k e object itself. 
Accordingly, load the file SCRIBDOC.H in Visual WorkBench and add the 
following new member declarations to CSt r 0 k e: 



138 Class Library User's Guide 

class CStroke public CObject 
{ 

I I ... 
protected: 
II Attributes 
II 

CRect m_rectBounding; 

public: 
CRect& GetBoundingRect() 

II Operations 
public: 

II 
} ; 

void FinishStroke(); 

II smallest rect that surrounds all 
II of the points in the stroke 

return m_rectBounding; } 

The protected member variable m_ r e c t B 0 un din 9 is a CRect object storing 
the bounding rectangle, and the public member function Get B 0 u n din 9 R e c t 
allows the rectangle to be retrieved by the view. There is also a new helper 
function, the Fin ish S t r 0 k e member function. 

2. Load SCRIBDOC.CPP and make the following modifications: 

II Each time we change what gets serialized, we change 
II the schema number. 

IMPLEMENT_SERIAL( CStroke, CObject, 2 ) 
I I ... 
CStroke::CStroke(UINT nPenWidth) : m_nPenWidth(nPenWidth) 
{ 

m_rectBounding.SetRectEmpty(); 
} 

void CStroke: :Serialize(CArchive& ar) 
{ 

if (ar.lsStoring()) 
{ 

} 

else 
{ 

} 

ar « m_rectBounding; 
ar « (WORD)m_nPenWidth; 
m_pointArray.Serialize(ar); 

ar » m_rectBounding; 
WORD w; 
ar » w; 
m_nPenWidth = w; 
m_pointArray.Serialize(ar); 



3. 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

Chapter 8 Enhancing Views 139 

The changes shown here are needed to manage the addition of the 
m_ r e c t B a u n din 9 member variable. The first change to be made is 
incrementing the schema number in the IMPLEMENT_SERIAL macro. This 
is necessary because this version of Scribble changes what's stored in a 
CSt r ok e object by adding a new member variable. Changing the schema 
number distinguishes strokes saved by this version of Scribble from those of 
other versions. 

The next change initializes the bounding rectangle to an empty rectangle in the 
CSt r a k e constructor. The changes to the S e ria 1 i z e member function store 
and read the m_ r e c t B a u n din 9 member variable. 

The Fin ish S t r ok e member function calculates the bounding rectangle for a 
stroke. Add the following function definition to the end of SCRIBDOC.CPP: 

////////////////////////////////////////////////////////////////// 

void CStroke::FinishStroke() 
{ 

} 

// Calculate the bounding rectangle. It's needed for smart 
// repainting. 

if( m_pointArray.GetSize() == 0 ) 
{ 

m_rectBounding.SetRectEmpty(); 
return; 

CPoint pt = GetPoint(0); 
m_rectBounding = CRect( pt.x, pt.y, pt.x, pt.y ); 

for (int i=1; i < m_pointArray.GetSize(); i++) 
{ 

// If the point lies outside of the accumulated bounding 
// rectangle, then inflate the bounding rect to include it. 
pt = GetPoint(i); 
m_rectBounding.left = min(m_rectBounding.left, pt.x); 
m_rectBounding.right = max(m_rectBounding.right, pt.x); 
m_rectBounding.top = min(m_rectBounding.top, pt.y); 
m_rectBounding.bottom = max(m_rectBounding.bottom, pt.y); 

// Add the pen width to the bounding rectangle. This is needed 
// to account for the width of the stroke when invalidating 
// the screen. 
m_rectBounding.InflateRect(CSize(m_nPenWidth, m_nPenWidth)); 
return; 

In this function, the stroke object iterates through its array of points, testing each 
one's location; if a point falls outside the current bounding rectangle, the stroke 



140 Class Library User's Guide 

object enlarges the bounding rectangle just enough to contain it. Then the 
bounding rectangle is expanded on each side by the width of the pen. 

Pass the Hint After Modifying the Document 
The next step is to pass the hint to the document's UpdateAIlViews member 
function. An appropriate time to pass a hint is each time a stroke is completed. 

~ To pass the hint after modifying the document 

• The 0 n L But ton U p member function is called when a stroke is finished, so you 
should call UpdateAIlViews from there. Load SCRIBVW.CPP and make the 
following modifications near the end of 0 n L But ton Up: 

void CScribView: :OnLButtonUp(UINT, CPoint point) 
( 

II ... 
m_pStrokeCur->AddPoint( point ); 

II Tell the stroke item that we're done adding points to it. 
II This is so it can finish computing its bounding rectangle. 
m_pStrokeCur->FinishStroke(); 

II Tell the other views that this stroke has been added 
II so that they can invalidate this stroke's area in their 
II client area. 
pDoc->UpdateAllViews(this, 0L, m_pStrokeCur); 

ReleaseCapture(); II Release the mouse capture established at 
II the beginning of the mouse drag. 

return; 

In this function, the view gets the hint information that it will send to the 
document. It does this by calling the Fin ish S t r 0 k e member function for 
m_p S t r 0 k e Cur; Fin ish S t r 0 k e computes the bounding rectangle for the 
current stroke. Then the view calls UpdateAIlViews, passing two arguments: 
the this pointer, which identifies this view as the one that performed the 
modification to the document; and m_p S t r 0 k e Cur, whose bounding rectangle 
is the hint. (The function sends a pointer to the entire CSt r 0 k e object rather 
than just the bounding rectangle because the hint must be a CObject pointer, 
and CRect isn't derived from CObject.) The view doesn't need to send any 
more hint information, so it doesn't pass anything in the LPARAM parameter. 

The UpdateAIlViews function iterates through the list of views attached to the 
document; for each view (except the one that performed the modification), the 
function calls its OnUpdate function and passes the hint as a parameter. 



Chapter 8 Enhancing Views 141 

Use the Hint for Efficient Repainting 
The last step is to take advantage of the hint so the other views can repaint 
themselves more efficiently. This involves modifying the CScri bVi ew class to 
respond to any hint it receives. 

~ To use the hint for efficient repainting 

1. From within Visual Workbench, load SCRIBVW.H and add the following 
function declaration: 

class CScribView : public CView 
{ 

/ / ... 
// Implementation 
public: 

// 
} ; 

virtual void OnUpdate( CView* pSender. LPARAM lHint 0L. 
CObject* pHint = NULL); 

This causes CScri bVi ew to override the OnUpdate function defmed by the 
CView class. 

2. To define CScri bVi ew's version of On Update, load SCRIBVW.CPP in 
Visual Workbench and add the following function definition to the end of the 
file: 

////////////////////////////////////////////////////////////////// 

void CScribView::OnUpdate(CView*. LPARAM. CObject* pHint) 
{ 

// The document has informed this view that some data has changed. 

} 

if (pHint != NULl) 
{ 

} 

if (pHint-)IsKindOf(RUNTIME_CLASS(CStroke») 
{ 

// The hint is that a stroke as been added (or changed). 
// So. invalidate its rectangle. 
CStroke* pStroke = (CStroke*)pHint; 
CRect rectInvalid = pStroke-)GetBoundingRect(); 
InvalidateRectC&rectInvalid); 
return; 

// We can't interpret the hint. so assume that anything might 
// have been updated. 
Invalidate(); 
return; 



142 Class Library User's Guide 

Recall that this function is called by the U pdateAIlViews function of 
esc rib Doc, which passes it a hint. In this function, the view checks if the hint 
is a CStroke object. If so, the view gets the bounding rectangle for the stroke 
and marks it as invalid. This rectangle marks the area that must be redrawn. If 
the hint isn't a CStroke object, the view doesn't know what area was modified, 
so it invalidates the entire client area as a precaution. 

After a region has been invalidated, Windows sends a WM _PAINT message. 
The OnPaint member function defined by CView handles this message by 
calling the virtual 0 nOr a w member function. Consequently, you must modify the 
On 0 raw function to take advantage of the invalidated rectangle when redrawing. 

3. Make the following changes to the 0 nOr a w member function in 
SCRIBVW.CPP: 

void CScribView::OnDraw(CDC* pDC) 
{ 

CScribDoc* pDoc = GetDocument(); 

II Get the invalidated rectangle of the view. or in the case 
II of printing. the clipping region of the printer dc. 
CRect rectClip; 
CRect rectStroke; 
pDC->GetClipBox(&rectClip); 

II The view delegates the drawing of individual strokes to 
II CStroke::DrawStroke(). 
for (POSITION pos = pDoc->GetFirstStrokePos(); pos 1= NULL; 
{ 

CStroke* pStroke = pDoc->GetNextStroke(pos); 
rectStroke = pStroke->GetBoundingRect(); 
if (IrectStroke.IntersectRect(&rectStroke. &rectClip)) 

continue; 
pStroke->DrawStroke(pDC); 

In this function, the view first calls the GetClipBox member function of CDC 
to get the invalidated portion of the client area. Then the view iterates through 
the list of strokes in the document, calling I n t e r sec t R e c t for each to 
determine if any part of the stroke lies in the invalidated region. If so, the view 
asks the stroke to draw itself. Any strokes that don't intersect the invalidated 
region don't have to be redrawn. 



Chapter 8 Enhancing Views 143 

Adding Scrolling 
In the current version of Scribble, you cannot work on a drawing that is larger than 
the window. It would be more convenient if you could work on a large drawing no 
matter how small the window is; to do this, Scribble must support scrolling. 

The addition of scrolling expands the conceptual role played by a view. Not only 
does a view produce a visual representation of a document's data, it also acts as a 
peephole to a document that may be too large to display all at once. This peephole 
can be moved across the document to reveal different portions of it. This is 
illustrated in Figure 8.2. 

Currently scrolled 
position ------1 ... Document 

View 

Figure 8.2 A Scrollable View on a Document 

Implementing scrolling all by yourself is fairly complicated. However, since a lot of 
the scrolling code is the same for all applications, the Microsoft Foundation Class 
Library implements the common scrolling logic in a class called CScrollView. 

The basic steps for adding scrolling to your application are as follows: 

1. Define a size for your documents. This can be a constant, a member stored in 
each document object, a value calculated at run time, etc. 

2. Derive your view class from CScrollView instead of CView. 

3. Pass the document's size to the SetScrollSizes member function of 
CScrollView whenever the size may change. 

4. Convert between logical coordinates and device coordinates if passing points 
between graphic device interface (GDI) and non-GDI functions. 

The framework's responsibilities are as follows: 

• Handle all WM _ HSCROLL and WM_ VSCROLL messages, scroll the 
document in response, and move the scroll box accordingly. 



144 Class Library User's Guide 

The positions of the scroll boxes reflect where the currently displayed portion of 
the document resides relative to the rest of the document. If the user clicks on a 
scroll arrow at either end of the scroll bar, the document is scrolled one "line" 
(whose meaning depends on the document type). If the user clicks on either side 
of the scroll box, the document is scrolled one "page." If the user drags the 
scroll box itself, the document is scrolled accordingly. 

• Calculate a mapping between the lengths of the scroll bars and the height and 
width of the document, adjust this scaling factor when the window is resized or 
when the size of the document changes, and in tum remove or add scroll bars as 
needed. 

The next section describes how to add scrolling to Scribble. Figure 8.3 shows what 
Scribble looks like with scroll bars added. 

Eile fdit .E!en Yiew ~indow .!:::!.elp 

Ready 

Figure 8.3 Scribble with Scrolling Support 

Add Scrolling to Scribble 
~ To add scrolling support to Scribble 

1. First define the size of Scribble documents. You can do this by having each 
document store its dimensions. Launch Visual Workbench and load 
SCRIBDOC.H. Make the following changes to the declaration of the 
CScri bDac class: 



class CScribDoc public CDocument 
{ 

I I ... 
protected: 

CSize m_sizeDoc; 
public: 

Chapter 8 Enhancing Views 145 

CSize GetDocSize() { return m_sizeDoc; } 

II Operations 
II 
} ; 

The member variable m_ s i zeD a c stores the size of the document in a CSize 
object. This member is protected, so it cannot be accessed directly by the views 
attached to the document. To let the views retrieve the size of the document, you 
provide a public helper function named Get 0 a c S i z e. The views base their 
scrolling limits on the document size. 

2. Load SCRIBDOC.CPP and make the following changes: 

I I ... 

void CScribDoc::InitDocument() 
{ 

II 

I I ... 
II default document size is 800 x 900 screen pixels 
m_sizeDoc = CSize(800,900); 

II CScribDoc serialization 

void CScribDoc::Serialize(CArchive& ar) 
{ 

} 

if (ar.IsStoring(» 
{ 

else 
{ 

a r « m_ s i zeD 0 c ; 

a r » m_ s i zeD 0 c ; 

m_strokeList.Serialize(ar); 



146 Class Library User's Guide 

The new code in the I nit Doe urn en t member function initializes the 
m_s i zeDoe member variable; recall that you use this function whenever a new 
document is created or an existing document is opened. All Scribble documents 
are the same size: 800 logical units in width and 900 logical units in height. For 
simplicity's sake, Scribble doesn't support documents of varying size to 
accommodate arbitrarily large drawings. 

The changes to the S e ria 1 i z e member function store and read the 
m_s i zeDoe member variable. 

3. Next, you must make the view set its scrolling limits according to the size of the 
document. Load SCRIBVW.H and make the following changes to the 
declaration of C S e rib View: 

class CScribView : public CScrollView 
{ 

II ... 
II Implementation 
public: 

void OnInitialUpdate(); 
II 
} 

By changing the base class of CSeri bVi ew from CView to CScrollView, you 
give C S e rib View scrolling functionality without having to implement any of it 
yourself. 

In addition, the CSeri bVi ew class overrides the OnlnitialUpdate member 
function, which is called when the view is first attached to the document. By 
overriding this function, you can inform the view of the document's size as soon 
as possible. 

4. Recall that the Microsoft Foundation Class Library uses message maps as well 
as C++ inheritance. As a result, modifying the class declaration in the header 
file isn't enough to give CSeri bVi ew all of CScrollView's functionality; you 
also have to modify the message-map macros in the implementation file. Load 
SCRIBVW.CPP and change the following lines: 

IMPLEMENT_DYNCREATE( CScribView, CScrollView 

BEGIN_MESSAGE_MAP( CScribView, CScrollView 
II{{AFX_MSG_MAP( CScribView ) 

I I ... 
I/} }AFX_MSG_MAP 

END_MESSAGE_MAP() 

I I ... 

Notice that in the message map macro, CSeri bVi ew's name is now followed 
by CScrollView instead of CView. This instructs the framework to search 



Chapter 8 Enhancing Views 147 

CScrollView's message map if it can't find the message handler it needs in 
CScri bVi ew's message map. 

5. If you want to use the diagnostic features provided by the Microsoft Foundation 
Class Library, change the implementations of the Dum p and Ass e r t Val i d 
member functions of esc rib Vie w. These functions simply call their base class 
versions; change them to call the CScrollView versions rather than the CView 
versions. 

6. To provide a definition for 0 n I nit i a 1 Up d ate, add the following code at the 
end of SCRIBVW.CPP: 

void CScribView: :OnlnitialUpdate() 
{ 

SetScrollSizes( MM_TEXT. GetDocument()->GetDocSize() ); 

The SetScrollSizes member function is defined by CScrollView. Its first 
parameter is the mapping mode used to display the document. The mapping 
mode that the current version of Scribble uses is MM _TEXT; in Chapter 9, 
Scribble will use the MM _ LOENGLISH mapping mode for better printing. 
(For more information on mapping modes, see Chapter 9, or see 
CDC::SetMapMode in the Class Library Reference). 

The second parameter is the total size of the document, which is needed to 
determine the scrolling limits. The view uses the value returned by the 
document's Get Doc S i z e member function for this parameter. 

SetScrollSizes also has two other parameters, for which Scribble uses the 
default values. These are CSize values that represent the size of one "page" and 
one "line," the distances to be scrolled if the user clicks the scroll bar or a scroll 
arrow. The default values are ljlOth and l/lOOth of the document size, 
respectively. 

Since Scribble documents are fixed in size, there is no need to make any subsequent 
calls to SetScroIlSizes. If your application supports documents of varying size, you 
should call SetScrollSizes immediately after the document's size changes. (You 
can do this from the OnUpdate member function of your view class.) 

Notice that the addition of scrolling didn't require you to modify the OnDraw 
member function of esc rib View. If the drawing function is unchanged, why does 
the window display different portions of the document depending on where the user 
has scrolled to? The reason is that the document is displayed using coordinates 
relative to an origin used by GDI. When this origin was fixed at the upper-left 
comer of the client area, the part of the document that was visible was always the 
same. By moving the origin used by GDI, CScrollView can adjust what portion of 
the document is shown in the client area of the window and what portions are 
hidden. 



148 Class Library User's Guide 

The origin used by GDI is a characteristic of a device context; it is used by the 
member functions of the CDC class. If you want to make adjustments to the CDC 
object used by your view, you can override the OnPrepareDC member function 
defined by CView. CScrollView overrides OnPrepareDC to move the device 
context's origin to reflect the currently scrolled position. OnPrepareDC is always 
called by the framework before it calls OnDraw; in Scribble, CScrollView's 
version of OnPrepareDC is called before esc rib View's 0 nOr a w is called. As a 
result, you don't have to make any changes to the On Draw function to draw a 
properly scrolled document; all the work needed to do scrolling is done to the device 
context before 0 nOr a w receives it. 

It's important to note that changing the device context's origin doesn't affect 
the coordinates you receive with Windows messages such as 
WM_LBUTTONDOWN or WM_MOUSEMOVE; the points accompanying 
those messages are still specified in coordinates relative to the upper-left comer of 
the client area. This is because Windows messages are not part of a device context, 
so they are unaffected by changes to the GDI origin. Thus, CScri bVi ew must now 
deal with two types of coordinates: 

• The coordinates used for describing the points received with a mouse message. 
Those points are returned in "device coordinates." 

• The coordinates used for drawing with GDI. These are known as "logical 
coordinates. " 

When storing the coordinates of strokes, Scribble needs to know where the strokes 
are relative to the document, not relative to the client area. Consequently, 
esc rib View must convert points from device coordinates (relative to the window 
origin) to logical coordinates (relative to the document origin) before storing them 
in CSt ro ke objects. 

~ To store the strokes using logical coordinates 

1. Make the following modifications to the On LButtonDown member function of 
CScri bVi ew: 



Chapter 8 Enhancing Views 149 

void CScribView::OnLButtonDown(UINT, CPoint point) 
{ 

II CScrollView changes the viewport origin and mapping mode. 
II It's necessary to convert the point from device coordinates 
II to logical coordinates, such as are stored in the document. 
CClientDC dc(this); 
OnPrepareDC(&dc); 
dc.DPtoLP(&point); 

m_pStrokeCur = GetDocument()->NewStroke(); 
m_pStrokeCur->AddPoint(point); II add 1st point to the new stroke 
SetCapture(); II Capture the mouse until button up. 
m_ptPrev = point; II Serves as the MoveTo() anchor for the 

II LineTo() the next point as the user 
II drags the mouse. 

return; 

In this function, the view receives a point specified in device coordinates. A 
device context is needed to find the GDI origin, so the function declares a 
CClientDC object, a CDC object for the client area of the view, and calls 
OnPrepareDC to adjust its origin. Then the function passes the point to the 
DPtoLP (Device Point to Logical Point) member function of CDC to perform 
the actual conversion. The point added to m_p S t r 0 k e Cur is thus described in 
logical coordinates (that is, relative to the document origin). 

2. Make a similar modification to the 0 n M 0 use M 0 v e member function: 

void CScribView::OnMouseMove(UINT, CPoint point) 
{ 

II 
if (GetCapture() != this) 

return; II If this window (view) didn't capture the mouse, 
II then the user isn't drawing in this window. 

CClientDC dc(this); 
II CScrollView changes the viewport origin and mapping mode. 
II It's necessary to convert the point from device coordinates 
II to logical coordinates, such as are stored in the document. 
OnPrepareDC(&dc); 
dc.DPtoLP(&point); 

m_pStrokeCur->AddPoint(point); 
I I ... 



150 Class Library User's Guide 

This function already has a device context for drawing the stroke in progress, so 
the only modifications needed are to call OnPrepareDC to move the viewport 
origin and then DPtoLP to convert the point before before adding it. 

3. Make the same modification to the 0 n L But ton U p member function: 

void CScribView::OnLButtonUp(UINT, CPoint point) 
{ 

} 

II 
if (GetCapture() 1= this) 

return; II If this window (view) didn't capture the mouse, 
II then the user isn't drawing in this window. 

CScribDoc* pDoc = GetDocument(); 
CClientDC dc(this); 

II CScrollView changes the viewport origin and mapping mode. 
II It's necessary to convert the point from device coordinates 
II to logical coordinates, such as are stored in the document. 
OnPrepareDC(&dc); II set up mapping mode and viewport origin 
dc.DPtoLP(&point); 

CPen* pOldPen = dc.SelectObject(pDoc->GetCurrentPen()); 
II ... 

Like OnMouseMove, this function already has a device context to complete 
drawing the stroke, so the only modifications needed are to call OnPrepareDC 
and then DPtoLP. 

4. Finally, you must modify the 0 n U p d ate member function. Unlike the previous 
three functions, this function requires a conversion in the opposite direction, that 
is, from logical coordinates to device coordinates. Recall that OnUpdate 
retrieves the bounding rectangle of a stroke and invalidates that rectangle. The 
stroke's bounding rectangle is stored in logical coordinates. However, the 
rectangle passed to InvalidateRect must be specified in device coordinates 
(since InvalidateRect is not a GDI function). 

Accordingly, a stroke's bounding rectangle must have its coordinates converted 
into device coordinates before it can be invalidated. Make the following 
modifications: 



Chapter 8 Enhancing Views 151 

void CScribView::OnUpdate(CView*, LPARAM, CObject* pHint) 
{ 

II The document has informed this view that some data has changed. 

if (pHint != NULL) 
{ 

if (pHint-)IsKindOf(RUNTIME_CLASS(CStroke») 
{ 

II The hint is that a stroke as been added (or changed). 
II So, invalidate its rectangle. 
CStroke* pStroke = (CStroke*)pHint; 
CClientDC dc(this); 
OnPrepareDC(&dc); 
CRect rectlnvalid = pStroke-)GetBoundingRect(); 
dc.LPtoDP(&rectlnvalid); 
InvalidateRect(&rectlnvalid); 
return; 

II We can't interpret the hint. so assume that anything might 
II have been updated. 
Invalidate(TRUE); 
return; 

The function declares a CClientDC object and then calls the OnPrepareDC 
member function to move the viewport origin of the device context to reflect the 
currently scrolled position. The rectangle is then passed to the LPtoDP (Logical 
Point to Device Point) function of CDC to convert its points into device 
coordinates. (Both DPtoLP and LPtoDP are overloaded to accept rectangles as 
well as points.) Once it is converted, the rectangle can be invalidated. 

For more information on CScrollView, see the Class Library Reference. 

Adding Splitter Windows 
Scrolling lets you work on a document that is larger than the window, but by the 
same token it means that much of the document is hidden at anyone time. Suppose 
the user needs to refer to two widely separated portions of a document at the same 
time. One way to do this is to open another window on the same document and 
scroll them to different locations. However, windows must be resized individually 
so that they don't overlap. A more convenient solution is to divide a window into 
separate "panes," each of which can display a different portion of the document. 
This is illustrated in Figure 8.4. 



152 Class Library User's Guide 

Window 

1st View 

2nd View 

/' 

/' 
/' 

/' 

/' 
/' 

,/ 
/' 

/' 

/' 
/' 

Document 

Figure 8.4 A Window with Two Views on a Document 

A window that can be divided into multiple panes is called a "splitter window." A 
splitter window contains split boxes at the top of the vertical scroll bar and at the 
left of the horizontal scroll bar. By double-clicking a split box, the user can divide a 
window vertically or horizontally into panes. The panes are separated by a "split 
bar"; each pane can be scrolled independently to display a different portion of the 
document. The user can also drag the split bar to resize both panes at once. 

Figure 8.5 shows what a Scribble window looks like when it is split into two panes. 



Chapter 8 Enhancing Views 153 

Split Box 

Split Bar 

Figure 8.5 Scribble Document Window Split into Two Panes 

Each pane in a splitter window represents a separate view object. In Figure 8.5, 
each pane is an instance of the esc rib View class, but it's not necessary for the 
panes to use the same view class; you can use different classes for different panes. 
This is useful when, for example, you want one pane to display an outline of a 
document while the other pane displays the full text. 

The Microsoft Foundation Class Library provides splitting functionality in a class 
called CSplitterWnd. By using this class, you can support splitting in your 
application with very little effort. 

The basic steps for adding splitter windows to your application are as follows: 

1. Derive a frame window class from CMDIChildWnd if you are writing a 
Multiple Document Interface (MDI) application or CFrameWnd if you are 
writing a Single Document Interface (SDI) application. Give this class a 
member variable of type CSplitterWnd. 

2. Override the OnCreateClient member function of your frame window class to 
create a CSplitterWnd. 

3. When defining a document template, use the frame window class you derived 
instead of CMDIChildWnd or CFrameWnd. 

The following section shows in detail how these steps are accomplished for 
Scribble. 



154 Class Library User's Guide 

Add Splitter Windows to Scribble 
To make it easy to add splitter windows to your application, ClassWizard provides 
an option that automatically derives a frame window class and overrides its 
OnCreateClient member function for you. 

~ To add splitter windows to Scribble 

1. From Visual Workbench, pull down the Browse menu and choose the 
ClassWizard command. The ClassWizard dialog box appears. 

2. Choose the Add Class button. The Add Class dialog box appears. 

3. For the class name, enter "CScribFrame." 

4. For the class type, choose "splitter." 

5. For the header file, change the default name to "scribfrm.h." 

6. For the implementation file, change the default name to "scribfrm.cpp." 

7 . Choose the Create Class button to generate the new class. The Class Wizard 
dialog box regains the focus. 

8. Choose the OK button to exit the Class Wizard dialog box. As before, the new 
files are automatically added to the project. 

The file SCRIBFRM.H, which Class Wizard has generated, declares a new class 
called CScri bFrame. Here's what the file looks like: 

//////////////////////////////////////////////////////////////////// 

// CScribFrame frame with splitter 

class CScribFrame : public CMDIChildWnd 
{ 

DEClARE_DYNCREATE( CScribFrame ) 
protected: 

CScribFrame(); // protected constructor used by dynamic creation 

// Attributes 
protected: 

CSplitterWnd m_wndSplitter; 
public: 

II Operations 
public: 

// Implementation 
public: 

virtual ~CScribFrame(); 
virtual BOOl OnCreateClient( lPCREATESTRUCT lpcs. 

CCreateContext* pContext ); 



} ; 

II Generated message map functions 
11{{AFX_MSG(CScribFrame) 

Chapter 8 Enhancing Views 155 

II NOTE - ClassWizard will add and remove member functions here. 
I/} }AFX_MSG 
DECLARE_MESSAGE_MAP() 

eScri bFrame assumes the role that CMDIChildWnd previously played in 
Scribble. To understand eScri bFrame's declaration, it's helpful to review how 
CMDIChildWnd is normally used. Until now, each time you opened a 
document window in Scribble, there were two objects cooperating to display the 
document: a CMDIChildWnd object, which manages the document window's 
frame, and a eScri bVi ew object, which manages the document window's 
client area. (These two classes were specified when App Wizard created the 
document template for eScri bDoc objects.) 

For Scribble to support splitting, this organization must change. Objects of three 
classes must cooperate to displaying a document: a esc ri b Frame object, 
which manages the document window's frame; a CSplitterWnd object, which 
manages the document window's client area; and one or more eScri bVi ew 
objects, each of which manages a pane in the window. The CSplitterWnd 
object is not visible as a distinct entity, but it is responsible for handling the 
esc rib View objects as panes, managing their scroll bars, and drawing the split 
boxes and split bars. 

This technique for managing splitter windows is similar to the way MDI is 
implemented. An MDI application's frame window has a client window 
managing its entire client area, or workspace. It is this client window that owns 
the child windows that display documents. 

Now consider eScri bFrame's declaration. The eScri bFrame class is derived 
from CMDIChildWnd because Scribble is an MDI application; if Scribble 
were an SDI application, eScri bFrame would be derived from CFrameWnd. 
The only constructor for esc rib F r a me is a protected one, because you don't 
need to explicitly create eScri bFrame objects; the framework handles their 
creation for you. 

The eScri bFrame class defines one member variable: a CSplitterWnd object. 
This is the window that covers the frame window's client area. The class also 
overrides the OnCreateClient member function defined by CFrameWnd (the 
base class of CMDIChildWnd). The framework calls this function when it first 
creates the frame window. 

The file SCRIBFRM.CPP, which ClassWizard has generated, contains the 
implementation of the member functions for esc rib F r a me. Here's what it 
looks like: 



156 Class Library User's Guide 

~ 1/:include "stdafx.h" 
~ 1/:include "scribble.h" 
~ 1/:include "scribfrm.h" 

1/:ifdef _DEBUG 
1/:undef THIS_FILE 
static char BASED_CODE THIS_FIlE[] = __ FILE __ : 
1/:endif 
///////////////////////////////////////////////////////////////// 

// CScribFrame 

IMPLEMENT_DYNCREATE(CScribFrame, CMDIChildWnd) 

CScribFrame::CScribFrame() 
{ 

J 

CScribFrame::~CScribFrame() 

{ 

J 

Baal CScribFrame::OnCreateClient( lPCREATESTRUCT /*lpcs*/, 
CCreateContext* pContext ) 

return m_wndSplitter.Create( this, 
2, 2, // TODO: adjust the number of rows, columns 
CSize( 10, 10), // TODO: adjust the minimum pane size 
pContext ): 

BEGIN_MESSAGE_MAP(CScribFrame, CMDIChildWnd) 
//{{AFX_MSG_MAP(CScribFrame) 

// NOTE - ClassWizard will add and remove mapping macros here. 
/ /} JAFX_MSG_MAP 

END_MESSAGE_MAP() 

////////////////////////////////////////////////////////////////// 

// CScribFrame message handlers 

In the 0 nCr eat eel i en t member function, the frame window creates the 
window that will cover its client area by calling the Create function of its 
CSplitterWnd member variable. The parameters passed to the Create function 
describe the panes that the splitter window will manage. 



Chapter 8 Enhancing Views 157 

The first argument passed to Create specifies the parent window for the client 
window: the function passes the this pointer, making the CSc ri b Frame 
window the parent of the CSplitterWnd object. The second and third 
parameters specify the maximum number of rows and columns that the splitter 
window can have; a value of two is used for each, so Scribble's splitter windows 
can have up to four panes. The fourth parameter specifies the minimum size of a 
pane: a square 10 logical units on a side.The fifth parameter is the 
CCreateContext structure that is passed to OnCreateCl i ent. This structure 
is used to determine which view class should be used for each pane in the 
splitter window. 

The Create function can also accept an additional three arguments; because 
Scribble doesn't pass any values for these, the default values are used. The sixth 
argument specifies the styles to be used for the splitter window. The default 
value specifies a visible child window with vertical and horizontal scroll bars 
that supports dynamic splitting. The seventh argument specifies the ID to be 
assigned to the splitter window. Its default value is AFX _ IDW _PANE_FIRST, 
which is the ID of the first pane. 

9. Having defined a new frame window class, you must now use it when opening 
Scribble documents. Open the file SCRIBBLE.CPP and add the code following: 

tlinclude "stdafx.h" 
11i n c 1 u de" s c rib b 1 e. h" 
11 inc 1 u de" m a i n f r m . h" 
tlinclude "scribfrm.h" 
tlinclude "scribdoc.h" 
tlinclude "scribvw.h" 

I I ... 

BOOl CScribbleApp::lnitlnstance() 
{ 

I I ... 

AddOocTemplate(new CMultiOocTemplate(IOR_SCRlBTYPE. 

II 

RUNTlME_ClASS(CScribOoc). 
RUNTlME_ClASS(CScribFrame). II MOl child with splitter wnd 
RUNTlME_ClASS(CScribView))); 

First it's necessary to include the header file SCRIBFRM.H so you can access 
the declaration of the C S c rib F r a me class. The major modification occurs in the 
In it I nsta nee member function of esc ri bb 1 eApp. This function calls 
AddDocTempiate to register the C S c rib D a c document type with the appli
cation. Recall that a document template connects a document class, a frame 
window class, and a view class. In previous versions of Scribble, 
CMDIChildWnd was the frame window class used for displaying CScri bDac 



158 Class Library User's Guide 

objects. Now CScri bFrame, which is derived from CMDIChildWnd, is the 
frame window class. As a result, the windows used for displaying Scribble's 
documents support splitting. 

For more information on CSplitterWnd, see the Class Library Reference. 

Compile the New Scribble 
How does Scribble behave with these new enhancements? Compile the new version 
and find out. 

~ To compile Scribble 

• From the Project menu in Visual Workbench, choose the Rebuild All Command. 

Run the new version of Scribble. 

Draw some strokes, scroll to a new portion of the drawing, and draw some more 
strokes. Resize the window and scroll back and forth. Click the split box to split the 
window into two panes. With both panes displaying the same portion of the 
document, draw some strokes in one pane and see them reflected in the other one. 
Figure 8.6 shows this version of Scribble. 

Eile .Edit Een Y:iew ~indow t!.elp 

II---------------S-c-rib-l-----------------a~ 

+ 

+ 
+ + 

Ready 

Figure 8.6 Scribble Version 4 

Exit Scribble. 

This completes step 4 of the tutorial. You now have a basic understanding of the 
view architecture provided by the Microsoft Foundation Class Library. 

In the next chapter you'll enhance Scribble's printing and print preview support. 



159 

CHAPTER 9 

Enhancing Printing 

Scribble has supported printing and print preview ever since Chapter 4, when you 
first added application-specific code to the starter files created by App Wizard. All 
the printing and previewing functionality came essentially "for free." None of the 
code you added dealt specifically with printing; App Wizard and the framework did 
all the work for you. 

While it's nice to get printing and print preview for free, Scribble's current printing 
support isn't perfect. For example, the printed image is smaller than you might like. 
In addition, the printed image is very plain; it doesn't include a header or footer. 
This chapter describes how to enlarge the printed image and implement printing 
enhancements in your application. 

This chapter covers the following topics: 

• The printing architecture provided by the Microsoft Foundation Class Library. 

• Using a metric mapping mode. 

• Dividing a document into pages. 

• Defining headers or footers. 

This chapter covers step 5 of Scribble. If you want to work along, adding the code 
as you go, begin with the files from Chapter 8 in your SCRIBBLE\MYSCRIB 
subdirectory. At this point, these files should closely resemble those in the 
SCRIBBLE'STEP4 subdirectory. As you read the chapter, add all the code that's 
marked with the symbol ~. At the end, your files should closely resemble the files in 
the SCRIBBLE'STEP5 subdirectory. 

If, on the other hand, you want to read along without adding code, you can print or 
examine the files in the SCRIBBLE'STEP5 subdirectory. 

How Default Printing Is Done 
Recall how Scribble performs drawing on the screen. In Chapter 4 you saw that the 
esc rib View class has a member function named On 0 raw which contains all the 



160 Class Library User's Guide 

drawing code. Notice that On Draw takes a pointer to a CDC object as a parameter. 
That CDC object represents the device context to receive the image produced by 
On 0 raw. When the window displaying the document receives a WM _PAINT 
message, the framework calls 0 nOr a wand passes it a device context for the screen 
(a CPaintDC object, to be specific). Accordingly, OnDraw's output goes to the 
screen. 

In programming for Windows, sending output to the printer is very similar to 
sending output to the screen. This is because the Windows graphics device interface 
(GDI) is hardware-independent; you can use the same GDI functions for screen 
display or for printing simply by using the appropriate device context. If the CDC 
object that OnDraw receives represents the printer, OnDraw's output goes to the 
printer. 

This explains how Scribble can perfonn simple printing without requiring extra 
effort on your part. The framework takes care of displaying the Print dialog box and 
creating a device context for the printer. When you select the Print command from 
the File menu, the view passes this device context to 0 nOr a w, which draws the 
document on the printer. 

However, there are some significant differences between printing and screen 
display. When you print, you have to divide the document into distinct pages and 
display them one at a time, rather than display whatever portion is visible in a 
window. As a corollary, you have to be aware of the size of the paper (whether it's 
letter size, legal size, or an envelope). You may want to print in different 
orientations, such as landscape or portrait mode. The Microsoft Foundation Class 
Library can't predict how your application will handle these issues, so it provides a 
protocol for you to add these capabilities. 

The Printing Architecture 
In an application built with the Microsoft Foundation Class Library, your view 
class and the framework cooperate in the printing process. Your view class has the 
following responsibilities: 

• Infonn the framework how many pages are in the document. 

• When asked to print a specified page, draw that portion of the document. 

• Allocate and deallocate any fonts or other GDI resources needed for printing. 

• If necessary, send any escape codes needed to change the printer mode before 
printing a given page; for example, to change the printing orientation on a per
page basis. 

The framework's responsibilities are as follows: 

• Display the Print dialog box. 



Chapter 9 Enhancing Printing 161 

• Create a CDC object for the printer. 

• Call the StartDoc and EndDoc member functions of the CDC object. 

• Repeatedly call the StartPage member function of the CDC object, inform the 
view class which page should be printed, and call the EndPage member 
function of the CDC object. 

• Call overridables in the view at the appropriate times. 

To print a multipage document, the framework and view interact in the following 
manner. First the framework displays the Print dialog box, creates a device context 
for the printer, and calls the StartDoc member function of the CDC object. Then, 
for each page of the document, the framework calls the StartPage member function 
of the CDC object, instructs the view object to print the page, and then calls the 
EndPage member function. If the printer mode must be changed before starting a 
particular page, the view object sends the appropriate escape code by calling the 
Escape member function of the CDC object. When the entire document has been 
printed, the framework calls the EndDoc member function. 

The CView class defines several member functions that are called by the 
framework during printing. By overriding these functions in your view class, you 
provide the connections between the framework's printing logic and your view 
class's printing logic. The following table lists these member functions. 

Table 9.1 CView's Overridables for Printing 

N arne Reason for Overriding 

OnPreparePrinting 

OnBeginPrinting 

OnPrepareDC 

OnPrint 

OnEndPrinting 

To insert values in the Print dialog box, 
especially the length of the document. 

To allocate fonts or other GDI resources. 

To adjust attributes of the device context for a 
given page, or to do print-time pagination. 

To print a given page. 

To deallocate GDI resources. 

You can do printing-related processing in other functions as well, but these 
functions are the ones that drive the printing process. 

Figure 9.1 illustrates the steps involved in the printing process and shows where 
each of CView's printing member functions are called. The following sections 
explain these steps in more detail. 



162 Class Library User's Guide 

Functions called by the framework Recommended actions when overriding 

[

Set length of document, if known. 
CMyView::OnPreparePrinting ------1 Call DoPreparePrinting to display 

~ dialog box and create DC, 

(
Set length of document based on DC, 

CMyView::OnBeginPrinting --------1 if not set already. Allocate GDI resources. 

~ 
CDC::StartDoc 

~ ( Change viewport origin or other DC 
CMyView::OnPrepareDC -------1 attributes. If length of document not 

~ specified, check for end of document. 

CDC::StartPage 

~ 
[

Print headers, footers, etc. 
CMyView::OnPrint ---------1 Print specified page; call OnDraw if 

~ application is WYSIWYG, 

CDC: :EndPage 

~ 
CDC::EndDoc 

~ 
CMyView::OnEndPrinting -------l( Deallocate GDI resources, 

Figure 9.1 The Printing Loop 



Pagination 

Chapter 9 Enhancing Printing 163 

The framework stores much of the information about a print job in an instance of 
the structure CPrintInfo. Several of the values in CPrintInfo pertain to pagination; 
these values are as shown in Table 9.2. 

Table 9.2 Page Number Information Stored in CPrintInfo 

Name(s) 

GetMinPage / SetMinPage 

GetMaxPage / SetMaxPage 

GetFromPage 

GetToPage 

m_nCurPage 

Page Number Referenced 

First page of document. 

Last page of document. 

First page to be printed. 

Last page to be printed. 

Page currently being printing. 

Page numbers start at 1; that is the first page is numbered 1, not O. For more 
information about these and other members of CPrintInfo, see the Class Library 
Reference. 

At the beginning of the printing process, the framework calls the view's 
OnPreparePrinting member function, passing a pointer to a CPrintInfo structure. 
App Wizard provides an implementation of OnPreparePrinting that calls 
DoPreparePrinting, another member function of CView. DoPreparePrinting is 
the function that displays the Print dialog box and creates a printer device context. 

At this point the application doesn't know how many pages are in the document; it 
uses the default values 1 and OxFFFF for the numbers of the first and last page of 
the document. If you know how many pages your document has, override 
OnPreparePrinting and call SetMaxPage for the CPrintInfo structure before you 
send it to DoPreparePrinting; this lets you specify the length of your document. 

DoPreparePrinting then displays the Print dialog box; when it returns, the 
CPrintInfo structure contains the values specified by the user. If the user wishes to 
print only a selected range of pages, he or she can specify the starting and ending 
page numbers in the Print dialog box; the framework retrieves these values using 
the GetFromPage and GetToPage functions. If the user doesn't specify a page 
range, the framework calls GetMinPage and GetMaxPage and uses the values 
returned to print the entire document. 



164 Class Library User's Guide 

For each page of a document to be printed, the framework calls two member 
functions in your view class, OnPrepareDC and OnPrint, and passes each 
function two parameters: a pointer to a CDC object and a pointer to a CPrintlnfo 
structure. Each time the framework calls OnPrepareDC and OnPrint, it passes a 
different value in the m _ nCurPage member of the CPrintlnfo structure. In this 
way the framework tells the view which page should be printed. 

Recall that the OnPrepareDC member function is also used for screen dis-
play; it makes adjustments to the device context before drawing takes place. 
OnPrepareDC serves a similar role in printing, but there are a couple of 
differences: First, the CDC object represents a printer device context instead of a 
screen device context, and second, a CPrintlnfo object is passed as a second 
parameter. (This parameter is NULL when OnPrepareDC is called for screen 
display.) Override OnPrepareDC to make adjustments to the device context based 
on which page is being printed; for example, you can move the viewport origin and 
the clipping region to ensure that the appropriate portion of the document gets 
printed. 

The OnPrint member function performs the actual printing of the page. Earlier in 
this chapter, in the description of default printing, you saw that the framework calls 
OnDraw with a printer device context to perform printing. More precisely, the 
framework calls OnPrint with a CPrintlnfo structure and a device context, and 
OnPrint passes the device context to OnDraw. Override OnPrint to perform any 
rendering that should be done only during printing and not for screen display; for 
example, to print headers or footers (see the section "Headers and Footers" fol
lowing for more information). Then call OnDraw to do the rendering common to 
both screen display and printing. 

The fact that OnDraw does the rendering for both screen display and printing 
means that your application is WYSIWYG: "What you see is what you get." 
However, suppose you aren't writing a WYSIWYG application. For example, 
consider a text editor that uses a bold font for printing but displays control codes to 
indicate bold text on the screen. In such a situation, you use OnDraw strictly for 
screen display. When you override OnPrint, substitute the call to OnDraw with a 
call to a separate drawing function. That function draws the document the way it 
appears on paper, using the attributes that you don't display on the screen. 



Chapter 9 Enhancing Printing 165 

Printer Pages vs. Document Pages 
When you refer to page numbers, it's sometimes necessary to distinguish between 
the printer's concept of a page and a document's concept of a page. From the point 
of view of the printer, a page is one sheet of paper. However, one sheet of paper 
doesn't necessarily equal one page of the document. For example, if you're printing 
a newsletter, where the sheets are to be folded, one sheet of paper might contain 
both the first and last pages of the document, side by side. Similarly, if you're 
printing a spreadsheet, the document doesn't consist of pages at all; instead, one 
sheet of paper might contain rows 1 through 20, columns 6 through 10. 

All the page numbers in the CPrintInfo structure refer to printer pages, The 
framework calls OnPrepareDC and OnPrint once for each sheet of paper that will 
pass through the printer. When you override the OnPreparePrinting function to 
specify the length of the document, you must use printer pages. If there's a one-to
one correspondence (that is, one printer page equals one document page), then this 
is easy. If, on the other hand, document pages and printer pages do not directly 
correspond, you must translate between them. For example, consider printing a 
spreadsheet. When overriding OnPreparePrinting, you must calculate how many 
sheets of paper will be required to print the entire spreadsheet and then use that 
value when calling the SetMaxPage member function of CPrintInfo. Similarly, 
when overriding OnPrepareDC, you must translate m _ nCurPage into the range 
of rows and columns that will appear on that particular sheet and then adjust the 
viewport origin accordingly. 

Print-Time Pagination 
In some situations, your view class may not know in advance how long the 
document is until it has actually been printed. For example, suppose your 
application isn't WYSIWYG, so a document's length on the screen doesn't 
correspond to its length when printed. 



166 Class Library User's Guide 

This causes a problem when you override OnPreparePrinting for your view class: 
you can't pass a value to the SetMaxPage function of the CPrintlnfo structure, 
because you don't know the length of a document. If the user doesn't specify a page 
number to stop at using the Print dialog box, the framework doesn't know when to 
stop the print loop. The only way to determine when to stop the print loop is to print 
out the document and see when it ends; your view class must check for the end of 
the document while it is being printed, and then inform the framework when the end 
is reached. 

The framework relies on your view class's OnPrepareDC function to tell it when 
to stop. After each call to OnPrepareDC, the framework checks a member of the 
CPrintlnfo structure called m _ bContinuePrinting. Its default value is TRUE; as 
long as it remains so, the framework continues the print loop. If it is set to FALSE, 
the framework stops. To perform print-time pagination, override the 
OnPrepareDC to check whether the end of the document has been reached, and set 
m _ bContinuePrinting to FALSE when it has. 

The default implementation of OnPrepareDC sets m _ bContinuePrinting to 
FALSE if the current page is greater than 1. This means that if the length of the 
document wasn't specified, the framework assumes the document is one page long. 
One consequence of this is that you must be careful if you call the base class 
version of OnPrepareDC; do not assume that m _ bContinuePrinting will be 
TRUE after calling the base class version. 

Headers and Footers 
When looking at a document on the screen, the name of the document and your 
current location in the document are commonly displayed in a title bar and a status 
bar. When looking at a printed copy of a document, it's useful to have the name and 
page number shown in a header or footer. This is a common way in which even 
WYSIWYG programs differ in how they perform printing and screen display. 

The OnPrint member function is the appropriate place to print headers or footers 
because it is called for each page, and because it is called only for printing, not for 
screen display. You can define a separate function to print a header or footer, and 
pass it the printer device context from OnPrint. You may need to adjust the 
window origin or extent before calling OnDraw to avoid having the body of the 
page overlap the header or footer. You might also have to modify OnDraw because 
the amount of the document that fits on the page could be reduced. 

One way to compensate for the area taken by the header or footer is to use the 
m _rectDraw member of CPrintlnfo. Each time a page is printed, this member is 
initialized with the usable area of the page. If you print a header or footer before 
printing the body of the page, you can reduce the size of the rectangle stored in 
m _rectDraw to account for the area taken by the header or footer. Then OnPrint 
can refer to m _ rectDraw to find out how much area remains for printing the body 
of the page. 



Chapter 9 Enhancing Printing 167 

You cannot print a header, or anything else, from OnPrepareDC, because it is 
called before the StartPage member function of CDC has been called. At that 
point, the printer device context is considered to be at a page boundary. You can 
perform printing only from the On Print member function. 

Allocating GOI Resources for Printing 
Suppose you need to use certain fonts, pens, or other ODI objects for printing, but 
not for screen display. Because of the memory they require, it's inefficient to 
allocate these objects when the application starts up; when the application isn't 
printing a document, that memory might be needed for other purposes. It's better to 
allocate them when printing begins, and then delete them when printing ends. 

To allocate these ODI objects, override the OnBeginPrinting member function. 
This function is well suited to this purpose for two reasons: the framework calls this 
function once at the beginning of each print job and, unlike OnPreparePrinting, 
this function has access to the CDC object representing the printer device driver. 
You can store these objects for use during the print job by defining member 
variables in your view class that point to ODI objects (for example, CFont * 
members, etc.). 

To use the ODI objects you've created, select them into the printer device context in 
the OnPrint member function. If you need different ODI objects for different pages 
of the document, you can examine the m _ nCurPage member of the CPrintInfo 
structure and select the ODI object accordingly. If you need a ODI object for 
several consecutive pages, Windows requires that you select it into the device 
context each time OnPrint is called. 

To deallocate these ODI objects, override the OnEndPrinting member function. 
The framework calls this function at the end of each print job, giving you the 
opportunity to deallocate printing-specific ODI objects before the application 
returns to other tasks. 

Enhance Scribble's Printing 
Step 5 of Scribble adds the following printing capabilities to the program: 

• Enlarging the printed image to a more comfortable size. 

• Paginating a Scribble document. 

• Adding a page header. 

The following sections describe these enhancements in detail. 



168 Class Library User's Guide 

Enlarge the Printed Image 
Recall from Chapter 8 that when you specify a position for a GDI drawing function, 
you use logical coordinates. Chapter 8 described how CScrollView moves the 
origin of this coordinate system. You can also control the scale of this coordinate 
system, that is, the physical size of a logical unit. By default, GDI considers logical 
units to be equal to device units, meaning that 1 logical unit equals 1 pixel on the 
screen. This interpretation of logical units is called the MM _TEXT mapping mode. 

Since Scribble uses the MM _TEXT mapping mode, it considers a stroke that is 
100 units long to be 100 pixels long. The physical size of the stroke depends on the 
device that displays it. For example, a device unit on a typical laser printer is 1/300 
of an inch, which is considerably smaller than a pixel on a typical screen. As a 
result, the images that Scribble produces on a printer are much smaller than those it 
displays on the screen. 

To keep Scribble from producing tiny images on the printer, you need a mapping 
mode that ensures a drawing remains the same size no matter what device displays 
it. Windows provides several such mapping modes, known as "metric" mapping 
modes. In these modes, GDI considers logical units to be equal to real-world units 
(or "metrics"), such as millimeters or inches. 

In step 5, Scribble changes to the MM_LOENGLISH mapping mode, which treats 
each logical unit as 0.01 inches. In this mode, a stroke that is 100 logical units long 
is drawn as 1 inch long, no matter which device is used; each device driver 
determines how many device units are needed to draw a I-inch stroke. 

Once Scribble uses the MM_LOENGLISH mode, all coordinates used for GDI 
drawing are in hundredths-of-an-inch, not pixels. As a result, the images that 
Scribble displays on the printer are the same size as the ones it displays on the 
screen. Recall that in Chapter 8 a Scribble drawing was defined to be 800 logical 
units across and 900 logical units high; now a drawing is 8 inches across and 9 
inches high. 

Specify the Mapping Mode 
You must specify the mapping mode when you call the SetScrollSizes member 
function defined by CScrollView. Recall from Chapter 8 that this function sets the 
view's scrolling limits. SetScrollSizes is called from the On In it i a 1 Upda te 
member function of esc rib View. 

~ To specify the mapping mode 

• Launch the Visual Workbench and load the file SCRIBVW.CPP. Make the 
following modification: 



void CScribView::OnlnitialUpdate() 
{ 

Chapter 9 Enhancing Printing 169 

SetScrollSizes( MM_LOENGLISH. GetDocument()->GetDocSize() ); 

Recall that a n I nit i a 1 Up d ate is called immediately after the view is attached 
to the document. This lets the view set its mapping mode before anD raw is 
called. 

Reversing the Sign of the V-Coordinates 
Another feature of the MM_LOENGLISH mode (as well as the other metric 
mapping modes) is that its y-axis runs in the opposite direction to that in 
MM _TEXT mode. In MM _TEXT mode, y-coordinates increase when you move 
down, but in all the metric mapping modes, y-coordinates increase when you move 
up. 

Even though Scribble has changed the direction of the y-axis for drawing, most of 
the code doesn't require any modifications. This is because the DPtoLP function 
performs the conversion for you. Consider: when a point is received with a mouse 
message, its coordinates are converted by the DPtoLP function before being stored 
in a CStroke object. This means its y-coordinates are converted from a positive 
number of pixels to a negative number of inches. Those coordinates are then passed 
to the LineTo drawing function, and then it's up to the device driver for the screen 
to determine how many pixels are equivalent to the value that was passed in inches. 
You never have to directly examine the value of the coordinates. 

However, there are some places where the reversal of the y-axis does have an 
impact. The mapping mode used by GDI is a characteristic of a device context; 
functions that don't use a device context are unaffected by the mapping mode. The 
member functions of the CRect class don't use the mapping mode; consequently, 
you must make some adjustments wherever Scribble uses CRect functions. 

~ To compensate for the reversal of the y-axis 

1. First you must correct the way a bounding rectangle for a stroke is calculated. 
Load the file SCRIBDOC.CPP in Visual Workbench and make the following 
modifications to the Fin ish S t r 0 k e member function of the CSt r 0 k e class: 



170 Class Library User's Guide 

void CStroke::FinishStroke() 
{ 

I I ... 
m_rectBounding = CRect(pt.x. pt.y. pt.x. pt.y); 

for (int i=l; i < m_pointArray.GetSize(); i++) 
{ 

II If the point lies outside of the accumulated bounding 
II rectangle. then inflate the bounding rect to include it. 
pt = GetPoint(i); 
m_rectBounding.left min(m_rectBounding.left. pt.x); 
m_rectBounding.right max(m_rectBounding.right. pt.x); 
m_rectBounding.top max(m_rectBounding.top. pt.y); 
m_rectBounding.bottom = min(m_rectBounding.bottom. pt.y); 

II Add the pen width to the bounding rectangle. This is needed 
II to account for the width of the stroke when invalidating 
II the screen. 
m_rectBounding.InflateRect(CSize(m_nPenWidth.-(int)m_nPenWidth»; 
return; 

When you inflate the top and bottom borders of the bounding rectangle to 
include each point, the direction in which the borders move is reversed. Also, the 
y-value of the pen width's sign is reversed before it is added to the bounding 
rectangle. 

You also must make a correction when using the invalid rectangle. Recall that 
the 0 n D raw member function checks whether the invalid rectangle intersects the 
bounding rectangle for each stroke. The IntersectRect member function of 
CRect assumes that the bottom of a rectangle must have a larger y-coordinate 
than that of the top; it cannot find the intersection of two rectangles whose 
bottoms have smaller y-coordinates than their tops. 

2. In SCRIBVW.CPP, make the following modifications to the OnDraw member 
function of CScri bVi ew: 



void CScribView::OnDraw(CDC* pDC) 
{ 

CScribDoc* pDoc = GetDocument(); 

Chapter 9 Enhancing Printing 171 

II Get the invalidated rectangle of the view, or in the case 
II of printing, the clipping region of the printer dc. 
CRect rectClip; 
CRect rectStroke; 
pDC->GetClipBox(&rectClip); 
pDC->LPtoDP(&rectClip); 

II Note: CScrollView::OnPaint() will have already adjusted the 
II viewport origin before calling OnDraw(), to reflect the 
II currently scrolled position. 

II The view delegates the drawing of individual strokes to 
II CStroke: :DrawStroke(). 
for (POSITION pos = pDoc->GetFirstStrokePos(); pos != NULL; 
{ 

CStroke* pStroke = pDoc->GetNextStroke(pos); 
rectStroke = pStroke->GetBoundingRect(); 
pDC->LPtoDP(&rectStroke); 
if (!rectStroke.IntersectRect(&rectStroke, &rectClip» 

continue; 
pStroke->DrawStroke(pDC); 

Both the invalidated rectangle and the bounding rectangle are converted to 
device coordinates (reversing the signs of their y-coordinates) before being 
tested for intersection. 

Paginate Scribble Documents 
If Scribble allowed you to produce arbitrarily large drawings, it would make sense 
for the program to break up a drawing into pages by dividing it into a grid of m by n 
rectangles, the values of m and n being determined by the size of the drawing. 
However, Scribble supports drawings of only one size, and each one fits on a single 
page. To illustrate pagination, step 5 of Scribble prints each drawing as a two-page 
document: a title page, and the drawing itself. 



172 Class Library User's Guide 

~ To add pagination to Scribble 
1. Load the SCRIBVW.CPP file in Visual Workbench and make the following 

additions to CScri bVi ew's On Prepa rePri nt i ng member function: 

BOOl CScribView::OnPreparePrinting( CPrintlnfo* plnfo ) 
{ 

plnfo->SetMaxPage(2); II the document is two pages long: 

II default preparation 

II the first page is the title page 
II the second page is the drawing 

return OoPreparePrinting(plnfo); 

This function specifies the length of the document by calling SetMaxPage for 
the pInto parameter. Since all Scribble documents are two pages long, the 
function uses a numeric constant rather than a variable to represent the number 
of the last page of the document. The title page and the drawing page are 
numbered 1 and 2, respectively. Note that the function still retains a call to 
DoPreparePrinting at the end; this displays the Print dialog box and creates a 
device context for the printer. 

2. Load SCRIBVW.H in Visual Workbench and make the following changes to 
esc rib Vie w' s class declaration: 

class CScribView : public CScrollView 

public: 
I I ... 
virtual void OnUpdate( CView* pSender. lPARAM lHint 0l. 

CObject* pHint = NUll ); 
void PrintTitlePage(COC* pOC. CPrintlnfo* plnfo); 
void PrintPageHeader(COC* pOC. CPrintlnfo* plnfo. 

CString& strHeader); 
virtual void OnPrint(COC* pOC. CPrintlnfo* plnfo); 
II ... 

To perform printing, esc rib View overrides the OnPrint member function and 
defines two new helper functions: P r i n t Tit 1 ePa 9 e, which prints the title 
page, and P r i n t P age H e ad e r, which prints a header on the drawing page. 

3. In SCRIBVW.CPP, after the On End P ri nt i ng member function, add the 
following definition of the On P r i n t member function: 



Chapter 9 Enhancing Printing 173 

void CScribView::OnPrint(CDC* pDC, CPrintlnfo* plnfo) 
{ 

if (plnfo->m_nCurPage == 1) II page no. 1 is the title page 
{ 

PrintTitlePage(pDC, plnfo); 
return; II nothing else to print on page 1 but the page title 

CString strHeader = GetDocument()->GetTitle(); 

PrintPageHeader(pDC, pInfo, strHeader); 
II PrintPageHeader() subtracts out from the pInfo->m_rectDraw the 
II amount of the page used for the header. 

pDC->SetWindowOrg(plnfo->m_rectDraw.left,-plnfo->m_rectDraw.top); 

II Now print the rest of the page 
OnDraw(pDC) ; 

The behavior of the 0 n P r i n t member function depends on which of the two 
pages is being printed. If the title page is being printed, 0 n P r i n t simply calls 
the P r i n t Tit 1 ePa 9 e function and then returns. If it's the drawing page, 
OnPri nt calls Pri ntPageHeader to print the header and then calls OnDraw 
to do the actual drawing. Before calling 0 nOr a w, 0 n P r i n t sets the window 
origin at the upper-left comer of the rectangle defined by m _rectDraw; this 
rectangle was reduced by P r i n t P age H e ad e r to account for the size of the 
header. This keeps the drawing from overlapping the header. 

Notice that the drawing itself isn't divided into multiple pages. Consequently, 
On 0 raw never has to display just a portion of the drawing (for example, it never 
has to display the section that fits on a particular page without displaying the 
surrounding sections). Either the title page is being printed and On Draw isn't 
called at all, or else the drawing page is being printed and 0 nOr a w displays the 
entire drawing at once. 

This also explains why CScri bVi ew doesn't override the OnPrepareDC 
member function: there's no need to adjust the viewport origin or clipping region 
depending on which page is being printed. 

4. In SCRIBVW.CPP, below your definition of OnPri nt, define the 
P r i n t Tit 1 ePa 9 e member function as follows: 



174 Class Library User's Guide 

~ void CScribView::PrintTitlePage(CDC* pDC, CPrintInfo* pInfo) 
~ { 
~ II Prepare a font size for displaying the file name 
~ LOGFONT logFont; 
~ memset(&logFont, 0, sizeof(LOGFONT)); 
~ logFont.lfHeight 75; II 3/4th inch high in MM LOENGLISH 
~ II (1/100th inch) 
~ CFont font; 
~ CFont* pOldFont NULL; 
~ if (font.CreateFontIndirect(&logFont)) 
~ pOldFont = pDC->SelectObject(&font); 
~ 

II Get the file name, to be displayed on title page 
CString strPageTitle = GetDocument()->GetTitle(); 

II Display the file name 1 inch below top of the page, 
II centered horizontally 
pDC->SetTextAlign(TA_CENTER); 
pDC->TextOut(pInfo->m_rectDraw.right/2, -100, strPageTitle); 

if (pOldFont != NULL) 
pDC->SelectObject(pOldFont); 

The P r i n t Tit 1 ePa 9 e function uses m _ rectDraw, which stores the usable 
drawing area of the page, as the rectangle in which the title should be centered. 

Notice that P r i n t Ti t 1 ePa 9 e declares a local CFont object to use when 
printing the title page. If you needed the font for the entire printing process, you 
could declare a CFont member variable in your view class, create the font in the 
OnBeginPrinting, and destroy it in EndPrinting. However, since Scribble uses 
the font for just the title page, the font doesn't have to exist beyond the 
P r i n t Tit 1 ePa 9 e function. When the function ends, the destructor is auto
matically called for the local CFont object. 

Add a Page Header 
As mentioned earlier, esc rib View defines the P r i n t P age H e a d e r function, 
which is called by 0 n P r i n t before the drawing itself is printed. 

~ To add a page header to the drawing 
• In SCRIBVW.CPP, define the P ri ntPageHeader member function as 

follows: 



Chapter 9 Enhancing Printing 175 

void CScribView::PrintPageHeader(CDC* pDC. CPrintInfo* pInfo. 

{ 
CString& strHeader) 

II Print a page header consisting of the name of 
II the document and a horizontal line 
pDC->TextOut(0.-25. strHeader); II 1/4 inch down 

II Draw a line across the page. below the header 
TEXTMETRIC textMetric; 
pDC->GetTextMetrics(&textMetric); 
int y = -35 - textMetric.tmHeight; II line 1/10th in. below text 
pDC->MoveTo(0. y); II from left margin 
pDC->LineTo(pInfo->m_rectDraw.right. y); II to right margin 

II Subtract from the drawing rectangle the space used by header. 
y -= 25; II space 1/4 inch below (top of) line 
pInfo->m_rectDraw.top += y; 

The P r i n t P age H e a d e r member function prints the name of the document at 
the top of the page, and then draws a horizontal line separating the header from 
the drawing. It adjusts the m_rectDraw member of the pInto parameter to 
account for the height of the header; recall that 0 n P r i n t uses this value to 
adjust the window origin before it calls OnDraw. 

The Print Preview Architecture 
Print preview is somewhat different from screen display and printing because, 
instead of directly drawing an image on a device, the application must simulate the 
printer using the screen. To accommodate this, the Microsoft Foundation Class 
Library defines a special class derived from CDC, called CPreviewDC. All CDC 
objects contain two device contexts, but usually they are identical. In a 
CPreviewDC object, they are different: the fIrst represents the printer being 
simulated, and the second represents the screen on which output is actually 
displayed. 

When you select the Print Preview command from the File menu, the framework 
creates a CPreviewDC object. Whenever your application performs an operation 
that sets a characteristic of the printer device context, the framework also performs 
a similar operation on the screen device context. For example, if your application 
selects a font for printing, the framework selects a font for screen display that 
simulates the printer font. Whenever your application would send output to the 
printer, the framework instead sends the output to the screen. 

Print preview also differs from printing in the order each draws the pages of a 
document. During printing, the framework continues a print loop until a certain 
range of pages have been rendered. During print preview, one or two pages are 



176 Class Library User's Guide 

displayed at any time, and then the application waits; no further pages are displayed 
until the user responds. During print preview, the application must also respond to 
WM _PAINT messages, just as it does during ordinary screen display. 

The OnPreparePrinting function is called when preview mode is invoked, just as 
it is at the beginning of a print job. The CPrintInfo structure passed to the function 
contains several members whose values you can set to adjust certain characteristics 
of the print preview operation. For example, you can set the 
m _ nNumPreviewPages member to specify whether you want to preview the 
document in one-page or two-page mode. 

If you know how long the document is and called SetMaxPage with the appropriate 
value, the framework can use this information in preview mode as well as during 
printing. Once the framework knows the length of the document, it can provide the 
preview window with a scroll bar, allowing the user to page back and forth through 
the document in preview mode. If you haven't set the length of the document, the 
framework cannot position the scroll box to indicate the current position, so the 
framework doesn't add a scroll bar. In this case, the user must use the Next Page 
and Previous Page buttons on the preview window's control bar to page through the 
document. 

For print preview, you may find it useful to assign a value to the m _nCurPage 
member of CPrintInfo, even though you would never do so for ordinary printing. 
During ordinary printing, this member carries information from the framework to 
your view class; this is how the framework tells the view which page should be 
printed. 

By contrast, when print preview mode is started, the m _ nCurPage member carries 
information in the opposite direction: from the view to the framework. The 
framework uses the value of this member to determine which page should be 
previewed first. The default value of this member is 1, so the first page of the 
document is displayed initially. You can override OnPreparePrinting to set this 
member to the number of the page being viewed at the time the Print Preview 
command was invoked. This way, the application maintains the user's current 
position when moving from normal display mode to print preview mode. 

Sometimes you may want OnPreparePrinting to perform different initialization 
depending on whether it is called for a print job or for print preview. You can 
determine this by examining the m _ bPreview member variable in the CPrintInfo 
structure; this member is set to TRUE when print preview is invoked. 

The CPrintInfo structure also contains a member named m _strPageDesc, which is 
used to format the strings displayed at the bottom of the screen in single-page and 
multiple-page modes. By default these strings are of the form "Page n" and "Pages 
n - m," but you can modify m_strPageDesc from within OnPreparePrinting and 
set the strings to something more elaborate. See CPrintInfo in the Class Library 
Reference for more information. 



Chapter 9 Enhancing Printing 177 

Enhance Scribble's Print Preview 
The default print preview capabilities are almost sufficient for Scribble's needs. To 
some extent, Scribble's print preview has already been enhanced when the printing 
capabilities were enhanced. Recall that in the override of 0 n Pre par e P r i n tin 9 
you called the SetMaxPages function to specify the length of Scribble documents. 
This allows the framework to add a scroll bar to the preview window. 

Another enhancement you can make is to change the number of pages displayed 
when preview mode is invoked. 

~ To set the number of pages displayed in preview mode 

• In SCRIBVW.CPP, add the following line to the OnPrepa rePri nti ng 
member function: 

BOOl CScribView::OnPreparePrinting( COC* pOCo CPrintInfo* pInfo 
( 

pInfo->SetMaxPage(2); II the document is two pages long: 
II the first page is the title page 
II the second page is the drawing 

pInfo->m_nNumPreviewPages = 2; II Preview 2 pages at a time 
return( CView::OnPreparePrinting(pInfo) ); 

The line added here assigns the value 2 to m _ nNumPreviewPages. This causes 
Scribble to preview both pages of the document at once: the title page (page I) 
and the drawing page (page 2). 

Compile the New Scribble 
What does Scribble's printing look like now? Compile the new version of Scribble 
and find out. 

~ To compile Scribble 

• From the Project menu in Visual Workbench, choose the Rebuild All command. 

Run the new version of Scribble. Draw some strokes, and then choose the File Print 
Preview command. Switch back and forth between one-page and two-page display 
mode, or move to the previous or next page. Figure 9.2 shows this version of 
Scribble. 



178 Class Library User's Guide 

i"p'f:,iiL:;:: II N,e~t P<l~]e II Ft~if..F<l~]e II One Page II Zoom 1n II Zoom Q,ut 10 
~ 
r--

Scrib 1 

Pages 1-2 

Figure 9.2 Scribble Version 5 

Exit Scribble. 

This completes step 5 in the tutorial. You now have a basic understanding of the 
printing architecture provided by the Microsoft Foundation Class Library. 

In the next chapter, you'll add context-sensitive help to Scribble. 



CHAPTER 10 

Adding Context-Sensitive Help 

So far, thanks to the Microsoft Foundation Class Library, Scribble implements a 
number of common user-interface features, such as print preview and splitter 
windows. To conclude the tutorial, this chapter adds another such feature to 
Scribble: context-sensitive Windows Help. 

179 

Note To complete this chapter, the Windows 3.1 Help Compiler, which is shipped 
with Microsoft Visual C++ Professional Edition as file HC31.EXE, must be in your 
path. 

Scribble already offers the user some help in the form of prompt strings displayed in 
the status bar. When the user navigates through a menu using the UP ARROW and 
DOWN ARROW keys, or uses the mouse to press a toolbar button, Scribble displays a 
brief description of the command's purpose in the status bar (if the status bar is 
visible). The framework easily supplies this level of information for commands 
predefined by the class library. And, as you did in Chapter 5, you can add prompts 
to the menu items you create in App Studio by filling in a field in the menu's 
property page. Since prompts are attached to command IDs, Scribble's toolbar 
buttons, which duplicate commands on the menus, automatically invoke the 
appropriate prompts. 

The level of help described in this chapter, however, goes much further. The user 
can open Windows Help for your application from the Help menu or invoke 
context-sensitive help by pressing the PI key or SHIFr+PI. 

This chapter explains how to implement: 

• PI help 

• SHIFr+PI help mode 

• Help menu support 

The next section explains the three kinds of help listed here. 



180 Class Library User's Guide 

For a quick preview of how easy it is to add context-sensitive help to your 
application, follow the instructions described in "See Context-Sensitive Help in 
Action" on page 186. In that section, you'll create a new application with 
App Wizard, build the application, and then run it to see the help features you get 
without adding a single line of code. 

The chapter also shows how to add an App Wizard option to your program if you 
didn't select the option when you originally created your application. 

For an overview of the framework's help support, see Chapter 5 in the Class 
Library Reference. 

Note You can freely use the help files that App Wizard creates in your applications 
and freely ship the compiled help. 

This chapter covers step 6 of Scribble. Unlike previous steps, the STEP6 
subdirectory does not contain the complete source files for this step- it includes 
only a help source file named PEN.RTF. If you want to see the results of this step, 
you must follow the directions presented in this chapter, starting with the STEP5 
source files. 

Division of Labor 
To support help, the framework: 

• Handles Fl help. 

With an active window, dialog box, or message box, or with a menu item or 
toolbar button selected, the user can press the Fl key to summon specific help 
about the selected item. 

For menu items, help is summoned for the item currently highlighted. For 
toolbar buttons, the user can use the mouse to press the button and press Fl 

before letting the button up. 

You can define a key other than Fl for help, but it is common among 
applications for Windows to use Fl. 

• Handles SHIFT +Fl help mode. 

At any time the application is active, the user can press SHIFT +Fl to put the 
application into a "help mode." The cursor changes to a help cursor: an arrow 
beside a question mark. 

While the application is in help mode, clicking any window, dialog box, 
message box, menu item, or toolbar button summons specific help about the 
item. Selecting any item for help ends help mode and displays help. Pressing the 
ESCAPE key or switching to another application and back also ends help mode. 



Chapter 10 Adding Context-Sensitive Help 181 

The standard toolbar provided by App Wizard also has a button through which 
the user can invoke help mode. The graphic on the button resembles the 
help cursor. 

You can define a key combination other than SHIFT+Fl, but it is common among 
applications for Windows to use Fl. 

• Provides the Index and Using Help commands on the Help menu. 

The Index command causes Windows Help to display an index to the available 
help topics. The Using Help command causes Windows Help to display 
information on using Windows Help. 

• Provides a starter set of files in Rich-Text Format (RTF) containing standard 
help topics. 

These include commands on standard menus such as File and Edit, standard 
information on using help, standard keyboard shortcuts, a standard help index, 
and more. 

To take advantage of this support for help: 

• Use the AppWizard Context-Sensitive Help option. 

• Write your application-specific help topics in the .RTF files. 

Fill in application-specific details in these help topics, add new topics, and 
delete unused topics. 

• Provide finer-grained context-sensitive help, if desired. 

Fine-tune help further by overriding portions of the class library to support more 
specific help contexts, such as individual controls in a dialog box. For more 
information about fine-tuning context-sensitive help, see Technical Note 28 in 
MFCNOTES.HLP. 

Implementing Context-Sensitive Help with AppWizard 
Use AppWizard to enable the framework's support for context-sensitive help and 
the Help menu. The following sections explain how to select this support in 
App Wizard and what App Wizard creates as a result. 

The Context-Sensitive Help Option 
When you first create a new application with App Wizard, be sure to select the 
Context-Sensitive Help option if you plan to support help. 

~ To select context-sensitive help 

1. In App Wizard, choose the Options button. 



182 Class Library User's Guide 

2. To select the Context-Sensitive Help option, click the Context-Sensitive Help 
checkbox. 

Figure 10.1 shows the Options dialog box in AppWizard with Context-Sensitive 
Help selected. 

3. Select any other options you need. 

4. Choose the OK button. 

5. Complete your AppWizard session and choose the OK button in the main 
App Wizard dialog box . 

..a I MFC AppWizard 

PlOjecl H.ame: L-lsc_ri_bb_le ___ --'1 1 OK 

Options 

[Z] Mulliple Documenllnlerface 

[Z] Inilial I.oolbar 

[Z] e.rinling and Prinl Preview 

D Custom :-lBX ConllOls 

[Z] i:G:~ri!:~~!::$.:~:~~!.!:~~:~::H~p.] 
D JllE Clienl 

D Elilernal Makefile 

[Z] Jienerale Source Commenls 

Drixe: 

18 c: mvdrive Iii 

OK 

Cancel 

Help 

Figure 10.1 Selecting Context-Sensitive Help 

When AppWizard creates your skeleton application, it adds the following items: 

• Message-map entries in your derived application class for handler functions to 
handle Help menu items and Fl and SHIFf +Fl help. These handlers are 
predefined by the framework. 

• Index and Using Help items in the menu definitions. 

• Status-bar command prompts for the help items. These appear when the user 
clicks the mouse in one of the menu commands. 

• A batch file called MAKEHELP.BAT that you can use to compile your help. 

• A Windows Help project file with a .HPJ extension. It's named for your project. 

• One or more RTF-format files (.RTF extension) containing standard help 
contexts. Add application-specific help contexts to these files to customize your 
help. For more information, see "Editing Scribble's Help Topics" on page 193 

• Several bitmap files (.BMP extension) used in the help files. 



Chapter 10 Adding Context-Sensitive Help 183 

You can then use the items created by App Wizard, add a few extra steps, and build 
your help file. These steps are described in later sections. 

Note Help project files and Windows Help tools are explained in Programming 
Toolsfor the Microsoft Windows Operating System. 

The Message Map 
To support the Help menu commands, Fl help, and SHIff +Fl help, App Wizard adds 
five entries to the message map for your CWinApp-derived application class. This 
message map is in the .CPP file named for your project. When you complete the 
steps outlined in "Adding Help After the Fact" on page 187, the message map for 
class esc rib b 1 e A p p will look like the following: 

II CScribbleApp 

BEGIN_MESSAGE_MAP(CScribbleApp. CWinApp) 
11{{AFX_MSG_MAP(CScribbleApp) 

ON_COMMAND(ID_APP_ABOUT. OnAppAbout) 
II NOTE - the ClassWizard will add and remove mapping macros here. 
II DO NOT EDIT what you see in these blocks of generated code! 

I/} }AFX_MSG_MAP 
II Standard file based document commands 
ON_COMMAND(ID_FILE_NEW. CWinApp::OnFileNew) 
ON_COMMAND(ID_FILE_OPEN. CWinApp::OnFileOpen) 
II Standard print setup command 
ON_COMMAND(ID_FILE_PRINT_SETUP. CWinApp::OnFilePrintSetup) 
II Global help commands 
ON_COMMANO(ID_HELP_INDEX. CWinApp::OnHelpIndex) 
ON_COMMANO(ID_HELP_USING. CWinApp::OnHelpUsing) 
ON_COMMAND(ID_HELP. CWinApp::OnHelp) 
ON_COMMAND(ID_CONTEXT_HELP. CWinApp::OnContextHelp) 
ON_COMMAND(ID_OEFAULT_HELP. CWinApp::OnHelplndex) 

END_MESSAGE_MAP() 

The five help-related message map entries follow the comment / / G lob a 1 he 1 p 
commands. Table 10.1 explains the purpose of each command ID used in these 
entries. 

Table 10.1 Help-Related Command IDs 

CommandID 

ID HELP INDEX - -

ID HELP USING - -

Purpose 

Responds to the Index item on the Help menu by displaying 
the Windows Help index. 

Responds to the Using Help item on the Help menu by 
displaying information about using Windows Help. 



184 Class Library User's Guide 

Table 10.1 Help-Related Command IDs (continued) 

Command ID Purpose 

ID HELP Responds to FI by displaying a specific topic in Windows 
Help. 

ID _ CO NTEXT _HELP Responds to SHIFT +FI by putting the application into help 
mode. 

ID _ DEF A UL T _HELP U sed when a specific help context cannot be found. 

Notice that all of these commands are mapped to member functions of class 
CWinApp. Unlike most of the other commands you place into the message map, 
these have handler functions predefined by the class library. Making the message
map entry enables the command. 

The application's accelerator table defines PI for ID _HELP and SHIFT +PI for 
ID _CONTEXT _HELP. You can change the keys used for these help functions by 
using App Studio to change the key values in the accelerator table. 

The Help Project File 
App Wizard also creates several help-related files in your project directory, 
including a help project file (.HPJ extension). 

The help project file provides coordinating information used by the Windows Help 
Compiler. When you complete the steps outlined in "Adding Help After the Fact" 
on page 187, Scribble's help project file, SCRIBBLE.HPJ, will look like the 
following: 

[OPTIONS] 
CONTENTS=main index 
TITLE=SCRIBHLP Application Help 
COMPRESS=true 
WARNING=2 

[FILES] 
hlp\afxcore.rtf 
hlp\afxprint.rtf 

[BITMAPS] 
; toolbar buttons for File commands 
hlp\filenew.bmp 
hlp\fileopen.bmp 
hlp\fileprnt.bmp 
hlp\filesave.bmp 



Chapter 10 Adding Context-Sensitive Help 185 

; toolbar buttons for Edit commands 
hlp\editcopy.bmp 
hl p\editcut. bmp 
hlp\editpast.bmp 
hlp\editundo.bmp 

[ALIAS] 
HIDR_MAINFRAME = main index 
HIDR_SCRIBHTYPE = HIDR_DOCITYPE 
HIDD_ABOUTBOX = HID_APP_ABOUT 

HID_HT_SIZE = HID SC SIZE 
HID_HT_HSCROLL = scrollbars 
HID_HT_VSCROLL = scrollbars 
HID HT MINBUTTON = HID SC MINIMIZE 
HID_HT_MAXBUTTON = HID SC MAXIMIZE 
AFX_HIDP_INVALID_FILENAME = AFX_HIDP default 
AFX_HIDP_FAILED_TO_OPEN_DOC = AFX_HIDP_default 

[MAP] 
#include <C:\MSVC\MFC\include\afxhelp.hm> 
#include <hlp\scribhlp.hm> 

This file describes options used by the Windows Help Compiler, topic files with the 
.RTF extension to be included in the help build, bitmap files to be included in the 
build, a mapping of context strings to context numbers, and more. 

Of particular interest is the [MAP] section, which in this example points to two 
included files with the .HM (help mapping) extension. The next section explains 
more about help-context mapping. For more information about Windows Help 
project files, see Programming Tools for the Microsoft Windows Operating 
System. 

The MAKEHELP.BAT File 
In Windows Help, a "help context" consists of a string and a number. The help 
context string is what the help text author uses to identify help topics. The help 
context number is what the programmer uses to identify help topics. Help author 
and programmer come together in the [MAP] section of the .HPJ file, which 
associates the help context string and number. When your application calls 
Windows Help, Windows Help uses the context your application passes to locate 
and display the help topic denoted by that context. At run time, the framework 
manages supplying the appropriate help context. 



186 Class Library User's Guide 

To facilitate relating the windows, dialog boxes, and commands in your application 
to Windows Help contexts, the Microsoft Foundation Class Library provides the 
MAKEHM.EXE tool, which creates the information used in the [MAP] section of 
the .HPJ file. 

AppWizard creates a MAKEHELP.BAT file that you'll use to compile your help. 
MAKEHELP.BAT calls MAKEHM.EXE and then the Windows Help Compiler. 

When you use App Studio to create dialog-template resources, menu commands, 
and the like, App Studio writes #define statements in a file named RESQURCE.H 
(by default). For example, there might be #define statements for such symbols as 
I DO_MY _DIALOG and I D_PEN_WI DTHS. For more information about how App 
Studio adds symbols to RESOURCE.H and how you can view and manipulate them 
with App Studio's Symbol Browser, see Chapter 2 in the App Studio User's Guide. 

When you run MAKEHELP.BAT from the MS-DOS® command line, it calls the 
MAKEHM tool to map the #define statements in RESOURCE.H to Windows Help 
strings in a .HM file. The MAKEHM tool collects #define statements from 
RESOURCE.H and uses an algorithm to map defined symbols to help strings in a 
.HM file. For the example IDs in the previous paragraph, it would create help 
strings such as H I DO_MY _0 I ALOG and HI D_P EN_W I DTHS. These context strings 
are formed by prefixing an "H" to the symbol found in RESOURCE.H. The 
algorithm also maps the ID' s numeric value to a corresponding number for the help 
context. An example is shown in section "Help Contexts in Scribble" on page 192. 

When MAKEHELP.BAT then runs the Windows Help Compiler, the compiler uses 
the .HM files pointed to by the .HPJ file to set up the help contexts in your new help 
file. Once you finish compiling your .HLP file, you can use it from your application. 

For more information about MAKEHELP.BAT and MAKEHM.EXE, see the 
section "Context-Sensitive Help" in Chapter 5 of the Class Library Reference. 

See Context-Sensitive Help in Action 
It isn't necessary to follow the steps described in the next section, "Adding Help to 
Scribble," to try out the help support provided by the framework and AppWizard. 
You can try it out now. 

~ To give the help support a try 

1. Run App Wizard with the help option selected. 

When you run App Wizard, specify a project named MYHELP with a path of 
MFc\sAMPLES\sCRIBBLE\MYHELP. Select the Context-Sensitive Help 
option in the Options dialog box. App Wizard creates help-related files for the 
new application. 

2. Build the MYHELP application. 



Chapter 10 Adding Context-Sensitive Help 187 

It's not necessary to modify any of the code created by AppWizard. Simply 
build the MYHELP application that App Wizard just created. 

3. Run MAKEHELP.BAT from the MS-DOS command line to build the .HLP file. 

As the Windows Help Compiler runs, it prints a row of dots on the screen. 

Run the MYHELP application and try out various help options. Here are some 
suggestions for what to try: 

• Choose Using Help from the Help menu. See the standard help provided by 
WINHELP's own help file. 

• Choose Index from the Help menu. See the standard main help topic that 
App Wizard has prepared. It describes the standard menus that the framework 
provides. 

• Click the help-mode button on the toolbar, which appears as an arrow beside a 
question mark. To get help for a menu item, drop down a menu and click a menu 
item with the mouse. Click the help-mode button again and then click another 
toolbar button. Finally, enter help mode again by pressing the SHIFT +Pl keys; 
then click the toolbar itself, or a window's title bar, or some other element of 
MYHELP's user interface. 

• Using the keyboard, drop down a menu and select a menu item using the DOWN 

ARROW key. Then press the PI key to get help for the selected item. 

Thanks to AppWizard and the framework, you-and your users-get all of this 
help essentially for free. 

Adding Help to Scribble 
The normal way to add help to an application is to select the Context -Sensitive Help 
option when you first run AppWizard, as just described above. However, to 
simplify the previous chapters this was not done in Scribble step 0, so it's necessary 
to add the option after the fact. 

Adding Help After the Fact 
This section explains how to add context-sensitive help at a later stage of program 
development. The general procedures apply to any App Wizard option. 

Merging context -sensitive help support into Scribble at this late stage requires 
several general steps. Each step is explained in more detail below. The overall steps 
are: 

1. Create a new MYHELP application from which to borrow code and resources 
for Scribble. See the following procedure "To Create a New MYHELP 
Application. " 



188 Class Library User's Guide 

The idea is to create a starter application as in Chapter 2 that this time has the 
help-related files and code. 

2. Copy resources from the MYHELP application to Scribble. See the procedure 
"To Copy Resources to Scribble" later in this section. 

You'll use App Studio to copy the resources. 

3. Copy help-related code from the MYHELP application to Scribble. See the 
procedure "To Copy Help-Related Code to Scribble" later in this section. 

You'll use the Visual Workbench editor (or any text editor) to copy the code. 

4. Copy help-related files from the MYHELP directory to your MYSCRIB 
directory. See the procedure "To Copy Help-Related Files to MYSCRIB" later 
in this section. 

5. Build the new version of Scribble and compile its help file. See the procedure 
"To Complete Scribble's Help" later in this section. 

~ To create a new MYHELP application 

• If you haven't done so already, run AppWizard to create a new MYHELP 
application, as described in "See Context-Sensitive Help in Action" on page 
186. 

It's unnecessary to build the MYHELP application. You're about to borrow 
code and resources from this application for Scribble. 

The Scribble end of this procedure begins with the files from Chapter 9 
(step 5) in your MYSCRIB directory. If you have not done the tutorial 
step in Chapter 9, you can copy all of the files and subdirectories in the 
MFc\sAMPLES\sCRIBBLE\ STEPS subdirectory to your MYSCRIB 
directory. 

To perform the steps in the next procedure, you'll use App Studio's menu, 
accelerator, and string editors. These editors are explained in Chapters 4,5, and 6, 
respectively, in the App Studio User's Guide. 

~ To copy resources to Scribble 

1. Run App Studio and open the resource files for both MYSCRIB and MYHELP. 

You're about to copy resources from MYHELP to MYSCRIB. As you do this, 
you'll not only learn about adding help to an application after the fact, you'll 
also learn how easy it is to copy resources from one resource file to another 
using App Studio. 

You'll copy menu items, accelerator keys, and status-bar prompt strings. 

2. Use the App Studio menu editor to open menus from both resource files. 

Arrange the menu editor windows so they don't overlap. 

3. Drop down both Help menus. 



Chapter 10 Adding Context-Sensitive Help 189 

4. Click on the separator below the Using Help item in MYHELP's Help menu. 
Then hold down the SHIFT key and click on the Index and Using Help items. 
Release the SHIFT key. 

This selects the separator and the two menu items. 

5. Hold down the CTRL key, click on the highlighted menu items, and drag them to 
the Help menu in MYSCRIB, above the About Scribble menu item. Release the 
mouse button and the CTRL key. 

The menu items and the separator are copied to Scribble. 

6. Use the App Studio accelerator editor to copy the accelerator keys FI and 
SHIff +FI for the ID HELP command and the ID CONTEXT HELP - --
command, respectively. 

The copying procedure is similar to copying menus. To copy the two accelera
tors, hold down the SHIFf key while selecting them. Then hold down the CTRL 

key while dragging the accelerators to the new window. 

7. Use the App Studio string editor to (a) delete the existing 
AFX _IDS _ IDLEMESSAGE string from string segment 0 in MYSCRIB, and 
(b) copy the following status-bar prompt strings to MYSCRIB: 
AFX_IDS_IDLEMESSAGE, AFX_IDS_HELPMODEMESSAGE, 
ID_HELP _INDEX, ID_CONTEXT_HELP, ID_HELP _USING, and 
ID HELP. 

The copying procedure is similar to the procedures for copying menus and 
accelerators. To delete a string, select it in the string editor and choose the 
Delete button. To copy several strings, hold the SHIFT key down while selecting 
the strings. Then hold the CTRL key down while dragging the selected strings to 
the new window. 

For an application without help, App Wizard defines the default status-bar 
prompt to be "Ready". This is the string that is displayed in the status bar when 
no other command prompt is being displayed. This string is identified as 
AFX IDS IDLEMESSAGE. 

The other strings are command prompts for the Index and Using Help commands 
on the Help menu and for FI and SHIFT +FI help. 

8. Save the MYSCRIB resource file, SCRIBBLE.RC. You can close App Studio if 
you wish. 

~ To copy help-related code to Scribble 

1. Copy the help-related entries in the message map for class C My h e 1 pAp p to the 
corresponding message map in class esc rib b 1 e A p p. 

Using the Visual Workbench editor, open MYHELP.CPP and SCRIBBLE.CPP. 
Copy the help-related lines, marked with the ~ symbol, from the message map in 



190 Class Library User's Guide 

MYHELP.CPP and paste them into the same position in the message map in 
SCRIBBLE.CPP. The message map looks like the following: 

II CMyHelpApp 

BEGIN_MESSAGE_MAP(CMyhelpApp. CWinApp) 
11{{AFX_MSG_MAP(CMyhelpApp) 
ON_COMMAND(ID_APP_ABOUT. OnAppAbout) 

II NOTE - the ClassWizard will add and remove mapping 
II macros here. 
II DO NOT EDIT what you see in these blocks of 
II generated code! 

I/} lAFX_MSG_MAP 
II Standard file based document commands 
ON_COMMAND(ID_FILE_NEW. CWinApp::OnFileNew) 
ON_COMMAND(ID_FILE_OPEN. CWinApp::OnFileOpen) 
II Standard print setup command 
ON_COMMAND(ID_FILE_PRINT_SETUP. CWinApp::OnFilePrintSetup) 

II Global help commands 
ON_COMMAND(ID_HELP_INDEX. CWinApp: :OnHelplndex) 
ON_COMMAND(ID_HELP_USING. CWinApp: :OnHelpUsing) 
ON_COMMAND(ID_HELP. CWinApp::OnHelp) 
ON_COMMAND(ID_CONTEXT_HELP. CWinApp::OnContextHelp) 
ON_COMMAND(ID_DEFAULT_HELP. CWinApp::OnHelplndex) 

END_MESSAGE_MAP() 

2. Enable the help-mode toolbar button. 

App Wizard includes a toolbar button for help mode in the toolbar bitmap 
regardless of whether you choose the help option. This button did not appear on 
the screen when you ran previous versions of Scribble because the button was 
not mapped to any command in the but ton s array defined in the 
MAINFRM.CPP file. The help-mode button has the rightmost position in the 
toolbar. Up to now there was one less entry in the but ton s array than there 
were buttons in the toolbar bitmap. 

To expose the help-mode button, add the command ID _ CONTEXT_HELP to 
the end of the list of commands in the buttons array in the MAINFRM.CPP 
file for Scribble. Add the line marked with the ~ symbol in the left margin, as 
shown in this code: 



Chapter 10 Adding Context-Sensitive Help 191 

II toolbar buttons - lOs are command buttons 
static UINT BASEO_COOE buttons[] = 
{ 

} ; 

II same order as in the bitmap 'toolbar.bmp' 
IO_FILE_NEW, 
IO_FILE_OPEN, 
IO_FILE_SAVE, 

IO_SEPARATOR, 
IO_EOIT_CUT, 
IO_EOIT_COPY, 
IO_EOIT_PASTE, 

IO_SEPARATOR, 
IO_PEN_THICK_OR_THIN, 

IO_SEPARATOR, 
IO_FILE_PRINT, 
IO_APP_ABOUT, 

~ To copy help-related files to MYSCRIB 

1. Copy the MAKEHELP.BAT and MYHELP.HPJ files from the MYHELP 
directory to the MYSCRIB directory. 

2. In the MYSCRIB directory, rename MYHELP.HPJ as SCRIBBLE.HPJ. 

3. In the copy of MAKEHELP .BAT in the MYSCRIB directory, change all 
occurrences of the string "myhelp" to "scribble." 

4. In SCRIBBLE.HPJ, make the following changes: 

• Under the [FILES] section, add the line 

hlp\pen.rtf 

The source and purpose of the new file PEN.RTF is explained below. 

• Under the [OPTIONS] section, change "CONTENTS=main_index" to 
"CONTENTS=new _index." 

The new help topic source file, PEN.RTF, will replace the main help topic 
that AppWizard originally created. 

• Under the [ALIAS] section, change the string "HIDR_MAINFRAME = 
main_index" to "HIDR_MAINFRAME = new_index." 

• Also under the [ALIAS] section, change "HIDR_MYHELPTYPE" to 
"HIDR_SCRIBTYPE. " 

5. Create a subdirectory called HLP in your MYSCRIB directory. 

6. Copy the PEN.RTF file from the MFOSAMPLEs\sCRIBBLE\STEP6 
directory to MYSCRIB\HLP. 



192 Class Library User's Guide 

PEN.RTF contains help topics specific to Scribble's Pen menu. The remaining 
sections of this chapter show you some of the contents of this .RTF file and 
explain how you would author the help topics using a program that can edit 
.RTF files, such as Microsoft Word for Windows. 

Note that the only file provided in the MFOSAMPLES\sCRIBBLE\STEP6 
directory is PEN.R TF. 

~ To complete Scribble's help 

1. Run MAKEHELP.BAT to compile your help file. 

2. Compile Scribble and test its various help features. 

Once you have successfully built Scribble and compiled its help file, run your new 
version of Scribble and tryout its context-sensitive help. 

~ To tryout Scribble's help 

1. Press the SHIFT +Fl keys to enter help mode then click one of the items on 
Scribble's Pen menu. 

You'll see the custom help that has been provided in PEN.RTF. 

2. Select the Index command on the Help menu to see Scribble's custom help 
index. 

Now that you've seen Scribble's help, it's time to examine some of the elements 
that make it work. 

Help Contexts in Scribble 
By step 6, Scribble has already defined a number of new IDs (symbols). The 
following lists Scribble's RESOURCE.H file at this stage: 

11{{NO_DEPENDENClES}} 
II App Studio generated include file. 
II Used by SCRIBBLE.RC 
II 
#define lDR_MAINFRAME 
#define lDR_SCRlBTYPE 
#define lDD_ABOUTBOX 
#define lDD_PEN_WlDTHS 
#define lD_PEN_THlCK_OR_THlN 
#define lD_PEN_WlDTHS 
#define lDC_THlN_PEN_WlDTH 
#define lDC_THICK_PEN_WIDTH 
#define lDC_DEFAULT_PEN_WlDTHS 

1 
2 
100 
101 
1001 
1002 
1000 
1001 
1002 

Newly defined symbols include 10 R_S C RIB TY P E (Scribble's menus and other 
application-specific resources), I DD_P EN_W I DTHS (the Pen Widths dialog box 



Chapter 10 Adding Context-Sensitive Help 193 

added in Chapter 7), I D_P E N_ TH I C K_O R_ TH I N (the Thick Line command added 
in Chapter 5), and so on. Notice that the ID _EDIT_CLEAR _ALL command ill 
doesn't appear in RESOURCE.H because it's a predefined ID in the class library. 

MAKEHM will map these symbols to Windows help contexts when you run 
MAKEHELP.BAT. After you run MAKEHLP.BAT, the SCRIBBLE.HM file 
looks like the following: 

II MAKEHELP.BAT generated Help Map file. Used by scribble.HPJ. 

II Commands (ID_* and IDM_*) 
HID_PEN_THICK_OR_THIN 0x103E9 
HID_PEN_WIDTHS 0x103EA 

II Prompts (IDP_*) 

II Resources (IDR_*) 
HIDR_MAINFRAME 
HIDR_SCRIBTYPE 

II Dialogs (IDD_*) 
HIDD_ABOUTBOX 
H IDD_P EN_W 1 DTHS 

II Frame Controls (IDW_*) 

0x20001 
0x20002 

0x20064 
0x20065 

This file contains help contexts for two commands, two resources (menus and other 
application resources), and two dialog boxes. 

Given these files and the framework's help support, the one task remaining is to edit 
Scribble's .RTF files to add these topics. 

Editing Scribble's Help Topics 
The framework manages navigation from application user interfaces to help con
texts. Implementing further navigation within the help file is the domain of help 
authoring rather than programming. The purpose of this section is to describe the 
general process of authoring and editing help topic files. 

Editing the help topics for Scribble is too big a task to work through in this chapter, 
however a few examples will help you get started. The examples in this chapter 
were edited with Microsoft Word for Windows, but you can use any application 
that can edit RTF-format files. 

The .RTF files that AppWizard creates contain starter help topics for many 
elements of the Windows user interface. Some of them are fairly complete, while 
others are skeletal and must be filled out. 



194 Class Library User's Guide 

If you want to customize the help topics supplied by App Wizard, you must do the 
following, using all of the .RTF files in MYSCRIB\HLP: 

• Globally replace the string "«YourApp»" in the .RTF files with the name of 
the application: "Scribble". This string is a placeholder. 

Figure 10.2 on page 195 shows one place where the string "«YourApp»" has 
been replaced by the string "Scribble". 

• From the help topics, remove any references to menu items absent in Scribble. 

For example, file AFXCORE.RTF contains a topic for the Edit Links command, 
which Scribble doesn't support. 

• Replace the helpful directives in the help topics with your own information. 
These directives are bracketed by «and» symbols. 

Notice that because the class library predefines ID _EDIT_ CLEAR_ALL, file 
AFXCORE.RTF already contains a help topic for the Clear All command that 
you added to the Edit menu in Chapters 5 and 6. However, its skeletal directive, 
"« Write application-specific help here. »," needs to be replaced with a real 
description. 

• Add topics for Scribble's new commands and its dialog box. 

Examine the listing of RESOURCE.H in the previous section. It lists the 
following help topics: 

• Two resource-related HIDs (HIDR_), for menus and related resources. 

• Two dialog-box HIDs (HIDD _ ), for the About and Pen Widths dialog 
boxes. 

• Two command HIDs (HID _ ), for the Thick Line and Pen Widths 
commands. 

New help topics are needed for the Pen Widths dialog box (About already has a 
topic in AFXCORE.RTF) and for the two commands. 

Help topics in an .RTF file are separated by hard page breaks. Each topic has a 
name and a "footnote" symbol (#). 

The footnote symbol # identifies context strings. Other possible footnote symbols 
identify keywords for searching (K) and topic names ($). Topic text can contain 
"popups" and "jumps." A popup displays a small window with extra information 
when its "hot spot" is clicked. A jump takes the user to another topic screen in the 
help system when its button is clicked. Hot spots for popups and jumps are text 
strings with special formatting. For more information, see Programming Toolsfor 
the Microsoft Windows Operating System. If you're using Word for Windows for 
.RTF files, you can examine the file AFXCORE.RTF with hidden text displayed. 



Chapter 10 Adding Context-Sensitive Help 195 

Example Topics 
To illustrate the process of adding topics, this section shows the structure needed for 
a user to jump from the main index screen in help to a screen showing general 
information about the new Pen menu, and from there to screens that describe the 
two Pen menu commands. These items are added to the AFXCORE.RTF file. 

The Main Index Screen 
Figure 10.2 shows the main index screen as it appears in compiled help. This is 
what the screen looks like after the Pen menu entry has been added. 

Scribble Help Index 

Commands 

Figure 10.2 The Main Index Screen in Compiled Help 

Figure 10.3 shows the help topic for the main index screen as it appears in 
Microsoft Word for Windows (with hidden text displayed). The screen contains 
entries for six menus: File, Edit, View, Pen, Window, and Help. The Pen menu is 
Scribble-specific, so this jump has been added. The others are created by 
AppWizard. 



196 Class Library User's Guide 

# Scribble Help Index, 
~ 
Commands' 

.... File menlJm.etlu...file.~ 

.... Edit men!Jmenu_edit~ 

.... View men!Jmenu_view~ 
E.an....maru.tmetlu~p.e.n~ 

.... Window men!Jme.t1!J_wit1dow~ 

.... Help men!Jmenu.lteJp~ 

Figure 10.3 The Main Index Screen in AFXCORE.RTF 

Each of the menu names on this screen is a "hot spot" that links to another topic. By 
clicking this hot spot, the user can jump to another screen in the help system. If you 
examine this screen in the AFXCORE.RTF file using Word for Windows, you see 
that the menu names-such as "Pen Menu"- are formatted with double under
lining. (This might be represented differently by another RTF editor.) Each menu 
name is followed immediately by a context name formatted as hidden text. For the 
Pen menu, this text reads "menu_pen." 

The Pen Menu Screen 
Figure 10.4 shows the text in AFXCORE.RTF for a help screen on the Pen Menu 
topic. The upper part of the figure shows the text of the file; the lower part shows 
footnote text. All formatting and hidden text are displayed. 

The Pen menu includes commands that let you toggle between a thin pen width and a thick pen 
width and let you change the definitions of thin and thick. ~ 
~ , £an ....................................... ',(o·iig"is·s··ihs··p·s·n··widti1··bstws·sn·"ifil"ck"an·cf"i"fiTri:." ................................................................... . 
WidthsHJD_PEN 
_WIDT,t\§.:, 

···············T··bTs·pTays·a··d"lai"o·g··bO"x··i·n··w"hTci1··y·o"li··"Can··rs·ds·f"i"n·s··ihe···;:n·e·an"ln·g·s···of"ti1"1ck"·arid··· 
. ID_PEN_T 1 thin" 

Q.R,,,.IH.!.N.~ ... l.............. ...... .... ............................ ......................... . .............................................................. . 

Figure 10.4 The Pen Menu Topic in the .RTF File 



Chapter 10 Adding Context-Sensitive Help 197 

The topic screen begins with a hard page break. The next line shows the footnote 
character, #, followed by the title to be displayed on the user's screen, "Pen menu 
commands." The rest of the screen contains descriptive text and two more hot spots 
for jumping to screens about the individual menu items. 

The footnote text associated with the # footnote for the Pen menu is "menu_pen," 
which names the context-the destination of jumps to this screen of the help 
system. 

Setting up this screen requires entering the hard page break and the footnote, then 
writing the text. ill Word for Windows, for example, you'd use the Break command 
on the illsert menu to enter a hard page break. Then you'd use the Footnote entry on 
the Insert menu to specify a footnote with the special footnote character #. 

Next, you'd type the footnote text in the footnote window. Finally, you'd type the 
descriptive text and format the hot spots. 

The jumps to screens for individual menu items consist of: 

• Visible text, such as "Pen Widths," formatted as double underlined, to designate 
the hot spot on the screen for the jump. 

• Hidden text, such as "HID_PEN_ WIDTHS," to designate the destination help 
topic. 

In the RTF files that AppWizard supplies, tables (as in Word for Windows) are 
used to present groups of jumps, but help authors are not required to use tables. 

A Screen for a Menu Item 
Figure 10.5 shows a screen for the Pen Widths and Thick Line menu items . 

... • • . ... 
[ ; ... 1 ... 2 } ... 4 ... 5 6 .. ... ... ... ... ... ... ~!-

# Pen Widths command (Pen menu)1I 

11 
The Pen Widths command displays a dialog box that lets you redefine the widths of thick and 
thin pens'll h 

# Line command (Pen menu)1I 

11 
The Thick Line command toggles between thin and thick widths of the pen. The default pen is 
thin. ~ h 

....................................... O!. 
Footnotes I pose I ~ 

# HID]EN _1iVIDTHS1l 
# HID]EN _THICK _ OR_ THINII h 
# HID _1iVINDOW _ NEW1f I-' 
# HID _1iVINDOW _ CASCADE1I 
# HID _1iVINDOW _ TILEII 
# HID _1iVINDOW _TILE _HORZII h 

+ 
+1. J L+ 

Figure 10.5 The Pen Widths and Thick Line Topics in the .RTF File 



198 Class Library User's Guide 

The screen is set up similarly to its parent screen for the Pen menu as a whole. 
Notice the text used for the footnotes in the lower part of Figure 10.5. 

Once your help authoring is finished, you can compile your help file. If you've 
chosen to author Scribble's help files, use the following procedure to see the results. 

~ To compile and test Scribble's help 

Conclusion 

1. To compile help, run MAKEHELP.BAT from the MS-DOS command line. 

The .HLP file is placed in your MYSCRIB directory. 

2. To prepare Scribble for testing your help, build Scribble from the Visual 
Workbench Project menu. 

3. To test help, run Scribble and try out the help features. 

The section "See Context-Sensitive Help in Action" on page 186 suggests how 
to try out the help features. 

This concludes the Scribble tutorial portion of the Class Library User's Guide. The 
remaining chapters explore other aspects of the Microsoft Foundation Class 
Library: 

• Memory management (Chapter 11) 

• General-purpose classes for dates, times, and strings (Chapter 11) 

• Class CObject, the root base class of the class library, which offers useful 
services to classes derived from it (Chapter 12) 

• Collection classes, such as arrays, lists, and maps (Chapter 13) 

• Files and serialization (Chapter 14) 

• Diagnostics (Chapter 15) 

• Exception-handling (Chapter 16) 

• Using VBX (Visual Basic) controls (Chapter 17) 

• Using Object Linking and Embedding (OLE) (Chapter 18) 



199 

CHAPTER 11 

General·Purpose Classes 

The Microsoft Foundation Class Library provides services to make programming 
easier. These services range from general-purpose memory-management services to 
more advanced Windows facilities. This chapter describes how to take advantage of 
the general-purpose services related to memory management, time and date 
management, and string manipulation. 

Memory Management 
Memory allocation can be divided into two main categories: frame allocations and 
heap allocations. One main difference between the two allocation techniques is that 
with frame allocation you typically work with the actual memory block itself, 
whereas with heap allocation you are always given a pointer to the memory block. 
Another major difference between the two schemes is that frame objects are 
automatically deleted, while heap objects must be explicitly deleted by the 
programmer. 

The following sections describe how to use the capabilities of C and C++ to 
accomplish memory allocations on the frame and on the heap. 

Frame Allocation 
Allocation on the frame takes its name from the "stack frame" that is set up 
whenever a function is called. The stack frame is an area of memory that tem
porarily holds the arguments to the function as well as any variables that are 
defined local to the function. Frame variables are often called "automatic" variables 
because the compiler automatically allocates the space for them. 

There are two key characteristics of frame allocations. First, when you define a 
local variable, enough space is allocated on the stack frame to hold the entire 
variable, even if it is a large array or data structure. Second, frame variables are 
automatically deleted when they go out of scope. For local function variables, this 
scope transition happens when the function exits, but the scope of a frame variable 
can be smaller than a function if nested braces are used (or larger, in the case of 



200 Class Library User's Guide 

global variables). This automatic deletion of frame variables is very important. In 
the case of simple primitive types (such as int or byte), arrays, or data structures, 
the automatic deletion simply reclaims the memory used by the variable. Since the 
variable has gone out of scope, it cannot be accessed anyway. In the case of C++ 
objects, however, the process of automatic deletion is a bit more complicated. 

When an object is defined as a frame variable, its constructor is automatically 
invoked at the point where the definition is encountered. When the object goes out 
of scope, its destructor is automatically invoked before the memory for the object is 
reclaimed. This automatic construction and destruction can be very handy, but you 
must be aware of the automatic calls, especially to the destructor. 

The key advantage of allocating objects on the frame is that they are automatically 
deleted. When you allocate your objects on the frame, you don't have to worry 
about forgotten objects causing memory leaks. (For details on memory leaks, see 
"Detecting Memory Leaks" on page 247.) A disadvantage of frame allocation is 
that frame variables cannot be used outside their scope. Another factor in choosing 
frame allocation vs. heap allocation is that for large structures and objects, it is 
often better to use the heap instead of the stack for storage since stack space is often 
limited. 

Heap Allocation 
The heap is reserved for the memory allocation needs of the program. It is an area 
apart from the program code and from the stack. Typical C programs use the 
functions malloc and free to allocate and deallocate heap memory. The Debug 
version of the Microsoft Foundation Class Library provides modified versions of 
the C++ built-in operators new and delete to allocate and deallocate objects in heap 
memory. When you use new and delete instead of malloc and free you are able to 
take advantage of the Foundation's memory-management debugging enhancements, 
which can be useful in detecting memory leaks. When you build your program with 
the Release version of the Microsoft Foundation Class Library, new and delete still 
provide an efficient way to allocate and deallocate memory. 

Memory Allocation on the Frame and on the Heap 
There are three typical kinds of memory allocations: 

• An array of bytes 

• A data structure 

• An object 

The following sections describe how the Microsoft Foundation Class Library 
facilities perform frame allocation and heap allocation for each of these. 



Chapter 11 General·Purpose Classes 201 

Allocation of an Array of Bytes 
~ To allocate an array of bytes on the frame 

• Define the array as shown by the following code. The array is automatically 
deleted and its memory reclaimed when the array variable exits its scope. 

const int BUFF_SIZE = 128; 

II Allocate on the frame 
char myCharArray[BUFF_SIZE]; 
int myIntArray[BUFF_SIZE]; 
II Reclaimed when exiting scope 

~ To allocate an array of bytes (or any primitive data type) on the heap 

• Use the new operator with the following array syntax: 

const int BUFF_SIZE = 128; 

II Allocate on the heap 
char* myCharArray = new char[BUFF_SIZE]; 
int* myIntArray = new int[BUFF_SIZE]; 

~ To deallocate the arrays from the heap 

• Use the delete operator as follows: 

delete [] myCharArray; 
delete [] myIntArray; 

Allocation of a Data Structure 
~ To allocate a data structure on the frame 

• Define the structure variable as follows: 

struct MyStructType { ... }; 
void SomeFunc(void) 
{ 

II Frame allocation 
MyStructType myStruct; 

II Use the struct 
myStruct.topScore = 297; 

II Reclaimed when exiting scope 

The memory occupied by the structure is reclaimed when it exits its scope. 



202 Class Library User's Guide 

~ To allocate data structures on the heap 

• Use new to allocate data structures on the heap and delete to deallocate them, as 
shown by the following examples: 

II Heap allocation 
MyStructType* myStruct = new MyStructType; 

II Use the struct through the pointer ... 
myStruct->topScore = 297; 

delete myStruct; 

Allocation of an Object 
~ To allocate an object on the frame 

• Declare the object as follows: 

CPerson myPerson; II Automatic constructor call here 

myPerson.SomeMemberFunction(); II Use the object 

The destructor for the object is automatically invoked when the object exits its 
scope. 

~ To allocate an object on the heap 

• Use the new operator, which returns a pointer to the object, to allocate objects 
on the heap. Use the delete operator to delete them. The following heap and 
frame examples assume that the C Per son constructor takes no arguments. 

II Automatic constructor call here 
CPerson* myPerson = new CPerson; 

myPerson->SomeMemberFunction(); II Use the object 

delete myPerson; II Destructor invoked during delete 

If the argument for the C Per son constructor is a pointer to char, the statement 
for frame allocation is: 

CPerson myPerson( "Joe Smith" ); 

The statement for heap allocation is: 

CPerson* MyPerson = new CPerson( "Joe Smith" ); 



Chapter 11 General·Purpose Classes 203 

Resizable Memory Blocks 
The new and delete operators described above are good for allocating and 
de allocating fixed-size memory blocks and objects. Occasionally, your application 
may need resizable memory blocks. You must use the standard C run-time library 
functions malloc, realloc, and free to manage resizable memory blocks on the 
heap. 

Mixing the new and delete operators with the resizable memory-allocation 
functions on the same memory block will result in corrupted memory in the Debug 
version of the Foundation Class Library. That is, do not allocate a memory block 
with new and deallocate it with free. Likewise, you should not use the C++ delete 
operator on a memory block allocated with malloc and you should not use realloc 
on a memory block allocated with new. 

Date and Time 
The CTime class provides a way to represent date and time information easily. The 
CTimeSpan class represents elapsed time, such as the difference between two 
CTime objects. 

Note CTime objects cannot be used to represent dates earlier than January 1, 
1980. CTime objects have a resolution of 1 second. 

The first procedure in this section shows how to create a CTime object and 
initialize it with the current time. The next procedure shows how to calculate the 
difference between two CTime objects and get a CTimeSpan result. 

~ To get the current time 

1. Allocate a CTime object, as follows: 

CTime theTime; 

Note Uninitialized CTime objects are automatically set to an invalid time. 

2. Call the CTime: : GetCurrentTime function to get the current time from the 
operating system. This function returns a CTime object that can be used to set 
the value of CTime, as follows: 

theTime = CTime::GetCurrentTime(); 

Since GetCurrentTime is a static member function from the CTime class, you 
must qualify its name with the name of the class and the scope resolution 
operator (::), CTime: :GetCurrentTime(). 



204 Class Library User's Guide 

Strings 

Of course, the two steps outlined previously could be combined into a single 
program statement as follows: 

CTime theTime = CTime::GetCurrentTime(); 

~ To calculate elapsed time 

• Use the CTime and CTimeSpan objects to calculate the elapsed time, as 
follows: 

CTime startTime = CTime::GetCurrentTime(); 

II ... perform time-consuming task ... 

CTime endTime = CTime::GetCurrentTime(); 

CTimeSpan elapsedTime = endTime - startTime; 

Once you have calculated e 1 a p sed Tim e, you can use the member functions of 
CTimeSpan to extract the components of the elapsed-time value. 

~ To format a string representation of a time or elapsed time 

• Use the Format member function from either the CTime or CTimeSpan 
classes to create a character string representation of the time or elapsed time, as 
shown by the following example. 

CTime t( 1991, 3, 19, 22, 15, 0 ); II 10:15PM March 19, 1991 
CString s = t.Format( "%A, %B %d, %Y" ); 
II s == "Tuesday, March 19,1991" 

The CString class provides support for manipulating strings. It is intended to 
replace and extend the functionality normally provided by the C run-time library 
string package. 

A CString object represents a sequence of a variable number of characters. 
CString objects can be thought of as arrays of single-byte characters. 

A CString object can store up to 32,766 characters. The normal C char data type 
is used to get or set individual characters inside a CString object. CString objects 
are automatically growable (that is, you don't have to worry about growing a 
CString object to fit longer strings). A CString object also can act like a literal 
C-style string (a pointer to const char). 



Chapter 11 General·Purpose Classes 205 

Basic Operations 
The CString class provides member functions and overloaded operators that 
duplicate and, in some cases, surpass the string services of the C run-time libraries 
(for example, strcat). The following sections describe some of the main operations 
of the CString class. 

~ To create CString objects from standard C literal strings 

• Assign the value of a C literal string to a CString object: 

CString myString = "This is a test"; 

• Assign the value of one CString to another CString object: 

CString oldString "This is a test"; 
CString newString = oldString; 

As explained more completely in the next section on using CString objects as 
values, the contents of a CString object are copied when one string is assigned 
to another CString object. Thus, the two strings do not share a reference to the 
actual characters that make up the string. 

~ To access individual characters in a CString 

• You can access individual characters within a CString object with the GetAt 
and SetAt member functions. You can also use the array element operator ( [] ) 
instead of GetAt to get individual characters (this is similar to accessing array 
elements by index, as in standard C-style strings). Index values for CString 
characters are zero-based. 

~ To concatenate two CStrings 

• Use the concatenation operators (+ or +=) as follows: 

CString sl = "This "; 
sl += "is a "; 
CString s2 = "test"; 

//Cascading concatenation 

CString message = sl + "big" + s2; 
IIMessage contains "This is a big test". 

At least one of the arguments to the concatenation operators (+ or +=) must be a 
CString object, but you can use a constant character string (such as lib i gil) or 
a char (such as II x ") for the other argument. 



206 Class Library User's Guide 

~ To compare two CStrings 

• While the overloaded equality operator (==) and the Compare member 
functions will determine if two CString objects are equivalent character for 
character, you can also use the CompareNoCase and Collate member 
functions to do comparisons that are case insensitive and national-language 
sensitive. The following table shows the three available CString comparison 
functions and their equivalent C run-time string functions. 

CString Function 

Compare 

CompareNoCase 

Collate 

C Run-time Function 

strcmp 

stricmp 

strcoll 

The CString class overrides the relational operators «, <=, >=, >, ==, and !=) to 
use the Compare function, so you can compare two CStrings using these 
operators, as shown here: 

CString 51( "Tom" ); 
CString s2( "Jerry" ); 
if( sl < 52 

CString Objects Are Values 
Even though CString objects are dynamically growable objects, they act like built
in primitive types and simple classes. Each CString object represents a unique 
value. CString objects should be thought of as the actual strings rather than as 
pointers to strings. 

The most obvious consequence of using CString objects as values is that the string 
contents are copied when you assign one CString to another. Thus, even though 
two CStrings objects may represent the same sequence of characters, they do not 
share those characters. Each CString has its own copy of the character data. When 
you modify one CString object, the copied CString object is not modified, as 
shown by the following example: 

CString 51. 52; 
51 = 52 = "hi there"; 

i f( sl == 52 ) 

sl.MakeUpper(); 
if( 52[0] == 'h' 

II TRUE - they are equal 

II Does not modify s2 
I I TRUE - 52 i 5 5ti 11 "hi there" 



Chapter 11 General·Purpose Classes 207 

Notice in the example that the two CString objects are considered to be "equal" 
because they represent the same character string. The CString class overloads the 
equality operator (==) to compare two CString objects based on their value 
(contents) rather than their identity (address). 

~ To specify CString formal parameters correctly 

• For most functions that need a string argument, it is best to specify the formal 
parameter in the function prototype as a pointer to const char (const char* or 
const char FAR *) instead of a CString. When a formal parameter is specified 
as a pointer to const char, you can pass either a pointer to a char array, a literal 
string ("hi there"), or a CString object. The CString object will be 
automatically converted to a pointer to const char. Any place you can use a 
pointer to char, you can also use a CString object. 

• You can also specify a formal parameter as a constant string reference (that is, 
const CString&) if the argument will not be modified. Drop the const modifier 
if the string will be modified by the function. If a default null value is desired, 
initialize it to the null string (" "), as shown below: 

void AddCustomer( const CString& name, 
const CString& address, 
const CString& comment = "" ); 

• For most function results, you can simply return a CString object by value. 

Operations Related to C-Style Strings 
It is often useful to be able to manipulate the contents of a CString object as if it 
were a C-style null-terminated string. 

~ To convert to C-style null-terminated strings 

• In the simplest case, you can cast a CString object to be a pointer to const 
char. The const char* type conversion operator returns a read-only pointer to a 
C-style null-terminated string from a CString object. 

The pointer to char returned by the implicit conversion shown above points into 
the data area used by the CString. If the CString goes out of scope and is 
automatically deleted or something else changes the contents of the CString, 
the char pointer will no longer be valid. You should treat this pointer as a 
temporary read-only pointer. Do not directly modify the characters to which 
it points. 



208 Class Library User's Guide 

• You can use CString functions, such as SetAt, to modify individual characters 
in the string object. However, if you need a copy of a CString object's char
acters that you can modify directly, use strcpy to copy the CString object into a 
separate buffer where the characters can be safely modified, as shown by the 
following example: 

CString theString( "This is a test" ); 
char* psz = new char[theString.GetLength()+l]; 
strcpy( psz,theString ); 
II ... modify psz as much as you want 

Note The second argument to strcpy is declared as a constant pointer to char 
(const char*). The example above passes a CString for this argument. The 
C++ compiler automatically applies the conversion function defined for the 
CString class that converts a CString to a const char*. The ability to define 
casting operations from one type to another is one of the most useful features of 
C++. 

~ To work with standard C-library string functions 

• In most situations, you should be able to find CString member functions to 
perform any string operation for which you might consider using the standard 
C run-time library string functions, such as strcmp. 

• If you find that you must use the C run-time string functions, you can use the 
techniques described in the previous procedure to copy the CString object to an 
equivalent C-style string buffer, perform your operations on the buffer, and then 
assign the resulting C-style string back to a CString object. 

~ To modify CString contents directly with GetBuffer and ReleaseBuffer 

• In most situations, you should use CString member functions to modify the 
contents of a CString object or to convert the CString to a C-style character 
string as described in the previous section. 

• However, there are certain situations, such as working with operating-system 
functions that require a character buffer, where it is advantageous to directly 
modify the CString contents. 

The GetBuffer and ReleaseBuffer member functions allow you to gain access 
to the internal character buffer of a CString object and modify it directly. The 
following steps show how to use these functions for this purpose: 

1. Call GetBuffer for a CString object, specifying the length of the buffer you 
require. 

2. Use the pointer returned by GetBuffer to write characters directly into the 
CString object. 



Chapter 11 General·Purpose Classes 209 

3. Call ReleaseBuffer for the CString object to update all the internal 
CString state information (such as the length of the string). After modifying 
a CString object's contents directly, you must call ReleaseBuffer before 
calling any other CString member functions. 

~ To use CString objects with variable argument functions 

Some C functions take a variable number of arguments. A notable example is 
printf. Because of the way this kind of function is declared, the compiler cannot be 
sure of the type of the arguments and cannot determine which conversion operation 
to perform on the argument. Therefore, it is essential that you use an explicit-type 
cast when passing a CString object to a function that takes a variable number of 
arguments. 

• Explicitly cast the CString to a pointer to a constant char string, as shown here: 

CString kindOfFruit = "bananas"; 
int howmany = 25; 
printf( "You have %d %s\n", howmany, (const char*)kindOfFruit ); 





211 

CHAPTER 12 

The CObject Class 

CObject is the root base class for most of the Microsoft Foundation Class Library. 
The CObject class contains many useful features that you may want to incorporate 
into your own program objects, including serialization support, run-time class 
information, and object diagnostic output. If you derive your class from CObject, 
your class can exploit these CObject features. 

The cost of deriving your class from CObject is minimal. Your derived class will 
have the overhead of four virtual functions and a single CRuntimeClass object. 

Deriving a Class from CObject 
This section describes the minimum steps necessary to derive a class from 
CObject. Other sections describe the steps needed to take advantage of specific 
CObject features, such as serialization and diagnostic debugging support. 

In the following discussions, the terms "interface file" and "implementation file" 
are used frequently. The interface file (often called the header file, or .H file) 
contains the class declaration and any other information needed to use the class. 
The implementation file (or .CPP file) contains the class definition as well the code 
that implements the class member functions. For example, for a class named 
CPerson, you would typically create an interface file named PERSON.H and an 
implementation file named PERSON.CPP. However, for some small classes that 
will not be shared among applications, it is sometimes easier to combine the 
interface and implementation into a single . CPP file. 

There are four levels of functionality from which you can choose when deriving a 
class from CObject: 

• Basic functionality that does not include support for run-time class information 
or serialization but includes diagnostic memory management. 

• Basic functionality plus support for run-time class information. 

• Basic functionality plus support for run-time class information and dynamic 
creation. 



212 Class Library User's Guide 

• Basic functionality plus support for run-time class information, dynamic 
creation, and serialization. 

Classes designed for reuse (those that will later serve as base classes) should at 
least include run-time class support and serialization support, if any future 
serialization need is anticipated. 

You choose the level of functionality by using specific declaration and imple
mentation macros in the declaration and implementation of the classes you derive 
from CObject. 

Figure 12.1 shows the relationship among the macros used to support serialization 
and run-time information. 

CRuntimeClass:: CArchive: :operator» 
CObject: :IsKindOf CreateObject CArchive: :operator« 

Basic CObject functionality No No No 

DECLARE DYNAMIC Yes No No 

DECLARE DYNCREATE Yes Yes No 

DECLARE SERIAL Yes Yes Yes 

Figure 12.1 Macros Used for Serialization and Run-Time Information 

The following sections describe how to specify the level of functionality. 

~ To use basic CObject functionality 

• Use the normal C++ syntax to derive your class from CObject (or from a class 
derived from CObject). 

The following example shows the simplest case, the derivation of a class from 
CObject: 

class CPerson : public CObject 
{ 

II add CPerson-specific members and functions ... 

Typically, however, you may want to override some of CObject's member 
functions to handle the specifics of your new class. For example, you may 
usually want to override the Dump function of CObject to provide debugging 
output for the contents of your class. For details on how to override Dump, see 
"Dumping Object Contents" on page 242. You may also want to override the 
AssertValid function of CObject to provide customized testing to validate the 
consistency of the data members of class objects. For a description of how to 
override AssertValid, see the section on "Overriding the AssertValid Function" 
on page 245. 



Chapter 12 The CObject Class 213 

~ To add run-time class information 

CObject supports run-time class infonnation through the IsKindOf function, 
which allows you to detennine if an object belongs to or is derived from a specified 
class. (For more detailed infonnation, see Chapter 14, "Files and Serialization.") 
This capability is not supported directly by the C++ language. The IsKindOf 
function pennits you to do a typesafe cast down to a derived class. 

Use the following steps to access run-time class infonnation: 

1. Derive your class from CObject, as described in the previous section. 

2. Use the DECLARE_DYNAMIC macro in your class declaration, as shown 
here: 

class CPerson : public CObject 
{ 

DECLARE_DYNAMIC( CPerson ) 

II rest of class declaration follows ... 
} ; 

3. Use the IMPLEMENT_DYNAMIC macro in the implementation file (.CPP) 
of your class. This macro takes as arguments the name of the class and its base 
class, as follows: 

IMPLEMENT_DYNAMIC( CPerson, CObject ) 

To better understand the relationships among the macros and the functions that 
support serialization and run-time, see the table on page 212. 

Note Always put IMPLEMENT _DYNAMIC in the implementation file (.CPP) 
for your class. The IMPLEMENT_DYNAMIC macro should be evaluated only 
once during a compilation and therefore should not be used in an interface file (.R) 
that could potentially be included in more than one file. 

~ To add dynamic creation support 

CObject also supports dynamic creation, which is the process of creating an object 
of a specific class at run time. The object is created by the CreateObject member 
function of CRuntimeClass. Your document, view, and frame class should support 
dynamic creation because the framework (through the CDocTemplate class) needs 
to create them dynamically. Dynamic creation is not supported directly by the C++ 
language. To add dynamic creation, you must do the following: 

1. Derive your class from CObject. 

2. Use the DECLARE DYNCREATE macro in the class declaration. 

3. Define a constructor with no arguments (a default constructor). 



214 Class Library User's Guide 

4. Use the IMPLEMENT _ DYNCREATE macro in the class implementation 
file. 

~ To add serialization support 

Serialization is the process of writing or reading the contents of an object to and 
from a file. The Microsoft Foundation Class Library uses an object of the 
CArchive class as an intermediary between the object to be serialized and the 
storage medium. The CArchive object uses overloaded insertion «<) and 
extraction (») operators to perform writing and reading operations. 

The following steps are required to support serialization in your classes: 

1. Derive your class from CObject. 

2. Override the Serialize member function. 

If you call Serialize directly, that is, you do not want to serialize the object through 
a polymorphic pointer, omit these steps: 

1. Use the DECLARE SERIAL macro in the class declaration. 

2. Define a constructor with no arguments (a default constructor). 

3. Use the IMPLEMENT _SERIAL macro in the class implementation file. 

For more details on how to enable serialization when you derive your class from 
CObject, see "Serialization" on page 229. Each of the steps listed above is 
described in that section. 

Accessing Run-Time Class Information 
If you have derived your class from CObject and used the 
DECLARE_DYNAMIC and IMPLEMENT _DYNAMIC, the 
DECLARE _ DYNCREATE and IMPLEMENT _ DYNCREATE, or the 
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros explained 
previously, the CObject class has the ability to determine the exact class of an 
object at run time. 

The ability to determine the class of an object at run time is most useful when extra 
type checking of function arguments is needed and when you must write special
purpose code based on the class of an object. However, this practice is not usually 
recommended because it duplicates the functionality of virtual functions. 

The CObject member function IsKindOf can be used to determine if a particular 
object belongs to a specified class or if it is derived from a specific class. The 
argument to IsKindOf is a CRuntimeClass object, which you can get using the 
RUNTIME CLASS macro with the name of the class. The use of the 
RUNTIME_CLASS macro is shown in the following section. 



Chapter 12 The CObject Class 215 

~ To use the RUNTIME CLASS macro 

• Use RUNTIME_CLASS with the name of the class, as shown here for the 
class CObject: 

CRuntimeClass* pClass = RUNTIME_CLASS( CObject ); 

You will rarely need to access the run-time class object directly. A more 
common use is to pass the run-time class object to the IsKindOf function, as 
shown in the next section. 

~ To use the IsKindOf function 

The IsKindOf function tests an object to see if it belongs to a particular class. The 
following steps show how to use IsKindOf. 

1. Make sure the class has run-time class support. That is, the class must have been 
derived from CObject and used the DECLARE_DYNAMIC and 
IMPLEMENT_DYNAMIC, the DECLARE_DYNCREATE and 
IMPLEMENT _ DYNCREA TE, or the DECLARE_SERIAL and 
IMPLEMENT_SERIAL macros explained previously on pages 212-214. 

2. Call the IsKindOf member function for objects of that class, using the 
RUNTIME_CLASS macro to generate the CRuntimeClass argument, as 
shown here: 

I lin . H fil e 
class CPerson : public CObject 
{ 

DECLARE_DYNAMIC( CPerson ) 
public: 

CPerson ( ) {}; 

II other declaration 
} ; 

II in .CPP file 
IMPLEMENT_DYNAMIC( CPerson, CObject 

CObject* pMyObject = new CPerson; 

if( myObject->IsKindOf( RUNTIME_CLASS( CPerson ) ) ) 
{ 

Ilif IsKindOf is true, then cast is all right 
CPerson* pmyPerson = (CPerson*) pmyObject; 



216 Class Library User's Guide 

Note IsKindOfretums TRUE if the object is a member of the specified class 
or of a class derived from the specified class. IsKindOf does not support 
multiple inheritance or virtual base classes, although you can use multiple 
inheritance for your Microsoft Foundation classes if necessary. 

~ To dynamically create an object given its run-time class 

• Use the following code to dynamically create an object by using the 
CreateObject function of the CRuntimeClass: 

CRuntimeClass* pRuntimeClass = RUNTIME_CLASS( CMyClass ); 
CObject* pObject = pRuntimeClass->CreateObject(); 
ASSERT( pObject->IsKindOf( RUNTIME_CLASS( CMyClass ) ) ); 

For more detailed information on serialization and run-time class information, see 
Chapter 14, "Files and Serialization." 



217 

CHAPTER 13 

Collections 

The Microsoft Foundation Class Library provides collection classes to manage 
groups of objects. A collection class is characterized by its "shape" and by the 
types of its elements. The shape refers to the way the objects are organized and 
stored by the collection. The Microsoft Foundation Class Library provides three 
basic collection shapes: lists, arrays, and maps (also known as dictionaries). You 
can pick the collection shape most suited to your particular programming problem. 

Each of the three provided collection shapes is described briefly below, followed by 
Table 13.1, which compares the features of the shapes to help you decide which is 
best for your program. In the table, the term "ordered" means that the order of the 
items in the collection is determined by the order in which they were inserted and 
deleted. It does not mean that the items are sorted based on their contents. The term 
"indexed" means that the items in the collection can be retrieved by an integer 
index, much like a typical array structure. 

• List 

The list class provides an ordered, nonindexed list of elements, implemented as 
a doubly linked list. A list has a "head" and a "tail," and adding or removing 
elements from the head or tail, or inserting or deleting elements in the middle, 
is very fast. 

• Array 

The array class provides a dynamically sized, ordered, and integer-indexed 
array of objects. 

• Map (also known as a dictionary) 

A "map" is a collection that associates a key object with a value object. 



218 Class Library User's Guide 

Table 13.1 Shape Features 

Check for 
Insert an Specified Duplicate 

Shape Ordered? Indexed? Element Element Elements? 

List Yes No Fast Slow Yes 

Array Yes Byint Slow Slow Yes 

Map No By key Fast Fast No (keys) 
Yes (values) 

How to Make a Type-Safe Collection 
The Microsoft Foundation Class Library provides predefined type-safe collections 
that can be used to contain CObject, UINT, DWORD, and CString elements. 
You can use these predefined collections (such as CObList) to hold collections of 
any objects derived from CObject. The Microsoft Foundation Class Library also 
provides other predefined collections to hold primitive types such as UINT and void 
pointers (void*). In general, however, it is often useful to define your own type-safe 
collections to hold objects of a more specific class and its derivatives. 

There are three main ways to use collections with the Microsoft Foundation Class 
Library, as described by the following sections. 

~ To use predefined collections 

• The easiest way to use the Microsoft Foundation collection classes is to use a 
predefined collection type, such as CW ordArray. You can create a 
CWordArray and add any 16-bit values to it and retrieve them. There is 
nothing more to do. You just use the predefined functionality. 

• You can also use a predefined collection, such as CObList, to hold objects 
that are derived from CObject. A CObList is defined to hold pointers to 
CObject. You can put any object that is derived from CObject into a 
CObList. When you retrieve an object from the list, you may have to cast 
the result to the proper type since the CObList functions return pointers to 
CObject. For example, if you store CPerson objects in a CObList, you 
have to cast a retrieved element to be a pointer to a C Per son object. The 
following example uses a CObList to hold C Per son objects: 



Chapter 13 Collections 219 

class CPerson : public CObject { ... }; 

CPerson* pI = new CPerson( ... ); 
CObList myList; 

myList.AddHead( pI ); II No cast needed 
CPerson* p2 = ( CPerson* )myList.GetHead(); 

• This technique of using a predefined collection type and casting as necessary 
may be adequate for many of your collection needs. If you need further 
functionality or more type safety, read the next section. 

~ To derive and extend a collection 

• You can also derive your own collection class from one of the predefined 
collection classes provided with the Microsoft Foundation Class Library. When 
you derive your class, you can add type-safe wrapper functions to provide a 
type-safe interface to existing functions. 

• For example, if you derived a list from CObList to hold CPerson objects, 
you might add the wrapper functions Add H e a d Per son and 
GetHead Person, as shown below. 

class CPersonList : public CObList 
{ 

public: 

} ; 

void AddHeadPerson( CPerson* person ) 
{AddHead( person );} 

CPerson* GetHeadPerson() 
{return (CPerson*)GetHead();} 

These wrapper functions provide a type-safe way to add and retrieve C Per son 
objects from the derived list. You can see that for the GetHeadPerson 
function, you are simply encapsulating the casting seen in the previous section. 

You can also add new functionality by defining new functions that extend the 
capabilities of the collection rather than just wrapping existing functionality in 
type-safe wrappers. For example, a later section describes a function to delete 
all the objects contained in a list. This function could be added to the derived 
class as a member function. 

~ To use templates to create new collection classes 

• See the technical note that describes the Microsoft Foundation Class Library 
tool that you can use to create new type-safe collections from template files. 
These templates and the tool allow you to create a version of an existing 
collection shape that is customized to hold a specified data type or object type. 



220 Class Library User's Guide 

The directory (on your distribution disks) that contains sample programs has an 
application that expands templates defined using a subset of the proposed ANSI 
template syntax. The Foundation collection classes were generated with this 
program. 

Accessing All Members of a Collection 
The Foundation collection classes use a position indicator to describe a given 
position within the collection. To access one or more members of a collection, first 
initialize the position indicator and then repeatedly pass that position to the collec
tion and ask it to return the next element. The collection is not responsible for 
maintaining state information about the progress of the iteration. That information 
is kept in the position indicator. But, given a particular position, the collection is 
responsible for returning the next element. 

The following examples show how to iterate over the three main types of collections 
provided with the Microsoft Foundation Class Library. 

~ To iterate an array 

• Use sequential index numbers with the GetAt member function: 

CObArray myArray; 

far( int i = 0; i < myArray.GetSize();i++ ) 
{ 

CPersan* thePersan = (CPersan*)myArray.GetAt( ); 

~ To iterate a list 

• Use the member functions GetHeadPosition and GetNext to work your way 
through the list: 

CPersanList myList; 

POSITION pas = myList.GetHeadPasitian(); 
while( pas != NULL) 
{ 

CPersan* thePersan = myList.GetNext( pas ); 



Chapter 13 Collections 221 

~ To iterate a map 

• Use GetStartPosition to get to the beginning of the map and 
GetNextAssociation to repeatedly get the next key and value from the map, as 
shown by the following example: 

CMapStringToOb myMap; 

POSITION pos = myMap.GetStartPosition(); 
while( pos 1= NULL) 
{ 

CObject* pObject; 
CPerson* pPerson; 
CString string; 
II Gets key ( string) and value ( pObject ) 
myMap.GetNextAssoc( pos, string, pObject ); 
if( pObject->IsKindOf( RUNTIME_CLASS(CPerson) ) ) 
{ 

pPerson = (CPerson*)pObject; 
I I . .. 

How to Delete All Objects in a CObject Collection 
To delete all the objects in a collection of CObjects (or of objects derived from 
CObject), you use one of the iteration techniques described above to delete each 
object in tum. 

Note Objects in collections can be shared. That is, the collection keeps a pointer to 
the object, but other parts of the program may also have pointers to the same object. 
You must be careful not to delete an object that is shared until all the parts have 
finished using the object. 

~ To delete all objects in a CObList 

1. Use GetHeadPosition and GetNext to iterate through the list. 

2. Use the delete operator to delete each object as it is encountered in the iteration. 

3. Call the RemoveAlI function to remove all elements from the list after the' 
objects associated with those elements have been deleted. 

The preceding technique deletes all objects in a CObList or a list derived from 
CObList. 



222 Class Library User's Guide 

The following example shows how to delete all objects from a list of 
C Per son objects. Each object in the list is a pointer to a C Per son object that was 
originally allocated on the heap. 

class CPersanList : public CObList { ... }; 

CPersanList myList 
POSITION pas = myList.GetHeadPasitian(); 

while( pas 1= NULL) 
{ 

delete myList.GetNext( pas ); 

myList.RemaveAll(); 

The last function call, RemoveAII, is a list member function that removes all 
elements from the list. The member function RemoveAt will remove a single 
element. 

Notice the difference between deleting an element's object and removing the 
element itself. Removing an element from the list merely removes the list's 
reference to the object. The object still exists in memory. When you delete an 
object, its memory is reclaimed and it ceases to exist. Thus, it is important to 
remove an element immediately after the element's object has been deleted so 
that the list won't try to access objects that no longer exist. 

~ To delete all elements in an array 

1. Use GetSize and integer index values to iterate through the array. 

2. Use the delete operator to delete each element as it is encountered in the 
iteration. 

3. Call the RemoveAII function to remove all elements from the array after they 
have been deleted. 

The code for deleting all elements of an array is as follows: 

CObArray myArray; 

int i = 0; 
while (i < myArray.GetSize() ) 
{ 

delete myArray.GetAt( i++ ); 
} 

myArray.RemaveAll(); 

Like the list example, you can call RemoveAII to remove all elements in an array 
or RemoveAt to remove an individual element. 



Chapter 13 Collections 223 

~ To delete all elements in a map 

1. Use GetStartPosition and GetNextAssociation to iterate through the array. 

2. Use the delete operator to delete the key and/or value for each map element as it 
is encountered in the iteration. 

3. Call the RemoveAII function to remove all elements from the map after they 
have been deleted. 

The code for deleting all elements of a CMapStringToOb is as follows. Each 
element in the map has a string as the key and a C Per son object (derived from 
CObject) as the value. 

CMapStringToOb myMap; 
II ... Add some key-value elements 
II Now delete the elements 
pos = myMap.GetStartPosition(); 
while( pos !- NULL) 
{ 

} 

CObject* pObject; 
CString string; 
II Gets key ( string) and value ( pObject ) 
myMap.GetNextAssoc( pos, string, pObject ); 
delete pObject; 

myMap.RemoveAll(); 

You can call RemoveAII to remove all elements in a map or RemoveKey to 
remove an individual element with the ·specified key. 

How to Create a Stack Collection 
Because the standard list collection has both a head and a tail, it is easy to create a 
derived list collection that mimics the behavior of a last-in-first-out stack. A stack 
is like a stack of trays in a cafeteria. As trays are added to the stack, they go on top 
of the stack. The last tray added is the first to be removed. The list collection 
member functions AddHead and RemoveHead can be used to add and remove 
elements specifically from the head of the list; thus the most recently added element 
is the first to be removed. 

~ To create a stack collection 

• Derive a new list class from one of the existing Foundation list classes and add 
more member functions to support the functionality of stack operations. 



224 Class Library User's Guide 

The following example shows you can add member functions to push elements 
on to the stack, peek at the top element of the stack, and pop the top element 
from the stack: 

class CTray : public CObject { ... }; 

class CStack : public CObList 
{ 

public: 

} ; 

II Add element to top of stack 
void Push( CTray* newTray ) 

{ AddHead( newTray ); } 

II Peek at top element of stack 
CTray* Peek() 

{ return IsEmpty() ? NULL (CTray*)GetHead();} 

II Pop top element off stack 
CTray* pope) 

{ return (CTray*)RemoveHead(); 

How to Create a Queue Collection 
Because the standard list collection has both a head and a tail, it is also easy to 
create a derived list collection that mimics the behavior of a first-in-first-out queue. 
A queue is like a line of people in a cafeteria. The first person in line is the first to 
be served. As more people come, they go to the end of the line to wait their tum. 
The list collection member functions AddTail and RemoveHead can be used to 
add and remove elements specifically from the head or tail of the list; thus the most 
recently added element is always the last to be removed. 

~ To create a queue collection 

• Derive a new list class from one of the predefined list classes provided with the 
Microsoft Foundation Class Library and add more member functions to support 
the semantics of queue operations. 



Chapter 13 Collections 225 

The following example shows how you can append member functions to add an 
element to the end of the queue and get the element from the front of the queue. 

class CPerson : public CObject { ... }; 

class CQueue : public CObList 

public: 
II Go to the end of the line 
void AddToEnd( CPerson* newPerson ) 

} ; 

{ AddTail( newPerson );} II End of the queue 

II Get first element in line 
CPerson* GetFromFront() 

{ return IsEmpty() ? NULL (CPerson*)RemoveHead(); } 





227 

CHAPTER 14 

Files and Serialization 

Files 

In the Microsoft Foundation Class Library, the CFile class handles normal file I/O 
operations. This chapter explains how to open and close files as well as read and 
write data to those files. You will also learn about file status operations. For a 
description of how to use the object-based serialization features of the Microsoft 
Foundation Class Library as an alternative way of reading and writing data in files, 
see "Serialization" on page 229. 

The CFile class provides an interface for general-purpose binary file operations. 
The CStdioFile and CMemFile classes are derived from CFile to supply more 
specialized file services. 

In the Microsoft Foundation Class Library, the most common way to open a file is a 
two-stage process. 

~ To open a file 

1. Create the file object without specifying a path or permission flags. 

You usually create a file object by declaring a CFile variable on the stack 
frame. 

2. Call the Open member function for the file object, supplying a path and 
permission flags. 

The return value for Open will be nonzero if the file was opened successfully or 
o if the specified file could not be opened. 

The open flags specify which permissions, such as read-only, you want for the 
file. The possible flag values are defined as enumerated constants within the 
CFile class, so they are qualified with "CFile::," as in CFile::modeRead. Use 
the CFile: :modeCreate flag if you want to create the file. 



228 Class Library User's Guide 

The following example shows how to create a new file with read/write 
permission (replacing any previous file with the same path): 

c h a r * p s z F i 1 eN a me = "\\ t est \ \ my file. d at" ; 
C File my F i 1 e ; 

if ( ! my F i 1 e . 0 pen ( p s z F i 1 eN a me, 
CFile::modeCreate I CFile::modeReadWrite ) ) 

TRACE( "Can't open file %s\n",pszFileName ); 

You may pass an additional CFileException object if you require more detailed 
error reporting. 

~ To read from and write to the file 

• Use the Read and Write member functions to read and write data in the file. 

The Seek member function is also available for moving to a specific offset 
within the file. 

Read takes a pointer to a buffer and a UINT specifying the number of bytes to 
read and returns a UINT with the actual number of bytes that were read. If the 
required number of bytes could not be read because end-of-file (EOF) is 
reached, the actual number of bytes read is returned. If any read error occurs, an 
exception is thrown. Write is similar to Read, but the number of bytes written 
is not returned. If a write error occurs, including not writing all the bytes 
specified, an exception is thrown. If you have a valid CFile object, you can read 
from it or write to it as shown in the following example: 

char szBuffer[256]; 
UINT nActual = 0; 

myFile.Write( szBuffer, sizeof( szBuffer ) ); 
myFile.Seek( 0, CFile::begin ); 
nActual = myFile.Read( szBuffer, sizeof( szBuffer ) ); 

~ To close a file 

• Use the Close member function. This function closes the file-system file and 
flushes buffers if necessary. 

If you allocated the CFile object on the frame (as in the examples above), the 
object will automatically be closed and then destroyed when it goes out of scope. 
Note that deleting the CFile object does not delete the physical file in the file 
system. 



Chapter 14 Files and Serialization 229 

~ To get file status 

• Use the CFile class to get and set infonnation about a file. One useful appli
cation is to use the CFile static member function GetStatus to detennine if a 
file exists. GetStatus will return 0 if the specified file does not exist. 

Thus, you could use the result of GetStatus to detennine whether to use the 
CFile::modeCreate flag when opening a file, as shown by the following 
example: 

CFile theFile; 
char* szFileName "c:\\test\\myfile.dat"; 
BOOl bOpenOK; 

CFileStatus status; 
if( CFile::GetStatus( szFileName, status) ) 
{ 

} 

else 
{ 

II Open the file without the Create flag 
bOpenOK = theFile.Open( szFileName, 

CFile::modeWrite ); 

II Open the file with the Create flag 
bOpenOK = theFile.Open( szFileName, 

CFile::modeCreate I CFile::modeWrite ); 

Serialization (Object Persistence) 
Serialization is the process of writing or reading an object to or from a persistent 
storage medium, such as a disk file. The Microsoft Foundation Class Library 
provides built-in support for serialization in the class CObject. Thus, all classes 
that are derived from CObject can take advantage of CObject's serialization 
protocol. 

The basic idea of serialization is that an object should be able to write its current 
state, usually indicated by the value of its member variables, to persistent storage. 
Later, the object can be re-created by reading, or deserializing, the object's state 
from the storage. Serialization handles all the details of object pointers and circular 
references to objects that are used when you serialize an object. A key point is that 
the object itself is responsible for reading and writing its own state. Thus, for a 
class to be serializable, it must implement the basic serialization operations. As you 
will see in the following sections, it is easy to add this functionality to a class. 

The Microsoft Foundation Class Library uses an object of the CArchive class as an 
intennediary between the object to be serialized and the storage medium. This 
object is always associated with a CFile object, from which it obtains the necessary 



230 Class Library User's Guide 

information for serialization, including the filename and whether the requested 
operation is a read or write. The object that performs a serialization operation can 
use the CArchive object without regard to the nature of the storage medium. 

A CArchive object uses overloaded insertion «<) and extraction (») operators to 
perform writing and reading operations. For more information, see "Storing and 
Loading CObjects via an Archive" on page 237. 

Note Do not confuse the CArchive class with general-purpose iostream classes, 
which are for formatted text only. The CArchive class is for binary format 
serialized objects. 

The following sections cover the two main tasks required for serialization: 

• Making a serializable class. 

• Serializing an object to and from a file object. 

Making a Serializable Class 
There are five main steps required to make a class serializable. They are listed 
below and explained in the following sections: 

1. Derive your class from CObject (or from some class derived from CObject). 

2. Use the DECLARE SERIAL macro in the class declaration. 

3. Override the Serialize member function. 

4. Define a constructor that takes no arguments. 

5. Use the IMPLEMENT_SERIAL macro in the implementation file for your 
class. 

If you call Serialize directly rather than through the» and «operators of 
CArchive, the last three steps are not required for serialization. 

Deriving Your Class from CObject and 
Using the DECLARE_SERIAL Macro 
The basic serialization protocol and functionality are defined in the CObject class. 
By deriving your class from CObject (or from a class derived from CObject), as 
shown in the following example code, you gain access to the serialization protocol 
and functionality of CObject. 



Chapter 14 Files and Serialization 231 

The DECLARE_SERIAL macro is required in the declaration of classes that will 
support serialization, as shown here: 

class CPerson : public CObject 
{ 

DECLARE_SERIAL( CPerson ) 
II rest of declaration follows ... 

} ; 

Overriding the Serialize Member Function 
The Serialize member function, which is defined in the CObject class, is 
responsible for actually serializing the data necessary to capture an object's current 
state. The Serialize function has a CArchive argument that it uses to read and 
write the object data. The CArchive object has a member function, IsStoring, 
which indicates whether Serialize is storing (writing data) or loading (reading 
data). Using the results of IsStoring as a guide, you either insert your object's data 
in the CArchive object with the insertion operator «<) or extract data with the 
extraction operator (»). 

Consider a class that is derived from CObject and has two new member variables, 
a CString and a WORD. The following class declaration fragment shows the new 
member variables and the declaration for the overridden Serialize member 
function: 

class CPerson public CObject 
{ 

public: 

} ; 

DECLARE_SERIAL( CPerson, ) 
II empty constructor is necessary 
CPerson ( ) {}; 

CString m_name; 
WORD m_number; 

void Serialize( CArchive& archive ); 

II rest of class declaration 

~ To override the Serialize member function 

1. Call your base class version of Serialize to make sure that the inherited portion 
of the object is serialized. 



232 Class Library User's Guide 

2. Insert or extract the member variables that are specific to your class. 

The insertion and extraction operators interact with the archive class to read and 
write the data. The following example shows how to implement Serialize for the 
C Per son class declared above: 

void CPerson::Serialize( CArchive& archive 
{ 

II call base class function first 
II base class is CObject in this case 
CObject::Serialize( archive ); 

II now do the stuff for our specific class 
if( archive.lsStoring() ) 

archive « m_name « m_number; 
else 

archive » m_name » m_number; 

You can also use the CArchive::Read and CArchive::Write member functions to 
read and write large amounts of untyped data. 

Defining a Constructor with No Arguments 
A default constructor is required by the Microsoft Foundation Class Library when it 
re-creates your objects as they are deserialized (loaded from disk.) The deserial
ization process will fill in all member variables with the values required to re-create 
the object. 

This constructor can be declared public, protected, or private. If you make it 
protected or private, you ensure that it will only be used by the serialization 
functions. The constructor must put the object in a state that allows it to be safely 
deleted if necessary. 

Note If you forget to define a constructor with no arguments in a class that uses the 
DECLARE_SERIAL and IMPLEMENT _SERIAL macros, you will get a "no 
default constructor available" compiler warning on the line where the 
IMPLEMENT SERIAL macro is used. 

Using the IMPLEMENT_SERIAL Macro in the 
Implementation File 
The IMPLEMENT SERIAL macro is used to define the various functions needed 
when you derive a serializable class from CObject. You use this macro in the 
implementation file (.CPP) for your class. The first two arguments to the macro are 
the name of the class and the name of its immediate base class. 



Chapter 14 Files and Serialization 233 

The third argument to this macro is a schema number. The schema number is 
essentially a version number for objects of the class. Use an integer greater than or 
equal to 0 for the schema number. 

The Microsoft Foundation Class Library serialization code checks the schema 
number when reading objects into memory. If the schema number of the object on 
disk does not match the schema number of the class in memory, then the library will 
throw a CArchiveException, preventing your program from reading an incorrect 
version of the object. 

The following example shows how to use IMPLEMENT_SERIAL for a class, 
CPerson, that is derived from CObject: 

IMPLEMENT_SERIAL( CPerson. CObject. 1 ) 

Serializing an Object 
The previous sections showed how to make a class serializable. Once you have a 
serializable class, you can serialize objects of that class to and from a file via a 
CArchive object. This section first describes a CArchive object. It then describes 
the two ways to create it: (1) let the framework create it for your serializable 
document or (2) explicitly create the CArchive object yourself. Finally, the section 
describes how to transfer data between a file and your serializable object by using 
the« and» operators for CArchive or, in some cases, by calling the 
Se ri ali ze function of a CObject-derived class. 

What Is a CArchive Object? 
A CArchive object provides a type-safe buffering mechanism for writing or 
reading serializable objects to or from a CFile object. Usually the CFile object 
represents a disk file; however, it can be also be a memory file (CMemFile object), 
perhaps representing the Clipboard. 

A given CArchive object either stores (writes, serializes) data or loads (reads, 
deserializes) data, but never both. The life of a CArchive object is limited to one 
pass through writing objects to a file or reading objects from a file. Thus, two 
successively created CArchive objects are required to serialize data to a file and 
then deserialize it back from the file. 

When an archive stores objects to a file, the archive attaches the CRuntimeClass 
name to the objects. Then, when another archive loads objects from a file to 
memory, the CObject-derived objects are dynamically reconstructed based on the 
CRuntimeClass of the objects. A given object may be referenced more than once 
as it is written to the file by the storing archive. The loading archive, however, will 
reconstruct the object only once. The details about how an archive attaches 
CRuntimeClass information to objects and reconstructs objects, taking into 



234 Class Library User's Guide 

account possible multiple references, is described in Technical Note 2, which can 
be found in \MSVC\HELP\MFCNOTES.HLP. 

As data is serialized to an archive, the archive accumulates the data until its buffer 
is full. Then the archive writes its buffer to the CFile object pointed to by the 
CArchive object. Similarly, as you read data from an archive, it reads data from 
the file to its buffer and then from the buffer to your deserialized object. This 
buffering reduces the number of times a hard disk is physically read, thus improving 
your application's performance. 

Two Ways to Create a CArchive Object 
There are two ways to create a CArchive object. The most common, and the easiest 
way is to let the framework create one for your document on behalf of the Save, 
Save As, and Open commands on the File menu. For example, here is what the 
framework does when the user of your application issues the Save As command 
from the File menu: 

1. The framework presents the File Save As dialog box and gets the filename from 
the user. 

2. The framework opens the file named by the user as a CFile object. 

3. The framework creates a CArchive object that points to this CFile object. In 
creating the CArchive object, the framework sets the mode to "store" (write, 
serialize), as opposed to "load" (read, deserialize). 

4. The framework calls the S e ria 1 i z e function defined in your CDocument
derived class, passing it a reference to the CArchive object. 

5. Your document's Seri ali ze function writes data to the CArchive object, as 
explained shortly. 

6. Upon return from your S e ria 1 i z e function, the framework destroys the 
CArchive object and then the CFile object. 

Thus, if you let the framework create the CArchive object for your document, all 
you have to do is implement the document's Seri ali ze function that writes and 
reads to and from the archive. You also have to implement S e ria 1 i z e for any 
CObject-derived objects that the document's Se ri ali ze function in tum 
serializes directly or indirectly. 

Besides serializing a document via the framework, there are other occasions when 
you may need a CArchive object. For example, you might want to serialize data to 
and from the Clipboard, represented by a CMemFile object. Or, you may want to 
use a user interface for saving a file that is different from the one offered by the 
framework. In this case, you can explicitly create a CArchive object. You do this 
the same way the framework does, using the following. 



Chapter 14 Files and Serialization 235 

~ To explicitly create a CArchive object 

1. Construct a CFile object or an object derived from CFile. 

2. Pass the CFile object to the constructor for CArchive, as shown in the 
following example: 

CFile theFile; 
theFile.Open( ... , CFile: :modeWrite); 
CArchive archive(&theFile, CArchive::store); 

The second argument to the CArchive constructor is an enumerated value that 
specifies whether the archive will be used for storing or loading data to or from 
the file. The S e ria 1 i z e function of an object checks this state by calling the 
IsStoring function for the archive object. 

When you are finished storing or loading data to or from the CArchive object, 
close it. Although the CArchive (and CFile) objects will automatically close the 
archive (and file), it is good practice to explicitly do so since it makes recovery 
from errors easier. For more information, see "Catching Exceptions" in Chapter 16. 

~ To close the CArchive object 

• The following example illustrates how to close the CArchive object: 

archive.Close(); 
theFile.Close(); 

Using the CArchive « and » Operators 
CArchive provides « and » operators for writing and reading simple data types 
as well as CObjects to and from a file. 

~ To store an object in a file via an archive 

• The following example shows how to store an object in a file via an archive: 

CArchive ar(&theFile, CArchive::store); 
WORD wEmployeeID; 

ar « wEmployeeID; 

~ To load an object from a value previously stored in a file 

• The following example shows how to load an object from a value previously 
stored in a file: 

CArchive ar(&theFile, CArchive::load); 
WORD wEmployeeID 

ar » wEmployeeID; 



236 Class Library User's Guide 

Usually, the places where you store and load data to and from a file via an archive 
are in the S e ria 1 i z e functions of CObject-derived classes, which you must have 
declared with the DECLARE SERIALIZE macro. A reference to a CArchive 
object is passed to your S e ria 1 i z e function. You call the IsLoading function of 
the CArchive object to determine whether the S e ria 1 i z e function has been 
called to load data from the file or store data to the file. 

The S e ria 1 i z e function of a serializable CObject-derived class typically has the 
following form: 

void CPerson: :Serialize(CArchive& ar) 
{ 

CObject::Serialize(ar); 

} 

if (ar.lsStoring()) 
{ 

II TODO: add storing code here 

else 

II TODO: add loading code here 

The above code template is exactly the same as the one that App Wizard creates for 
the Seri ali ze function of the document (a class derived from CDocument). This 
code template helps you write code that is easier to review, because the storing code 
and the loading code should always be parallel, as in the following example: 

void CPerson:Serialize(CArchive& ar) 
{ 

} 

if (ar.lsStoring()) 
{ 

ar « m_strName; 
ar « m_wAge 

else 
{ 

} 

ar » m_strName; 
ar » m_wAge; 



Chapter 14 Files and Serialization 237 

The library defines «and» operators for CArchive as the first operand and the 
following data types and class types as the second operand: 

CObject* (see discussion following) 

WORD 

DWORD 

double 

SIZE and CSize 

CString 

BYTE 

LONG 

float 

POINT and CPoint 

RECT and CRect 

CTime and CTimeSpan 

The CArchive « and » operators always return a reference to the CArchive 
object, which is the first operand. This enables you to chain the operators, as 
illustrated below: 

BYTE bSomeByte; 
WORD wSomeWord; 
DWORD wSomeDoubleWord; 

ar « bSomeByte « wSomeWord « wSomeDoubleWord; 

Storing and Loading CObjects via an Archive 
Storing and loading CObjects via an archive requires extra consideration. In 
certain cases, you should call the S e ria 1 i z e function of the object, where the 
CArchive object is a parameter of the S e ria 1 i z e call, as opposed to using the 
« or » operator of the CArchive. The important fact to keep in mind is that 
the CArchive» operator constructs the CObject in memory based on 
CRuntimeClass information previously written to the file by the storing archive. 

Therefore, whether you use the CArchive« and» operators, versus call 
S e ria 1 i z e, depends on whether you need the loading archive to dynamically 
reconstruct the object based on previously stored CRuntimeClass information. Use 
the S e ria 1 i z e function in the following cases: 

1. When deserializing the object, you know the exact class of the object 
beforehand. 

2. When de serializing the object, you already have memory allocated for it. 

Note If you load the object using the S e ria 1 i z e function, then you must also 
store the object using the S e ria 1 i z e function. Don't store using the CArchive < < 
operator and then load using the S e ria 1 i z e function, or store using the 
Seri ali ze function and then load using CArchive» operator. 



238 Class Library User's Guide 

The following example illustrates the cases: 

class CMyObject : public CObject 
{ 

II ... Member functions 
CMyObject(); 
virtual void Serialize( CArchive& ar ); 

II Implementation 
protected: 

DECLARE_SERIAL( CMyObject ) 
} ; 

class COtherObject : public CObject 

II ... Member functions 
COtherObject(); 
virtual void Serialize( CArchive& ar ); 

II Implementation 
protected: 

DECLARE_SERIAL( COtherObject ) 
} ; 

class CCompoundObject : public CObject 

II ... Member functions 
CCompoundObject(); 
virtual void Serialize( CArchive& ar ); 

II Implementation 
protected: 

} ; 

CMyObject m_myob; II Embedded object 
COtherObject* m_pOther; II Object allocated in constructor 
CObject* m_pObDyn; II Dynamically allocated object 
11 .. Other member data and implementation 

DECLARE_SERIAL( CCompoundObject ) 

CCompoundObject::CCompoundObject() 
{ 

m_pOther new COtherObject; II Exact type known and object already 
lIallocated. 

m_pObDyn NULL; II Will be allocated in another member function 
II if needed, could be a derived class object. 



Chapter 14 Files and Serialization 239 

void CCompundObject::Serialize( CArchive& ar ) 
{ 

CObject::Serialize( ar); II Always call base class Serialize. 
m_myob.Serialize( ar ); II Call Serialize on embedded member. 
m_pOther->Serialize( ar); II Call Serialize on objects of known 

exact type. 

II Serialize dynamic members and other raw data 
if ( ar.IsStoring() ) 
{ 

else 
{ 

} 

ar « m_pObDyn; 
II Store other members 

ar » m_pObDyn; II Polymorphic reconstruction of persistent 
II object 
Ilload other members 

In summary, if your serializable class defines an embedded CObject as a member, 
then you should not use the CArchive« and» operators for that object, but 
should call the S e ria 1 i z e function instead. Also, if your serializable class defines 
a pointer to a CObject as a member, but constructs this other object in its own 
constructor, then you should also call S e ria 1 i z e. 





241 

CHAPTER 15 

Diagnostics 

The Microsoft Foundation Class Library contains many diagnostic features to help 
debug your program during development. These features, especially those that track 
memory allocations, will slow down your program. Others, such as assertion 
testing, will cause your program to halt when erroneous conditions are encountered. 

In a commercial retail product, slow performance and program interruption are 
clearly unacceptable. For this reason, the Microsoft Foundation Class Library 
provides a method for turning the debugging and diagnostic features on or off. 
When you are developing your program, you typically build a debug version of 
your program and link with the Debug version of the Microsoft Foundation Class 
Library. Once the program is completed and debugged, you build a release version 
and link with the Release version of the Microsoft Foundation library. 

Debugging Features 
The following features are included for all classes derived from CObject in the 
Debug version of the Microsoft Foundation Class Library: 

• Dump member function to dump object contents to debugging output 

• Trace output to print or display debugging output to evaluate argument validity 

• Assertions and Assert Valid member function 

• Memory diagnostics to detect memory leaks 

• DEBUG_NEW macro to show where objects were allocated 

~ To enable the debugging features 

1. Compile with the symbol_DEBUG defined. This is typically done by passing 
the ID _DEBUG flag on the compiler command line. To accomplish this in 
Visual C++, set the Debug option in the Project Options dialog box, which 
happens automatically when you tum on the Use Microsoft Foundation Class 
check box. When you define the _DEBUG symbol, sections of code delimited 
by #ifdef _DEBUG I #endif are compiled. 



242 Class Library User's Guide 

2. Link with the Debug versions of the Microsoft Foundation Class Library. 
Setting the Debug option in Visual C++ ensures linking with the Debug 
libraries. The Debug versions of the library have a "D" at the end of the library 
name. For example, the medium-model Debug version of the Microsoft 
Foundation Class Library for Windows is named MAFXCWD.LIB, and the 
Release version (non-debug) is named MAFXCW.LIB. 

Dumping Object Contents 
When deriving a class from CObject, you have the option to override the Dump 
member function and write a textual representation of the object's member var
iables to a dump context, which is similar to an I/O stream. Like an I/O stream, you 
can use the insertion «<) operator to send data to a CDumpContext. 

You do not have to override Dump when you derive a class from CObject. 
However, if you use other diagnostic features for debugging, providing the capa
bility for dumping an object and viewing its contents is very helpful and highly 
recommended. 

~ To override the Dump member function 

1. Call the base class version of Dump to dump the contents of a base class object. 

2. Write a textual description and value for each member variable of your derived 
class. 

The declaration of the Dump function in the class declaration looks like: 

class CPerson : public CObject 
{ 

public: 
/Fifdef _DEBUG 

virtual void Dump( CDumpContext& dc ) const; 
/Fend if 

} ; 

CString m_firstName; 
CString m_lastName; 
II etc. 

Note Since object dumping only makes sense when you are debugging your 
program, the declaration of the Dum p function is bracketed with an #ifdef 

DEBUG / #endif block. 

In the following example from an implementation file for the class C Per son, the 
Dump function's first statement calls the Dump member function for its base class. 



Chapter 15 Diagnostics 243 

It then writes a short description of each member variable along with the member's 
value to the diagnostic stream. 

41ifdef _DEBUG 
void CPerson::Dump( CDumpContext& dc ) const 
{ 

II call base class function first 
CObject::Dump( dc ); 

II now do the stuff for our specific class 
dc «"last name: " « m_lastName « "\n" 

« "first name: " « m firstName 

4foendif 

Note Again, notice that the definition of the Dump function is bracketed by #ifdef 
_DEBUG / #endif directives. If you refer to afxDump in a program linked with the 
nondebug libraries, you will get unresolved externals errors at link time. 

~ To send Dump output to afxDump 

• You must supply a CDumpContext argument to specify where the dump output 
will go when you call the Dump function for an object. The Microsoft Foundation 
Class Library supplies a predefined CDumpContext object named afxDump 
that you will normally use for routine object dumping. The following example 
shows how to use afxDump: 

CPerson pMyPerson = new CPerson; 
II set some fields of the CPerson object ... 
II .. 
II now dump the contents 
41ifdef _DEBUG 
pMyPerson->DumpC afxDump ); 
4foendif 

In Windows, afxDump output is sent to the debugger, if present. In MS-DOS, 
afxDump output is sent to stderr. 

Note afxDump is defined only in the Debug version of the Microsoft 
Foundation Class Library. 

The TRACE Macro 
The TRACE macro can be used during development to print or display debugging 
messages from a program. TRACE prints a string argument to the current 
diagnostic output device. For programs with character-based output in MS-DOS, 



244 Class Library User's Guide 

the TRACE output will go to stderr. For Windows programs, the TRACE output 
will be directed to your debugger (or to the AUX port, which can be captured using 
DBWIN.EXE, found in \MSVC\BIN). 

The TRACE macro can handle a variable number of arguments, similar to the way 
printf operates. Following are examples of different ways to use TRACE macros: 

int x = 1; 
int y = 16; 
float z = 32.0; 
TRACE( "This is a TRACE statement\n" ); 

TRACE( "The value of x is %d\n", x ); 

TRACE( "x = %d and y = %d\n", x, y ); 

TRACE( "x = %d and y = %x and z = %f\n", x, y, z ); 

The TRACE macro is active only in the Debug version of the library. After a 
program has been debugged, you can build a Release version to deactivate all 
TRACE calls in the program. For important information on the TRACE macro, 
see "Globals and Macros" in the Class Library Reference and Technical Note 7 in 
\MSVC\HELP\MFCNOTES.HLP. 

The ASSERT Macro 
The most typical use of the ASSERT macro is to identify program errors used 
during development. The argument given to ASSERT should be chosen so that it 
holds true only if the program is operating as intended. The macro evaluates the 
argument; and if the argument expression is false (0), prints a diagnostic message 
and halts program execution. No action is taken if the argument is true (nonzero). 

In MS-DOS, the diagnostic message is sent to afxDump and has the form: 

assertion failed in file <name> in line <num> 

where <name> is the name of the source file and <num> is the line number of the 
assertion that failed. In Windows, the following message box appears: 

assertion failed in file <name> in line <num> 
Abort Retry Ignore 

If you choose Abort, program execution terminates. If you choose Retry, the 
debugger is activated. If you choose Ignore, program execution continues. 

The following example shows how the ASSERT macro could be used to check the 
validity of a function's return value: 



Chapter 15 Diagnostics 245 

int x = SomeFunc(y); 
ASSERT(x == 0); II Assertion fails if x not equal to 0 

ASSERT can also be used in combination with the IsKindOf function to provide 
extra checking for function arguments, such as in the following example. (For a 
discussion of the IsKind Of function, see" Accessing Run-Time Class Information" 
on page 214). 

ASSERT( pObjectl->IsKindOf( RUNTIME_CLASS( CPerson ) ) ); 

The liberal use of assertions throughout your programs can catch errors during 
development. A good rule of thumb is that you should write assertions for any 
assumptions you make. For example, if you assume that an argument is not NULL, 
then you should use an assertion statement to check for that condition. 

The ASSERT macro will catch errors only when you are using the Debug version 
of the Microsoft Foundation Class Library during development. It will be turned off 
(produce no code) when you build your program with the Release version of the 
library. 

Note The expression argument to ASSERT will not be evaluated in the release 
version of your program. If you want the expression to be evaluated in both debug 
and release environments, use the VERIFY macro instead of ASSERT. In debug 
versions, VERIFY simply passes its expression argument to ASSERT. In release 
environments, VERIFY evaluates the expression argument but does not check the 
result. 

The ASSERT VALID Macro 
Use the ASSERT_VALID macro to perform a run-time check of an object's 
internal consistency. The class of that object should override the AssertValid 
function of CObject as described in the next section. The ASSERT_VALID 
macro is a more robust way of accomplishing: 

pObject-)AssertValid(); 

Like the ASSERT macro, ASSERT_VALID is turned on in the debug version of 
your program, but turned off in the release version. 

Overriding the AssertValid Function 
The AssertValid member function is provided in CObject to allow run-time 
checks of an object's internal state. AssertValid typically performs assertions on 
all the object's member variables to see if they contain valid values. For example, 
AssertValid can check that all pointer member variables are not NULL. If the 
object is invalid, Assert Valid halts the program. 



246 Class library User's Guide 

Although you are not required to override AssertValid when you derive your class 
from CObject, you can make your class safer and more reliable by doing so. The 
following example shows how to declare the Assert Valid function in the class 
declaration: 

class CPerson public CObject 
{ 

protected: 
CString m_strName; 
float m_Salary; 

public: 
virtual void AssertValid() const 

II ... 
} ; 

I I Overri de 

When you override AssertVal i d, first call AssertValid for the base class. Then 
use the ASSERT macro to check the validity of the members that are unique to 
your derived class, as shown by the following example: 

void CPerson::AssertValid() 
{ 

II call inherited AssertValid first 
CObject::AssertValid() 

II check CPerson members ... 
ASSERT( !m_strName.lsEmpty()); \\Must have a name. 
ASSERT( m_Salary ! 0 ); \\Must have an income 

If any of the member variables of your class store objects, you can use the 
ASSERT _ V ALID macro to test their internal validity (if their classes override 
AssertValid). The following example shows how this is done. 

Consider a class CDataBase, which stores a CObList in one of its member 
variables. The CObList variable, m_Data List, stores a collection of CPerson 
objects. An abbreviated declaration of CD a taB as e looks like this: 

class CDataBase : public CObject 

} ; 

II Constructor and other members 
protected: 

CObList * m_DataList; 
II Other declarations ... 
public: 

virtual void AssertValid( ) const; II Override 
I I Etc. . .. 



Chapter 15 Diagnostics 247 

The AssertValid override in CDataBase looks like this: 

void CDataBase: :AssertValid( ) 
{ 

II Call inherited AssertValid 
CObject::AssertValid( ); 
II Check validity of CDataBase members 
ASSERT_VALID( m_pDataList ); 
II ... 

CD a taB as e uses the Assert Valid mechanism to add validity tests for the objects 
stored in its data member to the validity test of the CD a taB a s e object itself. The 
overriding Assert Valid of CD a taB a s e invokes the ASSERT _ V ALID macro for its 
own m _pDataList member variable. 

The chain of validity testing might stop at this level, but in this case class CObList 
overrides AssertValid too, and the ASSERT_VALID macro causes it to be called. 
This override performs additional validity testing on the internal state of the list. If 
an assertion failure occurs, diagnostic messages are printed, and the program halts. 

Thus a validity test on a CD a taB as e object leads to additional validity tests for the 
internal states of the stored CObList list object. With a little more work, the 
validity tests could include the C Per son objects stored in the list as well. You 
could derive a class CPerson List from CObList and override AssertValid. In 
the override, you would call CObject::AssertValid and then iterate through the 
list, calling Ass e r t Val i d on each C Per son object stored in the list. C Per son 
already overrides Assert Valid. 

This is a powerful mechanism when you build for debugging, and when you 
subsequently build for release, the mechanism is turned off automatically. 

Users of an As s e rt Val i d function of a given class should be aware of the 
limitations of this function. A triggered assertion indicates that the object is 
definitely bad and execution will halt. However, a lack of assertion only indicates 
that no problem was found, but the object isn't guaranteed to be good. 

Detecting Memory Leaks 
A memory leak occurs when you allocate memory on the heap and never deallocate 
that memory to make it available for reuse, or if you mistakenly use memory that 
has already been allocated. This is a particular problem for programs that are 
intended to run for extended periods. In a long-lived program, even a small 
incremental memory leak can compound itself; eventually all available memory 
resources are exhausted and the program crashes. Traditionally, memory leaks have 
been very hard to detect. 



248 Class Library User's Guide 

The Microsoft Foundation Class Library provides classes and functions that you 
can use to detect memory leaks during development. Basically, these functions take 
a snapshot of all memory blocks before and after a particular set of operations. You 
can use these results to determine if all memory blocks allocated during the 
operation have been deallocated. 

The size of the operation that you choose to bracket with these diagnostic functions 
is arbitrary. It can be as small as a single program statement, or it can span the 
entry and exit from the entire program. Either way, these functions will allow you 
to detect memory leaks and identify which memory blocks have not been 
deallocated properly. 

Memory Diagnostics 
~ To enable or disable memory diagnostics 

• Call the global function AfxEnableMemoryTracking to enable or disable the 
diagnostic memory allocator. Since memory diagnostics are on by default in the 
Debug library, you will typically use this function to temporarily tum them off, 
which increases program execution speed and reduces diagnostic output. 

~ To select specific memory diagnostic features with afxMemDF 

• If you want more precise control over the memory diagnostic features, you can 
selectively tum individual memory diagnostic features on and off by setting the 
value of the Microsoft Foundation Class Library global variable afxMemDF. 
This variable can have the following values as specified by the enumerated type 
AfxMemDF: 

Value 

allocMemDF 

delayFreeMemDF 

checkAlwaysMemDF 

Meaning 

Tum on debugging allocator (default). 

Delay freeing memory when calling delete or free. 
This will cause maximum memory stress for your 
program. 

Call AfxCheckMemory every time memory is 
allocated or freed. 

These values can be used in combination by performing a logical-OR operation, 
as shown here: 

afxMemDF 1= delayFreeMemDF 1 checkAlwaysMemDF; 



Chapter 15 Diagnostics 249 

Detecting a Memory Leak 
The following instructions and examples show you how to detect a memory leak. 

~ To detect a memory leak 

1. Create a CMemoryState object and call the Checkpoint member function to 
get the initial snapshot of memory. 

2. After you perform the memory allocation and deallocation operations, create 
another CMemoryState object and call Checkpoint for that object to get a 
current snapshot of memory usage. 

3. Create a third CMemoryState object, call the Difference member function, 
and supply the previous two CMemoryState objects as arguments. The return 
value for the Difference function will be nonzero if there is any difference 
between the two specified memory states, indicating that some memory blocks 
have not been deallocated. 

The following example shows how to check for memory leaks: 

II Declare the variables needed 
#ifdef _DEBUG 

CMemoryState oldMemState, newMemState, diffMemState; 
#endif 

#ifdef _DEBUG 
oldMemState.Checkpoint(); 

#endif 

II do your memory allocations and deallocations ... 
CString s = "This is a frame variable"; 
II the next object is a heap object 
CPerson* p = new CPerson( "Smith", "Alan", "581-0215" ); 

#ifdef _DEBUG 
newMemState.Checkpoint(); 
if( diffMemState.Difference( oldMemState, newMemState ) ) 
{ 

T RA C E ( "M e m 0 r y 1 e a ked ! \ n " ); 

1fendif 

Notice that the memory-checking statements are bracketed by 
#ifdef _DEBUG / #endif blocks so that they are only compiled in debug 
versions of your program. 



250 Class Library User's Guide 

Dumping Memory Statistics 
The CMemoryState member function Difference determines the difference 
between two memory-state objects. It detects any objects that were not deallocated 
from the heap between the beginning and end memory-state snapshots. 

~ To dump memory statistics 

• The following example (continuing the example from the previous section) 
shows how to call DumpStatistics to get information about the objects that 
have not been deallocated: 

if( diffMemState.Difference( oldMemState, newMemState ) ) 
{ 

} 

TRACE( "Memory leaked !\n" ); 
diffMemState.DumpStatistics(); 

A sample dump from the example above is shown here: 

o bytes in 0 Free Blocks 
22 bytes in 1 Object Blocks 
45 bytes in 4 Non-Object Blocks 
Largest number used: 67 bytes 
Total allocations: 67 bytes 

• The first line describes the number of blocks whose deallocation was delayed 
if afxMemDF was set to delayFreeMemDF. For a description of 
afxMemDF, see the procedure "To select specific memory diagnostic 
features with afxMemDF" on page 248. 

• The second line describes how many objects remain allocated on the heap. 

• The third line describes how many nonobject blocks (arrays or structures 
allocated with new) were allocated on the heap and not deallocated. 

• The fourth line gives the maximum memory used by your program at anyone 
time. 

• The last line lists the total amount of memory used by your program. 

Dumping All Objects 
DumpAllObjectsSince dumps out a description of all objects detected on the heap 
that have not been deallocated. As the name implies, DumpAllObjectsSince 
dumps all objects allocated since the last Checkpoint. However, if no Checkpoint 
has taken place, all objects and nonobjects currently in memory are dumped. 



Chapter 15 Diagnostics 251 

~ To dump all objects 

• Expanding on the previous example, the following code dumps all objects that 
have not been deallocated when a memory leak is detected: 

if( diffMemState.Difference( oldMemState, newMemState ) ) 
{ 

TRACE( "Memory leaked !\n" ); 
diffMemState.DumpAllObjectsSince(); 

A sample dump from the preceding example is shown here: 

Dumping objects -> 

{5} strcore.cpp(S0) non-object block at $00A7521A, 9 bytes long 
{4} strcore.cpp(S0) non-object block at $00A751FS, 5 bytes long 
{3} strcore.cpp(S0) non-object block at $00A751D6, 6 bytes long 
{2} a CPerson at $51A4 

Last Name: Smith 
First Name: Alan 
Phone #: 581-0215 

{1} strcore.cpp(80) : non-object block at $00A7516E, 25 bytes long 

The numbers in braces at the beginning of most lines specify the order in which 
the objects were allocated. The most recently allocated object is displayed first. 
You can use these ordering numbers to help identify allocated objects. 

Interpreting an Object Dump 
The preceding dump comes from the original memory checkpoint example in 
"Detecting a Memory Leak" on page 249. Remember that there were only two 
explicit allocations in that program-one on the frame and one on the heap: 

II do your memory allocations and deallocations 
CString s = "This is a frame variable"; 
II the next object is a heap object 
CPerson* p = new CPerson( "Smith", "Alan", "581-0215" ); 

Start with the C Per son object; its constructor takes three arguments that are 
pointers to char. The constructor uses these arguments to initialize CString 
member variables for the C Per son class. In the memory dump, you can see the 
CPerson object listed along with three nonobject blocks (3,4, and 5) that hold the 
characters for the CString member variables. These memory blocks will be deleted 
when the destructor for the C Per son object is invoked. 



252 Class Library User's Guide 

Block number 2 represents the C Per son object itself. After the C Per son address 
listing, the contents of the object are displayed. This is a result of 
DumpAIlObjectsSince calling the Dump member function for the CPerson object. 

You can guess that block number 1 is associated with the CString frame variable 
because of its sequence number and its size, which match the number of characters 
in the frame CString variable. The allocations associated with frame variables are 
automatically deallocated when the frame variable goes out of scope. 

In general, you shouldn't worry about heap objects associated with frame variables 
because they are automatically deallocated when the frame variables go out of 
scope. In fact, you should position your calls to Checkpoint so that they are outside 
the scope of frame variables to avoid clutter in your memory diagnostic dumps. For 
example, place scope brackets around the previous allocation code, as shown here: 

oldMemState.Checkpoint(); 
{ 

II do your memory allocations and deallocations 
CString s = "This is a frame variable"; 
II the next object is a heap object 
CPerson* p = new CPerson( "Smith", "Alan", "581-0215" ); 

newMemState.Checkpoint(); 

With the scope brackets in place, the memory dump for this example is as follows: 

Dumping objects -> 

{5} strcore.cpp(80) 
{4} strcore.cpp(80) 
{3} strcore.cpp(80) 
{2} a CPerson at $51A4 

Last Name: Smith 
First Name: Alan 
Phone #: 581-0215 

non-object 
non-object 
non-object 

block at $00A7521A, 9 bytes long 
block at $00A751F8, 5 bytes long 
block at $00A751D6, 6 bytes long 

Notice that some allocation are objects (such as CPerson) and some are non-object 
allocations. "Non-object allocations" are allocations for objects not derived from 
CObject or allocations of primitive C types such as char, int, or long. If the 
CObject-derived class allocates additional space, such as for internal buffers, those 
objects will show both object and non-object allocations 

Notice that the memory block associated with the CString frame variable has been 
deallocated automatically and does not show up as a memory leak. The automatic 
deallocation associated with scoping rules takes care of most memory leaks 
associated with frame variables. 



Chapter 15 Diagnostics 253 

For objects allocated on the heap, however, you must explicitly delete the object to 
prevent a memory leak. To clean up the last memory leak in the previous example, 
you can delete the C Per son object allocated on the heap, as follows: 

{ 

II do your memory allocations and deallocations 
CString s = "This is a frame variable"; 
II the next object is a heap object 
CPerson* p = new CPerson( "Smith", "Alan", "581-0215" ); 
delete p; 

Using DEBUG_NEW to Aid Debugging 
The Microsoft Foundation Class Library defines the macro DEBUG _NEW to 
assist you in locating memory leaks. You can use DEBUG _NEW everywhere in 
your program that you would ordinarily use the new operator. 

When you compile a Debug version of your program, DEBUG_NEW keeps track 
of the filename and line number for each object that it allocates. Then, when you 
call DumpAIlObjectsSince, as described in the previous section, each object 
allocated with DEBUG NEW will be shown with the file and line number where it 
was allocated, thus allowing you to pinpoint the sources of memory leaks. 

When you compile a Release version of your program, DEBUG_NEW resolves to 
a simple new operation without the filename and line number information. Thus, 
you pay no speed penalty in the Release version of your program. 

~ To use DEBUG NEW 

• Define a macro in your source files that replaces new with DEBUG _NEW, as 
shown here: 

#define new DEBUG_NEW 

You can then use new for all heap allocations. The preprocessor will substitute 
DEBUG_NEW when compiling your code. In the Debug version of the library, 
DEBUG_NEW will create debugging information for each heap block. In the 
Release version, DEBUG _NEW will resolve to a standard memory allocation 
without the extra debugging information. 

Note You must place the #deflne statement after all statements that call the 
IMPLEMENT_DYNCREATE or IMPLEMENT_SERIAL macros in your 
module, or you will get a compile-time error. 





CHAPTER 16 

Exceptions 

There are three categories of outcomes that can occur when a function is called 
during program execution: normal execution, erroneous execution, or abnormal 
execution. Each category is described below. 

• Normal execution 

255 

The function may execute normally and return. Some functions return. a result 
code to the caller, which indicates the outcome of the function. The possible 
result codes are strictly defined for the function and represent the range of 
possible outcomes of the function. The result code can indicate success or failure 
or can even indicate a particular type of failure that is within the normal range of 
expectations. For example, a file-status function can return a code that indicates 
that the file does not exist. Note that the term "error code" is not used since a 
result code represents one of many expected outcomes. 

• Erroneous execution 

The caller makes some mistake in passing arguments to the function or calls the 
function in an inappropriate context. This situation causes an error, and it should 
be detected by an assertion during program development. (For more information 
on assertions, see "The ASSERT Macro" on page 244.) 

• Abnormal execution 

Abnormal execution includes situations where conditions outside the program's 
control are influencing the outcome of the function, such as low memory or I/O 
errors. Abnormal situations should be handled by catching and throwing 
exceptions. 

Microsoft Foundation Classes Exception Handling 
The Microsoft Foundation Class Library uses an exception-handling scheme that is 
very similar to one proposed by the ANSI standards committee for C++ 2.1. You 
set up an exception handler before calling functions that you think might encounter 
abnormal situations. If your program does run into abnormal conditions, then it 



256 Class Library User's Guide 

throws an exception. When an exception is thrown, program execution jumps to the 
exception handler and execution resumes there. 

Exceptions are represented as objects derived from the abstract class CException. 
The Microsoft Foundation Class Library provides several predefined kinds of 
exceptions: 

Exception Class 

CMemoryException 

CFileException 

CArchiveException 

CNotSupportedException 

CResourceException 

COleException 

CUser Exception 

Meaning 

Out-of-memory 

File exception 

Archive/Serialization exception 

Response to request for unsupported service 

Windows resource allocation exception 

OLE exceptions 

Exception that alerts the user with a message box, 
then throws a generic CException 

Since many parts of the Microsoft Foundation Class Library, especially those 
dealing with files and serialization, use exceptions to report abnormal conditions, 
you will find it useful to use the Microsoft Foundation exception-handling 
mechanism in the parts of your program that call those types of Microsoft 
Foundation Class Library functions. For a description of each Microsoft Foundation 
Class Library function and the exceptions that can possibly be thrown by that 
function, see the Class Library Reference. If you see that a function can throw an 
exception, you should probably surround it with an exception handler. 

Catching Exceptions 
The following instructions and examples will show you how to catch exceptions. 

~ To catch exceptions 

• Use the TRY macro to set up a TRY block. Execute any program statements 
that might throw an exception within a TRY block. 

Use the CATCH macro to set up a CATCH block. Place exception handling 
code in a CATCH block. The code in the CATCH block is executed only if the 
code within the TRY block throws an exception of the type specified in the 
CATCH statement. 



Chapter 16 Exceptions 257 

The following skeleton shows how TRY and CATCH blocks are nonnally 
arranged: 

II Normal program statements 

TRY 
{ 

II Execute some code that might throw an exception. 

CATCH( CException, e ) 
{ 

II Handle the exception here. 
II "e" contains information about the exception 

END CATCH 

II Other normal program statements 

Note The END CATCH macro marks the end of the CATCH blocks. 

The CATCH macro takes an exception-type parameter, allowing you to 
selectively handle different types of exceptions with sequential CATCH and 
AND CATCH blocks as listed below: 

TRY 
{ 

II Execute some code that might throw an exception. 

CATCH( CMemoryException, e ) 
{ 

II Handle the out-of-memory exception here. 
} 

AND_CATCH( CFileException, e ) 
{ 

II Handle the file exceptions here. 
} 

AND_CATCH( CException, e ) 
{ 

II Handle all other types of exceptions here. 

END CATCH 



258 Class Library User's Guide 

Examining Exception Contents 
The CA TCH macro includes an argument that is used to hold a pointer 
to a CException object (or an object derived from CException, such as 
CMemoryException). Depending on the exact type of the exception, you can 
examine the data members of the exception object to gather information about the 
specific cause of the exception. 

For example, the CFileException type has the m _cause data member that contains 
an enumerated type that specifies the cause of the file exception. Some examples of 
the possible return values are CFileException::fileNotFound and 
CFileException: :readOnly. 

~ To examine exception contents 

• The following example shows how to examine the contents of a 
CFileException. Other exception types can be examined in a similar way. 

TRY 
{ 

II Do something to throw a file exception. 
} 

CATCH( CFileException, theException 
{ 

if( theException->m_cause == CFileException: :fileNotFound 
TRACE( "File not found\n" ); 

Freeing Objects in Exceptions 
The exception-handling mechanism of the Microsoft Foundation Class Library can 
interrupt normal program flow. Thus, it is very important to keep close track of 
objects that have been created on the heap so that you can properly dispose of them 
in case an exception is thrown. 

There are two primary methods to do this. 

• Handle exceptions locally using the TRY and CATCH macros, then destroy all 
objects with one statement. 

• Destroy any object in the CATCH block before the exception is thrown outside 
for further handling. 



Chapter 16 Exceptions 259 

These two approaches are illustrated below as solutions to the following 
problematic example: 

void SomeFunc() 
{ 

CPerson* myPerson = new CPerson; 

II Do something that might throw an exception. 
myPerson->SomeFunc(); 

II Now destroy the object before exiting. 
delete myPerson; 

As written above, my Per son will not be deleted if an exception is thrown by 
Some Fun c. Execution jumps directly to the innermost exception handler, bypassing 
the normal function exit and the code that deletes the object. The pointer to the 
object goes out of scope when the exception leaves the function, and the memory 
occupied by the object will never be recovered as long as the program is running. 
This is known as a memory leak and would be detected by using the memory 
diagnostics. 

Handle the Exception Locally 
The TRY ICA TCH paradigm provides a defensive programming method for 
avoiding memory leaks and ensuring that your objects are destroyed when 
exceptions occur. For example, the previous example could be rewritten as 
shown below: 

void SomeFunc() 
{ 

} 

CPerson* myPerson new CPerson; 

TRY 
{ 

II Do something that might throw an exception. 
myPerson->SomeFunc(); 

CATCH( CException, e ) 
{ 

II Handle the exception locally. 

END CATCH 

II Now destroy the object before exiting. 
delete myPerson; 



260 Class Library User's Guide 

This new example sets up an exception handler to catch the exception and handle it 
locally. It then exits the function normally and destroys the object. The important 
aspect of this example is that a context to catch the exception is established with the 
TRY ICATCH blocks. Without a local exception frame, the function would never 
know that an exception had been thrown and would not have the chance to exit 
normally and destroy the object. 

Throw Exceptions After Destroying Objects 
Another way to handle exceptions is to pass them on to the next outermost 
exception-handling context. In your CATCH block, you can do some cleanup of 
your locally allocated objects and then throw the exception on for further 
processing. The following example shows how this can be done: 

void SomeFunc() 
{ 

CPerson* myPerson new CPerson; 

TRY 
{ 

} 

II Do something that might throw an exception. 
myPerson->SomeFunc(); 

CATCH( CException, e ) 
{ 

II Destroy the object before passing exception on. 
delete myPerson; 
II Throw the exception to the next handler. 
THROW_LAST( ); 

END CATCH 

liOn normal exits, destroy the object. 
delete myPerson; 

If you call functions that can throw exceptions, you can use TRY ICA TCH blocks 
to make sure that you catch the exceptions and have a chance to destroy any objects 
you have created. In particular, be aware that many Microsoft Foundation Class 
Library functions can throw exceptions. 



Chapter 16 Exceptions 261 

Throwing Exceptions from Your Own Functions 
It is possible to use the Microsoft Foundation Class Library exception-handling 
paradigm solely to catch exceptions thrown by functions in the Microsoft 
Foundation Class Library or other libraries. In addition to catching exceptions 
thrown by library code, you can throw exceptions from your own code if you are 
writing functions that can encounter exceptional conditions. 

~ To throw an exception 

• Use one of the Microsoft Foundation Class Library helper functions, such as 
AfxThrowMemoryException, listed in AFX.H. These functions throw a 
preallocated exception object of the appropriate type. 

When an exception is thrown, execution of the current function is aborted and 
jumps directly to the CATCH block of the innermost exception frame. The 
exception mechanism bypasses the normal exit path from a function. Therefore, 
you must be sure to delete those memory blocks that would be deleted in a 
normal exit. In the following example, a function tries to allocate two memory 
blocks and throws an exception if either allocation fails: 

char* pI = malloc( SIZE_FIRST ); 
if( pI == NULL) 

AfxThrowMemoryException(); 
char* p2 = malloc( SIZE_SECOND ); 
if( p2 == NULL) 
{ 

free ( pI ); 
AfxThrowMemoryException(); 

I I ... Do somethi ng with all ocated blocks '" 

II In normal exit, both blocks are deleted. 
free( pI ); 
free( p2 ); 

If the first allocation fails, you can simply throw the memory exception. If the 
first allocation is successful but the second one fails, you must free the first 
allocation block before throwing the exception. If both allocations succeed, then 
you can proceed normally and free the blocks when exiting the function. 



262 Class Library User's Guide 

Exceptions in Constructors 
When throwing an exception in a constructor, clean up whatever objects and 
memory allocations you have made prior to throwing the exception, as explained in 
the previous section. 

Throwing an exception in a constructor is tricky, however, because the memory for 
the object itself has already been allocated by the time the constructor is called. 
There is no simple way to deallocate the memory occupied by the object from 
within the constructor for that object. Thus, you will find that throwing an exception 
in a constructor will result in the object remaining allocated. For a discussion of 
how to detect objects in your program that have not been deallocated, see 
"Detecting Memory Leaks" on page 247. 

If you are performing operations in your constructor that can fail, it might be a 
better idea to put those operations into a separate initialization function rather than 
throwing an exception in the constructor. That way, you can safely construct the 
object and get a valid pointer to it. Then, you can call the initialization function for 
the object. If the initialization function fails, you can delete the object directly. 

Frame Variables and Exceptions 
Explicitly allocated heap objects must also be deallocated before an exception is 
thrown. With frame objects, the frame memory will be reclaimed automatically by 
the exception mechanism. Although the memory occupied by the frame object is 
reclaimed, the destructor for the frame object is not executed by the exception 
mechanism. 

For most objects, the reclamation of frame space is sufficient to clean up the object. 
But, for objects that allocate memory in addition to the frame space they occupy, 
such as CString objects, the default exception handling is not sufficient to 
completely deallocate the object. In addition, objects whose destructors are an 
integral part of their operations need special handling during exceptions. 

When a CString object is allocated on the frame, its constructor also allocates 
memory on the heap to hold the characters of the string. Thus, a CString occupies 
space on the frame and also on the heap. When a CString frame variable is 
destroyed normally, its destructor takes care of deallocating the heap space used 
by the object. When the normal destruction of the CString is bypassed by an 
exception, this heap space is not deallocated, even though the frame space occupied 
by the CString is reclaimed. 



Chapter 16 Exceptions 263 

~ To avoid a CString memory leak 

• Call the Empty function for any CString frame variables when handling an 
exception. The following example shows how to do this: 

{ 

CString sl = "This is a test"; 

TRY 
{ 

char* pI = new char[ A_BIG_BLOCK ]; 

CATCH( CMemoryException,e ) 
{ 

II Deallocate heap space used by string. 
s 1 . Empty ( ) ; 

II Now you can safely throw the exception. 
THROW_LAST( ); 

END CATCH 

The need to explicitly deallocate heap resources for a frame-based object is not 
limited to CString objects. Since the destructors for frame objects are not 
automatically executed when an exception interrupts normal program flow, any 
frame-based object where the destructor performs significant tasks will need special 
attention during exception handling. 





CHAPTER 17 

Programming with VBX Controls 

A wide variety of custom controls have been developed for the Visual Basic 
programming environment. You can use these controls within Visual c++ to 
improve the visual appeal and functionality of your programs. 

265 

Custom controls are also available from other independent software vendors. Since 
these controls can be used in programming systems other than Visual Basic, they 
are referred to generically as "VBX" controls. 

With Visual C++, you can: 

• Install VBX controls into App Studio and make them part of App Studio's 
environment. 

• Use Class Wizard to define message maps for VBX controls, create member 
variables, establish dynamic data exchange (DDX), and initialize control 
properties. 

• Use property sheets to set various VBX control properties interactively. 

• Use the member functions of class CVBControl to create and manipulate VBX 
controls within your programs. 

Additional Background 
VBX controls are stored in a standard file format, usually with an extension of 
"VBX." VBX files are actually Windows DLLs that can be created with Visual 
C++. More than one custom control can be stored in a single VBX file. 

VBX files can be stored anywhere on your hard disk, but a common convention is 
to store them in the \WINDOWS\sYSTEM directory. This provides a common 
location in which applications can look to find the controls they must access. 

Each custom control has its own set of properties and events. Because every custom 
control is different, you must have documentation for the control, including which 
properties it has and which events it sends. This documentation is usually available 
from the provider of the VBX custom control DLL. 



266 Class Library User's Guide 

Examples Used in this Chapter 
The source code examples used in this chapter are small sections of code taken 
from the VB CIRCLE sample program, which can be found in the 
MSVC\MPc\sAMPLES directory. 

The VB CIRCLE sample uses a very rudimentary VBX control named CIRC3.VBX 
that is provided with Visual C++. The CIRC3 control consists only of a circle and a 
control caption. When the user clicks inside or outside the circle, the VB CIRCLE 
program displays an appropriate message stating where the user clicked. Although 
not very sophisticated, it provides a simple example of how to program with VBX 
controls. 

VB CHART is a more sophisticated sample program that is also found in the 
MSVC\MPc\sAMPLES directory. It uses the GRID.VBX control included with 
Visual C++ and is also provided with the Visual Basic Professional Toolkit. The 
VB CHART sample allows the user to enter numbers into a table, and then displays 
a graphical chart of the data. 

Before reading this chapter, you may want to compile and run both of these pro
grams to see what they do. As you read through this chapter, you can look at the 
source code for both the VB CIRCLE and VB CHART samples. 

An Overview of Using vex Controls 
Before you start programming with VBX controls, it is helpful to understand the 
basic steps involved with using these controls in Visual C++. A typical sequence of 
steps you will take to incorporate a VBX control in your program is as follows: 

1. If you are generating a new "starter" application with App Wizard, make sure 
the Custom VBX Controls option is checked in AppWizard's Options dialog 
box. If you are adding custom controls to an existing application, make sure that 
VBX support in the framework is properly initialized (see the following 
section). 

2. Install the VBX control within App Studio. This places the control on App 
Studio's control palette, and you can drag it into your dialog boxes, resize it, 
move it, and set its properties using property sheets. 

3. Use Class Wizard to declare a pointer to the control, set up a message map, 
register the control's events, and create new member functions that handle the 
control's events. 

4. Use the Visual Workbench editor to add the code necessary to create and 
manipulate the control as well as handle the control's messages. This is done 
using the member functions of class CVBControl. 



Chapter 17 Programming with vex Controls 267 

The first part of this chapter provides an overview of how to use Class Wizard to 
generate much of the code you need to start programming with VBX controls. The 
second part of this chapter shows you how to program with the controls. 

For more information on using App Wizard to generate starter applications that 
support VBX, see Chapter 13 of the Visual Workbench User's Guide. For more 
information on installing VBX controls within App Studio, see Chapter 3 of the 
App Studio User's Guide. 

Initializing vex Runtime Support 
To use VBX controls in your program, you need to initialize the VBX support 
within the Microsoft Foundation Class Library. To do this, add the following 
statement anywhere within your application's InitInstance function: 

Enabl eVBX(); 

If you use App Wizard with the VBX support option checked, this line will be added 
automatically to InitInstance. 

USing ClassWizard to Set Up a vex Control 
Class Wizard simplifies programming with VBX controls by doing much of the 
preparatory work for you. You use Class Wizard to: 

• Create a member variable that points to the control. This pointer is placed in the 
declaration of the class (usually derived from CDialog) that contains the VBX 
control. 

• Register events (messages) for the control. 

• Create a message map that associates the control's events to the member 
functions that will handle the events. 

• Create message-handling functions for VBX control notifications in your 
implementation file. 

This section provides an overview of these steps. If you are not familiar with 
Class Wizard, you should read Chapter 9 of the App Studio User's Guide before 
reading the rest of this chapter. 

Declaring the Control Pointer 
A VBX control is typically used within a window such as a dialog box or a form. 
When you set up the member variables and functions for the window containing the 
control, you use Class Wizard to generate a pointer to the control in your class. This 
pointer can be used within your message-handler function implementations to 
invoke the control's member functions. 



268 Class Library User's Guide 

~ To generate a control pointer 

1. From the main Class Wizard dialog box, select the class that contains the VBX 
control. 

2. Click the Edit Variables button. 

3. In the Edit Member Variables dialog box, select the VBX control's ID in the list 
of controls, then click the Add Variable button. 

4. In the Add Member Variable dialog box, select Control in the Property list box. 
The Variable Type list box will display the type CVBControl * . 

For example, if you are placing a control in a dialog box such as that used in the 
VB CIRCLE sample in the MSVC\MFc\sAMPLES directory, the code added by 
Class Wizard in the header file looks something like the following: 

class CCircleDialog : public CDialog 
{ 

DEClARE_DYNAMIC(CCircleDialog) 
II Construction 
public: 

CCircleDialog(CWnd* pParent = NUll); II standard constructor 

11{{AFX_DATA(CCircleDialog) 
enum { IDD = IDD_CIRClE_DlG }; 
BOOl m_bBorder; 
CString m_strCaption; 
CVBControl* m_circle; 
int m_nShape; 
I/} }AFX_DATA 

The m _circle member is a pointer to the circle control object and is used within the 
program to access the control's member functions. 

Handling vex Control Messages 
VBX controls have events associated with them. These events are sent as control 
notification messages to your dialog class. These events can include mouse clicks 
on certain areas of the control, keystrokes, and other actions. The list of control 
events is different for each control and you should refer to the control's 
documentation for more information about these events. 

To handle events generated by VBX controls, you use Class Wizard to set up a 
message map that associates each event with a function that handles it. 



Chapter 17 Programming with vex Controls 269 

~ To set up a message map for VBX events 

1. Within Class Wizard, select the class that contains the control (in the Class 
Name list box). 

2. In the Object IDs list box, select the object ID of the control. A list of all VBX 
control notification messages for the control will be displayed. 

3. Select the notification message to which you want to assign a function handler, 
then click the Add Function button. 

4. In the Add Function dialog box, enter the name of the function that will handle 
the notification message. 

5. Repeat steps 3 and 4 for each notification message you want to handle. 

For example, in the VB CIRCLE sample program, Class Wizard generates the 
following message map in the DIALOG.CPP implementation file: 

BEGIN_MESSAGE_MAP(CCircleDialog, CDialog) 
//{{AFX_MSG_MAP(CCircleDialog) 
ON_BN_CLICKED(IDC_UPDATE_CIRCLE, OnUpdateCircle) 
ON_VBXEVENT(VBN_CLICKIN, IDC_CIRCLE, OnClickinCircle) 
ON_VBXEVENT(VBN_CLICKOUT, IDC_CIRCLE, OnClickoutCircle) 
/ /} }AFX_MSG_MAP 

END MESSAGE_MAP() 

This message map contains several ON_ VBXEVENT macros that map a single 
VBX control notification message event to a handler function. In this case, the two 
notification messages involve clicking inside (VBN_ CLICKIN) or outside 
(VBN_ CLICKOUT) the control's circle. 

Class Wizard also adds the following event register map in the application's main 
implementation file: 

//{{AFX_VBX_REGISTER_MAP() 
UINT NEAR VBN_CLICKIN = AfxRegisterVBEvent("CLICKIN"); 
UINT NEAR VBN_CLICKOUT = AfxRegisterVBEvent("CLICKOUT"); 

//}}AFX_VBX_REGISTER_MAP 

This map registers the VBX events as control notification messages. These are 
maintained by Class Wizard and you should not have to edit these entries. 



270 Class Library User's Guide 

Adding Code to Create and Use V.8X Controls 
Once ClassWizard has generated the necessary variables, data maps, and message 
maps in your source files, you can begin using the member functions of class 
CVBControl to create and manipulate the control in your program. This section 
provides an overview of programming with VBX controls. 

Constructing and Creating the Control 
If you use a VBX control within a dialog box or form view edited with App Studio, 
the control is created automatically from the information in the dialog template 
resource. In this case, there is no need to call the constructor or the Create member. 

If you use a VBX control in a window other than a dialog box or form view, you 
must construct the control object with the CVBControl constructor and then use 
the Create member function of the CVBControl class to create it. For example, in 
the VB Circle sample, the Create function is called as follows: 

int CVBCircleFrame::OnCreate(LPCREATESTRUCT lpCreateStruct) 

II Call base class OnCreate() to create the main frame window. 
if (CFrameWnd::OnCreate(lpCreateStruct) == -1) 

return -1; 

m_circle.Create("CIRC3.VBX;CIRC3;text from Create( ) call", 
WS_CHILD I WS_VISIBLE, CRect(10, 30, 100, 100), 
this, 1); 

II Remainder of function goes here 
} 

The first parameter of the Create function is an aggregate string that is parsed by 
the Create function. The three parts of this string are: the name of the file 
containing the control, the control name, and the initial window text. See the 
Microsoft Foundation Class Library alphabetical function reference for more 
information on the CVBControl::Create. 

Manipulating the Control 
Once the control has been created, you can manipulate it by using the member 
functions of class CVBControl. Typical operations are: 

• Retrieving and setting control properties. 

• Moving and resizing the control. 

• Refreshing the control to reflect changes. 



Chapter 17 Programming with vex Controls 271 

These operations can be accessed through the control's pointer that was generated 
by ClassWizard. For example, in the VB CIRCLE program, the function 
OnUpdateCircle uses values input by the user into a dialog box to update the 
border style, shape, and caption of the circle control: 

void CCircleDialog::OnUpdateCircle() 
{ 

UpdateData(TRUE): 

m_circle->SetNumProperty("BorderStyle", m_bBorder); 
m_circle->SetNumProperty("CircleShape", m_nShape); 
m_circle->SetStrProperty("Caption", m_strCaption); 

You can use the control pointer in this manner to access any CVBControl member 
functions. 

Destroying the Control 
There are several different ways to destroy CVBControl objects. If you set the 
bAutoDelete parameter of CVBControl::Create to TRUE, then the control and 
its associated C++ object are automatically destroyed when the parent window is 
destroyed. 

If bAutoDelete is FALSE, you must explicitly destroy the control and delete 
the associated c++ object. The preferred method of doing this is to use 
CWnd::DestroyWindow to destroy the control and use delete to delete the object. 
For example: 

m_pMyVBXControl->DestroyWindow(); 
//other destruction handling ... 
delete m_pMyVBXControl; 

You should set bAutoDelete to TRUE if you allocate a CVBControl object on the 
heap. 

Distributing vex Controls with Applications 
When an application needs to access controls in VBX files, the files must be on the 
system's path or in the same directory as the executable file. 

If you want to distribute an application that uses custom controls, it is recommended 
that your installation procedure copy all required VBX files into the user's 
\WINDOWS\sYSTEM directory. This directory is the customary place for VBX 



272 Class Library User's Guide 

controls to be installed into, and is where most applications look to find the controls 
they need. Keeping controls in a single directory also prevents the proliferation of 
multiple control versions in different directories. 

You can freely distribute the CIRC3.VBX and GRID.VBX control with any 
application you create with Visual C++. 



273 

CHAPTER 18 

OLE Support 

Object Linking and Embedding (OLE) is a mechanism that allows users to create 
and edit documents containing data created by multiple applications. This allows a 
single document to contain text, graphics, spreadsheets, sound, or other types of 
data. By supporting OLE in your application, you can let users combine data that it 
creates with data created by other applications. 

This chapter describes how to use the Microsoft Foundation Class Library to write 
an application that supports OLE. 

Overview of OLE 

Using OLE 

Before discussing how the Microsoft Foundation Class Library supports OLE, it's 
helpful to review the basic concepts involved in OLE. This section describes OLE 
from the user's point of view and then defines some common OLE terms. For a 
complete description of OLE, see the OLE Programmer's Reference or the 
Microsoft Windows Software Development Kit. 

As an example of how OLE changes the way applications work together, consider 
how you would use a drawing program and a text editor together. You can 
demonstrate this yourself by using the Paintbrush and Write applications included 
with Windows version 3.1. Suppose you want to insert a picture in a text document. 

~ To insert a picture in a text document 
1. Open Paintbrush and draw a picture. 

2. Select a portion of the picture and copy it into the Clipboard. 

3. Exit Paintbrush. 

4. Open Write and enter some text. 

5. Choose the Paste command. The portion of the picture you selected earlier is 
inserted into the document. 



274 Class Library User's Guide 

Now suppose that, after entering some more text, you want to modify the picture in 
the document. If Paintbrush and Write didn't support OLE, you would essentially 
have to repeat the entire process. 

~ To modify a picture in a text document, without OLE 
1. Open Paintbrush again and reload the original picture (assuming you saved it; 

otherwise recreate it). Make the desired modifications. 

2. Repeat steps 2 through 5 above, replacing the original picture in the document. 

However, the Windows 3.1 versions of Paintbrush and Write support OLE. As a 
result, the process is much simpler. 

~ To modify a picture in a text document, using OLE 
• Double-click on the picture in the document from within Write. 

Paintbrush is automatically invoked with the picture from your document. 
Modify the picture as desired and then exit the drawing program. Your 
document is still open in Write, but the picture has been updated. You can now 
continue entering text. 

With OLE, Write and Paintbrush work together to produce a single document 
consisting of both text and graphics. You can edit the entire document as a single 
entity, rather than having to edit its components separately and combine them later. 
OLE allows you to invoke the appropriate application, as needed, whenever you 
work on a given portion of the document. A document that contains data created by 
different applications is called a "compound document." 

While you use the Paste command in the same way in OLE and non-OLE 
applications, the command is clearly performing very different operations in each 
case. The difference can be clearly illustrated when you consider the action of 
pasting some cells from a worksheet into a text document. Compare what happens 
with a non-OLE spreadsheet application versus an OLE spreadsheet application, 
such as Microsoft Excel: 

• If you paste some cells from a non-OLE worksheet into a text document, what 
gets inserted is a textual representation of the numbers in the cells. 

• If you paste some cells from an Excel worksheet into a Write document, what 
gets inserted are the actual floating-point values used by Excel, plus any 
associated formulas. The textual representation is still used for display purposes, 
but when you double-click on those numbers while working within Write, the 
original floating-point values are sent back to Excel. This is what allows you to 
edit the cells again without re-entering the data. 

In a non-OLE application, the Paste command inserts a representation of the 
original data using a format that the receiving application knows how to display. In 



Chapter 18 OLE Support 275 

an OLE application, the Paste command still inserts this "presentation" data, but 
this is used for display purposes only; the command also inserts the actual data used 
by the donor application. This data is called the "Native" data for the item. 

Embedded vs. Linked Items 
Using the Paste command in an OLE application creates an "embedded item." An 
embedded item is stored as part of the compound document that contains it. In this 
way, a .WRI file for a Write document can contain not only text, but also bitmaps, 
floating-point numbers and formulas, or any other type of data. 

OLE also provides another way to incorporate data from another application: 
creating a "linked item." The steps for creating a linked item are similar to those for 
creating an embedded item, except that instead of using the Paste command, you use 
the Paste Link command. The difference between a linked item and an embedded 
item is that with a linked item, the data is stored in a separate file. 

For example, if you create a linked item of some cells from an Excel worksheet, the 
data for that item is stored in the .XLS file for that particular worksheet. The Write 
document contains only the information that specifies where the item can be found; 
that is, it contains a link to the item's .XLS file. When you double-click on those 
cells, Excel is launched and the original worksheet file is loaded in for editing. 

A linked item has a couple of advantages over an embedded item: 

• The compound document is smaller, since it contains only a link rather than all 
the data for the item. 

• If the original document is updated, the linked item is also updated. 

Every OLE item, whether embedded or linked, has a type associated with it; an 
item's type is based on the application that created it. For example, a Paintbrush 
item is one type of item, while an Excel item is another type. However, some 
applications can create more than one type of item; for example, Excel can create 
worksheet items, chart items, and macro sheet items. 

Note The Microsoft Windows Software Development Kit refers to embedded and 
linked items as "objects" and refers to types of items as "classes." This chapter uses 
the term "item" to distinguish the OLE entity from the corresponding C++ object 
and the term "type" to distinguish the OLE category from the C++ class. 

For more information on what kind of data is stored in embedded and linked items, 
see the OLE Programmer's Reference or the Microsoft Windows Software 
Development Kit. 



276 Class Library User's Guide 

Clients and Servers 

Verbs 

An application that can incorporate embedded or linked items into its own 
documents is called a "client application." An application that can create items for 
use by client applications is called a "server application." In the earlier examples, 
Write is the client application while Paintbrush and Excel are the server 
applications. 

The documents managed by a client application must be able to store and display 
OLE items as well as data created by the application itself. A client application 
must also allow users to insert new items or edit existing items. The user-interface 
requirements of a client application are listed in the section "Implementing a Client 
Application" later in this chapter. 

Some server applications, such as Paintbrush, support the creation of embedded 
items only, while others, such as Excel, support the creation of both embedded and 
linked items. All server applications must be able to be invoked by a client 
application when the user wants to edit an item. If a server application supports 
linked items, it must also be able to copy its data to the Clipboard so that client can 
use it to create OLE items. An application can be both a client and a server; that is, 
it can both incorporate items into its documents, and its data can be incorporated as 
items into other application's documents. 

Clients and servers do not communicate directly. Instead, they communicate 
indirectly through the OLE system DLLs. These DLLs provide functions that 
clients and servers call, and the clients and servers define callback functions that 
the DLLs call. 

This system of communication is designed so that a client doesn't need to know 
anything specific about a server application. This allows a client to accept items 
created by any server; a client does not have to define what types of servers it can 
work with. As a result, the user of a client application, such as Write, can take 
advantage of new applications and data formats created in the future. As long as 
those new applications are OLE servers, a Write document will be able to 
incorporate items created by those applications. 

Double-clicking on an OLE item from within a client application typically launches 
the server application; this allows you to edit the item using the server. However, 
certain items don't behave this way. For example, double-clicking on an item 
created with the Sound Recorder application does not cause the server to be 
launched; instead it causes the sound to be played. 

The reason for this difference in behavior is that Sound Recorder items have a 
different "primary verb." The primary verb is the action performed when the user 
double-clicks on an item. For most types of items, the primary verb is Edit, which 



Chapter 18 OLE Support 277 

launches the server that created the item. For some types of items, such as Sound 
Recorder items, the primary verb is Play. 

Most types of items support only one verb, and Edit is the most common one. 
However, some types of items support multiple verbs. For example, Sound 
Recorder items support Edit as a secondary verb. 

Any verbs other than the primary verb must be invoked through a menu command 
when the item is selected. For information on the typename Object command, see 
the section "Implementing a Client Application" later in this chapter. 

The verbs that a server application supports are listed in the Windows registration 
database. Your server application's verbs should be registered when it is installed. 
See the section "Registering a Server Application" later in this chapter. 

The OLE Classes 
The Microsoft Foundation Class Library provides nine classes that support OLE, 
which can be grouped into three categories: general classes, client classes and 
server classes. 

The following are the general classes: 

Name 

COleDocument 

CDocltem 

COleException 

Purpose 

Provides generic functionality for a document containing 
OLE items; serves as base class for COleClientDoc and 
COleServerDoc. 

Provides generic functionality for a document item; serves as 
base class for COleClientltem and COleServerltem. 

Describes an error occurring during an OLE operation. 

You do not use the COleDocument and CDocItem classes directly; they are 
abstract classes that define an interface for dealing with a document as a list of 
items. This interface is used by both COleClientDoc and COleServerDoc to their 
stored OLE items. 

The COleException class is a special type of exception thrown during OLE 
operations. For more information on exception handling, see Chapter 16 of this 
book and Chapter 6 in the overview of the Class Library Reference. 



278 Class Library User's Guide 

The classes that you will primarily use are the client classes and the server classes. 
The following are the client classes: 

Name 

COleClientDoc 

COleClientItem 

Purpose 

Document managed by a client application; able to contain 
COleClientItem objects as well as the client application's 
own data. 

Defines client interface to an embedded or linked item. 

To write a client application, you need the following: 

• One document class for each type of document that your client application 
supports. Each class must be derived from COleClientDoc. 

Your application needs one object of a document class for each open document. 

• One item class, which must be derived from COleClientltem. Note that only 
one item class is needed for embedded and linked items of all types. 

Your application needs one object of the item class for each embedded or linked 
item. 

When writing your client application, you do not have to write any code for 
managing the specific contents of embedded or linked items. For example, you do 
not have to write code that manages floating-point numbers in order to accept 
embedded worksheet items. The framework and the OLE system DLLs manage all 
of this data for you. This is what allows your client application to accept items from 
any server. 

The following are the server classes: 

Name 

COleServer 

COleTemplateServer 

COleServerDoc 

COleServer Item 

Purpose 

Creates and manages server documents of a specific type; 
used for servers that are only launched by clients. 

Creates and manages server documents using a 
CDocTemplate object; used for servers that are launched as 
stand-alone applications, as well as by clients. 

Document managed by a server application; able to treat its 
contents as COleServerItem objects. 

Defines server interface to an OLE item. 

To write a server application, you need the following: 

• One server class for each type of item your application supports. For example, if 
your application acts as a server for both worksheets and charts, you need two 
server classes. You can use either COleTemplateServer directly as a server 
class, or you can derive a class from COleServer. 

Your application needs only one object of each server class. 



Chapter 18 OLE Support 279 

• One document class for each type of item your application supports. Each class 
must be derived from COleServerDoc. 

Your application needs one object of a document class for each open document. 

• One item class for each type of item your application supports. Each class must 
be derived from COleServerltem. 

Your application needs one object of an item class for each embedded or linked 
item that is open. However, you may also use objects of an item class for 
representing data that is not an embedded or linked item. 

Note that the COleClientItem and COleServerltem classes do not represent two 
different categories of items; they represent different interfaces to the same item. 
Each OLE item has both a COleClientItem interface and a COleServerltem 
interface. 

As described earlier, client and server applications interact through the OLE system 
DLLs. A client application never directly calls a member function of a server class, 
and similarly, a server application never directly calls a member function of a client 
class. 

Most of the member functions of the client classes are operations; you call them 
directly from your client application's code. By comparison, most of the member 
functions of the server classes are overridables; they are called by the OLE system 
DLLs (via the framework) in response to requests from the client. You typically 
don't call them from your server application's code. 

Implementing a Client Application 
A client application typically supports the following user-interface features: 

• The Insert New Object command. 

The Insert New Object command typically appears on the Edit menu (though it 
may appear on the Insert menu, if your application has one). This command lets 
the user create an embedded item in a document in a more direct manner than 
the Paste command. When the user selects the Insert New Object command, the 
Insert Object dialog box appears. This dialog box displays a list of all the types 
of items available on the system. When the user chooses the type of item to 
embed, the appropriate server application is launched, allowing the user to 
create a new item. If the user chooses Update when exiting the server 
application, a new embedded item appears in the document. 

• The Paste command. 

The Paste command appears on the Edit menu. It has the same behavior in OLE 
applications as it does in non-OLE applications, except that it can create an 
embedded item if the Clipboard contains data from a server application. 



280 Class Library User's Guide 

If the Clipboard doesn't contain all the data necessary to create an embedded 
item, the Paste command creates a "static" item. A static item cannot be edited. 

• The Paste Link command. 

The Paste Link command appears on the Edit menu if the client application 
accepts linked items. It is the most common way to create a linked item. (You 
can also create linked items using the Paste Special command. However, the 
Paste Special command has a more complicated user interface than the Paste 
Link command and is not commonly implemented.) 

• Invoking a verb on an item. 

There are two ways for the user to invoke a verb on an item: by double-clicking 
the item or by using the type name Object command. 

When the user of the client application double-clicks an item, typically the 
item's primary verb is executed. The Edit verb launches the server application 
and displays the item for editing. The Play verb also launches the server 
application, but may not display anything (for example, if playing a sound item). 

The type name Object command appears on the Edit menu. This command lets 
,the user execute any of the verbs that an item supports. It differs from most other 
commands in that its appearance and behavior depend entirely on what type of 
OLE item is selected. The command has the following behavior: 

1. If nothing is currently selected, or if the item selected is not an OLE item, or 
if more than one OLE item is selected, the menu item reads "Object ... " and 
is disabled. 

2. If an OLE item is selected, the caption on the menu item changes. If the 
selected item has an unnamed verb, the menu item becomes "typename 
Object." 

3. If the selected item has only one verb, the menu item becomes "verb 
type name Object." 

4. If the selected item has more than one verb, the menu item becomes 
"typename Object." Choosing the command opens a submenu listing all the 
supported verbs. 

• The Edit Links command. 

The Edit Links command appears on the Edit menu if the client application 
accepts linked items. This command lets the user modify properties of the linked 
items in the document. When the user chooses the Edit Links command, the 
Links dialog box appears. This dialog box displays a list of all the linked items 
in the document (the information displayed for each linked item includes the type 
of the item, the document in which the item is stored, and the name that 
identifies the item within the document). The user can select one or more of the 
linked items and change the type of link updating (automatic or manual), update 
linked items immediately, cancel links, or repair broken links. 



Chapter 18 OLE Support 281 

• Cutting/copying an item to the Clipboard. 

The basic steps in writing a client application are described in more detail in the 
following sections. 

Defining a Client Document Class 
A client document class must be able to do everything a non-OLE document class 
does; it must interact with views and be able to handle commands. However, it must 
also be designed to accommodate objects of a COleClientItem-derived class as 
well as its own data. 

~ To define a client document class 
• Derive your document class from COleClientDoc instead of CDocument. 

• Override the Serialize member function to enable the document to be stored to 
disk. 

If you define CDocItem-derived classes to represent your non-OLE data, you 
can use the COleDocument list to store both your OLE and non-OLE data. 
Otherwise, you must manage your non-OLE data using your own data 
structures, as you would when implementing documents for a non-OLE 
application. 

When a client document is created, the framework automatically registers the 
document with the OLE system DLL. This allows the DLL to identify the client 
documents. 

Defining a Client Item Class 
As mentioned earlier, you do not have to write code that manages the specific 
contents of embedded or linked items, such as the floating-point numbers in an 
embedded worksheet item; the framework and the OLE system DLLs manage that 
for you. However, you may want to define member variables in your item class that 
store the item's size and position within the compound document. 

~ To define a client item class 
• Derive a class from COleClientItem. 

• Implement the OnChange member function. 

The OnChange function is called by the framework when the user of the server 
application modifies the item or saves or closes the document containing the 
item. You must implement this function to respond to changes in the item's state. 
Typically you update the item's appearance by invalidating the area in which the 
item is displayed. 



282 Class Library User's Guide 

The Insert New Object Command 
If you choose the OLE Client option, AppWizard adds the Insert New Object 
command to the Edit menu and gives it the ID _ OLE _INSERT_NEW command 
ID. AppWizard also defines a member function in your view class named 
a n Ins e r tab j e c t, which acts as the message handler for this command. 

App Wizard provides a skeletal definition of a n Ins e r tab j e c t; it declares a 
CString object and passes it to the global function AfxOleInsertDialog. This 
function displays the Insert Object dialog box and returns the type name selected 
by the user in the CString object. You must complete the implementation of 
a n Ins e r tab j e c t by creating an item of the specified type and insert it in your 
document. 

~ To complete the implementation 

• Dynamically allocate a new instance of your COleClientItem-derived class; 
this creates the C++ object, but not the OLE item itself. Pass a pointer to the 
client document as the argument to the base class constructor-that is, the 
COleClientItem constructor. This constructor adds the item to the specified 
document. 

• Create the OLE item itself by calling the CreateNewObject member function, 
passing the name of the server specified by the user and a name that uniquely 
identifies the item being created. 

This function launches the specified server application that allows the user to 
create a new item. In a server application written with the Microsoft Foundation 
Class Library, the OnCreateDoc member function of the server class is called 
at this point. For more information, see the section "Defining a Server Class" 
later in this chapter. 

When CreateNewObject returns, the item is not displayed because it doesn't 
contain anything yet. When the user updates the item, the framework calls the 
OnChange function of the new item; the client application responds by 
displaying the item. See the section "Displaying an Item" later in this chapter for 
information on what you should do in your override of OnChange. If the user 
chooses not to update the item when exiting the server, no item is embedded. 

For details on implementing the Insert New Object command, see the OCLIENT 
sample program. 

The Paste and Paste Link Commands 
AppWizard provides the Paste command on the Edit menu and gives it the 
ID _EDIT_PASTE command ID. If you choose the OLE Client option when you 
run App Wizard, it also adds the Paste Link command to the Edit menu and gives it 
the ID EDIT PASTE LINK command ID. - - -



Chapter 18 OLE Support 283 

The Microsoft Foundation Class Library defines update handlers for the Paste or 
Paste Link commands (these are member functions of COleClientDoc). These 
functions enable or disable the Paste and Paste Link commands, respectively, based 
on the current contents of the Clipboard. The Paste command is enabled if either an 
embedded or a static item can be pasted. The Paste Link command is enabled if a 
linked item can be pasted. 

~ To complete the implementation 

• Define a message handler in your view class. The message handler for the Paste 
command should be named 0 n Pas t e, and the one for the Paste Link command 
should be named 0 n Pas teL ink. Do the following steps in each message 
handler: 

1. Open the clipboard by calling the CWnd::OpenClipboard member 
function. 

2. Create an instance of your COleClientItem-derived class: 

• For the Paste command, call the CreateFromClipboard member 
function. 

If the function call is unsuccessful, call the CreateStaticFromClipboard 
member function. This function creates a static item; such an item does 
not contain the Native data used by the server, only the presentation data 
for displaying the item. As a result, a static item can be displayed but not 
edited. 

• For the Paste Link command, call the CreateLinkFromClipboard 
member function. 

3. Insert the new item in your document at the current position. The specifics 
depend on your implementation of compound documents. 

4. Close the clipboard by calling the CWnd: :CloseClipboard member 
function. 

See the OCLIENT sample program for details on implementing the Paste and Paste 
Link commands. 

Invoking a Verb on an Item 
If you want to invoke an item's primary verb when the user double-clicks the item, 
override the OnLButtonDblClick message handler of the view class that displays 
the item. In your override of the function, call the Do Verb member function defined 
by COleClientItem. Even if the selected item supports more than one verb, you 
should use the primary verb for consistency with other OLE applications. To 
specify the primary verb, pass OLEVERB_PRIMARY to DoVerb. 

To implement the typename Object command if you choose the OLE Client option, 
App Wizard adds a command to the Edit menu with ID _OLE_VERB _FIRST as its 



284 Class Library User's Guide 

command ID. The Microsoft Foundation Class Library defines both the update 
handler and the message handler for this command (these are member functions of 
COleClientDoc). The update handler enables/disables the menu item and adjusts 
its caption depending on what type of OLE item, if any, is currently selected. The 
OnCmdMsg member function of COleClientDoc handles the command by calling 
the Do Verb member function of the selected item. 

~ To complete the implementation of the typename Object command 

• Implement some form of item selection. The details of this will depend on your 
application. 

• Override the IsSelected member function in your view class; this is needed for 
the menu command to be enabled properly. 

When the user invokes a verb on an item, the server opens the item and then 
executes the verb. In a server application written with the Microsoft Foundation 
Class Library, a member function of the item class is called to execute the verb; the 
particular member function depends on the verb. See the section "Defining a Server 
Item Class" later in this chapter for information. 

See the OCLIENT sample program for details on invoking verbs on embedded or 
linked items. 

The Edit Links Command 
If you choose the OLE Client option, App Wizard adds the Edit Links command to 
the Edit menu and gives it the ID _OLE _EDIT _LINKS command ID. The 
Microsoft Foundation Class Library defines both the update handler and the 
message handler for this command (these are member functions of 
COleClientDoc). The update handler checks whether there are any linked items in 
the document and enables or disables the menu item accordingly. The message 
handler calls the global AfxOleLinksDialog function, which displays the Links 
dialog box. No further work is required. 

Displaying an Embedded or Linked Item 
As described in the section "Defining a Client Item Class," you are responsible for 
managing the size and position of embedded and linked items. Use this information 
when displaying items. 

~ To display an item 

• Override OnDraw in your view class. 



Chapter 18 OLE Support 285 

• For each item, call the Draw member function defined by COleClientltem. 
This function renders an image of the item. If the item's server was written with 
the Microsoft Foundation Class Library, the function plays the metafile created 
by the OnDraw member function of COleServerItem. See the section 
"Defining a Server Item Class" later in this chapter for information. 

To ensure that the items are displayed correctly when the server updates them, 
override the OnChange member function in your COleClientItem-derived class. 
This function is called in response to actions perfonned by the user while working 
in the server application. From this function, call the U pdateAIIViews member 
function of the document. As described in Chapter 8, this function notifies all the 
views attached to the document to update their displays. The default behavior for 
each view is to invalidate their entire display area; this causes the OnDraw 
member function of the view to be called, redisplaying each item. 

See the OCLIENT sample program for details on displaying embedded or linked 
items. The OCLIENT program allows resizing of items and optimizes drawing so 
that a change in one item does not force all items to be redrawn. 

Cutting or Copying Items to the Clipboard 
~ To implement the Cut or Copy commands 

• Implement some form of item selection. The details of this will depend on your 
application. 

• Override the IsSelected member function in your view class; this is needed for 
the menu commands to be enabled properly. 

• Define update handlers for the Cut and Copy commands in your view class. 
Enable those commands on the menu depending on whether anything in the 
document is selected. 

• Define message handlers for the Cut and Copy commands in your view class. In 
the message handler, do the following: 

• Open and empty the Clipboard. 

• Call the CopyToClipboard member function defined by COleClientltem 
for the currently selected item. 

• Close the clipboard. 

• For the Cut operation, destroy the item. 

If your application supports selection of more than one item at a time, or selection 
of non-OLE data with OLE data, you must define additional Clipboard formats and 
implement the Cut and Copy commands so they copy the multiple selections to the 
Clipboard. 



286 Class Library User's Guide 

Loading/Saving a Compound Document 
As described in previous chapters, the Microsoft Foundation Class Library provides 
a framework for creating, loading, and saving documents through the CDocument 
interface. Because COleClientDoc is derived indirectly from CDocument, client 
documents can be managed by the framework in the same way as ordinary 
documents; COleClientDoc overrides certain functions to perform the additional 
work needed for OLE client documents. 

For example, when loading a client document, a client application must register the 
document with the OLE system DLL. COleClientDoc takes care of this by 
overriding OnNewDocument and OnOpenDocument to call the 
RegisterClientDoc member function. Similarly, a client application must notify the 
library when a document is saved; to do this, COleClientDoc overrides 
OnSaveDocument to call the N otifySaved member function. 

~ To complete the implementation 

• Override Serialize in your COleClientDoc-derived class. To save embedded or 
linked items, use the interface provided by COleDocument to iterate through 
the list of items contained in the document and call Serialize for each one. If you 
are using your own data structures as well, iterate through them and serialize 
their contents. 

• Override Serialize in your COleClientItem-derived class. Serialize any 
information you store in your class, such as the position and size of the item. 
Then call the version of Serialize defined by COleClientItem; this serializes 
the data stored in the item itself. That is, for an embedded item, it stores the 
Native data and the type of the item, and for a linked item, it stores the type of 
the item and information that specifies where the item can be found. 

Implementing a Server Application 
Support server functionality requires only minor changes to an application's user 
interface: when an embedded item is being edited, the Save command on the File 
menu is replaced by the Update command and the Save As command is replaced by 
the Save Copy As. This indicates that storing changes made to the document does 
not involve saving anything to disk, but instead involves updating the item stored in 
a compound document. The framework updates the menu captions automatically. 

Defining a Server Class 
The class you use to implement your server depends on the type of server 
application you want to write. 



Chapter 18 OLE Support 287 

Mini-Servers vs. Full Servers 
There are two types of server applications: mini-servers and full servers. A mini
server can be launched only by a client. The MS-Draw and Graph servers are 
examples of mini-servers. A mini-server does not store documents as their own files 
on disk; instead, it reads its documents from and writes them to items in client 
documents. As a result, such an application can support only embedding, not 
linking. 

A full server is a stand-alone application; it can either be run by itself or be 
launched by a client application. A full server supports storing documents on disk as 
their own files. Such an application can support embedding only, or it can support 
both embedding and linking. A full server typically supports the Cut and Copy 
commands; these allow the user of a client application to create an embedded item 
by choosing the Paste command or, in the case of the Copy command, to create a 
linked item by choosing the Paste Link command. 

~ To define a class for a mini-server 

• Derive a class from COleServer. 

• Implement the OnCreateDoc member function. This is a pure virtual function, 
so you must provide an implementation. 

The OnCreateDoc function is called when the user of a client application 
chooses the Insert New Object command. Return a document object from this 
function; this must be an object of your COleServerDoc-derived class. 

• Implement the OnEditDoc member function. This is a pure virtual function, so 
you must provide an implementation. 

The OnEditDoc function is called when the user of a client application edits an 
existing embedded item. Return a document object from this function; this must 
be an object of your COleServerDoc-derived class. 

If you are writing a full server, you should use the class COleTemplateServer. 
COleTemplateServer is derived from COleServer and can be used directly. It 
provides definitions for the pure virtual functions defined by COleServer by using 
the document-creation facilities of a CDocTemplate object. This lets your server 
application take advantage of the document/view architecture provided by the 
Microsoft Foundation Class Library. 

~ To use COleTemplateServer as a server class 

• Create a CDocTemplate object, specifying a COleServerDoc-derived class 
as the document class. Typically you pass this to the application's 
AddDocTemplate member function. 



288 Class Library User's Guide 

• Create a COleTemplateServer object; you can declare this as a member 
variable in your CWinApp-derived class. From within your application's 
Initlnstance member function, call the Run Embedded member function of the 
COleTemplateServer object, passing the CDocTemplate object. 

For an example of a mini-server, see the MINSVR sample program. For an 
example of a full server, see the HIERSVR sample program. 

SOl Servers vs. MOl Servers 
Another issue related to the mini- versus full-server question is whether your 
application should be a single document interface (SDI) or a multiple document 
interface (MDI) application. Mini-servers are always SDI applications. Full servers 
can be either, though they are typically MDI applications. 

A server application must be able to support multiple clients simultaneously, in case 
more than one client wants to edit an embedded or linked item. If the server is an 
SDI application, it must be possible for multiple instances of the server to be 
running simultaneously. This allows a separate instance of the application to handle 
each client's requests. 

If the server is an MDI application, it can simply create a new MDI child window 
each time a client needs to edit an item. In this way, a single instance of the 
application can support multiple clients. 

Your server application must specify whether or not it supports multiple instances 
when it is first launched. This tells the OLE system DLL what to do if one instance 
of the server is already running when another client requests its services: whether it 
should launch a new instance of the server, or whether it should direct all clients' 
requests to one instance of the server. 

The following table summarizes some characteristics of mini- and full servers: 

Number of Supports Number of 
items per multiple documents 

Type of server SDI/MDI document instances per instance 

Mini-server SDI Yes 1 

Full server that MDI No o or more 
supports 
embedding only 

Full server that MDI o or more No o or more 
supports 
embedding and 
linking 



Chapter 18 OLE Support 289 

See the section "Launching a Server Application" later in this chapter for more 
information. 

Defining a Server Document Class 
In a server document, there is not the same distinction between OLE items and the 
application's own data as there is in a client document. This is because an OLE 
item consists of data created by the server application itself. As a result, the design 
of your server document class and your server item class are interdependent. 

The relationship between the document and item classes depends on whether your 
server supports embedding only, or linking as well. If your server supports only 
embedding, a server item is equivalent to a server document. Thus you will need 
only one object of your item class for each document. 

If your server supports linking, designing your document and item classes is 
potentially more difficult. From the server's point of view, a linked item can be 
anything that can be selected. There are two basic types of selection: single 
selection, in which only one element in the document can be selected at a time, and 
multiple selection, in which an arbitrary number of elements in the document can be 
selected at a time. 

The easiest way to support linking in a server is to allow only single selection. With 
this approach, you can use COleServerltem as the base class for an element in the 
document. Your document class can use the COleDocument list to store your 
document items. Whenever an element is copied to the Clipboard, you can simply 
call the CopyToClipboard member function for that item. The HIERSVR sample 
program allows only single selection. 

Supporting multiple selection is much more difficult. You must design data 
structures that allow a COleServerltem object to represent an arbitrary number of 
the elements that make up a document. A full discussion of implementing multiple 
selection is beyond the scope of this chapter. 

For more information, see the section "Defining a Server Item Class" later in this 
chapter. 

~ To define a server document class 

• Derive your document class from COleServerDoc instead of CDocument. 

• Implement the OnGetEmbeddedltem member function. This is a pure virtual 
function, so you must provide an implementation. 

OnGetEmbeddedltem is called when the user of a client application creates or 
edits an embedded item. Return an item representing the entire document. This 
should be an object of your COleServerItem-derived class. 



290 Class Library User's Guide 

• If you are implementing a full server, override the Serialize member function. If 
you are implementing a mini-server, the documents are never written to disk, so 
the Serialize member function is unnecessary. 

The OnGetLinkedltem member function of COleServerDoc is called when the 
user of a client application edits a linked item. A default implementation of this 
function is provided. You need to override it only if you are implementing your own 
data structures for storing server items instead of using the COleDocument list. 

When a server document is created, the framework automatically registers the 
document with the OLE system DLL. This allows the DLL to identify the server 
documents. 

Defining a Server Item Class 
Most of the behavior of your server application lies in the item class. The item class 
contains the Native data that makes up an item; the item class also defines the 
appearance of the items and the actions taken when verbs are invoked. 

~ To define a server item class 
• Derive a class from COleServerItem. 

• Implement the OnDraw member function. This is a pure virtual function, so you 
must provide an implementation. 

The OnDraw function draws an image of the item to a metafile, allowing it to 
be displayed when a client application opens a compound document. 

• Implement the Serialize member function. This is a pure virtual function, so you 
must provide an implementation. 

The Serialize function reads and writes the Native data for an item, that is, all 
the information needed to describe it. This allows an embedded item to be 
transferred between the server and client applications. 

• (Optional) Override the OnShow member function. 

The OnShow function is called when an item is opened for editing. Override the 
function to scroll the view so that the item is visible and then select the item. 

• (Optional) If the type of item supports more than one verb, override the 
OnExtra Verb member function to perform the desired action for each 
supported verb. 

To inform clients of the verbs that your server supports for a particular type of 
item, provide entries for those verbs in the Windows registration database. For 
more information, see the following section, "Registering a Server." 



Chapter 18 OLE Support 291 

• (Optional) If you want to support CF _TEXT as a presentation format, override 
the OnGetTextData member function. A presentation format is a format in 
which the server can provide an image of an item. By default, servers written 
with the Microsoft Foundation Class Library provide images of items only as 
metafiles (that is, the only presentation format supported is 
CF _MET AFILEPICT). If you want to provide a text representation of an 
item, override OnGetTextData to do so. 

If you want to support other formats, override the OnEnumFormats member 
function to return the formats and override the OnGetData member function to 
provide the data in these formats. 

Registering a Server Application 
Every server application installed on the system must have an entry in the Windows 
registration database indicating that it supports OLE. The registration database is a 
binary file named REG.DAT located in the Windows directory. 

A server application's entry in the registration database contains several pieces of 
information: a name identifying the type of item that the application supports, the 
command line to execute to launch the application, the verbs that it supports, and 
whether an object-handler DLL exists for the application. 

The framework and OLE system DLLs use this database to determine what servers 
are available on the system. For example, when the user of a client application 
executes the Insert New Object command, the list of servers that appears in the 
dialog box is constructed by querying the registration database. The OLE system 
DLLs also use this database to determine how to launch the server application when 
a linked or embedded object is activated. 

You should register your server when it is first installed. You can also have the 
server update its registration every time it is executed as a stand-alone program. 
This keeps the registration database up-to-date if the server's executable file is 
moved. 

If you want to register your application during installation, use the REGLOAD 
utility included with the Windows Software Development Kit. If you include a 
setup program with your application, you should have the setup program run 
REGLOAD. Otherwise, instruct the user to run REGLOAD with the name of your 
server application. 

To use REGLOAD, write a text file with the extension .REG for your server. Here 
is a sample .REG file: 



292 Class Library User's Guide 

REGEDIT 
HKEY_CLASSES_ROOT\MySvr = My OLE Server 
HKEY_CLASSES_ROOT\MySvr\protocol\StdFileEditing\server 

C:\MYSERVER\MYSERVER.EXE 
HKEY_CLASSES_ROOT\MySvr\protocol\StdFileEditing\verb\0 = Edit 
HKEY_CLASSES_ROOT\MySvr\protocol\StdFileEditing\verb\l Play 
HKEY_CLASSES_ROOT\.MYS = MySvr 

The .REG file contains the following information: 

• An internal name for the item type. For example, "MySvr" is the internal name 
in the sample .REG file above. This name is for internal use only; try to pick a 
name that avoids collisions. This name should not contain spaces. 

• A user-visible name for the item type. For example, "My OLE Server" is the 
human-readable name in the sample .REG file above. This is the name that 
appears in the Insert Object dialog box, as well as in various other places. This 
name can contain spaces. 

• The path name of the server's executable file. 

• (Optional) A standard suffix for document files edited by the server. For 
example, ".MYS" is the suffix in the sample .REG file above. 

• All the verbs supported by the item type. The primary verb has the index 0, the 
secondary verb has the index 1, and so forth. If your server supports multiple 
verbs, you must specify those verbs here. 

REGLOAD merges the contents of the .REG text file into the registration database. 
You can also use the REGEDIT program to view or modify the contents of the 
registration database. 

If you want to register your server application each time it is executed as a stand
alone program, call the global function AfxOleRegisterServerName from the 
InitInstance member function of your CWinApp-derived class. 
AfxOleRegisterServerName takes two parameters: the internal and user-visible 
names for the type of item that the server supports. This function updates the path 
for the server's executable file. If there are no verbs registered for the item type, the 
function also adds Edit as the default primary verb. 

Launching a Server Application 
When a server application is launched by a client application, the OLE system DLL 
adds the "/Embedding" option to the server's command line. A server application's 
behavior differs depending on whether or not it was launched by a client, so the first 
thing an application should do when it begins execution is check for the 
"/Embedding" or "-Embedding" option on the command line. 

If you are writing a mini-server, it will always be launched by a client, by 
definition. You should still parse the command line to check for the "/Embedding" 



Chapter 18 OLE Support 293 

option. The lack of a "/Embedding" option on the command line indicates that the 
user tried to launch the mini-server as a stand-alone application. In this case, you 
should register the server with the Windows registration database and then display 
a message box informing the user to launch the application from a client 
application. 

Before running the server, you must perform instance registration. This operation 
does not add an entry to the registration database; instead, it informs the OLE 
system DLL that the server is active and ready to receive requests from clients. 
Register the server by calling the Register member function defined by 
COleServer. The Register function takes two parameters: the server's internal 
type name and a flag indicating whether the server supports multiple instances. A 
mini-server must be able to support multiple instances; that is, it must be possible 
for multiple instances of the server to run simultaneously, one for each client. 
Consequently, you should pass TRUE for this flag when launching a mini-server. 

If you are writing a full server using COleTemplateServer, call the 
RunEmbedded to parse the command line. This function updates the server's entry 
in the Windows registration database and calls the Register member function for 
you, performing instance registration. 

When you call RunEmbedded, you must pass a flag indicating whether the server 
supports multiple instances. A full server typically does not support multiple 
instances, because it is typically an MDI application; a single instance of the server 
can handle all clients. Consequently, you should pass FALSE for this flag when 
launching a full server. 

If a server is launched by a client to edit a linked item, the OLE system DLL passes 
a filename on the command line following the "/Embedding" option; this is the 
name of the document that is the source of the linked item. The server should open 
this document immediately. 

Sequences of OLE Function Calls 
This section outlines the major steps that ocCur during common OLE operations and 
lists the member functions called in each step. For more information on the OLE 
classes and their member functions, see the descriptions in the Microsoft Class 
Library Reference. 

Inserting a New Embedded Item 
The following list describes the scenario where the user chooses the Insert New 
Object command. 

1. Your client code calls COleClientltem: :CreateNewObject. 



294 Class Library User's Guide 

2. The OLE system DLL searches the Windows registration database to find the 
executable file for the server, and launches the server with the "/Embedding" 
option on the command line. 

3. COleClientItem::CreateNewObject returns at approximately this time, but 
the item is blank. 

4. If the server is a mini-server, your server code calls COleServer::Register. If 
it's a full server, COleTemplateServer calls it for you. 

5. COleServer::OnCreateDoc is called; it returns a document object. 

6. COleServerDoc::OnGetEmbeddedItem is called; it returns an item. 

7. COleServerItem::OnShow is called; it displays the item, allowing the user to 
edit it. 

8. The user chooses the Update command. The framework calls 
CO leServer Doc::N otifySaved. 

9. COleServerItem::OnGetData is called to get the item's Native data. This 
function calls COleServerItem::Serialize to write the data. 

10. COleServerItem::OnGetData is called to get the item's metafile 
representation. This function calls COleServerItem::OnDraw to draw an 
image of the item to a metafile. 

11. COleClientItem::OnChange is called, notifying the client that the item was 
updated. At this point the item can be displayed. 

12. The user chooses the Exit command in the server application. If the server is a 
mini-server, your server code calls COleServer::BeginRevoke. If it's a full 
server, COleTemplateServer calls it for you (if there are no other documents 
open). 

13. COleClientItem::OnChange is called, notifying the client that the server has 
closed the document. 

Editing an Embedded Item 
The following list describes the scenario where the user invokes the Edit verb on an 
embedded item, either by double-clicking the item or by using the typename Object 
command. 

1. Your client code calls COleClientItem: :Do Verb, which in tum calls 
COleClientItem: :Activate. 

2. The OLE system DLL searches the Windows registration database to find the 
executable file for the server, and launches the server with the "/Embedding" 
option on the command line. 

3. If the server is a mini-server, your server code calls COleServer::Register. If 
it's a full server, COleTemplateServer calls it for you. 

4. COleServer::OnEditDoc is called; it returns a document object. 



Chapter 18 OLE Support 295 

5. COleServerDoc::OnGetEmbeddedItem is called; it returns an object of the 
item class. 

6. COleServerItem::OnSetData is called to set the item's Native data; this 
function calls COleServerItem::Serialize to read the data. 

7. COleServerItem::OnShow is called; it displays the item, allowing the user to 
edit it. 

8. COleClientItem::DoVerb returns at approximately this time. 

9. Steps 8-13 of the Insert New Object procedure occur. 

Editing a Linked Item 
The following list describes the scenario where the user invokes the Edit verb on a 
linked item, either by double-clicking the item or by using the type name Object 
command. 

1. Your client code calls COleClientltem::DoVerb, which in tum calls 
COleClientItem: :Activate. 

2. The OLE system DLL searches the Windows registration database to find the 
executable file for the server, and launches the server with the "/Embedding 
filename" option on the command line. 

3. COleTemplateServer calls COleServer::Register for you. 

4. COleServer: :OnOpenDoc is called, loading a file from disk; the function 
returns a document object. 

5. COleServerDoc::OnGetLinkedItem is called; it returns an object of the item 
class. 

6. COleServerItem::OnShow is called; it displays the item, allowing the user to 
edit it. 

7. COleClientItem::DoVerb returns at approximately this time. 

8. The user chooses the Save command. The framework saves the document and 
calls COleServer::NotifySaved. 

9. COleServerItem::OnGetData is called to get the item's metafile 
representation. This function calls COleServerItem: :OnDraw to draw an 
image of the item to a metafile. 

10. COleClientltem::OnChange is called, notifying the client that the item was 
saved. 

11. The user chooses the Exit command in the server application. 
COleTemplateServer calls COleServer: :BeginRevoke for you (if there are 
no other documents open). 

12. COleClientItem::OnChange is called, notifying the client that the server has 
closed the document. 





297 

APPENDIX A 

Getting Started 

This appendix provides an overview of the new and changed functions and features 
in the current version of the Microsoft Foundation Class Library. It also provides 
infonnation on installing the class library and locating its components. 

What's New in the Class Library 
Among the new features in version 2 of the Microsoft Foundation Class Library are 
the following: 

• The class library is now integrated with the visual tools in the Visual C++ 
programming environment: App Wizard, App Studio, Class Wizard, and Visual 
Workbench. 

• The class library gives you a head start with the skeleton starter application 
created by App Wizard. 

• Managing Windows messages and commands from menus, buttons, and 
accelerator keys is greatly simplified when you use Class Wizard. 

• App Studio provides one-stop user-interface design and resource editing. 

• Visual Workbench lets you compile and debug your application and browse your 
class hierarchy. 

• At the heart of the class library is its document/view program structure. 
Documents manage your data. Views manage user interaction with a document. 

• The class library implements many standard user-interface elements: 

• standard menu items, such as the New, Open, Save, and Save As commands 
on the File menu 

• support for toolbars, status bars, and other control bars 

• support for scrolling and splitter windows 

• fonn-style user interfaces based on dialog templates 

• support for printing and print preview 



298 Class Library User's Guide 

• support for VBX (Visual Basic) and other custom controls 

• support for context -sensitive help 

• You get a dialog-box interface that makes it easy to initialize and validate 
dialog-box data and to retrieve data from a dialog box. 

• Object Linking and Embedding (OLE) support is integrated with the 
document/view architecture, and the framework supports OLE user interfaces. 

• Complete support for dynamic link libraries (DLLs). This support is more 
extensive than the support in the previous version. 

These and other features make the Microsoft Foundation Class Library more 
powerful and even easier to use. The current version of the class library is also 
compatible with the previous version. 

Installing the Class Library 
For general information and installation instructions, see Chapter 1 in the Visual 
Workbench User's Guide. 

The Setup program for Microsoft Visual C++ includes an option to install the 
Microsoft Foundation Class Library. If you choose that option, you have all of the 
files and directories you need to compile your programs and most of the sample 
programs that Setup installs, including prebuilt libraries for standard memory 
models. If you need other versions of the libraries for other memory models, you'll 
need to build them yourself. For more information about building libraries, see 
"Building Libraries" in Appendix B. 

On the main screen in the Setup program during installation, be sure the check 
boxes labeled "Microsoft Foundation Classes" and "Microsoft App Studio: 
Resource Editor" are selected (they are selected by default). You can also install 
these components at a later time. For information on installing Visual C++ 
components after your initial installation, see "Reinstalling Visual C++" in the 
Visual Workbench User's Guide. 

Additional Files 
In addition to header files and libraries, the MFC directory and its subdirectories 
created when you install the Microsoft Foundation Class Library contain source 
code, sample programs, and technical notes. 

Source Code 
The full source code for the Microsoft Foundation Class Library is supplied on your 
distribution disks in the MFc\sRC subdirectory. You'll find the source code useful 
in a number of ways: 



Appendix A Getting Started 299 

• As an aid in debugging your own code when the failure is revealed, say, with an 
ASSERT inside a class in the class library. 

• As the ultimate reference if the documents don't answer all of your questions. 

• In very rare cases, you may want to modify the library class implementations, 
although this is generally not recommended. 

For information on building new library versions, see Appendix B, "Versions of the 
Microsoft Foundation Class Library." 

Sample Programs 
Sample programs are provided in the MFOSAMPLES subdirectory. You'll find it 
instructive to compile and run them and to examine their source code for useful 
techniques. To install the samples, see "Samples" in Chapter 1 of the Visual 
Workbench User's Guide. 

For a helpful overview of the sample programs and what they illustrate, see 
MFCSAMP.HLP, which you can reach through the main contents screen of 
MFC.HLP. 

Technical Notes 
Technical notes are provided to discuss porting issues and the architecture and 
advanced features of the Microsoft Foundation Class Library. 

For easy access to the technical notes, see MFCNOTES.HLP, which you can reach 
through the main contents screen of MFC.HLP. 





APPENDIX B 

Versions of the Microsoft 
Foundation Class Library 

301 

This appendix provides information on building different versions of the Microsoft 
Foundation Class Library. 

Prebuilt Libraries 
The Visual C++ Setup program automatically provides prebuilt libraries needed for 
the sample programs. You'll have to build other versions manually as you need 
them. Table B.l shows which libraries are installed, already built, by Setup. 

Table B.l Class Library Support for Windows Memory Models 

Memory Model Prebuilt Debug Prebuilt Release Supported 

Small No No Yes 

Medium Yes Yes Yes 

Compact No No Yes 

Large Yes Yes Yes 

Huge No No No 

AFXDLL (Large) Yes Yes Yes 

USRDLL (Large) No No Yes 

A "yes" under "Prebuilt Debug" or "Prebuilt Release" indicates that the prebuilt 
library is supplied with Microsoft Visual C++. A "yes" under "Supported" means 
the Microsoft Foundation Class Library supports the model. If a library is not 
supplied but is supported, you can build it yourself. For information on building 
libraries, see "How to Build Other Library Versions" on page 303. Memory models 
are explained in Programming Techniques, Chapter 2. 

By default, App Wizard uses medium model and defaults to a debug build. 



302 Class Library User's Guide 

~ To switch to a release build 

1. In Visual Workbench, choose the Options command on the Project menu. 

2. In the Project Options dialog box, select the option button for Debug. 

Library Naming Conventions 

DLL Libraries 

Object-code libraries for the Microsoft Foundation Class Library use the following 
naming conventions. The library names have the form 

mAFXcwd.LIB 

where the letters shown in italic lowercase are placeholders for specifiers with the 
meanings shown in Table B .2. 

Table B.2 Library Names 

Specifier 

m 

c 

w 

d 

Values and Meanings 

Memory model: 

S = Small, M = Medium, C = Compact, L = Large 

Type of program to create: 

C = EXE, D = USRDLL 

Target: 

W = Windows, R = Real mode MS-DOS 

Debug or Release: 

D = Debug. Omit specifier for release. 

The Microsoft Foundation Class Library provides complete support for Windows 
dynamic link libraries (DLLs). You can build applications that use a shared DLL 
version of the Microsoft Foundation Class Library (called AFXDLL). Or you can 
use the classes in the Microsoft Foundation Class Library in a Windows DLL that 
can be used with applications not built with the class library (called USRDLL). 

AFXDLL libraries are supplied. You must build your own USRDLL libraries. 

The AFXDLL form of the library is named MFC200.LIB or MFC200D.LIB (for 
debug). These versions require the run-time DLLs MFC200.DLL or 
MFC200D.DLL (for debug) to run. 

For more information on using AFXDLL in Microsoft Foundation Class Library 
applications, see Technical Note 33. For information on using the USRDLL 
version, see Technical Note 11. Both technical notes are accessible through 
MFCNOTES.HLP, which you can reach through MFC.HLP. 



Appendix B Versions of the Microsoft Foundation Class Library 303 

How to Build Other Library Versions 
A standard MAKEFILE is supplied in MF0SRC for building new libraries. 

To build a new library version, use NMAKE. For infonnation about using 
NMAKE, see the Tools TechNote Viewer. (To open the Tools TechNote Viewer, 
click its icon in the Microsoft Visual c++ program group in Windows.) 

Table B.3 shows the commands for building debug and release versions of the 
libraries for all of the standard memory models. 

Table B.3 Commands for Building Library Versions 

Library 

SAFXCWD.LIB 

SAFXCW.LIB 

MAFXCWD.LIB 

MAFXCW.LIB 

CAFXCWD.LIB 

CAFXCW.LIB 

LAFXCWD.LIB 

LAFXCW.LIB 

Command to Build the Library 

NMAKE MODEL = S TARGET = W DEBUG = 1 

NMAKE MODEL = S TARGET = W DEBUG = 0 

NMAKE MODEL = M TARGET = W DEBUG = 1 

NMAKE MODEL = M TARGET = W DEBUG = 0 

NMAKE MODEL = C TARGET = W DEBUG = 1 

NMAKE MODEL = C TARGET = W DEBUG = 0 

NMAKE MODEL = L TARGET = W DEBUG = 1 

NMAKE MODEL = L TARGET = W DEBUG = 0 

For the naming conventions used for library files, see "Library Naming 
Conventions" on page 302. Changing the TARGET option to R in an NMAKE 
command (including those shown in this appendix) builds an MS-DOS version. 

Other library options include DLL and CODEVIEW, as explained in the next two 
sections. 

Building DLLs 
To build a Windows dynamic link library (LAFXDWD.LIB), add a specification 
for DLL to your command line. The default value, DLL = 0, builds an .EXE. 
Specifying the command 

NMAKE MODEL = L TARGET = W DEBUG = 1 DLL = 1 

builds a debug version of USRDLL. For infonnation about USRDLL, see "Prebuilt 
Libraries" on page 301. The value of MODEL must be L for a DLL. 



304 Class Library User's Guide 

Building Programs with CodeView Information 
To build a version of your application with debugging information that the 
Microsoft Code View® debugger can use, add a CODEVIEW specification to your 
command line. CODEVIEW = 2 is the default for debug builds. CODEVIEW = 0 
is the default for release builds. The value CODEVIEW = 0 builds with no 
Code View information. Specifying the command 

NMAKE MODEL = M TARGET = W DEBUG = 1 CODEVIEW = 1 

builds a debug version of your program (medium model, in this example) with full 
Code View information. Specifying CODEVIEW = 2 builds a version with minimal 
Code View information. 



Index 

A 
Abnormal execution, exception 255 
Accelerator key, specifying in menu 73 
Accelerator table 

editing with App Studio 189 
Fl key, defined for ID_HELP command 189 
SHIFT+Fl keys, defined for ID_CONTEXT_HELP 

command 189 
Accelerators, copying with App Studio 190 
Access control, message map 95 
Access key See Accelerator key 
Accessing 

base class message map 98 
Class Wizard 90 
Visual Workbench from ClassWizard 103 

Activate member function, COleClientltem class, 294-295 
Add Class dialog box, Class Wizard 121-123, 154 
Add Function button, ClassWizard 89, 102 
Add Member Function dialog box, ClassWizard 102 
Add member function, class CDWordArray 39 
AddDocTemplate member function, CWinApp class, 

example 157 
Adding 

AppWizard options later 180 
code to tutorial, code marking 13 
dynamic creation 213-214 
handler function 

changes to source files 102-103 
Class Wizard 10 1-102 

member variables to Scribble 106-107 
message-handler functions 68 
run-time class information 213 
serialization support 214 
toolbar buttons 75 

AddPoint member function, in Scribble 39 
AddTail member function, class CObList 42 
AFX_DATA delimeter 123 
AFX_IDS_HELPMODEMESSAGE string 189 
AFX_IDS_IDLEMESSAGE string 189 
AFX_MSG delimiter 123 
AFX_MSG_MAP comment 94 
AFX_ VB X_REGISTER_MAP, example 270 
AfxCheckMemory function 248 
AFXCORE.RTF file 196 
AFXDLL 

DLL version of class library 302 
libraries supplied 303 
MFC200.DLL required 303 

AFXDLL (continued) 
MFC200.LIB 303 

afxDump object 
example 243 
output destinations 243 
use 243 

AfxEnableMemoryTracking, memory diagnostics 248 
afxMemDF variable 

memory diagnostics 248 
possible values, table of 248 

AfxOleInsertDialog function 282 
AfxOleLinksDialog function 284 
AfxOleRegisterServerName function 292 
AND_CATCH macro, use of 257 
App Studio 

accelerator tables, editing 189 
and RESOURCE.H file 186 
browsing resources 69, 76 
command IDs, assigning 70-71 
connection to Class Wizard 90 
copying resources 188-189 

accelerators 188-189 
menus 188-189 

designing user interface 69 
dialog editor 118-119 
drag and drop 69, 75, 77 
graphics editor 79 
Grid Settings dialog box 80 
how to run program 71 
menu editor 69-72 
menus 

automatic saving 74 
designing 69 
drag and drop 69, 75, 77 

prompt strings, creating 179 
Resource menu, Class Wizard command 90 
resource, browsing 69, 79 
Symbol Browser 186 
Test command 120 
testing 

dialog boxes 69 
menus 69 

VBX controls 
creating 270 
installing 270 

Application 17 
at run time 28-29 
creating new, process 17 
framework 5-6 

305 



306 Index 

Application (continued) 
object 

in framework 5-6 
in standard command routing 95 

skeleton starter 17 
starter, compiling 18-23 
tutorial, basic information on building 18 

AppWizard 
and class CScribDoc 32-33 
and class CScribView 54,57-58 
and DECLARE_DYNCREATE macro 44 
and Serialize member function 44-45 
Classes 

button 20 
dialog box 20-21 

classes created by 18 
command 19 
context-sensitive help 

implementing with 182 
option 181-182 

Custom VBX Control option 266 
defaults 

debug build 301 
medium model 301 

described 17 
directory 

creating 22 
project 22 

editing class names 20-21 
help files created, conditions of use 181 
help project file, created by 186 
naming project 19 
Options 

button 22 
dialog box 22 

options 
adding later 180, 187-188 
context-sensitive help 181-182 
defaults, listed 22 
described 23 
helpful comments 22 
MDI application 22-23 
print preview 22 
printing 22 
SDI application 23 
toolbar, status bar 22 

README. TXT file 18 
running 17, 19 
Serialize function written by 236 
setting directory 19 
setting project directory 19 
VBX control support 267 

Array classes, features 217 

Arrays 
elements, deleting 222 
iteration of 220 

ASSERT macro 
See also ASSERT_VALID macro 
See also VERIFY macro 
and IsKindOf member function, example 245 
behavior of 244 
detecting erroneous execution 255 
evaluation of argument 245 
example 245 
output destination, MS-DOS 244 
output destination, Windows 243 

ASSERT_VALID macro 
and AssertValid member function 245 
example 246 
testing validity of subordinate objects 247 
when active 245 
when to use 246 

Assertions 
to test program assumptions 245 
use of 245 

AssertValid member function 
and ASSERT_VALID macro 245 
CObject class, overriding 246 
declaring override of, example 246 
limitations of 247 
overriding 246 
use 246 

Assigning objects to commands 87 
Associating a button with a command 84 
Assumptions, program, tested by ASSERT macro 245 
Attributes, class 

example 100 
where to put them 100 

Authoring help See Context-sensitive help 
AUX port, debugging output destination 243 

B 
Base class, accessing message map 98 
BEGIN_MESSAGE_MAP macro 

arguments 94,98 
base class 94 

Beginning a stroke 61 
BeginRevoke member function, COleServer class 294 
Binary file operations, CFile class 227 
Binding 

Clear All command 101 
commands 

defined 89,93 
Scribble 100 
to handlers 93 



Binding (continued) 
messages to code 57 
Thick Line command 104 
toolbar button to command 106 
user-interface objects to commands 93 

Bitmap, toolbar 77 
Bitmap editor 

example 79 
grid 80 
guides 80 
selection rectangle 82 
used to add new button 77 
zoomed image 81 

Books, reference 
Christian, Kaare 2 
Kruglinski, David 2 
Lippman, Stanley 2 
Petzold, Charles 2 

Breakpoints, setting 24 
Browse menu, Visual Workbench, ClassWizard command 90 
Browser, resource, in App Studio 69 
Browsing resources 69, 79 
Buffering data, class CArchive 234 
Building 

DLLs 303 
libraries, standard MAKEFILE supplied 303 
object-code libraries 303 
programs, Scribble tutorial example 14 
Scribble, step 1 64 
the starter application 23 
versions of the class library 301 

Buttons 

c 

array 84, 190 
mapping to commands 84 
states, toolbar 110 
toolbar, deleting 78 
updating with CCmdUI 111 

C run-time functions, comparision to CString functions 206 
Calculating in update handlers 109 
Calling 

Class Wizard 90 
document members from view 51 

Caption, menu 75 
Capturing the mouse 61 
CArchive 

constructor, arguments to 235 
data types usable with 237 
loading from, example 235 
operators 

chaining 237 
data types defined for 237 

CArchive (continued) 
operators (continued) 

extraction 230 
insertion 230 
using 235 

storing to, example 235 
used for binary data only 230 
used in Serialize member function 236 

CArchive class 
data independence 47 
extraction operator 45 
introduced 45 
IsStoring member function 45 
serialization 229 

Index 307 

uses other than serializing documents 234 
CArchive object 

and CFile object 234 
created by framework 

example 234 
Save, Save As, Open commands 234 

creating yourself 234 
CRuntimeClass of stored objects 233 
defined 233 
dynamic reconstruction of loaded objects 233 
for loading 233 
for storing 233 
in the framework, your role 234 
introduced 45 
lifetime 233 
loading data, mUltiple references to object: 233 
purpose of 45 
storing!1oading CObjects 237 
uses 233 

CArchiveException exception handler 256 
Cast 

need for, example 42 
serialization, example 47 

CATCH macro 42,256,258,260-261 
CClientDC class, example 151 
CCmdTarget class 92, 96 
CCmdUI structure 

as update argument 109 
commands and update handled by same object 111 
common interface to menus and controls 111 
example 

OnUpdateEditClearAll member function 112 
OnUpdatePenThickOrThin member function 114 

with buttons in dialog bars 111 
with status-bar indicators 111 

CDC class 
printing with 161, 167 
used in DrawStroke 56 

CDC object, encapsulates device context 56 



308 Index 

CDialog class, member functions 
CDialog 124 
DoModal 131-133 

CDocItem class 277, 281 
CDocument class 

introduced 31 
memberfunctions, UpdateAllViews 136-137 

CDumpContext class, use 243 
CDWordArray class 39,47 
CFile class 

binary file operations 227 
files and serialization 227 

CFile object, used by CArchive object 234 
CFileException 228, 256 
CFrameWnd class 

member functions, OnCreateClient 153 
message map 98 

Chaining operators, CArchive, example 237 
Checked state 

of menu 114 
of toolbar button 114 

Checking 
menu item 114 
toolbar button 114 

Checkpoint member function, CMemoryState class, 
detecting memory leaks 249 

Christian, Kaare 2 
CIRC3 VBX control 266 
Class Library 

DLL version of 302 
files,source 

locations of 298 
uses of 299 

installing 
options, setup 298 
overview 298 

new features 297 
reinstalling components 298 
sample programs 

locations of 299 
MFCNOTES.HLP file 299 
MFCSAMP.HLP file 299 

versions of, building with NMAKE 
MS-DOS version 303 
table of commands 303 

Class names, in tutorial, text conventions 10 
Classes 

adding with Class Wizard, example 121-123 
CArchive 45 
CCmdTarget 92 
CCmdUI 109 
CDC 56 
CDocument 31 
CDWordArray 39 

CObList 41 
CPen 40 
CPoint 39 
Created by App Wizard 17 
CScribDoc 

Scribble 32 
searching message maps 100 

CScribView (Scribble) 52 
CStroke (Scribble) 34 
CView 50 
CWinApp 184 
derived 5 
framework 5 
inheritance 5 
naming convention 34 
OLE See OLE, item types 
reusable 212 

Classes button, AppWizard 20 
Classes dialog box, AppWizard 20 
ClassWizard 

accessing Visual Workbench editor from 103 
Add Function button 89, 102 
Add Member Function dialog box 102 
adding 

dialog member variables 88 
handler 102-103 
new classes, example 121-123 

available 
commands 89 
Windows messages 89 

binding a command, Clear All 10 1 
building a dialog box 121 
capabilities 88 
changing your code 89 
command binding 93 
connecting 

commands to handlers 88 
messages, procedure 89 
messages to handlers 58,88 

connection to App Studio 90 
creating 

new classes 88 
splitter windows 154 

deleting message-map entries, necessary follow-up 90 
described 49 
dialog box 

described 89, 124 
for connecting menus 132 

Edit Code button 103 
editing code 89, 103 
example 

Clear All update handler 111 
OnUpdateEditClearAll member function 113 

flexibility 90 



ClassWizard (continued) 
handler functions 89 
handler names, synthesized 102 
handling messages 57 
importance of using to edit maps 94 
invoking while editing resources 90 
jumping to code 89, 103 
mapping commands to handlers 87 
Member Functions list box 103 
message map 

comment lines 94 
entries 89 
VBX events 269 

Messages list box 
contents 102 
Windows messages 102 

Object IDs list box 102 
on App Studio Resource menu 90 
on Visual Workbench Browse menu 90 
running 

from App Studio 90 
from Visual Workbench 90 

safety 90 
scenarios for using 90 
uses of, connecting messages to code 58 
VBX control support 267 
visual objects 89, 102 

Cleanup in documents 42 
Clear All command 

binding, procedure 101 
command routing, example 97 
ON_ UPDATE_COMMAND _ UI handler, enabling menu 

item 110 
purpose 68 
Scribble 100 
where to put it 100 

Clear All menu item, updating state 111 
Clearing a drawing in Scribble, OnEditClearAll member 

function 104 
Client applications 

document classes, loading and saving 286 
item classes, loading and saving 286 

Client applications, OLE 
classes for writing 278 
defined 276 
document classes 278, 281 
item classes 278,281 
writing 278 

Client area, of window and view object 50 
Clipboard 

as file object 233 
toolbar buttons 78 

Close member function, CFile class 228 
Closing, files 228 

CMainFrame class 21 
CMDIChildWnd class 155, 157 
CMemFile class 233 

Index 309 

CMemoryException exception handler 256 
CNotSupportException exception handler 256 
CObject 

dynamic reconstruction of 237 
serialization of 

cases 238 
example 238 

storing/loading via CArchive 237 
CObject class 

basic functionality, using 212 
deriving classes from 

cost 211 
functionality, levels of 211 
overhead 211 

dynamic creation, adding 213 
functionality, levels of 211 
implementation files 211 
interface files 211 
IsKindOf function, using 215 
levels of functionality 

how to specify 212 
macros 212 

macros 
DECLARE_DYNAMIC 213-215 
DECLARE_DYNCREATE 213-215 
DECLARE_SERIAL 213-215 
IMPLEMENT_DYNAMIC 213-215 
IMPLEMENT_DYNCREATE 213-215 
IMPLEMENT_SERIAL 213-215 
RUNTIME_CLASS 215 

run-time class information 
accessing 214 
adding 213 

serialization 214,229 
CObject collection, deleting all objects 221 
CObList class 41 
Code, adding to tutorial example 13 
CODEVIEW option 304 
Code View, building application with support for 304 
COleClientDoc class 

defined 278,281 
member functions 

NotifySaved 286 
RegisterClientDoc 286 

COleClientItem class 
defined 278, 281 
member functions 

Activate 294-295 
CopyToClipboard 285 
CreateFromClipboard 283 
CreateNewObject 282,293-294 



310 Index 

COleClientItem class (continued) 
member functions (continued) 

CreateStaticFromClipboard 283 
DoVerb 283-284,294-295 
Draw 285 
OnChange 281-282,285,294-295 

COleDocument class 277,281,286,289-290 
COleException class 277 
COleServer class 

defined 278-279 
member functions 

BeginRevoke 294-295 
NotifySaved 295 
OnCreateDoc 282, 287, 294 
OnEditDoc 287, 294 
OnOpenDoc 295 
Register 293-295 

COleServerDoc class 
defined 278-279,289-290 
member functions 

NotifySaved 294-295 
OnGetEmbeddedItem 289,294-295 
OnGetLinkedItem 290, 295 

COleServerItem class 
defined 278-279,290 
member functions 

CopyToClipboard 289 
OnDraw 285, 290, 294-295 
OnEnumFormats 291 
OnExtra Verb 290 
OnGetData 294-295 
OnGetTextData 291 
OnSetData 295 
OnShow 290,294-295 

COleTemplateServer class 
defined 278,287-288,294-295 
member functions, RunEmbedded 288, 293 

Collection classes 217-224 
Collections 

array elements, deleting 222 
arrays, iteration of 220 
CObject class 221 
deriving and extending 219 
lists 

deleting objects in 221 
iteration of 220 

map elements, deleting 223 
maps, iteration of 221 
members, accessing 220-224 
objects sharable in 221 
predefined, using 218 
queue, creating 224 

Collections (continued) 
shapes 

list of 217 
features (table) 217 

stacks, creating 223 
templates, using 219 
type-safe, described 218 

Color palette 79 
Command 

and ID 91 
architecture in framework 91 
as message 91 
assigned to user-interface objects 87 
associating with buttons 84 
binding 

Clear All 101 
Scribble 100 
to toolbar button 106 

Class Wizard, App Studio 90 
Clear All 68, 100-10 1 
concepts, described 91 
Cut, Copy, Paste 78 
Debug menu 

breakpoints 24 
Go 24 

defined 91 
duplicating menu with toolbar button 111 
examples 91 
for building versions of class library 303 
framework 

implementations 43 
invoking 78 

help-related, table 184 
ID 74 
ID_CONTEXT_HELP 183 
ID_DEFAULT_HELP 183 
ID_HELP 183 
ID_HELP _INDEX 183 
ID_HELP _USING 183 
in framework 6 
mapping 

defined 94 
to code 84 
to handlers 87 

message 78, 87 
Messages list box, selected in 102 
naming conventions 110 
New, implementation 39-40 
Open, implementation and serialization 39-40, 43 
Pen Widths 68, 76, 100 
Project menu, Execute Target 24 
prompt string 73, 179 
replacing menu with toolbar button 111 
routing 91, 94 



Command (continued) 
same handler for menu and toolbar button 111 
Save As, implementation and serialization 43 
Save, implementation and serialization 43 
Scribble 

Clear All 68, 74,87, 100 
Thick Line 68,87, 101 

sending 91 
targets 91 
Test, in App Studio 69 
Thick Line 

adding to Pen menu 75 
binding 104 
defined 68 
toolbar button 78 

Visual Workbench, Class Wizard command 90 
WM_COMMAND message 91 

Command architecture, in framework 91 
Command binding 

ClassWizard 93 
command ID 93 
defined 89,93 
to command handler 93 
to user-interface object 93 

Command handler, defined See Message handler 
CommandID 

as menu ID 74 
assigning 71 
assigning to mUltiple objects 93 
buttons array 84 
command binding 93 
defined 74 
duplicate 71 
help related, table 183 
menu 71 
RESOURCE.H file 71, 186 
same as command 91 
toolbar button 84, 93 

Command routing 
application object, default processing 97 
CCmdUI structure 109 
default processing 97 
defined 94, 95 
example 97 
expense of 96 
framework support for 4 
general order of targets 96 
if no handler found 97 
message map 99 
of specific framework objects 96 
standard 94, 96 

Index 311 

Command routing (continued) 
to next target, OnCmdMsg member function 95 
update commands 109 
Windows messages not routed 97 

Command target 
CCmdTarget class 92 
class hierarchy 92 
classes 

giving other classes first chance 96 
when message map is searched 96 

defined 92 
derivation 92 
example command routing 97 
handling update commands 109 
in command architecture 91 
message handlers 93 
message map 92-93,99 
OnCmdMsg member function 95 

command routing 95 
override 95 

routing command to next target 96 
standard routing 96 
updating user-interface objects 109 
using message map 95 
which class gets handler 100 

Comments 
in message map 94 
TODO, by AppWizard 45 

Compiler, Help See Windows Help Compiler 
Compiling 

starter application 18, 23 
starter files 23 

Components of message map 95 
Compound documents, defined 274 
Concatenation operators 205 
Connecting 

commands to handlers 89 
messages 

to handlers 89 
to code, with ClassWizard 57-58 

toolbar button to code 84 
Constructing a pen object, two stages 56 
Constructors 

CStroke class 38 
defining 232 
exceptions 262 
frame allocation 200 

Context, help See Help context 
Context-sensitive help 

See also Help project file 
See also HM file 



312 Index 

Context-sensitive help (continued) 
See also RESOURCE.H file 
adding later 187 
AFXCORE.RTF file 195 
authoring help 

example 195 
process described 193-194 
tenninology 194 

Fl help 180 
Fl key and ID_HELP command 184 
fine tuning 181 
footnotes 194 
framework's role 180 
Help menu, support for 181 
help screens 194 
help-related files 191 
HM file, example 193 
hotspot 194 
implementing with App Wizard 181 
jumps 194 
member functions, predefined by framework 184 
message map entries for, example 183 
not implemented in Scribble step 0 187 
popups 194 
RESOURCE.H file, example 192 
RTF files 

fonnat of 194 
starter help topics 193 

SHIFT +F1 help 180 
SHIFT+F1 keys and ID_CONTEXT_HELP 

command 184 
table of command IDs 183 
trying it out 186 
your role 181 

Context-sensitive help option 
products of 182 
selecting 181 
tools 186 
what you get 187 

Control messages, VBX controls, defined 268 
Control pointer, VBX control, declaring 267 
Control-notification messages 

message map 97 
sent only to windows 97 
VBX controls, from 268 

Controls 
See also VBX controls 
CIRC3 VBX control example 266 
custom 

examples 265 
variety available 265 
Visual Basic 265 
Visual C++ 265 

Controls (continued) 
dialog 

creating a data map 127 -130 
modifiying properties 119 

dragging 76 
GRID VBX control example 266 
interface to 111 
self-drawing 99 
VBX 

and Windows DLLs 265 
capabilities in Visual C++ 265 
standard file format 265 

Conventions, textual in tutorial 10 
CopyToClipboard member function 

COleClientItem class 285 
COleServerItem class 289 

CPen class 40,56 
CPen WidthsDlg class, Scribble example, creating 121 
CPoint class 39 
CPrintlnfo structure 163 
Create member function, CSplitterWnd class, example 

156-157 
CreateFromClipboard member function, COleClientItem 283 
CreateNewObject member function, COleClientItem 

class 282,293-294 
CreatePen member function 

called in DrawStroke 56 
called in ReplacePen 105 
class CPen 56 

CreateStaticFromClipboard member function, COleClientItem 
class 283 

Creating 
App Wizard project directory 19 
class CScribDoc 33 
document object 31 
document, described 31 
new application, process 17 
objects dynamically 44 
queue collections 224 
resource 69 
stack collections 223 
view 

your role 51 
objects 51 

Creation, dynamic 211 
CResourceException exception handler 256 
CScribbleApp class 21 
CScribDoc class 

See also InitDocument 
and App Wizard 33 
code for 34 
creation of 33 
declaration of 33 
initialization 40 



CScribDoc class (continued) 
introduced 32 
member functions of 35 
member variables of 34 
role of, described 32 
searching message maps 100 
Serialize member function 44 

CScribFrame class, Scribble example 154 
CScrib View class 

and AppWizard 52,54 
calls strokes to draw themselves 55 
declaration of, code for 52 
member functions of 54 
member variables of 54-55 
OnDraw member function, defined 55 

CScrollView class 
adding scrolling to an application 143 
example 146 
member functions, SetScrollSizes 143 

CSplitterWnd class 
example 154-158 
providing window splitting with 153 

CString class 
basic operations 205 
contents, modifying 208 
formal parameters, specifying 207 
member functions, comparision to C run-time 

functions 206 
string manipulation 204-209 

CString objects 
as actual strings 206 
exceptions 262 
operations 207 - 209 
with variable argument functions, using 209 

CStroke class 
code for 36 
constructors 38 
declaration of 36 
forward declaration of 34 
IMPLEMENT_SERIAL macro 46 
incremental versions of 46 
member functions of 38 
member variables of 37 
members used by view 55 
points, storage of 39 
Serialize member function, code for 46 

CStroke class member functions, defined 38 
CTime class, date and time management 203-204 
Custom controls See Controls 
CVBControl 

construction, example 270 
constructor, when to use 270 
object 

Index 313 

CVBControl (continued) 
construction, two-stage 270 
destroying, bAutoDelete parameter 271 

CView class 
derived classes of 

CEditView 50, 52 
CForm View 50, 52 
CScrollView 50 

member functions 
OnPrepareDC 148 
OnUpdate 136-137 

printing with 159-161 
your view class derived from 50 

CWinApp class 184 
CWnd class 

D 

classes derived from 98 
member functions 

DoDataExchange 130-131, 13 3 
UpdateData 130-131, 133 

message map 98 

Data 
delegating drawing to 55 
loading from disk See Serialization 
management 

document 30 
Scribble 41 

Scribble 
m_strokeList variable 33 
stroke 32 
stroke list 33 

storage of, in document 30 
storing to disk See Serialization 
view's access to document 51 

Data map for dialog controls 127-130 
Data types See Types 
Date management, described 203-204 
DBWIN.EXE, capturing debugging output 244 
Deallocating heap space 262 
Debug 

libraries 
linking with for debug builds 242 
table of 301 

menu 
Breakpoints command 24 
Go command 24 

option, setting 241 
DEBUG symbol 241 
DEBUG_NEW macro 253 
Debugging 

ASSERT macro 244 
DEBUG_NEW macro 253 



314 Index 

Debugging (continued) 
diagnostics 241-253 
features 

enabling 241 
overview 241 

infonnation, Code View 304 
memory leaks, snapshots for locating 248 
output 

destinations 243 
under MS-DOS 244 
under Windows 243 

Scribble 24 
TRACE macro 243 

Declaration 
class CScribDoc 33 
class CScrib View 52 
classCStroke 36 
forward, of class CStroke 34 

DECLARE_DYNAMIC macro 213-215 
DECLARE_DYNCREATE macro 44 
DECLARE_MESS AGE_MAP macro 

access control 95 
location 95 

DECLARE_SERIAL macro 46, 230 
Declaring VBX control pointer 267 
Default 

command processing 97 
libraries, AppWizard 301 
menus, created by App Wizard 68 
options, App Wizard 22 

Delegating 
drawing to data objects 55 
messages 99 

Delete operator, C++ 104,200 
DeleteContents member function 

called from OnEditClearAll 104 
in Scribble 41 
overriding, code for 41 
when called 41 

DeleteObject member function, called in ReplacePen 105 
Deleting 

array elements 222 
list objects 221 
map elements 223 
objects in a CObject collection 221 
strokes in Scribble, OnEditClearAll member function 104 
toolbar button 78 

Derived window classes 98 
Deriving from CObject 

basic functionality, described 211 
overhead for classes derived 211 
support 

Deriving from CObject (continued) 
dynamic creation 211 
run-time class infonnation 211 
serialization 212 

Deserialization See Serialization 
Design Guide 3, 8 See also Windows Interface: 

An Application Design Guide, The 
Destinations of messages 97 
Device 

context 
encapsulated by CDC object 56 
restoring, in DrawStroke 56 

coordinates 148, 151 
Device-context object 

class CDC 56 
OnDraw member function use 55 
uses of 56 

Diagnostics 
debugging, features of 241-253 
enabling debugging features 241 
memory 

afxMemDF values 248 
enabling or disabling 248 
table of afxMemDF values 248 

memory allocation tracking, effects on program 241 
memory leaks, detecting 248 
turning features on and off 241 

Dialog bar button, updating with CCmdUI 111 
Dialog editor, App Studio 76, 118 
Dialog object, in standard command routing 96 
Dialog boxes 

connecting to code 120 
controls, modifying properties 119 
data map for controls 127-130 
defining message handlers 121 
designing with App Studio 118 
displaying 131 
Grid Settings, App Studio 80 
property page 119 
using Class Wizard 121 

Dialog Data Exchange functions 130 
Dialog Data Validation functions 130 
Difference member function, CMemoryState class, 

memory leaks, detecting 249 
Dimming user-interface objects 108 
Directory, App Wizard project 19 
Disabling 

memory diagnostics 248 
user-interface objects 92, 108 

Dispatching messages, message map 93 
Distributing VBX controls, guidelines 271 
DLLs 

See also AFXDLL 
See also USRDLL 



DLLs (continued) 
building 303 
DLL version of class library 302 
libraries for 302 
MODEL option, L required 303 

DLLs (continued) 
using class library in 302 
VBX controls 265 
Windows 302 

Document 
See also Document object 
and view 

illustrated 30 
interaction between 31 
roles described 30 

compound, defined 274 
for OLE 

clients 278 
servers 279 

frame window and view object 50 
member functions, calling from view 51 
member variables, access to from view 51 
notifying view of changes 136-137 
relationship to view, illustrated 6 
template object, in standard command routing 96 

Document class 
code for 34 
Scribble, introduced 32 See also CScribDoc class 
serialization of 44 

Document object 
and frame window 30 
cleanup 41 
creation of, described 31 
deallocating system resources 39 
defined 30 
derived from class CDocument 31 
in framework 5,29 
in relation to other objects 29 
in standard command routing 96 
initializing 39 
interaction with view 51 
introduced 28 
managing 39 
responsibilities of 30 
role of in the framework 30 
separation from view of data 30 
updated by view 51 
user interaction with, through view 50 
view, interaction with, described 31 
with multiple views 50 
your role in creating 32 

Documentation, guide to 2 
DoDataExchange member function, 

CWnd class 130-131, 133 

Index 315 

DoModal member function, CDialog class 131, 133 
DoPreparePrinting member function, CView class 163, 172 
DoVerb member function, COleClientItem 

class 283-284,294-295 
DPtoLP member function, CDC class, example 169 
Drag and drop 76 
Dragging 

controls 76 
menu items 76 
menus 76 

Draw member function, COleClientItem class, described 285 
Drawing 

delegating to data objects 57 
environment, restoring 56 
in view object 51 
lines with the pen, LineTo member function 56 
Scribble's document 55 
strokes 

initiating 61 
terminating 62 
tracking mouse 63 

the view 31 
with mouse 51, 57 

Drawing environment See Device context 
DrawStroke member function 

class CScribView, described 56 
class CStroke 

called by OnDraw 55 
defined 55 

pen used in 56 
Dump member function 

action, described 242 
bracketing with #ifdef/#endif 242 
CObject class 242-243 
declaration, example of 242 
overriding 242 
use, described 242 

DumpAllObjectsSince member function 250 
Dumping 

memory statistics 250 
object contents 242 
objects 

description 250 
example 251 
interpreting 251-252 

Duplicate command IDs 71 
Duplicating menu with toolbar button 111 
Dynamic 

construction of objects 233 
creation 211 
creation of ojects 44 
link libraries See DLLs 
reconstruction of CObjects 237 



316 Index 

E 
Edit Code button, Class Wizard 103 
Edit Links command 280, 284 
Edit menu 

Clear All command 68 
Cut, Copy, Paste commands 78 

Editing 
accelerator tables, with App Studio 184 
bitmaps, toolbar buttons 79 
code from ClassWizard 89, 103 
controls, modifying properties 119 
dialog boxes 118 
graphics 79 
menus, with App Studio 68-69, 72 
message maps 90 
properties, menu 71 
resources 69 
symbols 84 

Editor 
dialog 76 
graphics 79 
keyboard shortcuts for menu 69 
menu 68,76 
resource 76 

Embedded items, OLE 
and server applications 287 
defined 275 
editing 287,289,294 
inserting 279,282,287,293 
storing 286 

Embedded objects 
serialization of 239 
using Serialize member function for serialization of 45 
vs. pointer to object 45 

Enable member function 110 
EnableMenultem member function 109 
Enable VBX function 267 
Enabling 

memory diagnostics 248 
menu item, example 112 
user-interface objects 108 

buttons 92 
defined 108 
menus 92 

Encapsulation, of Windows API 4 
END_CATCH macro, use of 257 
END_MESSAGE macro, use of 94 
Ending a stroke 62 
Entry, message map See Message map 
Event register map 

VBX controls 269 
VBX events, example 269 

Example programs See Programs 
Exception handlers 

defined 255 
predefined 256 

Exceptions 
CATCH macro 256,258,260-261 
catching 256-257 
constructors, in 262 
contents, examining 258 
CString objects 262 
examining contents, example 258 
frame variables 262 
in class library functions 256 
memory leaks, avoiding 263 
objects, freeing 

example 259 
handling locally 259 
primary methods 258 
throwing after destroying 260 

opening a file, CFileException 228 
similarity to ANSI proposals 255 
throwing 

defined 256 
from your own functions 261 
procedure 261 

thrown by class library 256 
TRY macro 256,258,260 
when to provide handlers 256 
where to catch, in Scribble 42 

Execute Target command 24 
Executing Scribble 24 
Extraction operator, class CArchive 45,235 

F 
F1 help, described 180 
F1 key, accelerator, defined for ID_HELP command 184 
Features 

Microsoft Foundation classes, new, described 297 
of the Class Library 4 

Files 
AFXCORE.RTF file 195 
closing 228 
getting file status, example 229 
Help project (HPJ) 184 
help-related 191 
help, App Wizard-created, conditions of use 180 
HM file, context-senstive help 185 
HPJ, help project 184 
implementation 232 
MAKEHELP.BAT, described 185 
MAKEHM.EXE 186 
object used as Clipboard 233 



Files (continued) 
opening 

example 227, 228 
exceptions 228 

PEN.RTF help file 180 
reading 

example 228 
from 228 

.REG file 291 
resource 77 
serialization, described 229 
status, getting 229 
writing to 228 

Files, class library 
locations of 298 
sample programs 

locations of 299 
MFCSAMP.HLP file 299 
MFCNOTES.HLP file 299 

source code 
locations of 298 
uses of 299 

Fine-tuning context-sensitive help 181 
FinishStroke member function, CStroke, Scribble example 

139 
Footnote symbols, help 194 
Foundation class library 

debug version, features 241 
diagnostics 241-245,247-248,250-253 
exception handlers, predefined 256 
exceptions 255-259,261-262 
files and serialization 227,229-232 
general-purpose classes 199-200,202-208 
memory leaks, detecting 247-252 
release version, AssertValid member function 245 

Foundation classes 
CArchive 229 
CFile 227 
CObject 211-215,229 
collections 217-224 See also Collections 
CString 204-209 
CTime 203-204 
debugging, DEBUG_NEW macro 253 
exception handling 255 
files 

closing 228 
opening 227 
reading from 228 
status, getting 229 
writing to 228 

macros 
AND_CATCH 257 
ASSERT 244 
ASSERT_VALID 94 

Foundation classes (continued) 
macros (continued) 

BEGIN_MESSAGE_MAP 94 
CATCH 256,258,260-261 
DEBUG_NEW 253 
DECLARE_DYNAMIC 213 
DECLARE_DYNCREATE 213 
DECLARE_SERIAL 230 
END_CATCH 257 
END_MESSAGE_MAP 94 
IMPLEMENT_DYNAMIC 213 
IMPLEMENT_DYNCREATE 213 
IMPLEMENT_SERIAL 232 
TRACE 243 
TRY 256, 258,260 
VERIFY 245 

serialization 229-23 2 
Frame allocation 

advantage 200 
defined 199-200 
disadvantage 200 
example 

array of bytes 201 
object 202 
structure 201 

Index 317 

memory leaks 200 
Frame variables, exceptions 262 
Frame window 

as view creator 51 
document and view object 50 
object, in standard command routing 96 

Framework 
application object 5 
benefits of using, described 8 
command architecture 91 
command implementations 

Open command 43,234 
Save As command 43, 234 
Save command 43,234 

commands 8 
concepts, key 5 
creating view objects 51 
defined 5 
document 

and view, separation of 30 
object 5 
role of, in 29 

general process in using 7 
help, role in supporting 180 
implementations of standard menus, listed 4 
implementing commands 39 
partnership 

framework's role 8 
your role 7 



318 Index 

Framework (continued) 
purpose 5 
reusability 5 
role of document in 30 
terminology 5 
using, described 5 
view object 6 
views in 50 
your code in, illustrated 8 
your main tasks in 6 

free function 200 
Full servers, described 287-288 
Function handler 87 
Function names in tutorial, text conventions 10 
Function templates 89 
Functionality, basic levels of 212 

G 
GDI resources, for printing 167 
Generating commands 87 
GetBuffer member function, CString class 208 
GetCapture member function, class CWnd, called in 

OnMouseMove 63 
GetDocument member function 

called by OnDraw 55 
class CScrib View 

in debug version 55 
inline definition of 55 
IsKindOf member function 55 
RUNTIME_CLASS macro 55 

class CView 51 
GetFirstStroke member function 42 
GetFirstStrokePos member function, called by OnDraw 55 
GetHeadPosition member function, class CObList 42 
GetNext member function, class CObList 42 
GetNextStroke member function 

called by OnDraw 55 
defined 42 

Graphical user interface (GUI), programming for See GUI 
Graphic Device Interface (GDI) See GDI resources 
Graphics editor See Bitmap editor 
Graphics palette 79 
Graphics, editing See Bitmap editor 
Grid bitmap editor 80 
Grid settings, dialog box 80 
GUI (graphical user interface) 9 
Guide to documentation 2 
Guidelines 

for locating handlers 101 
for distributing VBX controls 271 

H 
Handler 

See also Message handler 
base class 98 
command 

how called 95 
user-interface update 109 

declaring 100 
defined 100 
derived class 98 
exception, defined 255 
exception, in Scribble 42 
function 

creating with ClassWizard 58 
in command target 92 
menu item 78 
toolbar button 78 
VBX control messages 268 

message, in view object 57 
names, synthesized by Class Wizard 102 
OnEditClearAll member function, Scribble 103 

Handling 
VBX control messages 268 
Windows messages 57 

Headers and footers See Page headers and footers 
Heap allocation 

array of bytes 201 
arrays, deallocating 201 
data structures 202 
deallocation, example 201 
described 200 
example 

array of bytes 201 
object 202 
structure 202 

objects 202 
types 200 

Hello world program, replaced by Scribble 9 
Help 

and [MAP] section 185 
authoring See Context-sensitive help 
button, toolbar 78 
context 

and help project file 185 
components of 185 
defined 185 
in framework 185 
in Scribble 192 
purpose of 185 
used by help author 185 
used by programmer 185 

F1, described 180 



Help (continued) 
files 

App Wizard-created, conditions of use 180 
HLP 186 
PEN.RTF 180 
starter set of RTF files 181 

mapping file See HM files 
menu, support for 181 
mode See SHIFT +F1 
project file 

See also Context-sensitive help 
[MAP] section 185 
App Wizard, created by 184 
contents, described 185 
defined 184 
example 184 
purposes of 185 

SHIFT +F1, described 180 
support 

See also Context-sensitive help 
division of labor 180-181 
framework's role 180 
your role 181 

topics, starter 193 
Help Compiler, Windows See Windows Help Compiler 
Help, context sensitive See Context-sensitive help 
Hierarchical menu 76 
Hierarchy, command target 92 
HLP file See Help file 
HMfiles 

contents, described 193 
context-sensitive help, introduced 185 
example 193 

How a command handler is called 95 
HPJ file See Help project file 

10 
command 74 
resource 69 

ID_CONTEXT_HELP command, described 183 
ID_DEFAULT_HELP command, described 183 
ID_HELP command, described 183 
ID_HELP _INDEX command, described 183 
ID_HELP _USING command, described 183 
ID_SEPARATOR See Toolbar 
Idle loop, searching for toolbar update handlers 111 
lOR_MAINFRAME 

menuID 72 
resource ID 79 

Image editor See Bitmap editor 
Image window 79 
IMPLEMENT_DYNAMIC Macro 213-215 

IMPLEMENT_SERIAL macro 
and DECLARE_SERIAL macro 46 
code for, in Scribble 46 
example 139 
for class CStroke 46 
in Scribble 46 
schema number in 46 
using in implementation file 232 

Implementation file 211 
Implementing views, your role 51 

Index 319 

Indicator, status bar, updating with CCmdUI 111 
Inheritance, in Class Library 5 
Inherited behavior, overriding 62 
InitDocument member function 

called in OnNewDocument 39-40 
called in OnOpenDocument 39-40 
code for, in Scribble 40 
pen, initialization of 40 
Scribble, code for 106, 108 

Initializing 
document 39-40 
view 51 
VBX run-time support 267 

Initiating stroke drawing, in Scribble 61 
InitInstance member function 

CWinApp class, example 157 
initializing VBX support 267 

Input/output See Serialization 
Insert New Object command 

defined 279 
how used 291, 293 
implementing 282 

Insertion operator, CArchive, using 235 
Insertion point 76 
Installing the class library 

options, setup 298 
overview 298 
reinstalling components 298 

Interaction between document and view 31 
Interface file 211 
Interpreting 

dumped objects 251 
memory statistics 250 

InvalidateRect member function, CWnd class, example 141, 
150 

Invoking 
App Wizard 17 
Class Wizard 90 
commands in framework 78 

IsKindOf member function 
called by GetDocument 55 
using 215 
with ASSERT macro, example 245 

IsSelected member function, CView class, with OLE 284-285 



320 Index 

IsStoring member function 
class CArchive 45 
using 235 

Iteration, collection classes 220 

J 
Jumping 

to code from ClassWizard 89, 103 
to Visual Workbench from ClassWizard 103 

K 
Keeping Properties window visible 70 
Keyboard shortcuts, in App Studio menu editor 69 
Kruglinski, David 2 

L 
Leaks, memory 200 
Lengthening tool bar bitmap 81 
Libraries 

debug 242 
object 

naming conventions (table) 302 
prebuilt, supplied 301 
standard MAKEFILE supplied 303 
table of 301 

versions of class library, building 301 
Library support for writing message handlers 108 
LineTo member function, class CDC 56 
Linked items, OLE 

and server applications 287 
defined 275 
editing 290, 295 
inserting 280, 282 
modifying properties 280, 284 
storing 286 

Lippman, Stanley 2 
List classes, features 217 
Lists 

iteration of 220 
objects, deleting 221 

Loading 
CObjects via CArchive 237 
data from disk See Serialization 
data with a CArchive 233 

Locating handlers, guidelines 101 
Logical coordinates 148, 151 

M 
m_bContinuePrinting, CPrintInfo structure 166 

m_bPreview member, CPrintInfo structure 176 
m_nCurPage member, CPrintInfo structure 163-164, 176 
m_nNumPreviewPages member, CPrintInfo structure 176 

variable, Scribble 33 
m_rectDraw member, CPrintInfo structure 166 
m_strokeList 

variable, Scribble 33 
cleanup of See DeleteContents 

Macros 
AND_CATCH 257 
ASSERT 244 
ASSERT_VALID 245 
BEGIN_MESSAGE_MAP 94 
CATCH 256,258,260-261 
DEBUG_NEW 253 
DECLARE_DYNAMIC 213-215 
DECLARE_DYNCREATE 44 
DECLARE_SERIAL 230 
END_CATCH 257 
END _MESSAGE_MAP 94 
IMPLEMENT_DYNAMIC 213-215 
IMPLEMENT_DYNCREATE 213 
IMPLEMENT_SERIAL 46, 232 
names, in tutorial, text conventions 13 
ON_ VBXEVENT 269 
ON_ WM_LBUTTONDOWN 59 
RUNTIME_CLASS 55,215 
TRACE 243 
TRY 256,258,260 
VERIFY 245 

Makefile, project file 10 
MAKEFILE, standard, supplied for building 303 
MAKEHELP.BAT 

and MAKEHM tool 186 
defined 185-186 
mapping #defines to help strings 186 
running from MS-DOS 186 
what it does 186 

MAKEHMtool 
andMAKEHELP.BAT 186 
introduced 186 
mapping #defines to help strings 186, 193 

MAKELONG macro, described 39 
malloc function 200 
Managing data, in Scribble 41 
Manipulation of strings 204-209 
Map classes, described 217 
MAP section, help project file, described 185 
Mapping 

See also Binding, command 
buttons to commands 84 
commands to code 84 
commands to handlers 87 
commands to menus and buttons 111 



Mapping (continued) 
dialog controls to member variables 127-130 
messages 94 
messages to code 57 
modes 

MM_LOENGLISH, in Scribble 66 
MM_ TEXT, in Scribble step 1 66 

modes 

Maps 

metric 168 
printing 168 

elements, deleting 223 
iteration of 221 

MOl application 
See also Multiple document interface 
and view object 50 
menus 68,72 

Member functions 
Add, class CDWordArray 39 
AddTail, class CObList 42 
CFile class 

Close 228 
Open 227 
Read 228 
Seek 228 
Write 228 

CMemoryState class 
Checkpoint 249 
Difference 249 

CObject class 
AssertValid 246 
Dump 242-243 
Serialize 231 

CreatePen, class CPen 56 
CString class 

GetBuffer 208 
ReleaseBuffer 208 

definition 102 
DeleteContents, class CDocument 41 
DrawStroke, class CStroke 55 
GetCapture, class CWnd 63 
GetDocument, class CView 51 
GetHeadPosition, class CObList 42 
GetNext, class CObList 42 
IsKindOf, class CObject 55 
IsStoring, class CArchive 45 
LineTo, class CDC 56 
message handler 87 
MoveTo, class CDC 56 
OnContextHelp, class CWinApp 184 
OnDraw, class CView 51 
OnHelpIndex, class CWinApp 184 
OnHelpUsing, class CWinApp 184 
OnInitialUpdate, class CView 51 

Index 321 

Member functions (continued) 
OnLButtonDown, class CWnd 59,61 
OnLButtonUp, class CWnd 62 
OnMouseMove, class CWnd 63 
OnNewDocument, class CDocument 39 
OnOpenDocument, class CDocument 39 
OnUpdate, class CView 51 
ReleaseCapture, class CWnd 62 
RemoveHead, class CObList 41 
SelectObject, class CDC 56 
Serialize, class CDocument 44 
Serialize, class CObject 44 
SetCapture, class CWnd 61 
SetModifiedFlag, class CDocument 42 
UpdateAllViews, class CDocument 51 

Member Functions list box, Class Wizard 103 
Member function template See Member functions, definition 
Member variables 

adding to Scribble 106 
naming convention 34 

Memory 
allocation 

resizable blocks, mixing new/delete, malloc/free 203 
resizable memory blocks 203 
types 200 

blocks, resizable 203 
diagnostics, enabling or disabling 248 
file 233 
leaks 

caused by forgotten objects 200 
CString, avoiding 263 
DEBUG_NEW macro 253 
defined 247 
detecting 247-252 
example 259 
snapshots for debugging 248 

management 
frame allocation 199 
heap allocation 200, 202 

models 
AppWizard, used by 301 
supplied (table) 301 
supported (table) 301 

statistics 
dumping 250 
interpreting 250 

Menu editor 
App Studio, using to edit Scribble's menus 68-76 
keyboard shortcuts 69 
saving work 74 

Menu item 
checking 108 
disabling 108 
enabling 108 



322 Index 

Menus 
adding 68, 74 
caption 73, 75 
checked state 114 
command ID 71 
copying with App Studio 188 
default 68 
designing 69 
dragging 69, 75 
duplicating with toolbar button 111 
editing 68-69, 72,74 
hierarchical 77 
implementations of standard 4 
interface to 111 
MDI application 68 
new, adding 71 
Pen 68, 74 
properties 71 
replacing menu with toolbar button 111 
saving edits automatically 74 
specifying accelerator key 73 
updating state 109, 111 
window 68 

Message mapping 94 
Message handlers 

defined 100 
example 100 
for dialog boxes, example 121, 124-125, 130 
for menu commands, example 132 
in Scribble, mouse tracking 57 
library support for 108 
location, guidelines 101 
naming 

conventions 110 
rules 100 

object-oriented programming 108 
parameter signatures 100 
same handler for menu and toolbar button 111 
update, making update handlers fast 112 
what class 100 

Message map 
access control 95 
BEGIN_MESS AGE_MAP, use of arguments 98 
ClassWizard 95 
command target 94, 99 
comments, entries between 94 
context-sensitive help 

entries, example 183 
table 183 

copying help entries 189 
defined 93-94 
dispatching messages 93 
editing 90 
entries outside comments 94 

Message map (continued) 
entry 

components of 95 
defined 94 
example 95 

example 94, 127 
in .CPP file 94 
in base class, accessing 98 
in command 

routing 97 
target 92-93 

in noncommand messages 97 
in view object 57 
macros 

BEGIN_MESSAGE_MAP 94 
DECLARE_MESSAGE_MAP 95 
END_MESSAGE_MAP 94 

messages 
commands 97 
control-notification 97 
Windows 97 

nonwindow objects 98 
objects with 98 
of base class 98 
of derived class 98 
of higher base classes 98 
ON_UPDATE_COMMAND_UI entry 110 
OnUpdateEditClearAll member function, example 113 
OnUpdatePenThickOrThin member function 114 
protected 95 
searching 

base classes 99 
described 97-98 
example 100 
illustrated 98 

special comment lines 94 
structure 94 
update handler entry 113 
updating user-interface objects 110 
VBX 

control messages 268 
controls, example 269 

what it does 95 
WM_ messages 97 
writing manually 93 
your role 95 

Message-driven programs 87 
Message-handler functions, adding to your code See Message 

handlers 
Message-handler member function See Message handlers 
Messages 

command 78 
connecting to code 57 
control-notifications, from VBX controls 268 



Messages (continued) 
delegated 

control-notifications 99 
scrolling 99 
to other objects 99 

destinations 97 
responding to 87 
sending 87 
sent to a window, currently active view 57 
updating user-interface objects 109 
Windows, handling 57 
WM_LBUTTONDOWN 57 
WM_LBUTTONUP 57 
WM_MOUSEMOVE 57 

Messages list box, Class Wizard 102 
Metric mapping modes See Mapping modes, metric 
MFC.HLP 302 
MFC 1, migrating from 
MFC200 See AFXDLL 
MFC200D See AFXDLL 
MFCNOTES.HLP file 181,299,302 
MFCSAMP.HLP file, sample programs, described 299 
Microsoft Foundation Class Library 

DLL version of 302 
features 4 
versions of 301 

Microsoft Foundation classes 
features, new, described 297 
files, locations of 298 
files,source 

locations of 298 
uses of 299 

installing 298 
reinstalling components 298 
sample programs 

locations of 299 
MFCNOTES.HLP file 299 
MFCSAMP.HLP file 299 

Microsoft Word for Windows 193 
Migration, MFC 1 to MFC2 I 
Mini-servers, described 287-288 
MM_LOENGLISH mapping mode 

defined 168-169 
in Scribble 66 

MM_TEXT mapping mode 
defined 168-169 
in Scribble 66 

MODEL option, L for DLL 303 
Mouse 

capturing 61 
drawing 

in Scribble 57 
view response to 51 
why handled by view 57 

Mouse (continued) 
related messages, in Scribble 57 
releasing 62 
tracking 63 

Mouse-driven drawing See Drawing 

Index 323 

MoveTo member function, class CDC 56 
MS-DOS version of class library, TARGET option 

set to R 303 
Multiple document interface (MDI) See MDI 

N 
Naming 

command IDs 110 
message handlers 110 
object-code libraries 302 
user-interface update handlers 110 

Naming conventions 
classes 34 
commands 11 0 
Debug library 242 
libraries, object, table of 302 
member variables 34 
message handlers 110 
update handlers 110 

Native data, OLE 
and Serialize member function 290 
defined 275 

New 
menu, adding 71 
resource, creating 69 

New command, framework, implementation of 39 
New features, Microsoft Foundation classes 297 
new operator 

and DEBUG_NEW macro 253 
invoked in NewStroke 42 
return value 42 
used as debugging enhancement 200 

NewStroke member function 42 
NMAKE 

building object-code libraries 303 
commands for building versions of class library, table of 

303 
Notification See Control-notification message 
NotifySaved member function, COleClientDoc class 286 
NotifySaved member function, COleServer class 295 
NotifySaved member function, COleServerDoc class 94-295 
NT, Windows, and serialization 47 

o 
Object IDs list box 

Class Wizard 102 
contents 102 



324 Index 

Object Linking and Embedding See OLE 
Object-oriented programming message handlers 108 
Objects 

See also Application 
afxDump 243 
CString class, exceptions 262 
document, introduced 28 
dump, interpreting 251-252 
dumping 

context 242 
example 250-251 
interpreting dump 251 

dynamic creation of 44 
in application, table of 29 
persistence 229 
user-interface object 92 
view, introduced 28 

Objects, embedded See Stroke list 
OLE 

client applications 
classes for writing 278 
defined 276 
document classes 278,281,286 
item classes 278, 281, 286 
writing 278 

compound documents, defined 274 
defined 273-274 
document base class 277 
Edit Links command 

defined 280 
implementing 284 

embedded items 
and server applications 287 
defined 275 
editing 289, 294 
inserting 279, 282, 293 
storing 286 

example 273 
exceptions 277 
Insert New Object command 

defined 279,291, 293 
implementing 282 

item types 
and Insert New Object command 279 
and server classes 278 
defined 275 
names 292 

linked items 
and server applications 287 
defined 275 
editing 290, 295 
inserting 280, 282 
modifying properties 280, 284 
storing 286 

OLE (continued) 
objects See embedded items or linked items 
Paste command 

defined 274,279 
implementing 282 

Paste Link command 
defined 280 
implementing 282 

presentation data, implementing 290-291 
server applications 

classes for writing 278 
defined 276 
document classes 279,289 
full 287-288 
item classes 279, 290 
launching 292-293 
mini 287-288 
server classes 278 
writing 278 

typename Object command 
defined 280 
implementing 283 

verbs 
defined 276 
implementing 290 
invoking 280, 283 
registering 292 

ON_UPDATE_COMMAND_UI macro, example 111 
ON_ VBXEVENT macro, use of 269 
ON_ WM_LBUTTONDOWN macro 61 
OnBeginPrinting member function, CView class 167 
OnChange member function, COleClientItem class 281-282, 

285,294-305 
OnCmdMsg member function 

calling a handler 96 
Class CCmdTarget 96 
command routing 95 
default implementation 96 
defined 95 
message map searching 96 

OnContextHelp member function, class CWinApp 184 
OnCreateClient member function, CFrameWnd class 153-

155 
OnCreateDoc member function, COleServer class 282, 287, 

294 
OnDefaultPen Widths member function, CPen WidthsDlg class, 

Scribble example 125, 130 
OnDraw member function 

class CScribView, defined 55 
class CView 51,55 
COleServerItem 285,290,294-:20 
CView class 

example 142 
printing with 159, 160 



OnDraw member function (continued) 
must override 51 

OnEditClearAll member function 
code for Scribble 103 
described 104 

OnEditDoc member function, COleServer class 287, 294 
OnEndPrinting member function, CView class 167 
OnEnumFormats member function, COleServerItem class 291 
OnExtraVerb member function, COleServerItem class 290 
OnGetData member function, COleServerItem class 294-295 
OnGetEmbeddedltem member function, COleServerDoc class 

289,294-295 
OnGetLinkedltem member function, COleServerDoc class 

290,295 
OnGetTextData member function, COleServerItem 

class 291 
OnHelp member function, class CWinApp 184 
OnHelplndex member function, class CWinApp 184 
OnHelpUsing member function, class CWinApp 184 
Onldle member function 111 
OnlnitialUpdate member function 

CView class, example 51, 146-147, 168 
overriding 51 

OnLButtonDown member function 
class CScribView, creating 59 
creating 61 
CWnd class, example 148 
default definition 60 
defined 61 
mouse, capturing 61 

OnLButtonDown, overriding inherited behavior 62 
OnLButtonUp member function 

creating 62 
Cwnd class, example 150 
defined 62 
mouse, releasing 62 

OnMouseMove member function 
creating 63 
CWnd class, example 149 
defined, in Scribble 63 
mouse, tracking 63 

OnNewDocument member function 
and AppWizard 39 
code for overriding, in Scribble 40 
overriding 39 
when called 39 

OnOpenDoc member function, COleServer class 295 
OnOpenDocument member function 

code for overriding, in Scribble 39-40 
when called 39 

OnPenThickOrThin member function 105 
OnPen Widths member function, CScribDoc class, Scribble 

example 132 

Index 325 

OnPrepareDC member function, CView class 
CScrollView version 148 
example 149-151 
printing with 164, 166-167 

OnPreparePrinting member function, CView class 
and print preview 176 
example 172, 177 
use described 163 

OnPrint member function, CView class 
example 172-173 
use described 164 

OnSetData member function, COleServerItem class 295 
OnShow member function, COleServerItem class 290, 

294-295 
OnUpdate member function 

class CView 51 
overriding 51 

OnUpdate member function, CView class 
defined 136-13 7 
example 141, 150 

OnUpdateEditClearAll member function 
CCmdUI argument to 112 
code for 112 
enabling menu item 112 
message map 113 
use of CCmdUI in 112 
use of CCmdUI structure 112 

OnUpdatePenThickOrThin member function 
adding to Scribble 113 
code for 114 
message map 114 
updating menu with 110 

Open command 
framework, implementation in 39,43,234 
implementation, in Scribble 45 

Open member function, CFile class 227 
Opening files 227 
Operators 

CArchive 
chaining, example 237 
using 235 

extraction, class CArchive 45 
new 253 

Options 
AppWizard 

adding later 180 
default 22 

context-sensitive help 181 
setting 

debug option 241 
in tutorial program 14 

setup, installing the class library 298 
Options button, App Wizard 22 



326 Index 

Output, debugging 
destinations 243 
under MS-DOS 244 
under Windows 244 

Overhead, deriving classes from CObject 211 
Overriding 

p 

DeleteContents 41 
Dump function 242 
OnInitialUpdate member function 51 
OnNewDocument 40 
OnOpenDocument 40 
OnUpdate member function 51 
Serialize member function, example 232 
Serialize, in Scribble document 44 

Page, property 70 
Page headers and footers 

defined 166 
example 174 
printing 166-167 

Page Numbering See Pagination 
Pagination 

at print-time 165-166 
described 163-164 

Panes, in a splitter window, described 151, 153 
Parameters, CString, specifying 207 
Paste command 

OLE 
defined 279 
implementing 282 
use described 274-275 

Paste Link command 
defined 280 
implementing 282 

Path, App Wizard, setting 19 
Pen 

drawing in Scribble 78 
initialization, in Scribble 40 
menu 68 
object 

See also CPen class 
construction of, two stage 56 
initializing the pen 56 

Scribble,OnPenThickOrThin 105 
thickness 78 

Pen Widths 
command, Scribble example 117, 132 
dialog box, Scribble example 118 

PEN.RTF file 180, 191-192 
Persistence, described 229 
Persistent storage See Serialization 
Petzold, Charles 2 

Pixel Grid 80 
Pointer 

to object, vs. embedded objects See Embedded objects 
VBX control, declaring 267 

Portability, serialization 47 
POSITION, type 42 
Positioning the pen, MoveTo member function 56 
Prebuilt libraries 301 
Predefined collections, using 218 
Presentation data, OLE 

defined 275 
implementing 290-291 

Presenting Visual C++ 2 
Previewing bitmaps 79 
Print preview 175-177 
Printing 

default capabilities 159-160 
example 167 
headers and footers 166-167, 174 
pagination 163-164 
process described 159-161 
Scribble step 1, MM_ TEXT mapping mode 66 
terminating a print job 166 
with GDI resources 167 

Procedures 
adding 

an update handler for Clear All menu item 111 
help later 187 
member variables 106 
message-handler functions 60 
update handler for Thick Line menu item 113 

authoring help 194 
avoiding a CString memory leak 263 
binding 

Clear All command 10 1 
Scribble's Thick Line command 104 
toolbar button to Thick Line command 106 

building 
application with support for Code View 303 
DLL 303 
object-code libraries 303 
Scribble 64 

catching exceptions 256 
closing 

CArchive object 235 
file 228 

connecting messages to Scribble's code 58 
copying 

accelerators in App Studio 189 
help-related code to a new application 189 
help-related files to a new application 191 
menus in App Studio 188 
resources with App Studio 188 



Procedures (continued) 
creating 

MYHELP application 188 
queue collection 224 
stack collection 223 

defining constructor with no arguments 232 
deleting 

all elements in a map object 223 
all elements in an array object 222 
all objects in a CObList 221 

deriving and extending a collection 219 
deriving from CObject 

basic functionality 212 
class 230 
dynamic creation support 213 
run-time class information 212 
serialization support 214 

detecting a memory leak 249 
dumping 

all objects 251 
memory statistics 250 

dynamically creating an object given run-time class 216 
enabling 

debugging features 242 
help-mode toolbar button 190 
memory diagnostics 248 
toolbar button 190 

examining exception contents 258 
explicitly creating a CArchive object 235 
generating a VBX control pointer 268 
getting file status 229 
installing the class library 298 
iterating 

array object 220 
list object 220 
map object 221 

loading an object from a value previously stored in an 
archive 235 

making a serializable class 230 
opening 

file 227 
project for tutorial step 12 

overriding 
Dump member function 242 
Serialize member function 231 

reading tutorial without typing code 12 
selecting 

context-sensitive help in AppWizard 181 
debug or release options 14 
memory diagnostics with afxMemDF 248 

sending Dump output to afxDump 243 
setting up message maps for VBX events 269 
storing an object in a file via an archive 235 
switching to a release build 302 

throwing an exception 261 
Procedures (continued) 

trying context-sensitive help 186 
using 

ClassWizard 58,90 
DEBUG_NEW macro 253 
DECLARE_SERIAL macro 230 
IMPLEMENT_SERIAL macro 232 
IsKindOf function 215 
predefined collection classes 218 
RUNTIME_CLASS macro 215 
templates to create collections 219 

working along with tutorial 12 
Process, creating a new application 17 
Program execution 

abnormal execution 255 
erroneous execution 255 
normal execution 255 
outcomes 255 

Programs 
example 

VB CHART 266 
VB CIRCLE 266 

sample, Microsoft Foundation classes 
locations of 299 
MFCNOTES.HLP file 299 
MFCSAMP.HLP file 299 

tutorial, building, basic information 14 
Project 

debug option, setting 241 
directory, App Wizard 22 
release build, switching to 302 

Project file 
help See Help project file 
makefile 10 

Project menu 17, 24 

Index 327 

Project Options dialog box, setting debug option 241 
Prompt 

command 
default 76 
editing 73 

strings 
creating in App Studio 179 
described 179 
for menu items 179 
for toolbar buttons 179 

Properties 
caption 75 
editing 71 
general 71 
ID, selecting 73 
menu 

editing 70 
required 71 



328 Index 

Properties (continued) 
window 

keeping visible 70 
menu 70 
pushpin control 70 

Property page 
dialog 119 
menu 70 

Pushbutton controls, modifying properties 119 
Pushpin control, Properties window 70 

Q 
Queue collections, creating 224 

R 
Read member function, class CFile 228 
Reading a file, example 228 
Receivers of messages 97 
Redrawing the view 

See also Drawing, the view 
optimizing, in OnUpdate override 51 

References, textbooks 
Christian, Kaare 2 
Kruglinski, David 2 
Lippman, Stanley 2 
Petzold, Charles 2 

REGEDIT utility 292 
Register member function, COleServer class 293-294 
RegisterClientDoc member function, COleClientDoc class 286 
Registering 

OLE client documents 286 
OLE server applications 292 
OLE server instances 293-295 
OLE verbs 292 

REGLOAD utility 291 
Release 

build, switching project to 302 
libraries, table of 301 

ReleaseBuffer member function, class CString 208 
ReleaseCapture member function, class CWnd, called in 

OnLButtonUp 62 
Releasing the mouse 62 
RemoveHead member function, class CObList 41 
ReplacePen member function 105 
Replacing menu with toolbar button 111 
Required properties, menu 71 
Resource browser 69 
Resource editor, invoking 69 
Resource file 

provided by App Studio 77 
Scribble example 68 
skeleton 68 

RESOURCE.H file 
#define statements 84 
#define statements in 186 
and predefined IDs 192 
commands 71 
example 192 
mapping #defines to help strings 186 
symbols defined in 192 

Resources 
browsing 69 
copying with App Studio 188-189 
defined in RESOURCE.H file 186 
editing 69,90 
IDs 69 
new, creating 69 
types 68-69 

Restoring the device context 56 
Retail libraries See Release libraries 
Reusability of classes 212 
Reusable class 212 
Reuse, of framework classes 5 
Rich-text format See RTF 
Routing 

commands See Command routing 
update commands 109 

RTF files 
format of 194 
in Word for Windows 193 
starter set of 181 

Run-time class information 211,214 
RunEmbedded member function, COleTemplateServer class 

288,293 
Running 

AppWizard 17,19 
Class Wizard 90 
starter application 24 

RUNTIME_CLASS macro 55,215 

s 
Sample programs, Microsoft Foundation classes 

locations of 299 
MFCNOTES.HLP help 299 
MFCSAMP.HLP file 299 

Save As command 
framework, implementation of 43,234 
implementation, in Scribble 45 

Save command 
framework, implementation of 43, 234 
implementation, in Scribble 45 

Schema number, described 46 
Scribble 

adding member variables 106 
binding commands 100 



Scribble (continued) 
building, basic information 14 
class CScrib View 

declaration 52 
member functions of 54 
member variables of 54 
OnDraw, defined 55 

class CStroke 36, 55 
Clear All 

command 100 
menu item, updating state 111 

commands 
Clear All 74, 100 
Thick Line 101 

compiling, step 1 64 
DeleteContents member function, described 104 
document class (CScribDoc) 32 
drawing strokes 55 
exception handling 42 
features, step 1, described 65 
GetFirstStroke member function 42 
GetNextStroke member function 42 
help contexts in 192 
incremental versions of 46 
InitDocument member function 40 
m_strokeList variable 33 
managing data 41 
message-driven program 87 
NewStroke member function 42 
OnEditClearAll member function, described 103-104 
OnLB uttonDown member function 61 
OnPenThickOrThin member function 105 
options, setting 14 
overriding Serialize member function of document 44 
Pen Widths command 76 
previewing program 28 
printing, mapping mode problem 66 
prompt strings, command 179 
serialization, of strokes 45 
speed, drawing, sampling points 66 
status bar, prompt strings 179 
step 1, testing 66 
stroke 

defined 36 
drawing 56 
illustrated 36 
list 33 
serializing 45 

Thick Line command 75, 101, 103-104 
toolbar 77-78 
tutorial program 9 
versions of, described 11 
view class, CScrib View 52 

Scribble (continued) 
Windows messages 

handling 57 
mouse-related 57 

Scrolling 
messages 99 
view 

described 143, 147-148 
example 144, 147-148, 151 
supported 99 

SDI application, and view object 50 
Searching 

Index 329 

command routing for update handlers 109 
message maps 

example 100 
illustrated 98 
in base classes 99 

Seek member function, class CFile 228 
Selecting 

a pen into the device context, SelectObject member 
function 56 

bitmap tiles 82 
Selection 

mUltiple, defined 289 
single, defined 289 

SelectObject member function, class CDC 56 
Sending commands to objects See Command routing 
Serialization 

See also Serialize member function 
adding support 214 
CArchive object, introduced 45 
constructors, defining 232 
DECLARE_DYNCREATE macro 44 
DECLARE_SERIAL and IMPLEMENT_SERIAL macros 

46 
defined 43, 229 
dialog boxes 43 
fixed-size data types 47 
in Scribble, illustrated 43 
loading from disk 45 
of CDWordArray object 47 
of classes, requirements 230-232 
of document 

implementation 44 
two stages 44 

of embedded objects 45,239 
of incremental versions 46 
of strokes (Scribble) 45 
portability 47 
reading, order of 47 
schema number 46 
Scribble, implementation 44 
storing to disk 45 
support 212 



330 Index 

Serialization (continued) 
through a pointer 

example 45, 239 
extraction operator 45 

Serialize member function 
AppWizard 45,236 
class CStroke 46 
described 45 
example 236 
for embedded objects 45 
loading CObjects with, need for symmetry 237 
of CObjects, when to use 237 
of document class 44 
of stroke list 44 
overriding 231-232 
Scribble, code for 44 
typical form of 236 

Serializing 
CObjects, example 238 
document 44 

Server applications, OLE 
classes for writing 278 
defined 276 
document classes 279,289 
embedding support 287 
full 287-288 
item classes 279,290 
launching 292-293 
linking support 287 
mini 287-288 
server classes 278 
writing 278 

SetCapture member function, class CWnd, called in 
OnLButtonDown 61 

SetCheck member function 114 
SetModifiedFlag member function, class CDocument 

called in NewStroke 42 
use described 42 

SetScrollSizes member function, CScrollView class 
example 147, 168 
use described 143 

Setting 
AppWizard path 19 
breakpoints 24 
options 

App Wizard 22 
in tutorial program 14 

Setup 
options, installing the class library 298 
program, libraries for Microsoft Foundation classes 301 

Shapes, collection classes 217 
Sharing objects in a collection 221 
SHIFT+F1 help 180 

SHIFT+F1 keys 
accelerator, defined for ID_CONTEXT_HELP command 

184 
Shipping App Wizard-created help files 180 
Shortcuts, keyboard, in App Studio menu editor 69 
Single document interface (SDI) See SOl application 
Skeleton application 17 
Source files, class library 

locations of 298 
uses of 299 

Split bar, defined 152 
Split box, defined 152 
Splitter windows 

and views 50 
defined 151-153 
example 154-155,157-158 

Stack collections, creating 224 
Standard command routing See Command routing 
Standard menus, implementation of 4 
Starter 

application 

files 

building 23 
compiling 18,23 
defined 17-18,23 
features 24 
running 24 

compiling 23 
help RTF files 181 

Starting 
App Wizard 17 
Class Wizard 90 

States, toolbar button 110 
Statistics, memory 

dumping 250 
interpreting 250 

Status bar 
indicator, updating wtih CCmdUI 111 
prompt strings, command 179 

stderr stream 
destination of debugging output 243 

Step 0 subdirectory See Starter application 
Step subdirectories, for tutorial steps See Tutorial 
Steps, tutorial 

See also Tutorial 
step 0 18 
step 1 28,49 
step 2 67,88 
step 6 180 
subdirectories for 10 
table of 10 
using the right subdirectory 14 

Storage of data in document 30 



Storing 
CObjects via CArchive 237 
data on disk See Serialization 
data with a CArchive 233 

String functions, standard C library, working with 208 
String segment 0, strings in 189 
Strings 

basic operations 205-206 
manipulation of 204-209 
null-terminated, converting to C style 207 

Stroke 
drawing 

DrawStroke member function 56 
initiating 63 
itself in view 55 
terminating 62 
tracking mouse 63 

in Scribble program 

list 

defined 36 
illustrated 36 
introduced 32 
points, storage of 39 
serializing, described 45 

See also m_strokeList 
already exists 45 
embedded object 45 
iterating 55 
Scribble, introduced 33 
Serialize member function of 46 
type-safe access to 43 

Subdirectories 
See also Tutorial 
for tutorial steps, described 10 
project 19 
tutorial 

using right one 14 
table of 10 

Symbol 
browser, App Studio 186 
editor, App Studio 84 

Symbols 

T 

defined in RESOVRCE.H file 71, 186 
defining 71, 84 
editing 84 
mapping to help strings 186 
symbol browser, App Studio 186 
viewing and manipulating 186 

TARGET option, building object-code libraries, R for MS-DOS 
version 303 

Technical notes 
Note 7, debugging 244 
Note 11, VSRDLL 302 
Note 19, migration 2 
Note 28, help 181 
Note 33, AFXDLL 302 

Templates, collection classes, creating 219 
Terminating stroke drawing, in Scribble 62 
Test command, App Studio 69, 120 
Testing 

Scribble, Step 1 66 
user-interface objects 69 

Index 331 

Text controls, modifying properties, example 119 
Thick Line 

command 87 
binding 104, 106 
menu item 78 
ON_ VPDATE_ COMMAND_VI handler, checking 

menu item 110 
Scribble, described 101 
toolbar button 78 
update handler for 113 
where to put it 101 

toolbar button 87 
Throwing an exception, procedure 261 
Tile, bitmap button 80 
Time 

current setting 203 
elapsed 

calculating 204 
string representation, formatting 204 

management, described 203-204 
Toolbar 

adding buttons 78 
bitmap 77 
button See Toolbar buttons 
duplicating menu with toolbar button 111 
example 77 
generating commands 87 
replacing menu with toolbar button 111 
Scribble 78 
Thick Line button 78, 87 
updating buttons 110 

Toolbar buttons 
adding 78 
array 85, 190 
binding to command 106 
checked state 108, 114 
clipboard commands 78 
command ID of 78 
connecting to code 84 
Cut, Copy, Paste 78 
deleting 78 
disabling 108 



332 Index 

Toolbar buttons (continued) 
editing 79 
enabling 1078 190 
help 78 
Open command 78 
positions, buttons array 85 
Print command 78 
Save command 78 
separators 85 
states 110 

TRACE macro 243 
arguments, examples 244 
output destination for 243 
when active 244 

Tracking mouse to draw, in Scribble 57, 63 
TRY macro 42, 256, 258, 260 
TRY ICA TCH block, skeleton example 257 
Tutorial 

assumptions 1 
code to add, marking 13 
deleting lines of code in 13 
example application, setting options 14 
files used in, listed 11 
reading without adding code 12 
replacing lines of code in 13 
Scribble 

build information 14 
program 9 

step subdirectories, location of 10 
steps 

step 1 28,49 
step6 180 
subdirectories for 10-11 
table of 10 
working selectively on 14 

subdirectories, using the right one 14 
text conventions 10 
using 10 

reading along 10, 12 
two approaches 10 
working along 10, 12 

what you need to know 1 
work along by adding code 12 

Tutorial steps See also Steps 
Type-safe access, example 43 
typename Object command 

implementing 283 
use described 280 

Types, POSITION 42 

u 
Update commands, routing to objects 109 
Update handler See Handler 

UpdateAllViews member function, class CDocument 
Called from OnEditClearAll 103 
example 140 
use described 51, 136-137 
with OLE 285 

UpdateData member function, class CWnd 
example 131 
use described 131, 133 

Updating 
multiple views 51 
Scribble's Clear All menu item 111 
Thick Line command, described 110 
toolbar buttons 110 
views 31,51 

Updating user-interface objects 
CCmdUI 

structure 109 
common interface to 111 

checking items 
menu 114 
toolbar button 114 

command target handlers 109 
command-based method 108 
concepts 92 
cost 109 
example, OnUpdateEditClearAll member function 112 
making handlers fast 112 
menus 109 
message map 11 0 
objects without handlers 109 
OnUpdatePenThickOrThin member function 113 
process 110 
routing update commands 109 
searching command routing 109 
toolbar buttons, searching for handlers during 

idle loop 111 
traditional approach 109 
update handler, naming conventions 110 
WM_INITMENUPOPUP message, with menu 111 

User-interface, designing 69 
User-interface object 

accelerator key 92 
button 92 
command generator 92 
disabling 92 
distinct from C++ object 92 
enabling 92 
in App Studio, testing 69 
menu 92 
updating 

no handler found 109 
routing update commands 109 
state 92, 108 

Using VBX controls in Visual C++ 265 



USRDLL 
must build libraries 302 
using class library in DLL 302 

v 
Variables, member See Member variables 
VB CHART example program 266 
VB CIRCLE example program 266 
VBX controls 

See also CVBControl 
See also VBX run-time support 
access through pointer, example 271 
actually Windows DLLs 265 
constructing 270 
control messages, defined 268 
control pointer 

access to control 267 
declaring 267-268 

Create member function 270 
creating 

automatic cases 270 
with App Studio 270 

destroying 271 
example 271 
explicitly 271 
with DestroyWindow 271 

distribution of 
guidelines 271 
Visual C++ examples 272 

documentation for 265 
event register map 269 
events 265 268 
files 

.VBX extension 265 
standard format 265 

heap allocation, bAutoDelete parameter 272 
initializing, in Initlnstance 267 
manipUlating 270 
message map, example 269 
messages from, handling 268 
overview 266 
programming with 270 
properties 265 
typical 

operations 270 
sequence of use 266 

Visual C++, capabilities 265 
VBX event register map 269 

common storage location 265 
required location of 271 

VBX run-time support 
by App Wizard 267 
initializing, in Initlnstance 267 

Verbs, OLE 
defined 276-277 
implementing 290 
invoking 280, 283 
registering 292 

VERIFY macro 
alternative to ASSERT 245 
described 245 

Index 333 

View menu, toggling status bar and toolbar 68 
View object 

access to document data 51 
and splitter windows 50 
and window client area 50 
calling document members from 51 
created by frame window 51 
creation of 51 
defined 50 
described 50 
drawing 51 
functionality 50 
in framework 6, 50 
in relation to document 50 
in standard command routing 96 
initializing 51 
interaction with document 51 
introduced 28 
message handlers 57 
message map, in 57 
multiple 

updating 51 
per document 50 

notifiying document of change 51 
Scribble 

delegates stroke drawing 55 
tasks 52 

separation from document 30 
updating of 31 
user interaction with document 50 
usually one per document 50 
when view changes 51 
why handles mouse messages 57 
your role in creating 51 

Viewport origin, used for scrolling 147 
Views 

See also View object 
and document 

illustrated 30, 50 
interaction between 31 

as child window 50 
multiple, updating all 51 
printing with 159-161 
relationship to documents, illustrated 6 



334 Index 

Views (continued) 
scrolling (continued) 

described 147-148 
example 143-144, 147-148, 151 
support for 99 

updating 
described 135-137 
example 137, 140, 141 

Visual Basic, custom controls, use in Visual c++ 265 
Visual C++, custom controls, use of Visual Basic 265 
Visual object 

accelerator key 89 
command ID 89 
dialog box 89 
dialog-box controls 89 
frame window 89 
menu item 89 
toolbar button 89 
view 89 

Visual Workbench 

w 

editor, accessing from ClassWizard 90, 103 
using ClassWizard from Browse menu 90 

Window 
classes, derived 98 
client area of, and view object 50 
image, bitmap editor 79 
menu, MDI applications only 68 
properties, in App Studio 70 

Windows 
API, encapsulation of 4 
device context, encapsulated by class CDC 56 
Help 185 
Help Compiler 186 
message-driven programming 87 
messages 

See also Messages 
Class Wizard, Messages list box 102 
message map 97 
received by classes 89 
sent only to windows 97 

messages, handling 57 
splitter 

defined 151-153 
example 154-158 

The Windows Interface: An Application Design Guide 3 
Windows NT, and serialization 47 
Windows registration database, and OLE 22-296 
WM_ messages, message map 97 
WM_COMMAND message 91 
WM_INITMENUPOPUP message 111 
WM_LBUTTONDOWN message 57,61 

WM_LBUTTONUP message 57,62 
WM_MOUSEMOVE message 57, 63 
Word for Windows 193 
Working with ClassWizard 90 
Write member function, CFile class 228 







Programming Techniques ---+ 





Programming Techniques 





Contents 

iii 

Introduction ........................................................ xiii 
Scope of This Book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Xill 

Document Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. XlII 

Part 1 Improving Program Performance 

Chapter 1 Using Precompiled Headers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 
1.1 When to Precompile Source Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

1.2 Creating and Using Precompiled Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
1.3 Precompiled Header Compiler Options ................................ 4 

The /yX (Automate Precompiled Header) Option ........................ 5 
The /Yc (Create Precompiled Header) Option ........................... 7 

The /yu (Use Precompiled Header) Option ............................. 8 

Debugging Code Compiled with /Yc or /yu ............................. 9 
The hdrstop Pragma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 
Consistency Rules for /Y c and /yu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 
The /Y d (Duplicate Debugging Information in All Object Files) Option. . . .. 14 
The /Fp (Specify Precompiled Header Filename) Option ................. 15 

1.4 Using Precompiled Headers in a Project .............................. 16 
The Build Process ................................................ 16 
Sample Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 

The Example Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19 

Chapter 2 Managing Memory for 16·Bit C Programs. . . . . . . . . . . . . . . . . . . . . .. 21 
2.1 Pointer Sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

Pointers and 64K Segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

Near Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
Far Pointers ..................................................... 23 
Huge Pointers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
Based Addressing ................................................. 24 

2.2 Selecting a Standard Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
The Six Standard Memory Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
Limitations on Code Size and Data Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
Tiny Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

Creating Small-Model Programs ..................................... 27 
Creating Medium-Model Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 



iv Contents 

Creating Compact-Model Programs .................................. 28 
Creating Large-Model Programs ..................................... 29 

Huge Memory Model .............................................. 30 
Null Pointers ..................................................... 31 

Specifying a Memory Model ........................................ 33 
2.3 Mixing Memory Models .......................................... 33 

Pointer Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
Declaring Near, Far, Huge, and Based Variables ....................... 36 

Declaring Near and Far Functions ................................... 36 
Pointer Conversions ............................................... 38 

2.4 Customizing Memory Models ...................................... 40 
Setting a Size for Code Pointers ..................................... 41 
Setting a Size for Data Pointers ...................................... 41 

Setting Up Segments .............................................. 42 
Library Support for Customized Memory Models ....................... 44 
Placement of Data in the Compact, Large, and Huge Memory Models ...... 45 
Naming Modules and Segments ..................................... 46 

Specifying Code Segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 
2.5 Using Based Pointers and Data ..................................... 48 

Based Pointers ................................................... 48 

Based Data Allocation ............................................. 57 
2.6 Using Based Addressing for Functions ............................... 59 

2.7 Using the Virtual Memory Manager ................................. 61 
Initializing the Virtual Memory Manager. ............................. 61 

Virtual Memory Handles ........................................... 62 
Loading Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

Dirty Blocks vs. Clean Blocks ....................................... 63 
Locking and Unlocking Blocks ...................................... 63 
Techniques for Using Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

Chapter 3 Managing Memory for 16-Bit C++ Programs . . . . . . . . . . . . . . . . . . . . . 69 
3.1 Memory Models for Classes ....................................... 69 

The Ambient Memory Model ....................................... 70 
Overriding the Ambient Memory Model. .............................. 71 

Overloading the this Pointer ........................................ 72 
Specifying the Addressing Mode of Return Objects ...................... 73 
Virtual Table Pointers ............................................. 74 



Contents v 

3.2 The Free Store .................................................. 75 
The new Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 
The delete Operator ............................................... 78 
The _seCnew _handler Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 

3.3 Based Addressing for Member Functions ............................. 80 

Chapter 4 Using the 16-Bit Inline Assembler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 
4.1 Advantages of Wine Assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 
4.2 The __ asm Keyword ............................................. 84 
4.3 Using Assembly Language in __ asm Blocks .......................... 84 
4.4 Using C or C++ in __ asm Blocks ................................... 87 

U sing Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 
Using C or C++ Symbols ........................................... 88 
Accessing C or C++ Data .......................................... 89 
Writing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 

4.5 Using and Preserving Registers ..................................... 92 
4.6 Using Floating-Point Instructions ................................... 93 
4.7 Jumping to Labels ............................................... 93 
4.8 Calling C Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 
4.9 Calling C++ Functions ............................................ 95 
4.10 Defining __ asm Blocks as C Macros ............................... 96 
4.11 Optimizing.................................................... 97 

Chapter 5 Controlling Floating-Point Math Operations . . . . . . . . . . . . . . . . . . . .. 99 
5.1 Declaring Floating-Point Types ..................................... 99 

Declaring Variables as Floating-Point Types ........................... 99 
Declaring Functions That Return Floating-Point Types .................. 101 

5.2 Run-Time Library Support of Type long double . . . . . . . . . . . . . . . . . . . . . . 102 
5.3 Summary of Math Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 

Emulator Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 103 
Math Coprocessor Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 
Alternate Math Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 

5.4 Selecting Floating-Point Options (/FP) .............................. 104 
The /FPi (Specify Emulator) Option ................................. 106 
The /FPi87 (Specify Coprocessor) Option ............................ 106 
The /FPc (Specify Emulator Calls) Option ............................ 106 
The /FPc87 (Specify 80x87 Calls) Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 
The /FPa (Specify Alternate Math Package) Option. . . . . . . . . . . . . . . . . . . . 108 



vi Contents 

5.5 Library Considerations for Floating-Point Options .................... 108 
Using One Standard Library for Linking ............................. 108 
Inline Instructions or Calls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 

5.6 Compatibility Between Floating-Point Options ....................... 109 
5.7 Using the N087 Environment Variable ............................. 110 
5.8 Incompatibility Issues ............................................ 110 

Part 2 Special Environments 

Chapter 6 Programming for Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 115 
6.1 Optimizing Protected-Mode Prolog and Epilog Code for Windows . . . . . . . 115 

U sing lOA and IOD to Optimize Prolog/Epilog Code. . . . . . . . . . . . . . . . . . . 115 
Using IOEstring to Modify the Default Behavior of lOA and IOD. . . . . . . . . 116 
Conflicts Between __ fastcall and Prolog/Epilog Code .................. 117 

6.2 Specifying Program Starting Execution Points. . . . . . . . . . . . . . . . . . . . . . . . 117 
Executable Files for Windows Version 3.x ........................... 118 
Dynamic-Link Libraries for Windows Version 3.x ..................... 118 
Windows Version 3.x and the NOCRT Libraries ...................... 118 

6.3 DLL Initialization Code for Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 
6.4 Termination Routines for Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

The WEP Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 
Writing Your Own WEP Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

Chapter 7 QuickWin Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 
7.1 Capabilities of QuickWin Oraphics ................................ 122 
7.2 Two Ways to Use QuickWin ...................................... 123 

Standard QuickWin Programs ...................................... 123 
Enhanced QuickWin Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 

7.3 Comparison of QuickWin and Windows ............................. 125 
7.4 The QuickWin User Interface ..................................... 125 

QuickWin Menus ................................................ 126 
Other QuickWin Features ......................................... 130 

7.5 Overview of the Enhanced Capabilities of QuickWin .................. 131 
About Dialog Box ............................................... 132 
Multiple Child Windows .......................................... 132 
Active Window .................................................. 132 
Program Control of Menus ........................................ 133 
Program Control of Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 

7.6 Building QuickWin Programs ..................................... 134 
7.7 Running QuickWin Programs ..................................... 134 



Contents vii 

7.8 Writing Enhanced QuickWin Programs ............................. 135 
QuickWin Sample Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 

Customizing the About Dialog Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 
Opening Child Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 
Reading from and Writing to Text Child Windows. . . . . . . . . . . . . . . . . . . . . 140 

Resizing and Positioning Text Child Windows . . . . . . . . . . . . . . . . . . . . . . . . 141 
Setting the Amount of Scrollable Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 
Giving Focus to a Text Child Window ............................... 142 
Closing a Child Window .......................................... 143 
Keeping Windows on the Screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 

Simulating Mouse Clicks in the Menu Bar. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 
Yielding Time to Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 145 

Using Custom Icons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 146 
Providing Help. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 

7.9 Differences Between MS-DOS Graphics and QuickWin Graphics ....... 147 
Internal Error System ............................................. 147 

U sing Function Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 147 
Setting the Line-Style Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 148 

Setting the Fill Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 148 
Checking Graphics Errors with ~rstatus. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 148 
Registering Fonts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 149 

Displaying Character-Based Text. .................................. 149 

Selecting Display Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 150 
Setting Palettes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 151 
Drawing Lines .................................................. 152 

Calling Rectangle Functions with a Fill Mask ......................... 152 
Drawing Graphics Outside a Viewport ............................... 152 
Drawing Lines and Rectangles on Monochrome Adapters ............... 152 

Chapter 8 Programming with Mixed Languages . ........................ 153 
8.1 Making Mixed-Language Calls .................................... 153 
8.2 Language Convention Requirements ................................ 155 

Naming Convention Requirement ................................... 155 

Calling Convention Requirement ................................... 158 

Parameter-Passing Requirement .................................... 159 
8.3 Compiling and Linking ........................................... 161 

Compiling with Correct Memory Models. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 161 
Linking with Language Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 161 



viii Contents 

8.4 C Calls to High-Level Languages .................................. 162 
Executing a Mixed-Language Call .................................. 162 
Using the __ fortran or __ pascal Keyword ........................... 163 

8.5 C Calls to Basic ................................................ 165 
8.6 C Calls to FORTRAN ........................................... 167 

Calling a FORTRAN Subroutine from C ............................. 167 
Calling a FORTRAN Function from C ............................... 169 

8.7 C Calls to Pascal. ............................................... 170 
Calling a Pascal Procedure from C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 
Calling a Pascal Function from C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 

8.8 C Calls to Assembly Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 
Writing the Assembly-Language Procedure ........................... 174 
Setting Up the Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 
Entering the Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 
Allocating Local Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 
Preserving Register Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 
Accessing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 
Returning a Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 
Exiting the Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 

8.9 C++ Calls to High-Level Languages ................................ 182 
8.10 Handling Data in Mixed-Language Programming .................... 182 

Default Naming and Calling Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 
Numeric Data Representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 
Strings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 
Arrays ......................................................... 187 
Array Declaration and Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 
Structures, Records, and User-Defined Types ......................... 190 
External Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 
Pointers and Address Variables ..................................... 191 
Common Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 
Using a Varying Number of Parameters .............................. 193 

Chapter 9 Writing Portable C Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 195 
9.1 Assumptions About Hardware ..................................... 195 

Size of Basic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 
Storage Order and Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 
Byte Order in a Word ............................................. 201 
Reading and Writing Structures .................................... 203 
Bit Fields in Structures ............................................ 203 
Processor Arithmetic Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 



Contents ix 

Pointers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 
Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 
Character Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 

9.2 Assumptions About the Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 
Sign Extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 
Length and Case of Identifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 
Register Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 
Functions with a Variable Number of Arguments . . . . . . . . . . . . . . . . . . . . . . 214 
Evaluation Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 
Function and Macro Arguments with Side Effects. . . . . . . . . . . . . . . . . . . . . . 215 
Environment Differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 

9.3 Portability of Data Files .......................................... 216 
9.4 Portability Concerns Specific to Visual C++ ......................... 217 
9.5 Visual C++ Byte Ordering ........................................ 217 

Index . .............................................................................. 219 



x Contents 

Figures and Tables 

Figures 
1.1 Structure of a Makefile That Uses a Precompiled Header File . . . . . . . . . . . . 17 
2.1 Anatomy of a Small-Model Program ................................. 22 
2.2 Memory Map for the Tiny Memory Model. ........................... 26 
2.3 Memory Map for the Small Memory Model. .......................... 27 
2.4 Memory Map for the Medium Memory Model ......................... 28 
2.5 Memory Map for the Compact Memory Model ........................ 29 
2.6 Memory Map for the Large and Huge Memory Models ................. 30 
7.1 QuickWin User Interface ......................................... 126 
7.2 Window Menu in QWGDEMO.CPP ............................... 129 
7.3 About Dialog Box in QWGDEMO.CPP ............................ 132 
8.1 Mixed-Language Call ............................................ 154 
8.2 Naming Convention ............................................. 157 
8.3 C Call to Basic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 
8.4 C Stack Frame ................................................. 178 

Tables 
1.1 Results of Combining Debugging Options with /yX . . . . . . . . . . . . . . . . . . . . . 6 
1.2 Results of Combining Debugging Options with /Y c or /Y u. . . . . . . . . . . . . . . 10 
1.3 Compilation Option Consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
2.1 Memory Models ................................................. 25 
2.2 Addressing Declared with Microsoft Keywords. . . . . . . . . . . . . . . . . . . . . . . . 34 
2.3 Startup Routines for Customized Memory Models ...................... 44 
2.4 Segment-Naming Conventions ...................................... 47 
5.1 Floating -Point Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 
5.2 Lengths of Exponents and Mantissas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 
5.3 Range of Floating-Point Types .................................... 101 
5.4 Summary of Floating-Point Options ................................ 105 
6.1 Byte and Instruction Savings with the /GA or /GD Option .............. 116 
8.1 Language Equivalents for Routine Calls ............................. 154 
8.2 Default Methods by Which Parameters Are Passed. . . . . . . . . . . . . . . . . . . . 160 
8.3 Register Conventions for Simple Return Values. . . . . . . . . . . . . . . . . . . . . . . 180 
8.4 Default Naming, Calling, and Parameter-Passing Conventions ............ 183 
8.5 Equivalent Numeric Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 
8.6 Equivalent Array Declarations .................................... 189 



Contents xi 

Tables (Continued) 
9.1 Size of Basic Types in Visual C++. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 
9.2 Size of Generic Pointers ......................................... 207 
9.3 Default Pointer Sizes in 16-Bit Programs ............................ 208 
9.4 Byte Ordering for Short Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 
9.S Byte Ordering for Long Types ..................................... 218 





xiii 

Introduction 

Programming Techniques describes how to take advantage of the special features 
of Microsoft® Visual C++TM. The topics covered by this manual include language 
extensions, special-purpose library functions, and the interaction between pro
gramming strategies and compiler options. 

Scope of This Book 
Programming Techniques is divided into two parts. Part 1, "Improving Program 
Performance," helps you write more efficient programs. Chapter 1 provides specific 
information about precompiled header files-when, why, and how to use them to 
reduce compilation time during development. Chapters 2 and 3 explain memory 
management options for C and C++, respectively, and when to use each option. 
Chapter 4 describes the inline assembler, a feature that makes it possible to mix 
assembly language with your C and C++ source code, and Chapter 5 describes the 
floating-point math packages. 

Part 2, "Special Environments," covers techniques specific to certain programming 
situations. Chapter 6 discusses issues related to using the CL compiler command
line driver and the run-time libraries when writing programs for the Microsoft 
Windows™ operating system. Chapter 7 describes the QuickWin library, using 
which you can convert MS-DOS programs with simple input and output require
ments into programs that have a user interface similar to that of Windows. Chapter 
8 shows how to program in mixed languages, and Chapter 9 offers tips to make 
your programs more portable. 

Note For information on Microsoft product support, see the chapter "Microsoft 
Support Services" in the Visual Workbench User's Guide. 

Document Conventions 
This book uses the following typographic conventions: 

Example 

STDIO.H 

Description 

Uppercase letters indicate filenames, segment names, regis
ters, and terms used at the operating-system command 
level. 



xiv Introduction 

Example 

char, _setcolor, 
far 

expression 

[option] 

#pragma pack {I I 2} 

41 inc 1 u d e < i 0 • h > 

CL [option ... ]file ... 

while() 
{ 

} 

CTRL+ENTER 

"argument" 

"C string" 

Color Graphics Adapter 
(CGA) 

Description 

Bold type indicates C and C++ keywords, operators, 
language-specific characters, and library routines. Within 
discussions of syntax, bold type indicates that the text must 
be entered exactly as shown. 

Many functions and constants begin with either a single or 
double underscore. These are part of the name and are 
mandatory. For example, to have the __ cplusplus manifest 
constant be recognized by the compiler, you must enter the 
leading double underscore. 

Words in italics indicate placeholders for information you 
must supply, such as a filename. Italic type is also used 
occasionally for emphasis in the text. 

Items inside double square brackets are optional. 

Braces and a vertical bar indicate a choice among two or 
more items. You must choose one of these items unless 
double square brackets ([ ]) surround the braces. 

This font is used for examples, user input, program output, 
and error messages in text. 

Three dots (an ellipsis) following an item indicate that more 
items having the same form may appear. 

A column or row of three dots tells you that part of an 
example program has been intentionally omitted. 

Small capital letters are used to indicate the names of keys 
on the keyboard. When you see a plus sign (+) between two 
key names, you should hold down the first key while 
pressing the second. 

The carriage-return key, sometimes marked as a bent arrow 
on the keyboard, is called ENTER. 

Quotation marks enclose a new term the first time it is 
defined in text. 

Some C constructs, such as strings, require quotation 
marks. Quotation marks required by the language have the 
form " " and I I rather than" " and ' '. 

The first time an acronym is used, it is usually spelled out. 



PAR T 1 

Improving Program 
Performance 

Chapter 1 U sing Precompiled Headers ..... . . . . . . . . . . . . . . . . . . . . . . .. 3 
Chapter 2 Managing Memory for 16-Bit C Programs ...... ~ ........... 21 
Chapter 3 Managing Memory for 16-Bit C++ Programs ................ 69 
Chapter 4 Using the 16-Bit Inline Assembler. ....................... '83 
Chapter 5 Controlling Floating-Point Math Operations. . . . . . . . . . . . . . . .. 99 





3 

CHAPTER 1 

Using Precompiled Headers 

The Microsoft C and C++ compilers provide options for precompiling any C or 
C++ code-including inline code. Using this performance feature, you can compile 
a stable body of code, store the compiled state of the code (including information 
from the Microsoft Code View® debugger) in a file, and during subsequent compila
tions combine the precompiled code with code that is still under development. Each 
subsequent compilation is faster by the time not required to recompile the stable 
code. Use of the fast compile option (If), the compiler's default action, further 
speeds compilation. 

With Microsoft Visual C++, you can precompile any C or C++ code; you are not 
limited to precompiling only header files. To precompile headers, you can choose 
one of two approaches: 

• Automatic precompiling. Simply use one option (IYX) and let the compiler 
decide when to create and use precompiled headers. 

• Manual precompiling. Use this when you know that your source files use com
mon sets of header files but do not include them in the same order, or when you 
want to include source code in your precompilation. 

The first choice is quick and easy. The second requires some planning, but it offers 
significantly faster compilations if you precompile source code other than simple 
header files. 

1.1 When to Precompile Source Code 
Precompiled code is useful during the development cycle to reduce compilation 
time, especially if: 

• You always use a large body of code that changes infrequently. 

• Your program comprises multiple modules, all of which use a standard set of 
include files and the same compilation options. In this case, all include files can 
be precompiled into one precompiled header. 



4 Programming Techniques 

Precompilation 
works for C and 
C++ programs. 

The fIrst compilation-the one that creates the precompiled header file-takes a 
bit longer than subsequent compilations. Subsequent compilations can proceed more 
quickly by including the precompiled code. 

You can precompile both C and C++ programs. In C++ programming, it is common 
practice to separate class interface information into header files. These header files 
can later be included in programs that use the class. By precompiling these headers, 
you can reduce the time a program takes to compile. 

Note Although you can use only one precompiled header (.PCH) file per source 
file, you can use multiple .PCH files in a project. 

1.2 Creating and Using Precompiled Headers 
Either way you can precompile code-automatically or manually-stores the 
resulting precompiled code in a file called a precompiled header. 

The easiest way to precompile code is to simply use the automatic precompiled
header option (IYX) on the command line. The IYX option causes the compiler to 
either create a precompiled header with a default name of MSVC.PCH or use a 
precompiled header named MSVC.PCH if one exists. You can also control the 
name of the precompiled header that is created or used with the /Fp ("specify 
precompiled header filename") option. 

The other way to precompile code is to use the manual precompiled-header options 
IY c ("create precompiled header") and IY u ("use precompiled header"). Use the 
IY c option to create a precompiled header. When used with the optional hdrstop 
pragma, IY c lets you precompile both header files and source code. You can also 
use the /Fp option with the IY c and /Yu options to provide an alternative name for 
the precompiled header. 

The following sections describe the precompiled header options and the hdrstop 
pragma in more detail. Section 1.4, page 16, describes a method for using pre
compiled header files in a project; it includes an example make file and the code 
that it manages. For further examples using precompiled headers, see the makefiles 
used to build the program examples that ship with the Microsoft Foundation Class 
Library. 

1.3 Precompiled Header Compiler Options 
The compiler options described in the following sections control the creation and 
use of precompiled headers. The hdrstop pragma, described in "The hdrstop 
Pragma" on page 10, gives you extra control over the behavior of these options. 



Chapter 1 Using Precompiled Headers 5 

The /YX (Automate Precompiled Header) Option 
The /yX ("automate precompiled header") option instructs the compiler to use a 
precompiled header file with a default name of MSVC.PCH if it exists or to create 
one if it does not. The file is created in the current directory. You can use the 
/Fpfilename option to change the default name (and placement) of the precompiled 
header. The following command line uses /yX to create a precompiled header 
named MSVC.PCH: 

CL IYX MYPROG.CPP 

The following command line creates a precompiled header named MYPROG.PCH 
and places it in the \PROJPCH directory: 

CL IYX IFp\PROJPCH\MYPROG.PCH MYPROG.CPP 

Using the /yX option limits precompilation to header files only. The precompiled 
header is created when the compiler encounters the first declaration, definition, 
hdrstop pragma, or #line directive that occurs in the source file. In a subsequent 
compilation, the precompiled header is used at the point in a source file where the 
compiler makes its final consistency check. For more information, see "Consistency 
Rules for /yX," page 6. 

The actual set of header files precompiled with /yX is determined by the compiler, 
which may use a subset of the header files available to make the resulting precom
piled header useful in more cases. 

Although it is usually best to let the compiler determine which header files to use, 
you can selectively precompile header files by placing a hdrstop pragma in the 
source file between two #include directives. All header files before the hdrstop 
pragma are precompiled; those after are not. When used with /yX, any filename 
specified with the hdrstop pragma is ignored. If any subsequent compilation using 
the precompiled header does not find an identical hdrstop pragma at the same point 
in the source file, the compiler builds a new precompiled header. For more informa
tion, see "The hdrstop Pragma," page 10. 

Note If either /Y c or /Y u is specified with /yX, a warning is issued. In such cases, 
/yX is ignored, and /Yc or /Yu takes precedence. 

Use of the /yX option implies the /Y d ("duplicate debugging information in all 
object files") option. 

Debugging Code Compiled with /YX 
You can use either the jZi or the jZ7 option with the /yX option to generate debug
ging information for Code View or the Visual Workbench integrated debugger. 



6 Programming Techniques 

It is recommended that you use the jZi option unless you need /Z7 to maintain 
compatibility with Microsoft CjC++ version 7.0. The jZi option places the gener
ated debugging information into a program database (PDB); a PDB speeds linking 
during the debugging process. The /Y d option, which places all debugging informa
tion into every object file created using a precompiled header, is ignored unless used 
with jZ7. 

Table 1.1 summarizes results obtained from using the /Zi, jZ7, and /Y d options in 
combination with /YX. 

Table 1.1 Results of Combining Debugging Options with /YX 

Option combination 

/Zi 

/Zi /Yd 

/Z7 

/Z7/Yd 

Result 

Debugging infonnation for both the precompiled header and the 
rest of the source code is placed in a program database (PDB) 
with the default name of MSVC.PDB. 

/Y d is ignored. Debugging infonnation for both the precompiled 
header and the rest of the source code is placed in a PDB with 
the default name of MSVC.PDB. 

Debugging infonnation for both the precompiled header and the 
rest of the source code is placed in every object file created using 
the precompiled header. 

Debugging infonnation for both the precompiled header and the 
rest of the source code is placed in every object file created using 
the precompiled header. 

For more information on PDBs, /Zi, and jZ7, see Chapter 1, "CL Command 
Reference," in C ommand-Line Utilities User's Guide; this chapter discusses the 
Visual C++ compiler, a file called CL.EXE. For information on /Y d, see the "The 
/Y d (Duplicate Debugging Information in All Object Files) Option," page 14. 

Consistency Rules for /YX 
If a precompiled header file exists (either MSVC.PCH or one specified by 
JFpjilename), it is compared to the current compilation for consistency. Unless the 
following requirements are met, a new precompiled header file is created and the 
new file overwrites the old: 

• The current compiler options must match those specified when the precompiled 
header was created. 

• The current working directory must match that specified when the precompiled 
header was created. 



Chapter 1 Using Precompiled Headers 7 

• The order and values of all #include and #pragma directives must match those 
specified when the precompiled header was created. These, along with #define 
directives, are checked one by one as they appear during subsequent compila
tions that use the precompiled header. The values of #define directives must 
match. However, a sequence of #define directives need not occur in exactly the 
same order because there are no semantic order dependencies for #define direc
tives. The #pragma directives must be nearly identical, with a few exceptions; 
for example, multiple spaces outside of strings are treated as a single space to 
allow for different programming styles. 

• The value and order of include paths specified on the command line with /I 
options must match those specified when the precompiled header was created. 

• The time stamps of all the header files (all files specified with #include direc
tives) used to build the precompiled header must match those that existed when 
the precompiled header was created. 

The lYe (Create Precompiled Header) Option 
The IY c ("create precompiled header") option instructs the compiler to create a 
precompiled header file that represents the state of compilation at a certain point. 
The syntax of this option is: 

IY cITJilename] 

Using IV c with a Filename 
If you specify a filename with the IY c option, the compiler precompiles all code up 
to and including the specified file. The precompiled code is saved in a file with a 
name created from the base name of the file specified with the IY c option and a 
.PCH extension. You can also use the /Fp option, described in "The /Fp (Specify 
Precompiled Header Filename) Option," page 15, to specify a name for the result
ing precompiled header file. 

Consider the following code: 

#include <afxwin.h> II Include header for class library 
#include "resource.h" II Include resource definitions 
#include "myapp.h" II Include information specific to this 

II application 

When compiled with the command 

CL IYcMYAPP.H PROG.CPP 

the compiler saves all the results of processing AFXWIN.H, RESOURCE.H, and 
MY APP.H in a precompiled header file called MY APP.PCH. 



8 Programming Techniques 

Using IV c Without a Filename 
If you specify the /Y c option with no filename, the resulting precompiled header 
saves the compilation state at the end of the base source file or, if the base file 
contains a hdrstop pragma, at the place where the hdrstop pragma occurs. 

The resulting .PCR file has the same base name as your base source file unless you 
specify a different filename using the hdrstop pragma or the /Fp option. 

Note If /Y cfilename and /Yufilename options occur on the same command line and 
both reference the same filename, /Y cfilename takes precedence, precompiling all 
code up to and including the named file. This feature simplifies the writing of 
makefiles. 

The /Yu (Use Precompiled Header) Option 
The /yu ("use precompiled header") option instructs the compiler to use an existing 
precompiled header in the existing compilation. The syntax of this option is: 

/Y u [filename] 

Using IVu with a Filename 
The filename argument is the name of a header file, which is included in the source 
file using an #include preprocessor directive. The include file's name must be the 
same for both the /Y c option that creates the precompiled header and any subse
quent /yu option indicating use of the precompiled header. 

For /Y c,filename specifies the point at which precompilation stops; the compiler 
precompiles all code thoughfilename and names the resulting precompiled header 
using the base name of the include file and an extension of .PCR. For /Yu, the 
compiler assumes that all code occurring before filename is precompiled. The 
compiler skips to the specified #include directive, uses the code contained in the 
precompiled header file, and then compiles all code after filename. 

Consider the following code: 

#include <afxwin.h> II Include header for class library 
#include "resource.h" II Include resource definitions 
#include "myapp.h" II Include information specific to this 

II application 



When compiled with the command line 

CL /YuMYAPP.H PROG.CPP 

Chapter 1 Using Precompiled Headers 9 

the compiler does not process the three #include statements but uses the precom
piled code from the precompiled header MY APP.PCH, thereby saving the time 
involved in preprocessing all three of the files (and any files they might include). 

Using /Vu Without a Filename 
When you specify the /Y u option without a filename, your source program must 
contain a hdrstop pragma. The compiler skips to the location of that pragma and 
uses the content of the precompiled header file specified by the pragma. If the 
hdrstop pragma does not specify a filename, the name is derived from the base 
name of the source file with the .PCH extension. You can also use the /Fp option to 
specify a different .PCH file. 

If you specify the /Y u option without a filename and fail to specify a hdrstop 
pragma, an error message is generated and the compilation is unsuccessful. 

Note If /Y cfilename and /Yufilename option occur on the same command line and 
both reference the samefilename, IYcfilename takes precedence, precompiling all 
code up to and including the named file. This feature simplifies the writing of 
makefiles. 

Debugging Code Compiled with lYe or IYu 
You can use either the jZi or the jZ7 option with the /Y c and /Yu options to gener
ate debugging information compatible with Code View or the debugger that is inte
grated with the Visual Workbench. 

It is recommended that you use the jZi option unless you need jZ7 to maintain 
compatibility with Microsoft CjC++ version 7.0. The jZi option places the gener
ated debugging information into a program database (PDB); a PDB speeds linking 
during the debugging process. 

The IY d option, which places all debugging information into every object file cre
ated using a precompiled header, is ignored unless used with jZ7. 

Table 1.2 summarizes results obtained from using the jZi, jZ7, and /Y d options in 
combination with /Y c and /yu. 



10 Programming Techniques 

Table 1.2 Results of Combining Debugging Options with IY cor IYu 

Option combination 

IZi 

IZi /Yd 

IZ7 

IZ7/Yd 

Result 

Debugging information for both the precompiled header and the 
rest of the source code is placed in a program database (PDB) 
with the default name of MSVC.PDB. 

/Y d is ignored. Debugging information for both the precompiled 
header and the rest of the source code is placed in a PDB with 
the default name of MSVC.PDB. 

Debugging information for both the precompiled header and the 
rest of the source code is placed in the first object file created 
using the precompiled header. 

Debugging information for both the precompiled header and the 
rest of the source code is placed in every object file created using 
the precompiled header. 

For more information on PDBs, jZi, and jZ7, see Chapter 1, "CL Command 
Reference," in Command-Line Utilities User's Guide. For information on /yd, 
see "The Y d (Duplicating Debugging Information in All Object Files) Option," 
page 14. 

The hdrstop Pragma 
The hdrstop pragma gives you additional control over precompilation filenames 
and over the place at which the compilation state is saved. The syntax of the 
hdrstop pragma is 

#pragma hdrstop [("filename")] 

where filename is the name of the precompiled header file to use or create 
(depending on whether /yu or /Yc is specified). If the filename does not contain a 
path specification, the precompiled header file is assumed to be in the current 
directory. Any filename is ignored when the automatic precompiled header option 
(/YX) is specified. 

Note The hdrstop pragma is ignored unless either the /yX option is specified or 
the /yu or /Y c compiler option is specified without a filename. 

For the /Y c and the /yu options, if neither of the two compilation options nor the 
hdrstop pragma specifies a filename, the base name of the source file is used as the 
base name of the precompiled header file. This differs from the precompiled-header 
naming conventions of /yX; with /yX, the default name of the precompiled header 
is MSVC.PCH. 



Use the manual 
precompilation options 
to precompile any 
code. 

Chapter 1 Using Precompiled Headers 11 

The filename specified in the hdrstop pragma is a string and is therefore subject to 
the constraints of any C or C++ string. In particular, you must escape backslashes 
(\) when specifying paths. For example: 

#pragma hdrstop( "c:\\c700\\include\\myinc.pch" ) 

You can also use preprocessing commands to perfonn macro replacement as 
follows: 

#define INCLUDE_PATH "c:\\c700\\include\\" 
#define PCH_FNAME "PROG.PCH" 

#pragma hdrstop( INCLUDE_PATH PCH_FNAME ) 

Placement of the hdrstop Pragma 
The following rules govern where the hdrstop pragma can be placed: 

• It must appear outside any data or function declaration or definition. 

• It must be specified in the base file, not within a header file. 

Consider the following example: 

#include <windows.h> 
#include "myhdr.h" 

II Include several files 

__ inline Disp( char *szToDisplay) II Define an inline function 
{ 

II Some code to display string 

#pragma hdrstop 

In this example, the hdrstop pragma appears after two files have been included and 
an inline function has been defined. This might, at first, seem to be an odd place
ment for the pragma. Consider, however, that using the manual precompilation 
options, !Y c and !yu, with the hdrstop pragma makes it possible for you to pre
compile entire source files-even inline code. The Microsoft compiler does not 
limit you to precompiling only data declarations. 

Consistency Rules for lYe and IYu 
When you use a precompiled header created using the !Y c option, the compiler 
compares the current compilation environment to the one that existed when you 
created the .PCR file. You should take care to specify a environment consistent 
with the previous one (using consistent compiler options, pragmas, and so on) for 
the current compilation. If the compiler detects an inconsistency, it issues a warning 



12 Programming Techniques 

and identifies the inconsistency where possible. Such warnings don't necessarily 
indicate a problem with the .peR file; they simply warn you of possible conflicts. 
The following sections explain the consistency requirements for precompiled 
headers. 

Compiler Option Consistency 
Table 1.3 lists compiler options that might trigger an inconsistency warning when 
using a precompiled header. 

Table 1.3 Compilation Option Consistency 

Option 

lAX or IAxxx 

/D 

IE or IEP 

IFr or IFR 

IGA, IGD, IGE, 
IGw,or/GW 

Name 

Specify memory model 

Define constants and 
macros 

Copy preprocessor 
output to standard 
output 

Generate Microsoft 
Source Browser 
information 

Windows protocol 
options 

Rule 

Must be the same between the 
compilation that created the 
precompiled header and the current 
compilation. If these options differ, a 
error message results. 

Must be the same between the 
compilation that created the 
precompiled header and the current 
compilation. The state of defined 
constants is not checked, but 
unpredictable results can occur if your 
files depend on the values of the 
changed constants. 

Precompiled headers do not work with 
the IE or IEP option. 

For the IFr and /FR options to be valid 
with the IY u option, they must also 
have been in effect when the 
precompiled header was created. 
Subsequent compilations that use the 
precompiled header also generate 
Source Browser information. Browser 
information is placed in a single .SBR 
file and is referenced by other files in 
the same manner as Code View 
information. You cannot override the 
placement of Source Browser 
information. 

Must be the same between the 
compilation that created the 
precompiled header and the current 
compilation. If these options differ, a 
warning message results. 



Chapter 1 Using Precompiled Headers 13 

Table 1.3 Compilation Option Consistency (continued) 

Option 

/Zi 

Name 

Generate complete de
bugging information 

Rule 

If this option is in effect when the 
precompiled header is created, 
subsequent compilations that use the 
precompilation can use that debugging 
information. If /Zi is not in effect when 
the precompiled header is created, 
subsequent compilations that use the 
precompilation and the /Zi option 
trigger a warning. The debugging 
information is placed in the current 
object file, and local symbols defined 
in the precompiled header are not 
available to the debugger. 

Note The precompiled header facility is not intended for use with a file that is not a 
C or C++ program. 

Include Path Consistency 
A precompiled header created with IY c does not contain information about the 
include path that was in effect when you created the .PCR file. When you use a 
.PCR file, the compiler always uses the include path specified in the current 
compilation. 

Source File ConSistency 
When you use a precompiled header, the compiler ignores all preprocessor direc
tives (including pragmas) that appear before the hdrstop pragma. The compilation 
specified by such preprocessor directives must be the same as the compilation used 
to create the precompiled header file. 

Pragma Consistency 
Pragmas processed during the compilation of a precompiled header usually affect 
the file in which the precompiled header is subsequently used. The following prag
mas affect only the code within the .PCR file; they do not affect code that subse
quently uses the .PCR file: 

comment 

linesize 

message 

page 

pagesize 

skip 

subtitle 

title 



14 Programming Techniques 

The following pragmas are retained as part of a precompiled header. They do affect 
the remainder of a compilation that uses the precompiled header: 

alloc text code_seg inline recursion 

auto inline data_seg intrinsic 

check _pointer function loop_opt 

check stack inline _depth native caller 

The /Yd (Duplicate Debugging Information 
in All Object Files) Option 

optimize 

pack 

same_seg 

warning 

Use the IY d ("duplicate debugging information in all object files") option with the 
jZ7 ("generate Microsoft CjC++ version 7.0 compatible Code View information") 
option to place complete debugging information in all object files that are ultimately 
created from the resulting precompiled header (.PCH) file. The IY d option takes no 
argument. 

Note The IY d option is obsolete with the advent of the new program database 
(PDB) files created by the "generate complete debugging information" (lZi) option. 
The IY d option is retained on jZi, jZd, and /Z7 for backward compatibility with 
Microsoft CjC++ version 7.0. For more information, see Chapter 1, "CL Command 
Reference," in Command-Line Utilities User's Guide. 

Storing complete debugging information in every object file, including the informa
tion that describes only the .PCH file, is sometimes convenient, but it slows compi
lation and requires considerable disk space. 

In contrast, when IY c and jZ7 are used without IY d, the compiler stores debugging 
information describing the .PCH file in the first object file created from that file. 
The compiler does not insert this common debugging information into object files 
subsequently created from the .PCH file; rather, it inserts cross-references to the 
debugging information. Therefore, no matter how many object files use the .PCH 
file, only one object file contains the common debugging information. 

Although this default behavior results in faster build times and reduces disk-space 
demands, it is undesirable if a small change requires rebuilding the object file con
taining the common debugging information. In this case, the compiler must rebuild 
all object files containing cross-references to the original object file. Also, it is 
difficult to rely on cross-references to a single object file if a common .PCH file is 
used by different projects. 



Chapter 1 Using Precompiled Headers 15 

Examples 
Suppose you have two base files, F.CPP and G.CPP, each containing these 
#include statements: 

#include "windows.h" 
#include "etc.h" 

The following command creates the precompiled header file ETC.PCH and the 
object file F.OBJ: 

CL IYcETC.H IZ? F.CPP 

The object file F.OBJ includes type and symbol information for WINDOWS.H and 
ETC.H (and any other header files they include). Now you can use the precompiled 
header ETC.PCH to compile the source file G.CPP: 

CL IYuETC.H IZ? G.CPP 

The object file G.OBJ does not include the debugging information for the precom
piled header but simply references that information in the F.OBJ file. Note that you 
must link with the F.OBJ. 

If your precompiled header was not compiled with /Z7, you can still use it in later 
compilations using /Z7. However, the debugging information is placed in the cur
rent object file, and local symbols for functions and types defmed in the precom
piled header are not available to the debugger. 

The IFp (Specify Precompiled Header Filename) Option 
The /Fp option gives you extra control over the name of the precompiled header 
(.PCH) file. Use it to specify a precompiled header filename that is different from 
the default. For example, use the following command to rename the default 
MSVC.PCH file created and used by the "automate precompiled header" option: 

CL IYX IFpMYPCH.PCH PROG.CPP 

This command causes the compiler either to use a precompiled header named 
MY PCH • PCH if it exists or to create the file if it does not exist. 

If you want to create a precompiled header file for a debugging version of your 
program and you are compiling both header files and source code, you can specify a 
command such as: 

CL IDDEBUG IZi IYc IFpDPROG.PCH PROG.CPP 

This command assumes the existence of a hdrstop pragma in PRO G • C P P and 
creates a precompilation of all code up to the hdrstop pragma. The precompiled 



16 Programming Techniques 

code is stored in a file called DPROG.PCH. If you need a release version in 
parallel, you simply change the compilation command to: 

CL lYe IFpRPROG.PCH PROG.CPP 

This command creates a separate precompilation of all code up to the hdrstop 
pragma and stores it in RPROG.PCH. 

You can also use the /Fp option with the IY u and IYX options. 

1.4 Using Precompiled Headers in a Project 
Previous sections in this chapter present an overview of precompiled headers and 
reference material describing the manual precompiled-header options, IY c and 
IY u, the /Fp option, and the hdrstop pragma. This section describes a method for 
using the manual precompiled-header options in a project; it ends with an 
example makefile and the code that it manages. 

For another approach to using the manual precompiled-header options in a pro
ject, study the makefile located in the \MSVC\MFc\sRC directory that is created 
during the default setup of Visual C++. The makefile takes a similar approach to 
the one presented in this section but makes greater use of Microsoft Program 
Maintenance Utility (NMAKE) macros to offer greater control of the build 
process. 

Note The techniques presented in this section do not apply when using the automate 
precompiled header option (IYX). 

The Build Process 
The code base of a software project is usually contained in multiple C or C++ 
source files, object files, libraries, and header files. Typically, a makefile coordi
nates the combination of these elements into an executable file. Figure 1.1 shows 
the structure of a makefile that uses a precompiled header file. Both the NMAKE 
macro names and the filenames in this diagram coincide with those in the example 
code found at the end of this section. 

Figure 1.1 uses three diagrammatic devices to show the flow of the build process. 
Named rectangles represent each file or each macro; the three macros represent one 
or more files. Shaded areas represent each compile or link action. Arrows show 
which files and macros are combined during the compilation or linking process. 



List files not likely to 
change in the 
STABLEHDRS and 
BOUNDRY macros. 

List files likely to 
change in the 
UNSTABLEHDRS 
macro. 

Chapter 1 Using Precompiled Headers 17 

CL Ie IW3·JYe $(BOUNDRY) appl ib.epp myapp.cpp 

+ 
$(STABLE.PCH) 

~ ____ ~ ____ ~~~_Imyap!.cpp I 
CL /c./w3 IYu$fBOUNORY> appli.b.cpp CL /e Iw3 IYu $('BOUNDRY) myapp.cpp 

I myap1· obj I 

LINK/NOD ONERROR:NOEXE $(OBJS). myapp. NUL. HLIBS). NUL 

I myaJexel 
Figure 1.1 Structure of a Makeflle That Uses a Precompiled Header File 

Beginning at the top of the diagram, both STABLEHDRS and BOUNDRY are NMAKE 
macros in which you list files not likely to need recompilation. These files are 
compiled using the command string 

CL Ie IW3 IYe$(BOUNDRY) applib.cpp myapp.cpp 

only if the precompiled header file (ST ABLE.PCR) does not exist or if you make 
changes to the files listed in the two macros. In either case, the precompiled header 
file will contain only code from the files listed in the STAB LEHDRS macro. List the 
last file you want precompiled in the B 0 UNO R Y macro. 

The files you list in these macros can be either header files or C or C++ source 
files. (A single .PCR file cannot be used with both C and C++ modules.) Note that 
you can use the hdrstop macro to stop precompilation at some point within the 
BOUNDRY file. The hdrstop pragma is discussed in "The hrdstop Pragma," page 10. 

Continuing down the diagram, APPLIB.OBJ represents the support code used in 
your final application. It is created from APPLIB.CPP, the files listed in the 
UNSTABLEHDRS macro, and precompiled code from the precompiled header. 

MY APP.OBJ represents your final application. It is created from MY APP.CPP, the 
files listed in the UNSTAB LEHDRS macro, and precompiled code from the precom
piled header. 



18 Programming Techniques 

Finally, the executable file (MY APP.EXE) is created by linking the files listed in 
the OBJ S macro (APPLIB.OBJ and MYAPP.OBJ). 

Sample Makefile 
The following makefile uses macros and an !IF, !ELSE, !ENDIF flow-of-control 
command structure to simplify its adaptation to your project. 

41 Ma kefil e 
41 
41 Usage: 
41 option: 
41 
41 

Illustrates the effective use of precompiled 
headers in a project 
NMAKE option 
DEBUG=[01 1] 
(DEBUG not defined is equivalent to DEBUG=0) 

OBJS = myapp.obj applib.obj 
41 List all stable header files in the STABLEHDRS macro. 
STABLEHDRS = stable.h another.h 
41 List the final header file to be precompiled here: 
BOUNDRY = stable.h 
41 List header files under development here: 
UNSTABLEHDRS = unstable.h 
41 List all compiler options common to both debug and final 
41 versions of your code here: 
CLFLAGS = Ic IW3 
41 List all linker options common to both debug and final 
41 versions of your code here: 
LINKFLAGS = INOD 10NERROR:NOEXE 
!IF "$(DEBUG)" == "1" 
CLFLAGS 10 DEBUG $(CLFLAGS) 10d IZi If 
LINKFLAGS 
LIBS 
!ELSE 
CLFLAGS 
LI NKFLAGS 
LIBS 
!ENDIF 

$(LINKFLAGS) ICOD 
slibce 

$(CLFLAGS) 10selg IGs 
$(LINKFLAGS) 
slibce 

myapp.exe: $(OBJS) 
link $(LINKFLAGS) @« 

$ ( 0 B J S), my a p p, NUL, $( LI B S), NUL; 
« 
41 Compile myapp 
myapp.obj : myapp.cpp $(UNSTABLEHDRS) 

$(CPP) $(CLFLAGS) IYu$(BOUNDRY) 
41 Compile applib 

stable.pch 
myapp.cpp 

applib.obj : applib.cpp $(UNSTABLEHDRS) stable.pch 
$(CPP) $(CLFLAGS) IYu$(BOUNDRY) applib.cpp 

41 Compile headers 
stable.pch : $(STABLEHDRS) 

$(CPP) $(CLFLAGS) IYc$(BOUNDRY) applib.cpp myapp.cpp 



List compiler and 
linker options in the 
CLFLAGS and 
LlNKFLAGS macros. 

Chapter 1 Using Precompiled Headers 19 

Besides the STAB LEHDRS, BOUNDRY, and UNSTAB LEHDRS macros shown in Figure 
1.1, this makefile also provides a eLF LA G S macro and a LIN K F LA G S macro. You 
must use these macros to list compiler and linker options that apply whether you 
build a debug or final version of the application's executable file. There is also a 
LIB S macro where you list the libraries required by your project. 

The makefile also uses !IF, !ELSE, !ENDIF to detect whether you define a 
DEBUG symbol on the NMAKE command line: 

NMAKE DEBUG=[110] 

This feature makes it possible for you to use the same makefile during development 
and for the final versions of your program - use 0 E B U G=0 for the final versions. 
The following command lines are equivalent: 

NMAKE 
NMAKE DEBUG=0 

For more information on makefiles, see "Managing Projects with NMAKE" in the 
Tools TechNote Viewer. For more information on compiler options, see Chapter 1, 
"CL Command Reference," and Chapter 6, "Optimizing 16-Bit Programs," in 
C ommand-Line Utilities User's Guide. For more information on the Microsoft 
Segmented Executable Linker (LINK), see Chapter 2, "Linking Object Files with 
LINK," in Command-Line Utilities User's Guide. 

The Example Code 
The following examples are used in the makefile described previously. Note that the 
comments contain important information. 

II ANOTHER.H : Contains the interface to code that is not 
II likely to change. 
II 
#ifndef __ ANOTHER_H 
#define __ ANOTHER_H 
#include<iostream.h> 
void savemoretime( void ); 
#endif II __ ANOTHER_H 

II STABLE.H : Contains the interface to code that is not likely 
II to change. List code that is likely to change 
II in the makefile's UNSTABLEHDR macro. 
II 
#ifndef __ STABLE_H 
#define __ STABLE_H 
#include<iostream.h> 
void savetime( void ); 
#endif II __ STABLE_H 



20 Programming Techniques 

II UNSTABLE.H 
II 

Contains the interface to code that is 
likely to change. As the code in a header 

II 
II 
II 
II 

file becomes stable. remove the header file 
from the makefile's UNSTABLEHDR macro and list 
it in the STABLEHDR macro. 

#ifndef __ UNSTABLE_H 
#define __ UNSTABLE_H 
#include<iostream.h> 
void notstable( void ); 
#endif II __ UNSTABLE_H 

II APPLIB.CPP : This file contains the code that implements 
II the interface code declared in the header 
II files STABLE.H. ANOTHER.H. and UNSTABLE.H. 
II 
#include"another.h" 
#include"stable.h" 
#include"unstable.h" 
II The following code represents code that is deemed stable and 
II not likely to change. The associated interface code is 
II precompiled. In this example. the header files STABLE.H and 
II ANOTHER.H are precompiled. 
void savetime( void ) 

{ cout « "Why recompile stable code?\n"; } 
void savemoretime( void) 

{ cout « "Why. indeed?\n\n"; } 
II The following code represents code that is still under 
II development. The associated header file is not precompiled. 
void notstable( void) 

{ cout « "Unstable code requires" 
« " frequent recompilation.\n"; } 

II MYAPP.CPP : Sample application 
II All precompiled code other than the file listed 
II in the makefile's BOUNDRY macro (stable.h in 
II 
II 
II 

this example) must be included before the file 
listed in the BOUNDRY macro. Unstable code must 
be included after the precompiled code. 

II 
#include"another.h" 
#include"stable.h" 
#include"unstable.h" 
void main( void) 
{ 

} 

savetime(); 
savemoretime(); 
notstabl e(); 



CHAPTER 2 

Managing Memory for 16-Bit 
C Programs 

21 

When you develop advanced 16-bit applications with Microsoft Visual C++, you 
must pay attention to memory management-that is, how data and code are stored 
and accessed in memory. A well-thought-out memory strategy makes your 16-bit 
programs run faster and occupy less memory. 

You can follow one or more of these memory management strategies: 

• Choose a standard memory model. 

• Create a mixed-model program with the __ near, __ far, __ huge, and __ based 
keywords. 

• Create your own customized memory model. 

• Allocate memory as you need it with the rnalloc family of functions. 

• Use virtual memory with the _vrnalloc family of functions. 

This chapter explains pointers, memory models (including tiny model), variations 
such as custom memory models and mixed models, based pointers, and virtual 
memory. 

Most of the material covered in this chapter is relevant only to 16-bit programs. The 
only topic described in this chapter that applies to 32-bit programs is that of 
pointers based on a pointer. 

The next chapter, "Managing Memory for 16-Bit C++ Programs," discusses 
memory management issues that are specific to C++. 

2.1 Pointer Sizes 
One of the strengths of the C language is that in it, you can use pointers to directly 
access memory locations. 

Every Visual C++ program has at least two parts: the code (function definitions) 
and the data (variables and constants). As a program runs, it refers to elements of 
the code or the data by their addresses. These addresses can be stored in pointer 



22 Programming Techniques 

variables. Pointer variables can fit into 16 bits or 32 bits, depending on the distance 
of the object to which they refer. 

Pointers and 64K Segments 

A 16-bit pointer can 
address up to 65,536 
locations. 

IBM personal computers and compatibles use the Intel 8086, 80186, 80286, 80386, 
or 80486 processors (collectively called the 80x86 family). These processors have a 
"segmented" architecture, which means they all have a mode that treats memory as 
a series of segments, each of which occupies up to 64K of memory. An offset from 
the base of the segment makes it possible to access information within a given 
segment. Accessing more than one segment at a time requires additional machine 
code. 

The 64K limit is necessary because the 80x86 registers are 16 bits (2 bytes) wide. 
A single register can address only 65,536 (64K) unique memory locations. 

A pointer variable that fully specifies a memory address needs 16 bits for the 
segment location and another 16 bits for the offset within the segment, a total of 32 
bits. However, if you have several variables in the same general area, your program 
can set the segment register once and treat the pointers as smaller 16-bit quantities. 

The 80x86 register CS holds the base for the code segment; the register DS holds 
the base for the data segment. Two other segment registers are available: the stack 
segment register (SS) and the extra segment register (ES). (The 80386 and 80486 
have additional segment registers: FS and GS.) 

Near Pointers 
If you don't explicitly specify a memory model, Visual C++ defaults to the small 
model, which allots up to 64K for the code and another 64K for the data (see Figure 
2.1). 

I Available memory 

1/ 64K I 64K 1 unused 
'- / ,'-_..,-----.J/ 

I Code I Data 
segment segment 

Figure 2.1 Anatomy of a Small-Model Program 

When a small-model program runs, the CS and DS segment registers never change. 
All code pointers and all data pointers contain 16 bits because they remain within 
the 64K range. 



Far Pointers 

Far pointers can 
address any location, 
but they are bigger 
and slower. 

Chapter 2 Managing Memory for 16·Bit C Programs 23 

These 16-bit pointers to objects within a single 64K segment are called "near 
pointers." Accessing a near object is called "near addressing." 

If your program needs more than 64K for code or data, at least some of the pointers 
must specify the memory segment, which means these pointers occupy 32 bits 
instead of 16 bits. 

These larger 32-bit pointers that can point anywhere in memory are called "far 
pointers." Accessing a far object is called "far addressing." 

Far addressing has the advantage that your program can address any available 
memory location-up to 640K in MS-DOS®. The disadvantages of the larger far 
pointers are that they take up more memory (four bytes instead of two) and that any 
use of the pointers (assigning, modifying, or otherwise accessing values) takes more 
time. 

Allowing either code or data to expand beyond 64K makes your programs larger 
and slower. 

Huge Pointers 
A third type of pointer in Visual C++ is the "huge" pointer, which applies only to 
data pointers. Code pointers cannot be declared as huge. 

A huge address is similar to a far address in that both contain 32 bits, made up of a 
segment value and an offset value. They differ only in the way pointer arithmetic is 
performed. 

For far pointers, Visual C++ assumes that code and data objects lie completely 
within the segment in which they start, so pointer arithmetic operates only on the 
offset portion of the address. Limiting the size of any single item to 64K makes 
pointer arithmetic faster. 

Huge pointers overcome this size limitation; pointer arithmetic is performed on all 
32 bits of the data item's address, thus allowing data items referenced by huge 
pointers to span more than one segment. 

In the following example, both h p and f p are incremented: 

int __ huge *hp; 
int _3ar *fp; 

hp++; 
fp++; 



24 Programming Techniques 

The huge pointer is incremented as a 32-bit value that represents the combined 
segment and offset. Only the offset part of the far pointer (a 16-bit value) is 
incremented. 

Extending the size of pointer arithmetic from 16 to 32 bits causes such arithmetic to 
execute more slowly. You gain the use of larger arrays by paying a price in 
execution speed. 

Based Addressing 
When you declare near, far, and huge variables, the Microsoft compiler and linker 
automatically manage details such as allocating memory and keeping track of 
segments. 

A "based pointer" is a fourth kind of pointer that operates as a 16-bit offset from a 
base that you specify. In this respect, based addressing differs from near, far, or 
huge addressing; you're responsible for naming the base, instead of letting the 
compiler decide. Based pointers are explained in more detail in Section 2.5, "Using 
Based Pointers and Data," on page 48. 

2.2 Selecting a Standard Memory Model 

A standard memory 
model provides default 
sizes for all pointers. 

If you want to choose one size for all pointers, there's no need to declare each 
variable as near or far. Instead, you select a standard memory model, and your size 
choice applies to all variables in the program. 

One advantage of using standard memory models is simplicity: You specify the way 
the compiler allocates storage for code and data only once. Another advantage is 
that the standard memory models do not require the use of Microsoft -specific 
keywords such as __ near and __ far, which makes them the best choice for writing 
code that is portable to other (non-MS-DOS) systems. 

The disadvantage of standard memory models is that, because they make global 
assumptions about the environment, they may not provide the most efficient use of 
memory for a particular program. 



Chapter 2 Managing Memory for 16·Bit C Programs 25 

The Six Standard Memory Models 
The six Microsoft memory models are shown in Table 2.1. 

Table 2.1 Memory Models 

Maximum memory Maximum memory Maximum memory 
Model for code for data for data arrays 

Tiny Less than 64K Less than 64 K Less than 64K 

Small 64K 64K 64K 

Medium No limit 64K 64K 

Compact 64K No limit 64K 

Large No limit No limit 64K 

Huge No limit No limit No limit 

The Setup program creates the libraries that support the six standard memory 
models. 

When you choose one of the standard memory models, the compiler inserts the 
name of the corresponding C run-time library in the object file so the linker chooses 
it automatically. Each memory model has its own library, except for the huge 
memory model (which uses the large-model library) and the tiny model (which uses 
the small-mode1library). 

Limitations on Code Size and Data Size 
When writing a program with Visual C++, keep in mind two limitations that apply 
to all six memory models: 

• No single source module can generate 64 K or more of code. You must break 
large programs into modules and link their individual .OBJ files to create the 
.EXE file. 

• No single data item can exceed 64K unless it appears in a huge-model program 
or it has been declared with the __ huge keyword. 



26 Programming Techniques 

Tiny Memory Model 
The tiny memory model resembles the small model with three exceptions: 

• The tiny model cannot exceed 64K per program (including both code and data). 
A small-model program, on the other hand, can occupy up to 128K: 64K for 
code and 64 K for data. 

• The tiny model produces .COM, rather than .EXE, files. To produce .COM 
files, compile with the j A T option. Then link with the jTINY option and link in 
CRTCOM.LIB by adding it to the linker's objfile field. 

• The tiny model applies to MS-DOS only; it is not available in Windows. 

The tiny model produces the smallest programs but imposes the most severe limits 
on code and data size. As far as speed is concerned, the tiny model and small model 
produce equally fast programs, although the tiny model offers a load-time speed 
advantage over the small model. 

If you are programming in C++, you cannot construct static objects under the tiny 
model. Because the predefined stream objects (like cio and COllt) are static objects, 
you cannot use iostreams in a tiny-model program. 

Figure 2.2 illustrates how memory is arranged for the tiny memory model. 

High memory 

1"- "-

'" 
Heap Unallocated memory used for dynamic allocation 

STACK Local data 

'" - BSS and 

'" c_common 
Uninitialized global and static data 

DGROUP 
CONST 

"-
Compiler-generated read-only data 

- DATA 
"-

Data segment: initialized global and static data 

NULL. 
"-

Checks for null-pointer assignment 

"-
_TEXT Code segment for all modules 

PSP 
"-

Program segment prefix (provided by MS-DOS) 

Low memory 

Figure 2.2 Memory Map for the Tiny Memory Model 



Chapter 2 Managing Memory for 16·Bit C Programs 27 

Creating Small-Model Programs 
The small model provides one code segment and one data segment, each limited 
to 64K. The total size of a small-model program can never exceed 128K. As most 
programs fit easily into this model, this is the default memory model. 

By default, both code and data items in small-model programs are accessed with 
near addresses. This makes small-model programs faster than those using far 
addresses. You can override the defaults by using the __ far or __ huge keyword 
for data or by using the __ far keyword for code. 

Figure 2.3 illustrates how memory is arranged for the small memory model. 

High memory 

"'- "'-

"'-
Heap Unallocated memory used for dynamic allocation 

STACK Local data 
~ 

-BSS and 
~ c common Uninitialized global and static data 

DGROUP CONST 
~ 

Compiler-generated read-only data 

~ - DATA Data segment: initialized global and static data 

NULL 
"'-

Checks for null-pointer assignment 

TEXT 

'" 
Code segment for all modules 

Low memory 

Figure 2.3 Memory Map for the Small Memory Model 

Creating Medium-Model Programs 
The medium memory model provides a single segment for program data and 
multiple segments for program code, each limited to 64K. Each source module is 
given its own code segment. 

Medium-model programs typically have a large number of program statements 
(more than 64K of code) but a relatively small amount of data (less than 64K). 
Program code can occupy any amount of space and is given as many segments as 
needed; total program data cannot be greater than 64K. 



28 Programming Techniques 

By default, code items in medium-model programs are accessed with far 
addresses and data items are accessed with near addresses. You can override the 
default by using the __ far or __ huge keyword for data and the __ far keyword 
for code. 

The medium model provides a useful trade-off between speed and space for a 
program that refers more frequently to data items than to code. Figure 2.4 
illustrates how memory is set up for the medium memory model. 

Near 
Memory 

(DGROUP) 

Far { 
Memory 

High memory 

~ 

'" 
Heap 

STACK 
~ 

BSSand -

'" c common 

CONST 

'" 
'" -DATA 

"-
NULL 

t 

C module_TEXT 

Low memory 

'" Unallocated memory used for dynamic allocation 

Local data 

Uninitialized global near and static near data 

Compiler-generated read-only data 

Data segment: initialized global near and static near data 

Checks for null-pointer assignment 

'" One code segment per module 

Figure 2.4 Memory Map for the Medium Memory Model 

Creating Compact-Model Programs 
The compact memory model provides multiple segments for program data but 
only one segment for the program code. Each segment is limited to 64K. 

Compact-model programs typically have a large amount of data but a relatively 
small number of program statements. Program data can occupy any amount of 
space and is given as many segments as needed. 



Chapter 2 Managing Memory for 16·Bit C Programs 29 

By default, code items in compact-model programs are accessed with near 
addresses and data items are accessed with far addresses. You can override the 
defaults by using the __ near or __ huge keyword for data or by using the __ far 
keyword for code. 

Figure 2.5 illustrates how memory is arranged for the compact memory model. 

Near 
Memory 

(DGROUP) 

Far { 
Memory 

High memory 

1""-

~ 
Far heap 

Near heap 

'" 
STACK 

'" BSS and -
~ c_common 

CONST 
~ 

'" 
- DATA 

'" 
NULL 

t 
I'" 

I 

~ 
Data segments 

'" 
_TEXT 

Low memory 

'" 

'" 

Unallocated far memory used for dynamic allocation 

Unallocated near memory used for dynamic allocation 

Local data 

Uninitialized global near and static near data 

Compiler-generated read-only data 

Data segment: initialized global near and static near data 

Checks for null-pointer assignment 

Initialized and uninitialized global far and 
static far and huge data 

Code segment for all modules 

Figure 2.5 Memory Map for the Compact Memory Model 

Creating Large-Model Programs 
The large memory model provides multiple segments, as needed, for both code 
and data. Each segment is limited to 64K; no one data item can exceed 64K. 

Large-model programs are typically very large and use a large amount of data 
storage during normal processing. 



30 Programming Techniques 

By default, both code and data items in large-model programs are accessed with 
far addresses. You can override the defaults by using the __ near or __ huge 
keyword for data or by using the __ near keyword for code. 

Figure 2.6 illustrates how memory is set up for the large and huge memory 
models. 

Near 
Memory 

(DGROUP) 

Far 
Memory 

High memory 

Far heap 

Near heap 

STACK 

CONST 

Low memory 

Unallocated far memory used for dynamic allocation 

Unallocated near memory used for dynamic allocation 

Local data 

Uninitialized global near and static near data 

Compiler-generated read-only data 

Data segment: initialized global near and static near data 

Checks for null-pointer assignment 

Initialized and uninitialized global far and 
static far and huge data 

One code segment per module 

Figure 2.6 Memory Map for the Large and Huge Memory Models 

Huge Memory Model 
The huge memory model is nearly identical to the large model. The only difference 
is that the huge model permits individual arrays to exceed 64K in size. For 
example, an int uses two bytes, so an array of 40,000 integers, occupying 80,000 
bytes of memory, is permitted in the huge model. All other models limit each array, 
structure, or other data object to no more than 64K. 



The huge model lifts 
the limits on arrays. 

Null Pointers 

Chapter 2 Managing Memory for 16·Bit C Programs 31 

Note Automatic arrays cannot be declared huge. Only static arrays and arrays 
occupying memory allocated by the _ halloc function can be huge. 

Although the huge model lifts the limits on arrays, some size restrictions do apply. 
To maintain efficient addressing, no individual array element is allowed to cross a 
segment boundary. This has the following implications: 

• No single element of an array can be larger than 64K. An array can be larger 
than 64K, but its individual elements cannot. 

• For any array larger than 128K, all elements must have a size in bytes equal to a 
power of 2: 2 bytes, 4 bytes, 8 bytes, 16 bytes, and so on. If the array is 128K or 
smaller, its elements can be any size, up to and including 64K. 

Pointer arithmetic changes within the huge model, as well. In particular, the size of 
operator may return an incorrect value for huge arrays. The American National 
Standards Institute (ANSI) draft standard for C defines the value returned by sizeof 
to be of type size_t (which, in the Microsoft C compiler, is an unsigned int). The 
size in bytes of a huge array is an unsigned long value, however. To find the 
correct value, you must use a type cast: 

(unsigned long)sizeof( monster_array 

Similarly, the C language defines the result of subtracting two pointers as ptrdiff _ t 
(a signed int in the Microsoft C compiler). Subtracting two huge pointers yields a 
long value. The Microsoft C compiler gives the correct result with the following 
type cast: 

(long)(ptrl __ huge - ptr2_huge) 

When you select huge model, all extern and uninitialized arrays are treated as 
__ huge. Operations on data declared as __ huge can be less efficient than the same 
operations on data declared as __ far. 

Within the medium and compact models, code pointers and data pointers differ in 
size: A code pointer is 32 bits wide, and a data pointer is 16 bits wide. When using 
these memory models, you should be careful in your use of the manifest constant 
NULL. 

NULL represents a null data pointer. The library include files define it as follows 
forC: 

#define NULL «void *) 0) 



32 Programming Techniques 

There can be 
problems in models 
where code and data 
pointers are different 
sizes. 

For C++, it is defined as follows: 

/fodefine NULL 0 

In memory models where data pointers have the same size as code pointers, the 
actual size of a null pointer doesn't matter. In memory models where code and data 
pointers are different sizes, problems can occur. Consider this example: 

void main() 
{ 

funcl( NULL ); 
func2( NULL ); 

int funcl( char *dp ) 

int func2( char (*fp)( void) ) 

In the absence of function prototypes for fun eland fun c 2, the compiler always 
assumes that NULL refers to data and not code. 

The previous example works correctly in tiny, small, large, and huge models 
because, in those models, a data pointer is the same size as a code pointer. In the 
medium or compact model, however, rna in passes NULL to func2 as a null data 
pointer rather than as a null code pointer (a pointer to a function), which means the 
pointer is the wrong size. 

To ensure that your code works properly in all models, declare each function with a 
prototype. For example, before rna in, include these two lines: 

int funcl( char *dp ); 
int func2( char (*fp)( void »; 

If you add these prototypes to the example, the code works properly in all memory 
models. Prototypes force the compiler to coerce code pointers to the correct size. 
Prototypes also enable strong type checking of parameters. 



Chapter 2 Managing Memory for 16·Bit C Programs 33 

Specifying a Memory Model 
If you do not specify a memory model, Visual C++ defaults to the small model, 
which is adequate for many small to midsized programs. 

You can choose a memory model by including an option on the command line. For 
example, to compile CLICK.C as a compact-model program, type this: 

CL lAC CLICK.C 

The / AC option selects the compact memory model. The six options and four 
libraries are as follows: 

Option 

IAT 

lAS 

lAM 

lAC 

IAL 
IAR 

Memory model selected 

Tiny model 

Small model 

Medium model 

Compact model 

Large model 

Rugemodel 

Library used 

SLIBCxx.LIB (plus CRTCOM.LIB) 

SLIBCxx.LIB 

MLIBCxx.LIB 

CLIBCxx.LIB 

LLIBCxx.LIB 

LLIBCxx.LIB 

2.3 Mixing Memory Models 

A mixed memory 
model lets you mix 
near and far pointers. 

In standard memory models, explained in the preceding section, all data pointers are 
the same size and all code pointers are the same size. A mixed memory model 
selectively combines different types of pointers within the same program. A mixed 
model extends the limits of a given memory model while retaining its benefits. 

For example, imagine a programming situation in which you add an array to a 
small-model program, pushing the data segment past the 64K limit. You can solve 
the problem by moving up from the small to the compact memory model. Doing so 
bumps all data pointers from two to four bytes. The .EXE file grows accordingly. 
Execution time slows. 

A second and perhaps better solution is to stay within the standard small memory 
model, which uses near pointers, but to declare the new array as far. You mix near 
pointers and far pointers, creating a mixed model. 

Using Visual C++, you can override the standard addressing convention for a given 
memory model by specifying that certain items are __ near, __ far, __ huge, or 
__ based. These keywords are not a standard part of the C language; they are 
Microsoft extensions, meaningful only on systems that use 80x86 microprocessors. 
Using these keywords may affect the portability of your code. 



34 Programming Techniques 

Note Previous versions of the Microsoft C compiler accepted the keywords near, 
far, and huge without an initial underscore, in addition to with a single underscore. 
Because the ANSI standard for C permits compiler implementors to reserve 
keywords that begin with two underscores, all Microsoft-specific keywords have 
two initial underscores. To maintain compatibility with existing source code, the 
compiler still recognizes the obsolescent versions of these keywords. 

You can compile a program in the small model, for example, but declare a certain 
array to be __ far. At run time, the address of that array occupies four bytes; the 
program may slow slightly when accessing items in that particular far array. 
Throughout the rest of the program, all addressing is near. Note that all pointers to 
elements of an array declared as __ far must also be declared as __ far. 

Table 2.2 lists the effects of these keywords on data pointers, code pointers, and 
pointer arithmetic. 

Table 2.2 Addressing Declared with Microsoft Keywords 

Keyword Data Code Arithmetic 

near Data resides in the default Functions reside in the 16 bits 
data segment; addresses current code segment; 
are 16 bits. addresses are 16 bits. 

--far Data can be anywhere in Functions can be called 16 bits 
memory, not necessarily from anywhere in 
in the default data segment; memory; addresses 
addresses are 32 bits. are 32 bits. 

__ huge Data can be anywhere in Not applicable-code 32 bits 
memory, not necessarily cannot be declared (data only) 
in the default data segment. __ huge. 
Individual data items 
(arrays) can exceed 64K in 
size; addresses are 32 bits. 

based Data can be anywhere in Functions reside in spec- 16 bits --
memory, not necessarily ified code segment; 
in the default data segment; based can be used 
16-bit addresses plus a with near or --far. 
known base provide the 
range of 32-bit addresses. 

Pointer Problems 
When you declare items to be __ near, __ far, __ huge, or __ based, you can link 
with a standard run-time library. Be aware, however, that in some cases, the 
modified pointers are incompatible with standard library functions. Watch for these 
problems that affect pointers: 



Chapter 2 Managing Memory for 16·Bit C Programs 35 

• A library function that expects a 16-bit pointer as an argument does not function 
properly with modified variables that occupy 32 bits. In other words, you can 
cast a near pointer to a far pointer, because it adds the segment value and 
maintains the integrity of the address. If you cast a far pointer to near, however, 
the compiler generates a warning message because the offset may not lie within 
the default data segment, in which case the original far address is irretrievably 
lost. 

• A library function that returns a pointer returns a pointer of the default size for 
the memory model. This is only a problem if you are assigning the return value 
to a pointer of a smaller size. For example, there may be difficulties if you 
compile with a model that selects far data pointers, but you have explicitly 
declared the variable to receive the return value near. 

This warning does not apply to all functions. Visual C++ provides model
independent versions of its string and memory functions such as _ fstreat, the far 
version of streat. 

• Based pointers pose a special problem. Based pointers are passed to other 
functions as is, without normalization. Certain functions expect to receive based 
pointers, but most do not. Therefore, in most cases, you must either explicitly 
cast a based pointer to a far pointer or make sure that all functions that receive 
based pointers are prototyped. 

Some run-time library functions support near, far, huge, and based variables. For 
example, _halloe allocates memory for a huge data array. 

You can always pass the value (but not the address) of a far item to a small-model 
library routine. For example: 

1* Compile in sma 11 

1finclude <stdio.h> 

long __ far time_val; 

void main() 
{ 

time( &time val -

printf( "%ld\n". 
} 

model 

) ; 

time 

*1 

va 1 ) ; 

1* Illegal far address *1 
/* Legal value */ 

When you use a mixed memory model, you should include function prototypes with 
argument-type lists to ensure that all pointer arguments are passed to functions 
correctly. 



36 Programming Techniques 

Declaring Near, Far, Huge, and Based Variables 
The __ near, __ far, __ huge, and __ b~sed keywords can modify either objects or 
pointers to objects. When using them to declare variables, keep these rules in mind: 

• The keyword always modifies the object or pointer immediately to its right. In 
complex declarations, think of the __ far keyword and the item to its right as 
being a single unit. 

For example, in the case of the declaration 

char __ far * __ near *p; 

P is a near pointer to a far pointer to char, which resides in the default data 
segment for the memory model being used. 

By contrast, the declaration 

char __ far * __ near p; 

is a far pointer to char that is always stored in DGROUP, regardless of the 
memory model being used. 

• If the item immediately to the right of the keyword is an identifier, the keyword 
determines whether the item is allocated in the default data segment 
( __ near) or a separate data segment ( __ far, __ huge, or __ based). For 
example, 

char _3ar a; 

allocates a as an item of type char with a __ far address. 

• If the item immediately to the right of the keyword is a pointer, the keyword 
determines whether the pointer holds a near address (16 bits), a based address 
(16 bits), a far address (32 bits), or a huge address (also 32 bits). For example, 

char __ huge *p; 

allocates p as a huge pointer (32 bits) to an item of type char. Any arithmetic 
performed on the huge pointer p affects all 32 bits. That is, the instruction p++ 
increments the pointer as a 32-bit entity. 

Declaring Near and Far Functions 
You cannot declare functions as __ huge. The rules for using the __ near and 
__ far keywords for functions are similar to those for using them with data: 

• The keyword always modifies the function or pointer immediately to its right. 

• If the item immediately to the right of the keyword is a function, the keyword 
determines whether the function is called using a near (16-bit) or far (32-bit) 
address. For example, 



Chapter 2 Managing Memory for 16·Bit C Programs 37 

char __ far funC); 

defines fun as a function with a 32-bit address that returns a char. The function 
may be located in near memory or far memory, but it is called with the full 32-
bit address. The __ far keyword applies to the function, not to the return type. 

• If the item immediately to the right of the keyword is a pointer to a function, the 
keyword determines whether the function is called using a near (16-bit) or far 
(32-bit) address. For example, 

char ( __ far *pfun)(); 

defines p fun as a far pointer (32 bits) to a function returning type char. 

• Function declarations must match function definitions. 

• The __ huge keyword does not apply to functions. That is, a function cannot be 
huge (larger than 64K). A function can return a huge data pointer to the calling 
function. 

• The __ based keyword can be used to modify a function declaration, and it can 
be used in combination with the __ near and __ far keywords. Based functions 
are described in Section 2.6, "Using Based Addressing for Functions," on page 
59. A function can return a based pointer unless it is a pointer based on __ self 
(for more information, see Section 2.5, "Using Based Pointers and Data," on 
page 48). 

The following example declares fun 1 as a far function returning type char: 

char __ far funl(void); 
char __ far fun(void) 
{ 

/* Small model */ 

Here, the fun 2 function is a near function that returns a far pointer to type char: 

char __ far * __ near fun2(); 
char __ far * __ near fun() 
{ 

/* Large model */ 



38 Programming Techniques 

The following example declares p fun as a far pointer to a function that has an int 
return type, assigns the address of printf to p fun, and prints Hello W 0 r 1 d twice: 

/* Compile in medium, large, or huge model */ 

#include <stdio.h> 

int ( __ far *pfun)( char * ... ); 

void main() 
{ 

pfun = printf; 
pfun( "Hello world\n" ); 
(*pfun)( "Hello world\n" ); 

Pointer Conversions 

Function prototypes 
prevent problems that 
may occur in mixed 
memory models. 

Passing near or far pointers as arguments to functions can cause automatic 
conversions in the size of the pointer argument. Passing a pointer to an 
unprototyped function forces the pointer size to the larger of the following two 
sizes: 

• The default pointer size for that type, as defined by the memory model selected 
during compilation. For example, in medium-model programs data pointer 
arguments are near by default and code pointer arguments are far by default. 

• The size of the type of the argument. 

Note that if you supply a based pointer as an argument to a function and do not 
specifically cast it to a far pointer type, a 16-bit offset from the base segment is 
passed. 

If you provide a function prototype with complete argument types, the compiler 
performs type checking and enforces the conversion of actual arguments to the 
declared type of the corresponding formal argument. However, if no declaration 
is present or the argument-type list is empty, the compiler converts nonbased 
pointer arguments automatically to the default type or the type of the argument, 
whichever is larger. To avoid mismatched arguments, always use a prototype with 
the argument types. 

For example, the following program produces unexpected results in compact-model, 
large-model, or huge-model programs: 



Chapter 2 Managing Memory for 16·Bit C Programs 39 

void main() 
{ 

int __ near *x; 
char __ far *y; 

int z = 1; 

test_fun( x, y, z ); 1* x is coerced to far *1 
1* pointer in compact, *1 
1* large, or huge model. *1 

int test_fun( int __ near *ptr1, char __ far *ptr2, int a) 

printf("Value of a = %d\n", a); 
} 

If the preceding example is compiled as a tiny, small, or medium program, the size 
of x is 16 bits, the size of y is 32 bits, and the value printed for a is 1. 

However, if the example is compiled in compact, large, or huge model, both x and y 
are automatically converted to far pointers when they are passed to t est _ fun. 
Because p t r 1, the first parameter of t est _ fun, is defined as a near pointer 
argument, it takes only 16 bits of the 32 bits passed to it. The next parameter, 
p t r 2, takes the remaining 16 bits passed to p t r 1, plus 16 bits of the 32 bits passed 
to it. Finally, the third parameter, a, takes the leftover 16 bits from p t r 2, instead of 
the value of z in the main function. 

This shifting process does not generate an error message, because both the function 
call and the function definition are legal. However, in this case, the program does 
not work as intended, because the value assigned to a is not the value intended. 

To pass pt r 1 as a near pointer, you should include a function prototype that 
specifically declares this argument for t est _ fun as a near pointer, as follows: 

1* First, prototype test_fun so the compiler 
* knows in advance about the near pointer argument: 
*1 

int test_fun(int __ near*, char __ far *, int); 

maine) 
{ 

int __ near *x; 
char __ far *y; 

int z = 1; 



40 Programming Techniques 

test_fun( x, y, z ); 1* Now, x is not coerced 
* to a far pointer; it is 
* passed as a near pointer, 
* regardless of which memory 
* model is used. 
*1 

int test_fun( int __ near *ptrl, char __ far *ptr2, int a) 

printf( "Value of a = %d\n", a ); 

2.4 Customizing Memory Models 

In a customized 
model, you select the 
size of code pointers 
and data pointers. 

A third way to manage memory is to combine different features from standard 
memory models to create your own customized memory model. You should have a 
thorough understanding of C and c++ memory models and the architecture of 
80x86 processors before creating your own nonstandard memory models. 

U sing the I Astring option, you can change the attributes of the standard memory 
models to create your own memory models. The three letters in string correspond to 
the code pointer size, the data pointer size, and the stack and data segment setup, 
respectively. Because the letter allowed in each field is unique to that field, you can 
give the letters in any order after I A. All three letters must be present. 

The standard memory-model options (lAT, lAS, lAM, lAC, IAL, and IAR) can be 
specified in the I Astring form. As an example of how to construct memory models, 
the standard memory-model options are listed following with their IAstring 
equivalents: 

Standard Custom equivalent 

IAT IAsnd 

lAS IAsnd 

lAM IAlnd 

lAC IAsfd 

IAL IAlfd 

IAR IAlhd 

For example, you might want to create a huge-compact model that allows huge data 
items but only one code segment. The option for specifying this model is I Ashd. 



Chapter 2 Managing Memory for 16·Bit C Programs 41 

Note The tiny model is identical to the small model except that it causes the linker 
to search for CRTCOM.LIB. The executable file generated when you specify tiny 
model is a .COM file rather than an .EXE file. 

Setting a Size for Code Pointers 
Within a custom memory model, you choose whether code pointers are short or 
long: 

Option 

/Asxx 

/Alxx 

Size 

Short (near) code pointers 

Long (far) code pointers 

The lAs (short) option tells the compiler to generate near 16-bit pointers and 
addresses for all functions. This is the default for tiny-, small-, and compact-model 
programs. 

The I Al (long) option means that far 32-bit pointers and addresses are used to 
address all functions. Far pointers are the default for medium-, large-, and huge
model programs. 

Setting a Size for Data Pointers 
Data pointers can be near, far, or huge: 

Option 

/Axnx 

/Axfx 

/Axhx 

Size 

Near data pointers 

Far data pointers 

Huge data pointers 

The IAn (near) option tells the compiler to use 16-bit pointers and addresses for all 
data. This is the default for tiny-, small-, and medium-model programs. 

The IAf (far) option specifies that all data pointers and addresses are 32 bits. This is 
the default for compact- and large-model programs. 

The IAh (huge) option specifies that all data pointers and addresses are far (32-bit) 
and that arrays are permitted to extend beyond a 64K segment. This is the default 
for huge-model programs. 

With far data pointers, no single data item can be larger than a segment (64K). This 
is because address arithmetic is performed only on 16 bits (the offset portion) of the 
address. When huge data pointers are used, individual data items can be larger than 
a segment (64K) because address arithmetic is performed on both the segment and 
the offset. 



42 Programming Techniques 

Setting Up Segments 
Within a customized model, you can choose to make the stack segment (SS) equal 
the data segment (DS), in which case they overlap: 

Option 

/Axxd 

/A[xx]u 

/A[xx]w 

Effect 

SS ==DS. 

SS != DS; DS is reloaded on function entry. 

SS != DS; DS is not reloaded on function entry. 

Segment Setup Option (lAd) 
The option / Ad tells the compiler that the segment addresses stored in the SS and 
DS registers are equal. The stack segment and the default data segment are 
combined into a single segment. This is the default for all standard-model programs. 
In small- and medium-model programs, the stack plus all data must occupy less than 
64K; thus, any data item is accessed with only a 16-bit offset from the segment 
address in the SS and DS registers. 

In compact-, large-, and huge-model programs, all data is placed in the default data 
segment up to a threshold set with the IGt option. The address of this segment is 
stored in the DS and SS registers. All pointers to data, including pointers to local 
data (the stack), are full 32-bit addresses. This is important to remember when 
passing pointers as arguments in multiple-segment programs. Although you may 
have more than 64K of total data in these models, no more than 64K of data can 
occupy the default segment. The IGt, /Gx, and /ND options control allocation of 
items in the default data segment if a program exceeds this limit. 

Segment Setup Option (I Au) 
The option I Au tells the compiler that the stack segment does not necessarily 
coincide with the data segment. In addition, it adds the __ Ioadds attribute to all 
functions within a module, forcing the compiler to generate code to load the DS 
register with the correct value prior to entering the function body. Combine the /ND 
option with I Au to name data segments other than the default. When I Au is 
combined with /ND, the address in the DS register is saved upon entry to each 
function, and the new DS value for the module in which the function is defined is 
loaded into the register. The previous DS value is restored on exit from the function. 
Therefore, only one data segment is accessible at any given time. Using the /ND 
option, you can combine these segments into a single segment. 

If a standard memory-model option precedes it on the command line, the IAu option 
can be specified without any letters indicating data pointer or code pointer sizes. 
The program uses a standard memory model, but different segments are set up for 
the stack and data segments. 

For related information, see the following section, "Segment Setup Option (lAw)." 



Use caution when 
writing DLLs with lAw. 

Chapter 2 Managing Memory for 16·Bit C Programs 43 

Segment Setup Option (lAw) 
The option lAw, like I Au, causes the compiler to assume that the stack segment is 
separate from the data segment. The compiler does not automatically load the DS 
register at each function entry point. The lAw option is useful in creating 
applications that interface with an operating system or with a program running at 
the operating-system level. The operating system or the program running with the 
operating system actually receives the data intended for the application program and 
places that data in a segment; then the operating system or program must load the 
DS register with the segment address for the application program. 

As with the I Au option, the lAw option can be specified without data pointer and 
code pointer letters if a standard memory-model option precedes it on the command 
line. In such a case, the program uses the specified memory model just as with I Au 
but the DS register is not reloaded at each function entry point. 

Even though I Au and lAw indicate that the stack may be in a separate segment, the 
stack's size is still fixed at the default size unless this is overridden with the IF 
compiler option or the 1ST ACK linker option. 

The lAw option is useful for writing dynamic-link libraries (DLLs) for Windows, 
but exercise caution when using it. Declare all entry points to the dynamic-link 
library as __ loadds to force DS to be loaded on entry to the function (exactly as 
with the IAu option). This adds a costly operation to each function that acts as an 
entry point, but not to any of the functions that are private to the DLL. This is more 
efficient than using the IAu option, because most of the DLL's functions do not 
have to perform redundant loads of the DS register. For example: 

void __ export __ loadds __ far __ pascal LibFunc( void) 
{ 

Hel perFunc(); 
} 

void HelperFunc( void) 

The library entry point, L i bFunc, is declared as __ loadds to force the DS register 
to be loaded on entry. The function He 1 per Fun c, which is private to the dynamic
link library, is declared as a normal C function. Because it cannot be called from 
outside of the module, He 1 per Fun c does not need to reload DS. 



44 Programming Techniques 

Note Combined use of the IGD option and the __ export keyword produces the 
most efficient DLL code for ensuring correct initialization of DS on entry to a 
function. You should use IGD and __ export rather than either IAu or lAw and 

loadds. 

If you choose one of the options specifying that the stack segment is not equal to the 
data segment (SS != DS), you cannot pass the address of frame variables as 
arguments to functions that take near pointers. That is, in tiny, small, and medium 
models, you cannot pass the address of a local variable (which is allocated on the 
stack) as an argument, because the receiving function assumes the pointer is relative 
to the data segment. However, the receiving function can solve this problem by 
declaring the pointer to be the following: 

based( __ segname("_STACK")) 

Another solution is to cast the pointer to a far pointer in both locations as follows: 

/* Call func with an explicit cast to far */ 
func( (char far *)frame_var ); 

void func( char far *formal_var ) 

Library Support for Customized Memory Models 
Most C and C++ programs make function calls to the routines in the C run-time 
library. When you write mixed-model programs, you are responsible for 
determining which library (if any) is suitable for your program and for ensuring that 
the appropriate library is linked. Table 2.3 shows the libraries from which to extract 
the startup routine for each customized memory model. 

Table 2.3 Startup Routines for Customized Memory Models 

Memory-model option 

IAsnx; lAS plus lAx 

IAsfx; IAshx; lAC plus lAx 

I Alnx; I AM plus lAx 

I Alfx; I Alhx; I AL plus lAx; 
IAHpius lAx 

From library 

SLIBCj.LIB 

CLIBCj.LIB 

MLIBCj.LIB 

LLIBCj.LIB 

The I Ax option represents either I Au or lAw. In the library names, f is either E 
(emulator library), 7 (8087/80287 library), or A (alternate math library). 



Chapter 2 Managing Memory for 16·Bit C Programs 45 

Placement of Data in the Compact, Large, and 
Huge Memory Models 

In a memory model permitting multiple data segments, a global data item may be 
allocated in either the default data segment or in a far data segment. The data item's 
location and the way it is referenced depend on whether it is declared with a 
defining declaration or a referencing declaration (for more information, see Chapter 
3, "Declarations and Types," in the C Language Reference). 

Defining Declarations 
Defining declarations include initialized data items and data items declared static, 
which are initialized to zero by default. The compiler can allocate space for data 
items in this category. These data items are placed in the default data segment 
unless their size exceeds a certain threshold. This threshold is specified by the /Gt 
option, whose syntax is: 

/Gt[numberI1 

The /Gt option causes all initialized data items whose size is greater than number 
bytes to be allocated to a new data segment. When number is specified, it must 
follow the /Gt option immediately, with no intervening spaces. When number is 
omitted, the default threshold value is 256. When the /Gt option is omitted, the 
default threshold value is 32,767. 

This option is useful with programs that have more than 64K of initialized static 
and global data in small data items. Without this option, your program fills the 
default data segment and cannot be linked. The /Gt option does not apply to items 
declared with the __ near or __ far keyword. 

Referencing Declarations 
Referencing declarations include data items declared extern and uninitialized, 
nonstatic data items. The compiler cannot allocate space for data items in this 
category because it lacks information found in the other modules. When all the 
modules in the program are linked together, the linker can examine all references to 
these data items and determine where they are placed. 

In the compact, large, and huge memory models, the compiler by default assumes 
that the linker places data items in this category in the default data segment. All 
references to such data items are done with near addressing. This improves the 
efficiency of your application. 

Note If you reference a data item with near addressing but declare it with __ far in 
the module in which it is declared, your program produces unpredictable results. 



46 Programming Techniques 

Unsized arrays are 
treated as far. 

This default near addressing is useful for writing compact-, large-, and huge-model 
applications for Windows. If you want simultaneously to run multiple instances of 
your application for Windows, you cannot use far addressing with your global data. 

The /Gx option affects how a data item is referenced only if the data's location is 
not otherwise specified. If an uninitialized or extern data item is declared with 
__ near or __ far, it is referenced as specified. If a data item is larger than the 
threshold specified by the /Gt option, it is referenced with far addressing. Unsized 
arrays are treated as far because they might be larger than the threshold. You must 
explicitly declare an unsized array with __ near if you want it referenced with near 
addressing. 

The /Gx option does not affect pointers. Pointers remain far by default, and the 
dynamic allocation functions still return far pointers. 

Naming Modules and Segments 
U sing the /NM, /NT, and /ND options, you can name the module, the code segment, 
and the data segment. The following list summarizes the options' syntax: 

Option 

/NM modulename 

/NT textsegment 

/ND datasegment 

Effect 

Names the module 

Names the code segment 

Names the data segment 

"Module" is another name for an object file created by the compiler from a single 
source file. Every module has a name. The compiler uses this name in error 
messages if problems are encountered during processing. The module name is 
usually the same as the source-file name. You can change this name using the /NM 
(name the module) option. The new modulename can include any combination of 
letters and digits. The space between /NM and module name is optional. 

Every module has at least two segments: a code segment (sometimes called the text 
segment) containing the program instructions and a data segment containing the 
program data. 

The compiler usually creates the code and data segment names. The default names 
depend on the memory model chosen for the program. For example, in small-model 
programs, the code segment is named _TEXT and the data segment is named 

DATA. 



Chapter 2 Managing Memory for 16-Bit C Programs 47 

Table 2.4 summarizes the naming conventions for code and data segments. 

Table 2.4 Segment-Naming Conventions 

Model Code Data Module 

Tiny TEXT DATA 

Small TEXT DATA - -
Medium module TEXT DATA filename 

Compact TEXT DATA filename 

Large module TEXT - DATA filename 

Huge module TEXT - DATA filename 

In memory models that contain multiple data segments (compact, large, and huge), 
_ DATA is the name of the default data segment. Other data segments have unique 
private names. You can override the default names with the options /NT (name the 
text, or code, segment) and /ND (name the data segment). 

The /ND option is commonly used to create and compile modules that contain data 
only. Such modules can be accessed from other parts of the program by declaring 
their variables as external. 

If you change the name of the default data segment with /ND, your program must 
load the DS register with the segment selector of your named data segment before it 
accesses it. You must therefore compile your program either with the f Astring form 
of the memory-model option and the fAu option for the segment setup, or with the 
fA option for a standard memory model followed by f Au. For example: 

CL lAS IAu IND DATAl PROGl.C 

The f Au option forces the compiler to generate code to load DS with the correct 
data-segment value on entry to the code. 

All modules whose data segments have the same name have these segments 
combined into a single segment named OAT Al at link time. 

The functions in the small data model run-time libraries that rely on the default data 
segment being named _ DATA fail if you use the /ND option to rename the default 
data segment. This restriction affects tiny-, small-, and medium-model programs. 



48 Programming Techniques 

Specifying Code Segments 
Using the alloc_text pragma, you can name the segment in which particular 
functions are allocated. It has the following syntax: 

#pragma alloc_text (textsegment,!unctionl[,!unction2] ... ) 

If you use overlays or swapping techniques to handle large programs, you can use 
alloc_text to tune the contents of their code (text) segments for maximum 
efficiency. The alloc _text pragma must appear before the definitions of any of the 
specified functions and after the declarations of these functions. Functions 
referenced in an alloc _text pragma should be defined in the same module as the 
pragma. If this is not done and an undefined function is later compiled into a 
different code segment, the error may not be caught. 

Another way to specify the segment in which a function resides is to use based 
addressing for functions. You can also use based addressing to specify the segment 
in which a data item resides. 

2.5 Using Based Pointers and Data 
Visual C++ provides the keyword __ based to give you greater control over 
memory management in a segmented architecture. You can use __ based to control 
the placement of data or functions within segments and to get more efficient pointer 
operations. 

This section explains how to use based pointers and based data allocation. The use 
of based functions is explained in Section 2.6, "Using Based Addressing for 
Functions," page 59. 

Based Pointers 
Based pointers combine the advantages of near and far pointers. Based pointers are 
2 bytes in size, like near pointers, but their range is not limited to the default data 
segment. Like far pointers, they can refer to any available memory location. Based 
pointers provide a more efficient way to represent addresses outside the default data 
segment by exploiting the commonality among multiple pointers. 

This is possible because a based pointer contains only the offset portion of an 
address. To use such a pointer, you must define a "base" for it. A base consists of 
the segment portion of an address and is stored separately from the pointer itself. If 
many based pointers refer to locations within the same segment, they can all share 



Using based instead 
of far pointers makes 
your program smaller. 

Chapter 2 Managing Memory for 16·Bit C Programs 49 

the same base. The offset and segment values are combined whenever a based 
pointer is used to access a memory location. 

By comparison, every far pointer contains both an offset and a segment value, 
which can result in wasted space if many far pointers refer to locations within one 
segment. Near pointers contain only an offset, but because they always use the DS 
register for their segment value, they are restricted to addressing the default data 
segment. 

The use of based pointers instead of far pointers makes your program smaller by 
saving two bytes for each pointer that shares a base with another. Under certain 
conditions, based pointers can also be faster than far pointers. If your program has 
many based pointers that are all based on the same segment and if those pointers 
are used consecutively, the compiler does not need to load a new segment value 
each time a pointer is used. If you enable full optimizations in such circumstances, 
based pointers can be almost as fast as near pointers. 

Define a pointer'S base using the __ based keyword, followed by a base expression 
in parentheses, where you might otherwise place __ near, __ far, or __ huge. For 
example: 

void __ near np; 
void __ basedCbase) bp; 

There are several types of base that you can specify for a based pointer: 

• A fixed base 

• A variable base 

• The __ self keyword 

• The void keyword 

These types of base are described in the following sections. 

Poi nters with a Fixed Base 
Pointers based on a fixed segment are restricted to accessing locations in a single 
segment. This segment is specified when the based pointers are declared. You can 
make assignments to the based pointers themselves, which changes the offset 
portion of the address. Making assignments in this way causes the pointers to refer 
to different locations within the segment. However, you cannot change the base that 
the based pointers use. 

There are two ways to specify a fixed base for based pointers: by using a named 
segment or by using the segment in which a variable is stored. 



50 Programming Techniques 

Using a Named Segment 
You can specify a named segment as the base for your pointers by using the 
__ segname keyword and a string literal. For example, the following example 
declares a pointer based in the default code segment: 

void __ based<-_segnameC"_CODE")) *bp; 

The pointer b p can address any location in the default code segment. There are four 
segments accessible through predefined strings: 

Segment 

CODE 

CONST 

DATA 

STACK 

Definition 

Current code segment 

Constant segment 

Default data segment 

Stack segment 

The following example declares a pointer based in the default data segment: 

char __ basedC __ segnameC"_DATA")) *bp; 

This is equivalent to a near pointer. 

You can also specify user-defined segments, as long as the segment is allocated 
somewhere else in the program. For example: 

char __ based<-_segnameC"MYSEG")) *bp; 

You can define MY S E G with an assembly-language file or by allocating data in a 
named segment. For more information, see "Data Stored in a Named Segment," on 
page 57. 

Using the Segment of a Variable 
You can also base your pointers on the segment in which another variable is stored. 
Specify this type of base by casting the address of a variable to the __ segment 
data type, as follows: 

i nt i; 
void __ basedCC __ segment)&i) *bp; 

This declaration allows b p to access any location in the same segment in which i is 
stored. If i is declared as __ near or if the program is compiled in tiny, small, or 
medium model, this is equivalent to declaring b p as a near pointer. 

Pointers with a Variable Base 
Pointers with a variable base can access any available memory locations. When 
you make assignments to the based pointers themselves, you change the offset 



Chapter 2 Managing Memory for 16-Bit C Programs 51 

portion of the address, which allows you to refer to various locations within one 
particular segment. You can also make assignments to the base itself. The compiler 
uses the updated value of the base whenever one of these based pointers is used. In 
this way, changing a single base value effectively changes the locations referenced 
by all the based pointers using that base. 

There are three ways to specify a variable base for based pointers: by using the 
segment value of another pointer, by using a variable of type __ segment, or by 
using another pointer. 

Using the Segment Value of Another Pointer 
You can give a based pointer the segment of another pointer as its base value. To do 
this, cast a pointer to the __ segment data type, as follows: 

char __ near *np; 
char __ far *fp; 
void __ based(( __ segment)np) *bnp; 
void __ based(( __ segment)fp) *bfp; 

Notice that this syntax is similar to that used to base a pointer on the segment in 
which a variable is stored. The difference is that you cannot change where a 
variable is allocated, but you can change the value of a pointer. 

Because n p is a near pointer, it uses the DS register as its segment value. 
Accordingly, bnp uses DS as its base and is equivalent to a near pointer. 

Because fp is a far pointer, it contains a segment value, and bfp uses that segment 
as its base. If you change the segment portion of fp, bfp refers to a location in the 
new segment. (Remember that far pointer arithmetic is performed only on the offset 
portion, so incrementing fp won't affect the base of bfp. However, if you make an 
assignment to fp that changes its segment, the base of bfp is similarly modified.) 

Using a Segment Variable 
In addition to using a cast to the __ segment data type, you can define variables of 
type __ segment. You can then base your pointers on such a segment variable, as 
follows: 

__ segment videomem; /* Define a segment variable. */ 
char __ based(videomem) *vidptr; 

videomem = 0xB800; /* Use video memory as segment. */ 
/* Move to row 10. column 40. */ 

vidptr = (char __ based(videomem) *)(2 * ((80 * 9) + 39)); 
*vidptr = 'A'; 1* Write an A there. */ 

In this example, vi deomem is a segment variable that contains the segment in 
which video memory resides. Because vi dptr is based on vi deomem, any value 
assigned to v i d P t r is interpreted as an offset into video memory. A cast is used in 



52 Programming Techniques 

the assignment to vi d pt r to prevent a compiler warning. If vi deomem is assigned 
a new value, vi d pt r acts as an offset from that new value and evaluates to an 
entirely different address. 

You cannot base a pointer on a constant that is cast to the __ segment type, as in 
the following example: 

unsigned vidptr __ based« __ segment)0xB800) *vidptr; 1* Error. *1 

You must use a segment variable that is defined separately. 

Pointers based on a segment variable are especially useful in conjunction with 
based heaps. Using Visual C++, you can define a special heap that resides in a 
segment. You can use such a based heap to allocate objects dynamically, just as you 
do with a traditional heap. These dynamically allocated objects can all be 
referenced with pointers based on that segment. 

The following program demonstrates the creation of a based heap: 

1* Compile in small model *1 

#include <malloc.h> 
#include <stdio.h> 
#include <string.h> 

__ segment segvar; 
char __ based(segvar) *b_string; 

void main() 
{ 

} 

i f( (segvar = _bheapseg( 1000 )) != _NULLSEG ) 
{ 

} 

else 

if( (b_string = _bmalloc( segvar, 20 )) != _NULLOFF 
{ 

} 

else 

_fstrcpy( (char _3ar *)b_string, (char _3ar *)"This is a test.\n" ); 
printf( "%Fs", (char __ far *)b_string ); 
printf( "Size = %d\n", sizeof b_string); 1* Always 2 *1 
_bfree( segvar, b_string ); 

puts ( "bma 11 oc fa il ed" ); 
_bfreeseg( segvar ); 

puts ( "_bheapseg fail ed" ); 



Chapter 2 Managing Memory for 16·Bit C Programs 53 

First, the program calls the library function _ bbeapseg and requests 1000 bytes in 
a new based heap: 

if( (segvar = _bheapseg( 1000 )) != _NULLSEG ) 

If it cannot allocate the amount of memory requested, _ bbeapseg returns 
_ NULLSEG (null segment). Otherwise, the function returns the valid address of a 
segment, which is assigned to s e 9 v a r. 

Next, the program calls _ bmalloc and requests 20 bytes of memory from the 
based heap. The variable s e 9 v a r is passed to identify the based heap that 
_ bmalloc should use. Just as malloc returns a pointer to a block of memory, 
_ bmalloc returns an offset to a block of memory. This offset is assigned to the 
based pointer b_s t r i n g: 

if( (b_string = _bmalloc( segvar, 20 )) != _NULLOFF ) 

The value NULLOFF means "null offset" and indicates the failure of bmalloc. 
If the allocation succeeds, the program continues with this code: 

_fstrcpy( (char __ far *)b_string, (char __ far *)"This is a test.\n" ); 
printf( "%Fs", (char _3ar *)b_string ); 
printf( "Size = %d\n", sizeof b_string); /* Always 2 */ 

The standard strcpy function won't work because this is a small-model program 
that expects all pointers to be near. The _ fstrcpy function accepts far pointers, and 
it is possible to cast a based pointer to a far pointer. Then the string and its size are 
printed. 

Finally, the block of memory and the based heap are freed: 

_bfree( segvar, b_string ); 
_bfreeseg( segvar ); 

The run-time library provides a complete set of memory-management functions that 
work with based heaps. 

Using Another Pointer 
You can also base your pointers on the complete address of another pointer, instead 
of using only the segment portion of its address. In this case, a based pointer acts as 
an offset from the pointer itself, instead of simply sharing the segment with that 
pointer. For example: 

int *ip; 
int __ based(ip) *bp; 

Whenever b P is used, the compiler adds together the offset of i p and the offset 
stored in b P and uses the segment of i p to find the address. 



54 Programming Techniques 

The following example illustrates pointers based on a pointer: 

#include <stdio.h> 
#include <malloc.h> 
#include <stdlib.h> 
#include <string.h> 

int *ip; /* int pointer */ 
/* Based on ip */ int __ based(ip) *bp; 

char __ basedCip) *cp; 

void maine) 
{ 

} 

int *mem1, *mem2; 

bp 
cp 

(int __ based(ip) *)0; 
(char __ based(ip) *)2; 

/* bp equals *(ip+0) */ 
/* cp equals *(ip+2) */ 

if( (mem1 = (int *)malloc( 100 )) != NULL) 
if( Cmem2 = (int *)malloc( 100 )) != NULL 
{ 

} 

ip = mem1; /* ip points to mem1 */ 
*bp = 5; 
strcpy( (char *)cp, "String stored in meml." ); 

ip = mem2; /* ip now points to mem2 */ 
*bp = 12345; 
strcpy( (char *)cp, "String stored in mem2." ); 

ip = mem1; /* Point to mem1, */ 
/* which still holds previous values */ 
printf( "%s *bp= %i\n", (char *)cp, *bp ); 

ip = mem2; /* Point to mem2 */ 
/* Display the values there */ 
p r i n t f( "% s * b p= % i \ n", ( c h a r *) c p, * b P ); 

free( mem2 ); 
free( mem1 ); 

else puts( "Second malloc failed." ); 
else puts( "First malloc failed." ); 



Chapter 2 Managing Memory for 16·Bit C Programs 55 

Two calls to malloc provide two sections of memory, whose addresses are stored in 
the variables meml and mem2. When i p is assigned one of these addresses 
(meml), the pointers based on i p point somewhere within that piece of memory. 
When i p is assigned the address in mem2, the effective addresses of bp and cp also 
change. 

Note Pointers based on pointers are the only form of based pointers that can be 
used in a 32-bit program. They are the only type of based pointer that can be used 
in a flat (that is, non segmented) address space. 

If you have a group of pointers that all refer to locations within a buffer of memory, 
you can define them as offsets from a pointer that references the start of the buffer. 
If you relocate that buffer, you can update the entire group of pointers by modifying 
just the pointer that acts as their base. If you write the buffer to disk, you can also 
write the based pointers to disk. Once you reload the buffer into memory, you can 
make the based pointers valid again by updating their base. 

Pointers Based on the __ self Keyword 
You can base a pointer on the segment that the pointer itself is stored in. This is 
done by using the __ self keyword, cast to the __ segment type. Consider the 
following example: 

typedef struct node NODE; 

struct node 
{ 

} ; 

int name; 
NODE __ based« __ segment) __ self) *left; 
NODE __ based« __ segment) __ self) *right; 

This example declares a structure named NOD E for use in a binary tree. Each node 
in the tree contains pointers to its two child nodes. These pointers are self-based, so 
they refer to locations within the segment in which the node itself is stored. This is 
possible only when an entire tree can fit in a single segment. Based pointers provide 
an advantage over far pointers in such a data structure by reducing the size of each 
node by 4 bytes. 

You may want to build a tree out of nodes that contain self-based pointers. Do not 
use malloc to allocate the nodes, because it may return memory in different 



56 Programming Techniques 

segments. Instead, use a based heap along with pointers based on a segment 
variable. The following example assumes the type declaration previously given. 

void main() 
{ 

__ segment segvar; 
NODE __ based(segvar) *nodeptr; 

/* Ignore error checking for this example. */ 
segvar = _bheapseg( 30000 ); 
nodeptr = _bmalloc( segvar, sizeof(NODE) ); 
nodeptr->left = _bmalloc( segvar, sizeof(NODE) ); 
nodeptr->right = _bmalloc( segvar, sizeof(NODE) ); 
nodeptr->name = 1; 
nodeptr->left->name = 2; 
nodeptr->right->name = 3; 

This program first allocates a based heap of 30,000 bytes and uses s e 9 v a r to store 
the heap's segment. Then the program allocates NODE objects from that based heap, 
so all the nodes in the tree reside in the segment specified. by s e 9 v a r. Note that 
nodept r is based on segv a r, instead of being self-based. A self-based pointer 
declared as a local variable in a function uses the SS register as its base, which may 
not be in the same segment as s e 9 v a r. 

Pointers Based on the void Keyword 
The final way to declare a based pointer is to base it on void. Such a pointer is not 
based on any particular segment. It is an offset that can be combined with any 
segment to form a full address. You can combine a segment value and a void-based 
pointer using the "base operator," which consists of a colon and a greater-than 
symbol (:»: 

segment: >offset 

Such an expression denotes a complete address and can be dereferenced with the 
indirection operator (*). You can use the base operator only with pointers based on 
void, not with other types of based pointers. 

The segment value can be a variable of type __ segment, or it can be an integer 
cast to type __ segment. For example: 



Chapter 2 Managing Memory for 16·Bit C Programs 57 

__ segment videomem = 0xB800; /* Use video memory as segment. */ 
char __ based(void) *offptr; 

/* Set offset to row 10. col 40. */ 
offptr = (char __ based(void) *)(2 * «80 * 9) + 39)); 
*(videomem:>offptr) = 'A'; /* Write an A there. */ 
offptr += 2; /* Move to col 41. */ 
*«( __ segment)0xB800):>offptr) = 'A'; /* Repeat. */ 

The pointer 0 f f P t r can be used with any segment variable. If you have many 
segments organized in the same way, you can use one void-based pointer to access 
the same relative location in each of them. 

Based Data Allocation 
The section "Using a Segment Variable," on page 51, describes dynamic allocation 
of based data using the run-time library functions. Using Visual C++, you can also 
statically declare data that is based in a specified segment. 

There are three ways to specify that data is declared in a particular segment: by 
specifying a named segment, by using a segment variable, and by using the address 
of another variable. 

Data Stored in a Named Segment 
You can specify a named segment that a variable is to be stored in by using the 
__ segname keyword and a string literal. Note that the syntax for this is the same 
as that used to base a pointer on a named segment. For example: 

/* Compile in small model */ 

#include <stdio.h> 
#include <malloc.h> 

c h a r __ bas e d '- _ s e 9 n a m e ( "_CO DE" )) my s t r i n 9 [] = "A cod e - bas e d s t r i n 9 . \ n" ; 
i n t __ bas e d '- _ s e 9 n a m e ( "_CO DE" )) my i n t = 12345; 

void main() 
{ 

p r i n t f ( "% F s % d". (c h a r _ 3 a r *) my s t r i n g. my i n t ); 

The variable my s t r ; n 9 is declared as an array of characters based in the code 
segment. The variable my; ntis an integer that is also based in the code segment. 



58 Programming Techniques 

Note that the small-model version of printf treats my s t r i n 9 as a near pointer. The 
F in the format specifier % Fs forces the function to treat my s t r i n 9 as a far 
pointer, and the cast to char __ far* coerces the address to 4 bytes. 

One reason for placing data in your code segment is that you are using the small 
memory model and your default data segment is full. Rather than move up to the 
compact memory model, which makes all data pointers far, you can move some data 
into the code segment, if you have room there. 

You can also name your own segments. For example: 

char __ based<-_segname("MYSEGMENT")) otherstring[] = "Another based string. \n"; 

This declaration creates a new segment called MYSEGMENT and places the string 
there. You can reference data in that segment using far pointers or pointers based 
on that named segment. 

If the segment named ends in "_TEXT," the compiler marks that segment as a code 
segment, making it a read-only segment. 

Note You cannot store data in the _STACK segment. Of the four predefined 
segments, you can store data in only the _CODE, _ DAT A, and _ CONST 
segments. 

Data Based on a Segment Variable 
You can also declare data that is based on a segment variable. Data declared this 
way is stored at a location determined at run time. This is useful if you want to 
make some variables relocatable. When you move the block of memory containing 
the variables, you can simply assign a new value to the segment variable. Using this 
technique, you can access the variables by name, rather than by using pointers. 

The following example demonstrates how to declare data based on a segment 
variable: 

/* FILE1.C */ 
char __ far c; 
__ segment segvar; 

maine) 
{ 

segvar ( __ segment)&c; 
foo(); 



Chapter 2 Managing Memory for 16·Bit C Programs 59 

/* Relocate segment; assign new value to segvar. */ 

foo() ; 

/* FILE2.C */ 
extern __ segment segvar; 
extern char __ based(segvar) c; 

foo( ) 
{ 

c = 1; /* Can refer to c, no matter where it is. */ 

The compiler uses the segment value stored in s e 9 v a r whenever c is accessed in 
FILE2.C. 

Data Based on the Address of Another Variable 
You can also allocate data in the same segment as another based variable. To do 
this, cast the address of the variable to the __ segment data type. Note that this is 
the same syntax used to base a pointer on the segment in which a variable is stored. 
For example: 

i n t __ bas e d <- _ s e g n a me ( "M Y S E G MEN T" » my i n t 1 ; 
int __ based« __ segment)&myvar1) myint2; 

The variable whose segment is being used must itself be based on a named segment. 

2.6 Using Based Addressing for Functions 
With Visual C++, you can declare functions as based, so you can specify the code 
segment the functions reside in. Grouping functions into segments allows you to use 
near functions safely and to improve performance when you swap overlays to disk. 

You can declare a function with both the __ near and __ based keywords or with 
both the __ far and __ based keywords, even though such declarations are illegal 
for data. This is because the meaning of the __ near and __ far keywords for 
functions differs slightly from their meaning for data. Near functions can reside 
anywhere in memory, but you can call them only from functions in the same code 
segment. Far functions can also reside anywhere in memory, and you can call them 
from functions in other code segments. Thus, you can use the __ near and __ far 
keywords to describe a function's calling convention and use a __ based expression 
to specify its location in memory. 



60 Programming Techniques 

Placing functions 
correctly can reduce 
swapping. 

The segment in which functions reside is usually determined by the memory model 
of your program. In the tiny, small, and compact models, all functions are stored in 
a single code segment. In the medium, large, and huge models, functions are stored 
in mUltiple code segments; there is a separate segment for each source file. 

The location of functions in segments becomes important when tuning large 
programs that use overlays. By placing the functions that most frequently call one 
another within the same segment, you can reduce swapping. The location of 
functions is also important when using near functions in a program that has multiple 
segments. A function might try to call a near function that resides in another 
segment, causing a run-time error. 

To prevent this problem, you can declare functions as based to ensure that they are 
stored in the same segment. For example: 

/* FILE 1 - compiled under large model. */ 

void __ based( __ segname("MYSEG")) farfunc() 
{ 

nearfunc(); 

/* FILE 2 - compiled under large model. */ 

/* Far by default. */ 

void __ near __ based( __ segname("MYSEG")) nearfunc() 
{ 

/* ... */ 

If these two functions are not declared as based in the same segment, they 
are placed in separate segments because they're declared in separate files. 
In that situation, this program suffers a link-time or run-time error because 
fa rfunc cannot perform a near call to nea rfunc when nea rfunc is in another 
segment. However, because both functions are based in the MY S E G segment, the 
program links and runs correctly. 

Functions can be based only on a segment constant; unlike data, they cannot be 
based on segment variables, nor can they be based on pointers, void, or the __ self 
segment. The __ near or __ far keyword can appear before or after the based 
expression. 

Based addressing for functions replaces the alloc _text pragma as a method of 
controlling the placement of functions. If both a based expression and an alloc _text 
pragma specify a segment for a function to be placed in, the based expression takes 
precedence. 



Chapter 2 Managing Memory for 16·Bit C Programs 61 

2.7 Using the Virtual Memory Manager 
Virtual memory is a facility for accessing storage beyond the 640K of memory 
available to MS-DOS. Visual C++ provides a virtual memory manager through a 
set of functions in the run-time library. This memory manager uses expanded 
memory (EMS), extended memory (XMS), and disk storage to simulate a heap of 
nearly unlimited size. By using this virtual heap, your program can access those 
three memory resources through a single interface and acquire far more memory 
than is available from the traditional malloc family of functions. 

Note that the virtual memory functions are available only for 16-bit MS-DOS 
programs. Programs for Windows and 32-bit programs do not need to use these 
functions. P-code programs cannot use the virtual memory manager. 

The virtual memory manager works by copying blocks of virtual memory into 
MS-DOS memory when they're in use and swapping them out to auxiliary storage 
when they're not. In general, a program that uses the virtual memory manager must 
perform the following steps: 

• Initialize the virtual memory manager, by calling the _ vheapinit function 

• Allocate virtual memory blocks as needed, by calling the _ vmalloc function 

• Load or lock virtual memory blocks into the MS-DOS address space in order to 
access their contents, by using the _ vload or _ vlock function 

• Unlock virtual memory blocks when they're not being accessed, by calling the 
vunlock function 

• Free virtual memory blocks when they're no longer needed, by calling the 
vfree function 

• Terminate the virtual memory manager, by calling the _ vheapterm function 

The following sections describe these steps in more detail. 

Initializing the Virtual Memory Manager 
You initialize the virtual memory manager by calling _ vheapinit and passing it 
three arguments: 

• The minimum amount of MS-DOS memory that must be available for the virtual 
memory manager to be installed (in 16-byte paragraphs) 

• The maximum amount of MS-DOS memory that it can use (in paragraphs) 

• Flags indicating which types of auxiliary storage it can use to hold swapped-out 
blocks 



62 Programming Techniques 

The virtual memory manager may round up the minimum value you specify. If after 
rounding the minimum amount of memory is not available, the virtual memory 
manager is not installed. The virtual memory manager needs several kilobytes in 
order to function effectively. 

If you want the virtual memory manager to use as much MS-DOS memory as it 
can, specify _ VM _ ALLDOS as the second argument. You should not specify this 
if your program is performing tasks that require a lot of free memory, such as 
spawning a process. 

To specify the types of auxiliary storage that the virtual memory manager can use, 
use the VM EMS, VM XMS, or VM DISK flag. One or more of these flags 
can be specified if th~y are"Joined by the bitwise-OR operator ( I ). To use all three 
types, specify _ VM _ ALLSW AP. If not all forms of storage are available when the 
program runs, the virtual memory manager uses what is available. 

A typical call to _ vheapinit looks like this: 

if ( !_vheapinit( 0, _VM_ALLDOS, _VM_ALLSWAP ) ) 
{ 

/* Initialization failed - perform error handling */ 

else 
/* Continue with normal program execution */ 

This call to _ vheapinit specifies that the virtual memory manager should attempt to 
install itself no matter how little memory is available, though the attempt may fail if 
insufficient memory is available. This call also specifies that the virtual memory 
manager should use as much memory as is available and that it should use all forms 
of auxiliary storage. 

When your program is done using virtual memory, it must call the _ vheapterm 
function to terminate the virtual memory manager. 

Note If your program ends without calling _ vheapterm, various system memory 
resources may not be available to subsequent programs. 

You can initialize and terminate the virtual memory manager as many times as you 
want within your program. 

Virtual Memory Handles 
When you allocate a block of virtual memory, _ vmalloe does not return a pointer 
the way malloe does. Instead, _ vmalloe returns a "handle," which is a value of 
type _vmhnd_t that uniquely identifies the block of virtual memory. You cannot 
use such a handle to access memory directly, nor can you perform address 



Chapter 2 Managing Memory for 16·Bit C Programs 63 

arithmetic on a handle. You can only pass a handle to other virtual memory 
functions. 

In order to access the contents of a virtual memory block, you must either load it or 
lock it into MS-DOS memory. 

Loading Blocks 
The _ vload function takes a handle and copies the associated block of virtual 
memory into MS-DOS memory. The function returns a far pointer to the location at 
which the block of memory is loaded. You use this pointer to read or modify the 
contents of the block. 

The _ vload function keeps the contents of the block in MS-DOS memory only 
temporarily. The next time you call any function of the virtual memory manager, a 
loaded block may be swapped out to auxiliary storage, making the pointer returned 
by _ vload invalid. Accordingly, you should access the contents of a loaded block 
only until the next call to the virtual memory manager. 

Dirty Blocks vs. Clean Blocks 
When you load a block of virtual memory with _ vload, you must specify either the 
flag _ VM_CLEAN or _ VM_DIRTY, indicating that the block is either "clean" or 
"dirty." If your program reads the block of memory but does not modify its 
contents, the block is clean. If your program modifies the block of memory, the 
block is dirty. The specified flag tells the virtual memory manager what to do when 
it needs the region of MS-DOS memory that the loaded block occupies. If a block is 
clean, the virtual memory manager is free to overwrite it the next time it has to load 
a new block of memory. If a loaded block is dirty, the virtual memory manager must 
write out its contents to auxiliary storage before it loads a new block. 

Every block of virtual memory that you allocate must be flagged as dirty at least 
once, if only to initialize its contents. If the block is treated as read-only from that 
point forward, it can be flagged as clean during subsequent loads. Otherwise, it 
must be flagged as dirty each time the program modifies it. 

Note that when a dirty block is saved, its contents are retained only until the block 
is freed or the virtual memory manager is terminated. If you want to save the 
block's contents beyond that point, you must load the block into MS-DOS memory 
and explicitly copy its contents to a permanent disk file. 

Locking and Unlocking Blocks 
To retain access to a block for an arbitrarily long period of time, use the _ vlock 
function. Like _ vload, _ vlock takes a handle, copies the associated block of virtual 
memory into MS-DOS memory, and returns a far pointer to it. However, _ vlock 



64 Programming Techniques 

Keep as few blocks 
locked as possible. 

locks a block of memory so that it remains in MS-DOS memory even if you make 
subsequent calls to the virtual memory manager. A locked block remains in 
MS-DOS memory until it is unlocked with _ vunlock. You can lock a block 
multiple times; the block is not swapped out until you have unlocked it an equal 
number of times. The number of locks currently held on a virtual memory block can 
be determined by calling the _ vlockcnt function. 

You must also specify a clean or dirty flag when you unlock a locked block of 
virtual memory with _ vunlock. With this function, you specify the flag after you 
have accessed the block instead of before, as was the case with _ vload. For a block 
that has been locked more than once, different clean or dirty flags can be specified 
for the _ vunlock calls. If _ VM _DIRTY is specified with any of the _ vunlock 
calls, the block is treated as dirty. 

You can lock a block that has already been loaded into MS-DOS memory. If you do 
so, the virtual memory manager may relocate the block within MS-DOS memory, 
so you should use the pointer returned by _ vlock rather than the one previously 
returned by _ vload. 

Both _ vload and _ vlock return NULL if they are unable to load or lock a block of 
virtual memory. Always test return values for these functions before using them as 
pointers. 

Having a large number of blocks locked at anyone time can interfere with the 
virtual memory manager's ability to swap blocks in and out of MS-DOS memory. 
Therefore, you should always keep as few blocks locked as possible. 

Techniques for Using Virtual Memory 
Virtual memory can be used as a replacement for MS-DOS memory in data 
structures. For example, you can build a linked list that resides in virtual memory; 
such a linked list could contain far more nodes than an ordinary linked list. 

The declaration for the node type of such a linked list might look as follows: 

#include <malloc.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <vmemory.h> 
#include <string.h> 

typedef struct node NODE; 



Chapter 2 Managing Memory for 16·Bit C Programs 65 

struct node 
{ 

} ; 

int key; 
char data[100]: 
_vmhnd_t next: 

1* Globals *1 
vmhnd_t vhead = _VM_NULL: 
vmhnd_t vlast - _VM_NULL: 

1* First element in list *1 
1* Last element in list *1 

Each NOD E structure contains a _ vrnhnd _ t field rather than a pointer to connect it 
to the succeeding node. 

You can use these NOD E structures the same way you use the nodes of an ordinary 
linked list, except that you must load each node into MS-DOS memory before you 
access its contents. For example, the following procedure adds a new node to a 
linked list: 

int add( NODE new_node 
{ 

_vmhnd_t vtemp: 
NODE __ far *temp; 
NODE __ far *last: 

if (vtemp = _vmalloc( sizeof( NODE) » == _VM_NULL ) 
return 0; 1* Could not allocate virtual memory. *1 

if ( (temp = (NODE __ far *)_vload( vtemp, _VM_DIRTY » 
{ 

NULL ) 

_vfree( vtemp ); 
return 0; 

1* Free the block that was just allocated *1 
1* but could not be loaded. *1 

temp->key = new_node. key: 1* Copy in new data. *1 
strncpy( temp->data, new_node.data, 100 ); 
if ( vhead == _VM_NULL) 1* No nodes in list yet *1 
{ 

} 

vhead vtemp; 
vlast vhead; 



66 Programming Techniques 

else 
{ 

/* Add to end of list. */ 

last (NODE __ far *)_vload( vlast, VM DIRTY); 
last->next = vtemp; 
vlast vtemp; 

return 1; /* Node successfully added. */ 

The add function always uses two variables when manipulating a node: a handle 
and a pointer. When creating the node to be added, the function uses a handle to 
allocate and load the block of memory and then uses a pointer to write the new data 
into the node. Similarly, when attaching the node to the end of the list, the function 
uses a handle to load the last node and then uses a pointer to modify its n ex t field. 
Note that temp and 1 as t are explicitly declared as far pointers. This is because no 
matter what model the program is compiled under, _ vload returns far pointers. Also 
note that the _ VM _DIRTY flag is specified in both calls to _ vload, because in 
both cases the function is modifying the block of memory. 

The fin d function has similar features: 

NODE *find( int search_key 
{ 

_vmhnd_t vcurr; 
NODE __ far *curr; 
NODE *temp; 

if ( vhead == VM NULL) 
pri ntf( "1 i st empty \n" ); 

vcurr vhead; 
while ( vcurr 1= _VM_NULL ) 
{ 

if ( (curr = (NODE __ far *)_vload( vcurr, VM CLEAN » 

return NULL; /* Could not load block. */ 

if ( curr->key 
{ 

if ( (temp = (NODE *)malloc( sizeof( NODE) » == NULL 
return NULL; /* Could not allocate memory. */ 

temp->key = curr->key; /* Copy data from node. */ 
strncpy( temp->data, curr->data, 100 ); 
return temp; 

else 
vcurr curr->next; 

return NULL; 

NULL ) 



Only a portion of 
virtual memory is 
accessible at any 
one time. 

Chapter 2 Managing Memory for 16·Bit C Programs 67 

As with the add function, the fin d function uses both a handle and a pointer to 
access nodes. The function traverses the linked list, comparing each node's key with 
the key being searched for. To examine a node, the function uses a handle to load it 
into MS-DOS memory and then uses a pointer to access the key field. Note that 
this time the _ VM _ CLEAN flag is specified in the call to _ vload, because the 
function is only reading the block of memory, not writing to it. 

Other standard operations on a linked list, such as deleting or modifying a node, can 
be performed by making a minor modification to the usual implementations: You 
must load a block before you can access its contents. If you need to access a block 
many times, you should probably lock it. Or if you need to have more than one 
block in memory at once (if, for instance, you're comparing blocks' contents), you 
should lock one or more of them. 

Other data structures traditionally implemented with pointers, such as binary trees, 
can also take advantage of virtual memory if you use handles in addition to 
pointers. Another possible technique is to maintain an array of handles, each of 
which refers to a large buffer of virtual memory. Your program can switch among 
these buffers, keeping just one or two of them in MS-DOS memory at any given 
time. 

When writing a program to use virtual memory, or converting an existing program 
to use it, you should remember virtual memory's limitations. Although virtual 
memory allows a program to store a large amount of data, only a small portion of it 
is immediately accessible at anyone time. Your program may read and write a 
large amount of data at all times, which requires the virtual memory manager to 
perform a lot of swapping. In such a case, your program's performance is not as 
efficient as the performance of a program that accesses only a small amount of data 
at a time. 

Another way to make your program use extended memory, expanded memory, and 
disk storage is to break it up into overlays. For information on creating overlays, 
see Chapter 3, "Creating Overlaid MS-DOS Programs," in Command-Line 
Utilities User's Guide. 





69 

CHAPTER 3 

Managing Memory for 16-Bit 
C++ Programs 

Chapter 2, "Managing Memory for 16-Bit C Programs," describes how you can 
most efficiently use memory to optimize your C program. This chapter describes 
how to manage memory in your C++ program. 

This chapter explains: 

• How memory models apply to classes 

• How to control the addressing of dynamically created objects 

• How to control the placement of member functions using the __ based keyword 

You should be familiar with the C++ language before reading this chapter (for 
information on the C++ language, see the C++ Tutorial and the C++ Language 
Reference). You should also have read the material in Chapter 2, "Managing 
Memory for 16-Bit C Programs." 

The material covered in this chapter is relevant only to 16-bit programs. 

3.1 Memory Models for Classes 

Member functions 
are stored once for 
the entire class. 

To understand how memory models apply to classes, it's necessary to know how 
objects are represented in memory. 

Each object contains its own copy of the data members defined for its class (except 
for static members). However, an object does not contain its own copy of the code 
for the member functions. Member functions are stored only once for the entire 
class. 

When you call a member function of a particular object, the address of that object is 
passed to that function as a hidden argument. For example, the C++ statement 

myWindow.resize(); 



70 Programming Techniques 

is analogous to the C statement 

resize( &myWindow ); 

The member function implicitly uses the address to access the object's data mem
bers. That address is available from inside the member functions as the this pointer. 

The Ambient Memory Model 
Microsoft Visual C++ assigns a memory model to every class, known as the 
"ambient" memory model for that class. The ambient model of a class affects 
several characteristics of the objects of that class: 

• The address space in which an object resides 

• The address mode of a pointer or a reference to an object 

• The address mode of the this pointer used in member functions of that class 

The default ambient model for all classes is the model you specify for data at 
compilation. In the tiny, small, or medium memory models, all objects reside in the 
default data segment and all pointers and references to objects are near. In the 
compact, large, and huge memory models, objects can reside in any segment and all 
pointers and references to objects are far. 

You can declare a particular class to have an ambient model other than the default 
by specifying __ near or __ far before the class name. For example, the following 
declaration specifies Node as a far class: 

class __ far Node 
{ 

public: 
Node() ; 
void print(); 
~Node(); 

private: 
II ... 

} ; 

Objects of class Nod e can be stored in any data segment, no matter what memory 
model the program is compiled with. Pointers and references to Node objects are 
automatically far, and a far address is passed whenever a member function is 
called. For example, 



Node head; 
Node *pNode; 

head.print(); 
pNode = &head; 

Chapter 3 Managing Memory for 16·Bit C++ Programs 71 

II Far allocation 
II Far pointer 

II Far address passed to print() 
II Far address taken 

If you explicitly specify an ambient model for a class, it must match that of its base 
class. If a class has mUltiple base classes, all of them must have the same ambient 
model. If you don't explicitly specify the __ near or __ far keyword in a class's 
declaration, the class inherits the ambient model of its base class or classes. If the 
class has no base class or classes, it uses the default model implied by the memory 
model for the entire module. 

Overriding the Ambient Memory Model 
You can override a class's ambient model when you declare an individual object or 
a pointer to an object. Place one of the addressing keywords before the identifier: 

Node __ near myNode; 
Node __ near *npNode; 

myNode.print(); 
npNode = &myNode; 

II Near address converted to far when print() called 
II Near address taken 

In this example, myNode is an object of type Node stored in the default data seg
ment. Taking the address of myNode produces a near pointer. Whenever a member 
function is invoked for myNode, the object's near address is converted to the far 
address that the function expects. 

You can use the __ near, __ far, or __ huge keyword when you declare an object. 
You can also use a __ based expression, as long as you base the object on a seg
ment constant or a segment variable. You cannot base data on a pointer, void, or 
the __ self segment. 

When you override the class's ambient model for an individual object, the address 
of that object has a different addressing mode from that expected by the class's 
member functions. In such cases, the compiler attempts to perform a type conver
sion on the address of the object. 

In the previous example, the address of myNode is automatically converted from a 
near address to a far address before it is passed to the Nod e constructor. The same 
thing happens when p r i n t ( ) is called. 



72 Programming Techniques 

However, consider the following class definition: 

class __ near RecArray 
{ 

public: 
RecArray( int size ); 
void printNames(); 
~RecArray() ; 

private: 
I I ... 

} ; 

In this case, the declaration and statement 

RecArray __ far bigArray( 5000 ); 

bigArray.printNames(); 

II Error: constructor 
II expects near address 

II Error: printNames() 
II expects near address 

result in type conversion errors, because the compiler cannot convert the far address 
of big A r ray into the near address expected by the constructor and the 
p r i n t N a me s ( ) member function. 

Overloading the this Pointer 
If the standard conversions do not allow your objects to be passed to member 
functions, you must overload the member functions on the addressing mode of the 
this pointer. To specify the addressing mode for a member function, place the 
__ near, __ far, or __ huge keyword after its parameter list. For example, 

class __ near RecArray 

public: 
RecArray() ; 
RecArray() __ far; 
void printNames(); 
void printNames() __ far; 
~RecArray ( ) ; 
~RecArray() __ far; 

private: 
I I ... 

} ; 



Chapter 3 Managing Memory for 16·Bit C++ Programs 73 

Now when you declare a far R e cAr ray object, the far constructor is called. 
Similarly, if you call the pri ntNames ( ) member function for that far object, the 
far pri ntNames ( ) function is invoked. 

The keyword ( __ near, __ far, or __ huge) following the function name describes 
the addressing mode of the this pointer within the member function. When you call 
a member function for an object, if the standard conversions can match your call 
statement to more than one function, the function with the best match is selected. 
You cannot declare a member function as having a based this pointer. 

It is not required that you overload all the member functions on the this pointer. 
You only need to overload member functions that are called for objects that don't 
have the addressing mode specified for the class. 

Specifying the Addressing Mode of Return Objects 
When you specify the return type of a function, you usually specify an addressing 
mode only if the function returns a pointer. You don't specify an addressing mode if 
the function returns a built-in type. For example, 

char __ far *funcl(); 
__ far char func2(); 

II Return a far pointer to a char 
II Error: meaningless 

In the declaration of funcl ( ), the __ far keyword modifies the pointer being 
returned. In the declaration of func2 ( ), the __ far keyword modifies the character 
being returned, which is illegal. 

However, if a function returns an object, you can specify an addressing mode. With 
C++, you can invoke member functions for the temporary object returned by a 
function, even if you don't assign the object to another variable. For example, 

RecArray makeArray( FILE *handle); II Function returning 

main() 
{ 

II an object 

makeArray( currFile ).printNames(); II printNames() invoked 
II for temporary object 

} 

The R e cAr ray object returned by m a k eAr ray ( ) is not assigned to another object 
and thus cannot be referenced after that line of code. It is used only to call the 
p r i n t N a me s ( ) member functions. 



74 Programming Techniques 

You might need to specify the addressing mode of the object returned, if the mem
ber function you call accepts only one addressing mode. Consider the following 
declaration: 

class __ far RecArray 
{ 

public: 
RecArray() ; 
void printNames(); 
void printAll() __ near; 
~RecArray() ; 

private: 
/ / ... 

} ; 

The member function p r i n t N a me s ( ) can be called for far Re cA r ray objects and 
for near RecArray objects through type conversion. However, the member func
tion pri ntA 11 ( ) can be called only for near RecArray objects. Given the 
previous declaration of rna k eAr ray ( ), the statement 

makeArray( currFile ).printAll(); 

is an error, because the compiler creates a far temporary RecArray object, and its 
address cannot be converted to the near address that p r i n tA 11 ( ) expects. 

To specify the addressing mode of a function's return type, place the class, struct, 
or union keyword and the addressing mode keyword ( __ near, __ far, or __ huge) 
before the return type, as follows: 

class __ near RecArray makeArray( FILE *handle ); 

This specifies that rna keArray ( ) returns a near RecArray object. This declara
tion lets you call p r i n tA 1 1 ( ) for the return object. Note that this syntax can be 
used only for functions that return an instance of a user-defined type, not for 
functions that return built-in types. 

Virtual Table Pointers 
If a class uses virtual functions, the compiler builds an array of function pointers for 
that class. This array is known as a virtual function table, or a "v-table." Every 
object of such a class contains a hidden member called a "v-table pointer." When 



V-table pointers' 
addressing mode 
is determined by 
the class memory 
model. 

Chapter 3 Managing Memory for 16·Bit C++ Programs 75 

you call a virtual function for an object, your program uses that object's v-table 
pointer to find the v-table and then looks in the v-table to find the address of the 
function that must be called. 

Similarly, if a class inherits from a virtual base class the compiler builds an array 
containing the offsets of the virtual bases. This array is called the virtual base 
displacement table, or "v-base table." Every object of such a class contains a 
hidden member called a "v-base table pointer." When you access one of an object's 
data members that was defined by the virtual base, your program uses that object's 
v-base table pointer to find the v-base table and then looks in the table to find the 
offset of the virtual base. 

The addressing mode of these virtual table pointers is determined by the memory 
model of the class. The virtual tables of a near class are stored in the default data 
segment, and objects of that class have near virtual table pointers. The virtual tables 
of a far class are stored in an anonymous far segment in the TEXT group. Objects 
of far classes have far virtual table pointers. These characteristics cannot be over
riden by specifying a memory model keyword in the declaration of an individual 
object. 

You can use the /NV option to specify the name of the segment in which the virtual 
tables are stored. For near classes, the segment specified must be one of the seg
ments in DGROUP. For far classes, any segment can be specified. 

3.2 The Free Store 
The free store in C++ corresponds to the heap in C; it provides the memory for 
objects created at run time. In Visual C++, the operators new and delete have been 
overloaded so you can allocate and deallocate near, far, and huge objects and ob
jects based on a segment variable. These operators are similar to the malloc and 
free functions in C. 

The new Operator 
Visual C++ has four versions of the new operator, which allocate objects in the 
near, far, huge, and based address spaces. The new operator is the only operator or 
function that can be overloaded on its return type; the only overloading allowed for 
the return type is on the addressing mode. 

By default, the return type of the new operator depends on the memory model under 
which the program was compiled. For example, in the small and medium memory 
models, new returns objects in the near address space. 



76 Programming Techniques 

If you explicitly specify an ambient model for a class, the new operator uses that 
address space when allocating objects of that class. For example, 

class __ far Node 
{ 

} ; 

Node *pN; 

maine) 
{ 

II Class is far 

pN new Node; II Far allocation, even if program is 
II compiled with a memory model that 
II uses near data 

You can override both the program's memory model and the class's ambient model 
by explicitly specifying the address space of the object being allocated. To do so, 
place the __ near, __ far, __ huge, or __ based keyword after the name of the type. 
You must use a segment variable with the __ based keyword. All the standard 
conversions between pointers apply, as described in the C++ Language Reference. 
The following example shows how you can use the various forms of new: 

class Node 
{ 

} ; 

Node *pN; II Depends on default memory model 
Node __ near *npN; 
Node __ far *fpN; 
Node __ huge *hpN; 
__ segment segvar; 
Node __ based(segvar) *bpN; 

rna; n () 
{ 

pN new Node; 
npN new __ near Node; 
fpN = new __ far Node; 
hpN = new __ huge Node; 
segvar = _bheapseg( 1000 ); 
bpN new __ based(segvar) Node; 

fpN new __ near Node; 
fpN new __ based(segvar) Node; 
npN new __ far Node; 

II Depends on default memory model 

II Convert near to far 
II Convert based to far 
II Error: cannot convert 
II from far to near 



The new operator 
for huge objects 
behaves as an 
array allocator does. 

Chapter 3 Managing Memory for 16·Bit C++ Programs 77 

You can write your own version of the new operator if you want to use a cus
tomized memory allocation scheme (for instance, one that provides zero-initialized 
storage or one that's optimized for your program's pattern of memory usage). The 
new operator that you define must have the same return type and arguments as the 
one you want to replace. To do this, you must use one of the following prototypes: 

void __ near *operator new( size_t size ); 
void __ far *operator new( size_t size ); 
void __ huge *operator new( unsigned long elems, size t size ); 
void __ based(void) *operator new( __ segment segvar, size_t size ); 

The argument of type size _tis automatically set to the size of the object being 
allocated. You can also define class-specific versions of any of these forms of new. 

The new operator for huge objects behaves as an array allocator does, even if only 
one object is being allocated. It receives two arguments: the number of elements 
being allocated and the size of each element. If the total size of the array is larger 
than 128K, the element size must be a power of two. 

The new operator for based objects has an additional argument, which is a segment 
variable. This argument receives the value of the segment used in the allocation 
expression. 

When you redefine the new operator, you can make your version of the operator 
accept additional arguments, known as "placement arguments." These arguments 
must appear last when you declare new's argument list, but they must appear before 
the type name and in parentheses when you call new. For example, to define a new 
operator for based objects that takes a short integer as a placement argument, you 
use the following prototype: 

void __ based(void) *operator new( __ segment segvar, size t size, 
short place ); 

This prototype permits expressions such as: 

bpN = new __ based(segvar) (112) Node; 

The placement argument receives the value 112 as a short integer. 

All of the default new operators have the __ cdecl calling convention. 



78 Programming Techniques 

The delete Operator 
The delete operator is overloaded to accept pointers that are near, far, huge, or 
based. When you delete an object, the addressing mode of the pointer determines 
which delete operator is invoked. Thus, the following example invokes four 
different delete operators: 

npN new Node __ near; 
fpN new Node __ far; 
hpN new Node __ huge; 
bpN new Node __ based(segvar); 

delete npN; II Invokes near delete 
delete fpN; II Invokes far delete 
delete hpN; II Invokes huge delete 
delete bpN; II Invokes based delete 

The addressing mode of the pointer does not necessarily indicate the address space 
of the object. For example, 

Node __ far *fpN; 

fpN = new Node __ near; II Type conversion: near to far 

delete fpN; II Error: far delete invoked for near object 

In this example, the compiler chooses the inappropriate delete operator for the 
pointer, which results in a run-time error. To prevent this problem, you must 
explicitly cast the pointer to the desired addressing mode: 

delete (Node __ near *)fpN; 

You must always ensure that the delete operator invoked corresponds to the new 
operator used to allocate the object. 

Just as with the new operator, you can write your own version of the delete opera
tor to implement a customized memory-allocation scheme. If you want to implement 
different behavior for the different versions of the delete operator, you must use one 
of the following prototypes: 

void operator delete( void __ near *nptr ) ; 

void operator delete( void _3ar *fptr ) ; 

void operator delete( void __ huge *hptr ) ; 

void operator delete( __ segment segvar. void __ based(void) *bptr ) ; 

You can also define class-specific versions of any of these forms of delete. When 
defining a class-specific version, you can specify an optional final argument of type 



Chapter 3 Managing Memory for 16·Bit C++ Programs 79 

size _ t. If present, the argument is automatically set to the size of the object being 
deleted. You cannot define two versions of delete that are distinguished only by the 
size _ t argument; that is, you cannot overload the delete operator for a given 
addressing mode within class scope. However, you can define versions of delete 
that have the same addressing mode but different scopes-that is, one with global 
scope and one with class scope. 

All the default versions of delete have the __ cdecl calling convention. 

The set new handler Function 

All error handlers 
require the 
__ cdecl calling 
convention. 

Using Visual C++, you can specify what actions should be taken when the free 
store is exhausted. You do this by defining an error-handling function and passing it 
to the _set_new_handler function, defined in the include file NEW.H. Whenever 
the new operator supplied by the compiler cannot allocate the memory requested, it 
checks to see if an error handler has been installed. If an error handler is defined, 
new calls it; otherwise, new simply returns zero. You can write a simple error 
handler that prints an error message, performs some cleanup tasks, and then exits 
the program, or you can write a more sophisticated error handler that attempts to 
recover memory so that new can retry the allocation. 

The error handler you write must take the same arguments as the new function that 
invokes it. For the near or far free stores, the error handler must take one argument 
of type size _ t, indicating the amount of memory requested, and return an integer. 
For the huge free store, the error handler must take an argument of type unsigned 
long, indicating the number of elements being allocated, and one of type size _ t, 
indicating the size of each element. An error handler for the based free store must 
take an additional argument of type __ segment, indicating the segment. 

The error handler should return a zero if it is unable to recover the amount of 
memory requested. Otherwise, it should return a nonzero value. The __ cdecl 
calling convention is required for all error handlers. 

The following examples are sample prototypes for error handlers: 

int my_near_handler( size_t size ); 
int my_far_handler( size_t size ); 
int my_huge_handler( unsigned long elems, size t size ); 
int my_based_handler( __ segment segvar, size_t size ); 

The _set_new _ handler function maps onto either the _set _ nnew _ handler or 
_set _fnew _handler function, depending on the program's memory model. You can 
also call these functions explicitly, or you can call the corresponding functions for 
the huge and based free stores. All of these functions return a pointer to the pre
viously installed error handler, or a NULL if no handler was installed. 



80 Programming Techniques 

The following are prototypes for the functions that install the various error handlers. 
The types _PNH, _PNHH, and _PNHB are typedefs for pointers to the error-handling 
functions. 

_PNH __ cdecl _set_nnew_handler( _PNH handler ); 
PNH __ cdecl _set_fnew_handler( _PNH handler ); 
PNHH __ cdecl _set_hnew_handler( PNHH handler ); 

_PNHB __ cdecl _set_bnew_handler( _PNHB handler ); 

If the error handler returns a nonzero value, the new operator supplied by the 
compiler tries the allocation again. If the allocation fails again, new calls the error 
handler again. This continues until the error handler returns zero or until the allo
cation succeeds. 

In multiprocess, multithreaded environments, separate error handlers exist for each 
process and thread. No handlers are preinstalled when a process begins. When a 
thread starts, it gets copies of its parent's handlers for all free stores. 

3.3 Based Addressing for Member Functions 
Just as you can declare ordinary functions as based, you can also declare member 
functions as based. This is useful if you declare virtual functions as __ near, which 
requires that they be called from within the same segment they reside in. Note that a 
base class's definition of a function and a derived class's definition may reside in 
separate files. 

For example, consider the following program: 

II FILE 1 - Compiled under large model 
class Shape 
{ 

II ... 
virtual void __ near redraw(); 

void __ near Shape::redraw() 

II ... 

void __ far teste Shape *currShape 
{ 

currShape->redraw(); II Invoke virtual function 

In this example, you can safely declare red raw as a near function, because it is in 
the same file as the function that calls it, and the compiler places it in the same 
segment. However, a derived class may be declared in another file, as follows: 



Chapter 3 Managing Memory for 16·Bit C++ Programs 81 

II FILE 2 - Compiled under large model 
class Circle: public Shape 
{ 

I I ... 
void __ near redraw(); 

void __ near Circle::redraw() 
{ 

II ... 

Because this program is compiled under large model, each file defines a separate 
code segment. The t est function cannot perform a near call to are d raw function 
in another segment. As a result, the t est function may either succeed or fail, 
depending on whether its argument is an instance of a base class or an instance of a 
derived class. For example, 

Shape my_shap~; 
Circle my_circle; 

teste &my_shape); II Okay - Shape::redraw in the same 
II segment as the test function 

teste &my_circle); II Error - Circle::redraw in different segment 

The second function call causes a run-time error. 

The easiest way to avoid this problem is to declare all your virtual functions as 
__ far, so they can be called from any segment. However, if you want to declare 
your virtual functions as __ near, you can avoid problems by declaring the virtual 
function to be based in the same segment as t est: 

virtual void __ near __ based( __ segname("MYSEG"» redraw(); 

void __ far __ based( __ segname("MYSEG"» teste Shape *curr_shape ); 

The __ based expression remains in effect through all subsequent redefinitions of 
red raw. Derived classes can define their own versions of red raw, and they are 
stored in the same segment as the base class's version. 

If redefinitions of a virtual function are declared as being based in a different 
segment, the compiler issues a warning. 





83 

CHAPTER 4 

Using the 16-Bit Inline Assembler 

This chapter explains how to use the Microsoft Visual C++ 16-bit inline assembler. 
Assembly language serves many purposes, such as improving program speed, 
reducing memory needs, and controlling hardware. Using the inline assembler, you 
can embed assembly-language instructions directly in your C and C++ source 
programs without extra assembly and link steps. The inline assembler is built into 
the compiler-you don't need a separate assembler such as the Microsoft Macro 
Assembler (MASM). For more information on the interaction between C and 
assembly language, see Chapter 8, "Programming with Mixed Languages." 

4.1 Advantages of Inline Assembly 
Because the inline assembler doesn't require separate assembly and link steps, it is 
more convenient than a separate assembler. Inline assembly code can use any C 
variable or function name that is in scope, so it is easy to integrate it with your 
program's C code. Because the assembly code can be mixed in line with C or C++ 
statements, it can do tasks that are cumbersome or impossible in C or C++. 

The uses of inline assembly include: 

• Writing functions in assembly language 

• Spot-optimizing speed-critical sections of code 

• Calling MS-DOS and BIOS routines with the INT instruction 

• Creating terminate-and-stay-resident (TSR) code or handler routines that require 
know ledge of processor states 

Inline assembly is a special-purpose tool. If you plan to port an application to dif
ferent machines, you'll probably want to place machine-specific code in a separate 
module. Because the inline assembler doesn't support all of MASM's macro and 
data directives, you may find it more convenient to use MASM for such modules. 



84 Programming Techniques 

4.2 The __ asm Keyword 

Braces can prevent 
ambiguity and need
less repetition. 

The __ asm keyword invokes the inline assembler and can appear wherever a C or 
C++ statement is legal. It cannot appear by itself. It must be followed by an assem
bly instruction, a group of instructions enclosed in braces, or, at the very least, an 
empty pair of braces. The term " __ asm block" here refers to any instruction or 
group of instructions, whether or not in braces. 

Following is a simple __ asm block enclosed in braces. The code prints the "beep" 
character, ASCII (American Standard Code for Information Interchange) 7. 

__ asm 
{ 

mov ah. 2 
mov dl • 7 
int 21h 

} 

Alternatively, you can put __ asm in front of each assembly instruction: 

__ asm mov ah. 2 
__ asm mov dl. 7 
__ asm int 21h 

Because the __ asm keyword is a statement separator, you can also put assembly 
instructions on the same line: 

__ asm mov ah. 2 __ asm mov dl. 7 __ asm int 21h 

All three examples generate the same code, but the first style (enclosing the __ asm 
block in braces) has some advantages. The braces clearly separate assembly code 
from C or C++ code and avoid needless repetition of the __ asm keyword. Braces 
can also prevent ambiguities. If you want to put a C or C++ statement on the same 
line as an __ asm block, you must enclose the block in braces. Without the braces, 
the compiler cannot tell where assembly code stops and C or C++ statements begin. 
Finally, because the text in braces has the same format as ordinary MASM text, 
you can easily cut and paste text from existing MASM source files. 

The braces enclosing an __ asm block don't affect variable scope, as do braces in C 
and C++. You can also nest __ asm blocks; nesting does not affect variable scope. 

4.3 Using Assembly Language in __ asm Blocks 
The inline assembler has much in common with other assemblers. For example, it 
accepts most expressions that are legal in MASM (for more information, see 
"Expressions," following). This section describes the use of assembiy-language 
features in asm blocks. 



Chapter 4 Using the 16·Bit Inline Assembler 85 

Instruction Set 
The 16-bit inline assembler supports the full instruction set of the Intel 80286 and 
80287 processors. To use 80286 or 80287 instructions, compile with the /G2 
option. 

Expressions 
Inline assembly code can use most MASM expressions, which are combinations of 
operands and operators that evaluate to a single value or address. In an inline 
assembler expression, you cannot use more than one user-defined symbol per 
operand. Expressions such as the following are not supported: 

1 abel 1 : pushf 
labe12: iret 
mov ax, (offset labe12) - (offset labell) 

Data Directives and Operators 
Although an __ asm block can reference C or C++ data types and objects, it cannot 
define data objects with MASM directives or operators. Specifically, you cannot 
use the definition directives DB, DW, DD, DQ, DT, and DF, or the operators DUP 
and THIS. MASM structures and records are also unavailable. The inline assem
bler doesn't accept the directives STRUC, RECORD, WIDTH, or MASK. 

EVEN and ALIGN Directives 
Although the inline assembler doesn't support most MASM directives, it does 
support EVEN and ALIGN. These directives put NOP (no operation) instructions 
in the assembly code as needed to align labels to specific boundaries. This makes 
instruction-fetch operations more efficient for some processors (not including 8-bit 
processors such as the Intel 8088). 

Macros 
The inline assembler is not a macro assembler. You cannot use MASM macro 
directives (MACRO, REPT, IRC, IRP, and ENDM) or macro operators «>, !, 
&, %, and .TYPE). An __ asm block can use C preprocessor directives, however. 
For more information, see "Using C and C++ in __ asm Blocks," on page 87. 

Segment References 
You must refer to segments by register rather than by name (the segment name 
_TEXT is invalid, for instance). Segment overrides must use the register explicitly, 
as in es: [bx]. 



86 Programming Techniques 

Type and Variable Sizes 
The LENGTH, SIZE, and TYPE operators have a limited meaning in inline 
assembly. They cannot be used at all with the DUP operator (because you cannot 
define data with MASM directives or operators). But you can use them to find the 
size of C or C++ variables or types: 

• The LENGTH operator can return the number of elements in an array. It 
returns 1 for nonarray variables. 

• The SIZE operator can return the size of a C or C++ variable. A variable's size 
is the product of its LENGTH and TYPE. 

• The TYPE operator can return the size of a C or C++ type or variable. If the 
variable is an array, TYPE returns the size of a single element of the array. 

For example, if your program has an eight-element int array, 

int arr[8]; 

the following C and assembly expressions yield the size of a r r and its elements: 

asm 

LENGTH arr 

SIZE arr 

TYPE arr 

Comments 

c 
sizeof(arr)/sizeof(arr[0]) 

sizeof (arr) 

sizeof(arr[0]) 

Size 

8 

16 

2 

Instructions in an __ asm block can use assembly-language comments: 

__ asm mov ax, offset buff; Load address of buff 

Because C macros expand into a single logical line, avoid using assembly-language 
comments in macros (see "Defining __ asm Blocks as C Macros" on page 96). An 
__ asm block can also contain C-style comments, as noted following. 

The emit Pseudoinstruction 
The _emit pseudoinstruction is similar to the DB directive of MASM. Using it, you 
can define a single immediate byte at the current location in the current text seg
ment. However, _emit can define only one byte at a time, and it can only define 
bytes in the text segment. It uses the same syntax as the INT instruction. 

One use for _emit is to define 80386-specific and 80486-specific instructions, 
which the inline assembler does not support. The following example, for instance, 
defines the 80386 CWDE instruction: 



Inline assembly 
code can be 
debugged with 
CodeView. 

Chapter 4 Using the 16·Bit Inline Assembler 87 

/* Assumes 16-bit mode */ 
#define cwde __ asm _emit 0x66 __ asm _emit 0x98 

__ asm 
cwde 
} 

Debugging and Listings 
Programs containing inline assembly code can be debugged with the Microsoft 
Code View debugger, assuming you compile with the jZi option. 

Within Code View, you can set breakpoints on both C or C++ and assembly
language lines. If you enable mixed assembly and source mode, you can display 
both the source and disassembled form of the assembly code. 

Note that putting multiple assembly instructions or source language statements on 
one line can hamper debugging with Code View. Using the Code View debugger in 
source mode, you can set breakpoints on a single line but not on individual state
ments on the same line. The same principle applies to an __ asm block defined as a 
C macro, which expands to a single logical line. 

If you create a mixed source and assembly listing with the /Fc compiler option, the 
listing contains both the source and assembly forms of each assembly-language 
line. Macros are not expanded in listings, but they are expanded during compilation. 

For more information, see the Command-Line Utilities User's Guide. 

4.4 Using C or C++ in __ 8sm Blocks 
Because inline assembly instructions can be mixed with C or C++ statements, they 
can refer to C or C++ variables by name and use many other elements of those 
languages. 

An __ asm block can use the following language elements: 

• Symbols, including labels and variable and function names 

• Constants, including symbolic constants and enum members 

• Macros and preprocessor directives 

• Comments (both / * * / and / /) 

• Type names (wherever a MASM type is legal) 

• typedef names, generally used with operators such as PTR and TYPE or to 
specify structure or union members 



88 Programming Techniques 

Within an __ asm block, you can specify integer constants with either C notation or 
assembler radix notation (Oxl00 and 100h are equivalent, for example). Using this 
feature, you can define (using #define) a constant in C and then use it in both Cor 
C++ and assembly portions of the program. You can also specify constants in octal 
by preceding them with a O. For example, 0777 specifies an octal constant. 

Using Operators 
An __ asm block cannot use C or C++ specific operators, such as the« operator. 
However, operators shared by C and MASM, such as the * operator, are interpreted 
as assembly-language operators. For instance, outside an __ asm block, square 
brackets ([ ]) are interpreted as enclosing array subscripts, which C automatically 
scales to the size of an element in the array. Inside an __ asm block, they are seen 
as the MASM index operator, which yields an unscaled byte offset from any data 
object or label (not just an array). The following code illustrates the difference: 

i nt a rray[10]; 

__ asm mov array[6]. bx; Store BX at array+6 (not scaled) 

array[6] = 0; /* Store 0 at array+12 (scaled) */ 

The first reference to a r ray is not scaled, but the second is. Note that you can use 
the TYPE operator to achieve scaling based on a constant. For example, the follow
ing statements are equivalent: 

__ asm mov array[6 * TYPE int], 0 ; Store 0 at array + 12 

array[6] = 0; /* Store 0 at array + 12 */ 

Using C or C++ Symbols 
An __ asm block can refer to any C or C++ symbol in scope where the block 
appears. (C and C++ symbols are variable names, function names, and labels-that 
is, names that aren't symbolic constants or enum members. You cannot call C++ 
member functions.) 

A few restrictions apply to the use of C and C++ symbols: 

• Each assembly-language statement can contain only one C or C++ symbol. 
Multiple symbols can appear in the same assembly instruction only with 
LENGTH, TYPE, and SIZE expressions. You can also use two symbols if one 
is a register variable. 

• Functions referenced in an __ asm block must be declared (prototyped) earlier in 
the program. Otherwise, the compiler cannot distinguish between function 
names and labels in the asm block. 



Chapter 4 Using the 16·Bit Inline Assembler 89 

• An __ asm block cannot use any C or C++ symbols with the same spelling as 
MASM reserved words (regardless of case). MASM reserved words include 
instruction names such as PUSH and register names such as SI. 

• Structure and union tags are not recognized in __ asm blocks. 

Accessing C or C++ Data 
A great convenience of inline assembly is the ability to refer to C or C++ variables 
by name. An __ asm block can refer to any symbols, including variable names, that 
are in scope where the block appears. For instance, if the C variable va r is in 
scope, the instruction 

__ asm mov ax, var 

stores the value of va r in AX. 

If a class, structure, or union member has a unique name, an __ asm block can refer 
to it using only the member name, without specifying the variable or typedef name 
before the period (.) operator. If the member name is not unique, however, you must 
place a variable or typedef name immediately before the period (.) operator. For 
example, the following structure types share sa me_n a me as their member name: 

struct first_type 
{ 

} ; 

char *weasel; 
int same_name; 

struct second_type 
{ 

} ; 

int wonton; 
long same_name; 

If you declare variables with the types 

struct first_type hal; 
struct second_type oat; 



90 Programming Techniques 

all references to the member sa me_n a me must use the variable name, because 
sa me_n a me is not unique. But the member we as e 1 has a unique name, so you can 
refer to it using only its member name: 

mov bx, OFFSET hal 
mov ex, [bx]hal.same_name 
mov si, [bx] .weasel 

Must use 'hal' 
Can omit 'hal' 

Note that omitting the variable name is merely a coding convenience. The same 
assembly instructions are generated whether or not the variable name is present. 

You can access data members in c++ without regard to access restrictions. 
However, you cannot call member functions. 

Writing Functions 
If you write a function with inline assembly code, it's easy to pass arguments to the 
function and return a value from it. The following examples compare a function first 
written for a separate assembler and then rewritten for the inline assembler. The 
function, called power2, receives two parameters, multiplying the first parameter 
by two to the power of the second parameter. Written for a separate assembler, the 
function might look like this: 

POWER.ASM 
Compute the power of an integer 

PUBLIC _power2 
_TEXT SEGMENT WORD PUBLIC 'CODE' 
_power2 PROC 

,push bp 
mov bp, 

mov ax, 
mov ex, 
s h 1 ax, 
pop bp 
ret 

_power2 ENDP 
TEXT ENDS -

END 

sp 

[bp+4] 
[bp+6] 
el 

Save BP 
Move SP into BP so we can refer 

to arguments on the stack 
Get first argument 
Get second argument 
AX = AX * ( 2 A CL ) 
Restore BP 
Return with sum in AX 



Function arguments 
are usually passed on 
the stack. 

Chapter 4 Using the 16·Bit Inline Assembler 91 

Because it's written for a separate assembler, the function requires a separate 
source file and assembly and link steps. C and C++ function arguments are usually 
passed on the stack, so this version of the power2 function accesses its arguments 
by their positions on the stack. (Note that the MODEL directive, available in 
MASM and some other assemblers, also makes it possible to access stack argu
ments and local stack variables by name.) 

The POWER2.C program following writes the power2 function with inline 
assembly code: 

/* POWER2.C */ 
#include <stdio.h) 

int power2( int num, int power ); 

void main( void 
{ 

printf( "3 times 2 to the power of 5 is %d\n", \ 
power2( 3, 5) ); 

int power2( int num, int power) 

} 

mov ax, num 
mov cx, power 
shl ax, cl 

Get first argument 
Get second argument 
AX = AX * ( 2 to the power of CL ) 

/* Return with result in AX */ 

The inline version of the p owe r 2 function refers to its arguments by name and 
appears in the same source file as the rest of the program. This version also requires 
fewer assembly instructions. Because C automatically preserves BP, the __ asm 
block doesn't need to do so. It can also dispense with the RET instruction, because 
the C part of the function performs the return. 

Because the inline version of power2 doesn't execute a C return statement, it 
causes a harmless warning if you compile at warning levels two or higher: 

warning C4035: 'power2' : no return value 

The function does return a value, but the compiler cannot tell that in the absence of 
a return statement. Simply ignore the warning in this context. 



92 Programming Techniques 

4.5 Using and Preserving Registers 

Don't use the 
__ fastcall calling 
convention for 
functions with 
__ asm blocks. 

Functions return 
small values in the 
AX and DX registers. 

In general, you should not assume that a register has a given value when an __ asm 
block begins. An __ asm block inherits whatever register values happen to result 
from the normal flow of control. 

If you use the __ fastcall calling convention, the compiler passes function argu
ments in registers instead of on the stack. This can create problems in functions 
with __ asm blocks, because a function has no way to tell which parameter is in 
which register. If the function happens to receive a parameter in AX and imme
diately stores something else in AX, the original parameter is lost. 

To avoid such register conflicts, don't use the __ fastcall convention for functions 
that contain an __ asm block. If you specify the __ fastcall convention globally with 
the /Gr compiler option, declare every function containing an __ asm block with the 
attribute __ cdecl or __ pascal. (The __ cdecl attribute tells the compiler to use the 
C calling convention for that function. The __ pascal attribute tells the compiler to 
use the FORTRAN/Pascal convention, which is the default for C++ functions.) If 
you are not compiling with /Gr, avoid declaring the function with __ fastcall. 

As you may have noticed in the POWER2.C example in "Writing Functions," on 
page 90, the power2 function doesn't preserve the value in the AX register. When 
you write a function in assembly language, you don't need to preserve the AX, BX, 
CX, DX, ES, and flags registers. However, you should preserve any other registers 
you use (DI, SI, DS, SS, SP, and BP). 

Note If your inline assembly code changes the direction flag using the STD or 
CLD instructions, you must restore the flag to its original value. 

The POWER2.C example in "Writing Functions," on page 90, also shows that 
functions return values in registers. This is true for return values that are 4 bytes or 
smaller (except for structures), whether the function is written in assembly language 
or in C or C++. 

If the return value is short (a char, int, or near pointer), it is stored in AX. The 
POWER2.C example returned a value by terminating with the desired value in AX. 

If the return" value is long, store the high word in DX and the low word in AX. To 
return a longer value (such as a floating-point value), store the value in memory and 
return a pointer to the value (in AX if near or in DX:AX if far). 

Assembly instructions that appear inline with C or C++ statements are free to alter 
the AX, BX, CX, and DX registers. C and C++ don't expect these registers to be 
maintained between statements, so you don't need to preserve them. The same is 
true of the SI and DI registers, with some exceptions (see "Optimizing," on page 
97). You should preserve the SP and BP registers unless you have some reason to 
change them - to switch stacks, for example. 



Chapter 4 Using the 16·Bit Inline Assembler 93 

4.6 Using Floating-Point Instructions 
You can use most of the 80387 floating-point instructions in an __ asm block. 
However, the 16-bit floating-point emulator libraries, xLIBCE.LIB, do not support 
14 80387-specific floating-point instructions. Use of these instructions in inline 
assembler code causes an error on any machine that does not have a coprocessor. 
These instructions fall into two categories: unemulated 80x87 instructions and those 
specific to the 80387. 

Unemulated 80x87 Instructions 
If a program was linked with any of the 16-bit floating-point emulator libraries 
(xLIBCE.LIB) and contains the fldeov, fsteov, fsave, frstor, fbld, fbstp, or foop 
instruction, it fails with the following run-time error if it is run on a machine that 
does not have a coprocessor: 

"run-time error M6107 : MATH - floating-point error: unemulated" 

Instructions Specific to the 80387 
The 16-bit compiler does not accept the fsio, fcos, fsiocos, fucom, fucomp, 
fucompp, or fpreml 80387 coprocessor instruction. 

4.7 Jumping to Labels 

Labels in __ asm 
blocks have function 
scope and are not 
case sensitive. 

Like an ordinary C or C++ label, a label in an __ asm block has scope throughout 
the function in which it is defined (not only in the block). Both assembly instruc
tions and goto statements can jump to labels inside or outside the __ asm block. 

Labels defined in __ asm blocks are not case sensitive; both goto statements and 
assembly instructions can refer to those labels without regard to case. C and C++ 
labels are case sensitive only when used by goto statements. Assembly instructions 
can jump to a C or C++ label without regard to case. 

The following do-nothing code shows all the permutations: 

void func( void 
{ 

goto C_Dest; 
goto c_dest; 

goto A_Dest; 
goto a_dest; 

) 

1* 
1* 

1* 
1* 

Lega 1 : 
Error: 

Lega 1 : 
Lega 1 : 

correct case */ 
incorrect case */ 

correct case */ 
incorrect case */ 



94 Programming Techniques 

__ asm 

jmp C Dest 
jmp c dest 

jmp A_Dest 
jmp a dest 

a dest: 
} 

C Dest: 
return; 

Legal: correct case 
Legal: incorrect case 

Legal: correct case 
Lega 1: incorrect case 

__ asm label 

/* C label */ 

Don't use C library function names as labels in __ asm blocks. For instance, you 
might be tempted to use ex it as a label, as follows: 

; BAD TECHNIQUE: using library function name as label 
jmp exit 

exit: 
More __ asm code follows 

Because exit is the name of a C library function, this code might cause a jump to 
the exit function instead of to the desired location. 

As in MASM programs, the dollar symbol ($) serves as the current location 
counter. It is a label for the instruction currently being assembled. In __ asm blocks, 
its main use is to make long conditional jumps: 

jne $+5 ; next instruction is 5 bytes long 
jmp farlabel 

$+5 

farlabel: 



Chapter 4 Using the 16·Bit Inline Assembler 95 

4.8 Calling C Functions 
An __ asm block can call C functions, including C library routines. The following 
example calls the printf library routine: 

#include <stdio.h> 

char formatE] = "%s %s\n"; 
char hello[] "Hello"; 
char world[] = "world"; 

void maine void ) 

{ 
__ asm 

mov ax, offset world 
push ax 
mov ax, offset hell 0 

push ax 
mov ax, offset format 
push ax 
call printf 

Because function arguments are passed on the stack, you simply push the needed 
arguments-string pointers, in the previous example-before calling the function. 
The arguments are pushed in reverse order, so they come off the stack in the desired 
order. To emulate the C statement 

printf( format, hello, world ); 

the example pushes pointers to W 0 r 1 d, he 1 1 0, and for mat, in that order, then 
calls printf. 

4.9 Calling C++ Functions 
An __ asm block can call only global C++ functions that are not overloaded. If you 
call an overloaded global C++ function or a C++ member function, the compiler 
issues an error. 

You can also call any functions declared with extern" C" linkage. This allows an 
__ asm block within a C++ program to call the C library functions, because all the 
standard header files declare the library functions to have extern "C" linkage. 



96 Programming Techniques 

4.10 Defining __ asm Blocks as C Macros 

Use C comments 
in __ asm blocks 
written as macros. 

C macros offer a convenient way to insert assembly code into your source code, but 
they demand extra care because a macro expands into a single logical line. To 
create trouble-free macros, follow these rules: 

• Enclose the asm block in braces. 

• Put the __ asm keyword in front of each assembly instruction. 

• Use old-style C comments (1* comment * I) instead of assembly-style com
ments (; comment) or single-line C comments (I / comment). 

To illustrate, the following example defines a simple macro: 

fldefi ne BEEP __ asm \ 
/* Beep sound */ \ 
{ \ 

__ asm moy a h , 2 \ 
__ asm moy dl , 7 \ 
__ asm int 21h \ 

At first glance, the last three __ asm keywords seem superfluous. They are needed, 
however, because the macro expands into a single line: 

__ asm /* Beep sound */ { __ asm moy ah, 2 __ asm moy dl, 7 __ asm int 21h } 

The third and fourth __ asm keywords are needed as statement separators. The only 
statement separators recognized in __ asm blocks are the newline character and 
__ asm keyword. Because a block defined as a macro is one logical line, you must 
separate each instruction from the previous with __ asm. 

The braces are essential as well. If you omit them, the compiler can be confused by 
C or C++ statements on the same line to the right of the macro invocation. Without 
the closing brace, the compiler cannot tell where assembly code stops, and it sees C 
or C++ statements after the __ asm block as assembly instructions. 

Assembly-style comments that start with a semicolon (;) continue to the end of the 
line. This causes problems in macros because the compiler ignores everything after 
the comment, all the way to the end of the logical line. The same is true of single
line C or C++ comments (1/ comment). To prevent errors, use old-style C 
comments (1* comment *1) in __ asm blocks defined as macros. 

An __ asm block written as a C macro can take arguments. Unlike an ordinary C 
macro, however, an __ asm macro cannot return a value. So you cannot use such 
macros in C or C++ expressions. 



You can convert 
MASM macros to 
C macros. 

Chapter 4 Using the 16·Bit Inline Assembler 97 

Be careful not to invoke macros of this type indiscriminately. For instance, invoking 
an assembly-language macro in a function declared with the __ fastcall convention 
may cause unexpected results. (For more information, see "Using and Preserving 
Registers," on page 92.) 

Note that some MASM-style macros can be written as C macros. Following is a 
MASM macro that sets the video page to the value specified in the p age argument: 

setpage MACRO page 
mav ah. 5 
mav al. page 
int 10h 
ENDM 

The following code defmes set p age as a C macro: 

#define setpage( page __ asm \ 
{ \ 

__ asm mav ah. 5 \ 
__ asm mav a 1 • page \ 
__ asm int 10h \ 

} 

Both macros do the same job. 

4.11 Optimizing 
The presence of an __ asm block in a function affects optimization in several ways. 
First, the compiler doesn't try to optimize the __ asm block itself. What you write 
in assembly language is exactly what you get. 

Second, the presence of an __ asm block affects register variable storage. Under 
normal circumstances (unless you suppress optimization with the IOd option), the 
compiler automatically stores variables in registers. This is not done, however, in 
any function that contains an __ asm block. To get register variable storage in such 
a function, you must request it with the register keyword. 

Because the compiler stores register variables in the SI and DI registers, these 
registers represent variables in functions that request register storage. The first 
eligible variable is stored in SI and the second in DI. Preserve SI and DI in such 
functions unless you want to change the register variables. 

Keep in mind that the name of a variable declared with register translates directly 
into a register reference (assuming a register is available for such use). For exam
ple, if you declare 

register int sample; 



98 Programming Techniques 

and the variable sa mp 1 e happens to be stored in SI, the __ asm instruction 

__ asm mav ax, sample 

is equivalent to 

__ asm mav ax, si 

If you declare a variable with register and the compiler cannot store the variable in 
a register, the compiler issues a warning to that effect at compile time. You must 
remove the register declaration from that variable to get rid of the warning. 

Register variables are the exception to the general rule that an assembly-language 
statement can contain no more than one C or C++ symbol. If one of the symbols is a 
register variable, for example, 

register int vI; 
int v2; 

then an instruction can use two C or C++ symbols, as in 

mav vI, v2 

Finally, the presence of inline assembly code inhibits the following optimizations 
for the entire function in which the code appears: 

• Loop (101) 

• Global register allocation (lOe) 

• Global optimizations and common subexpressions (lOg) 

These optimizations are suppressed no matter which compiler options you use. 



CHAPTER 5 

Controlling Floating-Point 
Math Operations 

99 

This chapter describes how to control the way your Microsoft Visual C++ programs 
perform floating-point math operations. It describes the math packages that you can 
include in the C run-time libraries when you run the Setup program, then discusses 
the options you can specify on the CL command line to choose the appropriate 
library for linking and controlling floating-point instructions. 

This chapter also explains how to override floating-point options by changing 
libraries at link time, and how to control use of the Intel math coprocessor (80x87) 
using the N087 environment variable. 

5.1 Declaring Floating-Point Types 
Visual C++ supports three floating-point types that conform to the Institute of 
Electrical and Electronics Engineers, Inc. (IEEE) standard 754 format: 

• Type float, a 32-bit floating-point quantity 

• Type double, a 64-bit floating-point quantity 

• Type long double, an 80-bit floating-point quantity (not supported in the 
alternate math package) 

You can declare variables as any of these types. You can also declare functions that 
return any of these types. 

Declaring Variables as Floating-Point Types 
You can declare variables as float, double, or long double, depending on the needs 
of your application. The principal differences between the three types are the 
significance they can represent, the storage they require, and their range. Table 5.1 
shows the relationship between significance and storage requirements. 



100 Programming Techniques 

Table 5.1 Floating-Point Types 

Type 

float 

double 

long double 

Significant digits 

6-7 

15-16 

19 

Number of bytes 

4 

8 

10 

Floating-point variables are represented by a mantissa, which contains the value 
of the number, and an exponent, which contains the order of magnitude of the 
number. 

Table 5.2 shows the number of bits allocated to the mantissa and the exponent for 
each floating-point type. The most-significant bit of any float, double, or long 
double is always the sign bit. If it is 1, the number is considered negative; other
wise, it is considered a positive number. 

Table 5.2 Lengths of Exponents and Mantissas 

Type Exponent length Mantissa length 

float 8 bits 23 bits 

double 

long double 

11 bits 

15 bits 

52 bits 

64 bits 

Because exponents are stored in an unsigned form, the exponent is biased by half its 
possible value. For type float, the bias is 127; for type double, it is 1023; for type 
long double, it is 16,383. You can compute the actual exponent value by sub
tracting the bias value from the exponent value. 

The mantissa is stored as a binary fraction greater than or equal to one and less than 
two. For types float and double, there is an implied leading 1 in the mantissa in the 
most-significant bit position, so the mantissas are actually 24 and 53 bits long, 
respectively, even though the most-significant bit is never stored in memory. 

Instead of the storage method just described, the floating-point package can store 
binary floating-point numbers as denormalized numbers. Denormalized numbers 
are nonzero floating-point numbers with reserved exponent values in which the 
most-significant bit of the mantissa is O. By using the denormalized format, the 
range of a floating-point number can be extended at the cost of precision. You 
cannot control whether a floating-point number is represented in normalized or 
denormalized form; the floating-point package determines the representation. The 
floating-point packages never use denormalized form unless the exponent becomes 
less than the minimum that can be represented in a normalized form. 

Table 5.3 shows the minimum and maximum value you can store in variables of 
each floating-point type. The values listed in this table apply only to normalized 



Visual C++ observes 
type-widening rules. 

Chapter 5 Controlling Floating·Point Math Operations 101 

floating-point numbers; denormalized floating-point numbers have a smaller mini
mum value. Note that numbers retained in 80x87 registers are always represented in 
80-bit normalized form; numbers can only be represented in denormalized form 
when stored in 32- or 64-bit floating-point variables (variables of type float and 
type long). 

Table 5.3 Range of Floating-Point Types 

Type 

float 

double 

long double 

Minimum value 

1.175494351 E - 38 

2.2250738585072014 E - 308 

3.362103143112093503 E - 4932 

Maximum value 

3.402823466 E + 38 

1.7976931348623158 E + 308 

1.189731495357231765 E + 4932 

If precision is less of a concern than storage, consider using type float for floating
point variables. Conversely, if precision is the most important criterion, use type 
long double. 

Floating-point variables can be promoted to a type of greater significance (for 
example, from type float to type double). Promotion often occurs when you 
perform arithmetic on floating-point variables. This arithmetic is always done in as 
high a degree of precision as the variable with the highest degree of precision. For 
example, consider the following type declarations: 

float f_short; 
double f_long; 
long double f_longer; 

In the preceding example, the variable f _short is promoted to type double and 
multiplied by f _1 on g; then the result is rounded to type float before being assigned 
to f short. 

In the following example (which uses the declarations from the preceding example), 
the arithmetic is done in float (32-bit) precision on the variables; the result is then 
promoted to type long double. 

Declaring Functions That Return Floating-Point Types 
You can declare functions that return the floating-point types float, double, and 
long double. Functions that return types float or double do not place their return 
values in registers; they place their return values in a global location called the 
floating-point accumulator C_fac). Functions that return the type long double 



102 Programming Techniques 

You can write 
reentrant functions 
that return floating
point types. 

place their return values on the numeric data processor (NDP) stack, a simulated 
stack made up of registers in the math coprocessor. 

In 32-bit programs, all functions that return floating-point values place their return 
values on the NDP stack. In addition, all functions that use the __ fastcall calling 
convention and return floating-point values place their return values on the NDP 
stack. 

Using the current thread's private stack to return values allows you to write reen
trant functions by eliminating possible contention between threads for the floating
point accumulator. 

Note You do not need to use the __ pascal keyword with functions that return the 
type long double. There is no contention between threads for the NDP stack, 
because the operating system saves the values of the coprocessor's registers for 
each thread. 

5.2 Run-Time Library Support of Type long double 
Of the math packages offered by the Microsoft C and C++ compilers, only the 
emulator package and the math coprocessor package support the long double type; 
the alternate math package does not support it. In the math packages that support 
long double, each of the normal floating-point math functions has a special version 
that supports type long double. These functions have the same name as the func
tions that support type float and type double, except that they end with I. For 
example, the function that returns the absolute value of a variable of type float or 
type double is fabs. The long double equivalent function is _fabsl. The two 
exceptions to this rule are the _ atold and _strtold functions. 

5.3 Summary of Math Packages 
The Microsoft C and C++ compilers offer a choice of the following three math 
packages for handling floating-point operations: 

• Emulator (default) 

• Math coprocessor (a library that supports the Intel 80x87 family of math 
coprocessors) 

• Alternate math 

When you install Visual C++, you can choose a Setup option to build combined 
libraries that include the floating-point math library that you choose. Any programs 
linked with that library use the math package included in the library; you must use 



Chapter 5 Controlling Floating-Point Math Operations 103 

the appropriate CL option to make sure that the library you want is used at link 
time. 

The following descriptions of these math packages are designed to help you choose 
the appropriate math option for your needs when you build a library using Setup. 
For more information about Setup and about building combined libraries, see the 
Visual Workbench User's Guide. 

For simplicity, the names of libraries are noted in the form mLIBCfLIB, where m is 
the model designator andf is the floating-point math package designator. 

Emulator Package 

When you use the 
emulator package, 
some floating-point 
exceptions are 
masked. 

Programs created using the emulator math package automatically detect and use an 
80x87 numeric coprocessor if one is installed. If no coprocessor is installed, these 
80x87 instructions are carried out in software. The emulator package is the default 
math package; Setup uses it if you do not explicitly choose another package. Also, 
the emulator math option is the option selected by default by the compiler if no 
other floating-point math option is specified. 

Use the emulator math package to maximize accuracy on systems without math 
coprocessors or if your program will be run on some systems with coprocessors and 
some systems without coprocessors. 

The emulator package performs basic operations to the same degree of accuracy as 
a math coprocessor. However, the emulator routines used for transcendental math 
functions (such as sin, cos, and tan) differ slightly from the corresponding functions 
performed on a coprocessor. This difference can cause a slight discrepancy (usually 
within 2 bits) between the results of these operations when performed with the 
software emulation and the results when performed with a math coprocessor. 

When you use a math coprocessor or the emulator floating-point math package, 
interrupt-enable, precision, underflow, and denormalized-operand exceptions are 
masked by default. The remaining floating-point exceptions are unmasked. For 
more information about 80x87 floating-point exceptions, see the discussion of the 
_ control87 function in the Run-Time Library Reference. 

Math Coprocessor Package 
The math coprocessor package uses the 80x87 math coprocessor exclusively for 
floating-point calculations. If you use the math coprocessor package, the machine 
on which your application is to run must have an 80x87 coprocessor to perform 
floating-point operations. This package gives you the fastest, smallest programs 
possible for handling floating-point math. 



104 Programming Techniques 

Alternate Math Package 
The alternate math package gives you the smallest and fastest programs possible 
without a coprocessor. However, the program results are not as accurate as results 
given by the emulator package. In addition, the alternate math package does not 
support the long double type. 

The alternate math package uses the same format as the IEEE standard-format 
numbers with less precision and less thorough error checking. The alternate math 
package does not support infinities, NANs ("not a number"), and denormal 
numbers. 

5.4 Selecting Floating-Point Options (/FP) 
You can select a floating-point library and the method of accessing floating-point 
routines by specifying command-line options to CL. You can choose from the 
emulator, alternate, and math coprocessor libraries. You can also access the 
floating-point routines by issuing a function call (or calls) or by generating inline 
80x87 instructions to execute the floating-point operation. The inline math co
processor package (selected with the /FPi87 option) generates the smallest and the 
fastest code because the compiler generates true 80x87 coprocessor instructions. 
However, if you cannot depend on the target computer having a coprocessor, you 
must use either the emulator or alternate math option. 

To specify floating-point options on the CL command line, you must specify an 
option from the list in Table 5.4. You specify these options to CL starting with the 
floating-point option string /FP. 

Based on the floating-point option and the memory-model option you choose, the 
compiler embeds a library name in the object file that it creates. This library is then 
considered the default library; that is, the linker searches in the standard places for 
a library with that name. If it finds a library with that name, the linker uses the 
library to resolve external references in the object file being linked. Otherwise, it 
displays a message indicating that it could not find the library. 

This mechanism allows the linker to automatically link object files with the appro
priate library. However, you can link with a different library in some cases. For 
more information about linking with different libraries, see Table 5.4, following, 
and Section 5.5, "Library Considerations for Floating-Point Options," on page 108. 

Table 5.4 summarizes the floating-point options and their effects. These options are 
described in detail in the following sections. 



Chapter 5 Controlling Floating-Point Math Operations 105 

Table 5.4 Summary of Floating-Point Options 

Libraries 
CL option Effect Coprocessor selected 

/FPi Default. /FPi produces Uses mLIBCE.LIB2 
(specify code larger than /FPi87, coprocessor 
emulator) but it can work without if one is 

a coprocessor; using it present! 
is the most efficient 
way to get maximum 
precision without a 
coprocessor. 

/FPi87 Smallest and fastest Requires mLIBCE.LIB2 
(specify option available with a coprocessor 
coprocessor) coprocessor. 

/FPc Slower than /FPi, but Uses mLIBCE.LIB2, 3 
(specify makes possible use of coprocessor 
emulator the alternate math if one is 
calls) library at link time. present! 

/FPc87 Slower than /FPi87, but Requires mLIBC7 .LIB3, 4 

(specify makes possible use of coprocessor 
80x87 the alternate math unless the 
calls) library at link time. library is 

changed at 
link timeS 

/FPa Fastest and smallest Ignores mLIB CA.LIB 2, 4 

(specify option available without coprocessor 
alternate a coprocessor, but 
math sacrifices some 
package) accuracy for speed. 

1 Use of the coprocessor can be suppressed by setting the N087 environment variable. 

2 Can be linked explicitly with mLIBC7.LIB at link time. 

3 Can be linked explicitly with mLIBCA.LIB at link time. 

4 Can be linked explicitly with mLIBCE.LIB at link time. 

S Use of the coprocessor can be suppressed by setting N087 if you change to the emulator library at 
link time. 

Optimizations such as constant propagation and constant subexpression elimination 
can cause some expressions to be evaluated at compile time. Such evaluations 
always use IEEE format and are unaffected by the floating-point option you choose. 
For more information about optimizing, see Chapter 6, "Optimizing 16-Bit 
Programs," in the Command-Line Utilities User's Guide. 



106 Programming Techniques 

The IFPi (Specify Emulator) Option 
The /FPi option generates inline instructions for an 80x87 coprocessor and places 
the name of the emulator library (mLIBCE.LIB) in the object file. At link time, you 
can specify the math coprocessor library (mLIBC7.LIB) instead. If you do not 
choose a floating-point option, the compiler uses the /FPi option by default. 

The /FPi option is useful if you cannot be sure that an 80x87 coprocessor is avail
able on the target computer. Programs compiled using this option work as described 
following: 

• If a coprocessor is present at run time, the program uses the coprocessor. 

• If no coprocessor is present, the program uses the emulator. In this case, the /FPi 
option offers the most efficient way to get maximum precision in floating-point 
results. 

When you use the /FPi option, the linker does not generate inline 80x87 instruc
tions. Instead, it generates software interrupts to library code, which then fixes up 
the interrupts to use either the emulator or the coprocessor, depending on whether a 
coprocessor is present. If you want true inline 80x87 instructions, use the "specify 
coprocessor" (/FPi87) option. 

The IFPi87 (Specify Coprocessor) Option 
The /FPi87 option instructs the compiler to place 80x87 coprocessor instructions in 
your code for many math operations. It also causes the name of a math coprocessor 
library (mLIBC7.LIB) to be embedded in the object file. 

If you use the /FPi87 option and link with the library mLIBC7.LIB, an 80x87 
coprocessor must be present at run time, or the program fails and the following 
error message is displayed: 

run-time error R6002 
- floating point not loaded 

Compiling with the /FPi87 option results in the smallest, fastest programs possible 
for handling floating-point results. 

The IFPc (Specify Emulator Calls) Option 
The /FPc option generates floating-point calls to the emulator library and places the 
names of an emulator library (mLIBCE.LIB) in the object file. At link time, you 
can specify a math coprocessor library (mLIBC7.LIB) or an alternate math library 
(mLIBCA.LIB) instead. Thus, /FPc gives you more flexibility in the libraries you 
can use for linking than the "specify emulator" (/FPi) option. 



Chapter 5 Controlling Floating-Point Math Operations 107 

Using the /FPc option is also recommended in the following cases: 

• If you compile modules that perform floating-point operations and plan to 
include these modules in a library 

• If you compile modules that you want to link with libraries other than the 
libraries provided with Visual C++ 

You cannot link with an alternate math library if your program uses the intrinsic 
forms of floating-point library routines (that is, if you have compiled the program 
with the IOi or lax option or have specified math functions in an intrinsic pragma). 

The IFPc87 (Specify 80x87 Calls) Option 
The /FPcS7 option generates function calls to routines in the math coprocessor 
library (mLIBC7.LIB) that issue the corresponding SOxS7 instructions. As with the 
"specify coprocessor" (/FPiS7) option, at link time you can choose to link with an 
emulator library (mLIBCE.LIB). However, /FPcS7 offers more flexibility in 
choosing libraries, because you can change your mind and link with the appropriate 
alternate math library as well (mLIBCA.LIB). 

The disadvantages of using the /FPcS7 option as opposed to the /FPiS7 option are as 
follows: 

• Your executable file's size is larger because a call requires more instructions 
than a true coprocessor instruction. 

• Your program does not execute as fast because you must issue a function call 
for each floating-point operation. 

You cannot link with an alternate math library if your program uses the intrinsic 
forms of floating-point library routines (that is, if you have compiled the program 
with the IOi or lax option or have specified math functions in an intrinsic pragma). 

You must have a math coprocessor installed to run programs compiled with the 
/FPcS7 option and linked with a math coprocessor library. Otherwise, the program 
fails and the following error message is displayed: 

run-time error R6002 
- floating point not loaded 

Note Certain optimizations are not performed when you use the calls to math 
coprocessor option. This can reduce the efficiency of your code; also, because 
arithmetic of different precision can result, there may be slight differences in your 
results. 



108 Programming Techniques 

The IFPa (Specify Alternate Math Package) Option 
The /FPa option generates floating-point calls and selects the alternate math library 
for the appropriate memory model (mLIBCA.LIB). Calls to this library provide the 
fastest and smallest option for code intended to run on a machine without an 80x87 
coprocessor. With this option, you can choose an emulator library (mLIBCE.LIB) 
or a math coprocessor library (mLIBC7.LIB) at link time. 

You cannot link with an alternate math library if your program uses the intrinsic 
forms of floating-point library routines (that is, if you have compiled the program 
with the IOi or lax option or have specified math functions in an intrinsic pragma). 

5.5 Library Considerations for Floating-Point Options 
You may want to use libraries in addition to the default library for the floating-point 
option you have chosen in your compile options. For example, you may want to 
create your own libraries (or other collections of subprograms in object-file form), 
then link these libraries at a later time with object files that you have compiled 
using different options. 

The following sections describe these cases and ways to handle them. Although the 
discussion assumes that you are putting your object files into libraries, the same 
considerations apply if you are simply using individual object files. 

Using One Standard Library for Linking 
You must use only one standard C run-time library when you link. To specify the 
library from the LINK command line, use the /NODEFAULTLIBRARYSEARCH 
(/NOD) option and then type the name of the combined library file you want to use 
in the link-libinfo field of the CL command line. Doing so overrides the library 
names embedded in the object files. 

Inline Instructions or Calls 
When deciding on a floating-point option, you should decide whether you want to 
use inline instructions. If you do, compile with the "specify coprocessor" (/FPi87) 
or "specify emulator" (/FPi) option. Otherwise, compile for floating-point function 
calls using the "specify 80x87 calls" (/FPc87), "specify emulator calls" (/FPc), or 
"specify alternate math package" (/FPa) option. 



Chapter 5 Controlling Floating-Point Math Operations 109 

If you choose to use inline instructions for your precompiled object files, you cannot 
link with an alternate math library (mLIBCA.LIB). However, inline instructions 
achieve the best performance from your programs on machines that have an 80x87 
coprocessor installed. 

If you choose to use calls, your programs are slower but at link time you can switch 
to any standard C run-time library (that is, any library created by the Setup 
program) that supports the memory model you have chosen. 

5.6 Compatibility Between Floating-Point Options 
Each time you compile a source file, you can specify a floating-point option. When 
you link two or more source files to produce an executable program file, you must 
ensure that floating-point operations are handled consistently and that the environ
ment is set up properly to allow the linker to find the required library. 

If you are building libraries of C or C++ routines that contain floating-point opera
tions, the "specify emulator calls" (/FPc) option provides the most flexibility. 

The examples that follow illustrate how you can link your program with a library 
other than the default. The floating-point option and the substitute library are 
compatible. 

The following example compiles the program CALC. C with the "specify medium 
memory model" (lAM) option. Because no floating-point option is specified, the 
"specify emulator" (/FPi) option is used. The /FPi option generates 80x87 instruc
tions and specifies the emulator library MLIBCE.LIB in the object file. The /LINK 
field specifies the /NODEFAULTLIBRARYSEARCH (/NOD) option and the 
names of the medium-model math coprocessor library. Specifying the math co
processor library forces the program to use an 80x87 coprocessor; the program fails 
if a coprocessor is not present. 

CL lAM CALC.C Ilink MLIBC7 INOO 

The following example compiles CALC. C using the small (default) memory model 
and the "specify alternate math package" (/FPa) option. The /LINK field specifies 
the /NOD option and the library SLIBCE.LIB. Specifying the emulator library 
causes all floating-point calls to refer to the emulator library instead of the alternate 
math library. 

CL IFPa CALC.C Ilink SLIBCE INOO 



110 Programming Techniques 

The following example compiles CA LC . C with the "specify 80x87 calls" (IFPc87) 
option, which places the library name SLIBC7.LIB in the object file. The /LINK 
field overrides this default-library specification by giving the /NOD option and the 
name of the small-model alternate math library (SLIBCA.LIB). 

CL IFPc87 CALC.C Ilink SLIBCA.LIB/NOD 

5.7 Using the N087 Environment Variable 

Use the NOS? 
environment variable 
to suppress use of the 
SOxS? coprocessor at 
run time. 

Programs compiled using either the /FPc or the /FPi option automatically use an 
80x87 coprocessor at run time if one is installed. You can override this and force 
the use of the software emulator by setting an environment variable named N087. 

If N087 is set to any value when the program is executed, use of the coprocessor is 
suppressed. The value of the N087 setting is printed on the standard output as a 
message. The message is printed if a coprocessor is present and suppressed, or if no 
coprocessor is present. 

You can set an environment variable by using the SET command from the 
command line. For example, 

SET N087=Use of coprocessor suppressed 

This command causes the message Use of coprocessor suppressed to 
appear when a program that uses an emulator library is executed. If you don't want 
a message to be printed, set N087 equal to one or more spaces. A blank string for 
N087 causes a blank line to be printed. 

Note that only the presence or absence of the N087 definition is important in sup
pressing use of the coprocessor. The actual value of the N087 setting is used only 
for printing the message. 

The N087 variable takes effect with any program linked with an emulator library 
(mLIBCE.LIB). It has no effect on programs linked with math coprocessor libraries 
(mLIBC7.LIB) or on programs linked with alternate math libraries (mLIBCA.LIB). 

5.8 Incompatibility Issues 
The exception handler in the libraries for 80x87 floating-point calculations 
(mLIBCE.LIB and mLIBC7.LIB) is designed to work without modification on the 
IBM PC family of computers and on closely compatible computers, including the 
WANG personal computer, the AT&T 6300, and the Olivetti personal computers. 
Also, the libraries need not be modified for the Texas Instruments Professional 
Computer, even though it is not compatible. Any machine that uses nonmaskable 
interrupts (NMI) for 80x87 exceptions runs with the unmodified libraries. If your 



Chapter 5 Controlling Floating·Point Math Operations 111 

computer is not one of these, and if you are unsure whether it is completely com
patible, you may need to modify the math coprocessor libraries. 

All Microsoft languages that support 80x87 coprocessors intercept 80x87 excep
tions in order to produce accurate results and properly detect error conditions. To 
make the libraries work correctly on incompatible machines, you can modify the 
libraries. To make this easier, an assembly-language source file, EMOEM.ASM, is 
included with Visual C++. Any machine that sends the 80x87 exception to an 8259 
priority interrupt controller can be supported by a simple table change to the 
EMOEM.ASM module. The source file contains further instructions about how to 
modify EMOEM.ASM, patch libraries, and executable files. 





PAR T 2 

Special Environments 

Chapter 6 Programming for Windows. . . . . . . . . . . . . . . . . . . . . . . . . . .. 115 
Chapter 7 QuickWin Programs ................................. 121 
Chapter 8 Programming with Mixed Languages ..................... 153 
Chapter 9 Writing Portable C Programs. . . . . . . . . . . . . . . . . . . . . . . . .. 195 





CHAPTER 6 

Programming for Windows 

The following chapter discusses several issues of interest if you are developing 
programs for 16-bit versions of Windows. Topics covered are: 

• Optimizing protected-mode prolog and epilog code for Windows 

• Specifying program starting execution points 

• Writing exit procedure routines for Windows 

115 

6.1 Optimizing Protected-Mode Prolog and Epilog Code 
for Windows 

Functions written for Windows have two sequences of code, called prolog and 
epilog, added to their entry and exit points, respectively. This code sets the DS 
register to the address of the data segment for the function's associated application 
or dynamic-link library (DLL). 

The following two sections discuss three compiler options-/GA, /GD, and 
/GEstring. These options generate optimized prolog/epilog code for protected-mode 
applications and generate both optimized prolog/epilog code and a linker EXPDEF 
record for protected-mode DLLs. Among other optimizations, these options elimi
nate the inc BP and dec BP instructions required by real-mode functions for 
Windows. 

Using /GA and /GD to Optimize Prolog/Epilog Code 
For protected-mode applications, use the /GA option to generate the correct 
prolog/epilog code for all far functions explicitly marked as __ export. For 
protected-mode DLLs, use the /GD option to generate the correct prolog/epilog 
code and to create a linker EXPDEF record for all far functions explicitly marked 
as __ export. Using either /GA or /GD generates more efficient code than using 
either the /GW or /Gw "generate real-mode prolog/epilog code for Windows" 
option. 



116 Programming Techniques 

For further savings, 
use /G2 to generate 
80286 code. 

The results of using either option depend on the absence or presence of the 
__ export keyword. In Microsoft Visual C++, __ export has two different actions: 

• For DLLs (using /GD), __ export provides the name of a function to the linker. 

• For both applications and DLLs (using both /GA and /GD), __ export generates 
optimized prolog/epilog code. 

Table 6.1 shows the number of bytes and instructions saved for each function call 
when you use /GA or /GD instead of /GW or /Gw. 

Table 6.1 Byte and Instruction Savings with the /GA or /GD Option 

Option combination 

/GA or /GD without __ export 

/GA with __ export 

/GD with __ export 

Bytes saved 

10 

4 

4 

Instructions saved 

7 

3 

o 

As shown in Table 6.1, use of /OA or /GD without __ export saves the most bytes 
and instructions, thus generating the smallest possible prolog/epilog code for func
tions. Selective use of __ export increases the prolog/epilog size of functions that 
you determine require exporting. 

The code generated in all four cases is smaller than that generated by /Gw or lOW. 
In all cases, you can also use the /G2 option to generate protected-mode 80286 
code; this saves an additional four bytes. 

Both /GA and /GD define the _WINDOWS preprocessor symbol, and /GD defines 
the _ WINDLL preprocessor symbol. The /GA option requires use of both 
mLffiCjW.LIB and the Windows applications programming interface (API) library. 
The /GD option requires use of both mDLLCjW.LIB and the Windows API library. 
You cannot use the /Gw, /GW, or /Gq (generate simplified real-mode prolog/epilog 
code for Windows) option with either /GA or /GD. 

Using /GEstring to Modify the Default Behavior of /GA and /GD 
Using the /GEstring option, you can fine-tune the behavior of the /GA and /GD 
options. The /GEstring option can be used only in conjunction with /OA and /OD. 
For protected-mode programs, the string argument is one or more letters, with no 
intervening spaces, from the following list: 

String 

f 

a 

Optimizing procedure 

Creates prolog/epilog code for all far functions even if they are not marked as 
__ export. 

Loads DS from AX. 



Chapter 6 Programming for Windows 117 

String Optimizing procedure 

d Loads DS from DGROUP-the default behavior for /GD. 

s 

e 

Loads DS from SS-the default behavior for /GA. Use this string only if 
SS=DS. 

Forces emission of linker EXPDEF records for all functions marked as 
__ export. 

The linker refers by name to every function that is explicitly or implicitly marked as 
__ export, unless the function is given an ordinal number in a definition (.DEF) 
file's EXPORTS section. Thus marking a DLL function as __ export (or forcing it 
to be __ export by using the /GEf option) has two disadvantages. 

One disadvantage is that doing so slows function calls. Functions referred to by 
name are loaded into the resident name table, whereas functions referred to by 
ordinal number reside on disk in the nonresident table. Large resident name tables 
slow function calls because finding the name of a given function requires a linear 
string search through the table. 

The second disadvantage is that, because a DLL can contain both functions meant 
for public use and those meant for private use within the DLL, forcing all functions 
into the resident name table exposes the private functions to potential misuse. 

Conflicts Between fastcall and Prolog/Epilog Code 
Prolog/epilog code for Windows and the __ fastcall calling convention can conflict 
in their use of the AX register. As a result, the following combinations of options 
and keywords generate errors: 

• __ fastcall, __ far, /Gw 

• __ fastcall, __ far, __ export, /GA 

• __ fastcall, __ far, __ export, /GD 

• __ fastcall, __ far, /GA, /GEf 

• __ fastcall, __ far, /GD, /GEf 

• __ fastcall, __ far, __ export, /GA, /GEf 

• __ fastcall, __ far, __ export, /GD, /GEf 

6.2 Specifying Program Starting Execution Points 
When you use the libraries for Windows that are provided with Visual C++, your 
program's starting execution point can be either the main, WinMain, or LibMain 
function. The starting execution point depends on the library used. The following 
three sections discuss how the run-time system's startup code reacts to the presence 
or absence of a main, WinMain, or LibMain function. 



118 Programming Techniques 

Executable Files for Windows Version 3.x 
If your program is an executable file for Windows version 3.x, the run-time 
system's startup code looks first for a function named main to treat as the entry 
point. If a main function does not exist, then the startup code attempts to use the 
WinMain function. If neither of these functions exist, the run-time system displays 
the following error message: 

"R6021 no main function" 

Dynamic-Link Libraries for Windows Version 3.x 
If your program is a DLL for Windows version 3.x, the run-time system's startup 
code looks first for a function named main to treat as the entry point. If a main 
function does not exist, then the startup code attempts to use LibMain. Unless you 
link in one of the NOCRT libraries, such as SNOCRTW.LIB, a main or LibMain 
function is not required and no error is reported. 

Windows Version 3.x and the NOCRT Libraries 
If a program you created for Windows version 3.x does not use the run-time 
system's startup code, you must link it with one of the NOCRT libraries, such as 
SNOCRTW.LIB. In such cases, your program must have either a Win Main (if it is 
an executable file) or a Lib Main (if it is a DLL). If neither of these functions exist, 
the run-time system displays an error message. 

6.3 DLL Initialization Code for Windows 
Because the startup functionality previously provided by LIBENTRY.OBJ (and 
LIBENTRY.ASM) is now provided by the standard run-time libraries that support 
DLLs for Windows, do not link with LIBENTRY.OBJ. 

Compiling a DLL with Microsoft C version 6.0 required that the first object module 
linked be LIBENTRY.OBJ or the equivalent. Microsoft CjC++ version 7.0 and 
Visual C++ automatically provide the library initialization code that used to be 
provided by LIBENTRY.OBJ. If you provide your own initialization entry object, 
makefiles used to build DLLs in Microsoft C version 6.0 must be changed to elimi
nate linking in LIBENTRY.OBJ. If you don't use the run-time library functions, 
you can still use the correct initialization code. Do so without the run-time library 
overhead by linking with anxNOCRTDW.LIB library, where x is S, M, C, or L 
(small, medium, compact, or large model). 



Chapter 6 Programming for Windows 119 

6.4 Termination Routines for Windows 
The C run-time libraries that support DLLs for Windows (such as SDLLCEW.LIB) 
contain both startup and termination code. Beginning with Microsoft C/C++ version 
7.0, these libraries include the Windows exit procedure (WEP), a termination rou
tine. You can also optionally call your own termination code from the run-time 
library's WEP as needed. 

The WEP Routine 

Using a WEP requires 
that you follow some 
important rules and 
restrictions when 
building a DLL for 
Windows. 

Visual C++ automatically links the C run-time WEP routine into DLLs that are 
written for Windows. In addition to terminating a program, WEP performs several 
cleanup functions when Windows unloads a DLL from memory. For example, it 
releases memory and calls atexit routines. 

Note that the run-time libraries with names containing NOCRT (such as 
SNOCRTDW.LIB) do not have a WEP routine. Use these libraries when creating 
DLLs that do not use any C run-time services or routines. 

For your program to make use of a WEP, the routine must remain resident in 
memory as long as the associated DLL remains in memory. To ensure that it does, 
you must include the following statements in the DLL's definition file (.DEF) file: 

SEGMENTS 'WEP_TEXT' FIXED PRELOAD 
EXPORTS WEP @l RESIDENTNAME 

The SEGMENTS declaration tells Windows to load the WEP _TEXT segment into 
a fixed memory location as it loads the DLL into memory. RESIDENTNAME 
tells Windows to keep the WEP routine's name resident in memory so that the 
WEP can always be called-even when there is little available memory. The WEP 
routine's code is very small. Making the WEP _TEXT segment resident in memory 
should not adversely affect the performance of Windows. 

If you use any of the run-time DLL libraries, such as SDLLCEW.LIB, you must 
include this information in the definition file. 

Writing Your Own WEP Routine 
You can, optionally, provide your own termination routine to perform additional 
DLL termination processing. Note that the C run-time library WEP termination 
source code is provided with the startup source files (WEP.ASM) so that sophis
ticated users can alter or refer to it as needed. If you write a termination routine, it 



120 Programming Techniques 

must fit the following prototype. Unlike the WEP routine for Windows, the name of 
your routine must begin with a leading underscore: 

int __ far __ pascal _WEP( int <parameter> ); 

The value returned by your _ WEP routine, if any, is passed through to Windows as 
if it were the WEP termination value for Windows. In most cases, this should be 1 
to signify success. 

If you have an existing WEP routine, you can use it with Visual C++ by adding a 
leading underscore (_) to the name. If a procedure named _ WEP exists at link 
time, the C run time system automatically calls it at DLL termination time. 

Note that the _ WEP routine must be compiled as extern "C" when used in a C++ 
program: 

Extern "C" int __ far __ pascal _WEP( int <parameter> ); 

DLL termination code should avoid the following: 

• Deep stack usage. In some cases, DLL termination code can be called on a stack 
that has insufficient space remaining. This stack overflow produces unpredict
able results. 

• Operating system requests. Due to the potential for insufficient stack space, 
avoid calls to the operating system. 

• File input and output. Files are owned by processes (executable files), not DLLs. 
When DLL termination code is called, processes have already stopped and files 
are already closed. This is the reason that the run-time library DLL termination 
code does not attempt to do a final_ flushall routine as it does in other environ
ments. 

Most DLL termination problems occur due to memory constraints (for example, 
insufficient memory to load the DLL initialization code or to swap in DLL termina
tion code). For cases in which memory contention rarely occurs, DLLs run even if 
you do not follow the previous restrictions. 

For more information on DLL termination in Windows, refer to the Windows 
Software Development Kit documentation. 



121 

CHAPTER 7 

QuickWin Programs 

QuickWin makes it 
easy to add a 
Windows-like look to 
MS-DOS programs. 

QuickWin is a run-time library that helps you tum programs for MS-DOS into 
simple Windows-hosted applications. This chapter explains the user interface and 
programming features provided by QuickWin, and it explains how to use them to 
build your own QuickWin applications. 

Using QuickWin, many programs written for MS-DOS can be compiled with the 
Visual Workbench to run in a text window. In this release of QuickWin, a graphics 
library component has been added that enables a QuickWin program to call 
graphics functions and display graphics output in a QuickWin window. 

A QuickWin text window behaves the same way as the MS-DOS character-mode 
display. You can write to a QuickWin text window and receive input through it 
with C run-time library input and output routines, such as printf and scanf, or with 
C++ iostream facilities, such as coot and cin. 

A QuickWin graphics window behaves the same way as the MS-DOS graphics
mode display and is controlled by calls to functions very similar to those found in 
the MS-DOS GRAPHICS.LIB library. 

Note If your MS-DOS program uses console or serial port input/output (I/O) 
functions or if it spawns processes, you cannot link it with the QuickWin library. 
Console I/O functions are the functions prototyped in the CONIO.H header file, 
such as kbhit. 

Using QuickWin, you can run and debug your MS-DOS programs in the Visual 
Workbench without having a detailed knowledge of programming for Windows. 
Note that QuickWin offers only a portion of Windows capability: Because you 
cannot call Windows application programming interface (API) functions from your 
QuickWin program, you cannot write a complete Windows-hosted application using 
QuickWin. You can, however, add a Windows-like flavor to your applications. 

QuickWin is also useful for programmers experienced with Windows. When you 
have a simple MS-DOS program that you'd like to see in a window without 
completely overhauling the application, use QuickWin. 



122 Programming Techniques 

Additionally, QuickWin applications have access to all the Windows address space 
and can share data with other Windows-hosted applications. 

7.1 Capabilities of QuickWin Graphics 

The logical graphics 
screen is a graphical 
output screen that 
emulates system 
graphics modes. 

The QuickWin graphics library, a component of the QuickWin library, helps 
you tum MS-DOS graphics programs into simple applications for Windows. 
"MS-DOS graphics programs" refers to programs that use GRAPHICS.LIB rou
tines. Using QuickWin, graphics programs written for MS-DOS can be compiled 
with the Visual Workbench to run in a window. 

The QuickWin library supports all routines in GRAPHICS.LIB. Most QuickWin 
graphics applications behave as do the graphics applications written for 
MS-DOS. QuickWin graphics routines that work differently from MS-DOS 
graphics routines are discussed in Section 7.9, "Differences Between MS-DOS 
Graphics and QuickWin Graphics," on page 147. 

The QuickWin graphics library creates a multiple document interface (MDI) child 
window for the graphics program and treats it like an MS-DOS graphics screen. 
MDI applications can contain multiple child windows within the application's client 
area. The MDI graphics window is referred to as the "logical graphics screen." 
This logical graphics screen is a graphical output screen that emulates the current 
system graphics video card. Note that a logical graphics screen may not be entirely 
visible in some video modes. When the entire logical graphics screen is not visible, 
scroll bars are provided. 

Your application can display graphics in the graphics child window by calling the 
graphics routines in the QuickWin library. QuickWin programs that call these 
routines have the same capabilities as other QuickWin applications, along with the 
additional ability to open and manipulate graphics child windows. 

You can add a Windows-like flavor to your graphics applications if you use the 
enhanced QuickWin graphics features. With enhanced QuickWin graphics features, 
you can: 

• Add multiple graphics child windows. 

• Control which graphics child window is the active window. 

• Close any graphics child window. 

• Get keyboard input from a graphics child window. 



Chapter 7 QuickWin Programs 123 

7.2 Two Ways to Use QuickWin 
You can use QuickWin in two ways. You can link your existing MS-DOS appli
cation with the QuickWin library to create a standard QuickWin application, or you 
can alter your source code to take advantage of the enhanced capabilities and 
functions in the QuickWin library. 

Standard QuickWin Programs 
The simplest way to use QuickWin is to link your MS-DOS application with the 
QuickWin library without altering your source code. Your program then has the 
standard QuickWin user interface features described in Section 7.4, "The 
QuickWin User Interface," on page 125. Your standard QuickWin program: 

• Runs with the Windows operating system, in a window. 

• Can be minimized or maximized, as can any Windows-based application. 
(Minimized child windows appear as icons in the lower part of the client 
window; maximized windows fill the screen.) 

• Provides a standard QuickWin menu bar. 

• Takes advantage of the Clipboard by providing Copy and Paste commands. 

• Provides Help for the QuickWin features. 

• Takes advantage of the protected-mode memory management capabilities of 
Windows. 

Enhanced QuickWin Programs 
You can also use QuickWin to take advantage of more Windows features (although 
not features provided by the functions in the Windows API). To use these enhanced 
features, you must alter your source code. You can use QuickWin to: 

• Add multiple child windows (also called document windows). 

• Control the size and placement of child windows, including whether they are 
tiled or cascaded. (Cascaded windows overlap; tiled windows are arranged so 
that all windows are fully visible, with no overlap.) 

• Control the size of a text window's buffer, detennining how much of the 
window's text is stored (and can be scrolled through even when it is not all 
visible). 

• Control which child window is the foremost window. The foremost window is 
said to have the "input focus," which means that keyboard input is directed to 
this window. 



124 Programming Techniques 

• Add an About dialog box customized with your text. 

• Simulate mouse clicks in some of the QuickWin menus. 

• Yield processing time to other applications running with Windows. 

• Add custom application and document icons to your program. 

Adding these enhanced features requires the use of additional run-time functions, 
available only to the QuickWin library. These functions are listed in the next 
section. 

QuickWin Functions 
This section lists the functions specific to the QuickWin library. For further 
descriptions of these functions, consult Help. 

The following functions are specific to QuickWin programs: 

Function 

wabout 

_fwopen 

_wop en 

wclose 

_wgetexit 

_wgetfocus 

_ wgetscreenbuf 

_wgetsize 

wmenuclick 

wsetexit 

wsetfocus 

wsetscreenbuf 

wsetsize 

_wyield 

Description 

Sets the string that appears in the About dialog box 

Opens a new text window stream 

Opens a text window handle (works for text windows only) 

Closes a text window handle (works for text windows only) 

Gets the application's exit behavior 

Gets a window's current frame focus 

Gets a window's current screen buffer size 

Gets a window's current size and position on the screen 

Chooses a menu item 

Sets the application's exit behavior 

Sets a window's frame focus 

Sets a window's screen buffer size 

Sets a window's size and position on the screen (works for text 
windows only) 

Yields processor control to Windows for queue servicing 

The following functions are specific to the QuickWin graphics library, a component 
of the QuickWin library. They are not included in the MS-DOS GRAPHICS.LIB 



Chapter 7 QuickWin Programs 125 

library. For further descriptions of these and the GRAPHICS.LIB functions, consult 
Help. These functions can be used only for graphics child windows: 

Function 

in char 

_wgopen 

_wgclose 

_ wggetactive 

_ wgsetactive 

Description 

Reads a single character from the keyboard 

Opens a new graphics child window 

Closes an existing graphics child window 

Returns the handle of the active graphics child window 

Makes a graphics child window the active window 

7.3 Comparison of QuickWin and Windows 
QuickWin provides a rich set of Windows features, but it does not provide the total 
capability of Windows. With QuickWin, you cannot: 

• Call Windows API functions. 

• Detect and respond to mouse clicks in a window. 

• Display and use your own menus, controls, and dialog boxes. 

• Add your own customized Help information to QuickWin Help. 

• Run your program in real mode. 

7.4 The QuickWin User Interface 
When a QuickWin program runs, it displays an MDI Windows-style client window 
(also called an application window) titled with the program's name. The window 
has the standard controls for applications that run with Windows, including a 
Control-menu box, a window border with corners for resizing the window, and 
buttons for minimizing and maximizing the window. The client window also has a 
menu bar at the top and a status bar at the bottom. The menu bar provides menus 
common to all QuickWin applications; the status bar provides status information to 
the user. 

Within the client window is a child window titled "Stdin/Stdout/Stderr," which 
displays the C or C++ input/output streams. This child window also has controls 
and can have one or more scroll bars. QuickWin text windows are text only; text is 
black on white. If a call to a graphics function is made, a graphics child window 
with a default title of "Graphic 1" appears. All subsequent graphics output is 



126 Programming Techniques 

directed to this window. Figure 7.1 shows the QuickWin user interface; note that 
the default title of the graphics child window has been changed from "Graphic 1" to 
"SMILEY." 

• I 

file .Edit Yiew litate Window Help 

Stdi n/Std 0 ut/Std e rr 
QuickWin Graphics Demo Program. 

This ~---------------SM-I-LE-Y----------------amn 
Press any key to continue. • 

+ 

Figure 7.1 QuickWin User Interface 

QuickWin programs that take advantage of the enhanced features can display more 
than one child window. Such programs can also control the size and position of 
windows and which window is the foremost window, among other capabilities. 

QuickWin Menus 
When you run a QuickWin program, the client window always contains the 
standard QuickWin menu bar. The menu bar contains File, Edit, View, State, 
Window, and Help menus. 

File Menu 
The QuickWin File menu has one command, Exit, which ends the program, closing 
all windows. By default, any of your program's windows that still exist remain on 
the screen. You can control this behavior by calling the _ wsetexit function. For 
more information about using _ wsetexit, see "Keeping Windows on the Screen," on 
page 144. 

Edit Menu 
The QuickWin Edit menu has commands for selecting, copying, and pasting text 
within or between windows or between applications. These commands are Mark, 



Chapter 7 QuickWin Programs 127 

Paste, Copy Tabs, Copy, and Select All. If a graphics child window is the foremost 
window, only the Copy command is available. 

The Mark command puts the window that has the input focus in Mark mode, ready 
for the user to select text for copying to the Clipboard. The string "Mark - " is 
prefixed to the window title. 

Text can be selected with the keyboard or the mouse. To select with the keyboard, 
first choose the Mark command. Then use the arrow keys to move the cursor from 
the upper-left comer of the window to any comer of the desired text area. To select, 
hold down the SHIFf key and press an arrow key. The selected text is highlighted. 
To select with the mouse, click in the window and drag a rectangle outlining the 
selection. For mouse selection, choosing Mark is optional. If the mouse is used, the 
string "Select - " is prefixed to the window title instead of "Mark - ". 

Beginning a selection always pauses the program, at which time a check mark 
appears by the Pause command on the State menu, the program does not accept 
input, and processing time is yielded to other applications running with Windows. 
To resume processing, choose Resume from the State menu, choose Copy or Copy 
Tabs from the Edit menu, or click in the window with the mouse. A check mark 
appears by the Resume command on the State menu, the program accepts input, and 
the selection highlighting is removed. 

When text has been selected, use the Copy or Copy Tabs command to copy the 
selected text onto the Clipboard. 

The Copy Tabs command copies the selected text onto the Clipboard in CF _TEXT 
format: Its characters are taken from the ANSI character set, each line ends with a 
carriage return and linefeed, and a null character terminates the block of text. 
Before the text is placed onto the Clipboard, all sequences of blanks except leading 
blanks are converted to single tabs. This command is useful for pasting data into 
applications such as Microsoft Excel, which uses tabs to delineate input data items. 

The Copy command is like Copy Tabs, except that no tab conversion is performed. 
If a graphics window has the focus, this is the only command available on the Edit 
menu. In this case, the Copy command copies the entire logical graphics screen onto 
the Clipboard as a bitmap and the user can paste the copied graphics output into any 
Windows-hosted application. 

The Select All command selects and highlights all text in the foremost window. 
Using Select All is equivalent to selecting all the text in a window with the mouse. 
The window title is prefixed with "Select - ". 

The Paste command takes the most recently copied block of text from the Clipboard 
and places it in the program's paste buffer. The text must be in CF _TEXT format. 
Read calls to any window in the program are satisfied from this buffer until it is 
empty; subsequent input comes from the standard input stream. The status bar 
displays the line "Paste Input Pending" when there is text in the paste buffer. 



128 Programming Techniques 

View Menu 
The QuickWin View menu contains two commands, Size To Fit and Full Screen, 
that control how the logical graphics screen is displayed. Note that both these 
commands are unavailable if a text child window has the focus. The selected menu 
command has a check mark in front of its name. In Full Screen mode, the user 
interface is not visible; therefore, you cannot see the menus. 

The Size To Fit command stretches or shrinks the size of the selected logical 
graphics screen to fit the client area of the graphics child window. 

Note When Size to Fit is chosen in the View menu, the resulting graphics may 
appear somewhat distorted. 

The Full Screen command stretches or shrinks the selected logical graphics screen 
to fit the entire screen. Once in Full Screen mode, the user can return to Windows 
and restore the application to its previous mode by clicking the mouse once or by 
pressing ESC. 

State Menu 
The QuickWin State menu has commands for pausing and resuming the program. 
The Pause command temporarily suspends the program. While the program is 
paused, other Windows-hosted applications can run without competition for 
resources from the QuickWin program. The Resume command lets the program 
resume execution and removes any highlighting of selected text in a text child 
window. The selected command, Pause or Resume, has a check mark in front of its 
name. 

The State menu exists to allow pausing for text selection and for yielding time to 
other applications for Windows, such as a calendar or calculator. You do not have 
to pause to give one of your program's windows in the background the focus or to 
perform other operations within your program. 

Window Menu 
The QuickWin Window menu has commands for arranging windows, selecting the 
window with the input focus, clearing the paste buffer, and showing or hiding the 
status bar. In addition, the lower portion of the menu lists all open child windows. 
Figure 7.2 shows the Window menu as it appears in the example program 
QWGDEMO.CPP, which is described later in this chapter. The Window menu 
contains the following commands: 

• The Cascade command arranges the program's document windows in an over
lapped fashion. 

• The Tile command arranges the program's document windows so they are all 
visible at once. 



Chapter 7 QuickWin Programs 129 

• The Arrange Icons command organizes any child windows that have been 
minimized to icons. The icons are arranged evenly along the bottom of the client 
window. 

• The Input command activates the window with pending input. This command is 
enabled only when a graphics child window has pending input (upon a call to 
Jnchar). In addition, the status bar displays a message when a window has 
input pending. 

• The Clear Paste command clears the paste buffer. If a graphics child window 
has the focus, the Clear Paste command is removed from the Window menu. 

• The Status Bar command turns the status bar display on and off. A check mark 
appears next to this command when the status bar is visible and disappears when 
it is not. 

• The lower portion of the Window menu lists all open child windows for the 
QuickWin application. A check mark appears in front of the name of the fore
most child window. You can give another window focus by choosing its name 
from the menu. 

Figure 7.2 Window Menu in QWGDEMO.CPP 

Help Menu 
The QuickWin Help menu has commands for displaying Windows-based Help for 
the QuickWin interface. (Note that you cannot augment this Help information with 
program-specific information.) The Index command displays an index of Help for 
QuickWin; the Using Help command displays information about using Help. The 
About command displays a dialog box with information about your QuickWin 
application. By default, the text describes QuickWin itself, but you can customize 
the dialog box (for more information, see "About Dialog Box," on page 132). 



130 Programming Techniques 

Other QuickWin Features 
This section describes other features of the QuickWin user interface, using the 
following terms: 

• The horizontal direction is represented by the "x-axis." 

• The vertical direction is represented by the "y-axis." 

• The "origin" (point 0,0) is the upper-left comer of your screen. The x- and 
y-axes start at the origin. You can change the origin in some coordinate systems. 

Arrow Keys 
The arrow keys move the logical graphics screen one pixel in the opposite direction 
of the key pressed, even when no portion of the graphics image extends beyond the 
window's boundaries. For example, if the RIGHT ARROW key is pressed, the logical 
graphics screen "moves" one pixel to the left. 

If a text child window has the focus, the arrow keys also move the text in the 
opposite direction of the key pressed, if the text child window contains text that 
extends beyond its boundaries. 

Page Up and Page Down 
If a text child window contains text that extends beyond the horizontal boundaries 
of the child window, the PAGE UP and PAGE DOWN keys move the text along the 
y-axis in the opposite direction of the key pressed. 

If a graphics child window has the input focus, the PAGE UP and PAGE DOWN keys 
move the logical graphics screen along the y-axis according to the graphics child 
window's client size. For example, when you set the video mode to 
_ VRES16COLOR, QuickWin creates a bitmap of size 640x480 pixels in 16 
colors. If the client size of graphics child windows is 100x80, the section of the 
bitmap that you see in normal mode is the rectangular area with the viewport 
coordinates (0,0) and (99,79). Pressing the PAGE DOWN key moves the logical 
graphics screen up by 80 pixels; you see the portion of the bitmap that is the 
rectangular area with the coordinates (0,80) and (99,159). 

Pressing CTRL+PAGE UP or CTRL+PAGE DOWN moves the logical graphics screen 
along the x-axis. 



Chapter 7 QuickWin Programs 131 

Home and End 
If a text child window has the input focus, the HOME key causes the beginning of the 
text output to be displayed and the END key causes the end of the text output to be 
displayed. This is equivalent to moving the scroll box to the top or to the bottom of 
the scroll bar, respectively. 

If a graphics child window has the input focus, HOME and END display the left side 
and the right side, respectively, of the logical graphics screen without moving the 
screen along the y-axis. Pressing CTRL+HOME displays the upper-left comer of the 
graphics output; pressing CTRL+END displays the opposite comer. 

Printing QuickWin Graphics Output 
To print output from QuickWin graphics applications, first copy the output to the 
Clipboard. When you copy the bitmap to the Clipboard, you can paste it into any 
application that supports graphics printing. Follow these steps to print QuickWin 
graphics output: 

1. Give the input focus to the graphics window by choosing its name from the 
Window menu, or by clicking the mouse once inside the window's border. 

2. From the Edit menu, choose Copy to copy the window's contents to the 
Clipboard. 

3. Paste the bitmap into any Windows-based application that supports graphics 
printing. Consult the application's documentation on how to paste and print 
bitmaps. 

7.5 Overview of the Enhanced Capabilities of QuickWin 
Many C and C++ programs require no changes to be compiled as QuickWin 
applications. However, you have the option of giving your program more of a 
Windows-like look and greater flexibility using features described in this section. 
Details about using these features and calling QuickWin library functions are 
covered in Section 7.8, "Writing Enhanced QuickWin Programs," on page 135. 

Note The MS-DOS GRAPHICS.LIB library does not support the enhanced 
QuickWin graphics features. 



132 Programming Techniques 

About Dialog Box 
You can customize 
the About dialog box. 

In QuickWin, an About dialog box identifies your program by name and supplies a 
copyright notice. This dialog box appears when the user chooses the About 
command from the QuickWin Help menu. By default, QuickWin displays infor
mation about QuickWin itself, but you can customize the dialog box by specifying a 
text string to display. Use the _ wabout function to set the About text. Figure 7.3 
shows the About dialog box as it appears in the example program 
QWGDEMO.CPP, which is described later in this chapter. 

OWGDEMO 
.Edit Y:iew litate Window Help 

Stdi n/Std 0 ut/Std err 
QuickWin Graphics Demo Program. 

This is 

o 
OWGDEMO 

Microsoft (R] OuickWin Version 3.00 
(C] 1991-1992 Microsoft Corporation 

All Rights Reserved 

Input pending in Stdin/Stdout/Stderr 

Figure 7.3 About Dialog Box in QWGDEMO.CPP 

Multiple Child Windows 
By default, QuickWin displays a client window with a menu bar and one text child 
window, titled "Stdin/Stdout/Stderr." The default input/output streams use this 
window. However, you have the option of opening additional text or graphics child 
windows. Use the _fwopen or _wopen function to open new text child windows. 
Use the _ wgopen function to open new graphics child windows. These functions 
are described in "Opening Child Windows," on page 137. If your program reads or 
writes multiple files, you can use document windows to display those files on the 
screen. 

Active Window 
When you open multiple child windows, the foremost window is said to have the 
input focus and be the "active" window. For text child windows, use the 
_ wgetfocus function to determine which window has the focus. Use the _ wsetfocus 
function to make a particular window the foremost window, giving it the focus. 
These routines are useful for bringing a hidden or partially obscured window to the 
foreground. 



Chapter 7 QuickWin Programs 133 

For graphics child windows, use the _ wggetactive function to determine which 
window is active. Use the _ wgsetactive function to make a particular graphics 
child window the active window. Although keyboard input cannot be directed to an 
active graphics child window, the window can continue to receive input from the 
application even if it does not have the focus. 

The QWGDEMO.CPP program found in the MSVOSAMPLES\QWGDEMO 
directory (or in the directory where you placed your sample source files) demon
strates use of these functions. 

Program Control of Menus 
Users of a program that runs with Windows can choose commands from the menu 
bar either with the mouse or with the keyboard. Your program can also choose 
some of these commands for its own purposes, without user intervention. Although 
your program cannot add menus of its own to the menu bar, it can have some 
control over the default QuickWin menus by simulating a mouse click on a given 
menu item, as if a user had chosen the menu command with the mouse. 

The menu commands you can activate in this way are limited to the Tile, Cascade, 
Arrange Icons, and Status Bar commands on the Window menu. Simulating menu 
clicks is especially useful if you want your program's document windows to appear 
initially in certain positions on the screen. For example, you might want them either 
tiled or cascaded. Use the _ wmenuclick function to have a program activate a 
menu command. This feature is useful for setting up the initial configuration of the 
windows and the status bar in your program and for reconfiguring them as 
conditions change. 

Program Control of Windows 
In your program, you can also directly control the size and position of child win
dows and the amount of text they retain for scrolling, and you can control how your 
program behaves when an exit function is called. 

Use the _ wgetsize and _ wsetsize functions to determine or to reset a window's 
current size and position. The _ wsetsize function can only be used to reset a text 
window's size and position. It cannot be used to resize graphics windows. Use 
_ wgetscreenbuf to get the size of a window's text buffer (the amount of text it can 
retain and scroll through). Use _ wsetscreenbuf to set the size of a window's text 
buffer so it can retain more or less text. For example, you can read a text file and 
write it into a window with a buffer appropriately sized with _ wsetscreenbuf so 
that users can scroll through the entire contents of the file. 



134 Programming Techniques 

Use the _ wsetexit and _ wgetexit functions to specify whether your program's 
windows remain on the screen after the program calls an exit function. Your 
program can behave in three possible ways at exit time: 

• It can leave all windows on the screen by default. 

• It can leave no windows on the screen. 

• It can allow the user to choose whether to leave windows on screen using a 
dialog box. 

Use _ wgetexit to get the current exit behavior setting. Use _ wsetexit to set the 
desired exit behavior. For more information about these functions, see "Keeping 
Windows on the Screen," on page 144. 

7.6 Building QuickWin Programs 
Many MS-DOS programs can be built as QuickWin programs simply by building 
them as "QuickWin.EXE" project types using the Project command on the Options 
menu within the Visual Workbench. An MS-DOS program can generally become a 
QuickWin program as long as it doesn't make calls to console I/O functions (those 
functions prototyped in CONIO.H, such as _khhit) and doesn't spawn processes. 
When testing your QuickWin programs, remember that QuickWin programs do not 
run in real mode. 

The Visual Workbench simplifies the process of building an MS-DOS program as a 
QuickWin program. For a detailed description of how to build a QuickWin 
application, see Chapter 3, "Building a Sample QuickWin Program," in the Visual 
Workbench User's Guide. 

7.7 Running QuickWin Programs 
This section explains how to run QuickWin programs from within the Visual 
Workbench, from within Windows, and from the MS-DOS command line. 

From Within the Visual Workbench 
After successfully building your QuickWin program, choose Go from the Run menu 
or press the F5 key. 

With the Windows Run Command 
In the Windows Program Manager, choose Run from the File menu. Type the 
program name, prefixed with a path if needed. Then choose the OK button. 



Chapter 7 QuickWin Programs 135 

From the Windows File Manager 
In the Windows File Manager, double-click the name of the program's .EXE file. 

From an Icon in Windows 
In Windows, choose New from the File menu and select the Add Program Item 
option to add your program to a group (a collection of applications in the Windows 
Program Manager window). This adds an icon for your program to the Program 
Manager window; you can double-click the icon with the mouse to run the program. 

From the Command Line 
Type WIN (not case sensitive) followed by the program name. If the program is not 
in the current directory or in a directory specified by the PATH environment vari
able, specify a path. For example: 

C:WIN C:\PROGRAMS\HELLO 

This command starts Windows and then runs the HELLO program, located in the 
PROGRAMS directory on drive C. If you are already in an MS-DOS session 
running with Windows, you cannot start the HELLO program in this manner. 

Note QuickWin programs that contain the enhanced features cannot be run as 
MS-DOS programs. They can be run only with Windows, in standard or 386 
enhanced mode. 

7.8 Writing Enhanced QuickWin Programs 
This section explains how to program with the enhanced features of QuickWin to 
improve the appearance of the QuickWin application's child windows and to further 
control the behavior of your programs. 

QuickWin Sample Programs 
The program QWGDEMO.CPP, found in the \MSVOSAMPLES\QWGDEMO 
directory (or in the directory where you placed your sample source files) can be 
compiled as an enhanced QuickWin program. It demonstrates the enhanced 
QuickWin features. 

Note QWGDEMO.CPP cannot be run as an MS-DOS program. Because it con
tains QuickWin enhancements, it can be run only in Windows in standard or 386 
enhanced mode. 



136 Programming Techniques 

The three illustrations following show the output of QWGDEMO.CPP. 

his is a text window. Press Enter to continue. 



Chapter 7 QuickWin Programs 137 

~-------------------Q-W-G-D-EM-O---------------------a~ 

file Edit ~iew .state ~indow .!:!.elp 

"'1 Stdin/Stdout/Stderr l"'l"'JI 
QuickWin Graphics Demo Program. 

" This '" SMILEY 

~ '" • ... ;.. 
Press an9 kev to continue. ~ 

I-

HElLO, WORLD! 

= 

~ ---, 
+ 

+~ J l+ 

IHunning Iinput pending in HELLO 

Customizing the About Dialog Box 
Use the _ wabout function to specify the text in your program's About dialog box. 
This text appears in a dialog box when the user chooses the About command from 
the QuickWin Help menu. For example, QWGDEMO.CPP uses the following line 
of code to specify text: 

result = _wabout( "QuickWin Demo" ); 

Pass the function a pointer to a null-terminated string. The function returns an int. 
Note that the About dialog box always displays an OK button and default infor
mation about QuickWin, even if you don't call the _ wabout function. If you call 
_ wabout, the OK button is still displayed, along with the specified string. 

The function returns 0 if successful, or a nonzero value if not. 

Opening Child Windows 
In your QuickWin program, you may want to open new child windows in which to 
display your program's data. You can have up to 20 graphics child windows 
opened. You can also have up to 20 text windows opened for a maximum total of 
40 text child windows and graphics child windows. 

Each graphics window can be in either a text mode or a graphics mode. There are 
several text modes and graphics modes from which to choose. For a list of available 
modes, see the description of the _ setvideomode function in the Run-Time Library 
Reference. The graphics windows are initially set to _TEXTC80 mode; you can 
use _ setvideomode to change the mode. The following table shows the differences 



138 Programming Techniques 

between sending text output to QuickWin text windows, QuickWin graphics 
windows in graphics mode, and QuickWin graphics child windows in text mode. 

Window type 

Text window 

Graphics window in 
text mode 

Graphics window in 
graphics mode 

To write "Hello" 

printfC "Hello\n" ); 

_outtextC "Hello" ); 

_outgtext( "Hello" ); 
_outtextC "Hello" ); 

Graphics call allowed 

None 

Text calls only 

Any supported calls 
(including text calls) 

The sample program, QWGDEMO.CPP, uses all three types of windows. 

Depending on what you want to do, you can use one of three QuickWin functions, 
_ wopen, _fwopen, or _ wgopen, to open new text or graphics child windows. 

Opening Text Windows 
The _ wopen function is a low-level routine that returns a file handle, which you can 
use for text window I/O or to call several other QuickWin functions, such as 
_ wsetsize, _ wsetfocus, and _ wsetscreenbuf. You can perform I/O in this kind of 
window with C run-time library functions such as _write and _read. The use of 
these functions is explained later in this section. 

To write to a text window or read from it as a stream, you need a file pointer of type 
FILE *. The _fwopen function is a high-level routine that returns a file pointer you 
can pass to C run-time library I/O routines, such as fprintf and fscanf, which 
require a stream argument. 

Note If you open text windows with _fwopen, you can use the _fileno macro to 
obtain a file handle for use with QuickWin and other routines that require a handle 
argument. Do not use such a handle with the _ wclose function, however. 

The _wopeninfo and _wsizeinfo Structures 
Both _ wop en and _fwopen require arguments of type _ wopeninfo and _ wsizeinfo. 
These are defined as C structures in the 10.H file for Windows. The _ wopeninfo 
structure is declared as follows: 

struct _wopeninfo 
{ 

unsigned int _version; 
const char __ far * _title; 
long _wbufsize; 
} ; 

The version field contains the Windows version number. Use the constant 
_ QWINVER, declared in 10.H. The _title field holds a null-terminated string; this 



Chapter 7 QuickWin Programs 139 

is the title of your window. The _ wbufsize field contains the size of the window 
screen buffer (in bytes). The default size is 2048. 

The wsizeinfo struct is declared as: 

struct _wsizeinfo 

unsigned int _version; /* Use OWINVER */ 

unsigned int _type; /* Size for window */ 
unsigned int x· - . /* Upper-left x-coordinate */ 

unsigned int -'i ; /* Upper-left y-coordinate */ 

unsigned int _h; /* Height of window */ 

unsigned int w· - . /* Width of window */ 
} ; 

The version field contains the Windows version number. Use the constant 
_ Q WINVER. For use in opening text windows, the _type field specifies the size of 
the window as one of the following constants: 

WINSIZEMIN 
Minimizes the text window 

WINSIZEMAX 
Maximizes the text window 

WINSIZECHAR 
Uses the listed coordinates in the _x, _y, _ h, and _ w fields for the text window 
size 

If you specify a _type field of _ WINSIZEMIN or _ WINSIZEMAX, you can 
leave the _x, _y, _ h, and _ w fields empty. 

To open a text window, first declare variables of the _ wopeninfo and _ wsizeinfo 
types and fill in their fields. Then call either _ wopen or _fwopen. 

If you pass NULL for either the _ wsizeinfo or _ wopeninfo argument, the _fwopen 
function uses default values. The _ wopen function works similarly, except that the 
_wopeninfo argument cannot be NULL. You must pass a pointer to a _wopeninfo 
structure. 

The _ wopen function returns an integer file handle to the new text window if 
successful, or -1 if not. The _fwopen function returns a stream pointer to the new 
text window if successful, or NULL if not. 

Opening Graphics Windows 
Use the _wgopen function to open a graphics child window (in text mode or 
graphics mode). Once you've created a new graphics child window, you need to 
make it the active window for graphics-routine calls to be directed to it. Each 
graphics child window is identified by a number called its handle. The 



140 Programming Techniques 

_ wggetactive function returns the handle of the active window. You can activate a 
different QuickWin graphics child window with the _ wgsetactive function. To do 
this, you should save the handle of each graphics child window you open with 
_ wgopen and then pass the handle of the window you want to make active to the 
_ wgsetactive function. 

The following example opens a new graphics child window: 

/* Open a graphics child window and make it the active window */ 
handle = _wgopen( name ); 
status = _wgsetactive( handle ); 

Note If an application's child windows are maximized when a call to _ wgopen is 
made, the child windows are restored before the new window is opened. 

Use Jnchar to accept input in a graphics child window. The _inchar function 
reads a single character from the keyboard and returns the ASCII value of that 
character without any buffering. The program QWGDEMO.CPP uses _inchar to 
pause the program until the user presses a key to continue without having to give 
the input focus to the text child window. 

Reading from and Writing to Text Child Windows 
Reading from or writing to a QuickWin text window resembles reading from or 
writing to a file. QuickWin windows behave as I/O streams. You can pass the file 
pointer obtained from the _fwopen function as the stream argument to C run-time 
library I/O functions. 

For example, this code demonstrates writing a text prompt to a window and reading 
a response from the user: 

FILE * fp; /* Declare a file pointer */ 
struct _wopeninfo wo; /* Declare a variable of type _wopeninfo */ 

fp = _fwopen( &wo, NULL, "w+" ) ; /* Open a window */ 
fpri ntf( fp, "Enter a filename: \n" ) ; /* Write to the window */ 
rewind( fp ) ; /* Reset the stream */ 
fscanf( fp, "%s" , &scan ) ; /* Read from the window */ 

Note Each time you switch from reading to writing or from writing to reading, call 
the rewind function to reset the stream. 

For examples of using document windows for input and output, see 
QWGDEMO.CPP. 



Chapter 7 QuickWin Programs 141 

Resizing and Positioning Text Child Windows 

A child window cannot 
be larger than its client 
window. 

To resize or reposition a text window, use the _ wsetsize function. (For infonnation 
about the _wsizeinfo structure, see "Opening Child Windows," on page 137.) You 
can also examine the current size and position of a text window by calling the 
_ wgetsize function. 

Note The _ wgetsize and _ wsetsize functions cannot be used to resize or reposition 
graphics child windows. 

Both resizing functions require a file handle argument and an argument of type 
_ wsizeinfo. The _ wgetsize function also requires an int argument specifying the 
"request type." The request type can have one of two values: _ WINCURRREQ, 
which returns the current size of the window, or _ WINMAXREQ, which returns 
the maximum size to which the window can grow (the child window cannot exceed 
the current size of the client window). You can also query the size of the client 
(application) window. Pass the manifest constant _ WINFRAMEHAND as the 
window handle to _ wgetsize, which returns infonnation about the client window. 

The _type field of the _ wsizeinfo structure can have one of four values: 
_ WINSIZEMIN, for a minimized window; _ WINSIZEMAX, for a maximized 
window; _ WINSIZERESTORE, to restore a minimized window to its previous 
size; or _ WINSIZECHAR, using which you can specify (in the remaining fields of 
the _wsizeinfo structure) the coordinates of the text window's upper-left comer and 
the window's height and width in characters. 

To illustrate, the following code maximizes a child window: 

FILE * fp; 
struct _wsizeinfo ws; 
ws._version = _OWINVER; 
ws._type = _WINSIZEMAX; 

/* Set the window size */ 

/* File handle to window */ 
/* Size structure variable */ 
/* Version value */ 
/* Maximize window */ 

result = _wsetsizeC filenoC fp ), &ws ); 

The _ wsetsize and _ wgetsize functions return 0 if successful, or -1 if not. The 
_ wgetsize function also fills in the _ wsizeinfo structure if successful. You can then 
extract the size infonnation from the structure. 

For additional examples, see QWGDEMO.CPP. 



142 Programming Techniques 

Setting the Amount of Scrollable Text 
By default, the screen buffer associated with each QuickWin text window can store 
2048 characters. If this amount exceeds the display capacity of the window, 
QuickWin puts scroll bars on the window so the user can scroll through the 
window's contents. 

The maximum buffer size for a new window can be set by specifying the size in the 
_ wbufsize field of the _ wopeninfo structure that you pass to the _fwopen function. 

You can also limit the maximum buffer size at any other time with the 
_ wsetscreenbuf function. This function takes two arguments: a file handle to the 
window and the desired upper limit on buffer size. The bufsiz argument can be a 
number or one of the following constants: _ WINBUFDEF, which uses the default 
window screen buffer size, or _ WINBUFINF, which places no limit on the buffer 
size. Unless you use _ WINBUFINF, only the most recent characters are stored, up 
to the buffer's capacity. In any case, the buffer is always allocated dynamically, so 
that it fits its contents. 

To illustrate, the following code resizes a window's buffer to store 16,384 bytes: 

#define BUFSIZE 16384 
result = _wsetscreenbuf( _fileno( fp ), BUFSIZE ); 

You can also use the _ wgetscreenbuf function to examine the current size of a 
window's screen buffer. 

The _ wsetscreenbuf function returns 0 if successful, or -1 if not. The 
_ wgetscreenbuf function returns the current buffer size (in bytes) or 
_ WINB UFINF if successful, or -1 if not. 

For further examples, see QWGDEMO.CPP. 

Giving Focus to a Text Child Window 
When the user selects a text window with the mouse or the keyboard, the selected 
window is highlighted and appears in front of all other windows if windows are 
cascaded or is simply highlighted if windows are tiled. The selected window has 
input focus and is also called the foremost window. To give a text window the 
focus, and bring it to the front if windows are cascaded, call the _ wsetfocus 
function. 

For example, before writing to one of several cascaded windows, you can bring the 
target window to the front with _ wsetfocus and then write to it, as shown by the 
following code: 

/* Check result, then write to the window */ 
result = _wsetfocus( _fileno( fp ) ); 



Chapter 7 QuickWin Programs 143 

You can also learn whether a child window has the focus by calling the _ wgetfocus 
function. The _ wgetfocus function returns an integer handle to the window with the 
focus if successful, or -1 if not. 

For further examples, see QWGDEMO.CPP. 

Closing a Child Window 
Once you finish using a text window, you usually close it. For windows opened 
with the _ wopen function, you can call the QuickWin _ wclose function. For 
windows opened with _fwopen, you can call the C run-time library fclose or 
_fcloseall function. For graphics child windows opened with _ wgopen, you can call 
the _ wgclose function. 

The _ wclose function takes a second argument to specify whether the text window 
should "persist" (remain on the screen) after closing. The persist parameter can 
have one of the following values: _ WINNOPERSIST, which erases the window, 
or _ WINPERSIST, which leaves the window on the screen. A "persistent" 
window of this kind no longer responds to I/O calls, but you can select and copy 
text from it, scroll through its text, and continue to use its menus. To illustrate, you 
might write a file to a window, then allow the user to examine the file's contents 
after the window is closed to further writing. For more information about how your 
windows behave at exit time, see the following section, "Keeping Windows on the 
Screen." 

If you leave the window on the screen, you can later send another _ wclose call to 
the same file handle to remove the window. 

The following code demonstrates closing a window without leaving it on the screen: 

result = _wclose( wfh. _WINNOPERSIST ); 

Once you finish using a graphics child window, you can close it with _ wgclose. All 
data in the window is lost when you close it. When a graphics call is first made, 
QuickWin creates a default graphics window named "Graphicl." The 
QWGDEMO.CPP program calls _wgclose to close the "Graphicl" graphics 
window and free all memory associated with it. The following code demonstrates 
closing "Graphicl" in QWGDEMO.CPP: 

1* Close the default "Graphicl" window */ 
handl e = __ wggetacti ve(); 
status = _wgclose( handle ); 
1* Open a new graphics child window named "Smiley" */ 
1* in which to draw a smiley face */ 
handle = _wgopen( name ); 



144 Programming Techniques 

Keeping Windows on the Screen 
Sometimes it is useful to leave your program's windows on the screen after the 
program terminates. This allows the user to inspect their contents, use the scroll 
bars, use the menus, and copy or paste text in the windows. 

As described previously, you can use _ wclose for text windows to control whether 
your program's windows remain on the screen. QuickWin also gives you additional 
control over the behavior of your windows when the program calls the exit 
function. 

By default, your windows remain on the screen. You can call the _ wsetexit func
tion in your program to alter that default. You can specify that windows remain on 
the screen (as in the default), that windows not remain on the screen, or that the 
user may choose whether windows remain on the screen. If you specify user choice, 
a dialog box appears with this message: 

Program terminated with exit code n; Exit window? 

If the user responds "No" to this dialog box, the program quits without closing 
windows. The user can examine window contents or select and copy text onto the 
Clipboard, but further input or output is disabled. Exiting with the Exit command 
does not open a dialog box. 

Call _ wsetexit at any time to specify the state of your windows upon exit. If the 
exit function is subsequently called, the behavior is based on the value you set. You 
can pass one of the following manifest constants to _ wsetexit: 

WINEXITPROMPT 
Prompts the user with a dialog box; the user can specify the behavior. This con
stant's numeric value is 1. 

WINEXITNOPERSIST 
Windows do not remain on the screen. This constant's numeric value is 2. 

WINEXITPERSIST 
Windows remain on the screen; this is the default value. This constant's numeric 
value is 3. 

The _ wsetexit function returns 0 if successful, or -1 if not. 

Call _ wgetexit to learn what the current exit setting is. The function returns the 
numeric value of the current setting (one of the previous values) if successful, or -1 
if not. 

The following code demonstrates the use of _ wsetexit and _ wgetexit to determine 
the current exit setting and then to reset it: 



nExit = _wgetexit(); 
if( nExit == _WINEXITPERSIST 

_wsetexit( _WINEXITNOPERSIST ); 

Chapter 7 QuickWin Programs 145 

Simulating Mouse Clicks in the Menu Bar 
Your program can activate a limited subset of menu commands using the 
_ wmenuclick function. The commands you can choose are limited to a subset of the 
Window menu commands as represented by the following constants: 

WIN TILE 
Tile the windows 

WINCASCADE 
Cascade the windows 

WINARRANGE 
Arrange any document icons at the bottom of the application window 

WINSTATBAR 
Show or hide the status bar 

The following code demonstrates using the _ wmenuclick function to display the 
status bar: 

result = _wmenuclick( _WINSTATBAR ); 

The _ wmenuclick function returns 0 if successful, or -1 if not. 

For further examples, see QWGDEMO.CPP. 

Yielding Time to Other Applications 

QuickWin takes care 
of message 
processing in 
Windows for you. 

If your QuickWin program runs concurrently with other applications for Windows, 
it should yield processing time to the other applications so they can service their 
message queues. QuickWin attempts to yield to other applications at appropriate 
times, but there may be cases where your program should make additional calls to 
the _ wyield function. 

If Windows appears sluggish when your program runs, insert additional _ wyield 
calls. In particular, you may want to make _ wyield calls during lengthy processing 
loops. This allows the user to select menu commands or switch to another 
application without having to wait for your program to finish processing. 

Note QuickWin programs do not require the standard message loop for Windows. 

The _ wyield function returns void. 



146 Programming Techniques 

Using Custom Icons 
The QuickWin library provides default icons for your application and its child 
windows. Windows displays these icons when the user minimizes the application's 
client window or its child windows. You can create your own icons and add them to 
your executable file, and Windows displays them instead of the default icons. 

To add icons to your QuickWin program, follow these steps: 

1. Create the icon (.lCO) files using the App Studio image editor. For information 
on using the image editor, see Chapter 7, "Using the Graphics Editor," in the 
App Studio User's Guide. 

2. Create a resource script (.RC file) with the contents 

FRAMEICON ICON frame.ico 
CHILDICON ICON child.ico 
GRAPHICICON ICON graphic.ico 

where f r a me . i co and chi 1 d . i co are the names of the files containing the 
frame and child icons and 9 rap hie. i co is the name of the file containing the 
graphics window icon. The icon resources must have the resource names 
FRAMEICON, CHILDICON, and GRAPHICICON. 

3. Using the Visual Workbench, set a project (if you have not done so already). 

Providing Help 

This is necessary to tell the compiler that you are including a user-defined 
resource script (.RC file). Then rebuild the project. The icon resources are 
compiled and added to your executable file. For a detailed description of how to 
build a QuickWin application, see Chapter 3, "Building a Sample QuickWin 
Program," in the Visual Workbench User's Guide. 

A Help file, MSCXX.HLP, is provided with Visual C++. The file contains infor
mation on the QuickWin user interface. It must be stored in the same directory as 
your QuickWin application or in a directory specified in the PATH environment 
variable. 

A user views Help by: 

• Choosing Index from the Help menu. 

• Highlighting any command on a QuickWin menu and pressing Flo 

For information on moving between screens in the Help file, a user chooses Using 
Help from the Help menu. 



Chapter 7 QuickWin Programs 147 

Note The QuickWin Help is limited to infonnation about the QuickWin user inter
face. You cannot add your own context-sensitive help to a QuickWin program. 
However, if you plan to release a QuickWin application you have developed, you 
may ship QWIN.HLP along with your executable file(s). This enables your users to 
obtain Help on any of the QuickWin menus while they are using your application. 

7.9 Differences Between MS-DOS Graphics and 
QuickWin Graphics 

This section discusses the ways in which QuickWin graphics routines behave 
differently from the same MS-DOS functions in GRAPHICS.LIB. The "Routines" 
entry in each section identifies functions that differ between the two libraries. 

Internal Error System 
Routines All graphics routines in the QuickWin library 

In addition to the nonnal error messages generated by GRAPHICS.LIB, QuickWin 
also generates run-time error messages that help you evaluate other problems. If an 
error occurs during execution, your QuickWin application displays one of the 
following error message boxes: 

• The "QuickWin Error" message box, which displays the error number, the OK 
button, and either the "Out of Memory" message or the "Internal Error
unexpected error" message. Choose the OK button to tenninate current 
operation; your application does not tenninate when an error occurs. 

For example, if you try to copy a logical graphics screen without enough mem
ory, the error message appears. Choose the OK button to tenninate the Copy 
command, then close some applications and try again. 

• The "QuickWin Fatal Error" message box, which contains either the "Out of 
Memory" message or the "Internal Error-unexpected error" message. Your 
application tenninates when a fatal error occurs. The most common reason for a 
fatal error is insufficient memory during a critical section of operations. For ex
ample, a fatal error occurs when no memory is available on startup. 

Using Function Keys 
Any MS-DOS graphics applications that use function keys for input do not work 
correctly under QuickWin graphics. Windows traps these keys before the 
QuickWin application can use them. 



148 Programming Techniques 

Setting the Line-Style Mask 
Routines _ setlinestyle 

The mask (line style) used for line drawing in GRAPHICS.LIB has no direct 
equivalent in QuickWin graphics. QuickWin uses a Windows pen style that 
matches the mask you specify. The following mapping between line style and 
Windows pen style is maintained: 

Line style Pen style 

OxFFFF PS SOLID 

OxEEEE PS DASH 

OxECEC PS DASHDOT 

OxECCC PS DASHDOTDOT 

OxAAAA PS DOT 

OxOOOO PS NULL 

For a complete description of Windows pen styles, see the online Windows API 
documentation. 

Setting the Fill Mask 
Routines setfillmask 

QuickWin graphics fills a shape with the current fill pattern when you specify the 
_ GFILLINTERIOR constant. Each bit in the fill pattern whose value is 1 repre
sents a pixel set to the current color; each bit whose value is 0 represents a pixel set 
to the background color. In GRAPHICS.LIB, the O-value bit leaves the pixel 
unchanged. 

Checking Graphics Errors with _grstatus 
Routines All graphics routines in the QuickWin library 

The _grstatus function returns the status of the most recently used graphics routine. 
The return values to _grstatus set by QuickWin graphics routines differ from those 
set by MS-DOS (GRAPHICS.LIB) graphics routines in several ways: 

• Any QuickWin graphics routine can set _grstatus to _ GRERROR when there 
is no active window. 

• Because QuickWin graphics applications support all video modes on all moni
tors, _grstatus does not return _ GMODENOTSUPPORTED for the 
_setvideomode and _setvideomoderows functions, as it does in 
GRAPHICS.LIB. 



Chapter 7 QuickWin Programs 149 

• The warning codes _ GRCLIPPED and _ GRNOOUTPUT are not set at any 
time in QuickWin. 

Registering Fonts 
Routines _ registerfonts 

The _registerfonts function registers all fonts installed in Windows regardless of 
what argument is supplied. The filename argument is not used but must still be 
specified. The following example registers all fonts installed in Windows: 

status = _registerfonts( 'dummy string' ); 

Displaying Character-Based Text 
Routines _ outgtext, _ outtext, _ settextcolor, _ settextcursor, _ wrap on 

These routines send text to the screen in both graphics and text modes. 

All standard input and output (using scanf and printf statements) goes to the de
fault QuickWin text child window. A QuickWin text child window must have the 
input focus before it can accept standard input. Use _ outtext and _ outgtext to send 
text strings to QuickWin graphics child windows. Note that writing characters from 
the extended ASCII character set using _ outtext and _ outgtext only works with 
GRAPHICS.LIB. 

Calling _ outtext in either text or graphics mode while a graphics window is in Size 
To Fit mode displays the text at normal size, as if the graphics window is not in 
Size To Fit mode. Any redrawing of the window causes the text to be scaled 
appropriately. 

The _settextcolor function sets the current text color (attribute). The text does not 
blink when the color attribute is set in the range of 16-31, as in GRAPHICS.LIB. 
The colors in the range of 16-31 are the same as those in the range 0-15. 

Note that when using GRAPHICS.LIB, if an out-of-range text color is requested in 
a call to the _ settextcolor routine the text color is set to the maximum nonblinking 
color index. When using QuickWin graphics, the text color is left unchanged. Also, 
unlike the GRAPHICS.LIB _settextcolor function (which can set index values 
greater than 31 for monitors capable of displaying 256 colors), the QuickWin 
graphics _ settextcolor function cannot set the index to a value greater than 31. 

On systems with Enhanced Graphics Adapters (EGAs), text color 7 (white) appears 
the same as text color 8 (gray). 

On systems with monochrome graphics adapters, calling _ settextcolor with the 
following text color indices sets the text color to white: 7,11, 13, 14, 15,23,27, 



150 Programming Techniques 

29,30, and 31. When using GRAPHICS.LIB, any color index other than black sets 
the text color to white. 

The _settextcursor function in QuickWin can set the cursor shape only to a full 
block cursor or to no cursor. Underline and double underline cursor shapes are not 
available in QuickWin. 

The _ wrap on function controls whether text output with the _ outtext function 
wraps to a new line or is simply truncated when the text output reaches the edge of 
the defined text window. In QuickWin, the _ wrap on function returns the previous 
value of the option argument if successful; otherwise, it returns -1 if an internal 
error occurs. 

Selecting Display Options 

Routines 

Routines 

The routines in this section determine the graphics environment characteristics, 
establish operational modes for text or graphics, and control the cursor. 

Manipulating Screen Page Routines 
_getactivepage, _getvisualpage, _setactivepage, _ setvisualpage 

The _getactivepage and _getvisualpage functions in QuickWin always return a 
page number of O. In GRAPHICS.LIB, they return the number of the active video 
page. 

The _setactivepage and _setvisualpage functions in QuickWin accept only 0 for 
the page argument. In GRAPHICS.LIB, the page argument selects the active video 
page. 

Setting Text Output 
_ setgtextvector, _ settextrows, _ setvideomoderows 

In QuickWin graphics, only left-to-right horizontal text positioning is allowed. You 
can set the graphics text vector argument only to (1,0). Because this is the default 
setting, you do not need to call _ setgtextvector. If you specify anything besides 
(1,0) to _setgtextvector, _grstatus returns _ GRERROR. You can also write a 
function to display text in a vertical direction (for example, to label the vertical axis 
of a graph). 

In QuickWin graphics text modes, the number of text rows you set using 
_settextrows and _setvideomoderows can range from 1 through 256. In 
QuickWin, the number of rows of text set is not limited by video hardware 
restrictions, as it is in GRAPHICS.LIB. The size of the text font, though, is always 
the same. 



Routines 

Chapter 7 QuickWin Programs 151 

All graphics modes have one fixed number of text rows that cannot be altered. The 
number of text rows does not correspond to the number of rows of text that the 
graphics modes have under GRAPHICS.LIB. Use the return value from 
_ setvideomode or the numtextrows element in a _ videoconfig structure to 
determine how many rows of text are available for a particular graphics mode. 

Setting the Video Mode 
_getvideoconfig, _ setvideomode 

You can set the video mode to any mode in QuickWin graphics whether or not it is 
supported by your hardware. The QuickWin library creates a bitmap with the same 
size as the mode requested, but the color and pixel characteristics remain the same 
as those of the hardware mode running with Windows. 

For example, if you are running on a Video Graphics Array (VGA) adapter, setting 
the video mode to Color Graphics Adapter (CGA) gives you a 320x200 pixel 
bitmap. This is the same size as a CGA screen, but you receive 16 colors and a 
pixel size identical to a VGA pixel. If you set the mode to _ SRES256COLOR on 
an EGA adapter, QuickWin gives you an 800x600 bitmap (which is the size of a 
super VGA screen), but only the 16 colors of the EGA adapter. When you choose a 
graphics mode with a resolution higher than that supported by a particular 
computer, you need to scroll through the bitmap to see those parts not shown on the 
screen. 

Setting the mode argument in _setvideomode to _MAXCOLORMODE or 
_ MAXRESMODE gives you a bitmap correctly sized for the graphics mode 
running with Windows. 

The _getvideoconfig function returns NULL for no active graphics child window; 
otherwise, it returns the pointer to the _ videoconfig structure. The values for the 
adapter, monitor, and memory elements of the _ videoconfig structure are always 
set to O. 

Setti ng Palettes 
Routines _ remapallpalette, _remap palette, _ selectpalette, _ setbkcolor 

Remapping of colors on computers capable of displaying 20 colors (or fewer) is not 
allowed in QuickWin. On these computers, the _remapallpalette, _remappalette, 
and _setbkcolor (in graphics mode) functions return -1 and set _grstatus to 
_ GRERROR. On computers that can display more than 20 colors, the number of 
colors that can be remapped is n-20 (where n is the number of colors that the 
computer can display). Similarly, setting a graphics color with _setcolor to an 
index of greater than 235 makes the current color black. 



152 Programming Techniques 

Selecting a palette is not allowed in QuickWin, regardless of the number of colors 
the computer can display. The _ selectpalette function returns 0 and sets _grstatus 
to _GRERROR in QuickWin. 

Drawing Lines 
Routines _lineto, _lineto_w 

With QuickWin graphics, the final pixel specified by a _lineto call is not drawn. 
For instance, assume the current position is (1,1). The call 

status = _lineto (4,4) 

sets only pixels' (1,1), (2,2), and (3,3). The new current position after the _line to 
call is (4,4); however, that pixel is not set by the _lineto call. 

Calling Rectangle Functions with a Fill Mask 
Routines _rectangle, _rectangle _ w 

Suppose you make a call to one of the rectangle functions with the fill flag set to 
_gflllinterior and you use a fill mask other than the default solid mask. In such a 
case, the rectangle produced is 1 pixel smaller than the dimensions specified in the 
call. For example, a call that requests a filled rectangle using a fill mask that is not 
solid that extends from (10,10) to (20,20) produces a rectangle that extends from 
(10,10) to (19,19). 

Drawing Graphics Outside a Viewport 
Routines _arc functions, _ellipse functions, _lineto functions, _ outgtext, _pie functions, 

_polygon functions, _rectangle functions, _setpixel functions 

If you try to draw a graphical element that is entirely outside a viewport, 
GRAPHICS.LIB returns 0 from the graphics call. However, QuickWin returns 1, 
as if the element had been successfully drawn. 

Drawing Lines and Rectangles on Monochrome Adapters 
Routines _lineto functions, _polygon functions, _rectangle functions 

The following applies only to computers with monochrome graphics adapters. If you 
draw a line or rectangle that cannot be completely contained in the current clipping 
region of the graphics child window, a call to the functions listed in "Routines" causes 
incomplete results. 



CHAPTER 8 

Programming with Mixed 
Languages 

153 

There are times when your C or C++ programs need to call programs written in 
other languages or when programs written in other languages need to call your C or 
C++ functions. This is called mixed-language programming. For example, when a 
particular subprogram is available commercially in a language other than C or C++ 
or when algorithms are described more naturally in a different language, you'll 
probably want to use more than one language. 

This chapter describes the elements of mixed-language programming-how to 
make calls from programs written in one language to routines written in another. (In 
this chapter, "routine" refers to any function, procedure, or subroutine that can be 
called from another module.) Unless otherwise stated, the information about C 
programming also applies to C++ programming. 

8.1 Making Mixed-Language Calls 
Mixed-language programming always involves a call to a function, procedure, or 
subroutine. For example, a Basic main module may need to execute a specific task 
that you want to program separately. Instead of calling a Basic subprogram, how
ever, you decide to call a C function. 

Mixed-language calls involve calling functions in separate modules. Instead of 
compiling all of your source modules with the same compiler, you use different 
compilers. In the instance mentioned previously, you compile the main-module 
source file with the Basic compiler, compile another source file (written in C) with 
the C compiler, and then link the two object files. Figure 8.1 illustrates how the 
syntax of a mixed-language call works, using this instance as its example. 



154 Programming Techniques 

DECLARE 
affects how 

Basic 
makes the 

call 

Basic Code 

DECLARE SUB Prn CDECL() 

CALL Prn() 

END 

Figure 8.1 Mixed-Language Call 

CCode 

void prn () 
( 

In Figure 8.1, the Basic call to C is CAL L P r n, similar to a call to a Basic sub
program. There are two differences between this mixed-language call and a call 
between two Basic modules: 

• The subprogram P r n is implemented in C, using standard C syntax. 

• The implementation of the call in Basic is affected by the DECLARE state
ment, which uses the CDECL keyword to create compatibility with C. The 
DECLARE statement is an example of a mixed-language "interface" statement. 
(For more information on the DECLARE statement, see your Basic reference 
documentation.) These interface statements override default naming and calling 
conventions. Each language provides its own form of interface. 

You can make mixed-language calls to routines regardless of whether they have 
return values. Table 8.1 shows the correspondence between calls to routines in 
different languages. 

Table 8.1 Language Equivalents for Routine Calls 

Language Call with return value Call with no return value 

Assembly language Procedure Procedure 

Basic FUNCTION procedure Subprogram 

C and C++ function (void) function 

FORTRAN FUNCTION SUBROUTINE 

Pascal Function Procedure 

For example, a C module can make a subprogram call to a FORTRAN subroutine. 
You can prototype a FORTRAN subroutine as a function with a void type. 



Chapter 8 Programming with Mixed Languages 155 

Note Basic DEF FN functions and GOSUB subroutines cannot be called from 
another language. 

8.2 Language Convention Requirements 
To mix languages, the calling program must observe the same conventions as the 
called program. The conventions described in this section govern the following: 

• How compilers treat identifiers, including function and variable names (naming 
conventions) 

• How the subprogram call is implemented (calling conventions) 

• How parameters are passed (parameter-passing conventions) 

Naming Convention Requirement 

Some languages 
translate names to 
uppercase. 

Both the calling program and the called subprogram must agree on the names of 
identifiers. Identifiers can refer to subprograms (functions, procedures, and sub
routines) or to variables that have a public or global scope. Each language alters the 
names of identifiers. 

The term "naming convention" refers to the way a compiler alters the name of a 
routine before placing it in an object file. Languages may alter the identifier names 
differently. You can choose from several naming conventions to ensure that the 
names in the calling program agree with those in the called program. If the names of 
called routines are stored differently in each object file, the linker is not be able to 
find a match. It instead reports unresolved external references. 

Microsoft compilers place machine code into object files; they also place the names 
of all publicly accessed routines and variables in object files. Thus, the linker can 
compare the name of a routine called in one module with the name of a routine 
defined in another module and recognize a match. Names are stored in the ASCII 
character set. 

Basic, FORTRAN, and Pascal use similar naming conventions. They translate each 
letter to uppercase. Basic type declaration characters (%, &, !, #, $) are dropped. 

Each language recognizes a different number of characters. FORTRAN recognizes 
the first 31 characters of any name (unless identifier names are truncated), Pascal 
the first 8, and Basic the first 40. If a name is longer than the language recognizes, 
the additional characters are simply not placed in the object file. 



156 Programming Techniques 

C and C++ are 
case-sensitive 
languages. 

Note Versions of Microsoft FORTRAN previous to 5.0 truncated identifiers to 6 
characters. As of version 5.0, FORTRAN retains up to 31 characters of significance 
unless you use the /4Yt option. 

Neither the C nor the C++ compiler translates any letters to uppercase. 

The C compiler inserts a leading underscore (_) in front of the name of each 
routine. The C compiler recognizes the first 31 characters of a name (32 including 
the underscore). You can change the number of characters it recognizes with the /H 
option; for more infonnation, see Chapter 1, "CL Command Reference," in the 
Command-Line Utilities User's Guide. 

The C++ compiler decorates identifier names to retain type infonnation through the 
linking process. The C++ compiler recognizes the first 247 characters of a name. 

Differences in naming conventions are dealt with automatically by mixed-language 
keywords, as long as you follow two rules: 

• If you use any FORTRAN routines that were compiled with the /4Yt command
line option or with the $TRUNCATE metacommand enabled, make all names 6 
characters or less. Make all names 6 characters or less when using FORTRAN 
routines compiled with versions of the FORTRAN compiler prior to 5.0. 

• Do not use the /NOIGNORECASE linker option (which causes the linker to 
treat identifiers in a case-sensitive manner). With C or C++ modules, this means 
that you must be careful not to rely upon differences between uppercase and 
lowercase letters when programming. 

CL automatically uses the /NOIGNORECASE option when linking. To solve 
the problems created by this behavior, either link separately with the LINK 
utility or use all lowercase letters in your C or C++ fupction names and public 
variables (global variables that are not declared as static). 

Note If you use the command-line option /Gc (use the Pascal/FORTRAN calling 
convention) when you compile, or if you declare a function or variable with the 
__ pascal keyword, the compiler translates your identifiers to uppercase. 

Figure 8.2 illustrates a complete mixed-language development example, showing 
how naming conventions enter into the process. 



DECLARE 
affects how 

Basic 
makes the 

call. 

Chapter 8 Programming with Mixed Languages 157 

MAINPROG.BAS (source file) 

DECLARE SUB Prn CDECL() 

CALL Prn() 

END 

MAINPROG.OBJ (object file) 

CALL _prn 

PRN.C (source file) 

prn () 
{ 

PRN.OBJ (object file) 

Libraries 

CALL _prn xxxx: call yyyy 

} 
Machine-level 
addresses / 

_prn yyyy: 

MAINPROG.EXE 

Figure 8.2 Naming Convention 

In Figure 8.2, note that the Basic compiler inserts a leading underscore in front of 
P rn as it places the name into the object file, because the CDECL keyword directs 
the Basic compiler to use the C naming convention. Basic also converts all letters to 
lowercase when this keyword is used. (Converting letters to lowercase is not part of 
the C naming convention; however, it is consistent with the programming style of 
many C programs.) 



158 Programming Techniques 

Calling Convention Requirement 
The tenn "calling convention" refers to the way a language implements a call. The 
choice of calling convention affects the machine instructions that a compiler gener
ates to execute (and return from) a function, procedure, or subroutine call. 

It is crucial that the two routines concerned-the routine issuing a call and the 
routine being called-use the same protocol. Otherwise, the processor may receive 
inconsistent instructions, causing the program to behave incorrectly. 

The use of a calling convention affects programming in three ways: 

• The calling routine uses a calling convention to detennine the order in which to 
pass arguments (parameters) to another routine. This convention can be speci
fied in a mixed-language interface statement or declaration. 

• The called routine uses a calling convention to detennine the order in which to 
receive the parameters passed to it. In most languages, this convention can be 
specified in the routine's heading. Basic, however, always uses its own conven
tion to receive parameters. 

• Both the calling routine and the called routine must agree on which of them is 
responsible for adjusting the stack in order to remove parameters. 

In other words, each call to a routine uses a certain calling convention; each routine 
heading specifies or assumes some calling convention. The two conventions must be 
compatible. With all languages except Basic, it is possible to change the calling 
convention at the point of the call or at the declaration of the called routine. 
Usually, however, it is easier to adopt the convention of the called routine. For 
example, a C function generally uses its own convention to call another C function 
and uses the Pascal convention to call Pascal. 

C++, Basic, FORTRAN, and Pascal use the same standard calling convention. C 
uses a different convention. 

Effects of Calling Conventions 
Calling conventions dictate three things: 

• The way parameters are communicated from one routine to another. (In 
Microsoft mixed-language programming, parameters or pointers to the parame
ters are passed on the stack.) 

• The order in which parameters are passed from one routine to another. 

• The part of the program responsible for adjusting the stack. 



Some languages pass 
parameters in a 
different order than C. 

Chapter 8 Programming with Mixed Languages 159 

The C++, Basic, FORTRAN, and Pascal calling conventions push parameters onto 
the stack in the order in which they appear in the source code. For example, the 
Basic statement 

CALL Calc( A, B 

pushes argument A onto the stack before it pushes B. These conventions also specify 
that the stack is adjusted by the called routine just before returning control to the 
caller. 

The C calling convention pushes parameters onto the stack in the reverse order from 
their appearance in the source code. For example, the C function call 

calc( a, b); 

pushes b onto the stack before it pushes a. In contrast with the other high-level 
languages, the C calling convention specifies that a calling routine always adjusts 
the stack immediately after the called routine returns control. 

The Basic, FORTRAN, and Pascal conventions produce slightly less object code. 
However, the C convention makes calling with a variable number of parameters 
possible. (Because the first parameter is always the last one pushed, it is always on 
the top of the stack; therefore, it has the same address relative to the frame pointer, 
regardless of how many parameters are actually passed.) If a C++ function is 
declared to accept a variable number of parameters, the function automatically uses 
the C calling convention. 

Note The C __ fastcall keyword, which specifies that parameters are to be passed 
in registers, is incompatible with programs written in other languages. Avoid using 
__ fastcall or the lOr (use the register calling convention) command-line option for 
C or C++ functions that you intend to make public to Basic, FORTRAN, or Pascal 
programs. 

Parameter-Passing Requirement 
Your programs must agree on the calling convention and the naming convention; 
they must also agree on the order in which they pass parameters. It is important that 
your routines send parameters in the same way to ensure proper data transmission 
and correct program results. 



160 Programming Techniques 

Microsoft compilers support three methods for passing a parameter: 

• Near reference, which passes a variable's near (offset) address. This address is 
expressed as an offset from the default data segment. 

The near reference method gives the called routine direct access to the variable 
itself. Any change the routine makes to the parameter changes the variable in the 
calling routine. 

• Far reference, which passes a variable's far (segmented) address. 

The far reference method is similar to passing by near reference, except that a 
longer address is passed. This method is slower than passing by near reference 
but is necessary when you pass data that is outside the default data segment. 
(This is an issue in Basic or Pascal only if you have specifically requested far 
memory.) 

• Passing by value, which passes only the variable's value, not its address. 

The value method, the called routine knows the value of the parameter but has 
no access to the original variable. Changes to a value passed by a parameter 
have no effect on the value of the parameter in the calling routine. 

These different parameter-passing methods mean that you must consider the 
following when programming with mixed languages: 

• You need to make sure that the called routine and the calling routine use the 
same method for passing each parameter (argument). In most cases, you will 
need to check the parameter-passing defaults used by each language and possi
bly make adjustments. Each language has keywords or language features you 
can use to change parameter-passing methods. 

• You may want to choose a specific parameter-passing method rather than using 
the defaults of any language. 

Table 8.2 summarizes the parameter-passing defaults for each language. 

Table 8.2 Default Methods by Which Parameters Are Passed 

Language By near reference By far reference By value 

Basic All 

C and c++ Near arrays Far arrays All data except arrays 

FORTRAN All (medium model) All (large model) With attributes 1 

Pascal VAR,CONST V ARS, CONSTS Other parameters 

1 When a Pascal or C attribute is applied to a FORTRAN routine, passing by value becomes the 
default. 



Chapter 8 Programming with Mixed Languages 161 

8.3 Compiling and Linking 
After you have written your source files and decided on a naming convention, a 
calling convention, and a parameter-passing convention, you are ready to compile 
and link individual modules. 

Compiling with Correct Memory Models 

With C or C++, not all 
memory models are 
compatible with other 
languages. 

With Basic, FORTRAN, and Pascal, no special options are required to compile 
source files that are part of a mixed-language program. 

Basic, FORTRAN, and Pascal use only far (segmented) code addresses. Therefore, 
you must use one of two techniques with C or C++ programs that call one of these 
languages: Compile the C or C++ modules in medium, large, or huge model (using 
the JAM, JAL, or JAR command-line option), because these models also use far 
code addresses, or apply the __ far keyword to the defmitions of C or C++ func
tions you make public. If you use command-line options to specify the medium, 
large, or huge model, all your function calls become far by default. This means you 
don't have to declare your functions explicitly with the __ far keyword. 

Choice of memory model affects the default data pointer size in C, C++, and 
FORTRAN, although this default can be overridden with the __ near and __ far 
keywords. With C, C++, and FORTRAN, choice of memory model also affects 
whether data objects are located in the default data segment; if a data object is not 
located in the default data segment, it cannot be passed by near reference. 

For more infonnation about code and data address sizes in C and C++, refer to 
Chapter 2, "Managing Memory for 16-Bit C Programs," and Chapter 3, "Managing 
Memory for 16-Bit C++ Programs." 

Linking with Language Libraries 
In most cases, you can easily link modules compiled with different languages. You 
can do any of the following to ensure that all required libraries link in the correct 
order: 

• Put all language libraries in the same directory as the source files. 

• List directories containing all needed libraries in the LIB environment variable. 

• Let the linker prompt you for libraries. 

In each of the previous cases, the linker finds libraries in the order that it requires 
them. If you enter the library names on the command line, make sure you enter them 
in an order that allows the linker to resolve your program's external references. 



162 Programming Techniques 

Here are some points to observe when specifying libraries on the command line: 

• If you are using FORTRAN to write one of your modules, you need to link with 
the /NOD (/NODEFAULTLIBRARYSEARCH) LINK option and explicitly 
specify all the libraries you need on the LINK command line. You can also 
specify these libraries with an automatic-response file (or batch file), but you 
cannot use a default-library search. 

• If your program uses both FORTRAN and C, specify the library for the most 
recent version of each first. In addition, make sure that you choose a C-compat
ible library when you install FORTRAN. 

• If you are listing Basic libraries on the LINK command line, specify those 
libraries first. 

The following example shows how to link two modules, modI and mod2, with a 
user library, GRAFX, the C run-time library, LLIBCE, and the FORTRAN run
time library, LLIBFORE: 

LINK INOO modI mod2 •.. GRAFX+LLIBCE+LLIBFORE 

8.4 C Calls to High-Level Languages 
Just as you can call C routines written using Microsoft Visual c++ from other 
Microsoft languages, you can call routines written in Microsoft FORTRAN and 
other Microsoft languages from C. With FORTRAN, Pascal, and C, freestanding 
routines can be written with no restriction. When calling Basic routines, however, 
you must write the main program in Basic; any subprograms are free to call one 
another, whether they are written in C or Basic. 

For information about how to pass particular kinds of data, see "Handling Data in 
Mixed-Language Programming" on page 182. 

Executing a Mixed-Language Call 
The C interface to other languages uses standard C prototypes, with the 
__ fortran or __ pascal keyword. Using either of these keywords causes the routine 
to be called with the FORTRAN/Pascal naming and calling convention. (The 
FORTRAN/Pascal convention also works for Basic.) Here are the recommended 
steps for executing a mixed-language call from C: 



Chapter 8 Programming with Mixed Languages 163 

1. Write a prototype for each mixed-language routine called. The prototype should 
declare the routine extern for the purpose of program documentation. 

Instead of using the __ fortran or __ pascal keyword, you can simply compile 
with the "use the Pascal/FORTRAN calling convention" option (/Gc). The /Gc 
option causes all functions in the module to use the FORTRAN/Pascal naming 
and calling conventions, except where you apply the __ cdecl keyword. 

2. Pass the values of variables or pointers to variables. You can obtain a pointer to 
a variable with the address-of ( &) operator. 

In C, array names are always passed as pointers to the first element of the array; 
they are always passed by reference. 

The prototype you declare for your function ensures that you are passing the 
correct length address (that is, near or far). 

3. Issue a function call in your program as though you were calling a C function. 

4. Always compile the C module in either medium, large, or huge model, or use the 
__ far keyword in your function prototype. This ensures that a far (intersegment) 
call is made to the routine. 

Using the __ fortran or __ pascal Keyword 
There are two rules of syntax that apply when you use the __ fortran or __ pascal 
keyword: 

• The __ fortran and __ pascal keywords modify only the item immediately to 
their right. 

• The __ near and __ far keywords can be used with the __ fortran and 
__ pascal keywords in prototypes. The sequences __ fortran __ far and 
__ far __ fortran are equivalent. 

The keywords __ pascal and __ fortran have the same effect on the program; using 
one or the other makes no difference except for internal program documentation. 
Use __ fortran to declare a FORTRAN routine, __ pascal to declare a Pascal 
routine, and either keyword to declare a Basic routine. 

The following example declares func to be a Basic, Pascal, or FORTRAN function 
taking two short parameters and returning a short value. 

short __ pascal func( short sargl. short sarg2 ); 



164 Programming Techniques 

You can make C 
adopt the conventions 
of other languages. 

The following example declares fun c to be pointer to a Basic, Pascal, or 
FORTRAN routine that takes a long parameter and returns no value. The keyword 
void is appropriate when the called routine is a Basic subprogram, Pascal proce
dure, or FORTRAN subroutine, because it indicates that the function returns no 
value. 

void ( __ fortran * func )( long larg ); 

The following example declares func to be a __ near Basic, Pascal, or FORTRAN 
routine. The routine receives a double parameter by reference (because it expects a 
pointer to a double) and returns a short value. 

short __ near __ pascal func( __ near double * darg ); 

The following example is equivalent to the preceding example ( __ pascal __ near 
is equivalent to __ near __ pascal). 

short __ pascal __ near func( __ near double * darg ); 

When you call a Basic subprogram, you must use the FORTRAN/Pascal conven
tions to make the call. When you call FORTRAN or Pascal, however, you have a 
choice. You can make C adopt the conventions described in the previous section, or 
you can make the FORTRAN or Pascal routine adopt the C conventions. 

To make a FORTRAN or Pascal routine adopt the C conventions, put the C attrib
ute in the heading of the routine's definition. The following example shows the 
syntax for the C attribute in a FORTRAN subroutine-definition heading: 

SUBROUTINE FFROMC [C] (N) 
INTEGER*2 N 

The following example shows the syntax for the C attribute in a Pascal procedure
defInition heading: 

PROCEDURE Pfromc( n : INTEGER) [C]; 

To make a C function adopt the FORTRAN/Pascal conventions, declare the func
tion as __ fortran or __ pascal. For example, 

void __ pascal CfromP( int n ); 



Chapter 8 Programming with Mixed Languages 165 

8.5 C Calls to Basic 
No Basic routine can be executed unless the main program is in Basic, because a 
Basic routine requires the environment to be initialized in a way that is unique to 
Basic. No other language performs this special initialization. 

However, your program can start up in Basic, call a C function that does most of the 
work of the program, and then call Basic subprograms and function procedures as 
needed. Figure 8.3 illustrates how to do this. 

Basic-
startup 

Basic-
termination 

CALL 
END 

SUB 

END 

Basic Code 

CSUb~ 
Btest STATIC .----

SUB 

Figure 8.3 C Call to Basic 

CCode 

~ 
,..void csubC) 

{ 

--I- BTEST( ) 

} 

Follow these rules when you call Basic from C: 

1. Start up in a Basic main module. You use the DECLARE statement to provide 
an interface to the C module. 

2. In the C module, write a prototype for the Basic routine and include type 
information for parameters. Use either the __ fortran or __ pascal keyword to 
modify the routine itself. 

3. Make sure that all data is passed as near pointers. Basic can pass data in a 
variety of ways but is unable to receive data in any form other than near refer
ence. With near pointers, the program assumes that the data is in the default data 
segment. If you want to pass data that is not in the default data segment, copy 
the data to a variable in the default data segment. 

4. Compile the C module in medium or large model to ensure far (intersegment) 
calls. 



166 Programming Techniques 

The following example demonstrates a Basic program that calls a C function. The C 
function then calls a Basic function that returns twice the number passed to it and a 
Basic subprogram that prints two numbers. 

, Basic source 

, The main program is in Basic because of Basic's startup 
, requirements. The Basic main program calls the C function 
, Cprog. 

, Cprog calls the Basic subroutine Dbl. 

DEFINT A-Z 
DECLARE SUB Cprog CDECL() 
CALL Cprog 
END 

FUNCTION Dbl(N) STATIC 
Dbl = N*2 

END FUNCTION 

SUB Printnum(A,B) STATIC 
PRINT "The first number is ";A 
PRINT "The second number is ";B 

END SUB 

/* C source; compile in medium or large model */ 

int _30rtran dbl( int __ near * N ); 
void __ fortran printnum( int __ near * A. int __ near * B ); 

void cprog() 

int a = 5; 
int b 6; 

printf( "%d times 2 is %d\n". a, dbl( &a ) ); 
printnum( &a, &b ); 

In the previous example, note that the addresses of a and b are passed, because 
Basic expects to receive addresses for parameters. This is important because C 
passes parameters by value unless you use the address-of ( &) operator to obtain the 
address or are passing an array. Also note that the function prototype for p r i n t n u m 
declares the parameters as near pointers. The prototype causes the variables to be 
passed by near reference. If a or b is declared as __ far, the C compiler issues a 
warning that you are converting a far pointer to a near pointer and that a segment 
was lost in the conversion. 



Basic can invoke one 
of your functions as 
part of the termination 
procedure. 

Chapter 8 Programming with Mixed Languages 167 

Calling and naming conventions are resolved by the CDECL keyword in the Basic 
declaration of Cpr 0 g, and by the __ fortran keyword in the C declaration of db 1 
and pri ntnum. 

Versions of Microsoft QuickBasic™ later than 4.0 provide a "user entry point," 
B _ OnExit, which can be called directly from C. You can use the B _ OnExit func
tion to make sure you have performed an orderly termination. The following exam
ple shows how to use B _ OnExit. 

#include <malloc.h> 
#include <stdlib.h> 

/* For declaration of _fmalloc */ 
/* For declaration of onexit_t */ 

/* The prototype for B OnExit declares it as a function 
* returning type onexit t that takes one parameter. The 
* parameter is a far pointer to a function that returns 
* no value. 
*/ 

extern onexit_t __ pascal __ far B_OnExit( onexit_t ); 
void TermProc( void ); 

int * p_IntArray; 

void InitProc( void 
{ 

/* Allocate far space for 20-integer array */ 
p_IntArray = (int *)_fmalloc( 20 * sizeof( int ) ); 
/* Log termination routine (TermProc) with Basic. */ 
B_OnExit( TermProc ); 

void TermProc( void) 

free( p_IntArray ); /* Release far space allocated */ 
/* previously by InitProc. */ 

8.6 C Calls to FORTRAN 
This section shows two examples of C-FORTRAN programs. There are two types 
of subprogram calls to FORTRAN routines: calls to subroutines and calls to func
tions. Functions return a value; subroutines do not. The examples in this section 
illustrate how to handle the difference between function and subroutine calls. 

Calling a FORTRAN Subroutine from C 
The following example demonstrates a C main module calling a FORTRAN sub
routine, MAXP ARAM. This subroutine adjusts the lower of two arguments to be 
equal to the higher argument. 



168 Programming Techniques 

/* C source file - calls FORTRAN subroutine 
* Compile in medium or large model 
*/ 

extern void __ fortran maxparam( int __ near * I, int __ near * J ); 

/* Declare as void, because there is no return value. 
* FORTRAN keyword causes C to use FORTRAN/Pascal 
* calling and naming conventions. 
* Two integer parameters are passed by near reference. 
*/ 

mai n ( ) 
{ 

} 

int a 5 ; 
int b 7 ; 

printf( "a = %d, b = %d", a, b ); 
maxparam( &a, &b ); 
P r i n t f ( "a = %d, b = %d", a, b ); 

C FORTRAN source file, subroutine MAXPARAM 
C 
$NOTRUNCATE 

c 

SUBROUTINE MAXPARAM (I, J) 

INTEGER*2 I [NEAR] 
INTEGER*2 J [NEAR] 

C and J received by near reference, 
C because of NEAR attribute 
C 

IF (I .GT. J) THEN 
J 

ELSE 

ENDIF 
END 

J 

In the previous example, the C program adopts the naming convention and calling 
convention of the FORTRAN subroutine. The two programs must agree on whether 



Chapter 8 Programming with Mixed Languages 169 

parameters are to be passed by reference or by value. The following keywords 
affect how the two programs interface: 

• The __ fortran keyword directs C to call maxpa ram with the 
FORTRAN/pascal naming convention (as MAXPARAM); __ fortran also directs 
C to call maxpa ram with the FORTRAN/pascal calling convention. 

• Because the FORTRAN subroutine MAXPARAM may alter the value of either 
parameter, both parameters must be passed by reference. In this case, near refer
ence was chosen; this method is specified in C by the use of near pointers, and in 
FORTRAN by applying the NEAR keyword to the parameter declarations. 

Far reference can be specified by using far pointers in C. In that case, you don't 
declare the FORTRAN subroutine MAXPARAM with the NEAR keyword. If you 
compile the FORTRAN program in medium model, declare MAXPARAM using the 
FAR keyword. 

Calling a FORTRAN Function from C 
The following example demonstrates a C main module calling the FORTRAN 
function fa ct. This function returns the factorial of an integer value. 

/* C source file - calls FORTRAN function. 
* Compile in medium or large model. 
*/ 

int __ fortran fact( int N ); 

/* FORTRAN keyword causes C to use FORTRAN/Pascal 
* calling and naming conventions. 
* Integer parameter passed by value. 
*/ 

maine) 
{ 

int x = 3; 
int y = 4; 

printf( "The factorial of x is %4d", fact( x) ); 
printf( "The factorial of y is %4d", fact( y ) ); 

printf( "The factorial of x+y is %4d", fact( x + y ) ); 



170 Programming Techniques 

C FORTRAN source file - factorial function 
C 
$NOTRUNCATE 

C 

INTEGER*2 FUNCTION FACT (N) 
INTEGER*2 N [VALUE] 

C N is received by value, because of VALUE attribute 
C 

INTEGER*2 I 
FACT = 1 
DO 100 I = 1, N 

FACT = FACT * 
100 CONTINUE 

RETURN 
END 

In the previous example, the C program adopts the naming convention and calling 
convention of the FORTRAN subroutine. Both programs must agree on whether 
parameters are passed by reference or by value. Note that the C program passes the 
parameters by value rather than by reference. Passing parameters by value is the 
default for C. To accept parameters passed by value, the keyword V ALUE is used 
in the declaration of N in the FORTRAN function. The __ fortran keyword directs 
C to call fact with the FORTRAN/pascal naming convention (as FACT); 
__ fortran also directs C to call fact with the FORTRAN/Pascal calling 
convention. 

When passing a parameter that should not be changed, pass the parameter by value. 
Passing by value is the default method in C and is specified in FORTRAN by 
applying the VALUE attribute to the parameter declaration. 

8.7 C Calls to Pascal 
This section shows two examples of C-Pascal programs. There are two types of 
subprogram calls to Pascal routines: calls to procedures and calls to functions. 
Functions return a value; procedures do not. The examples in this section illustrate 
how to handle the difference between function and procedure calls. 



Chapter 8 Programming with Mixed Languages 171 

Calling a Pascal Procedure from C 
The following example demonstrates a C main module calling a Pascal procedure, 
maxpa ram. This procedure adjusts the lower of two arguments to be equal to the 
higher argument. 

/* C source file - calls Pascal procedure. 
* Compile in medium or large model. 
*/ 

void __ pascal maxparam( int __ near * a, int __ near * b ); 

/* Declare as void, because there is no return value. 
* The __ pascal keyword causes C to use FORTRAN/Pascal 
* calling and naming conventions. 
* Two integer parameters are passed by near reference. 
*/ 

main() 
{ 

} 

int a = 5; 
int b 7; 

printf( "a = %d, b = %d", a, b ); 
maxparam( &a, &b ); 
printf( "a = %d, b = %d", a, b ); 

(* Pascal source code - Maxparam procedure. *) 

MODULE Psub; 
PROCEDURE Maxparam( VAR a:INTEGER; VAR b:INTEGER ); 

(* Two integer parameters are received by near reference. 
* Near reference is specified with the VAR keyword. 
*) 

BEGIN 
IF a > b THEN 

b a 
ELSE 

a b 
END; 

END. 



172 Programming Techniques 

In the previous example, the C program adopts the Pascal naming convention and 
calling convention. Both programs must agree on whether parameters are passed by 
reference or by value; the following keywords affect the conventions: 

• The __ pascal keyword directs C to call Maxpa ram with the FORTRAN/pascal 
naming convention (as MAX PARAM); __ pascal also directs C to call Maxpa ram 
with the FORTRAN/Pascal calling convention. 

• Because the procedure Maxpa ram can alter the value of either parameter, both 
parameters must be passed by reference. In this case, near reference is used; this 
method is specified in C by the use of near pointers, and in Pascal with the V AR 
keyword. 

Far reference can be specified by using far pointers in C. To specify far refer
ence in Pascal, use the V ARS keyword instead of V AR. 

Calling a Pascal Function from C 
The following example demonstrates a C main module calling a Pascal function, 
fact. This function returns the factorial of an integer value. 

/* C source file - calls Pascal function. 
* Compile in medium or large model. 
*/ 

int __ pascal fact(int n); 

/* PASCAL keyword causes C to use FORTRAN/Pascal 
* calling and naming conventions. 
* Integer parameter passed by value. 
*/ 

mai n ( ) 
{ 

} 

int x = 3; 
int y = 4; 

printf( "The factorial of x is %4d" , fact( x) ); 
printf( "The factorial of y is %4d" , fact( y ) ); 
printf( "The factorial of x+y is %4d" , fact( x + y ) ); 

(* Pascal source code - factorial function. *) 
MODU LE Pfun; 
FUNCTION Fact (n : INTEGER) : INTEGER; 



Chapter 8 Programming with Mixed Languages 173 

(* Integer parameters received by value, the Pascal default. *) 

END. 

BEGIN 

END; 

Fact := 1; 
WHILE n > 0 DO 

BEGIN 

END; 

Fact := Fact * n; 
n := n - 1; (* Parameter n modified. *) 

In the previous example, the C program adopts the Pascal naming convention and 
calling convention. Both programs must agree on whether parameters are passed by 
reference or by value. The __ pascal keyword directs C to call fact with the 
FORTRANjPascal naming convention (as FACT); __ pascal also directs C to call 
fact with the FORTRANjPascal calling convention. 

The Pascal function fact should receive a parameter by value. Otherwise, the 
Pascal function corrupts the parameter's value in the calling module. Passing by 
value is the default method for both C and Pascal. 

8.8 C Calls to Assembly Language 
In Visual C++, you can write assembly-language programs either by using the 
inline assembler or by creating a stand-alone module using the Microsoft Macro 
Assembler (MASM). If you use the inline assembler, you do not need to take any 
special precautions other than those outlined in Chapter 4, "Using the 16-Bit Inline 
Assembler." This section explains the techniques for interfacing your assembly
language routines with your C program. 

When deciding whether to use the inline assembler or MASM, there are several 
considerations. Here are some advantages MASM provides over the inline 
assembler: 

• MASM supports declaration of data in MASM format; inline assembly does not. 

• MASM has a more powerful macro capability than does inline assembly. 

• Modules written for MASM can be interfaced more easily with modules written 
in more than one Microsoft high-level language. 

• MASM assembles large assembly-language programs more quickly than the 
inline assembler. 

• MASM supports assembly-language code written prior to the existence of the 
inline assembler. 

• MASM error messages and warnings are more complete than those of the inline 
assembler. 



174 Programming Techniques 

The inline assembler is far more efficient for some assembly-language program
ming tasks. Here are some of the benefits of the inline assembler: 

• You can do spot optimizations by including short sections of assembly
language code in your C programs with the inline assembler. 

• Code written in inline assembler does not necessarily incur the overhead of a 
function call; code assembled using MASM always does. 

• You can include inline assembly code in your C source files; code written for 
MASM must be in a separate file. 

Writing the Assembly-Language Procedure 
You must write your assembly-language procedure so that it uses the same calling 
conventions and naming conventions as your C program. If you follow these con
ventions, you can write recursive procedures (procedures that call themselves), and 
you can use the Code View debugger to locate errors in the code. 

Note This section discusses only the simplified segment directives provided with 
MASM version 5.0 or later. If you are using a version prior to 5.0, you have to 
specify complete SEGMENT directives. 

The standard assembly-language interface method consists of the following steps: 

1. Set up the procedure 

2. Enter the procedure 

3. Allocate local data (optional) 

4. Preserve register values 

5. Access parameters 

6. Return a value (optional) 

7. Exit the procedure 

The next sections describe each of these steps in detail. 



Chapter 8 Programming with Mixed Languages 175 

Setting Up the Procedure 
The linker cannot combine a assembly-language procedure with a C program unless 
you define compatible segments and declare the procedure properly. Perform the 
following steps to set up the procedure: 

• Use the .MODEL directive at the beginning of the source file; this directive 
automatically causes the appropriate kind of returns to be generated (NEAR for 
tiny, small, or compact model, FAR for medium, large, or huge model). 

If you are using a version of MASM prior to 5.0, declare the procedure NEAR 
for small or compact model, FAR for medium, large, or huge model. 

• Use the simplified segment directives .CODE and .DATA to declare the code 
and data segments. 

If you are using a version of MASM prior to 5.0, declare the segments using 
the SEGMENT, GROUP, and ASSUME directives. These directives are de
scribed in the Microsoft Macro Assembler Reference. 

• Use the PUBLIC directive to declare the procedure label public. This declara
tion makes the procedure visible to other modules. Also declare any data you 
want to make public as PUBLIC. 

• Use the EXTRN directive to declare any global data or procedures accessed by 
the routine as external. The safest way to use EXTRN is to place the directive 
outside any segment definition; however, place near data inside the data 
segment. 

• Observe the C naming convention; precede all procedure names and global data 
names with an underscore. 

Entering the Procedure 
When you enter the procedure, in most cases you set up a "stack frame." This 
allows you to access parameters passed on the stack and to allocate local data on 
the stack. You do not need to set up the stack frame if your procedure accepts no 
arguments and does not use the stack. 

To set up the stack frame in a 16-bit program, issue these instructions: 

push bp 
mov bp.sp 

To set up the stack frame in a 32-bit program, issue these instructions: 

push ebp 
mov ebp.esp 



176 Programming Techniques 

This sequence establishes BP as the frame pointer. You cannot use SP for this 
purpose because it is not an index or base register. Also, the value of SP may 
change as more data is pushed onto the stack. However, the value of the base 
register BP remains constant for the life of the procedure unless your program 
changes it, so each parameter can be addressed as an offset from BP. 

The previous instruction sequence preserves the value of BP, because it is needed in 
the calling procedure as soon as your assembly-language procedure returns. The 
value in SP is transferred to BP to establish a stack frame on entry to the procedure. 

Allocating Local Data 
Your assembly-language procedure can use the same technique for allocating tem
porary storage for local data that is used by high-level languages. To set up local 
data space, decrease the contents of SP just after setting up the stack frame. (To 
ensure correct execution, always increase or decrease SP by an even number.) 
Decreasing SP reserves space on the stack for local data. You must restore the 
space at the end of the procedure as follows: 

push bp 
mov bp.sp 
sub sp.space 

In the previous example, spa c e is the total size in bytes of the local data you want 
to allocate. Local variables are then accessed as fixed negative displacements 
fromBP. 

In the following example, the entry sequence establishes a stack frame and allocates 
temporary local storage for two words (4 bytes) of data. Later in the example, the 
program accesses the local storage, initializing both words to O. 

push 
mov 
sub 

bp 
bp.sp 
sp.4 

Save old stack frame. 
Set up new stack frame. 
Allocate 4 bytes of local storage. 

mov WORD PTR [bp-2J.0 
mov WORD PTR [bp-4J.0 

Note that local variables are also called dynamic, stack, or automatic variables. 

Preserving Register Values 
A procedure called from C should preserve the values of SI, DI, SS, and DS (in 
addition to BP, which is already saved). You should push any register value that 
your procedure modifies onto the stack after setting up the stack frame and 



Chapter 8 Programming with Mixed Languages 177 

allocating local storage, but prior to entering the main body of the procedure. 
Registers that your procedure does not alter need not be preserved. 

Warning Routines that your assembly-language procedure calls must not alter the 
SI, DI, SS, DS, or BP registers. If they do, and you have not preserved the registers, 
they can corrupt the calling program's register variables, segment registers, and 
stack frame, causing program failure. If your procedure modifies the direction flag 
using the STD or CLD instructions, you must preserve the flags register. 

The following example shows an entry sequence that sets up a stack frame, allo
cates 4 bytes of local data space on the stack, then preserves the SI, DI, and flags 
registers. 

push bp Save caller's stack frame. 
mov bp,sp Establish new stack frame. 
sub sp,4 Allocate local data space. 
push si Save S1 and 01 registers. 
push di 
pushf Save the flags register. 

In the preceding example, you must exit the procedure with the following code: 

popf Restore the flags register. 
pop di Restore the old value in the 01 

register. 
pop si Restore the old value in the S1 

register. 
mov sp,bp Restore the stack pointer. 
pop bp Restore the frame pointer. 
ret Return to the calling routine. 

If you do not issue the preceding instructions in the order shown, you place incorrect 
data in registers. Follow these rules when restoring the calling program's registers, 
stack pointer, and frame pointer: 

• Pop all registers that you preserve in the reverse order from which they were 
pushed onto the stack. For example, in the preceding code SI and DI are pushed 
and DI and SI are popped. 

• Restore the stack pointer by transferring the value of BP into SP before restoring 
the value of the frame pointer. 

• Always restore the frame pointer last. 



178 Programming Techniques 

Accessing Parameters 
Once you have established the frame pointer, allocated local storage (if required), 
and pushed any registers that need to be preserved, you can write the main body of 
the procedure. Figure 8.4 shows how functions that observe the C calling conven
tion use the stack frame. 

Near Function Call 

High addresses 

Stack grows 
downward with 

each pur or call. 

Low addresses 

Far Function Call 

High addresses 

Stack grows 
downward with 

each pur or call. 

Low addresses 

Parameter n (rightmost) 

Parameter 1 (leftmost) 

Return address (IP) 

Saved frame pointer (BP) 

Local data space 

Saved SI 

Saved DI 

Parameter n (rightmost) 

Parameter 1 (leftmost) 

Return address (CS) 

Return address (IP) 

Saved frame pointer (BP) 

Local data space 

Saved SI 

Saved DI 

Figure 8.4 C Stack Frame 

..- Frame pointer (BP) 
points here. 

..- Stack pointer (SP) 
points to last item 
placed on stack. 

..- Frame pointer (BP) 
points here. 

..- Stack pointer (SP) 
points to last item 
placed on stack. 



Chapter 8 Programming with Mixed Languages 179 

The stack frame for the assembly-language procedure shown in Figure 8.4 is 
established by the following: 

1. The calling program pushes each of the parameters onto the stack, after which 
SP points to the last parameter pushed. 

2. The calling program issues a CALL instruction, which causes the return address 
(the place in the calling program to which control ultimately returns) to be 
placed on the stack. This address can be either 2 bytes long (for near calls) or 4 
bytes long (for far calls). SP now points to this address. 

3. The first instruction of the called procedure saves the old value of BP with the 
instruction pus h b p. SP now points to the saved copy of BP. 

4. BP is used to hold the current value of SP, with the instruction mav bp, s p. BP 
therefore now points to the old value of BP (saved on the stack). 

5. While BP remains constant throughout the procedure, SP is often decreased to 
provide room on the stack for local data or saved registers. 

In general, the displacement from BP for a parameter x is equal to the size of the 
return address plus two plus the total size of parameters between x and BP. 

To calculate the size of parameters between x and BP, you must start with the 
rightmost parameter because C pushes parameters from right to left. For example, 
consider a FAR procedure that has one argument of type int (2 bytes). The dis
placement of the parameter is 

Argument's displacement = size of far return address + 2 
= 4 + 2 
= 6 

The argument can thus be loaded into BP with the following instruction: 

mov bx.[bp+6] 

After you determine the displacement of each parameter, you can use EQU direc
tives or structures to refer to the parameter with a single identifier name in your 
assembly source code. For example, you can use a more readable name to reference 
the parameter at b p+6 if you put the following statement at the beginning of the 
assembly source file: 

Argl EQU [bp+6] 

You can then refer to the first parameter in your source as A r 9 1 in any instruction. 
Use of this feature is optional. 

For far (segmented) addresses, Visual C++ pushes the segment address before 
pushing the offset address. When pushing arguments larger than 2 bytes, high-order 
words are always pushed before low-order words and parameters larger than 2 
bytes are stored on the stack in the order most significant to least significant. This 



180 Programming Techniques 

standard for pushing segment addresses before pushing offset addresses facilitates 
the use of the assembly-language instructions LDS (load data segment) and LES 
(load extra segment). 

Returning a Value 

Your procedures can 
return structures. 

You can return 
floating-point values 
from your procedures. 

Your assembly-language procedure can return a value to a C calling program. All 
return values of 4 bytes or less are passed in registers. Far pointers to return values 
larger than 4 bytes are returned in the DX and AX registers. The DX register con
tains the segment address; the AX register contains the offset relative to the seg
ment contained in DX. 

Table 8.3 shows the register conventions for returning simple data types to a C 
program. 

Table 8.3 Register Conventions for Simple Return Values 

Data type Returned in 

char AL 

int, short, near * AX 

long, __ far * High-order portion (or segment address) in DX, low-order por
tion (or offset address) in AX 

To return a structure from a procedure that uses the C calling convention, you must 
copy the structure to a global variable, then return a pointer to that variable in the 
AX register (or in DX:AX, if you compiled in compact, large, or huge model). 

Procedures that use the FORTRAN/Pascal calling convention return structures 
similarly, with the following exceptions: 

• The calling program allocates space for the return value on the stack. 

• The calling program passes a pointer to the location where the return value is to 
be placed in a hidden parameter. 

• Instead of copying your structure into a global data item, you copy it into the 
location pointed to by the hidden parameter. 

• You must still return the pointer to that location in the AX register (or in 
DX:AX for far data models). 

Procedures that use the C calling convention and return type float or type double 
must always copy their return values into the global variable __ fae. To return 
floating-point values from procedures declared with the FORTRAN/Pascal calling 
convention, you must return the result on the stack, just as you do a structure. 

To return a value of type long double, you must place the value on the numeric data 
processor (NDP, or 80x87) stack using the FLD instruction. The C run-time math 



Chapter 8 Programming with Mixed Languages 181 

routines guarantee that the only value on the NDP stack is a return value; your 
routines must observe the same rule. 

Exiting the Procedure 
Before you exit your assembly-language procedure, you must perform several steps 
to restore the calling program's environment. Whether you perform some of these 
steps depends on which actions you took in allocating space for local variables and 
preserving registers. 

You must follow these steps (if appropriate to your procedure) in the order shown: 

1. If you saved any of the registers SS, DS, SI, or DI, they must be popped off the 
stack in an order reverse to that in which they were saved. If you pop these 
registers in any other order, your program will behave incorrectly. 

2. If you allocated local data space at the beginning of the procedure, you must 
restore SP with the instruction mov s p • bp. 

3. Restore BP with the instruction pop bp. This step is always necessary. 

4. Return to the calling program by issuing the ret instruction. 

The following example shows the simplest possible entry and exit sequence. In the 
entry sequence, no registers are saved and no local data space is allocated. 

push bp 
mov bp,sp ; Set up the new stack frame. 

pop bp Restore the caller's stack frame. 
ret 

The following example shows an entry and exit sequence for a procedure that saves 
SI and DI and allocates local data space on the stack. 

push bp 
mov bp,sp 
sub sp,4 
push si 
push di 

pop di 
pop si 
mov sp,bp 
pop bp 
ret 

Establish local stack frame. 
Allocate space for local data. 
Preserve the S1 and 01 registers. 

Pop saved registers. 

Free local data space. 
Restore old stack frame. 



182 Programming Techniques 

8.9 C++ Calls to High-Level Languages 
In C++, you can specify a linkage specification to permit communication between a 
C++ module and modules written in other languages. Visual C++ supports only the 
"C" linkage specification. 

You declare a linkage specification as follows: 

extern "C" 

void prn(); 

This example declares p r n to be a function with C linkage. Calls to that function 
are made using the C calling convention. 

To call functions written in languages other than C, declare the function as you 
would in C and use a "C" linkage specification. For example, to call the Pascal 
function fact, declare it as follows: 

extern "C" { int __ pascal fact( int n ); } 

This example declares fa c t to be a function with the Pascal calling convention. 

If you want a C++ function to be called from other languages, you must declare it 
with the extern "C" linkage specification. Such a function can be called from 
another language in the same way a C function is called. You cannot declare a 
member function with a linkage specification. You can specify a linkage specifi
cation for only one instance of an overloaded function; all other instances of an 
overloaded function have c++ linkage. 

For more information on the extern" C" linkage specification, see the C++ 
Language Reference. 

8.10 Handling Data in Mixed-Language Programming 
This section contains detailed information about naming and calling conventions in 
a mixed-language program. It also describes how various languages represent 
strings, numerical data, arrays, and logical data. 



Chapter 8 Programming with Mixed Languages 183 

Default Naming and Calling Conventions 
Each language has its own default naming and calling conventions, as shown in 
Table 8.4. 

Table 8.4 Default Naming, Calling, and Parameter-Passing Conventions 

Calling Naming Parameter-passing 
Language convention convention convention 

Basic FORTRAN/Pascal Case insensitive Near reference 

C C Case sensitive Value (scalar variables), refer-
ence (arrays and pointers) 

C++ FORTRAN/pascal Case sensitive Value (scalar variables), refer-
ence (arrays and pointers) 

FORTRAN FORTRAN/Pascal Case insensitive Reference 

Pascal FORTRAN/Pascal Case insensitive Value 

Basic Conventions 
When you call Basic routines from C, you must pass all arguments by near refer
ence (near pointer). You can modify the conventions observed by Basic routines 
that interface with C functions by using the DECLARE, BYVAL, SEG, and 
CALLS keywords. For more information on these keywords, see your Basic 
reference documentation. 

FORTRAN Conventions 
You can modify the conventions observed by FORTRAN routines that call C func
tions by using the INTERFACE, VALUE, PASCAL, and C keywords. For more 
information about the use of these keywords, see your FORTRAN reference 
documentation. 

Pascal Conventions 
You can modify the conventions observed by Pascal routines that interface with C 
functions by using the VAR, CONST, ADR, V ARS, CONSTS, ADRS, and C 
keywords. For more information about the use of these keywords, see your Pascal 
reference documentation. 



184 Programming Techniques 

Numeric Data Representation 

Strings 

Table 8.5 shows how to declare numeric variables of similar type in different 
languages. 

Table 8.5 

Basic 

x% 

INTEGER 

x& 

LONG 

x! 

x (default) 

SINGLE 

x# 

DOUBLE 

Equivalent Numeric Data Types 

C and C++ FORTRAN 

short INTEGER*2 

int 

unsigned short! 

unsigned 

long INTEGER*4 

INTEGER (default) 

unsigned long 1 

float REAL*4 

REAL 

double REAL*8 

DOUBLE 
PRECISION 

long double 

unsigned char CHARACTER*12 

Pascal 

INTEGER2 

INTEGER 
(default) 

WORD 

INTEGER4 

REAL4 

REAL (default) 

REAL8 

CHAR 

1 Types unsigned short and unsigned long are not supported by Basic or FORTRAN. Type 
unsigned long is not supported by Pascal. A signed integral type can be substituted, but the 
maximum range is less. 

2 The FORTRAN type CHARACTER*l is not the same as LOGICAL. 

The FORTRAN types COMPLEX*8 and COMPLEX*16 are not implemented in 
C but can be represented with structures. The FORTRAN types LOGICAL*2 and 
LOGICAL*4 are also not implemented in C. LOGICAL*2 is stored as a 1-byte 
Boolean indicator followed by an unused byte; LOGICAL*4 is stored as a 1-byte 
Boolean indicator followed by three unused bytes. 

Each language implements strings differently. This section describes the ways that 
strings are implemented in Microsoft languages. 



To pass a Basic string 
to C, append a null 
character. 

Chapter 8 Programming with Mixed Languages 185 

C and C++ String Format 
C and C++ store strings as arrays of bytes and use a null character ( , \ 0 ') as an 
end-of-string delimiter. For example, consider the following string: 

char c_string[] = "C text string"; 

This string is represented in memory as shown following. 

s t r 

Because c_stri ng is an array like any other, C and C++ pass it by reference in 
function calls. Note that this does not apply to string classes written in C++. 

Basic String Format 
Basic stores strings as 4-byte descriptors pointing to the actual string data. The 
format of the descriptor is as shown following. 

String length (two bytes) Address (relative to DS) 

The first field of the string descriptor contains an integer indicating the length (in 
bytes) of the string. The second field contains the address of the string in the default 
data segment. 

Do not attempt to alter the length of Basic strings, because they are managed by 
Basic string-space management routines. You cannot count on a particular string 
remaining at a given offset during the execution of a Basic program because the 
Basic string-space management routines allocate strings to different areas of 
memory depending on program requirements. 

The format of the string at DS:Address is a simple array of characters. The string is 
exactly the length indicated in the descriptor. 

Because C needs the null character to delimit the end of the string, you should 
append c h r $ ( 0 ) to your Basic string before passing it to your C function. For 
example, 

A$ = "I am a BASIC string" 
A$ = A$ + chr$( 0 ) 

CALL CFunc( SADD(A$) 

Note that the Basic call is made by near reference using the SADD keyword. 



186 Programming Techniques 

Use a string descriptor To pass a C string to Basic, create a structure for the string descriptor. For example, 
to pass a C string to 
Basic. char c_string[J = "C String Data"; 

struct tagBASICStringDes 
{ 

char * sd_addr; 
int sd_len; 

str_des; 

str_des.sd_addr = c_string; 
str_des.sd_len = strlen( c_string ); 

BASICFunction( &str_des ); 

FORTRAN String Format 
FORTRAN stores strings as a series of bytes at a fixed location in memory. There 
is no delimiter at the end of the string. Consider the string declared as follows: 

STR = 'FORTRAN STRING' 

The string is stored in memory as shown following. 

I FlO I R I T I R I A I N I I SiT I R I I I N I G I 

FORTRAN passes strings by reference, as it does all other data. 

Note FORTRAN's variable length strings cannot be used in mixed-language 
programming because the temporary variable used to communicate string length is 
not accessible to other languages. 

To pass a C string to FORTRAN (or Pascal), pass the variable by reference as you 
usually would. In your FORTRAN or Pascal routine, you must specify the length of 
the string; strings that are passed as arguments from one language to another must 
be of fixed length. 

Pascal String Format 
Pascal represents strings as fixed-length arrays of CHAR or as strings with a 
length byte followed by the string data. 



To pass a fixed-length 
string to C, append a 
null character. 

Arrays 

Chapter 8 Programming with Mixed Languages 187 

To pass a fixed-length string to a C function, use the concatenation operator (*) 
to append a null character. Then pass the string to the C function by reference (by 
declaring the string as CONST, CONSTS, V AR, or V ARS). For example, 

PROGRAM PasStr( input. output ); 
type 

stype15 = string(15); (* fixed-length *) 
var 

str : stype15; 

PROCEDURE PasStrToC( VAR sl stype15) [C]; EXTERN; 

BEGIN 

END. 

str := 'Pass this to C' * chr( 0 ); 
PasStrToC( str ); 

A more flexible way to pass Pascal strings to C functions is to declare them as type 
ADRMEM or ADSMEM, then pass the address of the string. For example, 

PROCEDURE PasStrToC( sladr : ADRMEM ) [C]; EXTERN; 

Then you can call the C function with this code: 

PasStrToC( ADR str ): 

Using this method, you can pass strings of different lengths to C functions. 

Note The Pascal type LSTRING is not compatible with C; you can pass a string 
declared as LSTRING by first assigning it to another variable of type STRING, 
then passing that variable. 

Whenever you pass a variable of type STRING or type LSTRING by value, 
Pascal pushes the whole string onto the stack and passes the length of the string as 
another parameter. C cannot access strings passed in this manner. 

Passing a string from a C function to a Pascal function or procedure is identical to 
passing a string from a C function to a FORTRAN routine. The only provision you 
must make is to specify the length of the string to your Pascal function. 

When you use an array in a program written in a single language, the method for 
array handling is consistent. When you mix languages, you need to be aware of the 
differences between array-handling techniques in various languages. 



188 Programming Techniques 

To pass a Basic array 
to a C function, use 
the V ARPTR and 
VARSEG keywords. 

Unlike most Microsoft languages, Basic keeps an array descriptor, which is similar 
to the Basic string descriptor discussed in "Strings," on page 184. This array de
scriptor is necessary because Basic handles memory allocation for arrays dynami
cally (at run time). Dynamic allocation requires Basic to shift arrays in memory. 

The V ARPTR and V ARSEG keywords obtain the address of the first element of 
the array and its segment, respectively. The following example shows how to call a 
C function with a near reference and a far reference to an array: 

DIM ARRAY%( 20 ) 
DECLARE CNearArray CDECL( BYVAL Addr AS INTEGER 
DECLARE CFarArray CDECL( BYVAL Addr AS INTEGER, BYVAL Seg AS INTEGER) 

CALL CNearArray( VARPTR( ARRAY%(0) ) 
CALL CFarArray( VARPTR( ARRAY%(0) ), VARSEG( ARRAY%(0) ) ) 

The C functions receiving ARRAY can be declared as follows: 

__ cdecl CNearArray( int * array); 
__ cdecl CFarArray( int far * array); 

The routine that receives the array must not make a call back to Basic. If it does, the 
location of the array data can change and the address that was passed to the routine 
becomes meaningless. 

If you only need to pass one member of the array from Basic to your C function, 
you can pass it by value as follows: 

CALL CFunc( ARRAY%(8) ) 

Array Declaration and Indexing 
Each language varies in the way that arrays are declared and indexed. Array index
ing is a source-level consideration and involves no transformation of data. There are 
two differences in the way elements are indexed by each language: 

• The value of the lower array bound is different among Microsoft languages. 

By default, FORTRAN indexes the first element of an array as 1. Basic and C 
index it as o. In Pascal, you can begin indexing at any integer value. In recent 
versions of Basic and FORTRAN, you also have the option of specifying lower 
bounds at any integer value. 

• Some languages vary subscripts in row-major order; others vary subscripts in 
column-major order. 



Chapter 8 Programming with Mixed Languages 189 

The differences in how subscripts are varied only affect arrays with more than one 
dimension. With row-major order (used by C and Pascal), the rightmost dimension 
changes first. With column-major order (used by FORTRAN, and Basic by 
default), the leftmost dimension changes first. Thus, in C, the first four elements of 
an array declared as X [3] [3] are 

X[0][0] X[0][1] X[0][2] X[1][0] 

In FORTRAN, the four elements are 

X(1,l) X(2,l) X(3,l) X(1, 2) 

The preceding C and FORTRAN arrays illustrate the difference between row-major 
and column-major order and also the difference in the assumed lower bound be
tween C and FORTRAN. Table 8.6 shows equivalences for array declarations in 
each language. In this table, r is the number of elements of the row dimension 
(which changes most slowly), and c is the number of elements of the column 
dimension (which changes most quickly). 

Table 8.6 Equivalent Array Declarations 

Language Array declaration 

Basic DIM x(r-l, c-l) 

c type x[r][ c ] 
struct { type x[r][c]; } x 

FORTRAN type x(c, r) 

Pascal x: ARRAY [a .. a+r-l, b .. b+c-l] OF type 

Notes 

With default lower bound 
of 0 

When passed by 
reference 
When passed by value 

With default lower bound 
of 1 

The order of indexing extends to any number of dimensions you declare. For 
example, the C declaration 

int arr1[2][10][15][20]; 

is equivalent to the FORTRAN declaration 

INTEGER*2 ARR1( 20, 15, 10, 2 ) 

The constants used in a C array declaration represent dimensions, not upper bounds 
as they do in other languages. Therefore, the last element in the C array declared as 
i n tar r [ 5 ] [ 5] is a r r [ 4 ] [ 4 ], not a r r [ 5 ] [ 5 ]. 



190 Programming Techniques 

Structures, Records, and User-Defined Types 

External Data 

The C struct type, the Basic user-defined type, the FORTRAN record (defined with 
the STRUCTURE keyword), and the Pascal record type are equivalent. 
Therefore, these data types can be passed between C, FORTRAN, Pascal, and 
Basic. 

These types can be affected by the storage method. By default, C, FORTRAN, 
and Pascal use word alignment for types shorter than one word (type char and 
unsigned char). This storage method specifies that occasional bytes can be inserted 
as padding so that word and double-word objects start on an even boundary. (In 
addition, all nested structures and records start on a word boundary.) 

If you are passing a structure or record across a mixed-language interface, your 
calling routine and called routine must agree on the storage method and parameter
passing convention. Otherwise, data is not interpreted correctly. 

Because Pascal, FORTRAN, and C use the same storage method for structures and 
records, you can interchange data between routines without taking any special 
precautions unless you modify the storage method. Make sure the storage methods 
agree before interchanging data between C, FORTRAN, and Pascal. 

Basic packs user-defined types, so your C function must also pack structures (using 
the /Zp command-line option or the pack pragma) to agree. 

The C++ class type has the same layout as the corresponding C struct type, unless 
the class defines virtual functions or has base classes. Classes that lack those 
features can be passed in the same way as C structures. 

You can pass structures as parameters by value or by reference. Both the calling 
program and the called program must agree on the parameter-passing convention. 
For more information about the language you are using, see "Parameter-Passing 
Requirement," on page 159. 

'External data refers to data that is both static and public; that is, the data is stored 
in a set place in memory as opposed to being allocated on the stack and the data is 
visible to other modules. 

External data can be defined in C, C++, Pascal, and assembly language. Note that a 
data definition is distinct from an external declaration. A data definition causes a 
compiler to create a data object; an external declaration informs a compiler that the 
object is to be found in another module. FORTRAN can only define external data in 
COMMON blocks. (For more information about sharing external data with 
FORTRAN programs, see "Common Blocks," on page 192.) 



Chapter 8 Programming with Mixed Languages 191 

There are three requirements for programs that share external data between 
languages: 

• One of the modules must define the data. 

You can define a static data object in a C module by defining a data object out
side all functions. (If you use the static keyword in C, however, the data object 
is not made public.) 

You can make a c++ data object visible to other languages by declaring it with 
the extern "C" linkage specification. However, you cannot use any C++ spe
cific features of such data items. For example, you cannot call any member 
functions for an object declared extern "C". 

• The other modules that access the data must declare the data as external. 

In C, you can declare data as external by using an extern declaration, similar to 
the extern declaration for functions. In FORTRAN and Pascal, you can declare 
data as external by adding the EXTERN attribute to the data declaration. 

• Resolve naming-convention differences. 

In C, you can adopt the FORTRAN/pascal naming convention by applying 
__ fortran or __ pascal to the data declaration. In C++, you can adopt the C 
naming convention by using the extern "C" linkage specification, and you can 
adopt the FORTRAN/Pascal naming convention by adding the __ fortran or 
__ pascal keywords. In FORTRAN and Pascal, you can adopt the C naming 
convention by applying the C attribute to the data declaration. 

Pointers and Address Variables 
Rather than passing data directly, you may want to pass the address of a piece of 
data. Passing the address amounts to passing the data by reference. In some cases, 
such as in Basic arrays, there is no other way to pass a data item as a parameter. 

C and C++ programs always pass array variables by address. All other types are 
passed by value unless you use the address-of ( &) operator to obtain the address. 

The Pascal ADR and ADS types are equivalent to near and far pointers, respec
tively, in C and C++. You can pass ADR and ADS variables as ADRMEM or 
ADSMEM. Basic and FORTRAN do not have formal address types. However, 
they do provide ways for storing and passing addresses. 

Basic programs can access a variable's segment address with the V ARSEG func
tion and its offset address with the V ARPTR function. The values returned by these 
intrinsic functions should then be passed or stored as ordinary integer variables. If 
you pass them to another language, pass them by value. Otherwise you are attempt
ing to pass the address of the address, rather than the address itself. 



192 Programming Techniques 

To pass a near address, pass only the offset; if you need to pass a far address, you 
may have to pass the segment and the offset separately. Pass the segment address 
first, unless CDECL is in effect. 

FORTRAN programs can determine near and far addresses with the LOC and 
LOCFAR functions. Store the result of the LOC function as INTEGER *2 and the 
result of the LOCFAR function as INTEGER*4. 

As with Basic, if you pass the result of LOC or LOCF AR to another language, be 
sure to pass by value. 

Common Blocks 
You can pass individual members of a FORTRAN or Basic common block in an 
argument list, just as you can any data item. However, you can also give a different 
language module access to the entire common block at once. 

C or C++ modules can reference the items of a common block by first declaring a 
structure with fields that correspond to the common-block variables. Having defined 
a structure with the appropriate fields, the C or C++ module must then connect with 
the common block itself. The next two sections present methods for gaining access 
to common blocks. 

Passing the Address of a Common Block 
To pass the address of a common block, simply pass the address of the first variable 
in the block. (In other words, pass the first variable by reference.) The receiving C 
or C++ module should expect to receive a structure by reference. 

In the following example, the C function i nit c b receives the address of the vari
able N, which it considers to be a pointer to a structure with three fields: 

C FORTRAN SOURCE CODE 
C 

COMMON ICBLOCK/N, X, Y 
INTEGER*2 N 
REAL*8 X, Y 

CALL INITCB( N ) 

1* C source code *1 

1* Explicitly set structure packing to word alignment. *1 
#pragma pack( 2 ) 



You cannot access 
common blocks 
directly using Basic 
common blocks. 

struct block_type 
{ 

} ; 

int n; 
double x; 
double y; 

Chapter 8 Programming with Mixed Languages 193 

initcb( struct block_type * block_hed 
{ 

block_hed->n = 1; 
block_hed->x = 10.0; 
block_hed->y = 20.0; 

Accessing Common Blocks Directly 
You can access FORTRAN common blocks directly by defining a structure with the 
appropriate fields and then using the methods described in "External Data," on page 
190. Here is an example of accessing common blocks directly: 

struct block_type 
{ 

} ; 

int n; 
double x; 
double y; 

extern struct block_type fortran cblock; 

Note that the technique of accessing common blocks directly works with 
FORTRAN common blocks, but not with Basic common blocks. If your C or C++ 
module must work with both FORTRAN and Basic common blocks, pass the 
address of the common block as a parameter to the function. 

Using a Varying Number of Parameters 
Some C functions (for example printf) accept a variable number of parameters. To 
call such a function from another language, you need to suppress the type-checking 
that usually forces a call to be made with a fixed number of parameters. In Basic, 
you can remove this type-checking by omitting a parameter list from the 
DECLARE statement. In FORTRAN or Pascal, you can call routines with a vari
able number of parameters by including the V ARYING attribute in your interface 
to the routine, along with the C attribute. You must use the C attribute because a 
variable number of parameters is feasible only with the C calling convention. In 
C++, functions that accept a variable number of parameters automatically use the C 
calling convention. 





195 

CHAPTER 9 

Writing Portable C Programs 

Because C compilers exist on a variety of computers, some C applications devel
oped for one computer system can be ported to other systems. However, some 
aspects of language behavior depend on how a particular C compiler is imple
mented and how a specific computer operates. Therefore, when designing a program 
to be ported to another system, it is important that you examine programming 
assumptions. 

This chapter describes programming assumptions that can affect writing portable 
programs. 

The American National Standards Institute Standard for the C Language (the ANSI 
standard) details every instance where language behavior is defined by the imple
mentation. For a summary of implementation-defined behavior for Microsoft Visual 
C++, see Appendix B, "Implementation-Defined Behavior," in the C Language 
Reference. 

9.1 Assumptions About Hardware 
To make C programs portable, you must examine two aspects of your code: hard
ware assumptions and compiler dependency. This section deals with hardware 
assumptions. Section 9.2, "Assumptions About the Compiler," on page 210, deals 
with compiler dependency. 

Size of Basic Types 

Don't make 
assumptions about 
the size of data types. 

In C, the size of basic types (char, signed int, unsigned int, float, double, and 
long double) is implementation-defined, so relying on a particular data type to be a 
given size reduces the portability of a program. 

Because the size of basic types is left to the implementation, do not make assump
tions about the size or alignment of data types within aggregate types. Use only the 
size of operator to determine the size or amount of storage required for a variable or 
a type. 



196 Programming Techniques 

Following are some rules governing the size of data types. 

Type char 
Type char is the smallest of the basic types, but it must be large enough to hold any 
of the characters in the implementation's basic character set. Usually, variables of 
type char are 1 byte. 

Type int and Type short int 
Type int often corresponds to the register size of the target machine. Type short int 
may be less than or equal to the size of type int. Both int and short are greater than 
or equal to the size of type char but less than or equal to the size of type long. 

If you assume that type int is a certain size, your code may not be portable because: 

• An int can be defined as a 16-bit (2-byte) or a 32-bit quantity. 

• An int is not always large enough to hold array indices. For large arrays, you 
must use unsigned int; for extremely large arrays, use long or unsigned long. 
To be certain your code is portable, define your array indices as type size _ t. 
You may not know, before porting your code, the maximum value to expect an 
array index of type int to hold. The file LIMITS.H contains manifest constants, 
listed following, for the maximum and minimum values of each basic integral 
type: 

Constant 

CHAR BIT 

CHAR_MIN 

CHAR MAX 

SCHAR MIN 

SCHAR MAX 

UCHAR MAX 

SHRT MIN 

SHRT MAX 

USHRT MAX 

INT MIN 

INT MAX 

UINT MAX 

LONG MIN 

LONG MAX 

ULONG MAX 

Value 

Number of bits in a variable of type char 

Minimum value a variable of type char can hold 

Maximum value a variable of type char can hold 

Minimum value a variable of type signed char can hold 

Maximum value a variable of type signed char can hold 

Maximum value a variable of type unsigned char can hold 

Minimum value a variable of type short can hold 

Maximum value a variable of type short can hold 

Maximum value a variable of type unsigned short can hold 

Minimum value a variable of type int can hold 

Maximum value a variable of type int can hold 

Maximum value a variable of type unsigned int can hold 

Minimum value a variable of type long can hold 

Maximum value a variable of type long can hold 

Maximum value a variable of type unsigned long can hold 



Chapter 9 Writing Portable C Programs 197 

Type float, Type double, and Type long double 
Type float is the smallest of the basic floating-point types. Type double is usually 
larger than type float, and type long double is usually the largest of the floating
point types. You can make the following portability assumptions about floating
point types: 

• Any value that can be represented as type float can be represented as type 
double (type float is a subset of type double). 

• Any value that can be represented as type double can be represented as type 
long double (type double is a subset of type long double). 

The file FLOAT.H contains manifest constants, listed following, for the maximum 
and minimum values of each basic floating -point type: 

Constant 

DBL DIG 

DBL MAX 

DBL MAX 10 EXP 

DBL MAX EXP - -

DBL MIN 

DBL MIN 10 EXP - --

DBL MIN EXP 

FLT DIG 

FLT MAX 

FLT MAX 10 EXP - --

FLT MAX EXP - -

FLT MIN 

FL T MIN 10 EXP - --

FLT MIN EXP 

LDBL DIG 

Value 

Number of decimal digits of precision a variable of type 
double can hold 

Maximum value a variable of type double can hold 

Maximum value (base 10) the exponent of a variable of type 
double can hold 

Maximum value (base 2) the exponent of a variable of type 
double can hold 

Minimum positive value a variable of type double can hold 

Minimum value (base 10) the exponent of a variable of type 
double can hold 

Minimum value (base 2) the exponent of a variable of type 
double can hold 

Number of decimal digits of precision a variable of type 
float can hold 

Maximum value a variable of type float can hold 

Maximum value (base 10) the exponent of a variable of type 
float can hold 

Maximum value (base 2) the exponent of a variable of type 
float can hold 

Minimum positive value a variable of type float can hold 

Minimum value (base 10) the exponent of a variable of type 
float can hold 

Minimum value (base 2) the exponent of a variable of type 
float can hold 

Number of decimal digits of precision a variable of type 
long double can hold 



198 Programming Techniques 

Constant 

LDBL MAX 

LDBL MAX 10 EXP - --

LDBL MAX EXP - -

LDBL MIN 

LDBL MIN 10 EXP - --

LDBL MIN EXP 

Value 

Maximum value a variable of type long double can hold 

Maximum value (base 10) the exponent of a variable of type 
long double can hold 

Maximum value (base 2) the exponent of a variable of type 
long double can hold 

Minimum positive value a variable of type long double can 
hold 

Minimum value (base 10) the exponent of a variable of type 
long double can hold 

Minimum value (base 2) the exponent of a variable of type 
long double can hold 

Visual C++ Type Sizes 
Table 9.1 summarizes the size of the basic types in Visual C++. 

Table 9.1 Size of Basic Types in Visual C++ 

Type Number of bytes 

char, unsigned char 

short, unsigned short 

int, unsigned int 

near pointer 

long, unsigned long 

far pointer 

float 

2 

2or4* 

2or4* 

4 

4 or 8* 

4 

* These data types have different sizes in 16- and 32-bit environments. 

Storage Order and Alignment 
The C language does not define any specific layout for the storage of data items 
relative to one another. The layout for storage of structure elements, or unions 
within a structure or union, is defined by the implementation. 



Chapter 9 Writing Portable C Programs 199 

Some processors require that data longer than 1 byte be aligned to 2-byte or 4-byte 
boundaries. Other processors, such as the 80x86 family, do not have such a restric
tion. However, the 80x86 processors work more efficiently with aligned data. 

Structure Order and Alignment 
The following example illustrates how alignment can affect your program. In the 
example, a structure is cast to type long because the programmer knew the order in 
which a particular implementation stored data. 

/* Nonportable code */ 
struct time 
{ 

char hour; /* 0 < hour < 24 fits in a 
char minute; /* 0 < minute < 60 fits in a 
char second; /* 0 < second < 60 - fits in a 

} ; 

struct time now, alarm_time; 

if ( *(long *)&now >= *(long *)&alarm_time ) 
{ 

/* Sound an alarm */ 

The preceding code makes these nonportable assumptions: 

char */ 
char */ 
char */ 

• The data for h 0 uris stored in a higher order position than min ute or sec 0 n d. 
Because C does not guarantee storage order or alignment of structures or unions, 
the code may not be portable to other machines. 

• Three variables of type char are shorter than or the same length as a variable of 
type long. Thus, the code is not portable according to the rules governing the 
size of basic types, as described in "Size of Basic Types," on page 195. 

If either of these assumptions proves false, the comparison (if statement) is invalid. 



200 Programming Techniques 

You can write 
code that makes no 
assumptions about 
storage order. 

To make the program in the preceding example portable, you can break the com
parison between the two long integers into a component-by-component comparison. 
This technique is illustrated in the following example: 

1* Portable code *1 
struct time 

char hour; 1* 0 < hour < 24 fits 
char minute; 1* 0 < minute < 60 - fits 
char second; 1* 0 < second < 60 - fits 

} ; 

struct time now, alarm_time; 

if ( time_cmp( now, alarm_time) >= 0 ) 
{ 

1* Sound an alarm *1 

in a 
in a 
in a 

int time_cmp( struct time tl, struct time t2 ) 
{ 

if( t1.hour != t2.hour ) 
return( t2.hour - tl.hour ); 

if( tl.minute != t2.minute ) 
return( t2.minute - tl.minute ); 

return( t2.second - tl.second ); 

Windows and Structure Alignment 

char */ 
char */ 
char */ 

Programming for Windows is another situation in which the packing of a structure 
can affect portability. To save memory, structures in Windows are packed on I-byte 
boundaries. This means that any structure used by an application to pass informa
tion to Windows must be aligned on I-byte boundaries. Structures that are not 
passed to Windows need not be packed on I-byte boundaries. 

When compiling an application for a computer running Windows and using an Intel 
processor, compile the entire application with the /Zp option so that Windows can 
successfully use the structures that it needs. You can use the pack pragma to mark 
structures that are not meant for communication with Windows in order to specify 
packing more suitable to the efficient operation of the processor. For more 



Chapter 9 Writing Portable C Programs 201 

information on the /Zp compiler option and the pack pragma, see Chapter 1, "CL 
Command Reference," in the Command-Line Utilities User's Guide. 

Union Order and Alignment 
Programmers use unions most often for two purposes: to store data whose exact 
type is not known until run time and to access the same data in different ways. 

Unions falling into the second category are usually not portable. For example, the 
following union is not portable: 

} ; 

char bytes_in_long[4]; 
long a_long; 

The intent of the preceding union is to access the individual bytes of a variable of 
type long. However, the union may not work as intended when ported to other 
computers because: 

• It relies on a constant size for type long. 

• It may assume byte ordering within a variable of type long. (Byte ordering is 
described in detail in "Byte Order in a Word," following.) 

The first problem can be addressed by coding the union as follows: 

} ; 

char bytes_in_long[sizeof( long) / sizeof( char )]; 
long a_long; 

Note the use of the sizeof operator to determine the size of a data type. 

Byte Order in a Word 
The order of bytes within an integral type longer than a byte (short, int, or long) 
can vary among computers. Code that assumes an internal order is not portable, as 
shown by this example: 

/* Nonportable structure to access an int in bytes. */ 
struct tag_int_bytes 
{ 

} ; 

char lobyte; 
char hibyte; 



202 Programming Techniques 

A more portable way to access the individual bytes in a word is to define two 
macros that rely on the constant CHAR_BIT, defined in LIMITS.H: 

#define LOBYTE(a) (char)«a) & 0xff) 
#define HIBYTE(a) Cchar)CCunsigned)Ca) » CHAR_BIT) 

The LOBYTE macro is still not completely portable. It assumes that a char is 8 
bits long, and it uses the constant 0xff to mask the high-order eight bits. Because 
portable programs cannot rely on a given number of bits in a byte, consider the 
revision following: 

#define LOBYTECa) Cchar)«a) & C(unsigned)~0»CHAR_BIT)) 
#define HIBYTE(a) (char)«unsigned)(a) » CHAR_BIT) 

The new LOBYTE macro performs a bitwise complement on 0; that is, all zero 
bits are turned into ones. It then takes that unsigned quantity and shifts it right far 
enough to create a mask of the correct length for the implementation. 

The following code assumes that the order of bytes in a word is least -significant 
first: 

int c; 

fread( &c, sizeof( char), 1, fp); 

The code attempts to read one byte as an int, without converting it from a char. 
However, the code fails in any implementation where the low-order byte is not the 
first byte of an int. The following solution is more portable. In this example, the 
data is read into an intermediate variable of type char before being assigned to the 
integer variable. 

int c; 
char ch; 

freadC &ch, si,zeofC char), 1, fp); 
c = ch; 

The following example shows how to use the C run-time function fgetc to return the 
value. The fgetc function returns type char, but the value is promoted to type int 
when it is assigned to a variable of type int. 



Chapter 9 Writing Portable C Programs 203 

int c; 

c = fgetc( fp ); 

Visual C++ Specific 
Visual C++ usually aligns data types longer than 1 byte to an even-byte address for 
improved performance. For information about controlling structure packing in 
Visual C++, see the /Zp compiler option and the pack pragma in Chapter 1, "CL 
Command Reference," in the Command-Line Utilities User's Guide. 

Reading and Writing Structures 
Many C programs read data from disk into structures and write data to disk from 
structures. The functions that perform disk input/output (I/O) in C require you to 
specify the number of bytes to be transferred. You should always use the sizeof 
operator to obtain the size of the data to be read or written because differing data 
type sizes or alignment schemes may alter the size of a given structure. For 
example, 

fread( &my_struct, sizeof(my_struct), 1, fp ); 

Visual C++ Specific 
When performing disk input and output in Visual C++, structures may be different 
sizes depending on the structure-packing option you have selected. For information 
about controlling structure packing in Visual C++, see the /Zp compiler option and 
the pack pragma in Chapter 1, "CL Command Reference," in the Command-Line 
Utilities User's Guide. 

Bit Fields in Structures 
The Microsoft C compiler implements bit fields. However, many C compilers do 
not. 

U sing bit fields, you can access the individual bits within a data item. Although the 
practice of accessing the bits in a data item is inherently nonportable, you can 
improve your chances of porting a program that uses bit fields if you make no 
assumptions about order of assignment or size and alignment of bit fields. 

Order of Assignment 
The order of assignment of bit fields in memory is left to the implementation, so you 
cannot rely on a particular entry in a bit field structure to be in a higher order posi
tion than another. (This problem is similar to the portability constraint imposed by 



204 Programming Techniques 

alignment of basic data types in structures. The C language does not define any 
specific layout for the storage of data items relative to one another.) For more 
information, see "Storage Order and Alignment," on page 198. 

Size and Alignment of Bit Fields 
The Microsoft C compiler supports bit fields up to the size of the type long. Each 
individual member of the bit field structure can be up to the size of the declared 
type. Some compilers do not support bit field - structure elements that are longer 
than type int. 

The following example defines a bit field, short_bi tfi el d, that is shorter than 
type int: 

struct short_bitfield 
{ 

unsigned usr_bkup 
unsigned usr_sec 

1; 1* 0 <= usr_bkup < 1 *1 
4; 1* 9 <= usr_sec < 16 *1 

} ; 

The following example defines a bit field, 1 0 n 9_b i t fie 1 d, that has an element 
longer than type int in a 16-bit environment: 

struct long_bitfield 
{ 

} ; 

unsigned long disk_pos 
unsigned long rec_no 

22; 1* 0 <= disk_pos < 4,194,304 *1 
10; 1* 0 <= rec_no < 1024 */ 

The bit field s h 0 r t _b i t fie 1 d is likely to be supported by more implementations 
than lon9_bitfield. 

Visual C++ Specific 
The following example introduces another portability issue: alignment of data 
defined in bit fields. 

struct long_bitfield 
{ 

unsigned int day 5 ; 1* 0 <= day < 32 *1 
unsigned int month 4; 1* 0 <= month < 16 *1 
unsigned int year 11; 1* 0 <= year < 2048 *1 

} ; 

In a 16-bit environment, Visual c++ does not allow an element in a structure to 
cross a word boundary. The first two elements, day and month, take up 9 bits. The 
third, yea r, would cross a word boundary if it were to begin right after m 0 nth, so 
instead it must begin on the next word boundary. Thus, there is a 7-bit gap between 



Chapter 9 Writing Portable C Programs 205 

the month and yea r elements in the Visual c++ representation of this structure. 
However, other compilers may not use the same storage techniques. 

Note that in a 32-bit environment, all three elements can fit within a single word, so 
there is no gap between any of the elements in the Visual c++ representation of the 
structure. 

Processor Arithmetic Mode 

Pointers 

Two types of arithmetic are common on digital computers: one' s-complement 
arithmetic and two' s-complement arithmetic. Some programs assume that all target 
computers perform two' s-complement arithmetic. If you take advantage of the fact 
that a given operation causes a particular bit pattern to be set on either a one's
complement or two's-complement computer, your program is not portable. For 
example, two's-complement machines represent the 8-bit integer value -1 as a 
binary 11111111. A one' s-complement machine represents the same decimal value 
(-1) as 11111110. Some programmers assume that -1 fills a byte or a word with 
ones and use it to construct a mask template that they later shift. This does not work 
correctly on one' s-complement machines, but the error does not surface until the 
least-significant bit is used. 

In two' s-complement arithmetic, there is only one value that represents zero. In 
one's-complement arithmetic, there is a value for zero and a value for negative 
zero. Use the C relational operators to handle this anomaly correctly. If you write 
code that deliberately circumvents the C relational operators, tests for zero or 
NULL may not operate correctly. 

Visual C++ Specific 
Visual C++ produces code only for the Intel 80x86 processors, which perform 
two's-complement arithmetic. 

One of the most powerful but potentially dangerous features of the C language is its 
use of indirect addressing through pointers. Bugs introduced by misusing pointers 
can be difficult to detect and isolate because the errors often corrupt memory 
unpredictably. 

Casti ng Poi nters 
Be sure your assumptions do not make your code nonportable when you cast 
pointers to different types. 



206 Programming Techniques 

/* Nonportable coercion */ 
char c[4]; 
long *lp; 

lp = (long *)c; 
*lp = 0x12345678L; 

This code is nonportable because using a cast to change an array of char to a 
pointer of type long assumes a particular byte-ordering scheme. This is discussed in 
greater detail in "Byte Order in a Word," on page 201. 

Pointer Size 
A pointer can be assigned (or cast) to any integer type large enough to hold it, but 
the size of the integer type depends on the computer and the implementation. (In 
fact, it can even depend on the memory model.) Therefore, you cannot assume that a 
pointer is the same size as an integer, that is: 

sizeof( char * ) == sizeof( int ) 

To determine the size of any unmodified data pointer, use 

s i zeof( voi d * ) 

This expression returns the size of a generic data pointer. 

Pointer Subtraction 
Code that assumes that pointer subtraction yields an int value is nonportable. 
Pointer subtraction yields a result of type ptrdiff_t (defined in STDDEF.H). 
Portable code must always use variables of type ptrdiff _ t for storing the result of 
pointer subtraction. 

The Null Pointer 
In most implementations, NULL is defined as O. In Visual C++, it is defined as 
( ( v 0 i d *) 0 ) . Because code pointers and data pointers are often different sizes, 
using 0 for the null pointer for both can lead to nonportability. The difference in 
size between code pointers and data pointers causes problems for functions that 
expect pointer arguments longer than an int. To avoid these problems, use the null 
pointer, as defined in the include file STDDEF.H; use prototypes; or explicitly cast 
NULL to the correct data type. Here is a portable way to use the null pointer: 



Chapter 9 Writing Portable C Programs 207 

/* Portable use of the null pointer */ 
rnai n ( ) 
{ 

funcl( (char *)NULL ); 
func2( (void *(*)(»NULL ); 

void funcl( char * c ) 
{ 

} 

void func2( void *(* func)() ) 

The invocations of fun eland fun c 2 explicitly cast NULL to the correct size. In 
the case of fun c 1, NULL is cast to type char *; in the case of fun c 2, it is cast to 
a pointer to a function that returns type void. 

Visual C++ Specific 
Subtraction of pointers to huge arrays that have more than 32,767 elements may 
yield a long result. The __ huge keyword is implementation defined by Visual C++ 
and is not portable. Here is how to subtract pointers to huge arrays: 

char __ huge *a; 
char __ huge *b; 
long d; 

d = (long)( a - b ); 

In Visual C++, the memory model selected and the special keywords __ near, 
__ far, and __ huge can change the size of a pointer. The Microsoft memory models 
and extended keywords are nonportable, but you should be aware of their effects. 

Sizes of generic pointers and default pointer sizes are shown in Tables 9.2 and 9.3, 
respectively. 

Table 9.2 Size of Generic Pointers 

Declaration Name Size 

void near * Generic near pointer 16 bits 

void far * Generic far pointer 32 bits --
void __ huge * Generic huge pointer 32 bits 



208 Programming Techniques 

Table 9.3 Default Pointer Sizes in 16-Bit Programs 

Memory model Code pointer size Data pointer size 

Tiny 16 bits 16 bits 

Small 16 bits 16 bits 

Medium 32 bits 16 bits 

Compact 16 bits 32 bits 

Large 32 bits 32 bits 

Huge 32 bits 32 bits 

Address Space 
The amount of available memory and the address space on systems varies, depend
ing on many factors outside your control. A program designed with portability in 
mind should handle insufficient-memory situations. To ensure that your program 
handles these situations, you should always check the error return from any of the 
dynamic memory allocation routines, such as malloc, calloc, _strdup, and realloc. 

These situations occur not only because of a lack of installed memory but also 
because too many other applications are using memory. For example, 

• Installed resident software can cause your program to fail. In MS-DOS, these 
programs are usually device drivers or terminate-and-stay-resident (TSR) 
utilities. 

• An event or combination of events in a multitasking operating system such as 
XENIX can cause your program to fail. These failures are complex and difficult 
to predict. Here is an example: The user has installed a daemon to "pop up" 
every so often and check the system status. The user is running your application 
along with enough other, large applications to cause a critical shortage of mem
ory. When the daemon pops up, your program may fail on a memory allocation 
request. 

• An application running with Windows can use a large amount of the global heap 
and not return it to the free pool. This type of behavior causes Windows to deny 
a GlobalAlloc request. 



Chapter 9 Writing Portable C Programs 209 

Character Set 
The C language does not define the character set used in an implementation. This 
means that any programs that assume the character set to be ASCII are nonportable. 

The only restrictions on the character set are these: 

• No character in the implementation's character set can be larger than the size of 
type char. 

• Each character in the set must be represented as a positive value by type char, 
whether it is treated as signed or unsigned. So, in the case of the ASCII charac
ter set and an 8-bit char, the maximum value is 127 (128 is a negative number 
when stored in a char variable). 

Character Classification 
The standard C run-time support contains a complete set of character classification 
macros and functions. These functions are defined in the CTYPE.H file and are 
guaranteed to be portable: 

isalnum 

isalpha 

iscntrl 

isdigit 

isgraph 

islower 

isprint 

ispunct 

isspace 

isupper 

isxdigit 

The following example is not portable to implementations that do not use the ASCII 
character set: 

/* Nonportable */ 
if ( c )= I A I && c <= I Z I ) 

/* Uppercase alphabetic */ 

Instead, consider using this: 

/* Portable */ 
if( isalpha(c) && isupper(c) 

/* Uppercase alphabetic */ 

The first of the previous examples is nonportable, because it assumes that uppercase 
A is represented by a smaller value than uppercase Z and that no lowercase charac
ters fall between the values of A and Z. The second example is portable, because it 
uses the character classification functions to perform the tests. 

In a portable program, you should not perform any comparison on variables of type 
char except strict equality (==). You cannot assume the character set follows an 
increasing sequence-that may not be true on a different computer. 



210 Programming Techniques 

Case Translation 
Translation of characters from uppercase to lowercase or from lowercase to upper
case is called "case translation." The following example shows a coding technique 
for case translation not portable to implementations using a non-ASCII character 
set. 

#define make_upper(c) «c)&0xcf) 
#define make_lower(c) «c)10x20) 

This code takes advantage of the fact that you can map uppercase to lowercase 
simply by changing the state of bit six. It is extremely efficient but nonportable. To 
write portable code, use the case-translation macros toupper and tolower (defined 
in CTYPE.H). 

9.2 Assumptions About the Compiler 
Different compilers translate C source code into object code in different ways. The 
ANSI standard for the C programming language defines how many of these trans
lations must be done; others are implementation-defined. 

This section describes assumptions about how the compiler translates your C code 
that can make your programs nonportable. For a complete description of how 
Visual C++ handles implementation-defined operations, see Appendix B, 
"Implementation-Defined Behavior," in the C Language Reference. 

Sign Extension 
"Sign extension" is the propagation of the sign bit to fill unoccupied space when 
promoting to a more-significant type or when performing bitwise right-shift 
operations. 

Promotion from Shorter Types 
Integral promotions from shorter types occur when you make an assignment, 
perform arithmetic, perform a comparison, or perform an explicit cast. 

The behavior of integral promotion is well defined, except for type char. The 
implementation defines whether type char is treated as signed or unsigned. The 
following is an example of promotion as a result of assignment: 

char c1 = - 3; 

int i1; 

i 1 = c1; 



Chapter 9 Writing Portable C Programs 211 

In this example, the expected result of the assignment statement is that i 1 is set to 
-3. If the implementation defines type char as unsigned, however, sign extension 
does not occur, and i 1 is set to 253 (on a two's-complement machine). 

Promotion can also occur as a result of a comparison of different types: 

char c; 

if ( c == 0x80 ) 

This comparison never evaluates as true on an implementation that sign-extends 
char types but treats hexadecimal constants as unsigned. Use a character constant 
of the fonn '\xSO' or explicitly cast the constant to type char to perfonn the com
parison correctly. 

The following comparison, which is an example of promotion as a result of a cast, 
is also nonportable: 

char c; 
unsigned int u; 

if( u == (unsigned)c 

There are two problems with this code: 

• The char type may be treated as signed or unsigned, depending on the 
implementation. 

• If the char type is treated as signed, it can be converted to unsigned in two 
ways: The char value may first be sign-extended to int, then converted to 
unsigned, or the char may be converted to unsigned char, then sign-extended 
to int length. 

It is always safe to compare a signed int with a char constant because C requires 
all character constants to be positive. 

Variables of type char are promoted to type int when passed as arguments to a 
function. This causes sign extension on some computers. Consider the following 
code: 

char c = 128; 

pri ntf( "%d\n", c ); 



212 Programming Techniques 

Visual C++ Specific 
In Visual C++, you can treat type char as signed or unsigned. By default, a char is 
considered signed, but if you change the default char type using the IJ compiler 
option, you can treat it as unsigned. 

Bitwise Right-Shift Operations 
Positive or unsigned integral types (char, short, int, and long) yield positive or 
zero values after a bitwise right-shift (») operation. For example, 

(char)120 » 4 

yields 7, 

(unsigned char)240 » 8 

yields 0, 

(int)500 » 8 

yields I, and 

(unsigned int)65535 » 4 

yields 4095. 

Negative-signed integral types yield implementation-defined values after a bitwise 
right-shift operation. This means that you must know whether you want to do a 
signed or unsigned shift, then code accordingly. 

If you don't know how the implementation performs, you may get unexpected 
results. For example, (s i 9 ned c h a r ) 0 x8 0 > > 3 yields OxfO if the implementa
tion performs sign extension on bitwise right shifts. If the implementation does not 
perform the sign extension, the result is OxIO. 

You can use right shifts to speed up division when the divisor can be represented by 
powers of two and the dividend is positive. To maintain portability, you should use 
the division operator. 

To perform an unsigned shift, explicitly cast the data to an unsigned type. To 
perform a shift that extends the sign bit, use the division operator as follows: Divide 
by 2n , where n is the number of bits you want to shift. 



Chapter 9 Writing Portable C Programs 213 

Length and Case of Identifiers 
Some implementations do not support long identifiers. Some allow only 6 charac
ters, while others allow as many as 32. They may report each identifier that exceeds 
the maximum length or truncate identifiers to a given length. Truncation causes 
serious problems, especially if you have a number of similarly named variables 
within the scope of a block of code, such as the following: 

double acct_receivable_30_days; 
double acct_receivable_60_days; 
double acct_receivable_90_days; 
double current_interest_rate; 

If your target system retains only six significant characters, you will have to rename 
all your acct_recei vabl e variables. 

Case sensitivity also affects portability. C is usually a case-sensitive language. That 
is, Cal c u 1 ate I n t ere s t is not considered the same identifier as 
ca 1 cul atei nterest. Some systems are not case sensitive, however, so to write 
portable code differentiate your identifiers by something other than case. 

These problems with identifiers can occur in two locations: the compiler and the 
linker or loader. Even if the compiler can handle long and case-differentiated iden
tifiers, if the linker or loader cannot you can get duplicate definitions or other unex
pected errors. 

Visual C++ Specific 
The Microsoft C compiler issues the /NOIGNORECASE command to the 
Microsoft Segmented Executable Linker (LINK), specifically instructing it to con
sider the case of identifiers. 

Register Variables 
The number and type of register variables in a function depend on the implementa
tion. You can declare more variables as register than the number of physical regis
ters the implementation uses. In such a case, the compiler treats the excess register 
variables as automatic. 

Because the types that qualify for register class differ among implementations, 
invalid register declarations are treated as automatic. 



214 Programming Techniques 

If you declare variables as register to optimize performance, declare them in de
creasing order of importance to ensure that the compiler allocates a register to the 
most important variables. 

Visual C++ Specific 
The compiler ignores register declarations if you select the global register alloca
tion optimization. You can select global register allocation as follows: 

Environment 

CL command line 

Pragma 

Selection 

Specify either the fOe or fOx option. 

Use the optimize pragma with the e parameter. 

Functions with a Variable Number of Arguments 
Functions that accept a variable number of arguments are not portable. Although 
both the ANSI standard and The C Programming Language 2d ed. (Kernighan, 
Brian W., and Ritchie, Dennis M.; Englewood Cliffs, NJ: Prentice Hall, 1988) 
specify how to write these functions and how they behave, differences still exist 
among compiler implementors about how to use variable argument lists. 

Many UNIX systems support a standard that differs from the ANSI standard for 
variable arguments. Although this may change, it currently presents a portability 
concern. 

Using Visual C++ run-time libraries and macros, you can choose whichever version 
of variable argument support you expect to be most portable for your application. 

Evaluation Order 
The C language does not guarantee the evaluation order of most expressions. Avoid 
writing constructs that depend on evaluation within an expression to proceed in a 
particular manner. For example, 

i = 0; 
func( i++, i++ ); 

func( int a, int b ) 
{ 

A compiler could evaluate this code and pass 0 as a and 1 as b. It could also pass 1 
as a and 0 as b and conform equally with the standards. 



Chapter 9 Writing Portable C Programs 215 

The C language does guarantee that an expression is completely evaluated at any 
given "sequence point." A sequence point is a point in the syntax of the language at 
which all side effects of an expression or series of expressions have been 
completed. 

These are the sequence points in the C language: 

• The semicolon (;) statement separator. 

• The call to a function after the arguments have been evaluated. 

• The end of the first operand of the logical-AND operator (&&), the logical-OR 
operator (II), the conditional operator (?), or the comma separator operator (,) 
when it is used to separate statements or in expressions. The comma separator is 
not a sequence point when it is used between variables in declaration statements 
or between parameters in a function invocation. 

• The end of a full expression such as an initializer, the expression in an expres
sion statement (for example, any expression inside parentheses), the controlling 
expression of a while or do statement, any of the three expressions of a for 
statement, or the expression in a return statement. 

Function and Macro Arguments with Side Effects 
Run-time support functions can be implemented either as functions or as macros. 
Avoid including expressions with side effects inside function invocations unless you 
are sure the function is not implemented as a macro. Here is an illustration of how 
an argument with side effects can cause problems: 

#define limit_number(x) «x> 1000) ? 1000 : (x)) 

a = limit_number( a++ ); 

If a is greater than 1000, it is incremented once. If a is less than or equal to 1000, it 
is incremented twice, which is probably not the intended behavior. 

A macro can be used safely with an argument that has side effects if it evaluates its 
parameter only once. You can determine whether a macro is safe only by inspecting 
the code. 

A common example of a run-time support function that is often implemented as a 
macro is toupper. You will find your program's behavior confusing if you use the 
following code: 

char c; 

c = toupper( getc() ); 

If toupper is implemented as a function, get c is called only once and its return 
value is translated to uppercase. However, if toupper is implemented as a macro, 



216 Programming Techniques 

get c is called once or twice, depending on whether c is uppercase or lowercase. 
Consider the following macro example: 

#define toupper(c) ( (islower(c» ? _toupper(c) : (c) ) 

If you include the toupper macro in your code, the preprocessor expands it as 
follows: 

/* What you wrote */ 
c = toupper( getc() ); 

/* Macro expansion */ 
ch = (islower( (getc(» ) ? _toupper( getc() ) : (getc(» ); 

The expansion of the macro shows that the argument to toupper is always called 
twice: once to determine if the character is lowercase and the next time to perform 
case translation (if necessary). In the example, this double evaluation calls the 
get c function twice. Because get c is a function whose side effect is to read a 
character from the standard input device, the example requests two characters from 
standard input. 

Environment Differences 
Many programs perform some file input/output. When writing these programs for 
portability, consider the following: 

• Do not hard-code filenames or paths. Use constants you define either in a header 
file or at the beginning of the program. 

• Do not assume the use of any particular file system. For example, the UNIX
model, hierarchical file system is prevalent on small computers. On larger 
systems, the file system often follows a different model. 

• Do not assume a particular display size (number of rows and columns). 

• Do not assume that display attributes exist. Some environments do not support 
such attributes as color, underlined text, blinking text, highlighted text, inverse 
text, protected text, or dimmed text. 

9.3 Portability of Data Files 
Data files are rarely portable across different CPU s. Structures, unions, and arrays 
have varying intemallayout and alignment requirements on different machines. In 
addition, byte ordering within words and actual word length may vary. 



Chapter 9 Writing Portable C Programs 217 

The best way to achieve data-file portability is to write and read data files as one
dimensional character arrays. This procedure prevents alignment and padding 
problems if the data are written and read as characters. The only portability prob
lem you are likely to encounter if you follow this course is a conflict in character 
sets; many computers have character-set conversion utilities. 

9.4 Portability Concerns Specific to Visual C++ 
Visual C++ offers extensions using which you can take advantage of the full ca
pabilities of the computer. These extensions are not portable to other compilers or 
environments. For a list of Microsoft-specific keywords, see Chapter 1, "Elements 
of C," in the C Language Reference. 

The Run-Time Library Reference contains compatibility information for every 
function in the run-time library. Any function or macro that is not marked as ANSI 
compatible may not be portable to other compilers or computer systems. 

9.5 Visual C++ Byte Ordering 
Tables 9.4 and 9.5 summarize Visual C++ byte ordering for short and long types, 
respectively. In these tables, the least-significant byte of the data item is bO; the 
next byte is denoted by b 1, and so on. 

Because byte ordering is machine specific, any program that uses this byte ordering 
is not portable. 

Table 9.4 Byte Ordering for Short Types 

CPU Byte order 

8086 bO bl 

80286 bO bl 

80386 bO bl 

80486 bO bl 

PDP-II bO bl 

VAX-ll bO bl 

M68000 bl bO 

Z8000 bl bO 



218 Programming Techniques 

Table 9.5 Byte Ordering for Long Types 

CPU Byte order 

8086 bO bI b2 b3 

80286 bO bI b2 b3 

80386 bO bI b2 b3 

80486 bO bI b2 b3 

PDP-ll b2 b3 bO bI 

VAX-ll bO bI b2 b3 

M68000 b3 b2 bI bO 

Z8000 b3 b2 bI bO 



Index 

$ (dollar sign), label jumps, inline assembly 94 
* operator, inline assembly, using in 88 
» bitwise shift operator, portability guidelines 212 
[ ] (square brackets) 88 
[ ] (double square brackets) xiv 
{ } (braces) in asm blocks 84 

A 
IA compiler options 12,40-48 
About command, QuickWin 

described 129 
dialog box, customizing 132, 137 

lAC compiler option 33 
Acronym use xiv 
Active windows, QuickWin 

described 132 
setting 142-143 

lAd compiler option 42 
Address space, portability guidelines 208 
Addresses 

array variables, mixed-language programming 191-192 
common blocks, mixed-language programming 192-193 
pointers 

described 21 
portability guidelines 205-208 

Addressing 
based 

described 24 
for functions 59-60 
for member functions, C++ 80-81 
pointers 48-57 

declaring, keywords 34 
far addressing 23 
huge addressing 23-24 
indirect, portability guidelines 205-208 
modes 

return objects 73-74 
this pointer 72-73 
v-table pointers 74 

near addressing 22-23 
pointer declaration, keywords 36 

I Af compiler option 41 
IAR compiler option 33 
I Ah compiler option 41 
IAL compiler option 33 
I Al compiler option 41 
ALIGN directive, inline assembler support 85 

alloc_text pragma 14,48, 60 
Allocating 

based data 57-59 
registers, portability guidelines 213-214 

Alternate filename 
specifying for precompiled headers 15 
with use precompiled header option, /yu 8 

Alternate floating-point math package 
compiler option 108 
described 104 

lAM compiler option 33 
Ambient memory models, C++ classes 

described 70-71 
overriding 71-72 

I An compiler option 41 
Arguments 

See also Parameters 
lists, variable, portability limitations 214 
with side effects, portability guidelines 215-216 

Arithmetic modes, portability guidelines 205 
Arithmetic speed 23 
Arithmetic, pointer 

huge memory model effect 25,30-31 
mixed memory model effect 33-34 
speed 23 

Arrange Icons command, QuickWin 129, 133 
Arrays 

declaring, mixed-language programming 189 
in mixed-language programming 188-189 
indexing, mixed-language programming 188-189 
v-table pointers 74-75 

lAS compiler option 33 
I As compiler option 41 
ASCII character set, portability guidelines 209-210 

asm blocks 
described 84 
__ fastcall calling convention limitations 92 
features 85-87 
function calls 95 
labels 93-94 
language elements, using 87-91 
macros, defining as 96-97 
optimization, effects on 97-98 
registers 92 

__ asm keyword 84, 96 
Assembly groups 84 

219 

Assembly language in mixed-language programming 173-181 



220 Index 

Assumptions 
compiler, effect on portability 210 
hardware, effect on portability 195 

I Astring compiler options 12, 40-48 
IAT compiler option 33 
IAu compiler option 42 
auto_inline pragma, precompiled header compilation, effect on 

14 
Automatic precompiled header files (/YX) 5-7, 16 
lAw compiler option 43-44 

B 
Based addressing 

described 24 
for functions 59-60 
for member functions, C++ 80-81 
pointers 

described 48-49 
fixed base 49-50 
__ self keyword 55-56 
variable base 50-57 
__ void keyword 56-57 

__ based keyword 34, 36, 49-50 
Based pointers 

described 24,48-49 
fixed base 49-50 
__ selfkeyword 55-56 
variable base 50-57 
__ void keyword 56-57 

Based variables, declaring 36 
Basic, mixed-language programming 165-167 
Binary numbers 

floating -point, storing as nonnalized numbers 100-101 
processor arithmetic modes 205 

Bit fields, portability guidelines 203-205 
Bitwise shift (») operator, portability guidelines 212 
Blocks 

asm See asm blocks 
in mixed-language programming 192-193 
virtual memory 63-64 

_bmalloc function 53 
Bold type, document conventions xiv 
B_OnExit QuickBASIC function 167 
Braces ({ }) in asm blocks 84 
Brackets ([ ]) 

document conventions xiv 
inline assembly, using in 88 

Buffer size, QuickWin 142 
Building QuickWin programs 134 
Byte order, portability guidelines 201-203,217-218 

c 
C macros, defining as asm blocks 96-97 
Calling conventions, nri~ed-Ianguage programming 158-159, 

183 
Calling functions See Function calls 
Calls to emulator option, floating-point math 106-107 
Calls to math coprocessor option, floating-point math 108 
Cascade command, QuickWin 128,133 
Case sensitivity, labels, inline assembler 93-94 
Case translation, portability guidelines 210 
char type 

integral promotion, portability guidelines 210-212 
portability guidelines 196 

Character classification functions, portability guidelines 209 
Character set, portability guidelines 209-210 
check_pointer pragma, precompiled header compilation, effect 

on 14 
check_stack pragma, precompiled header compilation, effect 

on 14 
Child windows, QuickWin 

closing 143 
displaying 125-126 
opening 132, 137, 140 
reading from 140 
sizing, positioning 133, 141 
Window menu commands (list) 128-129 
writing to 140 

Classes 
ambient memory models 

described 70-71 
overriding 71-72 

memory models 
overview 69-70 
return object addressing modes 73-74 
this pointer, overloading 72-73 
v-table pointers 74-75 

Clear Paste command, QuickWin 129 
Client area, Quick Win, user control 130-131 
Client windows, QuickWin, user interface 125-126 
Clipboard, QuickWin 

copying 126-127 
pasting 127 

Closing child windows, QuickWin 143 
CNOCRTDW.LIB, DLL initialization code 118 
Code generation, optimizing for protected-mode prolog/epilog 

115-117 
Code pointers See Pointers 
Code segments 

naming, custom memory models 46-47 
specifying, custom memory models 48 

code_seg pragma, precompiled header compilation, effect on 
14 



CodeView 
information in object files, overriding default placement 

12 
inline assembly code, debugging with 87 

Command line 
floating-point math package options 104-108 
memory-model options 33, 40 
precompiled header options 4-16 
running QuickWin programs from 135 

Commands, QuickWin 126-129 
Comments, inline assembly 86 
Compact memory model 

compiler option 33 
creating program using 29 
null pointers 31-32 

Compatibility, floating-point math options 110-111 
Compiler options 

IA 12,40-48 
lAC 28-29, 33,40 
lAd 42 
IAf 41 
IAH 30-31,33,40 
IAh 41 
IAL 29-30, 33,40 
IAI 41 
lAM 27-28,33,40 
IAn 41 
lAS 27,33,40 
lAs 41 
I Astring 40-48 
IAT 26,33,40 
IAu 42 
lAw 43-44 
/D 12 
IE 12 
IEP 12 
/Fp 15-16 
/FP 104-108 
/FR 12 
/Fr 12 
IG2 116 
IGA 12, 115-116 
IGD 12, 115-116 
IGEstring 12, 116-117 
IGt 45-46 
IGW 13 
IGw 13,117 
IGx 46 
memory-model options 12,33,40-48 
/ND 46-47 
/NM 46-47 
/NT 46-47 
10e 98 

Compiler options (continued) 
109 98 
101 98 
/Yc 7-12 
/Yd 15 
/yu 8-12 
/yX 5-7,16 
IZi 13 

Compiling 
header files See Precompiled headers 
mixed-language programming 161-162 
portability guidelines 210 
precompiled headers 3-4 

Index 221 

speed, increasing using precompiled headers 3 
Consistency 

floating-point math operations 110-111 
precompiled header rules 6-7, 11-14 

Constants 
inline assembly 87 
symbolic, inline assembly 87 
windows (list) 139 

Controlling QuickWin menus 133 
Controlling QuickWin windows 133 
Converting 

MS-DOS applications to Windows applications See 
QuickWin 

pointer size 38-40 
Coprocessor, floating point math See Math coprocessor 

floating-point math package 
Copy Tabs command, QuickWin 127 
Copying text, QuickWin 126-127 
Creating 

child windows, QuickWin 132-133, 137-140 
macros, asm blocks 96-97 
precompiled headers 4-10 
QuickWin programs 

enhanced 123-125, 135-147 
standard 123 

Customizing 
About dialog box, QuickWin 132, 137 
icons, QuickWin 146 
memory models 

code pointer sizing 41 
code segments, specifying 48 
compiler options 40 
data placement 46-47 
data pointer sizing 41 
declarations, defining and referencing 45-46 
library support 44 
module naming 46-47 
segment naming 46-47 
segment setup options 42-44 



222 Index 

o 
/D compiler option 12 
Data 

allocation, based 57-59 
directives, inline assembly limitations 85 
files, portability limitations 216-217 
members, accessing, inline assembly 89-90 
pointers See Pointers 
segments 

naming, custom memory models 46-47 
overlapping stack segments 42-44 

storage, portability guidelines 198-201 
types, portability guidelines 195-198 

data_seg pragma, precompiled header compilation, effect on 
14 

Debugging 
information, overriding default placement of Code View 12 
inline assembly code, with Code View 87 
precompiled header object files 14 

Declarations, custom memory models, defining and referencing 
in 45-46 

Declaring 
addresses, keywords for 34 
addressing model, keywords 36-38 
arrays, mixed-language programming 188-189 
functions, near and far 36-38 
variables 

floating-point types 99-102 
near, far, huge and based 36 

.DEF file EXPORTS section, recommended use 117 
Defaults 

floating-point math package 103 
memory models 24-33 
pointer sizes 24, 208 

Defining macros, __ asm blocks 96-97 
Definition file EXPORTS section, recommended use 117 
delete operator, C++ 78-79 
Denormalized numbers, floating-point math packages 

100-101 
Dialog box, About command, QuickWin, customizing 132, 

137 
Directives, inline assembly 

limitations 85 
using in 88 

DLL initialization code 
CNOCRTDW.LIB 118 
LIB ENTRY .ASM, restriction 118 
LIBENTRY.OBJ, restriction 118 
LNOCRTDW.LIB 118 
MNOCRTDW.LIB 118 
SNOCRTDW.LIB 118 

Document conventions xiii-xiv 
Dollar sign ($), inline assembly 94 

double type 
portability guidelines 197 
variables, declaring as 99-101 

Drawing outside of a viewport, QuickWin difference from 
GRAPHICS.LIB 152 

Dynamic allocation, based data 57-59 
Dynamic link libraries 

LIBENTRY.ASM, restriction 118 
LIBENTRY.OBJ, restriction 118 

E 
IE compiler option 12 
Edit menu, QuickWin 126-127 
_emit pseudoinstruction 86 
EMOEM.ASM, floating-point math libraries, modifying with 

111 
Emulator floating-point math package 

command line options 106-108 
described 103 
environment variable, N087 111 

Entry points 
main, LibMain, and WinMain 118 
QuickBASIC, B_OnExit function 167 
run-time system's rules for establishing 118 

Entry/exit code, protected mode 
conflicts with fastcall keyword 117 
optimizing 115-117 

Environment variables, N087, software emulator 111 
Environments, I/O portability guidelines 216-217 
IEP compiler option 12 
Error handler, C++ 79-80 
Error message, no main function 118 
Evaluation order, portability guidelines 214-215 
EVEN directive, inline assembler support 85 
Exception handler, floating-point libraries 110-111 
Exit command, QuickWin 126 
Exiting 

See also Terminating 
keeping Windows open 144-145 
Windows 119-120 

Exponents, floating-point variables 100 
export keyword 
conflict with fastcall keyword 117 
use with /GA ~~mpiler option 115-116 
use with /GD compiler option 115-116 

EXPORTS section, .DEF file, recommended use 117 
Expressions 

evaluation order 214-215 
MASM, use in inline assembly 84-85 

extern "C" linkage specification 182 
External data, mixed-language programming 190-191 



F 
__ fac floating-point accumulator 101 
__ far keyword 33-37, 161 
Far objects, accessing 23 
Far pointers 23 
Far variables, declaring 36 
__ fastcall calling convention, inline assembly limitations 92 
fclose function 143 
_fcloseall function 143 
File menu, QuickWin 126 
Filenames, precompiled header, /Fp compiler option 15-16 
Files 

Header (.H) files See Header (.H) files, precompiled 
icon (.ICO) 146 
precompiled header (.PCH) See Precompiled headers 
resource script (.RC) files 146 

float type 
declaring functions that return 101-102 
portability guidelines 197 
variables, declaring as 99-101 

FLOAT.H, portability guidelines 197-198 
Floating-point accumulator C_ fac) 101 
Floating-point math functions, long double type support 102 
Floating-point math libraries 

exception handler 111-112 
selecting 104-108 
Setup program 103 

Floating-point math packages 
alternate 

compiler option 108 
described 104 

denormalized numbers, storing 100-10 1 
emulator 

compiler option 106-107 
described 103 

inline instructions 108-109 
(list) 102 
math coprocessor 

compiler options 107 
described 103 

optimization, effect 105 
options 104-110 

Floating-point numbers, denormalized numbers, storing as 
100-101 

Floating-point types 
functions that return, declaring 10 1-102 
promoting 101 
supported types (list) 99 
variables, declaring as 99-101 

Floating-point variables 
described 100 
promoting 101 

Fonts, document conventions xiv 

Index 223 

FORTRAN in mixed-language programming 164, 167-170 
fortran keyword 163-164, 168-170 

/FP compiler options 104-108 
/Fp compiler option 15-16 
/FR compiler option 12 
/Fr compiler option 12 
Free store 

delete operator 78-79 
described 75 
error handler 79-80 
new operator 75-77 

Function calls 
inline assembly 95 
mixed-language programming 153-155 

function pragma, precompiled header compilation, effect on 
14 

Functions 
argument lists, variable, portability limitations 214 
arguments with side-effects, portability guidelines 

215-216 
based addressing 59-60 
declaring with __ near and __ far 36-38 
floating-point math, long double type support 102 
floating -point types, returning 101-102 
inline assembly 

calling 95 
versions 90-91 

member, C++ See Member functions 
writing, inline assembly 90-91 

jwopen function 132, 138-140 

G 
/G2 compiler option 116 
/GA compiler option 12, 115-116 
/GD compiler option 12,115-116 
/GEstring compiler option 12, 116-117 
~etactivepage function, QuickWin difference from 

GRAPHICS.LIB 150 
~etvideoconfig function, QuickWin difference from 

GRAPHICS.LIB 151 
~etvisua1page function, QuickWin difference from 

GRAPHICS.LIB 150 
Global register allocation, portability guidelines 213-214 
goto statements, inline assembly 93-94 
Graphics library 

QuickWin and monochrome video adapters, differences 
from MS-DOS graphics library 152 

QuickWin, differences from MS-DOS graphics library 
147-152 

Graphics output, QuickWin, printing 131 
Graphics programs, QuickWin 

capabilities 122 
compiled with the Visual Workbench 122 



224 Index 

GRAPHICS.LIB, differences from QuickWin graphics library 
147-152 

/Gt compiler option 45,46 
/GW compiler option 13 
/Gw compiler option 12, 117 
/Gx compiler options 46 

H 
Handles, virtual memory 62-63 
Hardware, effect on code portability 195 
hdrstop pragma 

described 4 
placement 11 
syntax 10-11 
using to precompile entire source file 11 

Header (.H) files, precompiled 
consistency rules 11-14 
creating 4, 7-8 
debugging information, overriding default placement of 

CodeView 14 
described 3 
hdrstop pragma 10-11 
include path consistency 13 
options 4-10, 12-16 
pragma consistency 13-14 
source file consistency 13 
using 3-4 

Heaps, C++ See Free store 
Help menu, QuickWin 129 
Help, QuickWin 146-147 
Huge arrays, pointer arithmetic 30-31 
__ huge keyword 34, 36 
Huge memory models 

compiler option 33 
described 30-31 

Huge pointers, pointer arithmetic 23-24 
Huge variables, declaring 36 

Icon (.ICO) files, QuickWin, custom 146 
Identifiers, portability guidelines 213 
IEEE, floating-point types format 99 
Include path, consistency rules, precompiled headers 13 
Increasing portability See Portability guidelines 
Index command, QuickWin 129 
Indexing arrays, mixed-language programming 188-189 
Indirect addressing, portability guidelines 205,208 
Initializing virtual memory manager 61-62 
Inline assembly 

asm blocks 
described 84 
__ fastcall calling convention limitations 93-94 

Inline assembly (continued) 
__ asm blocks (continued) 

features 84-87 
function calls, C 96 
function calls, C++ 96 
labels 94-95 
language elements, using 88-92 
macros, defining as 97-98 
optimization, effects on 98-99 
registers 92 

__ asm keyword 84 
advantages 83 
comments, assembly-language 86 
data directives, limitations 85 
data members 89-91 
debugging with Code View 87 
_emit pseudoinstruction 86 
expressions, using 85 
__ fastcall calling convention 92 
function calls 96 
functions, writing 90-91 
instruction set 85 
labels 93-94 
macros 

defining __ asm blocks as 96-97 
limitations 85 

MASM compatibility limitations 85 
operators, limitations 85-88 
optimization concerns 97-98 
registers 92 
segment referencing 85 
structure types 89-91 
symbols 89 
type and variable sizes 86 
using 83 
variables 89-91 

Inline emulator option, floating-point math 106, 109 
Inline math coprocessor option, floating-point math 106, 109 
inline_depth, precompiled header compilation, effect on 14 
inline_recursion, precompiled header compilation, effect on 14 
Input command, QuickWin 129 
Input focus, active window, QuickWin 132, 142-143 
Input/Output, portability guidelines 216 
Institute of Electrical and Electronics Engineers, Inc. (IEEE) 

floating-point types format 99 
Instructions 

inline assembler 84-85,93-94 
inline, floating-point math options 109 

Insufficient memory handling, portability guidelines 208 
int type, portability guidelines 196 
Integral promotion, portability guidelines 210-212 
Intel 80x86 architecture, segments, sizes 22 



intrinsic pragma, precompiled header compilation, effect on 
14 

Italics, document conventions xiv 

J 
Jumping to labels, inline assembly 93-94 

K 
Keywords 

L 

addressing declaration 34 
asm 84,97 

__ based 34, 36, 49 
__ export 115-117 
__ far 33-37,163, 166 

fastcall 117 
__ fortran 163-164, 166-170 
__ huge 34, 36 
__ near 33-37, 163-164 
__ pascal 163-164,172-173 
pointer declaration 36 
register 98-99,213-214 
__ segname 50-51 

self 55-56 
void 56 

Labels, inline assembly 93-94 
Large memory model 

compiler option 33 
creating 29 

LENGTH operator, inline assembler use 86 
LibMain, entry point, run-time system's rules for establishing 

118 
Libraries 

floating-point math 104, 108, 110 
linking mixed-language programs with 161-162 
memory models 44 
QuickWin 121 

LIMITS.H, portability guidelines 196 
Line styles, QuickWin graphics library 148 
line size pragma, precompiled header compilation, effect on 13 
_lineto functions, QuickWin difference from GRAPHICS.LIB 

152 
Linkage specification, extern "C" 182 
Linking, mixed-language programs_ 161-162 
listing pragma, precompiled header compilation, effect on 17 
LNOCRTDW.LIB, DLL initialization code 118 
Loading virtual memory blocks 63 
Locking virtual memory blocks 63----:64 

long double type 
portability guidelines 197-198 
supportive functions 102 
variables, declaring as 99-101 

long type, byte ordering 218 

Index 225 

loop_opt pragma, precompiled header compilation, effect on 
14 

Lowercase letters, document conventions xiv 

M 
Macros 

__ asm blocks, defining as 96-97 
inline assembly 

limitations 85 
using in 86 

side effects, portability guidelines 215-216 
Main entry point, run-time system's rules for establishing 117 
Makefiles, precompiled headers, using with 16-20 
malloc function 53, 55 
Managing memory See Memory management 
manifest constants, portability guidelines 197-198 
Mantissas, floating-point variables 100 
Mark command, QuickWin 127 
MASM, inline assembly See Inline assembly 
Math coprocessor floating-point math package 

command line options 106-108 
described 103 

Math packages, floating-point See Floating-point math 
packages 

MDI (mUltiple document interface), graphics library 122 
Medium memory models 27-28,33 
Member functions, based addressing 80-81 
Memory management 

C++ 
free store 75 
memory models 69-70 

pointers See Pointers 
strategies (list) 21 
virtual memory 

blocks 63 
handles 62-63 
manager 61-62 
using, techniques 64-67 

Memory models 
ambient 

described 70-71 
overriding 71-72 

classes 
overview 69,70 
return object addressing modes 73-74 
this pointer, overloading 72-73 
v-table pointers 74-75 



226 Index 

Memory models (continued) 
compact 

compiler options 33 
described 28-29 
null pointers 31-32 

compiler options 33,40,47 
customizing 

code pointer sizing 41 
code segments, specifying 48 
compiler options 40 
data placement 45-46 
data pointer sizing 41 
declarations, defining and referencing 45-46 
library support 44 
module naming 46-47 
segment naming 46-47 
segment setup options 42-44 

default 22,33 
huge 

compiler option 33 
described 30-31 

large 
compiler option 33 
described 29-30 

medium 
compiler option 33 
described 27-28 
null pointers 31-32 

mixed 
described 33-34 
functions, declaring 36-38 
pointer problems 34-35 
pointer size conversion 38-39 
variables, declaring 36 

null pointers 31-32 
selecting 

compiler options 33 
standard six 25 

size limitations 25 
small, command line option 33 
standard six, selecting 25 
this pointer, overloading 72-73 
tiny 

compiler option 33 
described 26 

Memory, availability assumptions, portability guidelines 208 
Menus, QuickWin See QuickWin 
message pragma, precompiled header compilation, effect on 

13 
Microsoft Foundation Class Library, precompiled headers, use 

with 16 
Microsoft product support services xiii 

Mixed memory models 
described 33-34 
functions, declaring 36-38 
pointer problems 34-35 
pointer size conversion 38-39 
variables, declaring 36 

Mixed-language programming 
addresses in 191-193 
arrays 

declaring and indexing 188-189 
passing 187 

assembly language 
See also Inline assembly 
described, procedures 173-182 

Basic 165-167 
C++ linkage specification 182 
calling conventions 158-159, 183 
common blocks 192-193 
compiling 161 
described 153 
external data 190-191 
FORTRAN 162-164, 167-170 
high-level languages 162-164 
language conventions 155-156, 183 
language equivalents (table) 154 
linking 161-162 
naming conventions 155-157,183 
parameters, passing requirement 159-160 
Pascal 162-164, 170-173 
pointers 191-192 
QuickBasic 167 
records 190 
strings 184-186 
structures 190 
types, user-defined 190 
variable declaration 186 

MNOCRTDW.LIB, DLL initialization code 118 
Models, memory See Memory models 
Modes 

addressing 
return objects 73-74 
this pointer 72-73 

processor arithmetic, portability guidelines 205 
Modules, naming, custom memory models 46-47 
Monochrome video adapters, QuickWin, graphics library 152 
Mouse clicks, simulating in QuickWin menus 145 
MS-DOS applications, Windows applications, converting to 

See QuickWin 
MS-DOS graphics programs 122 
MSVC.PCH, default name of automatic precompiled header 

file 16 



N 
Naming conventions, mixed-language programming 155-157, 

183 
Naming modules, custom memory models 46-47 
Naming segments, custom memory models 46-47 
native_caller pragma, precompiled header compilation, effect 

on 14 
/ND compiler option 47 
NDP stack 102 
__ near keyword 34-37,163-164 
Near objects, accessing 22-23 
Near pointers 21-22 
Near variables, declaring 36-37 
new operator, C++ 75-77 
/NM compiler option 47 
N087 environment variable, floating-point math 110 
NOCRT libraries, use with WinMain or LibMain 118 
/NT compiler option 47 
Null pointers 

memory models, using with 31-32 
portability guidelines 206-207 

Numeric data processor stack, floating-point return values 103 

o 
Object (.OBJ) files, precompiled headers, placement of 

debugging information 14-15 
Objects 

addressing 22-24 
C++ 

return, addressing modes, specifying 73-74 
v-table pointers 74-75 

modifying with __ near, __ far, __ huge and __ based 36 
pointers to, modifying with __ near, __ far, __ huge and 

based 36 
JOe compiler option 99 
109 compiler option 99 
/01 compiler option 99 
One's-complement arithmetic, portability guidelines 205 
Opening child windows, QuickWin 132, 137-139 
Operators 

bitwise shift (»), portability guidelines 212 
inline assembly limitations 85-88 

optimize pragma, precompiled header compilation, effect on 
14 

Optimizing 
asm blocks, effect of 97-99 

protected-mode entry/exit code 115-117 
protected-mode prolog/epilog code 115-117 

Options 
compiler See Compiler options 
floating-point math packages 102-108, 110 

Options (continued) 
memory models See Memory model'> 
precompiled headers 4-16 

Index 227 

Order of evaluation, portability guidelines 214-215 
_outgtext function, QuickWin difference from GRAPHICS.LIB 

149-150 
_outtext function, QuickWin difference from GRAPHICS.LIB 

149-150 
Overloading 

p 

delete operator 78-79 
new operator 75-76 
this pointer 72-73 

pack pragma, precompiled header compilation, effect on 14 
Packing structures, programming for Windows, portability 

guidelines 200-201 
page pragma, precompiled header compilation, effect on 13 
page size pragma, precompiled header compilation, effect on 

13 
Parameters 

mixed-language programming 193 
passing arrays 187-188 
passing, mixed-language programming 159-160 

Pascal, mixed-language programming 162-164, 170-173 
__ pascal keyword 163-164, 172-173 
Paste buffer, QuickWin 127 
Paste command, QuickWin 127 
Pause command, QuickWin 128 
.PCH extension, precompiled header file naming conventions 

with IYc 7 
.PCH files See Precompiled headers 
Pointer arithmetic 

huge arrays 31 
huge memory model effect 30-31 
huge pointers 23-24 
mixed memory model effect 33-34 
speed 23-24 

Pointers 
address storage 21 
based 

described 24, 48-50 
fixed base 49-50 

self keyword 55-56 
variable base 50-55 

void keyword 56-57 
far pointers 23 
huge pointers 23-24 
mixed memory models, problems caused by 34-35 
mixed-language programming 191-192 
near pointers 22-23 



228 Index 

Pointers (continued) 
null 

memory models, using with 31-32 
portability guidelines 206-207 

portability guidelines 205-207 
segments, sizes, Intel80x86 architecture 21-22 
size 

code, custom memory model 41 
converting 38-39 
data, custom memory model 41 
defaults 21-22 
segments 21-22 
(table) 207-208 

this pointer, overloading 72-73 
v-table, described 74-75 

Portability guidelines 
address space 208 
argument lists, variable 214 
bit fields 203-205 
byte order 201-203,217-218 
case translation 210 
character sets 209 
compiler assumptions 210-217 
data files 216-217 
data types 195-198 
environments 216 
evaluation order 214-215 
function and macro arguments 215-216 
global register allocation 214 
hardware assumptions 195 
input/output 216 
identifiers 213 
LIMITS.H 196 
manifest constants 

FLOAT.H 197-198 
LIMITS.H 196 

memory availability assumptions 208 
pointers 205-208 
processor arithmetic modes 205 
programming for Windows, structure packing, /Zp 

compiler option 200-201 
register variables 213-214 
sign extension 210-211 
sizeof operator 195 
storage order and alignment 198-201 
structures 

bit fields 203-205 
in programming for Windows 200 
order and alignment 199 
reading and writing 203 

type promotion 210-212 
unions 201 
Visual C++ specific issues 217 

Pragmas, consistency rules, precompiled headers 13-14 
Precompiled headers 

automatic, /yX 5 
compiler options 4-16 
consistency rules 6-7, 11-14 
creating 4, 7-8 
debugging information, overriding default placement of 

CodeView 14 
debugging recommendations 6 
debugging while using /Y c and /Y u 9-10 
debugging while using /yX 5-6 
default file name, MSVC.PCH 5, 15 
described 3 
hdrstop pragma 10-11 
include path consistency 13 
naming conventions 8-9 
.PCH extension 4, 7 
PDB files 6,9 
pragma consistency 13-14 
program database files (PDB) 6,9 
source file consistency 13 
specifying alternate filename 9, 15 
use precompiled header option (/Yu) and hdrstop pragma 

8-9 
using 3-9 
using in a project 16-20 
using program database with /Y c and /yu to speed linking 

9 
using program database with /yX to speed linking 5-6 
/yX compiler option, using for 5-6 

Preprocessor directives, inline assembly, using with 89-90 
Printing, QuickWin graphics output 131 
Processor arithmetic modes, portability guidelines 205 
Product support services xiii 
Program database files (PDB), use with automatic precompiled 

header files 6, 9 
Programming 

for Windows, portability guidelines 200-201 
mixed-language See Mixed-language programming 

Projects, precompiled headers, using in 16, 20 
Prolog/epilog code, protected mode 

conflicts with __ fastcall keyword 117 
optimizing 115-117 

Protected-mode entry/exit code 
conflicts with __ fastcall keyword 117 
optimizing 115-117 

Protected-mode prolog/epilog code 
conflicts with __ fastcall keyword 117 
optimiZing 115-117 

Pseudoinstructions, _emit 86 



Q 
QuickBasic in mixed-language programming 167 
QuickWin 

About command 
described 129 
dialog box, customizing 132, 137 

active window 
described 133 
setting 143-144 

Arrange Icons command 128 
buffer size 142 
Cascade command 128 
child windows 

closing 144 
displaying 125-126 
open, list of 128 
opening 132, 137, 139 
reading from 140 
sizing, positioning 133, 141, 142 
writing to 140 

Clear Paste command 129 
client area, control 

arrow keys 130 
HOME and END keys 131 
PAGE UP and PAGE DOWN keys 130 

commands 126-129 
Copy Tabs command 127 
copying text 126-127 
described 121 
edit menu 126-127 
Exit command 126 
exiting 

closing windows 143 
leaving windows open 144 

graphics library 
differences from MS-DOS graphics library 147-152 
displaying character-based text 149-150 
drawing lines 152 
drawing lines and rectangles 152 
drawing outside of a viewport 152 
drawing rectangles 152 
fonts, registering 149 
~etactivepage function, difference from 

GRAPHICS.LIB 150 
~etvideoconfig function, difference from 

GRAPHICS.LIB 151 
~etvisualpage function, difference from 

GRAPHICS.LIB 150 
internal error system 147 
_lineto functions 152 
line styles 148 
manipulating screen pages 150 

Index 229 

QuickWin (continued) 
graphics library (continued) 

multiple document interface (MOl) 122 
_outgtext function, difference from GRAPHICS.LIB 

151-150 
_outtext function, difference from GRAPHICS.LIB 

149-150 
_rectangle functions 152 
Jegisterfonts function, difference from 

GRAPHICS.LIB 149 
registering fonts 149 
_remapallpalette function, difference from 

GRAPHICS.LIB 151 
_remappalette function, difference from 

GRAPHICS.LIB 151 
_selectpalette function, difference from 

GRAPHICS.LIB 151 
_setactivepage function, difference from 

GRAPHICS.LIB 150 
_setbkcolor function, difference from GRAPHICS.LIB 

151 
_setfillmask function, difference from GRAPHICS.LIB 

148 
_settextcolor function, difference from 

GRAPHICS.LIB 149-150 
_settextcursor function, difference from 

GRAPHICS.LIB 149-150 
_settextrows function, difference from 

GRAPHICS.LIB 150 
_settextvector function, difference from 

GRAPHICS.LIB 150 
setting fill mask 148 
setting palettes 151-152 
setting text output 150-151 
_setvideomode function, difference from 

GRAPHICS.LIB 151 
_setvideomoderows function, difference from 

GRAPHICS.LIB 150 
_setvisualpage function, difference from 

GRAPHICS.LIB 150 
_wrapon function, difference from GRAPHICS.LIB 

149-150 
graphics output, printing 131 
Help 146 
icons, customizing 146 
Index command 129 
Input command 129 
input using function keys 147 
libraries 121 
library functions (list) 124 
limitations 125 
Mark command 126-127 



230 Index 

QuickWin (continued) 
menus 

controlling 133 
Edit 126-127 
File 126 
Help 129 
simulating mouse clicks in 145 
State 128 
Window 128, 133, 145 

mouse clicks, simulating 145 
Paste buffer 127 
Paste command 127 
Pause command 128 
programs 

building 134 
enhanced 123-124, 135-147 
exiting 126 
running 134 
standard, capabilities 123 
standard, creating 123 

resource script (.RC) files and QuickWin icons 146 
Resume command 128 
sample program, QWGDEMO.C 135 
screen buffer 142 
Select All command 127 
setting the video mode 151 
Status Bar command 129 
text, copying 127 
Tile command 128 
user interface 

described 125-126 
features 130 

Using Help command 129 
yielding to other applications 145 

QWGDEMO.C, sample QuickWin program 135 
QWIN.HLP file 147 
_QWINVER constant 139 

R 
Records 

inline assembly limitations 85 
mixed-language programming 190 

_rectangle functions, QuickWin difference from 
GRAPHICS.LIB 152 

Register allocation, portability guidelines 98-99,213-214 
register keyword 213-214 
Register variables 

portability guidelines 213-214 
storage, __ asm block effect on 97-98 

Jegisterfonts function, QuickWin difference from 
GRAPHICS.LIB 149 

Registers, __ asm blocks 92 

_remapallpalette function, QuickWin difference from 
GRAPHICS.LIB 151 

_remappalette function, QuickWin difference from 
GRAPHICS.LIB 151 

Resource script (.RC) files, QuickWin icons 146 
Resume command, QuickWin 128 
Return objects, addressing modes, specifying 73-74 
Return values 

floating-point types, functions, declaring 101 
inline assembly, registers 92 

rewind function 140 
Running programs, QuickWin 134 

s 
same_seg pragma, precompiled header compilation, effect on 

14 
Sample program, QuickWin, QWGDEMO.C 135 
Scope, labels in __ asm blocks 93-94 
Screen buffer, QuickWin windows 142 
Segments 

code segments 
naming, custom memory models 46-47 
specifying, custom memory models 48 

data segments 
naming, custom memory models 46-47 
overlapping stack segments 42-45 

Intel 80x86 architecture 22 
limitations 

code size 25 
data size 25 

naming, custom memory models 46-47 
pointers 22 
references to, inline assembly 86 
stack segments, overlapping data segments 42-44 

__ segname keyword 50-51 
Select All command, QuickWin 127 
Selecting 

floating-point libraries 104 
memory models 24-33 

_selectpalette function, QuickWin difference from 
GRAPHICS.LIB 151 

__ self keyword 55-56 
Sequence points, expression evaluation 214-215 
_setactivepage function, QuickWin difference from 

GRAPHICS.LIB 150 
_setbkcolor function, QuickWin difference from 

GRAPHICS.LIB 151 
_setfillmask function, QuickWin difference from 

GRAPHICS.LIB 148 
_seCnew _handler function 79-80 
_settextcolor function, QuickWin difference from 

GRAPHICS.LIB 149-150 



_settextcursor function, QuickWin difference from 
GRAPHICS.LIB 149-150 

_settextrows function, QuickWin difference from 
GRAPHICS.LIB 150 

_settextvector function, QuickWin difference from 
GRAPHICS.LIB 150 

Setting active window, QuickWin 139-140 
Setting video mode, QuickWin 151 
Setup program, floating-point math library 102 
_setvideomode function, QuickWin difference from 

GRAPHICS.LIB 151 
_setvideomoderows function, QuickWin difference from 

GRAPHICS.LIB 150 
_setvisualpage function, QuickWin difference from 

GRAPHICS.LIB 150 
short int type, portability guidelines 196 
short type, byte ordering 217 
Sign extension, portability guidelines 210-212 
Significance, floating-point types 99-10 1 
SIZE operator, inline assembler use 86 
Size, pointers 

code, custom memory model 41 
converting 38-39 
data, custom memory model 41 
defaults 24 
segments 22 
(table) 207 

sizeof operator 
huge arrays, pointer arithmetic 31 
portability guidelines 195, 203 

skip pragma, precompiled header compilation, effect on 13 
Small memory model, compiler option 33 
SNOCRTDW.LIB, DLL initialization code 118 
Source files, consistency rules, precompiled headers 13 
Speed 

compiling, increasing using precompiled headers 3 
pointer arithmetic 23-24 

Square brackets ([ D, inline assembly, using in 88 
Stack segments, overlapping data segments 42-44 
Stacks, numeric data processor, floating-point values 102 
Standard memory models See Memory models 
Startup code, search for entry point 118 
State menu, QuickWin 128 
Statement separator, __ asm keyword 96 
Status Bar command, QuickWin 129, 133 
Storage 

floating-point type requirements 99-101 
portability guidelines 198-201 
register variables, __ asm block, effect on 97-98 

String implementation, mixed-language programming 184 

Index 231 

Strings in mixed-language programming 185-187 
Structure types, inline assembly 89-91 
Structures 

in mixed-language programming 190 
inline assembly limitations 85 
portability guidelines 

bit fields 203-205 
order and alignment 199-200 
reading and writing 203 
reading and writing using sizeof operator 203 

subtitle pragma, precompiled header compilation, effect on 13 
Symbolic constants, inline assembly, using in 88 
Symbols, inline assembly, using in 88-89 

T 
Telephone product support services xiii 
Terminating 

QuickWin programs 126 
virtual memory manager 63 

Termination routines, Windows 
linker definition file, requirement 119 
WEP routines 119 
writing your own 119-120 

Text, copying, QuickWin 126-127 
this pointer, overloading 72-73 
Tile command, QuickWin 128, 133 
Tiny memory models 

compiler option 33 
described 26 

title pragma, precompiled header compilation, effect on 13 
Two's-complement arithmetic, portability guidelines 205 
TYPE operator, inline assembler use 86 
typedefnames, inline assembly, using in 87 
Types 

u 

inline assembly 86 
mixed-language programming 184, 190 
names, inline assembly, using in 87 
portability guidelines 195-198 
promoting, portability guidelines 210-212 
user-defined, in mixed-language programming 190 

Unions, portability guidelines 201 
Unlocking virtual memory blocks 64 
Uppercase letters, document conventions Xlll 

User interface, QuickWin 125-126, 130 
Using Help command, QuickWin 129 



232 Index 

v 
Values, return 

floating-point type functions, declaring 101-102 
inline assembly, registers 92 

Variables 
arrays, addresses, mixed-language programming 191-192 
based, declaring 36 
declaring 

floating-point types 99-10 1 
mixed-language programming 184 
near, far, huge and based 36 

far, declaring 36 
floating-point 99-100 
huge, declaring 36 
inline assembly 86, 89-90 
near, declaring 36 
register 

declaring as, portability guidelines 213-214 
storage, __ asm block effect on 97-98 

_vheapinit function 61-62 
_vheapterm function 61-62 
Virtual function table pointers See V -table pointers 
Virtual memory 

blocks 63-64 
handles 62-63 
using, techniques 64-67 

Virtual memory manager 
described 61 
initializing 61-62 
terminating 62 

Visual Workbench, building QuickWin programs 134 
_ vload function 63-64 
_ vlock function 63-64 
_ vmalloc function 62-63 
void keyword 56 
v-table pointers 74-75 
_ vunlock function 64 

w 
_wabout function 124, 132, 137 
warning pragma, precompiled header compilation, effect on 

14 
_wclose function 124, 144-145 
WEP (Windows exit procedure) routine 119-120 
_ wgetexit function 124, 144 
_wgetfocus function 124, 132, 143 
_wgetscreenbuffunction 124, 142 
_wgetsize function 124, 133, 141 

_ WINARRANGE consant 145 
_ WINBUFDEF constant 142 
_ WINBUFINF constant 142 
_ WINCASCADE constant 145 
_ WINCURREQ constant 141 
_ WINDLL preprocessor symbol 116 
Window menu, QuickWin 128-129, 133, 145 
Windows 

active See Active windows, QuickWin 
arranging, QuickWin 128-129 
child See Child windows 
DLL initialization code 118 
exit procedure 119-120 
reading from, QuickWin 140 
selecting, QuickWin 127 
terminating routines for 

linker-definition file, requirement 119 
writing your own 119-120 

writing to, QuickWin 140 
Windows, applications for 

MS-DOS applications, converting from See QuickWin 
yielding, QuickWin 145 

_WINDOWS preprocessor symbol 116 
_ WINEXITNOPERSIST constant 144 
_ WINEXITPERSIST constant 144 
_ WINEXITPROMPT constant 144 
_ WINFRAMEHAND constant 141 
WinMain, entry point, run-time system's rules for establishing 

118 
_ WINMAXREQ constant 141 
_ WINNOPERSIST constant 143 
_ WINPERSIST constant 143 
_ WINSIZECHAR constant 139, 141 
_ WINSIZEMAX constant 139, 141 
_ WINSIZEMIN constant 139. 141 
_ WINSIZERESTORE constant 141 
_ WINSTATBAR constant 145 
_ WINTILE constant 145 
_wmenuclick function 124, 133, 145 
_wopen function 124, 132, 137-139 
_wopeninfo structure 138-140 
_wrapon function, QuickWin difference from GRAPHICS.LIB 

149-150 
Writing functions, inline assembly code 91-92 
_wsetexit function 124, 144 
_wsetfocus function 124, 132, 142 
_wsetscreenbuffunction 124,133,142 
_wsetsize function 124, 134, 144 
_ wsizeinfo structure 138-139 
_wyield function 124, 145 



y 
/Yc compiler option 7-12 
/Yd compiler option 14-15 
Yielding processing time, QuickWin applications 146 
/yu compiler option 8-12 
/yX compiler option 16 

z 
/Zi compiler option 13 

Index 233 





Break the 640K DOS Barrier with 
Phar lap and Microsoft Visual (++! 

Now you can use your 16-bit Microsoft®Visual C++TM Professional Edition 
or your Microsoft Win32™ SD K for Windows NTTM (Preliminary ...... _~'!!!. 
Version) compiler to build multi-megabyte DOS applications! 
With Phar Lap's award-winning DOS-Extenders, your C or 
C++ program can access all the memory you need and still run 
under DOS and the Microsoft Windows™ DOS box. 

286lDOS-Extender™ and Microsoft 
Visual c++ Professional Edition 
c" Access up to 16 megabytes of memory 
c .. No hassles with overlays or EMS 
c.. Debug with Code Vie~ 
c .. Programs run on any 80286,386 or 

486 PC 

386lDOS-ExtenderTM and Microsoft Win32 
SDK for Windows NT (Preliminary Version) 
c.. Access all available memory - up to 4 

gigabytes 
c .. Full 32-bit speed and power 
c.. Workstation -like flat memory model 
c .. Programs run on any 80386 or 486 PC 

CALL(617~6~~~ _____ (ru~fuldhere) _____ CALl(617~~~51~ 

YES! I am interested in Phar Lap's DOS-Extenders. Please send me: 

o __ copies of286 I DOS-Extender SDK @ $495 each = 
0 __ copies of386 I DOS-Extender SDK @ $495 each = 

o more information about o 286 I DOS-Extender o 386 I DOS-Extender 

Mass. residents add 5% sales tax: 
Shipping: U.S.lCanada International 

For each 286 I DOS-Extender SDK, add: $5 $50 
For each 386 I DOS-Extender SDK, add: $10 $70 

Total: 

Shipping Address: Please provide a street address (no P. O. boxes or postal route numbers)' 
Name: Position: _________________ _ 

Company: ________________ Phone: ________ _ 

Address: Fax: _________ _ 

City: _________ State/Country: ____ Zip: _________ _ 

Method of Payment: 
o Check or money order (U.S. $ from U.S. bank) 0 C.O.D. (U.S. orders only. Add $4) 
o P.O. # (Approved U.S. orders only): __________________ _ 

o MasterCard 0 Visa 0 American Express Card #: __________ _ 
Cardholder's Name: _________ Exp. date: ___ Order date: ___ _ 



What the experts say about Phar lap's DOS-Extenders: 

286lDOS-Extender 

"With 286IDOS-Extender, Phar Lap has 
brought protected-mode application develop
ment within the easy reach of every Microsoft 
C/C++ owner. " 
Ray Duncan, PC Magazine, May 1991 

''286IDOS-Extender strikes me as a superb 
way of utilizing all available memory in your 
machine. Phar Lap has a well-deserved 
reputation for technical excellence. " 
DaveJewell, Program NOW, Aug. 1991 

386lDOS-Extender 

"Using 386lDOS-Extender has made 
AutoCAD® 386 the top-selling Auto CAD 
version. We highly recommend Phar Lap's 

d t " pro uc s. 
Robert Wenig, Autodesk 

''Interleaf has long recognized Phar Lap's 
visionary role in the DOS marketplace. I 
believe Phar Lap produces the finest 32-bit 
DOS extender available. " 
Bill Hawkins, Interleaf 

Phar Lap® Software, Inc. 
60 Aberdeen Avenue 
Cambridge, MA 02138 
(617) 661-1510 
Fax (617) 876-2972 

______________ ~torfuldhe~ _____________ _ 

BUSINESS REPLY MAIL 
FIRST CLASS MAIL PERMIT NO. 6874 CAMBRIDGE MA 

POSTAGE WILL BE PAID BY ADDRESSEE 

PHAR LAP SOFTWARE 
60 ABERDEEN AVE 
CAMBRIDGE MA 02138-9734 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

111'111.1.1 ••• 11 •• 11.1111.1.1 •• 1'111 •• 11111 •• 11111.1 





Afictosotl® 

@ 
Recyclable 

Microsoft Corporation 
One Microsoft Way 
Redmond, WA 98052-63S 

11111111111111 
*29682 * 


